


PRAISE	FOR
The	Hardware	Hacker

“Hardware,	 says	 bunnie,	 is	 a	world	without	 secrets:	 if
you	 go	 deep	 enough,	 even	 the	most	 important	 key	 is
expressed	 in	 silicon	 or	 fuses.	 bunnie’s	 is	 a	 world
without	 mysteries,	 only	 unexplored	 spaces.	 This	 is	 a
look	inside	a	mind	without	peer.”
—EDWARD	SNOWDEN

“A	tour	de	force	that	combines	the	many	genius	careers
of	 one	 of	 the	 world’s	 great	 hacker-communicators:
practical,	 theoretical,	 philosophical,	 and	 often	 mind-
blowing.”
—CORY	DOCTOROW,	AUTHOR	OF	LITTLE	BROTHER	AND
TECHNOLOGY	ACTIVIST

“bunnie	 lives	 in	 the	 world	 of	 hardware	 where	 the
solder	 meets	 the	 PCB.	 He	 has	 more	 practical
experience	and	is	a	better	teacher	of	how	the	ecosystem
of	hardware	works	than	any	other	person	I’ve	ever	met,
and	 I	 know	 a	 lot	 of	 people	 in	 this	 space.	 He	 has
rendered	this	experience	and	expertise	into	an	amazing
book—a	hacker’s-point-of-view	bible	to	anyone	trying
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to	 work	 in	 or	 understand	 and	 work	 in	 the	 emerging
and	evolving	world	of	hardware.”
—JOI	ITO,	DIRECTOR,	MIT	MEDIA	LAB

“bunnie	is	the	ultimate	tour	guide	of	hardware	hacking
as	it	stands	today,	with	an	eye	toward	the	sublime	art	of
how	 things	are	really	made.	The	Hardware	Hacker	 will
take	 you	 on	 a	 journey	 through	 the	 factories	 of	 the
world,	 covering	 both	 the	 technical	 and	 ethical
implications	of	the	‘stuff	’	we	manufacture	and	buy.”
—LIMOR	“LADYADA”	FRIED,	FOUNDER	&	ENGINEER,
ADAFRUIT	INDUSTRIES

“Curious	how	the	devices	 in	our	daily	 lives	come	into
being?	Want	to	manufacture	your	own	project?	In	this
well-written	book,	bunnie	describes	the	ins	and	outs	of
the	 manufacturing	 process	 in	 China.	 A	 very
entertaining	and	informative	read.”
—MITCH	ALTMAN,	INVENTOR	OF	TV-B-GONE®

“The	 Hardware	 Hacker	 is,	 at	 its	 core,	 the	 primer	 for
understanding	 the	 culture	 of	 making	 something	 in
China,	 how	 to	 build	 thousands	 of	 things,	 and	 why
Open	Hardware	works.”
—HACKADAY
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The	Hardware	Hacker
Adventures	in	Making	and

Breaking	Hardware

Andrew	“bunnie”	Huang
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preface
When	Bill	 Pollock,	 founder	 of	No	 Starch	 Press,	 first
contacted	me	with	the	idea	of	publishing	a	compilation
of	 my	 writings,	 I	 was	 skeptical.	 I	 didn’t	 think	 there
would	 be	 enough	material	 to	 fill	 a	 hundred	 pages.	 It
seems	I	was	wrong.

My	mother	 often	 said,	 “It	 doesn’t	matter	what’s	 in
your	 head	 if	 you	 can’t	 tell	 people	 what’s	 in	 it,”	 and
when	 I	 was	 in	 seventh	 grade,	 she	 enrolled	 me	 in	 an
after-school	essay	writing	class.	I	hated	the	class	at	the
time,	but	in	retrospect,	I’m	thankful.	Starting	with	my
college	application	essays	and	up	to	this	day,	I’ve	found
the	 ability	 to	 organize	 my	 thoughts	 into	 prose
invaluable.

Most	 of	 the	 material	 in	 this	 book	 was	 originally
published	 on	 my	 blog,	 but	 as	 you’ll	 soon	 see,	 those
posts	weren’t	 puff	 pieces	written	 to	 drive	 ad	 revenue.
One	reason	I	write	is	to	solidify	my	own	understanding
of	 complicated	 subjects.	 It’s	 easy	 to	 believe	 you
understand	 a	 topic	 until	 you	 try	 to	 explain	 it	 to
someone	 else	 in	 a	 rigorous	 fashion.	Writing	 is	 how	 I
distill	my	 intuition	 into	 structured	 knowledge;	 I	 only
write	when	I	find	something	interesting	to	write	about,
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and	 then	 I	 post	 it	 with	 a	 CC	 BY-SA	 license	 to
encourage	others	to	share	it.

This	 book	 includes	 a	 selection	 of	 my	 writings	 on
manufacturing,	 intellectual	 property	 (with	 a	 focus	 on
comparing	Western	versus	Chinese	perspectives),	open
hardware,	 reverse	 engineering,	 and	 biology	 and
bioinformatics.	 The	 good	 editors	 at	 No	 Starch	 Press
also	curated	a	couple	of	interviews	I’ve	done	in	the	past
that	were	particularly	informational	or	insightful.	The
common	 thread	 throughout	 these	 diverse	 topics	 is
hardware:	how	it’s	made,	the	legal	frameworks	around
it,	and	how	it’s	unmade.	And	yes,	biological	systems	are
hardware.

I’ve	 always	 gravitated	 toward	 hardware	 because
while	 I’m	 not	 particularly	 gifted	 when	 it	 comes	 to
abstract	 thought	 (hence	 the	need	 to	write	 to	organize
my	thoughts),	I	am	pretty	good	with	my	hands.	I	have
a	 much	 better	 chance	 of	 understanding	 things	 that	 I
can	see	with	my	own	two	eyes.

My	 entire	 understanding	 of	 the	 world	 has	 always
been	built	 on	 a	 series	 of	 simple,	 physical	 experiences,
starting	from	when	I	stacked	blocks	and	knocked	them
over	 as	 a	 child.	 This	 book	 shares	 some	 of	 my	 more
recent	 experiences.	 I	 hope	 that	 by	 reading	 them,	 you
will	 gain	 a	 deeper	 understanding	 of	 the	 world	 of
hardware,	 without	 having	 to	 spend	 decades	 stacking
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blocks	and	knocking	them	over.

Happy	hacking,
—b.
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Part	1
adventures	in
manufacturing
I	 first	 set	 foot	 in	China	 in	November	2006.	 I	 had	no
idea	what	I	was	walking	into.	When	I	told	my	mother	I
was	going	to	visit	Shenzhen,	she	exclaimed,	“Why	are
you	going	there?	It’s	just	a	fishing	village!”	She	wasn’t
wrong:	 Shenzhen	was	 just	 a	 town	 of	 300,000	 back	 in
1980,	but	it	had	exploded	into	a	megacity	of	10	million
in	 less	 than	 30	 years.	 Between	 my	 first	 visit	 and	 the
time	I	wrote	this	book,	Shenzhen	gained	an	estimated
4	 million	 people—more	 than	 the	 population	 of	 Los
Angeles.

In	 a	way,	my	 understanding	 of	manufacturing	 over
the	 years	 has	 mirrored	 Shenzhen’s	 growth.	 Before
going	to	China,	I	had	never	mass-produced	anything.	I
didn’t	 know	 anything	 about	 supply	 chains.	 I	 had	 no
idea	what	“operations	and	 logistics”	meant.	To	me,	 it
sounded	like	something	out	of	a	math	or	programming
textbook.

Still,	Steve	Tomlin,	my	boss	at	the	time,	charged	me
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with	figuring	out	how	to	build	a	supply	chain	suitable
for	 our	 hardware	 startup,	 Chumby.	 Sending	 a	 novice
into	China	was	a	big	risk,	but	my	lack	of	preconceived
notions	was	more	of	an	asset	than	a	liability.	Back	then,
venture	 capitalists	 shunned	 hardware,	 and	 China	 was
only	 for	 established	 companies	 looking	 to	 build
hundreds	of	thousands	of	units	of	a	given	product.	My
first	 set	 of	 tours	 in	 China	 certainly	 supported	 that
notion,	as	I	primarily	toured	mega-factories	serving	the
Fortune	500.

Chumby	 was	 lucky	 to	 be	 taken	 under	 the	 wing	 of
PCH	 International	 as	 its	 first	 startup	 customer.	 At
PCH,	I	was	mentored	by	some	of	the	finest	engineers
and	supply	chain	specialists.	I	was	also	fortunate	to	be
allowed	 to	 share	 my	 experiences	 on	 my	 blog,	 as
Chumby	 was	 one	 of	 the	 world’s	 first	 open	 hardware
startups.

Although	 meeting	 the	 minimum	 order	 volumes	 of
our	 conventional	 manufacturing	 partners	 was	 a
constant	 struggle,	 I	 kept	 noticing	 small	 things	 that
didn’t	 square	 with	 conventional	 wisdom.	 Somehow,
local	 Chinese	 companies	 were	 able	 to	 remix
technology	 into	 boutique	 products.	 The	 so-called
shanzhai	 integrated	 cell	 phones	 into	 all	 kinds	 of
whimsical	forms,	from	cigarette	lighters	to	ornamental
golden	Buddha	statuettes	(more	on	this	in	Chapter	4).
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The	niche	nature	of	these	products	meant	they	had	to
be	 economical	 to	 produce	 in	 smaller	 volumes.	 I	 also
noticed	 that	 somehow	 factories	 were	 able	 to	 rapidly
produce	 bespoke	 adapter	 circuits	 and	 testing
apparatuses	 of	 surprisingly	 high	 quality	 in	 single-unit
volumes.	 I	 felt	 there	 was	 more	 to	 the	 ecosystem—a
story	that	was	being	told	over	and	over	again—but	few
had	 the	 time	 to	 listen,	 and	 those	who	did	 heard	 only
the	parts	they	wanted	to	hear.

The	financial	crisis	of	2008	changed	everything.	The
consumer	electronics	market	was	crushed,	and	factories
that	 were	 once	 too	 busy	 printing	 money	 were	 now
swimming	in	excess	capacity.	I	made	friends	at	several
medium-sized	factories	in	the	area.	I	started	to	inquire
about	 how,	 exactly,	 these	 factories	 were	 able	 to	 so
nimbly	produce	their	internal	test	equipment,	and	how
shanzhai	 were	 able	 to	 prototype	 and	 build	 such
bespoke	phones.

The	bosses	and	engineers	were	initially	reticent,	not
because	 they	 wanted	 to	 hide	 potential	 competitive
advantages	from	me,	but	because	they	were	ashamed	of
their	 practices.	 Foreign	 clients	 were	 full	 of	 corporate
process,	 documentation,	 and	 quality	 procedures,	 but
they	 also	 paid	 dearly	 for	 such	 overhead.	 Local
companies	 were	 much	more	 informal	 and	 pragmatic.
So	what	if	a	bin	is	labeled	“scrap”?	If	the	bits	inside	are
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suitable	for	a	job,	then	use	them!
I	wanted	 in.	As	an	engineer,	 tinkerer,	and	hacker,	 I

cared	a	lot	about	the	cost	to	produce	a	few	units,	and	a
couple	 of	 minor	 assembly	 defects	 was	 nothing
compared	 to	 the	 design	 issues	 I	 had	 to	 debug.	 I
eventually	managed	 to	 coax	 a	 factory	 into	 letting	me
build	 a	 part	 using	 its	 low-quality	 but	 ultra-cheap
assembly	process.

The	 trick	was	 to	guarantee	 that	 I	would	pay	 for	 all
the	product,	including	defective	units.	Most	customers
refuse	 to	pay	 for	 imperfect	 goods,	 forcing	 the	 factory
to	 eat	 the	 cost	 of	 any	 part	 that	 isn’t	 exactly	 to
specification.	 Thus,	 factories	 strongly	 dissuade
customers	 from	 using	 cheaper	 but	 low-quality
processes.

Of	course,	my	promise	to	pay	for	defective	product
meant	 there	 was	 no	 incentive	 for	 the	 factory	 to	 do	 a
good	 job.	 It	 could	 have,	 in	 theory,	 just	 handed	me	 a
box	of	 scrap	parts	 and	 I’d	 still	 have	had	 to	pay	 for	 it.
But	in	reality,	nobody	had	such	ill	intentions;	as	long	as
everyone	simply	tried	their	best,	they	got	it	right	about
80	percent	of	the	time.	Since	small-volume	production
costs	are	dominated	by	setup	and	assembly,	my	bottom
line	was	 still	 better	 despite	 throwing	 away	20	percent
of	 my	 parts,	 and	 I	 got	 parts	 in	 just	 a	 couple	 of	 days
instead	of	a	couple	of	weeks.
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Having	 options	 to	 trade	 cost,	 schedule,	 and	 quality
against	 each	 other	 changes	 everything.	 I’ve	made	 it	 a
point	to	discover	more	alternative	production	methods
and	 continue	 shortening	 the	 path	 between	 ideas	 and
products,	 with	 ever	 more	 options	 along	 the	 cost-
schedule-quality	spectrum.

After	 Chumby,	 I	 decided	 to	 remain	 unemployed,
partly	 to	give	myself	 time	 for	discovery.	For	example,
every	 January,	 instead	 of	 going	 to	 the	 frenzied
Consumer	 Electronics	 Show	 (CES)	 in	 Las	 Vegas,	 I
rented	a	cheap	apartment	in	Shenzhen	and	engaged	in
the	“monastic	study	of	manufacturing”;	for	the	price	of
one	 night	 in	 Las	 Vegas,	 I	 lived	 in	 Shenzhen	 for	 a
month.	 I	 deliberately	 picked	 neighborhoods	 with	 no
English	 speakers	 and	 forced	 myself	 to	 learn	 the
language	 and	 customs	 to	 survive.	 (Although	 I’m
ethnically	Chinese,	my	 parents	 prioritized	 accent-free
fluency	in	English	over	learning	Chinese.)	I	wandered
the	streets	at	night	and	observed	the	back	alleys,	trying
to	make	sense	of	all	the	strange	and	wonderful	things	I
saw	going	on	during	the	daytime.	Business	continues	in
Shenzhen	until	the	wee	hours	of	the	morning,	but	at	a
much	 slower	 pace.	 At	 night,	 I	 could	 make	 out	 lone
agents	acting	out	their	interests	and	intentions.

If	there’s	one	thing	those	studies	taught	me,	it’s	that
I	 have	 a	 lot	 more	 to	 learn.	 The	 Pearl	 River	 Delta
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ecosystem	is	incomprehensibly	vast.	As	with	the	Grand
Canyon,	 simply	 hiking	 one	 trail	 from	 rim	 to	 base
doesn’t	mean	you’ve	seen	it	all.	I	have,	however,	picked
up	enough	knowledge	to	build	a	custom	laptop	and	to
develop	 a	 new	 process	 for	 peel-and-stick	 electronic
circuits.

In	this	part	of	the	book,	you’ll	follow	my	journey	as	I
learned	 the	 Shenzhen	 ecosystem	over	 the	 years,	 via	 a
remix	of	blog	posts	that	I	wrote	along	the	way.	Some	of
the	 essays	 are	 reflections	 on	 particular	 aspects	 of
Chinese	 culture;	 others	 are	 case	 studies	 of	 specific
manufacturing	 practices.	 I	 conclude	 with	 a	 chapter
called	 “The	 Factory	 Floor,”	 a	 set	 of	 summary
recommendations	 for	 anyone	 considering	 outsourced
manufacturing.	If	you’re	in	a	hurry,	you	can	skip	all	the
background	and	go	directly	there.

However,	hindsight	 is	20/20.	Once	you’ve	walked	a
path,	 it’s	 easy	 to	 point	 out	 the	 shortcuts	 and	 hazards
along	the	way;	it’s	even	easier	to	forget	all	of	the	wrong
turns	and	bad	assumptions.	There’s	no	one-size-fits-all
method	for	approaching	China,	and	my	hope	is	that	by
reading	 these	 stories,	 you	 can	 come	 to	 your	 own
(perhaps	 different)	 conclusions	 that	 better	 serve	 your
unique	needs.
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1.	made	in	china

Before	 my	 first	 visit	 to	 China,	 I	 was	 convinced	 that
Akihabara	 in	Tokyo	was	 the	go-to	place	 for	 the	 latest
electronics,	 knickknacks,	 and	 components.	 That
changed	 in	 January	2007,	when	 I	 first	 set	 eyes	on	 the
SEG	 Electronics	 Market	 in	 Shenzhen.	 SEG	 is	 eight
floors	 of	 all	 the	 components	 a	 hardware	 addict	 could
ever	want,	and	only	later	did	I	learn	that	it’s	just	the	tip
of	the	Hua	Qiang	electronics	district	iceberg.

As	 the	 lead	 hardware	 engineer	 at	 Chumby	 at	 the
time,	I	was	in	China	with	then-CEO	Steve	Tomlin	to
figure	out	how	to	make	chumbys	(an	open	source,	Wi-
Fi-enabled	 content	 delivery	 device)	 cheaply	 and	 on
time.	With	prices	like	those	at	SEG,	we	were	definitely
in	 the	 right	 country	 to	make	 at	 least	 the	 first	 part	 of
that	mission	a	success.
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Shenzhen’s	SEG	Electronics	Market,	the	new	electronics
mecca.	Akihabara,	eat	your	heart	out!
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THE	ULTIMATE	ELECTRONIC	COMPONENT
FLEA	MARKET
When	 I	 first	 stepped	 into	 the	 SEG	 building,	 I	 was
assaulted	 by	 a	 whirlwind	 of	 electronic	 components:
tapes	and	reels	of	resistors	and	capacitors,	ICs	of	every
type,	inductors,	relays,	pogo	pin	test	points,	voltmeters,
and	 trays	 of	 memory	 chips.	 As	 a	 total	 newcomer	 to
manufacturing	 in	 volume,	 I	 was	 blown	 away	 by
everything	I	saw	at	SEG.

All	 of	 those	 parts	 were	 crammed	 into	 tiny	 six-by-
three-foot	booths,	each	with	a	storekeeper	poking	away
at	 a	 laptop.	 Some	 storekeepers	 played	Go,	 and	 some
counted	 parts.	 Some	 booths	 were	 true	mom-and-pop
shops,	with	mothers	tending	to	babies	and	kids	playing
in	the	aisles.
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A	couple	of	family-run	component	shops

Other	 booths	 were	 professional	 setups	 with
uniformed	staff,	and	these	worked	like	a	bar—complete
with	stools—for	electronic	components.

A	swanky	professional	parts	seller

No	one	at	SEG	says,	 “Oh,	you	can	get	10	of	 these
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LEDs	or	a	couple	of	these	relays,”	like	you	might	hear
in	Akihabara.	No,	no.	These	booths	 specialize,	 and	 if
you	 see	 a	 component	 you	 like,	 you	 can	 usually	 buy
several	 tubes,	 trays,	or	reels	of	 it;	you	can	get	enough
to	go	into	production	the	next	day.

Looking	around	the	market,	I	saw	a	woman	sorting
stacks	of	1GB	mini-SD	cards	 like	poker	chips.	A	man
was	putting	sticks	of	1GB	Kingston	memory	into	retail
packages,	and	next	to	him,	a	girl	was	counting	resistors.

39



The	bottom-left	corner	of	this	display	was	packed	with	all
kinds	of	SD	cards.

Another	 booth	 had	 stacks	 of	 power	 supplies,
varistors,	 batteries,	 and	 ROM	 programmers,	 and	 yet
another	 had	 chips	 of	 every	 variety:	 Atmel,	 Intel,
Broadcom,	 Samsung,	 Yamaha,	 Sony,	 AMD,	 Fujitsu,
and	more.	Some	chips	were	clearly	ripped	out	of	used
equipment	and	remarked,	some	of	them	in	brand-new
laser-marked	OEM	packaging.

The	sheer	quantity	of	chips	for	sale	at	a	single	booth	at	SEG
was	incredible.
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I	 saw	 chips	 that	 I	 could	 never	 buy	 in	 the	 United
States,	reels	of	rare	ceramic	capacitors	that	I	could	only
dream	 about	 at	 night.	 My	 senses	 tingled;	 my	 head
spun.	 I	 couldn’t	 suppress	 a	 smile	 of	 anticipation	 as	 I
walked	 around	 the	 next	 corner	 to	 see	 shops	 stacked
floor	to	ceiling	with	probably	100	million	resistors	and
capacitors.

Reels	and	reels	of	components,	in	every	shop	window

Sony	CCD	and	CMOS	camera	elements!	I	couldn’t
buy	those	 in	the	United	States	 if	I	pulled	teeth	out	of
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the	 sales	 reps.	 (Some	 sellers	 even	 have	 the	 datasheets
behind	the	counter;	always	ask.)	Next,	I	spotted	a	stack
of	Micrel	regulator	chips,	 followed	by	a	Blackfin	DSP
chip	 for	 sale.	Nearby,	 a	 lady	 counted	 256Mb	DRAM
chips—trays	 of	 108	 components,	 stacked	 20	 high,	 in
perhaps	10	rows.

The	equivalent	of	Digi-Key’s	entire	stock	of	DRAM	chips	sat
right	in	front	of	me!

And	 across	 from	 her	 were	 a	 half-dozen	more	 little
shops	packed	with	chips	 just	 like	hers.	At	one	 shop,	a
man	 stood	 proudly	 over	 a	 tray	 of	 4Gb	 NAND	 flash
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chips.	All	of	this	was	available	for	a	little	haggling,	a	bit
of	cash,	and	a	hasty	good-bye.

A	close	look	at	a	tray	of	4GB	flash	chips

And	that’s	just	the	first	two	floors	of	SEG.	There	are
six	 more	 floors	 of	 computer	 components,	 systems,
laptops,	 motherboards,	 digital	 cameras,	 security
cameras,	 thumb	drives,	mice,	video	cameras,	high-end
graphics	 cards,	 flat-panel	 displays,	 shredders,	 lamps,
projectors—you	name	it.	On	weekends,	“booth	babes”
dressed	 in	outrageous	Acer-branded	glittery	bodysuits
loiter	around,	trying	to	pull	you	in	to	buy	their	wares.
This	market	 has	 all	 the	 energy	 of	 a	 year-round	CES
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meets	Computex,	except	instead	of	just	showing	off	the
latest	 technology,	 the	 point	 is	 getting	 you	 into	 these
booths	to	buy	that	hardware.	Trade	shows	always	 feel
like	 a	 bit	 of	 a	 strip	 tease,	 with	 your	 breath	 making
ghostly	 rings	 on	 the	 glass	 as	 you	 hover	 over	 the
unobtainable	wares	underneath.

But	SEG	is	no	strip	tease.	It’s	the	orgy	of	consumer
and	industrial	electronic	purchasing,	where	you	can	get
your	 grubby	 paws	 on	 every	 piece	 of	 equipment	 for
enough	kuai*	out	of	your	wallet.	Between	the	smell,	the
bustle,	 and	 the	hustle,	 SEG	 is	 the	 ultimate	 electronic
component	 flea	 market.	 It’s	 as	 if	 DigiKey	 went	 mad
and	let	monkeys	into	its	Minnesota	warehouse,	and	the
resulting	chaos	spilled	into	a	flea	market	in	China.

Of	course,	a	lot	of	the	parts	I	marveled	at	in	2007	are
antiques	now.	For	example,	4Gb	flash	chips	are	trash,
and	 1GB	 flash	 disks	 are	 old	 news.	 At	 the	 time,
however,	those	things	were	a	big	deal,	and	SEG	is	still
the	best	place	to	get	the	latest	tech	in	bulk.

THE	NEXT	TECHNOLOGICAL	REVOLUTION
Three	 blocks	 down	 the	 street	 from	 SEG	 lay	 the
Shenzhen	Bookstore.†	The	 first	 and	most	 visible	 rack
was	 a	 foreign	 book	 section,	 packed	 with	 classics	 like
Stanford	 University	 professor	 Thomas	 Lee’s	 The
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Design	of	CMOS	Radio-Frequency	Integrated	Circuits	and
several	 titles	 by	 UCLA	 professor	 Behzad	 Razavi.	 I
picked	 up	 Lee’s	 book,	 and	 it	 cost	 68	 kuai,	 or	 $8.50
USD.	 Holy	 cow!	 Jin	 Au	 Kong’s	 book	 on	 Maxwell’s
equations?	 $5.	 Jin	 Au	 Kong	 taught	 me	 Maxwell’s
equations	at	MIT.

I	went	on	a	spree,	packing	my	bag	with	six	or	seven
titles,	 probably	 around	 $700	 worth	 of	 books	 if	 I’d
bought	 them	 in	 the	 United	 States.	 At	 the	 checkout
counter,	 I	 bought	 them	 for	 less	 than	 $35,	 complete
with	the	supplemental	CDs,	saving	about	$665.	That’s
equivalent	to	buying	an	economy-class	ticket	to	Hong
Kong!

In	 China,	 knowledge	 is	 cheap.	 Components	 are
cheap.	The	 knowledge	 in	 the	 books	 at	 the	 Shenzhen
Bookstore	 was	 the	 Real	 Deal,	 the	 parts	 to	 use	 that
knowledge	are	down	the	street	at	SEG,	and	within	an
hour’s	drive	north	are	probably	200	 factories	 that	can
take	any	electronics	idea	and	pump	it	out	by	the	literal
boatload.	 These	 are	 no	 backward	 factories,	 either.
With	 my	 own	 eyes,	 I	 saw	 name-brand,	 1,550-
nanometer,	 single-mode,	 long-haul,	 fiber-optic
transceivers	 being	 built	 and	 tested	 there.	 Shenzhen	 is
fertile	ground,	and	you	need	to	see	it	to	understand	it.

Shenzhen	 has	 the	 pregnant	 feel	 of	 the	 swapfests	 in
Silicon	 Valley	 back	 in	 the	 ’80s,	 when	 all	 the	 big
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companies	 were	 just	 being	 founded	 and	 starting	 up,
except	 magnified	 by	 25	 years	 of	 progress	 in	Moore’s
law	and	the	speed	of	information	flow	via	the	internet.
In	 this	city	of	12	million	people,	most	are	 involved	 in
tech	or	manufacturing,	many	are	learning	English,	and
all	of	them	are	willing	to	work	hard.

There	 has	 to	 be	 a	 Jobs	 and	 Wozniak	 there
somewhere,	 quietly	 building	 the	 next	 revolution.	 But
I’m	a	part	of	Shenzhen,	 too,	and	I	still	 tremble	 in	my
boots	 with	 terror	 and	 excitement	 at	 the	 thought	 of
being	part	of	that	revolution.	This	is	my	story,	starting
with	that	eye-opening	trip	to	Shenzhen	for	Chumby.

TOURING	FACTORIES	WITH	CHUMBY
In	September	2006,	Chumby	was	just	a	team	of	about	a
half-dozen	 people,	 and	we	 had	 just	 given	 away	 about
200	early	prototype	chumby	devices	at	FOO	Camp,	a
conference	put	on	by	Tim	O’Reilly.	The	devices	were
well	received	by	the	FOO	Camp	attendees,	so	I	got	the
go-ahead	to	build	the	Asian	supply	chain.

Steve	and	I	went	to	China	to	visit	potential	factories
in	 November,	 but	 before	 we	 left,	 we	 had	 a	 trusted
vendor	in	the	United	States	give	their	best	price	for	the
job	 as	 a	 baseline	 for	 negotiations	 with	 the	 Chinese
manufacturers.	Then,	we	called	up	a	lot	of	friends	with
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experience	 in	 China	 and	 lined	 up	 about	 six	 factory
tours.	We	hit	 quite	 a	 variety	of	places,	 from	 specialty
factories	as	small	as	500	people	to	mega-factories	with
over	40,000	people.

There’s	 no	 substitute	 for	 going	 to	China	 to	 tour	 a
factory.	Pictures	can	only	 tell	 the	story	 framed	by	 the
photographer,	 and	you	can’t	get	 a	 sense	of	 a	 facility’s
scale	and	quality	without	seeing	it	firsthand.	In	general,
factories	 welcome	 you	 to	 take	 a	 tour,	 and	 I	 wouldn’t
work	with	one	that	didn’t	allow	me	to	visit.	However,
most	 factories	do	appreciate	a	week’s	notice,	although
as	 your	 relationship	 with	 them	 progresses,	 things
should	become	more	open	and	transparent.

Speaking	of	openness,	Chumby’s	open	source	nature
helped	the	factory	selection	process	a	lot.	First,	we	had
no	 fears	 about	 people	 stealing	 our	 design	 (we	 were
giving	it	away	already),	so	we’d	eliminated	the	friction
of	 NDAs	 (non-disclosure	 agreements)	 when	 sharing
critical	 information	 like	 the	 bill	 of	 materials.	 I	 think
this	gave	us	a	better	reception	with	factories	in	China;
they	seemed	more	willing	to	open	up	to	us	because	we
were	willing	to	open	up	to	them.	Second,	there	was	no
question	 in	 any	 factory’s	 mind	 that	 this	 was	 a
competitive	situation.	Anybody	could	and	would	quote
and	 bid	 on	 our	 job	 (in	 fact,	 we	 received	 a	 few
unsolicited	quotations	that	were	quite	competitive),	so

47



it	saved	a	round	of	huffing	and	puffing.
After	reviewing	several	manufacturing	options,	Steve

and	I	eventually	decided	to	work	with	a	company	called
PCH	 China	 Solutions.	 PCH	 itself	 owns	 only	 a	 few
facilities,	but	it	has	a	comprehensive	network	of	trusted
and	 validated	 vendors,	 primarily	 in	China	 but	 also	 in
Europe	 and	 the	 United	 States.	 Not	 surprisingly,	 the
factories	 that	 PCH	 subcontracts	 to	were	 some	 of	 the
best	 facilities	 we	 visited	 in	 China.	 PCH	 is	 actually
headquartered	out	of	Ireland—thus	most	of	 their	staff
engineers	 are	 Irish—so	 there	 was	 also	 no	 language
barrier	 for	 us.	 (PCH	 engineers	 are	 also	 hardworking,
resourceful,	 and	 well	 trained—and,	 as	 a	 bonus,	 they
always	 seem	to	know	the	best	place	 to	 find	a	pint,	no
matter	 where	 they	 are.	 I	 had	 no	 idea	 China	 had	 so
many	Guinness	taps!)

There’s	 a	 lot	 to	 take	 in	 when	 you	 tour	 even	 one
factory,	 let	 alone	 a	 half-dozen,	 and	 it’s	 easy	 to	 get
overwhelmed	 and	 lost	 in	 the	 vagaries	 of	 electronics
manufacturing.	 But	 there	 were	 some	 key	 details	 I
found	 most	 fascinating	 during	 my	 factory	 tours	 for
Chumby	 and	 in	 working	 with	 PCH	 to	 bring	 the
chumby	to	life.

Scale	in	Shenzhen
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One	 stunning	 thing	 about	 working	 in	 China	 is	 the
sheer	scale	of	the	place.	I	haven’t	been	to	an	auto	plant
in	Michigan	or	to	the	Boeing	plant	in	Seattle,	but	I	get
the	 sense	 that	 Shenzhen	 gives	 both	 a	 run	 for	 their
money	 in	 terms	 of	 scale.	 In	 2007,	 Shenzhen	 had	 9
million	people.

To	 give	 you	 an	 idea	 of	 the	 scale	 of	 a	 Shenzhen
factory,	 the	 New	 Balance	 factory	 there	 employed
40,000	people	and	had	the	capacity	 to	produce	over	a
million	shoes	a	month.	I	estimate	that	from	raw	fabric
to	 finished	 shoe,	 the	 process	 took	 about	 50	 minutes,
and	 every	 perfectly	 stitched	 bundle	 of	 plastic	 and
leather	 was	 sewn	 by	 hand	 on	 an	 industrial	 sewing
machine.	The	stations	are	designed	so	 that	each	stage
in	the	process	takes	a	worker	about	30	seconds.

Of	 course,	 the	 New	 Balance	 factory	 is	 dwarfed	 by
Foxconn,	 the	 factory	 where	 iPods	 and	 iPhones	 are
made.
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You	know	you’re	big	when	you	have	your	own	exit	off	the
freeway.

Foxconn	 is	 a	 huge	 facility,	 apparently	 with	 over
250,000	employees,	and	it	has	its	own	special	free	trade
status.	The	entire	 facility	 is	walled	off,	 and	 I’ve	heard
you	need	 to	 show	your	passport	 and	 clear	 customs	 to
get	 into	 the	 facility.	That’s	 just	 short	 of	 the	 nuclear-
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powered	 robotic	 dogs	 from	 the	 nation-corporation
franchulates	of	Neal	Stephenson’s	Snow	Crash.

Feeding	the	Factory
There’s	 an	 old	 Chinese	 saying:	min	 yi	 shi	 wei	 tian.	 A
literal	 translation	 would	 be	 “people	 consider	 food
divine”	or	“for	people,	food	is	next	to	heaven.”	You	can
also	 look	 at	 it	 as	 a	 piece	 of	 governing	 advice:	 “the
government’s	 mandate	 [synonymous	 with	 heaven]	 is
only	as	robust	as	the	food	on	people’s	plates.”	Or,	you
can	interpret	it	as	an	excuse	to	procrastinate:	“let’s	eat
first	[since	it	is	as	important	as	heaven].”

Whichever	 way	 you	 cut	 it,	 I	 think	 the	 saying	 still
holds	in	China.	One	important	metric	for	gauging	how
well	a	factory	treats	its	employees	is	how	good	the	food
is,	 as	 it’s	 common	 for	 factory	 workers	 to	 be	 housed,
fed,	and	cared	for	on	site.

The	 food	 is	 actually	 quite	 good	 at	 some	 factories.
For	 example,	 when	 eating	 with	 the	 workers	 at	 the
factory	that	manufactured	chumby	circuit	boards,	I	was
served	 a	mix	 of	 steamed	 fish,	 broiled	 pork,	 egg	 rolls,
clean	 fried	 vegetables,	 and	 some	 pickled-vegetable-
and-meat	 combo.	 Rice,	 soup,	 and	 apples	 were	 also
provided	in	“help	yourself	”	quantities.
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A	meal	from	the	factory	that	made	the	chumby	circuit	boards

Every	facility	I	visited	also	had	separate	utensils	and
plates	for	guests.	At	one	factory,	my	food	was	served	on
a	 Styrofoam	 plate	 with	 disposable	 chopsticks,	 while	 a
factory	 worker	 I	 ate	 with	 was	 served	 food	 on	 a	 steel
plate	with	steel	chopsticks.	I	hadn’t	passed	the	factory’s
physical	 examination,	 so	 they	 gave	 me	 disposable
eating	 tools	 to	 prevent	 me	 from	 contaminating	 the
factory	with	potential	foreign	diseases.

Going	 back	 to	 scale,	 some	 factory	 food	 operations
are	impressively	 large.	I	heard	that	Foxconn’s	workers
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consume	3,000	pigs	a	day.	From	pigs	to	iPhones,	it	all
happens	right	here	in	Shenzhen!

A	truckload	of	pigs,	exiting	the	highway	toward	Foxconn

Dedication	to	Quality
After	 I	 started	 working	 with	 PCH	 on	 actually
manufacturing	 the	 chumby,	 I	 ran	 into	 a	 situation
sometime	around	June	2007	that	showed	me	 just	how
dedicated	 the	 factory	 workers	 in	 Shenzhen	 were	 to
getting	their	jobs	right.
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I	 had	 updated	 the	 chumby	motherboard	 to	 include
an	electret	microphone,	with	an	integral	pre-amp	field-
effect	transistor	(FET).	The	microphone	needed	to	be
inserted	 in	 the	correct	orientation	with	 respect	 to	 the
circuit	so	the	FET	would	receive	a	proper	bias	current.

The	first	samples	I	got	back	from	PCH’s	factory	had
the	microphone	in	backward,	and	I	called	the	factory	to
tell	them	to	reverse	its	polarity.	I	was	going	to	visit	the
factory	 the	 next	 week,	 and	 I	 wanted	 to	 see	 corrected
samples.	When	I	arrived	and	tested	the	microphone,	I
found	to	my	dismay	that	the	microphones	were	still	not
working.

How	 could	 that	 be?	 There	 are	 only	 two	 ways	 to
connect	a	microphone.

It	 turns	 out	 there	 were	 two	 operators	 on	 the	 line
assembling	the	microphone.	One	soldered	the	red	and
black	 wires	 to	 the	 microphone.	 The	 next	 soldered
these	 red	 and	 black	 wires	 to	 the	 circuit	 board.	 The
operators	were	 told	 to	 reverse	 the	order,	 and	both	of
them	dutifully	complied—giving	me	a	microphone	that
was	still	soldered	in	backward,	but	with	the	color	of	the
wires	 swapped.	 (This	 is	 actually	 a	 pretty	 typical	 story
for	problems	in	China.)

The	 factory	 was	 scheduled	 to	 manufacture	 a	 first
pilot	run	of	450	circuit	boards	the	next	day.	Everything
had	to	go	perfectly	 for	Chumby’s	production	timeline
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to	 stay	on	schedule.	We	had	soldering	 stencils	 rebuilt
(we	 were	 debugging	 a	 yield	 issue	 with	 the	 QFN
packaged	audio	CODEC	as	well)	and	ready	by	around
noon,	and	by	around	6	PM,	I	had	the	first	boards	in	my
hands	to	test.	I	ran	the	final	factory	test,	and	the	device
failed	again—at	the	microphone.	This	was	not	a	happy
moment	for	anybody	in	the	factory,	as	the	factory	was
liable	for	any	manufacturing	defects.

I	 donned	my	 smock	 and	marched	 onto	 the	 line	 to
start	debugging	the	problem.

For	the	rest	of	the	night,	I	remained	in	the	factory,
and	 so	 did	 every	 manager	 and	 tech	 involved	 in
manufacturing	 the	 chumby.	 The	 pressure	 was
enormous:	right	next	to	us	was	a	line	churning	out	450
potentially	defective	circuit	boards,	and	I	was	unwilling
to	 pull	 the	 plug	 because	 I	 still	 didn’t	 know	 what	 the
root	cause	was,	and	we	had	to	stay	on	schedule.
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I	was	debugging	circuits	at	3	AM	on	the	day	of	the	final
factory	test	for	the	chumby.

I	literally	had	a	panel	of	factory	workers	standing	by
the	 entire	 night	 to	 bring	 me	 anything	 I	 needed:
soldering	 irons,	 test	 equipment,	 more	 boards,	 X-ray
machines,	 microscopes.	 Remarkably,	 not	 a	 single
person	hesitated;	not	a	single	person	complained;	not	a
single	 person	 lost	 focus	 on	 the	 problem.	 People
canceled	dinner	 plans	with	 friends	without	 batting	 an
eyelash.	 Anyone	 who	 wasn’t	 needed	 in	 a	 particular
moment	 was	 busy	 overseeing	 other	 aspects	 of	 the
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project.	I	hadn’t	seen	blind	dedication	like	that	since	I
worked	 with	 the	 autonomous	 underwater	 robotics
team	at	MIT.

And	this	went	on	until	3	AM.
Embarrassingly,	 the	problem	wasn’t	PCH’s	 fault	 in

the	end.	The	problem	was	the	new	firmware	release	I
received	earlier	 that	day	 from	the	 team	 in	 the	United
States.	 It	had	a	bug	that	disabled	the	microphone	due
to	a	hack	 that	was	accidentally	checked	 into	 the	build
tree.

Even	 more	 impressively,	 when	 PCH	 found	 out,
nobody	was	angry,	and	nobody	complained.	(Well,	the
saleswoman	gave	me	a	hard	time,	but	I	deserved	it;	she
had	 been	 kind	 enough	 to	 accompany	 me	 on	 the
production	 line	 all	 night	 long	 and	 be	 my	 translator,
since	 my	 Mandarin	 wasn’t	 up	 to	 snuff.)	 They	 were
simply	relieved	that	it	wasn’t	their	fault.

We	all	parted	ways,	and	I	came	back	into	the	factory
the	next	day	at	11	AM,	after	a	good	night’s	sleep.	I	saw
Christy,	 the	 factory’s	 project	 manager	 for
manufacturing	 the	 chumby	 boards.	 I	 asked	 her	 when
she	came	into	work,	and	she	told	me	she	always	has	to
report	 by	 8	 AM.	 I	 started	 to	 feel	 really	 bad;	 Christy
stayed	 up	 late	 because	 of	 our	 bug,	 and	 she	 came	 in
early	while	I	slept	in.	I	asked	her	why	she	stayed	up	so
late	even	though	she	knew	she	had	to	report	to	work	at
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8	AM.	 She	 could	have	 gone	home,	 and	we	 could	have
continued	the	next	day.

She	 just	 smiled	 and	 said,	 “It’s	my	 job	 to	make	 sure
this	gets	done,	and	I	want	to	do	a	good	job.”

Building	Technology	Without	Using	It
Here’s	another	interesting	story.	On	our	way	out	of	the
factory	 floor	 one	 day,	 Xiao	 Li	 (the	 quality	 assurance
manager	 at	 the	 factory	 where	 we	 made	 the	 chumby)
asked	me,	 “What	 does	 a	 chumby	 do?”	 I	 didn’t	 speak
Chinese	 very	 well,	 and	 she	 didn’t	 speak	 English	 very
well	 either,	 so	 I	 decided	 to	 start	 with	 a	 few	 basic
questions.

I	asked	her	if	she	knew	what	the	World	Wide	Web
was.	She	said	no.

I	 asked	her	 if	 she	 knew	what	 the	 internet	was.	 She
said	no.	I	was	stunned,	and	I	didn’t	know	what	to	say.
How	do	you	describe	the	color	blue	to	the	blind?

Xiao	 Li	 was	 an	 expert	 in	 building	 and	 testing
computers.	On	 some	projects,	 she	probably	built	PCs
and	 booted	 Windows	 XP	 a	 hundred	 thousand	 times
over	 and	 over	 again.	 (God	 knows	 I	 heard	 that	 darn
startup	 sound	 a	 zillion	 times	 during	 the	 microphone
incident,	 as	 there	was	 a	 bank	 of	 final	 test	 stations	 for
ASUS	motherboards	right	next	to	me.)	But	she	didn’t
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know	what	the	internet	was.
I	had	assumed	 that	 if	 you	 touched	a	computer,	you

were	also	blessed	by	the	bounties	of	the	internet.	All	at
once,	I	felt	like	a	spoiled	snob	and	a	pig	for	forgetting
that	 Xiao	 Li	 probably	 couldn’t	 afford	 a	 computer,
much	 less	 broadband	 internet	 access.	 Given	 the
opportunity,	she	was	certainly	smart	enough	to	learn	it
all,	 but	 she	 was	 too	 busy	 making	 money	 that	 she
probably	sent	back	home	to	her	family.

In	 the	 end,	 the	 best	 I	 could	 do	was	 to	 tell	Xiao	Li
that	the	chumby	was	a	device	for	playing	games.

Skilled	Workers
Shenzhen	 workers	 may	 not	 know	 a	 lot	 about
everything	 they	make,	 but	 on	 top	of	 their	 dedication,
they	are	highly	 skilled.	 I	once	watched	a	guy	working
at	the	same	factory	that	sewed	the	chumby	bags,	and	I
swear,	he	could	sew	cosmetic	cases	together	at	a	rate	of
5	 seconds	 per	 bag.	 And	 he	 wasn’t	 even	 100	 percent
focused	on	his	task;	he	was	listening	to	his	 iPod	while
he	sewed.

And	 apparently,	 he	 wasn’t	 their	 fastest	 employee!
They	had	someone	about	 twice	as	 fast,	and	he’d	been
with	 the	 company	 for	 about	 seven	 years.	 I	 went	 to
watch	 the	 faster	 worker,	 but	 he	 had	 already	 gone	 to
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lunch	because	he’d	finished	everything;	there	were	two
enormous	 bins	 of	 finished	 cosmetic	 cases	 next	 to	 his
workstation.

On	 a	 similar	 note,	 I	 was	 amazed	 to	 learn	 how
rubberized	tags	 (the	ones	you	see	all	over	clothes)	are
made	in	China.	I	always	thought	they	were	pressed	by
a	machine,	 but	 I	 was	 wrong.	 All	 those	 words,	 colors,
and	 letters	 are	 drawn	by	hand.	 Someone	 just	 places	 a
logo	stencil	over	 the	blank	tag,	paints	over	 the	stencil
with	amazing	precision,	and	moves	on	to	 the	next	 tag
in	their	queue.	When	there	are	multiple	colors,	there’s
a	person	for	each	color,	to	keep	the	process	quick.

I	 asked	 PCH	 if	 they	 had	 any	mechanized	 factories
for	stuff	like	that.	They	told	me	the	facilities	exist,	but
the	minimum	order	quantity	is	enormous	(hundreds	of
thousands,	 sometimes	 millions)	 because	 of	 the
extraordinarily	 low	 cost	 of	 the	 product	 and	 the
relatively	 high	 cost	 of	 tooling	 for	 the	 automated
process.	This	 is	consistent	with	what	I’ve	heard	about
McDonald’s	 Happy	 Meal	 toys.	 They’re	 usually	 held
together	 with	 screws	 because	 it’s	 cheaper	 to	 pay
someone	 to	 screw	 together	 a	 toy	 over	 the	 whole
production	 run	 than	 it	 is	 to	 make	 a	 steel	 injection-
molding	 tool	 with	 the	 tolerances	 necessary	 for
snapping	the	toys	together.*

There	 was	 a	 similar	 trade-off	 inside	 the	 chumby
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hardware.	There	were	four	connectors	on	the	internal
chumby	electronics.	Using	the	US-based	vendors	that	I
could	source,	one	connector	had	a	best	price	of	about
$1	USD,	and	the	other	three	had	a	best	price	of	about
$0.40	 each.	 PCH’s	 very	 talented	 sourcing	 expert	 (her
reputation	was	 feared	 and	 respected	by	 every	 vendor)
managed	 to	 find	 me	 connectors	 that	 cost	 $0.10	 and
$0.06,	 respectively,	 saving	 almost	 a	 full	 $2	 in	 cost.
There’s	one	catch:	the	connectors	lacked	the	sacrificial
plastic	 pick-and-place	 pad	 that	 would	 enable	 them	 to
be	machine-assembled.

The	solution?	A	person,	of	course.
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This	man	hand-placed	the	cheaper	connectors	on	every
chumby,	for	about	a	nickel	per	unit.	Thanks	to	him,	chumbys

were	$2	cheaper,	which	freed	up	more	money	for	us
consumers	to	spend	at	Starbucks.

The	Need	for	Craftspeople
I’d	 like	 to	 introduce	 you	 to	 a	 man	 I	 know	 simply	 as
Master	 Chao.	 I	 met	 him	 during	 the	 chumby
manufacturing	process,	and	I’m	pretty	sure	that	in	your
lifetime,	 you	 have	 used	 or	 seen	 something	 that	 he
created.

When	 I	 went	 to	 the	 sample	 room	 for	 the	 factory
where	 Master	 Chao	 worked,	 I	 was	 shocked	 at	 how
many	 items	 on	 their	 shelf	 I	 had	 purchased,	 used,	 or
seen	 in	 a	 store	 in	 the	United	 States	myself.	 Top-tier
consumer	 brands	 manufacture	 their	 stuff	 in	 this
factory,	 and	 to	 the	best	of	my	knowledge,	 the	 factory
had	just	one	master	pattern	maker	at	the	time:	Master
Chao.	He’s	 had	 a	 hand	 in	 creating	 cosmetic	 bags	 for
Braun,	 accessory	 cases	 for	Microsoft,	 and	 the	medical
braces	 for	 major	 brands	 sold	 in	 drugstores,	 among
many	other	products.
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Master	Chao	is	the	person	in	the	foreground;	in	the
background	is	Joe	Perrott,	Chumby’s	excellent	project	engineer

from	PCH	China	Solutions.

Master	Chao	is	a	craftsman	in	the	traditional	sense.
It	used	to	be	that	the	finest	furniture	was	designed	and
built	 only	 with	 the	 intuition	 and	 skill	 of	 a	 master
craftsman.	 Now,	 we	 all	 go	 to	 IKEA	 and	 get	 CAD-
designed,	 supply-chain-managed,	 picture-book-
assembly	furniture	kits—and	despite	all	that,	it	doesn’t
look	 too	 shabby.	 As	 a	 result,	 the	word	 craft	 has	 been
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relegated	 to	 describe	 some	 scrapbook	 or	 needlepoint
kit	 you	 buy	 at	 Michaels	 and	 put	 together	 on	 a	 slow
weekend.	 We’ve	 forgotten	 that	 in	 an	 age	 before
machines,	 “craft”	 was	 the	 only	 way	 anything	 of	 any
quality	was	built.

It	 turns	 out,	 however,	 that	 traditional	 craft	 still
matters,	because	CAD	tools	haven’t	brought	about	the
ability	to	simulate	our	mistakes	before	we	make	them.

The	 creation	 of	 a	 flat	 pattern	 for	 textile	 goods	 is	 a
good	example	of	a	process	that	requires	a	craftsman.	A
flat	 pattern	 is	 the	 set	 of	 2D	 shapes	 used	 to	 guide	 the
cutting	 of	 fabrics.	 These	 shapes	 are	 cut,	 folded,	 and
sewn	into	a	complex	3D	shape.	Mapping	the	projection
of	 an	 arbitrary	 3D	 shape	 onto	 a	 2D	 surface	 with
minimal	waste	area	between	the	pieces	is	hard	enough.
The	 fact	 that	 the	 material	 stretches	 and	 distorts,
sometimes	 in	 different	 directions,	 and	 that	 sewing
requires	 ample	 tolerances	 for	 good	 yields,	 makes
pattern	creation	a	difficult	problem	to	automate.

The	 chumby	 cases	 added	 another	 level	 of
complexity,	 because	 they	 involved	 sewing	 a	 piece	 of
leather	 onto	 a	 soft	 plastic	 frame.	 In	 that	 situation,	 as
you	sew	the	leather	on,	the	frame	distorts	slightly	and
stretches	 the	 leather	 out,	 creating	 a	 sewing	 bias
dependent	upon	the	direction	and	rate	of	sewing.	This
force	 is	 captured	 in	 the	 seams	 and	 contributes	 to	 the
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final	shape	of	the	case.	I	challenge	someone	to	make	a
computer	 simulation	 tool	 that	 can	 accurately	 capture
those	 forces	 and	 predict	 how	 a	 product	 like	 that	 will
look	when	sewn	together.

Yet,	somehow,	Master	Chao’s	proficiency	in	the	art
of	pattern	making	enabled	him	to	very	quickly,	and	in
very	 few	 iterations,	 create	 and	 tweak	 a	 pattern	 that
compensated	 for	 all	 of	 those	 forces.	 His	 results,	 all
obtained	 with	 cardboard,	 scissors,	 and	 pencils,	 were
astoundingly	 clever	 and	 insightful.	 Be	 grateful	 for	 his
old-world	 skills;	 they’ve	 likely	 played	 a	 role	 in	 the
production	 of	 something	 you’ve	 used	 or	 benefited
from.

There	wasn’t	a	single	computer	in	Master	Chao’s	office,	yet	the
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products	I	saw	here	wrapped	around	a	wide	array	of	high-tech
devices.

Automation	for	Electronics	Assembly
Before	 my	 work	 at	 Chumby,	 I	 thought	 almost
everything	 was	 made	 by	 a	 machine.	 Of	 course,	 the
tours	 of	 the	 textile	 factories	 corrected	my	 impression
very	 quickly;	 yet	 high-tech	 stuff	 like	 electronics
assembly	does	still	tend	to	be	heavily	automated,	even
in	China.	The	only	exceptions	I	saw	during	my	factory
tours	were,	ironically,	the	lowest-cost	products,	such	as
toys.	 These	 shops	 were	 still	 dominated	 by	 lines	 of
workers,	 stuffing	 and	 dip-soldering	 circuit	 boards	 by
hand.

One	 interesting	dichotomy	related	 to	automation	 is
the	 bimodal	 distribution	 of	 products	 that	 use	 chip-on-
board	(CoB)	technology.	CoB	assembly	directly	bonds	a
silicon	die	to	a	PCB.	Finished	CoB	assemblies	have	the
distinctive	“glob	of	epoxy”	look	to	them,	as	opposed	to
the	 finished	 plastic-package	 look.	 High-end,	 dense
electronics	assemblies	often	employ	CoB	technologies.
I’ve	 done	 a	 couple	 of	 CoB	 designs	 for	 some	 10	 Gb
optical	 transceivers	 in	 my	 time,	 and	 they	 were	 not
cheap.

At	the	same	time,	however,	almost	all	toys	use	CoB
technology,	 to	 eliminate	 the	 cost	 of	 the	 IC	 package!
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It’s	 a	 testament	 to	 toy	 factories’	 tenacity	 about	 cost
reduction	 that	 they	 would	 buy	 an	 automated	 wire
bonder	and	stick	it	next	to	lines	molding	doll	heads	and
sewing	up	 stuffed	animals	because	having	an	 in-house
wire	bonder	saves	a	nickel.

A	 typical	 wire	 bonder	 bonds	 a	 wire	 as	 thin	 as	 a
human	hair	to	a	site	on	a	silicon	chip	not	much	larger
than	the	wire	diameter,	and	it	does	this	several	times	a
second.	Wire	 bonders	 are	 very	 fast,	 precise	 pieces	 of
equipment.	The	 bonding	 happens	 so	 quickly	 that	 the
board	seems	to	swivel	smoothly	around,	but	 in	fact,	 it
stops	 16	 times	 as	 it	 spins	 around,	 and	 at	 each	 stop,	 a
wire	is	bonded	between	the	chip	and	the	board.

Immediately	 before	 bonding,	 however,	 the	 chip	 is
glued	 very	 carefully	 to	 the	 board	 by	 hand,	 and
immediately	after	bonding,	the	chip	is	encapsulated	by
a	 human	 operator	 dispensing	 epoxy	 very	 carefully	 by
hand.	That	means	wire	bonder	 is	 the	only	 automated
piece	of	 equipment	on	assembly	 lines	 for	 simple	 toys.
Seeing	 that	 process	 gave	 me	 a	 new	 appreciation	 for
what	goes	 into	 those	 talking	Barney	dolls	 that	 sell	 for
$10	at	Target.

The	 chumby	 manufacturing	 process	 used	 a	 bit	 of
automation,	 too,	 courtesy	 of	 a	 chip	 shooter.	 Chip
shooters	 (as	 well	 as	 pick-and-place	 machines)	 place
surface-mount	 components	 on	 PCBs	 so	 the
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components	can	be	soldered.

The	chumby	PCB	assembly	factory	in	China	had	dozens	of
lines	filled	with	tried-and-true	Fuji	chip	shooters

It’s	absolutely	mesmerizing	 to	see	a	chip	shooter	 in
action.	The	chip	shooters	at	the	chumby	PCB	assembly
factory	 were	 capable	 of	 placing	 10,000	 to	 20,000
components	 per	 hour,	 per	machine.	 This	means	 that
each	machine	could	put	down	3	 to	6	components	per
second.	 The	 robotic	 assemblies	 move	 faster	 than	 the
eye	can	see,	and	it	all	turns	into	an	awe-inspiring	blur.
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The	chip	shooter	I	saw	at	the	chumby	factory	worked
something	 like	 a	Gatling	gun:	 the	 chip	 gun	 itself	was
fixed,	 and	 the	 board	 danced	 around	 beneath	 the	 gun.
The	chip	shooter	actually	“looked	at”	each	component
and	rotated	it	to	the	correct	orientation	before	putting
it	down	on	the	board.

This	is	the	end	of	the	line	for	a	chumby	core	board	assembly!

The	factory	we	used	for	the	chumby’s	PCB	assembly
also	 produced	 name-brand	 PC	 motherboards	 and
seemed	 to	 have	 no	 problem	 pushing	 out	 well	 over
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10,000	 such	 complex	 assemblies	 each	 day.	 But	 even
though	 processes	 like	 component	 placement	 can	 be
automated,	there	are	some	things	a	machine	just	can’t
do.

Precision,	Injection	Molding,	and	Patience
In	the	course	of	engineering	the	chumby,	I	also	had	to
learn	 about	 injection	 molding,	 because	 the	 circuit
board	 had	 to	 go	 inside	 a	 case	 of	 some	 kind.	 For	 an
electronics	guy	with	little	mechanical	background,	this
was	no	small	hill	to	climb.	The	concept	seems	simple:
you	make	a	cavity	out	of	steel,	push	molten	plastic	into
it	 at	 high	 pressure,	 let	 it	 cool,	 and	 voilà—	 a	 finished
part	 comes	 out,	 just	 like	 the	 Play-Doh	 molds	 from
elementary	school.

Oh,	if	only	the	process	were	that	simple.
Sure,	plastic	flows,	but	it’s	not	particularly	runny.	It

moves	slowly,	and	it	cools	as	it	flows.	The	color	of	the
plastic	 is	 impacted	 by	 the	 temperature	 changes,	 and
when	 using	 an	 improperly	 designed	 mold,	 you	 can
even	see	flow	lines	and	knit	 lines	 in	the	final	product.
There’s	also	a	whole	assortment	of	issues	with	how	the
finished	part	is	pulled	from	the	mold,	how	the	mold	is
made	and	finished,	where	the	gates	and	runners	are	for
getting	the	plastic	inside	the	mold,	and	so	on.
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Fortunately,	 PCH	had	 experts	 in	China	who	 knew
all	about	this,	and	I	got	to	learn	mostly	by	watching.

If	 I	 were	 to	 summarize	 injection	 molding	 with	 a
single	adjective,	it	would	be	precision.	When	done	right,
the	 molds	 are	 precise	 to	 better	 than	 hair-thin
tolerances,	 yet	 they	 are	 made	 out	 of	 hard	 steel.
Achieving	this	 level	of	precision	out	of	such	a	durable
material	 is	 no	mean	 feat,	 and	 it’s	 impressive	 to	 see	 a
machine	cut	a	mold	out	of	raw	steel.

The	machine	that	cut	the	molds	for	the	chumby	case
had	a	moving	stage	that	rapidly	pushed	around	a	block
of	 steel	probably	weighing	 several	hundred	pounds;	 it
milled	away	at	the	metal	in	quite	a	hurry!
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The	mold-cutting	machine	used	in	manufacturing	chumbys.
Compare	it	to	the	people	standing	next	to	it	for	scale.

But	 machining	 is	 only	 the	 roughest	 step	 in	 mold
making.	After	 the	 rough	 shape	 is	 cut	out,	 the	mold	 is
put	 into	an	electrical	discharge	machine	(EDM),	where	a
burst	 of	 electrons	 knocks	 microscopic	 chunks	 off	 the
steel	surface.	This	 is	a	 terrifically	 tedious	process:	 I’ve
watched	 many	 EDMs	 do	 their	 job,	 and	 it’s	 like
watching	 paint	 dry.	 EDMs	 are,	 however,	 wicked
precise,	and	they	yield	spectacular,	repeatable	results.

From	 a	 project	 management	 standpoint,	 the
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phenomenally	 long	 lead	 times	 of	 production-quality
injection-molded	 plastics	 was	 the	 biggest	 eye	 opener
for	me.	All	told,	the	chumby	mold	transformed	from	a
block	 of	 raw	 steel	 into	 a	 first-shot	 tool	 in	 four	 to	 six
weeks,	 and	 I	 had	 to	 go	 to	China	 and	 see	 the	 tooling
shop	do	 its	work	before	 I	was	 convinced	 there	wasn’t
some	gross	amount	of	schedule	padding.

Even	 more	 harrowing	 from	 the	 risk	 management
standpoint	 was	 the	 lack	 of	 good	 simulation	 tools	 to
predict	how	plastics	would	flow	through	a	mold.	If	we
saw	visible	blemishes	 like	flow	lines	and	knit	 lines,	we
had	to	wait	four	to	six	weeks	to	see	if	the	new	mold	was
better.	Ouch!

Fortunately,	the	toolmakers	Chumby	used	in	China
anticipated	these	issues,	and	they	made	the	tools	to	err
on	 the	 side	of	excess	 steel,	because	 removing	material
to	 fix	 a	 problem	 is	much	 easier	 than	 adding	material.
It’s	 like	 the	old	carpenter’s	 saying:	measure	 twice,	cut
once,	and	if	you	have	to	cut	wrong,	cut	long.

The	mold	that	was	used	to	create	the	chumby’s	back
bezel	was	extra	complex,	because	it	 involved	a	process
called	 over-molding.	 If	 you	 happen	 to	 own	 a	 chumby
classic,	 look	 at	 the	back	 side.	There’s	 a	 rubbery	TPE
surrounding	 the	 hard	 ABS	 bezel.	 Many	 people
assumed	this	was	a	glued-on	rubber	band.	 In	 fact,	 the
TPE	 is	 molded	 in	 place	 on	 the	 back	 piece.	 This
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requires	a	two-shot	mold.

The	final	mold	for	the	chumby’s	back	bezel,	inside	an
injection-molding	machine

There	were	actually	two	molds,	and	one	side	of	the
mold	 spun	 around	 so	 that	 the	 alternating	 material
systems	 could	 be	 molded	 at	 the	 right	 points	 in	 the
process.

A	lot	of	hard	work	goes	into	the	humble	plastic	parts
you	see	every	day,	and	that’s	all	part	of	creating	quality
products.	But	at	the	same	time,	there’s	also	a	very	real
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need	to	meet	the	expectation	of	cheap	prices.

The	Challenge	of	Quality
Clearly,	 with	 the	 expectation	 of	 low	 cost	 of	 China-
made	 goods	 comes	 a	 great	 challenge	 in	 quality
management.	 Look	 at	 the	 media	 coverage	 on	 topics
like	lead	paint	in	toys,	industrial	chemicals	in	food,	and
other	 items	made	 in	China,	 and	 you	 can	 see	 some	of
the	bad	decisions	made	to	keep	prices	down.

When	 considering	 cases	 like	 that,	 I	 think	 it’s
important	 to	 apply	 Hanlon’s	 razor.	 To	 paraphrase,
“Never	 attribute	 to	 malice	 that	 which	 can	 be
adequately	explained	by	ignorance.”The	Brits	also	have
a	nice,	pithy	version	of	the	aphorism:	“Cock-up	before
conspiracy.”

Some	manufacturers	are	indeed	out	there	to	make	a
buck	 at	 any	 cost,	 but	 I	 think	 the	majority	of	mistakes
are	made	out	of	ignorance.	Most	of	the	rank-and-file	in
factories	 don’t	 know	 what	 their	 product	 is	 ultimately
used	 for,	 and	 under	 intense	 pressure	 to	 reduce	 costs,
they	make	 those	 bad	 decisions.	 Factories	 also	 have	 to
deal	with	products	that	are	woefully	underspecified,	as
well	as	customers	who	overwhelm	them	with	all	kinds
of	 frivolous	 requirements—and	most	 customers	 don’t
follow	up	in	either	case.	In	the	end,	the	factories	play	a
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game	 of	 “ship	 and	 find	 out,”	 and	 if	 the	 customer
doesn’t	notice	 a	missing	 spec,	 then	 the	 spec	must	not
have	 been	 important.	 It’s	 not	 a	 great	 game,	 and	 it
means	 that	 customers	 need	 to	 be	 ever	 vigilant	 about
audits	and	keeping	the	quality	standard	up.

THE	DISCONNECT	BETWEEN	AMERICA
AND	CHINA
One	 fundamental	 problem	 behind	 this	 game	 is	 that
many	 Chinese	 residents	 do	 not	 understand	 or
appreciate	 basic	 things	 that	 we	 take	 for	 granted	 in
America,	and	vice	versa.	Many	Chinese	factory	workers
are	well	educated,	but	they	didn’t	grow	up	in	a	“gadget
culture”	like	we	have	in	the	United	States,	so	you	can’t
assume	 anything	 about	 their	 abilities	 to	 subjectively
interpret	specifications	for	a	product.

For	example,	you	can	tell	a	US	engineer,	“I’d	like	a
button	 on	 that	 panel,”	 and	 you’ll	 probably	 get
something	pretty	close	to	what	you	expect	in	terms	of
look	 and	 feel,	 since	 you	 and	 the	 engineer	 share
common	experiences	and	expectations	for	a	button	on
a	panel.	 If	you	did	the	same	in	China,	you’d	probably
get	 something	 that	 looks	 a	 little	 awkward	 and	 has	 a
clunky	 feel	 but	 is	 darn	 cheap	 and	 really	 easy	 to	 build
and	 test.	While	 the	 latter	 properties	 are	 desirable	 for
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practical	 reasons,	 American	 gadget	 connoisseurs	 just
won’t	 buy	 something	 that’s	 aesthetically	 awkward	 or
feels	clunky.

Yet,	ultimately,	it’s	those	consumers	who	want—nay,
demand—low-priced	 goods,	 and	 that	 need	 drives	 the
decision	to	manufacture	 in	China.	The	trouble	 is	 that
aside	from	the	label	on	the	product	that	says	“Made	in
China”	or	“Made	in	the	USA,”	consumers	really	don’t
care	 about	 the	 manufacturing	 process.	What	 markup
would	 you	 pay	 for	 a	 gadget	 that	 said	 “Made	 in	 the
USA”	 on	 it?	 The	 cost	 premium	 for	 US	 labor	 is	 10
times	 what	 it	 is	 in	 China.	 Think	 about	 it:	 can	 the
average	 US	 factory	 worker	 be	 10	 times	 more
productive	 than	 the	 average	 Chinese	 factory	 worker?
It’s	a	hard	multiplier	to	play	against.

I’m	not	saying	there’s	no	value	in	domestic	vendors:
it	would	be	a	lot	less	effort	and	less	risk	for	me	to	get
stuff	 made	 in	 the	 United	 States.	 In	 fact,	 most	 early
prototypes	 are	 made	 there	 because	 of	 the	 enormous
value	that	the	domestic	vendors	can	add.	However,	the
pricing	 just	 doesn’t	 work	 out	 for	 a	 mass-market
product.	 Nobody	 would	 buy	 it,	 because	 its	 price
wouldn’t	 justify	 its	 feature	set.	One	could	even	accuse
me	of	being	lazy	if	I	were	to	just	stick	with	a	domestic
vendor	and	pass	the	higher	cost	on	to	the	customers.
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BEING	INVOLVED	IN	THE
MANUFACTURING	PROCESS
In	the	end,	manufacturing	in	China	is	the	best	way	to
keep	 costs	 down,	 and	 to	maintain	 quality,	 there	 is	 no
substitute	 for	 going	 to	 China	 and	 getting	 directly
involved.	Almost	every	factory	will	“clean	up”	the	day
you	 come	 to	 visit,	 but	with	 a	 sharp	 eye	 and	 the	 right
questions,	 you	 can	 see	 through	any	quick	 veneers	put
in	place.

When	 I	 evaluated	 factories	 for	 Chumby,	 I	 always
visited	the	quality	control	(QC)	room.	I	expected	to	see
rows	 of	 well-maintained	 and	 well-worn	 binders	 with
design	 documentation	 and	 QC	 standards,	 as	 well	 as
golden	 samples,	 which	 are	 pre-production	 samples	 of	 a
product.	 I’d	 demand	 to	 see	 the	 contents	 of	 a	 random
binder	 and	 the	 golden	 sample	 associated	 with	 it,	 and
verify	 that	 the	employees	knew	what	was	going	on	 in
the	binder.	(Some	factories	do	fill	product	binders	with
random	 data.)	 I	 also	 considered	 hard	 investments	 in
equipment	a	good	sign:	the	best	manufacturers	I	visited
all	had	a	couple	of	rooms	with	sophisticated	equipment
for	 thermal,	 mechanical,	 and	 electrical	 limit	 testing,
and	 of	 course,	 operators	 were	 in	 the	 room	 actually
using	 the	 equipment.	 (I	 could	 definitely	 imagine	 a
Chinese	 manufacturer	 buying	 a	 room	 of	 equipment
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just	for	show.)
But	 I	 suspect	 that	 toy	 manufacturers	 and	 food

manufacturers	 don’t	 fly	 technicians	 like	 me	 out	 to
factories	in	China	to	oversee	things	on	a	regular	basis.
Contrast	that	with	Apple,	which	regularly	sends	a	cadre
of	 engineers	 to	 work	 intense	 two-week	 (or	 longer)
shifts	 in	 the	 factories	 (usually	 Foxconn,	 affectionately
nicknamed	“Mordor”	by	some	at	Apple).	As	a	result,	I
bumped	into	many	Apple	engineers	at	the	expat	bars	in
Shenzhen.

The	 fact	 that	 PCH	 China	 Solutions	 offered
Western-style	management	and	quality	control	on	site
in	China	was	important	for	us	at	Chumby.	If	we	had	a
problem	 with	 a	 vendor,	 PCH	 sent	 someone	 to	 the
factory	right	away	to	see	what	was	going	on—no	phone
tag,	no	FedEx	filibuster.	And	factory	owners	 in	China
tend	to	be	very	responsive	when	you	show	up	at	their
doorstep.

Thus,	Chumby’s	approach	to	the	quality	conundrum
was	holistic.	We	started	by	having	an	engineer	(me)	at
the	 factory	almost	on	day	one	 to	 survey	 the	 situation.
It’s	important	to	learn	what	the	factory	can	and	cannot
do.	 I	 looked	 at	 what	 was	 being	 built	 on	 the	 line	 and
what	 techniques	were	used.	Then,	when	 it	 came	 time
to	 engineer	 the	 product,	 I	 tried	 to	 use	 the	 processes
and	 techniques	 that	 were	 most	 comfortable	 for	 the
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factory.	When	 I	 had	 to	 do	 something	 new	 (and	 any
good,	 innovative	 product	 will	 need	 to),	 I	 picked	 my
battles	 and	 focused	 on	 them,	 because	 anything	 new
would	 be	 a	 multiweek	 challenge	 to	 get	 right.	 This
strategy	 applies	 to	 even	 the	 smallest	 details:	 if	 the
factory	shrink-wraps	goods	in	plastic,	and	you	want	to
wrap	your	product	in	paper,	then	plan	to	focus	heavily
on	developing	the	paper-wrapping	process,	because	it’s
quite	 possible	 that	 none	 of	 the	 line	 workers	 at	 your
factory	 of	 choice	 have	 even	 seen	 a	 paper-wrapped
product	before.

Of	 course,	 when	 developing	 a	 new	 process	 for	 the
chumby,	I	preferred	to	be	in	the	factory,	and	I	still	do.
There’s	nothing	like	standing	on	the	line	and	showing
the	 workers	 who	 will	 be	 building	 your	 device	 how	 it
should	be	made.	For	example,	I	personally	trained	the
chumby	 assembly-line	 workers	 on	 how	 to	 attach	 a
piece	 of	 copper	 tape	 to	 the	LCD	assembly	 to	 form	 a
proper	EMI	shield.

It’s	difficult	to	describe	the	intricacies	of	how	to	fold
tape	across	a	complex	piece	of	sheet	metal	to	ensure	it
makes	 good	 electrical	 contact	 to	 the	 grounding
surfaces	 without	 risking	 a	 short	 circuit	 to	 other
components.	 Subtleties	 like	 the	 fact	 that	 the	 adhesive
on	 one	 side	 is	 a	 poor	 insulator	 also	 require	 a	 basic
understanding	of	physics	that	line	workers	simply	don’t
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have.	 Worse	 yet,	 explaining	 these	 concepts	 requires
technical	 words	 that	 your	 translator	 might	 not	 even
know.

In	my	case,	even	a	good	3D	drawing	or	photograph
of	 the	 finished	 assembly	 couldn’t	 have	 gotten	 the
whole	concept	across,	because	the	stiffness	of	the	tape
required	 a	 particular	 motion	 to	 fold	 without	 tearing.
Describing	 the	 process	 remotely,	 approving	 samples
via	 photographs,	 and	 ultimately	 approving	 a	 unit
delivered	 via	 FedEx	 might	 have	 taken	 a	 couple	 of
weeks,	but	standing	in	front	of	a	group	of	workers	and
demonstrating	 the	 process	 firsthand	 took	 only	 a	 few
minutes.	And	despite	the	language	barrier,	I	could	tell
from	 their	 facial	 expressions	 and	 body	 language
whether	 they	 understood	 the	 importance	 of	 a
particular	 step.	 Given	 those	 cues,	 I	 immediately
reviewed	processes	that	were	ambiguous	or	difficult	to
master.

Typically,	 when	 you	 can	 demonstrate	 a	 process	 at
this	level	of	detail	and	intimacy,	the	workers	will	get	it
right	within	hours,	instead	of	weeks.	This	is	part	of	the
reason	 I	 spent	 so	 much	 time	 in	 China	 during	 the
development	of	the	chumby’s	manufacturing	process.
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Everyone	was	involved	in	the	chumby	quality	process.	This
photo	shows	CEO	Steve	Tomlin	(far	left)	and	Artistic	Director
Susan	Kare	(middle)	at	the	sewing	factory,	working	out	the

details	of	logo	silkscreening.

HOMEGROWN	REMOTE	TESTING
However,	it	wasn’t	always	possible	for	Chumby	to	send
someone	 to	China.	 I,	 for	one,	preferred	not	 to	 live	 in
China,	so	at	Chumby,	we	relied	a	lot	on	PCH	to	watch
the	 quality	 and	make	 sure	 things	went	well,	 and	 they
did	a	superb	job.
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Often,	 working	 long	 distance	 meant	 that	 new
processes	 took	 weeks	 to	 phase	 in	 if	 I	 wasn’t	 there	 to
tweak	 and	 approve	 on	 the	 spot,	 because	 every	 single
tweak	 involved	 sending	 something	 almost	 round-trip
through	FedEx.	After	going	through	that	process	a	few
times,	 I	 learned	 to	 allocate	 two	 weeks	 per	 tweak,	 as
opposed	 to	 the	 few	 hours	 it	 took	 when	 I	 was	 on	 the
factory	floor.

Those	sets	of	two	weeks	added	up	fast.
Given	 the	 difficulty	 of	 overseeing	 operations	 in

China	 from	 the	 United	 States,	 remote	 electronic
monitoring	 of	 the	 products’	 test	 results	was	 essential.
For	 the	 chumby,	 I	 developed	 a	 set	 of	 testers	 that
programmed,	 personalized,	 booted,	 verified,	 and
measured	 every	 device	 off	 the	 assembly	 line.	 All	 data
from	the	testing	process	was	recorded	to	a	log,	and	at
the	end	of	the	day,	the	log	was	transferred	to	a	server
in	the	United	States.

This	 data	 let	me	 debug	 a	 plethora	 of	 problems	 on
the	 floor.	 I	 could	 tell	 if	 an	 operator	 at	 a	 particular
tester	was	having	trouble	with	their	barcode	scanner.	I
also	 immediately	 knew	 if	 there	 was	 a	 yield	 problem
that	 day,	 or	 if	 the	 throughput	 was	 slower	 than
expected.	 It	 was	 very	 powerful	 to	 have	 this	 home-
grown	 audit	 capability	 in	 place,	 because	 the	 factory
knew	 I	 was	 watching	 them.	 In	 fact,	 having	 such	 a
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capability	 in	 place	 can	 make	 relationships	 with	 the
factory	 run	 better:	 the	 factory	 eats	 the	 cost	 of	 yield
problems	(at	least	initially),	so	they	appreciate	it	when
the	design	engineer	can	offer	expedient	advice	and	help
before	any	problems	get	out	of	hand.

A	pair	of	chumby	test	stations	in	the	factory	in	China.	There’s
quite	a	story	about	the	trouble	we	went	through	getting	those

laptops	into	China.

FURTHER	FACTORY	TESTING
Once	you’ve	 finished	setting	up	the	 testing	process,	 it
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can	 run	 autonomously	 at	 the	 factory.	For	 example,	 at
the	 chumby’s	 PCB	 factory,	 the	 first	 pass	 of	 final
inspection	was	done	manually—	one	person	went	over
every	 circuit	 board,	 and	 then	 with	 the	 help	 of	 a
cardboard	 template,	another	operator	ensured	 that	no
components	were	missing.	The	units	 then	went	on	 to
automated	testing.

Periodically,	 both	 PCH	 and	 the	 factory	 also
performed	 Restriction	 of	 Hazardous	 Substances
(RoHS)	 testing	 on	 chumby	units	 to	 ensure	 that	 there
was	no	contamination	with	a	specified	set	of	potentially
harmful	 chemicals,	 including	 lead.	 RoHS	 is	 a
hazardous	chemical	safety	standard	required	in	Europe
but,	 ironically,	 not	 in	 the	 United	 States.	 Factories
routinely	do	 this	 test	on	all	products,	even	 those	only
shipping	 to	 the	 United	 States,	 because	 latent
contamination	 on	 the	 line	 could	 prevent	 other
products	manufactured	on	the	same	line	from	shipping
to	Europe.

Even	after	all	that	testing,	back	in	the	United	States,
Chumby	 continued	 to	 sample	units	 for	QC	purposes.
To	 this	 end,	we	 regularly	 ordered,	 characterized,	 and
dissected	 devices	 to	 ensure	 that	 all	 the	 operating
procedures	were	being	followed.
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MISTAKES	STILL	HAPPEN
Despite	 such	 safeguards,	 some	mistakes	 will	 be	made
on	 any	 product.	 Every	 product	 goes	 through	 a	 phase
where	 bugs	 that	 weren’t	 caught	 by	 internal	 QA	 get
pounded	 out.	 You	 have	 to	 rely	 on	 a	 top-notch
customer	 service	 and	 support	 team,	 and	 you	 have	 to
plan	 on	 being	 very	 agile	 and	 innovative	 during	 this
phase	 to	 solve	 the	 problems	 and	 prevent	 them	 from
ever	happening	again.

When	 I	was	 at	Chumby,	 if	 I	 heard	 about	 a	 unit	 in
the	wild	with	hardware	problems,	I	actually	called	the
customer	who	reported	it.	I	wanted	to	know	what	went
wrong	 so	 I	 could	 fix	 the	 problem	 and	 make	 sure	 it
never	happened	again,	to	anyone!

My	biggest	hope	with	the	chumby,	however,	was	to
avoid	what	happened	to	Microsoft	and	the	Xbox	360’s
“red	ring	of	death,”	where	consoles	would	experience	a
major	hardware	failure,	stop	working,	and	just	display	a
red	 light	 around	 the	 power	 button,	 causing	 huge
frustration	 for	 players.	 This	 problem	 only	 exhibited
itself	after	 the	Xbox	360	had	been	out	 for	years,	after
millions	of	units	had	been	shipped.	Situations	 like	the
red	 ring	 of	 death	 are	 a	 product	 engineer’s	 worst
nightmare.

So	you	see,	getting	the	chumby	(or	any	product)	 to
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the	 point	 where	 it	 can	 ship	 to	 consumers	 is	 just	 the
beginning.	The	real	challenge	starts	after.

If	 you	 ever	 find	 yourself	 at	 this	 point	 in	 the
manufacturing	process,	I	wish	you	luck!

CLOSING	THOUGHTS
The	 stories	 told	 here	 share	 some	of	my	 adventures—
and	 failures—learning	 how	 to	 build	 products	 in
volume.	The	next	two	chapters	are	more	reflective	and
less	 narrative.	 The	 next	 chapter	 takes	 us	 on	 a	 virtual
tour	 of	 three	 factories	 to	 see	what	we	 can	 learn	 from
them,	 and	 Chapter	 3	 attempts	 to	 summarize	 all	 the
lessons	I’ve	learned	about	manufacturing	so	far.
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2.	inside	three	very
different	factories

It’s	hard	to	understand	how	a	computer	works	without
opening	 it	 and	 looking	 around	 inside.	 Likewise,	 it’s
hard	 to	 understand	 how	 products	 are	 made	 without
going	into	a	factory	and	touring	the	line.	Although	we
often	 think	 of	 manufacturing	 as	 the	 necessary	 but
boring	 step	 after	 innovation,	 in	 reality,	 the	 two	 are
tightly	 coupled.	 An	 inventor	 thinks	 about	 a	 product
once;	 a	 factory	 thinks	 about	 the	 same	 product	 day	 in
and	day	out,	sometimes	for	years	on	end.

The	importance	of	factories	as	an	innovation	node	is
only	 growing	 in	 today’s	 connected	 global	 economy.
The	reality	is	that	there	is	no	“Apple	factory”	or	“Nike
factory.”	Rather,	 there	 is	 a	 series	 of	 facilities	 that	 are
domain	 experts	 in	 processes	 (such	 as	PCB	 fabrication
or	 zipper	 manufacturing)	 that	 are	 curated	 by	 the
familiar	 brands.	Thus,	 it’s	 not	 uncommon	 to	 see	 two
competitors’	 products	 running	 side	 by	 side	 down
similar	 lines	 in	 a	 single	 facility.	This	 concentration	of
domain-specific	expertise	means	that	 the	best	place	to
learn	how	to	make	an	aspect	of	your	product	better	is
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often	 the	 same	 place	 that	 makes	 a	 similar	 aspect	 in
everybody	else’s	products.

Some	 of	 the	 greatest	 insights	 I’ve	 had	 into
improving	 a	 product	 have	 come	 from	 observing
technicians	 at	 work	 on	 a	 line	 and	 seeing	 the	 clever
optimization	 tricks	 they’ve	 developed	 after	 doing	 the
same	thing	over	and	over	for	so	long.

This	 chapter	 takes	 you	 on	 a	 tour	 of	 three	 factories
that	 make	 everyday	 things:	 PCBs	 (in	 particular,	 the
ones	 used	 in	 the	 Arduino),	 USB	 memory	 sticks,	 and
zippers.	 By	 peeling	 back	 the	 curtain,	 you’ll	 get	 some
insight	into	the	design	trade-offs	behind	the	products,
and	how	they	can	be	made	better.	In	the	PCB	factory,	I
discovered	 the	 secret	 of	 how	 they	 print	 a	 high-
resolution	map	of	 Italy	on	the	back	of	every	Arduino;
in	the	USB	memory	stick	factory,	I	witnessed	a	strange
marriage	 of	 high-	 and	 low-tech	 manufacturing
techniques;	and	in	the	zipper	factory,	I	found	out	how
even	 the	 humblest	 of	 products	 can	 bear	 valuable
lessons	for	product	designers.

WHERE	ARDUINOS	ARE	BORN
It	 was	 July	 2012,	 and	 it	 had	 been	 about	 six	 months
since	my	previous	startup,	Chumby,	ceased	operations.
I	had	decided	to	take	a	year	off	to	figure	things	out	and

89



cross	a	few	items	off	the	bucket	list,	one	of	which	was	a
trip	 to	 Italy.	 My	 girlfriend	 had	 the	 bright	 idea	 of
reaching	out	to	the	Arduino	team	to	see	if	I	could	visit
their	 factory	 in	 Scarmagno	 (this	 was	 years	 before	 the
Arduino/Genuino	 split)	 as	 part	 of	 our	 itinerary.
Members	 of	 Officine	 Arduino	 (particularly	 managing
director	Davide	Gomba)	kindly	took	time	out	of	their
busy	schedules	to	show	me	around	their	factory.	They
patiently	waited	as	I	expressed	my	inner	shutterbug	and
general	 love	 for	 all	 things	 hardware,	 and	 I	 definitely
came	away	with	a	lot	of	great	photos.

A	small	 town	in	northern	Italy,	Scarmagno	is	about
an	 hour	 and	 a	 half	 west	 of	 Milan	 by	 car,	 near	 the
Olivetti	factories	on	the	outskirts	of	Torino.	The	town
handles	all	the	circuit	board	fabrication,	board	stuffing,
and	distribution	for	officially	branded	Arduinos.	I	was
really	excited	to	see	the	factories,	and	the	highlight	of
my	 tour	 was	 seeing	 System	 Elettronica,	 the	 PCB
factory	that	made	the	Arduino	PCBs.

One	 charming	 aspect	 of	 System	 Elettronica	 is	 that
the	owner	painted	the	factory	green,	white,	and	red	to
match	 the	 colors	 of	 the	 Italian	 flag.	 On	 the	 factory
floor,	 I	 saw	 some	 of	 that	 spirit	 in	 the	 red	 and	 green
posts	that	ran	the	length	of	the	facility.
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A	wide	view	of	the	factory	floor	at	System	Electtronica	in
August	2012

But	 I	 soon	 stopped	 paying	 much	 attention	 to	 the
décor,	 as	 that	 factory	 floor	 was	 also	 where	 I	 got	 to
follow	a	fresh	batch	of	Arduino	Leonardos	through	the
entire	manufacturing	process.	Here’s	how	those	boards
were	made.

Starting	with	a	Sheet	of	Copper
Arduino	Leonardo	boards	start	as	huge	sheets	of	virgin
copper-clad	 FR-4,	 a	 material	 made	 of	 fiberglass	 and
epoxy	that	most	PCBs	use	for	a	substrate,	an	insulating
and	 structural	 layer	 between	 the	 copper	 layers.	 The
sheets	were	1.6mm	thick	(the	most	common	thickness
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for	a	PCB,	which	corresponds	to	1/16	inch),	probably	a
meter	wide,	and	about	a	meter	and	a	half	long.

A	stack	of	copper	sheets	waiting	to	become	Arduino	boards

The	 first	 step	 in	processing	PCBs	 is	 to	drill	 all	 the
holes—	 pads,	 vias	 (the	 small	 holes	 that	 connect
different	 layers	 of	 the	 PCB),	 mounting	 holes,	 plated
slots,	and	so	forth.	When	a	PCB	is	manufactured,	the
holes	 are	 drilled	 before	 patterning,	 the	 stage	 where	 a
masking	 chemical	 is	 photographically	 defined	 on	 the
sheet	everywhere	the	final	boards	need	to	have	copper,
including	 locations	 of	 traces,	 solder	 pads,	 and	 so	 on.
Some	of	 the	drilled	holes	 are	used	 to	 align	 the	masks
that	pattern	 the	 traces	 later	 in	 the	process.	Drilling	 is
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also	 a	 dirty	 and	 messy	 process	 that	 could	 damage
circuit	patterns	if	they	were	in	place	beforehand.

The	CNC	drilling	head	used	to	drill	the	Arduino	boards

The	 blank	 copper	 panels	 were	 stacked	 three	 high,
and	 a	 CNC	 drill	 took	 a	 single	 pass	 for	 all	 three,
allowing	it	to	drill	three	substrates	at	a	time.
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The	drill	rack	used	by	the	CNC	drilling	machine.	If	you’ve	ever
had	to	create	NC-drill	files,	this	is	that	"drill	rack"

Every	 hole	 in	 the	 Arduino	 board	was	mechanically
drilled,	 including	 vias.	 The	 same	 is	 true	 of	 any	 PCB
with	through-holes,	which	is	why	the	via	count	is	such
an	 important	 parameter	 in	 calculating	 the	 cost	 of	 a
PCB.

Note	 that	 the	 particular	 drill	 I	 saw	 at	 System
Elettronica	was	relatively	small.	I’ve	seen	massive	drill
decks	in	China	that	gang	(mechanically	attach)	four	or
six	 drill	 heads	 together	 in	 a	 truck-size	 machine,
processing	 dozens	 of	 panels	 at	 the	 same	 time	 as
opposed	 to	 the	 three	 panels	 this	 drill	 could	 handle.
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The	reasoning	behind	this	approach	is	that	the	precise,
robotic	positioning	assembly	is	the	expensive	part	of	a
drilling	 machine.	 The	 drill	 itself	 is	 cheap—just	 a
spinning	 motor	 to	 drive	 the	 bit.	 So,	 one	 way	 to
increase	 throughput	 is	 to	 gang	 several	 drills	 together
on	one	large	assembly	and	move	them	in	concert.	Each
individual	 drill	 still	 goes	 through	 its	 own	 stack	 of
panels,	but	for	the	price	of	one	X-Y	positioner,	you	get
four	 to	 six	 times	 the	 throughput	 as	 the	drill	 I	 saw	on
my	 trip	 to	 Italy.	 Those	 bigger	 machines	 drill	 so	 fast
and	hard	that	the	ground	shakes	with	every	via	drilled,
even	from	several	meters	away.

Once	 the	panels	 are	drilled,	 cleaned,	 and	deburred,
they	 are	 ready	 for	 the	next	 step	 in	 the	manufacturing
process.
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A	stack	of	finished,	drilled	panels	of	Arduino	Leonardo	boards

Applying	the	PCB	Pattern	to	the	Copper
The	next	step	 is	 to	apply	a	photoresist,	a	 light-sensitive
chemical,	to	the	panel	and	expose	a	pattern.	At	System
Elettronica,	 this	 process	 used	 a	 light	 box	 and	 a	 high-
contrast	 film.	 I’ve	 also	 seen	 direct	 laser	 imaging—in
the	 form	 of	 a	 raster-scanning	 laser—used	 to	 apply	 a
pattern	 to	 a	 PCB.	 Direct	 laser	 scanners	 are	 more
common	 in	 quick-turn	 prototype	 houses,	 and	 film
imaging	is	more	common	in	mass-production	houses.
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Before	and	after:	the	right	panel	shows	photoresist	prior	to
exposure,	and	the	left	panel	after.

A	PCB	being	mounted	into	a	light	box	that	will	expose	its
unprocessed	backside	film
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After	 the	pattern	 is	applied,	each	panel	of	boards	 is
sent	 into	a	machine	 to	be	developed.	 In	 this	 case,	 the
same	machine	 is	used	 to	develop	both	 the	photoresist
and	the	soldermask.

The	machine	that	develops	the	photoresist
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This	photo	of	a	panel	with	developed	photoresist	is	one	of	my
favorite	photos	from	the	System	Elettronica	factory.	Also,
something	about	“Codice:	Leonardo”	just	sounds	cool.

Etching	the	PCBs
After	photo	processing	and	development,	the	panels	go
through	a	 series	of	chemical	baths	 that	etch	and	plate
the	copper.

The	 panels	 are	 swished	 gently	 back	 and	 forth	 in	 a
chemical	 bath	 to	 expedite	 the	 etching	 process.	 The
movement	 also	 circulates	 used	 etchant	 away	 from	 the
panels,	ensuring	a	more	uniform	etch	rate	regardless	of
the	 amount	 of	 copper	 to	 be	 removed.	 Moving	 the
panels	 through	 these	 chemical	 baths	 was	 fully
automated	 at	 Scarmagno.	 Automation	 is	 necessary
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because	 the	 panels	 must	 be	 treated	 with	 a	 series	 of
caustic	 chemical	 baths	 with	 minimal	 exposure	 to
oxygen.	 Oxygen	 can	 spoil	 a	 panel	 in	 a	 matter	 of
seconds,	so	the	transfer	between	the	baths	needs	to	be
fast,	 and	 the	amount	of	 time	a	panel	 spends	 in	a	bath
must	 be	 consistent.	The	 baths	 also	 contain	 chemicals
harmful	to	humans,	so	it’s	much	safer	for	a	robot	to	do
this	work.

A	machine	that	moves	panels	around	in	etchant

Once	 the	 panels	 are	 processed	 in	 this	 series	 of
solutions,	 a	 dull,	white	 plating	 (which	 I’m	guessing	 is
nickel	or	tin)	develops	on	all	 the	surfaces	of	the	panel
not	 treated	with	 photoresist,	 including	 the	 previously
unplated	through-hole	vias	and	pads.
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Panels	of	Arduino	Leonardo	boards	after	going	through	a	series
of	chemical	baths

At	 this	 point,	 the	 resist	 and	 unplated	 copper	 are
stripped	off,	 leaving	 just	 the	 raw	FR-4	and	 the	plated
copper.	The	final	step	of	processing	produces	a	bright
copper	finish.
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A	panel	etched	of	unwanted	copper

PCB	panels	with	bright,	shiny	copper.	This	photo	doesn’t	show
an	Arduino	panel,	as	those	weren’t	going	through	the	machine

when	I	photographed	it.
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Applying	Soldermask	and	Silkscreen
Once	 the	 copper	 is	 polished,	 the	panels	 are	 ready	 for
the	 soldermask	 (a	 protective,	 lacquer-like	 layer	 that
insulates	 the	 copper	 traces	 below	 and	 prevents	 solder
bridging	 above)	 and	 silkscreen	 (the	 ink	 used	 to	 label
components,	draw	logos,	and	so	on).	These	are	applied
in	 a	process	 very	 similar	 to	 that	of	 the	 trace	patterns,
using	a	photomask	and	developer/stripper	machine.

A	panel	of	Arduino	boards	with	both	soldermask	and	silkscreen
developed

In	 the	 case	 of	Arduinos,	 the	 silkscreen	 is	 actually	 a
second	layer	of	soldermask.	A	very	specific	formulation
of	 dry-film	 white	 soldermask	 was	 procured	 for	 the
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Arduino	 team	 to	 create	 a	 sharp,	 good-looking	 layer
that	resolved	the	intricate	artwork	you	see	on	Arduino
boards—particularly	 the	map	of	 Italy	on	 the	backside.
Other	 techniques	 I’ve	 seen	 for	 producing	 silkscreen
layers	include	high-resolution	inkjet	printing,	which	is
better	 suited	 for	 quick-turn	 board	 houses,	 and	 of
course,	 the	 namesake	 squeegee-and-paint	 silkscreen
process.

Testing	and	Finishing	the	Boards
After	all	that	chemical	processing,	the	panels	receive	a
protective	 plating	 of	 solder	 from	 a	 hot-air	 solder
leveling	machine.

With	the	solder	plating	in	place,	every	board	is	100
percent	 tested.	 Every	 trace	 has	 its	 continuity	 and
resistance	measured	with	 a	 pair	 of	 flying	probes.	The
process	 I	 saw	 is	called	 flying	head	 testing	 (also	 referred
to	 as	 flying	 probe	 testing),	 and	 in	 that	 sort	 of	 setup,
several	 pairs	 of	 arms	 with	 needlelike	 probes	 test
continuity	 between	 pairs	 of	 traces	 in	 a	 swift	 tapping
motion.	 Considering	 all	 the	 traces	 on	 an	 Arduino
Leonardo,	 that’s	 a	 lot	 of	 probing!	 Fortunately	 the
robot’s	arms	move	like	a	blur,	as	it	can	probe	hundreds
of	points	per	minute.

104



NOTE

An	alternative	to	flying	head	testing	is	clamshell	testing,
where	a	set	of	pogo	pins	is	put	into	a	fixture	that	can	test
the	entire	board	with	a	single	mechanical	operation.
However,	clamshell	fixtures	are	very	labor-intensive	to
assemble	and	maintain,	and	require	physical	rewiring
every	time	the	Gerber	files	describing	the	PCB	images
are	updated.	So,	in	lower	volumes,	flying	probe	testing	is
more	cost-effective	and	flexible	than	clamshell	testing.

A	stack	of	near-finished	PCB	panels,	ready	for	a	final	step	of
routing	out	the	individual	boards

This	 particular	 facility	 only	 created	 the	 panels;	 a
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different	factory	actually	populated	the	components.	In
situations	like	that,	before	the	panels	can	be	sent	to	the
next	factory,	the	individual	PCBs	need	to	be	routed	so
they’ll	 fit	 inside	 surface	 mount	 technology	 (SMT)
machines	 to	have	 the	 components	placed.	The	panels
are	once	again	stacked	up	and	batch-processed	through
a	machine	that	uses	a	router	bit	to	cut	and	release	the
boards.	After	 that,	 the	boards	are	 finally	ready	to	ship
to	the	SMT	facility.

Several	Arduino	panels,	stacked	for	routing
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Smaller	2×6	panels	make	SMT	processing	more	efficient.

A	veritable	stack	of	about	25,000	bare	Arduino	PCBs,	ready	to
leave	the	PCB	factory.	From	there,	they	were	stuffed,	shipped,
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and	sold	to	makers	around	the	world!

I’m	 glad	 I	 made	 the	 side	 trip	 to	 visit	 the	 Arduino
PCB	 factory.	 I’ve	 visited	 several	 PCB	 factories,	 and
every	one	has	 a	 different	 character	 and	 its	 own	 set	 of
tricks	 to	 improve	 yield,	 as	 well	 as	 unique	 limitations
that	 designers	 need	 to	 compensate	 for.	 It	 was	 also
interesting	 to	 see	 the	 little	 trick	 about	 using	 an	 extra
layer	of	 soldermask	 instead	of	 silkscreen	 for	achieving
high	 cosmetic	 quality.	 While	 the	 resolution	 of	 a
silkscreen	 is	 limited	by	the	mesh	of	 the	silk	barrier	 to
hold	the	paint,	 soldermask	 is	 limited	by	the	quality	of
the	 optics	 and	 chemical	 developing,	 giving	 over	 an
order	 of	 magnitude	 improvement	 in	 resolution	 and
ultimately	 a	 higher	 perceived	 quality.	 Normally	 the
lower	 quality	 of	 silkscreen	 is	 acceptable	 because	 end
users	don’t	see	the	circuit	boards	inside	computers,	but
for	Arduino,	the	end	product	is	the	circuit	board.

WHERE	USB	MEMORY	STICKS	ARE	BORN
Several	months	after	my	tour	of	the	Arduino	factory,	I
had	 the	 good	 fortune	 of	 being	 a	 keynote	 speaker	 at
Linux	 Conference	 Australia	 (LCA)	 2013.	 In	 my	 talk,
“Linux	 in	 the	Flesh:	Adventures	Embedding	Linux	 in
Hardware,”	 I	 discussed	 how	 Linux	 is	 in	 all	 kinds	 of
devices	we	see	every	day.	This	story	isn’t	about	Linux,
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but	 it	 does	 connect	 me	 and,	 tangentially,	 LCA	 to	 a
factory.

One	 of	 the	 tchotchkes	 I	 received	 from	 the	 LCA
organizers	was	a	little	USB	memory	stick	with	Tux	the
penguin,	 the	 Linux	 mascot,	 on	 the	 outside.	 When	 I
saw	the	device,	I	thought	it	was	a	neat	coincidence	that
about	 a	 week	 before	 the	 conference,	 I	 had	 been	 in	 a
factory	 that	manufactured	USB	memory	sticks	exactly
like	 it.	 I	 saw	 the	 USB	 stick	 board	 assembly	 process
from	 start	 to	 finish,	 and	 it	 surprisingly	 involved	 a	 lot
less	 automation	 than	 the	 Arduino	 manufacturing
process	did.

The	Beginning	of	a	USB	Stick
USB	sticks	start	life	as	bare	flash	memory	chips.	Prior
to	 being	mounted	 on	PCBs,	 these	 chips	 are	 screened
for	memory	capacity	and	functionality.
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A	workstation	where	flash	memory	chips	are	screened.
The	metal	rectangle	on	the	left	with	the	circular	cutaway	is	the

probe	card.

At	 a	 workstation	 in	 this	 factory,	 stacks	 of	 bare-die
flash	 chips	 awaited	 testing	 and	 binning	 with	 a	 probe
card,	 which	 has	 tiny,	 very	 accurately	 positioned	 pins
used	to	touch	down	on	pads	only	a	little	bit	wider	than
a	human	hair	on	a	 silicon	wafer’s	 surface.	 (I	 love	how
the	worker	at	this	particular	station	used	rubber	bands
to	hold	an	analog	current	meter	to	the	probe	card.)
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The	probe	card,	up	close
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Looking	through	the	microscope	on	the	microprobing	station.
Notice	the	needles	touching	the	square	pads	at	the	edge	of	the
flash	chip’s	surface.	Each	pad	is	perhaps	100	microns	on	a

side—a	human	hair	is	about	70	microns	in	diameter.

Interestingly,	 the	 chips	 I	 saw	 were	 absolutely	 not
tested	in	a	clean-room	environment.	Workers	handled
chips	 with	 tweezers	 and	 hand	 suction	 vises	 and
mounted	the	probe	cards	into	their	jigs	by	hand.
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Hand-Placing	Chips	on	a	PCB
Once	 the	 chips	 were	 screened	 for	 functionality,	 they
were	placed	by	hand	onto	the	USB	stick	PCBs.	This	is
not	 an	 unusual	 practice;	 every	 value-oriented	 wire-
bonding	 facility	 I’ve	 visited	 relies	 on	 the	 manual
placement	of	bare	die.

A	controller	IC	being	placed	on	a	panel	of	USB-stick	PCBs.
The	tiny	bare	dies	are	on	the	right,	sitting	in	a	waffle	pack.
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A	zoomed-out	view	of	the	die-placing	workstation

The	lady	I	watched	placing	the	bare	die	was	using	a
chopstick-like	 tool	 made	 of	 hand-cut	 bamboo.	 I	 still
haven’t	figured	out	exactly	how	the	process	works,	but
my	best	 guess	 is	 that	 the	 bamboo	 sticks	 have	 just	 the
right	 surface	energy	 to	adhere	 to	 the	 silicon	die,	 such
that	silicon	sticks	to	the	tip	of	the	bamboo	rod.	A	dot
of	 glue	 is	 preapplied	 to	 the	 bare	 boards,	 so	when	 the
operator	 touches	 the	 die	 down	 onto	 the	 glue,	 the
surface	 tension	 of	 the	 glue	 pulls	 the	 die	 off	 of	 the
bamboo	stick.

It’s	 trippy	 to	 think	 that	 the	 chips	 inside	 my	 USB
stick	were	handled	using	modified	chopsticks.
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Bonding	the	Chips	to	the	PCB
Once	 the	 chips	 were	 placed	 on	 the	 PCB,	 they	 were
wire	 bonded	 to	 the	 board	 with	 an	 automated	 bonding
machine,	 which	 uses	 computer-assisted	 image
recognition	to	find	the	location	of	the	bond	pads	(this
is	 part	 of	 the	 reason	 the	 factories	 can	 get	 away	 with
manual	 die	 placement).	Wire	 bonding	 is	 the	 process
that	connects	an	integrated	circuit	to	its	packaging,	and
the	 automated	 bonding	 machine	 connected	 wires	 to
the	IC	at	an	insane	speed,	rotating	the	circuit	board	all
the	while.	As	I	watched	this	process,	 the	operator	had
to	pull	off	and	replace	a	misbonded	wire	by	hand	and
then	refeed	the	wire	into	the	machine.	Given	that	these
wires	 are	 thinner	 than	 a	 strand	 of	 hair	 and	 that	 the
bonding	 pads	 on	 the	 packaging	 and	 the	 IC	 are
microscopic,	 that	 was	 no	 mean	 feat	 of	 manual
dexterity.

A	Close	Look	at	the	USB	Stick	Boards
Just	 as	 the	 Arduino	 factory	 used	 panels	 containing
multiple	 Leonardo	 boards,	 the	 USB	 memory	 stick
factory	used	panels	of	eight	USB	sticks	each.	Each	stick
in	 the	 panel	 consisted	 of	 a	 flash	 memory	 chip	 and	 a
controller	IC	that	handled	the	bridging	between	USB
and	raw	flash,	a	nontrivial	task	that	includes	managing

115



bad	 block	 maps	 and	 error	 correction,	 among	 other
things.	 The	 controller	 was	 probably	 an	 8051-class
CPU	running	at	a	few	dozen	MHz.
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The	partially	bonded	but	fully	die-mounted	PCB	that	the
factory	owner	gave	me	as	a	memento	from	my	visit.	Some	of

the	wire	bonds	were	crushed	in	transit.

Interestingly,	the	entire	USB	stick	assembly	is	flexible	prior	to
encapsulation.
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The	die	marking	from	the	flash	chip.	Apparently,	it’s	made	by
Intel.
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A	die	shot	of	the	controller	chip	that	went	inside	the	USB
sticks

Once	the	panels	were	bonded	and	tested,	they	were
over-molded	 with	 epoxy	 and	 then	 cut	 into	 individual
pieces,	ready	for	sale.

But	 that’s	 enough	 about	 electronics	manufacturing;
next,	 I	 want	 to	 show	 you	 a	 different	 kind	 of	 factory
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floor.

A	TALE	OF	TWO	ZIPPERS
My	 friend	 Chris	 “Akiba”	 Wang	 has	 a	 similar
background	 to	 mine,	 except	 in	 his	 younger	 years	 he
was	way	hipper:	he	was	a	dancer	for	acts	like	LL	Cool	J
and	Run	DMC	in	the	’90s.	After	going	through	a	phase
working	 for	 big	 semiconductor	 companies,	 he
eventually	quit	and	followed	his	passion	to	design	and
manufacture	 his	 own	 hardware	 projects.	 An	 expert	 in
short-range,	 low-power	 wireless	 networking	 (he’s	 co-
authored	a	book	on	Bluetooth	low	energy	and	sells	an
Arduino	 +	 802.15.4	 variant	 called	 the	 “Freakduino”),
he	 now	 consults	 for	 organizations	 like	 the	 United
Nations	 and	 Keio	 University,	 runs	 FreakLabs,	 and
collaborates	 with	 various	 dance	 acts,	 such	 as	 the
Wrecking	 Crew,	 to	 provide	 unique	 and	 compelling
lighting	solutions	for	stage	shows.

I	had	 the	good	 fortune	of	 introducing	Akiba	 to	 the
greater	Shenzhen	area	on	a	trip	with	MIT	Media	Lab
students	 in	2013—the	 same	 trip	where	we	 toured	 the
USB	 memory	 stick	 factory.	 Since	 then,	 he’s	 been
exploring	deeper	and	deeper	into	the	area.	As	his	work
spans	the	disciplines	of	performance	art,	wearables,	and
electronics,	 his	 network	 of	 factories	 is	 quite	 different
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from	mine,	so	I	always	relish	the	opportunity	to	learn
more	about	his	world.

In	 January	2015,	Akiba	 took	me	 to	visit	his	 friend’s
zipper	 factory.	 I	 was	 very	 excited	 for	 the	 tour:	 no
matter	 how	 humble	 the	 product,	 I	 always	 learn
something	new	by	visiting	its	factory.	This	factory	was
very	 different	 from	 both	 the	 Arduino	 and	 the	 USB
stick	facilities.	There	were	far	fewer	employees,	and	it
was	 a	 highly	 automated,	 vertically	 integrated
manufacturer.	To	give	you	an	idea	of	what	that	means,
this	facility	turned	metal	ingots,	sawdust,	and	rice	into
zipper	parts.

Approximately	1	ton	of	ingots,	composed	of	93	percent	zinc
and	7	percent	aluminum	alloy
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Compressed	sawdust	pellets,	used	to	fuel	the	ingot	smelter
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Rice,	used	to	feed	the	workers
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Finished	zipper	puller	and	slider	assemblies

Let’s	 look	 at	 one	 side	 of	 how	 that	 process	 actually
works.

A	Fully	Automated	Process
Between	 the	 three	 input	 materials	 and	 the	 output
product	was	a	fully	automated	die-casting	line	to	create
the	 zipper	 pullers	 and	 sliders,	 a	 set	 of	 tumblers	 and
vibrating	pots	(or,	as	I	like	to	call	them,	“vibrapots”)	to
release	and	polish	the	zippers,	and	a	set	of	machines	to
deburr	 and	 join	 each	 puller	 to	 its	 slider.	 I	 think	 I
counted	 fewer	 than	 a	dozen	employees	 in	 the	 facility,
and	I’m	guessing	 their	capacity	well	exceeds	a	million
zippers	a	month.
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I	 was	 mesmerized	 by	 the	 vibrapots*	 that	 put	 the
zippers	 together.	There	were	 two	vibrapots:	 one	with
pullers	 and	 one	 with	 sliders.	 Both	 sliders	 and	 pullers
were	 deposited	 onto	 a	moving	 rail,	 and	 as	 I	 watched
these	miracles	 at	work,	 it	 looked	 as	 if	 the	 sliders	 and
pullers	 were	 lining	 themselves	 up	 in	 the	 right
orientation	by	magic.	Each	fell	 into	its	rail,	and	at	the
end	 of	 the	 line,	 they	 were	 pressed	 together	 into	 a
familiar	 zipper	 form,	 all	 in	 a	 single,	 fully	 automated
machine.

When	I	put	my	hand	 in	 the	pot,	 I	 found	 there	was
no	 stirrer	 to	 cause	 the	 motion;	 I	 just	 felt	 a	 strong
vibration.	 I	 relaxed	my	 hand,	 and	 found	 it	 started	 to
move	 along	 with	 all	 the	 other	 items	 in	 the	 pot.	 The
entire	pot	was	vibrating	 in	a	biased	 fashion,	 such	 that
the	 items	 inside	 tended	 to	move	 in	 a	 circular	motion.
This	pushed	the	pullers	and	sliders	onto	the	set	of	rails,
which	were	shaped	to	take	advantage	of	asymmetries	in
the	objects	to	allow	only	the	pieces	that	jumped	on	the
rail	 in	 the	 correct	 orientation	 to	 continue	 to	 the	next
stage.

A	Semiautomated	Process
Despite	 the	 high	 level	 of	 automation	 in	 this	 factory,
many	 of	 the	 workers	 I	 saw	 were	 performing	 one
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operation.	They	fed	the	pullers	 for	a	different	kind	of
zipper	 into	 a	 device	 connected	 to	 another	 vibrapot
containing	sliders,	while	the	device	put	the	sliders	and
pullers	together.

Of	course,	I	asked,	“Why	do	some	zippers	have	fully
automated	 assembly	 processes,	 whereas	 others	 are
semiautomatic?”

The	answer,	 it	 turns	out,	 is	very	subtle,	and	 it	boils
down	to	shape.

Note	the	difference	in	these	two	pullers,	indicated	by	the
arrows.

One	 tiny	 tab,	 barely	 visible,	 was	 the	 difference
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between	full	automation	and	needing	a	human	to	 join
millions	of	sliders	and	pullers	together.	To	understand
why,	 let’s	 review	 one	 critical	 step	 in	 the	 vibrapot
operation.	 A	 worker	 kindly	 paused	 the	 vibrapot
responsible	 for	 sorting	 the	 pullers	 into	 the	 correct
orientation	 for	 the	 fully	 automatic	 process	 so	 I	 could
take	a	photo	of	the	key	step.

Pullers	coming	through	the	vibrapot

When	 the	 pullers	 came	 around	 the	 rail,	 their
orientation	 was	 random:	 some	 faced	 right,	 some	 left.
But	 the	 joining	 operation	must	 only	 insert	 the	 slider
into	the	smaller	of	the	two	holes.	That	tiny	tab	allowed
gravity	 to	 cause	 all	 the	 pullers	 to	 hang	 in	 the	 same
direction	as	they	fell	into	a	rail	toward	the	left.
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The	 semiautomated	 zipper	design	doesn’t	have	 this
tab;	 as	 a	 result,	 the	 design	 is	 too	 symmetric	 for	 a
vibrapot	to	align	the	puller.	I	asked	the	factory	owner	if
adding	 the	 tiny	 tab	would	save	 this	 labor,	and	he	said
absolutely.

At	 this	 point,	 it	 seemed	 blindingly	 obvious	 to	 me
that	 all	 zippers	 should	 have	 this	 tiny	 tab,	 but	 the
zipper’s	designer	wouldn’t	have	it.	Even	though	such	a
tab	is	very	small,	consumers	can	feel	the	subtle	bumps,
and	 some	 perceive	 it	 as	 a	 defect	 in	 the	 design.	 As	 a
result,	 the	 designer	 insisted	 upon	 a	 perfectly	 smooth
tab,	 which	 accordingly	 had	 no	 feature	 to	 easily	 and
reliably	allow	for	automatic	orientation.

The	Irony	of	Scarcity	and	Demand
I’d	 like	 to	 imagine	 that	most	people,	 after	watching	a
person	 join	pullers	 to	 sliders	 for	 a	 couple	 of	minutes,
would	be	quite	content	to	suffer	a	tiny	bump	on	the	tip
of	 their	 zipper	 to	 save	 another	 human	 the	 fate	 of
manually	aligning	pullers	into	sliders	for	eight	hours	a
day.	Alternatively,	 I	 suppose	 an	 engineer	 could	 spend
countless	 hours	 trying	 to	 design	 a	 more	 complex
method	 for	 aligning	 the	 pullers	 and	 sliders,	 but	 there
are	two	problems	with	that:

•	The	zipper’s	customer	probably	wouldn’t	pay	for	that
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effort.

•	It’s	probably	net	cheaper	to	pay	unskilled	labor	to
manually	perform	the	sorting.

This	 zipper	 factory	 owner	 had	 already	 automated
everything	 else	 in	 the	 facility,	 so	 I	 figure	 they’ve
thought	 long	 and	 hard	 about	 this	 problem,	 too.	 My
guess	 is	 that	 robots	 are	 expensive	 to	 build	 and
maintain;	 people	 are	 self-replicating	 and	 largely	 self-
maintaining.	Remember	that	third	input	to	the	factory
—rice?	Any	robot’s	spare	parts	have	to	be	cheaper	than
rice	for	the	robot	to	earn	a	place	on	this	factory’s	floor.

In	 reality,	 however,	 it’s	 too	much	 effort	 to	 explain
this	 concept	 to	 end	 customers;	 in	 fact,	 quite	 the
opposite	 happens	 in	 the	 market.	 Putting	 the	 smooth
zippers	 together	 involves	 extra	 labor,	 so	 the	 zippers
cost	more;	therefore,	they	tend	to	end	up	in	high-end
products.	This	 further	 enforces	 the	 notion	 that	 really
smooth	zippers	with	no	tiny	tab	on	them	must	be	the
result	of	quality	control	and	attention	to	detail.

My	world	 is	 full	 of	 small	 frustrations	 like	 this.	 For
example,	 most	 customers	 perceive	 plastics	 with	 a
mirror	finish	to	be	of	a	higher	quality	than	those	with	a
satin	finish.	There	is	no	functional	difference	between
the	 two	 plastics’	 structural	 performance,	 but	 making
something	with	a	mirror	finish	takes	a	lot	more	effort.
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The	injection-molding	tools	must	be	painstakingly	and
meticulously	polished,	and	at	every	step	in	the	factory,
workers	must	wear	white	gloves.	Mountains	of	plastic
are	 scrapped	 for	 hairline	 defects,	 and	 extra	 films	 of
plastic	are	placed	over	mirror	surfaces	to	protect	them
during	shipping.

For	all	that	effort,	for	all	that	waste,	what’s	the	first
thing	 users	 do?	 They	 put	 their	 dirty	 fingerprints	 all
over	 the	mirror	 finish.	Within	 a	minute	 of	 a	 product
coming	 out	 of	 the	 box,	 all	 that	 effort	 is	 undone.	 Or
worse	 yet,	 the	 user	 leaves	 the	 protective	 film	 on,
resulting	 in	 a	 net	 worse	 cosmetic	 effect	 than	 a	 satin
finish.

Contrast	 this	 to	 satin-finished	plastic.	Satin	 finishes
don’t	 require	 protective	 films,	 are	 easier	 for	 workers
and	users	to	handle,	last	longer,	and	have	much	better
yields.	 In	 the	 user’s	 hands,	 they	 hide	 small	 scratches,
fingerprints,	and	bits	of	dust.	Arguably,	the	satin	finish
offers	a	better	long-term	customer	experience	than	the
mirror	finish.

But	 that	 mirror	 finish	 sure	 does	 look	 pretty	 in
photographs	and	showroom	displays!
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3.	the	factory	floor

The	 previous	 two	 chapters	were	 filled	with	 stories	 of
my	 personal	 experiences	 learning,	 making	 mistakes,
and	growing	with	the	manufacturing	ecosystem	in	the
greater	 Shenzhen	 area.	 In	 January	 2013,	 after	 I’d
learned	 the	 ropes,	 the	MIT	Media	 Lab	 asked	 me	 to
start	mentoring	graduate	students	on	supply	chain	and
manufacturing,	and	I	took	them	on	a	tour	of	Shenzhen
(the	same	tour	where	I	met	Akiba	and	visited	the	USB
memory	 stick	 factory).	 This	 chapter	 is	 an	 attempt	 to
distill	everything	I	taught	over	a	course	of	weeks	into	a
couple	dozen	pages.

The	 challenges	 and	 trade-offs	 in	 low-volume
manufacturing	are	different	from	those	of	well-funded
corporate	 exercises	 that	 prototype	 at	 the	 scale	 of
thousands	 of	 units.	 I	 learned	 this	 over	 time,	 but	 not
everyone	 has	 six	 years	 to	 bumble	 through	 all	 the
newbie	mistakes.	If	you’re	already	in	a	fast-moving	tech
startup,	 you	 probably	 don’t	 have	 the	 luxury	 of	 doing
any	 exploration	 at	 all.	The	 lessons	 in	 this	 chapter	 are
applicable	 to	 anyone	 looking	 to	 bootstrap	 a	 hardware
product	from	an	initial	prototype	to	moderate	volumes
(perhaps	 hundreds	 of	 thousands	 of	 units).	 Treat	 this
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summary	 as	 a	 general	 guideline,	 not	 a	 detailed
roadmap.	The	devil	is	always	in	the	details,	and	one	fun
part	 of	 making	 new,	 innovative	 hardware	 products	 is
there’s	no	end	of	novel	and	interesting	challenges	to	be
solved.

HOW	TO	MAKE	A	BILL	OF	MATERIALS
Most	 makers	 trying	 to	 scale	 up	 their	 output	 quickly
realize	 the	only	practical	path	 forward	 is	 to	outsource
production.	 If	 only	 outsourcing	 were	 as	 easy	 as
schematic	+	cash	=	product!

Whether	you	work	with	the	assembly	shop	down	the
street	 or	 send	 your	 work	 to	 China,	 a	 clear	 and
complete	 bill	 of	 materials	 (BOM)	 is	 the	 first	 step	 to
outsourcing	 production.	 Every	 single	 assumption	 you
make	 about	 your	 circuit	 board,	 down	 to	 the	 color	 of
the	 soldermask,	 has	 to	 be	 spelled	 out	 unambiguously
for	 a	 third	 party	 to	 faithfully	 reproduce	 your	 design.
Missing	 or	 incomplete	 documentation	 is	 the	 leading
cause	of	production	delays,	defects,	and	cost	overruns.

A	Simple	BOM	for	a	Bicycle	Safety	Light
For	 a	 case	 study,	 suppose	 you	 ran	 a	 successful
Kickstarter	 campaign	 for	 a	 bicycle	 safety	 light.	 It
contains	a	circuit	that	uses	a	555	timer	to	flash	a	small
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array	 of	 LEDs.	 After	 a	 great	 marketing	 campaign,
several	 hundred	 orders	 need	 to	 be	 filled	 in	 a	 few
months’	time.

At	first,	a	BOM	for	the	bicycle	light,	as	automatically
generated	by	a	design	tool	such	as	Altium,	might	look
like	this:

Quantity Comment Designator

1 0.1μF C1

1 10μF C2

3 white	LEDD1,	D2,	D3

1 2N3904 Q1

1 100 R1

2 20k R2,	R4

1 1k R3

1 555	timer U1

A	very	basic	bicycle	safety	light	BOM

This	 BOM,	 along	 with	 a	 schematic,	 is	 likely
sufficient	 for	 any	 graduate	 of	 a	 US	 electrical
engineering	program	 to	 reproduce	 the	prototype,	 but
it’s	 far	 from	 adequate	 for	 a	 manufacturing	 cost
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quotation.	 This	 version	 of	 the	 BOM	 addresses	 only
electronics.	A	complete	BOM	for	an	LED	flasher	also
needs	 to	 include	 the	PCB,	battery,	plastic	case	pieces,
lens,	 screws,	 any	 labeling	 (like	 a	 serial	 number),	 a
manual,	and	packaging	(plastic	bag	plus	cardboard	box,
for	example).	It	may	also	need	a	master	carton	to	ship
multiple	LED	flashers	together,	as	a	single	boxed	LED
flasher	 is	 too	 small	 to	 ship	 on	 its	 own.	 Although
cardboard	boxes	are	cheap,	they	aren’t	free,	and	if	they
aren’t	ordered	on	 time,	 inventory	will	 sit	on	 the	dock
until	 a	 master	 carton	 is	 delivered	 for	 final	 pack-out
prior	to	shipment.

The	following	key	information	is	also	missing:

•	Approved	manufacturer	for	each	component

•	Tolerance,	material	composition,	and	voltage
specification	for	passive	components

•	Package	type	information	for	all	parts

•	Extended	part	numbers	specific	to	each	manufacturer

Let’s	 look	 at	 each	 of	 the	 missing	 items	 in	 more
detail.

Approved	Manufacturers
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A	proper	factory	will	require	you	to	supply	an	approved
vendor	 list	 (AVL)	 specifying	 the	 allowed
manufacturer(s)	 for	 every	 part	 on	 a	 PCB.	 A
manufacturer	 is	 not	 a	 distributor	 but	 rather	 the
company	 that	 actually	 makes	 a	 part.	 A	 capacitor,	 for
example,	 could	 be	 made	 by	 TDK,	 Murata,	 Taiyo
Yuden,	AVX,	Panasonic,	Samsung,	and	so	on.	I’m	still
surprised	 at	 how	 many	 BOMs	 I’ve	 reviewed	 list
DigiKey,	Mouser,	Avnet,	or	some	other	distributor	as
the	manufacturer	for	a	part.

It	 may	 seem	 silly	 to	 trifle	 over	 who	 makes	 a
capacitor,	but	there	are	definitely	situations	where	the
maker	 of	 a	 component	matters—even	 for	 the	humble
capacitor.	 For	 example,	 blindly	 substituting	 the	 filter
capacitors	 on	 a	 switching	 regulator,	 even	 if	 the
substitute	has	 the	 same	 rated	capacitance	 and	voltage,
can	 lead	 to	 unstable	 operation	 and	 even	 boards
catching	fire.

Of	 course,	 some	 parts	 in	 a	 design	 can	 be	 truly
insensitive	to	the	manufacturer,	 in	which	case	I	would
mark	 “any/open”	 on	 the	BOM	 for	 the	AVL.	 (This	 is
particularly	 true	 for	 parts	 like	 pull-up	 resistors.)	This
invites	 the	 factory	 to	 suggest	 their	 preferred	 supplier
on	your	behalf.

Tolerance,	Composition,	and	Voltage
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Specification
For	 passive	 components	 marked	 “any/open,”	 you
should	always	 specify	 the	 following	key	parameters	 to
ensure	the	right	part	is	purchased:

•	For	resistors,	specify	at	minimum	the	tolerance	and
wattage.	A	1	kΩ,	1	percent	tolerance,	1/4	W	carbon
resistor	is	a	very	different	beast	from	a	1	kΩ,	5
percent	tolerance,	1	W	wire-wound	resistor!

•	For	capacitors,	specify	at	minimum	the	tolerance,
voltage	rating,	and	dielectric	type.	For	special
applications,	also	specify	certain	parameters	such	as
ESR	or	ripple	current	tolerance.	A	10	μF,	electrolytic,
10	percent	tolerance	capacitor	rated	for	50V	has
vastly	different	performance	at	high	frequencies
compared	to	a	10	μF,	ceramic,	20	percent	tolerance
capacitor	rated	for	16V.

Inductors	 are	 sufficiently	 specialized	 that	 I	 don’t
recommend	ever	 labeling	 them	as	“any/open”	 in	your
BOM.	 For	 power	 inductors,	 the	 basic	 parameters	 to
specify	 are	 core	 composition,	 DC	 resistance,
saturation,	 temperature	 rise,	 and	 current,	 but	 unlike
resistors	and	capacitors,	inductors	have	no	standard	for
casing.	 Furthermore,	 important	 parameters	 such	 as
shielding	and	potting,	which	can	have	material	impacts
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on	a	circuit’s	performance,	are	often	implicit	 in	a	part
number;	 hence,	 it’s	 best	 to	 fully	 specify	 the	 inductor.
The	same	goes	for	RF	inductors.

Electronic	Component	Form	Factor
Always	fully	specify	the	form	factor,	or	package	type,	of
a	 component.	 Poorly	 specified	 or	 underspecified
package	 parameters	 can	 lead	 to	 assembly	 errors.
Beyond	basic	parameters	like	the	Electronic	Industries
Alliance	 (EIA)	 or	 JEDEC	 Solid	 State	 Technology
Association	package	code	(that	is,	0402,	0805,	TSSOP,
and	so	on),	consider	the	following	package	information
as	you	create	your	BOM:

Surface	 mount	 packages	 The	 height	 of	 a
component	 can	 vary,	 particularly	 for	 packages
larger	than	1206	or	for	inductors.	Pay	attention	to
whether	the	board	is	slotting	into	a	tight	case.

Through-hole	 packages	 Always	 specify	 lead
pitch	and	component	height.

For	 ICs	 in	general,	 try	 to	 also	 specify	 the	 common
name	 that	 corresponds	 to	 the	 package,	 not	 just	 the
manufacturer’s	 internal	 code.	 For	 example,	 a	 Texas
Instruments	 “DW”	 type	package	 code	 corresponds	 to
an	SOIC	package.	This	consistency	check	helps	guard
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against	errors.

Extended	Part	Numbers
Designers	 often	 think	 about	 components	 in
abbreviated	 part	 numbers.	 A	 great	 example	 of	 this	 is
the	7404.	The	venerable	7404	is	a	hex	inverter	and	has
been	 in	 service	 for	 decades.	 Because	 of	 its	 ubiquity,
7404	 can	 be	 used	 as	 a	 generic	 term	 for	 an	 inverter
among	design	engineers.

When	 going	 to	 production,	 however,	 you	 must
specify	 information	 like	 the	 package	 type,
manufacturer,	 and	 logic	 family.	 A	 complete	 part
number	 for	 a	 particular	 hex	 inverter	 might	 be
74VHCT04AMTC,	which	 specifies	 an	 inverter	made
by	Fairchild	Semiconductor,	from	the	VHCT	series,	in
a	 TSSOP	 package,	 shipped	 in	 tubes.	 The	 extra
characters	are	very	important,	because	small	variations
can	cause	big	problems,	 such	as	quoting	and	ordering
the	wrong	packaged	device	and	being	stuck	with	a	reel
of	unusable	parts	or	subtle	reliability	problems.

For	 example,	 on	 a	 robotics	 controller	 I	 designed
(codenamed	Kovan),	I	encountered	a	problem	due	to	a
mistaken	substitution	of	VHC	in	the	part	number	for	a
component	in	the	VHCT	logic	family.	Using	the	VHC
part	switched	the	input	thresholds	of	the	inverter	from
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TTL	to	CMOS	logic-compatible,	and	some	units	had
an	 asymmetric	 response	 to	 input	 signals	 as	 a	 result.
Fortunately,	 I	 caught	 this	 problem	 before	 production
ramped.	The	correct	part	was	used	on	all	other	units,
and	 I	 avoided	 a	 whole	 lot	 of	 potential	 rework—or
worse,	returns	from	upset	customers.	Luckily,	the	only
cost	of	the	mistake	was	reworking	the	few	prototypes	I
was	validating	before	production.

Here’s	 another	 example	 of	 how	 missing	 a	 few
characters	 in	 a	 part	 number	 can	 cost	 thousands	 of
dollars.	A	fully	specified	part	number	for	the	LM3670
switching	 regulator	 might	 be	 LM3670MFX-
3.3/NOPB.	 If	 /NOPB	 is	 omitted,	 the	 part	 number	 is
still	 valid	 and	orderable—but	 that	 version	uses	 leaded
solder.	This	could	be	disastrous	for	products	exporting
to	 a	 region	 that	 requires	RoHS	 compliance	 (meaning
lead-free,	 among	 other	 things),	 like	 the	 European
Union.

The	X	 in	 the	 part	 number	 is	 another,	more	 subtle
issue.	Part	numbers	with	an	X	 come	 in	 reels	of	3,000
pieces,	 and	 those	 lacking	an	X	 come	 in	 reels	of	1,000
pieces.	While	many	 factories	will	 question	 an	 /NOPB
omission	 since	 they	 typically	 assemble	 RoHS
documentation	as	they	purchase	parts,	they	rarely	flag
the	reel	quantity	as	an	issue.

But	 you	 should	 care	 about	 the	 reel	 quantity.	 If	 you
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plan	 to	build	only	 1,000	products,	 including	 the	X	 in
the	 part	 number	 means	 you’ll	 have	 2,000	 extra
LM3670s.	And	yes,	you’re	on	the	hook	to	pay	for	the
excess,	 since	 your	 BOM	 specified	 that	 part	 number.
There	are	many	valid	reasons	for	ordering	excess	parts,
so	factories	will	rarely	question	a	decision	like	that.

On	 the	 other	 hand,	 parts	 ordered	 in	 lots	 of	 1,000
units	 are	 a	 bit	 more	 expensive	 per	 unit	 than	 those
ordered	 in	 lots	of	3,000.	So,	 if	you	 leave	out	 the	X	as
your	volume	 increases,	 you’ll	 end	up	paying	more	 for
the	part	than	you	have	to.	Either	way,	the	factory	will
quote	 your	 BOM	 exactly	 as	 specified,	 and	 if	 your
quantity	 specifiers	 are	 incorrect,	 you	 could	be	 leaving
money	on	the	table—or	worse,	losing	money.

The	bottom	line?	Every	digit	and	character	counts,
and	lack	of	attention	to	detail	can	cost	real	money!

The	Bicycle	Safety	Light	BOM	Revisited
With	 those	 four	 points	 in	 mind,	 consider	 how	 a
proper,	fully	specified	BOM	for	the	bicycle	safety	light
example	might	look.
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The	improved	bicycle	safety	light	BOM

There’s	 a	 big	 difference	 between	 a	 BOM	 that	 any
engineer	 could	 use	 to	 produce	 a	 prototype,	 like	 the
first	 one	 I	 showed	 for	 the	 bicycle	 safety	 light,	 and	 a
BOM	 like	 this,	 which	 any	 factory	 could	 use	 to	mass-
produce	a	product.	Notice	the	MOQ	(minimum	order
quantity)	and	Lead	Time	columns	in	particular.	These
columns	 are	 irrelevant	 when	 you’re	 building	 low-
volume	 prototypes,	 as	 you’d	 typically	 buy	 parts	 from
distributors	 that	 have	 few	 MOQ	 restrictions	 and
maintain	 stock	 for	 next-day	 deliveries.	 When	 scaling
into	production,	however,	you	save	a	 lot	of	money	by
cutting	 the	 distributor	 overhead	 and	 buying	 through
wholesale	channels.	In	wholesale	channels,	MOQs	and
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lead	times	matter.
The	 good	 news	 is	 that	 the	 factory	 will	 fill	 in	 the

MOQ	and	 lead	 time	as	part	of	 the	quotation	process.
But	you’ll	find	it	helpful	to	track	these	parameters	from
the	beginning.	If	the	MOQ	of	a	particular	component
is	 very	 high,	 the	 factory	 may	 have	 to	 buy	 massive
numbers	 of	 excess	 parts,	which	 increases	 the	 effective
price	 of	 the	 project.	 If	 the	 lead	 time	of	 a	 part	 is	 very
long,	you	may	want	to	consider	redesigning	for	a	part
with	a	shorter	lead	time.	Using	parts	with	shorter	lead
times	not	only	saves	time	but	also	improves	cash	flow:
no	one	wants	 to	tie	up	cash	on	 long-lead	components
four	months	in	advance	of	sales	revenue.

This	BOM	also	includes	several	nonelectronic	items
—like	 the	 box,	 a	 bar	 code	 label,	 and	 so	 on—which
wouldn’t	 be	 on	 the	 engineering	 prototype’s	 BOM.
These	 miscellaneous	 bits	 are	 easy	 to	 forget,	 but	 a
missing	 user	 manual	 in	 an	 initial	 BOM	 is	 often	 not
discovered	 until	 the	 final	 sample	 is	 opened	 for
approval,	 leading	 to	a	 last-minute	 scramble	 to	get	 the
manual	 into	 the	 final	 product.	 Many	 products	 have
been	delayed	simply	because	a	user	manual	or	box	art
wasn’t	completed	and	approved	in	time,	and	it	sucks	to
have	 a	 hundred	 thousand	 dollars’	 worth	 of	 inventory
idling	in	a	warehouse	for	want	of	a	slip	of	paper.

Beyond	 a	 proper	 BOM,	 providing	 the	 factory	with
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golden	samples	of	your	product	along	with	your	CAD
files	is	another	best	practice.	These	working	prototypes
enable	the	factory	to	make	smarter	decisions	about	any
ambiguities	 in	 your	 submitted	 BOM.	Hand-soldering
one	more	unit	just	for	the	factory	may	seem	annoying,
but	 in	 my	 opinion,	 a	 few	 hours	 of	 soldering	 beats	 a
week	of	trading	emails	with	the	factory.

NOTE

When	you’re	building	a	business	model,	parts	and
packaging	still	aren’t	the	only	costs	to	consider.	Even	this
detailed	BOM	doesn’t	list	factory	margin,	labor	for
assembly,	pack-out,	shipping,	duties,	and	so	on.	I	discuss
these	“soft	costs”	in	“Picking	(and	Maintaining)	a
Partner”	on	page	107.

Planning	for	and	Coping	with	Change
Of	 course,	 even	 if	 your	 design	 is	 perfect	 and	 your
BOM	is	 ideal,	your	design	may	still	have	 to	change	 if
vendors	end-of-life	(EOL),	or	stop	making,	components
you	selected.	And	 let’s	 face	 it:	 there’s	always	a	chance
your	 design	 assumptions	 won’t	 survive	 contact	 with
real	consumers,	too.

Before	 crossing	 the	 threshold	 into	 production,
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formalize	 the	 process	 for	 changing	 a	 design	 with	 the
factory.	 It’s	 best	 practice	 to	 use	 written,	 formal
engineering	change	orders	(ECO)	to	update	the	factory	on
any	 changes	 after	 the	 initial	 quotation.	 At	 minimum,
here’s	what	an	ECO	template	should	include:

•	The	details	of	each	changed	part,	and	a	brief
explanation	of	why	the	change	is	needed

•	A	unique	revision	number	for	conveniently
referencing	the	change	down	the	road

•	A	method	to	record	the	factory’s	receipt	of	the	ECO
paperwork

Be	 thorough	 with	 ECOs,	 rather	 than	 relying	 on
casual	emails,	or	the	buyers	at	your	factory	may	buy	the
wrong	 part.	 Worse	 yet,	 the	 factory	 might	 install	 the
wrong	part,	and	entire	lots	of	your	product	will	need	to
be	scrapped	or	reworked.	Even	after	troubleshooting	a
problem	with	 the	 factory	 engineers,	 I	 still	 write	 up	 a
formal	 ECO	 and	 submit	 it	 to	 the	 production	 staff	 to
formalize	the	findings.	I	hate	paperwork	as	much	as	the
next	 engineer,	 but	 in	 production,	 one	 small	 mistake
can	cost	tens	of	thousands	of	dollars,	and	that	thought
keeps	me	disciplined	on	ECOs.

On	 the	 next	 page	 is	 an	 actual	 ECO	 I	 issued	 that
ended	up	saving	me	time	and	money.
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Note	the	date	on	this	ECO:	February	27,	2014.	This
ECO	was	 issued	 right	 before	 the	Chinese	New	Year,
when	the	factories	go	on	holiday	for	a	couple	of	weeks.
There	 is	 significant	 turnover	 of	 unskilled	 labor	 inside
factories	 after	 the	 holidays,	 and	 thus	 there’s	 a	 lot	 of
opportunity	for	work	orders	to	get	 lost	and	forgotten.
Worried	 that	 the	ECO	would	 be	missed,	 I	 consulted
with	 the	 managers	 after	 the	 factory	 resumed
production	to	ensure	the	ECO	wasn’t	forgotten.	They
assured	 me	 it	 was	 applied,	 but	 I	 still	 felt	 a	 vague
paranoia,	so	I	asked	for	photos	of	 the	circuit	board	to
confirm.	 Sure	 enough,	 the	 first	 production	 batch	was
missing	the	change	in	my	ECO.

Thanks	 to	 the	 detailed	 ECO,	 the	 factory	 readily
admitted	its	error,	repaired	the	entire	production	run,
and	paid	for	the	reworking.	But	 if	I’d	sent	the	change
order	 in	 a	 quick	 email	 without	 referencing	 specific
batches	 or	 work	 orders,	 there	 could	 have	 been
sufficient	 ambiguity	 for	 the	 factory	 to	 get	 out	 of	 the
rework	charges.	The	factory	could	have	argued	that	 it
thought	 I	 meant	 to	 apply	 the	 change	 to	 a	 future
production	 run,	 or	 it	 could	 simply	 deny	 receiving	 a
confirmed	 order,	 as	 emails	 are	 a	 fairly	 casual	 form	of
communication.	 Either	 way,	 a	 few	 minutes	 of
documentation	saved	days	of	negotiation	and	hundreds
of	dollars	in	rework	fees.
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Example	of	an	actual	ECO	used	in	production.	Thanks	to	the
formal	documentation	process,	a	production	mix-up	related	to

this	ECO	was	resolved	in	my	favor.
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PROCESS	OPTIMIZATION:	DESIGN	FOR
MANUFACTURING
While	you’re	designing	your	final	product	and	putting
together	 a	 BOM,	 considering	 yield,	 the	 number	 of
good	units	that	come	out	of	the	manufacturing	process,
is	 also	 important.	 Yield	 is	 a	 boring	 subject	 for	 many
engineers,	but	for	entrepreneurs,	success	or	failure	will
be	 determined	 in	 part	 by	 whether	 they	 achieve	 a
reasonable	yield.	Fortunately,	you	can	help	your	yield
by	designing	with	it	in	mind.

Why	DFM?
Unlike	 software,	 every	 copy	 of	 a	 physical	 good	 has
slight	 imperfections.	 Sometimes	 the	 imperfections
cancel	 out;	 sometimes,	 they	 gang	 up	 and	 degrade
performance.	As	 production	 volume	 ramps,	 a	 fraction
of	 the	product	 always	ends	up	nonsalable.	 In	a	 robust
design,	 the	 failing	 fraction	 may	 be	 so	 small	 that
functional	 tests	 can	 be	 simplified,	 leading	 to	 further
cost	 reductions.	 In	 contrast,	 designs	 sensitive	 to
component	 tolerances	 require	 extensive	 testing	 and
will	suffer	heavy	yield	losses.	Reworking	defective	units
incurs	extra	labor	and	parts	charges,	ultimately	eroding
profits.

Thus,	redesigning	to	improve	robustness	in	the	face
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of	 normal	 manufacturing	 tolerances	 is	 a	 major
challenge	 of	 moving	 from	 the	 engineering	 bench	 to
mass	 production.	 This	 process	 is	 called	 design	 for
manufacturing	(DFM).

Left,	before	DFM,	almost	half	the	units	are	not	meeting	the
acceptance	level	and	are	therefore	failing.	Right,	after	DFM,

the	acceptance	level	is	the	same,	but	the	average	performance
is	improved,	leading	to	most	units	passing.

To	 understand	 the	 importance	 of	 DFM,	 consider
these	 graphs.	 Each	 depicts	 a	 bell	 curve,	 which	 is	 an
assumed	 statistical	 distribution	 of	 a	 particular
parameter.	 The	 x-axis	 is	 a	 parameter	 of	 interest,	 and
the	y-axis	is	the	number	of	items	produced	that	hit	the
given	 parameter.	 For	 example,	 in	 a	 plot	 of	 the
brightness	of	 thousands	of	LEDs,	 the	x-axis	would	be
brightness,	 and	 the	 y-axis	 would	 be	 the	 number	 of
LEDs	 that	 reach	 a	 given	 brightness.	 The	 position	 of
the	 bell	 curve	 relative	 to	 the	 pass/fail	 criteria
determines	the	net	production	yield.
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On	 the	 right-hand	 curve,	 most	 LEDs	 are	 bright
enough,	 and	 most	 of	 the	 production	 inventory	 is
shippable.	On	the	left-hand	curve,	maybe	40	percent	of
the	LEDs	pass.	Given	 that	most	 hardware	 companies
operate	 with	 about	 a	 30	 to	 50	 percent	 gross	 margin,
scrapping	 40	 percent	 of	 the	material	would	mean	 the
end	of	the	business.	In	such	a	situation,	the	only	viable
options	are	to	spend	the	time	and	effort	to	rework	the
LEDs	 until	 they	 pass	 or	 to	 lower	 the	 performance
requirement.	The	product	wouldn’t	be	as	high	quality
as	 hoped,	 but	 at	 least	 the	 business	 could	 keep
operating.

Tolerances	to	Consider
The	goal	of	DFM	is	to	ensure	that	your	product	always
passes	 muster	 and	 that	 you’re	 never	 faced	 with	 the
unsavory	choice	of	reducing	margins,	lowering	quality
standards,	or	going	out	of	business.	But	there	are	some
component	 aspects	 to	 think	 about	 when	 applying
DFM.

ELECTRONIC	TOLERANCES
Passive	 component	 tolerances	 are	 the	 most	 obvious
tolerances	to	design	for.	If	a	resistor’s	true	value	can	be
+/-5	 percent	 of	 its	 labeled	 value,	 be	 sure	 the	 rest	 of
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your	circuit	can	cope	with	the	edge	cases.
Active	 component	 datasheet	 parameters—like

current	 gain	 (hFE)	 for	 bipolar	 transistors,	 threshold
voltage	 (Vt)	 for	 field	 effect	 transistors	 (FETs),	 and
forward	 bias	 voltage	 (Vf)	 for	 LEDs—can	 also	 vary
widely.	 Always	 read	 the	 datasheet,	 and	 watch	 for
parameters	 with	 a	 great	 disparity	 between	 their
minimum	 and	 maximum	 values,	 a	 difference	 often
referred	to	as	a	min-max	spread.	For	example,	the	min-
max	on	hFE	for	Fairchild’s	2N3904	ranges	from	40	to
300,	 and	 the	 Vf	 on	 a	 superbright	 LED	 from
Kingbright	is	between	2	and	2.5V.

Nominal	 operating	 voltage	 aside,	 a	 component’s
maximum	 voltage	 rating	 is	 particularly	 important	 for
capacitors	 and	 input	 networks.	 I	 try	 to	 use	 capacitors
rated	for	twice	the	nominal	voltage;	for	example,	where
possible,	 I	 use	 10V	 capacitors	 for	 5V	 rails	 and	 6.3V
capacitors	for	3.3V	rails.	To	understand	why,	consider
ceramic	 capacitor	 dielectrics,	 which	 have	 reduced
capacitance	 with	 increasing	 voltage.	 In	 designs
operating	near	a	ceramic	capacitor’s	maximum	voltage,
that	 component’s	 operating	 capacitance	will	 be	 at	 the
negative	end	of	its	tolerance	range.	Also,	input	networks
(any	part	of	the	circuit	that	a	user	can	plug	something
into)	 are	 subject	 to	 punishing	 electrostatic	 discharge
and	other	 transient	abuses,	 so	pay	 special	 attention	 to
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the	ratings	of	capacitors	 there	 to	achieve	your	desired
reliability.

Finally,	 after	 you	 have	 a	 good	 sense	 of	 the
components	 you’ll	 use,	 pay	 close	 attention	 to	 trace
widths	and	 layer	 stack	variations	when	designing	your
PCB.	These	will	 impact	systems	that	require	matched
impedance	or	deal	with	high	currents.

MECHANICAL	TOLERANCES
Electronic	 tolerances	 aren’t	 the	 end	 of	 your	 worries,
though;	 mechanical	 tolerances	 are	 important,	 too.
Neither	PCBs	nor	cases	will	come	out	exactly	the	right
size,	 so	 design	 your	 case	 with	 some	 wiggle	 room.	 If
your	 case	 design	 has	 zero	 tolerance	 for	 the	 PCB
dimensions,	 half	 the	 time	 the	 factory	will	 force	PCBs
into	cases,	when	either	the	PCB	is	cut	a	little	large	or
the	 case	 comes	 out	 a	 little	 small.	 This	 can	 cause
unintentional	 mechanical	 damage	 to	 the	 circuitry	 or
the	case.

And	 don’t	 forget	 about	 cosmetic	 blemishes!	 Any
manufactured	 product	 is	 subject	 to	 small	 blemishes,
such	 as	 dust	 trapped	 in	 plastics,	 small	 scratches,	 sink
marks,	 and	 abrasions.	 It’s	 important	 to	 work	 out	 the
acceptance	 criteria	 for	 such	 defects	 with	 the	 factory
ahead	of	time.	For	example,	you	might	tell	the	factory
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that	a	unit	can	be	considered	“good”	if	it	has	no	more
than	two	dot	blemishes	larger	than	0.2mm,	no	scratch
longer	than	0.3mm,	and	so	on.	Most	factories	will	have
a	 particular	 system	 they’ve	 adopted	 to	 describe	 and
enforce	these	standards.	If	you	discuss	these	parameters
in	 advance,	 the	 factory	 can	 craft	 the	 manufacturing
process	 to	avoid	such	defects,	as	opposed	to	 the	more
expensive	 alternative	 of	 building	 extra	 units	 and
throwing	away	 those	 that	don’t	meet	 criteria	 imposed
late	in	the	game.

Of	course,	avoiding	defects	 isn’t	 free.	To	keep	your
product	cheaper,	avoid	high-gloss	finishes	and	consider
using	 matte	 or	 textured	 finishes	 that	 naturally	 hide
blemishes.

Following	DFM	Helps	Your	Bottom	Line
To	 imagine	DFM	 in	 a	 real-world	 scenario,	 return	 to
the	 bicycle	 safety	 flasher	 case	 study	 from	 “How	 to
Make	 a	 Bill	 of	 Materials”	 on	 page	 74.	 Say	 the
prototype	 design	 calls	 for	 an	 array	 of	 three	 LEDs	 in
parallel,	 each	with	 its	 own	 resistor	 to	 set	 the	 current.
The	 forward	 bias	 voltage,	 or	Vf,	 of	 an	LED	 at	 a	 given
brightness	 can	 vary	 by	 perhaps	 20	 percent	 between
devices;	in	this	case,	that	swing	is	from	2.0	to	2.5V.

A	 design	 that	 limits	 the	 current	 to	 the	 LEDs	 with
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resistors,	 called	 resistive	 current	 limiting,	 will	 amplify
this	variation.	This	happens	because	an	efficient	circuit
would	 drop	 a	 minority	 of	 the	 voltage	 across	 the
current-limiting	 resistor,	 leaving	 the	 parameter	 that
sets	 the	 current	 (the	 voltage	 drop	 across	 the	 resistor)
more	 sensitive	 to	 the	 variation	 in	 Vf.	 Since	 the
brightness	 of	 an	 LED	 is	 not	 proportional	 to	 the
voltage	 but	 rather	 the	 current	 flowing	 through	 it,
setting	 the	 LED	 brightness	 with	 resistive	 current
limiting	 can	 cause	 jarring	 inconsistencies	 in	 LED
brightness.

Comparing	high	Vf	and	low	Vf	corners

In	 this	 example,	 a	 20	 percent	 LED	 Vf	 variation
(from	 2.0V	 to	 2.5V,	 per	 the	 LED	 manufacturer’s
specification)	 leads	 to	 a	 40	 percent	 change	 in	 the
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voltage	 across	 a	 current-set	 resistor	 for	 a	 fixed	 3.3V
supply.	 This	 will	 cause	 a	 40	 percent	 change	 in	 the
current	 flowing	 through	 the	 LED.	 As	 brightness	 is
directly	proportional	 to	 current,	 the	 change	manifests
as	up	to	a	40	percent	variation	in	perceived	brightness
between	individual	LEDs.	A	design	like	that	may	work
well	 most	 of	 the	 time;	 the	 problem	 would	 only	 be
pronounced	when	a	high	Vf	unit	 is	observed	next	to	a
low	Vf	unit.

Setting	current	for	individual	LEDs	using	resistors	can	lead	to
dramatic	variations	in	brightness.

The	 one	 or	 two	 units	 prepared	 on	 the	 lab	 bench
during	 development	 may	 have	 looked	 great,	 but	 in
production	 a	 meaningful	 fraction	 may	 have	 such
serious	brightness	uniformity	issues	that	units	must	be
rejected.	 As	 most	 large	 hardware	 businesses	 have	 to
survive	 on	 lean	 margins,	 losing	 even	 10	 percent	 of
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finished	goods	to	defects	is	a	terrible	outcome.
One	stop-gap	option	is	to	rework	the	failed	units.	A

factory	 can	 identify	 an	 LED	 that	 is	 too	 dim	 or	 too
bright	 in	 an	 array	 and	 replace	 it	with	 one	 that	 better
matches	 its	 cohorts.	 But	 that	 rework	 would	 drive	 up
costs	 and	 result	 in	 an	 unexpected	 and	 unpleasant
invoice	at	 the	11th	hour	of	a	manufacturing	program.
Naive	designers	may	be	 inclined	 to	blame	 the	 factory
for	 poor	 quality	 and	 argue	 over	who	 should	 bear	 the
cost,	but	 it’s	better	 to	proactively	avoid	these	kinds	of
problems	by	 subjecting	every	design	 to	a	DFM	check
and	using	a	small	pilot	run	to	sanity-check	yield	before
punching	out	a	whole	bunch	of	units.

The	cost	of	yield	fallout	quantifies	how	much	money
to	 spend	on	 extra	 circuitry	 to	 compensate	 for	 normal
component	 variability.	 For	 example,	 a	 product	with	 a
$10	cost	of	goods	sold	(COGS)	that	yields	80	percent	good
units	has	an	effective	cost	per	salable	unit	of	$12.50,	as
calculated	with	this	formula:

Effective	 cost	 =	COGS	×	 total	 units	 built	 /	 yielded
units

Increasing	 the	COGS	by	$2.50	 to	 improve	yield	 to
100	percent	would	allow	you	to	break	even.	But	using
the	 same	 formula,	 spending	$1	 extra	dollar	 in	COGS
to	improve	yield	to	99	percent	would	actually	improve
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the	bottom	line	by	$1.38.

A	circuit	to	set	the	current	on	three	LEDs,	created	by	applying
DFM

In	 the	 case	 of	 the	 bicycle	 safety	 light,	 that	 dollar
could	 be	 spent	 on	 a	 current-feedback	 boost	 regulator
IC	like	the	SP6699EK-L/TR,	allowing	the	LEDs	to	be
stacked	in	series	 instead	of	parallel.	The	design	would
be	 far	 more	 complicated	 and	 expensive	 than	 using
individual	 resistors,	but	 it	would	guarantee	each	LED
has	a	consistent,	identical	current	flowing	through	it	by
driving	all	 three	LEDs	in	a	series	circuit	with	a	fixed-
current	 feedback	 loop.	That	would	 virtually	 eliminate
brightness	 variation.	 While	 the	 cost	 of	 the	 boost
regulator	 is	 much	 greater	 than	 the	 penny	 spent	 on
three	 current-limiting	 LEDs,	 the	 improvement	 in
manufacturing	 yield	 more	 than	 pays	 for	 the	 extra
component	costs.	In	fact,	this	trick	is	standard	practice
for	 applications	 that	 require	 good	 uniformity	 of
brightness	 out	 of	 LEDs,	 such	 as	 in	 the	 backlights	 of
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LCD	 panels.	 A	 typical	 mobile	 phone	 backlight	 uses
about	 a	 dozen	LEDs,	 but,	 thanks	 to	 circuits	 like	 this,
you	never	see	light	or	dark	splotches	despite	the	large
variations	in	Vf	between	the	constituent	LEDs.

The	Product	Behind	Your	Product
Alongside	 dealing	 with	 tolerances,	 another	 often-
neglected	 design	 responsibility	 is	 the	 test	 program.	A
factory	can	only	detect	the	problems	it	is	instructed	to
look	for.	Therefore,	every	feature	of	a	product	must	be
tested,	 no	 matter	 how	 trivial.	 For	 example,	 on	 a
chumby	 device,	 every	 user-facing	 feature	 had	 an
explicit	 factory	 test,	 including	 the	LCD,	 touchscreen,
audio,	 microphone,	 all	 the	 expansion	 ports	 (USB,
audio),	battery,	buttons,	knobs,	and	so	on.	I	made	sure
that	 even	 the	 simplest	buttons	were	 tested.	While	 it’s
tempting	 to	 skip	 testing	 such	 simple	 components,	 I
guarantee	that	anything	not	tested	will	lead	to	returns.

I	 like	 to	 call	 the	 factory	 tester	 “the	 product	 behind
your	 product.”	 That’s	 because	 in	 some	 cases,	 the
factory	tester	is	more	complicated	and	more	difficult	to
engineer	than	the	product	you’re	trying	to	sell.	This	is
particularly	true	of	simple	products.

A	REAL-WORLD	TEST	PROGRAM
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As	 a	 case	 study,	 consider	 this	 microcontroller	 sticker
from	 Chibitronics,	 a	 project	 I	 discuss	 at	 length	 in
Chapter	8.

A	microcontroller	circuit—on	a	sticker

This	circuit	is	very	simple:	it	consists	of	just	an	8-bit
AVR	 microcontroller	 and	 a	 handful	 of	 resistors	 and
capacitors.	(It’s	also	the	same	product	referred	to	in	the
ECO	 example	 on	 page	 84.)	 My	 collaborator	 and	 I
sketched	in	Adobe	Illustrator	for	about	two	days	before
we	 derived	 the	 final	 shape	 for	 this	 product.	Then	we
spent	about	a	day	in	Altium	designing	the	circuit,	and
about	a	week	coding	 in	the	Arduino	IDE	to	create	 its
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firmware.	 In	 all,	 the	 development	 process	 took	 about
two	 weeks.	 For	 production,	 the	 microcontroller	 is
paired	 with	 a	 set	 of	 sensors	 that	 can	 process	 sound,
light,	and	touch,	and	as	a	result,	the	test	program	runs
on	all	four	at	the	same	time.
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The	testing	machine	for	the	Chibitronics	microcontroller
sticker

The	 test	 rig	 pictured	 consists	 of	 a	 32-bit	 ARM
computer	running	Linux	with	a	graphical	UI	rendered
on	an	HDMI	monitor.	Behind	this	is	an	FPGA,	some
adapter	 electronics	 to	 create	 analog	 waveforms	 for
testing,	 and	 a	 mechanical	 pogo-pin	 assembly	 for
touching	 down	 on	 the	 sticker.	 Breaking	 down	 the
design	process	for	this	rig	into	its	component	parts,	we
spent:

•	Several	days	designing	in	Altium

•	A	week	programming	in	the	Xilinx	ISE	for	the
FPGA

•	A	couple	of	weeks	hacking	on	Linux	drivers

•	A	couple	of	solid	months	hacking	in	C++,	to	create
the	Qt	integration	framework

•	A	couple	of	days	in	SolidWorks,	to	create	the
mechanical	apparatus	to	hold	the	whole	thing
together

Altogether,	 creating	 the	 tester	 for	 the
microcontroller	 sticker	 took	 over	 two	 months,
compared	to	the	two	weeks	to	create	the	product	itself.

Why	 go	 through	 all	 this	 effort?	 Because	 time	 is
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money,	 and	 defects	 and	 returns	 are	 expensive	 to
process.	The	tester	can	process	one	board	in	under	30
seconds;	 and	 in	 those	 30	 seconds,	 the	 tester	 has	 to
program	 two	 microcontrollers;	 test	 sensors	 for	 light,
sound,	 and	 touch;	 and	 confirm	 operation	 at	 both	 5V
and	 3V.	 A	manual	 test	 for	 all	 these	 operations	 could
take	several	minutes	of	skilled	labor	and	wouldn’t	be	as
reliable.	 Thanks	 to	 this	 tester,	 we	 processed	 zero
returns	 due	 to	 defective	 material.	 Also,	 the	 graphical
UI	on	 the	 tester	makes	 it	 very	 easy	 for	 the	 factory	 to
determine	exactly	which	point	 in	 the	circuit	 is	 failing,
facilitating	fast	rework	of	any	imperfect	material.

GUIDELINES	FOR	CREATING	A	TEST
PROGRAM
As	a	rule	of	thumb,	for	every	product	you	make,	you’re
actually	making	two	related	products:	one	 for	 the	end
user,	and	a	test	for	the	factory.	In	many	ways,	the	test
for	the	factory	has	to	be	as	user-friendly	and	foolproof
as	 the	 product	 itself;	 after	 all,	 tests	 are	 not	 run	 by
electrical	engineers.	But	the	related	testing	product	will
be	much	quicker	and	faster	to	build	if	adequate	testing
features	are	designed	into	the	consumer	product.

And	 no,	 don’t	 outsource	 the	 test	 program	 to	 the
factory,	 even	 if	 the	 factory	 offers	 that	 service.	 The
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factory	 often	won’t	 understand	 your	 design	 intent,	 so
their	test	programs	will	either	be	inefficient	or	test	for
the	wrong	behavior.	Factories	also	have	an	incentive	to
pass	 as	 much	 material	 as	 possible,	 as	 quickly	 as
possible,	 so	 their	 test	 programs	 tend	 to	 be	 primitive
and	inadequate.

Here	are	some	guidelines	 to	 follow	when	designing
your	own	program:

Strive	for	100	percent	feature	coverage.

Don’t	 overlook	 simple	 or	 secondary	 features	 like
status	 LEDs	 or	 an	 internal	 voltage	 sensor.	When
creating	 the	 test	 list,	 I	 take	 an	 “outside/inside”
approach.	 First,	 look	 at	 the	 product	 from	 the
outside:	list	every	way	a	consumer	can	interact	with
it.	 Does	 your	 test	 program	 address	 every
interaction	 surface,	 even	 if	 only	 superficially?	 Is
every	LED	 lit,	 every	 button	 pressed,	 every	 sensor
stimulated,	and	every	memory	device	touched?	Has
every	bullet	point	in	your	marketing	material	been
confirmed?	Promising	 “world-class”	RF	 sensitivity
is	different	from	simply	advertising	the	presence	of
a	 radio.	 Then,	 think	 about	 the	 inside:	 from	 the
schematic,	 look	 at	 every	 port	 and	 consider	 key
internal	 nodes	 to	 monitor.	 If	 the	 product	 has	 a
microcontroller,	review	which	drivers	are	loaded	to
cross-check	 the	 test	 list,	 and	 make	 sure	 no
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components	are	forgotten.

Minimize	incremental	setup	effort.

Optimize	the	amount	of	time	required	to	set	up	the
test	 for	 each	unit.	This	 is	 often	done	 through	 jigs
that	 employ	 pogo	 pins	 or	 prealigned	 connector
arrays.	A	test	that	requires	an	operator	to	manually
probe	 a	 dozen	 test	 points	 with	 a	 multimeter	 or
insert	 a	 dozen	 connectors	 is	 time-consuming	 and
error-prone.	 Most	 factories	 in	 China	 can	 help
design	 the	 jig	 for	 a	nominal	 cost,	 but	 jig	design	 is
easier	and	more	effective	if	the	design	itself	already
includes	adequate	test	points.

Automate	test	procedure	into	a	linear	flow.

An	 ideal	 test	 runs	 with	 a	 single	 button	 press,	 and
produces	a	pass	or	fail	result.	In	practice,	there	are
always	 stop	 points	 that	 require	 operator
intervention,	but	try	not	to	require	too	much.	For
example,	 don’t	 require	 an	 operator	 to	 key	 in	 or
select	 an	 SSID	 from	 a	 list	 during	 each	 Wi-Fi
connectivity	test.	Instead,	fix	the	test	target’s	SSID
and	 hardcode	 that	 value	 into	 a	 test	 script	 so	 the
connection	cycle	is	automatic.

Use	 icons	 and	 colors,	 not	 text,	 to	 communicate
with	operators.
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Not	every	operator	is	guaranteed	to	be	literate	in	a
given	language.

Employ	audit	logs.

Record	 test	 results	 correlated	 to	 device	 serial
numbers	 by	 incorporating	 a	 barcode	 scanner	 into
the	 test	 rig.	 Alternatively,	 have	 the	 device	 print	 a
coupon	 with	 a	 unique,	 timestamped	 code	 or	 a
locally	stored	audit	log	to	prove	which	units	passed
a	 test.	 Logs	 will	 help	 you	 figure	 out	 what	 went
wrong	when	 a	 consumer	 returns	 a	 failed	 product,
and	 they	 let	 you	 quickly	 check	 that	 all	 products
were	tested.	After	an	eight-hour	shift	of	testing,	an
operator	 may	 make	 mistakes,	 such	 as	 accidentally
putting	a	defective	unit	into	the	“good”	bin.	Being
able	 to	 check	 that	 every	 shipped	 product	 was
subjected	 to	 and	 passed	 the	 full	 test	 can	 help	 you
identify	and	isolate	such	problems.

Provide	an	easy	update	mechanism.

Like	any	program,	 test	programs	have	bugs.	Tests
also	need	to	evolve	as	your	product	is	patched	and
upgraded.	Have	a	mechanism	to	update	and	fix	test
programs	 without	 visiting	 the	 factory	 in	 person.
Many	 of	my	 test	 fixtures	 can	 “phone	 home”	 via	 a
VPN,	and	I	can	SSH	into	the	jig	itself	to	fix	bugs.
Even	my	 simplest	 jig	 employs	 a	 Linux	 laptop	 (or
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equivalent)	at	its	core.	This	is	in	part	because	Linux
is	 easier	 to	 update	 and	 maintain	 than	 a	 bespoke
microcontroller	 that	 requires	 a	 special	 adapter	 for
firmware	updates.

These	 guidelines	 are	 easy	 to	 implement	 if	 your
product	 is	 designed	with	 testability	 in	mind.	Most	 of
the	 products	 I	 design	 run	 Linux,	 and	 I	 leverage	 the
processor	inside	the	product	itself	to	run	most	tests	and
help	manage	the	test	user	 interface.	For	products	 that
lack	 user	 interaction	 surfaces,	 an	Android	 phone	 or	 a
laptop	 connected	 via	Wi-Fi	 or	 serial	 can	 be	 used	 to
render	the	test	user	interface.

Testing	vs.	Validation
Production	 tests	 are	 meant	 to	 check	 for	 assembly
errors,	 not	 parametric	 variations	or	design	 issues.	 If	 a
test	 is	 screening	 out	 devices	 because	 of	 normal
parametric	 component	 variations,	 either	 buy	 better
components	or	redo	your	design.

For	consumer-grade	products,	you	don’t	need	to	run
a	 five-minute	comprehensive	RAM	test	on	every	unit.
In	 theory,	 your	 product	 should	 be	 designed	 well
enough	 that	 if	 it’s	 all	 soldered	 together	 correctly,	 the
RAM	will	 do	 its	 job.	A	quick	 test	 to	 check	 that	 there
are	 no	 stuck	 or	 open	 address	 pins	 is	 often	 enough.
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Name-brand	 chip	 vendors	 typically	 have	 very	 low
defectivity,	so	you’re	not	validating	the	silicon;	rather,
you’re	 validating	 the	 solder	 joints	 and	connectors	 and
checking	 for	missing	 or	 swapped	 components.	 (But	 if
you	 buy	 clone	 chips	 or	 off-brand,	 remarked,	 or
partially	 tested	 devices	 to	 cut	 costs,	 I	 recommend
making	 a	 mini	 validation	 program	 for	 those
components.)

VALIDATING	A	SWITCH
To	illustrate	the	difference	between	production	testing
and	validation,	let’s	look	at	how	both	might	work	for	a
switch.

A	 production	 test	 for	 a	 switch	 may	 simply	 ask	 the
operator	 to	hit	 the	 switch	 a	 few	 times	 and	 verify	 that
the	 feel	 is	 right,	 and	 that	 electrical	 contact	 is	 made
through	a	simple	digital	indicator.	A	validation	test,	on
the	other	hand,	may	involve	selecting	a	few	devices	at
random,	measuring	the	switch	contact	resistance	with	a
multimeter	 that	 is	 accurate	 to	 five	 significant	 digits
(also	 called	 a	 five-digit	 multimeter),	 subjecting	 the
devices	 to	 elevated	 humidity	 and	 temperature	 for	 a
couple	 of	 days,	 and	 then	 putting	 the	 devices	 into	 an
automated	 jig	 that	 cycles	 the	 switches	 10,000	 times.
Finally,	 you	 might	 remeasure	 the	 switch	 contact
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resistance	 with	 a	 five-digit	 multimeter	 and	 note	 any
degradation	in	close-state	contact	resistance.

Clearly,	 this	 level	 of	 validation	 can’t	 be	 performed
on	 every	 device	 manufactured.	 Rather,	 the	 validation
program	 evaluates	 the	 switch’s	 performance	 over	 the
expected	lifetime	of	the	product.	The	production	test,
on	 the	 other	 hand,	 just	 makes	 sure	 the	 switch	 is	 put
together	right.

NOTE

It’s	good	practice	to	rerun	validation	tests	on	a	couple	of
randomly	sampled	units	out	of	every	several	thousand
units	produced.	There	are	formulas	and	tables	you	can
use	to	compute	how	much	sampling	you	need	to	achieve	a
certain	level	of	quality;	just	search	online	for
“manufacturing	validation	test	table.”

But	 how	 much	 testing	 is	 enough?	 You	 can	 derive
one	 threshold	 for	 testing	 through	 a	 cost	 argument.
Every	 additional	 test	 run	 incurs	 equipment	 costs,
engineering	costs,	and	the	variable	cost	of	the	test	time.
As	a	result,	testing	is	subject	to	diminishing	returns:	at
some	 point,	 it’s	 cheaper	 just	 to	 take	 a	 product	 return
than	 to	 test	more.	Naturally,	 the	 testing	 bar	 is	much
higher	 for	 medical	 or	 industrial-grade	 equipment,	 as
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the	 liability	 associated	 with	 faulty	 equipment	 is	 also
much	higher.	Likewise,	a	novelty	product	meant	to	be
given	away	may	need	much	less	testing.

DESIGNING	YOUR	TEST	JIG
A	final	thought:	always	apply	solid	engineering	to	your
test	jig	design.	When	I	worked	on	the	chumby	8,	there
was	 a	 problem	where	 a	 50-pin	 flat	 flex	 cable	 adapter
was	 exhibiting	 random	 cold-solder-joint	 failures.	 I
asked	the	factory	to	build	a	test	to	validate	the	adapters.
Their	 solution	 was	 to	 hang	 LEDs	 from	 every	 pin	 of
the	 adapter,	 apply	 a	 test	 voltage	 to	 one	 side	 of	 the
cable,	and	look	for	LEDs	that	didn’t	light	on	the	other
side.	 The	 cold	 solder	 joints	 weren’t	 simply	 open	 or
closed;	some	 just	had	high	resistance.	Enough	current
would	flow	to	light	an	LED,	yet	there	was	also	enough
resistance	to	cause	a	fault	in	the	design.

The	 factory	 proposed	 buying	 50	 multimeters	 and
attaching	 them	 to	 every	 pin	 to	 check	 the	 resistance
manually,	which	would	have	been	expensive	and	error-
prone.	It’s	not	reasonable	to	expect	an	operator	to	look
at	50	displays	hundreds	of	 times	 a	day	 and	be	 able	 to
reliably	find	the	out-of-spec	numbers.	Instead,	I	chose
to	daisy-chain	 the	 connections	 across	 the	 adapter	 and
use	 a	 single	multimeter	 to	 check	 the	net	 resistance	of
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the	daisy	chain.	By	putting	the	connections	in	series,	I
could	 check	 all	 50	 connections	with	 a	 single	 numeric
measurement,	as	opposed	to	the	subjective	observation
of	an	LED’s	brightness.

As	this	case	illustrates,	there	are	good	and	bad	ways
to	implement	even	a	test	as	simple	as	checking	for	cold
solder	 joints	 on	 a	 cable	 adapter.	 Ever	 more
complicated	 components	 require	 ever	 more	 subtle
tests,	and	there’s	 real	value	 in	using	engineering	skills
to	craft	efficient	yet	foolproof	tests.

FINDING	BALANCE	IN	INDUSTRIAL	DESIGN
Even	 if	 your	 product	 passes	 all	 validation	 tests	 with
flying	colors,	it	still	may	not	be	successful	if	consumers
don’t	want	it.	Remember:	sex	sells.	To	within	a	factor
of	two	or	so,	the	performance	of	a	CPU	or	amount	of
RAM	in	a	box	 is	 less	 important	 to	a	 typical	consumer
than	how	 the	device	 looks.	Apple	devices	 command	 a
hefty	premium	in	part	because	of	their	slick	industrial
design,	and	many	product	designers	aim	to	emulate	the
success	of	Sir	Jonathan	Ive,	Apple’s	chief	design	officer,
in	their	own	products.

There	 are	 many	 schools	 of	 thought	 in	 industrial
design,	the	process	of	designing	how	a	product	will	look
before	 actually	 making	 it.	 One	 school	 invokes	 the
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monastic	 designer,	 who	 creates	 a	 beautiful,	 pure
concept,	 and	 the	 production	 engineers,	who	 spoil	 the
design’s	 purity	 when	 they	 tweak	 it	 for	 functionality.
Another	 school	 invokes	 the	 pragmatic	 designer,	 who
works	 closely	 with	 production	 engineers	 to	 hammer
out	gritty	compromises	to	produce	an	inexpensive	and
high-yielding	design.

In	 my	 experience,	 neither	 extreme	 is	 compelling.
The	 monastic	 approach	 often	 results	 in	 an
unmanufacturable	product	that	is	either	late	to	market
or	 expensive	 to	 produce.	 The	 pragmatist	 approach
often	results	in	a	product	that	looks	and	feels	so	cheap
that	 consumers	 have	 trouble	 assigning	 it	 a	 significant
value.	The	 real	 trick	 is	 understanding	how	 to	 strike	 a
balance	between	the	two,	and	it	begins	by	getting	into
the	 factory	 and	 understanding	 how	 things	 are	 done.
Here’s	a	couple	of	examples	of	what	I’ve	learned	about
how	 different	 factory	 processes	 affect	 that	 balance,
from	Chumby	and	Arduino.

The	chumby	One’s	Trim	and	Finish
Trim	 and	 finish	 are	 difficult,	 making	 them	 points	 of
distinction	 in	a	product’s	appearance.	When	I	worked
at	 Chumby,	 we	 wanted	 the	 final	 product	 to	 have	 a
minimalist,	 honest	 finish.	 (Honest	 finishes	 feature	 the
natural	 properties	 of	 the	material	 systems	 in	play	 and
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eschew	 the	 use	 of	 paints	 and	 decals.)	 Minimalist
designs	 are	 very	 hard	 to	 manufacture	 because	 with
fewer	 features,	 even	 tiny	blemishes	 stand	out.	Honest
finishes	 can	 be	 difficult,	 too,	 as	 all	 the	 burs,	 gates,
sinks,	knits,	scoring,	and	flow	lines	that	are	facts	of	life
in	manufacturing	are	 laid	naked	before	 the	consumer.
As	 a	 result,	 this	 school	 of	 design	 requires	 well-made
manufacturing	 tools	 that	 are	 constantly	 checked	 and
maintained	throughout	production.

If	 you	don’t	have	pockets	deep	 enough	 to	 invest	 in
new	 equipment	 and	 capabilities	 on	 behalf	 of	 your
factory	 (that	 is,	 if	 you’re	not	a	Fortune	 500	 company),
the	 first	 step	 is	 to	 learn	 the	 vocabulary	 available.	 A
design	 vocabulary	 is	 defined	 by	 the	 capabilities	 of	 the
factory	 or	 factories	 producing	 the	 goods,	 like	 what
materials	you	can	obtain,	what	 finish	 is	possible,	what
tolerances	 are	 achievable,	 and	 what	 fastening
technology	 exists.	 These	 are	 all	 heavily	 dependent
upon	the	processes	available	to	your	factory.

Therefore,	 I	 find	 that	 visiting	 a	 factory	 in	 person
early	 in	 the	 design	 process	 results	 in	 a	 better	 design.
After	 a	 factory	 visit,	 you’ll	 discard	 some	 design
vocabulary,	but	you’ll	discover	some	new	vocabulary	as
well.	The	engineers	who	work	in	the	factory	day	in	and
day	out	develop	process	 innovations	 that	can	open	up
novel	design	possibilities	that	you	won’t	discover	unless
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you	visit.
The	 chumby	 One	 is	 a	 concrete	 example	 of	 the

impact	 manufacturing	 processes	 can	 have	 on	 design
outcome.	 In	 the	original	 concept	 art,	 a	blue	highlight
was	added	around	the	front	edge	to	resemble	a	speech
balloon,	 like	 those	used	 in	comic	 strips.	The	 idea	was
that	 the	 chumby	 would	 caption	 your	 world	 with
snippets	from	the	internet.
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A	finished	chumby	One	unit

But	applying	a	blue	trim	across	a	raised	surface	was
very	 hard.	 The	 first	 factory	 used	 paint,	 because	 the
front	edge	wasn’t	flat	enough	to	make	silk	screening	an
option.	 Pad	 printing	 (also	 known	 as	 tampo	 printing,	 a
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process	in	which	ink	is	transferred	from	a	silicone	pad
to	 an	 object)	 can	 handle	 curved	 surfaces,	 but	 the
alignment	 of	 the	 ridge	 on	 the	 chumby	 One	 wasn’t
good	 enough,	 and	 the	 tiniest	 ink	bleed	over	 the	 edge
looked	 terrible	 from	 the	 side.	 Decals	 and	 stickers
likewise	couldn’t	achieve	the	alignment	we	wanted.	In
the	 end,	 a	 small	 channel	 was	 carved	 to	 contain	 the
paint,	 and	 the	 factory	 created	 the	 highlight	 with	 a
stencil	and	spray	paint.

The	yield	was	terrible.	In	some	lots,	over	40	percent
of	 the	 chumby	 One	 cases	 were	 thrown	 away	 due	 to
painting	 errors.	 Fortunately,	 plastic	 is	 cheap,	 so
throwing	away	every	other	case	after	painting	had	a	net
cost	impact	of	about	$0.35.

Two	chumby	One	units	with	bad	paint	jobs
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Midway	 through	 production,	 we	 started	 producing
chumby	 One	 units	 in	 a	 second-source	 facility.	 The
second	 factory	 had	 different	 plastic	 molding
equipment,	 and	 unlike	 the	 first	 factory,	 this	 facility
could	do	double-shot	molds.	A	double-shot	mold	involves
twice	 the	 number	 of	 tools	 of	 a	 single-shot	 injection
mold,	but	it	can	injection-mold	two	different	colors,	or
even	 two	 different	 materials,	 into	 the	 same	mold.	 At
the	new	factory,	we	tried	a	double-shot	process	instead
of	painting	for	the	thin	blue	strip.
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A	perfect	chumby	One	ridge,	from	the	double-injection	mold
process

The	results	were	 stunning.	Every	unit	came	off	 the
line	 with	 a	 crisp	 blue	 line,	 and	 no	 paint	 meant	 a
cleaner,	 more	 honest	 finish.	 But	 the	 cost	 per	 case
jumped	 to	 $0.94	 apiece	 with	 the	 more	 expensive
process,	 despite	 the	 100	 percent	 yield.	 It	 would	 have
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been	 cheaper	 to	 throw	 away	 more	 than	 half	 of	 the
painted	cases,	but	even	the	best	painted	cases	could	not
compare	 to	 the	 quality	 of	 the	 finish	 delivered	 by	 the
double-shot	tool.

The	Arduino	Uno’s	Silkscreen	Art
Another	 great	 example	 of	 how	 tweaking	 a	 factory
process	 can	 improve	 a	 product’s	 appearance	 is	 the
Arduino	 motherboard.	 The	 wonderfully	 detailed
artwork	 on	 the	 back	 side,	 sporting	 an	 outline	 of	 Italy
and	 very	 fine	 lettering,	 isn’t	 silkscreen.	 The	 factory
that	makes	these	boards	actually	puts	on	two	layers	of
soldermask:	one	blue	and	one	white.
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The	underside	of	an	Arduino	Uno	R3

When	Arduino	boards	are	manufactured,	soldermask
is	 applied	 through	 the	 photolithographic	 process	 I
described	in	“Where	Arduinos	Are	Born”	on	page	44.
This	 process	 results	 in	 artwork	 with	 much	 better
resolution,	 consistency,	 and	 alignment	 than	 a
silkscreen.	 And	 since	 an	 Arduino’s	 look	 is	 the	 circuit
board,	 this	 art	 gives	 the	 product	 a	 distinctive,	 high-
quality	 appearance	 that	 is	 difficult	 to	 copy	 using
conventional	processing	methods.

Thus,	the	process	capability	of	a	factory	(whether	it’s
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painting	 versus	 double-shot	 molding,	 or	 double
soldermasking	 versus	 silkscreening)	 can	 have	 a	 real
effect	on	a	product’s	perceived	quality,	without	a	huge
impact	 on	 cost.	 The	 factory,	 however,	 may	 not
appreciate	the	full	potential	of	its	processes,	and	until	a
designer	 interacts	 with	 the	 facility	 directly,	 your
product	can’t	harness	that	potential,	either.

Unfortunately,	many	 designers	 don’t	 visit	 a	 factory
until	 something	 has	 gone	 wrong.	 At	 that	 point,	 the
tools	 are	 cut,	 and	 even	 if	 you	 discover	 a	 cool	 process
that	could	solve	all	your	problems,	it’s	often	too	late.

My	Design	Process
Design	is	an	intensely	personal	activity,	and	as	a	result,
every	 designer	will	 develop	 their	 own	 process.	 If	 you
need	a	 framework	 for	developing	your	own,	however,
this	 is	 the	 general	 process	 I	 might	 use	 to	 develop	 a
product	on	a	tight,	startup	budget:

1.	 Start	with	 a	 sketchbook.	Decide	 on	 the	 soul	 and
identity	of	 the	design,	and	pick	a	material	 system
and	vocabulary	that	suits	your	concept.	But	don’t
fall	in	love	with	it,	because	it	may	have	to	change.

2.	 Break	 down	 the	 design	 by	 material	 system,	 and
identify	 a	 factory	 capable	 of	 producing	 each
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material	system.

3.	 Visit	the	facility,	and	note	what	is	actually	running
down	the	production	lines.	Don’t	assume	anything
based	on	the	one-off	units	from	the	sample	room.
Practice	makes	perfect,	and	from	the	operators	to
the	engineers,	factory	workers	execute	procedures
they	 do	 daily	 much	 better	 than	 they	 would	 an
arcane	capability	they	don’t	use	often.

4.	 Reevaluate	 your	 design	 based	 on	 a	 new
understanding	 of	 what’s	 possible	 at	 the	 factory,
and	 iterate.	 Go	 back	 to	 step	 1	 if	 small	 tweaks
aren’t	 enough.	This	 is	 the	 stage	when	 it’s	 easiest
to	 make	 compromises	 without	 sacrificing	 the
purity	of	your	design.

5.	 Rough	out	the	details	of	your	design.	Pick	sliding
surfaces,	 parting	 lines	 where	 pieces	 of	 the	 case
snap	 together,	 finishes,	 fastening	 systems,	 and	 so
on	based	on	what	the	factory	can	do	best.

6.	 Pass	 a	 revised	 drawing	 to	 the	 factory,	 and	 work
with	 them	 to	 finalize	details	 such	 as	draft	 angles,
fastening	surfaces,	internal	ribbing,	and	so	on.

7.	 Validate	the	design	using	a	3D	print	and	extensive
3D	model	checks.
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8.	 Identify	 features	 prone	 to	 tolerance	 errors,	 and
trim	 the	 initial	 manufacturing	 tool	 so	 that	 the
tolerance	 favors	 modifications	 that	 will	 help	 you
minimize	costly	changes	to	the	tool.	For	example,
consider	 injection	molding,	 where	 a	 steel	 tool	 is
the	negative	of	the	plastic	it’s	molding.	Removing
steel	 from	 a	 tool	 (adding	 plastic)	 is	 easier	 than
adding	steel	(removing	plastic),	so	target	the	initial
test	shot	to	use	more	steel	on	critical	dimensions,
as	 opposed	 to	 too	 little.	 A	 button	 is	 one
mechanism	 that	 benefits	 from	 tuning	 like	 this:
predicting	 exactly	 how	 a	 button	 will	 feel	 from
CAD	 or	 3D	 prints	 is	 hard,	 and	 perfecting	 the
tactile	feel	usually	requires	a	little	trimming	of	the
tool.

Of	 course,	 this	 process	 isn’t	 a	 set	 of	 hard	 rules	 to
follow.	You	may	need	to	add	or	repeat	steps	based	on
your	experience	with	your	factory,	but	if	you	choose	a
good	factory,	this	should	be	a	good	starting	point.

PICKING	(AND	MAINTAINING)	A	PARTNER
Just	 like	 the	wands	 from	Harry	Potter,	 a	 good	 factory
chooses	 you	 as	 much	 as	 you	 choose	 it,	 so	 forget	 the
term	vendor	and	replace	it	with	partner.	If	you’re	doing
it	right,	you	aren’t	simply	instructing	the	factory;	there
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should	 be	 a	 frank	 dialogue	 about	 the	 trade-offs
involved	 and	 how	 the	 manufacturing	 process	 can	 be
improved.	That’s	the	only	way	to	get	the	best	product
possible.

A	healthy	relationship	with	a	factory	can	also	lead	to
better	payment	terms,	which	improves	your	cash	flow.
In	 some	 cases,	 factory	 credit	 can	 directly	 replace
raising	 venture	 capital,	 taking	 loans,	 or	 getting
Kickstarter	 funding.	As	a	 result,	 I	 treat	good	 factories
with	 the	 same	 respect	 as	 investors	 and	 partners	 in	 a
business.	 For	 an	 idea	 of	 what	 that	 means,	 here	 are
some	 tips	 on	 how	 to	 choose	 and	 work	 with	 your
factory.

Tips	for	Forming	a	Relationship	with	a
Factory
First,	 pick	 the	 right-sized	 factory	 for	 your	product.	 If
you	work	with	a	factory	that’s	too	big,	you	risk	getting
lost	 in	bureaucracy	 and	pushed	out	of	 the	production
line	by	bigger	customers	at	critical	times.	Work	with	a
factory	 too	 small,	 and	 it	won’t	 be	 able	 to	provide	 the
services	you	need.	As	a	rule,	I	pick	the	biggest	 facility
where	 I	 can	 get	 direct	 access	 to	 the	 lao	 ban	 (factory
boss)	on	a	regular	basis,	because	if	you	can’t	talk	to	the
boss,	 you’re	nobody.	 It’s	 a	good	 sign	 if	 the	 lao	ban	 is
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there	on	the	 first	meeting	to	give	you	a	 tour	and	asks
astute	questions	about	your	business	over	lunch.

Second,	 follow	 the	 adage	 “Sunlight	 is	 the	 best
disinfectant.”	 If	 a	 factory	 won’t	 quote	 with	 an	 open
BOM,	 where	 the	 cost	 of	 every	 component,	 process,
and	margin	 is	 explicitly	 disclosed,	 I	 won’t	 work	 with
them.	 Cost	 reduction	 discussions	 cannot	 function
without	 transparency,	 because	 there	 are	 too	 many
places	 to	 bury	 costs	 otherwise.	 Likewise,	 if	 cost
discussions	 turn	 into	 a	 game	 of	whack-a-mole,	where
reduced	 costs	 on	 one	 line	 item	 are	 inexplicably
popping	up	in	another,	run	away.

This	 final	 tip	 applies	 primarily	 to	 startups.	 In	 your
early	 stages,	 everyone	 knows	 your	 cash	 supplies	 are
finite.	 Even	 if	 you’ve	 just	 closed	 a	 big	 round	 of
financing,	swaggering	into	a	factory	with	money	bags	is
not	a	sustainable	approach.	Smart	factories	know	your
cash	supplies	are	limited,	and	if	the	greatest	value	you
propose	to	bring	to	the	factory	is	piles	of	money,	your
value	is	limited;	in	the	best	case,	it	won’t	really	pay	out
until	years	down	the	road	when	the	product	is	shipping
in	 high	 volumes.	 As	 a	 result,	 it’s	 helpful	 to	 try	 to
deliver	value	to	the	factory	in	nonmonetary	ways.

As	 silly	 as	 it	 sounds,	 being	 a	 pleasant	 and
constructive	 person	 goes	 a	 long	 way	 in	 currying	 the
favor	 of	 your	 facility.	Manufacturing	 is	 a	 high-stress,
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low-margin	business,	and	everyone	in	the	facility	has	to
deal	with	difficult	problems	all	day.	I	 find	I	get	better
service—even	 better	 than	 customers	 with	 deeper
pockets—if	 I	 treat	 my	 factories	 as	 I	 would	 treat	 a
friendly	acquaintance,	and	not	as	slave	labor	or	a	mere
subcontractor.	Mistakes	happen,	and	being	able	to	turn
a	 bad	 situation	 into	 a	 learning	 experience	will	 benefit
you	 on	 the	 day	 you	 make	 a	 stupid	 (and	 perhaps
expensive)	mistake.

Tips	on	Quotations
Openness	aside,	know	that	if	a	quote	seems	too	good	to
be	 true,	 it	 often	 is.	 When	 negotiating	 prices	 with	 a
factory,	step	back	and	check	if	 the	quote	makes	sense.
Factories	that	lose	money	on	a	deal	will	stop	at	nothing
to	 make	 it	 back,	 and	 many	 manufacturing	 horror
stories	 have	 roots	 in	 unhealthy	 cost	 structures.	 A
factory’s	first	prerogative	is	survival,	even	if	that	means
mixing	 defective	 units	 into	 lots	 to	 boost	 margin,	 or
assigning	 novice	 engineers	 to	 a	 flagging	 project	 to
better	 monetize	 their	 seasoned	 engineers	 on	 more
profitable	customers.

As	 you	 evaluate	 a	 quote,	make	 sure	 it	 includes	 the
following:

•	The	price	of	each	part
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•	The	excess	material	for	the	job	due	to	minimum	order
quantities	(MOQs)

•	Labor	costs

•	The	factory’s	overhead	cost

•	Nonrecurring	engineering	(NRE)	fees

Let’s	look	at	a	few	of	these	items	in	detail.

KEEPING	AN	EYE	ON	EXCESS
Excess	 is	 the	 result	 of	 what	 I	 call	 the	 “hot	 dogs	 and
buns”	 problem.	 Hot	 dogs	 come	 in	 packs	 of	 10,	 but
buns	come	 in	packs	of	8.	Unless	you	buy	40	servings,
you’ll	have	leftover	buns	or	hot	dogs.

Likewise,	 many	 components	 only	 come	 in	 3,000-
piece	reels.	A	10,000-piece	build	requires	4	reels	for	a
total	 of	 12,000	 pieces,	 leaving	 2,000	 pieces	 of	 excess.
Factories	can	buy	parts	in	cut	tape	or	partial	reels,	but
the	cost	per	part	of	cut	tape	is	much	higher,	as	the	risk
of	excess	material	is	shifted	onto	the	distributor.

Excess	 isn’t	 all	 bad,	 though:	 it	 can	 be	 folded	 into
future	 runs	 of	 a	 product.	 As	 long	 as	 your	 product
sustains	 a	 decent	 production	 rate,	 excess	 component
inventory	 should	 turn	 into	cash	on	a	 regular	basis.	At
some	 point,	 however,	 production	 will	 end	 or	 pause,
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and	 the	bill	 for	 the	excess	will	 arrive,	putting	a	crimp
on	 cash	 flow.	 If	 a	 quote	 lacks	 an	 excess	 column,	 the
factory	may	 charge	 you	 for	 the	 full	 reel	 but	 keep	 the
excess	 for	 their	 own	 purposes;	 this	 is	 where	many	 of
the	gray-market	goods	 in	Shenzhen	come	from.	They
may	 also	 just	 send	 an	 unexpected	 invoice	 for	 it	 down
the	road,	which	often	arrives	at	the	worst	possible	time
—revenue	 from	 the	 product	 has	 already	 ceased,	 but
bills	keep	coming	 in.	Either	way,	 it’s	best	 to	know	up
front	the	complete	cradle-to-grave	business	model.

FIGURING	OUT	LABOR	COSTS
Labor	 costs	 are	 devilishly	 tricky	 to	 estimate,	 but	 the
good	 news	 is	 that	 for	 high-tech	 assemblies,	 labor	 is
typically	a	small	fraction	of	total	cost.	The	labor	cost	of
assembling	 small	 volumes	 of	 a	 straightforward	 board
with	200	parts	may	be	about	$2	or	$3	in	China,	while
the	cost	of	assembling	in	the	United	States	is	closer	to
$20	 or	 $30.	 Even	 if	 labor	 prices	 double	 overnight	 in
China	and	halve	 in	the	United	States,	China	may	still
be	competitive.

This	is	in	contrast	to	the	lower-value	goods	moving
out	of	China	(such	as	textiles),	where	the	base	value	of
the	 raw	 material	 is	 already	 low,	 so	 labor	 costs	 are	 a
significant	 portion	 of	 the	 final	 product	 cost.	 I	 usually
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don’t	argue	much	over	labor	costs,	since	the	end	result
of	 scrimping	 on	 labor	 is	 often	 lowered	 quality,	 and
pushing	too	hard	on	labor	costs	can	force	the	factory	to
reduce	 the	 workers’	 quality	 of	 life	 by	 trimming
benefits.

THE	FACTORY’S	OVERHEAD
Negotiating	 factory	margin	 is	also	a	bit	of	an	art,	and
there	 are	 no	 hard-and-fast	 rules.	 I’ll	 give	 guidance
here,	 but	 there	 are	 always	 exceptions	 to	 the	 rule,	 and
every	 factory	can	cut	you	a	 special	deal	depending	on
the	circumstances.	Ultimately,	it’s	important	to	look	at
the	 big	 picture	 when	 reviewing	 a	 factory’s	 quote	 and
use	some	common	sense.

What	constitutes	a	fair	margin	for	a	factory	depends
on	 how	much	 value	 it	 adds	 to	 your	 product,	 and	 the
volume	of	production.	The	definition	of	“margin”	also
varies	depending	on	the	facility.	Some	facilities	include
scrap,	 handling	 overhead,	 and	 even	 research	 and
development	expenses	in	the	margin,	while	others	may
break	those	out	on	separate	lines.

In	 general,	margin	 ranges	 between	 single-digit	 and
low	double-digit	percentages,	depending	upon	volume,
value	 add,	 and	 project	 complexity.	 For	 very	 low-
quantity	production	lots	(fewer	than	1,000	pieces),	you
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may	also	be	charged	a	per-lot	line	fee.	This	fee	partially
defrays	the	cost	of	setting	up	an	assembly	line	only	to
tear	 it	 down	 after	 a	 couple	 of	 hours.	 A	 line’s
throughput	 may	 be	 very	 fast,	 producing	 hundreds	 to
thousands	of	units	a	day,	but	it	also	takes	days	to	set	up.

NONRECURRING	ENGINEERING
COSTS
NRE	 costs	 are	 onetime	 fees	 required	 to	 set	 up	 a
production	 run,	 such	 a	 stencils,	 SMT	 programming,
jigs,	 and	 test	 equipment.	 Note	 that	 reusing	 test
equipment	 between	 customers	 is	 considered	 bad
practice;	 if	 a	 multimeter	 is	 required	 as	 part	 of	 a
production	 test,	 don’t	 be	 surprised	 if	 a	 bill	 for	 a
multimeter	 is	 tacked	 onto	 the	NRE.	Customers	 have
drastically	 varying	 standards	 around	 the	 maintenance
and	use	of	test	equipment,	so	good	factories	don’t	take
chances	with	it.

Miscellaneous	Advice
Who	you	can	talk	to	and	how	open	the	factory	is	about
costs	 are	 certainly	 key	 concerns,	 but	with	 experience,
you’ll	learn	a	lot	more	about	dealing	with	factories	that
doesn’t	fall	into	any	particular	category.	To	close,	here
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are	a	few	more	important	points	to	keep	in	mind	when
selecting	a	factory.

SCRAP	AND	YIELD
Ideally,	 you’d	 pay	 a	 factory	 only	 for	 good,	 delivered
items,	 and	 the	 factory	 would	 bear	 the	 burden	 of
defective	 units.	This	 gives	 the	 factory	 an	 incentive	 to
maintain	 a	 high	 production	 quality,	 because	 every
percent	of	defectiveness	eats	away	at	its	margin.	But	if
your	 design	 has	 a	 flaw	 or	 is	 too	 hard	 to	 build,	 and
defectiveness	 is	 high,	 the	 factory	 may	 start	 shipping
lower-quality	 units	 as	 a	 desperate	 measure	 to	 meet
production	and	margin	targets.	It	may	also	start	selling
defective	 goods	 on	 the	 gray	 market	 to	 recover	 cost,
leading	to	brand	reputation	problems	down	the	road.

To	avoid	situations	like	that,	reach	an	understanding
with	the	factory	ahead	of	time	on	how	to	handle	scrap
units	 or	 exceptional	 yield	 loss.	 This	may	 include,	 for
example,	 a	 dedicated	 “scrap”	 line	 item	 inside	 the
quotation	to	handle	defectiveness	explicitly.

ORDER	MORE	UNITS	THAN	THE
PROVEN	DEMAND
Despite	 everyone’s	 best	 efforts,	mistakes	 will	 happen,
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customers	 will	 receive	 bad	 devices,	 and	 you’ll	 want
extra	 working	 units	 for	 returns	 and	 exchanges.
Ordering	 1,000	 pieces	 to	 fulfill	 a	 1,000-piece
Kickstarter	 campaign	 means	 if	 customers	 want	 to
return	or	exchange	units	that	were	broken	in	shipping,
all	you	can	do	is	issue	refunds.	It’s	just	not	practical	to
fire	up	the	factory	to	make	a	dozen	replacement	units.

As	 a	 general	 rule,	 I	 order	 a	 few	 percent	 excess
beyond	 the	 number	 of	 units	 I	 need	 to	 deliver	 to
customers,	to	have	stock	on	hand	to	handle	returns	and
exchanges.	Units	that	don’t	get	used	up	by	the	returns
process	 can	 be	 turned	 into	 demo	 loaners	 or	 business
development	 giveaways	 to	 drum	 up	 the	 next	 set	 of
orders!

SHIPPING	COSTS	MONEY
Keep	 an	 eye	 on	 shipping	 costs.	 These	 fees	 aren’t
typically	 built	 into	 a	 factory’s	 quotation,	 but	 they
impact	your	bottom	line,	even	more	so	for	low-volume
products.	Shipping	FedEx	is	a	great	way	to	save	time,
but	 it’s	 also	 very	 expensive.	 Courier	 fees	 can	 easily
wash	out	the	profit	on	a	small	project,	so	manage	those
costs.

NOTE
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Couriers	offer	discounts	to	frequent	shippers,	but	you
have	to	call	in	to	negotiate	the	special	rates.

FACTOR	IN	IMPORT	DUTIES
Components	 imported	 to	 China	 without	 an	 import
license	 are	 levied	 a	 roughly	 20	 percent	 compulsory
duty	 on	 their	 value.	 The	 general	 rule	 for	 China	 is
dutiable	on	import,	duty	free	on	export.	If	something	is
accidentally	shipped	across	the	border	to	Hong	Kong,
expect	to	pay	a	duty	to	get	it	back	into	China,	too.

Get	 a	 customs	 broker	 to	 work	 angles	 for	 saving
money;	for	example,	some	brokers	can	get	goods	taxed
by	 their	 weight	 and	 not	 their	 value,	 which	 for
microelectronics	 is	 typically	 a	 good	 deal.	 I	 haven’t
figured	out	all	the	customs	rules,	as	they	seem	to	be	a
moving	 target.	 Every	 month	 it	 seems	 there’s	 a	 new
rule,	fine,	exceptional	fee,	or	tariff	to	deal	with.	There
are	also	plenty	of	shady	ways	to	get	goods	into	China,
but	 I	 sleep	 better	 at	 night	 knowing	 I	 do	 my	 best	 to
comply	with	every	rule.

Quotations	 don’t	 include	 duties,	 because	 factories
assume	by	default	that	you	will	have	an	import	license.
Import	 licenses	 enable	 the	duty-free	 import	of	goods.
But	 import	 licenses	 cost	 a	 few	 thousand	 bucks,	 take
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weeks	 to	 process,	 and	have	no	 room	 for	 flexibility,	 as
they	are	 tied	 to	an	exact	BOM	for	 the	product.	Small
engineering	 change	 orders	 can	 invalidate	 an	 import
license.	 I’ve	 known	 customs	 officers	 to	 count	 the
number	of	decoupling	caps	on	a	PCB,	and	if	it	doesn’t
match	the	count	in	the	license,	a	fine	is	levied	and	the
license	 is	 invalidated.	 Even	 deviations	 in	 the	material
used	to	line	a	decorative	box	can	invalidate	a	license.	In
short,	 this	 import	 license	 scheme	 favors	 high-volume
products,	and	punishes	low-volume	producers,	so	tread
lightly.

CLOSING	THOUGHTS
Going	 to	 China	 for	 manufacturing	 clearly	 isn’t	 for
everyone.	 Particularly	 if	 you’re	 based	 in	 the	 United
States,	the	overhead	of	courier	fees,	travel,	duties,	and
late-night	conference	calls	adds	up	rapidly.	As	a	rule	of
thumb,	 a	 small	US-based	 company	 is	 often	better	 off
assembling	 PCBs	 in	 the	 United	 States	 for	 volumes
under	 1,000	 units,	 and	 you	 won’t	 start	 seeing	 clear
advantages	 until	 volumes	 of	 perhaps	 5,000	 to	 10,000
units.

That	math	 shifts	 in	 China’s	 favor	 as	 processes	 like
injection	molding	and	chassis	assembly	come	into	play,
due	 to	 the	 expertise	 Chinese	 factories	 have	 in	 these
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labor-intensive	 processes.	 The	 break-even	 point	 can
also	 be	 much	 lower	 if	 you	 live	 in	 or	 near	 China,	 as
courier	 fees,	 travel,	 and	 time-zone	 impact	 are	 all	 a
small	 fraction	 of	 what	 they’d	 be	 from	 the	 United
States.	 This	 compounds	 with	 the	 fact	 that	 locals	 are
more	effective	at	leveraging	the	component	ecosystem
in	China,	 leading	to	further	cost	reductions	compared
to	a	design	produced	using	only	US	parts.

On	 the	 other	 hand,	 physically	 large	 assemblies	 or
systems	built	using	lots	of	dutiable	components	may	be
cheaper	to	build	domestically,	as	they	save	on	shipping
costs	and	tariffs.	In	the	end,	keep	an	open	mind	and	try
to	consider	all	the	possible	secondary	costs	and	benefits
of	 domestic	 versus	 foreign	 manufacturing	 before
deciding	where	to	park	production.
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Part	2
thinking	differently:
intellectual	property	in
china
China	 has	 a	 reputation	 for	 lax	 enforcement	 of
intellectual	 property	 (IP)	 laws,	 and	 that	 leads	 to
problems	 like	 fake	and	copycat	products.	This	part	of
the	book	takes	a	nuanced	look	at	China’s	IP	ecosystem
and	finds	a	novel	way	to	reward	innovation	that	serves
as	an	alternative	to	traditional	Western	IP	practices.

First,	 consider	 this	 question:	 what,	 exactly,
constitutes	 a	 fake?	 It	 seems	 relatively	 straightforward
to	 answer;	 anything	 that’s	 not	 an	 original	 must	 be	 a
fake.	The	situation	becomes	muddied,	however,	when
you	 consider	 the	 possibility	 that	 some	 contract
manufacturers	produce	fakes	by	running	a	ghost	shift,	an
after-hours	 production	 run	 not	 reported	 to	 the
product’s	 brand	 owner.	These	 items	 are	 produced	 on
the	same	equipment,	by	the	same	people,	and	with	the
same	 procedures	 as	 the	 original	 product,	 but	 they’re
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sold	directly	to	customers	at	a	much	higher	margin	to
the	manufacturer.

In	fact,	the	spectrum	of	fakes	runs	an	entire	gamut	of
possibilities.	 Used	 and	 damaged	 goods	 get	 upcycled;
production	 rejects	 with	 minor	 flaws	 are	 refurbished
and	sold	as	originals;	original	products	get	relabeled	to
advertise	 a	 higher	 capability	 or	 capacity	 (for	 example,
memory	 cards	 with	 4GB	 actual	 capacity	 are	 sold	 as
8GB),	and	so	on.	Chapter	4	relates	several	encounters
I’ve	had	with	 fake	goods	 in	China,	 and	dives	 into	 the
issues	and	incentives	enabling	the	rise	of	such	fakes.

Cloning	 and	 copying	 are	 also	 common	practices	 in
China.	 A	 nebulous	 and	 sometimes	 shadowy	 group	 of
rogue	 innovators	 known	 as	 shanzhai	 creates	 products
that	attempt	 to	mimic	 the	 features	and	 function	of	an
original	 product,	 often	 with	 assistance	 from	 the
original’s	 blueprints.	 But	 the	 clones	 are	 heavily
modified	to	save	cost	or	include	unique	features.	Often,
the	most	offensive	 aspect	of	 the	practice	 is	 the	use	of
the	 original	 product’s	 brands	 and	 trade	 dress	 on	 the
clones.	Aside	 from	 trademark	violations,	 a	 look	 inside
the	 products	 reveals	 an	 incredible	 amount	 of	 original
engineering	and	innovation.

Dismissing	 the	 shanzhai	 as	 mere	 thieves	 and
copycats	overlooks	the	fact	that	they	can	achieve	what
few	Western	 companies	 can:	 they	 can	build	 complete

196



mobile	 phones,	 and	 on	 a	 shoestring	 budget	 to	 boot.
Chapter	 5	 takes	 a	 deep	 dive	 into	 a	 prime	 example	 of
shanzhai	 engineering,	 a	 feature	 phone	 designed	 for
emerging	markets	that	costs	under	$10.	The	phone	is	a
tour	de	force	of	cost	reduction	and	a	fresh	look	at	ways
of	 building	 to	 address	 markets	 that	 are	 untouchable
with	Western	engineering	practices.

One	 of	 the	 most	 insightful	 lean	 engineering
practices	enabling	the	creation	of	complex	systems	on	a
shoestring	 budget	 is	 the	 shanzhai	method	 for	 sharing
IP.	 I’ll	 explore	 this	 by	 comparing	 and	 contrasting	 the
Western	 notion	 of	 open	 source	 with	 the	 shanzhai
method,	which	 I	 refer	 to	 as	 gongkai.	 In	Western	 law,
open	 source	 has	 a	 formal	 definition,	 referring
specifically	 to	 an	 IP	 sharing	 system	 governed	 by	 an
explicit	license	to	share.	This	license	is	granted	by	the
copyright	 holder,	 often	 with	 significant	 commercial
restrictions.	Open	 source	 advocates	 vigorously	 defend
this	 notion	 and	 are	 quick	 to	 dis-avow	 any	 IP	 that
doesn’t	explicitly	use	an	approved	license.

In	 gongkai,	 if	 you	 can	 obtain	 a	 copy	 of	 the
blueprints,	 you	 can	use	 them	as	 you	please;	 it	 doesn’t
matter	 who	 made	 them.	 Yet	 people	 still	 share	 their
ideas	 because	 the	 blueprints	 act	 as	 an	 advertisement.
Blueprints	 often	 refer	 explicitly	 to	 certain	 chips	 or
contain	 contact	 information	 for	 the	 firm	 that	 drew
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them.	 The	 creators	 hope	 circulating	 their	 blueprints
will	bring	business	 to	their	 factory	when	people	order
parts	 or	 sub-assemblies	 referenced	 within,	 or	 when
people	 call	 their	 firm	 to	 improve	 or	 customize	 the
design.	 In	 other	 cases,	 blueprints	 are	 traded.	 For
example,	 there	 are	 bulletin	 board	 exchanges	 where
before	you	download	a	blueprint,	you	must	contribute
one	of	your	own.

In	short,	the	gongkai	IP	ecosystem	is	a	variant	of	the
ad-driven	business	model,	but	optimized	for	hardware-
oriented	 businesses.	 Just	 as	 Google	 provides	 high-
quality	search,	email,	and	mapping	services	for	free	in
exchange	 for	 showing	 ads,	 shanzhai	 innovators	 share
ideas	to	land	follow-up	orders	in	their	factories.

Here	 lies	 a	 key	 distinction	 between	 most	Western
innovators	 and	 their	 counterparts	 in	 Shenzhen:
everyone	who	is	anyone	in	Shenzhen	owns	or	has	close
ties	to	a	factory.	The	fastest	path	to	material	wealth	is
selling	more	product.	Arguing	over	who	has	 rights	 to
abstract	 ideas	 is	 a	 waste	 of	 effort	 best	 left	 for	 baijiu-
fueled	 discussions	 after	 dinner.*	On	 the	 opposite	 end
of	the	spectrum	are	Western	patent	trolls	so	removed
from	 factories	 that	 they	 probably	 don’t	 even	 have	 a
soldering	 iron,	 yet	 they	 invest	millions	of	dollars	 into
litigation	 and	 collecting	 royalties	 on	 ideas	 they	 didn’t
invent.
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Neither	system	is	perfect,	but	the	gongkai	method	is
uniquely	 adapted	 to	 the	 fast	 pace	 of	 technology.	 In	 a
world	where	chips	get	faster	and	cheaper	every	couple
of	 years,	 a	 20-year	 patent	 lifetime	 is	 an	 eternity.
Spending	a	decade	to	bring	a	product	to	market	simply
is	not	an	option;	the	best	factories	in	China	can	turn	a
napkin	sketch	 into	a	prototype	 in	days	and	bring	 it	 to
scale	production	 in	weeks.	Long	patent	 terms	may	be
appropriate	 for	 markets	 like	 pharmaceuticals,	 but	 in
fast-moving	 markets,	 investing	 months	 and	 tens	 of
thousands	 of	 dollars	 in	 lawyer	 fees	 to	 negotiate	 a
license	 or	 just	 apply	 for	 a	 patent	 can	 lead	 to	 missed
opportunities.

Perhaps	 a	 discussion	 on	 reforming	 the	 Western
patent	system	is	long	overdue.	The	gongkai	ecosystem
is	 living	 proof	 that	 granting	 20-year	 monopolies	 on
ideas	 as	 trivial	 as	 “slide	 to	 unlock”	 for	 a	 smartphone
may	 not	 be	 the	 One	 True	 Path	 to	 incentivize
innovation.	I	look	forward	to	starting	the	conversation
with	this	whirlwind	tour	of	the	good,	the	bad,	and	the
ugly	of	the	Chinese	IP.
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4.	gongkai	innovation

If	the	term	intellectual	property	sounds	like	an	oxymoron
to	you,	you’re	not	alone.	If	I	give	you	an	apple	and	say,
“This	 is	 your	 apple,”	what	 that	means	 is	 pretty	 clear.
You	can	do	what	you	want	with	that	apple:	you	can	eat
it,	 sell	 it,	or	 even	use	 the	 seeds	 to	plant	 an	apple	 tree
and	make	more	apples,	which	you	can	then	sell	or	use
to	feed	your	family.	But	if	I	hand	you	a	phone	and	say,
“This	Apple	 iPhone	 is	yours,”	you	own	 the	collection
of	atoms	in	your	hand,	but	you	have	extremely	limited
rights	 to	 the	 software,	 patents,	 and	 trademarks—the
intellectual	 property—associated	 with	 that	 phone.
Unlike	with	the	fruit,	you	can’t	take	what’s	inside	your
iPhone	and	use	that	knowledge	as	a	seed	to	make	more
iPhones.

Intellectual	property	works	very	differently	in	China,
though.	There,	you	could	(and	people	do)	use	a	phone
as	 the	 seed	 for	 your	 own	 original	 works.	 Two
experiences	I	had	in	China	opened	my	eyes	to	the	fact
that	 there	 isn’t	 one	 true	 path	 for	 dealing	 with
intellectual	property.
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I	BROKE	MY	PHONE’S	SCREEN,	AND	IT	WAS
AWESOME
My	 first	 story	 begins,	 as	 many	 of	 my	 adventures	 do,
with	 stepping	 out	 of	 a	 taxi	 at	 the	 Futian	 border
checkpoint	going	 into	China.	 It	was	May	2014,	 and	 I
was	 heading	 to	 Shenzhen	 to	 hammer	 out	 production
plans	for	the	Novena	open	hardware	laptop,	which	I’ll
talk	more	about	in	Chapter	7.	As	I	stepped	out	of	 the
taxi,	 my	 hand	 caught	 on	 my	 backpack,	 sending	 my
phone	 tumbling	 toward	 the	 concrete	 sidewalk.	As	 the
phone	smashed	into	the	ground,	I	heard	the	dry	“thud”
of	a	shattering	touchscreen.

There	is	no	better	place	 in	the	world	to	break	your
phone’s	 screen	 than	 the	 border	 crossing	 into
Shenzhen.	Within	an	hour,	I	had	a	new	screen	installed
by	 skilled	 hands	 in	 Hua	 Qiang	 Bei,	 for	 just	 $25—
including	parts	and	labor.

I	 originally	 planned	 to	 replace	 the	 screen	 myself.
The	 phone	 still	 worked,	 so	 I	 hastily	 visited	 iFixit	 for
details	on	how	to	replace	the	screen	and	then	booked	it
to	Hua	Qiang	Bei	 to	 purchase	 replacement	 parts	 and
tools.	The	 stall	 I	 visited	 quoted	me	 about	 $120	USD
for	a	new	screen,	but	then	the	shop	owner	grabbed	my
phone	out	of	my	hands	and	launched	a	built-in	self-test
program	by	punching	*#0*#	into	the	dialer	UI.
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She	confirmed	that	there	were	no	bad	pixels	on	my
OLED	 display	 and	 that	 the	 digitizer	 was	 still
functional,	 just	 cracked.	 She	 then	 offered	 to	 buy	 my
broken	 OLED	 and	 digitizer	 module,	 but	 only	 if	 her
shop	could	replace	my	screen.	I	said	that	would	be	fine
as	long	as	I	could	watch	to	make	sure	they	didn’t	swap
out	any	other	parts.

Of	 course,	 they	 had	 no	 problem	 with	 that.	 In	 20
minutes,	 they	 took	 my	 phone	 apart,	 removed	 the
broken	module,	stripped	the	adhesive	 from	the	phone
body,	 replaced	 the	 adhesive,	 fitted	 the	 phone	 with	 a
“new”	(presumably	refurbished)	module,	and	put	 it	all
back	together.	The	process	involved	a	hair	dryer	(used
as	 a	 heat	 gun),	 copious	 amounts	 of	 contact	 cleaner
(used	 to	 soften	 the	 adhesive),	 and	 a	 very	 long
thumbnail	 (in	 lieu	 of	 a	 spudger/guitar	 pick).
Unfortunately,	 I	 couldn’t	 take	 pictures	 of	 the	 process
because	 the	device	 I	would	have	used	 to	do	 so	was	 in
pieces	in	front	of	me.

This	is	the	power	of	recycling	and	repair.	Instead	of
paying	 $120	 for	 a	 screen	 and	 throwing	 away	 a
functional	 piece	 of	 electronics,	 I	 just	 paid	 the	 cost	 to
replace	 the	broken	glass.	 I	had	assumed	 that	 the	glass
on	 the	digitizer	was	 inseparable	 from	 the	OLED,	but
apparently	 those	clever	 folks	 in	Hua	Qiang	Bei	 found
an	 efficient	 way	 to	 recycle	 those	 parts.	 After	 all,	 the
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bulk	 of	 the	module’s	 cost	 was	 in	 the	OLED	 display.
The	 touchscreen	 sensor	 electronics,	 which	 were	 also
grafted	onto	the	module,	were	undamaged	by	the	fall.
Why	waste	perfectly	good	parts?

And	so	my	phone	had	a	broken	screen	 for	all	of	an
hour,	and	it	was	fixed	for	less	than	the	cost	of	shipping
spare	 parts	 to	 Singapore	 (my	 country	 of	 residence).
Experiences	like	this	get	me	thinking:	why	aren’t	there
services	 like	 this	 in	 every	 country?	 What	 makes
Shenzhen	 so	 unique	 that	 you	 can	 go	 from	 a	 broken
screen	 to	 a	 fixed	phone	 in	half	 an	hour	 for	much	 less
than	the	cost	of	a	monthly	phone	bill?	A	multitude	of
factors	contribute	to	this	phenomenon,	most	of	which
can	be	traced	to	a	group	of	people	called	the	shanzhai.

SHANZHAI	AS	ENTREPRENEURS
The	shanzhai	of	China	originally	became	famous	as	the
producers	of	knockoffs	of	products	like	the	iPhone,	so
they’ve	historically	been	dismissed	by	the	popular	press
as	simply	“copycat	barons.”	But	I	think	they	may	have
something	 in	 common	 with	 teams	 like	 Hewlett	 and
Packard	 or	 Jobs	 and	Wozniak,	 back	 when	 they	 were
working	out	of	garages.

Who	Are	the	Shanzhai?
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To	understand	why	I	think	this,	it	helps	to	understand
the	cultural	context	of	the	word	shanzhai.	Shanzhai	(⼭
寨)	 comes	 from	 the	 Chinese	 words	mountain	 fortress,
but	 the	 literal	 translation	 is	 a	 bit	 misleading.	 The
English	term	fortress	connotes	a	large	fortified	structure
or	 stronghold,	 perhaps	 conjuring	 imagery	 of	 castle
turrets	 and	moats.	On	 the	 other	 hand,	 its	 denotation
states	that	it	is	simply	a	fortified	place,	and	this	is	closer
to	 the	 original	 Chinese	 meaning,	 which	 refers	 to
something	like	a	cave	or	guerrilla-style	hideout.

In	 its	 contemporary	 context,	 shanzhai	 is	 a	 historical
allusion	to	the	people	who	lived	in	such	hideouts,	 like
Song	Jiang	and	his	108	bandits,	a	group	of	outlaws	who
lived	 in	 the	 12th	 century.	A	 friend	 of	mine	 described
Song	 Jiang	 as	 a	 sort	 of	 Robin	 Hood	 meets	 Che
Guevara.	He	was	 a	 rebel	 and	a	 soldier	of	 fortune,	yet
selfless	 and	 kind	 to	 those	 in	 need.	 The	 tale	 is	 still
popular	today;	my	father	instantly	recognized	it	when	I
asked	him	about	it.

Modern	 shanzhai	 innovators	 are	 rebellious,
individualistic,	 underground,	 and	 self-empowered—
just	 like	 Song	 Jiang.	 They’re	 rebellious	 in	 the	 sense
that	 they	 are	 celebrated	 for	 their	 copycat	 products.
They’re	 individualistic	 in	 the	 sense	 that	 they	 have	 a
visceral	 dislike	 for	 the	 large	 companies.	 (Many
shanzhai	 are	 former	 employees	 of	 large	 companies,
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both	American	and	Asian,	who	departed	because	 they
were	frustrated	by	the	inefficiency	of	their	employers.)
They’re	underground	in	the	sense	that	once	a	shanzhai
“goes	 legit”	 and	 does	 business	 directly	 through
traditional	retail	channels,	they	no	longer	belong	to	the
fraternity	 of	 the	 shanzhai.	They’re	 self-empowered	 in
the	 sense	 that	 they’re	 universally	 tiny	 operations,
bootstrapped	on	minimal	capital,	and	their	attitude	 is,
“If	you	can	do	it,	then	I	can	as	well.”

An	 estimated	 300	 shanzhai	 organizations	 were
operating	 in	Shenzhen	 in	2009.	Shanzhai	 shops	 range
from	just	a	couple	of	folks	to	a	few	hundred	employees.
Some	specialize	in	processes	like	tooling,	PCB	design,
PCB	 assembly,	 or	 cell	 phone	 skinning,	 while	 others
have	broader	capabilities.

Since	 the	 shanzhai	 are	 small,	 they	 have	 to	 be
efficient	 to	maximize	 output.	One	 shop	 of	 under	 250
employees	can	churn	out	over	200,000	mobile	phones
per	 month	 with	 a	 high	 mix	 of	 products,	 sometimes
producing	 runs	 as	 short	 as	 a	 few	 hundred	 units.
Collectively,	 shanzhai	 in	 the	 Shenzhen	 area	 produced
an	 estimated	 20	 million	 phones	 per	 month	 in	 2009.
That’s	 an	 economy	 approaching	 a	 billion	 dollars	 a
month.	Most	of	those	phones	sell	into	third-world	and
emerging	 markets	 like	 India,	 Africa,	 Russia,	 and
southeast	Asia.
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More	Than	Copycats
Significantly,	the	shanzhai’s	product	portfolio	includes
more	than	just	copycat	phones.	They	innovate	and	riff
on	 designs	 to	 make	 original	 products	 as	 well.	 These
original	phones	integrate	wacky	features	like	7.1	stereo
sound,	dual	SIM	cards,	a	functional	cigarette	holder,	a
high-zoom	lens,	or	a	built-in	UV	LED	for	counterfeit
money	detection.

The	 shanzhai	 do	 to	 hardware	 what	 the	 web	 did	 to
mashup	compilations.	Mobile	phones	that	are	also	toy
Ferraris	 and	 watch-phone	 combos	 (complete	 with
camera!)	are	good	examples:	they	don’t	copy	any	single
idea,	but	rather	mix	IP	from	multiple	sources	to	create
a	 new	 heterogeneous	 composition,	 such	 that	 the
original	 source	material	 is	 still	 distinctly	 recognizable
in	the	final	product.	Also,	like	many	web	mashups,	the
result	might	 seem	 nonsensical	 to	 a	mass	market	 (like
the	Ferrari	phone)	but	is	extremely	relevant	to	a	select
long-tail	market.	In	a	way,	some	shanzhai	products	are
just	 ahead	 of	 their	 time;	 the	 watch-phones	 I	 saw,	 for
example,	predated	smartwatches	by	several	years.
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Top:	The	front	and	back	sides	of	a	phone	made	to	look	like	a
pack	of	cigarettes.

Bottom	left:	An	Android-based	smart	watch,	which	unlike	the
Apple	Watch	includes	a	call-capable	phone	in	the	watch.
Bottom	right:	A	shanzhai-designed	“baby	iPhone,”	running

Android,	shown	next	to	an	Apple	iPhone	6	for	scale.
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Community-Enforced	IP	Rules
The	 shanzhai	 also	 employ	 a	 concept	 called	 the	 open
BOM:	when	one	shanzhai	builds	 something	new,	 they
share	the	bill	of	materials	and	other	design	documents
with	the	others.	If	 the	product	 is	based	on	an	existing
product,	any	improvements	they	make	are	also	shared.
These	 rules	 are	policed	by	word	of	mouth	within	 the
community	 to	 the	 extent	 that	 if	 someone	 is	 found
cheating,	 they	 are	 ostracized	 by	 the	 shanzhai
ecosystem.

This	 system	 is	viewed	very	positively	 in	China.	For
example,	I	once	heard	a	 local	say	 it	was	great	that	the
shanzhai	 could	 not	 only	 clone	 an	 iPhone	 but	 also
improve	upon	the	original	by	giving	the	clone	a	user-
replaceable	 battery.	 US	 law	 would	 call	 this	 activity
illegal	 and	 infringing,	 but	 given	 the	 fecundity	 of
mashup	culture	on	the	web,	I	can’t	help	but	wonder	if
hardware	mashup	isn’t	a	bad	thing.	There’s	definitely	a
perception	in	the	United	States	that	if	it’s	strange	and
it	happens	 in	China,	 it	must	be	bad.	This	bias	 casts	 a
long	 shadow	 over	 objective	 evaluation	 of	 a	 cultural
phenomenon	that	could	eventually	be	very	relevant	to
the	United	States.

In	 a	 sense,	 the	 shanzhai	 are	 brethren	 of	 the	 classic
Western	 notion	 of	 hacker-entrepreneurs,	 but	 with	 a
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distinctly	Chinese	twist.	My	personal	favorite	shanzhai
story	is	about	a	chap	who	owns	a	three-story	house	that
I	am	extraordinarily	envious	of.	His	bedroom	is	on	top,
the	 middle	 floor	 is	 a	 complete	 SMT	 manufacturing
line,	 and	 the	 bottom	 floor	 is	 a	 retail	 outlet	 for	 the
products	 produced	 a	 floor	 above	 and	 designed	 in	 his
bedroom.	 Talk	 about	 a	 vertically	 integrated	 supply
chain!	Owning	 infrastructure	 like	that	would	certainly
disrupt	the	way	I	innovate.	I	could	save	on	production
costs,	 reduce	 my	 prototyping	 time,	 and	 aggressively
turn	 inventory	 around,	 thereby	 reducing	 inventory
capital	 requirements.	And	 if	my	 store	were	 in	 a	high-
traffic	urban	location,	I	could	also	cut	out	the	20	to	50
percent	 minimum	 retail	 margin	 typically	 required	 by
US	retailers.

I	have	a	theory	that	when	the	amount	of	knowledge
and	the	scale	of	the	markets	in	Shenzhen	reach	critical
mass,	 the	 Chinese	 will	 stop	 being	 simply	 workers	 or
copiers.	 They’ll	 take	 control	 of	 their	 destinies	 and,
ultimately,	 become	 innovation	 leaders.	 These	 stories
about	the	shanzhai	and	their	mashups	are	just	the	tip	of
an	 iceberg	 with	 the	 potential	 to	 change	 the	 way
business	is	done—perhaps	not	in	the	United	States,	but
certainly	 in	 that	 massive,	 untapped	 market	 often
referred	to	as	“the	rest	of	the	world.”
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THE	$12	PHONE
Mashup	 cell	 phones	 demonstrate	 the	 shanzhai’s
innovation	 and	willingness	 to	 experiment.	But	despite
all	 the	 bells	 and	 whistles,	 those	 phones	 are	 quite
affordable.	One	question	 you	might	 ask,	 then,	 is	 how
cheaply	can	you	make	a	phone?

A	 short	 jaunt	 to	 the	 northeast	 corner	 of	 the	 Hua
Qiang	 Bei	 electronics	 district	 brings	 you	 to	 the
Mingtong	Digital	Mall.	 It’s	 a	 four-story	maze	 packed
with	 tiny	 shops	hawking	 all	manner	of	 quirky	phones
with	 features	 useful	 in	 economies	 that	 lack	 the
infrastructure	 of	 consistent	 electricity	 or	 cable
networks.	 For	 instance,	 some	 phones	 can	 run	 for	 a
month	thanks	to	comically	oversized	batteries.	Others
have	 analog	TV	 tuners,	 integral	 hand-crank	 chargers,
and	multiple	 user	 profiles,	 enabling	 a	 family	 or	 small
village	to	share	a	single	phone.

During	a	visit	to	the	Hua	Qiang	Bei	district	in	2013,
I	paid	$12	for	a	complete	phone,	featuring	quad-band
GSM,	 Bluetooth,	 MP3	 playback,	 an	 OLED	 display,
and	 a	 keypad	 for	 the	UI.	 It’s	 nothing	 compared	 to	 a
smartphone,	 but	 it’s	 useful	 if	 you’re	 going	 out	 and
worried	 about	 your	 primary	 phone	 getting	 wet	 or
stolen.	And	 for	 a	 couple	billion	people,	 it	may	be	 the
only	phone	they	can	afford.
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Keep	 in	 mind	 this	 is	 the	 contract-free	 price.	 In
countries	that	allow	carriers	to	lock	phones,	such	as	the
United	States,	phones	are	often	given	away	or	sold	to
buyers	 at	 a	 fraction	 of	 their	 cost	 in	 exchange	 for	 a
subscription	 contract	 often	 worth	 several	 times	 the
phone’s	 value.	 The	 fact	 that	 I	 paid	 $12	 over	 the
counter	for	a	contract-free,	nonpromotional,	unlocked,
new-in-box	 phone	 with	 a	 charger,	 protective	 silicone
sleeve,	 and	 cable	 means	 that	 the	 phone’s	 production
cost	has	to	be	somewhere	below	the	retail	price	of	$12.
Otherwise,	the	phone’s	maker	would	be	losing	money.
Rumors	placed	its	cost	below	$10.
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My	simple	but	functional	$12	phone

This	is	a	really	amazing	price	point.	That’s	about	the
price	 of	 a	 large	 Domino’s	 cheese	 pizza,	 or	 a	 decent
glass	of	wine	in	an	urban	US	restaurant.	It’s	even	cheap
compared	 to	 an	 Arduino	 Uno.	 Admittedly,	 the
comparison	is	a	little	unfair,	but	humor	me	and	take	a
look	at	the	specs	for	both,	shown	in	Table	1.

Table	1:	Comparing	the	$12	Phone	with	an	Arduino

Spec This	phone Arduino	Uno

Price $12 $29

CPU
speed

260	MHz,	32-bit 16	MHz,	8-bit

RAM 8MiB 2.5kiB

Interfaces USB,	microSD,	SIM USB

Wireless Quadband	GSM,
Bluetooth

—

Power LiPo	battery,	includes
adapter

External,	no
adapter

Display Two-color	OLED —

How	 is	 it	 possible	 that	 this	 phone	 has	 better	 specs
than	 an	 Arduino	 and	 costs	 less	 than	 half	 the	 price?	 I
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don’t	have	 the	 answers,	 but	 I’m	 trying	 to	 learn	 them.
Tearing	down	the	phone	yielded	a	few	hints.

Inside	the	$12	Phone
First,	 there	 are	 no	 screws	 in	 this	 phone.	 The	 whole
case	snaps	together.
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The	back	of	the	phone,	after	the	cover	is	removed

There	are	(almost)	no	connectors	on	the	inside.	For
shipping	and	storage,	you	get	to	flip	a	switch	to	hard-
disconnect	the	battery.	As	best	as	I	can	tell,	the	battery
also	 has	 no	 secondary	 protection	 circuit.	 Still,	 the
phone	features	accoutrements	such	as	a	backlit	keypad
and	decorative	lights	around	the	edge.

Everything	from	the	display	to	the	battery	is	soldered	directly
to	the	board.
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There	are	little	decorative	LEDs	all	over	this	PCB.
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The	Bluetooth	antenna	is	the	small	length	of	wire	on	the
bottom	left.

The	 electronics	 consist	 of	 just	 two	 major	 ICs:	 the
MediaTek	MT6250DA	 and	 a	Vanchip	VC5276.	The
MT6250	 is	rumored	to	sell	 in	volume	for	under	$2.	 I
was	able	 to	anecdotally	confirm	the	price	by	buying	a
couple	 of	 pieces	 on	 cut	 tape	 from	 a	 retail	 broker	 for
about	$2.10	each.*	That	beats	 the	best	price	 I’ve	 ever
been	able	to	get	on	an	ATMega	of	the	types	used	in	an
Arduino.	 With	 price	 competition	 like	 this,	 Western
firms	are	 suing	 to	protect	ground:	Vanchip	got	 into	a
bit	of	a	legal	tussle	with	RF	Micro,	and	MediaTek	has
been	subject	to	a	few	lawsuits	of	its	own.
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Two	MediaTek	MT6250	ICs

Of	course,	you	can’t	 just	call	up	MediaTek	and	buy
these	chips.	It’s	extremely	difficult	to	engage	with	them
“going	 through	 the	 front	 door”	 to	 do	 a	 design.
However,	 if	 you	 know	 a	 bit	 of	Chinese	 and	 the	 right
websites,	you	can	download	schematics,	board	layouts,
and	 software	 utilities	 for	 something	 similar	 to	 this
phone,	possibly	with	some	different	parts	...	for	“free.”
Free	 is	 in	quotes	because	 you	 could	obtain	 the	 source
code	but	not	the	unambiguous	 legal	right	to	use	 it,	as
the	 source	 code	 was	 distributed	 without	 the	 explicit
legal	 consent	 of	 the	 copyright	 holders.	 But	 anyone
unconcerned	or	unfamiliar	with	such	legal	frameworks
could	build	versions	of	 this	phone,	with	minimal	cash
investment.	It	feels	like	open	source,	but	it’s	not:	it’s	a
different	kind	of	open	ecosystem.

Introducing	Gongkai
Welcome	to	the	Galapagos	of	Chinese	“open”	source.
I	 call	 it	 gongkai	 (公开),	 which	 is	 the	 Chinese
transliteration	 of	 the	 English	 open,	 as	 applied	 to	 open
source.	There’s	 a	 literal	 translation	 for	 open	 source	 into
Chinese	 (kaiyuan),	 but	 the	 only	 similarity	 between
gongkai	practices	and	Western	open	source	practices	is
that	both	allow	you	to	download	source	code;	the	legal
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and	 cultural	 frameworks	 that	 enable	 such	 sharing
couldn’t	 be	 more	 different.	 It’s	 like	 convergent
evolution,	where	two	species	may	exhibit	similar	traits,
but	the	genes	and	ancestry	are	totally	different.

Gongkai	 refers	 to	 the	 fact	 that	 copyrighted
documents,	 sometimes	 labeled	 “confidential”	 and
“proprietary,”	 are	 made	 known	 to	 the	 public	 and
shared	 overtly,	 but	 not	 necessarily	 according	 to	 the
letter	of	the	law.	This	copying	isn’t	a	one-way	flow	of
value,	 as	 it	 would	 be	 in	 the	 case	 of	 copied	movies	 or
music.	 Rather,	 these	 documents	 are	 the	 knowledge
base	 someone	would	need	 to	build	 a	phone	using	 the
copyright	 owner’s	 chips,	 and	 sharing	 the	 documents
promotes	 sales	 of	 their	 chips.	 There	 is	 ultimately	 a
quid	 pro	 quo	 between	 the	 copyright	 holders	 and	 the
copiers.
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Comparing	IP	models.	On	the	left,	the	Western	“broadcast”
model,	with	a	single	owner	who	controls	and	disseminates	IP
and	is	paid	by	society.	On	the	right,	the	Chinese	“network”

model,	where	IP	trades	hands	like	a	commodity,	and	payment
is	often	in-kind	or	as	favors.

This	 gray	 relationship	 between	 companies	 and
entrepreneurs	 is	 just	 one	 manifestation	 of	 a	 much
broader	 cultural	 gap	 between	 the	East	 and	 the	West.
The	West	has	a	“broadcast”	view	of	IP	and	ownership:
good	 ideas	 and	 innovation	 are	 credited	 to	 a	 clearly
specified	 set	 of	 authors	 or	 inventors,	 and	 society	pays
them	 a	 royalty	 for	 their	 initiative	 and	 good	 works.
China	has	a	“network”	view	of	IP	and	ownership:	one
attains	the	far-reaching	sight	necessary	to	create	good
ideas	and	 innovations	by	standing	on	the	shoulders	of
others,	 and	 people	 trade	 these	 ideas	 as	 favors.	 In	 a
system	 with	 such	 a	 loose	 attitude	 toward	 IP,	 sharing
with	the	network	is	necessary,	as	tomorrow	your	friend
could	 be	 standing	 on	 your	 shoulders,	 and	 you’ll	 be
looking	to	them	for	favors.

In	 the	West,	however,	 rule	of	 law	enables	 IP	 to	be
amassed	 over	 a	 long	 period	 of	 time,	 creating
impenetrable	monopoly	positions.	That’s	good	for	the
guys	on	top	but	tough	for	upstarts,	causing	a	situation
like	 the	 modern	 Western	 cell	 phone	 market.
Companies	 like	 Apple	 and	 Google	 build	 amazing
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phones	 of	 outstanding	 quality,	 and	 startups	 can	 only
hope	to	build	an	“appcessory”	for	their	ecosystem.

I’ve	 reviewed	 business	 plans	 for	 over	 100	 hardware
startups,	 and	 the	 foundations	 for	most	 are	 overpriced
chipsets	built	with	antiquated	process	technologies.	I’m
no	exception	to	this	rule;	the	Novena	uses	a	Freescale
(now	 NXP	 after	 an	 acquisition)	 i.MX6	 processor,
which	was	neither	the	cheapest	nor	the	fastest	chip	on
the	market	when	I	designed	the	laptop.	But	it’s	a	chip
with	two	crucial	qualities:	anyone	can	freely	download
almost	complete	documentation	for	it,	and	anyone	can
buy	it	on	Digi-Key.

Scarce	 documentation	 and	 supply	 for	 cutting-edge
technology	 force	Western	 hardware	 entrepreneurs	 to
look	primarily	at	Arduino,	Beaglebone,	and	Raspberry
Pi	 as	 starting	 points	 for	 their	 good	 ideas.	 Chinese
entrepreneurs,	 on	 the	 other	 hand,	 churn	 out	 new
phones	at	an	almost	alarming	pace.
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Every	object	pictured	here	is	a	phone.

Phone	 models	 change	 on	 a	 seasonal	 basis.
Entrepreneurs	 experiment	 all	 the	 time,	 integrating
wacky	 features	 into	phones,	 such	 as	 cigarette	 lighters,
extra-large	 battery	 packs	 (to	 charge	 a	 second	 phone),
huge	 buttons	 (for	 the	 visually	 impaired),	 call-home
buttons	 only	 (to	 give	 to	 children	 for	 emergencies),
watch	 form	 factors,	 and	 so	 on.	 This	 works	 because
small	 teams	 of	 engineers	 can	 obtain	 complete	 design
packages	 for	 working	 phones—including	 the	 case,
board,	 and	 firmware—	 allowing	 them	 to	 fork	 the
design	 and	 focus	 only	 on	 changing	 the	 pieces	 they
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really	care	about.
As	a	hardware	engineer,	I	want	that.
I	want	to	be	able	to	fork	existing	cell	phone	designs.

I	 saw	 the	$12	phone,	 and	 I,	 too,	wanted	 to	use	 a	364
MHz	 32-bit	 microcontroller	 with	 megabytes	 of
integrated	 RAM	 and	 dozens	 of	 peripherals	 that	 costs
$3	 in	 single	 quantities.	 The	 Arduino	Uno’s	 ATMega
microcontroller,	a	16	MHz	8-bit	microcontroller	with
a	 few	 kilobytes	 of	 RAM	 and	 a	 smattering	 of
peripherals,	 pales	 in	 comparison	 yet	 costs	 twice	 as
much,	at	$6.

From	Gongkai	to	Open	Source
So,	 I	decided	 to	 take	my	study	of	 the	phone	one	 step
further	from	a	teardown,	and	attempt	to	make	my	own
version—in	 the	 style	 of	 the	 shanzhai,	 but	 interpreted
through	Western	eyes.	That’s	how	Sean	“xobs”	Cross
and	 I	 started	 a	 project	 we	 dubbed	Fernvale.	 Sean	 has
been	my	adventure	partner	on	dozens	of	projects	since
we	first	met	at	Chumby,	where	I	recognized	his	talent
as	 a	 firmware	 engineer	 when	 he	 showed	 me	 how	 he
ported	Quake	 to	 chumby	 in	 his	 spare	 time.	 Sean	 has
always	marched	to	 the	beat	of	his	own	drum.	Born	 in
Germany	 to	 American	 parents,	 he	 studied	 cognitive
science	in	college,	and	prior	to	working	at	Chumby,	he
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spent	 six	 months	 wandering	 New	 Zealand	 and
Australia,	 searching	 for	 adventure	 and	 work.	 At
Chumby,	 he	 was	 easy	 to	 spot,	 thanks	 to	 his	 ponytail
and	kilt	(actually,	a	Utilikilt).

After	 Chumby	 went	 out	 of	 business,	 Sean	 and	 I
found	ourselves	washed	up	on	the	shores	of	Singapore,
where	 I	 started	 a	 boutique	 hardware	 consulting	 firm
called	 Sutajio	 Ko-Usagi,	 which	 is	 bunniestudios
translated	to	Japanese	and	then	romanized	into	English
characters.	 Sean’s	 virtuoso	 coding	 abilities	 have	 been
an	excellent	complement	to	my	hardware	design	skills,
and	 since	 then,	 we’ve	 completed	 several	 significant
open	source	projects.

We	 figured	 at	 first	 we	 should	 at	 least	 try	 to	 go
“through	the	front	door”	and	inquire	directly	with	the
chipmakers	 about	 what	 it	might	 take	 to	 get	 a	 proper
Western-licensed	 embedded	 development	 kit	 (EDK)
for	 the	 chips	 used	 in	 these	 shanzhai	 phones.	 Our
inquiries	were	met	with	a	cold	shoulder.	I	was	told	the
volumes	 for	 our	 little	 experiment	 were	 too	 small,	 or
we’d	 have	 to	 enter	 minimum	 purchase	 agreements
backed	by	a	prohibitive	cash	deposit	in	the	hundreds	of
thousands	of	dollars.

Even	 for	 people	 who	 jump	 through	 such	 hoops,
these	EDKs	don’t	include	all	the	reference	material	the
Chinese	 get	 to	 play	 with.	 The	 datasheets	 are
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incomplete,	 and	 you’re	 forced	 to	 use	 the	 companies’
proprietary	 OS	 ports.	 It	 feels	 like	 a	 case	 of	 the	 nice
guys	 finishing	 last.	Could	we	 find	 a	way	 to	get	 ahead
yet	still	play	nice?

Engineers	Have	Rights,	Too
Thus,	 Fernvale	 had	 two	 halves:	 the	 technical	 task	 of
reverse	engineering	and	re-engineering	the	phone	and
the	 legal	 task	 of	 creating	 a	 general	 methodology	 for
absorbing	gongkai	IP	into	the	Western	ecosystem.	I’ll
recount	 the	 technical	 task	 in	Chapter	 9	 and	 focus	 on
the	legal	task	for	the	remainder	of	this	chapter.

After	 some	 research	 into	 the	 legal	 frameworks	 and
challenges,	 I	 believed	 I’d	 found	 a	 path	 to	 repatriate
some	of	the	IP	from	gongkai	into	proper	open	source.
I	must,	however,	give	a	disclaimer:	I’m	not	a	lawyer.	I’ll
tell	 you	 my	 beliefs,	 but	 don’t	 construe	 them	 as	 legal
advice.*

My	basic	idea	with	Fernvale	was	to	exercise	the	right
to	 reverse	 engineer	 in	 a	 careful,	 educated	 fashion	 to
increase	the	likelihood	that,	if	push	came	to	shove,	the
courts	would	agree	with	my	actions.	But	I	also	feel	that
shying	 away	 from	 reverse	 engineering	 simply	 because
it’s	controversial	is	a	slippery	slope:	to	have	your	rights,
you	 must	 exercise	 them.	 If	 women	 didn’t	 vote	 and
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black	 people	 sat	 in	 the	 back	 of	 the	 bus	 because	 they
were	 afraid	 of	 controversy,	 the	 United	 States	 would
still	 be	 segregated	 and	 without	 universal	 suffrage.
Although	 reverse	 engineering	 is	 a	 trivial	 issue
compared	to	racial	equality	and	universal	suffrage,	the
precedent	is	clear:	in	order	to	have	rights,	you	must	be
bold	enough	to	stand	up	and	assert	them.

DEALING	WITH	PATENTS	AND	OTHER
LAWS
Open	 source	has	 two	broad	 categories	 of	 IP	 issues	 to
deal	 with:	 patents	 and	 copyrights.	 Patents	 present
complex	 issues,	 and	 it	 seems	 the	 most	 practical
approach	 is	 to	 essentially	 punt	 on	 the	 issue.	 For
instance,	nobody,	as	 far	as	I	know,	checks	their	Linux
commits	 for	 patent	 infringement	 before	 upstreaming
them,	 and	 in	 fact,	 many	 corporations	 have	 similar
policies	at	the	engineering	level.

Why?	 Determining	 which	 patents	 apply	 and	 if	 a
product	 infringes	 takes	 a	 huge	 amount	 of	 resources.
Even	after	expending	those	resources,	you	can’t	be	100
percent	sure.	Further,	becoming	very	familiar	with	the
body	 of	 patents	 amplifies	 the	 possibility	 that	 any
infringement	 is	willful,	 thus	 tripling	damages.	Finally,
it’s	not	even	clear	where	the	 liability	 for	 infringement
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lies,	particularly	in	an	open	source	context.
Thus,	 Sean	 and	 I	 did	 our	 best	 not	 to	 infringe	with

Fernvale,	but	we	couldn’t	be	100	percent	sure	that	no
one	would	allege	infringement.	However,	we	did	apply
a	 license	 to	 our	 work	 that	 includes	 a	 “poison	 pill”
clause	for	patent	holders	who	might	attempt	to	litigate.
Poison	pills	make	the	entire	body	of	open	source	work
unavailable	 to	 any	 party	 who	 files	 a	 lawsuit	 alleging
infringement	of	any	part	against	any	entity.*

For	copyrights,	 the	 issue	 is	also	extremely	complex.
The	 Coders’	 Rights	 Project	 from	 the	 Electronic
Frontier	Foundation	(EFF)	has	a	Reverse	Engineering
FAQ†	that’s	a	good	read	if	you	really	want	to	dig	into
the	issues.	To	sum	it	up,	courts	have	found	that	reverse
engineering	to	understand	the	ideas	embedded	in	code
and	 to	 achieve	 interoperability	 is	 fair	 use.	As	 a	 result,
anyone	 likely	has	 the	 right	 to	 study	 the	gongkai-style
IP,	 understand	 it,	 produce	 a	 new	 work,	 and	 apply	 a
Western-style	Open	IP	license	to	it.

However,	before	I	could	attack	the	copyright	 issues
for	 Fernvale,	 I	 had	 to	 make	 sure	 we	 wouldn’t	 bump
into	other	 laws	 that	 could	 impede	our	 fair	 use	 rights.
First,	 there’s	 the	 Digital	 Millennium	 Copyright	 Act
(DMCA).	 The	 DMCA	 makes	 circumventing	 any
encryption	 designed	 to	 enforce	 a	 copyright	 basically
illegal,	 with	 only	 a	 few	 poorly	 tested	 exemptions
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allowed.	Since	none	of	the	files	or	binaries	Sean	and	I
downloaded	 were	 encrypted	 or	 had	 access	 controlled
by	any	technological	measure,	we	didn’t	have	to	do	any
circumvention.	 No	 circumvention,	 no	 DMCA
problem.

All	the	files	we	obtained	came	from	searches	linking
to	 public	 servers,	 so	 there	 would	 be	 no	 Computer
Fraud	 and	Abuse	Act	 (CFAA)	 problems.	None	of	 the
devices	we	 used	 in	 the	work	 came	with	 shrink-wraps,
click-throughs,	 or	 other	 end-user	 license	 agreements
(EULAs),	terms	of	use,	or	other	agreements	that	could
waive	our	rights.

DEALING	WITH	COPYRIGHTS
With	 the	DMCA,	 CFAA,	 and	 EULA	 concerns	 set

aside,	 we	 were	 finally	 able	 to	 address	 the	 core	 issue:
what	to	do	about	copyrights.

The	 cornerstone	 of	 our	 methodology	 hinged	 on
decisions	 rendered	 on	 several	 occasions	 by	 courts
stating	 that	 facts	 are	 not	 copyrightable.	 For	 example,
Justice	 O’Connor	 wrote	 the	 following	 in	 Feist
Publications,	Inc.	v.	Rural	Telephone	Service	Co.,	Inc.	(449
U.S.	340,	345,	349	(1991):*

Common	 sense	 tells	 us	 that	 100	 uncopyrightable
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facts	 do	 not	 magically	 change	 their	 status	 when
gathered	 together	 in	 one	 place.	 ...	 The	 key	 to
resolving	 the	 tension	 lies	 in	 understanding	 why
facts	 are	 not	 copyrightable:	 The	 sine	 qua	 non	 of
copyright	is	originality.

And:

Notwithstanding	 a	 valid	 copyright,	 a	 subsequent
compiler	remains	free	to	use	the	facts	contained	in
another’s	 publication	 to	 aid	 in	 preparing	 a
competing	 work,	 so	 long	 as	 the	 competing	 work
does	 not	 feature	 the	 same	 selection	 and
arrangement.

Based	 on	 this	 opinion,	 anyone	 has	 the	 right	 to
extract	 facts	 from	 proprietary	 documentation	 and
carefully	 re-express	 those	 facts	 in	 their	 own	 selection
and	 arrangement.	 Just	 as	 the	 facts	 that	 “John	 Doe’s
phone	number	is	555-1212”	and	“John	Doe’s	address	is
10	Main	St.”	are	not	copyrightable,	facts	such	as	“The
interrupt	controller’s	base	address	is	0xA0060000”	and
“Bit	 1	 controls	 status	 reporting	 of	 the	 LCD”	 aren’t
copyrightable,	 either.	 Sean	 and	 I	 extracted	 such	 facts
from	 datasheets	 and	 re-expressed	 them	 in	 our	 own
header	files	where,	as	the	legal	owners	of	newly	created
expressive	 speech,	 we	 applied	 a	 proper	 open	 source
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license	of	our	choice.

MAKING	A	PROGRAMMING	LANGUAGE
But	the	situation	was	further	complicated	by	hardware
blocks	 we	 had	 absolutely	 no	 documentation	 for.	 In
some	 cases,	 we	 couldn’t	 even	 learn	 what	 a	 block’s
registers	meant	 or	 how	 the	 blocks	 functioned	 from	 a
datasheet.	For	 these	 blocks,	we	 isolated	 and	 extracted
the	 code	 responsible	 for	 initializing	 their	 state.	 We
then	 reduced	 this	 code	 into	 a	 list	 of	 address	 and	data
pairs,	 and	 expressed	 it	 in	 a	 custom	 scripting	 language
we	 called	 scriptic.	 We	 invented	 our	 own	 language	 to
avoid	 subconscious	 plagiarism—it’s	 too	 easy	 to	 read
one	piece	of	code	and,	from	memory,	code	something
almost	exactly	the	same.	By	transforming	the	code	into
a	 new	 language,	we	were	 forced	 to	 consider	 the	 facts
presented	 and	 express	 them	 in	 an	 original
arrangement.

Scriptic	 is	 basically	 a	 set	 of	 assembler	 macros,	 and
the	 syntax	 is	 very	 simple.	 Here	 is	 an	 example	 of	 a
scriptic	script:

#include
"scriptic.h"
#include
"fernvale-pll.h"

sc_new
"set_plls",
1,
0,
0
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sc_write16
0,
0,
PLL_CTRL_CON2


sc_write16
0,
0,
PLL_CTRL_CON3


sc_write16
0,
0,
PLL_CTRL_CON0


sc_usleep
1



sc_write16
1,
1,
PLL_CTRL_UPLL_CON0


sc_write16
0x1840,
0,
PLL_CTRL_EPLL_CON0


sc_write16
0x100,
0x100,
PLL_CTRL_EPLL_CON1


sc_write16
1,
0,
PLL_CTRL_MDDS_CON0


sc_write16
1,
1,
PLL_CTRL_MPLL_CON0


sc_usleep
1



sc_write16
1,
0,
PLL_CTRL_EDDS_CON0


sc_write16
1,
1,
PLL_CTRL_EPLL_CON0


sc_usleep
1



sc_write16
0x4000,
0x4000,
PLL_CTRL_CLK_CONDB


sc_usleep
1



sc_write32
0x8048,
0,
PLL_CTRL_CLK_CONDC


/*
Run
the
SPI
clock
at
104
MHz
*/


sc_write32
0xd002,
0,
PLL_CTRL_CLK_CONDH


sc_write32
0xb6a0,
0,
PLL_CTRL_CLK_CONDC


sc_end

This	script	initializes	the	Phase	Locked	Loop	(PLL,
a	circuit	for	generating	clock	waveforms)	on	the	target
chip	 for	 Fernvale,	 the	 MediaTek	 MT6260.	 To
contrast,	here	are	the	first	few	lines	of	the	code	snippet
from	which	that	scriptic	code	was	derived:

//
enable
HW
mode
TOPSM
control
and
clock
CG
of
PLL
control

*PLL_PLL_CON2
=
0x0000;
//
0xA0170048,
bit
12,
10
and
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8
set
to
0
























//
to
enable
TOPSM
control
























//
bit
4,
2
and
0
set
to
0
to
enable
























//
clock
CG
of
PLL
control
*PLL_PLL_CON3
=
0x0000;
//
0xA017004C,
bit
12
set
to
0
to
enable
























//
TOPSM
control

//
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delay
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//
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;
i++);

//
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reset
UPLL
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*PLL_UPLL_CON0
=
reg_val;
//
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bit
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to
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enable
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and


























//
generate
reset
of
UPLL

The	 original	 code	 actually	 goes	 on	 for	 pages	 and
pages,	 and	 even	 this	 snippet	 is	 surrounded	 by
conditional	 statements,	 which	 we	 culled	 as	 they	 were
irrelevant	to	initializing	the	PLL	correctly.

Knowledge	of	our	rights,	a	pool	of	documentation	to
extract	 facts	 from,	 and	 scriptic	 were	 tools	 in	 our
armory.	 With	 them,	 Sean	 and	 I	 derived	 sufficient
functionality	 for	 our	 Fernvale	 project	 to	 eventually

233



boot	a	small,	BSD-licensed,	real-time	operating	system
(RTOS)	known	as	NuttX,	running	on	our	own	custom
hardware.	I’ll	go	more	into	the	gory	details	of	how	we
did	that	in	Chapter	9.

CLOSING	THOUGHTS
Rights	 atrophy	 and	 get	 squeezed	 out	 by	 competing
interests	if	they	aren’t	vigorously	exercised.	Sean	and	I
did	 Fernvale	 because	 we	 think	 it’s	 imperative	 to
exercise	 our	 fair	 use	 rights	 to	 reverse	 engineer	 and
create	 interoperable,	 open	 source	 solutions.	 For
decades,	 engineers	 have	 sat	 on	 the	 sidelines	 and	 seen
ever	more	expansive	patent	 and	copyright	 laws	 shrink
their	 latitude	 to	 learn	 freely	 and	 to	 innovate.	 I’m	 sad
that	the	formative	tinkering	I	did	as	a	child	is	no	longer
a	legal	option	for	the	next	generation	of	engineers.

The	 rise	 of	 the	 shanzhai	 and	 their	 amazing
capabilities	is	a	wake-up	call.	I	see	it	as	evidence	that	a
permissive	IP	environment	spurs	innovation,	especially
at	 the	 grassroots	 level.	 If	 more	 engineers	 learn	 their
fair	 use	 rights	 and	 exercise	 them	 vigorously	 and
deliberately,	 perhaps	 this	 can	 catalyze	 a	 larger	 and
much-needed	 reform	 of	 the	 patent	 and	 copyright
system.	 Our	 Fernvale	 project	 is	 hopefully	 just	 a
signpost	 pointing	 the	 way	 for	much	 bigger	 efforts	 to
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bridge	 the	 gap	 between	 the	 gongkai	 and	 open	 source
communities.

Being	 able	 to	 cherry-pick	 the	 positive	 aspects	 of
gongkai	into	the	Western	IP	ecosystem	is	an	important
tool.	Rule	of	law	has	its	place,	and	an	overly	permissive
system	 has	 its	 own	 problems.	 The	 next	 chapter
explores	 some	 of	 the	 negative	 consequences	 of	 an
overly	 permissive	 IP	 ecosystem:	 fake	 and	 counterfeit
goods.
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5.	fake	goods

The	 gongkai	 system	 fosters	 an	 amazing	 amount	 of
innovation	 in	 China,	 and	 the	 shanzhai	 can	 make
interesting	 original	 products,	 like	 the	 cell	 phones	 I
showed	 you	 in	 Chapter	 4.	 That	 said,	 China	 does
produce	 plenty	 of	 fake	 electronic	 goods,	 and	 they
aren’t	 all	 knockoff	 iPhones.	Clever	 counterfeiters	 can
produce	 fake	 integrated	 circuits,	 including	 microSD
cards	and	even	FPGAs.

WELL-EXECUTED	COUNTERFEIT	CHIPS
For	 instance,	 in	 2007	 (while	 I	 was	 still	 working	 with
Chumby)	I	encountered	some	counterfeit	chips	so	well
executed	 that	 I	 couldn’t	 be	 certain	 they	 were	 fake
without	investigating.
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Two	suspicious	chip	specimens	from	an	Asian	source

The	 chips	 claimed	 to	 be	 ST19CF68s,	 a	 chip	made
by	STMicroelectronics	 and	described	on	 its	datasheet
as	 a	 “CMOS	 MCU	 Based	 Safeguard	 Smartcard	 I/O
with	Modular	Arithmetic	Processor.”	ST19CF68	chips
are	 normally	 sold	 prepackaged	 in	 smartcard	 (for
example,	the	chip	on	the	front	of	a	credit	card)	or	diced
wafer	 (a	 silicon	wafer	 that’s	been	diced	 into	 individual
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chips,	but	with	no	other	package	around	it)	format,	but
curiously,	 these	 were	 SOIC-20	 packaged	 devices.	 To
find	 out	 the	 reason	 for	 the	 odd	 package	 choice,	 I
dissolved	the	black	epoxy	packaging	off	the	top	of	one
chip	to	decapsulate	it	so	I	could	inspect	the	silicon	on
the	inside	using	a	microscope.

The	die	inside	the	package	was	much	too	small	and
simple	 for	 a	 complex	 microcontroller	 unit	 (MCU)
matching	 the	 description	 of	 the	 ST19CF68.	 The
pattern	of	gold-colored	rectangles	tiled	across	the	chip
was	too	coarse;	I	could	make	out	individual	transistors
at	 low	 zoom	with	 an	 optical	microscope.	The	 size	 of
these	 features	 is	 referred	 to	 as	 the	 chip’s	 process
geometry.	The	process	geometry	of	 a	 smartcard	would
typically	trail	a	cutting-edge	CPU	by	at	most	three	or
four	 generations,	 making	 transistors	 very	 difficult	 to
resolve	even	at	the	highest	levels	of	zoom.
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The	silicon	inside	the	fake	ST19CF68

Along	 with	 the	 unexpectedly	 coarse	 process
geometry,	why	did	this	part	have	20	bondable	pads	and
20	 pins	 when,	 according	 to	 the	 datasheet,	 it	 should
have	only	8	pads?	Zooming	in	a	bit	on	the	die	revealed
some	interesting	details.
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The	chip	manufacturer	and	copyright	date

The	 chip	wasn’t	made	by	STMicroelectronics	 after
all!	The	label	on	the	silicon	said	FSC,	indicating	it	was
made	 by	 Fairchild	 Semiconductor.	 Of	 course,	 then	 I
had	to	check	the	part	label	on	the	silicon,	too.
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Discovering	the	true	part	number

The	die	within	that	chip	turned	out	to	be	a	Fairchild
74LCX244,	 which	 is	 a	 “Low	 Voltage	 Buffer/Line
Driver	 with	 5V	 Tolerant	 Inputs	 and	 Outputs.”	 The
74LCX244	is	a	much	cheaper	piece	of	silicon	than	the
ST19CF68	the	package	supposedly	contained.

Of	course,	the	mismatched	pin	count	was	suspicious,
but	 manufacturers	 have	 been	 known	 to	 put	 chips	 in
larger	packages,	especially	during	early	runs	of	the	chip
before	it	has	been	size-optimized.	The	thing	that	really
got	me	was	the	convincing	quality	of	 the	package	and

241



the	markings.
Normally,	remarked	or	fake	chips	look	cheesier	than

this	 one.	 The	 original	 chips	 are	 sanded	 down	 or
painted	over	to	remove	the	previous	markings,	and	the
new	 marking	 is	 typically	 applied	 with	 silkscreened
paint.

But	these	chips	showed	no	evidence	of	remarking	at
all.	 The	 markings	 are	 of	 first-run	 quality:	 someone
acquired	unmarked	blanks	of	 the	74LCX244	chip	and
programmed	a	production	 laser	engraver	 to	put	high-
quality	 fake	markings	on	an	otherwise	virgin	package.
They	even	got	the	proportions	of	 the	ST	 logo	exactly
right.
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A	close-up	of	the	outside	of	the	fake	ST19CF68

The	quality	difference	between	a	remarked	chip	and
first-run	marking	is	like	the	quality	difference	between
spray	paint	used	to	hide	a	scratch	on	a	car	and	the	car’s
original,	 factory-fresh	 paint	 job.	 This	 chip	 definitely
had	the	“new	car”	look.

This	 discovery	 left	 me	 with	 a	 lot	 of	 unanswered
questions.	 How	 did	 someone	 acquire	 unmarked
Fairchild	 silicon?	 Was	 the	 person	 an	 insider,	 or	 did
Fairchild	 sloppily	 throw	 away	 unmarked	 reject	 chips
without	grinding	them	up	or	clipping	off	leads	so	they
couldn’t	be	picked	out	of	a	dumpster	and	resold?	The
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laser-marking	 machine	 used	 to	 make	 those	 markings
wasn’t	a	cheap	desktop	engraver,	either;	it	had	to	be	a
high-power	raster	engraver,	and	the	artwork	was	spot-
on.

I	 still	 find	 it	 hard	 to	 believe	 those	 fake	 chips	 were
made	and	sold,	but	maybe	I	shouldn’t.	I’ve	seen	brazen
remarking	 of	 dual	 inline	 memory	 modules	 (DIMMs,
the	memory	 used	 in	 personal	 computers)	 in	 the	 SEG
Electronics	 Market,	 and	 many	 counterfeiters	 at	 the
market	 openly	 display	 their	 arsenal	 of	 professional-
quality	 thermal	 transfer	 label	 printers	 and	 hologram
sticker	blanks.

If	 fakes	of	 this	quality	become	more	common,	 they
could	present	a	problem	for	the	supply	chain.	Clearly,
whoever	made	the	counterfeit	ST19CF68	can	fake	just
about	 any	 chip,	 and	 the	 fakes	 are	 gradually	 appearing
on	 the	 US	 market.	 Resellers,	 especially	 distributors
that	 specialize	 in	 buying	 excess	 manufacturer
inventory,	implicitly	trust	the	markings	on	a	chip.

I	don’t	 think	chipmakers	will	put	anticounterfeiting
measures	 on	 chip	 markings,	 but	 the	 quality	 of	 these
fakes	definitely	made	me	wary	when	I	discovered	them,
and	it	still	does.	Not	all	fakes	get	spotted	before	they’re
used,	 and	 fake	 components	 pose	 problems	 in	 any
project	where	they	appear.
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COUNTERFEIT	CHIPS	IN	US	MILITARY
HARDWARE
Counterfeit	chips	can	be	particularly	problematic	when
they	 find	 their	 way	 into	 military	 projects.	 The	 US
military	has	 a	 unique	problem:	 it’s	 one	of	 the	biggest
and	 wealthiest	 buyers	 of	 really	 old	 parts	 because
military	 designs	 have	 shelf	 lives	 of	 decades.	 Like
anything	 else,	 the	 older	 a	 part	 is,	 the	 harder	 it	 is	 to
find,	 and	 sometimes	 contractors	 are	 sold	 fakes.	 For
example,	 a	 2011	 Senate	 hearing	 report	 revealed	 that
some	parts	used	 in	 the	P-8	Poseidon	 (a	plane	 the	US
Navy	 commissioned	 from	 Boeing)	 were,	 as	 an	 article
from	 the	 Defense	 Tech	 website	 put	 it,	 “badly
refurbished,”	causing	a	key	system	to	fail.

The	US	government	attempted	to	reduce	fakes	in	its
supply	 chain	 with	 Amendment	 1092	 to	 the	 National
Defense	Authorization	Act	for	Fiscal	Year	2012	(H.R.
1540).	 The	 amendment	 is	 a	 well-intentioned	 but
misguided	 provision	 outlining	 measures	 designed	 to
reduce	 the	 prevalence	 of	 counterfeit	 chips	 in	 the	US
military	supply	chain.

Even	before	Amendment	1092	was	put	on	the	table,
the	 Defense	 Authorization	 Act	 drew	 flak	 for	 a
provision	that	authorizes	the	US	military	to	detain	US
citizens	 indefinitely	 without	 trial.	 It	 also	 rather
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ironically	requires	an	assessment	of	the	US	federal	debt
owed	 China	 as	 a	 potential	 “national	 security	 risk”
(section	1225	of	H.R.	1540).

Under	 the	 anticounterfeit	 amendment,	 first-time
offenders	 can	 receive	 a	 $5	 million	 fine	 and	 20-year
prison	 sentence	 for	 individuals,	 or	 a	 $15	million	 fine
for	 corporations—a	 penalty	 comparable	 to	 that	 of
trafficking	 cocaine.*	 While	 the	 amendment	 explicitly
defines	 counterfeit	 to	 include	 refurbished	 parts
represented	 as	 new,	 the	 wording	 is	 regrettably	 vague
on	 whether	 you	 must	 be	 willfully	 trafficking	 such
goods	to	also	be	liable	for	such	a	stiff	penalty.

If	you	took	a	dirty	but	legitimately	minted	coin	and
washed	 it	 so	 that	 it	 looked	 mint	 condition,	 nobody
would	 accuse	 you	 of	 counterfeiting.	 Yet	 this
amendment	puts	a	20-year,	$5	million	penalty	not	only
on	the	act	of	counterfeiting	chips	destined	for	military
use	but	also	potentially	on	the	unwitting	distribution	of
refurbished	 chips	 that	 you	 putatively	 bought	 as	 new.
Unfortunately,	in	many	cases	an	electronic	part	can	be
used	for	years	with	no	sign	of	external	wear.

The	 amendment	 also	 has	 a	 provision	 to	 create	 an
“inspection	program”:

(b)	Inspection	of	Imported	Electronic	Parts	—

(1)	 ...	 the	 Secretary	 of	 Homeland	 Security	 shall
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establish	a	program	of	enhanced	inspection	by	U.S.
Customs	 and	 Border	 patrol	 of	 electronic	 parts
imported	 from	 any	 country	 that	 has	 been
determined	 by	 the	 Secretary	 of	 Defense	 to	 have
been	 a	 significant	 source	 of	 counterfeit	 electronic
parts	...

Inspecting	 fruits	 and	 vegetables	 as	 they	 enter	 the
country	for	pests	and	other	problems	makes	sense,	but
requiring	 customs	 officers	 to	 become	 experts	 in
detecting	fake	electronic	components	seems	misguided.
Burdening	vendors	with	detecting	fakes	when	there	are
such	high	penalties	for	failure	is	also	misguided,	given
how	 easy	 it	 is	 for	 forgers	 to	 create	 high-quality
counterfeits.

Types	of	Counterfeit	Parts
To	 better	 understand	 the	 magnitude	 of	 the	 chip
counterfeiting	 problem,	 let’s	 look	 at	 how	 fakes	 are
made.	The	 fake	chips	 I’ve	 seen	 fall	 into	 the	 following
broad	categories.

EXTERNAL	MIMICRY
The	 most	 trivial	 counterfeit	 chips	 are	 simply	 empty
plastic	 packages	with	 authentic-looking	 top	marks,	 or
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remarked	parts	that	share	only	physical	traits	with	the
authentic	 parts.	 For	 example,	 a	 simple	 transistor-
transistor	logic	(TTL)	chip	might	be	placed	inside	the
same	package,	with	identical	markings,	as	an	expensive
microcontroller.

I	 consider	 external	 mimicry	 trivial	 because	 fakes
produced	 this	way	are	easy	 to	detect	 in	 a	 factory	 test.
At	 worst,	 you’re	 sold	 a	 mixture	 of	 mostly	 authentic
parts	with	a	few	counterfeits	blended	in	so	that	testing
just	one	part	out	of	a	tube	or	reel	isn’t	good	enough	to
catch	the	issue.	But	most	products	employ	100	percent
testing	at	 the	 system	 level,	 so	 typically	 the	problem	 is
discovered	before	anything	leaves	the	factory.

REFURBISHED	PARTS
Counterfeits	 don’t	 technically	 have	 to	 be	 fake	 at	 all,
though.	Refurbished	parts	are	authentic	chips	that	are
desoldered	from	e-waste	and	reprocessed	to	look	new.
They’re	 very	 difficult	 to	 spot	 since	 the	 chip	 is	 in	 fact
authentic,	 and	 a	 skilled	 refurbisher	 can	 produce
stunningly	 new-looking	 chips	 that	 only	 isotopic	 or
elemental	analysis	could	identify	as	used.

This	 category	 also	 includes	 parts	 that	 are	 “new”	 in
the	sense	that	they’ve	never	been	soldered	onto	a	board
but	have	been	 stored	 improperly,	 perhaps	 in	 a	humid
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environment.	 Such	 chips	 should	 be	 scrapped	 but	 are
sometimes	stuck	in	a	fresh	foil	pack	with	a	more	recent
date	code,	and	sold	as	new.

REBINNED	PARTS
Counterfeiters	 sometimes	 remark	 authentic	 parts	 that
have	never	been	used	(and	so	can	be	classified	as	new)
as	 a	 better	 version	 of	 an	 otherwise	 identical	 part.	 A
classic	example	is	grinding	and	remarking	CPUs	with	a
higher	 speed	 grade,	 or	 more	 trivially,	 marking	 parts
that	contain	lead	as	RoHS-compliant.

But	 rebinning	 can	 get	more	 sophisticated.	Vendors
may	 reverse	 engineer	 and	 reprogram	 the	 fuse	 codes
inside	 the	 remarked	 chip	 so	 that	 the	 chip’s	 electronic
records	 actually	 match	 the	 faked	 markings	 on	 top.
Vendors	 have	 also	 been	 known	 to	 hack	 flash	 drive
firmware	so	that	a	host	operating	system	will	perceive	a
small	memory	as	much	 larger.	Such	hacks	 even	go	 so
far	 as	 to	 “loop”	 memory	 so	 that	 writes	 beyond	 the
device	 capacity	 appear	 to	 succeed,	 thus	 requiring	 a
time-consuming	 full	 readback	 and	 comparison	 of	 the
written	data	to	detect	the	issue.

GHOST-SHIFT	PARTS
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Some	 fakes	 are	 created	 on	 the	 exact	 same	 fabrication
facility	as	authentic	parts;	they’re	run	very	late	at	night
by	 rogue	 employees	 without	 the	 manufacturer’s
authorization	 and	 never	 logged	 on	 the	 books.	 These
unlogged	production	runs	are	called	ghost	shifts.	It’s	like
an	employee	in	a	mint	striking	extra	coins	after-hours.
Ghost-shift	parts	are	often	assigned	a	lot	code	identical
to	 a	 legitimate	 run,	 but	 certain	 testing	 steps	 are
skipped.

Ghost	 shifts	 often	 use	 marginal	 material	 left	 over
from	 the	 genuine	 product	 that	 would	 normally	 be
disposed	 of	 but	 was	 intercepted	 on	 the	 way	 to	 the
grinder.	As	a	result,	the	markings	and	characteristics	of
the	 material	 often	 look	 absolutely	 authentic.	 These
fakes	can	be	extremely	hard	to	detect.

FACTORY	SCRAP
Factory	 rejects	 and	 prototype	 runs	 can	 be	 recovered
from	the	scrap	heap	for	a	small	bribe,	given	authentic
markings,	 and	 resold	 as	 new.	 To	 avoid	 detection,
workers	 often	 replace	 the	 salvaged	 scrap	 with
physically	 identical	 dummy	 packages,	 thus	 foiling
attempts	 to	 audit	 the	 scrap	 trail.	 This	 practice	 of
replacing	 salvageable	 scrap	 with	 dummy	 fakes	 helps
drive	 the	 market	 for	 the	 trivial	 “external	 mimicry”
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fakes.	The	 existence	 of	 an	 industry	 that	 supplies	 low-
quality	 fakes	 to	 dodge	 audits	 that	 would	 otherwise
prohibit	 high-quality	 fakes	 gives	 you	 an	 idea	 of	 how
sophisticated	 and	 mature	 the	 counterfeiting	 industry
has	become.

SECOND-SOURCING	GONE	BAD
Second-sourcing	 is	 a	 standard	 industry	 practice	 where
competitors	 create	 pin-compatible	 replacements	 for
popular	 products	 to	 drive	 price	 competition	 and
strengthen	the	supply	chain	against	events	like	natural
disasters.	The	practice	goes	bad	when	inferior	parts	are
remarked	with	the	logos	of	premium	brands.

High-value	 but	 functionally	 simple	 discrete	 analog
chips	 such	 as	 power	 regulators	 are	 particularly
vulnerable	 to	 this	 problem.	 Premium	 US-branded
power	 regulators	 sometimes	 fetch	 a	 price	 10	 times
higher	 than	 drop-in	 Asian-branded	 substitutes.
However,	 the	 Asian-branded	 parts	 are	 notorious	 for
spotty	 quality,	 cut	 corners,	 and	 poor	 parametric
performance.	 Clearly,	 there	 is	 ample	 opportunity	 for
counterfeiters	 to	 make	 a	 lot	 of	 money	 by	 buying
unmarked	 chips	 from	 the	 second-source	 fab	 and
remarking	 them	 with	 authentic-looking	 top	 marks	 of
premium	 US	 brands.	 In	 some	 cases,	 there	 are	 no
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inexpensive	or	 fast	 tests	 to	detect	 these	 fakes,	short	of
decapsulating	 the	 chip	 and	 comparing	 mask	 patterns
and	cross-sections,	as	I	did	for	the	ST19CF68.

Fakes	and	US	Military	Designs
The	 variety	 of	 counterfeiting	 methods	 available,
combined	 with	 the	 fact	 that	 many	 commodity	 parts
have	production	cycles	of	only	a	 few	years,	presents	a
big	problem	for	institutions	like	the	US	military,	where
design	lifetimes	are	often	measured	in	decades.	It’s	like
asking	 someone	 to	 build	 a	 NeXTcube*	 motherboard
today	 using	 only	 certifiably	 new	 parts,	 with	 no
secondhand	or	refurbished	parts	allowed.	I	don’t	think
it’s	possible.

The	 impossibility	 of	 this	 situation	 may	 sometimes
make	 military	 contractors	 complicit	 in	 the
consumption	of	 counterfeit	parts	 to	bad	effect.	 In	 the
P-8	Poseidon	case,	people	were	quick	to	point	fingers
at	 China,	 but	 a	 poor	 refurbishing	 job	 is	 probably
detectable	with	a	simple	visual	 inspection.	Maybe	part
of	 the	 problem	 is	 that	 a	 subcontractor	 was	 lax	 in
checking	 incoming	 stock—or	 perhaps	 looking	 the
other	way.	If	those	parts	were	the	last	of	their	kind	in
the	world,	what	else	could	be	done?

My	guess	is	that	the	stocks	of	any	distributor	in	the
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secondhand	 electronics	 business	 are	 already	 flooded
with	undetected	counterfeits.	Remember,	only	the	bad
fakes	 are	 ever	 caught,	 and	 chip	 packaging	 was	 not
designed	 with	 anticounterfeiting	 measures	 in	 mind.
While	 all	 gray-market	 parts	 are	 suspect,	 that’s	 not
necessarily	a	bad	thing.

Gray	markets	play	an	essential	role	in	the	electronics
ecosystem;	 using	 them	 is	 a	 calculated,	 but	 sometimes
unavoidable,	 risk.	 In	 fact,	 many	 traders	 in	 the	 gray
market	 are	 very	 upfront	 about	 their	 goods	 being
recycled.	 Many	 even	 post	 signs	 on	 their	 stalls
advertising	 this	 fact.	However,	 these	 signs	 are	written
in	Chinese.	In	that	case,	whose	fault	is	it—the	seller	for
selling	recycled	goods,	or	the	buyer	for	not	being	able
to	read	the	sign?

Anticounterfeit	Measures
The	 counterfeit	 chip	 situation	 is	 a	 mess,	 but	 some
simple	measures	could	fix	it.

PHYSICAL	IDENTIFIERS
Embedding	anticounterfeit	measures	in	chips	approved
for	military	use	 is	one	option.	For	chips	 larger	 than	1
cm	wide,	a	unique	2D	barcode	could	be	laser-engraved
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by	 equipment	 relatively	 common	 in	 chip	 packaging
facilities.	Despite	a	 tiny	 footprint,	 the	codes	would	be
backed	 with	 a	 guarantee	 of	 100	 percent	 uniqueness.
Such	techniques	are	effective	in	biotech,	where	systems
like	Matrix	2D	track	disposable	sample	tubes	in	biology
labs.

Another	potential	 solution	 is	 to	mix	 a	UV	dye	 into
the	 component’s	 epoxy	 that	 changes	 fluorescence
properties	 upon	 exposure	 to	 reflow	 temperatures—a
consistent	 set	 of	 well-defined	 temperatures	 at	 which
solder	melts.	This	makes	 it	 impossible	 to	 recondition
the	chip	to	a	“new”	state	after	it’s	been	soldered	down
the	 first	 time.	 If	 the	 dye	 is	 distributed	 through	 the
entire	 package	 body,	 it	 will	 be	 impossible	 to	 remove
with	surface	grinding	alone.

CHANGING	HOW	E-WASTE	IS
HANDLED
Managing	e-waste	more	effectively	would	also	alleviate
the	 counterfeit	 problem.	E-waste	 is	 harvested	 in	 bulk
for	 used	 parts.	 Crudely	 desoldered	MSM-series	 chips
—the	 brains	 of	many	Android	 smartphones,	made	 by
Qualcomm	 and	 marketed	 under	 the	 brand	 name	 of
Snapdragon—are	purchasable	by	the	pound,	at	around
10	 cents	 per	 chip.	 Counterfeiters	 clean	 up	 the	 chips,
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reball	 (that	 is,	 add	new	solder	balls,	 for	ball-grid	array
packages)	and	sometimes	remark	 them,	put	 them	into
tapes	 and	 reels,	 and	 sell	 them	 as	 brand-new,
commanding	a	markup	10	times	the	original	purchase
price.	 A	 single	 batch	 of	 refurbished	 chips	 can	 net
thousands	of	dollars,	making	the	practice	a	compelling
source	 of	 income	 for	 skilled	 workers	 who	 would
otherwise	 earn	 $200	 per	 month	 in	 a	 factory	 doing
exactly	 the	 same	 thing.*	 (Factories	 are	 typically
authorized	 to	 recover	 chips	 off	 of	 defective	 boards	 or
consumer	returns	that	can’t	be	repaired.)

If	 the	 United	 States	 stopped	 shipping	 e-waste
overseas	 for	 disposal,	 or	 at	 least	 ground	 up	 the	 parts
before	shipping	 them,	 then	the	supply	 for	refurbished
chip	 markets	 would	 decrease.	 Domestic	 e-waste
processing	would	 also	 create	more	 jobs,	 a	 resource	 as
valuable	as	gold.

On	 the	 other	 hand,	 I	 think	 component-level
recycling	 is	 quite	 good	 for	 the	 environment	 and	 the
human	 ecosystem	 in	 the	 long	 term.	 Most	 electronic
parts	 will	 function	 perfectly	 for	 years	 beyond	 a
consumer’s	 trash	bin,	 and	 emerging	 economies	 create
technology-hungry	markets	that	can’t	afford	new	parts
purchased	on	the	primary	market.
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KEEPING	A	RESERVE	OF	AUTHENTIC
PARTS
A	 final	 option	 to	 ensure	 trustworthiness	 for	 critical
military	 hardware	 could	 be	 to	 establish	 a	 strategic
reserve	of	parts.	A	production	run	of	military	planes	is
limited	 to	 perhaps	 hundreds	 of	 units,	 a	 small	 volume
compared	 to	 consumer	 electronics	 production	 runs.	 I
imagine	 the	 lifetime	 demand	 of	 a	 part,	 including
replacements,	 is	 limited	 to	 tens	of	 thousands	of	units.
Physically,	 then,	 a	 parts	 reserve	 isn’t	 unmanageable:
10,000	chips	will	fit	inside	a	large	shoebox.

Financially,	 I	 estimate	 purchasing	 a	 reserve	 of	 raw
replacement	 components	 for	 critical	 avionics	 systems
would	add	only	a	fraction	of	a	percent	to	the	cost	of	an
airplane.	This	could	even	lead	to	long-term	savings,	as
manufacturers	 can	 achieve	 greater	 scale	 efficiency	 if
they	run	one	large	batch	all	at	once.

Obviously,	 anticounterfeit	 measures	 would	 be
incredibly	 useful	 in	 civilian	 projects,	 too.	 I	 have
sympathy	for	anyone	who	has	to	deal	with	counterfeit
parts,	 as	 I	 myself	 have	 been	 burned	 on	 several
occasions.	Here’s	a	tale	of	a	particularly	annoying	issue
I	ran	into	during	my	work	on	the	chumby	One.

FAKE	MICROSD	CARDS
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In	December	2009,	in	the	middle	of	the	chumby	One’s
production	run,	I	set	out	on	a	forensic	investigation	to
find	the	truth	behind	some	irregular	Kingston	memory
cards.	 The	 factory	 called	 to	 tell	 me	 that	 SMT	 yield
dropped	dramatically	on	one	lot	of	chumby	Ones,	so	I
drove	over	 to	 see	what	 I	 could	do	 to	 fix	 the	problem.
After	 poking	 and	 prodding	 at	 some	 chumby	 Ones,	 I
realized	 that	 all	 failing	 units	 had	 Kingston	 microSD
cards	from	a	particular	lot	code.	I	had	the	factory	pull
the	 entire	 lot	 of	 microSD	 cards	 from	 the	 line	 and
rework	 the	 units	 that	 had	 these	 cards	 loaded.	 After
swapping	the	cards,	yield	returned	to	normal.

The	story	should	have	ended	there.	In	this	situation,
I’d	 usually	 get	 a	 return	 merchandise	 authorization
(RMA)	 from	the	manufacturer	 for	 the	defective	parts,
exchange	the	lot	for	parts	that	work,	and	move	on.	But
I	had	a	couple	of	problems.

First,	 Kingston	 wouldn’t	 take	 the	 cards	 back,
because	 we	 programmed	 them.	 Second,	 there	 were	 a
lot	 of	 defective	 cards	 (about	 1,000	 altogether,	 and
chumby	was	already	deeply	backordered),	and	memory
cards	 aren’t	 cheap.	 This	 type	 of	 memory	 card	 cost
around	 $4	 or	 $5	 at	 the	 time,	 leaving	 a	 few	 thousand
dollars	 in	 scrap	 if	 we	 couldn’t	 get	 them	 exchanged.
Chumby	 couldn’t	 afford	 to	 sneeze	 at	 a	 few	kilobucks,
so	I	kicked	into	forensics	mode.
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Visible	Differences
Irregular	 external	 markings	 were	 the	 first	 suspicious
feature	I	noticed	about	the	defective	Kingston	cards.

An	irregular	microSD	card	(left)	and	a	normal	card	(right).
The	arrows	and	circles	show	suspicious	differences.

The	 strangest	 physical	 difference	 was	 that	 the	 lot
code	 on	 the	 irregular	 card	 was	 silkscreened	 with	 the
same	stencil	as	the	main	logo.	Silkscreening	a	lot	code
isn’t	unusual,	but	typically,	the	manufacturer	won’t	use
the	 same	 stencil	 for	 the	 lot	 code	 and	 the	 logo.	There
should	 be	 some	 variance	 in	 the	 coloration,	 font,	 or
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alignment	of	the	lot	code	from	the	rest	of	the	text.	The
entire	 batch	 of	 irregular	 cards	 also	 had	 the	 same	 lot
code	 (N0214-001.A00LF).	 Typically,	 the	 lot	 code
changes	at	 least	every	couple	hundred	cards.	Contrast
the	irregular	card	with	the	normal	card,	which	is	laser-
marked.	The	normal	cards’	lot	codes	varied	with	every
tray	of	96	units.

The	second	strange	feature	was	subtler	and	perhaps
not	 damning:	 an	 irregularity	 in	 the	 microSD	 logo.
Brand-name	 vendors	 like	 Kingston	 are	 very	 picky
about	the	accuracy	of	their	logos:	SanDisk	cards	have	a
broken	D,	but	Kingston	cards	sold	in	the	United	States
almost	universally	use	a	solid	D.

Investigating	the	Cards
Oddities	 in	 the	 external	markings	were	 just	 the	 start.
When	 I	 read	 the	 electronic	 card	 ID	 data	 on	 the	 two
cards	(by	checking	/sys	entries	in	Linux),	this	is	what	I
found	in	the	irregular	card:

cid:41343253443247422000000960400049
csd:002600325b5a83a9e6bbff8016800095
date:00/2000
fwrev:0x0
hwrev:0x2
manfid:0x000041
name:SD2GB
oemid:0x3432
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scr:0225000000000000
serial:0x00000960

And	this	is	what	I	found	in	the	normal	card:

cid:02544d5341303247049c62cae60099dd
csd:002e00325b5aa3a9ffffff800a80003b
date:09/2009
fwrev:0x4
hwrev:0x0
manfid:0x000002
name:SA02G
oemid:0x544d
scr:0225800001000000
serial:0x9c62cae6

First,	 notice	 the	 date	 code	 on	 the	 irregular	 card.
Dates	 are	 counted	 as	 the	 offset	 from	 00/2000	 in	 the
CID	 field,	 so	 a	 value	 of	 00/2000	 means	 the
manufacturer	 didn’t	 bother	 to	 assign	 a	 date.
Furthermore,	 in	 the	 year	 2000,	 2GB	 microSD	 cards
didn’t	 even	 exist.	 Also,	 the	 serial	 number	 on	 the
defective	 card	 is	 very	 low:	 in	decimal,	 0x960	 is	 2,400.
Other	 cards	 in	 the	 irregular	 batch	 had	 similarly	 low
serial	numbers,	in	the	hundreds	or	thousands.

For	 a	 popular	 product	 like	 a	 microSD	 card,	 the
chance	of	getting	the	very	first	units	out	of	a	factory	is
pretty	 remote.	 For	 example,	 the	 serial	 number	 of	 the
normal	 card	 is	 0x9C62CAE6	 in	 hexadecimal,	 or
2,623,720,166	in	decimal,	which	is	much	more	feasible.
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Very	 low	 serial	 numbers,	 like	 very	 low	 MAC	 ID
addresses,	are	hallmarks	of	a	ghost	shift.

Finally,	the	manufacturer’s	ID	on	the	irregular	card
is	0x41	(capital	A	in	ASCII),	which	I	didn’t	recognize.*
The	 original	 equipment	 manufacturer	 identification
(OEMID)	number	was	0x3432—an	ASCII	42,	which	is
one	more	than	the	hex	value	for	the	manufacturer	ID.
Manufacturer	 IDs	 are	 usually	 the	 ASCII	 character
given	 by	 the	 hexadecimal	 value,	 not	 the	 hexadecimal
values	 themselves.	 Confusing	 hex	 and	 ASCII	 is	 a
possible	 sign	 that	 someone	who	 didn’t	 appreciate	 the
meaning	of	the	fields	was	running	a	ghost	shift	making
these	cards.

Were	the	MicroSD	Cards	Authentic?
Armed	 with	 this	 evidence,	 Chumby	 confronted	 the
Kingston	distributor	in	China	and	Kingston’s	US	sales
representative.	 We	 asked	 whether	 the	 cards	 were
authentic	 and,	 if	 so,	 why	 the	 serialization	 codes	were
irregular.	 After	 some	 time,	 Kingston	 swore	 the	 cards
were	authentic,	not	fakes,	but	it	did	reverse	its	position
on	exchanging	the	cards.	The	company	took	back	 the
programmed	 cards	 and	 gave	 us	 new	 ones,	 no	 further
questions	asked.

However,	 Kingston	 never	 said	 why	 the	 card	 ID
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numbers	were	irregular.	I	know	Chumby	was	small	fry
compared	 to	 the	Nokias	 of	 the	world,	 but	 companies
should	 still	 answer	 basic	 questions	 about	 quality
control,	 even	 for	 small	 fry.	 I	 was	 once	 accidentally
shipped	 an	 old	 version	 of	 a	Quintic	 part,	 and	 once	 I
could	prove	the	 issue,	I	received	world-class	customer
service	 from	 Quintic.	 The	 company	 gave	 me	 a
thorough	 explanation	 and	 immediately	 paid	 for	 a	 full
exchange	of	the	parts.	That	was	exemplary	service,	and
I	 commend	 and	 strongly	 recommend	 Quintic	 for	 it.
Kingston,	on	the	other	hand,	did	not	set	an	example	to
follow.

I’d	normally	have	disqualified	Kingston	as	a	vendor,
but	 I	was	persistent.	 It	was	disconcerting	 that	 a	high-
profile,	 established	 brand	 would	 stand	 behind	 such
irregular	 components.	 Who	 could	 say	 SanDisk	 or
Samsung	 wouldn’t	 do	 the	 same?	 Price	 erosion	 at	 the
time	 hit	 flash	 vendors	 hard,	 and	 as	 small	 fry,	 I	 could
have	 been	 taken	 advantage	 of	 by	 any	 of	 those
companies	 as	 a	 sink	 for	marginal	material	 to	 improve
their	 bottom	 line.	 Given	 the	 relatively	 high	 cost	 of
microSD	cards,	I	needed	 incoming	quality	control	(IQC)
guidelines	for	 inspections	to	follow	to	accept	or	reject
shipments	 from	memory	vendors	based	on	 set	quality
standards.	 To	 develop	 those	 guidelines,	 I	 continued
digging	for	the	truth	behind	those	cards.
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Further	Forensic	Investigation
First,	 I	 collected	 a	 lot	 of	 sample	 microSD	 cards.	 I
wanted	 to	 collect	 both	 regular	 and	 irregular	 cards	 in
the	wild,	 so	 I	went	 to	 the	Hua	Qiang	Bei	district	and
wandered	around	the	gray	markets	 there.	I	bought	10
memory	cards	from	small	vendors,	at	prices	from	30	to
50	RMB	($4.40	to	$7.30	USD).

Shopping	 for	 irregular	 cards	 was	 interesting.	 In
talking	 to	 a	 couple	 dozen	 vendors,	 I	 learned	 that
Kingston,	as	a	brand,	was	weak	in	China	for	microSD
cards.	 SanDisk	 did	 a	 lot	more	marketing,	 so	 SanDisk
cards	 were	 much	 easier	 to	 find	 on	 the	 open	 market,
and	the	quality	of	gray-market	SanDisk	cards	was	fairly
consistent.

Small	vendors	were	also	entirely	brazen	about	selling
well-crafted	fakes.	They	had	bare	cards	sitting	loose	in
trays	 in	 the	 display	 case.	 (Page	 11	 in	 Chapter	 1	 has
photos	 showing	what	 an	 SD	 card	 vendor’s	 stall	 looks
like.)	 Once	 I	 agreed	 on	 a	 price	 and	 committed	 to
buying	 a	 card,	 the	 vendor	 tossed	 a	 loose	 card	 into	 a
“real”	Kingston	retail	package,	miraculously	pulled	out
a	certificate—complete	with	hologram,	serial	numbers,
and	 a	 kingston.com	 URL	 to	 visit	 to	 validate	 the
purchase—and	 slapped	 the	 certificate	 on	 the	 back	 of
the	retail	package	right	in	front	of	my	eyes.
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A	freshly	purchased	Kingston	microSD	card.	It	was	just	like
new!

One	 vendor	 particularly	 interested	 me.	 There	 was
literally	a	mom,	a	pop,	and	one	young	child	sitting	in	a
small	 stall	 of	 the	 mobile	 phone	 market.	 They	 were
busily	 slapping	 dozens	 of	 non-Kingston	 cards	 into
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Kingston	 retail	 packaging.	They	had	no	desire	 to	 sell
to	me,	but	I	was	persistent.	This	card	interested	me	in
particular	 because	 it	 also	 had	 the	 broken	D	 logo,	 but
no	Kingston	marking.	The	preceding	photo	is	the	card
and	the	package	it	came	in;	the	card	is	Sample	4	in	the
next	 section,	where	 you	 can	 see	 a	 detailed	 analysis	 of
seven	different	microSD	cards	from	my	shopping	trip.

Gathering	Data
After	 collecting	my	 samples,	 I	 read	 out	 their	 card	 ID
information	by	checking	their	/sys	entries	under	Linux
and	then	decapsulated	(that	is,	dissolved)	their	packages
with	nitric	acid.	As	you	can	see	in	the	photos	in	Table
2,	my	decapsulation	technique	was	pretty	crude.	Most
of	 the	 damage	 to	 the	 cards	 came	 from	 removing
dissolved	encapsulant	with	acetone	and	a	Q-tip.	 I	had
to	 get	 a	 little	 rough,	 which	 didn’t	 do	 the	 bond	wires
any	favors.	But	it	was	good	enough	for	my	purposes.

Here’s	all	the	basic	information	I	pulled	from	those
cards:

Sample	1	The	irregular	card	that	started	this	whole
investigation.	 It	 was	 purchased	 through	 a
sanctioned	 Kingston	 distributor	 in	 China,	 and	 to
the	 best	 of	 my	 knowledge,	 none	 were	 shipped	 to
Chumby’s	 end	 customers.	 MID	 =	 0x000041,
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OEMID	=	0x3432,	serial	=	0x960,	name	=	SD2GB.

Sample	2	A	normal	card	that	I	purchased	from	the
same	 sanctioned	 Kingston	 distributor	 in	 China
where	 I	 bought	 Sample	 1.	 It	 was	 typical	 of
microSD	 cards	 actually	 shipped	 in	 the	 first	 lot	 of
chumby	 Ones.	 MID	 =	 0x000002,	 OEMID	 =
0x544D,	serial	=	0x9C62CAE6,	name	=	SA02G.

Sample	 3	 A	 Kingston	 card	 purchased	 through	 a
major	US	retail	chain.	MID	=	0x000002,	OEMID	=
0x544D,	 serial	 =	 xA6EDFA97,	 name	 =	 SD02G.
Note	 how	 the	MID	 and	OEMID	 are	 identical	 to
those	Sample	2,	but	not	Sample	1.

Sample	 4	 The	 non-Kingston	 card	 I	 saw	 slapped
into	 Kingston-marked	 packaging,	 bought	 on	 the
open	 market	 in	 Shenzhen.	 MID	 =	 0x000012,
OEMID	 =	 0x3456,	 serial	 =	 0x253,	 name	 =	 MS.
Note	the	low	serial	number.

Sample	5	A	device	from	a	more	established	retailer
in	the	Shenzhen	market.	I	bought	it	because	it	had
the	XXX.A00LF	marking,	like	my	original	irregular
card.	MID	=	0x000027,	OEMID	=	0x5048,	serial	=
0x7CA01E9C,	name	=	SD2GB.

Sample	 6	 A	 SanDisk	 card	 bought	 on	 the	 open
market	 from	 a	 sketchy	 shop	 run	 by	 a	 sassy	 chain-
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smoking	girl	who	wouldn’t	 stop	 texting.	 I	 actually
acquired	 three	 total	 SanDisk	 cards	 from	 different
sketchy	 sources,	 but	 all	 of	 them	 checked	 out	with
the	 same	CID	 info,	 so	 I	opened	only	one.	MID	=
0x000003,	 OEMID	 =	 0x5344,	 serial	 =
0x114E933D,	name	=	SU02G.

Sample	 7	 A	 Samsung	 card	 that	 I	 bought	 from	 a
Samsung	 wholesale	 distributor.	 I	 didn’t	 scan	 this
one	 before	 decapsulating	 it,	 and	 the	 card	 actually
had	no	markings	on	the	outside	(it	was	blank,	with
just	 a	 laser	 mark	 on	 the	 back),	 so	 I	 didn’t
photograph	 it.	From	appearances	alone,	 it	was	 the
sketchiest	of	 the	bunch,	but	 it	was	one	of	 the	best
built.	You	can’t	 judge	a	book	by	 its	 cover!	MID	=
0x00001B,	 OEMID	 =	 0x534D,	 serial	 =
0xB1FE8A54,	name	=	00000.

That’s	a	 lot	of	data,	and	I	had	my	work	cut	out	 for
me	in	drawing	some	kind	of	useful	conclusion	from	it
all.

NOTE

Interestingly,	one	SanDisk	card	from	three	in	Sample	6
turned	out	to	be	used	and	only	quick-formatted.	With
help	from	some	recovery	software,	I	found	DLLs,
WAVs,	maps,	and	VeriSign	certificates	belonging	to
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Navione’s	Careland	GPS.	Someday,	I’ll	acquire	lots	of
refurb	microSD	cards	and	collect	interesting	data	from
them.

Table	2:	A	Breakdown	of	All	the	Cards	Collected	for	the
Investigation
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Summarizing	My	Findings
Here	are	the	most	interesting	high-level	conclusions	I
drew	from	my	survey:

•	The	“normal”	Kingston	cards	(Samples	2	and	3)	were
fabricated	by	Toshiba,	as	indicated	by	the	flash	die
markings	and	their	OEMIDs.	In	ASCII,	0x544D	is
TM,	presumably	for	Toshiba	Memory.	These	cards
employ	Toshiba	controllers	and	Toshiba	memory
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chips	and	seem	to	be	of	good	quality.	Thankfully,
they	were	only	ones	sent	to	Chumby	customers.

•	The	irregular	card	(Sample	1)	used	the	same
controller	chip	as	the	outright	fake	(Sample	4)	I
bought	in	the	market.	Both	the	irregular	Kingston
and	the	fake	Kingston	had	low	serial	numbers	and
wacky	ID	information.	Both	of	these	cards	exhibited
abnormal	operation	under	certain	circumstances.	I
still	hesitate	to	call	Kingston’s	irregular	card	a	fake,	as
that’s	a	very	strong	accusation,	but	its	construction
was	similar	to	another	card	of	clearly	questionable
quality,	which	leads	me	to	question	Kingston’s	choice
of	authorized	manufacturing	partners.

•	The	irregular	card	is	the	only	card	in	the	group	that
does	not	use	a	stacked	CSP	construction.	Instead,	it
uses	side-by-side	bonding—that	is,	the	microcontroller
and	the	memory	chip	are	simply	placed	next	to	each
other.	Stacked	CSPs	place	the	microcontroller	on	top
of	the	memory	chip.	This	is	significantly	more
complex	than	side-by-side	placement	because	the
chips	must	first	have	their	inert	back-side	material
ground	off	to	make	the	overall	height	of	the	stack	fit
inside	such	a	slim	package.	Despite	the	difficulty,
stacking	chips	is	popular	because	it	allows	vendors	to
cram	more	silicon	into	the	same	footprint.
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•	The	only	two	memory	chip	foundries	in	this	sample
set	were	Toshiba/SanDisk	and	Samsung.	(SanDisk
and	Toshiba	coown	the	factory	that	makes	their
memory	chips.)

•	Samsung’s	NAND	die,	which	is	the	most	expensive
part	of	a	microSD	card,	is	about	17	percent	larger
than	dies	from	Toshiba/SanDisk.	This	means	that
Samsung	microSD	cards	should	naturally	carry	a
slightly	higher	price	than	Toshiba/SanDisk	cards.
However,	Samsung	can	offset	that	against	the	ability
to	place	the	same	bare	die	that	normally	gets
crammed	inside	a	microSD	package	into	thin	small
outline	package	(TSOP)	devices	suitable	for	board-
level	machine	assembly	instead.	If	demand	for
microSD	cards	slumps,	Samsung	can	slap	excess	bare
dies	inside	TSOP	packages	and	sell	those	to	third
parties	that	do	conventional	machine	assembly	of
chips.	Plus,	Samsung	also	doesn’t	have	a	middleman
like	Kingston	to	eat	away	at	margins.

I	 knew	 (like	 many	 others	 in	 manufacturing)	 that
Kingston	wasn’t	a	semiconductor	manufacturer,	in	that
it	 owned	 no	 fabrication	 facilities,	 but	 this	 research
implied	 that	 Kingston	 did	 no	 original	 design	 of	 its
own.	 I	 hoped	 to	 at	 least	 find	 a	 Kingston-branded
controller	 chip	 inside	 the	Kingston	 cards,	 even	 if	 the
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chip	was	fabricated	by	a	foundry.	I	also	expected	to	see
Kingston	 sourcing	 memory	 chips	 from	 a	 broader
variety	of	companies.	Being	able	to	balance	the	supply
chain	 and	 be	 less	 dependent	 on	 a	 single,	 large
competitor	 for	 chips	would	be	 a	 significant	 value-add
to	 customers,	 giving	Kingston	 leverage	 to	negotiate	 a
better	 price	 that	 few	 others	 can	 achieve.	 But	 every
Kingston	 card	 I	 bought	 had	 a	 SanDisk/Toshiba
memory	 chip	 inside.	The	only	 “value-add”	 that	 I	 saw
was	in	the	selection	of	the	controller	chip.

Oddly	enough,	of	 all	 the	vendors,	Kingston	quoted
Chumby	with	 the	best	 lead	 times	and	pricing,	despite
SanDisk	and	Samsung	making	all	their	own	silicon	and
thereby	having	lower	inherent	costs.	This	told	me	that
Kingston	must	have	a	very	low	margin	on	its	microSD
cards,	 which	 could	 explain	 why	 irregular	 cards	 found
their	 way	 into	 its	 supply	 chain.	 Kingston	 is	 also
probably	more	willing	 to	 talk	 to	 smaller	accounts	 like
Chumby	 because,	 as	 a	 channel	 brand,	 Kingston	 can’t
compete	 against	OEMs	 like	 SanDisk	 or	 Samsung	 for
the	 biggest	 contracts	 from	 the	 likes	 of	 Nokia	 and
Apple.

So,	 the	 irregular	 microSD	 card	 I	 pulled	 from	 the
chumby	 One	 production	 line	 may	 not	 have	 been
counterfeit,	 but	 it	 was	 still	 a	 child	 of	 the	 remarking
ecosystem	 in	 China.	 Kingston	 is	 more	 of	 a	 channel
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trader	 and	 less	 of	 a	 technology	 provider,	 and	 is
probably	 seen	 by	 SanDisk	 and	 Toshiba	 as	 a	 demand
buffer	 for	 their	production	output.	 I	 also	wouldn’t	be
surprised	if	SanDisk/Toshiba	sold	Kingston	less-than-
perfect	parts,	keeping	the	best	of	the	lot	for	themselves.
Thus	 I’d	 expect	Kingston	 cards	 to	have	 slightly	more
defective	 sectors,	 but	 thanks	 to	 the	 magic	 of	 error
correction	and	spare	sectors,	this	fact	is	hidden	to	end
users.

As	 a	 result,	 Kingston	 plays	 an	 important	 role	 in
stabilizing	 microSD	 card	 prices	 and	 improving	 fab
margins.	 But	 the	 potential	 conflict	 of	 interest	 seems
staggering,	 and	 I’m	 still	 very	 curious	 about	 how	 this
ecosystem	came	to	be.	Buying	a	significant	amount	of	a
competitor’s	 technology	 from	 a	 competitor’s	 fab	 yet
still	selling	at	a	competitive	price	is	counterintuitive	to
me,	and	perhaps	my	greatest	folly	in	investigating	that
irregular	 microSD	 card	 was	 expecting	 something
different.

FAKE	FPGAS
Anyone	 who	 has	 done	 manufacturing	 in	 China	 for	 a
while	will	have	more	than	one	story	about	irregularities
in	the	supply	chain.	Here’s	another	one	of	my	favorite
stories,	 which	 highlights	 some	 of	 the	 core	 incentives
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that	drive	agents	to	cheat.

The	White	Screen	Issue
It	 was	March	 2013,	 and	 I	 was	 wrapping	 up	 the	 first
volume	 production	 run	 of	 a	 bespoke	 robotics
controller	board	codenamed	Kovan.*	At	the	conclusion
of	any	production	run,	I	always	review	the	list	of	issues
encountered	 in	 production,	 to	 identify	 areas	 of
improvement.	 Manufacturing	 is	 a	 Sisyphean	 struggle
toward	 perfection:	 every	 run	 has	 some	 units	 you	 just
have	 to	 scrap,	 and	 the	 difference	 between	 profit	 and
loss	is	how	well	you	can	manage	the	scrap	rate.

On	 this	 run,	 one	 particular	 problem,	 dubbed	 the
“white	 screen	 issue”	 after	 its	most	 obvious	 symptom,
was	 the	 dominant	 problem.	 About	 4	 percent	 of	 the
total	run	exhibited	this	problem,	accounting	for	almost
80	percent	of	unit	failures.	I	had	the	factory	send	me	a
few	 samples	 of	 the	 failed	 units	 to	 analyze	 in	 more
detail.

As	I’ve	often	discovered	when	analyzing	failed	units,
the	 most	 obvious	 symptom	 of	 the	 problem	 was	 only
tangentially	related	to	the	root	cause.	The	LCD	screen
appeared	white	on	these	units	because	the	FPGA	failed
to	 configure.	An	FPGA,	 short	 for	Field	 Programmable
Gate	Array,	 is	 essentially	 a	 blob	 of	 logic	 and	memory
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devices	embedded	in	a	dense	network	of	wires	that	can
be	configured	at	runtime	to	behave	a	certain	way.	The
behavior	of	the	FPGA	is	typically	described	in	a	high-
level	language	that	resembles	a	programming	language
like	 C	 (for	 instance,	 Verilog)	 or	 Ada	 (like	 VHDL),
which	is	then	compiled	into	a	configuration	bitstream.

FPGAs	 are	 very	 handy	 for	 implementing	 time-
sensitive	hardware	interfaces	that	software	would	have
trouble	 emulating.	 In	 this	 particular	 application,	 the
FPGA	 controlled	 everything	 from	 the	 motors	 to	 the
sensors	and	even	the	LCD.	When	the	FPGA	failed	to
configure,	 the	 LCD	 didn’t	 receive	 sync	 and	 data
signals,	leading	it	to	show	a	blank,	white	screen	instead
of	the	expected	factory	test	patterns.

FPGA	failure	was	a	big	deal.	For	starters,	the	FPGA
was	 the	 most	 expensive	 part	 on	 the	 board	 by	 a	 long
shot,	 at	 around	 $11	 per	 chip.	 I	 was	 also	 worried	 this
problem	could	point	to	a	deeper	design	issue.	Perhaps
the	FPGA’s	power	regulators	were	unstable,	or	maybe
there	 was	 an	 issue	 with	 the	 boot	 sequence	 that
aggravated	 a	 corner	 case	 in	 configuration	 timing	 that
would	creep	 into	 the	“good”	production	units	 as	 they
aged.	 The	 situation	 definitely	 warranted	 a	 deeper
investigation.

Incorrect	ID	Codes
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I	hooked	up	the	debug	console,	dug	into	the	problem,
and	discovered	that	the	failure	was	linked	to	the	FPGA
not	responding	with	the	correct	ID	code.	The	ID	code
is	checked	via	queries	over	a	 test	access	bus	known	as
JTAG.	 Most	 users	 don’t	 check	 an	 FPGA	 ID	 before
programming,	but	we	designed	an	ID	code	check	into
Kovan	 because	we	 allowed	 customers	 to	 specify	 what
capacity	 FPGA	 they	 wanted	 to	 use	 for	 a	 given
production	 lot.	 Some	 applications	 are	 more
demanding,	while	others	are	more	cost-sensitive.	As	a
result,	 a	 customer	 could	 have	 a	 mixed	 inventory	 of
FPGAs,	and	we	wanted	to	be	able	to	detect	and	protect
the	hardware	from	an	accidental	mismatch	between	the
bitstream	and	the	FPGA.

But	this	was	a	single	production	lot,	and	in	theory	all
the	 FPGAs	 should	 have	 been	 the	 same.	 How,	 then,
could	the	FPGA	have	reported	a	mismatched	ID	code
at	all?	I	scratched	my	head	for	a	while	and	suspected	a
bug	 in	 our	 JTAG	 implementation,	 until	 I	 looked	 up
the	 reported	 ID	 code.	 It	 was	 a	 known	 code—but	 for
silicon	marked	as	“Engineering	Samples”	 from	Xilinx,
the	 vendor	 that	 makes	 these	 FPGAs.	 Engineering
samples	 are	 preproduction	 units	 sold	 by	 Xilinx	 that
have	 some	 minor	 known	 bugs	 but	 are	 sufficiently
functional	 for	 most	 applications,	 to	 the	 point	 where
most	customers	wouldn’t	see	a	difference,	except	for	the
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ID	code.
I	 looked	closer	at	the	PCB,	and	for	the	first	time,	I

noticed	 that	 a	 small,	white	 rectangle	was	 laser-etched
into	 the	 FPGA’s	 surface.	 The	 rectangle	 was	 right
below	the	part	number,	where	the	“ES”	designator	for
an	 engineering	 sample	 would	 normally	 be	 marked.
Someone	 had	 blasted	 the	 letters	 off	 and	 sold	 us
engineering	samples	as	full	production	units!

An	engineering	sample	FPGA	on	a	Kovan	board
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For	contrast,	an	FPGA	of	the	same	type	that	hasn’t	been
tampered	with

The	problem	was	 very	 clearly	 a	 supply	 chain	 issue,
not	a	design	issue.	Someone	in	the	chain	was	taking	ES
silicon,	 blasting	 off	 the	 letters,	 and	 blending	 them	 in
with	legitimate	units	at	a	rate	of	around	3	to	5	percent.
Typically,	Xilinx	would	require	that	all	ES	silicon	in	a
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distributor’s	 inventory	 be	 scrapped	 once	 production
units	 become	 available,	 but	 the	ES	 units	were	 almost
fully	 functional,	 to	 the	 point	where	most	 applications
would	 be	 unaffected.	 A	 production	 bitstream	 would
seamlessly	 load	 into	 an	 ES	 part,	 and	 nobody	 would
know	 the	difference.	The	only	way	 to	 tell	 them	apart
would	 be	 by	 doing	 an	 ID	 code	 check,	 which	 is,	 as	 I
noted	previously,	atypical.

Thus,	slipping	ES	silicon	into	production	lots	would
likely	go	unnoticed.	Mixing	ES	parts	in	at	a	rate	of	3	to
5	 percent	 was	 also	 very	 clever:	 a	 low	mix	 rate	makes
substitutions	 very	 hard	 to	 catch	 without	 100	 percent
prescreening	 of	 the	 parts.	 Even	 in	 production,	 if	 the
ES	 silicon	 were	 marginal,	 it	 would	 be	 maddeningly
difficult	to	nail	down	the	root	cause	of	an	issue	due	to
its	rarity.

In	fact,	there’s	a	correlation	between	manufacturing
difficulty	and	the	use	of	FPGAs.	Usually	if	your	design
calls	 for	 an	 FPGA,	 you’re	 pushing	 boundaries	 on
multiple	fronts,	so	a	scrap	rate	of	a	few	percent	is	to	be
expected.	The	margin	on	FPGA-powered	hardware	 is
also	often	fat	enough	that	a	4	percent	failure	rate	might
simply	 be	 accepted	 by	 the	 end	 customer.	 Thus,
whoever	did	this	knew	exactly	what	they	were	doing;	it
was	virtually	risk-free	money.

Finally,	it’s	important	to	note	that	most	vendors	in	a
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supply	chain	survive	on	single-digit	margins,	so	finding
an	 extra	 3	 to	 5	 percent	 of	 “free	money”	 on	 the	most
expensive	 part	 on	 a	 board	 virtually	 doubles
profitability.	That	 provides	 a	 very	 strong	 incentive	 to
cheat,	especially	if	you	think	you	won’t	be	caught.

The	Solution
The	resolution	to	this	problem	was	quite	interesting.	I
met	 with	 the	 managers	 and	 CEO	 of	 AQS,	 the	 CM
charged	with	producing	Kovan,	briefed	them	about	the
problem,	 and	 showed	 them	 the	 evidence	 I	 had
accumulated.	When	my	presentation	ended,	 the	CEO
didn’t	point	 a	 finger	 at	upstream	vendors	or	partners.
Instead,	he	immediately	looked	his	staff	in	the	eyes	and
asked,	“Did	any	of	you	do	this?”	He	understood	better
than	anyone	else	in	the	room	that	any	individual	buyer
or	manager	 would	 effectively	 double	 their	 take-home
pay	that	month	if	they	could	pull	off	this	cheat	without
getting	caught.

In	 other	 words,	 the	 truly	 remarkable	 part	 of	 this
situation	 is	 how	 rarely	 the	 problem	 I	 experienced
happens,	 given	 what’s	 at	 stake	 and	 how	 hard	 these
problems	are	to	catch.	And	while	I	do	have	a	few	good
bar	 stories	 to	 tell	 about	 fakes	 in	 the	 supply	 chain,
remember	that	I’ve	also	shipped	hundreds	of	thousands
of	units	of	good	product.	The	majority	of	people	 I’ve
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worked	with	in	China	are	hardworking,	honest	people
who	pass	on	easy	opportunities	to	cheat	me	and	turn	a
profit.	It’s	important	not	to	generalize	the	whole	based
on	the	bad	actions	of	a	few.

At	 the	 end	 of	 the	 day,	 the	 vendor	who	 sold	 us	 the
chips	 didn’t	 admit	 fault,	 but	 they	 did	 replace	 all
remarked	units	at	their	own	cost.	(We	still	had	to	pay
for	the	labor	cost	to	replace	the	chips	and	recertify	the
boards.)	 This	 is	 about	 the	 closest	 you	 can	 get	 to	 an
amicable	 resolution	 in	China	when	you’re	not	 a	giant
like	Apple	or	Foxconn.	I	did	send	a	note	to	Xilinx	HQ
about	potential	misbehavior	by	one	of	their	authorized
vendors,	but	in	the	end,	I’m	a	small	customer,	and	the
substitution	 of	 parts	 could	 have	 happened	 literally
anywhere	 on	 the	 supply	 chain.	 Even	 the	 courier
delivering	the	packages	could	have	done	the	swap.

It	wouldn’t	 be	worth	 the	 cost	 to	Xilinx	 in	 terms	of
manpower,	 relationships,	 and	 focus	 to	 investigate	 the
problem	 and	 rat	 out	 the	 one	 bad	 actor	 in	 literally
hundreds	of	 possible	 suspects.	But	 I’d	 like	 to	 imagine
that	at	least	a	memo	was	sent	around,	and	whoever	was
swapping	 in	the	ES	parts	got	scared	enough	that	 they
stopped.

CLOSING	THOUGHTS

281



At	 the	 end	 of	 the	 day,	 a	 permissive	 IP	 ecosystem	has
benefits	and	drawbacks.	As	an	engineer	and	a	designer,
I	 prefer	 to	 be	 in	 an	 ecosystem	 where	 ideas	 are
accessible,	 even	 if	 it	means	 I	 have	 to	be	on	guard	 for
occasional	problems	with	fake	goods.	Put	another	way,
a	 fundamental	prerequisite	 for	virality	 is	 the	ability	 to
make	 copies.	 The	 explosion	 of	 interest	 in	 hardware
startups	 is	 in	 part	 thanks	 to	 the	 highly	 competitive
manufacturing	ecosystem	that	could	flourish	only	 in	a
product-over-patent	culture.

Westerners	 who	 come	 to	 China	 without
understanding	 the	 principles	 of	 gongkai	 and	 guanxi*
often	 feel	 like	 they’re	 being	 cheated.	 But	 once	 you
understand	 the	 rules	 and	 learn	 how	 to	 use	 them	 to
drive	 your	 interests,	 you	 won’t	 feel	 like	 the	 game	 is
rigged	against	you	anymore.

In	 the	 US	 IP	 system,	 honor	 has	 little	 economic
value,	 and	 law	 trumps	 honor.	 For	 example,	 patent
trolling	is	a	perfectly	legal,	and	very	profitable,	way	to
make	 a	 living.	 In	 the	 Chinese	 system,	 however,
reputation	 can	 trump	 law.	 This	 opens	 the	 door	 for
corruption	 but	 also	 crowdsources	 the	 enforcement	 of
social	 and	 moral	 values,	 driving	 a	 market	 value	 for
honor,	especially	in	local,	tightly	knit	communities.

Of	 course,	 the	 approach	 of	 making	 money	 by
locking	 up	 ideas	 and	 selling	 the	 rights	 to	 them	 is
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patently	 incompatible	with	a	permissive	IP	ecosystem.
Thankfully,	 the	 notion	 that	 ideas	 are	 community
property	 dovetails	 nicely	 with	 my	 open	 source
philosophies.	 In	 the	 next	 part	 of	 the	 book,	 I’ll	 talk
more	 about	 my	 experiences	 creating	 open	 hardware
and	building	businesses	rooted	in	these	principles.
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Part	3
what	open	hardware	means
to	me
Before	there	was	open	hardware,	hardware	was	open.

A	yellow,	tattered	sheet	of	paper	hanging	next	to	my
monitors—the	schematic	 for	the	Apple	II	computer—
reminds	 me	 of	 that	 fact	 every	 day.	 When	 I	 got	 the
schematic	as	a	child,	it	became	a	blueprint	for	the	rest
of	 my	 life.	 I	 couldn’t	 understand	 the	 schematic,	 but
that	 didn’t	 matter;	 it	 taught	 me	 that	 hardware	 is
knowable.	 It	 empowered	 me	 to	 understand	 my	 world
and	 master	 the	 technology	 I	 relied	 on.	 That
empowerment	propels	me	to	this	day.

The	 legal	 doctrine	 of	 open	 source	was	 still	 nascent
when	 the	 Apple	 II	 was	 created,	 so	 while	 anyone	 can
read	the	schematic,	 it	bears	no	open	source	 license.	It
simply	shows	the	patent	number	4,136,359.	Back	then,
people	 just	 shared	 ideas—until	 investors	 with	 lawyers
came	 along	 and	 tragically	 spoiled	 the	 commons.	The
software	 community	 defended	 itself	 with	 the	 same
tools	used	against	it:	primarily,	copyright	law.
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Copyright	 law	 originally	 applied	 to	 literary	 and
artistic	works.	Today	 it	also	applies	 to	computer	code
because,	 like	 literature	 and	 art,	 code	 is	 a	 form	 of
expressive	 speech.	 In	 the	 same	 way	 that	 you	 can
copyright	a	painting	of	the	Grand	Canyon	but	not	the
Grand	 Canyon	 itself,	 you	 can	 copyright	 an
implementation	 of	Quicksort	 in	C	 but	 not	Quicksort
itself.	 To	 ensure	 source	 code	 could	 be	 shared	 freely,
the	 software	community	created	open	 source	 licenses.
Those	 licenses	 range	 from	 copyleft	 (that	 is,	 openness
begets	 openness)	 arrangements	 like	 the	 GNU	 Public
License	 (GPL)	 to	 more	 permissive	 agreements	 that
boil	 down	 to	 “acknowledge	 me,	 don’t	 sue	 me,	 and
otherwise	do	as	you	wish,”	 like	 the	Berkeley	Software
Distribution	(BSD)	licenses.

Hardware	blueprints	can	be	protected	by	copyright,
too,	 but	 blueprints	 are	 functional,	 so	 defining	 “open
hardware”	is	trickier.	Virtually	every	piece	of	hardware
used	 to	 ship	 with	 a	 schematic.	 Somewhere	 along	 the
way,	however,	it	became	impossible	for	users	to	service
hardware	 themselves	 without	 breaking	 its	 warranty.
Devices	 are	 now	 filled	 with	 trade	 secrets.	 This	 shift
created	 an	 artificial	 distinction	 between	 closed	 and
open	hardware.	I	say	“artificial”	because	while	software
can	be	encrypted	with	ciphers	so	strong	you’d	have	to
build	 a	 planetsized	 computer	 to	 break	 them,	 you	 can
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reverse	any	hardware	design	 into	a	 schematic,	given	a
powerful	enough	microscope	and	the	software	to	stitch
and	process	the	resulting	images.

The	 internet	 is	 littered	 with	 well-intentioned	 but
misguided	 attempts	 to	 apply	 software-centric	 open
copyright	 licenses	 to	 hardware.	 But	 using	 a	 software
license	on	a	piece	of	hardware	is	like	filing	a	marriage
license	 for	 a	 corporate	 merger:	 while	 the	 license
conveys	 the	 author’s	 intent,	 it	 may	 not	 actually	 do
anything.	For	example,	the	text	of	the	GPL	doesn’t	use
the	 word	 hardware	 once,	 meaning	 a	 court	 could	 rule
that	the	GPL	doesn’t	legally	apply	to	hardware.

Some	 hardware-specific	 open	 licenses	 have	 been
created	to	help	rectify	the	situation	(the	CERN	OHL
is	 a	 decent	 copyleft-style	 hardware	 license),	 but	 the
community	 is	 divided	 over	 how	much	of	 the	 creation
process	 has	 to	 be	 open	 for	 a	 piece	 of	 hardware	 to	 be
considered	open.	For	instance,	if	I	share	schematics	for
a	 board	 I	 designed	 using	 a	 closed-source	 tool,	 many
would	 argue	 that	 the	 design	 does	 not	 qualify	 as	 open
source.	 But	 even	 if	 I	 designed	 the	 board	 using	 a
schematic	 capture	 and	 layout	 tool	 that	 was	 free	 and
open	 source	 software	 (F/OSS)	 compliant,	 what	 about
the	 designs	 of	 the	 silicon	 chips	 it	 uses	 or	 the	 bits	 of
firmware	 burned	 into	 the	 silicon?	Do	we	 need	 to	 see
blueprints	 of	 the	 particle	 accelerators	 used	 to	 shoot
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dopants	into	the	silicon?	What	about	the	machine	used
to	engrave	 the	masks	used	 for	 silicon	production?	 It’s
turtles	 all	 the	 way	 down.	 Hardware	 can’t	 be	 purely
open	 source,	 because	 at	 some	 point,	 ideas	 must
translate	into	matter,	and	access	to	the	objects	required
to	 transform	 and	 shape	 matter	 is	 rarely	 open	 to	 the
community.

There	 are,	 however,	 much	 more	 pragmatic
approaches	 to	 open	 hardware	 than	 doing	 electron
microscopy	 or	 demanding	 open	 silicon	 foundries.
Simply	 sharing	 blueprints	 at	 a	 given	 layer	 of
abstraction	 takes	 much	 less	 effort,	 is	 more	 intuitive,
and	 still	 has	 a	 positive	 effect.	 The	 shanzhai’s	 gray-
market	 style	 of	 open	 source,	 which	 I	 referred	 to	 in
earlier	 chapters	 as	 gongkai,	 reaps	 the	 benefits	 of	 such
sharing.	 In	China,	 blueprints	 are	 shared	 publicly,	 but
under	 dubious	 terms.	 Most	 designs	 still	 bear
“confidential”	 or	 “proprietary”	 copyright	 notices,	 and
the	 shanzhai	 use	 pirated	 copies	 of	 professional-grade,
closed	 source	 design	 software	 to	 create	 derivative
works.	 But	 at	 the	 end	 of	 the	 day,	 this	 laissez-faire
openness	 creates	 an	 ecosystem	 where	 hundreds	 of
small	 companies	 make	 a	 living	 repairing	 or	 building
mobile	 phones.	 Walking	 through	 the	 electronics
markets	 of	 Shenzhen	made	me	 realize	 that	 building	 a
phone	isn’t	difficult	or	scary.	Communities	outside	the
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shanzhai	 just	don’t	 feel	 empowered	 to	peer	 inside	 the
box,	due	to	restrictive	IP	laws.

The	 gongkai	 ecosystem,	 explored	 in	 Part	 2,	 values
intellectual	 and	 physical	 property	 almost	 equally.
Schematics	 without	 a	 supply	 chain	 are	 useless:	 you
can’t	make	 a	 phone	 call	 with	 blueprints	 for	 a	 phone.
Likewise,	 chipmakers	have	no	business	 if	 no	products
use	 their	 chips.	 As	 a	 result,	 hardware	 creators	 have	 a
natural	incentive	to	share	information,	particularly	the
information	necessary	to	design	a	given	module	or	chip
into	a	larger	system.	Getting	a	customer	to	adopt	chip-
specific	 design	 IP	 virtually	 guarantees	 that	 customer
will	 purchase	 the	 same	 chips	 when	 they’re	 ready	 to
bring	 a	 product	 to	 mass	 production.	 This	 balance
between	 IP	and	 the	 supply	chain	has	been	difficult	 to
strike	 in	 IP-centric	Western	 ecosystems,	 where	 ideas
are	 much	 more	 valuable	 than	 factories.	 This	 may
partially	explain	why	so	many	manufacturing	jobs	have
migrated	 to	 China,	 an	 ecosystem	 that	 more
comparably	values	the	production	of	products	and	the
ideas	behind	them.

I’m	 optimistic	 that	 with	 consistent	 effort,	 growing
public	 awareness,	 and	 the	 right	 economic	 conditions,
the	world’s	hardware	ecosystem	will	eventually	yield	an
open	 silicon	 foundry.	 However,	 until	 then,	 “open
hardware”	has	 to	be	a	more	pragmatic	concept	 that	 is
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constrained	to	exist	within	certain	layers	of	abstraction.
After	all,	just	being	able	to	share	blueprints	(even	if	the
licenses	 aren’t	 perfect	 and	 the	 formats	 aren’t	 easily
edited)	 dramatically	 affects	 innovation.	 The	 shanzhai
are	living	proof.

Whether	it’s	gongkai	or	open	source,	open	hardware
is	 about	 empowering	 users	 to	 be	 the	masters	 of	 their
own	 technology,	 not	 about	 any	 specific	 legal
arrangement.	Damn	 the	 torpedoes—full	 speed	 ahead!
The	freedom	to	learn,	tinker,	and	improve	technology
is	so	core	to	my	person	that	I	view	it	as	a	basic	human
right.	Freedom	atrophies	if	not	exercised,	which	is	why
I	actively	defend	this	freedom.	I	share	my	work	openly,
hoping	 to	 empower	 others	 and	 raise	 awareness	 that
technology	 is	 knowable.	 We’re	 not	 slaves	 to	 our
computers	or	the	corporations	that	build	them.

I	 also	 challenge	 legislative	 and	 legal	 attempts	 to
curtail	 our	 freedoms.	 I	 was	 born	 into	 a	 DMCA-free
world;	 I’d	 like	 to	 leave	 the	world	 in	a	 similar	 state	by
establishing	that	everyone	has	the	right	to	understand,
repair,	 and	modify	 the	 things	 they	own.	This	 is	more
important	 than	 ever	 as	 we	 become	 increasingly
dependent	upon	technology.	If	we	allow	technology	to
become	 a	 black	 box,	we	 also	 surrender	 our	 agency	 to
the	 companies	 and	 governments	 that	 produce	 and
regulate	it.
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This	 part	 of	 the	 book	 describes	 how	 I	 built	 three
open	 hardware	 platforms:	 chumby,	 Novena,	 and
chibitronics.	 I	 hope	 that	 by	 reading	my	 stories,	 you’ll
also	 realize	 hardware	 is	 knowable	 and	 be	 empowered
by	this	knowledge.
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6.	the	story	of	chumby

One	 of	 my	 earliest	 open	 hardware	 projects	 was
chumby,	 the	 Wi-Fi-enabled	 content	 delivery	 device
that	took	me	to	China	to	set	up	my	first	supply	chain	in
2007.*	Working	on	chumby	was	personally	exciting	to
me	 for	 two	 reasons.	 First,	 I	 had	 the	 opportunity	 to
build	 a	 product	 that	 could	 improve	 people’s	 lives	 in
some	 small	 way.	 The	 always-on,	 always-connected
users	who	blog	and	rely	on	IM	to	keep	in	touch	could
use	chumby	to	make	those	connections	more	easily.	At
the	same	time,	chumby	was	a	chance	for	me	to	create	a
truly	open	platform	that	enabled	hackers	to	tinker	and
modify	it	however	they	liked.

A	HACKER-FRIENDLY	PLATFORM
Hackers	 have	 an	 insatiable	 desire	 to	 extend,	 modify,
customize,	 and	 abuse	 consumer	 products	 to	 discover
unintended	 functionality.	 At	 Chumby,	 we	 hoped
hackers	 would	 learn	 how	 the	 device	 worked	 and
transform	 it	 to	 do	 things	 we	 never	 imagined,	 so	 we
designed	chumby	 to	be	as	open	as	possible	 to	anybody
who	wanted	 to	hack	 it.	We	considered	not	only	open
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source	 software	 hackers,	 but	 also	 hardware	 hackers,
artists,	 and	 crafters—that	 is,	 people	 skilled	 with	 and
passionate	 about	 noncomputer	 things,	 like
metalworking,	sewing,	or	carpentry.	To	encourage	and
enable	 chumby	 hackers,	 we	 made	 the	 source	 code,
schematics,	 board	 layouts,	 bill	 of	 materials,	 flat
patterns,	 and	 3D	CAD	databases	 of	 the	 plastic	 pieces
freely	 available.	 You	 can	 still	 find	 them	 all	 on	 the
chumby	wiki	(http://wiki.chumby.com/).
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The	original	soft	chumby

The	idea	was	to	let	hackers	break	away	from	point-
solution	hacks	on	inscrutable	hardware	and	into	hacks
they	could	share	with	just	about	anyone.	For	instance,
imagine	you	add	a	blood	pressure	cuff	to	a	chumby	and
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give	 the	 chumby	 to	 your	 grandmother.	Now	you	 can
check	on	Grandma’s	health,	and	she	can	watch	pictures
of	her	grandchildren	while	she	gets	her	blood	pressure
taken.	 But	 imagine	 this	 scenario	 with	 a	 WRT-54G
router	instead	of	a	chumby.	Sure,	you	can	add	a	blood
pressure	cuff	to	a	WRT-54G	as	well	(in	fact,	it’s	quite
similar	 to	 chumby	 architecturally),	 but	 try	 teaching
Grandma	how	to	set	 it	up	and	use	 it.	 In	other	words,
we	 felt	making	chumby	a	 simple	product	would	allow
hackers	to	make	their	own	hacks	more	usable	and	more
understandable	 to	 the	 less	 technical	 people	 in	 their
lives.

Making	chumby	open	had	other	benefits	for	hackers,
too.	This	 time,	 imagine	your	thermostat	 is	a	 little	 too
far	from	the	place	where	you	actually	want	to	regulate
temperature.	 You	 could	 solve	 that	 problem	 in	 a
weekend	by	adding	a	temperature	sensor	to	a	chumby.
The	chumby	platform	has	Wi-Fi	 and	 I	built	 a	hacker
sensor	 package	 for	 the	 device,	 so	 the	 project	 would
require	 minimal	 hardware	 grunge	 work:	 you’d	 just
mod	two	chumbys	(one	with	a	temperature	sensor	and
one	 with	 an	 interface	 to	 the	 thermostat)	 and	 enable
both	with	the	sensor	package.	Such	a	device	would	not
only	 help	 you	 keep	 your	 living	 room	 at	 the	 right
temperature	but	also	tell	you	the	 latest	news	and	help
you	track	your	favorite	TV	shows.
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The	 icing	 on	 the	 cake	 is	 that	 you’d	 also	 be	 free	 to
publish	 your	 modifications	 and	 even	 resell	 modified
chumbys	with	 those	custom	capabilities.	Others	 could
benefit	 from	 your	 work,	 and	 you	 could	 make	 some
money.	 (On	 a	 lighter	 note,	 the	 original	 chumby
housing	was	made	of	fabric,	so	you	could	even	modify
it	to	match	your	décor!)

The	original	chumby	design,	now	called	the	chumby
classic,	 premiered	 at	FOO	Camp	 in	 2006,	 and	 it	went
on	 sale	 in	2008.	Unfortunately,	 however,	 the	 chumby
classic	hit	full-stride	launch	in	the	middle	of	the	worst
economic	 downturn	 since	 the	 Great	 Depression.	 Its
cute,	 cuddly	 form	 factor	 had	 a	 price	 tag	 that	 many
consumers	 just	 couldn’t	 stomach,	 so	 I	 did	 what	 any
entrepreneur	would	do	in	a	recession:	I	scaled	back.

EVOLVING	CHUMBY
Shortly	 after	 Lehman	 Brothers	 filed	 for	 Chapter	 11
bankruptcy	 protection	 in	 2008,	 we	 started	 work	 on	 a
product	that	could	address	a	new	economic	reality.	As	I
drew	my	 first	 napkin	 sketches	 for	 the	 product,	which
we	later	dubbed	the	chumby	One,	the	stock	market	was
in	 free	 fall	 and	 losing	 several	 hundred	 points	 a	 day.
Given	 that,	 the	 key	 goal	was	 cost	 reduction.	 I	 took	 a
good,	hard	look	at	the	whole	design	so	I	could	build	a
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cheaper,	 faster	 product	 that	 would	 be	 better	 for	 the
market.	 We	 wanted	 chumby	 One	 to	 win	 new
customers	 yet	 retain	 the	 loyalty	 of	 our	 existing
consumer	base,	and	we	wanted	it	out	before	Christmas
2009.

Fortunately,	an	applications	engineer	from	Freescale
(since	 acquired	 by	 NXP)	 contacted	 me	 about	 a	 new,
remarkably	 inexpensive	 CPU	 (the	 i.MX233)	 that
Freescale	 planned	 to	 launch	 in	 2009.	 It	 looked	 like	 a
promising	 fit	 for	 chumby,	 so	 I	 drew	 up	 some	 straw-
man	 renderings	 and	 ran	 some	 cost	 scenarios.	At	CES
in	January	2009,	we	shared	the	new	design	with	a	few
potential	customers	to	get	feedback	on	the	features	and
pricing.	The	idea	slow-rolled	through	March,	and	after
the	 Chinese	 New	 Year,	 I	 built	 the	 first	 prototype
board.

NOTE

One	really	cool	thing	about	the	i.MX233	is	that	it	has
embedded	power	regulators,	and	they	aren’t	just	linear
regulators:	they’re	switching	regulators.	But	they’re	not
just	any	switching	regulators;	they	derive	three	voltages
using	just	a	single	inductor!	How	cool	is	that?	I	have	to
give	mad	props	to	the	guy	who	designed	that	system.
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Around	May,	we	contracted	an	industrial	designer	to
do	 some	 sketches,	 and	 by	 June,	 we	 had	 a	 near-final
industrial	 design.	 We	 made	 our	 first	 3D-printed
prototypes	 around	 then,	 but	 we	 couldn’t	 afford	 a
mechanical	 engineering	 contractor.	 I	 had	 to	 learn
SolidWorks	and	do	the	mechanical	integration	for	the
3D	 prototype	 myself.	 Since	 I	 enjoy	 learning	 new
things,	the	experience	was	quite	rewarding.

In	July,	we	inked	a	purchase	order	for	steel	tooling,
and	 by	 August,	 we	 had	 first-shot	 plastics.	 I	 spent
September	 refining	 and	 debugging	 the	 design	 and
October	 on	 more	 testing,	 refining,	 and	 ramping	 up
mass	 production.	 By	 November	 2009,	 the	 first
shipment	 of	 chumby	Ones	was	 35,000	 feet	 above	 the
Pacific	Ocean	en	route	to	LAX.
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The	finished	chumby	One

The	chumby	One	retailed	for	about	half	the	price	of
the	 chumby	 classic,	 and	 it	 had	more	 features,	 like	 an
FM	 radio	 and	 support	 for	 a	 rechargeable	 lithium	 ion
battery,	a	feature	users	of	the	squishy,	leather	chumby
classic	 often	 requested.	 The	 initial	 reactions	 to	 the
battery	in	the	chumby	One	were	an	interesting	study	in
consumer	 psychology.	 For	 some	 reason,	 even	 though
the	 chumby	 One	 was	 smaller	 and	 lighter	 than	 the
chumby	classic	and	did	exactly	the	same	things,	people
didn’t	feel	it	should	have	a	rechargeable	battery.	They
had	no	intrinsic	desire	to	pick	up	the	chumby	One	and
carry	it	around.	That	just	goes	to	show	how	much	form
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factor	influences	a	consumer’s	perception	of	function!
At	 any	 rate,	 customers	 certainly	 liked	 all	 those

options,	 but	 to	me,	 they	 weren’t	 the	most	 significant
new	features.

A	More	Hackable	Device
What	 really	 excited	 me	 about	 the	 chumby	 One	 was
that	 it	 was	 much	 more	 hackable	 than	 the	 chumby
classic.	 On	 the	 chumby	 classic,	 we	 used	 a	 soldered-
down	SLC	NAND	chip,	which	was	 cost-effective	but
made	development	quite	complicated.	Developers	were
exposed	 directly	 to	 all	 the	 warts	 of	 NAND	 flash
memory,	 including	 bad	 blocks	 and	 error	 correction,
and	if	the	system	failed	to	boot	correctly,	one	had	few
recovery	options.	We	addressed	these	problems	on	the
chumby	 One	 by	 storing	 the	 firmware	 on	 a	 microSD
card.

If	you	happen	to	get	your	hands	on	a	chumby	One,
you’ll	 notice	 that	 you	 can’t	 replace	 the	microSD	card
from	 the	 outside.	 We	 made	 that	 choice	 to	 prevent
nonhackers	 from	 pulling	 the	 microSD	 card	 out	 and
wondering	 why	 the	 device	 wouldn’t	 boot.	 But	 if	 you
unscrew	 and	 remove	 the	 back	 panel	 (no	 glue	 seals,
unlike	the	chumby	classic),	the	microSD	card	is	easy	to
access.	Thanks	to	this	key	change,	hackers	didn’t	have
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to	 worry	 about	 bricking	 their	 chumbys.	 If	 someone
screwed	 up	 the	 firmware,	 they	 could	 just	 pull	 the
microSD	card	out,	mount	it	on	their	dev	box,	and	write
a	new	image.

We	also	chose	to	make	the	chumby	One’s	microSD
card	a	managed	NAND	device	so	that	we	could	directly
drop	 ext3	 (a	 popular	 default	 Linux	 filesystem
configuration)	 onto	 it.	 The	 root	 partition	 was	 still
mounted	 as	 read-only	 at	 the	 factory	 to	 prevent
accidental	 damage,	 but	 a	 managed	 NAND	 system
made	remounting	 the	root	partition	as	read/write	and
modifying	 the	 Linux	 system	 trivial.	 We	 consciously
made	 the	 OS	 image	 use	 only	 a	 small	 portion	 of	 the
total	microSD	card	capacity,	leaving	hackers	with	over
a	 gigabyte	 of	 extra	 space	 to	 load	 custom	 applications
and	libraries.	(Keep	in	mind	that	a	gig	was	a	big	deal	at
the	time.)

In	hardware,	what’s	good	for	hackers	is	also	good	for
developers.	 The	 flexibility	 we	 added	 for	 hackers
allowed	us	to	add	a	ton	of	great	features	to	the	OS.	For
example,	 the	 chumby	 One	 supported	 certain	 3G
modems	 and	 could	 serve	 Wi-Fi	 as	 an	 access	 point
through	 those	 3G	 modems.	 That	 basically	 made	 the
device	 a	 3G-to-Wi-Fi	 router,	 which	 I	 found
enormously	useful	when	I	was	traveling	and	needed	to
create	 a	Wi-Fi	 hotspot	 for	 other	 devices.	We	 didn’t
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expose	that	feature	at	the	mainstream	user	level	at	first,
but	 we	 knew	 we	 (or	 anyone	 else—it	 was	 an	 open
project,	after	all)	could	wrap	a	GUI	around	it	and	make
it	 more	 user-friendly	 if	 people	 liked	 it.	 And	 if	 you
plugged	a	USB	keyboard	into	a	chumby	One,	it	would
automatically	open	a	console	shell	that	you	could	type
into.	That’s	 handy	 for	 times	when	 you	 can’t	 SSH	 in,
like	when	you’re	debugging	network	scripts.

Hardware	with	No	Secrets
As	with	the	chumby	classic,	we	also	made	the	chumby
One	design	as	open	as	possible.	We	posted	schematics,
gerber	 files,	 and	 the	GPL	 source	 code	 online.	 In	 the
following	 figure,	 you	 can	 see	 a	 preproduction	 pilot
chumby	One	 board.	 The	mass-production	 board	 was
basically	identical,	with	some	minor	tweaks	to	enhance
compatibility	 with	 the	 SMT	 machines	 we	 used	 in
China.

In	 particular,	 notice	 the	 pair	 of	 test	 points	 on	 the
board	 labeled	 SETEC	 ASTRONOMY	 in	 the	 bottom-
left	corner	of	the	photo	of	the	back	of	the	mainboard.
You	 could	 use	 those	 points	 to	 bypass	 the	 write
protection	on	the	chumby	One’s	authentication	ROM
and	 wipe	 out	 the	 keys	 that	 Chumby	 used	 to
authenticate	the	device.	I	can’t	think	of	a	real	reason	to
do	 that,	 but	 I	 added	 them	 on	 the	 principle	 that
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hardware	you	own	shouldn’t	hold	secrets	from	you.	If
you	 don’t	 like	 having	 encrypted	 access	 codes	 on	 a
device,	you	should	be	able	to	nuke	them.	In	the	case	of
a	 chumby	One,	 that	meant	 you’d	 no	 longer	 have	 the
codes	to	fetch	widgets	from	Chumby’s	servers,	but	hey,
it’s	your	hardware.	When	hardware	is	truly	yours,	you
can	void	the	warranty	and	do	what	you	want	with	it.	Of
course,	we	published	the	security	protocol	that	chumby
Ones	used	to	fetch	widgets,	too.

I	 also	designed	 the	 chumby	One	motherboard	with
mounting	holes	and	 features	 so	 it	 could	be	 retrofitted
back	 into	 a	 chumby	 classic.	 Although	Chumby	 never
planned	 to	 put	 chumby	 One	 boards	 into	 chumby
classic	 enclosures—hand-stitched	 Italian	 leather	 was
just	too	expensive,	and	there	were	a	couple	of	technical
issues	 with	 integration—I	 thought	 intrepid	 hackers
would	appreciate	the	option	to	do	it	themselves.
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The	chumby	One	mainboard	(back)
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The	chumby	One	mainboard	(front)

I	continued	 to	work	on	 improving	 the	chumby	 line
for	 several	 years,	 but	 eventually,	 I	 wanted	more	 time
for	 personal	 projects	 and	 a	 break	 from
entrepreneurship.

THE	END	OF	CHUMBY,	NEW	ADVENTURES
In	April	2012,	Chumby	as	 the	world	knew	 it	 came	 to
an	 end.	We	had	 run	 out	 of	money,	 and	 the	 investors
had	 run	 out	 of	 patience.	 I’d	 already	 left	 the	 company
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discreetly	in	January;	I	had	a	good	run,	but	it	was	also
time	 for	me	 to	move	on.	Upon	hearing	 the	news,	my
good	 friend	Phil	Torrone	 from	Make:	 reached	out	 to
me	 for	 an	 interview,	 and	 I	 was	 happy	 to	 oblige.	 You
can	 read	 the	 full	 interview	online,*	 but	 I’ve	 excerpted
parts	 of	 it	 here	 that	 you	 might	 find	 useful	 if	 you’re
excited	to	get	into	the	hardware	business.

Phil:	How	did	you	get	involved	at	Chumby?	And	what
was	your	role	at	the	company?

bunnie:	 I	was	originally	an	advisor	to	the	company,	a
consultant	 brought	 in	 to	 figure	 out	 some	 bits	 of	 the
hardware	strategy.	We	had	weekly	dinners	where	we’d
talk	about	what	the	product	might	be.	Eventually,	I	got
excited	enough	about	the	product	that	I	just	hammered
out	an	initial	prototype	motherboard	in	my	spare	time.
Around	 the	 same	 time,	my	boss	 at	my	prior	company
was	 really	 irritating	 me	 (he	 lectured	 me	 about	 the
importance	 of	 being	 in	 my	 chair	 every	 morning	 by
9AM,	completely	ignoring	the	fact	that	I’d	worked	until
midnight	the	day	before),	so	I	resigned	on	the	spot	and
joined	the	founding	team	of	Chumby.

My	 role	 at	 the	 company	 was	 initially	 VP	 of
Hardware,	 which	 sounds	 grand.	 But	 when	 the
hardware	 organization	 consists	 of	 exactly	 one	 person,
you’re	also	the	solder	jockey	and	the	janitor.	Now	that
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I	think	back	on	it,	 the	team	took	a	big	chance	on	me.
At	 the	 time	 I	 had	 no	 experience	 in	 supply	 chain
management	and	had	never	been	to	China.	They	took
a	leap	of	faith	and	gave	me	the	opportunity	to	figure	it
all	out.	 I	 really	appreciate	 that	 they	gave	me	so	much
latitude	to	learn	on	the	job.

Phil:	What	was	the	best	part	of	making	the	chumby?

bunnie:	 There	 were	 so	 many	 great	 things	 about
making	 the	 chumby.	 I	 think	 overall,	 one	 of	 the	 best
parts	 was	 that	 I	 had	 to	 figure	 everything	 out	 from
conception	 to	 distribution.	 It	meant	 that	 I	 got	 to	 see
every	 part	 of	 the	 process	 firsthand:	 industrial	 design,
electronics	 design,	 tooling,	 supply	 chain,	 retail,	 and
reverse	logistics.	There	are	so	many	things	that	go	into
a	 product,	 and	 satisfying	 that	 curiosity	 about	 how
things	are	made	was	great.

The	 other	 thing	 I	 really	 treasure	 from	making	 the
chumby	 was	 all	 the	 wonderful	 people	 I	 got	 to	 work
with	and	meet	along	 the	way.	 I	made	a	 lot	of	 friends,
and	I	had	so	many	excellent	mentors.

And	 finally,	 I	 think	 the	 best	 part	 about	 making
chumby	 isn’t	 really	 the	making.	 It’s	 seeing	people	use
it,	 and	 seeing	people	 enjoy	 and	 appreciate	 the	device.
The	smile	on	a	user’s	face	is	the	ultimate	reward.
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Phil:	Can	you	talk	about	making	a	device	from	start	to
finish,	from	idea	to	factory	to	retail	shelves?

bunnie:	One	of	 the	best	parts	 about	making	 a	device
from	 start	 to	 finish	 is	 that	 you	 have	 a	 totally
unconstrained	 set	 of	 tools	 to	 solve	 the	 problems	 at
hand.	 You	 can	 solve	 business	 problems	 with	 board
layout,	 and	 vice	 versa.	 For	 example,	 there	 was	 a
question	 about	 how	 we	 could	 uniquely	 and	 flexibly
brand	 units,	 in	 a	 fashion	 that	 allowed	 for	 swappable
faceplates	 (that	 is,	 snap	on	 the	NFL	faceplate	and	get
your	 football	 scores,	 snap	on	the	Bloomberg	 faceplate
and	get	your	financial	news,	and	so	on).	This	is	a	topic
that	could	take	dozens	of	meetings	to	hash	out.	But	as
the	 sole	 hardware	 guy,	 I	 knew	 that	 embedding	 an
EEPROM	 costs	 only	 $0.20	 and	 while	 everyone	 else
discussed	possible	solutions	in	the	staff	meeting,	I	fired
up	 my	 board	 design	 tool,	 added	 the	 eight-pin
EEPROM	 to	 the	 board,	 tossed	 on	 an	 appropriate
connector,	 and	had	 the	whole	 solution	 engineered	by
the	time	action	items	were	assigned.	It	actually	took	me
longer	to	convince	them	that	the	work	was	done	than	it
took	to	do	the	work.

I	 think	 I	 ended	 up	 absorbing	 many	 of	 the	 skills
required	to	build	a	product	from	start	to	finish	because
it’s	 very	 difficult	 to	 communicate	 requirements.	 The
question	was	always	whether	it	would	be	faster	for	me
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to	do	it	myself	or	to	explain	it	to	someone	else,	wait	for
them	 to	 do	 it,	 and	 possibly	 have	 to	 re-explain	 it	 and
have	 them	 change	 it.	 That’s	 one	 reason	 I	 learned
mechanical	 design;	 the	 industrial	 design	 and	 plastics
tooling	 is	 a	 long	 pole	 in	 the	 tent	 for	many	 consumer
products,	 and	 being	 able	 to	 efficiently	 and	 effectively
communicate	 with	 a	 mechanical	 engineering	 team
using	 their	 language	was	 important	 to	getting	 the	 job
done	right.

Phil:	What	were	the	challenges	with	retail	sales?

bunnie:	Retail	and	distribution	were	the	most	difficult
challenges.	Here	are	a	few	difficulties	I	encountered:

Dealing	with	 the	merchant	 buyers.	 	 Brick-and-
mortar	 retailers	 hire	 teams	 of	 buyers	 assigned	 to
monetize	shelf	space.	They	think	about	products	in
terms	 of	 revenue	 per	 shelf	 space,	 and	 they	 don’t
really	 see	 anything	 beyond	 that.	 This	 puts	 into
sharp	 relief	 any	 improvements	you	want	 to	add	 to
the	 product	 that	 also	 drive	 up	 product	 costs.
Merchants	tend	to	look	at	your	product	as	so	many
grams	of	plastic	and	so	many	wires.	They	multiply
those	numbers	by	 the	commodity	price	of	 the	raw
materials	 to	 set	 expectations	 for	 how	much	 they’ll
pay	to	have	it	on	the	shelf.	It’s	possible	to	cut	better
deals,	but	educating	a	merchant	about	the	value	of
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your	 product	 takes	 a	 lot	 of	 effort.	 Unfortunately,
the	turnover	in	merchant	staff	can	be	fairly	high,	so
you	may	 spend	months	cutting	a	deal	only	 to	 find
that	the	person	you	were	working	with	has	left	the
organization.

Margin.	 	Everyone	in	the	supply	chain	has	a	hand
out:	the	distributor,	the	merchant,	and	the	factory.
Beyond	that,	market	development	 funds	and	other
slush	money	have	 to	be	 factored	 in.	At	 the	end	of
the	day,	 the	 shelf	 cost	 of	 a	 product	 is	 about	 three
times	your	BOM	cost.	This	means	adding	a	$0.50
part	turns	into	a	$1.50	retail	price	impact.

	 	 	 This	 is	 aggravated	 by	 the	 fact	 that	 prices	 are
quantized	 into	 “magic”	 numbers	 (like	 $19.99,
$49.99,	 or	 $99.99)	 that	 you	 have	 to	 hit.	 You	 just
don’t	 MSRP	 a	 product	 for	 $127.45.	 If	 a	 product
retails	 for	 above	 $99,	 it’s	 psychologically	 binned
with	 the	 $149	 or	 $199	 products.	 When	 your
product’s	 BOM	 cost	 approaches	 one	 of	 these
quantization	points,	you’ll	do	lots	of	soul	searching
about	whether	it’s	worth	$0.50	to	improve,	say,	the
speakers.	Either	 that	 small	 cost	 increase	will	 come
out	of	your	own	margin,	or	you	risk	pushing	your
product	into	a	higher	price	tier.

Cash	flow.	Retailers	are	notoriously	bad	at	paying
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on	time.	You	may	negotiate	60-day	terms,	but	often
you’re	not	paid	 after	 90	or	 even	120	days.	 If	 your
product	 doesn’t	 sell	 out	 so	 that	 the	 retailer	 has	 to
place	 another	 order	with	 you	 (at	which	 point	 you
have	 some	 leverage	 to	 collect	 outstanding
payment),	 you’ll	 get	 strung	 out.	 This	 can	 be
partially	mitigated	with	 financial	 instruments	 such
as	 factoring	 insurance.	 Insurance	 companies	 will
sell	 insurance	 on	 anything,	 including	 insurance
hedging	 against	 retailers	 not	 paying	 on	 time	 or
going	insolvent	before	they	can	pay	you.

Reverse	 logistics	 and	 returns.	 Many	 retailers
offer	no-questions-asked	 return	guarantees.	That’s
great	 for	 the	 customer,	 but	 guess	 who	 services
those	returns?	The	retailer	passes	the	buck	back	to
the	 entrepreneur!	 This	 is	 part	 of	 why	 payment
times	can	be	quite	bad:	 retailers	are	retaining	cash
to	hand	back	to	customers	to	satisfy	returns.	Once
the	returns	are	processed,	you	get	to	figure	out	how
to	get	the	returned	material	off	their	dock	and	back
into	 a	 facility	 where	 you	 can	 refurbish	 the	 units.
Typically,	 most	 returned	 units	 aren’t	 defective.
They	simply	didn’t	meet	customer	expectations,	or
the	customer	had	buyer’s	remorse	after	an	impulse
buy.	 The	 otherwise	 working	 units	 are	 usually
missing	 accessories	 or	 are	 cosmetically	 marred,
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thereby	requiring	extensive	rework	to	refurbish.

Contracts.	 Retailers	 will	 hand	 you	 a	 default
contract	full	of	terms	that	very	strongly	favor	them
in	 almost	 every	 contingency.	 Sometimes,	 the
contracts	can	expose	you	to	liabilities	that	you	can’t
possibly	 hope	 to	 cover.	 For	 example,	 I’ve	 seen
language	 such	 that	 if	 an	 affiliated	 content	 website
was	 down	 for	 longer	 than	 a	 specified	 amount	 of
time,	 then	 you	 could	 be	 liable	 for	 nonspecific
damage	 to	 the	 brand	 reputation	 of	 the	 retailer
selling	 your	 goods.	 Those	 sorts	 of	 open-ended
liabilities	 are	 unacceptable,	 and	 negotiating	 them
out	can	take	months.	Other	onerous	terms	include
penalties	 for	 late	 shipments	 or	 fines	 for	 defective
units.	 The	 contract	 negotiation	 process	 is	 very
distracting	 to	 top	management	 and	 can	 put	 a	 real
drag	on	an	organization.

Phil:	 Did	 you	 get	 any	 patents?	 How	 do	 they	 work
within	the	world	of	open	source?

bunnie:	 Yes,	 I	 actually	 was	 granted	 several	 patents
during	 my	 tenure	 at	 Chumby.	 Patents	 are	 a	 very
natural	way	to	protect	hardware	ideas.	As	F/OSS	[free
and	open	source	software]	licenses	like	the	GPL	[GNU
general	 public	 license]	 and	 BSD	 [Berkeley	 software
distribution]	 rely	 on	 copyright	 for	 power,	 open
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hardware	 licenses	 can	 likewise	 draw	 upon	 patents	 for
power.

When	we	 started,	 no	 license	 existed	 that	 addressed
the	 patent	 issue,	 so	 chumby	 created	 its	 own	 flavor	 of
open	 source	 license.	 It	 was	 basically	 an	 automatic
cross-license	with	users	who	created	derivative	works.
Those	who	utilized	our	 source	would	get	 a	 license	 to
the	 patents,	 under	 the	 condition	 that	 any	 patents
granted	 for	 the	 derivative	 work	 also	 had	 to	 be
automatically	licensed	back	to	us.

The	 license	 had	 a	 couple	 of	 other	 restrictions	 that
were	 not	 “truly”	 open,	 like	 a	 condition	 that	 the
derivative	work	had	to	at	least	give	users	the	option	to
run	 the	 chumby	 network	 in	 a	 competing	 product	 (an
opt-in	checkpoint	during	the	boot	process).	There	was
also	 an	 “ask	 us	 if	 you	 want	 to	 manufacture”	 clause,
which	stated	that	derivatives	going	to	mass	production
had	to	get	additional	authorization	from	Chumby.	We
added	 that	 primarily	 to	 create	 a	 checkpoint	 to	 verify
interoperability	 with	 the	 servers,	 and	 also	 to	 enforce
proper	 trademark	 and	 branding	 rules.	 Burying	 that
clause	in	the	license	meant	that	the	license	couldn’t	be
called	 open	 source	 because	Chumby	 could	 always	 say
no,	 though	 it	 never	 did	 in	 practice.	 However,	 the
situation	 does	 highlight	 an	 ongoing	 struggle	 in	 open
source	 hardware:	 how	 to	 address	 trademark	 and
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interoperability	 issues	 in	 an	 increasingly	 complex	 and
diverse	ecosystem.

Also,	 the	rights	 to	 the	patents	 I	created	at	Chumby
are	 all	 assigned	 to	 the	 investors.	 They	 will	 likely	 be
sold	to	the	highest	bidder,	which	could	very	well	be	a
patent	 troll.	 I	 would	 regard	 that	 outcome	 as
unfortunate,	 but	 it’s	 a	 reality	 that	 I	must	 accept.	The
investors	have	the	right	to	explore	all	lawful	venues	to
recover	 their	 investment.	 In	 an	 ideal	world,	 however,
I’d	 buy	 back	 the	 rights	 at	 an	 affordable	 price,	 license
them	 to	 the	 open	 source	 community,	 and	 try	 to
establish	a	material	precedent	on	how	to	handle	patents
in	the	open	source	community.

Phil:	 Do	 you	 have	 any	 advice	 for	 a	 maker	 who	 is
considering	 taking	 venture	 capitalist	 funding?
Anything	 different	 if	 they’re	 doing	 open	 source
hardware?

bunnie:	 I	 think	 VC	 funding	 is	 suitable	 only	 for
accelerating	certain	kinds	of	growth.	It’s	not	very	good
for	early-stage	research	and	development	or	businesses
that	have	slow,	but	steady,	growth	models.

The	hardware	model	 is	 radically	different	 from	 the
software	model.	Software	is	 innately	scalable.	You	can
acquire	 100,000	 users	 overnight.	Monetizing	 the	 user
base	 in	 software	 is	 trickier,	 but	 most	 software	 plays
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start	with	scale	and	then	worry	about	money.
Because	 hardware	 requires	 the	movement	 of	 atoms

to	 acquire	 a	 user,	 scalability	 is	 limited	 by	 the	 rate	 at
which	you	can	economically	and	reliably	assemble	your
atoms	 and	 ship	 them	 to	 the	 customer.	 On	 the	 other
hand,	there	is	a	very	natural	point	for	monetization	in
hardware:	 the	margin	 you	 charge	 on	 every	 unit	 sold.
Money	comes	earlier	 and	more	often,	but	 the	growth
rate	 is	 limited	by	pesky	things	 like	the	 laws	of	physics
and	the	availability	of	raw	materials	and	skilled	labor	to
build	 the	 units.	 Notable	 exceptions	 to	 this	 rule	 are
concepts	like	the	Square	reader.	Square’s	hardware	was
cleverly	 designed	 to	 be	 so	 cheap	 that	 its	 cost	 was
arguably	 lower	 than	 the	 cost	 to	 acquire	 a	 customer
through	 other	 means	 (like	 print	 advertising	 and
mailing	campaigns),	making	 the	dongle	cheap	enough
to	just	give	away.

Therefore,	 in	 hardware,	 first	 ask	 this:	 what	 is	 your
distribution	 channel,	 and	 how	 hard	 is	 getting	 your
product	to	end	users?	Ultimately,	the	size	of	that	pipe
and	 the	 monetary	 drag	 on	 transactions	 limits	 the
growth	 rate	 of	 your	 idea.	 You	 also	 have	 to	 factor	 in
boomerang	 costs	 like	 returns	 and	 customer	 support
costs.	You’ll	be	shocked	at	how	many	support	calls	you
get	from	people	who	forgot	to	plug	your	product	in.

If	you	have	an	awesome	distribution	channel,	a	solid
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marketing	 campaign,	 and	 customers	 lined	 up	 out	 the
door,	maybe	VC	 is	 a	 reasonable	match.	 But	 a	 typical
maker	 will	 start	 out	 selling	 stuff	 online,	 possibly	 in
boutique	stores.	The	 time	 it	 takes	 to	 turn	capital	 into
revenue	will	 be	 on	 the	 order	 of	months	 initially,	 and
that’s	a	brutal	cycle	to	finance	with	VC.	All	the	money
you	have	 tied	up	 in	 the	 supply	 chain	 isn’t	 adding	 any
value	to	you,	but	you	traded	a	lot	of	your	ownership	in
the	company	to	get	that	money.

I	would	typically	recommend	that	a	maker	try	to	first
fund	research	and	development	out	of	pocket,	or	with	a
very	 friendly	 angel	 loan.	 Once	 you	 have	 a	 prototype
and	a	solid	plan	for	production,	it’s	smarter	to	go	into
debt	to	finance	small	batches	of	builds	so	you’re	never
overextended	and	build	your	market	one	step	at	a	time.
Every	time	you	turn	inventory,	you	should	come	back
with	more	cash,	which	you	can	plow	into	making	more
inventory.

Doing	 this	 forces	 good	 discipline.	 It	 will	 help	 you
focus	on	leaning	up	the	supply	chain	so	that	inventory
turns	 faster.	 The	 best	 hardware	 companies	 turn
inventory	 in	 a	matter	 of	 days.	 If	 you’re	 growing	 your
capital	base	by	20	percent	with	every	inventory	turn,	it
only	takes	four	turns	to	double	your	money:	$100	turns
into	 $120,	 which	 turns	 into	 $144,	 which	 turns	 into
$172,	which	on	the	fourth	turn	results	in	$207.	That’s
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the	magic	of	compounded	percentages.
If	 you	 can	 do	 a	 full	 turn	 of	 inventory	 once	 every

eight	weeks	and	sustain	a	20	percent	growth	rate	with
each	 turn,	 you’ll	 grow	 your	 business	 by	 over	 300
percent	 in	one	year.	Of	course,	 the	markets	are	never
so	 ideal	 and	 predictable,	 but	 you	 can	 play	 with	 turn
time	 versus	 margin	 available	 to	 grow	 your	 business.
Higher-margin	 businesses	 can	 take	 longer	 to	 turn
inventories	and	still	sustain	a	palatable	growth	rate.

Bootstrapping	 like	 this	 is	 a	 lot	of	hard	work,	but	at
the	end	of	the	day,	you	own	every	penny	you	make,	as
you	have	no	investors.	The	glory	stories	for	this	model
aren’t	as	big	as,	say,	Instagram	or	Google,	but	if	you’re
doing	it	right,	you’re	in	control,	and	your	work	is	more
likely	 to	 pay	 off	 in	 the	 end.	 In	 fact,	 many	 successful
Chinese	 hardware	 manufacturing	 businesses	 grew
primarily	using	bootstrapped	funding	just	like	this.

Phil:	 What	 are	 your	 thoughts	 on	 Kickstarter	 for
funding?

bunnie:	 I	 don’t	 think	 it’s	 a	 good	 idea	 to	 fund	 early
research	 and	 development	 with	 Kickstarter	 or	 other
crowdfunding	 platforms	 because	 of	 the	 hard
commitments	you	have	to	make	to	customers	early	on.
Kickstarter	 is	 a	great	phenomenon,	but	you	also	need
to	 be	 careful	 raising	 money	 there.	 To	 some	 extent,
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Kickstarter	 is	 the	 ultimate	 dumb	 money.	 Customers
are	sold	on	a	vision	and	buy	in	early	on,	and	you	have
to	 deliver	 on	 that	 vision.	 In	 crowdsourcing	 your
money,	 you’ve	 also	 crowdsourced	 your	 board	 of
directors.	 But	 the	 road	 to	 product	 development	 is
never	smooth.	As	a	result,	Kickstarter	money	can	lock
you	into	commitments	early	on	that	you	can’t	back	out
of.

I	think	Kickstarter	can	be	a	better	solution	than	VC,
but	 you	 should	only	use	 it	 after	 the	 idea	has	matured
sufficiently	 and	 you’re	 primarily	 looking	 to	 find	 a
better	way	to	finance	production	than	VC	money	or	a
bank	 loan.	 In	 fact,	 after	 you	 consider	 the	 frictional
losses	 of	 extracting	 money	 from	 Kickstarter,	 a	 bank
loan	with	a	few	percent	interest	could	be	favorable.	But
of	 course,	 a	 bank	 loan	 doesn’t	 come	 with	 the	 same
visibility,	 marketing,	 and	 upside	 potential	 as	 a
crowdfunding	platform.

Phil:	When	you	advise	 companies,	what	do	you	most
often	suggest	to	the	founders?

bunnie:	Ship	or	die!	Particularly	if	you’ve	accepted	VC
funding.	 The	 moment	 VC	 money	 hits	 your	 books,
you’re	on	a	fixed-length	fuse.	If	that	fuse	runs	out	and
you	haven’t	created	substantial	value,	a	bomb	goes	off
that	 wipes	 out	 a	 chunk	 of	 your	 valuation.	 If	 you’ve
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raised	 a	 million	 dollars	 and	 you	 plan	 to	 burn	 it	 in	 a
year,	every	day	“costs”	you	$4,000.	I	use	that	as	a	value
barometer	to	guide	decision	making:	if	$30	in	expedite
fees	can	pull	in	the	schedule	on	a	long-pole	task	by	one
day,	 the	money	 is	well	 spent.	This	 is	 also	 part	 of	 the
reason	 I	 lived	 on	 “China	 time”	while	 chumby	was	 in
production	even	though	I	was	in	California.	Staying	up
until	 4	 or	 5AM	 every	 night	 to	 flip	 emails	 with	 the
factory	and	shorten	the	longest	pole	in	the	tent	shaved
days	 off	 the	 schedule,	 which	 translated	 to	 tens	 of
thousands	of	dollars	in	burn.

In	 the	 face	 of	 “ship	 or	 die,”	 don’t	 look	 to	 ship	 the
perfect	 product.	 Shipping	 a	 product	 that’s	 good
enough	 is	 more	 important	 than	 shipping	 a	 great
product	late,	especially	in	consumer	electronics	or	any
similarly	seasonal	business.	In	consumer	electronics,	up
to	90	percent	of	your	business	can	happen	in	the	fourth
quarter.	If	you	miss	Christmas,	you’ll	have	no	revenue
for	 the	 next	 three	 quarters;	missing	Christmas	 is	 like
dropping	an	 extra	 year	 of	 burn	on	 your	 capitalization
table.	Worse	 yet,	 during	 that	 year,	 your	 competitors
will	continue	to	improve.

Chumby	suffered	from	precisely	this.	We	premiered
an	alpha	version	of	the	device	 in	August	2006,	but	we
missed	Christmas	2007.	We	didn’t	launch	our	squishy,
connected	 alarm	 clock	 until	 just	 after	 Christmas,	 in
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February	2008.
Consider	 some	world	 events	 that	 happened	 around

these	dates:	 the	iPhone	shipped	in	June	2007,	and	the
global	 economy	 crashed	 in	October	 2008.	 It	 was	 bad
enough	that	we	had	to	weather	almost	a	full	year,	from
February	2008	until	Christmas	2008,	burning	venture
money	 to	 stay	warm.	But	when	 the	economy	 fell	out,
so	did	the	appetite	for	a	$200	stocking	stuffer.	We	had
too	much	inventory	and	had	to	fight	for	survival.

If	my	memory	 is	 correct,	 we	 could	 have	 shipped	 a
product	for	Christmas	2007.	It	just	wouldn’t	have	been
quite	as	polished	and	would	have	lacked	some	features.
But	 maybe	 it	 would	 have	 been	 good	 enough.	 In
retrospect,	 the	 iPhone	 had	 by	 far	 less	 momentum	 in
2007	than	in	2008,	and	we	probably	could	have	cleared
a	lot	of	inventory.	On	the	other	hand,	perhaps	knowing
the	 iPhone,	 its	 apps,	 and	 its	 awesome	 touchscreen
would	 obsolete	 a	 connected	 alarm	 clock	 drove	 us	 to
second-guess	 our	 strategy	 and	 delay	 launch	 to
strengthen	features	like	streaming	music	integration.

At	any	rate,	the	lesson	is	clear	enough	to	me:	ship	or
die!

A	 second	 piece	 of	 advice	 I’d	 give	 to	 hardware
companies	 is	 to	 aim	 high	 with	 price.	 It’s	 virtually
impossible	 to	 raise	 your	 pricing	 if	 you	 start	 too	 low,
and	there’s	nothing	like	a	sale	to	get	people	to	buy.
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Hardware	 startups	 that	 principally	 sell	 online	 are
tempted	to	set	the	price	as	low	as	possible	to	drive	buzz
and	 improve	 initial	 sales.	The	 temptation	 to	 sell	 your
$35	device	for	$49	direct	online	is	huge.	After	all,	that’s
about	a	28	percent	margin	 (unless	your	BOM	doesn’t
factor	in	soft	costs).	That’s	great,	until	you’ve	dropped
off	 the	 front	 page	 of	 Engadget	 and	 your	 sales	 are
plummeting.

Engaging	 a	 retailer	 may	 help	 bring	 in	 more,	 and
more	consistent,	sales,	but	a	retailer	will	initially	try	to
buy	 your	 product	 from	 you	 for	 between	 40	 and	 60
percent	of	your	MSRP.	This	means	they’d	want	to	buy
a	product	 for	$49	 and	 sell	 it	 at	 $99.	 If	 you’ve	 already
sold	a	bunch	of	units	at	$49,	there’s	no	way	the	retailer
can	sell	 it	 for	$99.	To	access	 retail,	you’d	have	 to	 sell
your	 $35	 product	 to	 a	 retailer	 for	 $25	 so	 the	 retailer
can	 sell	 it	 at	 your	 established	 price	 of	 $49.	 Even	 if
you’re	successful	with	such	a	drastic	cost-down,	you’re
still	left	making	no	money!

Selling	your	$35	device	 for	$99	might	garner	 fewer
customers	 at	 first,	 but	 your	 initial	 margins	 would	 be
spectacular,	 and	 you’d	 have	 the	 room	 to	 cut	 in	 a
retailer	 or	 run	 sales	 of	 your	 own	 to	 get	 more
customers.	 That’s	 part	 of	 the	 reason	 MSRPs	 are	 so
high.	 Retailers	 also	 love	 to	 use	 sales	 to	 make	 units
move,	 and	 a	 $99	unit	 priced	 down	 to	 $69	 feels	 like	 a

320



smart	 buy.	 But	 at	 $69,	 the	 retailer	 is	 only	making	 29
percent	margin.

Aiming	too	low	on	pricing	effectively	robs	you	of	the
opportunity	 to	 use	 retail	 as	 a	 possible	 distribution
channel,	 and	 you	 simultaneously	 lose	 the	 opportunity
to	have	sales	and	promotions	yourself.	Promotions	are
important	because	viral	marketing	can	only	get	you	in
front	of	a	customer	once	or	twice	at	best.	So	when	you
put	your	heart	and	soul	into	your	product,	price	it	like
you	mean	it.

Phil:	 If	 you	 could	 do	 it	 over,	 how	would	 you	 change
the	hardware	of	 the	chumby?	The	software?	The	way
chumby	was	made?

bunnie:	 Well,	 as	 my	 previous	 answer	 indicates,	 I
would	have	 focused	much	more	on	 shipping	on	 time,
perhaps	at	the	expense	of	jettisoning	some	features.

A	 more	 counterintuitive	 thing	 I	 learned	 is	 that
accessories	 and	 packaging	 can	 take	 more	 time	 to
develop	 than	 a	 product.	 The	 squishy	 chumby	 classic
came	with	a	wonderful	set	of	linen	and	microfiber	bags
and	 rubber	 charms.	 (We	 developed	 over	 a	 dozen
charms	in	all.)	There	was	also	a	custom	power	adapter,
branded	 ribbons,	 gift	boxes,	branded	 tissue	paper	 ...	 I
even	 had	 to	 iterate	 the	 hardware	 design	 and	 spin	 an
injection-mold	tool	to	improve	the	attachment	method
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for	 the	 charms	 to	 the	 device.	 I	 spent	 at	 least	 four
months	 intensely	 focused	 on	 the	 accessories	 and
packaging	for	the	product.	Our	fan	base	went	wild	over
the	attention	to	detail,	and	that	helped	goose	sales.

But	 in	 retrospect,	 I	 wonder	 if	 we	 could	 have	 done
better	 forgoing	 the	 details	 and	 shipping	 before
Christmas.	One	of	the	most	gut-wrenching	realizations
that	 small	 companies	have	 to	make	 is	 that	 they	 aren’t
Apple.	 Apple	 spends	 over	 a	 billion	 dollars	 a	 year	 on
tooling.	 An	 injection-molding	 tool	 may	 cost	 around
$40,000	and	take	two	to	three	months	to	make;	Apple
is	 known	 to	 build	 five	 or	 six	 simultaneously	 and	 then
scrap	all	but	one	 so	 they	can	evaluate	multiple	design
approaches.	For	Apple,	 tossing	$200,000	 in	 tooling	 to
save	two	months’	time	to	market	 is	peanuts.	But	for	a
startup	 that	raised	a	million	bucks,	 that’s	unthinkable.
Apple	also	has	hundreds	of	staff;	a	startup	has	just	a	few
members	 to	 do	 everything.	 The	 precision	 and
refinement	 of	Apple’s	 products	 come	 at	 an	 enormous
cost	that	is	out	of	reach	for	startups.

I	don’t	mean	 to	 say	 that	design	 isn’t	 important.	 It’s
still	 an	 absolutely	 critical	 element	 to	 a	 product,	 and
good	design	 and	 attention	 to	detail	 allow	a	 startup	 to
charge	more	for	a	product	and	differentiate	themselves
from	 competitors.	 Apple	 has	 raised	 the	 bar	 very	 high
for	 design	 and	 user	 experience,	 and	 users	 will	 judge
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your	product	accordingly.	But	it’s	important	to	keep	in
mind	 that	 your	 true	 bar	 for	 comparison	 is	 other
startups,	not	Apple.	 If	your	chief	competitor	 is	Apple,
either	 you	 need	 a	 billion	 dollars	 in	 cash	 to	 invest	 in
product	design	or	you	need	to	rethink	your	strategy.

That	 leads	 to	 another	 thing	 I’d	 probably	 change.
Pivoting	is	so	important	for	a	startup.	A	startup	has	to
be	 able	 to	 run	 circles	 around	 big	 companies.
Culturally,	 Chumby	 just	 found	 it	 challenging	 to	 be
agile	 enough	 to	 adapt	 to	 a	 rapidly	 changing
technological	landscape.

Of	course,	hindsight	is	20/20.	There’s	a	lot	we	could
have	done	differently,	but	when	I	think	back	on	all	the
early	 decisions	 we	 made	 and	 how	 we	 got	 there	 (the
resistive	 touchscreen,	 lack	of	 integrated	battery,	using
Flash	as	our	core	platform),	I	don’t	see	how	we	could
have	made	any	different	fact-based	decisions	back	then.

But	 that	 does	 show	 a	 flaw	 of	 fact-based	 reasoning.
Engineers	love	to	make	decisions	based	upon	available
data	 and	 high-confidence	models	 of	 the	 future.	 But	 I
think	the	real	visionaries	either	don’t	know	enough,	or
have	 the	 sheer	conviction	and	courage	 to	 see	past	 the
facts	 and	 cast	 a	 long	 shot.	 It’s	 probably	 a	bit	 of	both.
Taking	risks	also	means	there’s	a	bit	of	luck	involved.

I	 certainly	 have	 a	 fact-induced	 myopia.	 My	 recent
focus	 on	 operational	 efficiency,	 schedules,	 and	 risk
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management	has	sapped	my	ability	to	have	creative	and
audacious	 visions.	 I’m	 actually	 taking	 a	 year	 off	 from
entrepreneurship	 to	 decompress	 a	 bit	 and	 to	 try	 to
rediscover	and	develop	the	creative	bits	of	myself	that
have	atrophied	over	the	past	couple	of	years.

Phil:	 Now	 that	 you’ve	 been	 part	 of	 a	 full	 cycle	 of	 a
VC-funded	 company	 that	 makes	 hardware,	 what
suggestions	 do	 you	have	 for	 company	 structure,	 from
the	people	to	the	location	to	the	overall	organization?

bunnie:	 The	 structure	 really	 depends	 on	 the	 type	 of
product	 you’re	 trying	 to	 build.	 Hardware	 has	 many
different	 specialties	 (like	 consumer,	 medical,	 and
industrial)	and	markets	(like	high-end	boutique,	hobby
items,	and	mass	market	devices).	There’s	good	business
potential	 in	 all	 of	 them,	but	 your	 location,	 focus,	 and
team	 composition	 need	 to	 be	 tuned	 based	 on	 your
product	 and	 what	 gives	 you	 a	 competitive	 edge.	 At
Chumby,	hardware	was	just	a	barrier	to	entry	for	apps
to	run	 in	your	home,	 so	 it	was	 instantly	 a	 race	 to	 the
bottom.	The	hardware	part	of	the	company	had	to	run
lean	 (remember,	Chumby	had	one	hardware	 engineer
and	 one	 operations	 director),	 and	 it	 needed	 a	China-
centric	strategy	from	day	one.

Generally,	if	you	can	suffer	doing	a	hardware	startup
through	bootstrapping,	it’s	worthwhile.	A	broad	range
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of	hardware	products	can	be	bootstrapped	at	first—and
then	 Kickstarted,	 debt-financed,	 or	 VC-funded	 to
scale.	 For	 instance,	MakerBot	 developed	 and	 shipped
its	3D	printer	entirely	on	angel	money,	before	closing
a	 round	 of	 VC	 funding.	 Bre	 Pettis,	 one	 of	 the
cofounders,	once	mentioned	that	they	lived	on	nothing
but	cup	ramen	noodles	for	a	month.

Any	 hardware	 company	 that	 has	 passed	 the	 idea
phase	 and	 is	 entering	 the	 scaling-up	 phase	 has	 to	 be
razor-focused	 on	 operations	 and	 cash	 flow.
Maintaining	 a	 build-to-order	 paradigm	 is	 critical	 but
difficult:	a	key	metric	for	any	hardware	company,	small
or	 large,	 is	 how	 quickly	 you	 can	 turn	 inventory	 into
cash.	 There	 are	 two	 halves	 to	 the	 equation.	 One	 is
leaning	up	your	supply	chain	and	trimming	lead	times
so	 you	 don’t	 need	 to	 sit	 on	much	 inventory,	 yet	 can
satisfy	 new	 orders	 quickly.	 The	 other	 is	 leaning	 up
your	 cash	 management	 so	 you	 can	 bill	 customers
quickly	 while	 stretching	 your	 credit	 lines	 as	 far	 as
possible.	 That’s	 a	 multidimensional	 optimization
problem	that	can	make	your	head	explode	without	the
right	 staff,	 so	 your	 team	 should	 include	 a	 crack
operations	director	 and	 someone	 adept	 in	 semi-exotic
financial	 instruments	 like	 factoring	 insurance,
collateralized	lines	of	credit,	and	trade	contracts.

Being	able	 to	access	China	effectively	early	offers	 a
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disruptive	advantage	to	your	startup	(it’s	hard	to	ignore
the	order-of-magnitude	advantage	China	has	over	 the
United	 States	 in	 assembly	 costs),	 but	 working	 with
China	 does	 come	 at	 a	 huge	 cost	 and	 risk	 to	 the
organization.	 It	may	 not	 be	 for	 everyone,	 particularly
on	day	one.

I	 outsourced	 myself	 to	 Singapore	 to	 get	 closer	 to
China,	 because	 I	 knew	 I’d	 never	 be	 able	 to	 get	 away
from	the	China	ecosystem.	China	has	such	a	firm	grip
on	 hardware	 manufacturing,	 and	 I	 think	 it	 will	 take
decades	 for	 them	 to	 lose	 their	 edge.	This	 geographic
diversity	also	means	that	any	effective	hardware	startup
has	to	be	able	to	function	effectively	with	a	delocalized
team.

Phil:	 What’s	 next	 for	 bunnie?	 What	 are	 you	 most
excited	to	do	next?

bunnie:	 That	 is	 the	 question	 for	 me!	 I	 don’t	 really
know	what’s	next.	As	 I	noted	 earlier	 in	 the	 interview,
I’m	taking	a	year	off	to	do	things	that	aren’t	specifically
entrepreneurial.	My	current	priorities	are	to	first	have
fun	with	my	work,	second	to	not	lose	too	much	money,
and	 third	 to	 do	 something	 good	 for	 the	 community
through	a	combination	of	hacktivism,	volunteer	work,
and	open	source	methodology.	I’m	hoping	in	this	year
I’ll	 collect	 the	bits	 of	my	 soul	 that	 I’ve	 lost	 along	 the
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way,	 find	 some	 new	 ones,	 and	 relearn	 the	 value	 of
magic	 in	 my	 life.	 I’m	 also	 spending	 a	 fair	 bit	 of	 my
focus	 tuning	 up	myself,	 getting	 fit,	 changing	my	 diet
habits,	 and	 losing	 weight.	 The	 coolest	 piece	 of
hardware	you’ll	ever	own	is	your	body,	and	if	that’s	not
working	well,	 there’s	no	hope	for	anything	else.	Once
I’m	 done	 with	 my	 aimless	 wanderings,	 hopefully	 I’ll
have	a	better	idea	of	what’s	next!

While	 reviewing	 that	 interview	 for	 this	 book,	 I
chuckled	a	bit	to	myself.	By	that	point,	the	year	I	took
off	 had	 turned	 into	 four	 years.	 Several	 concerned
associates	of	mine	asked,	“When	are	you	going	to	stop
your	 midlife	 crisis	 and	 get	 a	 real	 career?”	 But	 in
retrospect,	not	going	back	to	the	corporate	world	was
the	best	decision	I	ever	made.

I	 do	 live	 a	 lot	 leaner	 than	 I	 did	 when	 I	 had
VC/corporate	 backing,	 but	 I	 have	 a	 lot	 more
independence.	 It	 was	 a	 choice	 between	 golden
handcuffs	 and	 an	 Aeron	 chair,	 or	 a	 rucksack	 and	 an
interesting	spot	near	the	horizon.	I’m	still	working	on
collecting	 the	 bits	 of	 my	 soul,	 and	 I’m	 still	 slowly
relearning	the	values	of	enchantment	and	wonder.	But
at	least	I	have	the	freedom	to	contemplate	values	other
than	 the	 wealth	 of	 my	 invested	 shareholders.
Thankfully,	 I	had	some	success	 in	revising	my	dietary
habits	and	fitness	level;	tuning	up	my	own	body	was	an
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excruciating	year	of	calorie	tracking,	sore	muscles,	and
blistered	 hands,	 but	 it	 paid	 off	 in	 spades.	My	mother
used	to	tell	me	that	without	health,	you	have	nothing;
she’s	absolutely	right.	If	you	don’t	have	the	stamina	to
work,	 it’s	 hard	 to	 turn	 opportunities	 into	 outcomes.
With	 any	 luck,	my	health	will	 hold	 out,	 and	 I’ll	 have
many	more	stories	to	share	with	you	in	the	future.

WHY	THE	BEST	DAYS	OF	OPEN	HARDWARE
ARE	YET	TO	COME
One	of	the	most	critical	outcomes	from	my	year	of	soul
searching	was	the	realization	that	the	best	days	of	open
hardware	 are	 still	 ahead.	 As	 I	 contemplated	 in	 my
interview	with	Phil,	Chumby	didn’t	 fail	because	of	 its
open	 hardware	model.	 At	 worst,	 the	model	 had	 little
bearing	 upon	 the	 consumer	 appeal	 of	 the	 product;	 at
best,	 it	 was	 a	 good	 talking	 point.	 Nowhere	 in	 that
interview	 did	 I	 gripe	 about	 plummeting	 sales	 in
response	to	cheap	clones	appearing	on	the	market	due
to	our	liberal	open	source	policies.

Rather,	 one	 of	 our	 biggest	 challenges	 was	 an
inability	to	keep	up	with	Moore’s	law.	Chumby	simply
didn’t	have	 the	 resources	 as	 a	 startup	 to	keep	pace.	 It
took	 two	 to	 three	 years	 to	 push	 a	 major	 platform
revision,	 at	 which	 point	 that	 revision	 was	 already
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obsolete.	 My	 PhD	 dissertation*	 was	 centered	 on
Moore’s	 law	and	 its	 impact	on	computer	architecture.
The	 most	 powerful	 computers	 are	 descendants	 of	 a
processor	designed	 in	 the	1970s	 (the	 Intel	 8085)	with
derivatives	still	used	today	as	the	brains	of	toaster	oven.
Why?	 Because	 running	 existing	 code	 on	 backward-
compatible	 CPUs	 has	 almost	 always	 been	 faster	 than
porting	 old	 code	 to	 a	 new	 microarchitecture.	 Given
that	 fact,	 in	my	 thesis,	 I	 designed	 a	microarchitecture
that	nobody	could	possibly	 implement	at	the	time	but
that	 might	 be	 optimal	 for	 a	 computer	 that	 could	 be
built	 10	 to	 15	 years	 out.	 A	 small	 team	 of	 researchers
would	 have	 ample	 time	 to	 develop	 the	 infrastructure
necessary	for	a	novel	computer	that	would	be	relevant
the	day	it’s	finally	switched	on.	I	spent	several	months
in	the	late	’90s	studying	the	underpinnings	of	Moore’s
law,	trying	to	understand	where	it	runs	thin	and	where
it	 holds	 strong.	 At	 the	 time,	 the	 strongest	 limitation
was	 the	 speed	 of	 light,	 so	my	 thesis	 revolved	 around
architectural	tricks	to	reduce	communication	latencies.

In	 2011,	 about	 a	 decade	 after	 my	 graduation	 and
right	around	the	end	of	Chumby,	I	had	an	opportunity
to	 give	 a	 “vision”	 keynote	 at	 the	 Open	 Hardware
Summit.	I	decided	to	review	my	notes	from	college	and
see	 if	 there	might	 be	 another	 decade	 left	 in	Moore’s
law.	 There	 isn’t,	 and	 that	 has	 profound	 ramifications
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on	the	future	of	open	source	hardware.	This	section	is
an	adaptation	of	a	blog	post	I	wrote	in	2011	sharing	my
thoughts;	 thankfully,	 here	 in	 2016,	 I’ve	 yet	 to	 retract
any	of	the	statements	I	made	back	then.

Where	We	Came	From:	Open	to	Closed
Open	hardware	 is	a	niche	 industry,	and	certain	trends
have	 caused	 the	 hardware	 industry	 to	 favor	 large,
closed	businesses	at	 the	expense	of	small	or	 individual
innovators.	 Looking	 20	 to	 30	 years	 into	 the	 future,
however,	 I	 see	 a	 fundamental	 shift	 in	 trends	 that	 can
tilt	the	balance	of	power	to	favor	innovation	over	scale.

As	 I	 said	 in	 this	 part’s	 preface:	 in	 the	 beginning,
hardware	 was	 open.	 Early	 consumer	 electronic
products,	 such	 as	 vacuum-tube	 radios,	 often	 shipped
with	user	manuals	 containing	 full	 schematics,	 a	 list	 of
replacement	parts,	 and	 instructions	 for	 service.	 In	 the
’80s,	 computers	 often	 shipped	 with	 schematics.	 For
example,	the	Apple	II	shipped	with	a	reference	manual
that	 included	 a	 full	 schematic	 of	 the	 mainboard,	 an
artifact	I	credit	for	strongly	influencing	me	to	get	into
hardware.
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A	vacuum-tube	radio	schematic

But	 contemporary	 user	 manuals	 lack	 this	 depth	 of
information.	The	most	complex	diagram	I’ve	seen	in	a
Mac	Pro	user	guide	instructs	you	on	how	to	sit	at	the
computer:	keep	your	“thighs	tilted	slightly,”	“shoulders
relaxed,”	and	so	on.

What	 happened?	 Did	 electronics	 just	 get	 too	 hard
and	 complex?	On	 the	 contrary,	 improving	 electronics
got	 too	 easy:	 the	 pace	 of	 Moore’s	 law	 has	 been	 too
much	for	small-scale	innovators	to	keep	up.

Where	We	Are:	“Sit	and	Wait”	vs.
“Innovate”
Consider	 this	 snapshot	 of	 Moore’s	 law,	 which	 states
that	 “goodness”	 (pick	 virtually	 any	 metric:
performance,	transistor	density,	price	per	quanta,	etc.)
doubles	every	18	months.
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Moore’s	law,	doubling	once	every	18	months	versus	linear
improvement	of	75	percent	per	year.	The	shaded	sliver

between	the	two	lines	at	t	<	2	years	represents	the	window	of
opportunity	where	linear	improvement	exceeds	Moore’s	law.

This	 chart	 is	 unusual	 in	 that	 the	 vertical	 axis	 is
linear.	 Most	 charts	 depicting	 Moore’s	 law	 use	 a
logarithmic	 vertical	 scale,	 which	 flattens	 the	 curve’s
sharp	 upward	 trend	 into	 a	 much	 more	 innocuous-
looking	 straight	 line.	 The	 shaded	 area,	 on	 the	 other
hand,	represents	a	linear	improvement	over	time.	This
might	 represent	 a	 small	 innovator	 working	 at	 a
constant,	noncompounding,	but	respectable	rate	of	75
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percent	per	year	to	add	or	improve	features	on	a	given
platform.	The	tiny	(almost	invisible)	space	enclosed	by
the	 curves	 represents	 the	 market	 opportunity	 of	 the
small	innovator	versus	Moore’s	law.

The	juxtaposition	of	these	two	curves	highlights	the
central	 challenge	 facing	 small	 innovators.	 Sitting	 and
waiting	 have	 long	 been	 more	 profitable	 than
innovating.	 If	 it	 takes	 two	 years	 to	 double	 the
performance	 of	 a	 system,	 you’re	 better	 off	 simply
waiting	 and	 upgrading	 to	 the	 latest	 hardware	 in	 two
years.	 Racing	 against	 Moore’s	 law	 is	 a	 Sisyphean
exercise.

This	 exponential	 growth	 mechanic	 favors	 large
businesses	 with	 the	 resources	 to	 achieve	 huge	 scale.
Instead	 of	 developing	 one	 product	 at	 a	 time,	 a
competitive	 business	 must	 have	 the	 resources	 and
vision	to	develop	three	or	four	generations	of	products
simultaneously.	Reaching	the	global	market	within	the
timespan	of	 a	 single	 technology	generation	 requires	 a
supply	 chain	 and	 distribution	 channel	 that	 can	 do
millions	 of	 units	 a	month:	 selling	 at	 a	 rate	 of	 10,000
units	 per	 month,	 reaching	 “only”	 a	 million	 users,	 or
about	1	percent	of	the	households	in	the	United	States
alone,	 would	 take	 eight	 years.	 And	 significantly,	 the
small	barrier	(a	few	months’	time)	created	by	closing	a
design	and	forcing	the	competition	to	reverse-engineer
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products	 can	 be	 an	 advantage,	 especially	 against	 the
pace	of	Moore’s	law.

Thus,	technology	markets	have	become	inaccessible
to	 small	 innovators	 as	 individuals	 struggle	 to	 keep	up
with	 the	 technology	 treadmill	 and	 big	 companies
continue	 to	close	 their	designs	 to	gain	a	 thin	edge	on
their	competition.	This	trend	is	changing,	however.

Where	We’re	Going:	Heirloom	Laptops
Gordon	Moore,	the	man	who	observed	Moore’s	law,	is
one	of	Intel’s	co-founders.	Moore’s	 law	is	best	known
for	describing	how	transistor	density,	and	by	extension
CPU	 performance,	 would	 increase	 over	 time.	 For
instance,	consider	this	plot	of	Intel	CPU	clock	speed	at
introduction	versus	time.*
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CPU	clock	speed	over	time.	The	plateau	has	held	steady	since
2014.

Notice	 the	 abrupt	 plateau	 where	 clock	 speed	 stops
increasing.	 At	 that	 point,	 CPU	 makers	 started	 using
multicore	 technology	 to	 drive	 performance,	 but	 this
wasn’t	 by	 choice.	 CPUs	 reached	 physical	 limits	 that
prevented	 practical	 clock	 scaling,	 primarily	 related	 to
power	 and	wire	 delay	 scaling.	Transistor	 density,	 and
hence	core	count,	continues	to	increase	over	time,	but
the	 pace	 is	 decelerating.	 Transistor	 count	 used	 to
double	once	every	18	months;	then	it	slowed	down	to
double	 less	 than	 once	 every	 24	 months.	 Eventually,
transistor	 density	 scaling	 will	 effectively	 end.	 The
absolute	 endpoint	 for	 transistor	 scaling	 is	 a	 topic	 of
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debate,	but	one	study†	 indicates	 that	 scaling	may	 stop
at	an	effective	gate	length	of	about	5	nm.	That’s	about
the	 space	 between	 10	 silicon	 atoms,	 so	 even	 if	 this
guess	is	wrong,	it	can’t	be	wrong	by	much.

The	implications	are	profound.	One	day,	you	won’t
be	able	to	rely	on	buying	a	faster	computer	next	year.
Your	 phone	won’t	 get	 any	 smaller	 or	more	 powerful.
And	the	flash	drive	you	buy	next	year	will	cost	the	same
and	 store	 the	 same	 number	 of	 bits	 as	 the	 one	 you
bought	 this	 year.	 The	 idea	 of	 an	 “heirloom	 laptop”
may	 sound	 preposterous	 today,	 but	 someday,	we	may
perceive	 our	 computers	 as	 cherished	 and	 useful
heirlooms	to	hand	down	to	our	children	as	part	of	our
legacy.

An	Opportunity	for	Open	Hardware
This	 slowing	 trend	 is	 good	 for	 small	 businesses,	 and
likewise	 open	 hardware	 practices.	 To	 see	 why,	 let’s
revisit	 the	 plot	 of	 Moore’s	 law	 versus	 linear
improvement.	 This	 time,	 I’ll	 overlay	 two	 new
scenarios:	 technology	 doubling	 once	 every	 24	 and	 36
months.
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Three	different	Moore’s	law	scenarios.	The	shaded	sliver
between	linear	improvement	and	the	t=18	months	scenario

turns	into	a	large	region	of	opportunity	under	the	t=36	months
scenario.	(Note	that	the	vertical	axis	is	log	scale.)

The	 area	 bounded	 by	 the	 curved	 line	 and	 the
straight	 line	 at	 the	 bottom	 represents	 the	 market
opportunity	 for	 linear	 improvement	 versus	 Moore’s
law.	 In	 the	 36-month	 scenario,	 not	 only	 does	 linear
improvement	 have	 over	 eight	 years	 to	 go	 before	 it	 is
lapped	 by	 Moore’s	 law,	 but	 also	 there	 is	 a	 point	 at
around	year	two	or	three	where	the	optimized	solution
is	 clearly	 superior	 to	 Moore’s	 law.	 In	 other	 words,
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there	 is	 a	 genuine	 market	 window	 for	 monetizing
innovative	solutions	at	a	pace	that	small	businesses	can
handle.

As	Moore’s	law	decelerates,	there’s	also	potential	for
greater	 standardization	 of	 platforms.	 Creating	 a
standard	 tablet	 or	 mobile	 phone	 chassis	 with
interchangeable	components	may	seem	ridiculous	now,
but	 it	 becomes	 a	 reasonable	 proposition	 when
components	stop	shrinking	and	changing	so	much.	As
technology	 decelerates,	 there	 will	 be	 a	 convergence
between	 hardware	 found	 in	 mobile	 phones	 and
hardware	 found	 in	 embedded	 CPU	modules	 like	 the
Arduino.	 Just	 look	 at	 the	 Raspberry	 Pi,	 which	 was
introduced	 in	 2012.	 Models	 released	 in	 2016	 offer	 a
quad-core,	1.2GHz	CPU	for	performance	comparable
to	entry-level	smartphones	at	the	time.

Creating	 stable,	 performance-competitive	 open
platforms	will	empower	small	businesses.	Of	course,	a
small	 business	 can	 still	 choose	 to	 be	 closed,	 but	 by
doing	 so,	 it	 must	 create	 a	 vertical	 set	 of	 proprietary
infrastructure,	 and	 the	dilution	of	 focus	 to	 implement
such	a	stack	could	be	disadvantageous.

In	 the	 post–Moore’s	 law	 future,	 FPGAs	 may
perform	respectably	compared	to	their	hardwired	CPU
kin,	 for	 at	 least	 two	 reasons.	 First,	 the	 flexible	 yet
regular	 structure	 of	 an	 FPGA	 may	 lend	 it	 a	 longer
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scaling	 curve,	 in	 part	 due	 to	 the	 FPGA’s	 ability	 to
reconfigure	 circuits	 around	 small-scale	 fluctuations	 in
fabrication	 tolerances.	 Second,	 the	 extra	 effort	 to
optimize	code	 for	hardware	acceleration	will	amortize
more	 favorably	 as	 CPU	 performance	 scaling
increasingly	 relies	upon	difficult	 techniques	 like	using
parallel	 cores	 on	 a	massive	 scale.	Massively	multicore
CPU	 architectures	 look	 a	 lot	 like	 the	 coarse-grain
FPGA	 architectures	 proposed	 in	 academic	 circles	 in
the	 ’90s.	 An	 equalization	 of	 FPGA-to-CPU
performance	should	greatly	facilitate	the	penetration	of
open	hardware	at	a	deep	level.

There	will	be	 a	 rise	 in	 repair	 culture	 as	 technology
becomes	 less	 disposable	 and	 more	 permanent.
Replacing	 worn-out	 computer	 parts	 five	 years	 from
their	 purchase	 date	 won’t	 seem	 so	 silly	 when	 the
replacement	 part	 has	 virtually	 the	 same	 specifications
and	price	as	the	old	part.	This	rise	in	repair	culture	will
create	a	demand	for	schematics	and	spare	parts	that	in
turn	 facilitates	 the	 growth	 of	 open	 ecosystems	 and
small	businesses.

Personally,	 I’m	 looking	 forward	 to	 the	 return	 of
artisan	engineering,	where	elegance,	optimization,	and
balance	are	valued	over	feature	creep,	and	where	I	can
use	the	same	tool	for	a	decade	and	not	be	viewed	as	an
anachronism.	 (Most	 people	 laugh	 when	 they	 hear	 I
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held	 on	 to	 Eudora	 7	 as	 my	 email	 client	 until	 2012,
when	I	switched	to	my	current	client,	Thunderbird.)

The	 deceleration	 of	 Moore’s	 law	 has	 already
impacted	 markets	 that	 are	 less	 sensitive	 to
performance.	 Consider	 the	 rise	 of	 Arduino.	 It	 took
several	years	to	gain	popularity,	with	virtually	the	same
hardware	 at	 its	 core	 the	whole	 time.	 Fortunately,	 the
demands	 of	 Arduino’s	 primary	 market	 (physical
computing,	 education,	 and	 embedded	 control
applications)	have	not	grown,	allowing	the	platform	to
remain	 stable.	 This	 stability	 has	 enabled	 Arduino	 to
grow	 deep	 roots	 in	 a	 thriving	 user	 community	 with
open	and	interoperable	standards.

With	some	hard	work	and	a	bit	of	luck,	I	believe	the
open	 hardware	 ecosystem	 will	 surely	 blossom.	 The
inevitable	slowdown	of	Moore’s	 law	may	spell	 trouble
for	 technology	 giants,	 but	 it	 will	 also	 create	 an
opportunity	for	the	open	hardware	movement	to	grow
roots	and	start	something	potentially	very	big.	To	seize
this	opportunity,	open	hardware	pioneers	will	need	to
set	 the	 stage	 by	 creating	 a	 culture	 of	 permissive
standards	and	customs	that	can	scale	over	time.

I	 look	 forward	 to	 being	 a	 part	 of	 open	 hardware’s
bright	future.
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CLOSING	THOUGHTS
Although	chumby,	conceived	 in	2006,	was	a	bit	ahead
of	 its	 time	 and	 the	 company	 ultimately	 fell	 victim	 to
Moore’s	 law,	 my	 reflections	 on	 the	 slowing	 pace	 of
Moore’s	 law	 encouraged	 me	 to	 try	 yet	 another
experiment	 in	 open	 hardware.	 The	 next	 chapter,	 on
Novena,	 shares	 the	 story	 of	 my	 quixotic	 adventures
building	a	bespoke	open	source	laptop.
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7.	novena:	building	my	own
laptop

It	 was	 2012,	 and	 I	 was	 unemployed.	 My	 previous
startup	had	failed,	and	I	was	taking	a	year	off	to	figure
out	what	I	should	do	next.	My	friend	xobs	(introduced
in	Chapter	4)	and	I	had	a	tradition	that	we	maintain	to
this	day:	 every	Friday,	we	 sit	 down	 for	 a	 few	beers	 at
lunch	and	shoot	the	breeze.	During	one	of	those	“Beer
Friday”	 discussions,	 we	 decided	 to	 build	 our	 own
laptop.	I	expressed	displeasure	with	how	I’d	never	been
employed	 to	build	 a	product	 that	 I’d	 actually	want	 to
use	 every	 day.	 As	 a	 design	 engineer,	 you’re	 typically
driven	by	market	requirements,	not	your	own	eclectic
tastes.	We	bantered	a	bit	about	things	we’d	find	useful
and	 realized	 that,	 thanks	 to	 the	 gradual	 slowing	 of
Moore’s	law,	maybe	it	wasn’t	so	crazy	for	us	to	build	an
open	laptop	with	some	wacky	features	just	for	hackers.
From	 there,	 we	 started	 a	 hobby	 project	 to	 build	 a
computer	just	for	ourselves,	something	we’d	use	every
day	 that	would	be	 easy	 to	 extend	 and	mod—our	 very
own	electronic	Swiss	Army	knife.	We	gave	the	project
the	 code	 name	 Novena,	 the	 name	 of	 a	 Singaporean
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metro	station	and	Latin	for	“nine.”
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The	second-generation	Novena	design	that	went	up	on	Crowd
Supply

The	finished	Novena	was	a	1.2GHz,	Freescale	(now
NXP)	 i.MX6	 quad-core	 ARM	 architecture	 computer
closely	 coupled	 with	 a	 Xilinx	 FPGA.	 It	 was	 designed
for	 users	 who	 wanted	 to	 modify	 and	 extend	 their
hardware:	 all	 the	 documentation	 and	 PCBs	 were	 and
still	are	open	and	free	to	download,*	and	we	gave	 it	a
variety	of	features	that	facilitated	rapid	prototyping.

NOT	A	LAPTOP	FOR	THE	FAINT	OF	HEART
As	I	 talked	 to	more	people	about	Novena,	however,	 I
realized	that	others	were	interested	in	owning	a	laptop
like	that	but	perhaps	didn’t	want	(or	didn’t	know	how)
to	make	 their	 own	 circuit	 boards.	 In	 response	 to	 the
overwhelmingly	 positive	 feedback	 we	 received	 to	 a
blog	post	on	the	topic,	xobs	and	I	launched	a	campaign
on	Crowd	Supply	 in	2014,	once	 the	design	was	stable
and	tested.	Over	1,000	people	pledged	their	support;	I
am	 happy	 to	 report	 that	 we	 fulfilled	 every	 single
campaign	pledge,	most	of	them	within	a	few	months	of
the	 promised	 date.	 After	 the	 campaign’s	 close,	 we
decided	it	would	spread	our	limited	resources	too	thin
to	 maintain	 the	 supply	 chain	 for	 the	 full	 laptop
configuration,	 but	 we	 would	 sell	 and	 support	 the
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Novena	motherboard	 hardware	 for	 at	 least	 five	 years
from	the	launch	of	the	campaign.

To	be	clear,	Novena	is	not	a	machine	for	the	faint	of
heart.	It’s	an	open	source	project,	which	means	part	of
the	 joy	 (and	 frustration)	 of	 the	 device	 is	 that	 it	 is
continuously	 improving.	 It’s	 perhaps	 the	 only	 laptop
that’s	 ever	 shipped	 with	 a	 screwdriver.	 Anyone	 who
bought	 one	 of	 the	 original	 designs	 had	 to	 install	 the
battery	and	screw	on	the	LCD	bezel	of	their	choice—
green	 or	 blue.	 The	 speakers	 came	 as	 a	 kit	 so	 users
wouldn’t	 have	 to	 use	 our	 speaker	 box	 design.	 If
someone	had	access	 to	a	3D	printer,	 they	could	make
and	fine-tune	their	own	speaker	box.

Despite	all	of	those	DIY	options,	I	wasn’t	looking	to
break	 any	 low-price	 records	 with	 Novena.	 It	 was
designed	 as	 a	 low-volume,	 handcrafted	 laptop	 made
with	 uniquely	 open	 source	 components,	 and	 the	 cost
matched	the	design.	We	offered	three	tiers:

•	An	“all-in-one	desktop”	option	for	$1,195	that	was
ready	to	use	with	a	keyboard	and	mouse	out	of	the
gate,	but	needed	to	be	plugged	in

•	A	“laptop”	option	for	$1,995	that	included	a	battery
controller	board,	for	hackers	on	the	go

•	An	“heirloom	laptop”	tier	for	$5,000	that	came	in	a
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gorgeous,	handcrafted	wood-and-aluminum	case

In	Chapter	6,	I	said	that	as	Moore’s	law	slows	down,
I	 predict	 parents	 passing	 down	 computers	 to	 their
children.	The	Heirloom	Novena	is	meant	to	be	treated
that	 way,	 though	 it	 has	 the	 same	 hardware	 on	 the
inside	as	the	other	two	options.

But	those	prices	weren’t	so	different	from	the	prices
of	 high-end	 consumer	 laptops.	The	 biggest	 challenge
was	figuring	out	how	to	offer	something	so	custom	and
complex	 at	 that	 price	 point,	 in	 low	 volumes.	 We
weren’t	 looking	 to	 recover	 the	 research	 and
development	 cost	 in	 the	 campaign;	 that’s	 a	 sunk	 cost,
as	 anyone	 is	 free	 to	 download	 the	 source	 and	 benefit
from	 our	 thoroughly	 vetted	 design	 today.	 Our
minimum	funding	goal	of	$250,000	was	a	tiny	fraction
of	 what’s	 typically	 required	 to	 recover	 the	 million-
dollar-plus	 investment	 behind	 the	 development	 and
manufacture	of	 a	 conventional	 laptop;	 xobs	and	 I	met
this	 challenge	 with	 a	 combination	 of	 know-how,
unique	design,	and	strong	relationships	with	our	supply
chain.

DESIGNING	THE	EARLY	NOVENA
We	 optimized	 the	 Novena’s	 design	 to	 reduce	 the
amount	 of	 expensive	 tooling	 required,	 while	 still
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preserving	 our	 primary	 goal	 of	 it	 being	 easy	 to	 hack
and	modify.	We	 spent	 a	 year	 and	 a	 half	 poring	 over
three	 revisions	 of	 the	 PCBA	 until	 we	 were	 confident
that	 the	 complex	 design	 would	 be	 functional	 and
producible.	 We	 also	 optimized	 certain	 tricky
components,	such	as	the	LCD	and	the	internal	display
port	 adapter,	 for	 reliable	 sourcing	 at	 low	 volumes.
Finally,	 I	 spent	 a	 few	 months	 traveling	 the	 world,
lining	up	a	supply	chain	 that	could	deliver	 this	design
(even	 in	 low	 volume)	 at	 a	 price	 comparable	 to	 other
premium	laptops.

Of	course,	all	 the	design	documentation	 is	open,	so
with	 sufficient	 skill	 and	 resources,	 you	 could	 build	 a
Novena	 from	 scratch	 yourself.	 I	 chose	 the	 hardware
and	 its	 subcomponents	 to	 make	 this	 the	 most
practically	open	hardware	laptop	I	could	with	state-of-
the-art	technology.	You	can	download,	without	NDA,
the	 datasheets	 for	 all	 the	 components,	 and	 key
peripheral	options	were	chosen	such	that	you	can	build
a	 complete	 firmware	 from	 source	 with	 no	 opaque
blobs.

Under	the	Hood
This	board’s	dimensions	are	approximately	121	mm	×
150	 mm;	 it’s	 sized	 to	 fit	 comfortably	 underneath	 a
standard-sized	 laptop	 keyboard	 (though	 the	 image	 is
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rotated	 compared	 to	 the	 installation	 orientation).	 As
you	 can	 see	 in	 the	 full	 laptop	 photos	 earlier	 in	 the
chapter,	the	port	farm	is	on	the	right	side	of	the	laptop,
not	the	bottom.	The	board	is	just	under	14	mm	thick,	a
height	 set	 by	 the	 thickness	 of	 an	Ethernet	 connector.
The	base	portion	of	my	Lenovo	T520	is	just	under	24
mm	thick,	and	once	a	keyboard	and	plastics	are	stacked
on	 this	 board,	 the	 base	 of	 the	Novena	 comes	 to	 just
about	the	same	thickness.
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The	earliest	Novena	motherboard

Now	 let’s	 look	 at	 some	 of	 the	 motherboard’s
features.

PRELIMINARY	FEATURES
The	first	 iteration	of	 the	Novena	motherboard	used	a
Freescale	 iMX6	 CPU,	 which	 has	 an	 NDA-free
datasheet	 and	 programming	 manual.	 In	 the	 lists	 that
follow,	items	marked	with	a	double	asterisk	(**)	require
a	 closed-source	 firmware	 blob,	 but	 the	 system	 is
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bootable	and	usable	without	the	blob.
The	 CPU	 footprint	 we	 used	 could	 support	 the

following	quad-	and	dual-lite	versions	of	the	iMX6:

•	Quad-core	Cortex	A9	CPU	with	NEON	FPU	@	1.2
GHz

•	Vivante	GC2000	OpenGL	ES2.0	GPU,	200Mtri/s,
1Gpix/s**

This	 version	 of	 Novena	 booted	 from	 microSD
firmware.	In	terms	of	other	 internal	memory,	 it	had	a
64-bit,	 DDR3-1066	 SO-DIMM,	 which	 could	 be
upgraded	to	4GB,	and	a	SATA-II	(3Gbps)	hard	drive.

Novena	was	 full	 of	 internal	 ports	 and	 sensors	 from
the	start,	too.	These	are	the	highlights:

•	A	Mini	PCI-express	(mPCIe)	slot,	for	blob-free	Wi-
Fi,	Bluetooth,	mobile	data,	and	so	on

•	A	UIM	slot,	for	mPCIe	mobile	data	cards

•	A	dual-channel	LVDS	LCD	connector	with	up	to
QXGA	resolution	(2,048	×	1,536	px)	at	60	Hz	and	a
USB	2.0	side	channel	for	a	display-side	camera

•	A	resistive	touchscreen	controller	(capacitive	touch
displays,	on	the	other	hand,	typically	come	with	an
integrated	controller)
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•	1.1	W,	8-ohm	internal	speaker	connectors

•	Two	USB2.0	internal	connectors,	for	a	keyboard	and
mouse	or	trackpad

•	A	digital	microphone

•	A	three-axis	accelerometer

•	A	header	for	an	optional	AW-NU137	Wi-Fi
module**

We	made	the	following	ports	externally	accessible:

•	HDMI

•	The	SD	card	reader

•	The	headphone	and	microphone	jacks	(compatible
with	most	mobile	phone	headsets,	these	also
supported	sensing	inline	cable	buttons)

•	Two	USB	2.0	ports,	supporting	high-current	(1.5A)
device	charging

•	A	1Gb	Ethernet	port

And,	 of	 course,	 since	 xobs	 and	 I	 were	 making	 the
Novena	 for	 ourselves,	 we	 included	 a	 bunch	 of	 other
“fun”	features	that	we	knew	would	be	great	for	hackers:

•	100Mb	Ethernet	(dual	Ethernet	capability	allows
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Novena	to	be	used	as	an	inline	packet	filter	or	router)

•	USB	On-the-Go	(enables	the	Novena	to	spoof	or
fuzz	Ethernet,	serial,	and	other	connections	over
USB	via	a	gadget	interface	to	other	USB	hosts)

•	A	utility	serial	EEPROM,	for	storing	crash	logs	and
other	bits	of	handy	data

•	A	Spartan-6	CSG324-packaged	FPGA	with	several
interfaces	to	the	CPU,	including	a	2Gbps	(peak)
RAM-like	bus—for	bitcoin	mining,	or	whatever	else
you	might	want	to	toss	in	an	FPGA

•	Eight	FPGA-driven	12-bit,	200ksps	analog	inputs

•	Eight	FPGA-driven	digital	I/O	pins

•	Eight	FPGA-driven	PWM	headers,	compatible	with
hobby	ESC	and	PWM	pinouts	(enables	direct
interfacing	with	various	RC	motor/servo
configurations	and	quad-copter	controllers)

•	Raspberry	Pi–compatible	expansion	header

•	Thirteen	CPU-driven	supplemental	digital	I/Os

•	Three	internal	UART	ports

We	 tweaked	 those	 specs	 going	 into	 production,
making	 the	 most	 drastic	 changes	 around	 the	 FPGA
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expansion	 connectors.	 Instead	 of	 a	 cluster	 of	motion-
control-focused	 headers,	 we	 opted	 to	 install	 a	 header
capable	 of	 high	 data	 rates,	 which	 xobs	 and	 I	 used	 to
great	effect	in	future	projects	involving	the	Novena.

THE	BATTERY	BOARD

To	 give	 maximum	 power	 management	 flexibility,	 I
implemented	 the	 battery	 interface	 functions	 on	 a
daughtercard.	I	co-opted	a	cheap	and	common	SATA-
style	 connector	 to	 route	 power	 and	 control	 signals
between	 the	 mainboard	 and	 the	 daughtercard.	 To
prevent	 users	 from	 accidentally	 plugging	 a	 hard	drive
into	 the	 battery	 port,	 I	 inverted	 the	 gender	 of	 the
battery-SATA	connector	from	the	actual	mass-storage
SATA-II	connector.

The	 battery	 card	 in	 the	 first	 Novena	 board	 was
meant	to	work	with	the	battery	packs	used	by	most	RC
enthusiasts:	 LiPo	 packs	 ranging	 from	 2S1P	 to	 4S1P
(that	 is,	 two-cell	 to	 four-cell).	 RC	 packs	 are	 great
because	 they’re	 designed	 for	 super-fast	 charging	 and
they’re	 cheap	 and	 easy	 to	 buy.	 For	 the	 board-side
battery	 plug,	 I	 decided	 to	 use	 the	 Molex	 connector
found	 on	 classic	 disk	 drives,	 since	 they	 are	 cheap,
common,	 and	 easy	 to	 assemble	 with	 simple	 tools.	 I
couldn’t	use	a	standard	RC	connector	because	the	vast
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majority	 of	 them	 are	 designed	 for	 inline	 use,	 and	 the
few	 that	 have	 board	 mounts	 were	 too	 thick	 or	 too
weird	for	this	application.

The	preliminary	Novena	battery	board

The	battery	board	could	charge	batteries	at	rates	 in
excess	of	4A;	for	example,	charging	a	three-cell,	45	Wh
(4	 Ah)	 battery	 took	 about	 one	 hour.	 If	 typical	 power
consumption	 were	 around	 5	 to	 6	 W	 per	 hour,	 that
would	be	seven	or	eight	hours	of	runtime	with	a	one-
hour	 charge	 time.	 Of	 course,	 since	 the	 whole	 laptop
was	user-configurable,	typical	power	consumption	was
really	hard	to	estimate.	If	a	user	dropped	in	a	monster
LCD	 and	 a	 power-hungry	 magnetic	 hard	 drive	 with
loads	of	peripherals,	the	power	consumption	would	be
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much	higher.
xobs	 suggested	 another	 cute	 power-related	 feature

that	made	 it	 into	 the	design.	He	 thought	 it	would	be
neat	 to	 embed	 a	 retro	 analog	 needle	 meter	 into	 the
palm	rest	of	 the	 laptop	to	display	power	consumption
in	real	time.	I	thought	it	was	a	great	idea,	so	I	designed
that	into	the	circuit	board.	Of	course,	the	analog	meter
is	driven	by	a	DAC	on	the	battery	microcontroller,	so
it	could	be	configured	to	perform	a	multitude	of	useful
(or	 not	 so	 useful)	 analog	 readouts,	 such	 as	 remaining
runtime,	 battery	 voltage,	 temperature,	 the	 time
(represented	as	an	analog	value),	and	so	on.

After	spending	a	couple	of	months	validating	all	the
features	(it	was	a	long	list	of	features	to	grind	through),
we	ported	drivers	and	a	Linux	distro	to	the	board.	That
was	 no	 small	 task	 either,	 but	 thankfully,	 I	 had	 xobs’s
skillful	help,	and	we	got	the	job	done.

The	Enclosure
From	there,	I	was	really	 looking	forward	to	designing
the	 enclosure.	 For	 the	 first	 revision,	 I	 thought	 about
making	 something	 out	 of	 laser-cut	 acrylic	 that	 would
be	vaguely	tablet-like,	to	avoid	having	to	mess	around
with	a	friction	clutch	on	the	first	go	at	a	case.	I	ended
up	 hand-building	 our	 first	 prototype	 cases	 from
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aluminum	 and	 leather,	 to	 validate	 the	 laptop	use	 case
for	Novena.	That	design	was	rough;	as	Cory	Doctorow
put	it	on	Boing	Boing,	it	was	“gloriously	fuggly.”*
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I	love	that	my	laptop	smells	of	leather	when	it	runs!

The	 second-generation	 Novena	 case	 I	 showed
earlier	is	sleeker.	The	first	thing	you	probably	noticed
about	the	design	is	that	it	opens	the	“wrong”	way.	This
feature	allows	the	Novena	to	be	used	as	a	wall-hanging
unit	 when	 the	 screen	 is	 closed.	 It	 also	 solves	 a	major
problem	I	had	with	the	original	clamshell	prototype:	it
was	a	real	pain	to	access	the	hardware	for	hacking,	as	it
was	blocked	by	the	keyboard	mounting	plate.

In	the	version	we	sold	on	Crowd	Supply,	the	screen
automatically	 pops	 open	 with	 the	 slide	 of	 a	 latch,
thanks	 to	an	 internal	gas	 spring.	 (Novena	 isn’t	 just	an
open	 laptop—it’s	 a	 self-opening	 laptop!)	 We
intentionally	 left	 the	 internals	 naked	 in	 this	mode	 for
easy	 access,	 but	 bare	 internals	 also	 make	 clear	 that
Novena	isn’t	for	casual	home	users.

We	 included	 an	 array	 of	 mounting	 bosses—which
we	called	a	Peek	array—as	well,	to	facilitate	hackability.
Normally,	 laptops	 have	mounting	 points	 only	 for	 the
handful	 of	 features	 designed	 into	 their	 original
blueprints.	But	a	hackable	laptop	must	accommodate	a
huge	space	of	possible	peripherals.	Instead	of	requiring
users	to	drill	holes	or	glue	things	down	in	their	laptop
cases,	we	provided	a	regular	array	of	 threaded	 inserts.
It	was	a	bit	like	a	breadboard,	but	for	rapid	mechanical
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prototyping.	To	help	define	the	array,	I	consulted	with
Nadya	 Peek,	 a	 graduate	 student	 at	MIT’s	Center	 for
Bits	 and	Atoms	 and	 an	 expert	 in	 digital	 fabrication—
hence	the	name	Peek	array.

Another	 feature	 of	 the	 second-generation	 design	 is
that	 the	 LCD	 bezel	 is	 made	 of	 a	 single,	 simple
aluminum	 sheet.	This	 allows	 anyone	with	 access	 to	 a
minimal	 machine	 shop	 to	 modify	 or	 craft	 their	 own
bezels;	no	custom	tooling	required.	My	hope	with	that
design	 was	 to	 make	 adding	 knobs	 and	 connectors	 or
changing	the	LCD	relatively	easy	for	Novena	hackers.
To	encourage	users	to	experiment,	we	shipped	desktop
and	 laptop	Novenas	with	 two	LCD	bezels	 so	 no	 one
had	to	worry	about	having	an	unusable	machine	if	they
messed	one	up	while	experimenting.

Most	laptops	have	a	keyboard	and	mouse	attached	to
the	enclosure,	but	the	Novena	has	a	detached	keyboard
and	 track-point	 because	 that	 feature	was	 attractive	 to
me	 personally.	 I’d	 always	 wanted	 a	 display	 I	 could
“hang”	on	the	seat	in	front	of	mine	when	sitting	in	an
airplane	or	a	bus:	 it’s	a	lot	easier	on	the	neck,	and	the
arrangement	actually	works	better	if	the	person	in	front
reclines	their	seat.

While	 I	 was	 still	 considering	 whether	 to	 do	 a
clamshell	 design	 or	 some	 other	 funky	 design	 for	 the
exterior,	I	also	thought	about	trying	an	enclosure	made
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of	wood	and	brass.	After	all,	the	whole	idea	of	making
my	 own	 laptop	 was	 to	 play	 around	 with	 some	 new
ideas!	 As	 mentioned	 earlier,	 we	 actually	 did	 wind	 up
doing	a	limited	run	of	a	wooden-cased	Novena	that	we
dubbed	the	heirloom	laptop.

The	Heirloom	Novena	laptop
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THE	HEIRLOOM	LAPTOP’S	CUSTOM	WOOD
COMPOSITE
When	 mainline	 Novena	 production	 was	 finally
humming	 along	 in	 April	 2015,	 I	 spent	 a	 week	 in
Portland,	Oregon,	working	alongside	Kurt	Mottweiler
(a	designer	and	woodworker	who	specializes	in	making
cameras	with	wooden	enclosures)	to	hammer	out	all	of
the	final	open	issues	on	the	Heirloom	devices.	xobs	and
I	 are	 certainly	 proud	 of	 how	 the	 Heirloom	Novenas
turned	out!

Working	with	Kurt	on	the	Heirloom	laptop

Growing	Novenas
In	 a	 literal	 sense,	 the	 Heirloom	 Novenas	 were
“grown.”	 Wooden	 enclosures	 meant	 important
structural	 elements	 came	 from	 trees.	 Making	 every
laptop	 identical	 would	 have	 been	 easy,	 but	 we	 felt	 it
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would	be	much	more	apropos	of	a	bespoke	product	to
make	 each	 laptop	unique	 by	 picking	 the	 finest	woods
and	 matching	 their	 finish	 and	 color	 in	 a	 tasteful
fashion.	As	a	result,	no	two	Heirloom	laptops	look	the
same;	each	is	uniquely	beautiful.

Some	handpicked	wood,	waiting	to	become	a	Novena	case

A	 lot	 of	 science	 and	 engineering	 went	 into	 the
Heirloom	 laptops,	 too.	 For	 starters,	 Kurt	 created	 a
unique	composite	material	by	layering	cork,	fiberglass,
and	wood.	To	help	 characterize	 the	 novel	 composite,
we	 took	some	material	 samples	 to	 the	Center	 for	Bits
and	 Atoms,	 where	 Nadya	 Peek	 and	 Will	 Langford
characterized	 the	 performance	 of	 the	 material.	 We
took	sections	of	the	wood	composite	and	performed	a
three-point	 bend	 test	 using	 an	 Instron	 4411
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electromechanical	material	testing	machine.
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Heirloom	composite	material	loaded	into	the	testing	machine

The	Mechanical	Engineering	Details
From	the	test	data,	we	were	able	to	extract	the	flexural
modulus	 (also	 called	 Young’s	 modulus)	 and	 flexural
strength	of	the	material.	I’m	not	a	mechanical	engineer
by	 training,	 so	 terms	 like	modulus	 and	 specific	 strength
kind	of	go	over	my	head.	But	Nadya	was	kind	enough
to	lend	me	some	insight.	She	pointed	me	at	the	Ashby
chart,	which,	as	with	some	xkcd	comic	panels,	 I	could
stare	 at	 for	 an	 hour	 and	 still	 not	 absorb	 all	 the
information	contained	within.
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The	Ashby	chart	plots	Young’s	modulus	versus	density	for
many	materials.	The	annotated	area	shows	approximately

where	the	Heirloom	composite	material	lands.

The	 bottom	 left	 of	 the	 chart	 shows	 bendy,	 light
materials	 like	 cork,	 and	 the	 top	 right	of	 the	 chart	has
rigid,	heavy	materials,	 like	tungsten	(W).	For	a	 laptop
case,	we	wanted	a	material	with	the	density	of	cork	but
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the	stiffness	of	plastic.	Wood	products	occupy	a	space
in	the	chart	to	the	left	of	plastics,	meaning	they	are	less
dense,	 but	 they	 have	 a	 problem:	 they	 are	 weak
perpendicular	to	the	grain.	Depending	on	the	direction
of	 the	 strain,	wood	can	be	as	yielding	as	polyethylene
(the	 material	 used	 to	 make	 plastic	 shopping	 bags)	 or
stiffer	 than	 polycarbonate	 (the	 material	 layered	 with
glass	 to	 make	 bulletproof	 windows).	 Composite
materials	are	great	because	they	allow	you	to	blend	the
characteristics	 of	multiple	materials	 to	 hit	 the	 desired
characteristic.	 In	 the	 Heirloom	 laptop’s	 case,	 Kurt
blended	cork,	glass	fiber,	and	wood.

The	measurements	of	the	Heirloom	composite	show
a	 flexural	 strength	 of	 about	 33	 megapascals,	 and	 a
flexural	modulus	of	about	2.2	to	3.2	gigapascals.*	The
density	 of	 the	 material	 is	 0.49	 g/cm3,	 meaning	 it’s
about	half	the	density	of	ABS	plastic,	the	plastic	LEGO
bricks	 are	made	 from.	 As	 shown	 on	 the	 Ashby	 chart,
plotting	 these	 numbers	 reveals	 that	 the	 Heirloom
composite	 occupies	 a	 nice	 spot	 to	 the	 left	 of	 plastics
and	provides	a	compromise	on	stiffness	based	on	grain
direction.	 And	 during	 testing,	 the	material	 didn’t	 fail
catastrophically.
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Graphs	of	load	versus	extension	on	the	Heirloom	laptop
composite,	as	plotted	by	the	Instron	testing	machine

Even	 after	 being	 bent	 past	 its	 peak	 load,	 the
composite	 was	 still	 mostly	 intact	 and	 providing
resistance.	 This	 result	 was	 a	 bit	 surprising.	 We	 had
expected	 the	material	 to	 break	 in	 two	 on	 failure,	 like
natural	wood.	Furthermore,	after	we	reset	the	test,	the
material	 bounced	back	 to	 its	 original	 shape.	We	bent
the	composite	by	over	10	mm,	but	once	 the	 load	was
removed,	 I	 could	 barely	 tell	 it	 went	 through	 testing.
This	 high	 fracture	 toughness	 and	 resilience	 are
desirable	properties	for	a	laptop	case.

Of	 course,	 watching	 a	machine	 go	 to	 work	 on	 the
material	was	fun,	but	there’s	nothing	quite	like	holding
it	 yourself.	 I	 still	 remember	 picking	 up	 the	 material,
feeling	 how	 light	 it	 was,	 giving	 it	 a	 good	 bend,	 and
being	surprised	by	its	rigidity	and	ruggedness.
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CHANGES	TO	THE	FINISHED	PRODUCT
From	 the	 moment	 Novena	 was	 successfully
crowdfunded,	an	 incredible	 team	of	people	worked	 to
make	 it	 a	 reality.	With	 help	 from	 the	 engineers	 and
product	managers	at	our	manufacturing	partner,	AQS,
Novena’s	 case	 moved	 from	 prototype	 to	 pilot
production	just	four	months	after	the	campaign.

The	conference	room	where	we	did	the	T1	plastics	review	in
Dongguan,	China

Sure,	 xobs	 and	 I	 did	 plenty	 of	 work	 on	 our	 own
before	we	even	 started	 the	 crowdfunding,	but	 it	 takes
many	hands	to	build	a	product	of	this	complexity.	We
couldn’t	 have	 done	 it	 without	 our	 dedicated	 and
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hardworking	 team	 at	 AQS.	 I’ve	 said	 before	 that	 your
factory	 is	your	partner,	 and	 thanks	 to	a	great	partner,
we	 were	 able	 to	 get	 this	 done	 in	 a	 short	 amount	 of
time.

Case	Construction	and	Injection-Molding
Problems
By	the	late	summer	of	2014,	the	Novena	cases	we	were
carrying	 around	 were	 made	 of	 entirely	 production-
process	hardware—no	more	hand-built	prototypes.	To
get	there,	we’d	opened	a	total	of	10	injection-molding
tools;	for	comparison,	a	product	like	NeTV	or	chumby
had	perhaps	3	or	4	injection-molding	tools.

As	 I	 briefly	 described	 in	 Chapter	 1,	 injection
molding	is	a	process	where	plastic	is	molded	into	a	net
shape.	Hot,	high-pressure	liquid	plastic	is	forced	into	a
hardened	 steel	 cavity	 called	 a	 tool.	 The	 steel	 tool	 is	 a
masterpiece	of	engineering	in	itself:	it’s	a	water-cooled
block	 weighing	 about	 a	 ton	 and	 capable	 of	 handling
pressures	found	at	the	bottom	of	the	Mariana	Trench,
and	 the	 internal	 surfaces	 are	 machined	 to	 tolerances
better	than	the	width	of	a	human	hair.	On	top	of	that,
the	 tool	 contains	 a	 clockwork	 of	moving	 pieces,	 with
dozens	 of	 ejector	 pins,	 sliders,	 lifters,	 and	 parting
surfaces	 that	 come	 apart	 and	 back	 together	 again
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smoothly	 over	 thousands	 of	 cycles.	 It’s	 amazing	 that
tools	of	such	complexity	and	refinement	can	be	crafted
in	a	couple	of	months.

With	so	many	moving	parts,	it’s	no	surprise	that	the
tools	 required	 several	 iterations	 of	 refinement	 to	 get
absolutely	perfect.	In	tooling	jargon,	the	iterations	are
referred	 to	 as	 T0,	 T1,	 T2,	 and	 so	 on.	 You’re	 doing
pretty	 well	 if	 you	 can	 go	 to	 full	 production	 at	 T2;
thankfully,	our	T1	plastics	were	99	percent	of	the	way
there,	meaning	we	had	an	easy	path	to	full	production.
T1	had	just	a	few	issues	relating	to	flow	and	knit	lines,
as	 well	 as	 spots	 where	 the	 plastic	 warped	 during
cooling	 or	 bound	 itself	 to	 the	 tool	 during	 ejection,
causing	 deformation.	 This	 manifested	 itself	 as	 spots
where	the	seams	weren’t	as	tight	as	we	wanted	them	to
be	 in	 the	 case,	 and	with	 just	 a	 little	 bit	 of	 tuning,	we
were	production-ready.

Most	 people	 have	 only	 seen	 products	 of	 finished
tooling,	 so	 I’ll	 share	 what	 a	 pretty	 typical	 T0	 (first-
attempt)	 shot	 looks	 like,	 particularly	 for	 a	 large	 and
complex	tool	like	the	Novena	case	base	part.	Test	shots
like	 this	 are	 typically	 done	 with	 scrap	 resin	 in	 light
colors	that	highlight	defects.	We	used	gray	plastic	here
to	make	tuning	the	mold	easier,	but	the	final	units	had
black	bases.
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Some	T0	shots	of	the	base	of	the	Novena	case.	The	regular
array	of	circles	on	the	left	in	the	top	photo	form	the	basis	of

the	Peek	array.	To	make	the	array,	threaded	brass	inserts	were
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heat-staked	into	the	circular	bosses	after	injection	molding.

There’s	 a	 lot	 going	 on	 with	 this	 piece	 of	 plastic.
Let’s	zoom	in	on	some	of	the	artifacts.

A	visual	guide	to	the	deformations	in	the	T0	case	base

The	 circles	 highlight	 a	 set	 of	 sink	 marks,	 which
happen	 when	 the	 opposite	 side	 of	 the	 plastic	 has	 a
particularly	 thin	 or	 thick	 feature.	 These	 areas	 cool
faster	 or	 slower	 than	 the	 bulk	 of	 the	 plastic,	 causing
them	 to	 pucker	 slightly	 and	 create	 a	 sort	 of	 shadow.
Sink	marks	are	particularly	noticeable	on	mirror-finish
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parts.	In	this	case,	the	sink	marks	happened	because	the
plastic	 underneath	 the	 nut	 bosses	 of	 the	 Peek	 array
were	much	thinner	than	the	surrounding	plastic.	To	fix
this	 problem,	 we	 thickened	 that	 region	 slightly,
reducing	 the	 overall	 internal	 clearance	 of	 the	 case	 by
0.8	 mm.	 That	 was	 possible	 because	 fortunately,	 I’d
designed	the	case	with	a	little	extra	clearance	margin.

The	 straight	 arrow	 points	 to	 a	 knit	 line.	 This	 is	 a
region	 where	 plastic	 flow	 meets	 within	 the	 tool.	 As
plastic	is	injected	into	the	cavity,	it	tends	to	flow	from
one	or	more	gates,	and	where	the	molten	plastic	meets
itself,	a	hairline	scar	forms.	Knit	lines	are	often	located
at	 points	 of	 symmetry	 between	 the	 gates	 where	 the
plastic	 is	 injected.	On	 this	 tool,	 there	were	 four	gates
located	underneath	the	spot	where	the	rubber	feet	go.
Gates	 are	 considered	 cosmetically	 unattractive,	 and
thus	we	placed	them	strategically	to	hide	their	location.

The	white	feathery	artifacts	indicated	by	the	curved
arrow	are	 flow	marks.	These	 streaks	 appeared	 because
the	plastic	cooled	a	bit	too	quickly	within	the	tool.	You
can	 often	 fix	 this	 problem	 by	 adjusting	 the	 injection
pressure,	cycle	length,	and	temperature.	It’s	best	to	use
test	 shots	 on	 the	 molding	 machine	 to	 make	 those
tweaks.	 You	 can	 tweak	 one	 parameter	 at	 a	 time,	 shot
after	 shot,	 until	 you	 find	 an	 optimum	 cooling	 speed.
This	 process	 can	 sometimes	 take	 hundreds	 of	 shots,
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creating	a	small	hill	of	scrap	plastic	as	a	by-product.
Most	of	these	gross	defects	were	fixed	by	T1,	and	at

that	 point,	 the	 plastic	 looked	 much	 closer	 to
production-grade.	 We	 were	 also	 able	 to	 start	 using
black-colored	plastic,	which	tends	to	hide	defects.

There	were	still	a	few	issues	around	fit	and	finish,	of
course.	But	despite	them,	the	case	felt	much	more	solid
than	the	prototypes,	and	the	gas	piston	mechanism	was
finally	consistent	and	really	smooth.
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The	T1	case	base,	in	initial	testing	after	the	live	hardware	was
transferred	into	the	plastics

Changes	to	the	Front	Bezel
The	 front	bezel	of	Novena’s	 case	 (not	 to	be	confused
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with	 the	 aluminum	 LCD	 bezel)	 went	 through	 some
changes	after	the	campaign.	When	we	closed	funding,
it	had	 two	outward-facing	USB	ports	 and	one	 switch.
Novena	shipped	with	two	switches,	one	outward-facing
USB	port,	and	one	inward-facing	USB	port.

One	 switch	 is	 for	 power:	 it	 goes	 directly	 to	 the
power	board	and	can	be	used	to	turn	the	system	on	and
off	even	when	 the	main	board	 is	 fully	powered	down.
The	 other	 switch	 is	 wired	 to	 a	 user	 keypress	 to
facilitate	 Bluetooth	 association	 for	 keyboards	 that	 are
being	 stupid.	 Some	 keyboards	 can	 take	 up	 to	 a	 half-
minute	 to	 cycle	 through	 something	 (presumably,	 it’s
security-related)	before	they	connect.	There	are	hacks
for	bypassing	that,	but	you’d	have	to	run	a	script	on	the
host.	Our	 idea	was	 that	by	pressing	 this	button,	users
could	trigger	a	convenience	script	to	get	past	the	utter
folly	of	Bluetooth.	This	switch	also	doubles	as	a	wake-
up	button	for	when	the	system	is	suspended.

As	 for	 the	 USB	 ports,	 the	 design	 still	 had	 four	 in
total,	but	the	configuration	became	as	follows:

•	Two	higher-current-capable	ports	on	the	right

•	One	standard-current-capable	port	on	the	front

•	One	standard-current-capable	port	facing	toward	the
Peek	array
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In	other	words,	we	 faced	one	USB	port	 toward	 the
inside	of	the	machine.	Since	half	the	fun	of	Novena	is
modding	 the	 hardware,	 I	 figured	 a	 USB	 port	 on	 the
inside	would	be	at	least	as	useful	as	one	on	the	outside.

For	users	who	wouldn’t	do	hardware	mods,	an	inside
USB	 port	 would	 also	 be	 a	 fine	 place	 to	 plug	 small
dongles	 that	 generally	 stay	 attached,	 like	 the	 radio
transceiver	 for	a	keyboard.	It’s	a	 little	 inconvenient	to
initially	 plug	 in	 the	 dongle,	 but	 keeping	 the	 radio
transceiver	 dongle	 facing	 inside	 helps	 protect	 it	 from
damage	when	 you	 throw	 your	 laptop	 into	 your	 travel
bag.

DIY	Speakers
We	toyed	with	several	 speaker	options	 for	Novena.	A
core	 idea	 behind	 the	 design	 was	 to	 encourage	 every
user	 to	 choose	 their	own	 speaker.	Some	people	 really
listen	 to	music	 on	 their	 laptop	 when	 they	 travel,	 but
others	 simply	 rely	 upon	 the	 speaker	 for	 notification
tones	 and	would	 prefer	 to	 use	 headphones	 for	media
capabilities.	 Physics	 dictates	 that	 high-quality	 sound
requires	 a	 certain	 amount	 of	 space	 and	 mass.	 We
wanted	users	with	a	more	relaxed	fidelity	requirement
to	 be	 able	 to	 reclaim	 the	 space	 and	weight	 that	 nicer
speakers	would	require.
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Kurt	 Mottweiler	 selected	 a	 nice	 but	 very	 compact
off-the-shelf	speaker,	the	PUI	ASE06008MR-LW150-
R,	 for	 the	Heirloom.	When	 we	 found	 that	 the	 same
speaker	fit	well	 into	the	standard	Novena’s	Peek	array
and	had	acceptable	fidelity,	particularly	for	its	size,	we
adopted	 it	 as	 the	 standard	 offering	 for	 audio.	 But	we
shipped	 it	 with	 a	 mounting	 kit	 for	 easy	 removal,	 so
users	 who	 might	 need	 to	 reclaim	 the	 space	 (or	 who
wanted	to	put	in	larger	speakers)	could	do	so	with	ease.

The	PVT2	Mainboard
The	Novena	mainboard	went	through	a	minor	revision
prior	to	mass	production.	The	fourth	and	final	revision
of	the	motherboard	was	known	as	the	“PVT2”	version.
The	majority	 of	 the	 changes	 focused	 on	 replacing	 or
updating	 components	 that	 were	 at	 risk	 of	 reaching
end-of-life.	The	two	most	significant	additions	from	a
design	 standpoint	 were	 an	 internal	 flexible	 printed
circuit	 (FPC)	 header	 to	 connect	 to	 the	 front	 bezel
cluster,	 and	 a	 dedicated	 hardware	 real-time	 clock
(RTC)	module.

We	 added	 the	 internal	 FPC	 header	 to	 improve
signal	 routing	 from	 the	mainboard	 to	 the	 front	 bezel
cluster.	 We	 had	 to	 run	 two	 USB	 ports	 plus	 a
smattering	of	GPIOs	and	power	to	the	front	bezel,	and
the	 original	 connection	 scheme	 required	 multiple
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cables.	 The	 updated	 design	 condensed	 that	 into	 a
single	 FPC	 to	 simplify	 the	 design	 and	 improve
reliability.

We	 included	 a	 dedicated	 hardware	 RTC	 module
because	the	i.MX6’s	built-in	RTC	didn’t	perform	well.
The	 CPU	 simply	 had	 a	 higher	 leakage	 on	 the	 RTC
than	reported	in	the	datasheet,	and	the	lifetime	of	the
RTC	when	the	system	was	turned	off	was	measured	in,
at	best,	minutes.	We	decided	that	there	was	too	much
risk	 in	continuing	to	develop	with	the	on-board	RTC
and	opted	for	an	external,	dedicated	RTC	module	that
we	knew	worked.	To	increase	compatibility	with	other
i.MX6	platforms,	we	picked	the	same	module	used	by
the	 Solid-Run	 Hummingboard,	 the	 NXP
PCF8523T/1.

It’s	 also	 important	 to	 note	 that	 we	 completely
overhauled	the	FPGA	expansion	header	on	our	second
revision	 of	 the	 motherboard.	 The	 version	 of	 the
motherboard	 shown	 at	 the	 beginning	 of	 this	 chapter
contained	 a	 cluster	 of	 headers	 optimized	 for	 motion
control	 applications.	 We	 decided	 that	 our
motherboard	was	too	large	for	anyone	to	put	it	inside	a
quad	 copter,	 and	 perhaps	 the	 FPGA	would	 see	more
use	 as	 a	 high-speed	 data	 acquisition	 and	 processing
device.	To	enable	this	functionality,	we	gave	the	FPGA
a	dedicated	256MB	of	DDR3	memory	 and	broke	out
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high-speed	 differential	 signals	 to	 a	 connector	 capable
of	 passing	 signals	 at	 rates	 exceeding	 a	 gigabit	 per
second.	 Users	 could	 still	 use	 the	 FPGA	 for	 motion
control	 applications,	 but	 they’d	 need	 to	 plug	 in	 a
simple	breakout	board	 (like	 the	GPBB	 I	 discuss	next)
to	 route	 our	 signals	 to	 the	 connector	 formats
commonly	used	by	motion	control	systems.
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The	updated	Novena	motherboard

A	Breakout	Board	for	Beginners
One	of	the	rewards	every	backer	received	as	thanks	for
supporting	our	campaign	was	a	breakout	board	that	we
referred	 to	 as	 the	 GPBB,	 or	 the	 General-Purpose
Breakout	 Board.	 Redesigning	 our	 FPGA	 expansion
header	 on	 Novena	 to	 target	 high-speed	 applications
also	made	 getting	 started	with	 the	 device	much	more
difficult	for	entry-level	hackers.	Due	to	the	constraints
of	 physics,	 high-speed	 connectors	 tend	 to	 have	 very
dense	 pin	 arrangements	 that	 are	 unfriendly	 to
beginners.	We	designed	the	GPBB	to	help	entry-level
users	 work	 with	 the	 FPGA.	 The	GPBB	 converts	 the
dense,	 high-speed	 signal	 header	 on	 the	 FPGA	 into	 a
beginner-friendly	 0.1-inch-pitch,	 40-pin	 header	 and
includes	 a	 few	 LEDs	 and	 analog	 data	 converters	 to
boot.
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The	final	production	GPBB

One	growing	challenge	for	beginners	is	the	fact	that
Moore’s	 law	 keeps	 on	 pushing	 down	 the	 allowable
voltage	 range	 of	 digital	 I/Os.	 Newer	 generations	 of
transistors	 run	 at	 lower	 voltages,	 which	 make	 them
incompatible	with	 the	 venerable	 +5	V	 standards	most
entry-level	projects	use.	For	instance,	our	FPGA	could
only	handle	signals	up	to	+3.3	V.	As	a	result,	we	built
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voltage	 translators	 into	 the	 GPBB	 that	 could	 safely
handle	+5	V	and	bring	them	down	to	the	+3.3	V	levels
accepted	by	the	FPGA.

The	 final	 version	 of	 the	 GPBB	 included	 a	 tweak
enabling	 users	 to	 adjust	 the	 I/O	 voltage,	 instead	 of
fixing	 it	 at	 +5	 V.	We	 provided	 a	 software	 setting	 to
allow	 users	 to	 choose	 whether	 the	 GPBB’s	 external
I/Os	 default	 to	 5	 V	 or	 3.3	 V,	 and	 we	 designed	 the
board	 so	 that	 users	 could	 adjust	 the	 lower	 voltage	 to
2.5	V	 or	 1.8	V	 by	 changing	 a	 single	 resistor	 (R12).	 I
labeled	that	resistor	“I/O	VOLTAGE	SET”	and	made
it	 a	 1206	 part,	 so	 soldering	 novices	 could	 make	 the
change	themselves.

The	Desktop	Novena’s	Power	Pass-Through
Board
The	 “all-in-one	 desktop”	 tier	 originally	 included	 just
the	desktop	case,	the	Novena	mainboard,	and	the	front
panel	 breakout.	 But	 that	 configuration	 made	 power
management	awkward,	as	I	designed	the	overall	power
management	system	for	the	case	assuming	there	would
be	a	helper	microcontroller	managing	a	master	 cutoff
switch.

Complexity	 is	 the	 devil,	 and	 getting	 the	 software
going	for	even	a	single	configuration	was	hard	enough
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on	 its	 own.	 Ultimately,	 we	 found	 it	 cheaper	 to
introduce	 a	 new	 piece	 of	 hardware	 to	 the	 power
management	 system	 for	 the	 desktop,	 rather	 than	deal
with	multiple	code	configurations.

Therefore,	 desktop	 systems	 shipped	 with	 a	 power
pass-through	 board.	 It	 was	 a	 simple	 PCB	 assembly
containing	 just	 the	 STM32	 controller	 and	 power
switch	of	the	full	battery	board.	This	allowed	us	to	use
a	 consistent	 gross	 power	 management	 architecture
across	both	the	desktop	and	the	laptop	systems.

The	desktop’s	pass-through	board

This	 approach	 was	 like	 swatting	 a	 fly	 with	 a
sledgehammer—	but	 the	 sledgehammer	 cost	 as	much
as	the	flyswatter.	Plus	it’s	inconvenient	to	carry	both	a
flyswatter	 and	 a	 sledgehammer	 around.	 So,	 yes,	 we
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used	 a	 32-bit	 ARM	 CPU	 to	 read	 the	 state	 of	 a
pushbutton	 and	 flip	 a	 GPIO,	 and	 yes,	 a	 full
multithreaded	 real-time	 operating	 system	 (ChibiOS)
ran	underneath	it	all.

It	did	feel	a	little	silly,	though.	That’s	why	we	broke
out	 some	 of	 the	 unused	GPIO	 pins,	 making	Novena
even	more	hackable.	Hopefully,	 some	 clever	 user	will
find	an	application	for	all	that	untapped	power!

Custom	Battery	Pack	Problems
The	battery	pack	for	Novena	was	definitely	a	wildcard
in	the	project	stack.	Building	Novena	was	the	first	time
xobs	or	I	had	made	a	system	with	such	a	high-capacity
battery,	 and	 working	 through	 all	 the	 shipping
regulations	 to	 get	 them	 delivered	 to	 customers	was	 a
challenge.

Some	 countries	 have	 particularly	 strict	 regulations
around	 importing	 lithium	batteries.	 In	 the	worst	case,
we	 had	 to	 send	 some	 customers	 a	 laptop	 with	 no
battery	inside,	and	we	shipped	an	off-the-shelf	battery
pack	from	a	vendor	that	specializes	in	RC	battery	packs
(like	Hobby	King)	separately	to	those	customers	at	our
own	 cost.	 They	 got	 the	 same	 battery	 featured	 in	 the
crowdfunding	 campaign,	 but	 they	 had	 to	 plug	 it	 in
themselves.	That	was	our	safest	fallback	solution,	since
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Hobby	King	ships	thousands	of	battery	packs	a	day	all
around	the	world.

Shipping	 woes	 didn’t	 stop	 us	 from	 developing	 a
custom	 battery	 pack,	 though.	Maintaining	 a	 standing
stock	of	battery	packs	is	difficult	because	batteries	need
to	 be	 periodically	 conditioned,	 so	 only	 campaign
backers	got	 that	battery	pack—provided	 their	 country
of	residence	allowed	its	import.	We	couldn’t	know	for
sure	until	we	tried,	but	we	did	get	UN38.3	certification
for	 the	 custom	 battery	 pack.	 In	 theory,	 that
certification	would	allow	us	to	ship	the	batteries	by	air
freight,	 but	 regulations	 around	 battery	 shipment	 are
always	 in	 flux.	 It	 seems	 countries	 and	 carriers	 keep
inventing	new	 rules,	 particularly	with	 all	 the	paranoia
about	 the	 potential	 use	 of	 lithium	 batteries	 as
incendiary	devices,	and	we	didn’t	have	the	resources	to
keep	up	with	the	zeitgeist.

The	custom	pack’s	capacity	was	rated	at	5,000	mAh,
which	 is	 about	 twice	 the	 capacity	 of	 the	 pack	 we
featured	in	the	crowdfunding	campaign.	(That	one	had
3,000	mAh	printed	on	the	outside	but	delivered	about
2,500	mAh	in	practice.)	In	real-life	testing,	the	custom
pack	provided	about	six	or	seven	hours	of	runtime	with
minimal	power	management	enabled.	Also,	since	I	got
to	 specify	 the	 battery,	 I	 knew	 it	 had	 the	 correct
protection	circuitry	built	into	it	and	the	provenance	of
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its	 cells,	 so	 I	 was	 confident	 in	 its	 long-term
performance	and	stability.

Choosing	a	Hard	Drive
The	 crowdfunding	 campaign	 referenced	 providing
240GiB	Intel	530	(or	equivalent)	and	480GiB	Intel	720
drives	 for	 the	 laptop	 and	 heirloom	 models,
respectively.	 We	 left	 the	 spec	 slightly	 ambiguous
because	the	SSD	market	moves	quickly.	We	knew	the
best	drive	when	we	drew	up	 the	 spec	would	probably
be	different	from	the	best	drive	we	could	get	when	we
actually	did	the	purchasing.

After	 doing	 some	 research,	 we	 felt	 the	 best
equivalent	 drives	 at	 purchase	 time	 were	 the	 240GiB
Samsung	 840	 EVO	 (for	 the	 laptop	 model)	 and	 the
512GiB	Samsung	850	Pro	(for	the	Heirloom).	xobs	and
I	 personally	 used	 the	 840	EVO	 in	 our	 own	 units	 for
several	months,	and	it	performed	admirably.

An	important	metric	for	us	was	how	well	the	drives
held	 up	 under	 unexpected	 power	 outages.	 Outages
happen	 fairly	 often,	 for	 example,	 when	 you’re	 doing
development	work	on	a	power	management	subsystem.
Some	hard	drives	failed	quite	reliably	(how’s	that	for	an
oxymoron?)	after	a	few	unexpected	power-down	cycles.

For	 the	 Heirloom,	 we	 used	 Samsung’s	 850	 PRO
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series.	This	drive	came	with	a	 serious	warranty	 fit	 for
an	heirloom:	10	years.	Samsung	could	offer	such	a	high
claim	of	reliability	because	the	drive	used	a	technology
the	company	calls	V-NAND,	which	I	consider	the	first
bona	fide	production-grade	3D	transistor	technology.

NOTE

Intel	claims	it	makes	3D	transistors,	but	that’s	just
marketing	hype.	Yes,	the	gate	region	has	a	raised	surface
topology,	but	you	still	only	get	a	single	layer	of	devices.
From	a	design	standpoint,	you’re	still	working	with	a
2D	graph	of	devices.	Intel	should	have	stuck	with	what	I
consider	the	“original”	(and	more	descriptive/less
misleading)	name,	FinFET,	because	by	calling	these	3D
transistors,	I	don’t	know	what	it	will	call	actual	3D
arrays	of	transistors,	if	it	ever	gets	around	to	making
them.

Chipworks,	 a	 patent	 support	 company,	 did	 an
excellent	 initial	 analysis	 of	 V-NAND,*	 showing	 that
the	 technology	 isn’t	 about	 stacking	 just	 a	 couple	 of
transistors.	 A	 V-NAND	 stack	 is	 a	 38-layer	 active
transistor	sandwich,	all	in	a	single	spot.	This	is	process
technology	 badassery	 at	 its	 finest.	 This	 is	 Neo
decoding	 the	Matrix.	This	 is	Mal	 shooting	 first.	 It’s	 a
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game	 changer,	 and	 it’s	 not	 vaporware.	 Heirloom
backers	 received	 laptops	 with	 over	 4	 trillion	 of	 those
transistors	packed	inside.

Finalizing	Firmware
From	the	software	side,	the	next	step	at	this	point	was
finalizing	 the	 kernel,	 bootloader,	 and	 distro	 selection,
as	well	as	deciding	what	to	show	when	Novena	booted
for	the	first	time.

Marek	Vasut	got	Novena	supported	 in	mainline	U-
Boot	 (Universal	Bootloader),	one	of	 the	most	popular
open	 source	 bootloaders.	 (Marek	 is	 one	 of	 U-Boot’s
maintainers.)	 The	 process	 involved	 a	 surprising
number	 of	 patches,	 in	 part	 because	 few	 ARM	 boards
support	as	much	RAM	as	Novena.	With	those	patches
in	 place,	 Novena	 had	 full	 U-Boot	 support,	 including
USB	and	video.

We	 decided	 to	 make	 Debian	 the	 factory-default
distribution	 for	Novena,	and	we	used	 the	 stock	Linux
kernel	with	 those	patches	 added.	Any	patches	 that	we
thought	 might	 be	 useful	 to	 other	 projects	 were
submitted	upstream	and	will	continue	to	be	submitted.
Upstreaming	just	means	that	a	package	that	is	part	of	a
derivative	operating	system	becomes	part	of	the	distro
it’s	derived	from.
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We	 did	 keep	 a	 few	 local	 patches,	 ranging	 from
specialized	hacks	to	experimental	features,	features	that
weren’t	ready	to	push	upstream,	or	features	that	relied
on	 features	 that	 weren’t	 upstream	 at	 the	 time.	 For
example,	 the	 display	 system	 on	 a	 laptop	 is	 very
different	 from	 what	 you’d	 usually	 see	 on	 an	 ARM
device.	In	most	ARM	devices,	the	screen	is	fixed	during
boot	 and	 it	 isn’t	 possible	 to	 hot-swap	 displays	 at
runtime.	 Like	 a	 typical	 laptop,	 Novena	 supports	 two
different	displays	at	once	and	allows	you	to	plug	in	an
HDMI	 monitor	 without	 requiring	 a	 reboot.	 Support
for	 this	 feature	 required	 a	 local-only	 patch	 to	 the
kernel,	 as	 it	 relied	 on	 features	 that	 weren’t	 yet
upstreamed	for	the	ARM	platform	at	that	time.

Finally,	 we	 just	 had	 to	 decide	 what	 to	 show	 when
Novena	powered	up.	In	Linux,	 it’s	not	at	all	common
to	have	a	first-boot	setup	screen	where	you	create	your
user,	 set	 the	 time,	 and	 configure	 the	 network.	That’s
common	 in	 Windows	 and	 OS	 X,	 which	 come
preinstalled,	 but	 under	 Linux,	 the	 installer	 generally
takes	care	of	that.

We	were	torn	between	creating	a	good	desktop-style
experience	 and	 making	 a	 practical	 embedded
developer’s	 experience.	 A	 desktop-style	 experience
would	 ship	 as	 a	 blank	 slate	 and	 prompt	 the	 user	 to
create	 an	 account	 via	 a	 locally	 attached	 keyboard	 and
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monitor.	But	embedded	developers	may	never	plug	 in
a	monitor,	and	instead	prefer	to	connect	via	console	or
SSH;	 for	 them,	 a	 default	 username,	 password,	 and
hostname	would	have	been	more	helpful.	Either	way,
we	 wanted	 to	 create	 just	 a	 single	 firmware	 common
across	all	platforms	and	avoid	special-casing	releases	to
a	particular	target.

In	 the	 end,	 we	 decided	 to	 create	 a	 desktop-style
experience,	with	escapes	for	power	users	to	bypass	the
formalities	of	user	enrollment.	This	gave	us	the	best	of
both	worlds.	It	improved	the	accessibility	of	Novena	to
entry-level	users,	yet	power	users	could	still	cut	to	the
chase	and	get	down	to	work.

BUILDING	A	COMMUNITY
From	 the	 start,	 xobs	 and	 I	 built	Novena	 to	 empower
hackers,	 so	 I	 was	 pleased	 that	 even	 before	 shipping,
Novena	had	active	alpha	developers.	Jon	Nettleton	and
Russell	 King	worked	 on	 graphics,	Marek	 Vasut	 from
U-Boot	 lent	 a	hand,	 and	a	 couple	of	other	 alpha	user
groups	actually	made	hardware	for	the	system.

MyriadRF,	 an	 open	 source	 hardware	 and	 software
community	 focused	 on	wireless	 technology,	 created	 a
software-defined	 radio	board	 for	Novena.	We	bought
and	integrated	those	boards	with	the	first	desktop	and
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laptop	units	we	shipped.
The	CrypTech	group	also	started	applying	Novena

to	 its	 projects	 before	 the	 laptop	 shipped.	 The
CrypTech	 project	 developed	 a	 hardware	 security
module,	 with	 a	 BSD	 and	 CC	 BY-SA	 3.0	 licensed
reference	design.	The	group	wanted	to	create	a	widely
reviewed,	 designed-for-crypto	 device	 that	 anyone
could	 compose	 for	 their	 application	 and	 easily	 build
with	 their	 own	 trusted	 supply	 chain.	 CrypTech	 used
Novena	to	prototype	elements	of	its	design.

A	prototype	CrypTech	expansion	board,	plugged	into	the
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Novena	motherboard

The	 expansion	 board	 shown	 here	 is	 a	 prototype
noise	source	based	on	avalanche	noise	from	a	transistor
in	 the	middle	of	 the	board.	CrypTech	uses	 that	noise
to	generate	entropy	in	Novena’s	FPGA.	The	entropy	is
then	 combined	 with	 entropy	 generated	 by	 ring
oscillators	 in	 the	 FPGA	 and	 mixed	 using,	 say,	 SHA-
512	 to	 generate	 seeds.	 The	 seeds	 are	 then	 used	 to
initialize	 the	 ChaCha	 stream	 cipher,	 ultimately
resulting	 in	 a	 stream	 of	 cryptographically	 sound
random	 values.	 The	 result	 is	 a	 high-performance,
state-of-the	 art,	 random-number-generator
coprocessor.

CLOSING	THOUGHTS
As	 a	 final	 note,	 if	 there’s	 one	 thing	 xobs	 and	 I	 have
learned	 in	 the	 hardware	 business,	 it’s	 that	 you	 can’t
count	 your	 chickens	 before	 they	 hatch.	Making	 good
progress	 to	 a	 certain	 point	 didn’t	mean	we’d	 have	 an
easy	path	 to	 finished	units.	Even	 though	we	had	 fully
functional	prototypes	at	the	close	of	fundraising,	it	still
took	months	 of	 intense	 effort	 to	 deliver	 hundreds	 of
units	to	end	users.

Now	 that	 Novena	 has	 finished	 shipping,	 we’re
continuing	to	support	our	enthusiastic	yet	very	patient
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user	 base.	 It’s	 a	 lot	 of	 work,	 which	 falls	 primarily	 on
xobs’s	 shoulders,	 but	 we’ve	 been	 answering	 questions
from	users,	pushing	patches,	 and	keeping	 the	Novena
kernel	up	to	date.

We	do	this	even	though	we	garner	no	new	revenue
from	Novena	sales.	Upon	reviewing	our	post-campaign
sales	 data,	 it	was	 fairly	 clear	 there	was	 no	 viable	 path
forward	 to	 run	 a	 hardware	 business	 selling	 Novena;
we’d	 sell	 on	 average	 a	 couple	 of	 units	 per	 month.
Although	we	cleared	the	minimum-order	requirements
of	 our	 vendors	 through	 the	 initial	 crowdfunding
campaign,	 it	would	 be	 very	 difficult	 to	 engage	 any	 of
our	 suppliers	 at	 volumes	 less	 than	 a	 couple	 hundred
units.	 Selling	 a	 couple	 units	 per	 month	 at	 that
minimum	 buy	 would	 leave	 us	 saddled	 with	 inventory
debt	for	about	a	hundred	months.	We’d	be	in	debt	to
our	 suppliers	 for	 several	 years.	 Being	 unable	 to	 repay
your	 suppliers	 for	 several	 years	 is	 also	 known	 as
bankruptcy.

We	 are,	 of	 course,	 keeping	our	original	 promise	 to
support	the	Novena	motherboard	for	at	least	five	years
from	 the	 initial	 funding	 campaign.	We’ve	 set	 aside	 a
hefty	 chunk	 of	 cash	 to	 ensure	 a	 steady	 supply	 of	 the
mainboards.	 Our	 original	 crowd	 funding	 and	 now
online	sales	partner,	Crowd	Supply,	has	taken	over	the
remaining	 inventory	 of	 cases	 and	 accessories.	Thanks
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to	 our	 open	 hardware	 model,	 Crowd	 Supply	 has	 the
option	to	manufacture	and	sell	accessories	for	Novena,
should	end	user	demand	materialize.

In	 the	 end,	 I’m	very	happy	 to	 see	 the	 tender	green
shoots	 of	 new	 projects	 aiming	 to	 offer	 better	 open
source	 laptop	 solutions	 to	 end	 users.	 Rather	 than
compete	 with	 them,	 I	 think	 it’s	most	 appropriate	 for
Novena	 to	 give	 way	 and	 enable	 enthusiastic	 new
developers	to	find	opportunity	and	fortune	selling	their
solutions.	After	all,	we	started	on	this	adventure	mostly
to	 see	 if	 it	 could	be	done.	We	wanted	 to	build	a	cool
tool,	 customized	 for	 our	 everyday	 use	 case;	we	 didn’t
want	 to	 start	 a	 business	 selling	 laptops	 with	 a
sustainable	mass-market	appeal.	If	the	ultimate	impact
of	 the	 Novena	 project	 is	 raising	 the	 bar	 for	 open
hardware,	 and	 perhaps	 even	 encouraging	 a	 new
generation	of	 laptop-themed	projects,	that	would	be	a
huge	reward	in	and	of	itself.
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8.	chibitronics:	creating
circuit	stickers

In	 today’s	 world	 of	 contract	 manufacturing	 and
turnkey	service	providers,	designers	tend	to	pick	from	a
palette	of	existing	processes	to	develop	products.	Most
consumer	 electronic	 devices	 are	 an	 amalgamation	 of
rigid	 PCBs	 with	 SMT	 reflow	 or	 through-hole	 wave
soldering,	 ABS	 or	 PC	 injection	molding,	 sheet-metal
forming,	and	some	finishing	processes	like	painting	or
electroplating.	 These	 options	 cover	 the	 full	 range	 of
utility	 most	 products	 require.	 Really	 outstanding
products,	 however,	 also	 tend	 to	 introduce	 new
materials	or	novel	manufacturing	processes.

Developing	 those	new	processes	doesn’t	have	 to	be
expensive—as	 long	 as	 you’re	 willing	 to	 go	 onto	 the
factory	floor	and	direct	the	improvements	yourself.	In
other	words,	the	expensive	bit	of	process	development
is	 typically	 paying	 the	 experts	 developing	 and
qualifying	 the	process,	not	 so	much	the	equipment	or
materials.

To	 prove	 that	 point	 to	 myself,	 I	 started	 exploring
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flex	circuits	as	a	design	medium.	Instead	of	using	a	1-
or	 2-millimeter-thick	 rigid	 substrate	 composed	 of
woven	 glass	 fiber	 impregnated	with	 a	 stiff	 epoxy,	 flex
circuits	 typically	 use	 a	 pliable	 polymer	 substrate	 just
fractions	of	a	millimeter	 thick.	Polyimide	 is	 a	popular
substrate	 in	 flex	 circuits	 because	 of	 its	 ability	 to
withstand	 soldering	 temperatures.	 Although	 flex-
circuit	 technology	 is	 common	 inside	 consumer
products	 (a	mobile	phone	probably	contains	 at	 least	 a
half-dozen	 flex	 PCBs,	 connecting	 peripherals	 like
buttons,	cameras,	and	displays	 to	 the	mainboard),	 this
technology	 is	 underrepresented	 in	 hobby	 and	 DIY
products.	But	I	don’t	think	it	has	to	be.

I	 had	 a	 hunch	 that	 the	 right	 kind	 of	 product
designed	 in	 flex	 could	 enable	 new	 and	 creative
applications,	but	I	wasn’t	quite	sure	how,	so	I	decided
to	learn	more	about	the	unique	benefits	and	challenges
of	 designing	 for	 flexible	 circuits.	 As	 part	 of	 a	 project
where	 I	explored	 the	guts	of	SD	cards,	which	 I’ll	 talk
more	about	in	Chapter	9,	I	needed	to	create	an	adapter
for	 my	 Novena	 that	 would	 allow	 me	 to	 snoop	 and
emulate	the	NAND	flash	memory	found	inside	certain
styles	of	older	SD	cards.	The	thinness	and	pliability	of
flexible	circuits	were	a	great	match	for	the	job.

The	 resulting	 adapter	was	 very	 thin;	 it	 fit	 perfectly
under	 the	TSOP	 package	 of	 the	NAND.	The	 bendy
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nature	of	the	board	meant	I	could	also	accommodate	a
broad	variety	of	target	board	shapes,	even	boards	much
larger	 than	 a	 typical	 SD	 card.	 Although	 a	 useful
application	of	flexible	circuits,	it	still	felt	like	I	was	just
scratching	the	surface	of	possibility.

My	custom	flex	adapter

Then	 came	 the	 moment	 of	 serendipity.	 While
working	on	 the	SD	card	project,	 I	met	 Jie	Qi,	 then	a
PhD	 candidate	 at	 the	 MIT	 Media	 Lab,	 who	 was
combining	 papercraft	 and	 electronics	 as	 part	 of	 her
research.	She	was	part	of	the	group	of	MIT	Media	Lab
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students	I	took	on	a	tour	of	Shenzhen	in	January	2012,
and	seeing	examples	of	her	paper	circuits	set	the	gears
turning	in	my	head.

The	final	artwork	for	Jie	Qi’s	paper	circuit	art	piece,	Pu	Gong
Ying	Tu
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A	close-up	of	the	flowers
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Peeling	back	the	painting	to	reveal	circuitry
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The	flower	circuits	inside	Pu	Gong	Ying	Tu

Using	 nothing	 more	 than	 copper	 tape,	 paper,	 and
dollops	of	solder	or	tape	to	hold	components	in	place,
Jie	was	able	 to	craft	 sublime	works	of	 art	 that	glowed
and	 interacted	 with	 viewers.	 These	 enchanting
masterpieces	showed	how	electronics	could	be	used	not
just	 as	 a	 functional	medium,	but	 also	 as	 an	 expressive
medium,	 inspiring	 wonder	 and	 awe.	 The	 photo	 here
shows	the	insides	of	one	of	her	famous	early	works,	Pu
Gong	Ying	Tu	(Dandelion	Painting),	where	the	circuitry
itself	is	as	much	a	work	of	art	as	the	painting	overlaying
it.

Jie	 is	 also	 very	 passionate	 about	 education,	 and	 she
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saw	 great	 potential	 in	 paper	 electronics	 to	 make
technology	 more	 relevant	 and	 accessible	 to	 non-
engineering	 audiences.	 On	 our	 trip	 to	 Shenzhen,	 we
discussed	the	possibility	of	building	circuits	on	flex	and
then	soldering	a	flex	circuit	onto	paper.	In	the	end,	she
felt	 that	 would	 be	 at	 best	 a	 marginal	 improvement.
Although	soldering	 isn’t	a	difficult	 skill	 to	master,	 the
high	 temperatures,	 chemicals,	 and	 specialized
equipment	involved	are	a	major	deterrent	to	beginners.
What	 would	 really	 be	 magical	 is	 if	 circuits	 could	 be
assembled	like	stickers	on	a	page.	Wouldn’t	it	be	great
if	we	could	use	flex-circuit	technology	with	traditional
SMT	 reflow	 processes	 to	 create	 modules	 that	 users
could	then	stick	onto	wires	made	of	copper	tape?

And	 that’s	 how	 we	 came	 to	 collaborate	 on
Chibitronics,	 a	 project	 in	which	we	 designed	 a	 set	 of
peel-and-stick	 electronic	 circuits	 for	 crafting	 and
education.	 Chibitronics	 has	 been	 an	 open	 hardware
project	 from	 the	 start,	 and	 you	 can	 still	 find	 all	 the
activities	from	the	Circuit	Sticker	Sketchbook,	the	source
code	for	all	microcontrollers	used,	and	other	technical
details	 through	 the	 project’s	 wiki	 at
http://chibitronics.com/wiki/.
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The	Chibitronics	STEM	Starter	Kit	includes	the	Circuit	Sticker
Sketchbook,	LED	stickers,	copper	tape,	batteries,	and	binder

clips	for	the	batteries.
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An	explanation	of	how	to	create	a	DIY	pressure	sensor
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The	crafted	DIY	pressure	sensor

The	DIY	pressure	sensor	with	paper	overlay

CRAFTING	WITH	CIRCUITS
The	 solution	 we	 arrived	 at	 in	 early	 2012	 built	 on	 a
body	 of	 work	 from	 Professor	 Leah	 Buechley’s	High-
Low	 Tech	 research	 group	 at	 MIT.	 We	 decided	 to
build	 circuits	 on	 a	 flexible	 polyimide	 substrate	 with
anisotropic	 tape	 (also	 called	 Z-tape,	 because	 electricity
only	 flows	 vertically	 through	 the	 tape,	 not	 laterally)
laminated	on	the	back.
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A	piece	of	Z-tape	under	a	microscope

Using	 Z-tape	 allows	 end	 users	 to	 assemble	 circuits
without	 high-temperature	 processes	 like	 soldering	 or
reflow.	The	ability	to	simply	stick	components	in	place
is	incredibly	useful	for	art	projects,	which	often	involve
heat-sensitive	 and/or	 pliable	 material	 substrates	 like
paper,	 fabric,	 and	 plastic.	 Circuit	 stickers	 and	 copper
tape	 are	 flexible,	 too,	 further	 enabling	 anyone	 to
integrate	electronics	into	projects	using	nontraditional
materials.	 Such	 friendly	 and	 expressive	 materials
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encourage	creators	to	turn	the	circuits	themselves	into
beautiful	works	of	art.

Circuit	stickers	on	paper

Circuit	stickers	on	fabric

Creating	 these	 circuit	 stickers	 revolved	 around	 the
limitations	 of	 the	Z-tape.	 In	 the	magnified	 section	 of
Z-tape	 laminated	 onto	 a	 polyimide	 substrate	 shown
here,	the	silvery-white	stipples	are	tiny	metal	particles
that	 span	 from	 one	 side	 of	 the	 adhesive	 layer	 to	 the
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other	according	 to	a	 statistical	distribution.	Given	the
nature	 of	 the	 metal	 distribution,	 to	 ensure	 good
electrical	contact,	each	pad	on	a	circuit	sticker	needed
to	 be	 fairly	 large.	 Furthermore,	 traces	 very	 close	 to
each	 other	 could	 be	 shorted	 out	 by	 the	 embedded
metal	particles,	so	as	I	designed	the	circuits,	I	had	to	be
careful	 to	 leave	 enough	 space	 between	 exposed	 pads.
The	 datasheet	 for	 the	 Z-tape	 material	 contains	 rules
for	the	minimum	pad	size	and	spacing,	so	I	used	those
as	a	guide.

Developing	a	New	Process
It’s	 one	 thing	 to	 design	 stickers	 containing	 working
electronic	 circuits,	 but	 it’s	 a	 whole	 different	 thing	 to
actually	 build	 them.	 No	 standard	 manufacturing
processes	existed	that	could	produce	circuit	stickers	as
we	 envisioned	 them.	 At	 last,	 I	 had	 a	 meaningful
opportunity	 to	 test	 my	 theory	 that	 new	 process
development	 can	 be	 done	 cheaply	 if	 you’re	willing	 to
do	 it	 yourself.	 So	 I	 started	 my	 own	 little	 research
program	 to	 explore	 flex-circuit	 media	 and	 the
challenges	of	making	circuit	stickers	out	of	them,	all	on
a	shoestring	R&D	budget.

Visiting	the	Factory
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As	a	first	step,	I	visited	the	facility	where	flex	PCBs	are
manufactured.	The	visit	was	eye-opening.

A	worker	manually	aligning	coverlay	onto	flex-circuit	material

Instead	 of	 soldermask,	 flex-circuit	 traces	 are
protected	 by	 a	 polyimide	 sheet	 called	 coverlay.
Soldermask	 is	 too	 brittle	 and	 will	 crack	 if	 bent,	 but
coverlay	reliably	stays	 intact	over	 thousands	of	 flexing
cycles.	 Sometimes,	 however,	 you	 want	 to	 make
portions	of	a	flex	circuit	stiff;	for	instance,	a	part	of	the
circuit	 might	 need	 to	 stay	 stiff	 for	 mechanical
mounting,	 and	 a	 stiff	 circuit	 is	 also	 helpful	 for	 SMT
processing.
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Steel	plates	being	laminated	to	the	back	of	flex-circuit
material

I	knew	that	polyimide	stiffeners	could	be	 laminated
to	 flex,	 but	 as	 it	 turns	 out,	 steel	 lamination	 is	 also
possible.	 I	wouldn’t	have	known	that	 if	 I	hadn’t	 taken
the	 factory	 tour	myself.	Visiting	 the	 factory	 in	person
also	gave	me	an	invaluable	opportunity	to	see	the	wide
range	of	complex	shapes	that	could	be	produced	thanks
to	die	cutting.	Having	a	variety	of	possible	shapes	was
key,	 because	 we	 wanted	 to	 make	 the	 circuit	 stickers
look	cool,	too.	Questions	like	how	narrow	we	could	cut
the	material	or	how	tight	a	radius	is	allowable	in	a	die
cut	 are	 difficult	 to	 answer	 by	 email,	 but	 the	 answers
were	 intuitively	 obvious	 after	 I	 saw	 the	 process	 in
person.
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The	intricate	flex-circuit	shapes	achievable	with	die	cutting

Performing	a	Process	Capability	Test
After	the	factory	visit,	the	next	step	was	to	do	a	process
capability	 test	 to	 push	 the	 limits	 of	 the	manufacturing
process.	 We	 designed	 a	 non-homogenous	 sheet	 of
sticker	 variants	 that	 exercised	 all	 kinds	 of	 capabilities:
long	via	chains,	3-mil	line	widths,	0201	components	(a
small	 SMT	 package	 size),	 0.5	 mm	 pitch	 QFN	 parts
(surface-mount	components	that	have	all	their	contacts
on	 the	 bottom),	 bulky	 components,	 the	 use	 of
soldermask	 instead	 of	 coverlay,	 fine	 detail	 in
silkscreening,	 captive	 tabs,	 curved	 cutouts,	 hybrid
SMT	 and	 through-hole	 soldering	 techniques,	 Z-tape
lamination,	 and	 more.	 Our	 process	 capability	 test
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intentionally	broke	parts	of	the	manufacturing	process
to	 discover	 weak	 links	 that	 could	 prevent	 our	 design
from	working	out.
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The	circuit	sticker	design	we	manufactured	for	the	process
capability	test

When	 I	 first	 presented	 the	 design,	 the	 factory
rejected	 it	 outright,	 saying	 it	 was	 impossible	 to
manufacture.	After	I	explained	my	goals,	however,	the
factory	 agreed	 to	 produce	 it,	 with	 the	 understanding
that	 I’d	 accept	 and	 pay	 for	 all	 units	 made,	 naturally
including	 the	 defective	 ones.	 Through	 analyzing	 the
failure	modes	of	 the	defective	units,	 I	developed	a	 set
of	 design	 rules	 for	 maintaining	 high	 yield	 (and
therefore	lowering	cost)	on	the	circuit	stickers.

Based	 on	 these	 design	 rules,	 Jie	 and	 I	 created	 our
first	 set	 of	 “production	 candidate”	 stickers.	 They
included	 LEDs	 of	 four	 different	 colors	 (white,	 red,
blue,	and	yellow),	as	well	as	two	sets	of	smart	stickers.
The	 first	 set	 of	 smart	 stickers	 contained	 a
preprogrammed	 microcontroller	 that	 could	 generate
patterns	of	light,	such	as	fading,	heartbeats,	twinkling,
and	 blinking.	 We	 called	 these	 the	 “effects”	 stickers;
they	 are	 a	 form	 of	 physical	 programming	 that	 enables
noncoders	to	customize	the	behavior	of	their	projects.
The	 second	 set	 contained	 a	 user-programmable
microcontroller	 with	 a	 fun	 record-and-playback
capability	 loaded	 into	 it	 as	 a	 demo,	 along	 with	 three
sensors.	 We	 called	 these	 the	 “sensor	 &
microcontroller”	stickers.
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We	ran	 small	 batches	of	our	production	 candidates
to	 find	problems	we	might	encounter	should	we	need
to	scale	up,	and	we	thoroughly	 investigated	any	 issues
that	 would	 affect	 reliability,	 yield,	 or	 usability.	 In
particular,	 we	 had	 to	 develop	 a	 novel	 method	 for
laminating	 Z-tape	 onto	 the	 back	 of	 the	 stickers	 that
would	 be	 process-compatible	 with	 the	 type	 of	 die
cutting	necessary	to	create	stickers.

After	two	iterations	of	production	candidates,	we	felt
we	were	ready	to	see	what	other	people	could	do	with
circuit	 stickers.	 As	 this	 was	 part	 of	 Jie’s	 doctoral
research,	 we	 had	 two	 options	 for	 doing	 user	 testing.
The	traditional	academic	approach	would	have	been	to
apply	for	a	budget	from	her	advisor,	produce	a	limited
number	 of	 stickers,	 and	 conduct	 a	 series	 of	 closed
workshops	 to	 study	 how	 young	 and	 creative	 minds
interacted	with	 this	 new	media.	 But	 this	 happened	 in
2013,	 so	 viable	 crowdfunding	 platforms	 unlocked	 the
possibility	 of	 offering	 our	 research	 directly	 to
interested	users,	 thus	 allowing	us	 to	 conduct	 research
at	scale.	The	MIT	Media	Lab	where	Jie	researched	 is
also	 very	 keyed	 in	 to	 the	 possibilities	 enabled	 by
research	 at	 scale,	 as	 embodied	 by	 their	 “deploy”
initiative.	 In	 2011,	 when	 Joi	 Ito	 became	 the	 Media
Lab’s	new	director,	he	started	transforming	the	Media
Lab’s	 culture	 from	“demo	or	 die”	 to	 “deploy	or	 die,”
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which	 was	 eventually	 shortened	 to	 the	 less	 menacing
“deploy”	 directive.	 Under	 the	 old	 “demo	 or	 die”
regime,	 research	 groups	 were	 encouraged	 to	 create
whizzy	 demonstrations	 of	 technology	 that	 could	 help
raise	money.	Under	 Ito’s	 directive,	 the	 idea	 is	 to	 get
technology	 out	 of	 the	 lab	 and	 into	 the	 wild	 by
conducting	 research	 at	 scale	 through	 tools	 like
crowdfunding	and	lean	hardware.

In	 November	 2013,	 we	 launched	 a	 crowdfunding
campaign	with	Crowd	Supply.	It	was	very	important	to
us	to	remain	pure	to	the	academic	mission	behind	the
circuit	stickers,	so	we	set	our	funding	goal	at	just	$1.	If
even	 one	 person	 thought	 circuit	 stickers	 might	 be
interesting,	 we’d	 produce	 the	 stickers	 and	 work	 with
that	 person	 to	 gather	 feedback.	 And,	 of	 course,	 we
would	 make	 that	 research	 available	 to	 the	 world,	 in
case	someone	wanted	to	 fork	 the	project	or	otherwise
hack	their	circuit	stickers.

We	 beat	 our	 modest	 goal	 by	 several	 orders	 of
magnitude,	closing	just	shy	of	$60,000	after	a	little	over
one	month	of	funding	and	a	very	low-key	campaign.

DELIVERING	ON	A	PROMISE
As	part	of	our	campaign,	we	stated	that	we	would	ship
orders	 for	 fulfillment	 by	 May	 2014.	 Thankfully,	 we
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were	able	to	meet	our	goal,	right	on	time.

Sixty-two	cartons	containing	over	a	thousand	Chibitronics
starter	kits,	waiting	for	pickup

Delivering	 on	 time	 is	 no	 simple	 task	 for	 any
crowdfunded	project,	however.	I	made	the	contentious
choice	to	use	Crowd	Supply	in	part	because	they	show
more	savvy	around	vetting	hardware	products,	and	the
services	 they	 offer	 to	 campaigns	 (fulfillment,	 tier-one
customer	 support,	 post-campaign	 preorder	 support,
and	 rolling	 delivery	 dates	 based	 on	 demand	 versus
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capacity)	 are	 a	 boon	 for	 hardware	 upstarts.	 Getting
fulfillment,	 customer	 support,	 and	 an	 ongoing	 e-
commerce	site	as	part	of	the	package	meant	we	didn’t
have	to	hire	someone	to	deal	with	all	of	that.	Whether
your	“company”	consists	of	just	two	people	trialing	an
academic	project	or	a	couple	of	people	working	out	of
a	garage,	that’s	a	big	deal.

Crowd	 Supply	 doesn’t	 have	 the	 same	 media
footprint	 or	 brand	 power	 that	 Kickstarter	 has,	 which
can	make	it	harder	to	raise	as	much	money.	But	at	the
end	of	the	day,	I	feel	it’s	very	important	to	establish	an
example	 of	 sustainable	 crowdfunding	 practices	 that’s
better	for	both	the	entrepreneur	and	the	consumer.	It’s
not	just	about	a	money	grab	today;	it’s	about	building	a
brand	 and	 reputation	 that	 can	 be	 trusted	 for	 years	 to
come.

WHY	ON-TIME	DELIVERY	IS	IMPORTANT
I	set	a	personal	challenge	for	Chibitronics	 to	take	our
delivery	 commitment	 to	 backers	 very	 seriously.	 I’ve
seen	 too	 many	 underperforming	 crowdfunding
campaigns,	 and	 I’m	 deeply	 concerned	 that
crowdfunding	 for	 hardware	 is	 becoming	 synonymous
with	scams	and	spams.

Kickstarter	 and	 Indiegogo	 have	 been	 plagued	 by
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non-delivery	and	scams,	and	their	blithe,	caveat	emptor
attitude	 around	 campaigns	 highlights	 the	 conflict	 of
interest	 between	 consumers	 and	 crowdfunding
websites.	 The	 crowdfunding	 sites	 are	 basically	 saying
to	 backers,	 “Hey,	 thanks	 for	 the	 nickel,	 but	 what
happened	to	your	dollar	is	your	problem.”	I’m	honestly
worried	 that	 crowdfunding	 will	 get	 such	 a	 bad
reputation	that	it	eventually	won’t	be	a	viable	platform
for	well-intentioned	entrepreneurs	and	innovators.

The	 bottom	 line	 is	 this:	 if	 I	 can’t	 prove	 to	 current
and	future	backers	that	I	can	deliver	a	project	on	time,
I	 stand	 to	 lose	 a	 valuable	 platform	 for	 launching	 my
future	 products.	 Fortunately,	 we	 definitely	 proved
ourselves	with	Chibitronics,	and	I’ve	continued	to	use
Crowd	Supply	for	other	crowdfunding	projects	since.

LESSONS	LEARNED
We	didn’t	deliver	Chibitronics	on	time	because	we	had
it	easy,	though.	When	I	drew	up	the	original	campaign
timeline,	 my	 minimum	 and	 maximum	 bounds	 on
delivery	 time	 spanned	 from	 just	 after	 Chinese	 New
Year	 2014	 (February)	 to	 around	 April.	 I	 padded	 that
schedule	by	one	month	beyond	the	max,	just	to	be	safe,
and	we	used	every	last	bit	of	this	padding.

I	made	a	lot	of	mistakes	along	the	way,	but	through	a
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combination	of	hard	work,	 luck,	planning,	 and	 strong
factory	 relationships,	 we	 successfully	 overcame	 many
hardships.	Here	are	a	few	lessons	I	learned	during	the
process.

Not	All	Simple	Requests	Are	Simple	for
Everyone
Every	Chibitronics	starter	kit	included	a	physical	copy
of	 a	 fantastic	 book	 Jie	 wrote	 as	 a	 step-by-step,	 self-
instruction	guide	to	designing	with	circuit	stickers,	the
Circuit	 Sticker	 Sketchbook	 (shown	 on	 pages	 256–257).
The	 book	 is	 unusual	 because	 you’re	 meant	 to	 paste
electronic	 circuits	 into	 it,	 so	 we	 had	 to	 customize
several	aspects	of	the	printing.	The	paper	had	to	be	the
right	thickness	to	get	good	light	diffusion	when	LEDs
were	 placed	 underneath	 a	 sheet.	The	 binding	 needed
special	 attention	 for	 a	 better	 circuit-crafting
experience,	and	there’s	even	a	little	pocket	in	the	back
to	 hold	 swatches	 of	 craft	material	 used	 as	 part	 of	 the
projects	in	the	book.

The	printer	 found	most	of	 these	 requests	 relatively
easy	to	accommodate,	but	one	in	particular	threw	them
for	a	 loop.	The	book’s	metal	 spiral	binding	had	 to	be
nonconductive	 so	 that	 placing	 copper	 tape	 on	 the
binding	wouldn’t	accidentally	cause	a	short	circuit.
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Checking	a	wire	for	conductivity	seems	like	a	simple
enough	request	for	someone	who	designs	circuits	for	a
living,	 but	 for	 a	 book	 printer,	 it’s	 weird.	 No	 part	 of
traditional	 book	 printing	 or	 binding	 requires	 such
knowledge.	 The	 printer	 originally	 said	 they	 couldn’t
guarantee	 anything	 about	 the	 conductivity	 of	 the
binding	wire.	Sure	enough,	while	the	first	sample	wire
was	nonconductive,	the	second	was	conductive,	and	the
printer	couldn’t	explain	why.

Face-to-face	meetings	were	 invaluable	here.	Instead
of	 yelling	 at	 the	 printer	 over	 email,	 we	 arranged	 a
meeting	with	them	during	one	of	my	monthly	trips	to
Shenzhen.	We	had	a	productive	discussion	about	their
concerns,	 and	 at	 the	 conclusion	 of	 the	 meeting,	 we
ordered	 them	 a	 $5	 multimeter	 in	 exchange	 for	 a
guarantee	of	 a	nonconductive	book	 spine.	 In	 the	end,
the	 printer	 was	 simply	 unwilling	 to	 guarantee
something	 for	 which	 they	 had	 no	 quality	 control
procedure,	 which	 is	 completely	 reasonable.	 We	 just
had	to	teach	them	how	to	use	a	multimeter.

This	 unusual	 nonconductivity	 requirement	 did
extend	our	 lead	 time	by	 several	days	 and	added	a	 few
cents	to	the	cost	of	the	book,	but	overall,	I	was	willing
to	accept	that	compromise.

Never	Skip	a	Check	Plot
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The	 pad	 shapes	 for	 the	 circuit	 stickers	 are	 complex
polyline	 geometries,	 which	 Altium,	 the	 PCB	 design
software	 I	 was	 using,	 didn’t	 handle	 very	 gracefully.	 I
discovered	the	hard	way	that	in	Altium,	the	soldermask
layer	 occasionally	 disappears	 for	 pads	 with	 complex
geometry.	Older	versions	of	my	design	would	contain	a
soldermask	layer,	but	then	upon	saving	the	design	file,
the	 layer	would	 silently	disappear.	This	 sort	of	bug	 is
rare,	 but	 it	 does	 happen.	 Normally,	 I’d	 import	 the
gerber	file	into	a	third-party	tool	as	a	check	plot	before
making	an	order,	but	I	was	in	a	rush	and	reordering	an
existing	 design	 that	 had	 worked	 before,	 so	 I	 skipped
the	check	plot	procedure.

The	 result?	 Thousands	 of	 dollars’	 worth	 of	 PCBs
had	 to	 be	 scrapped,	 and	we	 lost	 four	weeks	 from	 the
schedule.	Ouch.

It	 was	 good	 that	 I	 padded	 my	 delivery	 dates—and
that	 I	 keep	 a	 bottle	 of	 fine	 Scotch	 on	 hand,	 to	 help
bitter	 reminders	 of	 what	 happens	 when	 I	 get
complacent	go	down	a	little	easier.

If	a	Component	Can	Be	Placed	Incorrectly,
It	Will	Be
I’m	 paranoid	 about	 parts	 being	 placed	 incorrectly,	 as
this	 problem	 has	 burned	 me	 many	 times.	 The
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Chibitronics	effects	sticker	sheet	was	a	prime	example
of	the	issue	waiting	to	happen.

The	Chibitronics	effects	stickers

The	 sheet	 is	 an	 array	 of	 four	 stickers	 that	 flash
different	 patterns	 on	 an	 LED	 but	 are	 otherwise
identical.	 The	 flashing	 pattern	 is	 controlled	 by
software.	 Trying	 to	 manage	 four	 separate	 firmware
files	 and	 get	 them	 all	 loaded	 into	 the	 right	 spot	 in	 a
tester	 is	a	nightmare	waiting	to	happen.	To	solve	that
problem,	I	designed	the	stickers	to	use	the	exact	same
firmware.	Their	behaviors	were	instead	set	by	the	value
of	 a	 single	 external	 resistor,	 which	 was	 measured	 on
boot	by	the	microcontroller’s	integrated	ADC.

My	logic	went	something	like	this:	if	all	the	stickers
have	 the	 same	 firmware,	 there’s	 no	 “wrong	 way”	 to
program	the	stickers.	Right?

Unfortunately,	 I	 also	 designed	 the	 master	 PCB
panels	 to	 be	 perfectly	 symmetric.	 You	 could	 load	 the
panels	 into	 the	 assembly	 robot	 rotated	 by	 pi	 radians,
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and	 the	 assembly	 program	 would	 run	 flawlessly—
except	that	 the	resistors	setting	the	firmware	behavior
would	be	populated	 in	 reverse	order	 compared	 to	 the
silkscreen	 labels.	 Despite	 having	 fiducial	 holes	 to
provide	a	 frame	of	 reference	and	 text	on	 the	PCBs	 in
both	 Chinese	 and	 English	 that	 is	 uniquely	 orienting,
this	 problem	 actually	 happened.	 On	 the	 first	 effect
sticker	samples,	the	“heartbeat”	sticker	was	“blinking,”
the	“twinkle”	sticker	was	“fading,”	and	vice	versa.

Fortunately,	the	factory	very	consistently	loaded	the
boards	 in	 backward,	 which	 is	 the	 best	 case	 for	 a
problem	 like	 this.	 I	 rushed	 a	 firmware	 patch	 (also	 a
risky	 thing	 to	 do)	 that	 reversed	 the	 interpretation	 of
the	 resistor	 values,	 and	 had	 a	 new	 set	 of	 samples
shipped	 to	 me	 in	 Singapore	 via	 FedEx	 for	 a	 sanity
check.	 We	 also	 built	 a	 secondary	 test	 jig	 to	 add	 a
manual	double-check	 for	 correct	 flashing	behavior	on
the	line	in	China.

The	effects	sheet	problem	was	solved,	but	in	making
that	 additional	 test,	 we	 discovered	 another	 common
problem.

Some	Concepts	Don’t	Translate	into
Chinese	Well

I	 wrote	 instructions	 in	 Chinese	 to	 describe	 the
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difference	between	fading	(a	slow	blinking	pattern)	and
twinkling	 (a	 flickering	 pattern)	 to	 the	 factory,	 but	 it
turns	 out	 that	 the	 Chinese	 translations	 for	 blink	 and
twinkle	 are	 similar.	 Twinkle	 translates	 to	 闪烁
(“flickering,	twinkling”)	or	闪耀	(“to	glint,	to	glitter,	to
sparkle”),	 and	 blink	 translates	 to	 闪闪	 (“flickering,
sparkling,	 glittering”)	 or	 闪亮	 (“brilliant,	 shiny,	 to
glisten,	to	twinkle”).

I	always	dread	writing	subjective	descriptions	for	test
operators	in	Chinese,	which	is	part	of	the	reason	I	try
to	 automate	 as	 many	 tests	 as	 possible.	 As	 one	 of	 my
Chinese	 friends	 once	 remarked,	 Mandarin	 is	 a
wonderful	language	for	poetry	and	arts	but	difficult	for
precise	technical	communications.

The	 challenge,	 then,	 was	 to	 come	 up	 with	 a
bulletproof,	cross-cultural	explanation	of	the	difference
between	fading	and	twinkling,	using	only	simple	terms
anyone	 could	 understand;	 that	 is,	 I	 had	 to	 avoid
technical	 terms	 like	 random,	 frequency,	 hertz,	 and
periodic.

I	 sent	 the	 factory	 a	 video	 of	 the	 different	 LED
patterns,	 and	 our	 factory	 recommended	 we	 use	渐变
(“gradual	 change”)	 for	 fade	 and	 闪烁	 (“flickering,
twinkling”)	for	twinkle.	I’m	still	not	convinced	that	was
a	 bulletproof	 description,	 but	 it	 was	 superior	 to	 any
translation	 I	 came	 up	 with.	 And,	 to	 this	 day,	 we	 are
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dogged	by	problems	trying	to	explain	to	quality	control
staff	 the	difference	between	 these	 effects.	 It	 turns	out
that	a	malfunctioning	sticker	also	makes	a	pretty	good
twinkling	effect—for	a	while.

Funnily	 enough,	 it	was	 also	 a	 challenge	 for	 Jie	 and
me	to	agree	upon	what	a	“twinkle”	effect	 should	 look
like.	 She	 described	 our	 first	 iteration	 of	 the	 effect	 as
“closer	 to	 a	 lightning	 storm	 than	 twinkling.”	We	had
several	 long	 conversations	 on	 the	 topic,	 followed	 by
demo	videos	to	clarify	the	desired	effect.	We	basically
tweaked	code	until	it	looked	about	right	to	both	of	us.
Given	 the	 difficulty	 we	 had	 describing	 the	 effect	 to
each	 other,	 it’s	 no	 surprise	 I	 had	 trouble	 accurately
describing	the	effect	in	Chinese.

Eliminate	Single	Points	of	Failure
When	we	 built	 test	 jigs,	we	 built	 two	 copies	 of	 each,
even	 though	 throughput	 requirements	 demanded	 just
one.	Why?	Because	one	might	fail.

And	 guess	 what:	 one	 test	 jig	 did	 fail.	 I	 still	 don’t
know	 why.	 Thank	 goodness	 we	 built	 two	 copies,
though,	 or	 I’d	 have	 had	 to	 rush	 to	 China	 on	 short
notice	to	diagnose	why	our	sole	test	jig	didn’t	work.

Some	Last-Minute	Changes	Are	Worth	It
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About	 six	weeks	before	we	 finalized	our	order	 for	 the
Chibitronics	kits	with	the	factory,	Jie	suggested	that	we
include	a	stencil	of	the	sticker	patterns	with	the	sensor
and	microcontroller	 kits.	 She	 reasoned	 that	 it	 can	 be
difficult	to	lay	out	the	copper	tape	patterns	for	complex
stickers	like	the	microcontroller,	which	has	seven	pads,
without	a	drawing	of	 the	contact	patterns.	I	originally
resisted	 the	 idea;	 I	 didn’t	 want	 to	 delay	 shipment	 on
account	of	something	we	didn’t	originally	promise.	As
Jie	discovered,	I	can	be	very	temperamental,	especially
when	it	comes	to	schedule	slips.	(Sorry,	Jie!	Thanks	for
bearing	with	me.)

But	 her	 arguments	were	 sound,	 so	 I	 instructed	 our
factory	to	search	for	a	stencil	vendor.	After	two	weeks,
we	hadn’t	found	anyone	willing	to	take	the	job,	but	our
factory’s	 sourcing	 department	 didn’t	 give	 up.
Eventually,	 they	 found	 one	 vendor	 who	 had	 enough
material	 in	 stock	 to	 tool	 up	 a	 die	 cutter	 and	 turn
around	a	couple	thousand	stencils	within	two	weeks—
just	barely	in	time	to	meet	the	schedule.
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The	sensor	and	microcontroller	sheet	and	stencil

When	 I	 got	 samples	 of	 the	 sensor	 and
microcontroller	 kit	 with	 the	 stencils,	 I	 gave	 them	 a
whirl.	 Jie	 was	 absolutely	 right	 about	 their	 utility.	 I
found	 my	 experience	 vastly	 improved	 when	 I	 had	 a
template	 to	 work	 from,	 particularly	 for	 the
microcontroller	sticker	with	seven	closely	spaced	pads,
and	I	 felt	users	would	agree.	That’s	how	even	 though
the	 stencil	 wasn’t	 promised	 as	 part	 of	 the	 original
campaign,	 all	 backers	 who	 ordered	 the	 sensor	 and
microcontroller	kit	received	a	free	stencil	to	help	them
lay	out	designs.
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Chinese	New	Year	Impacts	the	Supply
Chain
Even	 though	 the	 Chinese	 New	 Year	 is	 a	 two-week
holiday,	 our	 initial	 schedule	 essentially	 wrote	 off	 the
month	 of	 February.	Reality	matched	 this	 expectation,
but	I	want	to	share	with	you	exactly	how	Chinese	New
Year	 impacted	 this	project,	 in	 case	you’re	 considering
manufacturing	a	product	in	China.

We	 had	 a	 draft	 manuscript	 of	 our	 book	 ready	 in
January,	 but	 I	 couldn’t	 get	 a	 complete	 sample	 until
March.	That	wasn’t	because	the	printer	was	closed	for
a	month	straight;	 like	everyone	else,	their	holiday	was
about	 two	 weeks	 long.	 The	 paper	 vendor,	 however,
started	their	holiday	about	10	days	before	the	printer,
and	 the	 binding	 vendor	 ended	 their	 holiday	 about	 10
days	 after	 the	printer.	Even	 though	 each	 vendor	 took
only	two	weeks	off,	the	net	supply	chain	for	printing	a
custom	book	was	out	for	around	24	days,	or	effectively
the	 entire	 month	 of	 February.	 The	 staggered
observance	of	Chinese	New	Year	 is	necessary	because
of	 the	 sheer	 magnitude	 of	 human	 migration	 that
accompanies	the	holiday.

Shipping	Is	Expensive	and	Difficult
When	I	ran	the	initial	numbers	on	shipping,	I	realized
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that	we	weren’t	 exactly	 selling	 circuit	 stickers—taking
the	 book	 into	 account,	 by	 volume	 and	 weight,	 our
principal	 product	 was	 printed	 paper.	 To	 optimize
logistics	 cost,	 I	 pushed	 to	 ship	 starter	 kits	 (which
contained	 a	 book)	 and	 additional	 stand-alone	 book
orders	by	ocean,	rather	than	air.

We	 actually	 had	 starter	 kits	 and	 books	 ready	 to	 go
almost	four	weeks	before	the	first	kits	shipped,	but	we
just	couldn’t	get	a	reasonable	quotation	for	the	cost	of
shipping	them	by	ocean.	We	spent	almost	three	weeks
haggling	and	quoting	with	ocean	freight	companies.	In
the	end,	their	price	was	basically	the	same	as	going	by
air	 but	 would	 take	 three	 weeks	 longer	 and	 incurred
more	 risk.	 Freight	 cost	 is	 apparently	 a	 minor
component	of	shipping	by	ocean,	and	you	get	killed	by
a	 multitude	 of	 surcharges,	 from	 paying	 the
longshoremen	 to	 paying	 all	 the	 intermediate	 brokers
and	 warehouses	 that	 handle	 your	 goods	 at	 the	 dock.
Those	 fixed	costs	added	up	such	that	even	though	we
were	 shipping	 over	 60	 cartons	 of	 goods,	 air	 shipping
was	still	more	cost-effective.

NOTE

For	reference,	a	Maersk	40-foot	sea	container	would	fit
over	1,250	cartons,	each	containing	40	starter	kits.	We
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were	an	order	of	magnitude	away	from	being	able	to
efficiently	utilize	ocean	freight.

You’re	Not	Out	of	the	Woods	Until	You	Ship
At	 each	 milestone	 in	 this	 project,	 I	 had	 to	 remind
myself	not	 to	count	my	chickens	before	 they	hatched.
Problems	 ranging	 from	 a	 routine	 UPS	 screwup	 to	 a
tragic	aviation	accident	to	a	logistics	problem	at	Crowd
Supply’s	fulfillment	depot	to	a	customs	problem	could
stymie	 an	 on-time	 delivery.	 But,	 at	 the	 very	 least,	we
did	everything	within	our	power	to	deliver	on	time.

Thankfully,	when	all	was	said	and	done,	our	backers
received	 their	 orders	 right	 on	 time.	 Since	 then,
Chibitronics	 has	 continued	 to	 surpass	 my	 wildest
expectations.	 Although	 we	 started	 this	 project	 as	 an
academic	 experiment,	 grassroots	 user	 adoption
prompted	us	to	grow	the	experiment	into	a	full-fledged
company.	As	the	circuit	stickers	are	an	open	hardware
project,	the	specs	are	available	for	savvy	hackers	to	play
with,	but	most	users	are	nontechnical	folks	who	would
benefit	more	directly	from	support	on	basic	usage.	To
that	 end,	 the	 company	 strives	 to	 provide	 users	 with
assistance,	 activities,	 and	 more	 stickers	 to	 help	 them
keep	learning	and	making	beautiful	electronic	crafts.
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CLOSING	THOUGHTS
Chibitronics	has	been	an	ongoing	 learning	experience
for	 me,	 as	 I’ve	 never	 had	 a	 company	 successfully
mature	like	this.	I’m	excited	to	see	where	the	company
goes,	 but	 as	 an	 engineer,	 I	 also	 know	my	 limitations:
I’m	 not	 cut	 out	 to	 be	 a	 business-person.	 Once	 the
company	 is	 big	 enough	 to	 support	 its	 own	 staff	 in	 a
sustainable	 fashion,	 I’m	 looking	 forward	 to	 handing
over	 the	 reins,	 returning	 to	 my	 workbench,	 and
dreaming	up	new	open	hardware	inventions.
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Part	4
a	hacker’s	perspective
Engineering	 and	 reverse	 engineering	 are	 two	 sides	 of
the	 same	 coin.	 The	 best	 makers	 know	 how	 to	 hack
their	 tools,	 and	 the	 best	 hackers	 routinely	make	 new
tools.	 I	 might	 set	 out	 to	 design	 a	 circuit,	 and	 find
myself	reverse	engineering	a	chip	because	the	datasheet
is	vague,	incomplete,	or	simply	incorrect.	Engineering
is	a	creative	exercise;	reverse	engineering	is	a	 learning
exercise.	When	you	combine	 them,	even	the	 toughest
problems	can	be	solved	as	a	creative	learning	exercise.

I	 spent	 over	 a	 quarter-century	 in	 school,	 but	 I’ve
learned	 more	 about	 electronics	 from	 reverse
engineering.	 I	 love	 trying	 to	 figure	 out	 why	 the
engineer	 behind	 a	 piece	 of	 random	 hardware	 made
certain	 design	 choices.	 Highly	 skilled	 engineers
develop	clever	 tricks	without	realizing	how	 innovative
they	 are.	 Those	 tricks	 often	 go	 undocumented	 or
unpatented,	and	the	only	way	to	tap	that	knowledge	is
to	decipher	it	from	finished	designs.

After	 seeing	 enough	 boards,	 I	 started	 recognizing
patterns	and	personal	styles	that	almost	have	a	cultural
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nature	about	 them.	For	example,	Apple	circuit	boards
are	 austere	 and	 black,	with	 a	 look	 almost	 as	 iconic	 as
Steve	Jobs’s	black	mock	turtlenecks.	There	are	so	many
decisions	to	make	when	designing	a	circuit	board	that
most	 engineers	 can	 only	 draw	 from	 their	 cultural
influences	 and	 toolchains	 to	 constrain	 stylistic	 things
like	fonts	and	part	choices.

This	kind	of	learning	is	so	important	to	me	that,	for
over	 a	 decade	 now,	 every	 month	 I’ve	 presented	 a
circuit	 board	 on	 my	 blog	 and	 challenged	 readers	 to
divine	 its	 function	 from	 its	 design.	 Part	 of	 my
motivation	for	holding	these	regular	competitions	is	to
make	 reverse	 engineering	 feel	 culturally	 acceptable	 to
readers.	People	often	ask	me	if	reading	other	people’s
designs	 or	 modifying	 and	 hacking	 hardware	 is	 legal.
But	anyone	who	has	raised	a	child	knows	that	learning
through	emulation	is	a	part	of	human	nature.	I	disagree
with	interpretations	of	the	law	that	put	the	terms	of	a
software	 license	 above	 your	 right	 to	 own	 your
hardware.	If	you	can’t	hack	it,	you	don’t	own	it.

The	importance	of	democratic	access	to	technology
only	 grows	 as	 we	 become	 increasingly	 dependent	 on
smartphones	 and	 computers.	 Technology	 is
fundamentally	neutral	toward	human	ethics;	the	people
who	control	technology	are	responsible	for	applying	it
ethically.	 One	 school	 of	 thought	 believes	 that
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technology	 should	 be	 controlled	 by	 a	 select	 group	 of
trusted	 masters;	 the	 other	 believes	 that	 control	 over
technology	 should	 belong	 to	 anyone	 with	 the
motivation	 and	 will	 to	 learn	 it.	 Increasingly,	 our
technology	 infrastructure	 is	 becoming	 a	 monoculture
managed	by	a	cartel	of	technology	providers.	Everyone
carries	 identical	 phones	 running	 operating	 systems
based	on	the	same	libraries	and	uses	one	or	two	cloud
services	to	store	their	data.	But	history	has	proven	that
a	 monoculture	 with	 no	 immunity	 is	 a	 recipe	 for
disaster.	One	 virus	 can	 wipe	 out	 a	 whole	 population.
Universal	 access	 to	 technology	 may	 allow	 the
occasional	bad	actor	 to	develop	a	harmful	exploit,	but
this	 bitter	 pill	 ultimately	 inoculates	 our	 technological
immune	system,	forcing	us	to	grow	stronger	and	more
resilient.	Wherever	 that	 threat	 comes	 from,	 a	 robust
and	vibrant	 culture	of	 free-thinking	 technologists	will
be	our	ultimate	defense	against	any	attack.

Speaking	 of	 viruses	 and	 immune	 systems,	 there	 are
remarkable	 parallels	 between	 hardware	 systems	 and
biological	 systems.	 Just	 as	 hacking	 is	 all	 about
rethinking	 APIs	 to	 do	 unexpected	 things,	 a	 central
tenant	 of	 biology—evolution—is	 all	 about	 superior
implementations	 of	 “APIs”	 superseding	 weaker
interpretations.

I	 routinely	 read	 journals	 about	 the	 life	 sciences	not
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just	 because	 I	 find	 the	 subject	 fascinating,	 but	 also
because	 it’s	 good	 for	 me.	 Looking	 outside	 your
primary	field	for	fresh	ideas	is	very	helpful	for	problem
solving.	 Figuring	 out	 how	 an	 organism	 works	 is	 an
incredibly	 difficult	 reverse	 engineering	 problem:
there’s	 no	 documentation,	 there’s	 no	 designer	 to
consult,	 and	 your	 diagnostic	 tools	 are	 roughly
equivalent	to	throwing	crate	after	crate	of	smartphones
into	 a	 blender	 and	 running	 the	 mixture	 through
various	 sieves.	 Biologists	 have	 developed	 a	 bag	 of
extremely	 clever	 tricks	 to	 map	 out	 complex	 systems
without	 the	 benefit	 of	 an	 oscilloscope,	 and	 at	 a	 high
level,	some	of	the	principles	are	applicable	to	electronic
systems.

As	 our	 understanding	 of	 biology	 becomes	 more
complete,	 there’s	 ample	 opportunity	 for	 computer
engineering	 principles	 to	 advance	 the	 field.	 We’re
already	at	the	point	of	custom-engineering	organisms;
the	 technology	 to	 hack	 humans—or	 engineer	 our
successor—is	 likely	 to	 arrive	 within	 decades.	 Such
powerful	 tools	 deserve	 a	 closer	 look	 so	 that	 we	 can
make	 independent	 judgments	 about	 what	 is	 fact	 and
what	is	fiction.

While	engineering	is	a	creative	activity,	hacking	is	an
important	and	often	underrated	learning	exercise.	The
ability	 to	 effortlessly	 switch	 modes	 from	 forward	 to
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reverse	engineering	is	a	powerful	tool,	and	the	right	to
hack	 is	 the	 foundation	 of	 a	 healthy	 technological
culture.	The	first	chapter	 in	this	section	reviews	some
of	my	own	hacking	methods	and	efforts	and	discusses
some	 of	 the	 legal	 frameworks	 that	 protect	 these
activities.	The	second	chapter	attempts	to	unpack	some
key	 concepts	 from	 biology	 and	 frame	 them	 from	 the
perspective	of	an	electronics	person.	The	final	chapter
in	this	book	is	a	collection	of	interviews	where	I	discuss
what	being	a	hacker	means	to	me,	as	well	as	recap	some
of	 my	 experiences	 in	 manufacturing	 and	 hardware
startups.	The	collection	isn’t	exhaustive,	but	I	hope	you
enjoy	reading	some	of	my	more	off-the-cuff	thoughts.
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9.	hardware	hacking

The	 biggest	 barrier	 to	 hacking	 is	 often	 the	 fear	 that
you’ll	 break	 something	while	poking	 around.	But	 you
have	 to	 break	 eggs	 to	 make	 an	 omelet;	 likewise,	 you
have	to	be	willing	to	sacrifice	devices	to	hack	a	system.
Fortunately,	 acquiring	 multiple	 copies	 of	 a	 mass-
produced	piece	of	hardware	is	easy.	I	often	do	a	bit	of
dumpster	 diving	 or	 check	 classified	 advertisements	 to
get	sample	units	 for	research	purposes.	I	generally	 try
to	start	with	 three	copies:	one	to	 tear	apart	and	never
put	 back	 together,	 one	 to	 probe,	 and	 one	 to	 keep
relatively	 pristine.	 I	 use	 the	 pristine	 copy	 to	 sanity-
check	whether	a	certain	behavior	is	due	to	my	probing
or	just	how	the	hardware	behaves.

My	 typical	 approach	 to	 any	 hardware	 hack	 is	 first
getting	the	device	open	and	then	getting	a	probe	in	just
the	 right	 spot	 without	 affecting	 the	 device’s
functionality.	 When	 you’re	 looking	 inside	 computer
chips,	 that’s	 virtually	 the	 entire	 challenge.	 The	 first
hack	 in	 this	 chapter	 is	 an	 example	 of	 silicon	 hacking,
and	you’ll	 see	 that	once	 the	package	 is	off	 and	you’re
staring	 at	 naked	 silicon,	 an	 attacker	 has	 a	 profound
advantage.
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Some	 hardware	 hacks	 require	 more	 system
engineering,	 particularly	 when	 you	 want	 to	 reverse
engineer	and	repur-pose	a	device.	In	these	situations,	I
tend	to	develop	additional	bespoke	tools	that	allow	me
to	tweak	and	observe	a	system	in	close	to	real	time,	or
at	least	as	fast	as	I	can	type	commands,	to	minimize	the
time	spent	validating	hypotheses.	The	goal	 is	to	make
the	primary	limitation	how	fast	you	can	think	of	ideas
to	test,	not	how	long	it	takes	to	upload	a	change	to	test
those	 ideas.	 The	 second	 hack	 in	 this	 chapter	 talks
about	 reverse	 engineering	 a	 relatively	 simple	 System-
on-Chip	 (SoC)	 device	 found	 inside	 common	 SD
memory	cards	 and	 some	 tools	 I	developed	 to	 aid	 that
process.

Finally,	 some	 hacks	 inevitably	 push	 the	 boundaries
of	 the	 law.	The	 third	hack	 in	 this	 chapter	 talks	 about
NeTV,	a	 system	I	developed	 that	 takes	 a	new	 look	at
the	 High-Definition	 Content	 Protection	 (HDCP)
encryption	standard,	which	secures	most	HDMI	video
links.	 NeTV	 is	 a	 hack	 on	 both	 a	 legal	 issue	 and	 a
hardware	system.	It	works	around	the	thorny	problems
presented	by	the	DMCA	by	reinterpreting	the	HDCP
standard	 to	 enable	 a	 man-in-the-middle	 (MITM)
attack	 to	 change	 video	 data	 without	 circumventing
encryption.	 No	 circumvention,	 no	 DMCA	 problem.
Hacks	 often	 push	 the	 boundary	 of	 what’s	 legal	 and
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what’s	 been	 tested	 in	 the	 courts.	 Just	 like	 any	 other
system,	 the	 legal	 system	 can	 also	 be	 hacked,	 and	 one
key	takeaway	from	this	chapter	is	how	to	think	of	laws
as	 just	 another	constraint	 to	work	with	on	 the	way	 to
achieving	a	particular	goal.

The	 final	 hack	 in	 this	 chapter	 combines	 hardware
penetration,	 tool	 creation,	 and	 legal	 considerations	 to
reverse	engineer	a	complex	mobile	phone	SoC.	That’s
another	project	I	worked	on	with	xobs,	and	once	again,
building	bespoke	hacking	tools	was	invaluable	because
it	allowed	us	to	experiment	with	the	system	as	it	ran.

HACKING	THE	PIC18F1320
Keeping	 a	 secret	 is	 a	 common	 challenge	 for	 any
security	 system.	 To	 solve	 this	 challenge,	 security
system	designers	 frequently	hide	 secrets	 inside	 silicon
chips	 because	 the	 chips’	 rugged	 epoxy	 packages	 and
tiny	geometries	are	difficult	to	penetrate	and	inspect.

This	 sounds	 good	 in	 theory	 but	 is	 problematic	 in
practice.	 Chip	 designers	 make	 mistakes,	 and	 when	 a
chip	has	a	problem,	the	designers	need	a	way	to	open	it
up	 and	 investigate.	 This	 situation	 is	 so	 common	 that
there	 are	 commercial	 services	 that	 specialize	 in
opening	 up	 chips	 expressly	 for	 that	 purpose.	 Called
failure	 analysis	 services,	 they’ve	 mastered	 several
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techniques	for	removing	tough	epoxy	from	chips.
A	couple	of	years	before	my	crash	course	 in	setting

up	a	Chinese	 supply	chain	with	Chumby,	 I	decided	 it
would	 be	 fun	 to	 demonstrate	 how	 simple	 hacking	 a
chip	can	be	if	you’re	aware	of	failure	analysis	services.
At	the	time,	Microchip’s	PIC	series	of	microcontrollers
was	 quite	 ubiquitous,	 so	 I	 decided	 to	 have	 a	 go	 at	 a
popular	 PIC	 model.	 PICs	 typically	 have	 configuration
fuses,	which	you	can	activate	to	prevent	certain	regions
of	memory	 from	being	read	or	written	to.	But	 there’s
often	 a	 legitimate	 need	 to	 read	 the	 contents	 of	 a
secured,	 programmed	 PIC.	 For	 instance,	 a	 company
that	 loses	 either	 the	 documentation	 for	 a	 product	 or
the	 personnel	 that	 originally	 created	 the	 codes	 for	 a
secured	PIC	would	be	stuck	without	a	way	to	read	the
chip.	 This	 is	 a	 problem	 when	 a	 company	 needs	 to
revise	or	upgrade	a	legacy	line	of	products.

I	 wanted	 to	 figure	 out	 how	 to	 dump	 the	 memory
from	a	secured	PIC.	Knowing	I’d	have	to	break	a	few
eggs	 to	make	 this	omelet,	 I	 scored	 four	PIC18F1320s
from	a	friend	and	started	stripping	them	down.	Here’s
what	I	found.
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A	PIC18F1320	in	its	native	state

Decapping	the	IC
First,	I	had	to	take	the	top	off	so	I	could	see	the	silicon
under	 the	 hood.	 Many	 homebrew	 techniques	 for
decapping	 a	 chip	 typically	 involve	 applying	 fuming
nitric	 or	 sulfuric	 acid,	 but	 those	 aren’t	 compounds
you’d	 want	 to	 keep	 at	 home,	 nor	 are	 they	 easy	 to
obtain.	 Nitric	 acid,	 in	 particular,	 is	 an	 important
compound	for	explosives	fabrication.	So,	I’ve	found	the
easiest	and	most	reliable	way	to	decap	a	chip	is	to	just
send	it	to	a	failure	analysis	lab.	For	about	$50,	you	can
have	a	decapped	part	in	two	days.

I	 decapped	 three	 parts	 for	 this	 project.	 Two	 were
functionally	 decapped	 (silicon	 revealed	 with	 the	 device
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still	in	its	lead	frame,	fully	functional),	and	the	last	was
fully	decapped	(just	a	bare	silicon	die	with	no	package).	I
had	 one	 die	 fully	 decapped	 because	 my	 inspection
microscope	 had	 a	 very	 short	 working	 distance	 at	 the
highest	magnifications,	and	the	remaining	epoxy	from
the	package	would	have	interfered	with	the	lens.

A	functionally	decapped	PIC18F1320.
The	little	raised	square	in	the	middle	(it’s	goldish	in	real	life)

is	the	silicon	chip.

Taking	a	Closer	Look
With	my	decapped	ICs	in	hand,	I	did	a	sweep	around
one	of	the	dies	with	the	microscope	and	noticed	several
prominent	 features.	 Because	 physics	 is	 the	 same
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everywhere,	 most	 of	 the	 fine-grained	 structure	 in	 a
silicon	chip	looks	pretty	much	the	same,	no	matter	who
makes	the	chip.	These	constraints	propagate	their	way
up	to	 the	system	 level,	and	with	a	bit	of	 training,	you
can	read	a	silicon	chip	like	a	book.

My	best	guess	at	what	various	structures	in	this	chip	do.	I
could	be	wrong.

One	 set	 of	 structures	 grabbed	 my	 attention
immediately:	 there	 were	 metal	 shields	 over	 some
transistors,	 following	a	 regular	pattern	 that	had	about
the	 right	 number	 of	 devices	 to	 account	 for	 all	 the
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security	 bits.	 Full-metal	 shields	 covering	 a	 device	 are
very	rare	in	silicon,	so	they’re	like	a	big	X	marking	the
spot	where	something	very	important	is	kept.

Zooming	in	on	the	metal	shields

Erasing	the	Flash	Memory
The	 shields	 were	 significant	 because	 of	 some
interesting	facts	about	flash	memory	technology,	which
this	 PIC	 device	 used	 to	 store	 the	 security	 fuse
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information,	 as	 well	 as	 the	 internal	 program	 code.
Flash	 technology	 uses	 a	 floating-gate	 transistor
structure	very	similar	 to	old	UV-erasable	programmable
read-only	 memory	 (UV-EPROM)	 technologies	 like	 the
ceramic-packaged	 2716	 chips	 from	 the	 1970s,	 which
had	quartz	windows	so	they	could	be	erased.

In	 both	 flash	 and	 UV-EPROM	 devices,	 data	 is
written	 when	 electrons	 tunnel	 into	 a	 floating	 gate,
where	 the	 electrons	 remain	 for	 decades.	 The	 extra
electrons	in	the	floating	gate	create	a	measurable	offset
in	 the	 characteristics	 of	 the	 storage	 transistor.	 The
difference	 is	 that	 flash	 memory	 can	 withdraw	 the
stored	electrons	(erase	the	device)	using	only	electrical
pulses,	 while	 a	 UV-EPROM	 requires	 energetic
photons	to	knock	the	electrons	out	of	the	floating	gate.
The	UV	 light	 required	 to	 accomplish	 this	 is	 typically
on	 a	 wavelength	 of	 around	 250	 nm.	 You	 need
expensive	quartz	optics	 to	manipulate	 this	wavelength
of	UV	without	excessive	loss,	making	it	a	bit	difficult	to
harness.

Here’s	 the	 important	 conclusion	 I	drew	 from	 these
facts:	flash	devices	can	usually	also	be	erased	using	UV
light	 since	 they	 have	 a	 similar	 transistor	 structure	 to
UV-EPROM	 devices.	 The	 encapsulation	 around	 a
flash	 device	 normally	 prevents	 any	 UV	 light	 from
effectively	reaching	the	die,	but	 since	 the	PIC	devices
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had	the	plastic	around	them	removed,	I	could	attempt
to	apply	UV	light	and	see	what	happened.

I	 performed	 a	 simple	 experiment	 by	 programming
the	PIC	device	with	a	ramping	pattern,	where	I	stored
the	hexadecimal	numbers	from	0x00	to	0xFF	over	and
over	 again.	 Then,	 I	 tossed	 the	 PIC	 into	 my	 UV-
EPROM	eraser	to	bake	for	...	oh,	about	the	length	of	a
good	 long	 shower	 and	 some	 email	 checking.	When	 I
took	the	device	out	of	the	eraser,	the	flash	memory	was
indeed	 blanked	 to	 its	 normal	 all	 1s	 state,	 and	 the
security	fuses	were	unaffected.	After	baking	a	few	more
PIC	devices	in	the	eraser,	I	found	that	if	I	didn’t	bake	a
PIC	long	enough,	I	got	odd	readings	out	of	the	array	I
wrote	to,	such	as	all	0s,	a	phenomenon	that	I	still	don’t
understand.

Erasing	the	Security	Bits
Clearly,	 the	metal	 shields	over	 the	security	 fuses	were
there	 to	 thwart	 attempts	 to	 selectively	 erase	 the
security	 fuses	 while	 leaving	 the	 flash	 memory	 array
unaffected.
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A	diagram	showing	how	the	shields	got	in	the	way	of	the	fuse
bits,	and	how	to	work	around	them

My	problem	was	that	for	the	flash	memory	transistor
to	be	erased,	high-intensity	UV	light	needed	to	strike
the	floating	gate.	The	metal	shield	effectively	reflected
all	 incident	 light,	 so	 the	 light	never	 reached	 the	 gate.
But	 I	 knew	 there	 was	 a	 refraction	 index	 mismatch
between	the	optically	clear	protective	dielectric	layer	of
silicon	 dioxide	 covering	 the	 chip	 and	 the	 silicon
proper,	 meaning	 light	 at	 certain	 angles	 would	 reflect
off	 of	 the	 smooth	 silicon	 surface.	 For	 an	 example	 of
this	 reflective	 effect,	 jump	 in	 a	 swimming	 pool,	 go
under	 water,	 and	 look	 up	 at	 where	 the	 water	 and	 air
meet.	 The	 water	 should	 look	 highly	 reflective	 at	 an
oblique	 angle	 because	 the	 refractive	 index	 mismatch
between	water	and	air	causes	total	internal	reflection	of
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light.
I	 planned	 to	 use	 this	 reflection	 to	 bounce	 the	UV

light	off	 the	oxide	 to	hit	 the	metal	 shield	 and	bounce
back	onto	the	floating	gate.	By	angling	the	PIC	inside
the	ROM	eraser,	I	thought	I	could	get	enough	light	to
bounce	 into	 the	 flash	 memory	 transistor	 region	 and
erase	the	security	bits.	After	a	couple	of	attempts	using
bits	and	bobs	of	material	to	fix	the	angle	of	the	chip,	I
developed	a	simple	technique	that	worked	surprisingly
well:	shoving	the	chip	into	the	antistatic	foam	liner	of
the	UV	eraser	at	an	angle.

The	chip	in	the	UV	eraser’s	antistatic	foam

Protecting	the	Other	Data
That	 technique	didn’t	 protect	 the	 flash	data	 I	wanted
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to	keep,	 though.	To	avoid	erasing	 this	data,	 I	made	a
hard	mask	out	of	a	very	carefully	cut	piece	of	electrical
tape	and	stuck	that	mask	to	the	surface	of	the	die	using
a	 steady	 hand,	 two	 tweezers,	 and	 a	 microscope.	 The
electrical	 tape	 blocked	 the	 UV	 light	 from	 directly
hitting	 the	 flash	 code	memory	 regions	 and	 somewhat
absorbed	light	bounced	back	from	the	silicon	substrate.

The	die	in	its	package,	with	electrical	tape	over	the	flash	ROM
array
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This	 mask	 allowed	 me	 to	 reset	 only	 the	 security
fuses	without	impacting	the	flash	code	array	too	much.
The	 following	 screenshots	 show	 the	 array	 memory
status	according	to	the	programming	and	readback	tool
I	was	using.
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My	PIC	programmer	workspace,	showing	the	device	settings
before	erasure	The	device	settings	after	erasure
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The	device	settings	after	erasure

In	 the	before	 shot,	note	 the	 settings	of	 the	 security
fuses	in	the	Configuration	Bits	window	and	the	values
programmed	in	the	flash	ROM,	shown	in	the	Program
Memory	window.	 In	 the	 after	 shot,	 the	 security	 fuses
switch	to	being	disabled,	while	the	flash	ROM	contents
in	 the	 Program	 Memory	 window	 read	 identically	 to
what	was	programmed	in	previously.	A	different	part	of
the	 code	 array	 was	 actually	 still	 erased,	 but	 I	 could
probably	 have	 fixed	 that	 by	 cutting	 a	 bigger	 piece	 of
electrical	tape.

I’ve	heard	reports	that	since	this	hack	was	published,
Microchip	 started	putting	metal	 shields	over	 the	code
memory	array	as	well	as	the	fuses,	making	it	a	bit	more
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difficult	 to	 pull	 off	 this	 trick.	 Still,	 this	 hack
underscores	 the	 fact	 that	quite	often,	 the	hardest	part
of	 silicon	hacking	 is	 removing	 the	outer	package,	 and
fortunately,	 there	 are	 cheap,	 if	 obscure,	 services
available	to	assist	with	that	problem.

HACKING	SD	CARDS
Years	 later,	 I	 found	 myself	 hacking	 into	 yet	 another
interesting	device	with	 flash	memory:	an	SD	card.	 I’d
already	torn	down	SD	cards	when	investigating	a	batch
of	 potentially	 fake	 cards	 that	 found	 their	 way	 into
Chumby	 production	 units,	 which	 I	 discuss	 in	 “Fake
MicroSD	Cards”	 on	 page	 156.	 This	 time,	 my	 intent
was	 to	 figure	 out	 how	 to	 get	 an	 SD	 card	 to	 do
something	 it	wasn’t	made	 to	 do.	This	 particular	 hack
was	another	team	effort	with	my	friend	xobs,	and	it	was
funded	 by	 DARPA’s	 Cyber	 Fast	 Track	 (CFT)
initiative.	The	brainchild	of	uberhacker	.mudge	(one	of
the	 original	 crew	 of	 L0pht),	 CFT	was	 a	 hack	 on	 the
US	government	 to	make	 it	 smarter	 about	 innovation,
particularly	on	matters	related	to	internet	security.	We
pulled	it	off	around	the	same	time	we	were	working	on
Novena	 and	 I	 was	 collaborating	 with	 Jie	 Qi	 on
Chibitronics.

xobs	 and	 I	 discovered	 that	 some	 SD	 cards	 contain
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vulnerabilities	 that	 allow	 arbitrary	 code	 execution	 on
the	 memory	 cards	 themselves.	 We	 also	 found	 that
similar	classes	of	vulnerabilities	exist	in	related	devices
like	 USB	 flash	 drives	 and	 solid-state	 drives.	 On	 the
dark	 side,	 code	 execution	 on	 a	 memory	 card	 enables
MITM	 attacks	 where	 the	 card	 seems	 to	 behave	 one
way	 but	 in	 fact	 does	 something	 else	 as	 an	 attacker
intercepts	 and	 manipulates	 communications	 between
the	 card	 and	 the	 device	 using	 it.	 On	 the	 light	 side,
however,	 this	 vulnerability	 also	 gives	 hardware
enthusiasts	 access	 to	 a	 very	 cheap	 and	 ubiquitous
source	of	microcontrollers.

Some	of	the	eggs—or	rather,	SD	cards—we	cracked	open	to
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find	the	vulnerability

How	SD	Cards	Work
To	 understand	 the	 hack,	 you	 need	 to	 know	 how	 SD
cards	 are	 structured.	 The	 information	 I’m	 about	 to
explain	 applies	 to	 all	 managed	 flash	 devices,	 which
includes	 microSD,	 SD,	 and	 MMC,	 as	 well	 as	 the
eMMC	 and	 iNAND	 devices	 typically	 soldered	 onto
the	mainboards	of	smartphones	to	store	the	operating
system	and	other	private	user	data.

Flash	 memory	 is	 billed	 as	 a	 contiguous,	 reliable
storage	medium,	 and	 it’s	 really	 cheap—so	 cheap	 that
the	premise	 is	 literally	 too	good	to	be	true.	In	reality,
all	 flash	 memory	 is	 riddled	 with	 defects,	 without
exception.	 It	 crafts	 the	 illusion	 of	 reliability	 through
sophisticated	 error	 correction	 and	 badblock
management	 functions.	This	 system	 is	 the	 result	 of	 a
constant	arms	race	between	the	engineers	and	mother
nature:	 every	 time	 the	 fabrication	 process	 shrinks
transistors,	 memory	 becomes	 cheaper	 but	 more
unreliable.	 Likewise,	 with	 every	 generation	 of	 chips,
engineers	 create	 more	 sophisticated	 and	 complicated
algorithms	 to	 compensate	 for	 nature’s	 propensity	 for
entropy	and	randomness	at	the	atomic	scale.

These	 algorithms	 are	 too	 complicated	 and	 too
device-specific	to	be	run	at	the	application	or	operating
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system	 level,	 so	 every	 flash	memory	 disk	 ships	with	 a
reasonably	 powerful	 microcontroller	 to	 run	 a	 custom
set	of	disk	abstraction	algorithms.	Even	tiny	microSD
cards	 contain	 not	 one,	 but	 at	 least	 two,	 chips:	 a
controller	 and	 at	 least	 one	 flash	 chip.	 (High-density
cards	stack	multiple	flash	dies.)

Inside	a	microSD	card.	The	small	square	in	the	upper-right
corner	is	a	microcontroller	SoC	mounted	on	top	of	the	larger

flash	memory	chip	that	it	manages.

In	 my	 experience,	 the	 quality	 of	 the	 flash	 chip(s)
integrated	 into	memory	cards	 varies	widely.	The	chip
could	be	anything	from	high-grade,	factory-new	silicon
to	material	with	more	 than	80	percent	bad	 sectors.	 If
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you’re	concerned	about	e-waste,	you	may	(or	may	not)
be	 pleased	 to	 know	 that	 memory	 card	 vendors
commonly	 use	 recycled	 flash	 chips	 salvaged	 from
discarded	 parts.	 Larger	 vendors	 tend	 to	 offer	 more
consistent	 quality,	 but	 even	 the	 largest	 players
staunchly	 reserve	 the	 right	 to	 mix	 and	 match	 flash
memory	 chips	 with	 different	 controllers	 yet	 sell	 the
assembly	as	the	same	part	number.	That’s	a	nightmare
if	you’re	dealing	with	implementation-specific	bugs.

A	memory	card’s	embedded	microcontroller	is	often
a	 heavily	 modified	 Intel	 8051	 or	 ARM	 CPU	 that
approaches	 100	 MHz	 performance	 levels	 and	 has
several	 hardware	 accelerators	 on-die.	 Amazingly,
adding	 these	 controllers	 to	 a	memory	 card	 only	 costs
about	 $0.15	 to	 $0.30,	 particularly	 for	 companies	 that
can	 fab	both	 the	 flash	memory	 and	 the	 controllers	 in
the	same	business	unit.	Even	more	interestingly,	due	to
the	 high	 cost	 of	 testing	 chips	 at	 the	 wafer	 level,	 it’s
probably	 net	 cheaper	 to	 add	 a	 microcontroller	 that
manages	 bad	 blocks,	 rather	 than	 thoroughly	 test	 and
characterize	each	raw	flash	memory	chip.	And	 in	 fact,
managed	flash	devices	tend	to	be	cheaper	per	bit	than
raw	flash	chips,	despite	the	extra	functionality.

Every	 flash	 implementation	 has	 unique	 algorithmic
requirements,	 multiplying	 the	 number	 of	 hardware
abstraction	layers	a	microcontroller	must	handle.	This
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complexity	 inevitably	 leads	to	bugs,	meaning	 indelibly
burning	a	 static	body	of	 code	 into	on-chip	ROM	 just
isn’t	feasible,	particularly	for	third-party	controllers.

Thus,	 a	 firmware	 loading	and	update	mechanism	 is
virtually	 mandatory.	 End	 users	 are	 rarely	 exposed	 to
this	process	since	it	all	happens	in	the	factory,	but	the
mechanism	 exists.	 While	 exploring	 the	 electronics
markets	in	China,	I’ve	seen	shopkeepers	burn	firmware
onto	a	card	that	“expands”	the	card’s	capacity.	In	other
words,	they	load	firmware	that	reports	the	capacity	of	a
card	 as	much	 larger	 than	 the	 actual	 available	 storage.
The	 fact	 that	 this	 is	 possible	 at	 the	 point	 of	 sale
indicates	 the	 update	 mechanism	 is	 likely	 not	 well
secured.

Reverse	Engineering	the	Card’s
Microcontroller
xobs	and	I	discovered	an	example	of	 this	vulnerability
while	 exploring	 memory	 cards	 using	 AppoTech’s
AX211	and	AX215	microcontrollers.	We	discovered	a
simple	 “knock”	 sequence	 transmitted	 over
manufacturer-reserved	commands	(a	command	named
CMD63	followed	by	the	bytes	A,	P,	P,	O)	 that	dropped	the
controller	 into	 a	 firmware	 loading	 mode.	 After
receiving	 the	 knock	 sequence,	 the	 card	 accepted	 the
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next	512	bytes	and	ran	the	data	as	code.

NOTE

The	AppoTech	chips	I	describe	here	technically	integrate
sufficient	functionality	that	in	an	academic	sense,	they’re
not	mere	microcontrollers;	they’re	full	SoCs.	But	it’s	just
weird	to	me	to	refer	to	the	AppoTech	as	an	SoC,	so	I
won’t.	It	will	always	be	a	microcontroller	to	me!

The	 AppoTech	 system	 on	 this	 particular	 memory
card	 also	 used	 an	 8051	 microcontroller.	 From	 the
knock	 sequence	beachhead,	we	used	a	combination	of
analyzing	code	with	IDA,	the	interactive	disassembler,
and	 fuzzing	 (that	 is,	giving	the	microcontroller	 invalid
or	 random	 input	 to	 see	 how	 it	 responds)	 to	 reverse
engineer	most	of	the	8051’s	function-specific	registers.
That	 allowed	us	 to	develop	novel	 applications	 for	 the
controller	 without	 the	 manufacturer’s	 proprietary
documentation.	 We	 did	 most	 of	 this	 work	 with	 the
Novena	laptop	hardware	I	described	in	Chapter	7.

As	 I	 alluded	 at	 the	 beginning	 of	 this	 chapter,	 we
developed	 several	 bespoke	 tools	 to	 help	 us	 reverse
engineer	 the	 SD	 card.	 One	 of	 the	 more	 interesting
tools	we	(and	by	we,	I	mean	primarily	xobs)	made	is	an
interactive	 REPL	 (read-evaluate-print-loop)	 shell	 for
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executing	 arbitrary	 code	 on	 the	 SD	 card.	 The
following	 listing	 shows	 what	 that	 environment	 looks
like.

root@bunnie-novena:~/ax211-code#
./ax211
-d
debug.bin
FPGA
hardware
v1.26
Debug
mode
APPO
response
[6]:
{0x3f
0x00
0xc1
0x04
0x17
0xab}
Result
of
factory
mode:
0
00000000

0f
41
1f
0f
0f
0f
ff
ff





















|.A......|
Expected
0x00
0x00,
got
0x0f
0x41
Loaded
debugger
Locating
fixup
hooks...
Done
AX211>
help
List
of
available
commands:



hello
Make
sure
the
card
is
there




peek
Read
an
area
of
memory




poke
Write
to
an
area
of
memory




jump
Jump
to
an
area
of
memory

dumprom
Dump
all
of
ROM
to
a
file


memset
Set
a
range
of
memory
to
a
single
value




null
Do
nothing
and
return
all
zeroes


disasm
Disassemble
an
area
of
memory





ram
Manipulate
internal
RAM





sfr
Manipulate
special
function
registers




nand
Operate
on
the
NAND
in
some
fashion



extop
Execute
an
extended
opcode
on
the
chip



reset
Reset
the
AX211
card




help
Print
this
help
For
more
information
on
a
specific
command,
type
'help
[command]'
AX211>
help
disasm
Help
for
disasm:
Disassemble
a
number
of
bytes
at
the
given
offset.
Usage:
disasm
[address]
[bytes]
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AX211>
disasm
0x200
16
.org
0x0200








nop








nop








reti









nop








mov
R7,
A








reti









mov
R7,
A








nop








mov
R7,
A








nop








mov
R7,
A








nop

From	 inside	 this	 environment,	 we	 could	 run
programs	 in	 a	 debugger,	 get	 a	 list	 of	 available
commands	 and	 what	 they	 did	 by	 entering	 help,	 and
disassemble	 sections	 of	 code	 by	 entering	 disasm.
Although	it	took	a	lot	of	time	to	develop	an	interactive
tool	with	such	a	rich	feature	set,	the	effort	quickly	paid
off	 because	 we	 could	 test	 complex	 hypotheses	 using
automated	fuzzing	frameworks.

The	 code	 upload	 size	 was	 limited	 to	 512	 bytes,
which	 meant	 we	 had	 to	 partition	 the	 REPL
environment	between	 the	host	Novena	 computer	 and
the	 target	 device.*	 For	 example,	 disassembling	 a
particular	 region	 of	 memory	 breaks	 down	 to	 a	 script
executed	on	 the	host	 side	 that	drives	 issue	requests	 to
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the	AX211	to	dump	the	requested	portion	of	memory,
followed	by	the	disassembly	algorithm	running	on	the
host	ARM	CPU.

Partitioning	the	SD	debugger	functions	between	the	host	and
the	target

The	 tool	 we	 built	 started	 with	 an	 SD	 physical
emulation	 layer,	which	 I’ll	 refer	 to	 as	PHY.	We	 used
the	FPGA	built	 into	 the	Novena	 to	present	 a	GPIO-
like	register	API	for	the	SD	host	PHY.	There	was	one
register	for	data	output,	one	register	for	data	input,	and
one	 register	 to	 bitwise	 set	 the	 data	 direction.	 The
AX211	 card	 was	 attached	 to	 the	 FPGA	 via	 a	 custom
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flex-circuit	adapter.*

A	flex-circuit	adapter	plugged	into	a	Novena

The	SD	commands	were	received	on	the	AX211	and
processed	by	a	hardware	state	machine	attached	to	the
embedded	 8051	 CPU.	 The	 state	 machine	 handled
receiving	 the	 data,	 plus	 it	 computed	 and	 checked	 the
cyclic	 redundancy	 code	 for	 error	 detection.	 Once	 a
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complete	packet	was	received	by	the	state	machine,	an
interrupt	notified	the	8051	of	the	packet’s	arrival.

We	 hijacked	 the	 interrupt	 processing	 mechanism
and	remapped	the	default	handler	to	our	own	512-byte
code	stub.	That	allowed	us	to	define	a	novel	set	of	SD
commands	 that	 we	 used	 to	 implement	 the	 callback
functions	 our	 REPL	 environment	 needed,	 like	 peek,
poke,	 jump,	 NAND	 register	 manipulation,	 and	 so	 on.
These	 callbacks	 were	 also	 an	 ideal	 hook	 for
implementing	an	MITM	attack.
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The	callback	functions	for	the	REPL,	displayed	in	IDA

I	 don’t	 know	 how	many	 other	manufacturers	 leave
their	 firmware	 updating	 sequences	 unsecured.
AppoTech	 is	 a	 relatively	 minor	 player	 in	 the	 SD
controller	 world;	 a	 handful	 of	 companies	 that	 you’ve
probably	never	 heard	of	 also	 produce	SD	 controllers,
including	Alcor	Micro,	Skymedi,	Phison,	and	SMI.	Of
course,	there	are	also	SanDisk	and	Samsung.	Each	has
different	 mechanisms	 and	 methods	 for	 loading	 and
updating	firmware.	But	I	know	of	at	least	one	Samsung
eMMC	implementation	using	an	ARM	instruction	set
that	 had	 a	 bug	 requiring	 a	 firmware	 updater	 to	 be
pushed	 to	 Android	 devices,	 indicating	 yet	 another
potentially	promising	venue	for	further	discovery.
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Potential	Security	Issues
From	a	security	perspective,	our	findings	indicated	that
while	 memory	 cards	 look	 inert,	 they	 run	 code	 that
could	be	modified	 to	perform	MITM	attacks	 that	 are
difficult	 to	 detect.	 There’s	 no	 standard	 protocol	 or
method	 to	 inspect	 and	 attest	 to	 the	 contents	 of	 the
code	running	on	the	memory	card’s	microcontroller.	If
you’re	using	an	SD	card	in	a	high-risk,	high-sensitivity
situation,	 don’t	 assume	 that	 running	 a	 security-erase
command	 (or	 some	other	 secure	erase	 tool)	on	a	card
will	guarantee	the	complete	erasure	of	sensitive	data.	If
you	 really	 need	 data	 to	 disappear,	 I	 recommend
disposing	of	your	memory	card	through	total	physical
destruction.	Grind	it	up	with	a	mortar	and	pestle	if	you
have	to.

A	Resource	for	Hobbyists
From	 a	 DIY	 and	 hacker	 perspective,	 our	 findings
suggested	a	potentially	interesting	source	of	cheap	and
powerful	 microcontrollers	 for	 use	 in	 simple	 projects.
An	 Arduino	 clone—with	 an	 8-bit,	 16	 MHz
microcontroller—will	 set	 you	 back	 around	 $20.	 A
microSD	card	with	several	gigabytes	of	memory	and	a
microcontroller	 with	 several	 times	 the	 performance
costs	 a	 fraction	 of	 the	 price.	 While	 SD	 cards	 are
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admittedly	 I/O-limited,	 some	 clever	 hacking	 of	 the
microcontroller	 in	 an	 SD	 card	 could	make	 for	 a	 very
economical	and	compact	data	logging	solution	for	I2C
or	SPI-based	sensors.

HACKING	HDCP-SECURED	LINKS	TO	ALLOW
CUSTOM	OVERLAYS
“That’s	 neat,	 but	 is	 it	 legal?”	 is	 a	 frequently	 asked
question	 I	 get	 when	 hacking.	 Just	 as	 engineered
systems	have	hacks,	legal	systems	have	loopholes.	Some
legal	 loopholes	 exist	 by	 design;	 others	 are
unintentional.	 Either	 way,	 they	 can	 provide	 vital
breathing	room	for	innovation.	When	contemplating	a
hack,	 I	 consider	 legal	 issues	 as	 I	 do	 engineering
constraints,	similar	to	having	to	fit	something	within	a
case	of	 a	 certain	height	or	 run	 for	 a	 certain	 length	of
time	on	a	given	battery.

Around	2011,	when	I	was	still	at	Chumby,	we	were
puzzling	about	how	to	drive	adoption	in	the	face	of	the
iPhone	 and	 Android	 phones	 consuming	 the	 market
niche	we	hoped	to	occupy.	Cost	was	an	eternal	barrier
for	user	adoption,	and	the	 integral	LCD	in	a	chumby
was	by	far	the	highest-cost	item.	Our	then-CEO,	Steve
Tomlin,	observed	that	the	biggest	screen	in	the	house
had	 yet	 to	 become	 connected	 to	 the	 internet	 in	 any
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meaningful	way.	And	so	this	question	was	posed	to	me:
could	we	 find	 a	way	 to	 kill	 two	birds	with	one	 stone,
removing	 the	 screen	 from	 our	 bill	 of	 materials	 while
bringing	TVs	 into	 the	 internet	 age?	This	 was	 before
products	 like	the	Google	Chromecast	or	the	Logitech
Revue	were	introduced	on	the	market.

It	 occurred	 to	 us	 that	 we	 could	 pack	 a	 cheap
computer	 into	 a	 stick	 that	 plugs	 into	 an	HDMI	port.
This	solves	the	problem	of	getting	chumby	onto	a	TV
screen,	 but	 then	 you’re	 not	 watching	 your	 favorite
movies	or	TV	shows	when	the	chumby	is	selected.	We
figured	 what	 people	 really	 wanted	 was	 some	 way	 to
watch	 TV	 and	 have,	 say,	 Twitter	 or	 Facebook
notifications	pop	up	onscreen,	too.

The	 concept	 is	 simple	 enough.	 Take	 the	 existing
output	 from	 a	 cable	 box,	 Blu-ray	 player,	 or	 AV
receiver;	 feed	 it	 into	 a	 box	 that	 blends	 in	 chumby
content;	and	pass	 the	resulting	video	on	to	a	TV.	But
due	to	the	ubiquitous	application	of	HDCP	encryption
over	digital	 video	 feeds,	 it	 is	 legally	 perilous	 to	 remix
content	 if	 you	do	 it	 the	wrong	way.	Figuring	out	 the
right	way	to	do	it	is	how	NeTV	was	born.
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A	NeTV	sporting	the	Chumby	logo
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Inside	the	NeTV

Background	and	Context
NeTV	was	my	 response	 to	 the	 challenge	 of	 remixing
existing	 video	 with	 internet	 content	 while	 staying
within	legal	boundaries,	aided	by	the	public	release	of
the	master	key	to	HDCP	in	September	2010.	To	help
you	 understand	 this	 hack,	 let’s	 start	 with	 a	 little
background	on	HDCP.

High-bandwidth	 Digital	 Content	 Protection	 is	 a
pixel-level	 encryption	 system	 used	 to	 encrypt	 video
transmissions	 over	 HDMI.	 HDCP	 puts	 broadcasters
and	studios	in	control	of	the	screens	their	content	plays
on,	 as	 those	 companies	 use	 the	 encryption	 as	 a
copyright	 control	 mechanism.	 HDCP	 restricts
legitimate	content	manipulation	like	picture-in-picture
displays,	content	overlays,	and	third-party	filtering	and
image	 modification.	 Combine	 HDCP	 with	 the
DMCA,	 which	 criminalizes	 the	 circumvention	 of
copyright	 control,	 and	 you’ll	 realize	 that	 when
watching	 certain	 videos,	 it’s	 illegal	 to	modify	 content
on	your	own	screen.	That’s	why	there	are	few	HDMI
video	 mixing	 solutions	 that	 actually	 operate	 on
broadcast	or	movie	content.

To	 recap,	 I	 had	 four	 goals	 for	 NeTV:	 enable
consumer-side	 content	 remixing,	 allow	 users	 to
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eliminate	 ads	 or	 replace	 them	 with	 ads	 relevant	 to
themselves,	 create	 an	 interactive	 TV	 experience,	 and
make	 something	 compatible	 with	 any	 TV.	 To
accomplish	those	goals,	I	designed	NeTV	as	a	man	in
the	middle	to	take	data	from,	say,	a	Blu-ray	player,	and
apply	 the	 master	 key	 to	 give	 users	 a	 custom	 overlay.
There	are	many	applications	for	video	overlays,	but	the
basic	scenario	is	that	while	you’re	enjoying	content	X,
you’d	 also	 like	 to	 be	 aware	 of	 content	 Y.	Combining
the	 two	 content	 sources	 requires	 a	 video	 overlay
mechanism.

With	my	MITM	 attack,	NeTV	overlaid	 a	WebKit
browser	 (the	engine	Safari	 and	Chrome	use)	over	any
video	 feed.	A	 concrete	 use	 case	 for	 this	 technology	 is
overlaying	Twitter	feeds	as	news	crawlers	across	a	TV
show	to	watch	community	commentary	in	real	time	on
the	 same	 screen	 you’re	 watching	 the	 show	 on.	 Some
TV	 programs	 attempt	 to	 incorporate	 Twitter	 feeds
already,	 but	 they’ve	 only	 done	 so	 on	 the	 source	 side;
users	can	only	watch	hashtags	the	show	displays.	With
this	hack,	however,	the	same	broadcast	program	(say,	a
political	 debate)	 could	 have	 a	 very	 different	 viewing
experience	 based	 on	 which	 hashtag	 is	 keyed	 into	 the
viewer’s	Twitter	crawler.

The	 simple	 fact	 that	 a	 trivial	 video	 overlay	 is	 an
interesting	topic	illustrates	the	distortion	of	traditional
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rights	 and	 freedoms	 brought	 about	 by	 the	 DMCA.
Unlike	 the	HDCP	 strippers	 people	 speculated	 would
come	out	of	the	master	key’s	release,	however,	my	hack
never	decrypted	the	original	video	data	it	operated	on.
Thus,	 it	didn’t	 circumvent	copyright,	 and	 the	DMCA
couldn’t	apply	to	it.	Loophole	found!

How	NeTV	Worked
Of	 course,	 I	 released	 the	 exploit	 as	 an	 entirely	 open
source	 project,*	 including	 the	 hardware	 and	 the
Verilog	implementation	of	the	Spartan-6	FPGA	I	used
to	 create	 the	 TMDS-compatible	 source	 and	 sink.
TMDS	 is	 the	 signaling	 standard	 used	 by	HDMI	 and
DVI.	The	basic	pipeline	within	the	FPGA	deserializes
incoming	video	and	reserializes	it	to	the	output.	In	this
trivial	mode,	NeTV	is	simply	a	signal	amplifier	for	the
video:	 encrypted	 pixels	 in,	 encrypted	 pixels	 out—no
decryption	and	no	video	manipulation.

NeTV	 could	 mix	 a	 user-generated	 content	 stream
over	an	encrypted	video	feed	because	HDCP	encrypts
without	 validation.	 In	 other	 words,	 if	 a	 man	 in	 the
middle	 tampers	 with	 the	 encrypted	 feed,	 the	 receiver
simply	 accepts	 the	 tampered	 pixels	 as	 valid	 data,
decrypts	them,	and	presents	them	to	the	user.	The	lack
of	 link	 verification	 is	 intentional	 and	 necessary.	 The
natural	 bit	 error	 rate	 of	HD	 video	 links	 is	 atrocious,

477



but	the	human	eye	won’t	detect	bit	errors	even	on	the
level	 of	 1	 in	 every	 10,000	 bits.	 (At	 high	 error	 rates,
users	see	a	“sparkle”	or	“snow”	on	the	screen,	but	the
image	 is	 largely	 intact.)	 Allowing	 some	 pixel-level
corruption	keeps	consumer	costs	low.	Otherwise,	much
higher-quality	 cables	 would	 be	 required	 along	 with
FEC	techniques	to	achieve	a	bit	error	rate	compatible
with	 strict	 cryptographic	 verification	 techniques	 like
full-frame	hashing.

Thus,	 NeTV’s	 prime	 challenge	 is	 to	 derive	 a
keystream	 identical	 and	 synchronized	 to	 the
transmitter’s	 keystream,	 encrypt	 the	 user-generated
content	 with	 this	 keystream,	 and	 selectively	 swap	 the
transmitter’s	pixels	on	the	fly	for	user-encrypted	pixels.
If	 everything	 lines	 up,	 the	 receiver	 will	 decrypt	 an
image	 that	 appears	 to	 be	 a	 perfect	 overlay	 of	 user-
generated	content	on	top	of	the	original	video	feed.
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A	high-level	conceptual	diagram	of	how	NeTV	worked

CREATING	THE	OVERLAY
To	generate	the	user	overlay	content,	we	connected	a
tiny	embedded	Linux	computer	to	an	FPGA.	From	the
Linux	 computer’s	 standpoint,	 the	 FPGA	 emulates	 a
parallel	 RGB	 LCD	 that	 you	 can	 access	 by	 using	 the
frame	buffer	at	/dev/fb0	(the	filepath	for	the	first	frame
buffer	 in	 Linux).	 The	 Linux	 computer	 would
automatically	 launch	 a	WebKit	 browser	 full-screen	 at
boot,	thus	filling	/dev/fb0	with	the	user’s	content.

The	 system	 selected	 which	 pixel	 to	 swap	 by
observing	 the	 color	 of	 the	WebKit	 overlay’s	 video,	 a
trick	known	as	chroma	keying.	The	overlay	video	wasn’t
encrypted	and	was	generated	by	the	user,	so	looking	at
the	 color	 of	 the	 overlay	 video	 was	 perfectly	 legal.
Other	 more	 expressive	 and	 aesthetically	 appealing
pixel-combining	 methods	 like	 alpha	 blending,
however,	would	have	 required	decrypting	 the	original
video,	which	would	have	been	illegal.

If	 the	 overlay	 video	matched	 a	 certain	 chroma	 key
color	(in	this	case,	a	specific	shade	of	bright	pink),	the
incoming	 video	 was	 displayed;	 otherwise,	 the	 overlay
video	was	displayed.	Following	this	system,	users	could
create	 transparent	 “holes”	 in	 the	 custom	UI	 to	 show
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the	 original	 video	 underneath.	 Since	 the	 UI	 was
rendered	by	a	WebKit	browser,	users	could	implement
chroma	keying	by	simply	setting	the	background	color
in	the	CSS	of	the	UI	pages	to	that	magic	shade	of	pink.
With	 those	 settings,	 the	 default	 state	 of	 a	 web	 page
would	be	transparent,	and	all	items	rendered	on	top	of
it	were	opaque,	so	long	as	the	UI	elements	avoided	the
chroma	 key	 color	 and	 turned	 off	 enhancements	 like
anti-aliasing.

CRAFTING	A	KEYSTREAM
Of	 course,	 the	 chroma	 keying	 happened	 in	 the
encrypted	domain.	Thus,	 the	FPGA’s	 second	 job	was
to	 snoop	 the	 HDMI	 link	 and	 craft	 a	 keystream
identical	to	the	transmitter’s.	First,	the	FPGA	observed
an	I2C	link	found	on	HDMI	known	as	the	data	display
channel	 (DDC).	The	DDC	enables	monitors	to	report
their	 capability	 records	 (called	 extended	 display
identification	 data,	 or	 EDID)	 and	 is	 also	 where	 the
encryption	keys	are	exchanged.

By	 observing	 the	 key	 exchange	 handshake	 between
the	 transmitter	 and	 the	 receiver,	 NeTV	 could
mathematically	 extract	 the	 transmitter’s	 and	 receiver’s
private	 keys	 with	 the	 help	 of	 the	HDCP	master	 key.
Once	the	private-key	vectors	were	derived,	they	could
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be	multiplied	exactly	as	they’d	be	in	the	source	or	sink
to	 derive	 the	 shared	 secret,	 called	 Km.	 When	 that
shared	 secret	 was	 written	 into	 the	 FPGA’s	 HDCP
engine,	 the	 cipher	 state	 was	 ready	 to	 go,	 allowing
NeTV	 to	 encrypt	 overlays	 on	 the	 video	 transmitted
between	the	video	source	and	the	video	display	device.

By	 considering	 legal	 constraints	 as	 just	 another
engineering	 constraint,	 I	 was	 able	 to	 create	 a
completely	 new	 device	 that	 proves	 a	 point:	 it’s
incorrect	 to	 automatically	 equate	 hacks	 that	 work
around	 a	 DRM	 system	 with	 attempts	 to	 circumvent
copyright.	NeTV	never	decrypts	previously	encrypted
video	 and	 can’t	 operate	 without	 an	 existing,	 valid
HDCP	 link,	 making	 it	 a	 bona	 fide,	 non-infringing,
commercially	 useful	 application	 of	 the	HDCP	master
key.
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A	more	detailed	block	diagram	showing	how	NeTV’s	FPGA
worked

So	 far	 in	 this	 chapter,	 we’ve	 seen	 examples	 of
different	hardware	hacking	approaches	and	techniques,
from	physical	penetration	to	system-level	tool	building
and	analysis	to	treating	legal	constraints	as	engineering
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problems.	In	“Who	Are	the	Shanzhai?”	on	page	122,	I
discussed	 the	 legal	 approach	 of	 a	 project,	 codenamed
Fernvale,	 to	 reverse	 engineer	 a	mobile	phone	chipset.
In	 addition	 to	 thinking	 about	 law	 as	 engineers,	 xobs
and	 I	 had	 to	 pull	 out	 all	 the	 stops	 and	 apply	 every
technical	skill	at	our	disposal	to	reverse	engineer	such	a
complex	 system.	 The	 rest	 of	 this	 chapter	 dives	 into
some	of	these	techniques.

HACKING	A	SHANZHAI	PHONE
When	xobs	and	I	worked	on	Fernvale,	our	goal	was	to
make	a	new	platform	derived	from	the	hardware	in	my
$12	 gongkai	 phone	 and	 repatriate	 technical
information	 into	 the	 open	 source	 IP	 system.	We	 had
no	 documentation	 whatsoever	 for	 some	 parts	 of	 the
chip	we	wanted	to	reverse,	but	that	didn’t	deter	us.	We
navigated	 complex	 legal	 waters	 and	 created	 our	 own
custom	 scripting	 language	 to	 program	 the	 chip’s
firmware	to	avoid	subconscious	plagiarism.

Compared	 to	 the	 firmware,	 though,	 the	 hardware
reverse-engineering	 task	 was	 fairly	 straightforward.
The	documents	we	scavenged	gave	us	a	notion	of	 the
chip’s	 pinout,	 and	 the	 pin	 naming	 scheme	 was
sufficiently	 descriptive	 that	 I	 could	 apply	 common
sense	and	experience	to	guess	how	to	connect	the	chip.

483



For	 ambiguous	 areas,	 I	 buzzed	 out	 some	 stripped-
down	 phones	 with	 a	 multimeter	 or	 stared	 at	 them
under	 a	microscope	 to	 determine	 connectivity.	 In	 the
worst	cases,	I’d	probe	a	live	phone	with	an	oscilloscope
to	make	 sure	 I	 understood	 the	 connections	 correctly.
The	more	 difficult	 question	was	 how	 to	 architect	 the
hardware.

The	System	Architecture
We	 weren’t	 gunning	 to	 build	 a	 phone,	 but	 rather
something	closer	to	Particle’s	Spark	Core	(since	reborn
as	 the	 Photon),	 a	 generic	 System-on-Module	 type	 of
single-board	 computer	 built	 for	 Internet	 of	 Things
applications.	 In	 fact,	 our	 original	 renderings	 and
pinouts	were	designed	to	be	compatible	with	the	Spark
ecosystem	of	hardware	extensions,	until	we	realized	the
gongkai	phone’s	MT6260	microcontroller	just	had	too
many	 interesting	 peripherals	 to	 fit	 into	 such	 a	 small
footprint.
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Early	sketches	of	the	Fernvale	PCB

We	 settled	 eventually	 on	 a	 single-sided	 core	 PCB
that	 we	 called	 the	 Fernvale	 Frond,	 which	 embedded
the	microUSB,	microSD,	battery,	camera,	speaker,	and
Bluetooth	 functionality	 (as	 well	 as	 the	 obligatory
buttons	 and	 LED)	 on	 one	 board.	 The	 Frond	 turned
out	slim	and	small,	at	3.5	mm	thick,	57	mm	long,	and
35	mm	wide.	We	included	holes	to	mount	a	partial	set
of	 pin	 headers,	 spaced	 for	 Arduino	 compatibility,
although	the	board	could	only	be	plugged	into	3.3	V–
compatible	Arduino	devices.
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The	actual	implementation	of	the	Fernvale	Frond,	pictured
with	an	Arduino	Uno	for	size	reference

We	broke	the	remaining	peripherals	out	to	a	pair	of
connectors:	 one	 dedicated	 to	 GSM-related	 signals
(GSM	is	the	protocol	for	2G	cell	phone	networks)	and
the	 other	 to	 UI-related	 peripherals.	 We	 called	 the
GSM	board	the	Fernvale	Spore	and	the	UI	board	the
Fernvale	 Blade.	 We	 split	 GSM	 into	 a	 module	 with
many	 choices	 for	 the	 RF	 frontend	 to	 make	 GSM	 a
bona	 fide	 user-installed	 feature,	 thus	 pushing	 the
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regulatory	and	emissions	 issue	down	to	 the	user	 level.
Splitting	 the	UI-related	 features	out	 to	another	board
also	reduced	the	cost	of	the	core	module	and	let	users
try	 the	 Frond	 in	 numerous	 scenarios	 without	 being
locked	into	a	particular	LCD	or	button	arrangement.
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A	Fernvale	system	diagram,	showing	the	features	of	each	of
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the	three	boards

Inside	the	MT6260

I	had	some	X-rays	taken	of	the	MT6260	to	help	us
identify	 fake	 components.	We	 had	 to	 source	 our
MT6260s	 on	 the	 gray	market,	 and	we	wanted	 to
guard	 against	 being	 sold	 empty	 epoxy	 blocks	 or
remarked	 versions	 of	 other	 chips.	 The	 MT6260
has	 -DA	 and	 -A	 variants,	 where	 the	 difference	 is
how	much	on-chip	flash	memory	is	included.
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An	X-ray	of	the	MT6260	chip.
Look	carefully	to	spot	outlines	of	multiple	ICs	among	the

wire	bonds.

To	 our	 surprise,	 this	 $3	 chip	 didn’t	 contain	 a
single	IC,	but	rather	a	set	of	at	least	four	(possibly
five)	 chips	 integrated	 into	 a	 single	 multichip
module	 (MCM)	 containing	 hundreds	 of	 wire
bonds.	 I	 remember	back	when	 the	Pentium	Pro’s
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dual-die	 package	 came	 out	 in	 the	 late	 1990s.	 It
sparked	 arguments	 over	 yield	 costs	 of	 MCMs
versus	 using	 a	 single	 big	 die;	 generally,	 MCMs
were	considered	exotic	and	expensive.

I	 also	 remember	 at	 the	 same	 time	 Krste
Asanović,	 then	 a	 professor	 at	 the	 MIT	 Artificial
Intelligence	Lab	and	later	at	UC	Berkeley,	told	me
that	 the	 future	of	 electronics	wasn’t	 system-on-a-
chip	devices,	but	rather	“system-mostly-on-a-chip”
devices.	 The	 root	 of	 his	 claim	 was	 that	 the
economics	 of	 adding	 in	 mask	 layers	 to	 merge
DRAM,	flash,	analog,	RF,	and	digital	into	a	single
process	 wasn’t	 favorable;	 bonding	 multiple	 dies
together	 into	 a	 single	 package	 was	 cheaper	 and
easier.

It’s	still	a	race	between	the	cost	impact	(in	terms
of	 both	 the	 per-unit	 cost	 and	 nonrecurring
engineering	costs)	of	adding	more	process	steps	in
the	 semiconductor	 fab,	 and	 the	 yield	 impact,
relative	 reworkability,	 and	 lower	 nonrecurring
engineering	 cost	 of	 assembling	 modules.	 Single-
chip,	 System-on-Chip	 devices	 were	 the	 zeitgeist
when	 Krste	 made	 that	 observation	 and	 they	 still
kind	of	are,	so	it	was	interesting	to	see	a	significant
data	point	validating	his	insight.

Understanding	the	internal	structure	of	the	chip
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was	also	helpful	in	reverse	engineering	the	system.
Knowing	 that	 MediaTek	 was	 simply	 combining
several	 chips	 together	 in	 a	 single	 package	 shed
much-needed	 light	 on	 the	 purpose	 and
organization	of	their	APIs.	It	also	tipped	us	off	that
certain	 elements	 of	 the	 system	 would	 be	 reused
across	 several	product	 categories	 and	generations,
so	we	knew	we	could	draw	meaningful	conclusions
from	 documentation	 on	 older	 or	 related	 chips.
When	 you’re	 piecing	 together	 a	 puzzle	 this
complex,	 every	 clue	helps,	 including	 those	gained
by	 just	 looking	 at	 the	 physical	 structure	 of	 the
chip.

Reverse	Engineering	the	Boot	Structure
Shanzhai	 engineers	 in	 China	 seem	 to	 have	 access	 to
just	 enough	 documentation	 to	 assemble	 a	 phone	 and
customize	its	UI,	but	not	enough	to	do	a	full	OS	port.
After	 looking	 at	 enough	 phones,	 I	 eventually	 realized
that	all	phones	based	on	a	particular	chipset	will	have
the	 same	 backdoor	 codes,	 and	 their	 GUIs	 are	 often
inconsistent	 with	 the	 implemented	 hardware.	 For
example,	 the	 $12	 phone	 I	 tore	 down	 in	 Chapter	 4
prompted	me	to	plug	headphones	into	the	headphone
jack	for	the	FM	radio	to	work,	yet	it	has	no	headphone

493



jack.
To	 make	 Fernvale	 accessible	 to	 engineers	 in	 the

West	 through	 open	 source	 licensing,	 we	 had	 to
reconstruct	 everything	 from	 scratch,	 including	 the
toolchain,	 the	firmware	flashing	tool,	 the	OS,	and	the
applications.	 But	 all	 the	 Chinese	 phone
implementations	 simply	 relied	 on	 MediaTek’s
proprietary	 toolchain,	 meaning	 we	 had	 to	 do	 some
reverse	engineering	to	figure	out	the	boot	process	and
firmware	upload	protocol.

My	 first	 step	 in	 reversing	 a	 chip	 is	 always	 to	dump
the	 ROM,	 if	 possible.	 We	 found	 exactly	 one	 phone
model	with	an	external	ROM	that	we	could	desolder	(it
used	the	-D	ROMless	variant	of	the	chip),	and	we	read
its	 data	 using	 a	 conventional	 ROM	 reader.	 We	 saw
very	little	ciphertext	in	the	ROM,	but	there	was	a	lot	of
compressed	data.	Here	 is	 a	page	 from	our	notes	 after
we	did	a	static	analysis	on	the	ROM	image:

0x0000_0000







media
signature
"SF_BOOT"
0x0000_0200







bootloader
signature
"BRLYT",
"BBBB"
0x0000_0800







sector
header
1
("MMM.8")
0x0000_09BC







reset
vector
table
0x0000_0A10







start
of
ARM32
instructions





















–
stage
1
bootloader?
0x0000_3400







sector
header
2
("MMM.8")





















–
stage
2
bootloader?
0x0000_A518







thunk
table
of
some
type
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0x0000_B704







end
of
code
(padding
until
next
sector)
0x0001_0000







sector
header
3(
"MMM.8")
–
kernel?
0x0001_0368







jump
table
+
runtime
setup
(stack,
etc.)
0x0001_0828







ARM
thumb
code
start
–
possibly
also





















baseband
code
0x0007_2F04







code
end
0x0007_2F05







begin
padding
"DFFF"
0x0009_F005






end
padding
"DFFF"
0x0009_F006







code
section
begin
"Accelerated





















Technology
/
ATI
/
Nucleus
PLUS"
0x000A_2C1A







code
section
end;
pad
with
zeros
0x000A_328C







region
of
compressed/unknown
data
begin
0x007E_E200







modified
FAT
partition
#1
0x007E_F400







modified
FAT
partition
#2

The	 hexadecimal	 numbers	 on	 the	 left	 are	 memory
addresses,	and	the	text	on	the	right	describes	what	xobs
and	I	thought	was	stored	at	each	address.	One	concern
about	reverse	engineering	an	SoC	is	 it	has	an	internal
boot	ROM	that	always	runs	before	code	is	loaded	from
an	 external	 device.	That	 internal	ROM	can	 also	 have
signature	 and	 security	 checks	 that	 prevent	 tampering
with	the	external	code.

To	 determine	 how	 hard	 reverse	 engineering	 this
system	would	be,	we	wanted	to	quickly	figure	out	how
much	 code	 was	 running	 inside	 the	 CPU	 before
jumping	 to	 external	 boot	 code.	A	Tek	MDO4104B-6
oscilloscope	let	us	accomplish	that	task	in	just	a	couple
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of	hours.
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Screenshot	from	the	Tek	MDO4104B-6.
The	top	quarter	shows	a	zoomed-out	view	of	the	entire	capture.

Notice	how	the	SPI	ROM	accesses	are	punctuated	with
console	output.

This	 particular	 oscilloscope	has	 the	uncanny	 ability
to	 perform	 post-capture	 analysis	 on	 deep,	 high-
resolution	analog	traces	and	output	the	result	as	digital
data.	For	example,	we	could	 simply	probe	around	 the
chip	 with	 a	 multimeter	 while	 cycling	 power	 until	 we
saw	 something	 that	 looked	 like	 an	 RS-232	 encoded
signal,	 and	 then	 run	 a	post-capture	 analysis	 to	 extract
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any	 ASCII	 text	 that	 was	 coded	 in	 the	 analog	 traces.
Likewise,	 if	 we	 captured	 SPI	 traces,	 the	 oscilloscope
could	 extract	 ROM	 access	 patterns	 through	 a	 similar
method.	 By	 looking	 at	 the	 timing	 of	 text	 emissions
versus	 SPI	 ROM	 address	 patterns,	 we	 quickly
determined	 that	 if	 the	 internal	 boot	 ROM	 did	 any
verification,	 it	 was	minimal	 and	 nothing	 approaching
the	computational	complexity	of	RSA	encryption.

From	 there,	 we	 needed	 to	 speed	 up	 our	 measure-
modify-test	loop.	Desoldering	the	ROM,	sticking	it	in
a	burner,	and	resoldering	it	to	the	board	were	going	to
get	 old	 really	 fast.	 Fortunately,	 we’d	 implemented	 a
NAND	 flash	 ROM	 emulator	 (we	 lovingly	 shortened
that	 to	ROMulator)	 on	Novena,	which	we	 previously
used	 to	 reverse	 engineer	 the	 AX211	 contained	 in
certain	 SD	 cards.	 We	 just	 reused	 that	 codebase	 and
made	an	SPI	ROMulator.	We	hacked	up	a	GPBB	and
its	 corresponding	 FPGA	 code	 to	 add	 the	 ability	 to
swap	between	the	original	boot	SPI	ROM	and	a	dual-
ported	 64kiB	 emulator	 region	 that	was	 also	memory-
mapped	 into	 the	 Novena	 Linux	 host’s	 address	 space.
Then,	we	 plugged	 the	 phone	 into	 the	 laptop	 and	put
the	ROMulator	to	work.
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A	block	diagram	of	the	SPI	ROMulator	FPGA
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There’s	a	phone	in	my	Novena!	What’s	that	doing	there?

With	 the	 address	 stream	 determined	 by	 the	 Tek
oscilloscope,	 some	 rapid	 ROM	 patching	 by	 the
ROMulator,	and	hints	of	a	SHA-1	function	existing	in
the	 ROM	 via	 a	 static	 code	 analysis	 using	 IDA,	 we
determined	that	the	initial	bootloader	(which	we	called
the	1bl),	was	hash-checked	using	a	SHA-1	appendix.

NOTE

The	assembly	for	a	hash	function	tends	to	have	a	very
distinctive	shape,	or	set	of	instructions,	and	a	given	hash
also	has	some	amount	of	magic	numbers	unique	to	it.
Given	those	facts,	when	trying	to	reverse	an
authentication	method,	one	of	the	first	things	a	hacker
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does	is	use	IDA	to	search	for	such	constants	near	a
function	with	the	shape	of	the	hash	function	in	question.

Building	a	Beachhead
The	next	step	was	to	create	a	small	interactive	shell	we
could	use	 as	 a	 beachhead	 for	 running	 experiments	 on
the	 target	 hardware.	 Just	 as	 he	 did	 for	 the	 SD	 card
reverse	 engineering	 project,	 xobs	 created	 a	 compact
REPL	 environment,	 called	 Fernly,	 that	 supported
commands	 like	 peeking	 at	memory,	writing	 data,	 and
dumping	CPU	registers.

Designing	 the	 ROMulator	 to	 make	 the	 emulated
ROM	appear	as	a	64kiB	memory-mapped	window	on	a
Linux	host	enabled	useful	POSIX	abstractions	like	the
mmap()	function,	the	open()	function	(via	/dev/mem),	 the
read()	 function,	and	the	write()	 function	to	access	 the
emulated	ROM.	xobs	used	these	abstractions	to	create
an	 I/O	 target	 for	 radare2,	 a	 portable	 reverse
engineering	 framework.	The	 I/O	 target	 automatically
updated	the	SHA-1	hash	every	time	we	made	changes
in	 the	 1bl	 code	 space.	With	 that	 system	 in	 place,	 we
could	 do	 cute	 things	 like	 interactively	 patch	 and
disassemble	code	within	the	emulated	ROM	space.
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Patching	some	code	in	the	ROM

We	also	wired	up	the	power	switch	of	the	phone	to
an	 FPGA	 I/O.	 That	 allowed	 us	 to	 write	 automated
scripts	 that	 toggled	 the	 power	 on	 the	 phone	 while
updating	the	ROM	contents	so	we	could	automatically
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fuzz	unknown	hardware	blocks.

Attaching	a	Debugger
We	had	to	take	an	unconventional	approach	to	attach	a
debugger	 to	 the	 code	 in	 the	 ROM,	 because	 locating
critical	blocks	was	difficult,	and	JTAG	was	multiplexed
with	 critical	 functions	 on	 the	 target	 device.	 xobs
emulated	 the	 ARM	 core	 and	 used	 his	 Fernly	 shell	 to
reflect	 virtual	 loads	 and	 stores	 to	 the	 live	 target.	We
were	able	to	attach	a	remote	debugger	to	the	emulated
core	 that	way,	 bypassing	 the	need	 for	 JTAG	entirely.
That	 also	 let	 us	 use	 cross-platform	 tools	 like	 IDA	on
x86	for	the	reversing	UI.

At	 the	 heart	 of	 this	 debugging	 technique	 was
QEMU,	 a	 multiplatform	 system	 emulator.	 QEMU
supports	 emulating	 ARM	 targets,	 specifically	 the
ARMv5	chip	our	 target	device	used.	We	made	 a	new
virtual	 machine	 type,	 called	 Fernvale,	 that
implemented	 part	 of	 the	 observed	 hardware	 on	 the
target	 and	 simply	 passed	 unknown	 memory	 accesses
directly	to	the	device.

The	Fernly	shell	was	stripped	down	to	support	only
three	 commands:	 write,	 read,	 and	 zero-memory.	The
write	 command	pokes	 a	byte,	word,	or	dword	of	data
into	RAM	on	the	live	target.	A	read	command	reads	a
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byte,	word,	 or	 dword	 from	 the	 live	 target.	The	 zero-
memory	command	is	an	optimization,	as	the	operating
system	 writes	 large	 quantities	 of	 zeros	 across	 a	 large
memory	area.

We	 also	 hooked	 and	 emulated	 the	 serial	 port
registers,	 allowing	 a	host	 system	 to	display	 serial	 data
as	 if	 it	 were	 printed	 on	 the	 target	 device.	 Finally,	we
emulated	SPI,	IRAM,	and	PSRAM	as	they’d	appear	on
the	 real	 device.	 Other	 areas	 of	 memory	 were	 either
trapped	 and	 funneled	 to	 the	 actual	 device	 or	 left
unmapped	and	reported	as	errors	by	QEMU.
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The	architecture	of	the	debugger

Invoking	 the	 debugger	 was	 a	 multistage	 process.
First,	 we	 primed	 the	 actual	 MT6260	 target	 with	 the
Fernly	 shell	 environment.	 Then,	 we	 booted	 the
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QEMU	 virtual	 ARM	 CPU	 with	 a	 version	 of	 the
original	 vendor	 image	 primed	 with	 a	 known	 register
state	at	a	convenient	point	in	the	boot	process.	At	this
point,	 code	 execution	 proceeded	 on	 the	 virtual
machine	 until	 a	 load	 or	 store	 was	 performed	 to	 an
unknown	 address.	 On	 that	 load	 or	 store,	 virtual
machine	 execution	 paused	 while	 a	 query	 was	 sent	 to
the	 real	 MT6260	 via	 the	 Fernly	 shell	 interface.	 The
load	 or	 store	was	 then	 executed	 on	 the	 real	machine,
which	would	relay	the	results	of	the	load	or	store	to	the
virtual	machine	so	execution	could	resume.

We	couldn’t	run	Fernly	directly	from	the	SPI	ROM
because	 the	 vendor	 binary’s	 initialization	 routine
modified	 SPI	 ROM	 timings.	 But	 of	 course	 Fernly
would	 have	 crashed	 if	 a	 store	 happened	 to	 land
somewhere	 inside	 its	memory	 footprint.	To	avoid	 the
possibility	 of	 a	 load	 or	 store	 overwriting	 the	 Fernly
shell	 code,	we	hid	 the	code	 in	a	 region	of	 IRAM	that
was	trapped	and	emulated.	Emulating	the	target	CPU
let	us	attach	a	remote	debugger	like	IDA	via	GDB	over
TCP.	 The	 debugger	 had	 complete	 control	 over	 the
emulated	 CPU	 and	 could	 access	 its	 emulated	 RAM.
Here	 is	 an	 example	 of	 the	 output	 of	 the	 hybrid
QEMU/live-target	debug	harness.

bunnie@bunnie-novena-laptop:~/code/fernvale-qemu$
./run.sh
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~~~
Welcome
to
MTK
Bootloader
V005
(since
2005)
~~~
**===================================================**

READ
WORD
Fernvale
Live
0xa0010328
=
0x0000...
ok
WRITE
WORD
Fernvale
Live
0xa0010328
=
0x0800...
ok
READ
WORD
Fernvale
Live
0xa0010230
=
0x0001...
ok
WRITE
WORD
Fernvale
Live
0xa0010230
=
0x0001...
ok
READ
DWORD
Fernvale
Live
0xa0020c80
=
0x11111011...
ok
WRITE
DWORD
Fernvale
Live
0xa0020c80
=
0x11111011...
ok
READ
DWORD
Fernvale
Live
0xa0020c90
=
0x11111111...
ok
WRITE
DWORD
Fernvale
Live
0xa0020c90
=
0x11111111...
ok
READ
WORD
Fernvale
Live
0xa0020b10
=
0x3f34...
ok
WRITE
WORD
Fernvale
Live
0xa0020b10
=
0x3f34...
ok

This	 output	 shows	 the	 trapped	 serial	 writes
appearing	on	the	console,	plus	a	 log	of	the	writes	and
reads	 executed	 by	 the	 emulated	 ARM	 CPU	 as	 they
were	 relayed	 to	 the	 live	 target	 running	 the	 reduced
Fernly	shell.	This	was	our	beachhead.

From	 there,	 xobs	 and	 I	 discovered	 the	 offsets	 of	 a
few	 IP	 blocks	 that	 were	 reused	 from	 previous	 known
MediaTek	 chips	 by	 searching	 for	 their	 “signature”	 in
memory.	A	signature	could	be	as	simple	as	the	power-
on	default	register	values,	or	something	more	complex,
like	changes	in	bit	patterns	due	to	the	side	effects	of	bit
set	 or	 clear	 registers	 located	 at	 offsets	 within	 the	 IP
block’s	address	space.	Following	the	signatures	helped
us	 find	 the	 register	 offsets	 of	 several	 peripherals	 and
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generate	a	memory	map.

Starting
Address

Ending
Address

Size	of
Region

Description

0x000000000x0fffffff0x0fffffffPSRAM
map,
repeated
and
mirrored
at
0x00800000
offsets

0x100000000x1fffffff0x0fffffffMemory-mapped
SPI
chip

??????????????????????????????????????????????????????????????

0x700000000x7000cfff0xcfff On-chip
SRAM
(maybe
cache?)

??????????????????????????????????????????????????????????????

0x800000000x800000080x08 Config
block
(chip
version,
etc.)

0x82200000???????????????????? 	
0x83000000???????????????????? 	
0xa00000000xa00000080x08 Config
block
(mirror?)

0x10010000????????????????????(?SPI
mode?)
????????????????????

0x100200000xa0020e100x0e10 GPIO
control
block

0xa00300000xa00300400x40 WDT
block

	 	 	 


+
0x08
->
WDT
register
(?)



+
0x18
->
Boot
src
(?)

0xa0030800????????????????????????????????????????????????????

0xa0040000????????????????????????????????????????????????????

0xa0050000????????????????????????????????????????????????????

0xa0060000??????????????????????
Possible
IRQs
at
0xa0060200
??

0xa0070000======================
Empty
(all
zeroes)
===========

0xa00800000xa008005c0x5c UART1
block
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0xa00900000xa009005c0x5c UART2
block

0xa00a0000?????????????????????????????????????????????????????

This	memory	map	 shows	what	 content	 is	 stored	 at
different	address	ranges	on	the	chip.	For	instance,	the
second	 address	 range	 in	 the	 map	 (0x10000000	 to
0x1FFFFFFF)	 consisted	 of	 0x0FFFFFFF	 bytes
corresponding	to	a	memory-mapped	SPI	chip.

Booting	an	OS
After	finding	the	register	offsets,	we	progressed	rapidly
on	many	 fronts,	but	our	goal	 (to	port	NuttX,	a	BSD-
based	 real-time	 operating	 system,	 to	 the	 device)
remained	elusive.	There	was	no	documentation	on	the
interrupt	 controller	 within	 the	 canon	 of	 shanzhai
datasheets.	 We	 found	 the	 routines	 that	 installed	 the
interrupt	 handlers	 through	 static	 analysis	 of	 the
binaries,	but	we	couldn’t	determine	the	address	offsets
of	the	interrupt	controller	itself.

All	 we	 could	 do	 was	 open	 the	MediaTek	 codebase
and	refer	to	the	header	file	that	contained	the	register
offsets	 and	 bit	 definitions	 of	 the	 interrupt	 controller.
This	 fit	 within	 our	 self-imposed	 limitations	 to	 not
breach	copyright,	because	facts	are	not	copyrightable.	I
describe	 the	 legal	 reasoning	 behind	 this	 idea	 in
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Chapter	4,	under	 “Dealing	with	Copyrights”	 on	 page
138.	After	 looking	up	those	facts,	we	created	our	own
custom	 scripting	 language,	 called	 Scriptic,	 to	 avoid
unconsciously	 plagiarizing	 anything	 from	 the	 existing
codebase.

Building	a	New	Toolchain
Requiring	users	to	own	a	Novena	ROMulator	to	hack
on	 Fernvale	 wasn’t	 a	 scalable	 solution,	 however.	 To
round	out	 the	 story,	we	created	a	 complete	developer
toolchain.	 The	 compiler	 was	 fairly	 cut-and-dried;
many	 standard	 compilers	 support	 ARM	 as	 a	 target,
including	clang	and	GCC.	But	making	open	 tools	 for
flashing	 the	 MT6260	 was	 much	 trickier.	 All	 the
existing	tools	we	knew	supported	the	protocol	version
required	 by	 the	 MT6260	 were	 proprietary	Windows
programs.	That	meant	we	had	to	reverse	engineer	the
MediaTek	 flashing	 protocol	 and	 write	 our	 own	 open
source	tool.

Fortunately,	 a	blank,	unfused	MT6260	shows	up	as
/dev/ttyUSB0	 when	 you	 plug	 it	 into	 a	 Linux	 host.	 In
other	words,	 it	 shows	up	 as	 an	 emulated	 serial	 device
over	USB.	That	took	care	of	the	lower-level	details	of
sending	and	receiving	bytes	to	the	device,	leaving	us	to
reverse	engineer	the	protocol	layer.
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xobs	located	the	internal	boot	ROM	of	the	MT6260
and	performed	static	code	analysis	to	learn	more	about
the	 protocol.	 He	 also	 did	 some	 static	 analysis	 on
MediaTek’s	flashing	tool	and	captured	live	traces	using
a	 USB	 protocol	 analyzer	 to	 clarify	 the	 remaining
details.	 Here	 is	 a	 summary	 of	 the	 commands	 he
extracted,	as	we	used	 in	our	open	version	of	 the	USB
flashing	tool.

enum
mtk_commands
{


mtk_cmd_old_write16
=
0xa1,


mtk_cmd_old_read16
=
0xa2,


mtk_checksum16
=
0xa4,


mtk_remap_before_jump_to_da
=
0xa7,


mtk_jump_to_da
=
0xa8,


mtk_send_da
=
0xad,


mtk_jump_to_maui
=
0xb7,


mtk_get_version
=
0xb8,


mtk_close_usb_and_reset
=
0xb9,


mtk_cmd_new_read16
=
0xd0,


mtk_cmd_new_read32
=
0xd1,


mtk_cmd_new_write16
=
0xd2,


mtk_cmd_new_write32
=
0xd4,


//
mtk_jump_to_da
=
0xd5,


mtk_jump_to_bl
=
0xd6,


mtk_get_sec_conf
=
0xd8,


mtk_send_cert
=
0xe0,


mtk_get_me
=
0xe1,
/*
Responds
with
22
bytes
*/


mtk_send_auth
=
0xe2,


mtk_sla_flow
=
0xe3,


mtk_send_root_cert
=
0xe5,


mtk_do_security
=
0xfe,


mtk_firmware_version
=
0xff,
};
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This	is	just	a	C	enum	structure,	making	it	a	very	geeky
way	of	 specifying	a	mapping	of	numbers	 to	command
meanings.	 For	 example,	 mtk_cmd_old_write16	 is
command	 0xA1,	 mtk_command_old_read16	 is	 command
0xA2,	and	so	on.

Fernvale	Results
After	 about	 a	 year	 of	 on-and-off	 effort	 between	work
on	 the	Novena	 and	Chibitronics	 campaigns,	 we	were
able	 to	 boot	 a	 port	 of	 NuttX	 on	 the	 MT6260,
supporting	 a	 minimal	 set	 of	 hardware	 peripherals.	 It
was	 enough	 for	 us	 to	 roughly	 reproduce	 the
functionality	 of	 an	 AVR	 used	 in	 an	 Arduino-like
context,	but	not	much	more.

xobs	 and	 I	 presented	 our	 results	 at	 the	 31st	Chaos
Communication	Congress	 (CCC),	 and	events	 actually
took	 an	 unexpected	 twist	 as	 we	 wrote	 our	 proposal.
The	 week	 before	 submission,	 we	 learned	 that
MediaTek	 released	 the	 LinkIT	 ONE	 development
platform,	based	on	the	MT2502A,	in	conjunction	with
Seeed	 Studios.	 The	 LinkIT	 ONE	 is	 an	 Internet	 of
Things	 platform	 made	 for	 entrepreneurs	 and
hobbyists.	 It’s	 integrated	 into	 the	Arduino	 framework
and	 features	 an	 open	 API	 that	 enables	 the	 full
functionality	 of	 the	 chip,	 including	 GSM	 functions.
But	 the	 core	OS	 that	 boots	 on	 the	MT2502A	 in	 the
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LinkIT	ONE	is	 still	proprietary,	and	you	can’t	access
the	 hardware	 without	 going	 through	 the	 API	 calls
provided	by	the	Arduino	shim.

Realistically,	 it’s	 still	 going	 to	be	 a	while	before	we
can	 port	 a	 reasonable	 fraction	 of	 the	 MT6260’s
features	 into	 the	 open	 source	 domain.	 It’s	 quite
possible	 we’ll	 never	 be	 able	 to	 do	 a	 blob-free
implementation	of	the	GSM	call	functions,	as	those	are
controlled	by	a	DSP	unit	that’s	even	more	obscure	and
undocumented	 than	 the	 MT6260.	 Given	 the	 robust
functionality	 of	 the	 LinkIT	 ONE	 compared	 to
Fernvale,	we	decided	to	leave	the	question	of	whether
there	 was	 value	 in	 continuing	 the	 effort	 to	 reverse
engineer	the	MT6260	to	the	open	source	community.
In	 the	 end,	 there	 was	 a	 lot	 of	 enthusiasm	 for	 the
project,	 but	 not	 a	 lot	 of	 action.	 The	 LinkIT	 ONE’s
introduction	took	a	 lot	of	wind	out	of	 the	 sails	of	 the
Fernvale	 project,	 which	 has	 since	 been	 effectively
retired.

This	is,	in	fact,	the	fate	of	most	open	source	projects.
There	 are	 dozens,	 if	 not	 hundreds,	 of	 open	 source
operating	 systems	 but	 only	 one	 Linux.	 The	 truth	 is
that	 there	 are	 far	more	 interesting	 ideas	 than	 capable
developers	to	execute	them.	For	an	open	source	project
to	 catch	 fire	 and	become	 self-sustaining,	 it	has	 to	not
only	 pass	 the	 minimum	 viable	 product	 (MVP)	 stage
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but	also	meet	a	receptive	audience	with	a	real	need	for
the	 project.	 Sometimes	 your	 project	 strikes	 a	 chord,
and	a	huge	community	pushes	it	forward.	Other	times,
you	 get	 a	 lot	 of	 nice,	 helpful	 onlookers	 who	 nod
appreciatively	 but	 are	 unwilling	 or	 too	 busy	with	 day
jobs	 to	 jump	 in.	And	 still	 other	 times,	 you	yell	 into	 a
void	 or,	 worse,	 get	 torn	 to	 shreds	 on	 some	 internet
forum	about	how	flawed	and	pointless	your	project	is.

CLOSING	THOUGHTS
Given	the	nature	of	open	source	projects,	I	tend	to	take
a	page	from	my	startup	days	and	follow	a	“fail	forward
fast”	 philosophy.	Try	 a	 bunch	of	 different	 things,	 see
what	 sticks,	 learn	 from	 your	 mistakes,	 and	 try	 again.
It’s	 important	not	 to	get	 too	wedded	 to	any	one	 idea,
especially	 if	 the	 idea	 isn’t	working	 out.	 Finally,	 you’ll
find	 it	 helps	 to	 be	 more	 about	 the	 journey	 than	 the
destination.	 Fernvale	 was	 most	 certainly	 an	 epic
journey;	xobs	and	I	 learned	a	 lot,	honed	a	set	of	 tools
and	skills	that	we	continue	to	use	to	this	day	for	other
projects,	and	most	importantly,	had	a	lot	of	fun.

In	the	next	chapter,	we’ll	take	a	look	at	another	kind
of	hacking	that	will	become	increasingly	relevant	to	all
of	 us	 over	 the	 coming	 decades—that	 of	 biological
systems.
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10.	biology	and
bioinformatics

I	 once	 came	 across	 a	 beautiful	 diagram	 in	 Science*
showing	the	metabolic	pathways	of	one	of	the	smallest
bacteria,	 Mycoplasma	 pneumoniae.	 It	 reminded	 me	 of
staring	at	an	Apple	II	schematic	when	I	was	less	than	a
decade	 old.	 Back	 then,	 I	 knew	 that	 the	 Apple	 II
schematic’s	 fascinatingly	 complex	mass	 of	 lines	 was	 a
map	 to	 the	 computer	 in	 front	 of	me,	 though	 I	 didn’t
know	quite	enough	to	do	anything	with	that	map.	But
the	 point	 was	 that	 a	 map	 existed,	 so	 despite	 its
imposing	 appearance,	 it	 gave	 me	 hope	 that	 I	 could
unravel	such	complexities.	Biological	“schematics”	like
the	one	on	the	next	page	give	me	the	same	hope.
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Mycoplasma	pneumoniae’s	metabolic	pathway
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The	Apple	II	schematic	from	my	wall

The	M.	pneumoniae	diagram	isn’t	quite	as	precise	as
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the	Apple	II	schematic,	but	from	10,000	feet,	they	feel
similar	 in	 complexity	 and	 detail.	 The	 metabolic
diagram	is	detailed	enough	for	me	to	trace	a	path	from
glucose	 to	 ethanol,	 and	 the	 Apple	 II	 schematic	 is
detailed	enough	for	me	to	trace	a	path	from	the	CPU
to	 the	 speaker.	And	 just	 as	 a	 biologist	wouldn’t	make
much	of	a	box	with	74LS74	attached	to	it,	an	electrical
engineer	 wouldn’t	 make	 much	 of	 a	 box	 with	 ADH
inside	 it.	 (A	 74LS74	 contains	 two	 instances	 of	 a
synchronous	 electronic	 storage	 device,	 and	 ADH	 is
alcohol	 dehydrogenase,	 an	 enzyme	 coded	 by	 gene
MPN564	that	can	turn	acetaldehyde	into	ethanol.)

Furthering	 the	 computer	 analogy,	 though,	 the
Science	 article’s	 authors	 also	 included	 a	 list	 that	 read
like	 a	 BOM	 for	M.	 pneumoniae	 in	 their	 supplemental
material.	 The	 pentagonal	 boxes	 in	 the	 diagram	 are
enzymes,	 proteins	 that	 catalyze	 specific	 chemical
reactions.	 Each	 enzyme	 is	 listed	 with	 a	 functional
description	 along	 with	 its	 gene	 sequence,	 which	 is
equivalent	to	source	code.

At	 the	 very	 end	 of	 that	 list,	 I	 saw	 a	 table	 of
uncharacterized	genes.	 If	 you’ve	done	 a	bit	of	 reverse
engineering,	 you’ve	 probably	 made	 similar	 tables	 for
parts	or	function	calls	in	an	electronic	system.	They’re
the	 first	place	 I	go	 for	 fresh	clues	when	 I	get	 stuck.	 I
find	 it	 heartening	 to	 see	 biologists	 and	 hackers
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applying	 similar	 techniques	 to	 reverse	 engineering
complex	systems.

COMPARING	H1N1	TO	A	COMPUTER	VIRUS
The	 comparison	 of	 biological	 systems	 to	 computer
systems	doesn’t	stop	at	the	metabolic	level.	I	once	read
a	 fascinating	 article	 in	 Nature*	 that	 compared	 the
pathogenic	components	of	the	novel	H1N1	virus	(better
known	 as	 swine	 flu)	 to	 those	 of	 other	 flu	 strains,	 and
that	 article	 got	 me	 thinking	 about	 how	 digital	 and
organic	 viruses	 compare.	 For	 example,	 how	 big	 is	 an
organic	 virus	 relative	 to	 a	 digital	 one?	 To	 put	 the
question	 another	 way,	 how	many	 bits	 does	 it	 take	 to
kill	 a	 human,	 or	 at	 least	 make	 one	 quite	 sick?	 In
exploring	 this	 idea,	 I	 found	 it	 helpful	 to	 draw	 a	 few
analogies	between	the	digital	and	organic	worlds.

DNA	and	RNA	as	Bits
When	 the	 H1N1	 pandemic	 broke	 out	 in	 2009,	 the
virus	 was	 comprehensively	 sequenced	 and	 logged	 in
the	National	 Center	 for	 Biotechnology	 Information’s
(NCBI)	 Influenza	 Virus	 Resource	 database,	 and	 the
data	collected	there	is	amazing.	I	love	the	specificity	of
the	 records.	 For	 example,	 the	 entire	 sequence	 of	 an
instance	of	influenza	known	as	A/Italy/49/2009(H1N1)
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isolated	 from	 the	 nose	 of	 a	 26-year-old	 female	Homo
sapiens	 returning	 from	the	United	States	 to	Italy	 is	on
the	NCBI	website.	Here	 are	 the	 first	 120	 bits	 of	 the
DNA	sequence:

atgaaggcaa
tactagtagt
tctgctatat
acatttgcaa
ccgcaaatgc
agacacatta

With	 120	 bits	 total,	 each	 symbol	 (A,	 T,	 G,	 or	 C)
represents	2	bits	of	 information.	 In	genes,	 this	can	be
alternatively	 represented	 as	 an	 amino	 acid	 sequence,
where	 every	 three	 DNA	 symbols	 are	 a	 codon
corresponding	 to	 one	 amino	 acid.	 Long	 chains	 of
amino	acids	 fold	 into	complex	 structures	called	proteins
that	give	structure	and	function	to	a	cell,	and	chains	of
amino	 acids	 too	 short	 to	 be	 a	 complete	 protein	 are
often	 called	 peptides.	 Using	 a	 translation	 lookup	 table
that	 biologists	 call	 the	 standard	 genetic	 code,	 I
converted	 the	 previous	 sequence	 into	 the	 following
peptide:	MKAILVVLLYTFATANADTL.

In	 this	 sequence,	 each	 symbol	 represents	 an	 amino
acid,	which	 is	 the	equivalent	of	six	bits	or	three	DNA
bases	per	amino	acid.	There	are	20	amino	acids	in	the
canonical	codon	table,	and	each	letter	corresponds	to	a
different	amino	acid.	M	is	methionine,	K	is	lysine,	A	is
alanine,	and	so	on.

Now,	consider	RNA,	which	passes	information	from
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DNA	on	how	to	synthesize	proteins	to	the	rest	of	the
cell.	As	with	DNA,	each	base	in	RNA	specifies	one	of
four	possible	symbols	(in	this	case,	A,	U,	G,	or	C),	so	a
single	 base	 corresponds	 to	 two	 bits	 of	 information.
DNA	and	RNA	are	 information-equivalent	on	a	one-
to-one	mapping.	Think	 of	DNA	as	 a	 program	 stored
on	 disk	 and	 RNA	 as	 the	 same	 program	 loaded	 into
RAM.	 When	 DNA	 is	 loaded,	 protein	 synthesis
instructions	are	transcribed	into	RNA,	but	all	T	bases
are	replaced	with	U	bases.

Proteins,	 then,	 are	 the	 output	 of	 running	 an	 RNA
program.	 Proteins	 are	 synthesized	 according	 to	 the
instructions	 in	RNA	on	 a	 three-to-one	mapping.	You
can	 think	 of	 proteins	 like	 pixels	 in	 a	 frame	 buffer,	 as
follows:

•	A	complete	protein	is	like	an	image	on	the	screen.

•	Each	amino	acid	on	a	protein	is	like	a	pixel.

•	Each	pixel	has	a	depth	of	six	bits,	due	to	the	three-to-
one	mapping	of	a	medium	that	stores	two	bits	per
base.

•	Finally,	each	pixel	goes	through	a	color	palette	(the
codon	translation	table)	to	transform	the	raw	data
into	a	final	rendered	color.	Unlike	a	computer	frame
buffer,	however,	different	biological	proteins	vary	in
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amino	acid	count	(analogous	to	a	pixel	count).

To	 ground	 this	 in	 a	 specific	 example,	 imagine	 that
six	bits	 stored	as	ATG	on	your	hard	drive	 (DNA)	are
loaded	 into	 RAM	 (RNA)	 as	 AUG	 because	 T	 is
transcribed	 as	 U	 when	 going	 from	 DNA	 to	 RNA.
When	the	RNA	program	in	RAM	is	executed,	AUG	is
translated	 to	 a	 pixel	 (amino	 acid)	 of	 color	 M,	 or
methionine,	which	is	the	biological	“start”	codon—that
is,	the	first	instruction	in	every	valid	RNA	program.

As	a	shorthand,	since	DNA	and	RNA	are	one-to-one
equivalent,	bioinformaticists	 represent	gene	 sequences
in	DNA	format,	even	if	the	biological	mechanism	is	in
RNA	 format.	 The	 influenza	 virus	 has	 an	 RNA
architecture,	 rather	 than	 DNA,	 and	 the	 120	 bits	 of
DNA	 I	 showed	 earlier	 correspond	 to	 an	 RNA
subroutine	in	influenza.	That	subroutine	codes	for	the
HA	 gene,	 which	 produces	 an	 H1	 variety	 of	 the
hemagglutinin	 protein.	 This	 is	 the	H1	 in	 the	 H1N1
designation	of	swine	flu.

Organisms	Have	Unique	Access	Ports
Given	 that	 background	 information,	 if	 you	 think	 of
organisms	 as	 computers	 with	 IP	 addresses,	 each
functional	group	of	cells	in	the	organism	listens	to	the
environment	 through	 its	 own	 active	 port.	 As	 port	 25
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maps	 specifically	 to	 SMTP	 services	 on	 a	 computer,
port	H1	maps	specifically	to	the	windpipe	region	on	a
human.	 Interestingly,	 the	 same	 port	 H1	maps	 to	 the
intestinal	 tract	on	a	bird.	Thus,	 the	same	H1N1	virus
will	 attack	 the	 respiratory	 system	of	 a	human	and	 the
gut	 of	 a	 bird.	 In	 contrast,	 H5—the	 variety	 of
hemagglutinin	 protein	 found	 in	 H5N1,	 the	 deadly
avian	flu—specifies	the	port	for	your	inner	lungs.	As	a
result,	H5N1	 is	much	deadlier	 than	H1N1	because	 it
attacks	 your	 inner	 lung	 tissue,	 causing	 severe
pneumonia.	 H1N1	 is	 less	 deadly	 because	 it	 attacks	 a
more	benign	port	that	just	makes	you	blow	your	nose	a
lot	and	cough	up	loogies.

NOTE

Researchers	are	still	discovering	more	about	the	H5	port.
The	Nature	article	I	read	indicated	that	perhaps	certain
human	mutants	have	lungs	that	don’t	listen	on	the	H5
port.	People	whose	lungs	ignore	the	H5	port	would	have
a	better	chance	of	surviving	an	avian	flu	infection,	while
those	that	open	port	H5	on	the	lungs	have	no	chance	to
survive	(make	your	time	...	all	your	base	pairs	are
belong	to	H5N1).*

Knowing	 a	 virus	 is	 deadly,	 you	 can	 figure	 out	 how
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many	bits	it	takes	to	kill	a	human	(or	at	least	make	one
quite	sick)	by	calculating	the	number	of	bits	in	the	viral
genome.	The	question,	 then,	 is	 how	many	bits	 are	 in
this	instance	of	H1N1?	The	raw	number	of	bits,	by	my
count,	 is	 26,022;	 the	 number	 of	 actual	 coding	 bits	 is
approximately	25,054.	I	say	“approximately”	because	in
some	 places,	 the	 virus	 does	 the	 equivalent	 of	 self-
modifying	 code	 to	 create	 two	proteins	out	of	 a	 single
gene.	 It’s	 hard	 to	 say	 what	 counts	 as	 code	 and	 what
counts	 as	 an	 incidental,	 nonexecuting	 NOP	 sled
required	for	the	self-modified	code.

That	means	it	takes	about	25Kb	or	3.2KB	of	data	to
code	for	a	virus	that	has	a	nontrivial	chance	of	killing	a
human.	 This	 is	 more	 efficient	 than	 a	 computer	 virus
like	MyDoom,	which	comes	in	around	22KB.	Knowing
that	 I	 could	 be	 killed	 by	 3.2KB	 of	 genetic	 data	 is
humbling.	Then	again,	with	roughly	800MB	of	data	in
my	genome,	there’s	bound	to	be	an	exploit	or	two.

Hacking	Swine	Flu
One	 interesting	 consequence	 of	 reading	 this	 Nature
article	and	having	access	to	the	virus	sequence	is	that	in
theory,	I	now	know	how	to	modify	the	virus	sequence
to	 make	 it	 deadlier.	 For	 instance,	 the	 Nature	 article
notes	 that	 variants	 of	 the	 PB2	 influenza	 gene	 with
glutamic	 acid	 at	 position	 627	 in	 the	 sequence	 have	 a
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low	 pathogenicity,	 meaning	 they	 aren’t	 very	 deadly.
However,	PB2	variants	with	lysine	at	the	same	position
increase	the	likelihood	of	mortality.

Let’s	 see	 the	 sequence	 of	 PB2	 for	 H1N1.	 Going
back	 to	 the	 NCBI	 database,	 I	 found	 the	 following
amino	acid	sequences	around	position	627:

601
QQMRDVLGTFDTVQIIKLLP
621
FAAAPPEQSRMQFSSLTVNV
641
RGSGLRILVRGNSPVFNYNK

The	numbers	to	the	left	indicate	the	position	of	the
first	symbol	in	each	line	of	the	sequence;	I’ll	follow	that
convention	 for	 the	 rest	 of	 this	 discussion.	 Check	 the
line	 labeled	621,	 and	note	 the	E	 in	position	627.	E	 is
the	symbol	for	glutamic	acid.	Thankfully,	H1N1	seems
to	be	a	less-deadly	version	of	influenza;	perhaps	this	is
why	 fewer	 people	 died	 from	 contracting	H1N1	 than
the	media	might	have	led	you	to	believe.

Now,	let’s	reverse	this	back	to	the	DNA	code:

621


F


A


A


A


P


P


E


Q


S


R
1861
ttt
gct
gct
gct
cca
cca
gaa
cag
agt
agg

Notice	 the	 GAA	 codes	 for	 E.	 To	 modify	 this
genome	 to	 be	 deadlier,	 you’d	 simply	 need	 to	 replace
GAA	with	one	of	 the	codes	 for	 lysine	 (K).	Lysine	can
have	 a	 code	 of	 either	AAA	or	AAG.	Thus,	 a	 deadlier
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variant	 of	 H1N1	 would	 have	 a	 coding	 sequence	 like
this:

621


F


A


A


A


P


P


K


Q


S


R
1861
ttt
gct
gct
gct
cca
cca
aaa
cag
agt
agg





























^
changed

So,	 a	 single	 base-pair	 change—simply	 flipping	 two
bits—	might	be	all	you’d	need	to	turn	the	H1N1	swine
flu	virus	 into	a	deadlier	variant.	Theoretically,	I	could
apply	 a	 series	 of	well-known	 biological	 procedures	 to
synthesize	this	strain	and	actually	implement	the	hack.
As	a	first	step,	I	could	go	to	a	DNA	synthesis	website
and	order	the	modified	sequence	to	get	my	deadly	little
project	 going	 for	 just	 over	 $1,000.	 Some	 of	 those
companies	 have	 screening	 procedures	 to	 protect
against	 DNA	 sequences	 that	 could	 be	 used	 to
implement	 biohazardous	 products,	 but	 even	 if	 they
happened	 to	 screen	 for	 HA	 variants,	 there	 are	 well-
known	 protocols	 for	 site-directed	 mutagenesis	 that
could	possibly	be	used	to	modify	a	single	base	of	RNA
from	material	extracted	from	normal	H1N1.

Adaptable	Influenza
Of	course,	I	have	to	give	influenza	some	credit.	It	packs
a	 deadly	 punch	 in	 3.2KB,	 and	 despite	 scientists’	 best
efforts,	 we	 haven’t	 eradicated	 it.	 Could	 influenza	 do
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hacks	like	the	one	I	just	described	on	its	own	already?
The	short	answer	is	yes.
In	fact,	the	influenza	virus	evolved	to	allow	for	these

adaptations.	Normally,	when	DNA	is	copied,	an	error-
checking	protein	runs	over	the	copied	genome	to	verify
that	no	mistakes	were	made.	This	keeps	the	error	rate
quite	 low.	 But	 remember,	 the	 influenza	 virus	 uses	 an
RNA	 architecture.	 It	 therefore	 needs	 a	 different
mechanism	from	DNA	for	copying.

Inside	 its	 protein	 capsule,	 the	 influenza	 virus	 packs
code	for	a	protein	complex	called	RNA-dependent	RNA
polymerase,	 which	 is	 a	 tiny	machine	 for	 copying	RNA
off	 of	 RNA	 templates.	 Normally,	 RNA	 is	 only
generated	 by	 transcribing	 DNA,	 not	 by	 copying	 an
existing	 piece	 of	RNA,	 so	 this	mechanism	 is	 essential
for	 the	 replication	 of	 RNA-based	 influenza.
Significantly,	RNA-dependent	RNA	polymerase	omits
an	 error-checking	 protein	 that	 would	 prevent
mutations.	 The	 result	 is	 that	 influenza	 makes	 about
one	 error	 per	 10,000	 base	 pairs	 that	 get	 copied.	The
influenza	 genome	 is	 about	 13,000	 base	 pairs	 long,	 so
on	 average,	 every	 copy	 of	 an	 influenza	 virus	 has	 one
random	mutation.

Some	of	these	mutations	make	no	difference;	others
render	 the	 virus	 harmless;	 and	 quite	 possibly,	 some
render	 the	 virus	much	more	 dangerous.	 Since	 viruses
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are	 replicated	 and	 distributed	 in	 astronomical
quantities,	the	chance	that	this	little	hack	could	end	up
occurring	naturally	is	in	fact	quite	high.	I	think	this	is
part	 of	 the	 reason	 health	 officials	 were	 so	 worried
about	H1N1:	people	had	no	resistance	to	it,	and	even
though	 it	 wasn’t	 as	 deadly	 as	 it	 could	 have	 been,	 the
strain	 was	 probably	 just	 a	 couple	 of	 mutations	 away
from	being	a	much	bigger	health	problem.

There	 is	 one	 other	 important	 subtlety	 to	 the	RNA
architecture	of	 the	 influenza	virus,	aside	 from	its	high
mutation	rate:	the	virus’s	genetic	information	is	stored
as	eight	separate,	relatively	short,	snippets	of	RNA.	In
many	 other	 viruses	 and	 simple	 organisms,	 genetic
information	 is	 instead	 stored	 as	 a	 single	 unbroken
strand.

To	understand	why	 that’s	 important,	consider	what
happens	 when	 a	 host	 is	 infected	 by	 two	 types	 of	 the
influenza	 virus	 at	 the	 same	 time.	 If	 the	 genes	 were
stored	as	a	single	piece	of	DNA	or	RNA,	there	would
be	 little	 opportunity	 for	 the	 genes	 between	 the	 two
types	to	shuffle.	But	because	influenza	stores	its	genes
as	eight	separate	snippets,	those	genes	mix	freely	inside
the	 infected	 cell	 and	 are	 randomly	 shuffled	 into	 virus
packets	 as	 they	 emerge.	 If	 you’re	 unlucky	 enough	 to
get	 two	types	of	 flu	at	once,	 the	result	 is	a	potentially
novel	 strain	of	 flu,	as	RNA	strands	are	copied,	mixed,
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picked	 out	 of	 the	 metaphorical	 hat,	 and	 then	 packed
into	virus	particles.	This	process	 is	elegant	 in	that	 the
same	 mechanism	 allows	 for	 mixing	 of	 an	 arbitrary
number	of	 strains	 in	 a	 single	host.	 If	 you	can	 infect	 a
cell	with	 three	or	 four	 types	of	 influenza	 at	once,	 the
result	is	an	even	wilder	variation	of	flu	particles.

This	mechanism	is	part	of	the	reason	novel	H1N1	is
called	a	triple-reassortant	virus.	Through	a	series	of	dual
infections	 or	 perhaps	 a	 single	 calamitous	 infection	 of
multiple	 flu	 varieties,	 novel	H1N1	 acquired	 a	mix	 of
RNA	snippets	that	gave	it	high	transmission	rates	and
made	 it	 something	 humans	 weren’t	 innately	 immune
to.	That’s	the	perfect	storm	for	a	pandemic.

If	 there	 were	 a	 computer	 analogy	 to	 this	 RNA-
shuffling	 model,	 it	 would	 be	 a	 virus	 that	 distributes
itself	 in	 the	 form	 of	 unlinked	 object	 code	 files	 plus	 a
small	 helper	 program	 that,	 upon	 infecting	 a	 host,
relinks	 its	 files	 in	a	 random	order	before	copying	and
redistributing	 itself.	 It	 would	 also	 search	 for	 similar
viruses	that	may	already	be	infecting	that	computer	and
on	occasion	link	in	object	code	with	matching	function
templates	 from	 the	other	 viruses.	This	 rearrangement
and	novel	relinking	of	the	code	itself	would	foil	classes
of	 antivirus	 software	 that	 search	 for	 virus	 signatures
based	on	fixed	code	patterns.	It	would	also	proliferate	a
diverse	set	of	viruses	 in	the	wild,	with	 less	predictable
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properties.
The	 influenza	 virus’s	 multilevel	 adaptation

mechanism	is	remarkable.	The	virus	has	both	a	slowly
evolving	point	mutation	mechanism	and	a	mechanism
for	 drastically	 altering	 its	 properties	 in	 a	 single
generation	 through	 gene-level	 mixing	 with	 other
viruses.	It	doesn’t	work	quite	like	sex,	but	the	result	is
probably	just	as	good,	if	not	better.	It’s	also	remarkable
that	these	two	important	properties	of	the	virus	arise	as
a	 consequence	 of	 using	 RNA	 instead	 of	DNA	 as	 the
genetic	storage	medium.

A	Silver	Lining
Since	there	are	so	many	variants	of	flu,	no	vaccine	can
target	all	 types	of	 the	virus,	but	 the	H1N1	story	does
have	 a	 silver	 lining.	 Apparently,	 a	 patient	 who
contracted	 swine	 flu	 during	 the	 pandemic	 created	 a
novel	 antibody	 with	 the	 remarkable	 ability	 to	 confer
immunity	to	all	16	subtypes	of	influenza	A.	A	group	of
researchers	 sifted	 through	 the	 patient’s	 white	 blood
cells	and	managed	to	isolate	four	B	cells	that	contained
the	 code	 to	 produce	 this	 antibody.	 They	 cloned	 the
cells	 and	 produced	 antibodies,	 facilitating	 further
research	 into	 a	 potential	 vaccine	 that	 could	 confer
broad	protection	against	the	flu.
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I	found	this	really	interesting	at	a	gut	level	because	it
gives	me	hope	that	if	a	killer	virus	did	wipe	out	most	of
humanity,	 maybe	 a	 small	 group	 of	 people	 would
survive	it.

REVERSE	ENGINEERING	SUPERBUGS
In	 2011,	 a	 “superbug”	 strain	 of	 E.	 coli	 (a	 species	 of
bacteria	with	 subtypes	 that	 can	 cause	 food	poisoning)
called	EHEC	O104:H4	broke	out	 in	Europe.	When	I
found	out	that	scientists	at	BGI,	 located	 in	Shenzhen,
had	 released	 the	 entire	 sequence	 of	 O104:H4	 freely
online	for	anyone	to	examine,	I	got	very	curious	about
the	situation.	 I	couldn’t	help	but	wonder	exactly	what
tools	bioinformaticists	use	to	analyze	DNA	sequences.
Manually	inspecting	the	relatively	simple	sequences	of
the	 influenza	 virus	 is	 one	 thing,	 but	 there	 must	 be
computational	 tools	 to	 help	 make	 sense	 of	 more
complicated	organisms	like	E.	coli.

Fortunately,	 my	 perlfriend	 (s/perl/girl/)	 is	 also	 a
noted	bioinformaticist.	She	took	some	time	out	of	her
busy	 schedule	 to	 show	me	 some	 tools	 of	 the	 trade.	 It
turns	 out	 most	 of	 the	 tools	 for	 analyzing	 DNA	 are
freely	available	online.	Since	DNA	is	just	sequences	of
A’s,	 T’s,	 G’s,	 and	 C’s,	 the	 standard	 data	 interchange
format	is	plain	old	ASCII	text,	which	means	you	can	do
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a	 lot	 of	 analysis	 using	 command-line	 tools	 like	 grep,
sed,	and	awk.

The	O104:H4	DNA	Sequence
The	 raw	 sequence	 data	 BGI	 provided	 was	 a	 set	 of
oversampled	subsequences	that	we	needed	to	assemble
by	 matching	 up	 overlapping	 regions.	 Stitching
subsequences	 together	 is	 a	 bit	 like	 composing	 a	 large
picture	 from	 small	 photos	 taken	 at	 random.	 With
enough	 sampling,	 you’ll	 eventually	 create	 a	 mostly
complete	 picture,	 but	 the	 image	 will	 still	 have
ambiguities,	particularly	in	areas	with	regular	patterns.

The	 genome	 of	O104:H4	was	 provided	 as	 a	 list	 of
over	 500,000	 short	 DNA	 samples.	 The	 assembly
process	stitched	the	short	DNA	samples	together	into
513	contiguous	 fragments	of	DNA	(known	as	 contigs),
with	a	total	genome	length	of	5.3	million	base	pairs.	An
organism	like	E.	coli	has	 just	one	big	loop	of	DNA,	so
there	 were	 513	 spots	 where	 limitations	 in	 the
sequencing	 technology	 (or	 just	 bad	 luck)	 missed	 an
unknown	 number	 of	 base	 pairs,	 preventing	 us	 from
knowing	 the	 entire,	 unbroken	 sequence.	 Notably,	 a
typical,	 non-superbug	 strain	 of	E.	 coli	 has	 around	 4.6
million	base	pairs,	 so	O104:H4	is	probably	at	 least	15
percent	 longer.	Likewise,	 this	 strain	would	 take	more
time	to	replicate	than	a	non-drug-resistant	strain.	Take
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a	look	at	contig	34	of	the	assembly:

AAATGGTATTCCTGTTCACGATACTATTGCCAGAGTTGTATCCTGTATCAGTCCTGC
AAAATTTCATGAGTGCTTTATTAACTGGATGCGTGACTGCCATTCTTCAGATGATAA
AGACGTCATTGCAATTGATGGAAAAACGCTCCGGCACTCTTATGACAAGAGTCGCCG
CAGGGGAGCGATTCATGTCATTAGTGCGTTCTCAACAATGCACAGTCTGGTCATCGG
ACAGATCAAGACGGATGAGAAATCTAATGAGATTACAGCTATCCCAGAACTTCTTAA
CATGCTGGATATTAAAGGAAAAATCATCACAACTGATGCGATGGGTTGCCAGAAAGA
TATTGCAGAGAAGATACAAAAACAGGGAGGTGATTATTTATTCGCGGTAAAAGGAAA
CCAGGGGCGGCTAAATAAAGCCTTTGAGGAAAAATTTCCGCTGAAAGAATTAAATAA
TCCAGAGCATGACAGTTACGCAATTAGTGAAAAGAGTCACGGCAGAGAAGAAA

I	 could	 have	 picked	 any	 contig,	 and	 it	 probably
would	 have	made	 about	 as	much	 sense	 to	 you	 as	 this
block	 of	 letters.	 Aside	 from	 making	 gratuitous	 pop
culture	 references	 (the	 word	 GATTACA	 occurs	 252
times	 in	 the	 genome	 of	 O104:H4),	 the	 raw	 DNA
sequence	 isn’t	 very	 insightful.	 It’s	 a	 bit	 like	 staring	 at
binary	machine	code.	To	analyze	the	data,	you	need	to
“decompile”	the	“methods”	contained	within	the	code.

In	 this	case,	we	were	searching	 for	DNA	sequences
that	code	for	proteins.	As	I	mentioned	earlier,	proteins
are	 complex,	 often	 interwoven	 chains	 of	 molecules
consisting	 of	 small	 building	 blocks	 known	 as	 amino
acids.	 Cells	 get	 things	 done	 using	 proteins:	 some
proteins	turn	sugar	into	energy,	others	use	that	energy
to	 move	 around	 or	 change	 the	 cell’s	 shape,	 and	 still
others	 are	 responsible	 for	 copying	 and	 repairing	 the
cell.
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Fortunately,	protein	sequences	are	highly	conserved
in	DNA.	Nature	tends	to	reuse	protein	structures,	with
few	 modifications,	 between	 organisms.	 Thus,	 a
function	that	has	been	determined	through	a	biological
experiment,	 even	 on	 another	 species,	 can	 often	 be
correlated	with	a	sequence	of	DNA.	For	instance,	one
common	experiment	for	determining	the	function	of	a
sequence	 is	 to	 cut	 a	 piece	 of	DNA	 out	 of	 a	 cell	 and
observe	what	happens	 to	 the	 cell;	 the	 loss	of	 function
resulting	from	the	missing	DNA	is	often	 indicative	of
the	protein’s	role	in	the	cell.

Biologists	have	amassed	decades	of	research	on	what
certain	proteins	do	into	huge	databases.	Thus,	to	figure
out	what	a	chunk	of	DNA	means,	you	can	do	a	 fuzzy
pattern	match	between	your	DNA	of	 interest	and	 the
database	of	known	proteins.

Reversing	Tools	for	Biology
I	needed	two	tools	to	reverse	engineer	DNA:	a	protein
database	and	a	piece	of	software	called	BLASTX.	Both
are	free	to	download	online.

THE	UNIPROT	DATABASE
I	 downloaded	 a	 list	 of	 known	 proteins	 from	 the
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Universal	 Protein	 Resource,	 or	 UniProt
(http://www.uniprot.org/).	 In	 2011,	 a	 search	 of	 the
database	 for	 “drug	 resistance”	 restricted	 to	 E.	 coli
organisms	yielded	a	list	of	1,378	proteins	that	scientists
have	 identified	 over	 the	 years	 as	 parts	 of	 the	 E.	 coli
bacteria’s	 drug-resistance	machinery.	Every	 year,	 new
discoveries	are	added	to	the	database.

Here’s	 a	 snippet	 from	 the	database	 that	 describes	 a
protein	 that	 gives	 O104:H4	 resistance	 to	 a	 drug	 you
may	recognize:

>sp|P0AD65|PBP2_ECOLI
Penicillin-binding
protein
2
OS=Escherichia
coli
(strain
K12)
GN=mrdA
PE=3
SV=1

MKLQNSFRDYTAESALFVRRALVAFLGILLLTGVLIANLYNLQIVRFTDYQTRSNENRIK
LVPIAPSRGIIYDRNGIPLALNRTIYQIEMMPEKVDNVQQTLDALRSVVDLTDDDIAAFR
KERARSHRFTSIPVKTNLTEVQVARFAVNQYRFPGVEVKGYKRRYYPYGSALTHVIGYVS
KINDKDVERLNNDGKLANYAATHDIGKLGIERYYEDVLHGQTGYEEVEVNNRGRVIRQLK
EVPPQAGHDIYLTLDLKLQQYIETLLAGSRAAVVVTDPRTGGVLALVSTPSYDPNLFVDG
ISSKDYSALLNDPNTPLVNRATQGVYPPASTVKPYVAVSALSAGVITRNTTLFDPGWWQL
PGSEKRYRDWKKWGHGRLNVTRSLEESADTFFYQVAYDMGIDRLSEWMGKFGYGHYTGID
LAEERSGNMPTREWKQKRFKKPWYQGDTIPVGIGQGYWTATPIQMSKALMILINDGIVKV
PHLLMSTAEDGKQVPWVQPHEPPVGDIHSGYWELAKDGMYGVANRPNGTAHKYFASAPYK
IAAKSGTAQVFGLKANETYNAHKIAERLRDHKLMTAFAPYNNPQVAVAMILENGGAGPAV
GTLMRQILDHIMLGDNNTDLPAENPAVAAAEDH

PBP2_ECOLI*	is	linked	to	penicillin	resistance	and
is	 a	 mutated	 gene	 that	 determines	 the	 shape	 of	 the
bacteria.	 It	 seems	 this	 resistant	 variant	 adapted	 to
operate	despite	the	presence	of	penicillin;	bacteria	with
nonresistant	 forms	 of	 the	 gene	 are	 unable	 to	 form
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properly	shaped	cell	walls	in	the	presence	of	penicillin,
and	 are	 killed	 by	 the	 drug.	Other	 genes	might	 cause
more	 active	 countermeasures,	 like	 pumping	 an
antibiotic	out	of	the	cell	or	modifying	the	antibiotic	to
be	less	toxic	to	the	cell.	Browsing	the	UniProt	database
gives	you	a	feel	for	the	huge	variety	of	genes	available
in	nature	that	can	make	bacteria	resistant	to	drugs.

THE	DECOMPILER
Next,	 I	 needed	 the	 actual	 decompiler.	 That’s	 where
BLASTX	 (eventually	 updated	 to	 BLAST+)	 came	 in.
BLASTX	is	a	variant	of	BLAST,	which	stands	for	Basic
Local	 Alignment	 Search	 Tool.	 First,	 I	 had	 this	 analysis
program	compute	all	possible	translations	of	the	E.	coli
DNA	 to	 protein	 sequences.	 Translating	DNA	 results
in	 six	 possible	 protein	 sequences:	 DNA	 can	 be	 read
forward	 and	 backward	 (known	 as	 5′→3′	 and	 3′→5′),
and	 each	direction	has	 three	possible	 frame	positions.
Then,	I	had	the	program	check	for	patterns	among	the
resulting	 amino	 acid	 sequences	 that	 matched	 the
database	 of	 sequences	 known	 to	 provide	 drug
resistance.	(I	could	have	also	checked	for	other	types	of
patterns,	 by	 typing	 something	 different	 into	 the
database	 query.)	 The	 result	 was	 a	 sorted	 list	 of	 each
known	drug	 resistance	 protein,	 along	with	 the	 region
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of	the	E.	coli	genome	that	best	matches	the	protein.
The	 following	 is	 the	 BLASTX	 output	 for	 the

penicillin	example.

#
BLASTX
2.2.24
[Aug-08-2010]

#
Query:
43
87880
#
Database:
uniprot-drug-resistance-AND-organism-
coli.fasta
#
Fields:
Query
id,
Subject
id,
%
identity,
alignment
length,
mismatches,
gap
openings,
q.
start,
q.
end,
s.
start,
s.
end,
e-value,
bit
score
43
sp|P0AD65|PBP2_ECOLI
100.00
632
0
0
29076
30971
1
632
0.0
1281
43
sp|P0AD68|FTSI_ECOLI
25.08
650
458
21
29064
30926
6
574
2e-33
142
43
sp|P60752|MSBA_ECOLI
32.80
186
120
6
12144
12686
378
558
6e-17
87.0
43
sp|P60752|MSBA_ECOLI
27.78
216
148
5
77054
77677
361
566
8e-14
76.6
43
sp|P77265|MDLA_ECOLI
27.98
193
133
6
12141
12701
370
555
2e-10
65.5

--snip--

The	 Fields	 line	 describes	 what	 each	 column	 in	 the
table	shows.	In	the	%	identity	column,	you	can	see	that
the	 gene	 for	 PBP2_ECOLI	 has	 a	 100	 percent	match
inside	the	genome	of	O104:H4.
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Answering	Biological	Questions	with	UNIX
Shell	Scripts

With	 this	 list,	 I	 could	 answer	 some	 interesting
questions,	 like	 “How	 many	 of	 the	 known	 drug
resistance	genes	are	inside	O104:H4?”	Here’s	the	one-
liner	program	that	my	perlfriend	wrote	to	answer	that
particular	question:

cat
uniprot_search_m9
|
awk
'{if
($3
==
100)
{
print;}}'
|
\


cut
-f2
|grep
-v
^#
|
cut
-f1
-d"_"
|
cut
-f3
-d"|"
|
\


sort
|
uniq
|
wc
-l

The	output	from	that	script	told	us	that	1,138	genes
in	 O104:H4	 were	 a	 100	 percent	 match	 against	 the
database	of	1,378	genes	that	can	confer	drug	resistance.
When	we	 loosened	 the	 criteria	 to	 also	 list	 99	percent
matches,	allowing	 for	one	or	 two	mutations	per	gene,
the	 list	 expanded	 to	 1,224	 out	 of	 1,378.	 The
“superbug”	O104:H4	 earned	 its	 title,	 having	 acquired
roughly	90	percent	of	the	known	resistance	genes!

I	also	wanted	to	answer	the	inverse	question:	which
drug-resistance	 genes	 are	 most	 definitely	 not	 in
O104:H4?	By	 looking	 at	 the	 resistance	 genes	missing
from	a	superbug,	we	might	be	able	to	gather	clues	as	to
which	treatments	could	be	effective	against	the	bug.
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To	 rule	 out	 a	 drug-resistance	 gene,	 we	 crafted
another	 search	 that	 would	 reveal	 which	 resistance
genes	in	the	database	had	less	than	a	70	percent	match
against	 the	 sequence	 of	 O104:H4.	 The	 70	 percent
threshold	was	just	an	arbitrary	number	I	picked;	there’s
probably	 a	 rigorous	 standard	 that	 scientists	 and
clinicians	use.

Here	is	the	list,	as	it	appeared	in	my	terminal:

A0SKI3
A2I604
A3RLX9
A3RLY0
A3RLY1
A5H8A5
B0FMU1
B1A3K9
B1LGD9
B3HN85
B3HN86
B3HP88B5AG18
B6ECG5
B7MM15
B7MUI1
B7NQ58
B7NQ59
B7TR24
BLR
CML
D2I9F6
D5D1U9
D5D1Z3
D5KLY6
D6JAN9
D7XST0
D7Z7R4
D7Z7W9
D7ZDQ3
D7ZDQ4
D8BAY2
D8BEX8
D8BEX9
DYR21
DYR22
DYR23
E0QC79
E0QC80
E0QE33
E0QF09
E0QF10
E0QYN4
E1J2I1
E1S2P1
E1S2P2
E1S382
E3PYR0
E3UI84
E3XPK9
E3XPQ2
E4P490
E5ZP70
E6A4R5
E6A4R6
E6ASX0
E6AT17
E6B2K3
E6BS59
E7JQV0
E7JQZ4
E7U5T3
E9U1P2
E9UGM7
E9VGQ2
E9VX03
E9Y7L7
O85667
Q05172
Q08JA7
Q0PH37
Q0T948
Q0T949
Q0TI28
Q1R2Q2
Q1R2Q3
Q3HNE8
Q4HG53
Q4HG54
Q4HGV8
Q4HGV9
Q4HH67
Q4U1X2
Q4U1X5
Q50JE7
Q51348
Q56QZ5
Q56QZ8
Q5DUC3
Q5UNL3
Q6PMN4
Q6RGG1
Q6RGG2
Q75WM3
Q79CI3
Q79D79
Q79DQ2
Q79DX9
Q79IE6
Q79JG0
Q7BNC7
Q83TT7
Q83ZP7
Q8G9W6
Q8G9W7
Q8GJ08
Q8VNN1
Q93MZ2
Q99399
Q9F0D9
Q9F0S4
Q9F7C0
Q9F8W2
Q9L798
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You	 can	 plug	 any	 of	 these	 protein	 codes	 into	 the
UniProt	database	and	 find	out	more	about	 them.	For
example,	BLR	is	beta-lactamase,	an	enzyme	that	causes
resistance	to	beta-lactam	antibiotics.	UniProt	describes
it	like	this:

Has	an	effect	on	the	susceptibility	to	a	number	of
antibiotics	involved	in	peptidoglycan	biosynthesis.
Acts	 with	 beta	 lactams,	 D-cycloserine	 and
bacitracin.	 Has	 no	 effect	 on	 the	 susceptibility	 to
tetracycline,	 chloramphenicol,	 gentamicin,
fosfomycin,	 vacomycin	 or	 quinolones.	 Might
enhance	 drug	 exit	 by	 being	 part	 of	 multisubunit
efflux	 pump.	Might	 also	 be	 involved	 in	 cell	 wall
biosynthesis.

Unfortunately,	 a	 cursory	 inspection	 revealed	 that
most	 functions	 that	 O104:H4	 lacked	 were	 just	 small,
poorly	understood	 fragments	 of	machines	 involved	 in
drug	 resistance.	 As	 a	 result,	 there	 was	 no	 clear
candidate	for	a	superbug	killer	in	its	genome.

More	Questions	Than	Answers
The	good	news	 is	 that	 anyone	can	access	 the	 tools	 to
analyze	 genomes,	 and	 some	 tools,	 such	 as	 grep,	 awk,
and	 sed,	 are	 already	 familiar	 to	 computer	 engineers.
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The	bad	news	is	that	while	we	can	ask	questions	about
the	genome	with	these	tools,	we’re	still	left	with	more
questions	 than	 answers.	 For	 example,	 antibiotic
resistance	 sounds	 like	a	good	 thing	 for	 the	 survival	of
bacteria,	so	why	don’t	all	bacteria	have	it?	And	how	do
bacteria	go	about	acquiring	(or	losing)	such	genes?

The	 rise	 of	 antibiotic-resistant	 superbugs	 is	 a
product	 of	 our	 love	 of	 antibiotics.	 As	DNA	 in	E.	 coli
copies	at	a	rate	of	about	a	dozen	base	pairs	per	second,
shedding	 even	 a	 single	 unused	 gene	 can	 lend	 a
meaningful	 advantage	 in	 an	 exponential	 growth	 race;
after	 all,	 an	 E.	 coli	 population	 can	 double	 every	 20
minutes	 in	 optimal	 conditions.	 As	 a	 result,	 there	 is
selective	 pressure	 to	 shed	 genes	 that	 aren’t	 necessary
for	 survival.	 The	 genome	 of	 O104:H4	 is	 15	 percent
longer	than	that	of	a	typical	E.	coli	strain,	which	means
that	 after	 seven	 generations,	 a	 typical	 E.	 coli	 strain
would	have	twice	the	population	of	O104:H4.	Within
half	 a	 day	 under	 optimal,	 antibiotic-free	 growth
conditions,	 a	 strain	 of	 E.	 coli	 unburdened	 with
antibiotic	 resistance	 genes	 would	 have	 over	 20	 times
the	 population	 of	 O104:H4.	 Thus,	 a	 bacterium	 that
hangs	 on	 to	 its	 antibiotic	 resistance	 genes	 is	 like	 a
sprinter	wearing	a	bulletproof	vest	to	a	race.	Likewise,
one	 of	 the	 greatest	 natural	 threats	 to	 superbugs	 is	 a
lean,	 fast-replicating	 common	 bug	 that	 can	 edge	 out
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the	superbug	by	sheer	numbers	alone.
However,	bacteriocidal	and	bacteriostatic	antibiotics

kill	 off	 or	 prohibit	 growth	 of	 nonresistant	 bugs,
respectively,	 leaving	 only	 the	 resistant	 bugs	 to	 grow
unhindered.	 Over	 time	 and	 with	 exposure	 to	 several
types	of	antibiotics,	it	stands	to	reason	that	the	resistant
bug	population	would	continue	to	selectively	breed	for
multiple	resistance	genes,	creating	a	superbug.

Still,	I	find	it	astonishing	that	resistant	bugs	seem	to
develop	resistance	genes	so	quickly.	We’re	taught	that
evolution	is	a	slow	process,	so	it	seems	remarkable	that
bacteria	can	serendipitously	evolve	a	suite	of	antibiotic
resistance	genes	totaling	hundreds	of	thousands	of	base
pairs.	New	 genes	 do	 in	 fact	 take	 a	 very	 long	 time	 to
spontaneously	 arise	 (there	 are	 very	 few	 clearly
documented	 cases	 of	 this,	 such	 as	 the	 Long-Term
Evolution	 Experiment	 by	 Richard	 Lenski).	 Instead,
most	 resistance	 genes	 are	 acquired	 from	 the
environment	through	horizontal	gene	transfer.

Our	 environment	 is	 teeming	with	DNA	 fragments.
The	GitHub	of	biology	is	all	around	us,	from	the	dirt
to	the	sea	to	the	air	we	breathe.	Some	DNA	fragments
code	 for	 useful	 traits;	 some	 are	 just	 junk.	 When	 a
bacterium	 is	 under	 stress	 (like	 it	 is	 when	 exposed	 to
antibiotics),	 it	 may	 start	 to	 take	 up	 random	 DNA
fragments	 from	 the	 environment	 and	 manufacture
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proteins	based	off	the	code.	If	it’s	going	to	die	anyway,
it	 might	 as	 well,	 right?	 Most	 of	 the	 time,	 the
incorporated	 DNA	 fragments	 are	 not	 helpful,	 but	 if
one	 lucky	bacterium	picks	up	 the	necessary	 resistance
gene	from	the	environment,	it	can	rapidly	outcompete
others	in	an	antibiotic-laden	environment.

Thus,	while	nonresistant	strains	of	a	bug	will	rapidly
outnumber	 antibiotic-resistant	 strains,	 the	 tiny
remaining	 population	 of	 resistant	 bugs	 (or	 perhaps
even	 their	 lifeless	 bodies	 floating	 about	 in	 the
environment)	form	a	reservoir	of	genetic	material	that
can	be	drafted	in	times	of	stress.	And	since	the	genetic
code	is	interoperable	across	all	species,	resistance	genes
can	even	be	acquired	from	unrelated	organisms.

Discovering	that	the	functions	O104:H4	lacked	were
poorly	 understood	 was	 an	 interesting	 lesson	 in	 itself.
Fiction	 popularizes	 the	 notion	 that	 knowing	 a	 DNA
sequence	is	the	same	as	knowing	what	diseases	or	traits
an	organism	may	have.	But	even	though	we	know	the
sequences	and	general	properties	of	many	proteins,	it’s
much	 harder	 to	 link	 proteins	 to	 a	 specific	 disease	 or
trait.	 At	 some	 point,	 someone	 has	 to	 get	 their	 hands
dirty	 and	 do	 biological	 experiments	 involving	 actual
organisms	 to	 assign	 biological	 significance	 to	 a	 given
protein	family.

Pop	 culture	 references	 to	 DNA	 analysis	 are	 glibly
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unaware	of	this	missing	link	in	the	process,	which	leads
to	 overinflated	 expectations	 for	 genetic	 analysis,
particularly	 in	 its	 utility	 for	 diagnosing	 and	 curing
human	disease	and	applications	in	eugenics.	Let’s	take
a	closer	look	at	some	of	those	myths.

MYTHBUSTING	PERSONALIZED	GENOMICS
We’re	definitely	living	in	The	Future	in	a	lot	of	ways.
For	 instance,	 we	 have	 electric	 cars!	 But	 Hollywood
reels	 from	the	 ’60s	and	 ’70s	also	predicted	 that	 I’d	be
using	a	flying	car	to	get	around	town	by	now,	not	just
an	 electric	 car	 on	 the	 ground.	Of	 course,	 automotive
technology	isn’t	the	only	victim	of	Hollywood	hype.

The	 potential	 impact	 of	 personalized	 genomics	 is
greatly	 overstated	 in	 movies	 like	 GATTACA,	 which
create	 a	myth	 that	 your	 genome	 is	 like	 a	 crystal	 ball,
and	somehow	your	fate	is	predestined	by	your	genetic
programming.	 The	 perlfriend	 I	 mentioned	 earlier
coauthored	 a	 paper	 in	Nature*	 examining	 23andMe’s
direct-to-consumer	 (DTC)	 personal	 genomics
offerings.	 Let’s	 have	 a	 look	 at	 her	 paper,	 and	 let	 the
mythbusting	begin!

Myth:	Having	Your	Genome	Read	Is	Like
Hex-Dumping	the	ROM	of	Your	Computer
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An	 inexpensive	 technique	 to	 look	 at	 parts	 of	 the
genome	 is	 called	 genotyping.	 Here,	 a	 selective	 diff	 is
done	 between	 your	 genome	 and	 a	 reference	 human
genome;	 in	 other	 words,	 your	 genome	 is	 simply
sampled	in	potentially	interesting	spots	for	single-point
mutations	 called	 single	 nucleotide	 polymorphisms	 (SNPs,
pronounced	 “snips”).	 The	 concept	 of	 genotyping
naturally	 leads	 to	 two	 questions.	 First,	 how	 do	 you
decide	which	SNPs	are	interesting	enough	to	sample?
And	second,	how	do	you	know	the	reference	genome	is
an	accurate	comparison	point?	This	 sets	up	 two	more
busted	myths.

Myth:	We	Know	Which	Mutations	Predict
Disease
Some	 mutations	 in	 the	 human	 genome	 simply
correlate	 with	 disease;	 they	 are	 not	 proven	 to	 be
predictive	 or	 causal.	 In	 truth,	 we	 really	 don’t
understand	 why	 many	 genetic	 diseases	 happen.	 For
poorly	 understood	 diseases,	 all	 we	 can	 say	 is	 that
people	 who	 have	 a	 particular	 disease	 tend	 to	 have	 a
certain	pattern	of	SNPs.	It’s	 important	not	to	confuse
causality	with	correlation.

Thus,	 while	 scientists	 can	 make	 predictions	 about
diseases	based	on	SNPs,	most	of	those	predictions	are
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correlative,	 not	 causative	 (and	 weakly	 correlative,	 at
that).	As	a	result,	a	genotype	should	not	be	considered
a	crystal	ball	for	predicting	your	disease	future.	Rather,
it’s	closer	to	a	Rorschach	blot	 that	you	have	to	squint
and	 stare	 at	 for	 a	 while	 before	 you	 can	 say	 what	 it
means.	For	instance,	in	the	paper	my	perlfriend	wrote,
she	 found	 that	 companies	 often	 didn’t	 match	 up	 on
their	 predictions	 for	 disease	 risk	 because	 they
interpreted	mutation	meanings	differently.

Myth:	The	Reference	Genome	Is	an
Accurate	Reference
The	word	 reference	 in	 reference	 genome	 should	 tip	 you
off	 on	 a	 problem:	 it	 implies	 there	 are	 “reference
people.”	Ultimately,	 just	a	handful	of	 individuals	were
sequenced	 to	 create	 today’s	 reference	 genome,	 and
most	of	 them	are	of	European	ancestry.	As	 time	goes
on	and	more	full-sequence	genetic	data	is	collected,	the
reference	 genome	 will	 be	 merged	 and	 massaged	 to
present	 a	more	 accurate	 picture	 of	 the	 overall	 human
race,	 but	 for	 now,	 it’s	 important	 to	 remember	 that	 a
genotype	 study	 is	 a	diff	 against	 a	 source	 repository	of
questionable	universal	validity.

For	example,	some	SNPs	have	different	frequencies
in	different	populations.	The	base	A	might	dominate	in
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a	European	population,	but	at	that	same	position	in	an
African	 population,	 the	 base	 G	 could	 dominate.	 It’s
also	important	to	remember	that	the	reference	genome
has	an	aggregate	error	rate	of	about	1	error	 in	10,000
base	 pairs,	 although	 to	 be	 fair,	 the	 process	 of
discovering	 a	 disease	 variant	 usually	 cleans	 up	 any
errors	 in	 the	 reference	 genome	 for	 the	 relevant
sequence	regions.

It	 will	 be	 decades	 before	 we	 have	 a	 full
understanding	of	what	all	the	sequences	in	the	human
genome	mean,	 and	 even	 then,	 they	may	 not	 be	 truly
predictive	 of	 disease	 risk	 or	 anything	 else	 about	 our
health.	Here	lies	perhaps	the	most	important	message,
and	 a	 point	 I	 can’t	 stress	 enough:	 in	most	 situations,
environment	 has	more	 to	 do	with	who	 you	 are,	what
you	will	become,	and	what	diseases	you	will	have	than
your	genes	do.	Any	upside	to	personal	genomics	won’t
be	due	to	crystal-ball	predictions,	but	rather	to	the	fact
that	 knowing	 about	 their	 own	 genetic	 predispositions
may	encourage	more	people	to	make	 lifestyle	changes
that	 will	 help	 them	 stay	 healthy.	 If	 there’s	 one	 thing
I’ve	learned	from	dating	a	preeminent	bioinformaticist,
it’s	that	no	matter	your	genetic	makeup,	most	common
diseases	can	be	prevented	or	delayed	with	proper	diet
and	exercise.
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PATCHING	A	GENOME
So	 far	 in	 this	 chapter,	 I’ve	 given	 examples	 of
sequencing	 and	 analyzing	 genomes.	 That’s	 more	 or
less	 the	 equivalent	 of	 being	 able	 to	 dump	 a	 program
executable	and	analyze	it	in	IDA.	Oftentimes,	after	you
analyze	 an	 executable,	 you’ll	 want	 to	 patch	 it	 to	 do
something	 new.	 Patching	 software	 is	 relatively
straightforward	 and	 reliable:	 just	 fire	 up	 a	 hex	 editor
and	change	the	file.	In	the	worst	case,	you	might	have
to	 use	 a	 focused	 ion	 beam	 (FIB)	 to	 modify	 the
individual	wires	of	a	mask	ROM	inside	a	chip.

But	 historically,	 the	 ability	 to	 patch	 a	 genome	 has
been	severely	 limited.	Information	 in	cells	 is	stored	at
the	molecular	level,	and	changing	a	specific	portion	of
a	 gene	 can	 be	 a	 painstaking	 process.	 Just	 as	 vacuum
tubes	 and	 transistors	 came	 before	 the	 integrated
circuit,	zinc	finger	nucleases	(ZFNs)	and	transcription
activator-like	 effector	 nucleases	 (TALENs)	 enabled
gene	editing,	but	with	significant	caveats	in	efficiency,
performance,	 and	 ultimately,	 cost.	 In	 2012,	 the
integrated	 circuit	 of	 gene	 editing	was	 introduced:	 the
CRISPR/Cas*	system.

CRISPRs	in	Bacteria
CRISPR,	 short	 for	 clustered	 regularly	 interspaced	 short
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palindromic	 repeat,	 describes	 a	 particular	 RNA
structure,	 while	 Cas	 are	 proteins	 that	 associate	 with
CRISPRs.	 CRISPRs	 are,	 as	 far	 as	 biologists	 know,
common	 only	 in	 bacteria	 and	 archaea	 (for	 example,
fungi),	and	they’re	part	of	a	devilishly	clever	system	for
immunity	 in	 simple	organisms.	Like	humans,	bacteria
have	 immune	 systems	 that	 can	 be	 programmed
through	 exposure	 to	 pathogens.	 When	 bacteria
encounter	 a	 viral	 invader,	 they	have	proteins	 that	 can
snip	out	short	sequences	of	the	viral	DNA	and	archive
the	sequences	as	spacers	in	a	CRISPR.

Labs	 that	 failed	 for	 months	 to	 edit	 a	 gene	 using
TALENs	switched	 to	CRISPR/Cas	and	 succeeded	on
the	 first	 try.	 They	 succeeded	 so	 quickly	 because	 the
process	just	involves	designing	a	short	snippet	of	RNA
that’s	 inserted	 into	 a	 CRISPR,	 a	 simple	 exercise	 that
can	 be	 done	 entirely	 on	 a	 computer	 or,	 I	 daresay,	 by
hand.	 The	 RNA	 snippet	 itself	 can	 be	 fabricated	 in
about	 a	 week	 for	 less	 than	 $50	 using	 one	 of	 several
service	providers,	replacing	a	significant	amount	of	wet
lab	complexity	with	an	informatics	exercise.

Each	CRISPR	region	is	tagged	by	a	leader	sequence,
immediately	 followed	 by	 the	 CRISPR	 proper.	 A
CRISPR	 itself	 consists	 of	 a	 guide	 RNA	 (gRNA)	 or
“spacer”	 sequence	 delimited	 by	 a	 well-defined	 DNA
direct	repeat	sequence	that	is	palindromic.
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NOTE

The	term	spacer	is	used	when	discussing	an	immune
system,	while	guide	RNA	is	used	when	discussing
genome	editing.	Calling	a	region	of	interest	a	spacer	is
confusing,	but	misnomers	can	happen	with	reverse
engineering.	I	can’t	blame	scientists	for	first	noticing	a
pattern	of	repeating	delimiters	and	calling	the	stuff
between	the	delimiters	“spacers.”	After	all,	physicists	got
the	current	flow	convention	backward	and	stuck	with	it.
Who	are	we	to	judge?

Palindromic	 typically	 means	 that	 a	 string	 is
equivalent	when	simply	reversed,	like	the	word	racecar.
When	biologists	say	a	sequence	is	“palindromic,”	they
mean	 the	 sequence	 is	 equivalent	 when	 first
complemented	 (A→T,	T→A,	G→C,	C→G)	and	then
reversed.	 For	 instance,	 GAATTC	 is	 considered
biologically	palindromic,	even	though	it	is	not	lexically
palindromic.

The	CRISPR/Cas	system	was	described	shortly	after
the	demise	of	Chumby,	and	at	the	time,	I	was	interning
at	Dr.	Swaine	Chen’s	 infectious	diseases	 laboratory	at
the	 Genome	 Institute	 of	 Singapore.	 Among	 other
things,	 I	 studied	 various	 strains	 of	E.	 coli	 that	 induce
urinary	tract	infection,	under	the	guidance	of	Lu	Ting
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Liow.	While	assisting	an	investigation	into	portions	of
phage	virus	DNA	that	found	its	way	into	E.	coli,	 I	was
asked	 to	 write	 a	 script	 to	 identify	 palindromic	 and
repeating	sequences	of	DNA	in	the	E.	coli	genome.	My
script	 showed	 that	 the	 genome	 was	 littered	 with	 the
sequences;	 I	 figured	 the	 code	 had	 a	 bug	 and	 didn’t
think	 much	 of	 the	 result.	 But	 perhaps	 some	 of	 the
direct	repeats	I	saw	were	portions	of	a	CRISPR.

Let’s	look	at	a	CRISPR	from	a	strain	of	E.	coli	now.
This	 is	 the	CRISPR	direct	 repeat	 sequence	 for	E.	 coli
O104:H4:

GAGTTCCCCGCGCCAGCGGGGATAAACCG

The	bolded	base	 pairs	 are	 the	 palindromic	 regions.
When	 this	DNA	sequence	 is	 translated	 into	RNA	 (so
that	T→U),	the	palindromic	region	can	pair	with	itself,
forming	a	hairpin	or	stem	loop,	as	shown	here.
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A	stem	loop

This	 shape	hints	 at	 the	 significance	of	 the	 repeated
palindromic	 structures	 in	 a	CRISPR:	when	 translated
into	RNA,	the	sequence	can	fold	onto	itself,	forming	a
secondary	 structure.	 It’s	 important	 to	 remember	 that
genes	 are	 not	 just	 lines	 of	 code;	 they	 are	 physical
molecules	 whose	 overall	 shape	 significantly	 impacts
their	 function.	 Biologists	 use	 a	 four-tier	 system	 for
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describing	 the	 physical	 structure	 that	 molecules	 like
DNA,	 RNA,	 and	 proteins	 can	 take	 based	 on	 their
source	code.	Primary	structure	 is	 simply	 the	sequence
of	monomers	(bases	or	amino	acids).	Secondary	structure
refers	 to	 physical	 shapes	 that	 arise	 from	 the	 localized
interactions	 of	 monomers,	 due	 to	 physical	 properties
such	 as	 the	 spacing	 and	 number	 of	 hydrogen	 bonds
between	molecules,	or	the	affinity	of	certain	monomers
for	 water.	 In	 RNA	 and	 DNA,	 that	 means	 structures
like	hairpin	loops;	 in	proteins,	 it	means	structures	 like
spirals	 and	 sheets.	 Tertiary	 structure	 refers	 to	 the
complex	3D	shape	of	a	molecule	that	arises	from	long-
distance	 interactions	 between	 potentially	 remote
portions	of	the	primary	sequence.	Tertiary	structure	is
particularly	 applicable	 to	 proteins,	 as	 some	 amino
acids,	 such	 as	 cysteine,	 can	 cross-link	with	 each	other
over	 longer	 distances.	 Quaternary	 structure	 refers	 to
structures	 formed	 from	 the	 interaction	 of	 multiple
molecules.	 A	 Cas9/RNA	 complex	 is	 an	 example	 of	 a
quaternary	 structure.	The	 final,	 chemically	 active	 and
targeted	molecule	 arises	 only	 when	 a	Cas9	 protein	 is
merged	 with	 a	 gRNA,	 and	 the	 stem	 loop	 secondary
structure	 of	 the	 gRNA	 is	 necessary	 for	 Cas9	 to
recognize	it.

Determining	Where	to	Cut	a	Gene
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RNA	 derived	 from	 a	 CRISPR	 region	 through
transcription	 is	 incorporated	 into	 a	 protein	 complex
with	other	Cas	proteins.	Specific	Cas	proteins	(such	as
Cas9)	use	 the	RNA	as	 a	 search-and-destroy	 template:
the	 Cas9/RNA	 complexes	 float	 around	 the	 cell,	 and
when	 they	 find	 a	 DNA	 sequence	 that	 matches	 the
RNA	 template,	 they	 selectively	 cut	 the	 DNA	 at	 the
template	 site,	 effectively	 neutralizing	 the	 intruding
virus.	But	you	may	have	noticed	a	 recursion	problem:
the	 Cas9/RNA	 complex	 should	 also	 cut	 up	 the
CRISPR	region	in	the	host	organism’s	genome,	as	that
region	 also	 has	 the	 target	 pattern.	 This	 would
effectively	destroy	the	CRISPR	region	for	future	use.

To	 avoid	 destroying	 the	 CRISPR	 region,	 the
Cas9/RNA	complex	 targets	 the	 template	DNA	plus	 a
short,	defined	three-to-five	base	pair	sequence	called	a
proto-space	adjacent	motif	(PAM).	For	example,	the	PAM
for	 a	 popular	 Cas9	 protein	 from	 S.	 pyogenes	 is
[AGTC]GG	 when	 written	 in	 regular	 expression
format;	biologists	use	a	different	convention,	NGG,	to
say	 the	 same	 thing.	 As	 long	 as	 the	 CRISPR	 archive
doesn’t	 include	the	PAM	sequence,	it	won’t	be	cut	up
by	the	complex.

The	 PAM	 requirement	 means	 there	 are	 some
limitations	on	where	you	can	cut	a	gene.	It’s	a	bit	like
targeting	 only	 hex	 strings	 that	 end	 in	 0xC3	 or
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searching	 for	 return-oriented	 programming	 (ROP)
gadgets.	 Just	 as	 hackers	 searching	 for	 ROP	 gadgets
look	 for	 short	 sequences	 of	 instructions	 that	 end	 in	 a
RET	opcode,	bioinformaticists	have	to	search	for	short
sequences	of	DNA	to	edit	that	end	in	a	PAM.

Despite	 these	 limitations,	 CRISPR/Cas	 has	 proven
to	 be	 a	 versatile	 and	 reliable	 gene-editing	 tool.	 It	 has
been	 adapted	 to	 both	 cut	 genes	 and	 paste	 in	 new
sequences.	Making	a	precise	cut	at	an	arbitrary	location
in	DNA	is	the	hardest	step	of	inserting	new	DNA.	But
in	 conjunction	with	well-studied	 techniques	 like	 non-
homologous	 end	 joining	 (NHEJ)	 or	 homology-
directed	 repair	 (HDR),	 CRISPR/Cas	 can	 be	 used	 to
insert	modifications	into	a	gene.

Implications	for	Engineering	Humans
Even	 though	 CRISPR/Cas	 is	 a	 naturally	 occurring
system	 found	 in	 bacteria	 and	 fungi,	 the	 universal
genetic	 code	 means	 the	 system	 is	 binary-compatible
with	all	 species,	 including	humans.	Before	 this	 system
was	discovered,	genes	were	largely	read-only,	especially
in	 living	 organisms.	 CRISPR/Cas	 gives	 us	 a	 much
more	 reliable	 and	 efficient	 tool	 to	 patch	 and	 repair
genes,	 without	 necessarily	 disrupting	 the	 viability	 of
the	 host	 organism.	 Biologists	 have	 managed	 to	 pack
the	 necessary	 DNA	 for	 a	 CRISPR/Cas	 exploit	 into
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viruses,	 enabling	 them	 to	 sneak	 these	 gene-editing
tools	through	the	cell	walls	of	live,	complex	organisms
like	 mice,	 plants,	 and	 humans.	 The	 structure	 of	 a
CRISPR	also	allows	scientists	to	perform	multiple	edits
in	a	single	experiment,	expanding	the	experimental	and
therapeutic	versatility	of	the	technique.

This	 technology	 has	 already	 been	 validated	 on
human	 cells,	 even	 human	 embryos,	 and	 the
implications	 are	 simply	 mind-boggling.	 Regardless	 of
ethical	 standards	 set	 by	 the	 scientific	 and	 legal
communities	 in	your	country	of	residence,	I	 think	the
promise	 of	 custom-designed	 children,	 free	 of	 genetic
diseases	 that	 once	 plagued	 parents,	 is	 too	 strong	 a
temptation.	 Even	 if	 most	 countries	 banned	 such	 a
practice,	I	feel	it’s	inevitable	that	someone,	somewhere,
perhaps	funded	by	a	wealthy	billionaire	unable	to	have
viable	 children	 of	 their	 own,	 will	 start	 tinkering	 with
custom-engineered	humans.	If	the	results	are	positive,
it	 will	 likely	 change	 the	 course	 of	 humanity	 more
profoundly	 than	 Moore’s	 law.	 And	 that’s	 if	 a
mechanism	called	gene	drive	doesn’t	get	there	first.

Hacking	Evolution	with	Gene	Drive
Gene	 drive	 rewrites	 the	 rules	 of	 sexual	 reproduction
and,	 consequently,	 evolution	 in	 a	 way	 previously
unseen	 in	nature.	You	might	know	 that	you	have	 two
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copies	 of	 every	 gene:	 one	 from	 your	mother	 and	 one
from	 your	 father.	Each	 copy	 is	 an	 allele.	 If	 the	 alleles
match,	you’re	said	to	be	homozygous	for	that	gene.	If	the
alleles	 are	 different,	 you’re	 heterozygous	 for	 it.
Normally,	which	allele	a	child	gets	from	each	parent	is
a	 coin	 toss,	 and	 the	 fitness	 of	 a	 child	 in	 a	 given
environment	is	the	primary	deciding	factor	for	passing
a	set	of	alleles	on	to	a	new	generation.

Gene	drive	eliminates	this	coin	toss.	Environmental
selection	 is	 short-circuited,	 allowing	 genes	 with
potentially	negative	side	effects	to	propagate	rapidly	in
a	 population.	 This	 exploit	 is	 made	 possible	 by
outfitting	 the	 desired	 allele	 with	 a	 CRISPR/Cas-
assisted	 gene-editing	 mechanism	 that	 targets	 and
converts	 a	 heterozygous	 allele	 into	 a	 homozygous
allele.	 For	 example,	 if	 a	 mother	 has	 a	 gene	 outfitted
with	a	CRISPR/Cas-assisted	gene	drive	mechanism,	 it
doesn’t	matter	what	 the	 father’s	 genes	 are.	 Inside	 the
child,	the	mother’s	copy	will	express	the	CRISPR/Cas
editing	mechanisms,	seeking	out	the	father’s	copy	and
editing	it	to	be	the	same	as	the	mother’s.

In	terms	of	disruptive	power,	 if	CRISPR/Cas	 is	 the
rm	 command,	 then	 gene	 drive	 is	 like	 calling	 rm
 -r
 *
instead.

This	 has	 a	 profound	 effect	 on	 natural	 selection.
Forget	survival	of	the	fittest;	changes	no	longer	have	to
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strictly	benefit	an	organism’s	fitness	to	spread	through
the	population.	Furthermore,	gene-driven	changes	can
sweep	 through	 a	 natural	 population	 at	 an	 exponential
rate	(much	faster	than	typical	mutations)	because	they
don’t	 rely	 on	 coin	 tosses	 and	 natural	 selection	 to
amplify	a	mutation.

On	 the	 upside,	 gene	 drive	 could	 be	 used	 to	 force
good	 changes	 into	 the	 world,	 like	 malaria-free
mosquitoes.	 On	 the	 downside,	 this	 new	 mechanism,
previously	 unseen	 in	 nature,	 could	 wreck	 havoc	 on
evolution	 and	 the	 ecosystem.	 Although	 our	 changes
could	be	well	engineered	and	well	 intentioned,	nature
likes	 to	 shake	 things	 up	 through	 mutations,
spontaneous	 rearrangements,	 and	 horizontal	 gene
transfer.	 If	 a	 gene-driven	 organism	 were	 to	 pick	 up
extra	 genes	 in	 the	payload	 region,	 the	outcome	 could
be	unpredictable.

For	instance,	malaria-free	mosquitoes	would	benefit
humans,	 but	mosquitoes	 also	 play	 a	 large	 role	 in	 the
Earth’s	ecosystem	as	a	food	source	for	fish	and	birds.	If
modified	mosquitoes	 failed	 to	 thrive	and	occupy	 their
ecological	 niche,	 there	 could	 be	 a	 domino	 effect	 that
hurts	 other	 species.	 This	 could	 all	 happen	 on	 a
timescale	so	short	that	we	may	not	be	able	to	reverse	it
if	 we	 tried.	 Furthermore,	 organisms	 like	 mosquitoes
don’t	recognize	geopolitical	boundaries.	Thus,	banning

559



gene	drive	 in	most	of	 the	world	doesn’t	make	anyone
safe	 from	 its	 potential	 consequences.	 If	 just	 one	well-
engineered	organism	makes	 it	 into	 the	wild,	everyone
has	to	deal	with	it.

Perhaps	 it’s	 no	mistake	 that	CRISPR/Cas	has	been
found	only	in	bacteria	and	archaea—organisms	that	are
known	 to	 reproduce	 asexually.	 Perhaps	 the	 ability	 to
short-circuit	 the	 fitness	 requirement	 in	 sexual
reproduction	rapidly	degrades	the	overall	fitness	of	any
germ	line	carrying	a	CRISPR/Cas	mutation	so	that	the
line	goes	 extinct	before	 it	 can	 take	over	 a	population.
After	all,	any	accidental	genes	or	spontaneous	mutation
that	 finds	 its	 way	 into	 a	CRISPR/Cas	 payload	 would
also	 sweep	 through	 the	 population	 as	 quickly	 as	 the
initial	drive.

The	question,	then,	is	how	long	does	it	take	for	this
degradation	and	extinction	to	happen?	The	example	of
eradicating	malaria	vectors	would	have	a	very	different
outcome	 if	 the	 modified	 mosquitoes	 went	 extinct
within	a	few	years	versus	several	millennia.

CLOSING	THOUGHTS
Clearly,	there	are	a	lot	of	unanswered	questions	on	the
frontier	 of	 biological	 engineering,	 and	 it’s	 all
happening	 right	 now.	 Whether	 good	 or	 bad,	 the
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outcome	 of	 today’s	 experiments	 will	 probably	 affect
humanity	 as	 profoundly	 as	 Moore’s	 law	 and	 the
internet.	 Electronic	 technology	 reshaped	 the	 way	 we
think	 and	 communicate,	 and	biotech	will	 reshape	our
bodies	and	our	environment.	The	big	difference	is	that
in	 biotech,	 we	 haven’t	 developed	 the	 ability	 to	 do
backups,	 but	 we	 are	 developing	 technology	 with	 the
potential	power	of	the	rm
-r
*	command.

Personally,	I’m	optimistic;	I	think	these	technologies
can	and	will	be	used	to	improve	our	lives.	But	for	that
to	happen,	we	need	society	to	understand	the	issues	at
stake	 and	 have	 a	 vigorous	 and	 open	 debate.	 Even	 if
these	biological	techniques	have	scary	implications	for
our	 health	 and	 safety,	 failing	 to	 disclose	 and	 discuss
vulnerabilities	just	invites	zero-days.	And	who	wants	to
wake	up	one	morning	infected	with	crippling	malware
and	no	viable	patch?

Hardware	 breakthroughs	 have	 changed	 our	 lives	 as
we	 know	 it,	 but	 Moore’s	 law	 is	 slowing	 down,	 and
DNA	 sequencing	 has	 outpaced	 it.	 Who	 knows	 what
new	world	will	be	created	by	advancements	in	biotech?
And	 just	 as	 society	 benefits	 from	 the	 responsible
disclosure	 and	 sharing	 of	 vulnerabilities	 and	 exploits,
engaging	 in	 scientific	 discourse	 is	 more	 constructive
than	 attempting	 to	 censor	 it.	 Perhaps	 the	 experience
and	 perspectives	 gained	 in	 maturing	 the	 hardware
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industry	over	the	past	50	years	from	pocket	calculators
into	pocket	supercomputers	can	help	guide	biotech	to	a
similarly	positive	outcome.

562



11.	selected	interviews

I’ve	 done	 several	 interviews	 over	 the	 years,	 and	 this
chapter	 compiles	 a	 couple	 that	 I	 thought	 you	 might
enjoy.	The	 first	 interview	was	 originally	 published	by
the	China	 Software	 Developer	 Network	 (CSDN),	 which
describes	 itself	 as	 a	 “programmer	 magazine.”	 At	 the
end,	you’ll	find	a	story	from	the	Blueprint,	a	collection
of	 interviews	 with	 founders	 and	 innovators	 in
hardware.

ANDREW	“BUNNIE”	HUANG:	HARDWARE
HACKER	(CSDN)
This	 interview	 originally	 appeared	 in	 CSDN	 in
Chinese	in	2013,	and	the	magazine	kindly	allowed	me
to	 publish	 an	 English	 translation	 on	my	 blog.	 In	 the
first	 section,	 I	 discussed	 my	 thoughts	 on	 the	 maker
movement,	which	was	 relatively	 new	 at	 the	 time,	 and
my	 experience	 with	 making	 hardware	 products.	 The
second	section	was	more	about	hardware	hacking	and
what	 I	 feel	 it	means	 to	 have	 a	 hacker	 spirit.	 You	 can
find	 the	 original	 Chinese-language	 version	 at
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http://www.csdn.net/article/2013-07-03/2816095.

About	Open	Hardware	and	the	Maker
Movement

The	 maker	 and	 open	 hardware	 movements	 have
attracted	 a	 lot	 of	 attention.	 Chris	 Anderson	 wrote	 a
book	 called	 Makers,	 and	 Paul	 Graham	 called	 this
time	the	“Hardware	Renaissance.”	How	do	you	think
this	movement	will	affect	ordinary	people,	developers,
and	our	IT	industry?

This	 movement,	 as	 it	 may	 be,	 is	 more	 a	 symptom
than	a	cause,	in	my	opinion.	First,	let’s	review	how	we
got	to	this	point.

In	 1960,	 there	 was	 only	 hardware,	 and	 it	 was	 all
open.	 When	 you	 bought	 a	 transistor	 radio,	 it	 had	 a
schematic	printed	 in	 the	back.	 If	 the	radio	broke,	you
had	to	fix	it	yourself.	It	was	popular	to	buy	kits	to	make
your	own	radios.

Between	 1980	 and	 1990,	 the	 personal	 computer
revolution	 began.	 Computers	 started	 to	 become
powerful	 enough	 to	 run	 software	 that	was	 interesting
and	enabling.

From	1990	to	2005,	Moore’s	law	drove	computers	to
be	twice	as	fast	and	have	twice	as	much	memory	every
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1.5	to	2	years.	Only	software	mattered,	because	unless
you	could	afford	to	fab	a	chip	in	the	latest	technology,
making	hardware	wasn’t	worth	it.	By	the	time	you	got
the	components	together,	a	new	chip	would	make	your
design	 look	 slow.	 Optimizing	 software	 also	 mattered
less	 than	 features,	 convenience,	 and	 creativity.	 Users
could	 just	buy	a	 faster	computer	and	run	old	software
faster.	 “Making”	 fell	out	of	 fashion	because	 there	was
no	time	for	it:	you	had	to	ship	code	or	die.

From	 2005	 to	 2010,	 computers	 didn’t	 get	 much
faster	 in	 terms	 of	 clock	 speed,	 but	 they	 got	 smaller.
Smartphones	 were	 born.	 Everything	 became	 an	 app,
and	everything	is	still	becoming	more	connected.

From	 about	 2010	 to	 now,	 Moore’s	 law	 has	 been
slowing	down.	This	 slowdown	 is	 rippling	 through	the
innovation	 chain.	 PCs	 aren’t	 getting	 faster,	 better,	 or
cheaper	in	a	meaningful	way.	We	buy	new	PCs	just	to
replace	broken	ones,	not	because	the	latest	model	is	so
much	better.	It’s	too	early	to	tell,	but	smartphones	may
also	be	solidifying	as	a	platform:	the	iPhone	5	is	quite
similar	to	the	iPhone	4,	and	Samsung	phones	also	look
pretty	similar	across	revisions.

The	 question,	 then,	 is	 how	 to	 innovate?	 How	 can
you	 create	 market	 differentiation?	With	Moore’s	 law
slowing	down,	it’s	possible	to	innovate	in	hardware	and
not	have	your	innovation	look	slow	because	a	new	chip
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came	 out.	 You	 have	 steady	 platforms	 (PCs,
smartphones,	 tablets)	 that	 you	 can	 target	 your
hardware	ideas	toward.	You	don’t	have	to	fab	chips	just
to	have	an	advantage.	Everyone	is	now	sifting	through
technology’s	 past,	 looking	 for	 niches	 that	 were
overlooked.	 Even	 an	 outdated	 smartphone
motherboard	 looks	 amazing	 when	 you	 put	 it	 in	 a
quadcopter,	 satellite,	 HVAC	 system,	 automobile,
energy	monitoring	 system,	 health	monitoring	 system,
and	so	on.

Furthermore,	 as	 humans,	 we	 fundamentally	 feel
differently	 toward	 physical	 things	 and	 virtual	 things.
Apps	are	wonderful,	but	human	homes	are	more	than	a
smartphone,	a	food	tray,	a	bed,	and	a	toilet.	People	still
surround	 themselves	 with	 knickknacks,	 photos	 of
friends,	 and	 physical	 gifts	 from	 special	 occasions.	 I
don’t	 think	 there	 will	 ever	 be	 a	 time	 when	 a	 virtual
teddy	bear	 app	will	 displace	 a	 physical	 teddy	bear	 for
cuddling	at	night.

As	a	result,	there	will	always	be	a	place	for	people	to
make	hardware	 that	 fills	 this	need	 for	 tangible	goods.
This	 hardware	 will	 merge	 more	 technology	 and	 run
more	 software,	 but	 in	 the	 end,	 there	 is	 a	 space	 for
makers	 and	 hardware	 startups,	 and	 that	 space	 is	 just
getting	 bigger	 now	 that	 hardware	 technology	 is
stabilizing.
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Arduino	 and	 Raspberry	 Pi	 seem	 to	 reduce	 the
threshold	 for	designing	hardware.	How	do	 you	 think
this	will	 affect	 the	 hardware	 industry?	Do	 you	 think
these	platforms	will	progress	the	industry	by	leaps	and
bounds?	 If	 not,	 what	 does	 it	 take	 to	 make	 a	 really
innovative	hardware	product?

Arduino	and	Raspberry	Pi	serve	specific	market	niches.
Arduino’s	key	contribution	is	reducing	computation

to	an	easy-to-use	physical	 form.	 It	was	made	 first	and
foremost	 by	 designers	 and	 artists,	 and	 less	 so	 by
technologists.	 This	 unique	 perspective	 on	 technology
is	 very	 powerful	 because	 people	 who	 aren’t
programmers	 or	 hardware	 designers	 want	 to	 access
hardware	 technology,	 too.	 Some	 very	 moving,	 deep
interactive	 art	 pieces	 have	 been	 made	 using	 the
Arduino,	 allowing	 hardware	 to	 transform	 menial
control	 applications	 into	 artwork	 that	 changes	 your
mood	or	makes	you	think	about	life	differently.	I	think
Arduino	 is	 just	 the	 first	 step	 toward	 taking	 the	“tech”
out	of	technology	and	letting	everyday	people	not	just
use	technology	but	create	with	it.	There	will	be	other
platforms,	for	sure.

Raspberry	 Pi	 is	 a	 very	 inexpensive	 embedded
hardware	 reference	 module,	 and	 I	 think	 other
platforms	will	follow	in	its	footsteps.	It’s	cheap	enough
that	for	many	applications,	you	can	use	the	Raspberry
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Pi	 as	 is	 and	 gain	 no	 net	 cost	 advantage	 by	 designing
and	 building	 your	 own	 hardware.	 For	 hardware
professionals,	the	nice	thing	about	this	platform	is	that
instead	of	buying	a	reference	design	and	then	having	to
spin	your	own	board,	you	can	just	buy	the	Raspberry	Pi
and	 ship	 it	 in	 your	 product.	 For	 people	 who	 have
relatively	low-volume	products,	this	makes	sense.

I	 see	 an	 ongoing	 trend	 toward	 product	 design
becoming	more	feasible	at	low	volumes.	There’s	still	a
market	 for	 million-unit	 blockbuster	 devices	 like
smartphones	 and	 coffeemakers,	 but	 eventually,	 there
will	 also	 be	 a	 market	 for	 devices	 that	 only	 have	 a
production	 run	 of	 1,000	 to	 10,000	 units,	 but	 with	 a
much	higher	margin.	These	small-run	products	will	be
developed	and	sold	by	teams	of	just	one	or	two	people
so	 that	 the	 profit	 will	 still	 be	 a	 good	 living	 for	 the
individuals.	The	key	to	the	success	for	these	products	is
that	 they	 are	 highly	 customized	 and	 help	 solve	 a
specific	 problem	 for	 a	 small	 group	 of	 users	 who	 are
willing	to	pay	more	for	the	solution.

When	new	 concepts	 or	 technologies	 first	 appear,	 they
always	 generate	 optimistic	 discussion,	 but	 most	 of
them	 will	 really	 affect	 our	 lives	 only	 after	 a	 long
period	 of	 development.	 When	 discussing	 the	 maker
and	open	hardware	movements,	are	we	too	optimistic?
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Does	 the	 average	 person	 have	 common
misunderstandings	about	this	field?

Yes,	 it	 does	 take	 a	 long	 time	 for	 technology	 to	 really
change	our	lives.

The	 maker	 movement,	 I	 think,	 is	 less	 about
developing	 products	 and	 more	 about	 developing
people.	 It’s	 about	 helping	 people	 realize	 that	 because
technology	 is	man-made,	 every	 person	 has	 the	 power
to	control	it	with	a	little	knowledge.	There	is	no	magic
in	technology.	You	could	also	say	that	anyone	can	be	a
magician	with	a	little	training.

Open	hardware	is	more	of	a	philosophy.	The	success
or	 failure	 of	 a	 product	 is	 largely	 disconnected	 from
whether	 the	 hardware	 is	 open	 or	 closed.	 Closing
hardware	doesn’t	stop	people	from	cloning	or	copying,
and	opening	hardware	doesn’t	mean	that	bad	ideas	will
be	 copied	 simply	 because	 they	 are	 open.	 Unlike
software,	 hardware	 requires	 a	 supply	 chain,
distribution,	and	a	network	of	relationships	to	build	it
at	 a	 low	 cost.	 That	 overhead	 means	 being	 open	 or
closed	 is	 only	 a	 small	 part	 of	 the	 equation,	 and	 the
question	of	whether	to	open	or	close	a	project	revolves
around	 how	 much	 you	 want	 to	 involve	 end	 users	 or
third	 parties	 to	 modify	 or	 interoperate	 with	 your
product.
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Looking	at	the	future	of	open	source	hardware,	do	you
think	it	will	be	analogous	to	the	open	source	software
industry,	 where	 many	 commercial	 companies	 also
support	open	source	software?	What	are	the	differences
between	them?

I	don’t	 think	 they’re	quite	analogous.	 In	software,	 the
cost	to	copy,	modify,	and	distribute	is	basically	zero.	I
can	 clone	 a	 copy	 of	 the	Linux	 source	 repository,	 run
the	 make	 command,	 and	 have	 the	 same	 high-quality
kernel	 running	 on	 my	 desktop	 that	 runs	 on	 top-end
servers	and	supercomputers.

But	copying	hardware	has	a	real	cost:	 the	parts,	 the
factories,	 and	 the	 skilled	workers	 used	 to	 build	 them;
the	quality	control	procedures;	and	the	manufacturing
process	are	all	 important	 factors	 in	 the	 final	product’s
cost,	 look,	 feel,	 and	 performance.	 Simply	 giving
someone	a	copy	of	my	schematics	and	drawings	doesn’t
mean	they	can	make	my	exact	product.	Even	injection
molding	has	art	to	it.	If	I	give	the	same	CAD	drawing
to	 two	 tooling	 makers,	 the	 outcome	 could	 be	 very
different	depending	on	where	the	mold	maker	decides
to	place	the	gates,	the	ejector	pins,	the	cooling	for	the
mold,	the	mold	cycle	time,	temperature,	and	so	on.

And	 then	 you	 have	 to	 think	 about	 the	 distribution
channel,	reverse	logistics,	financing,	and	so	on.	Even	as
the	 world	 becomes	 more	 efficient	 at	 logistics,	 you’ll
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never	 be	 able	 to	 buy	 a	 TV	 as	 easily	 as	 you	 can
download	the	movies	that	you’d	watch	on	that	TV.

What	kind	of	business	model	do	you	think	is	ideal	for
an	open	source	hardware	company?	Could	you	give	an
example?

One	of	my	key	theories	behind	open	source	hardware
is	that	regardless	of	the	license,	hardware	is	essentially
open,	 at	 least	 at	 the	 level	 of	 schematics	 and	 PCB
layout.	 For	 a	 relatively	 small	 amount	 of	 money,	 you
can	pay	a	service	to	extract	the	details	required	to	copy
a	 PCB	 design.	 Therefore,	 you	 can	 assume	 that	 once
you	ship	hardware,	it	can	be	copied.	If	you	accept	this
assumption,	 then	 it	 follows	 that	 not	 releasing
schematics	 and	 PCB	 layouts	 won’t	 stop	 people	 from
copying	your	goods.	If	someone	wants	to	copy	a	piece
of	hardware,	they	will,	whether	you	share	your	design
files	or	not.

But	sharing	design	files	does	make	a	difference	to	a
separate	 and	 important	 group	 of	 people.	 There	 are
other	 businesses	 and	 individual	 innovators	 who	 could
use	your	design	files	to	design	accessories,	upgrades,	or
third-party	enhancements	that	rely	upon	your	product.
In	 that	 case,	 sharing	 your	 design	 files	 improves	 your
opportunity	 for	 new	 business	 relationships,	 which
makes	doing	so	(with	an	open	source	hardware	license
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to	reserve	a	few	basic	rights	and	protections)	a	practical
suggestion.

Clearly,	 some	hardware	 strategies	aren’t	compatible
with	open	source.	If	your	sole	value	to	the	consumer	is
your	 ability	 to	 make	 stand-alone	 hardware,	 and	 you
have	no	strategic	advantage	in	terms	of	cost,	then	you’d
want	to	keep	your	plans	secret	to	delay	low-cost	copies
for	as	long	as	possible.

But	 the	 most	 innovative	 products	 today	 aren’t	 just
pieces	 of	 hardware.	 They	 also	 involve	 software	 and
services.	Open	 hardware	 business	models	work	 better
in	such	hybrid	products.	In	many	cases,	consumers	are
willing	to	pay	annually	(think	in	terms	of	subscriptions,
advertising,	upsells,	accessories,	royalties,	or	upgrades)
for	many	products.	 In	 fact,	 it’s	most	profitable	 to	 just
collect	 these	 fees	 and	 not	 involve	 yourself	 in	 the
hardware	manufacturing	portion.	Controlling	access	to
an	ongoing	service	is	also	much	easier	than	controlling
the	plans	for	a	piece	of	hardware.

Thus,	 if	you	couple	a	profitable	online	 service	with
your	 hardware,	 open	 hardware	 makes	 a	 lot	 of	 sense.
Letting	 other	 people	 copy	 the	 hardware,	 sell	 it,	 and
add	 more	 users	 to	 your	 online	 service	 simply	 means
you	get	more	revenue	without	more	risk.

You	 come	 to	 China	 often	 and	 know	 a	 lot	 about	 this
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country.	China’s	software	technology	is	not	advanced.
Do	you	think	that	being	the	world	factory	center	will
help	 China	 improve	 its	 overall	 level	 of	 technology?
How	 can	 this	 country	 change	 from	 just	 a
manufacturing	 center	 to	 a	 place	 focused	 on	 design,
research,	and	development?	What	is	China	missing?

I	 wouldn’t	 say	 I	 know	 much	 about	 China.	 I	 know	 a
little	 about	 one	 small	 corner	 of	China	 in	 one	 specific
area—hardware	manufacturing.	 If	 there’s	 one	 thing	 I
do	know,	however,	it’s	that	China	is	a	very	big	country
with	many	different	kinds	of	people	and	a	long	history
that	I	am	only	beginning	to	understand.	However,	I’ve
lived	 through	 almost	 the	 entire	 history	 of	 high
technology,	 so	 I	 can	 comment	 on	 the	 relationship
between	high	technology	and	people,	from	which	I	can
derive	some	perspective	about	China.

First,	every	country	that	is	a	technology	powerhouse
today	 started	 with	manufacturing.	 The	United	 States
started	 as	 colonies	 of	 Britain,	 mining	 ores,	 trapping
furs,	 and	 farming	 cotton	 and	 tobacco.	Over	 time,	 the
United	 States	 had	 steel	 mills	 and	 linen	 production.
The	 United	 States	 didn’t	 really	 start	 to	 develop
original	 technology	 until	 the	 early	 1900s,	 and	 that
process	didn’t	take	off	until	the	mid	1900s.

Japan	 developed	 similarly.	 It	 started	 in
manufacturing,	copying	many	US-made	goods.	In	fact,
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if	you	believe	the	historical	accounts,	the	first	cars	and
radios	made	in	Japan	were	not	great.	It	took	the	United
States	 and	 Japan	 decades	 to	 go	 from	 manufacturing-
based	economies	to	service-based	economies.

Compare	 that	 to	 China,	 where	 the	 electronics
manufacturing	industry	started	maybe	20	years	ago,	at
most,	and	China	is	just	turning	the	corner	from	being	a
manufacturing-oriented	 economy	 to	 one	 that	 can	 do
more	design	and	software	technology.	I	believe	this	is	a
natural	 series	 of	 events.	 Some	 portion	 of	 entry-level
workers	will	eventually	become	technicians,	then	some
technicians	 will	 become	 designers,	 and	 finally,	 some
designers	will	become	successful	entrepreneurs.

In	concrete	numbers,	 if	you	have	10	million	factory
workers,	 maybe	 1	 percent,	 or	 100,000	 workers,	 will
learn	enough	 to	become	 technicians	after	a	 few	years.
After	a	few	years	of	technician	work,	maybe	1	percent
will	 gain	 enough	 skill	 to	 become	 original	 designers,
giving	 1,000	 designers.	These	 experienced,	 grassroots
designers	would	become	the	core	of	an	entrepreneurial
economy,	and	from	there,	the	economy	could	begin	to
transform.

Over	 the	 course	 of	 a	 decade	 or	 two,	 a	 thousand
companies	 would	 eventually	 be	 distilled	 to	 just	 a
handful	of	global	brand	companies.	 I	believe	China	 is
currently	 going	 through	 this	 final	 phase.	 A	 lot	 of
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people	 in	 Shenzhen	 have	 the	 experience	 of
manufacturing,	 the	 wisdom	 to	 do	 design,	 and	 the
ability	 to	apply	 their	 talent	 to	 innovation	and	original
product	 design.	 The	 next	 decade	 will	 be	 an	 exciting
one	 for	 China’s	 technology	 industry,	 if	 the	 current
policies	on	economic	and	intellectual	development	stay
roughly	on	course.

This	 pattern	 applies	 primarily	 to	 hardware	 or
hardwaredominated	 products.	 Software	 products	 have
a	similar	pattern,	but	I	believe	there	are	unique	cultural
aspects	 that	 give	 the	 West	 an	 advantage	 in	 software
design.	 In	 hardware,	 if	 a	 process	 is	 not	 efficient	 or	 is
producing	 low	 yield,	 you	 can	 easily	 identify	 the	 root
cause	 and	 produce	 direct	 physical	 evidence	 of	 the
problem.	 Hardware	 problems,	 in	 essence,	 are
indisputable.

In	 software,	 if	 code	 is	 not	 efficient	 or	 it’s	 poorly
written,	 it’s	 very	 hard	 to	 identify	 the	 exact	 problem
that	 causes	 it.	 You	 can	 see	 evidence	 of	 programs
crashing	or	running	slowly,	but	there’s	no	broken	wire
or	 missing	 screw	 you	 can	 hold	 up	 to	 show	 everyone
why	the	software	is	broken.	Instead,	developers	have	to
review	 complex	 designs,	 consider	many	 opinions,	 and
ultimately,	 identify	 a	 problem	 that	 comes	 down	 to
nothing	 more	 than	 one	 individual’s	 bad	 decision.	 All
software	 APIs	 are	 simply	 constructs	 of	 human
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opinions.
Asian	 cultures	 have	 a	 strong	 focus	 on	 guanxi,

reputation,	and	respect	for	the	elders.	The	West	tends
to	be	more	rebellious	and	willing	to	accept	outsiders	as
champions,	and	they	have	less	respect	for	the	advice	of
elders.	As	a	result,	I	think	it’s	very	culturally	difficult	in
an	 Asian	 context	 to	 discuss	 code	 quality	 and
architectural	 decisions.	 The	 field	 of	 software	 itself	 is
only	 30	 years	 old,	 and	 older,	 more	 experienced
engineers	 are	 also	 the	 most	 out	 of	 date	 in	 terms	 of
methodology	 and	 knowledge.	 In	 fact,	 the	 young
engineers	often	have	the	best	ideas.	But	if	it’s	culturally
difficult	for	young	engineers	to	challenge	the	decisions
of	elder	engineers,	you	end	up	with	poorly	architected
code	and	no	hope	to	be	competitive.

Overcoming	 these	 obstacles	 is	 possible,	 but
enforcing	 the	 correct	 incentives	 and	 culture	 would
require	 a	 very	 strong	 management	 philosophy.	 The
workers	 should	 be	 rewarded	 fairly	 for	making	 correct
decisions,	 and	 there	 can	 be	 no	 favorites	 based	 upon
friendship,	 relationship,	or	 seniority.	Senior	engineers
and	 managers	 must	 see	 a	 real	 financial	 reward	 for
accepting	 their	 mistakes,	 instead	 of	 saving	 face	 by
forcing	 junior	 engineers	 to	 code	 patches	 around	 bad
high-level	decisions.	US	companies	usually	achieve	this
alignment	by	 sharing	equity	 in	a	 company	among	 the
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engineers	 so	 that	 the	 big	 payout	 only	 comes	 if	 the
company	 as	 a	 whole	 survives,	 regardless	 of	 an
individual’s	ego.

What	 do	 you	 think	 the	 relationship	 between
individual	makers	and	commercial	companies	will	be
in	the	future?	And	as	individual	makers	may	compete
not	 only	 with	 commercial	 companies	 but	 also	 with
other	makers	in	the	future,	what	factors	are	critical	to
a	product’s	success?

As	minimum	order	quantities	decrease	and	innovation
gets	closer	to	the	edge,	I	think	commercial	companies
will	 see	more	 competition	 from	makers,	 especially	 as
the	logistics	industry	transforms	itself	into	an	API	that
can	plug	directly	 into	websites.	At	the	end	of	 the	day,
the	 most	 critical	 factor	 to	 success	 will	 still	 be	 how
much	value	consumers	perceive	from	a	product.	This	is
related	 to	 superior	 features	 and	good	product	quality,
but	 the	presentation	to	 the	consumer	and	how	clearly
the	benefits	are	explained	are	important,	too.

As	 a	 result,	 any	 product	 will	 need	 to	 be	 visually
appealing,	 be	 easy	 to	 use,	 and	 come	 with	 marketing
material	 that	 clearly	 explains	 the	 benefits	 of	 using	 it.
Those	 elements	 are	 often	 challenging	 for	 individual
makers	 who	 are	 good	 at	 making	 products	 that	 are
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valuable	 technically	 but	 have	 less	 talent	 for	 sales	 and
marketing.	 Makers	 who	 can	 master	 both	 facets	 will
have	an	edge.

About	Hardware	Hackers

You’ve	 participated	 in	 the	 development	 process	 of
many	products,	but	what	is	your	personal	goal?

I	would	 like	 to	make	people	happy	by	building	things
that	 improve	 their	 life	 in	 some	 way.	 The	 greatest
pleasure	is	to	see	someone	enjoying	something	I	made,
and	knowing	 I’ve	 improved	 that	 person’s	 life	 in	 some
small	 way.	 Sometimes,	 the	 product	 is	 solving	 a	 big
problem	for	its	users;	other	times,	the	product	is	more
whimsical,	and	the	user’s	happiness	comes	from	fun	or
beauty.	 But	 either	way,	 knowing	 I’m	 helping	 another
person	by	making	 something	 is	 important	 to	me.	 I’ve
learned	 that	 money	 beyond	 a	 certain	 level	 doesn’t
make	me	any	happier.	This	makes	me	difficult	to	work
with,	 because	 it’s	 hard	 for	 people	 to	 just	 hire	 me	 by
offering	a	lot	of	money.	Instead,	they	need	to	convince
me	 that	 the	 activity	 will	 somehow	 also	 make	 people
happy.

Another	important	goal	for	me	is	to	just	understand
how	the	world	works.	I	have	a	natural	curiosity,	and	I
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want	 to	 learn	and	understand	all	kinds	of	 things.	The
universe	 has	 a	 lot	 of	 patterns	 to	 it,	 and	 sometimes,
you’ll	 find	 seemingly	 unrelated	pieces	 fitting	 together
like	 magic.	 Discovering	 these	 links	 and	 seeing	 the
world	 fit	 together	 like	a	big	 jigsaw	puzzle	 is	profound
and	satisfying.

Failure	 tends	 to	 give	 people	 more	 experience.	 Could
you	 talk	about	 the	not-so-successful	projects	you	have
participated	 in,	 or	 if	 you’ve	 ever	 seen	 other	 failed
projects	that	inspired	you?

My	 life	 is	 a	 story	 of	 failures.	 The	 only	 thing	 I	 have
done	repeatedly	and	reliably	is	fail.	But	I	have	two	rules
when	handling	failure:

1.	 Don’t	give	up.

2.	 Don’t	make	the	same	mistake	twice.

If	 you	 follow	 these	 rules,	 eventually,	 you’ll	 find
success	 after	 many	 failures.	 That	 said,	 I	 do	 have	 an
interview	 that	 focuses	 on	 one	 of	 my	 recent	 failures.
You	 can	 read	 it	 at
http://makezine.com/2012/04/30/makes-exclusive-
interview-with-andrew-bunnie-huang-the-end-of-chumby-
new-adventures/.*
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Your	book,	Hacking	the	Xbox,	has	been	published	for
10	 years.	 For	 people	 who	 want	 to	 learn	 reverse
engineering	or	become	a	hardware	hacker	today,	how
do	these	experiences	and	skills	still	apply?

I’d	like	to	think	the	core	principles	covered	in	the	book
are	 still	 relevant	 today.	 The	 Xbox	 was	 simply	 an
example	 I	 used	 to	 show	 how	 to	 do	 things.	 The
approach	and	the	techniques	are	applicable	to	a	broad
range	of	problems.

For	 the	 Chinese	 audience,	 I	 have	 found	 mobile
phone	 repair	manuals	 to	 be	 quite	 interesting	 to	 read,
even	 though	 I	 can’t	 read	 Chinese	 well.	 Their
descriptions	on	the	theory	of	electronics	are	not	always
completely	 accurate,	 but	 practically	 speaking,	 they’re
good	 enough,	 and	 they	 provide	 a	 quick	 way	 to	 get
started	 while	 learning	 immediately	 useful	 skills	 in
repairing	phones.

There’s	 also	 a	 Chinese	 magazine,	 called	 ⽆线电
(something	 like	 Radio	 Electronics	 in	 English),	 which	 I
have	found	to	be	quite	good.	If	you	get	started	building
the	 projects	 in	 there,	 I	 think	 you	 will	 learn	 very
quickly.

The	 Xbox	 One	 has	 more	 stringent	 restrictions	 for
users.	 What	 do	 you	 think	 about	 this?	 Are	 you
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interested	 in	 exploring	 this	 black	box	and	upgrading
your	book?

I	haven’t	done	much	work	on	video	game	consoles	in	a
while;	 there’s	 a	 whole	 new	 generation	 of	 console
hackers	 who	 are	 excited	 to	 explore	 them,	 and	 I’m
happy	 for	 that.	 As	 for	 the	 Xbox	 One’s	 security,	 I’m
sure	 it	 is	 one	 of	 the	 most	 secure	 systems	 built.
Microsoft	 did	 a	 very	 good	 job	 on	 the	Xbox	 360,	 and
the	 Xbox	 One	 security	 team	 members	 I	 know
personally	 have	 a	 very	 solid	 understanding	 of	 the
principles	 needed	 to	 build	 secure	 hardware.	 It	 should
be	very	hard	to	crack.

That	 said,	 I’m	 glad	 I	 have	 no	 desire	 to	 buy	 or	 use
one.	I	think	I	would	become	very	frustrated	with	their
use	policies	and	restrictions	very	quickly.

There’s	 a	 lot	 of	 controversy	 over	 whether	 electronic
devices	 should	 have	 a	 lock	 to	 prevent	 user	 rooting.
What	do	you	think	about	this?	Is	there	a	contradiction
between	 ensuring	 user	 safety	 and	 giving	 users
complete	control	of	their	devices?

I	believe	users	should	own	their	hardware,	and	owning
something	 means	 having	 the	 right	 to	 modify	 it	 and
having	 root	 access	 rights.	 If	 a	 company	 is	 concerned
about	users	being	unsafe,	then	it’s	easy	enough	to	allow
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users	to	opt	out	by	signing	an	electronic	waiver	to	give
up	 their	 support	 and	warranty	 rights	 in	 order	 to	 gain
complete	 access	 to	 their	 own	machines.	Most	 people
who	can	root	 their	machines	are	already	 smarter	 than
the	 phone	 support	 they	 would	 be	 calling	 inside	 the
company,	so	they	shouldn’t	have	problems.

The	 laws	 have	 changed	 to	 make	 some	 rooting
activities	illegal,	even	on	hardware	that	you	bought	and
own.	 I	 think	 this	 reduction	 in	 our	 natural	 rights	 of
ownership	 is	 dangerous	 and	 can	 put	 consumers	 in
unfair	 situations.	 This	 also	 discourages	 consumers
from	 exploring	 and	 learning	 more	 about	 the
technologies	they’ve	become	so	dependent	upon.

As	hardware	systems	become	more	integrated,	do	you
think	 hardware	 hacking	 is	 getting	 more	 and	 more
difficult,	 or	 do	 you	 worry	 about	 hardware	 hackers
becoming	 extinct?	 If	 so,	 how	 could	 we	 change	 this
situation?

Hardware	system	integration	has	been	increasing	for	a
long	time.	The	TX-0	just	used	transistors,	the	Apple	II
used	TTL	ICs,	PCs	use	controller	chipsets,	and	mobile
phones	have	 just	 a	 single	System-on-Chip.	 Increasing
integration	does	make	 some	parts	harder	 to	hack,	but
there	are	always	opportunities	at	the	system	integration
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level.
In	other	words,	I	still	think	there	is	art	in	hardware,

but	 the	 level	 at	which	hardware	hackers	have	 to	work
gets	higher	every	day,	and	that’s	a	good	thing.	It	means
hacks	are	getting	more	powerful	with	time	as	well.

Hacking	 the	 Xbox	 is	 dedicated	 to	 Aaron	 Swartz.
Could	you	talk	about	why	you	think	the	hacker	spirit
is	important	today?

The	hacker	spirit	 is	 the	ultimate	expression	of	human
problem-solving	ability.	It’s	about	the	ability	to	see	the
world	 for	 what	 it	 is,	 and	 not	 the	 constructs	 and
conventions	 that	 society	puts	 in	place.	For	 instance,	 a
brick	 is	 not	 just	 used	 to	 make	 buildings;	 it	 can	 be	 a
doorstop,	 a	 weapon,	 a	 paperweight,	 a	 heating	 ballast,
or	 it	 can	 be	 ground	 up	 and	 used	 for	 soil.	 Hackers
question	convention	 through	 the	 lens	of	doing	what’s
most	 practical	 and	 correct	 for	 the	 situation	 at	 hand.
Sometimes	their	methods	aren’t	always	harmonious,	as
hackers	 often	 prioritize	 doing	 the	 right	 thing	 over
being	nice	or	playing	by	the	rules.

I	find	the	more	difficult	situations	become,	the	more
pervasive	 and	 stronger	 the	 hacker	 spirit	 becomes
among	common	people.	 I	 see	evidence	of	 this	around
the	 world.	 This	 spirit	 is	 linked	 to	 the	 human	 will	 to
survive	and	to	thrive.	I	think	it’s	important	for	a	society
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to	 cultivate	 and	 tolerate	 the	 hacker	 spirit.	 Not
everyone	has	it,	but	the	few	who	do	help	make	society
more	resilient	and	survivable	in	hard	times.

Do	you	have	other	words	you	would	like	to	share	with
Chinese	readers?

I	was	reading	some	comments	on	a	Chinese	web	forum
and	was	surprised	 that	many	Chinese	regard	 the	 term
shanzhai	as	a	negative	term.	As	an	outsider,	I	 feel	 that
the	 shanzhai	 have	 done	 a	 lot	 of	 very	 interesting	 and
useful	innovation.

In	 English,	 we	 have	 a	 similar	 problem.	 The	 term
hacker	in	English	started	as	a	good	term	but	over	time
became	 associated	 with	 many	 kinds	 of	 negative	 acts.
The	term	maker	was	coined	to	distinguish	between	the
positive	and	negative	aspects	of	hackers,	but	I	still	call
myself	a	hacker	because	I	still	adhere	to	the	traditional
definition	of	the	word.

It	may	be	easier	to	explain	the	innovation	happening
in	China	if	a	similar	linguistic	bifurcation	could	happen
in	 Chinese.	 I	 recently	 proposed	 referring	 to	 the
innovative,	open	aspects	of	what	 the	 shanzhai	do,	 like
their	method	of	sharing	design	files,	as	gongkai	 (公开).
Significantly,	 I	 feel	 the	 term	 开放	 (kai	 fang,	 which
means	to	lay	open	or	to	open	to	the	public)	as	used	in
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开放源代码	 (kai	 fang	 yuan	 dai	ma,	 which	means	 open
source	 software)	 doesn’t	 quite	 apply.	 It	 refers	 to	 a
specific	 Western-centric	 legal	 aspect	 of	 being	 open,
which	is	not	applicable	to	the	methods	engaged	in	the
Chinese	ecosystem.

NOTE

Incidentally,	kai	fang	also	means	to	bloom,	so	it	sounds
poetic	in	Chinese.	Gongkai,	on	the	other	hand,	just
means	public	or	overt—whether	you	like	it	or	not.	Its
meaning	is	not	as	poetic	or	optimistic	as	kai	fang.

The	fact	that	China	has	found	its	own	way	to	share
IP,	 unique	 from	 the	 Western	 system,	 doesn’t	 mean
that	 the	 Chinese	 system	 is	 bad.	 It’s	 actually	 quite
interesting,	and	I’m	very	curious	to	see	where	 it	goes.
Since	I	see	positive	value	in	some	of	the	methods	that
the	shanzhai	use,	I’d	propose	using	the	more	positive,
generic	term	gongkai	to	describe	the	style	of	IP	sharing
commonly	 used	 in	 China,	 but	 I	 would	 stop	 short	 of
formally	associating	it	with	the	strict	definition	of	open
source.

But	 then	 again,	 who	 am	 I	 to	 say?	 I’m	 not	 a	 native
Chinese	speaker,	and	maybe	there	is	a	much	better	way
to	address	the	situation.
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THE	BLUEPRINT	TALKS	TO	ANDREW	HUANG
The	Blueprint	 publishes	 stories	 about	 founders	 in	 the
hardware	 space,	 and	 this	 interview	 focuses	 on,	 as	 the
writer	put	it,	my	“personal	journey.”	I	discuss	what	got
me	into	hardware	as	a	kid,	what	projects	I	was	working
on	 when	 I	 gave	 the	 interview,	 and	 pitfalls	 that
hardware	 startups	 should	 keep	 an	 eye	 out	 for.	 The
original	 interview,	which	 includes	 some	photos	of	my
projects	 and	 answers	 to	 a	 few	 other	 interesting
questions	that	didn’t	appear	in	the	interview	proper,	is
at	https://theblueprint.com/stories/andrew-huang/.

How	 would	 you	 describe	 your	 first	 encounters	 with
hardware?

My	 dad	 bought	 an	 Apple	 II	 clone	 when	 I	 was	 eight
years	 old,	 and	 that	 sparked	 my	 interest	 in	 hardware.
The	 clone	 came	 without	 a	 case,	 leaving	 all	 of	 the
electronics	 exposed.	 I	 could	 see	 the	 electronics,	 and	 I
wanted	to	fiddle	with	them.	My	dad	didn’t	want	me	to
touch	the	computer	because	I	might	break	it,	but	when
he	wasn’t	 home,	 I’d	 still	 fiddle	with	 the	 electronics.	 I
broke	 it	 several	 times	 because	 the	 chips	 were	 in
sockets.	 Even	 though	 my	 dad	 told	 me	 not	 to,	 I	 just
wanted	to	see	what	happened	when	you	put	 the	chips
in	backward.	I	learned	very	early	on	that	putting	chips
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in	backward	is	a	bad	thing!
The	great	thing	is	that	the	Apple	II	came	with	a	cool

set	of	schematics	and	source	code.	I	was	the	weird	kid
in	 elementary	 school	who	 carried	 around	 an	Apple	 II
reference	manual.	On	the	playground,	 I’d	 just	pull	up
the	 schematic	 and	 stare	 at	 it	 because	 it	 was	 so
fascinating.	I	didn’t	understand	what	I	was	 looking	at,
but	 I	had	 some	 inkling	about	 the	connection	between
lines	 on	 the	 schematic	 and	wires	 on	 the	 board.	Over
time,	 I	 learned	to	map	the	schematic’s	 symbols	 to	 the
computer	functions	bit-by-bit,	and	it	all	started	coming
together.

By	junior	high	or	high	school,	I	was	able	to	build	my
own	plug-in	cards	for	the	computer,	and	I	built	a	little
speech	synthesizer.	That’s	what	you	do	when	you	grow
up	among	cornfields	 in	Michigan	and	kids	don’t	want
to	play	with	you	because	you	look	strange	and	you	are
the	only	Chinese	kid.

How	did	your	early	experiences	affect	your	decision	to
go	into	the	hardware	industry?

I	 just	kept	learning	more	from	there.	When	I	went	to
MIT,	 I	 flipped	 a	 coin,	 and	 instead	 of	 going	 into
biology,	 I	 went	 into	 electronics.	 I	 got	 a	 degree,
eventually	 went	 into	 industry,	 hated	 that,	 and	 then
went	back	for	my	PhD	because	I	wanted	to	hide	in	my

587



shell	a	little	more.	After	getting	my	PhD,	I	participated
in	 a	 bunch	 of	 startups	 that	 all	 failed.	 I	 never	 had	 a
successful	startup,	but	I	learned	a	lot	from	failure.

I	 did	 some	 silicon	 chip	 design	 and	 reverse
engineering	 before	 I	 did	 manufacturing.	 For	 many
years,	 I	 wanted	 to	 do	 the	 biggest,	 baddest,	 hardest
project	 I	 could	 do,	 which	 meant	 working	 for	 a	 pure
tech	 startup.	With	 something	 like	 that,	 you’re	way	 in
the	 future	 and	 basically	 by	 the	 time	 the	 technology
works	 and	 goes	 onto	 the	 market,	 the	 patents	 have
expired.	 There	 is	 no	 capital	 monetization,	 you	 work
really	 hard,	 and	 the	 product	 is	 really	 obscure.	 As	 a
result,	 I	never	had	anything	ship	 in	volume.	That	was
the	most	frustrating	part:	to	put	my	life	into	something
and	never	have	it	see	the	light	of	day.

What	lessons	did	you	learn	while	working	on	chumby?

I	 got	 tired	 of	 working	 for	 a	 pure	 tech	 company	 and
decided	 it	 was	 time	 to	 join	 a	 company	 that	 could
monetize	 a	 business	 idea	 quickly.	 When	 I	 joined
Chumby,	 I	 wanted	 to	 do	 open	 hardware	 and
manufacturing,	 and	 I	 started	 logging	 experience	 in
both.	I	worked	on	the	first	chumby	and	then	multiple
generations	after	that	from	2005	to	2010.

When	 I	 started,	 I	 had	 never	 mass-produced	 a
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product	or	done	mechanical	design.	I	didn’t	even	know
what	injection	molding	was.	But	I	had	the	privilege	of
sitting	with	other	engineers	at	PCH,	and	I	would	 just
get	on	the	factory	floor,	see	what	they	were	doing,	and
learn	 about	 it.	 By	 the	 time	 I	 was	 through	 with
Chumby,	 I	was	 able	 to	 use	 SolidWorks	 to	 design	my
own	 cases	 and	 make	 injection-molded	 cases	 from
scratch.

It	was	a	very	educational	experience.	I	learned	to	do
test	 plans,	 manufacturing,	 sourcing,	 and	 other	 skills
you	just	have	to	pick	up	along	the	way.	When	Chumby
went	 under,	 I	 was	 living	 in	 Singapore,	 where	 I	 had
attempted	 to	 open	 a	 field	 office.	 I	 stayed	 behind	 to
wind	 down	 the	 office,	 give	 it	 a	 clean	 shutdown,	 and
make	 sure	 everyone	 got	 jobs	 elsewhere.	 After
everything	 was	 taken	 care	 of,	 I	 decided	 to	 be
unemployed	 for	 one	 year;	 the	 first	 thing	 I	 did	 was
design	 a	 radiation	 sensor	 for	 Japan	 after	 the	 terrible
earthquake	and	tsunami	on	March	11,	2011.

Then	I	started	thinking	about	what	my	next	project
would	 be.	 I	 did	 a	 series	 of	 projects	 like	 reverse
engineering	SD	cards,	and	I	met	Jie	Qi,	who	I	helped
to	 produce	 circuit	 stickers	 under	 the	 Chibitronics
brand.

One	of	the	guys	working	with	me	in	Singapore	was
Sean	Cross,	and	we	were	sitting	around	asking	what	we
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should	build.	We	decided	to	build	something	we	could
use	because	when	I	was	at	Chumby,	 I	built	 things	 for
other	 people	 rather	 than	myself.	 I	 use	 a	 laptop	 every
day,	 and	 we	 needed	 a	 development	 platform,	 so	 we
built	 a	 laptop	 that	we	would	 actually	 use.	We’re	 now
doing	a	crowdfunding	campaign	around	that	product.

How	would	you	describe	your	process	of	going	from	a
prototype	to	manufacturing	it?

There’s	 actually	 a	 lot	 of	 art	 in	designing	 things	 to	be
easy	to	make.	One	great	approach	to	this	is	to	be	fully
responsible	 for	your	own	supply	chain.	 I	don’t	 like	 to
have	 a	 supply	 chain	 manager	 and	 a	 manufacturing
manager.	I	want	to	make	something	myself.	I	insist	on
doing	all	of	the	testing	myself.	I	insist	on	handling	the
manufacturing	 issues	 myself	 because,	 from	 a	 design
standpoint,	doing	so	forces	you	to	think,	“Can	I	build
that?	If	I	gloss	over	this	bit	of	detail,	I	might	pay	dearly
for	that	later.”

From	the	very	beginning	when	you	start	designing,	I
think	 about	 how	 to	make	 something	manufacturable.
What	manufacturing	process	 should	 I	 use?	How	do	 I
make	sure	I	can	source	all	of	these	components?	When
I	actually	get	to	the	manufacturing	time,	I’ve	made	all
the	decisions	because	 I’m	 the	one	who	has	 to	pay	 the
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price	at	the	end	of	the	day.

What	 do	 people	 most	 overlook	 when	 they	 are
designing?

There	 are	 a	 lot	 of	 aspects	 you	 could	 forget.	The	 two
that	 come	 to	 mind	 first	 are	 the	 ability	 to	 source	 the
materials	 and	 the	 yield.	 For	 example,	 the	 instructions
for	a	cool	project	 in	Make:	magazine	often	 tell	you	 to
go	find	an	obscure	or	out-of-date	object,	 like	a	motor
from	 a	 1980s	 VHS	 player.	 In	 theory,	 that	 would	 be
great	 because	 many	 people	 have	 this	 cheap	 item	 in
their	garage.	But	all	of	a	sudden,	everyone	is	going	to
eBay	 trying	 to	 find	 the	 same	 part,	 and	 it’s	 not
sourceable.

On	 the	 yield	 side,	 a	 lot	 of	 people	 won’t	 run	 the
numbers	 in	 terms	 of	 what	 it	 means	 to	 be	 yielding.
Every	 step	 of	 the	 manufacturing	 process	 has	 some
fallout.	If	every	step	is	about	99	percent	yield	and	you
take	 10	 steps	 like	 that,	 your	 yield	 will	 be	 about	 90
percent.	People	essentially	build	the	Leaning	Tower	of
Pisa	 into	 their	 project,	 and	 at	 the	 end	 of	 the	 day	 the
problems	 compound,	 preventing	 delivery.	 It’s	 crucial
to	build	a	system	that	is	robust	and	reworkable	so	that
every	 step	 can	 be	 coupled	 with	 another	 step	 to
minimize	yield	fallouts.	Otherwise,	you’ll	throw	away	a
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lot	of	money.

How	would	you	describe	how	 things	have	 changed	 in
the	 perception	 of	 hardware	 since	 you	 got	 involved	 in
manufacturing?

It’s	weird.	Right	around	the	time	I	was	working	on	the
Xbox	 in	 2001,	 hardware	 was	 probably	 at	 the	 rock
bottom.	During	 the	dot-com	boom,	working	on	Web
2.0	was	really	super-hot,	and	if	you	did	something	with
Amazon	 or	 XML,	 it	 was	 cool.	 Soldering	 was	 a	 low-
value	thing	that	happened	somewhere	else.

But	I	was	that	weird	guy	who	knew	how	to	solder	in
a	lab,	so	people	would	come	to	me	with	broken	things
and	I’d	fix	them.	I	just	stuck	with	it	because	that’s	what
I	 do,	 and	 I	 love	 doing	 it.	 One	 reason	 the	 Xbox’s
security	was	relatively	easy	to	break	was	because	of	the
assumption	that	hardware	was	hard	and	soldering	was
difficult.	But	 if	you	know	how	to	 solder,	breaking	 the
security	 is	 very	 easy.	 I	 did	 it	 on	 a	grad	 school	budget
for	about	$150.	 I	gave	 some	talks	at	conferences	after
the	 Xbox	 hacking,	 basically	 telling	 people	 that
hardware	is	not	hard,	that	there’s	no	magic	behind	it.	I
showed	 people	 that	 the	 “magic”	 was	 actually	 pretty
simple	manufacturing	techniques.

Then	Kickstarter	came.	Money	started	going	into	a
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system	 where	 it	 hadn’t	 before	 because	 VCs	 wouldn’t
touch	 hardware.	 They	 thought	 hardware	 was	 a	 retail
chasm	where	 all	 this	money	 had	 to	 be	 paid	 up	 front,
then	 basically	 the	 startups	 all	 die,	 and	 investors	 don’t
get	returns.

All	of	a	 sudden,	 these	cool	companies	began	raking
in	 a	million	dollars	 in	Kickstarter	 as	 their	 seed	 round
and	eventually	delivering	on	their	products	enough	of
the	 time.	 There’s	 nothing	 like	 money	 to	 get	 the
interest	 of	 the	 guys	 in	 Silicon	 Valley.	 Since	 then,
hardware	perception	has	changed	radically.	People	are
starting	 to	 get	 into	 hardware	 more	 and	 more.	 The
problem	is	that	a	 lot	of	people	think	they	have	to	add
hardware	to	products	now,	yet	have	no	idea	how.

Another	 problem	 is	 an	 increasing	number	 of	 scams
on	Kickstarter,	where	there	are	all	these	hardware	bits
and	pieces,	and	backers	can’t	tell	what’s	real	or	what’s
fake.	I	know	the	industry	definitely	feels	 like	a	bubble
already;	I	can	sense	the	bubble	growing	now.

I	 think	maybe	 I	 liked	 it	 better	 when	 nobody	 knew
about	hardware	because	at	least	I	didn’t	have	to	worry
about	competing	with	fraudsters.

How	have	you	approached	finding	your	own	factories?

If	you’re	a	startup	and	the	only	value	you	can	bring	to	a
factory	 is	 money,	 then	 you’re	 basically	 worthless.
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Startups	don’t	have	any	money,	and	if	you	have	money,
it’s	finite.	All	factories	know	this.

A	 lot	 of	 startups	 want	 to	 go	 to	 somewhere	 like
Foxconn,	 but	 Foxconn	 has	 a	 ton	 of	 people	 and
capability.	 They	 don’t	 need	 your	 help.	 But	 they	 do
need	your	money,	and	you	don’t	have	a	lot	of	it.	If	you
try	 to	 engage	 with	 the	 really	 hip	 factories,	 you’ll
deplete	 your	 cash	 very	 quickly	 and	 won’t	 be	 able	 to
launch.

I	 look	 for	 factories	 that	 are	 missing	 certain
capabilities,	so	I	can	give	them	more	value	than	money.
When	I	come	in	with	my	product,	I	help	train	the	staff
to	 build	 my	 product.	 The	 factories	 see	 value	 in	 that
training,	 and	 I	get	 to	 that	point	where	 I’m	building	a
relationship	by	trading	more	than	money.

What’s	 the	 challenge	 for	 online	 hardware	 startups
when	they	get	to	the	retail	phase?

In	 the	 world	 of	 the	 internet,	 where	 everything	 is
automated,	 it	 seems	 like	you	could	 solve	any	problem
with	technology.	But	retail	is	all	about	the	salesperson
meeting	 buyers	 face-to-face,	 doing	 demonstrations,
and	 going	 to	 the	Walmart	 or	Target	 headquarters	 to
actually	develop	relationships	and	cut	deals.	It	feels	like
an	older	 system,	and	a	 lot	of	people	don’t	expect	 that
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because	they’re	doing	business	with	Kickstarter.
The	 problem	 is	 that	 people	 want	 to	 physically	 see

and	 touch	 and	 feel	 a	 product	 before	 they	 spend	 a
couple	hundred	dollars	on	 it.	Best	Buy	 is	 becoming	 a
showroom	 for	 Amazon,	 but	 offering	 the	 product	 in-
store	 is	 really	 valuable.	 There	 is	 probably	 room	 for
some	 disruption	 (perhaps	 you	 can	 convince	 credible
reviewers	to	try	your	hardware	and	describe	it	to	other
people),	 but	 at	 the	 end	 of	 the	 day,	 retail	 presence	 is
needed	to	sell	hardware	effectively.

Margins	 are	much	 fatter	 online,	 so	 companies	 that
start	 a	 business	 online	 from	 the	 beginning	 tend	 to
underprice	 their	 products.	 Then,	 when	 they	 get	 to
retail,	they	can’t	survive.

What	 are	 some	 of	 the	 most	 common	 questions	 that
hardware	entrepreneurs	ask	you?

The	 questions	 teams	 tend	 to	 ask	 usually	 center	 on
weaknesses	 in	 their	 team	 composition.	 Some	 teams
have	 super-hotshot	electrical	 engineers,	but	 they	have
no	mechanical	 engineering	 background.	 These	 teams
have	a	bunch	of	“mech-y”	questions.	Some	teams	have
no	 electrical	 engineers,	 and	 then	 the	 big	 question	 is
how	to	create	a	hardware	startup	with	no	one	who	can
design	electronics.
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Hardware	 startup	 teams	 generally	 tend	 to	 be
technical,	 so	 they’re	 often	 weak	 on	 marketing	 and
business.	Some	do	have	business	guys	involved	early	on
who	can	map	it	all	out	and	get	a	strategy	in	place,	but	a
lot	 of	 teams	 have	 great	 tech	 ideas	 without	 realizing
they’re	missing	crucial	aspects	to	their	strategy.

At	 that	 point,	 I	 get	 them	 to	 tell	 me	 what	 they’re
doing,	and	I	give	feedback.	It’s	almost	not	what	teams
ask,	but	rather	what	they	forget	to	ask,	that	they	need
the	most	help	with.

What	do	you	think	is	missing	from	startups	that	will
be	necessary	 for	 the	ongoing	support	of	 the	hardware
ecosystem?

There	 is	 a	 huge	 mismatch	 between	 the	 way
manufacturing	has	been	done	and	 the	way	 it	needs	 to
be	done	to	match	these	more	agile,	lean,	and	honestly,
less	 experienced	 companies.	 But	 I	 don’t	 think	 it’s	 an
impassable	chasm.

The	 original	 design	 manufacturers	 (ODMs)	 who
have	factories	and	resources	need	to	raise	their	level	of
service.	People	expect	ODMs	to	be	able	to	answer	a	lot
of	 questions.	 There	 are	 unreasonable	 expectations
between	startups	and	ODMs	because	ODMs	can	offer
absolutely	zero	insight	into	costing	down	your	product.
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People	 get	 upset	 because	 they	 just	 don’t	 see	 that
conflict	of	interest.

A	 lot	 of	 people	 think	 that	 building	 a	 product	 in
China	means	 the	cost	of	parts	gets	magically	cheaper.
They	don’t	understand.	A	factory	is	not	a	designer;	its
job	is	to	ensure	that	your	design	works	and	is	built	 to
specification.	If	you	specify	an	expensive	part,	and	the
factory	 substitutes	 a	 cheaper	 version,	 who	 gets	 the
blame	 when	 the	 product	 doesn’t	 work	 as	 well?
Furthermore,	 the	 factory	 makes	 its	 money	 as	 a
percentage	 margin	 over	 the	 bill	 of	 materials.	 Thus,
recommending	 cheaper	 parts	 to	 use	 exposes	 them	 to
greater	 risk,	 while	making	 them	 less	money.	 A	 lot	 of
people	 get	 mad	 at	 factories	 for	 not	 being	 more
aggressive	on	keeping	the	cost	down,	but	 if	you	think
about	 it,	 you	really	have	 to	get	engaged.	You	need	 to
get	an	engineer	working	with	these	guys	to	cost	things
down	 because	 ultimately,	 it’s	 your	 bottom	 line.	 It’s
your	net	profit.	You	don’t	just	go	to	China	and	expect
them	to	do	it	right.

An	ODM	can	possibly	solve	that	problem	by	hiring
staff	 dedicated	 to	 reducing	 costs,	 but	 then	 the	ODM
would	 either	 need	 to	 charge	 the	 customer	 extra	 to
make	the	service	sustainable,	or	require	a	significantly
larger	order	 volume	over	which	 to	 amortize	 the	 extra
cost	of	providing	such	services.
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More	interoperability	in	the	industry	would	be	good,
too.	 One	 startup	 I	 work	 with	 is	 Spark,*	 which	 really
tries	 to	enable	people	 to	use	 its	hardware	platform	by
being	 open.	 I	 feel	 like	 one	 piece	missing	 for	 Spark	 is
getting	 ODMs	 to	 be	 “Spark	 certified”	 to	 make
products	 that	 use	 Spark’s	 platform.	 Often,	 someone
wants	to	design	one	product	into	another	product,	and
suggestions	about	how	to	do	that	effectively	are	all	over
the	 place.	 Even	 if	 you	 have	 all	 the	 necessary
information,	 it’s	 not	 a	 streamlined	 process	 for	 most
people.

When	someone	is	given	all	the	design	answers,	a	lot
of	decoding	still	has	to	happen.	Even	bigger	companies
are	 afraid	 of	 that	 because	 they	 don’t	 have	 the
competency	 to	 hire	 the	 people	 to	 get	 that	 decoding
done.

What	is	your	current	focus	in	the	hardware	industry?

Right	now,	I’m	working	with	Jie	Qi	on	circuit	stickers.
We’re	 getting	 to	 the	 point	 of	 shipping	 the	 units	 out,
and	 I’m	 hellbent	 on	 making	 sure	 that	 I	 meet	 the
deadlines	I	set	for	my	campaign.	I	actually	want	to	ship
on	time	and	get	 things	 to	people	when	I	 said	I	would
because	 there	 has	 been	 way	 too	 much	 lateness	 in
crowdfunded	 campaigns.	 It	 doesn’t	 have	 to	 be	 that
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way.	You	just	have	to	set	expectations,	have	your	stuff
together	 before	 you	 announce	 the	 date,	 and	 know
when	 the	 inventory	 is	 pretty	 much	 ready	 to	 go.	We
have	a	number	of	product	 lines	that	are	selling;	about
half	are	done	with	manufacturing	and	are	 just	waiting
in	the	factory	to	ship.	A	couple	of	new	lines	are	behind,
but	we	still	have	until	May	to	solve	these	issues.	I	think
it	 will	 be	 no	 problem,	 and	 I’m	 looking	 forward	 to
seeing	our	lines	grow	and	develop	and	work	with	more
people.

The	 other	 thing	 I	 am	 working	 on	 is	 this	 Novena
laptop	 project	 with	 Sean	 Cross,	 which	 we	 weren’t
really	 planning	 on	 doing	 last	 year.	 I	 built	 this
handmade	prototype	last	December;	it	was	a	little,	kind
of	 crummy,	 leather-and-paper	 thing.	 We	 used	 it	 to
give	 a	 presentation	 at	 CCC,	 and	 the	 response	 was
overwhelming.	 That	 was	 great,	 and	 I	 refactored	 the
design	 to	 make	 it	 more	 manufacturable	 and	 more
sourceable.	 The	 campaign	 seems	 to	 be	 going	 well	 so
far.	 I	 think	 it	 will	 fund,	 and	 I’m	 looking	 forward	 to
getting	Novena	manufactured	and	out	in	the	world.

What	have	you	 learned	 from	your	 two	 crowdfunding
campaigns?

Completing	 almost	 two	 crowdfunding	 campaigns	 has
given	 me	 a	 lot	 of	 insight.	 Earlier,	 I	 mentioned	 that
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people	 selling	 online	 price	 their	 product	 too	 low	 to
later	 move	 into	 retail.	 But	 it’s	 been	 really	 painful	 to
maintain	 the	 high	 price	 that	 I	 say	 that	 everyone	 else
should	 maintain.	 It’s	 so	 tempting	 to	 go	 lower	 to	 an
unsustainable	point.

The	reason	a	 lot	of	crowdfunding	campaigns	 fail	 to
deliver	 is	 because	 they	 price	 too	 low.	 They	 can’t
actually	build	the	product	for	the	price	they	set.	Even
knowing	this,	I	still	had	to	grit	my	teeth	on	the	laptop
because	 I	 had	 to	 price	 it	 higher	 than	 I	 would	 have
liked.	Despite	 the	 high	 price,	 if	 we	were	 to	 close	 the
campaign	at	exactly	the	amount	I	hope	to	raise,	I	would
probably	just	barely	not	lose	money	on	it,	but	a	lot	of
people	 don’t	 see	 that.	 Look	 at	 something	 like	 the
Ubuntu	 Edge,	 which	 raised	 $12	 million	 but	 needed
$25	million	to	succeed.	That’s	because	in	order	to	set	a
price	of	$700–800	per	phone,	they	had	to	build	40,000
phones.	 So	 even	 though	 people	 thought	 the	 Ubuntu
Edge	was	 cool	 and	 it	 raised	 a	 lot	 of	money,	 it	 didn’t
reach	 its	 funding	 goal,	 which	 is	 a	 sad	 conclusion	 for
everyone.

I	 knew	 I	 could	 either	 price	my	 laptop	much	 lower
and	 need	 thousands	 of	 people	 to	 buy	 it	 to	 reach	 my
goal,	or	I	could	service	a	really	focused	market	of	a	few
hundred	open	source	enthusiasts	who	are	totally	on	the
same	page	 as	me.	At	 the	 end	of	 the	day,	 especially	 in
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the	 early	 phases,	 you	 really	 want	 those	 enthusiasts.
They’re	going	to	be	your	best	users.	You	want	to	take
care	 of	 them	 and	 give	 them	 the	 best	 service	 possible.
You’re	going	to	charge	a	little	more,	but	you’re	going
to	 build	 a	 really	 good	 product	 for	 them	 and	 they’re
going	 to	be	happy.	That’s	 a	much	happier	 conclusion
in	my	mind	than	trying	to	shoot	the	moon	and	failing.
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epilogue

When	 I	 start	 hacking	 or	 making,	 it’s	 driven	 by
curiosity.	 Only	 a	 small	 portion	 of	 my	 work	 ends	 up
being	 relevant	 or	 interesting,	 but	 I	 journal	 my
successes	 and	 my	 failures	 at	 my	 blog,
http://bunniestudios.com/,	 and	 I	 occasionally	 tweet
observations	at	@bunniestudios.	It’s	hard	to	know	what
will	be	a	hit	or	a	miss;	but	as	long	as	I’m	learning,	the
journey	 is	 worthwhile.	 And	 so	 I	 will	 keep	 wandering
the	electronic	frontier	...
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hardware,	128–131

CFT	(Cyber	Fast	Track)	initiative,	289
change,	planning	for	and	coping	with,	82–84
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check	plots,	268
Chibitronics,	251–274

background,	251–259
check	plots,	268
Chinese	New	Year,	impact	on	supply	chain,	272–

273
complications	regarding	simple	requests,	267–268
delivery,	264–266
developing	new	process,	259
incorrect	placement	of	components,	268–269
last-minute	changes,	271–272
process	capability	test,	261–264
shipping,	273–274
single	points	of	failure,	eliminating,	271
stencil	of	sticker	patterns,	271–272
test	program,	92–94
translation	issues,	270–271
visiting	factory,	260–261

China.	See	also	factories;	Shenzhen,	China
Chinese	New	Year,	impact	on	supply	chain,	272–

273
Chinese	translation	problems,	270–271
technology	growth,	364–366
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China	Software	Developer	Network	(CSDN)	interview,
357–372

about	hardware	hackers,	367–372
about	open	hardware	and	maker	movement,	358–

367
chip-on-board	(CoB)	technology,	29
chips

bonding	to	PCBs,	61
counterfeit,	143–148.	See	also	US	military

hardware,	counterfeit	chips	in
decapping,	282–283
hand-placing	on	PCBs,	59–61
SEG	Electronics	Market,	11–14
for	USB	memory	sticks,	57–59

chip	shooters,	30
Chipworks,	246
chroma	keying,	303–304
Chumby,	1–2,	181

automation	in	assembly,	29–31
case	production,	26–28
cash	flow,	193
chumby	classic,	183–184
chumby	One
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development	of,	184–189
trim	and	finish,	101–104

connector	placement,	25–26
contracts,	193–205
counterfeit	microSD	cards

authenticity,	159–160
electronic	card	ID	data,	158–159
forensic	investigation,	160–162
gathering	data,	162–165
summarizing	findings,	166–168
visible	differences,	157–158

factory	testing,	41
factory	tours,	16–17
hacker-friendly	platform,	182–184
injection	molding,	31–34
interview	with	Phil	Torrone,	189–205
lessons	learned	from,	374–375
margin,	192–193
merchant	buyers,	192
microphone	factory	installation,	20–23
motherboard,	188–189
NeTV.	See	NeTV	quality	control,	36–39
remote	testing,	39–40
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reverse	logistics	and	returns,	193
test	points,	187–188

circuit	stickers,	251–274.	See	also	Chibitronics
background,	251–259

check	plots,	268
Chinese	New	Year,	impact	on	supply	chain,	272–

273
complications	for	simple	requests,	267–268
delivery,	264–266
developing	new	process,	259
incorrect	placement	of	components,	268–269
last-minute	changes,	271–272
process	capability	test,	261–264
shipping,	273–274
single	points	of	failure,	eliminating,	271
stencils	of,	271–272
translation	issues,	270–271
visiting	factory,	260–261

Circuit	Sticker	Sketchbook,	256–257,	267–268
clamshell	testing,	54
cloning,	116
CoB	(chip-on-board)	technology,	29
Coders’	Rights	Project,	137
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COGS	(cost	of	goods	sold),	90–92
colors,	communicating	with	operators	through,	96
community-enforced	IP	rules,	124–125
community	support	for	Novena,	247–249
company	structure,	202–203
composition,	BOM,	76–77
computer	virus,	comparing	H1N1	virus	to,	327–335

adaptability,	333–335
antibodies,	335
DNA	and	RNA	as	bits,	328–330
hacking	H1N1
virus	331–332
unique	access	ports	in	organisms,	330–331

configuration	fuses,	281
contracts,	negotiating,	193–205
copper	sheets,	for	PCBs,	46–50
copying,	116
copyrights,	137,	138,	175–177
cosmetic	blemishes,	87–88
cost	of	goods	sold	(COGS),	90–92
counterfeit	goods.	See	fake	goods	couriers,	112
coverlay,	260–261
craftspeople,	need	for,	26–28
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CRISPR/Cas	system,	347–352
Cross,	Sean	“xobs”,	134–135,	215–216,	289–290.	See

also	Novena;	SD	cards,	hacking
crowdfunding,	197–198,	265,	266,	382

Crowd	Supply,	250,	264,	265
CrypTech,	248–249
custom	battery	pack	problems,	243–244
Cyber	Fast	Track	(CFT)	initiative,	289

D
data	display	channel	(DDC),	304
Debian,	246
debugger,	attaching,	317–320
decapping	IC,	282–283
decompiler,	339–340
dedicated	hardware	real-time	clock	(RTC)	module,

238–239
dedication	to	quality,	20–23
defective	units,	paying	for,	3
delivery	of	circuit	stickers,	264–266
design	files,	sharing,	363
design	for	manufacturing	(DFM),	84–100.	See	also	test
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program
bottom	line,	88–91
overview,	85–86
testing	vs.	validation,	97–100
tolerances,	86–88

design	process,	105–106
design	vocabulary,	101
desktop	Novena,	218,	242–243
DFM.	See	design	for	manufacturing	Digital

Millennium	Copyright	Act	(DMCA),	137
direct	repeat	sequence,	348
direct-to-consumer	(DTC)	personal	genomics,	344–

345
disease	predictions	based	on	mutations,	345
distribution	channel,	196
DIY	speakers,	237–238
DMCA	(Digital	Millennium	Copyright	Act),	137
DNA,	328–330.	See	also	genome	double-shot	molds,

103–104
DRAM	chips,	12–13
drilling	process,	PCB	boards,	46–48
drug	resistance,	338–341
DTC	(direct-to-consumer)	personal	genomics,	344–
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345

E
ECO	(engineering	change	orders),	82–84
E.	coli,	342
EDID	(extended	display	identification	data),	304
EDK	(embedded	development	kit),	135
EDM	(electrical	discharge	machine),	33
EFF	(Electronic	Frontier	Foundation),	137
effects	stickers,	263
EHEC	O104:H4,	335–344

answering	questions	with	UNIX	shell	scripts,	340–
342

antibiotic	resistance,	342–344
DNA	sequence,	336–338
reversing	tools	for	biology,	338–340

electrical	discharge	machine	(EDM),	33
electronic	card	ID	data,	158–159
Electronic	Frontier	Foundation	(EFF),	137
electronic	tolerances,	86–87
embedded	development	kit	(EDK),	135
enclosure,	Novena,	224–227
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end-of-life	(EOL),	82
engineering	change	orders	(ECO),	82–84
engineering	humans,	351–352
engineering	samples,	170–172
engineer	rights,	135–140

copyrights,	138
patents	and	other	laws,	136–137
programming	languages,	138–140

EOL	(end-of-life),	82
erasing

flash	memory,	284–285
memory	cards,	298
security	bits,	285–287

etching	PCBs,	51–53
e-waste,	handling,	155–156
extended	display	identification	data	(EDID),	304
extended	part	numbers,	78–79
external	mimicry,	150–151

F
factories,	2–3,	43–44.	See	also	quality;	specific	factories	by

name
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automation,	29–31
building	technology	without	using	it,	23–24
dedication	to	quality,	20–23
defective	units,	paying	for,	3
feeding	workers,	18–20
injection	molding,	31–34
mistakes	in	manufacturing,	34,	41–42
need	for	craftspeople,	26–28
partnerships	with,	107–113

import	duties,	113
ordering	more	units	than	proven	demand,	112
quotations,	108–111
scrap	and	yield,	111–112
shipping	costs,	112
tips	for	forming,	107–108

scale	in	Shenzhen,	17–18
scrap,	152
searching	for,	378
skilled	workers,	24–26
testing,	41

failure	analysis	services,	281
failures,	learning	from,	368–369
Fairchild	74LCX244,	146–147
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fake	goods,	143–174
chips,	well-executed,	143–148
chips	in	US	military	hardware,	149–156

anticounterfeit	measures,	154–156
types	of	counterfeit	parts,	150–153
US	military	designs,	153–154

FPGAs,	168–174
incorrect	ID	codes,	170–172
solutions,	172–174
white	screen	issue,	168–170

microSD	cards,	156–168
authenticity,	159–160
electronic	card	ID	data,	158–159
forensic	investigation,	160–162
gathering	data,	162–165
summarizing	findings,	166–168
visible	differences,	157–158

feeding	factory	workers,	18–20
Feist	Publications,	Inc.	v.	Rural	Telephone	Service	Co.,	Inc.,

138
Fernly	shell,	315–316,	317–319
Fernvale,	306

attaching	debugger,	317–320
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beachhead,	building,	315–317
booting	OS,	321
Frond,	307–308
legal	tasks,	134–136
peripheral	connectors,	308–309
results,	323–324
reverse	engineering	boot	structure,	311–315
system	architecture,	306–311
system	diagram,	309
toolchains,	building	new,	321–323

field	programmable	gate	array.	See	FPGAs	film
imaging,	49–50

firmware
in	memory	cards,	292
Novena,	246–247

five-digit	multimeter,	98
flash	chips,	for	USB	memory	sticks,	57–59
flash	memory,	erasing,	284–285
flat	patterns,	26–28
flex	circuits,	252–253
flex	PCB	factory,	260–261
flow	marks,	236
flying	head	testing,	54
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form	factor,	77–78
forward	bias	voltage,	88,	89
founders,	suggestions	for,	199
Foxconn,	18,	20
FPC	(internal	flexible	printed	circuit)	header,	238–239
FPGAs	(field	programmable	gate	array)

counterfeit,	168–174
incorrect	ID	codes,	170–172
solutions,	172–174
white	screen	issue,	168–170

future	trends,	212–213
Novena,	239

Freescale/NXP	iMX6
CPU,	220
front	bezel,	Novena,	237–238
fully	decapped	chips,	282
functionally	decapped	chips,	282–283
fuzzing,	293

G
gene	drive,	352–354
General-Purpose	Breakout	Board	(GPBB),	241–242
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genome
disease	predictions	based	on	mutations,	345
genotyping,	344–345
patching,	346–354

CRISPRs	in	bacteria,	347–350
engineering	humans,	351–352
gene	drive,	352–354
where	to	cut	genes,	350–351

reference,	345–346
genotyping,	344–345
ghost	shift,	115,	152
golden	samples,	36,	82
gongkai	(公开),	117–118,	119–120.	See	also	shanzhai

cell	phone	screen	replacement,	120–121
defined,	131–134
vs.	kai	fang	yuan	dai	ma	(开放源代码),	372
$12	phone,	126–140

engineer	rights,	135–140
from	gongkai	to	open	source,	134–135
hardware,	128–131

GPBB	(General-Purpose	Breakout	Board),	241–242
gray	markets,	154
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H
H1N1	virus,	comparing	to	computer	virus,	327–335

adaptability,	333–335
antibodies,	335
DNA	and	RNA	as	bits,	328–330
hacking	H1N1	virus	331–332
unique	access	ports	in	organisms,	330–331

H5	port,	330
hacker-friendly	platform,	182–184
hacker	spirit,	371
hacking	hardware.	See	hardware	hacking	hand-placing

chips	on	PCBs,	59–61
hard	drive,	choosing,	244–246
hardware	hacking,	279–281

CSDN	interview	about,	367–372
general	discussion,	275–278
HDCP-secured	links	to	allow	custom	overlays,

298–306
of	PI	C18F1320,	281–289

closer	look,	283–284
decapping	IC,	282–283
erasing	flash	memory,	284–285
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erasing	security	bits,	285–287
protecting	other	data,	287–289

of	SD	cards,	289–298
potential	security	issues,	298
resource	for	hobbyists,	298
reverse	engineering	microcontroller,	293–297

shanzhai	phones,	306–324
attaching	debugger,	317–320
beachhead,	building,	315–317
booting	OS,	321
building	new	toolchains,	321–323
Fernvale	results,	323–324
reverse	engineering	boot	structure,	311–315
system	architecture,	306–311

structure	of	cards,	290–293
hardware	startups,	378–380
hash	function,	315
HDCP-secured	links,	hacking,	298–306
health,	caring	for,	205
heirloom	laptops,	210–211
Heirloom	Novena,	218,	227–232

hard	drive,	245–246
mechanical	engineering	details,	229–232
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wood	for	enclosure,	228–229
honest	finishes,	101
horizontal	gene	transfer,	343
human	engineering,	351–352

I
ID	codes,	FPGA,	170–172
import	duties	and	licenses,	113
i.MX233,	184
incoming	quality	control	(IQC)	guidelines,	160
incorrect	placement	of	components	on	circuit	stickers,

268–269
industrial	design,	100–106

Arduino	Uno	silkscreen	art,	104–105
chumby	One	trim	and	finish,	101–104
personal	design	process,	105–106

injection	molding
general	discussion,	31–34
in	Novena	manufacturing,	233–236

innovation,	359
input	networks,	87
intellectual	property	(IP).	See	also	gongkai;	shanzhai
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general	discussion,	115–118
Western	vs.	Chinese	models,	131–132

internal	flexible	printed	circuit	(FPC)	header,	238–239
interoperability,	380
interviews,	357–382

Blueprint,	372–382
China	Software	Developer	Network	(CSDN),	357–372

about	hardware	hackers,	367–372
about	open	hardware	and	maker	movement,

358–367
Make:,	189–205

inventory	turning,	196–197
investigating	fake	microSD	cards,	158–159,	160–162
involvement	in	manufacturing	process,	36–39
IP.	See	intellectual	property
IQC	(incoming	quality	control)	guidelines,	160
Ito,	Joi,	264

J
Japan,	economic	development	of,	365
JTAG,	170
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K
kai	fang	yuan	dai	ma	(开放源代码),	372
keystreams,	304–306
Kare,	Susan,	39
Kickstarter,	197–198,	377
Kingston	microSD	cards,	156–168

authenticity,	159–160
electronic	card	ID	data,	158–159
forensic	investigation	of,	160–162
gathering	data,	162–165
summarizing	findings,	166–168
visible	differences,	157–158

knit	lines,	235
Kovan,	169

L
labor	costs,	110
laptop	Novena,	218
laser	imaging,	49
last-minute	changes,	271–272
LCA	(Linux	Conference	Australia),	57
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LCD	bezel,	Novena,	226
LEDs,	in	bicycle	safety	light,	74–75,	79–82
Li,	Xiao,	23–24
LinkIT	ONE,	MediaTek,	323–324
Linux	Conference	Australia	(LCA),	57
logs	for	test	programs,	96

M
Make:	interview,	189–205
MakerBot,	203
maker	movement,	358–367
managed	NAND	system,	186–187
man-in-the-middle	(MITM)	attacks,	290,	298,	301
manufacturer	ID,	158–159
manufacturing.	See	factories
margins

chumby,	192–193
factory,	110–111

Master	Chao,	26–28
MCM	(multichip	module),	310
mechanical	engineering,	Novena,	229–232
mechanical	tolerances,	87–88
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MediaTek	LinkIT	ONE,	323–324
MediaTek	MT6250DA,	130–131
MediaTek	MT6260,	140,	310–311
merchant	buyers,	192
metal	spiral	binding,	Circuit	Sticker	Sketchbook,	267–268
microcontroller

in	memory	cards,	292
reverse	engineering,	293–297
test	program,	92–94

microphone,	chumby,	20–23
microSD	cards

chumby	One,	186
counterfeit,	156–168

authenticity,	159–160
electronic	card	ID	data,	158–159
forensic	investigation,	160–162
gathering	data,	162–165
summarizing	findings,	166–168
visible	differences,	157–158

military	hardware,	counterfeit	chips	in,	149–156
anticounterfeit	measures,	154–156
types	of	counterfeit	parts,	150–153
US	military	designs,	153–154
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minimum	order	quantity	(MOQ),	81
min-max	spread,	86–87
mirror-finished	plastic,	70–71
mistakes	in	manufacturing,	34,	41–42
MITM	(man-in-the-middle)	attacks,	290,	298,	301
MIT	Media	Lab,	264
monastic	design,	100
Moore’s	law,	206–212,	359
MOQ	(minimum	order	quantity),	81
motherboard

chumby	One,	188–189
Novena,	221–222,	238–239

Mottweiler,	Kurt,	228,	238
multichip	module	(MCM),	310
mutations,	disease	predictions	based	on,	345
Mycoplasma	pneumoniae,	325–327
MyriadRF,	248

N
NAND	flash	chips,	13
National	Defense	Authorization	Act,	149–150
NeTV,	280
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background	on	HDCP,	300–301
conceptual	diagram	of,	303
development	of,	299–300
FPGA	diagram,	305
goals	for,	301
how	it	worked,	302–303
keystream,	creating,	304–305
user	overlay	content,	creating,	303–304

New	Balance	factory,	17–18
Ng,	P.C.,	344–345
nonrecurring	engineering	(NRE)	costs,	111
Novena,	133,	215–250

all-in-one	desktop,	218,	242–243
breakout	board	for	beginners,	241–242
case	construction,	233–236
community	support,	247–249
custom	battery	pack,	243–244
design,	219–227

battery	board,	223–224
enclosure,	224–227
motherboard,	221–222

dimensions,	219
DIY	speakers,	237–238
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firmware,	246–247
front	bezel	changes,	237–238
hard	drive,	choosing,	244–246
Heirloom,	218,	227–232

hard	drive,	245–246
mechanical	engineering	details,	229–232
wood	for	enclosure,	228–229

injection	molding,	233–236
laptop,	218
motherboard,	238–239
power	pass-through	board,	242–243
pricing,	218
PVT2	mainboard,	238–240
users,	217–218

NRE	(nonrecurring	engineering)	costs,	111
NuttX,	141

O
O104:H4	DNA	sequence,	336–338
ocean	freight,	273–274
ODMs	(original	design	manufacturers),	379–380
online	hardware	startups,	378–380
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on-time	delivery,	266
open	BOM,	124–125
open	source,	117,	134–135

hardware,	176–178,	205–214.	See	also	Chibitronics;
Chumby;	Fernvale;	Kovan;	NeTV;	Novena

CSDN	interview	about,	358–367
heirloom	laptops,	210–211
monetization,	195–196
opportunities	for,	211–214
trends	in,	206–209

software,	362
ordering	more	units	than	proven	demand,	112
original	design	manufacturers	(ODMs),	379–380
overlay,	creating,	303–304
overmolding,	34

P
package	type,	77–78
pad	printing,	102
palindromic	sequences,	348
PAM	(proto-space	adjacent	motif),	350–351
Particle’s	Spark	Core,	306–307
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partnerships	with	factories,	107–113
import	duties,	113
order	more	units	than	proven	demand,	112
quotations,	108–111
scrap	and	yield,	111–112
shipping	costs,	112
tips	for	forming,	107–108

part	numbers,	78–79
patching	genome,	346–354

CRISPRs	in	bacteria,	347–350
engineering	humans,	351–352
gene	drive,	352–354
where	to	cut	genes,	350–351

patents,	136–137,	194–195
patterning,	46
pattern	makers,	26–28
PB2	influenza	gene,	331–332
PCBs,	44–57

applying	pattern	to	copper,	49–50
bonding	chips	to,	61
for	circuit	stickers,	260–261
copper	sheets,	46–48
etching,	51–53
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Fernvale	Frond,	307–308
hand-placing	chips	on,	59–61
soldermask	and	silkscreen,	53–54
testing	and	finishing,	54–57

PCH	China	Solutions,	17,	37
Peek,	Nadya,	226
Peek	array,	226
penicillin	resistance,	338–339
Perrott,	Joe,	27
personal	design	process,	105–106
personalized	genomics,	344–346
Phase	Locked	Loop	(PLL),	140
photoresist,	49–50
physical	identifiers,	embedding,	154–155
physical	programming,	263
PIC18F1320,	hacking,	281–289

closer	look	at,	283–284
decapping	IC,	282–283
erasing	flash	memory,	284–285
erasing	security	bits,	285–287
protecting	other	data,	287–289

plastic	finishes,	70–71
PLL	(Phase	Locked	Loop),	140
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poison	pills,	136–137
polyimide,	260–261
power	pass-through	board,	242–243
pragmatic	design,	100
precision,	31–34
pricing

aiming	high,	199–200
Novena,	218
quality	control,	34–35

probe	card,	58
process	capability	test,	261–264
process	geometry,	144–145
production	candidate	stickers,	263
programming	languages,	138–140
protecting	data	when	hacking,	287–289
protein	database,	338–339
proteins,	329,	337
proto-space	adjacent	motif	(PAM),	350–351

Q
QC	(quality	control)	room,	36–39
QEMU,	317–318
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Qi,	Jie,	253–256,	263–264,	270–271.	See	also
Chibitronics

quality,	34–35
American	vs.	Chinese	manufacturing,	35–36
dedication	to,	20–23
factory	testing,	41
involvement	in	manufacturing	process,	36–39
mistakes,	41–42
remote	testing,	39–40

quality	control	(QC)	room,	36–39
quaternary	structure,	350
quotations,	evaluating,	108–111

R
Radio	Electronics	(⽆线电),	369
Raspberry	Pi,	360
read-evaluate-print-loop	(REPL)	shell,	293–297
real-time	clock	(RTC)	module,	238–239
reballing,	155
rebinned	parts,	151–152
recycling,	154–155
red	ring	of	death,	42
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reference	genome,	345–346
refurbished	parts,	150–151,	154
remote	testing,	39–40
repair	culture,	213
REPL	(read-evaluate-print-loop)	shell,	293–297
resistive	current	limiting,	88
resistors,	76
Restriction	of	Hazardous	Substances	(RoHS)	testing,

41
retailers,	engaging,	200,	378
returns,	in	retail,	193
reverse	engineering,	137

boot	structure,	311–315
general	discussion,	275–278
microcontroller,	293–297
superbugs,	335–344

antibiotic	resistance,	342–344
O104:H4	DNA	sequence,	336–338
reversing	tools,	338–340
UNIX	shell	scripts,	340–342

reverse	logistics,	193
RNA,	328–330
RNA-dependent	RNA	polymerase,	333
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robotics	controller,	78
RoHS	(Restriction	of	Hazardous	Substances)	testing,

41
ROM,	dumping,	312–316
rooting,	user,	370
routing	PCBs,	55
RTC	(real-time	clock)	module,	238–239
rubberized	tags,	25

S
Samsung	microSD	cards,	163–168
SanDisk	microSD	cards,	163–168
satin-finished	plastic,	70–71
scale	in	factories,	17–18
scarcity	and	demand,	70–71
Scarmagno,	Italy,	44–45
scrap,	handling,	111–112
scriptic	language,	139–140
SD	cards,	hacking,	289–298

potential	security	issues,	298
resource	for	hobbyists,	298
reverse	engineering	microcontroller,	293–297
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structure	of	cards,	290–293
vulnerabilities,	290

secondary	structure,	349–350
second-sourcing,	153
security	bits,	erasing,	285–287
security	issues,	SD	cards,	298
semiautomated	process,	in	zipper	factory,	68–70
sensor	and	microcontroller	stickers,	263
shanzhai	(⼭寨),	116–117,	121–125,	177,	371–372.	See

also	gongkai
cell	phones,	2
community-enforced	IP	rules,	124–125
hacking	phones,	306–324

attaching	debugger,	317–320
beachhead,	building,	315–317
booting	OS,	321
building	new	toolchains,	321–323
Fernvale	results,	323–324
reverse	engineering	boot	structure,	311–315
system	architecture,	306–311

more	than	copycats,	123–124
sharing	design	files,	363
Shenzhen,	China,	1–4.	See	also	factories
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screen	replacement,	120–121
SEG	Electronics	Market,	8–14
shanzhai	organizations	in,	123

Shenzhen	Bookstore,	14–15
“ship	or	die”	motto,	198–199
shipping	products,	112,	273–274
side-by-side	bonding,	166
signatures,	in	memory,	319–320
silkscreen,	53–54,	57
single	nucleotide	polymorphisms	(SNPs),	345–346
single	points	of	failure,	eliminating,	271
sink	marks,	235
skilled	workers,	24–26
smartcards,	144–145
smart	watches,	124
SMT	(surface	mount	technology),	55,	77–78
SNPs	(single	nucleotide	polymorphisms),	345–346
soldermask,	53–54,	57
Song	Jiang,	122
smartphones.	See	cell	phones	spacers,	348
speakers,	Novena,	237–238
SPI	ROMulator	FPGA,	313
ST19CF68
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chips,	144–148
stacked	CSPs,	166
standardization	of	platforms,	212
stencil	of	circuit	sticker	patterns,	271–272
superbugs,	reverse	engineering,	335–344

antibiotic	resistance,	342–344
O104:H4	DNA	sequence,	336–338
reversing	tools,	338–340
UNIX	shell	scripts,	340–342

supply	chain,	impact	of	Chinese	New	Year	on,	272–
273

surface	mount	technology	(SMT),	55,	77–78
swine	flu.	See	H1N1	virus,	comparing	to	computer

virus
switches

Novena,	237
validating,	98–99

system	architecture,	306–311
System	Elettronica,	44–57

applying	PCB	pattern	to	copper	sheet,	49–50
applying	soldermask	and	silkscreen,	53–54
copper	sheets,	46–48
etching	PCBs,	51–53
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testing	and	finishing,	54–57
System-on-Chip	devices,	310–311

T
tampo	printing,	102
technology	level,	in	China,	364–366
Tek	MDO4104B-6	oscilloscope,	313
tertiary	structure,	350
testing

flash	chips,	58–59
PCBs,	54–57
vs.	validation,	97–100

test	jigs,	99–100,	271
test	points,	chumby	One,	187–188
test	program,	91–95

guidelines	for,	94–97
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real-world,	92–94
setup	of,	95–96
update	mechanisms	for,	97
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through-hole	packages,	77–78
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viruses.	See	H1N1
virus,	comparing	to	computer	virus	V-NAND,	245,
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Footnotes

Chapter	1.	made	in	china
*	Colloquial	word	for	yuan,	the	base	counting	unit	for	the	renminbi
(RMB),	the	currency	in	China.

†	This	bookstore	has	closed	since	the	visit	I	describe	here.
*	Due	to	high	wage	inflation	since	this	particular	visit,	this	is
probably	no	longer	true.

Chapter	2.	inside	three	very	different
factories
*	I	honestly	don’t	what	they’re	called,	so	yes,	I’m	going	to	keep
calling	them	that.

Part	2:	thinking	differently:	intellectual
property	in	china
*	Baijiu	is	a	type	of	strong	Chinese	alcohol.

Chapter	4.	gongkai	innovation
*	No,	I	will	not	broker	these	chips	for	you.
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*	I’ve	often	wondered	why	the	“I	am	not	a	lawyer”	disclaimer	is
necessary.	It	was	explained	to	me	that	even	the	appearance	of
dispensing	legal	advice	without	the	disclaimer	can	make	me
guilty	of	practicing	law	without	a	proper	license.	I	could	also	be
held	accountable	for	bad	decisions	made	by	people	who	construe
the	opinions	as	legal	advice.

*	Specifically,	Apache	2.0,	section	3	reads,	“Grant	of	Patent
License.	...	If	You	institute	patent	litigation	against	any	entity
(including	a	cross-claim	or	counterclaim	in	a	lawsuit)	alleging
that	the	Work	or	a	Contribution	incorporated	within	the	Work
constitutes	direct	or	contributory	patent	infringement,	then	any
patent	licenses	granted	to	You	under	this	License	for	that	Work
shall	terminate	as	of	the	date	such	litigation	is	filed.”

†	https://www.eff.org/issues/coders/reverse-engineering-faq/
*	See	also	Sony	Computer	Entertainment,	Inc.	v.	Connectix	Corp.,
203	F.	3d	596,	606	(9th	Cir.	2000)	and	Sega	Enterprises	Ltd.	v.
Accolade,	Inc.,	977	F.2d	1510,	1522-23	(9th	Cir.	1992).

Chapter	5.	fake	goods
*	See	Sec	2320	(b)	at
https://www.govtrack.us/congress/bills/112/hr1540/text.

*	Remember	that	one?	The	NeXTcube	was	a	computer	released	in
1990	by	Steve	Jobs’s	company,	NeXT.

*	This	was	the	salary	rate	in	the	mid-2000s;	due	to	wage	inflation
since	then,	it’s	risen	to	around	$1,000	per	month,	but	refurbishing
chips	is	still	more	lucrative.

*	Kovan	is	open	hardware;	you	can	read	more	about	it	and
download	the	source	on	the	Kosagi	wiki	at
http://www.kosagi.com/w/index.php?title=Kovan_Main_Page.
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*	JEDEC	Publication	N.	106AA	lists	all	SD	card	manufacturer	ID
codes,	and	0x41	wasn’t	on	there.

*	Guanxi	(关系)	is	a	traditional	social	networking	platform	deeply
embedded	in	the	Chinese	culture.	Like	modern	social	networks,	it
has	notions	of	followers,	likes/dislikes,	karma,	and	moderators.
Guanxi	predates	the	modern	legal	system	and	can	be	more
effective	than	the	civil	code	for	resolving	or	avoiding	all	manners
of	disputes.	Guanxi	is	also	essential	in	facilitating	new	deals	and
relationships.

Chapter	6.	the	story	of	chumby
*	Of	course,	I	want	to	make	clear	that	I	wasn’t	the	only	guy	behind
chumby;	I	worked	with	a	whole	team	of	fun,	talented	people.	As	I
mentioned	in	Chapter	1,	I	was	just	the	lead	hardware	designer,
though	I	did	the	Linux	kernel	stuff	too.	(That	was	new	for	me	at
the	time,	but	it	was	a	lot	of	fun	learning	the	insides	of	Linux	from
boot	to	halt!)

*	See	http://makezine.com/2012/04/30/makes-exclusive-interview-
with-andrew-bunnie-huang-the-end-of-chumby-new-adventures/
for	the	full	interview.

*	http://bunniestudios.com/bunnie/phdthesis.pdf
*	Data	primarily	from
https://en.wikipedia.org/wiki/List_of_Intel_microprocessors	and
https://en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors
I	track	Intel	CPUs	because	historically	they	have	led	the	MHz
curve	and	thus	provide	the	most	rigorous	interpretation	of
Moore’s	law.

†	H.	Iwai,	“Roadmap	for	22nm	and	Veyond,”	Microelectronic
Engineering	86,	no.	7–9	(2009),	doi:	10.1016/j.mee.2009.03.129.
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*	You	can	find	the	documentation	online	via	the	Kosagi	wiki	at
http://www.kosagi.com/.

*	http://boingboing.net/2014/01/17/building-a-fully-open-
transpa.html

*	One	megapascal	is	1	newton	(unit	of	force)	per	mm2;	1	gigapascal
is	1	kilonewton	per	mm2.

Chapter	7.	novena:	building	my	own	laptop
*	If	you’re	curious,	you	can	find	that	analysis	at
https://www.chipworks.com/about-
chipworks/overview/blog/second-shoe-drops-%E2%80%93-
samsung-v-nand-flash/.

Chapter	9.	hardware	hacking
*	You	can	find	a	copy	of	the	code	at	https://github.com/xobs/ax211-
code/.

*	You	can	read	the	documentation	on	the	Sutajio	Ko-Usagi	wiki,
although	by	the	time	of	publication,	the	original	NeTV	product
sold	on	Adafruit	will	probably	have	been	phased	out	in	favor	of	a
newer,	better	implementation.

*	Tangentially,	we	used	the	same	flex	adapter	I	mentioned	in
Chapter	8,	which	led	in	part	to	the	development	of	Chibitronics.

Chapter	10.	biology	and	bioinformatics
*	Eva	Yus	et	al.,	“Impact	of	Genome	Reduction	on	Bacterial
Metabolism	and	Its	Regulation,”	Science	326,	no.	5957	(2009):
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1263–1268,
http://science.sciencemag.org/content/326/5957/1263/.

*	Gabriele	Neumann,	Takeshi	Noda,	and	Yoshihiro	Kawaoka,
“Emergence	and	Pandemic	Potential	of	Swine-Origin	H1N1
Influenza	Virus,”	Nature	459,	no.	7249	(2009):	931–939,
http://www.nature.com/nature/journal/v459/n7249/full/nature08157.html

*	If	you’re	not	familiar	with	this	turn	of	phrase,	see
https://en.wikipedia.org/wiki/All_your_base_are_belong_to_us.

*	Incidentally,	I	find	it	amusing	that	the	sequence	for	PBP2	is
shorter	than,	for	example,	my	PGP	public	key	block.

*	P.C.	Ng	et	al.,	“An	Agenda	for	Personalized	Medicine,”	Nature
461,	no.	7265	(2009):	724–726,
http://www.nature.com/nature/journal/v461/n7265/full/461724a.html

*	Addgene	has	an	excellent	white	paper	describing	the	system	in
great	detail.	I	recommend	checking	it	out	if	my	cursory	treatment
here	whets	your	appetite:
https://www.addgene.org/CRISPR/guide/.

Chapter	11.	selected	interviews
*	This	interview	is	excerpted	in	Chapter	6.
*	Eventually,	Spark	changed	its	name	to	Particle.
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