

Django 2 Web Development
Cookbook
Third Edition

100 practical recipes on building scalable Python web apps
with Django 2

Jake Kronika
Aidas Bendoraitis

BIRMINGHAM - MUMBAI

Django 2 Web Development Cookbook
Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Trusha Shriyan
Content Development Editor: Flavian Vaz
Technical Editor: Leena Patil
Copy Editor: Safis Editing
Project Coordinator: Sheejal Shah
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Alishon Mendonsa
Production Coordinator: Shantanu Zagade

First published: October 2014
Second edition: January 2016
Third edition: October 2018

Production reference: 1301018

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-768-2

www.packtpub.com

http://www.packtpub.com

To my loving wife, Veronica, for being everything our family needs and more.

To my parents, Dianne and Jim, and my siblings, Jessica and David, for always pushing me to
be better than I thought I could be.

– Jake Kronika

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Jake Kronika, a senior software engineer with nearly 25 years' experience, has been
working with Python since 2005, and Django since 2007. Evolving alongside the web
development space, his skillset encompasses HTML5, CSS3, and ECMAScript 6 on the
frontend, plus Python, Django, Ruby on Rails, Node.js, and much more besides on the
server side.

Currently a senior software engineer and development team lead, he collaborates with
skilled designers, business stakeholders, and developers around the world to architect
robust web applications. In his spare time, he also provides full-spectrum web services as
sole proprietor of Gridline Design and Development.

Prior to this book, he has acted as a technical reviewer for several other Packt titles.

Aidas Bendoraitis has been professionally working with web technologies for over a
decade. Over the last 10 years at a Berlin-based company, studio 38 pure communication
GmbH, together with a creative team, he has developed a number of small and large-scale
Django projects, mostly in the cultural area. At the moment he is also working as software
architect at a London-based mobile startup, Hype.

Aidas regularly attends the meetups of the Django User Group in Berlin, occasionally visits
Django and Python conferences, and writes a blog about Django.

I would like to thank my wife, Sofja, for her support and patience while writing this book
during late evenings and weekends. Also I would like to thank studio 38 pure
communication GmbH and namely Reinhard Knobelspies for introducing Django to me 10
years ago. Finally, I would like to thank Vilnius University in Lithuania for teaching the
main programming concepts, without which I wouldn't be working in the positions I
currently have.

About the reviewer
Joe Jasinski has acquired over 15 years' experience in the IT industry, and has bachelor's
and master's degrees in computer science from Illinois Wesleyan University and DePaul
University respectively.

He led a team of talented programmers at Imaginary Landscape, where he spent 8 years
developing web applications in Python, Django, and related technologies. In his free time,
he is one of the organizers of the Chicago Python User Group (ChiPy). He currently works
at one of the leading data and measurement companies, and is helping to build a data
science platform established on Python, Spark, and Kubernetes.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Django 2.1 8
Introduction 9
Working with a virtual environment 9

Getting ready 10
How to do it... 10
How it works... 11
See also 11

Creating a virtual environment project file structure 11
Getting ready 12
How to do it... 12
How it works... 14
See also 15

Working with Docker 15
Getting ready 15
How to do it... 16
How it works... 17
There's more... 24
See also 24

Creating a Docker project file structure 24
Getting ready 24
How to do it... 25
How it works... 29
There's more... 33
See also 33

Handling project dependencies with pip 33
Getting ready 34
How to do it... 34
How it works... 37
There's more... 38
See also 38

Including external dependencies in your project 38
Getting ready 39
How to do it... 39
How it works... 40
There's more... 41
See also 41

Configuring settings for development, testing, staging, and
production environments 41

Table of Contents

[ii]

Getting ready 42
How to do it... 42
How it works... 43
There's more... 43
See also 43

Defining relative paths in the settings 44
Getting ready 44
How to do it... 44
How it works... 45
See also 45

Creating and including local settings 45
Getting ready 45
How to do it... 46
How it works... 47
See also 48

Setting up STATIC_URL dynamically for Subversion users 48
Getting ready 48
How to do it... 49
How it works... 49
See also 49

Setting up STATIC_URL dynamically for Git users 50
Getting ready 50
How to do it... 50
How it works... 51
See also 51

Setting UTF-8 as the default encoding for MySQL configuration 51
Getting ready 52
How to do it... 52
How it works... 52
There's more... 52
See also 53

Setting the Subversion ignore property 53
How to do it... 53
How it works... 55
See also 55

Creating the Git ignore file 55
Getting ready 55
How to do it... 56
How it works... 57
There's more... 57
See also 58

Deleting Python-compiled files 58
Getting ready 58
How to do it... 58
How it works... 58

Table of Contents

[iii]

See also 59
Respecting the import order in Python files 59

Getting ready 59
How to do it... 59
How it works... 60
There's more... 60
See also 60

Creating app configuration 60
Getting ready 61
How to do it... 61
How it works... 62
There is more... 63
See also 63

Defining overwritable app settings 63
Getting ready 64
How to do it... 64
How it works... 65

Chapter 2: Database Structure and Modeling 66
Introduction 66
Using model mixins 67

Getting ready 67
How to do it... 67
How it works... 68
There's more... 68
See also 68

Creating a model mixin with URL-related methods 68
Getting ready 69
How to do it... 69
How it works... 71
See also 72

Creating a model mixin to handle creation and modification dates 72
Getting ready 72
How to do it... 73
How it works... 73
See also 74

Creating a model mixin to take care of meta tags 74
Getting ready 74
How to do it... 74
How it works... 76
See also 77

Creating a model mixin to handle generic relations 77
Getting ready 77
How to do it... 78
How it works... 81

Table of Contents

[iv]

See also 81
Handling multilingual fields 82

Getting ready 82
How to do it... 82
How it works... 85
See also 87

Enabling schema microdata enhancements 87
Getting ready 87
How to do it... 87
How it works... 92
See also 94

Using migrations 95
Getting ready 95
How to do it... 95
How it works... 96
See also 97

Switching from South migrations to Django migrations 98
Getting ready 98
How to do it... 98
How it works... 99
See also 99

Changing a foreign key to the many-to-many field 99
Getting ready 100
How to do it... 100
How it works... 102
There's more... 102
See also 102

Chapter 3: Forms and Views 103
Introduction 103
Passing HttpRequest to a form 104

Getting ready 104
How to do it... 104
How it works... 107
See also 108

Utilizing the save method of the form 108
Getting ready 109
How to do it... 109
How it works... 110
See also 110

Uploading images 110
Getting ready 111
How to do it... 112
How it works... 114
There's more 114

Table of Contents

[v]

See also 117
Creating a form layout with custom templates 117

Getting ready 117
How to do it... 119
How it works... 124
See also 126

Creating a form layout with django-crispy-forms 126
Getting ready 126
How to do it... 127
How it works... 130
There's more... 132
See also 132

Filtering object lists 133
Getting ready 134
How to do it... 135
How it works... 141
See also 142

Managing paginated lists 142
Getting ready 142
How to do it... 142
How it works... 145
See also 145

Composing class-based views 146
Getting ready 146
How to do it... 146
How it works... 148
There's more... 149
See also 149

Generating PDF documents 149
Getting ready 149
How to do it... 151
How it works... 154
See also 157

Implementing a multilingual search with Haystack and Whoosh 157
Getting ready 157
How to do it... 160
How it works... 166
See also 167

Chapter 4: Templates and JavaScript 168
Introduction 168
Exposing settings in JavaScript 169

Getting ready 169
How to do it... 170
How it works... 171

Table of Contents

[vi]

See also 172
Arranging the base.html template 172

Getting ready 173
How to do it... 173
How it works... 176
There's more... 177
See also 177

Using HTML5 data attributes 177
Getting ready 178
How to do it... 179
How it works... 183
See also 186

Providing responsive images 186
Getting ready 186
How to do it... 186
How it works... 189
There's more... 192
See also 192

Opening object details in a modal dialog 192
Getting ready 192
How to do it... 193
How it works... 196
See also 197

Implementing a continuous scroll 197
Getting ready 198
How to do it... 199
How it works... 203
There's more 205
See also 206

Implementing the Like widget 206
Getting ready 207
How to do it... 208
How it works... 213
See also 214

Uploading images via Ajax 215
Getting ready 215
How to do it... 216
How it works... 226
See also 229

Chapter 5: Customizing Template Filters and Tags 230
Introduction 230
Following conventions for your own template filters and tags 231

How to do it... 231
See also 232

Table of Contents

[vii]

Creating a template filter to show how much time has passed since
a post was published 233

Getting ready 233
How to do it... 233
How it works... 234
There's more... 235
See also 235

Creating a template filter to extract the first media object 235
Getting ready 236
How to do it... 236
How it works... 237
There's more... 238
See also 238

Creating a template filter to humanize URLs 238
Getting ready 238
How to do it... 238
How it works... 239
See also 239

Creating a template tag to include a template if it exists 240
Getting ready 240
How to do it... 240
How it works... 241
There's more... 243
See also 243

Creating a template tag to load a QuerySet in a template 244
Getting ready 244
How to do it... 244
How it works... 246
See also 248

Creating a template tag to parse content as a template 248
Getting ready 249
How to do it... 249
How it works... 250
See also 251

Creating a template tag to modify request query parameters 251
Getting ready 252
How to do it... 252
How it works... 254
See also 256

Chapter 6: Model Administration 257
Introduction 257
Customizing columns on the change list page 258

Getting ready 258
How to do it... 260

Table of Contents

[viii]

How it works... 262
There's more... 265
See also 265

Creating admin actions 265
Getting ready 265
How to do it... 266
How it works... 268
See also 271

Developing change list filters 271
Getting ready 271
How to do it... 271
How it works... 272
See also 274

Customizing default admin settings 274
Getting ready 275
How to do it... 275
How it works... 277
See also 280

Inserting a map into a change form 280
Getting ready 281
How to do it... 282
How it works... 290
See also 293

Chapter 7: Security and Performance 294
Introduction 294
Making forms secure from Cross Site Request Forgery (CSRF) 295

Getting ready 295
How to do it... 295
How it works... 296
There's more... 297
See also 298

Implementing password validation 298
Getting ready 298
How to do it... 299
How it works... 301
There's more... 302
See also 304

Downloading authorized files 305
Getting ready 305
How to do it... 305
How it works... 309
See also 310

Adding a dynamic watermark to images 311
Getting ready 311

Table of Contents

[ix]

How to do it... 311
How it works... 314
There's more... 315
See also 316

Authenticating with Auth0 316
Getting ready 316
How to do it... 317
How it works... 321
There's more... 322
See also 323

Caching the method return value 323
Getting ready 323
How to do it... 323
How it works... 324
There's more... 325
See also 326

Using Memcached to cache Django views 326
Getting ready 327
How to do it... 328
How it works... 328
See also 329

Using Redis to cache Django views 329
Getting ready 329
How to do it... 331
How it works... 332
There's more... 332
See also 333

Chapter 8: Django CMS 334
Introduction 334
Creating templates for Django CMS 335

Getting ready 335
How to do it... 336
How it works... 339
See also 341

Structuring the page menu 341
Getting ready 341
How to do it... 342
How it works... 345
See also 346

Converting an app to a CMS app 346
Getting ready 346
How to do it... 346
How it works... 348
See also 349

Table of Contents

[x]

Attaching your own navigation 349
Getting ready 349
How to do it... 352
How it works... 354
See also 355

Writing your own CMS plugin 355
Getting ready 355
How to do it... 356
How it works... 361
See also 363

Adding new fields to the CMS page 363
Getting ready 363
How to do it... 363
How it works... 368
See also 370

Chapter 9: Hierarchical Structures 371
Introduction 371
Creating hierarchical categories with django-mptt 373

Getting ready 373
How to do it... 374
How it works... 375
See also 377

Creating a category administration interface with django-mptt-
admin 377

Getting ready 378
How to do it... 378
How it works... 378
See also 382

Rendering categories in a template with django-mptt 382
Getting ready 382
How to do it... 382
How it works... 384
There's more... 385
See also 385

Using a single selection field to choose a category in forms with
django-mptt 385

Getting ready 386
How to do it... 386
How it works... 387
See also 388

Using a checkbox list to choose multiple categories in forms with
django-mptt 388

Getting ready 388
How to do it... 389

Table of Contents

[xi]

How it works... 393
There's more... 394
See also 394

Creating hierarchical categories with django-treebeard 395
Getting ready 395
How to do it... 396
How it works... 397
There's more... 399
See also 399

Creating a basic category administration interface with django-
treebeard 400

Getting ready 400
How to do it... 400
How it works... 401
See also 404

Chapter 10: Importing and Exporting Data 405
Introduction 405
Importing data from a local CSV file 405

Getting ready 406
How to do it... 406
How it works... 407
There's more... 409
See also 409

Importing data from a local Excel file 409
Getting ready 409
How to do it... 410
How it works... 411
There's more... 411
See also 411

Importing data from an external JSON file 412
Getting ready 412
How to do it... 414
How it works... 417
There's more... 417
See also 417

Importing data from an external XML file 418
Getting ready 418
How to do it... 419
How it works... 421
There's more... 422
See also 422

Creating filterable RSS feeds 423
Getting ready 423
How to do it... 423

Table of Contents

[xii]

How it works... 429
See also 430

Using Tastypie to create an API 430
Getting ready 431
How to do it... 431
How it works... 434
See also 435

Using Django REST framework to create an API 436
Getting ready 436
How to do it... 436
How it works... 439
See also 443

Chapter 11: Bells and Whistles 444
Introduction 444
Using the Django shell 444

Getting ready 445
How to do it... 445
How it works... 452
See also 452

Using database query expressions 452
Getting ready 452
How to do it... 454
How it works... 456
See also 458

Monkey patching the slugify() function for better
internationalization support 458

Getting ready 459
How to do it... 459
How it works... 459
There's more... 460
See also 460

Toggling the Debug Toolbar 461
Getting ready 461
How to do it... 461
How it works... 464
See also 465

Using ThreadLocalMiddleware 466
Getting ready 466
How to do it... 466
How it works... 467
See also 468

Using signals to notify administrators about new entries 468
Getting ready 468
How to do it... 469

Table of Contents

[xiii]

How it works... 470
See also 471

Checking for missing settings 471
Getting ready 471
How to do it... 472
How it works... 473
See also 474

Chapter 12: Testing and Deployment 475
Introduction 475
Testing views with mock 475

Getting ready 476
How to do it... 477
How it works... 479
See also 480

Testing APIs created using the Django REST framework 480
Getting ready 480
How to do it... 480
How it works... 486
See also 486

Releasing a reusable Django app 486
Getting ready 487
How to do it... 487
How it works... 490
See also 490

Getting detailed error reporting via email 491
Getting ready 491
How to do it... 491
How it works... 492
See also 493

Deploying on Apache with mod_wsgi 493
Getting ready 493
How to do it... 494
How it works... 500
There's more... 501
See also 501

Setting up cron jobs for regular tasks 501
Getting ready 502
How to do it... 502
How it works... 504
See also 505

Other Books You May Enjoy 506

Index 509

Preface
The Django framework was specifically engineered to help developers construct robust,
powerful web applications quickly and efficiently. It takes much of the drudgery and
repetition out of the process, solving questions such as project structure, database object-
relational mapping, templating, form validation, sessions, authentication, security, cookie
management, internationalization, basic administration, and an interface to access data
from scripts. Django is built upon the Python programming language, which itself enforces
clear and easy-to-read code. Besides the core framework, Django has been designed to
enable developers to create third-party modules that can be used in conjunction with your
own apps. Django has an established and vibrant community, where you can find source
code, get help, and contribute.

Web Development with Django Cookbook, Third Edition, will guide you through every stage of
the web development process with the Django 2.1 framework. We start with configuration
and structuring of the project, either under a virtual environment or in Docker. Then, you
will learn how to define the database structure with reusable components, and to manage it
throughout the lifetime of your project. The book will move on to the forms and views used
to enter and list the data. We proceed with responsive templates and JavaScript to augment
the user experience. After this, you will customize the administration interface in order to
streamline the workflow of website editors. From there, we shift focus to the stability and
robustness of your project, helping to secure and optimize your apps. You will also learn
how to integrate your own functionality into Django CMS. Next, we examine how to
efficiently store and manipulate hierarchical structures. Then dawns the realization that
collecting data from different sources and providing your own data to others in a range of
formats is simpler than you might think. We will then introduce you to some tricks for
programming and debugging your Django project code. Finally, you will see just a few of
the available options for testing your code, and deploying your project to a remote
dedicated server.

In contrast to many other Django books, which are concerned only with the framework
itself, this book covers several important third-party modules that will equip you with the
tools necessary for complete web development. Additionally, we provide examples using
the Bootstrap frontend framework and the jQuery JavaScript library, both of which simplify
the creation of advanced and complex user interfaces.

Preface

[2]

Who this book is for
If you have experience with Django, and are looking to enhance your skills, this book is for
you. We have designed the content for intermediate and professional Django developers
who are aiming to build robust projects that are multilingual, secure, responsive, and can
scale over time.

What this book covers
Chapter 1, Getting Started with Django 2.1, illustrates the fundamental setup and
configuration steps necessary for any Django project. We cover virtual environments and
Docker, project settings across environments, and multiple version control systems.

Chapter 2, Database Structure and Modeling, explains how you can write reusable code for
use in construction of your models. The first thing to define with new apps are the data
models, which form the backbone of any project. Also, you will learn how to manage
database schema changes and data manipulations using Django migrations.

Chapter 3, Forms and Views, looks first at common forms and ways to construct their
markup effectively, and then the views to present dynamic forms, lists, and details of your
data to users.

Chapter 4, Templates and JavaScript, covers practical examples of using templates and
JavaScript together. We combine these facets, rendered templates present information to
the user, and JavaScript provides crucial enhancements in modern websites for a rich user
experience.

Chapter 5, Customizing Template Filters and Tags, reviews how to create and use your own
template filters and tags. As you will see, the default Django template system can be
extended to meet template developers' needs.

Chapter 6, Model Administration, explores the default Django administration interface, and
guides you through extending it with your own functionality.

Chapter 7, Security and Performance, delves into several ways, both inherent to and external
from Django, to secure and optimize your projects.

Chapter 8, Django CMS, deals with the best practices of using Django CMS, the most
popular open source content management system made with and for Django, and then
adapting it to your project's specific requirements.

Preface

[3]

Chapter 9, Hierarchical Structures, examines tree-like structure creation and manipulation in
Django, and the benefits of incorporating the django-mptt or treebeard libraries into
such workflows. This chapter shows you how to use both for the display and
administration of hierarchies.

Chapter 10, Importing and Exporting Data, demonstrates the transfer of data from and to
different formats, as well as its provision between various sources. Within this chapter,
custom management commands are used for data import, and we utilize REST APIs for
data export.

Chapter 11, Bells and Whistles, shows some additional snippets and tricks that are useful in
everyday web development and debugging.

Chapter 12, Testing and Deployment, provides a few examples of how to test your project
code, and gives options for automating repetitive tasks and deployment on a remote server.

To get the most out of this book
To develop with Django 2.1 using the examples in these pages, you will need the following:

Python 3.6 or higher
The Pillow library for image manipulation
Either the MySQL database and the MySQLdb bindings, or the PostgreSQL
database
Docker Desktop or Docker Toolbox for complete system virtualization, or
virtualenv to keep each project's Python modules separated
Git or Subversion for version control

All other specific requirements are separately mentioned in each recipe.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packt.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Django- 2-Web- Development- Cookbook- Third- Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781788837682_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "For this recipe to work, you will need to have the contenttypes app installed."

http://www.packt.com
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Django-2-Web-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788837682_ColorImages.pdf

Preface

[5]

A block of code is set as follows:

settings.py or config/base.py
INSTALLED_APPS = (
 # ...
 'django.contrib.contenttypes',
)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

{% block meta_tags %}
 {{ block.super }}
 {{ idea.get_meta_tags }}
{% endblock %}

Any command-line input or output is written as follows:

(myproject_env)$ pip3 install "Django~=2.1.0"

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We can see here that the upload-related action buttons are also replaced with
a Remove button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

Preface

[6]

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to increase your
knowledge of it.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

http://www.packt.com/submit-errata

Preface

[7]

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Getting Started with Django 2.1

In this chapter, we will cover the following topics:

Working with a virtual environment
Creating a virtual environment project file structure
Working with Docker
Creating a Docker project file structure
Handling project dependencies with pip
Including external dependencies in your project
Configuring settings for development, testing, staging, and production
environments
Defining relative paths in the settings
Creating and including local settings
Setting up STATIC_URL dynamically for Subversion users
Setting up STATIC_URL dynamically for Git users
Setting UTF-8 as the default encoding for MySQL configuration
Setting the Subversion ignore property
Creating a Git ignore file
Deleting Python-compiled files
Respecting the import order in Python files
Creating app configuration
Defining overwritable app settings

Getting Started with Django 2.1 Chapter 1

[9]

Introduction
In this chapter, we will see a few good practices when starting a new project with Django
2.1 on Python 3. Some of the tricks introduced here are the best ways to deal with the
project layout, settings, and configurations, whether using virtualenv or Docker to manage
your project. However, for some tricks, you might want to find some alternatives online or
in other books about Django. Feel free to evaluate and choose the best bits and pieces for
yourself while digging deep into the Django world.

We are assuming that you are already familiar with the basics of Django, Subversion and
Git version control, MySQL and PostgreSQL databases, and command-line usage. Also, we
assume that you are using a Unix-based operating system, such as macOS X or Linux. It
makes more sense to develop with Django on Unix-based platforms as the websites will
most likely be published on a similar server, therefore, you can establish routines that work
the same while developing as well as deploying. If you are locally working with Django on
Windows, the routines are similar; however, they are not always the same.

Using Docker for your development environment, regardless of your local platform, can
improve the portability of your applications through deployment, since the environment
within the Docker container can be matched precisely to that of your deployment server.
Finally, whether developing with Docker or not, we assume that you have the appropriate
version control system and database server already installed to your local machine.

You can download the example code files for all Packt books that you
have purchased from your account at http:/ /www. packtpub. com. If you
purchased this book elsewhere, you can visit http:/ / www.packtpub. com/
support and register in order to have the files emailed directly to you.

Working with a virtual environment
It is very likely that you will develop multiple Django projects on your computer. Some
modules, such as Python Imaging Library (or Pillow) and MySQLdb, can be installed once
and then shared for all projects. Other modules, such as Django, third-party Python
libraries, and Django apps, will need to be kept isolated from each other. The virtualenv
tool is a utility that separates all of the Python projects in their own realms. In this recipe,
we will see how to use it.

http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Getting Started with Django 2.1 Chapter 1

[10]

Getting ready
To manage Python packages, you will need pip. It is included in your Python installation if
you are using Python 3.4+. If you are using another version of Python, install pip by
executing the installation instructions at http:/ /pip. readthedocs. org/en/ stable/
installing/. Let's install the shared Python modules, Pillow and MySQLdb, and the
virtualenv utility, using the following commands:

$ sudo pip3 install Pillow~=5.2.0
$ sudo pip3 install mysqlclient~=1.3.0
$ sudo pip3 install virtualenv~=16.0.0

How to do it...
Once you have your prerequisites installed, create a directory where all your Django
projects will be stored, for example, virtualenvs under your home directory. Perform the
following steps after creating the directory:

Go to the newly created directory and create a virtual environment that uses the1.
shared system site packages:

$ cd ~/virtualenvs
$ mkdir myproject_env
$ cd myproject_env
$ virtualenv --system-site-packages .
Using base prefix '/usr/local'
New python executable in ./bin/python3.6
Also creating executable in ./bin/python
Installing setuptools, pip, wheel...done.

To use your newly created virtual environment, you need to execute the2.
activation script in your current shell. This can be done with the following
command:

$ source bin/activate

Depending on the shell you are using, the source command may not be3.
available. Another way to source a file is with the following command, which has
the same result (note the space between the dot and bin):

$. bin/activate

http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/

Getting Started with Django 2.1 Chapter 1

[11]

You will see that the prompt of the command-line tool gets a prefix of the project4.
name, as follows:

(myproject_env)$

To get out of the virtual environment, type the following command:5.

(myproject_env)$ deactivate

How it works...
When you create a virtual environment, a few specific directories (bin, include, and lib)
are created in order to store a copy of the Python installation and some shared Python
paths are defined. When the virtual environment is activated, whatever you have installed
with pip or easy_install will be put in and used by the site packages of the virtual
environment, and not the global site packages of your Python installation.

To install the latest Django 2.1.x in your virtual environment, type the following command:

(myproject_env)$ pip3 install "Django~=2.1.0"

See also
The Creating a virtual environment project file structure recipe
The Working with Docker recipe
The Deploying on Apache with mod_wsgi recipe in Chapter 12, Testing and
Deployment

Creating a virtual environment project file
structure
A consistent file structure for your projects makes you well organized and more
productive. When you have the basic workflow defined, you can get in the business logic
more quickly and create awesome projects.

Getting Started with Django 2.1 Chapter 1

[12]

Getting ready
If you haven't done this yet, create a virtualenvs directory, where you will keep all your
virtual environments (read about this in the Working with a virtual environment recipe). This
can be created under your home directory.

Then, create a directory for your project's environment, for example, myproject_env. Start
the virtual environment in it. We would suggest adding a commands directory for local
shell scripts that are related to the project, a db_backups directory for database dumps,
and a project directory for your Django project. Also, install Django in your virtual
environment if you haven't already done so.

How to do it...
Follow these steps in order to create a file structure for your project:

With the virtual environment activated, go to the project directory and start a1.
new Django project as follows:

(myproject_env)$ django-admin.py startproject myproject

For clarity, we will rename the newly created directory django-myproject. This
is the directory that you will put under version control, therefore, it will
have .git, .svn, or similar subdirectories.

In the django-myproject directory, create a README.md file to describe your2.
project to the new developers. You can also put the pip requirements with the
Django version and include other external dependencies (read about this in the
Handling project dependencies with pip recipe).
The django-myproject directory will also contain the following:3.

Your project's Python package, named myproject
Django apps (we recommend having an app called utils for different
functionalities that are shared throughout the project)
A locale directory for your project translations if it is multilingual
The externals directory for external dependencies that are included
in this project if you decide not to use pip requirements

Getting Started with Django 2.1 Chapter 1

[13]

In your project's root, django-myproject. Create the following:4.
A media directory for project uploads
A site_static directory for project-specific static files
A static directory for collected static files
A tmp directory for the upload procedure
A templates directory for project templates

The myproject directory should contain your project settings in settings.py5.
and a config directory (read about this in the Configuring settings for development,
testing, staging, and production environments recipe), as well as the urls.py URL
configuration.
In your site_static directory, create the site directory as a namespace for6.
site-specific static files. Then, we will divide the static files between categorized
subdirectories in it. For instance, see the following:

scss for Sass files (optional)
css for the generated minified Cascading Style Sheets (CSS)
img for styling images and logos
js for JavaScript and any third-party module combining all types of
files, such as the TinyMCE rich-text editor

Besides the site directory, the site_static directory might also contain7.
overwritten static directories of third-party apps, for example, cms overwriting
static files from Django CMS. To generate the CSS files from Sass and minify the
JavaScript files, you can use the CodeKit or Prepros applications with a graphical
user interface.
Put your templates that are separated by the apps in your templates directory.8.
If a template file represents a page (for example, change_item.html or
item_list.html), then put it directly in the app's template directory. If the
template is included in another template (for example, similar_items.html),
put it in the includes subdirectory. Also, your templates directory can contain
a directory called utils for globally reusable snippets, such as pagination and
language chooser.

Getting Started with Django 2.1 Chapter 1

[14]

How it works...
The whole file structure for a complete project in a virtual environment will look similar to
the following:

myproject_env/
├── bin/
├── commands/
├── db_backups/
├── include/
├── lib/
└── project/
 └── django-myproject/
 ├── externals/
 │ ├── apps/
 │ └── libs/
 ├── locale/
 ├── media/
 ├── myapp1/
 ├── myapp2/
 ├── myproject/
 │ ├── config/
 │ │ ├── __init__.py
 │ │ ├── base.py
 │ │ ├── dev.py
 │ │ ├── prod.py
 │ │ ├── staging.py
 │ │ └── test.py
 │ ├── tmp/
 │ ├── __init__.py
 │ ├── settings.py
 │ ├── settings.py.example
 │ ├── urls.py
 │ └── wsgi.py
 ├── requirements/
 │ ├── dev.txt
 │ ├── prod.txt
 │ ├── staging.txt
 │ └── test.txt
 ├── site_static/
 │ └── site/
 │ ├── css/
 │ ├── img/
 │ └── js/
 ├── static/
 ├── templates/
 │ ├── admin/
 │ ├── myapp1/

Getting Started with Django 2.1 Chapter 1

[15]

 │ │ └── includes/
 │ └── myapp2/
 │ └── includes/
 ├── utils/
 │ ├── __init__.py
 │ └── misc.py
 ├── README.md
 ├── fabfile.py
 └── manage.py*

See also
The Handling project dependencies with pip recipe
The Including external dependencies in your project recipe
The Configuring settings for development, testing, staging, and production
environments recipe
The Deploying on Apache with mod_wsgi recipe in Chapter 12, Testing and
Deployment

Working with Docker
Sometimes more flexibility is needed across projects than simply to differentiate Python
package versions. For example, it might be necessary to support an application on an
existing version of Python itself, or perhaps MySQL, while simultaneously developing an
update that relies upon a newer version of the software. Docker is capable of that level of
isolation.

Docker is a system for creating configured, customized virtual machines called containers.
It allows duplicating the setup of any production server precisely. In some cases, it is even
possible to deploy pre-built containers directly to remote servers as well.

Getting ready
First, you will need to install the Docker Engine, following the instructions to be found
at https://www.docker. com/ get- started. This usually includes the Compose tool, which
makes it simple to manage systems that require multiple containers, ideal for a fully
isolated Django project. If needed, installation details for Compose are available at https:/
/docs.docker.com/ compose/ install/ .

https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

Getting Started with Django 2.1 Chapter 1

[16]

How to do it...
With Docker and Compose installed, we will start by creating a
myproject_docker directory. Within this, create subdirectories named apps, config,
media, project, static, and templates. Then, we will create three configuration files:

A requirements.txt file defining Python dependencies, under the config
directory
Dockerfile for the Django application container, in the myproject_docker
root
A docker-compose.yml file identifying all of the services making up the
application environment, also in the myproject_docker root

The requirements.txt, which lives under the config subdirectory, is much the same as
if using a virtual environment (see the Working with a virtual environment recipe), though we
will include all dependencies here, not just those that differ from other projects. Because we
are likely trying to match our Docker environment to that of the production server, we will
generally require very specific versions of each module. In this case, we limit to the latest
patch within a minor version range. For example, here, we would prefer mysqlclient
1.3.13 over mysqlclient 1.3.3, but we would not yet upgrade to mysqlclient
1.4.0:

config/requirements.txt
Pillow~=5.2.0
mysqlclient~=1.3.0
Django~=2.1.0

Dockerfile will define how to build the environment within the container:

Dockerfile
FROM python:3
RUN apt-get update \
 && apt-get install -y --no-install-recommends \
 mysql-client libmysqlclient-dev
WORKDIR /usr/src/app
ADD config/requirements.txt ./
RUN pip3 install --upgrade pip; \
 pip3 install -r requirements.txt
RUN django-admin startproject myproject .; \
 mv ./myproject ./origproject

Getting Started with Django 2.1 Chapter 1

[17]

We start with the official image for Python 3, install some dependencies for MySQL, set our
working directory, add and install Python requirements, and then start a Django project.

Finally, docker-compose.yml puts together the Django application container with other
services, such as a MySQL database, so that we can run them together with ease:

docker-compose.yml
version: '3'
services:
 db:
 image: 'mysql:5.7'
 app:
 build: .
 command: python3 manage.py runserver 0.0.0.0:8000
 volumes:
 - './project:/usr/src/app/myproject'
 - './media:/usr/src/app/media'
 - './static:/usr/src/app/static'
 - './templates:/usr/src/app/templates'
 - './apps/external:/usr/src/app/external'
 - './apps/myapp1:/usr/src/app/myapp1'
 - './apps/myapp2:/usr/src/app/myapp2'
 ports:
 - '8000:8000'
 links:
 - db

As we can see in the volumes section, we will also need to add subdirectories within
myproject_docker named project, media, static, and templates, plus each of
the apps for the project. These directories will house the code, configuration, and other
resources that are exposed within the container.

How it works...
With our basic configuration in place, we can now issue commands to Docker to build and
start up our services. If the system we built was using only Dockerfile, this could be done
without Compose, using direct docker engine commands. However, in a Compose setup
there is a special docker-compose wrapper command that makes it easier to coordinate
multiple interconnected containers.

Getting Started with Django 2.1 Chapter 1

[18]

The first step is to build our containers, as defined by the docker-compose.yml file. The
first time that you build, any images used as starting points need to be loaded locally, and
then each instruction in the Dockerfile is performed sequentially within the resultant
machine:

myproject_docker/$ docker-compose build
db uses an image, skipping
Building app
Step 1/6 : FROM python:3
3: Pulling from library/python
f49cf87b52c1: Pull complete
7b491c575b06: Pull complete
b313b08bab3b: Pull complete
51d6678c3f0e: Pull complete
09f35bd58db2: Pull complete
0f9de702e222: Pull complete
73911d37fcde: Pull complete
99a87e214c92: Pull complete
Digest:
sha256:98149ed5f37f48ea3fad26ae6c0042dd2b08228d58edc95ef0fce35f1b3d9e9f
Status: Downloaded newer image for python:3
 ---> c1e459c00dc3
Step 2/6 : RUN apt-get update && apt-get install -y --no-install-recommends
mysql-client libmysqlclient-dev
 ---> Running in 385946c3002f
Get:1 http://security.debian.org jessie/updates InRelease [63.1 kB]
Ign http://deb.debian.org jessie InRelease
Get:2 http://deb.debian.org jessie-updates InRelease [145 kB]
Get:3 http://deb.debian.org jessie Release.gpg [2434 B]
Get:4 http://deb.debian.org jessie Release [148 kB]
Get:5 http://security.debian.org jessie/updates/main amd64 Packages [607
kB]
Get:6 http://deb.debian.org jessie-updates/main amd64 Packages [23.1 kB]
Get:7 http://deb.debian.org jessie/main amd64 Packages [9064 kB]
Fetched 10.1 MB in 10s (962 kB/s)
Reading package lists...
Reading package lists...
Building dependency tree...
Reading state information...
The following extra packages will be installed:
 libdbd-mysql-perl libdbi-perl libmysqlclient18 libterm-readkey-perl
 mysql-client-5.5 mysql-common
Suggested packages:
 libclone-perl libmldbm-perl libnet-daemon-perl libsql-statement-perl
The following NEW packages will be installed:
 libdbd-mysql-perl libdbi-perl libterm-readkey-perl mysql-client
 mysql-client-5.5

Getting Started with Django 2.1 Chapter 1

[19]

The following packages will be upgraded:
 libmysqlclient-dev libmysqlclient18 mysql-common
3 upgraded, 5 newly installed, 0 to remove and 8 not upgraded.
Need to get 4406 kB of archives.
After this operation, 39.8 MB of additional disk space will be used.
Get:1 http://security.debian.org/ jessie/updates/main libmysqlclient-dev
amd64 5.5.59-0+deb8u1 [952 kB]
Get:2 http://deb.debian.org/debian/ jessie/main libdbi-perl amd64
1.631-3+b1 [816 kB]
Get:3 http://security.debian.org/ jessie/updates/main mysql-common all
5.5.59-0+deb8u1 [80.2 kB]
Get:4 http://deb.debian.org/debian/ jessie/main libdbd-mysql-perl amd64
4.028-2+deb8u2 [119 kB]
Get:5 http://security.debian.org/ jessie/updates/main libmysqlclient18
amd64 5.5.59-0+deb8u1 [674 kB]
Get:6 http://deb.debian.org/debian/ jessie/main libterm-readkey-perl amd64
2.32-1+b1 [28.0 kB]
Get:7 http://security.debian.org/ jessie/updates/main mysql-client-5.5
amd64 5.5.59-0+deb8u1 [1659 kB]
Get:8 http://security.debian.org/ jessie/updates/main mysql-client all
5.5.59-0+deb8u1 [78.4 kB]
debconf: delaying package configuration, since apt-utils is not installed
Fetched 4406 kB in 5s (768 kB/s)
(Reading database ... 21636 files and directories currently installed.)
Preparing to unpack .../libmysqlclient-dev_5.5.59-0+deb8u1_amd64.deb ...
Unpacking libmysqlclient-dev (5.5.59-0+deb8u1) over (5.5.58-0+deb8u1) ...
Preparing to unpack .../mysql-common_5.5.59-0+deb8u1_all.deb ...
Unpacking mysql-common (5.5.59-0+deb8u1) over (5.5.58-0+deb8u1) ...
Preparing to unpack .../libmysqlclient18_5.5.59-0+deb8u1_amd64.deb ...
Unpacking libmysqlclient18:amd64 (5.5.59-0+deb8u1) over (5.5.58-0+deb8u1)
...
Selecting previously unselected package libdbi-perl.
Preparing to unpack .../libdbi-perl_1.631-3+b1_amd64.deb ...
Unpacking libdbi-perl (1.631-3+b1) ...
Selecting previously unselected package libdbd-mysql-perl.
Preparing to unpack .../libdbd-mysql-perl_4.028-2+deb8u2_amd64.deb ...
Unpacking libdbd-mysql-perl (4.028-2+deb8u2) ...
Selecting previously unselected package libterm-readkey-perl.
Preparing to unpack .../libterm-readkey-perl_2.32-1+b1_amd64.deb ...
Unpacking libterm-readkey-perl (2.32-1+b1) ...
Selecting previously unselected package mysql-client-5.5.
Preparing to unpack .../mysql-client-5.5_5.5.59-0+deb8u1_amd64.deb ...
Unpacking mysql-client-5.5 (5.5.59-0+deb8u1) ...
Selecting previously unselected package mysql-client.
Preparing to unpack .../mysql-client_5.5.59-0+deb8u1_all.deb ...
Unpacking mysql-client (5.5.59-0+deb8u1) ...
Setting up mysql-common (5.5.59-0+deb8u1) ...
Setting up libmysqlclient18:amd64 (5.5.59-0+deb8u1) ...

Getting Started with Django 2.1 Chapter 1

[20]

Setting up libmysqlclient-dev (5.5.59-0+deb8u1) ...
Setting up libdbi-perl (1.631-3+b1) ...
Setting up libdbd-mysql-perl (4.028-2+deb8u2) ...
Setting up libterm-readkey-perl (2.32-1+b1) ...
Setting up mysql-client-5.5 (5.5.59-0+deb8u1) ...
Setting up mysql-client (5.5.59-0+deb8u1) ...
Processing triggers for libc-bin (2.19-18+deb8u10) ...
Removing intermediate container 385946c3002f
 ---> 6bca605a6e41
Step 3/6 : WORKDIR /usr/src/app
Removing intermediate container 3b23729581ef
 ---> 75bf10f0bee4
Step 4/6 : ADD config/requirements.txt ./
 ---> 31a62236f4b9
Step 5/6 : RUN pip3 install --upgrade pip; pip3 install -r requirements.txt
 ---> Running in 755a1b397b5d
Requirement already up-to-date: pip in /usr/local/lib/python3.6/site-
packages
Collecting Pillow~=5.2.0 (from -r requirements.txt (line 2))
 Downloading Pillow-5.2.0-cp36-cp36m-manylinux1_x86_64.whl (5.9MB)
Collecting mysqlclient~=1.3.0 (from -r requirements.txt (line 3))
 Downloading mysqlclient-1.3.0.tar.gz (76kB)
Collecting Django~=2.1.0 (from -r requirements.txt (line 4))
 Downloading Django-2.1.1-py3-none-any.whl (7.1MB)
Collecting pytz (from Django~=2.1.0->-r requirements.txt (line 4))
 Downloading pytz-2017.3-py2.py3-none-any.whl (511kB)
Building wheels for collected packages: mysqlclient
 Running setup.py bdist_wheel for mysqlclient: started
 Running setup.py bdist_wheel for mysqlclient: finished with status 'done'
 Stored in directory:
/root/.cache/pip/wheels/0e/11/a1/e81644c707456461f470c777f13fbd11a1af8eff0c
a71aaca0
Successfully built mysqlclient
Installing collected packages: Pillow, mysqlclient, pytz, Django
Successfully installed Django-2.1.1 Pillow-5.2.0 mysqlclient-1.3.0
pytz-2017.3
Removing intermediate container 755a1b397b5d
 ---> 12308a188504
Step 6/6 : RUN django-admin startproject myproject .; mv ./myproject
./origproject
 ---> Running in 746969588bd3
Removing intermediate container 746969588bd3
 ---> 8bc2b0beb674
Successfully built 8bc2b0beb674
Successfully tagged myprojectdocker_app:latest

Getting Started with Django 2.1 Chapter 1

[21]

This will create a local image based on the code in the myproject_docker directory. We
can see a list of the built images available, as follows:

myproject_docker/$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
myprojectdocker_app latest 6a5c66f22a02 39 seconds ago 814MB
python 3 c1e459c00dc3 4 weeks ago 692MB

The state of the machine, after each step, is cached so that future build commands do as
little work as possible, based only on the steps after which a change was made. For
example, if we build again right away, then everything should come from the cache:

myproject_docker/$ docker-compose build
db uses an image, skipping
Building app
Step 1/6 : FROM python:3
 ---> c1e459c00dc3
Step 2/6 : RUN apt-get update && apt-get install -y --no-install-recommends
mysql-client libmysqlclient-dev
 ---> Using cache
 ---> f2007264e96d
Step 3/6 : WORKDIR /usr/src/app
 ---> Using cache
 ---> 9621b97ef4ec
Step 4/6 : ADD config/requirements.txt ./
 ---> Using cache
 ---> 6a87941c7876
Step 5/6 : RUN pip3 install --upgrade pip; pip3 install -r requirements.txt
 ---> Using cache
 ---> 64a268b8cba6
Step 6/6 : RUN django-admin startproject myproject .; mv ./myproject
./origproject
 ---> Using cache
 ---> 8bc2b0beb674
Successfully built 8bc2b0beb674
Successfully tagged myprojectdocker_app:latest

Although we added a project to the container via the Dockerfile, the project volume set
up for the app would mask some files when the container is running. To get around this,
we moved the project files within the container aside to an origproject directory.
Compose allows us to easily run commands against our services, so we can copy those
project files so they are accessible in the volume by executing the following command:

myproject_docker/$ docker-compose run app cp \
> origproject/__init__.py \
> origproject/settings.py \
> origproject/urls.py \

Getting Started with Django 2.1 Chapter 1

[22]

> origproject/wsgi.py \
> myproject/

We can see that the previously masked project files are now exposed for us to easily edit
outside of the container, too:

myproject_docker/$ ls project
__init__.py settings.py urls.py wsgi.py

Once our services are built and the Django project is created, we can use docker-compose
to bring up the environment, passing an optional -d flag to detach the process from our
terminal. Detaching runs the containers in exactly the same way, except we can use the
terminal to invoke other commands in the meantime. With the containers attached, we are
only able to view logs that are exposed by the container (generally what is output to
stdout or stderr). The first time we start our Compose environment, any pure image-
based services will also need to be pulled down. For example, we might see something like
this:

myproject_docker/$ docker-compose up -d
Creating network "myprojectdocker_default" with the default driver
Pulling db (mysql:5.7)...
5.7: Pulling from library/mysql
f49cf87b52c1: Already exists
78032de49d65: Pull complete
837546b20bc4: Pull complete
9b8316af6cc6: Pull complete
1056cf29b9f1: Pull complete
86f3913b029a: Pull complete
f98eea8321ca: Pull complete
3a8e3ebdeaf5: Pull complete
4be06ac1c51e: Pull complete
920c7ffb7747: Pull complete
Digest:
sha256:7cdb08f30a54d109ddded59525937592cb6852ff635a546626a8960d9ec34c30
Creating myprojectdocker_db_1 ... done
Creating myprojectdocker_app_1 ... done

Getting Started with Django 2.1 Chapter 1

[23]

At this point, Django is now accessible, just as it would be when run directly on your
machine and accessing http://localhost:8000/:

It is often necessary to execute commands within an already up-and-running container, and
Docker provides a simple way to do this, as well. As an example, we can connect to the
machine at a command-line prompt, similarly to how we might access a remote machine
over SSH, as follows:

myproject_docker/$ docker exec -it myproject_docker_app_1 /bin/bash
root@042bf38a407f:/usr/src/app# ls
db.sqlite3 external manage.py media myapp1 myapp2
myproject origproject requirements.txt static templates
root@042bf38a407f:/usr/src/app# ls myproject
__init__.py __pycache__ settings.py urls.py wsgi.py
root@042bf38a407f:/usr/src/app# exit
myproject_docker/$

Getting Started with Django 2.1 Chapter 1

[24]

The preceding code instructs Docker to execute /bin/bash on the
myprojectdocker_app_1 container. The -i flag makes the connection interactive, and -t
allocates a TTY shell. Shutting down is just as easy. If the container is running in attached
mode, simply issue a Ctrl-C keyboard command to end the process. When using the -d flag
to start the container, however, we instead issue a command to shut it down:

myproject_docker/$ docker-compose down
Stopping myprojectdocker_app_1 ... done
Removing myprojectdocker_app_1 ... done
Removing myprojectdocker_db_1 ... done
Removing network myprojectdocker_default

There's more...
Read more from the extensive documentation of Docker at https:/ /docs. docker. com/,
and specifically about using Compose with Django at https:/ / docs. docker. com/ compose/
django/. In the Creating a Docker project file structure recipe, we also go into greater depth
around the organization of files and configuration to replicate a production environment.

See also
The Working with a virtual environment recipe
The Creating a Docker project file structure recipe

Creating a Docker project file structure
Although Docker provides an isolated environment within which to configure and run
your project, development code and certain configurations can still be stored outside the
container. This enables such files to be added to version control, and persists the files when
a container is shut down. In addition, Docker adds flexibility that allows us to directly
recreate an environment that might be used in production, helping to ensure that the
conditions in development will much more closely match the real world.

Getting ready
Before you begin, set up a Docker environment as described in the Working with Docker
recipe.

https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/django/

Getting Started with Django 2.1 Chapter 1

[25]

How to do it...
The basic structure already created separates aspects of our project into logical groups:

All applications to be used in the project are stored under the apps directory,
which allows them to be pulled in individually either from version control or
other source locations.
project and templates are also distinct, which makes sense since the settings
and templates for one project switch be shared, whereas applications are
commonly intended to be reusable.
The static and media files are separated as well, allowing them to be deployed
to separate static content containers (and servers) easily.

To make full use of these features, let's update the docker-compose.yml file with some
enhancements:

docker-compose.yml
version: '3'
services:
 proxy:
 image: 'jwilder/nginx-proxy:latest'
 ports:
 - '80:80'
 volumes:
 - '/var/run/docker.sock:/tmp/docker.sock:ro'
 db:
 image: 'mysql:5.7'
 ports:
 - '3306'
 volumes:
 - './config/my.cnf:/etc/mysql/conf.d/my.cnf'
 - './mysql:/var/lib/mysql'
 - './data:/usr/local/share/data'
 environment:
 - 'MYSQL_ROOT_PASSWORD'
 - 'MYSQL_USER'
 - 'MYSQL_PASSWORD'
 - 'MYSQL_DATABASE'
 app:
 build: .
 command: python3 manage.py runserver 0.0.0.0:8000
 volumes:
 - './project:/usr/src/app/myproject'
 - './media:/usr/src/app/media'
 - './static:/usr/src/app/static'
 - './templates:/usr/src/app/templates'

Getting Started with Django 2.1 Chapter 1

[26]

 - './apps/external:/usr/src/app/external'
 - './apps/myapp1:/usr/src/app/myapp1'
 - './apps/myapp2:/usr/src/app/myapp2'
 ports:
 - '8000'
 links:
 - db
 environment:
 - 'SITE_HOST'
 - 'MEDIA_HOST'
 - 'STATIC_HOST'
 - 'VIRTUAL_HOST=${SITE_HOST}'
 - 'VIRTUAL_PORT=8000'
 - 'MYSQL_HOST=db'
 - 'MYSQL_USER'
 - 'MYSQL_PASSWORD'
 - 'MYSQL_DATABASE'
 media:
 image: 'httpd:latest'
 volumes:
 - './media:/usr/local/apache2/htdocs'
 ports:
 - '80'
 environment:
 - 'VIRTUAL_HOST=${MEDIA_HOST}'
 static:
 image: 'httpd:latest'
 volumes:
 - './static:/usr/local/apache2/htdocs'
 ports:
 - '80'
 environment:
 - 'VIRTUAL_HOST=${STATIC_HOST}'

With these changes, there are some corresponding updates needed in the Django project
settings as well. The end result should look similar to the following:

project/settings.py
...

ALLOWED_HOSTS = []
if os.environ.get('SITE_HOST'):
 ALLOWED_HOSTS.append(os.environ.get('SITE_HOST'))

...

DATABASES = {
 'default': {

Getting Started with Django 2.1 Chapter 1

[27]

 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

if os.environ.get('MYSQL_HOST'):
 DATABASES['default'] = {
 'ENGINE': 'django.db.backends.mysql',
 'HOST': os.environ.get('MYSQL_HOST'),
 'NAME': os.environ.get('MYSQL_DATABASE'),
 'USER': os.environ.get('MYSQL_USER'),
 'PASSWORD': os.environ.get('MYSQL_PASSWORD'),
 }

...

Logging
https://docs.djangoproject.com/en/dev/topics/logging/
LOGGING = {
 'version': 1,
 'formatters': {
 'verbose': {
 'format': '%(levelname)s %(asctime)s %(module)s %(process)d
%(thread)d %(message)s'
 },
 'simple': {
 'format': '%(levelname)s %(message)s'
 },
 },
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'simple'
 },
 'file': {
 'level': 'DEBUG',
 'class': 'logging.FileHandler',
 'filename': '/var/log/app.log',
 'formatter': 'simple'
 },
 },
 'loggers': {
 'django': {
 'handlers': ['file'],
 'level': 'DEBUG',
 'propagate': True,
 },

Getting Started with Django 2.1 Chapter 1

[28]

 }
}

if DEBUG:
 # make all loggers use the console.
 for logger in LOGGING['loggers']:
 LOGGING['loggers'][logger]['handlers'] = ['console']

...

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/2.1/howto/static-files/

STATIC_URL = '/static/'
STATIC_ROOT = os.path.join(BASE_DIR, 'static')
if os.environ.get('STATIC_HOST'):
 STATIC_DOMAIN = os.environ.get('STATIC_HOST')
 STATIC_URL = 'http://%s/' % STATIC_DOMAIN

MEDIA_URL = '/media/'
MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
if os.environ.get('MEDIA_HOST'):
 MEDIA_DOMAIN = os.environ.get('MEDIA_HOST')
 MEDIA_URL = 'http://%s/' % MEDIA_DOMAIN

Furthermore, the my.cnf file is referenced in docker-compose.yml as a volume attached
to the db service. Although there would be no error, specifically, if it were left out; a
directory would be automatically created to satisfy the volume requirement. At a
minimum, we can add an empty file under the config folder, or we might add options to
MySQL right away, such as the following:

config/my.cnf
[mysqld]
sql_mode=STRICT_TRANS_TABLES

Then, add a bin subdirectory in myproject_docker, inside of which we will add
a dev script (or dev.sh, if the extension is preferred):

#!/usr/bin/env bash
bin/dev
environment variables to be defined externally for security
- MYSQL_USER
- MYSQL_PASSWORD
- MYSQL_ROOT_PASSWORD
DOMAIN=myproject.local

DJANGO_USE_DEBUG=1 \

Getting Started with Django 2.1 Chapter 1

[29]

DJANGO_USE_DEBUG_TOOLBAR=1 \
SITE_HOST="$DOMAIN" \
MEDIA_HOST="media.$DOMAIN" \
STATIC_HOST="static.$DOMAIN" \
MYSQL_HOST="localhost" \
MYSQL_DATABASE="myproject_db" \
 docker-compose $*

Make sure the script is executable by modifying the permissions, as in the following:

myproject_docker/$ chmod +x bin/dev

Finally, the development hosts need to be mapped to a local IP address, such as via
/etc/hosts on macOS or Linux. Such a mapping for our project would look something
like this:

127.0.0.1 myproject.local media.myproject.local static.myproject.local

How it works...
In docker-compose.yml, we have added more services and defined some environment
variables. These make our system more robust and allow us to replicate the multi-host
paradigm for serving static files that is preferred in production.

The first new service is a proxy, based on the jwilder/nginx-proxy image. This service
attaches to port 80 in the host machine and passes requests through to port 80 in the
container. The purpose of the proxy is to allow use of friendly hostnames rather than
relying on everything running on localhost.

Two other new services are defined toward the end of the file, one for serving media and
another for static files:

These both run the Apache httpd static server and map the associated directory
to the default htdocs folder from which Apache serves files.
We can also see that they each define a VIRTUAL_HOST environment variable,
whose value is drawn from corresponding host variables MEDIA_HOST and
STATIC_HOST, and which is read automatically by the proxy service.
The services listen on port 80 in the container, so requests made for resources
under that hostname can be forwarded by the proxy to the associated service
dynamically.

Getting Started with Django 2.1 Chapter 1

[30]

The db service has been augmented in a few ways:

First, we ensure that it is listening on the expected port 3306 in the container
network.
We also set up a few volumes so that content can be shared outside the
container—a my.cnf file allows changes to the basic running configuration of the
database server; the database content is exposed as a mysql directory, in case
there is a desire to back up the database itself; and we add a data directory for
SQL scripts, so we can connect to the database container and execute them
directly if desired.
Lastly, there are four environment variables that the mysql image makes use
of—MYSQL_ROOT_PASSWORD, MYSQL_HOST, MYSQL_USER, and MYSQL_PASSWORD.
These are declared, but no value is given, so that the value will be taken from the
host environment itself when we run docker-compose up.

The final set of changes in docker-compose.yml are for the app service itself, the nature of
which are similar to those noted previously:

The port definition is changed so that port 8000 is only connected to within the
container network, rather than binding to that port on the host, since we will
now access Django via the proxy.
More than simply depending on the db service, our app now links directly to it
over the internal network, which makes it possible to refer to the service by its
name rather than an externally accessible hostname.
As with the database, several environment variables are indicated to supply
external data to the container from the host. There are pass-through variables
for MEDIA_HOST and STATIC_HOST, plus SITE_HOST and a mapping of
it to VIRTUAL_HOST used by the proxy.
While the proxy connects to virtual hosts via port 80 by default, we are running
Django on port 8000, so the proxy is instructed to use that port instead via the
VIRTUAL_PORT variable.
Last but not least, the MySQL MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD and
MYSQL_DATABASE variables are passed into the app for use in the project settings.

Getting Started with Django 2.1 Chapter 1

[31]

This brings us to the updates to settings.py, which are largely centered around
connectivity and security:

To ensure that access to the application is limited to expected connections, we
add SITE_HOST to ALLOWED_HOSTS if one is given for the environment.
For DATABASES, the original sqlite3 settings are left in place, but we replace
that default with a configuration for MySQL if we find the MYSQL_HOST
environment variable has been set, making use of the MySQL variables passed
into the app service.
As noted in the Working with Docker recipe, we can only view logs that are
exposed by the container. By default, the Django runserver command does not
output logging to the console, so no logs are technically exposed. The next
change to settings.py sets up LOGGING configurations so that a simple format
will always be logged to the console when DEBUG=true.
Finally, instead of relying upon Django to serve static and media files, we check
for the corresponding STATIC_HOST and MEDIA_HOST environment variables
and, when those exist, set the STATIC_URL and MEDIA_URL settings accordingly.

With all of the configurations updated, we need to have an easy way to run the container so
that the appropriate environment variables are supplied. Although it might be possible to
export the variables, that would negate much of the benefit of isolation we gain from using
Docker otherwise. Instead, it is possible to run docker-compose with inline variables, so a
single execution thread will have those variables set in a specific way. This is, ultimately,
what the dev script does.

Now we can run docker-compose commands for our development environment—which
includes a MySQL database, separate Apache servers for media and static files, and the
Django server itself—with a single, simplified form:

myproject_docker/$ MYSQL_USER=myproject_user \
> MYSQL_PASSWORD=pass1234 \
> ./bin/dev up -d
Creating myprojectdocker_media_1 ... done
Creating myprojectdocker_db_1 ... done
Creating myprojectdocker_app_1 ... done
Creating myprojectdocker_static_1 ... done

Getting Started with Django 2.1 Chapter 1

[32]

In the dev script, the appropriate variables are all defined for the command automatically,
and docker-compose is invoked at once. The script mentions in comments three other,
more sensitive variables that should be provided externally, and two of those are included
here. If you are less concerned about the security of a development database, these could
just as easily be included in the dev script itself. A more secure, but also more convenient
way of providing the variables across runs would be to export them, after which they
become global environment variables, as in the following example:

myproject_docker/$ export MYSQL_USER=myproject_user
myproject_docker/$ export MYSQL_PASSWORD=pass1234
myproject_docker/$./bin/dev build
myproject_docker/$./bin/dev up -d

Any commands or options passed into dev, such as up -d in this case, are forwarded along
to docker-compose via the $* wildcard variable included at the end of the script. With the
host mapping complete, and our container up and running, we should be able to access the
system by SITE_HOST, as in http://myproject.local/.

The resultant file structure for a complete Docker project might look something like this:

myproject_docker/
├── apps/
│ ├── external/
│ ├── myapp1/
│ ├── myapp2/
├── bin/
│ ├── dev*
│ ├── prod*
│ ├── staging*
│ └── test*
├── config/
│ ├── my.cnf
│ └── requirements.txt
├── data/
├── media/
├── mysql/
│ ├── myproject_db/
│ ├── mysql/
│ ├── performance_schema/
│ ├── sys/
│ ├── ibdata1
│ └── ibtmp1
├── project/
│ ├── __init__.py
│ ├── settings.py
│ ├── urls.py

Getting Started with Django 2.1 Chapter 1

[33]

│ └── wsgi.py
├── static/
├── templates/
├── Dockerfile
├── README.md
└── docker-compose.yml

There's more...
You can find additional details about the configuration that might be specified in my.cnf;
see MySQL documentation for Using Options Files, found at https:/ /dev. mysql. com/ doc/
refman/5.7/en/option- files. html.

See also
The Creating a virtual environment project file structure recipe
The Working with Docker recipe
The Handling project dependencies with pip recipe
The Including external dependencies in your project recipe
The Configuring settings for development, testing, staging, and production
environments recipe
The Setting UTF-8 as the default encoding for MySQL configuration recipe
The Deploying on Apache with mod_wsgi recipe in Chapter 12, Testing and
Deployment

Handling project dependencies with pip
The most convenient tool to install and manage Python packages is pip. Rather than
installing the packages one by one, it is possible to define a list of packages that you want to
install as the contents of a text file. We can pass the text file into the pip tool, which will
then handle installation of all packages in the list automatically. An added benefit to this
approach is that the package list can be stored in version control. If you have gone through
the Working with Docker recipe, then you have already seen this.

https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html

Getting Started with Django 2.1 Chapter 1

[34]

Generally speaking, it is ideal and often sufficient to have a single requirements file that
directly matches your production environment. When changing versions or adding and
removing dependencies, this can be done on a development machine and then managed
through version control. It can then be as simple as switching branches to go from one set
of dependencies (and associated code changes) to another.

In some cases, environments differ enough that you will need to have at least two different
instances of your project: the development environment, where you create new features,
and the public website environment that is usually called the production environment, in a
hosted server. There might be development environments for other developers, or special
tools that are needed during development but are unnecessary in production. Also, you
may have a testing and staging environment in order to test the project locally and in a
public website-like situation.

For good maintainability, you should be able to install the required Python modules for
development, testing, staging, and production environments. Some of the modules will be
shared and some of them will be specific to a subset of the environments. In this recipe, we
will see how to organize the project dependencies for multiple environments and manage
them with pip.

Getting ready
Before using this recipe, you need to have a Django project ready, either with pip installed
and a virtual environment activated, or via Docker. For more information on how to do
this, read the Working with a virtual environment recipe, or the Working with Docker recipe,
respectively.

How to do it...
Execute the following steps one by one to prepare pip requirements for your virtual
environment Django project:

Let's go to your Django project that you have under version control and create a1.
requirements directory with these text files, if you haven't already done so:

base.txt for shared modules
dev.txt for the development environment
test.txt for the testing environment
staging.txt for the staging environment
prod.txt for production

Getting Started with Django 2.1 Chapter 1

[35]

Edit base.txt and add the Python modules that are shared in all environments,2.
line by line. For example, we might migrate our original requirements.txt
as base.txt, which would give us this in our virtual environment project:

base.txt
Django~=2.1.0
djangorestframework
-e git://github.com/omab/python-social-
auth.git@6b1e301c79#egg=python-social-auth

If the requirements of a specific environment are the same as in base.txt, add3.
the line including base.txt in the requirements file of that environment, as in
the following example:

prod.txt
-r base.txt

If there are specific requirements for an environment, add them after the4.
base.txt inclusion, as shown in the following:

dev.txt
-r base.txt
django-debug-toolbar
selenium

You can run the following command in a virtual environment in order to install5.
all of the required dependencies for the development environment (or analogous
command for other environments), as follows:

(myproject_env)$ pip3 install -r requirements/dev.txt

With a Docker setup, we follow steps 1-4 in almost precisely the same manner, except the
requirements directory would live underneath the config directory. From there, a few
additional steps are needed to install the correct requirements by environment:

The Dockerfile file will need to be updated to select the appropriate1.
requirements file based on a build argument, which here defaults to prod:

Dockerfile
FROM python:3
RUN apt-get update \
 && apt-get install -y --no-install-recommends \
 less mysql-client libmysqlclient-dev
WORKDIR /usr/src/app
ARG BUILD_ENV=prod
ADD config/requirements ./requirements

Getting Started with Django 2.1 Chapter 1

[36]

RUN pip3 install --upgrade pip; \
 pip3 install -r requirements/$BUILD_ENV.txt
RUN django-admin startproject myproject .; \
 mv ./myproject ./origproject

The docker-compose.yml file needs to pass through this argument using the2.
current environment variable, as in the following:

docker-compose.yml
version: '3'
services:
 db:
 image: "mysql:5.7"
 app:
 build:
 context: .
 args:
 BUILD_ENV: $BUILD_ENV
 command: "python3 manage.py runserver 0.0.0.0:8000"
 volumes:
 - "./project:/usr/src/app/myproject"
 - "./media:/usr/src/app/media"
 - "./static:/usr/src/app/static"
 - "./templates:/usr/src/app/templates"
 - "./apps/external:/usr/src/app/external"
 - "./apps/myapp1:/usr/src/app/myapp1"
 - "./apps/myapp2:/usr/src/app/myapp2"
 ports:
 - "8000:8000"
 depends_on:
 - db

Scripts under bin for each environment are then updated to set the appropriate3.
value for the BUILD_ENV variable. For example, we would update the dev script
as follows:

#!/usr/bin/env bash
bin/dev
...

BUILD_ENV="dev" \adds
#...
 docker-compose $*

Getting Started with Django 2.1 Chapter 1

[37]

We simply use the environment-specific script when building the container, and4.
the argument passes through automatically, causing the correct requirements file
to be added to the container:

myproject_docker/$ MYSQL_USER=myproject_user \
> MYSQL_PASSWORD=pass1234 \
> ./bin/dev build

How it works...
The preceding pip3 install command, whether it is executed explicitly in a virtual
environment or during the build process for a Docker container, downloads and installs all
of your project dependencies from requirements/base.txt and
requirements/dev.txt. As you can see, you can specify a version of the module that you
need for the Django framework and even directly install from a specific commit at the Git
repository, as done for social-app-django in our example.

In practice, installing from a specific commit would rarely be useful, for
instance, only when having third-party dependencies in your project, with
specific functionality, that are not supported in any other versions.

When you have many dependencies in your project, it is good practice to stick to a narrow
range of release versions for Python module release versions. Then you can have greater
confidence that the project integrity will not be broken due to updates in your
dependencies, which might contain conflicts or backward incompatibility. This is
particularly important when deploying your project or handing it off to a new developer.

If you have already manually installed the project requirements with pip one by one, you
can generate the requirements/base.txt file using the following command within your
virtual environment:

(myproject_env)$ pip3 freeze > requirements/base.txt

The same can be executed within the Docker app container, as in the following:

myproject_docker/$ docker exec -it myproject_docker_app_1 \
> /bin/bash
root:/usr/src/app# pip3 freeze > requirements/base.txt

Getting Started with Django 2.1 Chapter 1

[38]

There's more...
If you want to keep things simple and are sure that, for all environments, you will be using
the same dependencies, you can use just one file for your requirements named
requirements.txt, generated by definition, as in the following:

(myproject_env)$ pip3 freeze > requirements.txt

To install the modules in a new virtual environment, simply call the following command:

(myproject_env)$ pip3 install -r requirements.txt

If you need to install a Python library from other version control system,
or at a local path, you can learn more about pip from the official
documentation at http:/ / pip.readthedocs. org/en/ latest/ reference/
pip_install. html.

See also
The Working with a virtual environment recipe
The Working with Docker recipe
The Including external dependencies in your project recipe
The Configuring settings for development, testing, staging, and production
environments recipe

Including external dependencies in your
project
Sometimes, it is better to include external dependencies directly within your project. This
ensures that whenever a developer upgrades third-party modules, all of the other
developers will receive the upgraded version in the next update from the version control
system (Git, Subversion, or others).

Also, it is better to have external dependencies included in your project when the libraries
are taken from unofficial sources, that is, somewhere other than the Python Package Index
(PyPI) or different version control systems.

http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html

Getting Started with Django 2.1 Chapter 1

[39]

Getting ready
Start with a virtual environment with a Django project in it.

How to do it...
Execute the following steps one by one for a virtual environment project:

If you haven't done so already, create an externals directory under your1.
Django project django-myproject directory. Then, create the libs and apps
directories under it. The libs directory is for the Python modules that are
required by your project, for example, Boto, Requests, Twython, and Whoosh.
The apps directory is for third-party Django apps, for example, Django CMS,
Django Haystack, and django-storages.

We highly recommend that you create README.md files in the libs and
apps directories, where you mention what each module is for, what the
used version or revision is, and where it is taken from.

The directory structure should look something similar to the following:2.

externals/
├── apps/
│ ├── cms/
│ ├── haystack/
│ ├── storages/
│ └── README.md
└── libs/
 ├── boto/
 ├── requests/
 ├── twython/
 └── README.md

The next step is to put the external libraries and apps under the Python path so3.
that they are recognized as if they were installed. This can be done by adding the
following code in the settings:

settings.py
import os, sys
BASE_DIR = os.path.dirname(os.path.dirname(
 os.path.abspath(__file__)))

EXTERNAL_BASE = os.path.join(BASE_DIR, "externals")

Getting Started with Django 2.1 Chapter 1

[40]

EXTERNAL_LIBS_PATH = os.path.join(EXTERNAL_BASE, "libs")
EXTERNAL_APPS_PATH = os.path.join(EXTERNAL_BASE, "apps")
sys.path = ["", EXTERNAL_LIBS_PATH, EXTERNAL_APPS_PATH] + sys.path

How it works...
A module is meant to be under the Python path if you can run Python and import that
module. One of the ways to put a module under the Python path is to modify the
sys.path variable before importing a module that is in an unusual location. The value of
sys.path, as specified by the settings.py file, is a list of directories starting with an
empty string for the current directory, followed by the directories in the project, and finally
the globally shared directories of the Python installation. You can see the value of
sys.path in the Python shell, as follows:

(myproject)$./manage.py shell
>>> import sys
>>> sys.path

The same could be done for a Docker project, assuming the container name were
django_myproject_app_1, as follows:

myproject_docker/$ docker exec -it django_myproject_app_1 \
> python3 manage.py shell
>>> import sys
>>> sys.path

When trying to import a module, Python searches for the module in this list and returns the
first result that is found.

Therefore, we first define the BASE_DIR variable, which is the absolute path to one level
higher than the settings.py file. Then, we define the EXTERNAL_LIBS_PATH and
EXTERNAL_APPS_PATH variables, which are relative to BASE_DIR. Lastly, we modify the
sys.path property, adding new paths to the beginning of the list. Note that we also add an
empty string as the first path to search, which means that the current directory of any
module should always be checked first before checking other Python paths.

This way of including external libraries doesn't work cross-platform with
the Python packages that have C language bindings, for example, lxml.
For such dependencies, we would recommend using the pip requirements
that were introduced in the Handling project dependencies with pip recipe.

Getting Started with Django 2.1 Chapter 1

[41]

There's more...
With a Docker project, there is significantly more control of the libraries and apps that are
installed within the container:

For Python libraries needed for the project, we can use version specifications in
the requirements.txt file to require a version known to be compatible.
Furthermore, it was demonstrated in the Handling project dependencies with pip
recipe that we can differentiate these requirements by environment, as well as
being so precise as to require an exact repository version using the -e flag.
All Django applications are stored under the apps directory. Here would reside
not only the code for ones specifically under development, but also any external
apps that are not made available globally via the requirements.txt
dependency list.

See also
The Creating a virtual environment project file structure recipe
The Creating a Docker project file structure recipe
The Handling project dependencies with pip recipe
The Defining relative paths in the settings recipe
The Using the Django shell recipe in Chapter 11, Bells and Whistles

Configuring settings for development,
testing, staging, and production
environments
As noted earlier, you will be creating new features in the development environment, testing
them in the testing environment, then putting the website onto a staging server to let other
people try the new features, and lastly, the website will be deployed to the production
server for public access. Each of these environments can have specific settings and you will
see how to organize them in this recipe.

Getting Started with Django 2.1 Chapter 1

[42]

Getting ready
In a Django project, we'll create settings for each environment: development, testing,
staging, and production.

How to do it...
Follow these steps to configure project settings:

In the myproject directory, create a config Python module with the following1.
files:

__init__.py

base.py for shared settings
dev.py for development settings
test.py for testing settings
staging.py for staging settings
prod.py for production settings

Put all of your shared settings in config/base.py.2.
If the settings of an environment are the same as the shared settings, then just3.
import everything from base.py there, as follows:

myproject/config/prod.py
from .base import *

Apply the settings that you want to attach or overwrite for your specific4.
environment in the other files, for example, the development environment
settings should go to dev.py, as shown in the following:

myproject/config/dev.py
from .base import *
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

At the beginning of myproject/settings.py, import the configurations from5.
one of the environment settings and then additionally attach specific or sensitive
configurations, such as DATABASES or API keys that shouldn't be under version
control, as follows:

myproject/settings.py
from .config.dev import *

DATABASES = {

Getting Started with Django 2.1 Chapter 1

[43]

 "default": {
 "ENGINE": "django.db.backends.mysql",
 "NAME": "myproject",
 "USER": "root",
 "PASSWORD": "root",
 }
}

Create a settings.py.example file that should contain all the sensitive settings6.
that are necessary for a project to run, however, with empty values set.

How it works...
By default, the Django management commands use the settings from
myproject/settings.py. Using the method that is defined in this recipe, we can keep all
of the required non-sensitive settings for all environments under version control in the
config directory. On the other hand, the settings.py file itself would be ignored by
version control and will only contain the settings that are necessary for the current
development, testing, staging, or production environments.

There's more...
In the Creating a Docker project file structure recipe, we introduced an alternative approach
using environment variables to store sensitive or environment-specific settings. We go into
greater depth into this method of differentiating settings in the Creating and including local
settings recipe as well.

See also
The Creating a Docker project file structure recipe
The Creating and including local settings recipe
The Defining relative paths in the settings recipe
The Setting the Subversion ignore property recipe
The Creating a Git ignore file recipe

Getting Started with Django 2.1 Chapter 1

[44]

Defining relative paths in the settings
Django requires you to define different file paths in the settings, such as the root of your
media, the root of your static files, the path to templates, and the path to translation files.
For each developer of your project, the paths may differ as the virtual environment can be
set up anywhere and the user might be working on macOS, Linux, or Windows. Even when
your project is wrapped in a Docker container, it reduces maintainability and portability to
define absolute paths. In any case, there is a way to define these paths dynamically so that
they are relative to your Django project directory.

Getting ready
Have a Django project started, and open settings.py.

How to do it...
Modify your path-related settings accordingly, instead of hardcoding the paths to your
local directories, as follows:

settings.py
import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

...

TEMPLATES = [{
 # ...
 DIRS: [
 os.path.join(BASE_DIR, 'templates'),
],
 # ...
}]

...

LOCALE_PATHS = [
 os.path.join(BASE_DIR, 'locale'),
]

...

MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
STATIC_ROOT = os.path.join(BASE_DIR, 'static')

Getting Started with Django 2.1 Chapter 1

[45]

STATICFILES_DIRS = [
 os.path.join(BASE_DIR, 'site_static'),
]

FILE_UPLOAD_TEMP_DIR = os.path.join(BASE_DIR, 'tmp'

How it works...
By default, Django settings include a BASE_DIR value, which is an absolute path to the
directory containing manage.py (usually one level higher than the settings.py file).
Then, we set all of the paths relative to BASE_DIR using the os.path.join function.

Based on the directory layout we set down in the Creating a virtual environment project file
structure recipe, we would insert 'myproject' as an intermediary path segment for each of
the previous examples, since the associated folders were created within that one. For
Docker projects, as shown in the Creating a Docker project file structure recipe, we set the
volumes for media, static, and so forth to be alongside manage.py in BASE_DIR itself.

See also
The Creating a virtual environment project file structure recipe
The Creating a Docker project file structure recipe
The Including external dependencies in your project recipe

Creating and including local settings
Configuration doesn't necessarily need to be complex. If you want to keep things simple,
you can work with a single settings.py file for common configuration and use
environment variables for settings that should be kept private and not in version control.

Getting ready
Most of the settings for a project will be shared across all environments and saved in
version control. These can be defined directly within the settings.py file. However, there
will be some settings that are specific to the environment of the project instance, or sensitive
and require additional security such as database or email settings. We will expose these
using environment variables.

Getting Started with Django 2.1 Chapter 1

[46]

How to do it...
To use local settings in your project, first we must draw values from environment variables
for any configurations in settings.py that will differ across environments or that would
be a security risk if stored in version control. It is a good practice to be very clear and
unique when naming these variables, but also take into account those that already exist in
the environment. Some examples follow:

Whether or not to use DEBUG mode will generally differ per environment, where1.
debugging would be on in development, but not by default:

settings.py
DEBUG = False
if os.environ.get('DJANGO_USE_DEBUG'):
 DEBUG = True

Similarly, we might want the debug_toolbar to be active in development, or2.
perhaps only in certain situations even then, so we could add it only when
necessary:

settings.py
INSTALLED_APPS = [
 # ...
]
if os.environ.get('DJANGO_USE_DEBUG_TOOLBAR'):
 INSTALLED_APPS += ('debug_toolbar',)

MIDDLEWARE = [
 # ...
]
if os.environ.get('DJANGO_USE_DEBUG_TOOLBAR'):
 MIDDLEWARE += (
 'debug_toolbar.middleware.DebugToolbarMiddleware',)

Perhaps we use a SQLite3 database in testing, but a MySQL database in3.
development, staging, and production. Also, in development, the MySQL
database might be on localhost, but have its own separate domain in staging and
production. Finally, storing the credentials for the connection in any environment
is a security risk. We can handle all of these scenarios just as easily with the
following updates to settings.py:

settings.py
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

Getting Started with Django 2.1 Chapter 1

[47]

 }
}
if os.environ.get('MYSQL_HOST'):
 DATABASES['default'] = {
 'ENGINE': 'django.db.backends.mysql',
 'HOST': os.environ.get('MYSQL_HOST'),
 'NAME': os.environ.get('MYSQL_DATABASE'),
 'USER': os.environ.get('MYSQL_USER'),
 'PASSWORD': os.environ.get('MYSQL_PASSWORD'),
 }

How it works...
As you can see, the local settings are not directly stored in settings.py, they are rather
included via externally defined environment variables and evaluated in the settings.py
file itself. This allows you to not only create or overwrite the existing settings, but also
adjust the tuples or lists from the settings.py file. For example, we add debug_toolbar
to INSTALLED_APPS here, plus its associated MIDDLEWARE, in order to be able to debug the
SQL queries, template context variables, and so on.

Defining the values of these variables can be done in one of two ways. In development, we
can declare them within runtime commands, as in the following:

$ DJANGO_USE_DEBUG=1 python3 manage.py runserver 8000

This sets the DJANGO_USE_DEBUG variable for this particular process, resulting in
DEBUG=True in settings.py as per the examples listed earlier. If there are many variables
to define, or the same values will be set every time the server starts, it may be handy to
create a reusable script to do so. For example, in the development environment, we
can create a dev shell script, such as the following:

#!/usr/bin/env bash
bin/dev
environment variables to be defined externally for security
- MYSQL_USER
- MYSQL_PASSWORD
- MYSQL_ROOT_PASSWORD

DJANGO_USE_DEBUG=1 \
DJANGO_USE_DEBUG_TOOLBAR=1 \
MYSQL_HOST=localhost \
MYSQL_DATABASE=myproject_db \
 python3 manage.py runserver 8000

Getting Started with Django 2.1 Chapter 1

[48]

Store the above in a bin directory alongside manage.py in your project, and make sure it is
executable, as follows:

$ chmod +x bin/dev

Then, in a terminal, we can now start our development server, with all of the appropriate
settings, as in the following:

$ MYSQL_USER=username MYSQL_PASSWORD=pass1234 bin/dev

The resultant runserver command will receive values not only for the MySQL username
and password given here, but also all of the variables set in the dev script itself.

See also
The Creating a virtual environment project file structure recipe
The Creating a Docker project file structure recipe
The Toggling the Debug Toolbar recipe in Chapter 11, Bells and Whistles

Setting up STATIC_URL dynamically for
Subversion users
If you set STATIC_URL to a static value, then each time you update a CSS file, a JavaScript
file, or an image, you will need to clear the browser cache in order to see the changes. There
is a trick to work around clearing the browser's cache. It is to have the revision number of
the version control system shown in STATIC_URL. Whenever the code is updated, the
visitor's browser will force the loading of all-new static files.

This recipe shows how to put a revision number in STATIC_URL for Subversion users.

Getting ready
Make sure that your project is under the Subversion version control and you have
BASE_DIR defined in your settings, as shown in the Defining relative paths in the settings
recipe.

Then, create the utils module in your Django project, and also create a file called misc.py
there.

Getting Started with Django 2.1 Chapter 1

[49]

How to do it...
The procedure to put the revision number in the STATIC_URL settings consists of the
following two steps:

Insert the following content:1.

utils/misc.py
import subprocess

def get_media_svn_revision(absolute_path):
 repo_dir = absolute_path
 svn_revision = subprocess.Popen(
 "svn info | grep 'Revision' | awk '{print $2}'",
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 shell=True,
 cwd=repo_dir,
 universal_newlines=True)
 rev = svn_revision.communicate()[0].partition('\n')[0]
 return rev

Modify the settings.py file and add the following lines:2.

settings.py
... somewhere after BASE_DIR definition ...
from utils.misc import get_media_svn_revision
STATIC_URL = f'/static/{get_media_svn_revision(BASE_DIR)}/'

How it works...
The get_media_svn_revision() function takes the absolute_path directory as a
parameter and calls the svn information shell command in that directory to find out the
current revision. We pass BASE_DIR to the function, as we are sure that it is under version
control. Then, the revision is parsed, returned, and included in the STATIC_URL definition.

See also
The Setting up STATIC_URL dynamically for Git users recipe
The Setting the Subversion ignore property recipe

Getting Started with Django 2.1 Chapter 1

[50]

Setting up STATIC_URL dynamically for Git
users
If you don't want to refresh the browser cache each time you change your CSS and
JavaScript files, or while styling images, you need to set STATIC_URL dynamically with a
varying path component. With the dynamically changing URL, whenever the code is
updated, the visitor's browser will force loading of all-new uncached static files. In this
recipe, we will set a dynamic path for STATIC_URL when you use the Git version control
system.

Getting ready
Make sure that your project is under the Git version control and you have BASE_DIR
defined in your settings, as shown in the Defining relative paths in the settings recipe.

If you haven't done so yet, create the utils module in your Django project. Also, create a
misc.py file there.

How to do it...
The procedure to put the Git timestamp in the STATIC_URL setting consists of the following
two steps:

Add the following content to the misc.py file placed in utils/:1.

utils/misc.py
import subprocess
from datetime import datetime

def get_git_changeset(absolute_path):
 repo_dir = absolute_path
 git_show = subprocess.Popen(
 "git show --pretty=format:%ct --quiet HEAD",
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 shell=True,
 cwd=repo_dir,
 universal_newlines=True)
 timestamp = git_show.communicate()[0].partition(‘\n’)[0]
 try:
 timestamp = datetime.utcfromtimestamp(int(timestamp))

Getting Started with Django 2.1 Chapter 1

[51]

 except ValueError:
 return ""
 changeset = timestamp.strftime(‘%Y%m%d%H%M%S’)
 return changeset

Import the newly created get_git_changeset() function in the settings and2.
use it for the STATIC_URL path, as follows:

settings.py
... somewhere after BASE_DIR definition ...
from utils.misc import get_git_changeset
STATIC_URL = f'/static/{get_git_changeset(BASE_DIR)}/'

How it works...
The get_git_changeset() function takes the absolute_path directory as a parameter
and calls the git show shell command with the parameters to show the Unix timestamp of
the HEAD revision in the directory. As stated in the previous recipe, we pass BASE_DIR to
the function, as we are sure that it is under version control. The timestamp is parsed,
converted to a string consisting of year, month, day, hour, minutes, and seconds, returned;
and included in the definition of STATIC_URL.

See also
The Setting up STATIC_URL dynamically for Subversion users recipe
The Creating the Git ignore file recipe

Setting UTF-8 as the default encoding for
MySQL configuration
MySQL proclaims itself as the most popular open source database. In this recipe, we will tell
you how to set UTF-8 as the default encoding for it. Note that if you don't set this encoding
in the database configuration, you might get into a situation where LATIN1 is used by
default with your UTF-8-encoded data. This will lead to database errors whenever symbols
such as € are used. Also, this recipe will save you from the difficulties of converting the
database data from LATIN1 to UTF-8, especially when you have some tables encoded in
LATIN1 and others in UTF-8.

Getting Started with Django 2.1 Chapter 1

[52]

Getting ready
Make sure that the MySQL database management system and the MySQLdb Python
module are installed and you are using the MySQL engine in your project's settings.

How to do it...
Open the /etc/mysql/my.cnf MySQL configuration file in your favorite editor and
ensure that the following settings are set in the [client], [mysql], and
[mysqld] sections, as follows:

/etc/mysql/my.cnf
[client]
default-character-set = utf8

[mysql]
default-character-set = utf8

[mysqld]
collation-server = utf8_unicode_ci
init-connect = ‘SET NAMES utf8’
character-set-server = utf8

If any of the sections don't exist, create them in the file. If the sections do already exist, add
these settings to the existing configurations. Then, restart MySQL in your command-line
tool, as follows:

$ /etc/init.d/mysql restart

How it works...
Now, whenever you create a new MySQL database, the databases and all of their tables will
be set in UTF-8 encoding by default. Don't forget to set this on all computers on which your
project is developed or published.

There's more...
For a Docker project, these settings can be added to the config/my.cnf file and saved to
version control. This file will automatically be added as /etc/mysql/my.cnf within the
container at build time. Furthermore, any developer that pulls down the code will
automatically gain the configuration.

Getting Started with Django 2.1 Chapter 1

[53]

See also
The Creating a virtual environment project file structure recipe
The Creating a Docker project file structure recipe

Setting the Subversion ignore property
Make sure that your Django project is under the Subversion version control.

How to do it...
Open your command-line tool and set your default editor as nano, vi, vim, or1.
any other that you prefer, as follows:

$ export EDITOR=nano

If you don’t have a preference, we would recommend using nano,
which is very intuitive and a simple text editor for the terminal.

Then, go to your project directory and type the following command:2.

$ svn propedit svn:ignore myproject

This will open a temporary file in the editor, where you need to put the following3.
file and directory patterns for Subversion to ignore:

Project files and directories
static
media
tmp
Byte-compiled / optimized / DLL files
__pycache__
*.py[cod]
*$py.class
C extensions
*.so
PyInstaller
*.manifest
*.spec
Installer logs

Getting Started with Django 2.1 Chapter 1

[54]

pip-log.txt
pip-delete-this-directory.txt
Unit test / coverage reports
htmlcov
.tox
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
Translations
*.pot
Django stuff:
*.log
PyBuilder
target

Save the file and exit the editor. For every other Python package in your project,4.
you will need to ignore several files and directories too. Just go to a directory and
type the following command:

$ svn propedit svn:ignore .

Then, put this in the temporary file, save it, and close the editor:5.

Byte-compiled / optimized / DLL files
__pycache__
*.py[cod]
*$py.class
C extensions
*.so
PyInstaller
*.manifest
*.spec
Installer logs
pip-log.txt
pip-delete-this-directory.txt
Unit test / coverage reports
htmlcov
.tox
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
Translations

Getting Started with Django 2.1 Chapter 1

[55]

*.pot
Django stuff:
*.log
PyBuilder
target

How it works...
In Subversion, you need to define the ignore properties for each directory of your project.
Mainly, we don't want to track the Python-compiled files, for instance, *.pyc. We also
want to ignore the static directory, where static files from different apps are collected,
media, which contains uploaded files and changes together with the database, and tmp,
which is temporarily used for file uploads.

If you keep all your settings in a config Python package, as described in
the Configuring settings for development, testing, staging, and production
environments recipe, add settings.py to the ignored files too.

See also
The Creating and including local settings recipe
The Creating the Git ignore file recipe

Creating the Git ignore file
If you are using Git—the most popular distributed version control system—ignoring some
files and folders from version control is much easier than with Subversion.

Getting ready
Make sure that your Django project is under the Git version control.

Getting Started with Django 2.1 Chapter 1

[56]

How to do it...
Using your favorite text editor, create a .gitignore file at the root of your Django project,
and put the following files and directories there:

.gitignore
Project files and directories
/myproject/static/
/myproject/tmp/
/myproject/media/
Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
C extensions
*.so
PyInstaller
*.manifest
*.spec
Installer logs
pip-log.txt
pip-delete-this-directory.txt
Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
Translations
*.pot
Django stuff:
*.log
Sphinx documentation
docs/_build/
PyBuilder
target/

Getting Started with Django 2.1 Chapter 1

[57]

How it works...
The .gitignore file specifies patterns that should intentionally be untracked by the  Git
version control system. The .gitignore file that we created in this recipe will ignore the
Python-compiled files, local settings, collected static files, temporary directory for uploads,
 and media directory with the uploaded files.

If you keep all of your settings in a config Python package, as described
in the Configuring settings for development, testing, staging, and production
environments recipe, add settings.py to the ignored files too.

There's more...
With Git ignore files, we have the ability to follow a whitelist pattern rather than a blacklist,
which means we can indicate what files we want to include rather than those we should
omit. In addition, the patterns given in .gitignore are honored for all levels of the tree
below where the file resides, making them extremely powerful. For example, the file could
be written in this manner for a Docker project:

.gitignore
ignore everything in the root by default
/*
allow this file of course
!.gitignore
allowed root directories
!/apps/
!/bin/
!/config/
!/data/
!/project/
!/static/
!/templates/
allowed root files
!/Dockerfile
!/docker-compose.yml
files allowed anywhere
!README.md
specifically ignore certain deeper items
__pycache__/

Getting Started with Django 2.1 Chapter 1

[58]

See also
The Creating a virtual environment project file structure recipe
The Creating a Docker project file structure recipe
The Setting the Subversion ignore property recipe

Deleting Python-compiled files
When you run your project for the first time, Python compiles all of your *.py code in
bytecode-compiled files, *.pyc, which are used later for execution.

Normally, when you change the *.py files, *.pyc is recompiled; however, sometimes
when switching branches or moving the directories, you need to clean up the compiled files
manually.

Getting ready
Use your favorite editor and edit or create a .bash_profile file in your home directory.

How to do it...
Add this alias at the end of .bash_profile, as follows:1.

~/.bash_profile
alias delpyc='find . -name "*.pyc" -delete'

Now, to clean the Python-compiled files, go to your project directory and type2.
the following command on the command line:

$ delpyc

How it works...
At first, we create a Unix alias that searches for the *.pyc files and deletes them in the
current directory and its children. The .bash_profile file is executed when you start a
new session in the command-line tool.

Getting Started with Django 2.1 Chapter 1

[59]

See also
The Setting the Subversion ignore property recipe
The Creating the Git ignore file recipe

Respecting the import order in Python files
When you create the Python modules, it is good practice to stay consistent with the
structure in the files. This makes it easier for other developers and yourself to read the code.
This recipe will show you how to structure your imports.

Getting ready
Create a virtual environment and create a Django project in it.

How to do it...
Use the following structure in a Python file that you create. Starting with the first line in the
file, put the imports categorized in sections, as follows:

System libraries
import os
import re
from datetime import datetime

Third-party libraries
import boto
from PIL import Image

Django modules
from django.db import models
from django.conf import settings

Django apps
from cms.models import Page

Current-app modules
from . import app_settings

Getting Started with Django 2.1 Chapter 1

[60]

How it works...
We have five main categories for the imports, as follows:

System libraries for packages in the default installation of Python
Third-party libraries for the additionally installed Python packages
Django modules for different modules from the Django framework
Django apps for third-party and local apps
Current-app modules for relative imports from the current app

There's more...
When coding in Python and Django, use the official style guide for Python code, PEP 8. You
can find it at https:/ /www. python. org/ dev/ peps/ pep- 0008/ .

See also
The Handling project dependencies with pip recipe
The Including external dependencies in your project recipe

Creating app configuration
When developing a website with Django, you create one module for the project itself, and
then multiple Python modules called applications (or, more commonly, apps) that combine
the different modular functionalities and usually consist of models, views, forms, URL
configurations, management commands, migrations, signals, tests, and so on. The Django
framework has application registry, where all apps and models are collected and later used
for configuration and introspection. Since Django 1.7, meta information about apps can be
saved in the AppConfig instance for each used app. Let's create a sample magazine app to
take a look at how to use the app configuration there.

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Getting Started with Django 2.1 Chapter 1

[61]

Getting ready
You can create a Django app in one of three ways:

Generate all of the files manually, which can be an excellent tool for learning, but
is far from the most efficient approach.
Use the startapp command in your virtual environment, as follows:

(myproject_env)$ django-admin.py startapp magazine

Learn how to use virtual environments in the Working with a virtual
environment and Creating a virtual environment project file structure recipes.

Use the startapp command in a Docker project, as follows:

myproject_django/$ docker-compose run app django-admin.py startapp
magazine

Learn how to use Docker in the Working with Docker and Creating a Docker
project file structure recipes.

With your magazine app created, add a NewsArticle model to models.py, create
administration for the model in admin.py, and put "magazine" in INSTALLED_APPS in
the settings.py. If you are not yet familiar with these tasks, study the official Django
tutorial at:
https://docs.djangoproject. com/ en/ 2. 1/intro/ tutorial01/ .

How to do it...
Follow these steps to create and use the app configuration:

Create the apps.py file and put the following content in it, as follows:1.

magazine/apps.py
from django.apps import AppConfig
from django.utils.translation import ugettext_lazy as _

class MagazineAppConfig(AppConfig):
 name = "magazine"
 verbose_name = _("Magazine")

https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://docs.djangoproject.com/en/2.1/intro/tutorial01/

Getting Started with Django 2.1 Chapter 1

[62]

 def ready(self):
 from . import signals

Edit the __init__.py file in the magazine module to contain the following2.
content:

magazine/__init__.py
default_app_config = "magazine.apps.MagazineAppConfig"

Let's create a signals.py file and add some signal handlers there:3.

magazine/signals.py
from django.db.models.signals import post_save, post_delete
from django.dispatch import receiver
from django.conf import settings

from .models import NewsArticle

@receiver(post_save, sender=NewsArticle)
def news_save_handler(sender, **kwargs):
 if settings.DEBUG:
 print(f"{kwargs['instance']} saved.")

@receiver(post_delete, sender=NewsArticle)
def news_delete_handler(sender, **kwargs):
 if settings.DEBUG:
 print(f"{kwargs['instance']} deleted.")

How it works...
When you run an HTTP server or invoke a management command, django.setup() is
called. It loads the settings, sets up logging, and prepares the app registry. This registry is
initialized in three steps, as follows:

Django imports the configurations for each item from INSTALLED_APPS in the
settings. These items can point to app names or configuration directly, for
example, "magazine" or "magazine.apps.NewsAppConfig".
Django tries to import models.py from each app in INSTALLED_APPS and
collect all of the models.
Finally, Django runs the ready() method for each app configuration. This
method is a correct place to register signal handlers, if you have any. The
ready() method is optional.

Getting Started with Django 2.1 Chapter 1

[63]

In our example, the MagazineAppConfig class sets the configuration for the
magazine app. The name parameter defines the name of the current app. The
verbose_name parameter is used in the Django model administration, where
models are presented and grouped by apps. The ready() method imports and
activates the signal handlers that, when in DEBUG mode, print in the terminal that
a NewsArticle object was saved or deleted.

There is more...
After calling django.setup(), you can load the app configurations and models from the
registry as follows:

>>> from django.apps import apps as django_apps
>>> magazine_app_config = django_apps.get_app_config("magazine")
>>> magazine_app_config
<MagazineAppConfig: magazine>
>>> magazine_app_config.models_module
<module 'magazine.models' from '/usr/src/app/magazine/models.py'>
>>> NewsArticle = django_apps.get_model("magazine", "NewsArticle")
>>> NewsArticle
<class 'magazine.models.NewsArticle'>

You can read more about app configuration in the official Django documentation at
https://docs.djangoproject. com/ en/ 2. 1/ref/ applications/ .

See also
The Working with a virtual environment recipe
The Working with Docker recipe
The Defining overwritable app settings recipe
Chapter 6, Model Administration

Defining overwritable app settings
This recipe will show you how to define settings for your app that can be then overwritten
in your project's settings.py file. This is useful especially for reusable apps.

https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/
https://docs.djangoproject.com/en/2.1/ref/applications/

Getting Started with Django 2.1 Chapter 1

[64]

Getting ready
Follow the steps for Getting ready in the Creating app configuration recipe to create your
Django app.

How to do it...
If you just have one or two settings, you can use the following pattern in your1.
models.py file. If the settings are extensive and you want to have them
organized better, create an app_settings.py file in the app and put the settings
in the following way:

magazine/models.py or magazine/app_settings.py
from django.conf import settings
from django.utils.translation import ugettext_lazy as _

SETTING1 = getattr(settings, "MAGAZINE_SETTING1", "default value")
MEANING_OF_LIFE = getattr(settings, "MAGAZINE_MEANING_OF_LIFE", 42)
STATUS_CHOICES = getattr(settings, "MAGAZINE_STATUS_CHOICES", (
 ("draft", _("Draft")),
 ("published", _("Published")),
 ("not_listed", _("Not Listed")),
))

If the settings were defined in an app_settings.py file, then you can import2.
and use them in models.py, as follows:

magazine/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

from .app_settings import STATUS_CHOICES

class NewsArticle(models.Model):
 # ...
 status = models.CharField(_("Status"),
 max_length=20,
 choices=STATUS_CHOICES)

Getting Started with Django 2.1 Chapter 1

[65]

If you want to overwrite the STATUS_CHOICES setting for a given project, you3.
simply open settings.py for that project and add the following:

settings.py
from django.utils.translation import ugettext_lazy as _

...

MAGAZINE_STATUS_CHOICES = (
 ("imported", _("Imported")),
 ("draft", _("Draft")),
 ("published", _("Published")),
 ("not_listed", _("Not Listed")),
 ("expired", _("Expired")),
)

How it works...
The getattr(object, attribute_name[, default_value]) Python function tries to
get the attribute_name attribute from object and returns default_value if it is not
found. In this case, different settings are tried in order to be taken from the Django project
settings.py module or, if they are not found, the default values are assigned.

2
Database Structure and

Modeling
In this chapter, we will cover the following topics:

Using model mixins
Creating a model mixin with URL-related methods
Creating a model mixin to handle creation and modification dates
Creating a model mixin to take care of meta tags
Creating a model mixin to handle generic relations
Handling multilingual fields
Enabling schema microdata enhancements
Using migrations
Switching from South migrations to Django migrations
Changing a foreign key to the many-to-many field

Introduction
When you start a new app, the first thing that you do is create the models that represent
your database structure. We are assuming that you have already created Django apps, or, at
the very least, have read and understood the official Django tutorial. In this chapter, you
will see a few interesting techniques that will make your database structure consistent
throughout the different apps in your project. Then, you will see how to create custom
model fields, in order to handle the internationalization of the data in your database. At the
end of the chapter, you will see how to use migrations to change your database structure
during the process of development.

Database Structure and Modeling Chapter 2

[67]

Using model mixins
In object-oriented languages, such as Python, a mixin class can be viewed as an interface
with implemented features. When a model extends a mixin, it implements the interface and
includes all of its fields, properties, and methods. The mixins in Django models can be used
when you want to reuse the generic functionalities in different models multiple times.

Getting ready
First, you will need to create reusable mixins. A good place to keep your model mixins is in
a utils module, such as the one that we will create later in the chapter (along with some
typical examples of mixins). If you create a reusable app that you will share with others,
keep the model mixins in the reusable app, instead—possibly in a base.py file.

How to do it...
Open the models.py file of any Django app that you want to use mixins with, and type the
following code:

demo_app/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

from utils.models import (CreationModificationDateMixin,
 MetaTagsMixin,
 UrlMixin)

class Idea(UrlMixin, CreationModificationDateMixin, MetaTagsMixin):
 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 title = models.CharField(_("Title"), max_length=200)
 content = models.TextField(_("Content"))

 def __str__(self):
 return self.title

Database Structure and Modeling Chapter 2

[68]

How it works...
Django model inheritance supports three types of inheritance: abstract base classes, multi-
table inheritance, and proxy models. Model mixins are abstract model classes, in that we
define them by using an abstract Meta class, with specified fields, properties, and methods.
When you create a model such as Idea, as shown in the preceding example, it inherits all of
the features from UrlMixin, CreationModificationDateMixin, and MetaTagsMixin.
All of the fields of these abstract classes are saved in the same database table as the fields of
the extending model. In the following recipes, you will learn how to define your model
mixins.

There's more...
To learn more about the different types of model inheritance, refer to the official Django
documentation, available at
https://docs.djangoproject.com/en/2.1/topics/db/models/#model-inheritance.

See also
The Creating a model mixin with URL-related methods recipe
The Creating a model mixin to handle creation and modification dates recipe
The Creating a model mixin to take care of meta tags recipe

Creating a model mixin with URL-related
methods
For every model that is appropriate to detail on its own distinct page, it is a good practice to
define the get_absolute_url() method. This method can be used in templates, and also
in the Django admin site, to preview the saved object. However, get_absolute_url() is
ambiguous, as it returns the URL path instead of the full URL.

https://docs.djangoproject.com/en/2.1/topics/db/models/#model-inheritance

Database Structure and Modeling Chapter 2

[69]

In this recipe, we will look at how to create a model mixin that provides simplified support
for model-specific URLs. This mixin will:

Allow you to define either the URL path or the full URL in your model
Generate the other of these automatically based on the one you define
Define the get_absolute_url() method behind the scenes

Getting ready
If you haven't yet done so, create a utils package to save your mixins under. Then, create
a models.py file in the utils package (alternatively, if you create a reusable app, put the
mixins in a base.py file in your app).

How to do it...
Execute the following steps, one by one:

Add the following content to the models.py file of your utils package:1.

utils/models.py
from urllib.parse import urlparse, urlunparse

from django.conf import settings
from django.db import models

class UrlMixin(models.Model):
 """
 A replacement for get_absolute_url()
 Models extending this mixin should have
 either get_url or get_url_path implemented.
 """
 class Meta:
 abstract = True

 def get_url(self):
 if hasattr(self.get_url_path, "dont_recurse"):
 raise NotImplementedError
 try:
 path = self.get_url_path()
 except NotImplementedError:
 raise
 website_host = getattr(settings,

Database Structure and Modeling Chapter 2

[70]

 "SITE_HOST",
   "localhost:8000")
 return f"http://{website_host}/{path}"
 get_url.dont_recurse = True

 def get_url_path(self):
 if hasattr(self.get_url, "dont_recurse"):
 raise NotImplementedError
 try:
 url = self.get_url()
 except NotImplementedError:
 raise
 bits = urlparse(url)
 return urlunparse(("", "") + bits[2:])
 get_url_path.dont_recurse = True

 def get_absolute_url(self):
 return self.get_url_path()

To use the mixin in your app, import the mixin from the utils package, inherit2.
the mixin in your model class, and define the get_url_path() method, as
follows:

demo_app/models.py
from django.db import models
from django.urls import reverse
from django.utils.translation import ugettext_lazy as _

from utils.models import UrlMixin

class Idea(UrlMixin):
 # ...

 def get_url_path(self):
 return reverse("idea-detail", kwargs={
 "pk": str(self.pk),
 })

Database Structure and Modeling Chapter 2

[71]

If you check this code in the staging or production environment, or run a local3.
server with a different IP or port than the defaults, set the SITE_HOST in the local
settings. You might do so by using environment variables, as discussed in the
Creating and including local settings recipe in Chapter 1, Getting Started with
Django 2.1. Alternatively, you can use a multi-file approach, like the one detailed
in the Configuring settings for development, testing, staging, and production
environments recipe, also in Chapter 1, Getting Started with Django 2.1. The latter
would be set up as follows:

settings.py or config/prod.py
...
SITE_HOST = 'www.example.com'

How it works...
The UrlMixin class is an abstract model that has three methods, as follows:

get_url() retrieves the full URL of the object.
get_url_path() retrieves the absolute path of the object.
get_absolute_url() mimics the get_url_path() method.

The get_url() and get_url_path() methods are expected to be overwritten in the
extended model class; for example, Idea. You can define get_url(),
and get_url_path() will strip it to the path. Alternately, you can define
get_url_path(), and get_url() will prepend the website URL to the beginning of the
path.

The rule of thumb is to always overwrite the get_url_path() method.

In the templates, use get_url_path() when you need a link to an object on the same
website, as follows:

{{ idea.title }}

Database Structure and Modeling Chapter 2

[72]

Use get_url() for links to be surfaced outside of the websites, such as in emails, RSS
feeds, or APIs; an example is as follows:

{{ idea.title }}

The default get_absolute_url() method will be used in the Django model
administration for the View on site functionality, and might also be used by some third-
party Django apps.

See also
The Using model mixins recipe
The Creating a model mixin to handle creation and modification dates recipe
The Creating a model mixin to take care of meta tags recipe
The Creating a model mixin to handle generic relations recipe
The Configuring settings for development, testing, staging, and production
environments recipe, in Chapter 1, Getting Started with Django 2.1
The Creating and including local settings recipe in Chapter 1, Getting Started with
Django 2.1

Creating a model mixin to handle creation
and modification dates
It is common to include timestamps in your models, for the creation and modification of
your model instances. In this recipe, you will learn how to create a simple model mixin that
saves the creation and modification dates and times for your model. Using such a mixin
will ensure that all of the models use the same field names for the timestamps, and have the
same behaviors.

Getting ready
If you haven't yet done so, create the utils package to save your mixins. Then, create the
models.py file in the utils package.

Database Structure and Modeling Chapter 2

[73]

How to do it...
Open the models.py file of your utils package, and insert the following content there:

utils/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

class CreationModificationDateMixin(models.Model):
 """
 Abstract base class with a creation
 and modification date and time
 """
 class Meta:
 abstract = True

 created = models.DateTimeField(
 _("creation date and time"),
 auto_now_add=True)
 updated = models.DateTimeField(
 _("modification date and time"),
 auto_now=True)

How it works...
The CreationModificationDateMixin class is an abstract model, which means that
extending model classes will create all of the fields in the same database table—that is, there
will be no one-to-one relationships that make the table difficult to handle. This mixin has
two date-time fields, each set to receive the date and time when the object is saved. For
the created field, the current date-time is only set on the initial save, when the related item
is added, by setting the auto_now_add flag to True. Similarly, the modified field is set on
every save, via auto_now=True. Because these field values are handled automatically,
Django marks them as read-only for us, so that we don't have to specify
the editable=False flag ourselves.

To make use of this mixin, we just have to import it and extend our model, as follows:

demo_app/models.py
...
from utils.models import (CreationModificationDateMixin, UrlMixin)

class Idea(CreationModificationDateMixin, UrlMixin):
 # ...

Database Structure and Modeling Chapter 2

[74]

See also
The Using model mixins recipe
The Creating a model mixin to take care of meta tags recipe
The Creating a model mixin to take care of schema microdata recipe
The Creating a model mixin to handle generic relations recipe

Creating a model mixin to take care of meta
tags
When you optimize your site for search engines, you not only have to use semantic markup
for each page, but you also have to include appropriate meta tags. For maximum flexibility,
it helps to have a way to define content for common meta tags, specific to objects that have
their own detail pages on your website. In this recipe, we will look at how to create a model
mixin for the fields and methods related to keyword, description, author, and copyright
meta tags.

Getting ready
As detailed in the previous recipes, make sure that you have the utils package for your
mixins. Also, create a directory structure, templates/utils, under the package, and
inside of that, create a meta.html file to store the basic meta tag markup.

How to do it...
Add the following basic meta tag markup to meta.html:1.

{# templates/utils/meta.html #}
<meta name="{{ name }}" content="{{ content }}">

Open the models.py file from this package in your favorite editor, and add the2.
following content:

utils/models.py
from django.db import models
from django.template import loader
from django.utils.safestring import mark_safe

Database Structure and Modeling Chapter 2

[75]

from django.utils.translation import ugettext_lazy as _

class MetaTagsMixin(models.Model):
 """
 Abstract base class for generating meta tags
 """
 class Meta:
 abstract = True

 meta_keywords = models.CharField(
 _("Keywords"),
 max_length=255,
 blank=True,
 help_text=_("Separate keywords by comma."))
 meta_description = models.CharField(
 _("Description"),
 max_length=255,
 blank=True)
 meta_author = models.CharField(
 _("Author"),
 max_length=255,
 blank=True)
 meta_copyright = models.CharField(
 _("Copyright"),
 max_length=255,
 blank=True)

 def get_meta(self, name, content):
 tag = ""
 if name and content:
 tag = loader.render_to_string('utils/meta.html', {
 'name': name,
 'content': content,
 })
 return mark_safe(tag)

 def get_meta_keywords(self):
 return self.get_meta('keywords', self.meta_keywords)

 def get_meta_description(self):
 return self.get_meta('description', self.meta_description)

 def get_meta_author(self):
 return self.get_meta('author', self.meta_author)

 def get_meta_copyright(self):
 return self.get_meta('copyright', self.meta_copyright)

Database Structure and Modeling Chapter 2

[76]

 def get_meta_tags(self):
 return mark_safe("\n".join((
 self.get_meta_keywords(),
 self.get_meta_description(),
 self.get_meta_author(),
 self.get_meta_copyright(),
)))

How it works...
This mixin adds four fields to the model that extends from it: meta_keywords,
meta_description, meta_author, and meta_copyright. Corresponding get_*
methods, used to render the associated meta tags, are also added. Each of these passes the
name and appropriate field content to the core get_meta method, which uses this input
to return rendered markup, based on the meta.html template. Finally, a shortcut
get_meta_tags method is provided to generate the combined markup for all of the
available metadata at once.

If you use this mixin in a model, such as Idea, which is shown in the Using model mixins
recipe at the start of this chapter, you can put the following in the HEAD section of your
detail page template to render all of the meta tags at once, as follows:

{% block meta_tags %}
 {{ block.super }}
 {{ idea.get_meta_tags }}
{% endblock %}

Here, a meta_tags block has been defined in a parent template, and this snippet shows
how the child template redefines the block, including the content from the parent first
as block.super, and extending it with our additional tags from the idea object. You could
also render only a specific meta tag by using something like the following:

{{ idea.get_meta_description }}

As you may have noticed from the models.py code, the rendered meta tags are marked as
safe – that is, they are not escaped, and we don't need to use the safe template filter. Only
the values that come from the database are escaped, in order to guarantee that the final
HTML is well formed. The database data in the meta_keywords and other fields will
automatically be escaped when we render_to_string for the meta.html template,
because that template does not specify {% autoescape off %} in its content.

Database Structure and Modeling Chapter 2

[77]

See also
The Using model mixins recipe
The Creating a model mixin to handle creation and modification dates recipe
The Creating a model mixin to take care of schema microdata recipe
The Creating a model mixin to handle generic relations recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript

Creating a model mixin to handle generic
relations
Aside from normal database relationships, such as a foreign-key relationship or a many-to-
many relationship, Django has a mechanism to relate a model to an instance of any other
model. This concept is called generic relations. For each generic relation, there is a content
type of the related model that is saved, as well as the ID of the instance of that model.

In this recipe, we will look at how to abstract the creation of generic relations in the model
mixins.

Getting ready
For this recipe to work, you will need to have the contenttypes app installed. It should be
in the INSTALLED_APPS directory, by default, as shown in the following code:

settings.py or config/base.py
INSTALLED_APPS = (
 # ...
 'django.contrib.contenttypes',
)

Again, make sure that you have already created the utils package for your model mixins.

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40&action=edit

Database Structure and Modeling Chapter 2

[78]

How to do it...
Open the models.py file in the utils package in a text editor, and insert the1.
following content there:

utils/models.py
from django.contrib.contenttypes.fields import GenericForeignKey
from django.contrib.contenttypes.models import ContentType
from django.core.exceptions import FieldError
from django.db import models
from django.utils.translation import ugettext_lazy as _

def object_relation_mixin_factory(
 prefix=None,
 prefix_verbose=None,
 add_related_name=False,
 limit_content_type_choices_to=None,
 limit_object_choices_to=None,
 is_required=False):
 """
 returns a mixin class for generic foreign keys using
 "Content type - object Id" with dynamic field names.
 This function is just a class generator

 Parameters:
 prefix: a prefix, which is added in front of
 the fields
 prefix_verbose: a verbose name of the prefix, used to
 generate a title for the field column
 of the content object in the Admin
 add_related_name: a boolean value indicating, that a
 related name for the generated content
 type foreign key should be added. This
 value should be true, if you use more
 than one ObjectRelationMixin in your
 model.

 The model fields are created like this:
 <<prefix>>_content_type: Field name for the "content type"
 <<prefix>>_object_id: Field name for the "object id"
 <<prefix>>_content_object: Field name for the "content
object"
 """
 p = ""
 if prefix:
 p = f"{prefix}_"

Database Structure and Modeling Chapter 2

[79]

 prefix_verbose = prefix_verbose or _("Related object")
 limit_content_type_choices_to = (limit_content_type_choices_to
 or {})
 limit_object_choices_to = limit_object_choices_to or {}

 content_type_field = f"{p}content_type"
 object_id_field = f"{p}object_id"
 content_object_field = f"{p}content_object"

 class TheClass(models.Model):
 class Meta:
 abstract = True

 if add_related_name:
 if not prefix:
 raise FieldError("if add_related_name is set to "
 "True, a prefix must be given")
 related_name = prefix
 else:
 related_name = None

 optional = not is_required

 ct_verbose_name = _(f"{prefix_verbose}'s type (model)")

 content_type = models.ForeignKey(
 ContentType,
 verbose_name=ct_verbose_name,
 related_name=related_name,
 blank=optional,
 null=optional,
 help_text=_("Please select the type (model) "
 "for the relation, you want to build."),
 limit_choices_to=limit_content_type_choices_to,
 on_delete=models.CASCADE)

 fk_verbose_name = prefix_verbose

 object_id = models.CharField(
 fk_verbose_name,
 blank=optional,
 null=False,
 help_text=_("Please enter the ID of the related object."),
 max_length=255,
 default="") # for migrations
 object_id.limit_choices_to = limit_object_choices_to

Database Structure and Modeling Chapter 2

[80]

 # can be retrieved by
 # MyModel._meta.get_field("object_id").limit_choices_to

 content_object = generic.GenericForeignKey(
 ct_field=content_type_field,
 fk_field=object_id_field)

 TheClass.add_to_class(content_type_field, content_type)
 TheClass.add_to_class(object_id_field, object_id)
 TheClass.add_to_class(content_object_field,
 content_object)

 return TheClass

The following code snippet is an example of how to use two generic relationships2.
in your app (put this code in demo_app/models.py):

demo_app/models.py
from django.db import models

from utils.models import (
 object_relation_mixin_factory as generic_relation)

FavoriteObjectMixin = generic_relation(is_required=True)

OwnerMixin = generic_relation(
 prefix="owner",
 prefix_verbose=_("Owner"),
 is_required=True,
 add_related_name=True,
 limit_content_type_choices_to={
 'model__in': ('user', 'institution')
 })

class Like(FavoriteObjectMixin, OwnerMixin):
 class Meta:
 verbose_name = _("Like")
 verbose_name_plural = _("Likes")

 def __str__(self):
 return _("%(owner)s likes %(obj)s") % {
 "owner": self.owner_content_object,
 "obj": self.content_object,
 }

Database Structure and Modeling Chapter 2

[81]

How it works...
As you can see, this snippet is more complex than the previous ones. The
object_relation_mixin_factory, which we have aliased to generic_relation, for
short, in our import, is not a mixin itself; it is a function that generates a model mixin – that
is, an abstract model class to extend from. The dynamically created mixin adds the
content_type and object_id fields, and the content_object generic foreign key that
points to the related instance.

Why can't we just define a simple model mixin with these three attributes? A dynamically
generated abstract class allows us to have prefixes for each field name; therefore, we can
have more than one generic relation in the same model. For example, the Like model,
which was shown previously, will have the content_type, object_id, and
content_object fields for the favorite object, and owner_content_type,
owner_object_id, and owner_content_object for the one (user or institution) that
liked the object.

The object_relation_mixin_factory function, which we have aliased
to generic_relation, for short, adds the possibility to limit the content type choices by
the limit_content_type_choices_to parameter. The preceding example limits the
choices for owner_content_type to only the content types of the User and Institution
models. Also, there is the limit_object_choices_to parameter, which can be used by
custom form validation to limit the generic relations to only specific objects. For example,
we might want to allow favorites for only the objects with a published status.

See also
The Creating a model mixin with URL-related methods recipe
The Creating a model mixin to handle creation and modification dates recipe
The Creating a model mixin to take care of meta tags recipe
The Creating a model mixin to take care of schema microdata recipe
The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript

Database Structure and Modeling Chapter 2

[82]

Handling multilingual fields
Django uses the internationalization mechanism to translate verbose strings in the code and
templates. However, it's up to the developer to decide how to implement the multilingual
content in the models. There are several third-party modules that handle translatable model
fields; however, I prefer the simple solution that will be introduced to you in this recipe.

The advantages of the approach that you will learn about are as follows:

It is straightforward to define multilingual fields in the database.
It is simple to use the multilingual fields in database queries.
You can use contributed administration to edit models with the multilingual
fields, without additional modifications.
If you need it, you can easily show all of the translations of an object in the same
template.
You can use database migrations to add or remove languages.

Getting ready
Have you created the utils package, as has been used in the preceding recipes of this
chapter? You will now need a new fields.py file within the utils app, for the custom
model fields.

How to do it...
Execute the following steps to define the multilingual character field and multilingual text
field:

Open the fields.py file and create the base multilingual field, as follows:1.

utils/fields.py
from django.conf import settings
from django.db import models
from django.utils.translation import get_language

class MultilingualField(models.Field):
 SUPPORTED_FIELD_TYPES = [models.CharField, models.TextField]

 def __init__(self, verbose_name=None, **kwargs):
 self.localized_field_model = None

Database Structure and Modeling Chapter 2

[83]

 for model in MultilingualField.SUPPORTED_FIELD_TYPES:
 if issubclass(self.__class__, model):
 self.localized_field_model = model
 self._blank = kwargs.get("blank", False)
 self._editable = kwargs.get("editable", True)
 super().__init__(verbose_name, **kwargs)

 @staticmethod
 def localized_field_name(name, lang_code):
 lang_code_safe = lang_code.replace("-", "_")
 return f"{name}_{lang_code_safe}"

 def get_localized_field(self, lang_code, lang_name):
 _blank = (self._blank
 if lang_code == settings.LANGUAGE_CODE
 else True)
 localized_field = self.localized_field_model(
 f"{self.verbose_name} ({lang_name})",
 name=self.name,
 primary_key=self.primary_key,
 max_length=self.max_length,
 unique=self.unique,
 blank=_blank,
 null=False, # we ignore the null argument!
 db_index=self.db_index,
 default=self.default or "",
 editable=self._editable,
 serialize=self.serialize,
 choices=self.choices,
 help_text=self.help_text,
 db_column=None,
 db_tablespace=self.db_tablespace)
 return localized_field

 def contribute_to_class(self, cls, name,
 private_only=False,
 virtual_only=False):
 def translated_value():
 language = get_language()
 val = self.__dict__.get(
 MultilingualField.localized_field_name(
 name, language))
 if not val:
 val = self.__dict__.get(
 MultilingualField.localized_field_name(
 name, settings.LANGUAGE_CODE))
 return val

Database Structure and Modeling Chapter 2

[84]

 # generate language-specific fields dynamically
 if not cls._meta.abstract:
 if self.localized_field_model:
 for lang_code, lang_name in settings.LANGUAGES:
 localized_field = self.get_localized_field(
 lang_code, lang_name)
 localized_field.contribute_to_class(
 cls,
 MultilingualField.localized_field_name(
 name, lang_code))
 setattr(cls, name, property(translated_value))
 else:
 super().contribute_to_class(
 cls, name, private_only, virtual_only)

In the same file, subclass the base field for character and text field forms, as2.
follows:

class MultilingualCharField(models.CharField, MultilingualField):
 pass

class MultilingualTextField(models.TextField, MultilingualField):
 pass

Now, we'll consider an example of how to use the multilingual fields in your app, as
follows:

First, set multiple languages in the settings for your project:1.

settings.py or config/base.py
LANGUAGE_CODE = "en-us"

LANGUAGES = (
 ("en-us", "US English"),
 ("en-gb", "British English"),
 ("de", "Deutsch"),
 ("fr", "Français"),
 ("lt", "Lietuvių kalba"),
)

Then, open the models.py file from the demo_app and create the multilingual2.
fields for the Idea model, as follows:

demo_app/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

Database Structure and Modeling Chapter 2

[85]

from utils.fields import (
 MultilingualCharField,
 MultilingualTextField)

class Idea(models.Model):
 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 title = MultilingualCharField(_("Title"),
 max_length=200)
 description = MultilingualTextField(_("Description"),
 blank=True)
 content = models.MultilingualTextField(_("Content"))

 def __str__(self):
 return self.title

How it works...
The example of Idea will generate a model that is similar to the following:

class Idea(models.Model):
 title_en_us = models.CharField(
 _("Title (US English)"),
 max_length=200)
 title_en_gb = models.CharField(
 _("Title (British English)"),
 max_length=200,
 blank=True)
 title_de = models.CharField(
 _("Title (Deutch)"),
 max_length=200,
 blank=True)
 title_fr = models.CharField(
 _("Title (Français)"),
 max_length=200,
 blank=True)
 title_lt = models.CharField(
 _("Title (Lietuvi kalba)"),
 max_length=200,
 blank=True)

 description_en_us = models.TextField(
 _("Description (US English)"),
 blank=True)

Database Structure and Modeling Chapter 2

[86]

 description_en_gb = models.TextField(
 _("Description (British English)"),
 blank=True)
 description_de = models.TextField(
 _("Description (Deutch)"),
 blank=True)
 description_fr = models.TextField(
 _("Description (Français)"),
 blank=True)
 description_lt = models.TextField(
 _("Description (Lietuvi kalba)"),
 blank=True)

 content_en_us = models.TextField(
 _("Content (US English)"))
 content_en_gb = models.TextField(
 _("Content (British English)"))
 content_de = models.TextField(
 _("Content (Deutch)"))
 content_fr = models.TextField(
 _("Content (Français)"))
 content_lt = models.TextField(
 _("Content (Lietuvi kalba)"))

In addition to this, there will be three properties – title, description, and content –
that will return the corresponding field in the currently active language. These will fall back
to the default language if no localized field content is available. For instance, if the default
language were en-us and the active language were de, but the description_de were
empty, then the description would fall back to description_en_us, instead.

The MultilingualCharField and MultilingualTextField fields will juggle the model
fields dynamically, depending on your LANGUAGES setting. They will overwrite the
contribute_to_class() method that is used when the Django framework creates the
model classes. The multilingual fields dynamically add character or text fields for each
language of the project, and a simple migration to add the appropriate fields in the
database. Also, the properties are created in order to return the translated value of the
currently active language or the main language, by default.

For example, you can have the following code in the template:

<h1>{{ idea.title }}</h1>
<div>{{ idea.description|urlize|linebreaks }}</div>

This will show the text in American or British English, German, French, or Lithuanian,
depending on the currently selected language. However, it will fall back to US English if
the translation doesn't exist.

Database Structure and Modeling Chapter 2

[87]

Here is another example. If you want to have your QuerySet ordered by the translated
titles in the view, you can define it as follows:

qs = Idea.objects.order_by(f"title_{request.LANGUAGE_CODE}")

See also
The Using migrations recipe

Enabling schema microdata enhancements
The content delivered in a web application is generally very rich, but there are often
important details embedded within plain human-readable text, and search engines cannot
easily understand them. When such additional information becomes available, though,
search result entries for the content can be similarly enriched, increasing SEO rankings and
making it easier for users to find what they are looking for.

Part of this is the data that we exposed in the Creating a model mixin to take care of meta tags
recipe, earlier in the chapter; however, for certain types of objects, you can build something
even more structured. To make this possible, you can identify schema microdata, as per the
https://schema.org specification, for objects that are represented in the application. In this
recipe, we will approach the creation of a model mixin for fields and methods related to the
microdata about item types and properties.

Getting ready
As noted in the previous recipes, make sure that you have the utils package, containing a
models.py file for your mixins.

How to do it...
Open the models.py file from this package in your favorite editor, and add the1.
following content:

utils/models.py
from enum import Enum
from functools import reduce
from django.db import models

https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org

Database Structure and Modeling Chapter 2

[88]

from django.utils.translation import ugettext_lazy as _

class ChoiceEnum(Enum):
 @classmethod
 def choices(cls):
 return tuple((x.name, x.value) for x in cls)

class ItemPropChoiceEnum(ChoiceEnum):
 @classmethod
 def choices(cls, scope=None):
 sources = [cls] + cls.parents()
 choices = reduce((lambda x, y: tuple(set(x) | set(y))),
 sources)
 if scope:
 choices = tuple(set(choices) & set(scope.choices()))
 return choices

 @classmethod
 def parents(cls):
 return []

class ItemType(ChoiceEnum):
 THING = "Thing"
 CREATIVE_WORK = "CreativeWork"
 BOOK = "Book"

class BooleanFieldItemProp(ItemPropChoiceEnum):
 ABRIDGED = "abridged"

class CharFieldItemProp(ItemPropChoiceEnum):
 ACCESS_MODE = "accessMode"
 ALTERNATE_NAME = "alternateName"
 BOOK_EDITION = "bookEdition"
 DESCRIPTION = "description"
 HEADLINE = "headline"

class TextFieldItemProp(ItemPropChoiceEnum):
 @classmethod
 def parents(cls):
 return [CharFieldItemProp]

Database Structure and Modeling Chapter 2

[89]

class ForeignKeyItemProp(ItemPropChoiceEnum):
 ABOUT = "about"
 SUBJECT_OF = "subjectOf"
 WORK_EXAMPLE = "workExample"
 WORK_TRANSLATION = "workTranslation"

class ManyToManyFieldItemProp(ItemPropChoiceEnum):
 @classmethod
 def parents(cls):
 return [ForeignKeyItemProp]

class OneToOneFieldItemProp(ItemPropChoiceEnum):
 def parents(self):
 return [ForeignKeyItemProp]

class UrlFieldItemProp(ItemPropChoiceEnum):
 ADDITIONAL_TYPE = "additionalType"
 SAME_AS = "sameAs"
 URL = "url"

class SchemaMicrodata(models.Model):
 class Meta:
 abstract = True

 @classmethod
 def itemprop_fields(cls):
 return []

 itemtype = models.CharField(_("Microdata item type"),
 max_length=100,
 blank=True,
 choices=ItemType.choices())

 def itemtype_attribute(self):
 attr = loader.render_to_string(
 "utils/itemtype.attr.html",
 {"itemtype": self.get_itemtype_display()})
 return mark_safe(attr)

Database Structure and Modeling Chapter 2

[90]

Then, add a signals.py file to the demo_app, with the following content:2.

demo_app/signals.py
from django.db.models import CharField
from django.db.models.signals import class_prepared
from django.dispatch import receiver
from django.template import loader
from django.utils.safestring import mark_safe

from utils import models

@receiver(class_prepared)
def augment_with_itemprops_microdata(sender, **kwargs):
 if issubclass(sender, models.SchemaMicrodata):
 for field_name in sender.itemprop_fields():
 field = None
 for fld in sender._meta.fields:
 if fld.get_attname() == field_name:
 field = fld
 type = field.__class__.__name__ if field else "None"
 enum = getattr(models, f"{type}ItemProp", None)
 if enum:
 display_name = field.verbose_name or field.name
 itemprop_field_name = f"{field.name}_itemprop"
 itemprop_field = CharField(
 f"{display_name} microdata item property",
 name=itemprop_field_name,
 max_length=200,
 unique=False,
 blank=True,
 null=False,
 default="",
 editable=True,
 choices=enum.choices(),
 db_tablespace=field.db_tablespace)
 itemprop_field.auto_created = True
 itemprop_field.contribute_to_class(
 sender,
 itemprop_field_name)

 def itemprop_attr(sender_instance):
 prop_key = getattr(sender_instance,
 itemprop_field_name,
 None)
 prop_val = field.choices
 attr = loader.render_to_string(
 "utils/itemprop.attr.html",

Database Structure and Modeling Chapter 2

[91]

 {"itemprop": getattr(sender_instance,
 itemprop_field_name,
 None)})
 return mark_safe(attr)

 setattr(sender,
 f"{itemprop_field_name}_attribute",
 property(itemprop_attr))

To load the signals at the right time, we have to provide a custom app3.
configuration. We build the config in demo_app/apps.py, as follows:

demo_app/apps.py
from django.apps import AppConfig
from django.utils.translation import ugettext_lazy as _

class DemoAppConfig(AppConfig):
 name = "demo_app"
 verbose_name = _("Demo App")

 def ready(self):
 from . import signals

This configuration is enabled by setting it as the app's default, as follows:

demo_app/__init__.py
default_app_config = "demo_app.apps.DemoAppConfig"

In the templates/utils directory, add an itemtype.attr.html file, as4.
follows:

{# utils/itemtype.attr.html #}
{% if itemtype %}
 itemscope itemtype="//schema.org/{{ itemtype }}"{% endif %}

Also, create an itemprop.attr.html file, as follows:

{# utils/itemprop.attr.html #}
{% if itemprop %}
 itemprop="{{ itemprop }}"{% endif %}

Database Structure and Modeling Chapter 2

[92]

Finally, we just need to make use of the mixin in the demo_app/models.py:5.

demo_app/models.py
...
from utils.models import SchemaMicrodata

class Idea(SchemaMicrodata):
 # ...
 @classmethod
 def itemprop_fields(cls):
 return ["title", "content"] + super().itemprop_fields()

How it works...
In Python 3.4, a new Enum class was introduced, filling a gap in the core functionality, as
compared to other languages. Enumerations, which are fixed sets of key-value pairs, are
perfect for use when generating model field choices. Since there is a specific taxonomy for
https://schema.org microdata itemtype and itemprop names, we can enumerate those
available options. However, we can't simply use an Enum itself as the choices value, since
that field must contain an iterable (list or tuple) where each element is itself an iterable of
exactly two items. Instead, we create a ChoiceEnum subclass of Enum, with a choices()
method that generates the tuple of 2-tuples needed by Django.

Another strength of the https:/ / schema. org microdata is a rich taxonomy tree, where
nested types inherit properties from their more generic parent types. Unfortunately, it is
not inherently possible to have the same type of inheritance with Enum objects, which
cannot be extended once they define properties. To add this functionality, we create
another ItemPropChoiceEnum. This richer version of the ChoiceEnum supports a way to
define parents() for the enumeration. The choices() logic is augmented to use this
hierarchy to compose a union of all of the available choices for a given enumeration and its
parents.

Now that we have the starting points, we will create a single list of values for use in
itemtype attributes, and then several field-type-specific lists for itemprop attributes.
There is some unavoidable duplication across the item property enumerations, because
certain properties allow for very particular types, and others are less strict.

Note that the item type and item property enumerations shown here are
far from exhaustive. The complete hierarchy of schema types can be found
at https:/ / schema. org/ docs/ full. html.

https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html
https://schema.org/docs/full.html

Database Structure and Modeling Chapter 2

[93]

The last piece that we will add to our util is the SchemaMicrodata model mixin, which
provides an itemtype field to any models that use it, similar to the metadata fields added
in the Creating a model mixin to take care of meta tags recipe, earlier in this chapter. A
convenient method is also provided, in order to generate a safe HTML snippet for the
itemtype attribute, to be used in templates as follows:

<section {{ thing.itemtype_attribute }}>...</section>

Next, we will set up a receiver that acts on the class_prepared signal, which is triggered
whenever a model is loaded and ready for use, and we will wire it up to be loaded when
the application configuration is ready. The receiver checks the sender (a model) to see if it
subclasses the SchemaMicrodata mixin that we just created, and finds the set of fields to
be augmented with itemprop. If choices are available for the field's type (for example,
CharFieldItemProp for a CharField), it is then paired with an autogenerated itemprop
field, using those choices. The result might be something like the following:

class Idea(SchemaMicrodata):
 title = models.CharField(
 _("Title"),
 max_length=200)
 title_itemprop = models.CharField(
 _("Title microdata item property"),
 name="title_itemprop",
 max_length=200,
 unique=False,
 blank=True,
 null=False,
 default="",
 editable=True,
 choices=(("ACCESS_MODE", "accessMode"),
 ("ALTERNATE_NAME", "alternateName"),
 ("BOOK_EDITION", "bookEdition"),
 ("DESCRIPTION", "description"),
 ("HEADLINE", "headline")))

 content = models.TextField(
 _("Content"),
 blank=True)
 content_itemprop = models.TextField(
 _("Content microdata item property"),
 name="content_itemprop",
 max_length=200,
 unique=False,
 blank=True,
 null=False,
 default="",

Database Structure and Modeling Chapter 2

[94]

 editable=True,
 choices=(("ACCESS_MODE", "accessMode"),
 ("ALTERNATE_NAME", "alternateName"),
 ("BOOK_EDITION", "bookEdition"),
 ("DESCRIPTION", "description"),
 ("HEADLINE", "headline")))

Two templates are used to define how to represent the new microdata in the markup, and
helper methods make use of these, so that we can easily provide the available microdata:

<section {{ idea.itemtype_attribute }}>
 <header {{ idea.title_itemprop_attribute }}>
 {{ idea.title }}
 </header>
 <div {{ idea.content_itemprop_attribute }}>
 {{ idea.content }}
 </div>
</section>

When evaluated, assuming that we have an itemtype (and only the itemprop for the
title), we might see something like the following:

<section itemscope itemtype="//schema.org/CreativeWork">
 <header itemprop="headline">
 This is the Title
 </header>
 <div>
 Content goes here...
 </div>
</section>

See also
The Using model mixins recipe
The Creating a model mixin to handle creation and modification dates recipe
The Creating a model mixin to take care of meta tags recipe
The Creating a model mixin to handle generic relations recipe
The Creating app configuration recipe from Chapter 1, Getting Started with Django
2.1

Database Structure and Modeling Chapter 2

[95]

Using migrations
It is not true that once you have created your database structure, it won't change in the
future. As development happens iteratively, you can get updates on the business
requirements in the development process, and you will have to perform database schema
changes along the way. With Django migrations, you don't have to change the database
tables and fields manually, as most of it is done automatically, using the command-line
interface.

Getting ready
Activate your virtual environment or Docker project in the command-line tool.

How to do it...
To create the database migrations, take a look at the following steps:

When you create models in your new demo_app app, you have to create an1.
initial migration that will create the database tables for your app. This can be
done by using the following command:

(myproject_env)$ python3 manage.py makemigrations demo_app

The first time that you want to create all of the tables for your project, run the2.
following command:

(myproject_env)$ python3 manage.py migrate

Run this command when you want to execute the new migrations for all of your
apps.

If you want to execute the migrations for a specific app, run the following3.
command:

(myproject_env)$ python3 manage.py migrate demo_app

Database Structure and Modeling Chapter 2

[96]

If you make some changes in the database schema, you will have to create a4.
migration for that schema. For example, if we add a new subtitle field to the
Idea model, we can create the migration by using the following command:

(myproject_env)$ python3 manage.py makemigrations \
> --name subtitle_added demo_app

Sometimes, you may have to add to or change data in the existing schema in5.
bulk, which can be done with a data migration, instead of a schema migration. To
create a data migration that modifies the data in the database table, we can use
the following command:

(myproject_env)$ python3 manage.py makemigrations \
> --empty --name populate_subtitle demo_app

This creates a skeleton data migration, which you have to modify to perform the
necessary data manipulation before applying it.

Learn more about Writing database migrations in the official How To guide,
found at https:/ /docs. djangoproject. com/en/ 2.1/ howto/ writing-
migrations/ .

To list all of the available applied and unapplied migrations, run the following6.
command:

(myproject_env)$ python3 manage.py showmigrations

The applied migrations will be listed with a [X] prefix. The unapplied ones will
be listed with a [] prefix.

To list all of the available migrations for a specific app, run the same command,7.
but pass the app name, as follows:

(myproject_env)$ python3 manage.py showmigrations demo_app

How it works...
Django migrations are instruction files for the database migration mechanism. The
instruction files inform us on which database tables to create or remove, which fields to add
or remove, and which data to insert, update, or delete.

https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/
https://docs.djangoproject.com/en/2.1/howto/writing-migrations/

Database Structure and Modeling Chapter 2

[97]

There are two types of migrations in Django. One is schema migration, and the other is data
migration. Schema migration should be created when you add new models, or add or
remove fields. Data migration should be used when you want to fill the database with some
values or massively delete values from the database. Data migrations should be created by
using a command in the command-line tool, and then programmed in the migration file.

The migrations for each app are saved in their migrations directories. The first migration
will usually be called 0001_initial.py, and the other migrations in our example app will
be called 0002_subtitle_added.py and 0003_populate_subtitle.py. Each migration
gets a number prefix that is automatically incremented. For each migration that is executed,
there is an entry that is saved in the django_migrations database table.

It is possible to migrate back and forth by specifying the number of the migration to which
we want to migrate, as shown in the following command:

(myproject_env)$ python3 manage.py migrate demo_app 0002

This does require that each migration has both a forward and a backward action. Ideally,
the backward action would exactly undo the changes made by the forward action.
However, in some cases such a change would be unrecoverable, such as when the forward
action removed a column from the schema, because it would destroy data. In such a case,
the backward action might restore the schema, but the data would remain lost forever, or
else there might not be a backward action at all.

If you want to undo all of the migrations for a specific app, you can do so by using the
following command:

(myproject_env)$ python3 manage.py migrate demo_app zero

Do not commit your migrations to version control until you have tested
the forward and backward migration process, and you are sure that they
will work well in other development and public website environments.

See also
The Working with a virtual environment recipe in Chapter 1, Getting Started with
Django 2.1
The Working with Docker recipe in Chapter 1, Getting Started with Django 2.1

Database Structure and Modeling Chapter 2

[98]

The Handling project dependencies with pip in Chapter 1, Getting Started with Django
2.1
The Including external dependencies in your project recipe in Chapter 1, Getting
Started with Django 2.1
The Changing a foreign key to the many-to-many field recipe

Switching from South migrations to Django
migrations
If you were using Django before version 1.7 introduced database migrations into the core
functionality, you have more than likely used third-party South migrations before. In this
recipe, you will learn how to switch your project from South migrations to Django
migrations.

Getting ready
Make sure that all apps, along with their South migrations, are up to date.

How to do it...
Execute the following steps:

Migrate all of your apps to the latest South migrations, as follows:1.

(myproject_env)$ python3 manage.py migrate

Remove south from INSTALLED_APPS, in the settings.

For each app with South migrations, delete the migration files and leave only the2.
migrations directories.
Create new migration files with the following command:3.

(my_project)$ python3 manage.py makemigrations

Fake the initial Django migrations, as the database schema has already been set4.
correctly:

(my_project)$ python3 manage.py migrate --fake-initial

Database Structure and Modeling Chapter 2

[99]

If there are any circular relationships in the installed apps (that is, two models in5.
different apps pointing to each other with a foreign key or many-to-many
relation), apply the fake initial migrations to each of these apps separately, as
follows:

(my_project)$ python3 manage.py migrate --fake-initial demo_app

How it works...
There is no conflict in the database when you are switching to the new way of dealing with
the database schema changes, as the South migration history is saved in the
south_migrationhistory database table; the Django migration history is saved in the
django_migrations database table. The only problem is that the migration files for South
have a different syntax than the Django core migrations; therefore, the South migrations
have to be completely removed and replaced with Django migrations.

Thus, at first, we delete the South migration files (or they can be moved to a separate
directory as backups, if preferred). Then, the makemigrations command recognizes the
empty migrations directories and creates new, initial Django migrations for each app.
Once these migrations are faked, the further Django migrations can be created and applied,
as needed.

See also
The Using migrations recipe
The Changing a foreign key to the many-to-many field recipe

Changing a foreign key to the many-to-many
field
This recipe is a practical example of how to change a many-to-one relation to a many-to-
many relation, while preserving the already existing data. We will use both schema and
data migrations in this situation.

Database Structure and Modeling Chapter 2

[100]

Getting ready
Let's suppose that you have the Idea model, with a foreign key pointing to the Category
model, as follows:

demo_app/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

class Category(models.Model):
 title = models.CharField(_("Title"), max_length=200)

 def __str__(self):
 return self.title

class Idea(models.Model):
 title = model.CharField(
 _("Title"),
 max_length=200)
 category = models.ForeignKey(Category,
 verbose_name=_("Category"),
 null=True,
 blank=True,
 on_delete=models.SET_NULL)

 def __str__(self):
 return self.title

The initial migration should be created and executed by using the following commands:

(myproject_env)$ python3 manage.py makemigrations demo_app
(myproject_env)$ python3 manage.py migrate demo_app

How to do it...
The following steps will show you how to switch from a foreign key relation to a many-to-
many relation, while preserving the already existing data:

Add a new many-to-many field, called categories, as follows:1.

demo_app/models.py
class Idea(models.Model):
 title = model.CharField(
 _("Title"),
 max_length=200)
 category = models.ForeignKey(Category,

Database Structure and Modeling Chapter 2

[101]

 verbose_name=_("Category"),
 null=True,
 blank=True)
 categories = models.ManyToManyField(Category,
 verbose_name=_("Category"),
 blank=True,
 related_name="ideas")

Create and run a schema migration, in order to add the new field to the database,2.
as shown in the following code snippet:

(myproject_env)$ python3 manage.py makemigrations \
> demo_app --name categories_added
(myproject_env)$ python3 manage.py migrate demo_app

Create a data migration to copy the categories from the foreign key to the many-3.
to-many field, as follows:

(myproject_env)$ python3 manage.py makemigrations \
> --empty --name copy_categories demo_app

Open the newly created migration file4.
(demo_app/migrations/0003_copy_categories.py) and define the forward
migration instructions, as shown in the following code snippet:

demo_app/migrations/0003_copy_categories.py
from django.db import migrations

def copy_categories(apps, schema_editor):
 cls_idea = apps.get_model("demo_app", "Idea")
 for idea in cls_idea.objects.all():
 if idea.category:
 cls_idea.categories.add(idea.category)

class Migration(migrations.Migration):
 dependencies = [
 ('demo_app', '0002_categories_added'),
]

 operations = [
 migrations.RunPython(copy_categories),
]

Run the new data migration, as follows:5.

(myproject_env)$ python3 manage.py migrate demo_app

Database Structure and Modeling Chapter 2

[102]

Delete the foreign key field category in the models.py file, leaving only the6.
new categories many-to-many field, as follows:

demo_app/models.py
class Idea(models.Model):
 title = model.CharField(
 _("Title"),
 max_length=200)
 categories = models.ManyToManyField(Category,
 verbose_name=_("Category"),
 blank=True,
 related_name="ideas")

Create and run a schema migration, in order to delete the categories field from7.
the database table, as follows:

(myproject_env)$ python3 manage.py makemigrations \
> demo_app --name delete_category
(myproject_env)$ python3 manage.py migrate demo_app

How it works...
At first, we add a new many-to-many field to the Idea model, and a migration is generated
to update the database accordingly. Then, we create a data migration that will copy the
existing relations from the foreign key category to the new many-to-many categories.
Lastly, we remove the foreign key field from the model, and update the database once
more.

There's more...
Our data migration currently includes only the forward action, copying the foreign
key category as the first related item in the new categories relationship. Although we
did not elaborate here, in a real-world scenario it would be best to include the reverse
operation as well. While any Idea object with multiple categories would lose data, this
could be accomplished by copying the first related item back to the category foreign key.

See also
The Using migrations recipe
The Switching from South migrations to Django migrations recipe

3
Forms and Views

In this chapter, we will cover the following topics:

Passing HttpRequest to a form
Utilizing the save method of a form
Uploading images
Creating a form layout with custom templates
Creating a form layout with django-crispy-forms
Filtering object lists
Managing paginated lists
Composing class-based views
Generating PDF documents
Implementing a multilingual search with Haystack and Whoosh

Introduction
While a database structure is defined in models, views provide the endpoints necessary to
show content to users or to let them enter new and updated data. In this chapter, we will
focus on views for managing forms, the list view, and views generating alternative outputs
to HTML. In the simplest examples, we will leave the creation of URL rules and templates
up to you.

Forms and Views Chapter 3

[104]

Passing HttpRequest to a form
The first argument of every Django view is the HttpRequest object, which by convention
is named request. It contains metadata about the request sent from a browser or other
client, including such items as the current language code, user data, cookies, and session.
By default, forms that are used by views accept the GET or POST data, files, initial data, and
other parameters; however, they do not inherently have access to the HttpRequest object.
In some cases, it is useful additionally to pass HttpRequest to the form, especially when
you want to filter out the choices of form fields based on other request data, or handle
saving something such as the current user or IP in the form.

In this recipe, we will see an example of a form where a person can choose a user and write
a message to them. We will pass the HttpRequest object to the form in order to exclude
the current user from the recipient choices, as we don't want anybody to write a message to
themselves.

Getting ready
Let's create a new app called email_messages and put it in INSTALLED_APPS in the
settings. This app will have no models, just forms and views.

How to do it...
To complete this recipe, execute the following steps:

Add a new forms.py file with the message form containing two fields: the1.
recipient selection and message text. Also, this form will have an initialization
method, which will accept the request object, and then modify QuerySet for the
recipient's selection field:

email_messages/forms.py
from django import forms
from django.contrib.auth.models import User
from django.utils.translation import ugettext_lazy as _

class MessageForm(forms.Form):
 recipient = forms.ModelChoiceField(
 label=_("Recipient"),
 queryset=User.objects.all(),
 required=True)

Forms and Views Chapter 3

[105]

 message = forms.CharField(
 label=_("Message"),
 widget=forms.Textarea,
 required=True)

 def __init__(self, request, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.request = request
 self.fields["recipient"].queryset = (
 self.fields["recipient"].queryset.exclude(
 pk=request.user.pk))

Create views.py with the message_to_user() and message_sent() view2.
functions in order to handle the form. As you can see, the request object is passed
as the first parameter to the form, as follows:

email_messages/views.py
from django.contrib.auth.decorators import login_required
from django.shortcuts import render, redirect

from .forms import MessageForm

@login_required
def message_to_user(request):
 if request.method == "POST":
 form = MessageForm(request, data=request.POST)
 if form.is_valid():
 # do something with the form
 return redirect("message_sent")
 else:
 form = MessageForm(request)

 return render(request,
 "email_messages/message_to_user.html",
 {"form": form})

@login_required
def message_sent(request):
 return render(request,
 "email_messages/message_sent.html")

Forms and Views Chapter 3

[106]

Add a very basic template for the message form under3.
templates/email_messages/message_to_user.html, as in the following:

{# email_messages/message_to_user.html #}
<form action="">
 {{ form.as_p }}
</form>

We need the template for when the message has been sent. Again, we define it4.
here at templates/email_messages/message_sent.html with minimal
content for demonstration:

{# email_messages/message_sent.html #}
<p>Thanks for sending your note!</p>

Additionally, we need to wire up the URLs so that Django will know how to5.
route the requests properly. First, we will create email_messages/urls.py, as
follows:

email_messages/urls.py
from django.urls import path

from .views import message_to_user, message_sent

urlpatterns = [
 path('/', message_to_user, 'message_to_user'),
 path('sent/', message_sent, 'message_sent'),
]

We need to include these patterns in our urls.py project:6.

project/urls.py
from django.urls import include, path

urlpatterns = [
 # ...
 path('email/', include('email_messages.urls')),
]

Forms and Views Chapter 3

[107]

How it works...
In the initialization method of MessageForm, we have the self variable that represents the
instance of the form itself, we also have the newly added request variable, and then we
have the rest of the positional arguments (*args) and named arguments (**kwargs). We
call the super() initialization method, passing all of the positional and named arguments
to it so that the form is properly initiated. We will then assign the request variable to a
new request attribute of the form for later access in other methods of the form. Finally, we
modify the queryset attribute of the recipient's selection field, excluding the current user
from the request.

In the message_to_user view, we will pass the HttpRequest object as the first argument
in both situations:

When loaded for the first time
When the form is posted

The form is rendered via the given message_to_user.html template, which prints out
only the markup for the form itself in our example here. In the real world, this would
probably extend from a base.html template as described in the Arranging the base.html
template recipe in Chapter 4, Templates and JavaScript. With our basic markup, this would
look something like the following once filled in:

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40&action=edit

Forms and Views Chapter 3

[108]

After submission completes successfully, we redirect to the message_sent named URL,
which maps back to the message_sent view. In this, we simply render a message via
the message_sent.html template, something like this:

See also
The Utilizing the save method of the form recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript

Utilizing the save method of the form
To make your views clean and simple, it is good practice to move the handling of the form
data to the form itself whenever this is possible and makes sense. The common practice is
to have a save() method that will save the data, perform search, or do some other smart
actions. We will extend the form that is defined in the previous recipe with the save()
method, which will send an email to the selected recipient.

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40&action=edit

Forms and Views Chapter 3

[109]

Getting ready
We will build upon the example that is defined in the Passing HttpRequest to the form recipe.

How to do it...
To complete this recipe, execute the following two steps:

From Django, import the function in order to send an email. Then, add the1.
save() method to MessageForm. It will try to send an email to the selected
recipient and will fail silently if any errors occur:

email_messages/forms.py
from django import forms
from django.contrib.auth.models import User
from django.core.mail import send_mail
from django.utils.translation import ugettext_lazy as _

class MessageForm(forms.Form):
 # ...

 def save(self):
 cleaned_data = self.cleaned_data
 user = self.request.user
 send_mail(subject=_(f"A message from {user}"),
 message=cleaned_data["message"],
 from_email=self.request.user.email,
 recipient_list=[cleaned_data["recipient"].email],
 fail_silently=True)

Call the save() method from the form in the view if the posted data is valid:2.

email_messages/views.py
from django.contrib.auth.decorators import login_required
from django.shortcuts import render, redirect

from .forms import MessageForm

@login_required
def message_to_user(request):
 if request.method == "POST":
 form = MessageForm(request, data=request.POST)
 if form.is_valid():
 form.save()

Forms and Views Chapter 3

[110]

 return redirect("message_to_user_done")
 else:
 form = MessageForm(request)

 return render(request,
 "email_messages/message_to_user.html",
 {"form": form})

How it works...
Let's take a look at the form. The save() method uses the cleaned data from the form to
read the recipient's email address and the message. The sender of the email is the current
user from the request.

If the email cannot be sent due to an incorrect mail server configuration or
another reason, it will fail silently in this example; that is, no error will be
raised. In a production site, this would probably want to be tracked
somehow on the server, but we would likely still not reveal the error
directly to users.

Now, let's look at the view. When the posted form is valid, the save() method of the form
will be called before the user is redirected to the success page.

See also
The Passing HttpRequest to the form recipe
The Uploading images recipe

Uploading images
In this recipe, we will take a look at the easiest way to handle image uploads. You will see
an example of an app where the visitors can upload images with inspirational quotes.

Forms and Views Chapter 3

[111]

Getting ready
Make sure you have Pillow installed. Either run the following command in your virtual
environment, or update your requirements file accordingly and rebuild your Docker
container:

(myproject_env)$ pip3 install Pillow~=5.2.0

Then, let's create a quotes app and put it in INSTALLED_APPS in the settings. For Docker
projects, you will also need to add a volume mapping to your app container in docker-
compose.yml.

Then, we will add an InspirationalQuote model with three fields: the author, quote,
and picture, as follows:

quotes/models.py
import os

from django.db import models
from django.utils.timezone import now as timezone_now
from django.utils.translation import ugettext_lazy as _

def upload_to(instance, filename):
 now = timezone_now()
 base, ext = os.path.splitext(filename)
 ext = ext.lower()
 return f"quotes/{now:%Y/%m/%Y%m%d%H%M%S}{ext}"

class InspirationalQuote(models.Model):
 class Meta:
 verbose_name = _("Inspirational Quote")
 verbose_name_plural = _("Inspirational Quotes")

 author = models.CharField(_("Author"), max_length=200)
 quote = models.TextField(_("Quote"))
 picture = models.ImageField(_("Picture"),
 upload_to=upload_to,
 blank=True,
 null=True)

 def __str__(self):
 return self.quote

Forms and Views Chapter 3

[112]

In addition, we created an upload_to() function, which sets the path of the uploaded
picture as something similar to quotes/2018/09/04150424140000.png. As you can see,
we use the date timestamp as the filename to ensure its uniqueness. We pass this function
to the picture image field.

Now we can set things up to upload new images to be used for the picture associated
with InspirationalQuote.

How to do it...
Execute these steps to complete the recipe:

Create the forms.py file and put a simple model form there:1.

quotes/forms.py
from django import forms

from .models import InspirationalQuote

class InspirationalQuoteForm(forms.ModelForm):
 class Meta:
 model = InspirationalQuote
 fields = ["author", "quote", "picture", "language"]

In the views.py file, put a view that handles the form. Don't forget to pass the2.
FILES dictionary-like object to the form. When the form is valid, trigger the save
method as follows:

quotes/views.py
from django.shortcuts import render, redirect

from .forms import InspirationalQuoteForm

def add_quote(request):
 form = InspirationalQuoteForm()
 if request.method == "POST":
 form = InspirationalQuoteForm(
 data=request.POST,
 files=request.FILES)
 if form.is_valid():
 form.save()
 return redirect("quotes-list")
 else:

Forms and Views Chapter 3

[113]

 return render(request, "quotes/add_quote.html", {
 "form": form
 })

Add a rule in urls.py for the add form:3.

quotes/urls.py
from django.urls import path

from .views import add_quote

urlpatterns = [
 path('add/', add_quote, name='quote_add'),
]

We also need to include the quotes app URLs in our project:4.

project/urls.py
from django.urls import include, path

urlpatterns = [
 # ...
 path('quotes/', include('quotes.urls')),
]

Create a template for the view in templates/quotes/add_quote.html. It is5.
very important to set the enctype attribute to multipart/form-data for the
HTML form, otherwise the file upload won't work:

{# templates/quotes/add_quote.html #}
{% load i18n %}

{% block content %}
 <form method="post" action="" enctype="multipart/form-data">
 {% csrf_token %}
 {{ form.as_p }}
 <button type="submit">{% trans "Save" %}</button>
 </form>
{% endblock %}

Forms and Views Chapter 3

[114]

How it works...
Django model forms are forms that are created from models. They provide all of the fields
from the model so you don't need to define them manually. In the preceding example, we
created a model form for the InspirationalQuote model. When we save the form, the
form knows how to save each field in the database, as well as to upload the files and save
them in the media directory. After save, the view returns the user to a listing of all quotes,
the view for which is not discussed here.

There's more
As a bonus, we will see an example of how to generate a thumbnail out of the uploaded
image. In many cases, it is sufficient to use a third-party solution such as sorl-thumbnail
to generate thumbnails from the template layer, based on the original image. Using this
technique, however, you could generate and store specific versions of the image for later
use, such as the list version, mobile version, and desktop computer version.

We will add three main methods to the InspirationalQuote model
(quotes/models.py). They are save(), create_thumbnail(), and
get_thumbnail_picture_url(). Some helper functions are used by these
to get_picture_paths(), get_square_crop_points() and
get_centering_points() when creating the thumbnail.

When the model is being saved, we will trigger the thumbnail creation. When we need to
show the thumbnail in a template, we can get its URL using {{
quote.get_thumbnail_picture_url }}. The method definitions are as follows:

quotes/models.py
import os
from PIL import Image

from django.conf import settings
from django.core.files.storage import default_storage as storage
from django.db import models
from django.utils.timezone import now as timezone_now
from django.utils.translation import ugettext_lazy as _

THUMBNAIL_SIZE = getattr(settings, "QUOTES_THUMBNAIL_SIZE", 50)
THUMBNAIL_EXT = getattr(settings, "QUOTES_THUMBNAIL_EXT", None)

def get_square_crop_points(image):

Forms and Views Chapter 3

[115]

 width, height = image.size
 target = width if width > height else height
 upper, lower = get_centering_points(height, target)
 left, right = get_centering_points(width, target)
 return left, upper, right, lower

def get_centering_points(size, target):
 delta = size - target
 start = int(delta) / 2
 end = start + target
 return start, end

...

class InspirationalQuote(models.Model):
 # ...

 def save(self, *args, **kwargs):
 super().save(*args, **kwargs)
 self.create_thumbnail()

 def create_thumbnail(self):
 if not self.picture:
 return False
 picture_path, thumbnail_path = self.get_picture_paths()
 if thumbnail_path and not storage.exists(thumbnail_path):
 try:
 picture_file = storage.open(picture_path, "r")
 image = Image.open(picture_file)
 image = image.crop(get_square_crop_points(image))
 image = image.resize((THUMBNAIL_SIZE,
 THUMBNAIL_SIZE),
 Image.ANTIALIAS)
 image.save(thumbnail_path)
 except (IOError, KeyError, UnicodeDecodeError):
 return False
 return True

 def get_thumbnail_picture_url(self):
 url = ""
 picture_path, thumbnail_path = self.get_picture_paths()

 if thumbnail_path:
 url = (storage.url(thumbnail_path)
 if storage.exists(thumbnail_path)
 else self.picture.url)

Forms and Views Chapter 3

[116]

 return url

 def get_picture_paths(self):
 picture_path = None
 thumb_path = None

 if self.picture:
 picture_path = self.picture.name
 filename_base, filename_ext = os.path.splitext(
 picture_path)
 if THUMBNAIL_EXT:
 filename_ext = THUMBNAIL_EXT
 thumb_path = f"{filename_base}_thumbnail{filename_ext}"

 return picture_path, thumb_path

 def __str__(self):
 return self.quote

In the preceding methods, we are using the file storage API instead of directly juggling the
filesystem, as we could then exchange the default storage with Amazon S3 buckets or other
storage services and the methods will still work.

How does the creation of the thumbnail work? If we had the original file saved as
quotes/2014/04/20140424140000.png, we are making sure that the
quotes/2014/04/20140424140000_thumbnail.png file doesn't exist and, in that case,
we are opening the original image, cropping it to a square from the center, resizing it to 50 x
50 pixels, and saving it to the storage. We can supply a QUOTES_THUMBNAIL_SIZE setting
to change the resizing behavior, and we can set QUOTES_THUMBNAIL_EXT to a specific
image file extension (such as ".jpg") to change the format used when saving the
thumbnail.

The get_thumbnail_picture_url() method checks whether the thumbnail version
exists in the storage and returns its URL. If the thumbnail version does not exist, the URL of
the original image is returned as a fallback.

In this example, we only dealt with changing image size, but a more sophisticated solution
might take in additional input to make changes to the center point, alter colors, or apply
other effects, and much more.

Forms and Views Chapter 3

[117]

See also
The Creating a form layout with custom templates recipe
The Creating a form layout with django-crispy-forms recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript
The Providing responsive images recipe in Chapter 4, Templates and JavaScript

Creating a form layout with custom
templates
Prior to Django 1.11, all form rendering was handled exclusively in Python code, but in that
version template-based form widget rendering was introduced. In this recipe, we will
examine how to use custom templates for form widgets, implement custom renderer
classes for both forms and widgets, and override a widget template at the project level.

Getting ready
To demonstrate the capabilities of the Django core form rendering API, let's create
a bulletin_board app and put it in INSTALLED_APPS in the settings. If you're using
Docker, as described in the Creating a Docker project structure recipe in Chapter 1, Getting
Started with Django 2.1, you will also need to add the new app to docker-compose.yml.

We will have a Bulletin model there with fields for bulletin_type, title,
description, contact_person, phone, email, and image, as follows:

bulletin_board/models.py
from django.db import models
from django.utils.translation import ugettextlazy as

from utils import CreationModificationDateMixin

TYPE_CHOICES = (
 ('searching', _("Searching")),
 ('offering', _("Offering")),
)

class Bulletin(CreationModificationDateMixin, models.Model):
 class Meta:

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40&action=edit
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40&action=edit
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=27&action=edit

Forms and Views Chapter 3

[118]

 verbose_name = _("Bulletin")
 verbose_name_plural = _("Bulletins")
 ordering = ("-created", "title",)

 bulletin_type = models.CharField(_("Type"),
 max_length=20,
 choices=TYPE_CHOICES)
 title = models.CharField(_("Title"),
 max_length=255)
 description = models.TextField(_("Description"),
 max_length=300)
 contact_person = models.CharField(_("Contact person"),
 max_length=255)
 phone = models.CharField(_("Phone"),
 max_length=50,
 blank=True)
 email = models.EmailField(_("Email"),
 max_length=254,
 blank=True)
 image = models.ImageField(_("Image"),
 max_length=255,
 upload_to="bulletin_board/",
 blank=True)

 def __str__(self):
 return self.title

Remember to make an initial migration for the new model and run that against your
database.

If you haven't done so yet, create a base.html template according to the example in
the Arranging the base.html template recipe in Chapter 4, Templates and JavaScript. Make sure
to include the Bootstrap 4 frontend framework CSS and JavaScript in the templates. To this,
we'll also want to add the CSS for the Ion Icons icon set, within the base_stylesheet
block, as follows:

{# templates/base.html #}
{% load static %}

{% block base_stylesheet %}
<link rel="stylesheet" type="text/css"
href="http://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css">
{# ... #}
{% endblock %}

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40&action=edit

Forms and Views Chapter 3

[119]

How to do it...
To complete the recipe, follow these steps:

Ensure that the template system will be able to find customized templates in our1.
app by adding django.forms to our INSTALLED_APPS, using the
DjangoTemplates backend for the TEMPLATES setting, and including the
APP_DIRS flag as True for that engine. Aside from adding django.forms, these
are the defaults when starting a new project:

settings.py or config/base.py
...
INSTALLED_APPS = [
 # ...
 'django.forms',
]
...
TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates
',
 'APP_DIRS': True,
 # ...
 }
]

Create BulletinForm in forms.py, as follows:2.

bulletin_board/forms.py
from django import forms
from django.forms.renderers import TemplatesSetting

from bulletin_board.models import Bulletin

class BulletinForm(forms.ModelForm):
 class Meta:
 model = Bulletin
 fields = ["bulletin_type", "title", "description",
 "contact_person", "phone", "email", "image"]
 widgets = {
 "bulletin_type": forms.RadioSelect,
 }

 default_renderer = TemplatesSetting()

 def __init__(self, *args, **kwargs):

Forms and Views Chapter 3

[120]

 super().__init__(*args, **kwargs)

 # delete empty choice for this field
 self.fields["bulletin_type"].choices = \
 self.fields["bulletin_type"].choices[1:]
 self.fields["bulletin_type"].widget.attrs.update({
 "class": "list-unstyled form-group",
 })

 self.fields["title"].widget.attrs.update({
 "class": "form-control",
 })

 self.fields["description"].widget.attrs.update({
 "class": "form-control",
 "rows": "3",
 })

 self.fields["image"].widget.template_name = \
 "bulletin_board/widgets/image.html"
 self.fields["image"].widget.attrs.update({
 "class": "input-block-level clearablefileinput",
 })

 self.fields["contact_person"].widget.attrs.update({
 "class": "form-control",
 })

 self.fields["phone"].widget.template_name = \
 "bulletin_board/widgets/phone.html"
 self.fields["phone"].widget.attrs.update({
 "class": "form-control",
 })

 self.fields["email"].widget.template_name = \
 "bulletin_board/widgets/email.html"
 self.fields["email"].widget.attrs.update({
 "class": "form-control",
 "placeholder": "contact@example.com",
 })

Forms and Views Chapter 3

[121]

Define the customized widget templates, as referenced, for the image field:3.

{# bulletin_board/templates/bulletin_board/widgets/image.html #}
{% load i18n %}
{% include "django/forms/widgets/file.html" %}
<small class="form-text text-muted">
 {% trans "Available formats are JPG, GIF, and PNG." %}
 {% trans "Minimal size is 800 x 800 px." %}
</small>

Define it for the phone field:

{# bulletin_board/templates/bulletin_board/widgets/phone.html #}
<div class="input-group">

 <i class="input-group-text ion-ios-telephone"></i>

 {% include "django/forms/widgets/input.html" %}
</div>

And do the same for the email field:

{# bulletin_board/templates/bulletin_board/widgets/email.html #}
<div class="input-group">

 <i class="input-group-text ion-email"></i>

 {% include "django/forms/widgets/input.html" %}
</div>

We'll add a basic listing view, and one for editing that uses our form, like so:4.

bulletin_board/views.py
from django.utils.translation import ugettext_lazy as _
from django.views.generic import ListView, FormView

from .models import Bulletin
from .forms import BulletinForm

class BulletinList(ListView):
 model = Bulletin

class BulletinEdit(FormView):
 template_name = "bulletin_board/bulletin_form.html"
 form_class = BulletinFormTemplated

Forms and Views Chapter 3

[122]

 def get_form(self, *args, **kwargs):
 form = super().get_form(*args, **kwargs)
 form.fieldsets = [
 {
 "id": "main-data",
 "legend": _("Main data"),
 "fields": [
 form["bulletin_type"],
 form["title"],
 form["description"],
]
 },
 {
 "id": "image-fieldset",
 "legend": _("Image upload"),
 "fields": [
 form["image"]
],
 },
 {
 "id": "contact-info",
 "legend": _("Contact"),
 "fields": [
 form["contact_person"],
 form["phone"],
 form["email"],
]
 }
]
 return form

Create the bulletin form to pull everything together:5.

{# bulletin_board/templates/bulletin_board/bulletin_form.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
<form method="POST" enctype="multipart/form-data"
 action="{{ form.action }}">
 {% csrf_token %}
 {{ form.non_field_errors }}

 {% for fieldset in form.fieldsets %}
 <fieldset{% if fieldset.id %} id="{{ fieldset.id }}"{% endif %}
 class="mb-3">
 {% if fieldset.legend %}
 <legend>{{ fieldset.legend }}</legend>

Forms and Views Chapter 3

[123]

 {% endif %}
 {% for field in fieldset.fields %}
 <div class="form-group{% if field.field.required %}
 required{% endif %}">
 <label for="{{ field.id_for_label }}">
 {% trans field.label %}
 </label>
 {{ field }}
 {{ field.errors }}
 </div>
 {% endfor %}
 </fieldset>
 {% endfor %}

 <div class="form-actions mb-5">
 <button type="submit" class="btn btn-primary">
 {% trans "Save" %}
 </button>
 </div>
</form>
{% endblock %}

Expose the listing and editing bulletin board views by adding URL rules:6.

bulletin_board/urls.py
from django.urls import path

from .views import (BulletinList, BulletinEdit)

edit_view = BulletinEdit.as_view(
 success_url=reverse_lazy('bulletin-list'))
urlpatterns = [
 path('', BulletinList.as_view(), name='bulletin-list'),
 path('new/', edit_view, name='bulletin-create'),
 path('<int:pk>/edit/', edit_view, name='bulletin-edit'),
]

The bulletin board URLs need to be added to our project:7.

myproject/urls.py
...
urlpatterns = [
 # ...
 path('bulletins/', include("bulletin_board.urls")),
]

Forms and Views Chapter 3

[124]

How it works...
Historically, form rendering has been done entirely via Python code but, starting with
Django 1.11, rendering has shifted to using templates. Not only does this result in a better
separation of concerns, but we can also provide override templates in our apps to alter the
default rendering for form widgets. As always, the form element itself is generated in a
template and rendered via a view.

In BulletinForm, we customize ModelForm for the Bulletin model so that it contains
only the fields we want. We also switch the widget for the bulletin_type field over from
the default Select widget to RadioSelect, so that all available options will be visible at
once.

On creation of the form, several augmentations are made to the fields. All of them are given
added attributes for Bootstrap 4 form CSS classes. For the bulletin_type field, we also
remove the initial empty option, since there's no point in displaying that when using the
radio button widget. Finally, we provide customized template names for the image, phone
and email fields, corresponding to the subsequent template files, which allow us to alter
the markup used with more flexibility. For the phone and email fields, icons from the Ion
Icon set are used as prefixes to add visual indicators of the expected input.

In this case, the customized templates are specific to the bulletin_board
app, but we could also customize a widget's markup more generally by
providing a project-wide override of the appropriate file (such as
email.html) under our project's templates/django/forms/widgets/
directory.

In the BulletinEdit view, we build up a custom fieldsets property for the form object.
This allows us to use looping in the subsequent bulletin_form.html template to create a
more structured final product with <fieldset> blocks corresponding to the arrangement
given in the view. The template provides not only fieldsets, but the wrapping <form>, a
submit <button>, and some additional Bootstrap 4 hooks. Finally, urls.py uses the same
view (and form) for both creation and update of bulletins, returning to the listing when a
bulletin is successfully saved.

Forms and Views Chapter 3

[125]

Here's what the end result might look like:

Forms and Views Chapter 3

[126]

See also
The Uploading images recipe
The Creating a form layout with django-crispy-forms recipe
The Generating PDF documents recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript

Creating a form layout with django-crispy-
forms
The django-crispy-forms Django app allows you to build, customize, and reuse forms
using one of the following CSS frameworks: Uni-Form, Bootstrap, or Foundation. The use
of django-crispy-forms is somewhat analogous to fieldsets in the Django contributed
administration; however, it is more advanced and customizable. You define form layout in
the Python code and need not worry about how each field is presented in HTML. However,
if you need to add specific HTML attributes or wrapping, you can easily do that too.
Moreover, all of the markup used by django-crispy-forms is located in templates that
can be overwritten for specific needs.

In this recipe, we will revisit the bulletin_board app, and see how to reproduce the
layout using django-crispy-forms with the Bootstrap 4 version of the popular frontend
framework for developing responsive, mobile-first web projects.

Getting ready
We will start with the bulletin_board app from the Creating a form layout with custom
templates recipe, specifically reusing the setup from models.py. Next, we'll execute the
following tasks one by one:

Make sure you have created a base.html template for your site. Learn more1.
about this in the Arranging the base.html template recipe in Chapter 4, Templates
and JavaScript.

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40&action=edit
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40

Forms and Views Chapter 3

[127]

Integrate the Bootstrap 4 frontend framework CSS and JS files2.
from http://getbootstrap.com/docs/4.1/ into the base.html template,
adding the appropriate CDN URLs in the base_stylesheet and base_js
blocks, respectively.

Install django-crispy-forms either in your virtual environment with pip or by3.
adding it to the requirements for your Docker project and rebuilding your
container. Learn more about these two approaches to development environments
in the Working with a virtual environment and Working with Docker recipes from
Chapter 1, Getting Started with Django 2.1, respectively.
Make sure that crispy_forms is added to INSTALLED_APPS and then set4.
bootstrap4 as the template pack to be used in this project:

 # settings.py or config/base.py
 INSTALLED_APPS = (
 # ...
 'crispy_forms',
 'bulletin_board',
)
 # ...
 CRISPY_TEMPLATE_PACK = 'bootstrap4'

How to do it...
Follow these steps:

Let's add a model form for the bulletin in the app. We will attach a form helper to1.
the form in the initialization method itself. The form helper will have the layout
property that will define the layout for the form, as follows:

bulletin_board/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _

from crispy_forms import helper, layout, bootstrap

from .models import Bulletin

class BulletinForm(forms.ModelForm):
 class Meta:
 model = Bulletin
 fields = ["bulletin_type", "title", "description",
 "contact_person", "phone", "email", "image"]

https://getbootstrap.com/docs/4.1/
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=27

Forms and Views Chapter 3

[128]

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.fields["bulletin_type"].widget = forms.RadioSelect()
 # delete empty choice for the type
 del self.fields["bulletin_type"].choices[0]

 title = layout.Field(
 "title",
 css_class="input-block-level")
 desciption = layout.Field(
 "description",
 css_class="input-block-level",
 rows="3")
 main_fieldset = layout.Fieldset(
 _("Main data"),
 "bulletin_type",
 title,
 desciption)

 image = layout.Field(
 "image",
 css_class="input-block-level")
 format_html_template = """
 {% load i18n %}
 <p class="help-block">
 {% trans "Available formats are JPG, GIF, and PNG." %}
 {% trans "Minimal size is 800 × 800 px." %}
 </p>
 """
 format_html = layout.HTML(format_html_template)
 image_fieldset = layout.Fieldset(
 _("Image"),
 image,
 format_html,
 title=_("Image upload"),
 css_id="image_fieldset")

 contact_person = layout.Field(
 "contact_person",
 css_class="input-block-level")
 phone_field = bootstrap.PrependedText(
 "phone",
 '<i class="ion-ios-telephone"></i>',
 css_class="input-block-level")
 email_field = bootstrap.PrependedText(
 "email",
 "@",

Forms and Views Chapter 3

[129]

 css_class="input-block-level",
 placeholder="contact@example.com")
 contact_info = layout.Div(
 phone_field,
 email_field,
 css_id="contact_info")
 contact_fieldset = layout.Fieldset(
 _("Contact"),
 contact_person,
 contact_info)

 submit_button = layout.Submit(
 "submit",
 _("Save"))
 actions = bootstrap.FormActions(submit_button)

 self.helper = helper.FormHelper()
 self.helper.form_action = "bulletin-change"
 self.helper.form_method = "POST"
 self.helper.layout = layout.Layout(
 main_fieldset,
 image_fieldset,
 contact_fieldset,
 actions)

To render the form in the template, we just need to load the2.
crispy_forms_tags template tag library and use the {% crispy %} template
tag, as shown in the following:

{# templates/bulletin_board/change_form.html #}
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block content %}
 {% crispy form %}
{% endblock %}

We'll add a basic listing view and one for editing that uses our form, like so:3.

bulletin_board/views.py
from django.utils.translation import ugettext_lazy as _
from django.views.generic import ListView, FormView

from .models import Bulletin
from .forms import BulletinForm

class BulletinList(ListView):

Forms and Views Chapter 3

[130]

 model = Bulletin

class BulletinEdit(FormView):
 template_name = "bulletin_board/change_form.html"
 form_class = BulletinForm

Expose the listing and editing bulletin board views by adding URL rules:4.

bulletin_board/urls.py
from django.urls import path

from .views import (BulletinList, BulletinEdit)

edit_view = BulletinEdit.as_view(
 success_url=reverse_lazy('bulletin-list'))

urlpatterns = [
 path('', BulletinList.as_view(), name='bulletin-list'),
 path('<int:pk>/edit/', edit_view, name='bulletin-edit'),
]

The bulletin board URLs need to be added to our project:5.

myproject/urls.py
...
urlpatterns = [
 # ...
 path('bulletins/', include("bulletin_board.urls")),
]

How it works...
The page with the bulletin form will look similar to the following:

Forms and Views Chapter 3

[131]

Forms and Views Chapter 3

[132]

As you can see, the fields are grouped by fieldsets. The first argument of the Fieldset
object defines the legend; the other positional arguments define the fields. You can also
pass named arguments to define the HTML attributes for the fieldset; for example, for the
second fieldset, we are passing title and css_id to set the title and id HTML
attributes.

Fields can also have additional attributes passed by named arguments; for example, for
the description field, we are passing css_class and rows to set the class and rows
HTML attributes.

Besides the normal fields, you can pass HTML snippets as this is done with the help block
for the image field. You can also have prepended text fields in the layout. For example, we
added a phone icon to the Phone field and an @ sign for the Email field. As you can see
from the example with the contact fields, we can easily wrap fields in the HTML <div>
elements using the Div objects. This is useful when specific JavaScript needs to be applied
to some form fields.

The action attribute for the HTML form is defined by the form_action property of the
form helper, which can either be a named URL from your URL configuration or an actual
URL string. If you use the empty string as an action, the form will be submitted to the same
view, where the form is included. The method attribute of the HTML form is defined by the
form_method property of the form helper. As you know, the HTML forms allow the GET
and POST methods. Finally, there is a Submit object in order to render the submit button,
which takes the name of the button as the first positional argument and the value of the
button as the second argument.

There's more...
For basic usage, the given example is more than necessary. However, if you need a specific
markup for the forms in your project, you can still overwrite and modify templates of the
django-crispy-forms app, as there is no markup hard coded in the Python files, rather
all of the generated markup is rendered through templates. Just copy the templates from
the django-crispy-forms app to your project's template directory and change them as
required.

See also
The Creating a form layout with custom templates recipe
The Filtering object lists recipe

Forms and Views Chapter 3

[133]

The Managing paginated lists recipe
The Composing class-based views recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript

Filtering object lists
In web development, besides views with forms, it is typical to have object-list views and
detail views. List views can simply list objects that are ordered, for example, alphabetically
or by creation date; however, that is not very user-friendly with huge amounts of data. For
the best accessibility and convenience, you should be able to filter the content by all
possible categories. In this recipe, we will see the pattern that is used to filter list views by
any number of categories.

What we'll be creating is a list view of movies that can be filtered by genre, director, actor,
or rating. It will look similar to the following with Bootstrap 3 applied to it:

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40&action=edit

Forms and Views Chapter 3

[134]

Getting ready
For the filtering example, we will use the Movie model with relations to genres, directors,
and actors to filter by. It will also be possible to filter by ratings, which is
PositiveIntegerField with choices. Let's create the movies app, put it in
INSTALLED_APPS in the settings, and define the mentioned models in the new app, as
follows:

movies/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

RATING_CHOICES = (
 (1, "★☆☆☆☆☆☆☆☆☆"),
 (2, "★★☆☆☆☆☆☆☆☆"),
 (3, "★★★☆☆☆☆☆☆☆"),
 (4, "★★★★☆☆☆☆☆☆"),
 (5, "★★★★★☆☆☆☆☆"),
 (6, "★★★★★★☆☆☆☆"),
 (7, "★★★★★★★☆☆☆"),
 (8, "★★★★★★★★☆☆"),
 (9, "★★★★★★★★★☆"),
 (10, "★★★★★★★★★★"),
)

class Genre(models.Model):
 title = models.CharField(_("Title"),
 max_length=100)

 def __str__(self):
 return self.title

class Director(models.Model):
 first_name = models.CharField(_("First name"),
 max_length=40)
 last_name = models.CharField(_("Last name"),
 max_length=40)

 def __str__(self):
 return f"{self.first_name} {self.last_name}"

class Actor(models.Model):
 first_name = models.CharField(_("First name"),

Forms and Views Chapter 3

[135]

 max_length=40)
 last_name = models.CharField(_("Last name"),
 max_length=40)

 def __str__(self):
 return f"{self.first_name} {self.last_name}"

class Movie(models.Model):
 class Meta:
 ordering = ["title", "-release_year"]
 verbose_name = _("Movie")
 verbose_name_plural = _("Movies")

 title = models.CharField(_("Title"),
 max_length=255)
 genres = models.ManyToManyField(Genre,
 blank=True)
 directors = models.ManyToManyField(Director,
 blank=True)
 actors = models.ManyToManyField(Actor,
 blank=True)
 rating = models.PositiveIntegerField(_("Rating"),
 choices=RATING_CHOICES)

 def __str__(self):
 return self.title

If you're working with Docker, make sure to update the volumes in docker-compose.yml
to map the movies app directory into the container, as well.

How to do it...
To complete the recipe, follow these steps:

We create MovieFilterForm with all of the possible categories to filter by:1.

movies/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _

from .models import Genre, Director, Actor, RATING_CHOICES

class MovieFilterForm(forms.Form):
 genre = forms.ModelChoiceField(
 label=_("Genre"),

Forms and Views Chapter 3

[136]

 required=False,
 queryset=Genre.objects.all())
 director = forms.ModelChoiceField(
 label=_("Director"),
 required=False,
 queryset=Director.objects.all())
 actor = forms.ModelChoiceField(
 label=_("Actor"),
 required=False,
 queryset=Actor.objects.all())
 rating = forms.ChoiceField(
 label=_("Rating"),
 required=False,
 choices=RATING_CHOICES)

We create a movie_list view that will use MovieFilterForm to validate the2.
request query parameters and perform the filtering for chosen categories. Note
the facets dictionary that is used here to list the categories and also the
currently selected choices:

movies/views.py
from django.conf import settings
from django.shortcuts import render

from .models import Genre, Director, Actor, Movie, RATING_CHOICES
from .forms import MovieFilterForm

def movie_list(request):
 qs = Movie.objects.order_by("title")
 form = MovieFilterForm(data=request.GET)

 facets = {
 "selected": {},
 "categories": {
 "genres": Genre.objects.all(),
 "directors": Director.objects.all(),
 "actors": Actor.objects.all(),
 "ratings": RATING_CHOICES,
 },
 }

 if form.is_valid():
 filters = (
 ("genre", "genres",),
 ("director", "directors",),
 ("actor", "actors",),
 ("rating", "rating",),

Forms and Views Chapter 3

[137]

)
 qs = filter_facets(facets, qs, form, filters)

 if settings.DEBUG:
 # Let's log the facets for review when debugging
 import logging
 logger = logging.getLogger(__name__)
 logger.info(facets)

 context = {
 "form": form,
 "facets": facets,
 "object_list": qs,
 }
 return render(request, "movies/movie_list.html", context)

def filter_facets(facets, qs, form, filters):
 for facet, key in filters:
 value = form.cleaned_data[facet]
 if value:
 selected_value = value
 if facet == "rating":
 rating = int(value)
 selected_value = (rating,
 dict(RATING_CHOICES)[rating])
 filter_args = {
 f"{key}__gte": rating,
 f"{key}__lt": rating + 1,
 }
 else:
 filter_args = {key: value}
 facets["selected"][facet] = selected_value
 qs = qs.filter(**filter_args).distinct()
 return qs

If you haven't done so already, create a base.html template. You can do that3.
according to the example provided in the Arranging the base.html template recipe
in Chapter 4, Templates and JavaScript.
For our movie list, we'll need a slight variation with a two-column layout, as4.
follows:

{# base_two_columns.html #}
{% extends "base.html" %}

{% block container %}
 <div class="container">
 <div class="row">

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40

Forms and Views Chapter 3

[138]

 <div id="sidebar" class="col-md-4">
 {% block sidebar %}{% endblock %}
 </div>
 <div id="content" class="col-md-8">
 {% block content %}{% endblock %}
 </div>
 </div>
 </div>
{% endblock %}

Each of the categories will follow a common pattern in the filters sidebar, so we5.
can extract some common parts as include templates. First, we have the filter
heading, corresponding to movies/includes/filter_heading.html, as in
the following:

{# movies/includes/filter_heading.html #}
{% load i18n %}
<div class="panel-heading">
 <h6 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
 href="#collapse-{{ title|slugify }}s">{% blocktrans %}
 Filter by {{ title }}{% endblocktrans %}
 </h6>
</div>

And then each filter will contain a link to reset filtering for that category,6.
represented by movies/includes/filter_all.html here. This uses the {%
modify_query %} template tag, described in the Creating a template tag to modify
request query parameters in Chapter 5, Custom Template Filters and Tags, to generate
URLs for the filters:

{# movies/includes/filter_all.html #}
{% load i18n utility_tags %}
<a class="list-group-item {% if not selected %}active{% endif %}"
 href="{% modify_query "page" param %}">
 {% trans "All" %}

We create the movies/movie_list.html template for the list view itself, which7.
will use the facets dictionary to list the categories and know which category is
currently selected:

{# movies/movie_list.html #}
{% extends "base_two_columns.html" %}
{% load utility_tags %}

{% block sidebar %}
 <div class="filters panel-group" id="accordion">

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=66

Forms and Views Chapter 3

[139]

 {% with title="Genre" selected=facets.selected.genre %}
 <div class="panel panel-default">
 {% include "movies/includes/filter_heading.html"
 with title=title %}
 <div id="collapse-{{ title|slugify }}"
 class="panel-collapse collapse in">
 <div class="panel-body"><div class="list-group">
 {% include "movies/includes/filter_all.html"
 with param="genre" %}
 {% for cat in facets.categories.genres %}
 <a class="list-group-item
 {% if selected == cat %}
 active{% endif %}"
 href="{% modify_query "page"
 genre=cat.pk %}">
 {{ cat }}
 {% endfor %}
 </div></div>
 </div>
 </div>
 {% endwith %}
 {% with title="Director"
 selected=facets.selected.director %}
 <div class="panel panel-default">
 {% include "movies/includes/filter_heading.html"
 with title=title %}
 <div id="collapse-{{ title|slugify }}"
 class="panel-collapse collapse in">
 <div class="panel-body"><div class="list-group">
 {% include "movies/includes/filter_all.html"
 with param="director" %}
 {% for cat in facets.categories.directors %}
 <a class="list-group-item
 {% if selected == cat %}
 active{% endif %}"
 href="{% modify_query "page"
 director=cat.pk %}">
 {{ cat }}
 {% endfor %}
 </div></div>
 </div>
 </div>
 {% endwith %}
 {% with title="Actor" selected=facets.selected.actor %}
 <div class="panel panel-default">
 {% include "movies/includes/filter_heading.html"
 with title=title %}
 <div id="collapse-{{ title|slugify }}"

Forms and Views Chapter 3

[140]

 class="panel-collapse collapse in">
 <div class="panel-body"><div class="list-group">
 {% include "movies/includes/filter_all.html"
 with param="actor" %}
 {% for cat in facets.categories.actors %}
 <a class="list-group-item
 {% if selected == cat %}
 active{% endif %}"
 href="{% modify_query "page"
 actor=cat.pk %}">
 {{ cat }}
 {% endfor %}
 </div></div>
 </div>
 </div>
 {% endwith %}
 {% with title="Rating" selected=facets.selected.rating %}
 <div class="panel panel-default">
 {% include "movies/includes/filter_heading.html"
 with title=title %}
 <div id="collapse-{{ title|slugify }}"
 class="panel-collapse collapse">
 <div class="panel-body"><div class="list-group">
 {% include "movies/includes/filter_all.html"
 with param="rating" %}
 {% for r_val, r_display
 in facets.categories.ratings %}
 <a class="list-group-item
 {% if selected.0 == r_val %}
 active{% endif %}"
 href="{% modify_query "page"
 rating=r_val %}">
 {{ r_display }}
 {% endfor %}
 </div></div>
 </div>
 </div>
 {% endwith %}
 </div>
{% endblock %}

{% block content %}
 <div class="movie_list">
 {% for movie in object_list %}
 <div class="movie alert alert-info">
 <p>{{ movie.title }}</p>
 </div>
 {% endfor %}

Forms and Views Chapter 3

[141]

 </div>
{% endblock %}

NOTE: Template tags in the previous snippet have been split across lines
for legibility but, in practice, template tags must be on a single line, and so
cannot be split in this manner.

The movie list needs to be added to the URLs for the movies app:8.

movies/urls.py
from django.urls import path

from .views import movie_list

urlpatterns = [
 path('', movie_list, name='movie-list'),
]

The movies app URLs need to be added to the project:9.

project/urls.py
from django.urls import include, path

urlpatterns = [
 # ...
 path('movies/', include('movies.urls'),
]

How it works...
We are using the facets dictionary that is passed to the template context to know which
filters we have and which filters are selected. To look deeper, the facets dictionary
consists of two sections: the categories dictionary and the selected dictionary. The
categories dictionary contains QuerySets or choices of all filterable categories. The
selected dictionary contains the currently selected values for each category.

In the view, we check whether the query parameters are valid in the form and then filter
the QuerySet of objects based on the selected categories. For ratings, there is custom logic
to filter movies that are between the selected rating and the one above, so anything greater
than or equal to 8, but less than 9. Additionally, we set the selected values to the facets
dictionary, which will be passed to the template.

Forms and Views Chapter 3

[142]

In the template, for each categorization from the facets dictionary, we list all of the
categories and mark the currently selected category as active. If nothing is selected for a
given category, we mark the default "All" link as the active one.

See also
The Managing paginated lists recipe
The Composing class-based views recipe
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript
The Creating a template tag to modify request query parameters recipe in Chapter 5,
Custom Template Filters and Tags
The Importing data from a local CSV file recipe in Chapter 10, Data Import and
Export

Managing paginated lists
If you have dynamically changing lists of objects or their count is greater than 30 or so, you
will likely need pagination in order to provide a good user experience. Instead of the full
QuerySet, pagination provides a specific number of items in the dataset that corresponds
to the appropriate size for one page. We also display links to allow users to access the other
pages making up the complete set of data. Django has classes to manage paginated data,
and we will see how to use them in this recipe.

Getting ready
Let's start with the forms and views of the movies app from the Filtering object lists recipe.

How to do it...
To add pagination to the list view of the movies, follow these steps:

Import the necessary pagination classes from Django into the views.py file. We1.
will add pagination management to the movie_list view just after filtering.
Also, we will slightly modify the context dictionary by assigning page to the
object_list key:

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=66
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=68

Forms and Views Chapter 3

[143]

movies/views.py
from django.conf import settings
from django.core.paginator import (EmptyPage, PageNotAnInteger,
 Paginator)
from django.shortcuts import render

from .models import Genre, Director, Actor, Movie, RATING_CHOICES
from .forms import MovieFilterForm

PAGE_SIZE = getattr(settings, "PAGE_SIZE", 15)

def movie_list(request):
 qs = Movie.objects.order_by("title")
 form = MovieFilterForm(data=request.GET)

 # ... filtering goes here...

 paginator = Paginator(qs, PAGE_SIZE)
 page_number = request.GET.get("page")
 try:
 page = paginator.page(page_number)
 except PageNotAnInteger:
 # If page is not an integer, show first page.
 page = paginator.page(1)
 except EmptyPage:
 # If page is out of range, show last existing page.
 page = paginator.page(paginator.num_pages)

 context = {
 "form": form,
 "facets": facets,
 "object_list": page,
 }
 return render(request, "movies/movie_list.html", context)

In the template, we will add pagination controls after the list of movies, as2.
follows:

{# templates/movies/movie_list.html #}
{# ... #}

{% block content %}
{# ... #}

{% if object_list.has_other_pages %}
<nav aria-label="Movie list pagination">

Forms and Views Chapter 3

[144]

<ul class="pagination">
 {% if object_list.has_previous %}
 <li class="page-item">
 <a class="page-link"
 href="{% modify_query
 page=object_list.previous_page_number %}">
 «
 {% else %}
 <li class="page-item disabled">

 «
 Previous
 {% endif %}

 {% for page_number in object_list.paginator.page_range %}
 {% if page_number == object_list.number %}
 <li class="page-item active">
 {{ page_number }}
 (current)

 {% else %}
 <li class="page-item">
 <a class="page-link"
 href="{% modify_query page=page_number %}">
 {{ page_number }}

 {% endif %}
 {% endfor %}

 {% if object_list.has_next %}
 <li class="page-item">
 <a class="page-link"
 href="{% modify_query
 page=object_list.next_page_number %}">
 »
 Next
 {% else %}
 <li class="disabled">»
 {% endif %}

</nav>
{% endif %}
{% endblock %}

NOTE: Template tags in the previous snippet have been split across lines
for legibility but, in practice, template tags must be on a single line, and so
cannot be split in this manner.

Forms and Views Chapter 3

[145]

How it works...
When you look at the results in the browser, you will see the pagination controls, similar to
the following, is the list of movies:

How do we achieve this? When QuerySet is filtered out, we will create a paginator object
passing QuerySet and the maximal amount of items that we want to show per page, which
is 15 here. Then, we will read the current page number from the query parameter, page.
The next step is to retrieve the current page object from paginator. If the page number is
not an integer, we get the first page. If the number exceeds the amount of possible pages,
the last page is retrieved. The page object has methods and attributes necessary for the
pagination widget shown in the preceding screenshot. Also, the page object acts like
QuerySet so that we can iterate through it and get the items from the fraction of the page.

The snippet marked in the template creates a pagination widget with the markup for the
Bootstrap 3 frontend framework. We show the pagination controls only if there are more
pages than the current one. We have the links to the previous and next pages, and the list of
all page numbers in the widget. The current page number is marked as active. To generate
URLs for the links, we use the {% modify_query %} template tag, which will be described
later in the Creating a template tag to modify request query parameters recipe in Chapter 5,
Custom Template Filters and Tags.

See also
The Filtering object lists recipe
The Composing class-based views recipe
The Creating a template tag to modify request query parameters recipe in Chapter 5,
Custom Template Filters and Tags

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=66
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=66

Forms and Views Chapter 3

[146]

Composing class-based views
Django views are callables that take requests and return responses. In addition to function-
based views, Django provides an alternative way to define views as classes. This approach
is useful when you want to create reusable modular views or combine views of the generic
mixins. In this recipe, we will convert the previously shown function-based movie_list
view into a class-based MovieListView view.

Getting ready
Create the models, form, and template similar to the previous recipes, Filtering object lists
and Managing paginated lists.

How to do it...
Follow these steps to execute the recipe:

Our class-based view, MovieListView, will inherit the Django View class and1.
override the get() method. If we needed to support it, we could also provide a
post() method, which is used to distinguish requests via HTTP POST from those
by GET:

movies/views.py
from django.shortcuts import render
from django.core.paginator import (Paginator, EmptyPage,
 PageNotAnInteger)
from django.views.generic import View

from .models import Genre, Director, Actor, Movie, RATING_CHOICES
from .forms import MovieFilterForm

class MovieListView(View):
 form_class = MovieFilterForm
 template_name = "movies/movie_list.html"
 paginate_by = 15

 def get(self, request, *args, **kwargs):
 form = self.form_class(data=request.GET)
 qs, facets = self.get_queryset_and_facets(form)
 page = self.get_page(request, qs)
 context = {

Forms and Views Chapter 3

[147]

 "form": form,
 "facets": facets,
 "object_list": page,
 }
 return render(request, self.template_name, context)

We will also split up the remaining majority of the logic into separate methods2.
get_queryset_and_facets(), filter_facets(), and get_page(), to make
the class more modular:

movies/views.py
...
class MovieListView(View):
 # ...
 def get_queryset_and_facets(self, form):
 qs = Movie.objects.order_by("title")

 facets = {
 "selected": {},
 "categories": {
 "genres": Genre.objects.all(),
 "directors": Director.objects.all(),
 "actors": Actor.objects.all(),
 "ratings": RATING_CHOICES,
 },
 }

 if form.is_valid():
 filters = (
 ("genre", "genres",),
 ("director", "directors",),
 ("actor", "actors",),
 ("rating", "rating",),
)
 qs = self.filter_facets(facets, qs, form, filters)

 return qs, facets

 @staticmethod
 def filter_facets(facets, qs, form, filters):
 for facet, key in filters:
 value = form.cleaned_data[facet]
 if value:
 selected_value = value
 if facet == "rating":
 rating = int(value)
 selected_value = (rating,
 dict(RATING_CHOICES)[rating])

Forms and Views Chapter 3

[148]

 facets["selected"][facet] = selected_value
 filter_args = {key: value}
 qs = qs.filter(**filter_args).distinct()
 return qs

 def get_page(self, request, qs):
 paginator = Paginator(qs, PAGE_SIZE)
 page_number = request.GET.get("page")
 try:
 page = paginator.page(page_number)
 except PageNotAnInteger:
 # If page is not an integer, show first page.
 page = paginator.page(1)
 except EmptyPage:
 # If page is out of range,
 # show last existing page.
 page = paginator.page(paginator.num_pages)
 return page

We will need to create a URL rule in the URL configuration using the class-based3.
view. You may have added a rule previously for the function-based
movie_list view, which would have been similar. To include a class-based
view in the URL rules, the as_view() method is used, as follows:

movies/urls.py
from django.urls import path

from .views import MovieListView

urlpatterns = [
 path('', MovieListView.as_view(), name="movie_list")
]

How it works...
The following are the things happening in the get() method:

First, we create the form object passing the GET dictionary-like object to it. The
GET object contains all of the query variables that are passed using the GET
method.
Then, the form object is passed to the get_queryset_and_facets() method,
which returns the associated values via a tuple containing two
elements: QuerySet and the facets dictionary respectively.

Forms and Views Chapter 3

[149]

The current request object and retrieved QuerySet are passed to the
get_page() method, which returns the current page object.
Lastly, we create a context dictionary and render the response.

There's more...
As you see, the get() and get_page() methods are largely generic so that we could create
a generic FilterableListView class with these methods in the utils app. Then, in any
app that requires a filterable list, we could create a class-based view that extends
FilterableListView to handle such scenarios. This extending class would define only
the form_class and template_name attributes, and the get_queryset_and_facets()
method. Such modularity and extensibility represent two of the key benefits of how class-
based views work.

See also
The Filtering object lists recipe
The Managing paginated lists recipe

Generating PDF documents
Django views allow you to create much more than just HTML pages. You can generate files
of any type. For example, in the Exposing settings in JavaScript recipe in Chapter 4, Templates
and JavaScript, our view provides its output as a JavaScript file rather than HTML. You can
also create PDF documents for invoices, tickets, booking confirmations, and so on. In this
recipe, we will show you how to generate résumés (curricula vitae or CVs) in PDF format
using data from the database. We will be using the Pisa xhtml2pdf library, which is very
practical as it allows you to use HTML templates to make PDF documents.

Getting ready
First of all, we need to install the xhtml2pdf Python library in your virtual environment:

(myproject_env)$ pip3 install xhtml2pdf~=0.2.3

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40

Forms and Views Chapter 3

[150]

Or add it to the requirements for your Docker project and rebuild the container:

requirements.txt or base.txt
...
xhtml2pdf~=0.2.3

Learn more in the Working with a virtual environment recipe and Working with Docker recipe
from Chapter 1, Getting Started with Django 2.1.

Then, let's create and add to INSTALLED_APPS a cv app containing a simple
CurriculumVitae model, which combines with an Experience model that is attached to
the CV through a foreign key. Remember to add the app volume in docker-
compose.yml if you're using a Docker environment. The CurriculumVitae model will
have fields for first name, last name, and email. The Experience model will have fields for
the start and end dates of a job, the corresponding company, the position at that company,
and the skills gained:

cv/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

class CurriculumVitae(models.Model):
 class Meta:
 verbose_name = _("Curriculum Vitae")
 verbose_name_plural = _("Curricula Vitarum")

 first_name = models.CharField(_("First name"), max_length=40)
 last_name = models.CharField(_("Last name"), max_length=40)
 email = models.EmailField(_("Email"))

 def __str__(self):
 return f"{self.first_name} {self.last_name}"

class Experience(models.Model):
 class Meta:
 ordering = ("-from_date",)
 verbose_name = _("Experience")
 verbose_name_plural = _("Experiences")

 cv = models.ForeignKey(CurriculumVitae,
 on_delete=models.CASCADE)
 from_date = models.DateField(_("From"))
 till_date = models.DateField(_("Till"), null=True, blank=True)
 company = models.CharField(_("Company"), max_length=100)
 position = models.CharField(_("Position"), max_length=100)

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=27

Forms and Views Chapter 3

[151]

 skills = models.TextField(_("Skills gained"), blank=True)

 def __str__(self):
 date_format = "%m/%Y"
 till = (f"{self.till_date:{date_format}}"
 if self.till_date
 else _("present"))
 start = f"{self.from_date:{date_format}}"
 return f"{start}-{till} {self.position} at {self.company}"

How to do it...
Execute the following steps to complete the recipe:

 We will create the template with which the document will be rendered, as1.
follows:

{# templates/cv/cv_pdf.html #}
{% load static %}
{% get_media_prefix as MEDIA_URL %}
<!doctype html>
<html>
<head>
 <meta charset="utf-8" />
 <title>{{ cv }}</title>
 <style>
 @page {
 size: a4 portrait;
 margin: 2.5cm 1.5cm;

 @frame footer_frame {
 -pdf-frame-content: footer_content;
 bottom: 0;
 margin-left: 0;
 margin-right: 0;
 height: 1cm;
 }
 }

 #footer_content {
 color: #666;
 font-size: 10pt;
 text-align: center;
 }

 h1 { text-align: center; }

Forms and Views Chapter 3

[152]

 th, td { vertical-align: top; }
 /* ... additional styles here ... */
 </style>
</head>
<body>
<div>
 <h1>Curriculum Vitae for {{ cv }}</h1>

 <table><tr>
 <td>
 <h2>Contact Information</h2>
 <p>Email: {{ cv.email }}</p>
 </td>
 <td align="right">
 <img src="{% static 'site/img/smiley.jpg' %}"
 width="100" height="100" />
 </td>
 </tr></table>

 <h2>Experience</h2>

 {% for experience in cv.experience_set.all %}
 <h3>{{ experience.position }} at {{ experience.company }}</h3>
 <p>
 {{ experience.from_date|date:"F Y" }} -
 {{ experience.till_date|date:"F Y"|default:"present" }}
 </p>
 <p>
 Skills gained

 {{ experience.skills|linebreaksbr }}
 </p>
 {% endfor %}
</div>
<pdf:nextpage>
<div>
 This is an empty page to make a paper plane.
</div>
<div id="footer_content">
 Document generated at {% now "Y-m-d" %} |
 Page <pdf:pagenumber> of <pdf:pagecount>
 | Smiley obtained from clipartextras.com
</div>
</body>
</html>

Forms and Views Chapter 3

[153]

Let's create the download_cv_pdf() view. This view renders the HTML2.
template and then passes the rendered string to the pisa PDF creator:

cv/views.py
import os

from django.conf import settings
from django.http import HttpResponse, HttpResponseServerError
from django.shortcuts import get_object_or_404, render_to_response
from django.template.loader import render_to_string
from django.utils.text import slugify
from xhtml2pdf import pisa

from .models import CurriculumVitae

def link_callback(uri, rel):
 # convert URIs to absolute system paths
 if uri.startswith(settings.MEDIA_URL):
 path = os.path.join(settings.MEDIA_ROOT,
 uri.replace(settings.MEDIA_URL, ""))
 elif uri.startswith(settings.STATIC_URL):
 path = os.path.join(settings.STATIC_ROOT,
 uri.replace(settings.STATIC_URL, ""))
 else:
 # handle absolute uri (ie: http://my.tld/a.png)
 return uri

 # make sure that file exists
 if not os.path.isfile(path):
 raise Exception(
 "Media URI must start with "
 f"'{settings.STATIC_URL}' or '{settings.MEDIA_URL}'")
 return path

def download_cv_pdf(request, cv_id):
 cv = get_object_or_404(CurriculumVitae, pk=cv_id)

 response = HttpResponse(content_type="application/pdf")
 response["Content-Disposition"] = \
 f"attachment; filename='{slugify(cv, True)}.pdf'"

 html = render_to_string("cv/cv_pdf.html", {"cv": cv})
 status = pisa.CreatePDF(html,
 dest=response,
 link_callback=link_callback)

Forms and Views Chapter 3

[154]

 if status.err:
 response = HttpResponseServerError(
 "The PDF could not be generated.")

 return response

Create a rule in urls.py for the view that will download a PDF document of a3.
résumé by the ID of the CurriculumVitae model instance, as follows:

cv/urls.py
from django.urls import path

from .views import download_cv_pdf

urlpatterns = [
 path('<int:pk>/pdf/', download_cv_pdf, name="cv-pdf"),
]

Add our cv URLs to the project:4.

 # project/urls.py
 from django.urls import include, path

 urlpatterns = [
 # ...
 path('cv/', include('cv.urls')),
]

How it works...
Either set up a model administration and enter details for a CV with some Experience
entries there, or do so via the Django shell. Then, if you access the document's URL, such as
at http://127.0.0.1:8000/cv/1/pdf/, you will be asked to download a PDF document
that looks something similar to the following:

Forms and Views Chapter 3

[155]

Forms and Views Chapter 3

[156]

How does the view work? First, we load a curriculum vitae by its ID (as given in the URL)
if it exists, or we raise a page-not-found error if it doesn't. Then, we create the response
object with the content type for a PDF document. We set the Content-Disposition
header to attachment with a filename based on the string representation for the CV. This
will force the browsers to open a download prompt asking the user to save the PDF
document and suggesting the specified name for the file.

For the filename here, we are using the built-in Django utility function to
slugify the CurriculumVitae instance (represented by the first and last
name). Learn more about slugs in the Using HTML5 data attributes recipe
from Chapter 4, Templates and JavaScript.

Next, we render the HTML template as a string, passing the curriculum vitae object into the
context. For the static smiley image, we load the static template tag library, and use the
corresponding {% static %} tag to output its URL. Similarly, we expose MEDIA_URL via
the {% get_media_prefix %} tag from the same library, though it isn't used in the
current template.

The resulting html string is passed to the xhtml2pdf PDF creation method. This method
also takes a link_callback function, which is responsible for ensuring the sources used
for images, backgrounds, or style sheets can be found by xhtml2pdf for inclusion in the
PDF. The result is a status object indicating whether or not an error occurred. If one has, we
respond with a simple error message and server error response, rather than the successful
PDF response.

Let's take a look at the HTML template that is used to create this document. The template
has some unusual markup tags and CSS rules. If we want to have some elements on each
page of the document, we can create what are called frames for that. In the preceding
example, the <div> tag with the footerContent ID is marked as a frame, which will be
repeated at the bottom of each page. In a similar way, we can have a header or background
image for each page. More complex layouts are also possible.

The following are the specific markup tags used in this document:

The <pdf:nextpage> tag sets a manual page break
The <pdf:pagenumber> tag returns the number of the current page
The <pdf:pagecount> tag returns the total number of pages

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40

Forms and Views Chapter 3

[157]

The current version 0.2.3 of the Pisa xhtml2pdf library doesn't fully support all HTML tags
and CSS rules. http:/ / xhtml2pdf. readthedocs. io/ en/latest/ reference. html provides a
listing of some things that are known to be supported, but there are no publicly accessible
benchmarks to see what exactly is supported and at what level. Therefore, you would need
to experiment in order to match a PDF document to design requirements. However, this
library is still mighty enough for customized layouts, which can be created primarily with
only knowledge of HTML and CSS.

See also
The Managing paginated lists recipe
The Downloading authorized files recipe

Implementing a multilingual search with
Haystack and Whoosh
One of the main functionalities of content-driven websites is a full-text search. Haystack is a
modular search API that supports the Solr, Elasticsearch, Whoosh, and Xapian search
engines. For each model in your project that has to be findable in the search, you need to
define an index that will read out the textual information from the models and place it into
the backend. In this recipe, you will learn how to set up a search with Haystack and the
Python-based Whoosh search engine for a multilingual website.

Getting ready
In the beginning, let's create a couple of apps with models that will be indexed in the
search. Let's create an ideas app containing the Category and Idea models, as follows:

ideas/models.py
from django.urls import reverse, NoReverseMatch
from django.db import models
from django.utils.translation import ugettext_lazy as _

from utils.models import UrlMixin
from utils.fields import MultilingualCharField, MultilingualTextField

http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html
http://xhtml2pdf.readthedocs.io/en/latest/reference.html

Forms and Views Chapter 3

[158]

class Category(models.Model):
 class Meta:
 verbose_name = _("Idea Category")
 verbose_name_plural = _("Idea Categories")

 title = MultilingualCharField(_("Title"), max_length=200)

 def __str__(self):
 return self.title

class Idea(UrlMixin):
 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 title = MultilingualCharField(_("Title"), max_length=200)
 subtitle = MultilingualCharField(_("Subtitle"),
 max_length=200,
 blank=True)
 description = MultilingualTextField(_("Description"),
 blank=True)
 is_original = models.BooleanField(_("Original"))
 categories = models.ManyToManyField(Category,
 verbose_name=_("Categories"),
 blank=True,
 related_name="ideas")

 def __str__(self):
 return self.title

 def get_url_path(self):
 try:
 return reverse("idea_detail", kwargs={"id": self.pk})
 except NoReverseMatch:
 return ""

The Idea and Category models have multilingual fields, as described in the Handling
multilingual fields recipe in Chapter 2, Database Structure and Modeling, which means that
there is supposed to be a translation of the content for each language configured in
settings.LANGUAGES.

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31

Forms and Views Chapter 3

[159]

Another app we can enable full-text search on is the quotes app from the Uploading images
recipe. This has an InspirationalQuote model, but here each quote is stored in a simple
TextField, so it can only be in one language and doesn't necessarily have a translation:

quotes/models.py
import os
from PIL import Image

from django.conf import settings
from django.core.files.storage import default_storage as storage
from django.db import models
from django.urls import reverse, NoReverseMatch
from django.utils.timezone import now as timezone_now
from django.utils.translation import ugettext_lazy as _

...

def upload_to(instance, filename):
 now = timezone_now()
 base, ext = os.path.splitext(filename)
 return f"quotes/{now:%Y/%m/%Y%m%d%H%M%S}{ext.lower()}"

class InspirationalQuote(models.Model):
 class Meta:
 verbose_name = _("Inspirational Quote")
 verbose_name_plural = _("Inspirational Quotes")

 author = models.CharField(_("Author"), max_length=200)
 quote = models.TextField(_("Quote"))
 picture = models.ImageField(_("Picture"),
 upload_to=upload_to,
 blank=True,
 null=True)
 language = models.CharField(_("Language"),
 max_length=5,
 blank=True,
 choices=settings.LANGUAGES)

 # ...

 def get_url_path(self):
 try:
 return reverse("quote_detail", kwargs={"id": self.pk})
 except NoReverseMatch:
 return ""

 def title(self):

Forms and Views Chapter 3

[160]

 return self.quote

 def __str__(self):
 return self.quote

Put these two apps in INSTALLED_APPS in the settings, update your volumes in docker-
compose.yml if using Docker and restart the container, create and apply database
migrations, and create the model administration for these models to add some data. Also,
create list and detail views for these models and plug them in the URL rules.

If you are having any difficulty with any of these tasks, familiarize
yourself with the concepts in the official Django tutorial once again:
https://docs.djangoproject.com/en/2.1/intro/tutorial01/. For
updating Docker, refer back to the Creating a Docker project structure recipe
from Chapter 1, Getting Started with Django 2.1.

Make sure you have installed django-haystack, whoosh, and django-crispy-forms in
your virtual environment:

(myproject_env)$ pip3 install django-crispy-forms~=1.7.0
(myproject_env)$ pip3 install django-haystack~=2.8.0
(myproject_env)$ pip3 install whoosh~=2.7.0

Or, if using Docker, just update your requirements and rebuild:

requirements.txt or requirements/base.txt
...
django-crispy-forms~=1.7.0
django-haystack~=2.8.0
whoosh~=2.7.0

How to do it...
Let's set up a multilingual search with Haystack and Whoosh by executing the following
steps:

Create a search app that will contain MultilingualWhooshEngine and search1.
indexes for our ideas and quotes. The search engine will live in the
multilingual_whoosh_backend.py file:

search/multilingual_whoosh_backend.py
from django.conf import settings
from django.utils import translation
from haystack.backends.whoosh_backend import (WhooshSearchBackend,
 WhooshSearchQuery,

https://docs.djangoproject.com/en/2.1/intro/tutorial01/
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=27

Forms and Views Chapter 3

[161]

 WhooshEngine)
from haystack import connections
from haystack.constants import DEFAULT_ALIAS

class MultilingualWhooshSearchBackend(WhooshSearchBackend):
 def update(self, index, iterable,
 commit=True,
 language_specific=False):
 if not language_specific \
 and self.connection_alias == "default":
 current_language = (translation.get_language()
 or settings.LANGUAGE_CODE)[:2]
 for lang_code, lang_name in settings.LANGUAGES:
 using = "default_%s" % lang_code
 translation.activate(lang_code)
 backend = connections[using].get_backend()
 backend.update(index, iterable, commit,
 language_specific=True)
 translation.activate(current_language)
 elif language_specific:
 super().update(index, iterable, commit)

class MultilingualWhooshSearchQuery(WhooshSearchQuery):
 def __init__(self, using=DEFAULT_ALIAS):
 lang_code = translation.get_language()[:2]
 using = "default_%s" % lang_code
 super().__init__(using)

class MultilingualWhooshEngine(WhooshEngine):
 backend = MultilingualWhooshSearchBackend
 query = MultilingualWhooshSearchQuery

Forms and Views Chapter 3

[162]

Let's create the search indexes, as follows:2.

search/search_indexes.py
from django.conf import settings
from haystack import indexes

from ideas.models import Idea
from quotes.models import InspirationalQuote

class IdeaIndex(indexes.SearchIndex,
 indexes.Indexable):
 text = indexes.CharField(document=True)

 def get_model(self):
 return Idea

 def index_queryset(self, using=None):
 """
 Used when the entire index for model is updated.
 """
 return self.get_model().objects.all()

 def prepare_text(self, idea):
 """
 Called for each language / backend
 """
 basics = [
 idea.title,
 idea.subtitle,
 idea.description,
]
 categories = [category.title
 for category in idea.categories.all()]
 return "\n".join(basics + categories)

class InspirationalQuoteIndex(indexes.SearchIndex,
 indexes.Indexable):
 text = indexes.CharField(document=True)

 def get_model(self):
 return InspirationalQuote

 def index_queryset(self, using=None):
 """
 Used when the entire index for model is updated.
 """

Forms and Views Chapter 3

[163]

 if using and using != "default":
 lang_code = using.replace("default_", "")
 else:
 lang_code = settings.LANGUAGE_CODE[:2]
 return self.get_model().objects.filter(language=lang_code)

 def prepare_text(self, quote):
 """
 Called for each language / backend
 """
 return "\n".join([
 quote.author,
 quote.quote,
])

Configure the settings to use MultilingualWhooshEngine:3.

settings.py or config/base.py
INSTALLED_APPS = (
 # ...
 'haystack',
 # local apps
 'ideas',
 'quotes',
 'search',
 'utils',
)
...
LANGUAGE_CODE = 'en'
LANGUAGES = (
 ("en", "English"),
 ("de", "Deutsch"),
 ("fr", "Français"),
 ("lt", "Lietuvių kalba"),
)
...
HAYSTACK_CONNECTIONS = {
 'default_en': {
 'ENGINE': 'search.multilingual_whoosh_backend.'
 'MultilingualWhooshEngine',
 'PATH': os.path.join(BASE_DIR, 'tmp/whoosh_index_en'),
 },
 'default_de': {
 'ENGINE': 'search.multilingual_whoosh_backend.'
 'MultilingualWhooshEngine',
 'PATH': os.path.join(BASE_DIR, 'tmp/whoosh_index_de'),
 },
 'default_fr': {

Forms and Views Chapter 3

[164]

 'ENGINE': 'search.multilingual_whoosh_backend.'
 'MultilingualWhooshEngine',
 'PATH': os.path.join(BASE_DIR, 'tmp/whoosh_index_fr'),
 },
 'default_lt': {
 'ENGINE': 'search.multilingual_whoosh_backend.'
 'MultilingualWhooshEngine',
 'PATH': os.path.join(BASE_DIR, 'tmp/whoosh_index_lt'),
 },
}
HAYSTACK_CONNECTIONS['default'] = \
 HAYSTACK_CONNECTIONS[f'default_{LANGUAGE_CODE}']

We will add a URL rule:4.

project/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import include, path

urlpatterns = [
 # ...
]

urlpatterns += i18n_patterns(
 path('search/', include('haystack.urls')),
)

We will need a template for the search form and search results, as given here:5.

{# templates/search/search.html #}
{% extends "base.html" %}
{% load i18n utility_tags %}

{% block content %}
 <h2>{% trans "Search" %}</h2>
 <form method="get" action="{{ request.path }}">
 <div class="well clearfix">
 {{ form.as_p }}
 <p class="pull-right">
 <input type="submit" value="Search"
 class="btn btn-primary">
 </p>
 </div>
 </form>

 {% if query %}
 <h3>{% trans "Results" %}</h3>

Forms and Views Chapter 3

[165]

 {% for result in page.object_list %}
 <p>

 {{ result.object.title }}

 </p>
 {% empty %}
 <p>{% trans "No results found." %}</p>
 {% endfor %}

 {% if page.has_previous or page.has_next %}
 <nav>
 <ul class="pager">
 <li class="previous">
 {% if page.has_previous %}
 <a href="{% modify_query
 page=page.previous_page_number %}">
 {% endif %}
 «
 {% if page.has_previous %}{% endif %}

 {% for num in page.paginator.page_range %}
 <li{% if num = page.number %}
 class="selected"{% endif %}>

 {{ num }}

 {% endfor %}
 <li class="next">
 {% if page.has_next %}
 <a href="{% modify_query
 page=page.next_page_number %}">
 {% endif %}
 »
 {% if page.has_next %}{% endif %}

 </nav>
 {% endif %}
 {% endif %}
{% endblock %}

Forms and Views Chapter 3

[166]

NOTE: Template tags in the preceding snippet have been split across lines
for legibility but, in practice, template tags must be on a single line, and so
cannot be split in this manner.

Call the rebuild_index management command in order to index the database6.
data and prepare the full-text search to be used:

(myproject_env)$ python manage.py rebuild_index --noinput

How it works...
MultilingualWhooshEngine specifies two custom properties:

backend points to MultilingualWhooshSearchBackend, which ensures that,
for each language, the items will be indexed for each language given in
the LANGUAGES setting, and put under the associated Haystack index location
defined in HAYSTACK_CONNECTIONS.
query references the MultilingualWhooshSearchQuery, whose responsibility
is to ensure that, when searching for keywords, the Haystack connection specific
to the current language will be used.

Each index has a field text field, where full-text from a specific language of a model will
be stored. The model for the index is determined by the get_model() method, the
index_queryset() method defines what QuerySet to index, and the content to search
within is collected as a newline-separated string in the prepare_text() method.

For the template, we have incorporated a few elements of Bootstrap 3 using the out-of-the-
box rendering capabilities for forms. This might be enhanced using an approach such as
explained in either the Creating a form layout with custom templates recipe or the
subsequent Creating a form layout with django-crispy-forms recipe from earlier in this
chapter. The final search form in this case will look similar to the following:

Forms and Views Chapter 3

[167]

The easiest way to update the search index regularly is to call the rebuild_index
management command, perhaps by a cron job every night. To learn about it, check the
Setting up cron jobs for regular tasks recipe in Chapter 11, Testing and Deployment.

See also
The Creating a form layout with custom templates recipe
The Creating a form layout with django-crispy-forms recipe
The Managing paginated lists recipe
The Composing class-based views recipe
The Setting up cron jobs for regular tasks recipe in Chapter 11, Testing and
Deployment

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=69
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=69

4
Templates and JavaScript

In this chapter, we will cover the following topics:

Exposing settings in JavaScript
Arranging the base.html template
Using HTML5 data attributes
Opening object details in a modal dialog
Implementing a continuous scroll
Implementing the Like widget
Uploading images via Ajax

Introduction
We are living in the Web 2.0 world, where social web applications and smart websites
communicate between servers and clients dynamically using Ajax, refreshing whole pages
only when the context changes. In this chapter, you will learn the best practices to deal with
JavaScript in your templates to create a rich user experience. For responsive layouts, we
will use the Bootstrap 3 frontend framework. For productive scripting, we will use the
jQuery JavaScript framework.

Templates and JavaScript Chapter 4

[169]

Exposing settings in JavaScript
Each Django project has its configuration set in the settings.py settings file, or
in config/base.py as described in the recipe Configuring settings for development, testing,
staging, and production environments in Chapter 1, Getting Started with Django 2.0. Some of
these configuration values may well be useful for functionality in the browser, and so they
will also need to be set in JavaScript. As we want a single location to define our project
settings and we don't want to repeat the process when setting the configuration for the
JavaScript values, it is good practice to include a dynamically generated configuration file
in the base template. In this recipe, we will see how to do that.

Getting ready
Make sure that you have the request and i18n context processors included in the
TEMPLATES['OPTIONS']['context_processors'] setting, as follows:

settings.py or config/base.py
TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 # ...
 'OPTIONS': {
 'context_processors': [
 # ...
 'django.template.context_processors.request',
 'django.template.context_processors.i18n',
],
 },
 },
]

Also, create the utils app, if you haven't done so already, and place it under
INSTALLED_APPS in the settings:

settings.py or config/base.py
INSTALLED_APPS = [
 # ...
 'utils',
)

Templates and JavaScript Chapter 4

[170]

How to do it...
Follow these steps to create and include the JavaScript settings:

In the views.py of your utils app, create the render_js() view that returns a1.
response of the JavaScript content type, as shown in the following code:

utils/views.py
from datetime import datetime, timedelta, timezone
from email.utils import format_datetime

from django.shortcuts import render
from django.views.decorators.cache import cache_control

@cache_control(public=True)
def render_js(request, template_name, cache=True, *args, **kwargs):
 response = render(request, template_name, *args, **kwargs)
 response["Content-Type"] = \
 "application/javascript; charset=UTF-8"
 if cache:
 now = datetime.now(timezone.utc)
 response["Last-Modified"] = format_datetime(now,
 usegmt=True)

 # cache in the browser for 1 month
 expires = now + timedelta(days=31)
 response["Expires"] = format_datetime(expires,
 usegmt=True)
 else:
 response["Pragma"] = "No-Cache"
 return response

Create a settings.js template that returns JavaScript under the2.
global project_settings variable, as follows:

templates/settings.js
{% load static %}
{% get_media_prefix as MEDIA_URL %}
{% get_static_prefix as STATIC_URL %}
window.project_settings = {
 MEDIA_URL: '{{ MEDIA_URL|escapejs }}',
 STATIC_URL: '{{ STATIC_URL|escapejs }}',
 lang: '{{ LANGUAGE_CODE|escapejs }}',
 languages: { {% for lang_code, lang_name in LANGUAGES %}
 '{{ lang_code|escapejs }}': '{{ lang_name|escapejs }}'{% if
not forloop.last %},{% endif %}

Templates and JavaScript Chapter 4

[171]

 {% endfor %} }
};

Create a URL rule to call a view that renders JavaScript settings, as follows:3.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.urls import path

urlpatterns = [
 # ...
]

urlpatterns += i18n_patterns(
 path("js-settings/", "utils.views.render_js",
 {"template_name": "settings.js"},
 name="js_settings"),
)

Finally, if you haven't done so yet, create a base template as described in the4.
Arranging the base.html template recipe. Include the rendered JavaScript settings
file in the base_js block in that template, as shown in the following code:

{# templates/base.html #}
{% block base_js %}
 {# ... #}
 <script src="{% url "js_settings" %}"></script>
{% endblock %}

How it works...
The Django template system is very flexible; you are not limited to using templates only for
HTML. In this example, we dynamically create a JavaScript file containing certain values
from the settings. You can access the resulting file in your development web server via the
browser at http://localhost:8000/en/js-settings/ and its content will be
something similar to the following:

window.project_settings = {
 MEDIA_URL: '/media/',
 STATIC_URL: '/static/20140424140000/',
 lang: 'en',
 languages: {
 'en': 'English',
 'de': 'Deutsch',
 'fr': 'Français',
 'lt': 'Lietuvi kalba'

Templates and JavaScript Chapter 4

[172]

 }
};

By incorporating the @cache_control decorator and the combination of Last-Modified
and Expires headers, the view will be cacheable in both the server and the browser.

If you want to pass more variables to the JavaScript settings, you can either create a custom
view and pass all the values to the context, or create a custom context processor and pass
the values there. In the latter case, the variables will become accessible in all templates in
your project, rather than only those rendered with the one specific view.

For example, let's assume you find a need to vary JavaScript behavior based on whether
you are in the mobile, tablet, or desktop views, but those are determined by media queries
in the CSS. Of course, it is possible to use window.matchMedia() to determine what media
query our current viewport fits, but you would want to avoid duplicating the viewport
sizes across both JavaScript and CSS. If you use LESS or SASS, and compile the CSS via
Python, there's an easy solution using the previous method. Given variables for the
MOBILE_VIEWPORT_MAX and TABLET_VIEWPORT_MAX integer values, these could be passed
into the compilation system to use as variables in the LESS or SASS files, and they could
also be exposed to the JavaScript to be used in the code, as shown in the following:

window.matchMedia("max-width:"+project_settings.MOBILE_VIEWPORT_MAX+"px")

For more information on window.matchMedia() , see the MDN
documentation of the method at https:/ /developer. mozilla. org/ en-
US/docs/ Web/ API/ Window/ matchMedia.

See also
The Arranging the base.html template recipe
The Using HTML5 data attributes recipe

Arranging the base.html template
When you start working on templates, one of the first actions is to create the
base.html boilerplate, which will be extended by most of the page templates in your
project. In this recipe, we will demonstrate how to create such a template for multilingual
HTML5 websites, with responsiveness in mind.

https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia
https://developer.mozilla.org/en-US/docs/Web/API/Window/matchMedia

Templates and JavaScript Chapter 4

[173]

Responsive websites are those that provide the same base content to all
devices, styled appropriately to the viewport, whether the visitor uses
desktop browsers, tablets, or phones. This differs from adaptive websites,
where the server attempts to determine the device type based on the user
agent, then provides entirely different content, markup, and even
functionality depending on how that user agent is categorized.

Getting ready
Create the templates directory in your project and set TEMPLATE_DIRS in the settings to
include it, as shown here:

project/settings.py
TEMPLATES = [{
 # ...
 'DIRS': [
 # ...
 os.path.join(BASE_DIR, "templates"),
],
}]

How to do it...
Perform the following steps:

In the root directory of your templates, create a base.html file with the1.
following content:

{# templates/base.html #}
<!doctype html>
{% load i18n static %}
<html lang="{{ LANGUAGE_CODE }}">
<head>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <title>
 {% block title %}{% endblock %}
 {% trans "My Website" %}
 </title>
 <link rel="icon" type="image/x-icon"
 href="{% static 'site/img/favicon.ico' %}">

Templates and JavaScript Chapter 4

[174]

 {% block meta_tags %}{% endblock %}

 {% block base_stylesheet %}
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootst
rap.min.css"
 integrity="sha384-
MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
 <link rel="stylesheet" type="text/css" media="screen"
 href="{% static 'site/css/style.css' %}">
 {% endblock %}
 {% block stylesheet %}{% endblock %}

 {% block extrahead %}{% endblock %}
</head>
<body class="{% block bodyclass %}{% endblock %}">
{% block page %}
 <section class="wrapper">
 <header class="clearfix container">
 <h1>{% trans "My Website" %}</h1>
 {% block header_navigation %}
 {% include "utils/header_navigation.html" %}
 {% endblock %}
 {% block language_chooser %}
 {% include "utils/language_chooser.html" %}
 {% endblock %}
 </header>
 {% block container %}
 <div id="content" class="clearfix container">
 {% block content %}{% endblock %}
 </div>
 {% endblock %}
 <footer class="clearfix container">
 {% block footer_navigation %}
 {% include "utils/footer_navigation.html" %}
 {% endblock %}
 </footer>
 </section>
{% endblock %}
{% block extrabody %}{% endblock %}

{% block base_js %}
 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
 <script

Templates and JavaScript Chapter 4

[175]

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/po
pper.min.js"
 integrity="sha384-
ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
 <script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstra
p.min.js"
 integrity="sha384-
ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
 <script src="{% url "js_settings" %}"></script>
{% endblock %}
{% block js %}{% endblock %}
</body>
</html>

In the same directory, create another file named base_simple.html for specific2.
cases, as follows:

{# templates/base_simple.html #}
{% extends "base.html" %}

{% block page %}
<section class="wrapper">
 <div id="content" class="clearfix">
 {% block content %}{% endblock %}
 </div>
</section>
{% endblock %}

For the purposes of this recipe, create empty files under templates/utils for3.
the header_navigation.html, language_chooser.html,
and footer_navigation.html files.

Templates and JavaScript Chapter 4

[176]

How it works...
The base template contains the <head> and <body> sections of the HTML document, with
all the details that are reused on each page of the website. Depending on the web design
requirements, you can have additional base templates for different layouts. For example,
we added the base_simple.html file, which has the same HTML <head> section and a
very minimalistic <body> section, and it can be used for the login screen, password reset, or
other simple pages. You can have separate base templates for other layouts as well, such as
single-column, two-column, and three-column layouts, where each of them extends
base.html and overwrites the blocks as needed.

Let's look into the details of the base.html template that we defined earlier.

Here are the details for the <head> section:

We define UTF-8 as the default encoding to support multilingual content.
Then, we have the viewport definition that will scale the website in the browser
to use the full width. This is necessary for small-screen devices that will get
specific screen layouts created with the Bootstrap frontend framework.
Of course, there's a customizable website title, and whatever favicon you use will
be shown in the browser's tab.
We have extensible blocks for meta tags, style sheets, and whatever else might be
necessary for the <head> section.
We load the Bootstrap CSS, as we want to have responsive layouts, and this will
also normalize basic styling for all elements for consistency across browsers.

Here are the details for the <body> section:

We have the header with an overwritable navigation and a language chooser.
We also have the main container, and within it a content block placeholder,
which are to be filled by extending the templates.
Then there is the footer, which contains the footer navigation.
Below the footer is an empty block placeholder for additional markup, should
that be needed.
Extensible JavaScript blocks are included at the end of the <body> following best
practices for page-load performance, much like those for the style sheets
included in the <head>.

Templates and JavaScript Chapter 4

[177]

Then, we load the JavaScript jQuery library that efficiently and flexibly allows us
to create rich user experiences.
We load the Bootstrap JavaScript and its dependency Popper script in the
template here, as the companion to the Bootstrap CSS loaded in the <head>.
We also load JavaScript settings that are rendered from a Django view, as was
seen in the preceding recipe.

The base template that we created is, by no means, a static unchangeable template. You can
modify the markup structure, or add to it the elements you need—for example, Google
Analytics code, common JavaScript files, the Apple touch icon for iPhone bookmarks, Open
Graph meta tags, Twitter Card tags, schema.org attributes, and so on. You may also want to
define other blocks, depending on the requirements of your project.

There's more...
We leave it as an exercise for you to implement header_navigation.html,
language_chooser.html, and footer_navigation.html templates in the utils/
directory, if desired. These blocks can also be populated as described in Chapter 8, Django
CMS.

See also
The Exposing settings in JavaScript recipe
The Creating templates for Django CMS recipe in Chapter 8, Django CMS

Using HTML5 data attributes
When you have dynamic data related to HTML Document Object Model (DOM) elements,
often you will need to pass the values from Django to JavaScript. In this recipe, we will see
a way to attach data efficiently from Django to custom HTML5 data attributes and then
describe how to read the data from JavaScript with two practical examples:

The first example will be a Google Map with a marker at a specified geographical
position
Then, we will enhance the marker to display the address in an info window
when clicked

Templates and JavaScript Chapter 4

[178]

Getting ready
To get started, follow these steps:

Create a location app with a Location model and an associated1.
administration, as described in the Inserting a map into a change form recipe
in Chapter 6, Model Administration. It will include character fields for the title,
street, street2, city, country, and postal_code. There also should be
floating-point number fields for the latitude and longitude, and
the description text field.
Augment the Location model to add a slug field for URLs, as shown here:2.

location/models.py
class Location(models.Model):
 # ...
 _slug_definition = _(
 "The term slug comes from newspaper editing and it means "
 "a short string without any special characters; just "
 "letters, numbers, underscores, and hyphens. Slugs are "
 "generally used to create unique URLs.")
 slug = models.SlugField(_("slug"),
 help_text=_slug_definition)

Also, we will want a method with which simply to retrieve a formatted address,3.
for use in our templates. Add this method to the model as well:

location/models.py
class Location(models.Model):
 # ...

 @property
 def address(self):
 address = [self.street]
 if self.street2:
 address.append(self.street2)
 address += [self.city, self.country, self.postal_code]
 return ", ".join(address)

For this recipe, we will replace map_html in the administration with an empty4.
string. We also need to add the slug field to the admin. The changes will look
similar to the following:

location/admin.py
class LocationAdmin(admin.ModelAdmin):
 # ...
 def get_fieldsets(self, request, obj=None):

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=65

Templates and JavaScript Chapter 4

[179]

 map_html = ""
 # ...
 fieldsets = [
 # ...
 (_("Slug"), {"fields": ("slug",)}),
]

Remember to make and run migrations for the app after updating the model.5.
Then use the administration to enter a sample location.

How to do it...
Perform the following steps:

As we already have the app created, we will now need the template for the1.
location detail:

{# templates/locations/location_detail.html #}
{% extends "base.html" %}
{% load static %}

{% block content %}
 <h2 class="map-title">{{ location.title }}</h2>
 <p>{{ location.description }}</p>
 <div id="map"
 data-lat="{{ location.latitude|stringformat:"f" }}"
 data-lng="{{ location.longitude|stringformat:"f" }}"
 data-address="{{ location.address }}"></div>
{% endblock %}

{% block js %}
 <script src="{% static 'site/js/location_detail.js'
%}"></script>
 <script async defer
 src="https://maps-api-ssl.google.com/maps/api/js?key={{
MAPS_API_KEY }}&callback=Location.init"></script>
{% endblock %}

Besides the template, we need the JavaScript file that will read out the HTML52.
data attributes and use them accordingly, as follows:

// static/site/js/location_detail.js
(function(window) {
 "use strict";

 function Location() {

Templates and JavaScript Chapter 4

[180]

 this.case = document.getElementById("map");
 if (this.case) {
 this.getCoordinates();
 this.getAddress();
 this.getMap();
 this.getMarker();
 this.getInfoWindow();
 }
 }

 Location.prototype.getCoordinates = function() {
 this.coords = {
 lat: parseFloat(this.case.getAttribute("data-lat")),
 lng: parseFloat(this.case.getAttribute("data-lng"))
 };
 };

 Location.prototype.getAddress = function() {
 this.address = this.case.getAttribute("data-address");
 };

 Location.prototype.getMap = function() {
 this.map = new google.maps.Map(this.case, {
 zoom: 15,
 center: this.coords
 });
 };

 Location.prototype.getMarker = function() {
 this.marker = new google.maps.Marker({
 position: this.coords,
 map: this.map
 });
 };

 Location.prototype.getInfoWindow = function() {
 var self = this;
 var wrap = this.case.parentNode;
 var title = wrap.querySelector(".map-title").textContent;

 this.infoWindow = new google.maps.InfoWindow({
 content: "<h3>"+title+"</h3><p>"+this.address+"</p>"
 });

 this.marker.addListener("click", function() {
 self.infoWindow.open(self.map, self.marker);
 });
 };

Templates and JavaScript Chapter 4

[181]

 var instance;
 Location.init = function() {
 // called by Google Maps service automatically once loaded
 // but is designed so that Location is a singleton
 if (!instance) {
 instance = new Location();
 }
 };

 // expose in the global namespace
 window.Location = Location;
}(window));

For the map to be displayed nicely, we need to set some CSS, as shown in the3.
following code:

/* static/site/css/style.css */
#map {
 border: 1px solid #000;
 box-sizing: padding-box;
 height: 0;
 padding-bottom: calc(9 / 16 * 100%); /* 16:9 aspect ratio */
 width: 100%;
}

@media screen and (max-width: 480px) {
 #map {
 display: none; /* hide on mobile devices (esp. portrait) */
 }
}

If one is not already set up, add a detail view in views.py, as shown here:4.

location/views.py
from django.conf import settings
from django.views.generic import DetailView

from .models import Location

class LocationDetail(DetailView):
 model = Location

 def get_context_data(self, **kwargs):
 context = super().get_context_data()
 context["MAPS_API_KEY"] = settings.MAPS_API_KEY
 return context

Templates and JavaScript Chapter 4

[182]

The MAPS_API_KEY should be passed into your application from an environment5.
variable, rather than having it stored directly in the code under version control.
This also gives you the flexibility to have separate keys for different
environments. The resulting code in the settings might be as follows:

settings.py
MAPS_API_KEY = os.environ.get("MAPS_API_KEY")

Information about the Google Maps API and instructions for creating
and maintaining API keys, can be found at https:/ / developers.
google. com/ maps/ .

Add an associated URL rule using the slug field we added earlier:6.

locations/urls.py
from django.urls import path

from .views import LocationDetail

urlpatterns = [
 path('<slug:slug>/', LocationDetail.as_view(),
 name='location-detail'),
]

Finally, make sure your locations app URLs are referenced in the project7.
urls.py, like so:

myproject/urls.py
urlpatterns = [
 # ...
 path('locations/', include('locations.urls')),
]

https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/

Templates and JavaScript Chapter 4

[183]

How it works...
If you open your location detail view in a browser at a URL such as
http://localhost:8000/locations/eiffel-tower, you will see something similar to
the following:

Clicking on the map pin will open an info window showing the title and the address of the
location:

Templates and JavaScript Chapter 4

[184]

Since scrolling within maps on mobile devices can be problematic due to scroll-within-
scroll issues, we have opted to hide the map on small screens (less than or equal to 480 px
width), so when we resize the screen down, the map eventually becomes invisible, as in the
following:

Templates and JavaScript Chapter 4

[185]

Let's take a look at the code. In the template, we have the location title and description,
followed by a <div> element with the map ID, as well as the data-lat (latitude), data-
lng (longitude), and data-address custom attributes. These make up the content block
elements. Two <script> tags are added to the js block that comes at the end of the
<body>—one being the location_detail.js described next, and the other is the Google
Maps API script, to which we have passed our Maps API key, and the name of the
callback to invoke when the API loads. In the LocationDetail view, we added our
MAPS_API_KEY from settings as extra context, so that it could be used here.

The template_name default for a DetailView comes from the lowercase
version of the model's name, plus detail; hence, our template was
named location_detail.html. If we wanted to use a different
template, we could specify a template_name property for the view.

In the JavaScript, we create a Location class using a prototype function. This function has
a static init() method, which is given as the callback to the Maps API. When init() is
called, the constructor is invoked to create a new singleton Location instance. In the
constructor function, a series of steps are taken to set up the map and its features, as in:

First, the map case (container) is found by its ID. Only if that element is found
do we continue.
Next, we find the geographic coordinates using the data-lat and data-lng
attributes, storing those in a dictionary as the location's coords. This object is in
the form understood by the Maps API, and will be used later.
The data-address is read next and stored directly as the address property of
the location.
From here, we start building things out, beginning with the map. To ensure that
the location will be visible, we set the center using the coords pulled from data
attributes earlier.
A marker makes the location obvious on the map, positioned using the same
coords.
Finally, we build up an info window, which is a type of pop-up bubble that can
be displayed directly on the map using the API. In addition to the address
retrieved earlier, we look for the location title based on the .map-title class
it was given in the template. This is added as an <h3> heading to the window,
followed by the address as a second <p> paragraph. To allow the window to be
displayed, we add a click event listener to the marker that will open the window.

Templates and JavaScript Chapter 4

[186]

See also
The Exposing settings in JavaScript recipe
The Arranging the base.html template recipe
The Providing responsive images recipe
The Opening object details in a modal dialog recipe
The Inserting a map into a change form recipe in Chapter 6, Model Administration

Providing responsive images
As responsive websites have become the norm, many performance issues have arisen when
it comes to providing identical content to both mobile devices and desktop computers. One
very easy way to reduce the load time of a responsive site on small devices is to provide
smaller images. This is where the srcset and sizes attributes, key components of
responsive images, come into play.

Getting ready
Let's start with the locations app that was used in the previous recipe. We'll also want to
update the administration settings accordingly, and to make sure to run migrations for the
locations app as well. Then we can add a large image for the location previously created.

How to do it...
Walk through these actions to add the responsive images:

To create thumbnail images dynamically, we will use the sorl-thumbnail app.1.
Install this either by directly invoking pip in a virtual environment, or through
the requirements in a Docker project:

requirements.txt or base.txt
...
sorl-thumbnail~=12.4.0

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=65

Templates and JavaScript Chapter 4

[187]

It will also need to be added to the INSTALLED_APPS:

settings.py or config/base.py
INSTALLED_APPS = [
 # ...
 'sorl.thumbnail',
]

Once sorl_thumbnail is installed, make sure to migrate your database to add2.
necessary schema for full thumbnail support.
Then, add an image field to the Location model, as follows:3.

locations/models.py
import os
...
def upload_to(instance, filename):
 base, ext = os.path.splitext(filename)
 return f"locations/{instance.slug}{ext.lower()}"

class Location(models.Model):
 # ...
 image = models.ImageField(null=True,
 upload_to=upload_to)
 # ...

Update the admin.py as shown in the following code to expose the image field,4.
and then make/run migrations for the locations app:

locations/admin.py
class LocationAdmin(admin.ModelAdmin):
 # ...
 def get_fieldsets(self, request, obj=None):
 map_html = render_to_string("admin/includes/map.html")
 fieldsets = [
 # ...
 (_("Image"), {"fields": ("image",)}),
]
 return fieldsets

Next we need to update the detail template to include the new image, when one5.
exists:

{# templates/locations/location_detail.html #}
{% extends "base.html" %}
{% load static thumbnail %}
{% get_media_prefix as MEDIA_URL %}

Templates and JavaScript Chapter 4

[188]

{% block extrahead %}
<script src="{% static 'site/js/lib/picturefill.min.js'
%}"></script>
{% endblock %}

{% block content %}
 <h2 class="map-title">{{ location.title }}</h2>
 {% if location.image %}
 <picture>
 {% thumbnail location.image "480" as mobile_image %}
 <source media="(max-width: 480px)"
 srcset="{{ mobile_image.url }}">
 {% endthumbnail %}
 {% thumbnail location.image "768" as tablet_image_sm %}
 <source media="(max-width: 768px)"
 srcset="{{ tablet_image_sm.url }}">
 {% endthumbnail %}
 {% thumbnail location.image "1024" as tablet_image_lg %}
 <source media="(max-width: 1024px)"
 srcset="{{ tablet_image_lg.url }}">
 {% endthumbnail %}
 <img src="{{ MEDIA_URL }}{{ location.image.url }}"
 alt="{{ location.title }} image">
 </picture>
 {% endif %}
 {# ... #}
{% endblock %}

{# ... #}

As we can see from the previous code, we need to add a picturefill.min.js6.
file to our static content, which can be downloaded following the instructions
at https:/ /scottjehl. github. io/ picturefill/ . Since this is a third-party
script, it has been placed under a lib/ subdirectory in the static/site/js/
area.
Update the styles to make sure the image size is fluid:7.

static/site/css/style.css
picture img {
 width: 100%;
}

Finally, after migrating the location app to add the img field to the8.
database, add a location with an image via the admin, or update an existing
location if you prefer.

https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/
https://scottjehl.github.io/picturefill/

Templates and JavaScript Chapter 4

[189]

How it works...
Responsive images are powerful, and at their base are concerned with providing different
images based on media rules, which indicate the features of the displays upon which each
image should be shown. The first thing we did here was to add the sorl-thumbnail app,
which makes it easy to generate the different images needed on the fly.

Obviously, we also will need the original image source, so in our Location model we
added an image field. In the upload_to() function, we use the slug when generating the
storage filename, which is already required to be unique across locations, and is safe for
URLs. The image is then exposed in the administration so that we can add files accordingly.

The most interesting work happens in the template, in this case. From the sorl-
thumbnail app, we load the thumbnail tag library, which provides one primary {%
thumbnail %} tag that is used later. Then, to provide support across more browsers for
the <picture> tag that enables responsive images, we pull in the picturefill.min.js
script. Because this is a polyfill—a script providing alternative support for a core feature in
browsers that do not have the support natively—it needs to load and execute as early as
possible for things to render properly. As such, it is added to the extrahead block, instead
of being with the other scripts in the base_js or js blocks at the end of the <body>.

When a location image exists, we construct our <picture> element. On the surface, this is
basically a container. In fact, it could have nothing inside of it besides the fallback/default
 tag that appears at the end in our template, though that would not be very useful. In
addition to the original image, we generate thumbnails for three different widths—480w,
768w, and 1024w—and these are then used to build additional <source> elements. Each
source provides the media rule for which it should be used and a srcset of images from
which to select. In our case, we only provide one image for each <source>. The location
detail page now will include the image above the map and should look something like this:

Templates and JavaScript Chapter 4

[190]

Templates and JavaScript Chapter 4

[191]

When the browser loads this markup, it follows a series of steps to determine which image
to load:

The media rules for each <source> are inspected in turn, checking to see
whether any one of them matches the current viewport
When a rule matches, the srcset is read and the appropriate image URL is
loaded and displayed
If no rules match, the src of the final, default image is loaded

As a result, smaller images will be loaded on smaller viewports. For example, here we can
see that the smallest size image was loaded for a viewport only 375 px wide:

For browsers that cannot understand the <picture> and <source> tags at all, the default
image can still be loaded, as it is nothing more than a normal tag.

Templates and JavaScript Chapter 4

[192]

There's more...
Responsive images can be used not only to provide targeted image sizes, but also for the
differentiation of pixel density, and for compositions using imagery that is specifically
curated for the design at any given viewport size (known as art direction). If you are
interested in learning more, the Mozilla Developer Network (MDN) has a thorough article
on the topic, available at https:/ /developer. mozilla. org/ en- US/docs/ Learn/ HTML/
Multimedia_and_embedding/ Responsive_ images.

See also
The Arranging the base.html template recipe
The Using HTML5 data attributes recipe
The Opening object details in a modal dialog recipe
The Inserting a map into a change form recipe in Chapter 6, Model Administration

Opening object details in a modal dialog
In this recipe, we will create a list of links to the locations, which, when clicked, opens a
Bootstrap modal dialog (we will call it a popup in this recipe) with some information about
the location and the more... link leading to the location detail page. The content for the
dialog will be loaded by Ajax. For visitors without JavaScript, the detail page will open
immediately, without this intermediate step.

Getting ready
Let's start with the locations app that we created in the previous recipes.

In the urls.py file, we will have three URL rules: one for the location list, another for the
location detail, and a third for the dialog, as follows:

locations/urls.py
from django.urls import path

from .views import LocationList, LocationDetail

urlpatterns = [
 path('', LocationList.as_view(),

https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images

Templates and JavaScript Chapter 4

[193]

 name='location-list'),
 path('<slug:slug>/', LocationDetail.as_view(),
 name='location-detail'),
 path('<slug:slug>/popup', LocationDetail.as_view(),
 {"template_name": "location_popup.html"},
 name='location-popup'),
]

Consequently, there will be two class-based views, with the detail one being shared for
both the dialog and the full detail page, as shown in the following code:

locations/views.py
from django.conf import settings
from django.views.generic import ListView, DetailView

from .models import Location

class LocationList(ListView):
 model = Location

class LocationDetail(DetailView):
 model = Location

 def get_context_data(self, **kwargs):
 context = super().get_context_data()
 context["MAPS_API_KEY"] = settings.MAPS_API_KEY
 return context

How to do it...
Execute these steps one by one:

Create a template for the location's list view with a hidden, empty modal dialog1.
at the end. Each listed location will have custom HTML5 data attributes dealing
with the pop-up information, as follows:

{# templates/locations/location_list.html #}
{% extends "base.html" %}
{% load i18n static %}

{% block content %}
 <h2>{% trans "Locations" %}</h2>
 <ul class="location-list">
 {% for location in location_list %}

Templates and JavaScript Chapter 4

[194]

 <li class="item">
 <a href="{% url "location-detail"
 slug=location.slug %}"
 data-popup-url="{% url "location-popup"
 slug=location.slug %}">
 {{ location.title }}

 {% endfor %}

{% endblock %}

{% block extrabody %}
<div id="popup" class="modal fade" tabindex="-1" role="dialog"
 aria-hidden="true" aria-labelledby="popup-modal-title">
 <div class="modal-dialog modal-dialog-centered"
 role="document">
 <div class="modal-content">
 <div class="modal-header">
 <h4 id="popup-modal-title"
 class="modal-title"></h4>
 <button type="button" class="close"
 data-dismiss="modal"
 aria-label="{% trans 'Close' %}">
 ×
 </button>
 </div>
 <div class="modal-body"></div>
 </div>
 </div>
</div>
{% endblock %}

{% block js %}
<script src="{% static 'site/js/location_list.js' %}"></script>
{% endblock %}

The template tags in the preceding snippet have been split across lines
for legibility, but in practice, template tags must be on a single line, and
so cannot be split in this manner.

We need JavaScript to handle the opening of the dialog and loading the content2.
dynamically:

// site_static/site/js/location_list.js
jQuery(function($) {
 var $list = $(".location-list");

Templates and JavaScript Chapter 4

[195]

 var $popup = $("#popup");

 $popup.on("click", ".close", function(event) {
 $popup.modal("hide");
 // do something when dialog is closed
 });

 $list.on("click", ".item a", function(event) {
 var link = this;
 var url = link.getAttribute("data-popup-url");

 if (url) {
 event.preventDefault();

 $(".modal-title", $popup).text(link.textContent);
 $(".modal-body", $popup).load(url, function() {
 $popup.on("shown.bs.modal", function () {
 // do something when dialog is shown
 }).modal("show");
 });
 }
 });
});

Finally, we will create a template for the content that will be loaded in the modal3.
dialog, as shown in the following code:

{# templates/locations/location_popup.html #}
{% load i18n thumbnail %}
{% thumbnail location.image "200" as small_image %}
<p class="text-center">
 <img src="{{ small_image.url }}" class="img-thumbnail"
 alt="{{ location.title|escape }}" />
</p>
{% endthumbnail %}

<div class="modal-footer text-right">
 <a href="{% url "location-detail" slug=location.slug %}"
 class="btn btn-primary pull-right">
 {% trans "More" %}

</div>

Templates and JavaScript Chapter 4

[196]

How it works...
If we go to the location's list view in a browser and click on one of the locations, we will see
a modal dialog similar to the following:

Let's examine how this all came together. Looking first at the listing template, the content
block is populated with an unordered list. Within this .location-list, we repeat
an element with the item CSS class for each location, which in turn contains a link.
The links have a custom attribute for the data-popup-url, and contain the location title as
the link text. Following that, we have added the placeholder pop-up markup in the
extrabody block, and this uses a standard modal dialog markup from Bootstrap 4. The
dialog contains a header with the close button and title, plus a content area for the main
pop-up details. Finally, we add the JavaScript to the js block at the very end.

Templates and JavaScript Chapter 4

[197]

In the JavaScript, we have used the jQuery framework to take advantage of several niceties
it provides. When the page is loaded, we assign an event handler on("click") for
the ul.location-list element. When any .item a link is clicked, that event is delegated
to this handler, which reads and stores the custom attribute as the url. When this is
extracted successfully, we prevent the original click action (navigation to the full detail
page) and then set up the modal for display. The new title is set for the hidden dialog box
using the link's textContent, and the main HTML content is loaded into the modal
dialog's .content area over Ajax. Finally, the modal is shown to the visitor using the
Bootstrap4 modal() jQuery plugin. A separate event handler for clicks on the dialog's
button.close reverses the process to hide the modal again.

The pop-up template simply provides a small version of the location image and a link to
the full detail page. Bootstrap 4 classes are used to style the image and link.

If the JavaScript were unable to process the pop-up URL from the custom attribute, or, even
worse, if the JavaScript in location_list.js failed to load or execute entirely, clicking on
the location link would take the user to the detail page as usual. In this way, we have
implemented our modal as a progressive enhancement so that the user experience is good,
even in the face of failure.

See also
The Using HTML5 data attributes recipe
The Providing responsive images recipe
The Implementing a continuous scroll recipe
The Implementing the Like widget recipe

Implementing a continuous scroll
Social websites often have a feature called continuous scrolling, which is also known as
infinite scrolling, as an alternative to pagination. Rather than having links to see additional
sets of items separately, there are long lists of items, and, as you scroll down the page, new
items are loaded and attached to the bottom automatically. In this recipe, we will see how
to achieve such an effect with Django and the jScroll jQuery plugin. We'll illustrate this
using a sample view showing the top 250 movies of all time from the Internet Movie
Database (http://www.imdb.com/chart/top).

https://www.imdb.com/chart/top

Templates and JavaScript Chapter 4

[198]

You can download the jScroll script, and also find extensive
documentation about the plugin, from http:/ /jscroll. com/ .

Getting ready
Create a movies app such as the one described in the Filtering object lists recipe from
Chapter 3, Forms and Views. This will have a paginated list view for the movies. For the
purposes of this recipe, you can either create a Movie model or a list of dictionaries with the
movie data. Every movie will have title, release_year, rank, and rating fields.
Release years can range from 1888 through to the current year, and ratings can be any
number from 0 to 10, inclusive. The changes will be something such as the following:

movies/models.py
from datetime import datetime

from django.core.validators import (MaxValueValidator,
 MinValueValidator)
from django.db import models
from django.utils.translation import ugettext_lazy as _

...

class Movie(models.Model):
 # ...
 release_year = models.PositiveIntegerField(
 _("Release year"),
 validators=[
 MinValueValidator(1888),
 MaxValueValidator(datetime.now().year),
],
 default=datetime.now().year)
 rating = models.PositiveIntegerField(
 _("Rating"),
 validators=[
 MinValueValidator(0),
 MaxValueValidator(10),
])
 rank = models.PositiveIntegerField(
 unique=True,
 blank=False,
 null=False,
 default=0)

http://jscroll.com/
http://jscroll.com/
http://jscroll.com/
http://jscroll.com/
http://jscroll.com/
http://jscroll.com/
http://jscroll.com/
http://jscroll.com/

Templates and JavaScript Chapter 4

[199]

 @property
 def rating_percentage(self):
 """Convert 0-10 rating into a 0-100 percentage"""
 return int(self.rating * 10)

 def __str__(self):
 return self.title

How to do it...
Perform the following steps to create a continuously scrolling page:

First, add the top movie data to your database.1.

A data migration is provided in the code files associated with the book
that can be executed to add movie data to your project.

The next step is to create a template for the list view that will also show a link to2.
the next page, as follows:

{# templates/movies/top_movies.html #}
{% extends "base.html" %}
{% load i18n static utility_tags %}

{% block stylesheet %}
 <link rel="stylesheet" type="text/css"
 href="{% static 'movies/css/rating.css' %}">
 <link rel="stylesheet" type="text/css"
 href="{% static 'site/css/movie_list.css' %}">
{% endblock %}

{% block content %}
<h2>{% trans "Top Movies" %}</h2>
<div class="movie-list object-list">
 {% trans "IMDB rating" as rating_label %}
 {% for movie in object_list %}
 <p class="movie item alert alert-info">
 {{ movie.rank }}
 <span class="rating"
 title="{{ rating_label }}: {{ movie.rating }}">
 <s style="width:{{ movie.rating_percentage }}%"></s>

 <strong class="title">{{ movie.title }}
 {{ movie.release_year }}

Templates and JavaScript Chapter 4

[200]

 </p>
 {% endfor %}

 {% if object_list.has_next %}
 <p class="pagination">
 <a class="next_page"
 href="{% modify_query
page=object_list.next_page_number %}">
 {% trans "More..." %}
 </p>
 {% endif %}
</div>
{% endblock %}

{% block extrabody %}
 <script type="text/template" class="loader">
 <img src="{% static 'site/img/loading.gif' %}"
 alt="Loading..."></script>
{% endblock %}

{% block js %}
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/jscroll/2.3.9/jquery.js
croll.min.js"></script>
 <script src="{% static 'site/js/list.js ' %}"></script>
{% endblock %}

We use the Cloudflare CDN URL to load the jScroll plugin here, but if you
opt to download a copy locally as a static file, use a {% static
%} lookup to add the script to the template.

The second step is to add JavaScript, as shown here:3.

// site_static/site/js/list.js
jQuery(function($) {
 var $list = $(".object-list");
 var $loader = $("script[type='text/template'].loader");

 $list.jscroll({
 loadingHtml: $loader.html(),
 padding: 100,
 pagingSelector: '.pagination',
 nextSelector: 'a.next_page:last',
 contentSelector: '.item,.pagination'
 });
});

Templates and JavaScript Chapter 4

[201]

Next, we'll add some CSS to the movies app so that ratings can be displayed4.
using user-friendly stars instead of just numbers:

/* movies/static/movies/css/rating.css */
.rating {
 color: #c90;
 display: block;
 margin: 0;
 padding: 0;
 position: relative;
 white-space: nowrap;
 width: 10em;
}

.rating s {
 bottom: 0;
 color: #fc0;
 display: block;
 left: 0;
 overflow: hidden;
 position: absolute;
 top: 0;
 white-space: nowrap;
}
.rating s:before,
.rating s:after {
 bottom: 0;
 display: block;
 left: 0;
 overflow: hidden;
 position: absolute;
 top: 0;
}

.rating s i { visibility: hidden; }

.rating:before {
 content: "☆☆☆☆☆☆☆☆☆☆";
}
.rating s:after {
 content: "★★★★★★★★★★";
 font-size: 1.16em; /* filled stars are slightly smaller */
}

We also have some site-specific styles to add to the movie list itself:5.

/* static/site/css/movie_list.css */
.movie { min-width: 300px; }

Templates and JavaScript Chapter 4

[202]

.movie .rank {
 float: left;
 margin-right: .5em;
}
.movie .rank:after { content: "." }

.movie .year:before { content: "("; }

.movie .year:after { content: ")"; }

.movie .rating {
 float: right;
 margin-left: 2em;
}

To support all the same capabilities of the default list, but have the correct6.
ordering and limit to only the top 250 movies, we need to add a customized
view. It will also override the template to render with:

movies/views.py
...
class TopMoviesView(MovieListView):
 template_name = "movies/top_movies.html"

 def get_queryset_and_facets(self, form):
 qs, facets = super().get_queryset_and_facets(form)
 qs = qs.order_by("rank")
 qs.filter(rank__gte=1, rank__lte=250)
 return qs, facets

And, finally, let's add a new URL rule to the top 250 listing:7.

movies/urls.py
from django.urls import path

from .views import MovieListView, TopMoviesView

urlpatterns = [
 # ...
 path('top/', TopMoviesView.as_view(), name='top-movies'),
]

Remember to pull the new static file into the static directory. This can be
done by copying the files over manually, but this is made easier with the
collectstatic management command. Just be careful you have made
edits directly under your project's static folder, as those will be
overwritten.

Templates and JavaScript Chapter 4

[203]

How it works...
When you open the movie list view in a browser, the predefined number of items set to
paginate_by in the view (that is, 15) is shown on the page. As you scroll down, an
additional page's worth of items and the next pagination link are loaded automatically and
appended to the item container. The pagination link uses the {% modify_query %}
custom template tag from the Creating a template tag to modify request query parameters recipe
in Chapter 5, Customizing Template Filters and Tags to generate an adjusted URL based on
the current one, but pointing to the correct next page number:

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=66

Templates and JavaScript Chapter 4

[204]

Scrolling down further, the third page of the items is loaded and attached at the bottom.
This continues until there are no more pages left to load, which is signified by not having
loaded any next pagination link in the final group.

Upon the initial page load, the element with the object-list CSS class, which contains
the items and pagination links, will become a jScroll object through the code in the
list.js. In fact, this implementation is generic enough that it could be used to enable
continuous scrolling for any list display following a similar markup structure.

The following options are given to define its features:

loadingHtml: This sets the markup that jScroll will inject at the end of the list
while loading a new page of items. In our case, it is an animated loading
indicator, and it is drawn from the HTML contained in a <script
type="text/template"> tag directly in the markup. By giving this type
attribute, the browser will not try to execute it as it would a normal JavaScript,
and the content inside remains invisible to the user.
padding: When the scroll position of the page is within this distance of the end
of the scrolling area, a new page should be loaded. Here, we've set it at 100
pixels.
pagingSelector: A CSS selector that indicates what HTML elements in the
object_list are pagination links. These will be hidden in browsers where the
jScroll plugin activates so that the continuous scroll can take over loading
additional pages, but users in other browsers will still be able to navigate by
clicking on the pagination normally.
nextSelector: This CSS selector finds the HTML element(s) from which to read
the URL of the next page.
contentSelector: Another CSS selector. This specifies which HTML elements
should be extracted from the Ajax-loaded content and added to the container.

The rating.css inserts unicode star characters and overlaps the outlines with filled-in
versions to create the rating effect. Using a width equivalent to the rating value's
percentage of the maximum (10 in this case), the filled-in stars cover the right amount of
space on top of the hollow ones, allowing for decimal ratings. In the markup, a title
attribute and a nested <i> tag are given with text equivalents so that the ratings remain
accessible, such as to those using screen readers.

Finally, the movie_list.css uses something called floats to position the rank to the far
left and the rating to the far right, even though in the markup they come before the movie's
title. The rating is enhanced by adding a period following the plain numeric value, and the
year is wrapped in parentheses.

Templates and JavaScript Chapter 4

[205]

There's more
You might note that it would have been easy to include the rating and the year punctuation
enhancements directly in the template, but this has been done via CSS to make the
treatment as flexible as possible. For instance, try replacing the site-specific .rank styles
with the following:

/* static/site/css/movie_list.css */
.movie { position: relative; }
.movie .rank {
 background-color: rgba(0, 0, 0, 0.2);
 color: #fff;
 font-size: .5em;
 text-align: center;
 line-height: 1em;
 padding: .25em .5em;
 position: absolute;
 left: .5em;
 top: .5em;
 border-radius: 1em;
}

This will move the movie rank out of the flow of the rest of the text and gives it a badge-like
appearance, with rounded corners and smaller text. In doing so, the movie titles are all
aligned neatly on the left, even when they break across multiple lines. If we had included
the period in the markup, there would be no way to omit it when providing this style:

Templates and JavaScript Chapter 4

[206]

Although in this case the flexibility is purely for design choices, there may be more critical
needs for it. As an example, it may be that different treatment is required depending on the
locale the site is being viewed in, such as right-to-left text. It also can have a beneficial
impact on content accessibility— this is a growing concern, as Web Content Accessibility
Guidelines (WCAG) become increasingly enforced. Because of all of these reasons, shifting
responsibility for things such as punctuation and other such augmentations to the design
layer is useful in cases such as this one.

There are other styling enhancements possible here too, such as changing the display for
small screens to account for the narrow available space, and taking advantage of more
advanced CSS layout approaches. Examples of these are included in the source code
accompanying this book.

See also
The Filtering object lists recipe in Chapter 3, Forms and Views
The Managing paginated lists recipe in Chapter 3, Forms and Views
The Composing class-based views recipe in Chapter 3, Forms and Views
The Exposing settings in JavaScript recipe
The Creating a template tag to modify request query parameters recipe in Chapter
5, Customizing Template Filters and Tags

Implementing the Like widget
Websites, in general, and most commonly those with a social component, often have
integrated Facebook, Twitter, and Google+ widgets to Like and Share content. In this recipe,
we will guide you through the building of a similar Django app that will save information
in your database whenever a user likes something. You will be able to create specific views
based on the things that are liked on your website. We will similarly create a Like widget
with a two-state button and badge showing the number of total likes. The following are the
states:

This is an inactive state, where you can click on a button to activate it:

Templates and JavaScript Chapter 4

[207]

This is an active state, where you can click on a button to deactivate it:

Changes in the state of the widget will be handled by Ajax calls.

Getting ready
First, create a likes app and add it to your INSTALLED_APPS (and to your app's volumes
in docker-compose.yml if you are using Docker). Then, set up a Like model, which has a
foreign-key relation to the user who is liking something and a generic relationship to any
object in the database. We will use ObjectRelationMixin, which we defined in
the Creating a model mixin to handle generic relations recipe in Chapter 2, Database
Structure and Modeling. If you don't want to use the mixin, you can also define a generic
relation in the following model yourself:

likes/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.conf import settings

from utils.models import (CreationModificationDateMixin,
 object_relation_mixin_factory)

class Like(CreationModificationDateMixin,
 object_relation_mixin_factory(is_required=True)):
 class Meta:
 verbose_name = _("like")
 verbose_name_plural = _("likes")
 ordering = ("-created",)

 user = models.ForeignKey(settings.AUTH_USER_MODEL)

 def __str__(self):
 return _(u"%(user)s likes %(obj)s") % {
 "user": self.user,
 "obj": self.content_object,
 }

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31

Templates and JavaScript Chapter 4

[208]

Also, make sure that the request context processor is set in the settings. We also need an
authentication middleware in the settings for the currently logged-in user to be attached to
the request:

settings.py or config/base.py
MIDDLEWARE = [
 # ...
 'django.contrib.auth.middleware.AuthenticationMiddleware',
]
TEMPLATES = [
 {
 # ...
 'OPTIONS': {
 'context_processors': [
 # ...
 'django.template.context_processors.request',
],
 },
 },
]

Remember to create and run a migration to set up the database accordingly for the new Like
model.

How to do it...
Execute these steps one by one:

In the likes app, create a templatetags directory with an1.
empty __init__.py file to make it a Python module. Then, add
the likes_tags.py file, where we'll define the {% like_widget %} template
tag as follows:

likes/templatetags/likes_tags.py
from django import template
from django.contrib.contenttypes.models import ContentType
from django.template.loader import render_to_string

from likes.models import Like

register = template.Library()

class ObjectLikeWidget(template.Node):
 def __init__(self, var):

Templates and JavaScript Chapter 4

[209]

 self.var = var

 def render(self, context):
 liked_object = self.var.resolve(context)
 ct = ContentType.objects.get_for_model(liked_object)
 user = context["request"].user

 if not user.is_authenticated:
 return ""

 context.push(object=liked_object,
 content_type_id=ct.pk)
 # is_liked_by_user=liked_by(liked_object,
 # user),
 # count=liked_count(liked_object))
 output = render_to_string("likes/includes/widget.html",
 context.flatten())
 context.pop()
 return output

TAGS

@register.tag
def like_widget(parser, token):
 try:
 tag_name, for_str, var_name = token.split_contents()
 except ValueError:
 tag_name = "%r" % token.contents.split()[0]
 raise template.TemplateSyntaxError(
 f"{tag_name} tag requires a following syntax: "
 f"{{% {tag_name} for <object> %}}")
 var = template.Variable(var_name)
 return ObjectLikeWidget(var)

Also, we'll add filters in the same file to get the like status for a user and the total2.
number of likes for a specified object:

likes/templatetags/likes/likes_tags.py
...

FILTERS

@register.filter
def liked_by(obj, user):
 ct = ContentType.objects.get_for_model(obj)
 liked = Like.objects.filter(user=user,
 content_type=ct,

Templates and JavaScript Chapter 4

[210]

 object_id=obj.pk)
 return liked.count() > 0

@register.filter
def liked_count(obj):
 ct = ContentType.objects.get_for_model(obj)
 likes = Like.objects.filter(content_type=ct,
 object_id=obj.pk)
 return likes.count()

In the URL rules, we need a rule for a view, which will handle the liking and3.
unliking using Ajax:

likes/urls.py
from django.urls import path

from .views import json_set_like

urlpatterns = [
 path("<int:content_type_id>/<int:object_id>/",
 json_set_like,
 name="json-set-like")
]

Make sure to map the URLs to the project as well:4.

project/urls.py
from django.urls import include, path
...

urlpatterns = [
 # ...
 path('like/', include('likes.urls')),
]

Then, we need to define the view, as shown in the following code:5.

likes/views.py
import json

from django.contrib.contenttypes.models import ContentType
from django.http import HttpResponse
from django.views.decorators.cache import never_cache
from django.views.decorators.csrf import csrf_exempt

from .models import Like

Templates and JavaScript Chapter 4

[211]

from .templatetags.likes_tags import liked_count

@never_cache
@csrf_exempt
def json_set_like(request, content_type_id, object_id):
 """
 Sets the object as a favorite for the current user
 """
 result = {
 "success": False,
 }
 if request.user.is_authenticated and request.method == "POST":
 content_type = ContentType.objects.get(id=content_type_id)
 obj = content_type.get_object_for_this_type(pk=object_id)

 like, is_created = Like.objects.get_or_create(
 content_type=ContentType.objects.get_for_model(obj),
 object_id=obj.pk,
 user=request.user)
 if not is_created:
 like.delete()

 result = {
 "success": True,
 "action": "add" if is_created else "remove",
 "count": liked_count(obj),
 }

 json_str = json.dumps(result, ensure_ascii=False)
 return HttpResponse(json_str, content_type="application/json")

In the template for the list or detail view of any object, we can add the template6.
tag for the widget. Let's add the widget to the location detail that we created in
the previous recipes, as follows:

{# templates/locations/location_detail.html #}
{% extends "base.html" %}
{% load likes_tags static thumbnail %}

{% block content %}
 <h2 class="map-title">{{ location.title }}</h2>
 {% if request.user.is_authenticated %}
 {% like_widget for location %}
 {% endif %}
 {# ... #}
{% endblock %}

Templates and JavaScript Chapter 4

[212]

{% block js %}
 <script src="{% static 'likes/js/widget.js' %}"></script>
 {# ... #}
{% endblock %}

Then, we need a template for the widget, as shown in the following code:7.

{# templates/likes/includes/widget.html #}
{% load i18n %}
<p class="like-widget">
 <button type="button"
 class="like-button btn btn-primary
 {% if is_liked_by_user %} active{% endif %}"
 data-href="{% url "json_set_like"
 content_type_id=content_type_id
 object_id=object.pk %}"
 data-remove-label="{% trans "Like" %}"
 data-add-label="{% trans "Unlike" %}">
 {% if is_liked_by_user %}

 {% trans "Unlike" %}
 {% else %}

 {% trans "Like" %}
 {% endif %}
 </button>

 {{ count }}
</p>

The template tags in the preceding snippet have been split across lines
for legibility, but in practice, template tags must be on a single line, and
so they cannot be split in this manner.

Finally, we create JavaScript to handle the liking and unliking action in the8.
browser, as follows:

// static/likes/js/widget.js
(function($) {
 var star = {
 add: '',
 remove: '<span class="glyphicon glyphicon-star-
empty">'
 };

 $(document).on("click", ".like-button", function() {
 var $button = $(this);

Templates and JavaScript Chapter 4

[213]

 var $widget = $button.closest(".like-widget");
 var $badge = $widget.find(".like-badge");

 $.post($button.data("href"), function(data) {
 if (data.success) {
 var action = data.action; // "add" or "remove"
 var label = $button.data(action + "-label");

 $button[action + "Class"]("active");
 $button.html(star[action] + " " + label);

 $badge.html(data.count);
 }
 }, "json");
 });
}(jQuery));

How it works...
For any object in your website, you can now use the {% like_widget for object
%} template tag. It generates a widget that will show the liked state based on whether and
how the current logged-in user has responded to the object.

The Like button has three custom HTML5 data attributes:

data-href supplies a unique, object-specific URL to change the current state of
the widget.
data-add-text is the translated text to be displayed when the Like association
has been added (Unlike)
data-remove-text is similarly the translated text for when the Like association
has been removed (Like)

In the JavaScript, Like buttons are recognized by the like-button CSS class. An event
listener, attached to the document, watches for click events from any such button found
in the page, and then posts an Ajax call to the URL specified by the data-href attribute.

The specified view (json_set_like) accepts two parameters, the content type ID and the
primary key of the liked object. The view checks whether a Like exists for the specified
object, and if it does, the view removes it; otherwise, the Like object is added. As a result,
the view returns a JSON response with the success status, the action that was taken for
the Like object (add or remove), and the total count of Likes for the object across all users.
Depending on the action that is returned, JavaScript will show an appropriate state for the
button.

Templates and JavaScript Chapter 4

[214]

You can debug the Ajax responses in the browser's developer tools, generally in the
Network tab. If any server errors occur while developing, and you have DEBUG turned on
in your settings, you will see the error traceback in the preview of the response. Otherwise,
you will see the returned JSON, as shown in the following screenshot:

See also
The Opening object details in a modal dialog recipe
The Implementing a continuous scroll recipe
The Uploading images by Ajax recipe

Templates and JavaScript Chapter 4

[215]

The Creating a model mixin to handle generic relations recipe in Chapter 2,
Database Structure and Modelling
Chapter 5, Customizing Template Filters and Tags

Uploading images via Ajax
With default file input fields, it quickly becomes obvious that there is a lot we could do to
improve the user experience. First, only the path to the selected file is displayed within the
field, whereas people want to see what they have chosen right after selecting the file.
Second, the file input itself is generally too narrow to show much of the path selected, and
reads from the left end. As a result, the filename is rarely visible within the field. Finally, if
the form has validation errors, nobody wants to select the files again; the file should still be
selected in the form with validation errors. In this recipe, we will see how to do this.

Getting ready
Let's start with the quotes app that we created for the Uploading images recipe in Chapter
3, Forms and Views. We will reuse the model, and the view for adding a quote; however,
we'll add views for handling the uploads, augmenting the form, and adding templates and
JavaScript too.

Our own JavaScript will rely upon some external libraries, so those need to be downloaded:

From the jQuery File Upload widget available at https:/ /blueimp. github. io/
jQuery-File- Upload/ , download and extract the 9.21.0 version. From the js/
folder in the extracted contents, we'll need jquery.fileupload.css,
jquery.fileupload.js, and jquery.fileupload-ui.js. This utility also
requires the jquery.ui.widget.js in turn, which is made available in a
vendor/ subdirectory alongside the other files.
jQuery file upload makes use of the JavaScript templates system to provide
something akin to Django templates, but in the browser. In support of this, we
will need to get the tmpl.min.js file from that project, accessible at https:/ /
blueimp. github. io/ JavaScript- Templates/ .

Place the JavaScript files under static/site/js/lib, and static/site/css/lib is
where the CSS should live. With that, we're ready to begin.

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/jQuery-File-Upload/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/
https://blueimp.github.io/JavaScript-Templates/

Templates and JavaScript Chapter 4

[216]

How to do it...
Let's refine the form for inspirational quotes so that it can support Ajax uploads, using the
following steps:

First of all, add the following to your settings:1.

settings.py or config/base.py
...
UPLOAD_URL = f'{MEDIA_URL}upload/'
UPLOAD_ROOT = os.path.join(MEDIA_ROOT, 'upload')

If you want, you can also update the .gitignore file under the
MEDIA_ROOT to avoid committing anything to the UPLOAD_ROOT, just by
adding /upload/ as a new line.

Then, in the quotes app, we will define a custom file storage system for uploads2.
using the new setting:

quotes/storages.py
from django.conf import settings
from django.core.files.storage import FileSystemStorage

upload_storage = FileSystemStorage(location=settings.UPLOAD_ROOT)

Getting to the form, we'll update it to add a hidden picture_path field3.
dynamically:

quotes/forms.py
...
class InspirationalQuoteForm(forms.ModelForm):
 # ...
 picture_path = forms.CharField(max_length=255,
 widget=forms.HiddenInput(),
 required=False)

Then, we will override the save() method in the form, as follows:4.

quotes/forms.py
class InspirationalQuoteForm(forms.ModelForm):
 # ...
 def save(self, commit=True):
 instance = super().save(commit=commit)
 picture = self.cleaned_data["picture"]
 path = self.cleaned_data["picture_path"]

Templates and JavaScript Chapter 4

[217]

 if not picture and path:
 try:
 picture = upload_storage.open(path)
 instance.picture.save(path, picture, False)
 os.remove(path)
 except FileNotFoundError:
 pass
 instance.save()
 return instance

In addition to the previously defined views in the quotes app, we'll add5.
an upload_quote_picture view, as shown in the following code:

quotes/views.py
from datetime import datetime
import os

from django.core.files.base import ContentFile
from django.http import HttpResponse
from django.shortcuts import render, redirect
from django.template.loader import render_to_string
from django.utils.translation import ugettext_lazy as _
from django.views.decorators.csrf import csrf_protect
from django.views.generic import DetailView, ListView

from .models import InspirationalQuote
from .forms import InspirationalQuoteForm
from .storages import upload_storage

...

def _upload_to(request, filename):
 user = (f"user-{request.user.pk}"
 if request.user.is_authenticated
 else "anonymous")

 return os.path.join("quotes",
 user,
 f"{datetime.now():%Y/%m/%d}",
 filename)

@csrf_protect
def upload_quote_picture(request):
 status_code = 400
 data = {
 "files": [],
 "error": _("Bad request"),

Templates and JavaScript Chapter 4

[218]

 }
 if request.method == "POST" \
 and request.is_ajax() \
 and "picture" in request.FILES:
 image_types = [f"image/{x}" for x in [
 "gif", "jpg", "jpeg", "pjpeg", "png"
]]
 picture = request.FILES["picture"]
 if picture.content_type not in image_types:
 status_code = 405
 data["error"] = _("Invalid image format")
 else:
 upload_to = _upload_to(request, picture.name)
 name = upload_storage.save(upload_to,
 ContentFile(picture.read()))
 picture = upload_storage.open(name)
 status_code = 200
 del data["error"]
 picture.filename = os.path.basename(picture.name)
 data["files"].append(picture)

 json_data = render_to_string("quotes/upload.json", data)
 return HttpResponse(json_data,
 content_type="application/json",
 status=status_code)

Similarly, there needs to be the delete_quote_picture view to handle the6.
removal of the uploads:

quotes/views.py
...

@csrf_protect
def delete_quote_picture(request, filename):
 if request.method == "DELETE" \
 and request.is_ajax() \
 and filename:
 try:
 upload_to = _upload_to(request, filename)
 upload_storage.delete(upload_to)
 except FileNotFoundError:
 pass
 json = render_to_string("quotes/upload.json", {"files": []})
 return HttpResponse(json,
 content_type="application/json",
 status=200)

Templates and JavaScript Chapter 4

[219]

We set the URL rules for the new upload and deletion views, as follows:7.

quotes/urls.py
from django.urls import path

from .views import (add_quote,
 QuotesList,
 upload_quote_picture,
 delete_quote_picture)

urlpatterns = [
 # ...
 path('upload/', upload_quote_picture,
 name='quote-picture-upload'),
 path('upload/<str:filename>', delete_quote_picture,
 name='quote-picture-delete'),
]

The new views render their JSON output via a new template, so we can define8.
that file next:

{# templates/quotes/upload.json #}
{% load thumbnail %}
{
 {% if error %}"error": "{{ error }}",{% endif %}
 "files": [{% for file in files %}
 {
 "name": "{{ file.filename }}",
 "size": {{ file.size }},
 "deleteType": "DELETE",
 "deleteUrl": "{% url 'quote-picture-delete'
filename=file.filename %}",
 "thumbnailUrl": "{% thumbnail file '200x200' %}",
 "type": "{{ file.content_type }}",
 "path": "{{ file.name }}"
 }{% if not forloop.last %},{% endif %}
 {% endfor %}]
}

Templates and JavaScript Chapter 4

[220]

Now we move on to create the JavaScript template that will be used to display a9.
file we have selected for upload:

{# templates/quotes/includes/tmpl-upload.html #}
{% verbatim %}
<script type="text/x-tmpl" id="template-upload">
{% for (var i=0, file; file=o.files[i]; i++) { %}
<tr class="template-upload">
 <td></td>
 <td>
 <p class="name">{%=file.name%}</p>
 <strong class="error text-danger">
 </td>
 <td>
 <p class="size">{%=o.options.i18n('Processing...') %}</p>
 </td>
 <td width="20%">
 <div role="progressbar" aria-valuenow="0"
 aria-valuemin="0" aria-valuemax="100"
 class="progress progress-striped active"><div
 class="progress-bar progress-bar-success"
 style="width:0%;"></div></div>
 </td>
 <td>
 {% if (!i && !o.options.autoUpload) { %}
 <button class="btn btn-primary start">
 <i class="ion-upload"></i>
 {%=o.options.i18n('Start') %}
 </button>
 {% } %}
 {% if (!i) { %}
 <button class="btn btn-warning cancel">
 <i class="ion-close-circled"></i>
 {%=o.options.i18n('Cancel') %}
 </button>
 {% } %}
 </td>
</tr>
{% } %}
</script>
{% endverbatim %}

There is also a corresponding JavaScript template for displaying the file once it10.
has been uploaded successfully:

{# templates/quotes/includes/tmpl-download.html #}
{% verbatim %}
<script type="text/x-tmpl" id="template-download">

Templates and JavaScript Chapter 4

[221]

{% for (var i=0, file; file=o.files[i]; i++) { %}
 <tr class="template-download">
 <td>

 {% if (file.thumbnailUrl) { %}
 <a href="{%=file.url%}" data-gallery
 title="{%=file.name%}"
 download="{%=file.name%}">

 {% } %}

 </td>
 <td>
 <p class="name">
 {% if (file.url) { %}
 <a href="{%=file.url%}"
 {%=file.thumbnailUrl?'data-gallery':''%}
 title="{%=file.name%}"
 download="{%=file.name%}">

 {% } else { %}
 {%=file.name%}
 {% } %}
 </p>
 {% if (file.error) { %}
 <div>

 {%=o.options.i18n('Error') %}
 {%=file.error%}
 </div>
 {% } %}
 </td>
 <td>
 {%=o.formatFileSize(file.size)%}
 </td>
 <td>
 {% if (file.deleteUrl) { %}
 <button data-type="{%=file.deleteType%}"
 data-url="{%=file.deleteUrl%}"
 {% if (file.deleteWithCredentials) { %}
 data-xhr-fields='{"withCredentials":true}'
 {% } %}
 class="btn btn-danger delete">
 <i class="ion-trash-a"></i>
 {%=o.options.i18n('Remove') %}
 </button>
 {% } else { %}
 <button class="btn btn-warning cancel">

Templates and JavaScript Chapter 4

[222]

 <i class="ion-close-circled"></i>
 {%=o.options.i18n('Cancel') %}
 </button>
 {% } %}
 </td>
 </tr>
{% } %}
</script>
{% endverbatim %}

These new includes, and the supporting CSS and JS need to be added to the form11.
markup. Let's update that template now, as follows:

{# templates/quotes/add_quote.html #}
{% extends "base.html" %}
{% load i18n static %}

{% block stylesheet %}
<link rel="stylesheet" type="text/css"
 href="{% static 'site/css/lib/jquery.fileupload.css' %}">
{% endblock %}

{% block content %}
 <form method="post" action="" enctype="multipart/form-data"
 class="change-quote">
 {% csrf_token %}
 {{ form.as_p }}
 <button type="submit">{% trans "Save" %}</button>
 </form>
{% endblock %}

{% block extrabody %}
{% include "quotes/includes/tmpl-upload.html" %}
{% include "quotes/includes/tmpl-download.html" %}
{% endblock %}

{% block js %}
<script src="{% static 'site/js/lib/tmpl.min.js' %}"></script>
<script src="{% static 'site/js/lib/jquery.ui.widget.js'
%}"></script>
<script src="{% static 'site/js/lib/jquery.fileupload.js'
%}"></script>
<script src="{% static 'site/js/lib/jquery.fileupload-ui.js'
%}"></script>
<script src="{% static 'quotes/js/uploader.js' %}"></script>
{% endblock %}

Templates and JavaScript Chapter 4

[223]

Then, let's set up the JavaScript file that integrates the Ajax upload functionality12.
as a progressive enhancement:

// static/quotes/js/uploader.js
(function($) {
 var SELECTORS = {
 CSRF_TOKEN: "input[name='csrfmiddlewaretoken']",
 PICTURE: "input[type='file'][name='picture']",
 PATH: "input[name='picture_path']"
 };

 var DEFAULTS = {
 labels: {
 "Select": "Select File"
 }
 };

 function Uploader(form, uploadUrl, options) {
 if (form && uploadUrl) {
 this.form = form;
 this.url = uploadUrl;

 this.processOptions(options);
 this.gatherFormElements();
 this.wrapFileField();
 this.setupFileUpload();
 }
 }

 Uploader.prototype.mergeObjects = function(source, target) {
 var self = this;
 Object.keys(source).forEach(function(key) {
 var sourceVal = source[key];
 var targetVal = target[key];
 if (!target.hasOwnProperty(key)) {
 target[key] = sourceVal;
 } else if (typeof sourceVal === "object"
 && typeof targetVal === "object") {
 self.mergeObjects(sourceVal, targetVal);
 }
 });
 };

 Uploader.prototype.processOptions = function(options) {
 options = options || {};
 this.mergeObjects(DEFAULTS, options);
 this.options = options;
 };

Templates and JavaScript Chapter 4

[224]

 Uploader.prototype.gatherFormElements = function() {
 this.csrf = this.form.querySelector(SELECTORS.CSRF_TOKEN);
 this.picture = this.form.querySelector(SELECTORS.PICTURE);
 this.path = this.form.querySelector(SELECTORS.PATH);

 this.createButton();
 this.createContainer();
 };

 Uploader.prototype.createButton = function() {
 var label = this.options.labels["Select Picture"];
 this.button = document.createElement("button");
 this.button.appendChild(document.createTextNode(label));
 this.button.setAttribute("type", "button");
 this.button.classList.add(
 "btn", "btn-primary", "fileinput-button");
 };

 Uploader.prototype.createContainer = function() {
 this.container = document.createElement("table");
 this.container.setAttribute("role", "presentation");
 this.container.classList.add("table", "table-striped");

 this.list = document.createElement("tbody");
 this.list.classList.add("files");
 this.container.appendChild(this.list);
 };

 Uploader.prototype.wrapFileField = function() {
 this.picture.parentNode.insertBefore(
 this.button, this.picture);
 this.button.appendChild(this.picture);
 this.button.parentNode.insertBefore(
 this.container, this.button);
 };

 Uploader.prototype.setupFileUpload = function() {
 var self = this;
 var safeMethodsRE = /^(GET|HEAD|OPTIONS|TRACE)$/;
 $.ajaxSettings.beforeSend = (function(existing) {
 var csrftoken = document.cookie.replace(
 /^(?:.*;)?csrftoken=(.*?)(?:;.*)?$/, "$1");
 return function(xhr, settings) {
 if (!safeMethodsRE.test(settings.type)
 && !this.crossDomain) {
 xhr.setRequestHeader("X-CSRFToken", csrftoken);
 }
 }

Templates and JavaScript Chapter 4

[225]

 $(this.form).fileupload({
 url: this.url,
 dataType: 'json',
 acceptFileTypes: /^image\/(gif|p?jpeg|jpg|png)$/,
 autoUpload: false,
 replaceFileInput: true,
 messages: self.options.labels,
 maxNumberOfFiles: 1
 }).on("fileuploaddone", function(e, data) {
 self.path.value = data.result.files[0].path;
 }).on("fileuploaddestroy", function(e, data) {
 self.path.value = "";
 });
 };

 window.Uploader = Uploader;
}(jQuery));

Finally, we add one last integration piece to the change form template:13.

{# templates/quotes/add_quote.html #}
{% block js %}
{# ... #}
<script>
jQuery(function($){
 if (typeof Uploader !== "undefined") {
 var form = document.querySelector("form.change-quote");
 var uploadUrl = "{% url 'quote-picture-upload' %}";
 new Uploader(form, uploadUrl, {
 "labels": {
 "Select Picture": "{% trans 'Select Picture' %}",
 "Cancel": "{% trans 'Cancel' %}",
 "Remove": "{% trans 'Remove' %}",
 "Error": "{% trans 'Error' %}",
 "Processing...": "{% trans 'Processing...' %}",
 "Start": "{% trans 'Start' %}"
 }
 });
 }
});
</script>
{% endblock %}

Templates and JavaScript Chapter 4

[226]

How it works...
If the JavaScript fails to execute, the form remains completely usable just as it was before,
but when JavaScript runs properly, we get an enhanced form with the file field replaced by
a simple button, as shown here:

Templates and JavaScript Chapter 4

[227]

When an image is selected by clicking on the Select Picture button, the result in the
browser will look similar to the following screenshot:

Clicking on the Start button in this new row triggers the Ajax upload process, and we then
see a preview of the image that has been attached, as shown in the following screenshot.
We can see here that the upload-related action buttons are also replaced with a Remove
button, which would trigger deletion of the uploaded file:

The same form will work using the normal file input if JavaScript somehow is unable to run
as expected. Let's run backwards through the steps to dig deeper into the process and to see
how it works.

In the changed form, we load the scripts and CSS that support the jQuery File Upload
widget, as well as our own Uploader code. When the page is ready, we instantiate the
Uploader that will enable the Ajax submission enhancements, providing it with a reference
to the form element, the URL corresponding to our upload view, and translated labels for
each of the action buttons.

Templates and JavaScript Chapter 4

[228]

As part of functionality given by the JavaScript templates utilities, the
translation dictionary keys will serve as fallback values, if the translation
is invalid.

The Uploader is where the majority of the work happens. When initialized, it goes through
a series of steps, as follows:

Processing and merging any provided options with the DEFAULTS
Gathering the elements within the form that are needed for handling
uploads—specifically, the csrfmiddlewaretoken hidden field, the picture file
input field, and the picture_path hidden field
Dynamically creating the Select <button> element and a container <table> that
will hold the uploaded files list
Wrapping the file input in the Select button and adding the container above it
Setting up the jQuery File Upload widget

The really interesting work happens in this final step. We'll dive a bit deeper into that here:

First, the X-CSRFToken header is set by default in the Ajax settings, so that the
upload and delete requests will be accepted.
Next, the widget is initialized for the form. Settings such as the upload URL,
acceptable MIME types, and translated labels are passed along.
And last, but not least, event listeners are set up to update the picture_path
field value properly when an image has either been uploaded or removed. These
listen for the fileuploaddone and fileuploaddestroy custom widget events,
which correspond respectively to those two actions, but there are many other
events available, too.

On page load, the Uploader is initialized and Ajax enhancements are applied. When a user
clicks on the Select button, the file input is triggered and the usual file selection window
opens. After selection, a row is added to the files list using the content provided by the
tmpl_upload.html include, which shows the filename, human-friendly file size, and the
action buttons. If the user clicks the Cancel button, that row is removed without ever
uploading the file.

After clicking the Start button, the Ajax upload request kicks off, and the upload view
stores the image under the UPLOAD_ROOT, returning the appropriate JSON data as
generated from the upload.json template. This data is used to replace the existing file
row with a new one generated from the tmpl_download.html include. The new row
contains a preview thumbnail, the filename, the file size, and a Remove button.

Templates and JavaScript Chapter 4

[229]

Examining the two JavaScript template includes more closely, we can see that their content
is wrapped by {% verbatim %} Django template tags. This is done because the JavaScript
template syntax is very similar to the core Django template syntax, and it would confuse
Django and cause errors. Similarly to Django, there are {% ... %} tags that can contain
JavaScript expressions, and we can use {%=... %} to output variables. By default, context
data is nested under a global o variable.

The outermost tag in the includes initiates a loop over a files list in that context data. This
list corresponds to the list created in the JSON returned by the upload and delete views. As
we can see, the upload.json also uses a loop to generate its content, so it would be trivial
to use a similar implementation to handle a multiple-image case.

In the delete_quote_picture view, a valid Ajax request should use the DELETE method,
and the filename to be deleted is parameterized as part of the URL. We use the same
upload storage system that initially saves the images in order to delete them. The
view always returns a valid JSON object containing an empty file list, so the form will
update to remove the uploaded image, even if there is an issue with the server.

As for the upload_quote_picture view, there is more strict processing, and by default,
we assume a bad request. When the request itself is valid, we reinforce the image type
restrictions on the server, which is always a good practice. For valid types, we save the
picture using the upload storage system, and add the result to the files list. We also
dynamically add a filename property containing only the base name of the file, to pass
along and ultimately display in the file list.

After a picture has been selected and uploaded, and the form is submitted, the quote
instance will be saved initially with no picture. In the custom save-handling for the form,
though, we check for a picture_path, which would indicate that an upload took place.
Using the same upload storage, we open the given path and save that as the picture for the
quote. Afterward, since the uploaded image is no longer needed, it is deleted. Any changes
are saved back to the instance, which is then returned.

See also
The Uploading images recipe in Chapter 3, Forms and Views
The Opening object details in a modal dialog recipe
The Implementing a continuous scroll recipe
The Implementing the Like widget recipe
The Making forms secure from cross-site request forgery (CSRF) recipe in Chapter 7,
Security and Performance

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=74

5
Customizing Template Filters

and Tags
In this chapter, we will cover the following topics:

Following conventions for your own template filters and tags
Creating a template filter to show how many days have passed since a post
Creating a template filter to extract the first media object
Creating a template filter to humanize URLs
Creating a template tag to include a template, if it exists
Creating a template tag to load a QuerySet in a template
Creating a template tag to parse content as a template
Creating a template tag to modify request query parameters

Introduction
As you know, Django has an extensive template system with features such as template
inheritance, filters to change the representation of values, and tags for presentational logic.
Moreover, Django allows you to add your own template filters and tags to your apps.
Custom filters or tags should be located in a template tag library file under
the templatetags Python package in your app. Then, your template tag library can be
loaded in any template with the {% load %} template tag. In this chapter, we will create
several useful filters and tags that will give more control to template editors.

Customizing Template Filters and Tags Chapter 5

[231]

To see the template tags of this chapter in action, create either a virtual environment or a
Docker project, extract the code provided for this chapter there, run the development
server, and visit the appropriate URL for the development site in a browser. With a virtual
environment, this would be http://127.0.0.1:8000/en/, whereas with Docker, you
can set any hostname in your docker-compose.yml and map it via the /etc/hosts file.
For the purposes of this chapter, we will assume the Docker URL is set to
http://myproject.local/en/.

Following conventions for your own
template filters and tags
Custom template filters and tags can become a total mess if you don't have persistent
guidelines to follow. Template filters and tags should serve template editors as much as
possible. They should be both handy and flexible. In this recipe, we will take a look at some
conventions that should be used when enhancing the functionality of the Django template
system.

How to do it...
Follow these conventions for Django template system extensions:

Don't create or use custom template filters or tags when the logic for the page fits1.
better in the view, context processors, or model methods. When your content is
context-specific, such as a list of objects or object-detail view, load the object in
the view. If you need to show some content on every page, create a context
processor. Use custom methods of the model instead of template filters when you
need to get some properties of an object that are not related to the context of the
template.
Name the template-tag library with the _tags suffix. When your app is named2.
differently than your template-tag library, you can avoid ambiguous package-
importing problems.
In the newly created library, separate the filters from the tags, for example, using3.
comments as shown in the following code:

utils/templatetags/utility_tags.py
from django import template  
register = template.Library()

Customizing Template Filters and Tags Chapter 5

[232]

"""TAGS"""

.. your tags go here...

"""FILTERS"""

.. your filters go here...

When creating advanced custom template tags, make sure that their syntax is4.
easy to remember by including the following constructs that can follow the tag
name:

for [app_name.model_name]: Include this construct to use a
specific model
using [template_name]: Include this construct to use a template for
the output of the template tag
limit [count]: Include this construct to limit the results to a specific
amount
as [context_variable]: Include this construct to save the results to
a context variable that can be reused multiple times

Try to avoid multiple values that are defined positionally in the template tags,5.
unless they are self-explanatory. Otherwise, this will likely confuse template
developers.
Make as many resolvable arguments as possible. Strings without quotes should6.
be treated as context variables that need to be resolved or as short words that
remind you of the structure of the template tag components.

See also
The Creating a template filter to show how many days have passed since a post recipe
The Creating a template tag to load a QuerySet in a template recipe

Customizing Template Filters and Tags Chapter 5

[233]

Creating a template filter to show how much
time has passed since a post was published
Not all people keep track of the date, and it can be easy to miscalculate it when trying to
determine the difference between dates in your head. When talking about creation or
modification dates, it is convenient to read a more human-readable time difference. For
example, the blog entry was posted 3 days ago, the news article was published today, and the
user last logged in yesterday. In this recipe, we will create a template filter named
date_since, which converts dates to humanized time differences based on days, weeks,
months, or years.

Getting ready
Create the utils app, and put it under INSTALLED_APPS in the settings, if you haven't
done that yet. Then, create a templatetags Python package in this app (Python packages
are directories with an empty __init__.py file).

How to do it...
Create a utility_tags.py file with the following content:

utils/templatetags/utility_tags.py
from datetime import datetime

from django import template
from django.utils import timezone
from django.utils.translation import ugettext_lazy as _

register = template.Library()

"""FILTERS"""

@register.filter(is_safe=True)
def date_since(value):
 """
 Returns a human-friendly difference between today and value
 (adapted from https://www.djangosnippets.org/snippets/116/)
 """
 today = timezone.now().date()

Customizing Template Filters and Tags Chapter 5

[234]

 if isinstance(value, datetime):
 value = value.date()
 diff = today - value
 diff_years = int(diff.days / YEAR)
 diff_months = int(diff.days / MONTH)
 diff_weeks = int(diff.days / WEEK)
 diff_map = [
 ("year", "years", diff_years,),
 ("month", "months", diff_months,),
 ("week", "weeks", diff_weeks,),
 ("day", "days", diff.days,),
]
 for parts in diff_map:
 (interval, intervals, count,) = parts
 if count > 1:
 return _(f"{count} {intervals} ago")
 elif count == 1:
 return _("yesterday") \
 if interval == "day" \
 else _(f"last {interval}")
 if diff.days == 0:
 return _("today")
 else:
 # Date is in the future; return formatted date.
 return f"{value:%B %d, %Y}"

How it works...
If you use this filter in a template, as shown in the following code, it will render something
similar to yesterday, last week, or 5 months ago:

{% load utility_tags %}
{{ object.published|date_since }}

You can apply this filter to values of the date and datetime types.

Each template tag library has a register where filters and tags are collected. Django filters
are functions registered by the @register.filter decorator. In this case, we pass the
parameter is_safe=True to indicate that our filter will not introduce any unsafe HTML
markup.

Customizing Template Filters and Tags Chapter 5

[235]

By default, the filter in the template system will be named the same as the function or other
callable object. If you want, you can set a different name for the filter by passing the name
to the decorator, as follows:

@register.filter(name="humanized_date_since", is_safe=True)
def date_since(value):
 # ...

The filter itself is fairly self-explanatory. At first, the current date is read. If the given value
of the filter is of the datetime type, its date is extracted. Then, the difference between
today and the extracted value is calculated based on the YEAR, MONTH, WEEK, or days
intervals. Depending on the count, different string results are returned, falling back to
displaying a formatted date if the value is in the future.

There's more...
If required, we could cover other stretches of time, too, as in 20 minutes ago, 5 hours ago, or
even 1 decade ago. To do so, we would add more intervals to the existing diff_map set, and
to show the difference in time, we would need to operate on datetime values instead of
the date values.

See also
The Creating a template filter to extract the first media object recipe
The Creating a template filter to humanize URLs recipe

Creating a template filter to extract the first
media object
Imagine that you are developing a blog overview page, and for each post you want to show
images, music, or videos in that page taken from the content. In such a case, you need to
extract the <figure>, , <object>, <embed>, <video>, <audio>, and <iframe> tags
from the HTML content of the post, as stored on a field of the post model. In this recipe, we
will see how to perform this using regular expressions in the first_media filter.

Customizing Template Filters and Tags Chapter 5

[236]

Getting ready
We will start with the utils app that should be set in INSTALLED_APPS in the settings and
the templatetags package in this app.

How to do it...
In the utility_tags.py file, add the following content:

utils/templatetags/utility_tags.py
import re

from django import template
from django.utils.safestring import mark_safe

register = template.Library()

"""FILTERS"""

MEDIA_CLOSED_TAGS = "|".join([
 "figure", "object", "video", "audio", "iframe"])
MEDIA_SINGLE_TAGS = "|".join(["img", "embed"])
MEDIA_TAGS_REGEX = re.compile(
 r"<(?P<tag>" + MEDIA_CLOSED_TAGS + ")[\S\s]+?</(?P=tag)>|" +
 r"<(" + MEDIA_SINGLE_TAGS + ")[^>]+>",
 re.MULTILINE)

@register.filter
def first_media(content):
 """
 Returns the chunk of media-related markup from the html content
 """
 tag_match = MEDIA_TAGS_REGEX.search(content)
 media_tag = ""
 if tag_match:
 media_tag = tag_match.group()
 return mark_safe(media_tag)

Customizing Template Filters and Tags Chapter 5

[237]

How it works...
If the HTML content in the database is valid, when you put the following code in the
template, it will retrieve the media tags from the content field of the object; otherwise, an
empty string will be returned if no media is found:

{% load utility_tags %}
{{ object.content|first_media }}

Regular expressions are a powerful feature to search/replace patterns of text. At first, we
define lists of all the supported media tag names, split into groups for those that have both
opening and closing tags (MEDIA_CLOSED_TAGS), and those that are self-closed
(MEDIA_SINGLE_TAGS). From these lists, we generate the compiled regular expression as
MEDIA_TAGS_REGEX. In this case, we search for all the possible media tags, allowing for
them to occur across multiple lines.

Let's see how this regular expression works, as follows:

Alternating patterns are separated by the pipe (|) symbol.
There are two groups within the patterns—first of all, those with both opening
and closing normal tags (<figure>, <object>, <video>, <audio>, <iframe>,
and <picture>), and then one final pattern for what are called self-closing
or void tags (and <embed>).
For the possibly multiline normal tags, we will use the [\S\s]+? pattern that
matches any symbol at least once; however, we do this as few times as possible
until we find the string that goes after it.
Therefore, <figure[Ss]+?</figure> searches for the start of the <figure> tag
and everything after it, until it finds the closing the </figure> tag.
Similarly, with the [^>]+ pattern for self-closing tags, we search for any symbol
except the right-angle bracket (possibly better known as a greater than symbol,
that is to say, >) at least once and as many times as possible, until we encounter
such a bracket indicating the closure of the tag.

The re.MULTILINE flag ensures that matches can be found even if they span multiple lines
in the content. Then, in the filter, we perform a search using this regular expression pattern.
By default, in Django, the result of any filter will show the <, >, and & symbols escaped as
the <, >, and & entities, respectively. In this case, however, we use the
mark_safe() function to indicate that the result is safe and HTML-ready, so that any
content will be rendered without escaping. Because the originating content is user input,
we do this instead of passing is_safe=True when registering the filter, as we need to
explicitly certify that the markup is safe.

Customizing Template Filters and Tags Chapter 5

[238]

There's more...
If you are interested in regular expressions, you can learn more about them in the official
Python documentation at https://docs.python.org/3/library/re.html.

See also
The Creating a template filter to show how many days have passed since a post was
published recipe
The Creating a template filter to humanize URLs recipe

Creating a template filter to humanize URLs
Web users commonly recognize URLs without the protocol (http://) or trailing slash (/),
and, similarly, they will enter URLs in this fashion in address fields. In this recipe, we will
create a humanize_url filter that is used to present URLs to the user in a shorter format,
truncating very long addresses, similar to what Twitter does with the links in tweets.

Getting ready
Similar to the previous recipes, we will start with the utils app that should be set in
INSTALLED_APPS in the settings and contain the templatetags package.

How to do it...
In the FILTERS section of the utility_tags.py template library in the utils app, let's
add the humanize_url filter and register it, as shown in the following code:

utils/templatetags/utility_tags.py
import re

from django import template

register = template.Library()

"""FILTERS"""

https://docs.python.org/3/library/re.html

Customizing Template Filters and Tags Chapter 5

[239]

@register.filter
def humanize_url(url, letter_count):
 """
 Returns a shortened human-readable URL
 """
 letter_count = int(letter_count)
 re_start = re.compile(r"^https?://")
 re_end = re.compile(r"/$")
 url = re_end.sub("", re_start.sub("", url))
 if len(url) > letter_count:
 url = f"{url[:letter_count - 1]}..."
 return url

How it works...
We can use the humanize_url filter in any template, as follows:

{% load utility_tags %}

 {{ object.website|humanize_url:40 }}

The filter uses regular expressions to remove the leading protocol and trailing slash,
shortens the URL to the given amount of letters, and adds an ellipsis to the end after
truncating it if the full URL doesn't fit the specified letter count. For example, for the
URL https://docs. djangoproject. com/ en/2. 1/ref/ request- response/ , the 40-character
humanized version would be docs.djangoproject.com/en/2.1/ref/reque...

See also
The Creating a template filter to show how many days have passed since a post was
published recipe
The Creating a template filter to extract the first media object recipe
The Creating a template tag to include a template if it exists recipe

https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/
https://docs.djangoproject.com/en/2.1/ref/request-response/

Customizing Template Filters and Tags Chapter 5

[240]

Creating a template tag to include a template
if it exists
Django provides the {% include %} template tag that allows one template to render and
include another template. However, in situations when an error is raised because the
template to include does not exist, rendering will outright fail. In this recipe, we will create
a {% try_to_include %} template tag that includes another template if it exists, and fails
silently by rendering as an empty string otherwise.

Getting ready
We will start again with the utils app that is installed and ready for custom template tags.

How to do it...
Advanced custom template tags consist of two things:

A function that parses the arguments of the template tag
The Node class that is responsible for the logic of the template tag as well as the
output

Perform the following steps to create the {% try_to_include %} template tag:

First, let's create the function parsing the template tag arguments, as follows:1.

utils/templatetags/utility_tags.py
from django import template
from django.template.loader import get_template

register = template.Library()

"""TAGS"""

@register.tag
def try_to_include(parser, token):
 """
 Usage: {% try_to_include "sometemplate.html" %}
 This will fail silently if the template doesn't exist.
 If it does exist, it will be rendered with the current context.

Customizing Template Filters and Tags Chapter 5

[241]

 """
 try:
 tag_name, template_name = token.split_contents()
 except ValueError:
 tag_name = token.contents.split()[0]
 raise template.TemplateSyntaxError(
 f"{tag_name} tag requires a single argument")
 return IncludeNode(template_name)

Then, we need a custom IncludeNode class in the same file, extending from the2.
base template.Node, as follows:

utils/templatetags/utility_tags.py
...
class IncludeNode(template.Node):
 def __init__(self, template_name):
 self.template_name = template.Variable(template_name)

 def render(self, context):
 try:
 # Loading the template and rendering it
 included_template = self.template_name.resolve(context)
 if isinstance(included_template, str):
 included_template = get_template(included_template)
 rendered_template = included_template.render(context)
 except (template.TemplateDoesNotExist,
 template.VariableDoesNotExist,
 AttributeError):
 rendered_template = ""
 return rendered_template

How it works...
The {% try_to_include %} template tag expects one argument, that is, template_name.
Therefore, in the try_to_include() function, we try to assign the split contents of the
token only to the tag_name variable (which is try_to_include) and
the template_name variable. If this doesn't work, a TemplateSyntaxError is raised. The
function returns the IncludeNode object, which gets the template_name field, and stores
it as a template Variable object for later use.

Customizing Template Filters and Tags Chapter 5

[242]

In the render() method of IncludeNode, we resolve the template_name variable. If a
context variable was passed to the template tag, its value will be used here
for template_name. If a quoted string was passed to the template tag, then the content
within the quotes will be used for included_template, whereas a string corresponding
to a context variable will be resolved into its string equivalent for the same.

Lastly, we will try to load the template, using the resolved included_template string and
render it with the current template context. If that doesn't work, an empty string is
returned.

There are at least two situations where we could use this template tag:

When including a template whose path is defined in a model, as follows:

{% load utility_tags %}
{% try_to_include object.template_path %}

When including a template whose path is defined with the {% with %} template
tag somewhere high in the template context variable's scope. This is especially
useful when you need to create custom layouts for plugins in the placeholder of a
template in Django CMS:

{# templates/cms/start_page.html #}
{% with editorial_content_template_path=
 "cms/plugins/editorial_content/start_page.html" %}
 {% placeholder "main_content" %}
{% endwith %}

When the placeholder is filled, the context variable is then read and the template
can be safely included, if available:

{# templates/cms/plugins/editorial_content.html #}
{% load utility_tags %}

{% if editorial_content_template_path %}
 {% try_to_include editorial_content_template_path %}
{% else %}
 <div>
 <!-- Some default presentation of
 editorial content plugin -->
 </div>
{% endif %}

Customizing Template Filters and Tags Chapter 5

[243]

The template tags in the previous snippet have been split across lines for
legibility, but in practice, template tags must be on a single line, and so
they cannot be split in this manner.

There's more...
You can use the {% try_to_include %} tag in any combination with the default {%
include %} tag to include the templates that extend other templates. This is beneficial for
large-scale portals, where you have different kinds of lists in which complex items share the
same structure as widgets but have a different source of data.

For example, in the artist list template, you can include the artist item template, as follows:

{% load utility_tags %}
{% for object in object_list %}
 {% try_to_include "artists/includes/artist_item.html" %}
{% endfor %}

This template will extend from the item base, as follows:

{# templates/artists/includes/artist_item.html #}
{% extends "utils/includes/item_base.html" %}

{% block item_title %}
 {{ object.first_name }} {{ object.last_name }}
{% endblock %}

The item base defines the markup for any item and also includes a Like widget, as follows:

{# templates/utils/includes/item_base.html #}
{% load likes_tags %}

<h3>{% block item_title %}{% endblock %}</h3>
{% if request.user.is_authenticated %}
 {% like_widget for object %}
{% endif %}

See also
The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript
The Creating a template tag to load a QuerySet in a template recipe
The Creating a template tag to parse content as a template recipe

Customizing Template Filters and Tags Chapter 5

[244]

The Creating a template tag to modify request query parameters recipe
The Creating templates for Django CMS recipe in Chapter 8, Django CMS
The Writing your own CMS plugin recipe in Chapter 8, Django CMS

Creating a template tag to load a QuerySet
in a template
Generally, the content that should be shown on a web page will be defined in the context
by views. If the content is to be shown on every page, it is logical to create a context
processor to make it available globally. Another situation is when you need to show
additional content such as the latest news or a random quote on some pages, for example,
the starting page or the details page of an object. In this case, you can load the necessary
content with a custom {% load_objects %} template tag, which we will implement in
this recipe.

Getting ready
Once again, we will start with the utils app, which should be installed and ready for
custom template tags.

How to do it...
An advanced custom template tag consists of a function that parses the arguments that are
passed to the tag, and the Node class that renders the output of the tag or modifies the
template context. Perform the following steps to create the {% load_objects %} template
tag:

First, let's create the function that handles parsing the template tag arguments, as1.
follows:

utils/templatetags/utility_tags.py
from django import template
from django.apps import apps

register = template.Library()

"""TAGS"""

Customizing Template Filters and Tags Chapter 5

[245]

@register.tag
def load_objects(parser, token):
 """
 Gets a queryset of objects of the model specified by app and
 model names

 Usage:
 {% load_objects [<manager>.]<method>
 from <app_name>.<model_name>
 [limit <amount>]
 as <var_name> %}

 Examples:
 {% load_objects latest_published from people.Person
 limit 3 as people %}
 {% load_objects site_objects.all from news.Article
 as articles %}
 {% load_objects site_objects.all from news.Article
 limit 3 as articles %}
 """
 limit_count = None
 try:
 (tag_name, manager_method,
 str_from, app_model,
 str_limit, limit_count,
 str_as, var_name) = token.split_contents()
 except ValueError:
 try:
 (tag_name, manager_method,
 str_from, app_model,
 str_as, var_name) = token.split_contents()
 except ValueError:
 tag_name = token.contents.split()[0]
 raise template.TemplateSyntaxError(
 f"{tag_mame} tag requires the following syntax: "
 f"{{% {tag_mame} [<manager>.]<method> from "
 "<app_name>.<model_name> [limit <amount>] "
 "as <var_name> %}")
 try:
 app_name, model_name = app_model.split(".")
 except ValueError:
 raise template.TemplateSyntaxError(
 "load_objects tag requires application name "
 "and model name, separated by a dot")
 model = apps.get_model(app_name, model_name)
 return ObjectsNode(model, manager_method, limit_count,
 var_name)

Customizing Template Filters and Tags Chapter 5

[246]

Then, we will create the custom ObjectsNode class in the same file, extending2.
from the base template.Node, as shown in the following code:

class ObjectsNode(template.Node):
 def __init__(self, model, manager_method, limit, var_name):
 self.model = model
 self.manager_method = manager_method
 self.limit = template.Variable(limit) if limit else None
 self.var_name = var_name

 def render(self, context):
 if "." in self.manager_method:
 manager, method = self.manager_method.split(".")
 else:
 manager = "_default_manager"
 method = self.manager_method

 model_manager = getattr(self.model, manager)
 fallback_method = self.model._default_manager.none
 qs = getattr(model_manager, method, fallback_method)()
 limit = None
 if self.limit:
 try:
 limit = self.limit.resolve(context)
 except template.VariableDoesNotExist:
 limit = None
 context[self.var_name] = qs[:limit] if limit else qs
 return ""

How it works...
The {% load_objects %} template tag loads a QuerySet defined by the method of the
manager from a specified app and model, limits the result to the specified count, and saves
the result to the given context variable.

The following code is the simplest example of how to use the template tag that we have just
created. It will load all news articles in any template, using the following snippet:

{% load utility_tags %}
{% load_objects all from news.Article as all_articles %}
{% for article in all_articles %}
 {{ article.title }}
{% endfor %}

Customizing Template Filters and Tags Chapter 5

[247]

This is using the all() method of the default objects manager of the Article model,
and it will sort the articles by the ordering attribute defined in the Meta class of the
model.

A more advanced example would be required to create a custom manager with a custom
method to query the objects from the database. A manager is an interface that provides the
database query operations to models. Each model has at least one manager
called objects by default. As an example, let's create an Artist model that has a draft or
a published status and a new custom_manager that allows you to select random published
artists:

artists/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

STATUS_CHOICES = (
 ("draft", _("Draft")),
 ("published", _("Published")),
)

class ArtistManager(models.Manager):
 def random_published(self):
 return self.filter(status="published").order_by("?")

class Artist(models.Model):
 # ...
 status = models.CharField(_("Status"),
 max_length=20,
 choices=STATUS_CHOICES)
 custom_manager = ArtistManager()

To load a random published artist, you add the following snippet to any template:

{% load utility_tags %}
{% load_objects custom_manager.random_published
 from artists.Artist limit 1 as random_artists %}
{% for artist in random_artists %}
 {{ artist.first_name }} {{ artist.last_name }}
{% endfor %}

Customizing Template Filters and Tags Chapter 5

[248]

Template tags in the previous snippet have been split across lines for
legibility, but in practice, template tags must be on a single line, and so
cannot be split in this manner.

Let's look at the code of the {% load_objects %} template tag. In the parsing function,
there are two allowed forms for the tag—with or without a limit. The string is parsed, and if
the format is recognized, the components of the template tag are passed to the
ObjectNode class.

In the render() method of the Node class, we check the manager's name and its method's
name. If no manager is specified, _default_manager will be used, which is an automatic
property of any model injected by Django and points to the first available
models.Manager() instance. In most cases, _default_manager will be the objects
manager. After that, we will call the method of the manager and fall back to
empty QuerySet if the method doesn't exist. If a limit is defined, we resolve the value of it
and limit QuerySet accordingly. Lastly, we will save the resulting QuerySet to the context
variable as given by var_name.

See also
The Creating a template tag to include a template if it exists recipe
The Creating a template tag to parse content as a template recipe
The Creating a template tag to modify request query parameters recipe

Creating a template tag to parse content as
a template
In this recipe, we will create the {% parse %} template tag, which will allow you to put
template snippets in the database. This is valuable when you want to provide different
content for authenticated and unauthenticated users, when you want to include a
personalized salutation or you don't want to hardcode the media paths in the database.

Customizing Template Filters and Tags Chapter 5

[249]

Getting ready
As usual, we will start with the utils app that should be installed and ready for custom
template tags.

How to do it...
An advanced custom template tag consists of a function that parses the arguments that are
passed to the tag, and a Node class that renders the output of the tag or modifies the
template context. Perform the following steps to create them {% parse %} template tag:

First, let's create the function parsing the arguments of the template tag, as1.
follows:

utils/templatetags/utility_tags.py
from django import template

register = template.Library()

"""TAGS"""

@register.tag
def parse(parser, token):
 """
 Parses a value as a template and prints or saves to a variable

 Usage:
 {% parse <template_value> [as <variable>] %}

 Examples:
 {% parse object.description %}
 {% parse header as header %}
 {% parse "{{ MEDIA_URL }}js/" as js_url %}
 """
 bits = token.split_contents()
 tag_name = bits.pop(0)
 try:
 template_value = bits.pop(0)
 var_name = None
 if len(bits) >= 2:
 str_as, var_name = bits[:2]
 except ValueError:
 raise template.TemplateSyntaxError(

Customizing Template Filters and Tags Chapter 5

[250]

 f"{tag_name} tag requires the following syntax: "
 f"{{% {tag_name} <template_value> [as <variable>] %}}")
 return ParseNode(template_value, var_name)

Then, we will create the custom ParseNode class in the same file, extending from2.
the base template.Node, as shown in the following code:

class ParseNode(template.Node):
 def __init__(self, template_value, var_name):
 self.template_value = template.Variable(template_value)
 self.var_name = var_name

 def render(self, context):
 template_value = self.template_value.resolve(context)
 t = template.Template(template_value)
 context_vars = {}
 for d in list(context):
 for var, val in d.items():
 context_vars[var] = val
 req_context = template.RequestContext(context["request"],
 context_vars)
 result = t.render(req_context)
 if self.var_name:
 context[self.var_name] = result
 result = ""
 return result

How it works...
The {% parse %} template tag allows you to parse a value as a template and render it
immediately or save it as a context variable.

If we have an object with a description field, which can contain template variables or logic,
we can parse and render it using the following code:

{% load utility_tags %}
{% parse object.description %}

It is also possible to define a value to parse using a quoted string, as shown in the following
code:

{% load static utility_tags %}
{% get_static_prefix as STATIC_URL %}
{% parse "{{ STATIC_URL }}site/img/" as img_path %}

Customizing Template Filters and Tags Chapter 5

[251]

Let's take a look at the code of the {% parse %} template tag. The parsing function checks
the arguments of the template tag bit by bit. At first, we expect the parse name and the
template value. If there are still more bits in the token, we expect the combination of an
optional as word followed by the context variable name. The template value and the
optional variable name are passed to the ParseNode class.

The render() method of that class first resolves the value of the template variable and
creates a template object out of it. The context vars are copied and a request context is
generated, which the template is rendered. If the variable name is defined, the result is
saved to it and an empty string is rendered; otherwise, the rendered template is shown
immediately.

See also
The Creating a template tag to include a template if it exists recipe
The Creating a template tag to load a QuerySet in a template recipe
The Creating a template tag to modify request query parameters recipe

Creating a template tag to modify request
query parameters
Django has a convenient and flexible system to create canonical and clean URLs just by
adding regular expression rules to the URL configuration files. However, there is a lack of
built-in mechanisms with which to manage query parameters. Views such as search or
filterable object lists need to accept query parameters to drill down through the filtered
results using another parameter or to go to another page. In this recipe, we will create {%
modify_query %}, {% add_to_query %}, and {% remove_from_query %} template
tags, which let you add, change, or remove the parameters of the current query.

Customizing Template Filters and Tags Chapter 5

[252]

Getting ready
Once again, we start with the utils app that should be set in INSTALLED_APPS and
contain the templatetags package.

Also, make sure that you have the request context processor added to the
context_processors list in the TEMPLATES settings under OPTIONS, as follows:

settings.py or config/base.py
TEMPLATES = [
 {
 # ...
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.request',
 # ...
]
 }
 }
]

How to do it...
For these template tags, we will be using the simple_tag decorator that parses the
components and requires you to just define the rendering function, as follows:

First, let's add a helper method for putting together the query strings that each of1.
our tags will output:

utils/templatetags/utility_tags.py
from urllib.parse import urlencode

from django import template
from django.utils.encoding import force_str

register = template.Library()

def construct_query_string(context, query_params):
 # empty values will be removed
 query_string = context["request"].path
 if len(query_params):
 encoded_params = urlencode([
 (key, force_str(value))
 for (key, value) in query_params if value

Customizing Template Filters and Tags Chapter 5

[253]

]).replace("&", "&")
 query_string += f"?{encoded_params}"
 return query_string

"""TAGS"""
...

Then, we will create the {% modify_query %} template tag:2.

@register.simple_tag(takes_context=True)
def modify_query(context, *params_to_remove, **params_to_change):
 """Renders a link with modified current query parameters"""
 query_params = []
 get_data = context["request"].GET
 for key, last_value in get_data.items():
 value_list = get_data.getlist(key)
 if key not in params_to_remove:
 # don't add key-value pairs for params_to_remove
 if key in params_to_change:
 # update values for keys in params_to_change
 query_params.append((key, params_to_change[key]))
 params_to_change.pop(key)
 else:
 # leave existing parameters as they were
 # if not mentioned in the params_to_change
 for value in value_list:
 query_params.append((key, value))
 # attach new params
 for key, value in params_to_change.items():
 query_params.append((key, value))
 return construct_query_string(context, query_params)

Next, let's create the {% add_to_query %} template tag:3.

@register.simple_tag(takes_context=True)
def add_to_query(context, *params_to_remove, **params_to_add):
 """Renders a link with modified current query parameters"""
 query_params = []
 # go through current query params..
 get_data = context["request"].GET
 for key, last_value in get_data.items():
 value_list = get_data.getlist(key)
 if key not in params_to_remove:
 # don't add key-value pairs which already
 # exist in the query
 if (key in params_to_add
 and params_to_add[key] in value_list):

Customizing Template Filters and Tags Chapter 5

[254]

 params_to_add.pop(key)
 for value in value_list:
 query_params.append((key, value))
 # add the rest key-value pairs
 for key, value in params_to_add.items():
 query_params.append((key, value))
 return construct_query_string(context, query_params)

Lastly, let's create the {% remove_from_query %} template tag:4.

@register.simple_tag(takes_context=True)
def remove_from_query(context, *args, **kwargs):
 """Renders a link with modified current query parameters"""
 query_params = []
 # go through current query params..
 get_data = context["request"].GET
 for key, last_value in get_data.items():
 value_list = get_data.getlist(key)
 # skip keys mentioned in the args
 if key not in args:
 for value in value_list:
 # skip key-value pairs mentioned in kwargs
 if not (key in kwargs and
 str(value) == str(kwargs[key])):
 query_params.append((key, value))
 return construct_query_string(context, query_params)

How it works...
All the three created template tags behave similarly. At first, they read the current query
parameters from the request.GET dictionary-like QueryDict object to a new list of (key,
value) query_params tuples. Then, the values are updated depending on the positional
arguments and keyword arguments. Lastly, the new query string is formed via the helper
method defined first. In this process, all spaces and special characters are URL-encoded,
and the ampersands connecting the query parameters are escaped. This new query string is
returned to the template.

To read more about the QueryDict objects, refer to the official Django
documentation
at https://docs.djangoproject.com/en/2.1/ref/request-response/#qu
erydict-objects.

https://docs.djangoproject.com/en/2.1/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/2.1/ref/request-response/#querydict-objects

Customizing Template Filters and Tags Chapter 5

[255]

Let's take a look at an example of how the {% modify_query %} template tag can be used.
Positional arguments in the template tag define which query parameters are to be removed,
and the keyword arguments define which query parameters are to be updated in the
current query. If the current URL is
http://127.0.0.1:8000/artists/?category=fine-art&page=5, we can use the
following template tag to render a link that goes to the next page:

{% load utility_tags %}
6

The following snippet is the output rendered using the preceding template tag:

6

We can also use the following example to render a link that resets pagination and goes to
another category, sculpture, as follows:

{% load utility_tags %}

 Sculpture

So, the rendered output rendered using the preceding template tag would be as shown in
this snippet:

 Sculpture

With the {% add_to_query %} template tag, you can add parameters step-by-step with
the same name. For example, if the current URL is
http://127.0.0.1:8000/artists/?category=fine-art, you can add another
category, Sculpture, with the help of the following snippet:

{% load utility_tags %}

 + Sculpture

This will be rendered in the template, as shown in the following snippet:

 + Sculpture

Customizing Template Filters and Tags Chapter 5

[256]

Lastly, with the help of the {% remove_from_query %} template tag, you can remove the
parameters step-by-step with the same name. For example, if the current URL
is http://127.0.0.1:8000/artists/?category=fine-art&category=sculpture,
you can remove the Sculpture category with the help of the following snippet:

{% load utility_tags %}

 - Sculpture

This will be rendered in the template as follows:

 - Sculpture

See also
The Filtering object lists recipe in Chapter 3, Forms and Views
The Creating a template tag to include a template if it exists recipe
The Creating a template tag to load a QuerySet in a template recipe
The Creating a template tag to parse content as a template recipe

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

6
Model Administration

In this chapter, we will cover the following topics:

Customizing columns on the change list page
Creating admin actions
Developing change list filters
Customizing default admin settings
Inserting a map on a change form

Introduction
The Django framework comes with a built-in administration system for your data models.
With very little effort, you can set up filterable, searchable, and sortable lists for browsing
your models, and you can configure forms to add and manage data. In this chapter, we will
go through the advanced techniques to customize administration, by developing some
practical cases.

Model Administration Chapter 6

[258]

Customizing columns on the change list
page
The change list views in the default Django administration system let you have an
overview of all of the instances of the specific models. By default, the list_display model
admin property controls the fields that are shown in different columns. Additionally, you
can implement custom admin methods that will return the data from relations or display
custom HTML. In this recipe, we will create a special function, for use with the
list_display property, that shows an image in one of the columns of the list view. As a
bonus, we will make one field directly editable in the list view, by adding the
list_editable setting.

Getting ready
To start, make sure that django.contrib.admin is in INSTALLED_APPS in the settings,
and hook up the admin site in the URL configuration, as follows:

project/urls.py
from django.contrib import admin
from django.urls import include, path

urlpatterns = [
 path('admin/', admin.site.urls),
 # ...
]

Next, create a new products app, and put it under INSTALLED_APPS, adding the volume
to the Docker Compose configuration if needed. This app will have the Product and
ProductPhoto models, where one product might have multiple photos. For this example,
we will also be using UrlMixin, which was defined in the Creating a model mixin with URL-
related methods recipe, in Chapter 2, Database Structure and Modeling.

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31

Model Administration Chapter 6

[259]

Let's create the Product and ProductPhoto models in the models.py file, as follows:

products/models.py
import os

from django.urls import reverse, NoReverseMatch
from django.db import models
from django.utils.timezone import now as timezone_now
from django.utils.translation import ugettext_lazy as _

from utils.models import UrlMixin

def product_photo_upload_to(instance, filename):
 now = timezone_now()
 slug = instance.product.slug
 base, ext = os.path.splitext(filename)
 return f"products/{slug}/{now:%Y%m%d%H%M%S}{ext.lower()}"

class Product(UrlMixin):
 class Meta:
 verbose_name = _("Product")
 verbose_name_plural = _("Products")

 title = models.CharField(_("title"),
 max_length=200)
 slug = models.SlugField(_("slug"),
 max_length=200)
 description = models.TextField(_("description"),
 blank=True)
 price = models.DecimalField(_("price (€)"),
 max_digits=8,
 decimal_places=2,
 blank=True,
 null=True)

 def get_url_path(self):
 try:
 return reverse("product_detail",
 kwargs={"slug": self.slug})
 except NoReverseMatch:
 return ""

 def __str__(self):
 return self.title

Model Administration Chapter 6

[260]

class ProductPhoto(models.Model):
 class Meta:
 verbose_name = _("Photo")
 verbose_name_plural = _("Photos")

 product = models.ForeignKey(Product,
 on_delete=models.CASCADE)
 photo = models.ImageField(_("photo"),
 upload_to=product_photo_upload_to)

 def __str__(self):
 return self.photo.name

Don't forget to make and run an initial migration for the new products
app, once your models are in place.

How to do it...
We will create a simple administration for the Product model that will have instances of
the ProductPhoto model attached to the product as inlines.

In the list_display property, we will include the first_photo() method of the model
admin, which will be used to show the first photo from the many-to-one relationship.

Let's create an admin.py file, with the following content:1.

products/admin.py
from django.contrib import admin
from django.template.loader import render_to_string
from django.utils.text import mark_safe
from django.utils.translation import ugettext_lazy as _

from .models import Product, ProductPhoto

class ProductPhotoInline(admin.StackedInline):
 model = ProductPhoto
 extra = 0

class ProductAdmin(admin.ModelAdmin):
 list_display = ["get_photo", "title", "price"]
 list_display_links = ["title",]

Model Administration Chapter 6

[261]

 list_editable = ["price"]

 fieldsets = (
 (_("Product"), {
 "fields": ("title", "slug", "description", "price"),
 }),
)
 prepopulated_fields = {"slug": ("title",)}
 inlines = [ProductPhotoInline]

 def get_photo(self, obj):
 project_photos = obj.productphoto_set.all()[:1]
 if project_photos.count() > 0:
 photo_preview = render_to_string(
 "products/includes/photo-preview.html",
 {
 "photo": project_photos[0],
 "size": "100",
 "product": obj,
 "target": "preview",
 });
 return mark_safe(photo_preview)
 return ""
 get_photo.short_description = _("Preview")

admin.site.register(Product, ProductAdmin)

Now, we have to create the template that is used to generate the2.
photo_preview, as follows:

{# products/includes/photo-preview.html #}
{% load thumbnail %}
<a href="{% url 'product-detail' slug=product.slug %}"
 target="{{ target }}">
 <img src="{% thumbnail photo size %}"
 alt="{{ product.title }} preview">

Model Administration Chapter 6

[262]

In order for the URL lookup to work properly, we will have to create a detail3.
view and wire it up. Let's start with the view, as follows:

products/views.py
from django.views.generic import DetailView

from .models import Product

class ProductDetail(DetailView):
 model = Product

Now, wire the view up in a URLconf for the products app, as follows:4.

products/urls.py
from django.urls import path

from .views import ProductDetail

urlpatterns = [
 path('<slug:slug>/', ProductDetail.as_view(),
 name='product-detail'),
]

Finally, include the app URLs in the project configuration, as follows:5.

project/urls.py
from django.urls import include, path

urlpatterns = [
 # ...
 path('products/', include('products.urls')),
]

How it works...
If you add a few products with photos, and then look at the product administration list in
the browser, it will look similar to the following screenshot:

Model Administration Chapter 6

[263]

Model Administration Chapter 6

[264]

The list_display property is usually used to define the fields to display in the
administration list view; for example, title and price are fields of the Product
model. Besides the normal field names, though, the list_display property also accepts
the following:

A function, or another callable
The name of an attribute of the admin model
The name of an attribute of the model

In Python, callable is a function, method, or class that implements
the __call__() method. You can check whether a variable is callable
by using the callable() function.

When using callables in list_display, each one will get the model instance passed as the
first argument. Therefore, in our example, we have defined the get_photo() method in
the model admin class, and that receives the Product instance as obj. The method tries to
get the first ProductPhoto object from the many-to-one relationship, and, if it exists, it
returns HTML generated from the include template, with the tag linked to the
detail page for Product.

You can set several attributes for the callables that you use in list_display. The
short_description attribute of the callable defines the title shown at the top of the
column, for instance. When content will not sort naturally, the admin_order_field
attribute can be set to another field name, optionally using a hyphen prefix to indicate a
reversed sort order.

Finally, the Price field is made editable by including it in the list_editable setting, and,
as there are editable fields, a Save button is introduced at the bottom, to save the whole list
of products.

Model Administration Chapter 6

[265]

There's more...
With some minor adjustments, the photo preview template used here could also be used in
product listing and detail views, to display one or more of the photos associated with each
product. We leave that as an exercise for you.

See also
The Creating a model mixin with URL-related methods recipe, in Chapter 2, Database
Structure and Modeling
The Creating admin actions recipe
The Developing change list filters recipe

Creating admin actions
The Django administration system provides actions that we can execute for selected items
in the list. There is one action given, by default, and it is used to delete selected instances. In
this recipe, we will create an additional action for the list of the Product model, which will
allow the administrators to export selected products to Excel spreadsheets.

Getting ready
We will start with the products app that we created in the previous recipe.

Make sure that you have the openpyxl module installed in your virtual environment, to
create an Excel spreadsheet, as follows:

(myproject_env)$ pip3 install openpyxl~=2.5.0

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31

Model Administration Chapter 6

[266]

If you are using a Docker project, add the dependency to your requirements and rebuild the
container, as follows:

requirements.txt or requirements/base.txt
...
openpyxl~=2.5.0

How to do it...
Admin actions are functions that take three arguments, as follows:

The current ModelAdmin value
The current HttpRequest value
The QuerySet value containing the selected items

Perform the following steps to create a custom admin action to export a spreadsheet:

Create an export_xlsx() function in the admin.py file of the products app, as1.
follows:

products/admin.py
from copy import copy
from openpyxl import Workbook
from openpyxl.styles import Alignment, NamedStyle, builtins
from openpyxl.styles.numbers import FORMAT_NUMBER
from openpyxl.writer.excel import save_virtual_workbook

from django.http.response import HttpResponse
from django.utils.translation import ugettext_lazy as _
... other imports ...

def export_xlsx(modeladmin, request, queryset):
 wb = Workbook()
 ws = wb.active
 ws.title = "Products"

 number_alignment = Alignment(horizontal="right")
 wb.add_named_style(NamedStyle("Identifier",
 alignment=number_alignment,
 number_format=FORMAT_NUMBER))
 wb.add_named_style(NamedStyle("Normal Wrapped",
 alignment=Alignment(
 wrap_text=True)))

 number_headline_1 = copy(builtins.styles["Headline 1"])

Model Administration Chapter 6

[267]

 number_headline_1.name = "Number Headline 1"
 number_headline_1.alignment = number_alignment
 wb.add_named_style(number_headline_1)

 class Config():
 def __init__(self,
 heading,
 width=None,
 heading_style="Headline 1",
 style="Normal Wrapped"):
 self.heading = heading
 self.width = width
 self.heading_style = heading_style
 self.style = style

 column_config = {
 "A": Config("ID",
 width=10,
 heading_style="Number Headline 1",
 style="Identifier"),
 "B": Config("Title", width=30),
 "C": Config("Description", width=60),
 "D": Config("Price ($)",
 width=15,
 heading_style="Number Headline 1",
 style="Currency"),
 "E": Config("Preview", width=100, style="Hyperlink"),
 }

 # Set up column widths, header values and styles
 for col, conf in column_config.items():
 ws.column_dimensions[col].width = conf.width

 column = ws[f"{col}1"]
 column.value = conf.heading
 column.style = conf.heading_style

 # Add products
 for obj in queryset.order_by("pk"):
 project_photos = obj.productphoto_set.all()[:1]
 url = ""
 if project_photos:
 url = project_photos[0].photo.url

 data = [obj.pk, obj.title, obj.description, obj.price, url]
 ws.append(data)

 row = ws.max_row

Model Administration Chapter 6

[268]

 for row_cells in ws.iter_cols(min_row=row, max_row=row):
 for cell in row_cells:
 cell.style = column_config[cell.column].style

 mimetype = "application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet"
 charset = "utf-8"
 response = HttpResponse(
 content=save_virtual_workbook(wb),
 content_type=f"{mimetype}; charset={charset}",
 charset=charset)
 response["Content-Disposition"] = "attachment;
filename=products.xlsx"
 return response

export_xlsx.short_description = _("Export XLSX")

Then, add the actions setting to ProductAdmin, as follows:2.

class ProductAdmin(admin.ModelAdmin):
 # ...
 actions = [export_xlsx]

How it works...
If you take a look at the product administration list page in the browser, you will see a new
action called Export XLSX, along with the default Delete selected Products action, as
shown in the following screenshot:

Model Administration Chapter 6

[269]

Model Administration Chapter 6

[270]

To create the spreadsheet export response, we use the openpyxl Python module to create
an OpenOffice XML file compatible with Excel and other spreadsheet software.

First, a workbook is created, and the active worksheet is selected, for which we set the title
to Products. Because there are common styles that we will want to use throughout the
worksheet, these are set up as named styles, so that they can be applied by name to each
cell, as appropriate. For the id and price headers, the base Headline 1 style is copied,
aligned right, and stored under a new name, Number Headline 1. These styles, the
column headings, and the column widths are stored as Config objects, and
a column_config dictionary maps column letter keys to the objects. This is then iterated
over, to set up the headers and column widths.

The value given for the column width can be an integer or decimal, and it
indicates the quantity of the widest number in the normal style's font that
should fit on a single line, adjusted to account for the spacing and
gridlines of each cell.

We use the append() method of the sheet to add the content for each of the selected
products in QuerySet, ordered by ID, including the URL of the first photo for the product,
when photos are available. The product data is then individually styled by iterating over
each of the cells in the just-added row, once again referring to column_config to apply
styles consistently.

By default, admin actions do something with QuerySet, and redirect the administrator
back to the change list page. However, for more complex actions like
these, HttpResponse can be returned. The export_xlsx() function saves a virtual copy
of the workbook to HttpResponse, with the content type and character set appropriate to
the Office Open XML (OOXML) spreadsheet. Using the Content-Disposition header,
we set the response to be downloadable as products.xlsx. The resulting sheet can be
opened in Excel, and will look similar to the following:

Model Administration Chapter 6

[271]

See also
The Customizing columns on the change list page recipe
The Developing change list filters recipe
Chapter 9, Data Import and Export

Developing change list filters
If you want the administrators to be able to filter the change list by date, relation, or field
choices, you have to use the list_filter property for the admin model. Additionally,
there is the possibility of having custom-tailored filters. In this recipe, we will add a filter
that allows you to select products by the number of photos attached to them.

Getting ready
Let's start with the products app that we created in the Customizing columns on the change
list page recipe.

How to do it...
Execute the following steps:

In the admin.py file, create a PhotoFilter class extending from1.
SimpleListFilter, as follows:

products/admin.py
... all previous imports go here ...
from django.db import models

ZERO = "zero"
ONE = "one"
MANY = "many"

class PhotoFilter(admin.SimpleListFilter):
 # Human-readable title which will be displayed in the
 # right admin sidebar just above the filter options.
 title = _("photos")

 # Parameter for the filter that will be used in the

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=67

Model Administration Chapter 6

[272]

 # URL query.
 parameter_name = "photos"

 def lookups(self, request, model_admin):
 """
 Returns a list of tuples, akin to the values given for
 model field choices. The first element in each tuple is the
 coded value for the option that will appear in the URL
 query. The second element is the human-readable name for
 the option that will appear in the right sidebar.
 """
 return (
 (ZERO, _("Has no photos")),
 (ONE, _("Has one photo")),
 (MANY, _("Has more than one photo")),
)

 def queryset(self, request, queryset):
 """
 Returns the filtered queryset based on the value
 provided in the query string and retrievable via
 `self.value()`.
 """
 qs = queryset.annotate(
 num_photos=models.Count("productphoto"))

 if self.value() == ZERO:
 qs = qs.filter(num_photos=0)
 elif self.value() == ONE:
 qs = qs.filter(num_photos=1)
 elif self.value() == MANY:
 qs = qs.filter(num_photos__gte=2)
 return qs

Then, add a list filter to ProductAdmin, as shown in the following code:2.

class ProductAdmin(admin.ModelAdmin):
 # ...
 list_filter = ["price", PhotoFilter]

How it works...
The list filter, based on the price (USD) field plus the custom one that we just created, will
be shown in the sidebar of the product list, as follows:

Model Administration Chapter 6

[273]

Model Administration Chapter 6

[274]

The PhotoFilter class has translatable title and query parameter names as properties.
It also has two methods, as follows:

The lookups() method that defines the choices of the filter
The queryset() method that defines how to filter QuerySet objects when a
specific value is selected

In the lookups() method, we define three choices, as follows:

There are no photos
There is one photo
There is more than one photo attached

In the queryset() method, we use the annotate() method of QuerySet to select the
count of photos for each product. This count of the photos is then filtered according to the
selected choice.

To learn more about the aggregation functions, such as annotate(), refer
to the official Django documentation at
https://docs.djangoproject.com/en/2.1/topics/db/aggregation/.

See also
The Customizing columns on the change list page recipe
The Creating admin actions recipe
The Customizing default admin settings recipe

Customizing default admin settings
Django apps, as well as third-party apps, come with their own administration settings;
however, there is a mechanism to switch these settings off and use your own, preferred
administration settings. In this recipe, you will learn how to exchange the standard
administration settings from the django.contrib.auth app with custom administration
settings of your own.

https://docs.djangoproject.com/en/2.1/topics/db/aggregation/

Model Administration Chapter 6

[275]

Getting ready
Create a custom_admin app, and put this app under INSTALLED_APPS, in the settings. For
Docker projects, add it to the docker-compose.yml app volumes.

How to do it...
First, add the following content to the new admin.py file in the custom_admin1.
app, to set up extended admin settings for user administration:

custom_admin/admin.py
from django.contrib import admin
from django.contrib.auth.admin import (User, UserAdmin,
 Group, GroupAdmin)
from django.contrib.contenttypes.models import ContentType
from django.urls import reverse
from django.utils.text import mark_safe
from django.utils.translation import ugettext_lazy as _

class UserAdminExtended(UserAdmin):
 list_display = ("username", "email",
 "first_name", "last_name",
 "is_active", "is_staff",
 "date_joined", "last_login")
 list_filter = ("is_active", "is_staff", "is_superuser",
 "date_joined", "last_login")
 ordering = ("last_name", "first_name", "username")
 save_on_top = True

admin.site.unregister(User)
admin.site.register(User, UserAdminExtended)

Model Administration Chapter 6

[276]

Then, add an extension for group administration, as well:2.

class GroupAdminExtended(GroupAdmin):
 list_display = ("__str__", "display_users")
 save_on_top = True

 def display_users(self, obj):
 links = []
 for user in obj.user_set.all():
 ct = ContentType.objects.get_for_model(user)
 rule_name = f"admin:{ct.app_label}_{ct.model}_change"
 url = reverse(rule_name, args=(user.id,))
 user_name = (
 f"{user.first_name} {user.last_name}".strip()
 or user.username)
 links.append(f"""
 {user_name}
 """)
 return mark_safe("
".join(links))
 display_users.allow_tags = True
 display_users.short_description = _("Users")

admin.site.unregister(Group)
admin.site.register(Group, GroupAdminExtended)

Model Administration Chapter 6

[277]

How it works...
The default user administration list looks similar to the following screenshot:

Model Administration Chapter 6

[278]

The default group administration list looks similar to the following screenshot:

In this recipe, we created two model admin classes, UserAdminExtended and
GroupAdminExtended, which extend the contributed UserAdmin and GroupAdmin classes
respectively, and overwrite some of the properties. Then, we unregistered the existing
administration classes for the User and Group models, and registered the new, modified
ones.

Model Administration Chapter 6

[279]

The following screenshot shows how the user administration will now look:

The modified user administration settings show more fields than the default settings in the
list view, add additional filters and ordering options, and show Submit buttons at the top
of the editing form.

Model Administration Chapter 6

[280]

In the change list of the new group administration settings, we will display the users that
are assigned to the specific groups. In the browser, this will look similar to the following
screenshot:

See also
The Customizing columns on the change list page recipe
The Inserting a map into a change form recipe

Inserting a map into a change form
Google Maps offers a JavaScript API to insert maps into your websites. In this recipe, we
will create a locations app with the Location model and extend the template of the
change form, in order to add a map where an administrator can find and mark the
geographical coordinates of a location.

Model Administration Chapter 6

[281]

Getting ready
We will start with a locations app, which should be put under INSTALLED_APPS, in the
settings. Create Location model there, with a title, description, address, and
geographical coordinates, as follows:

locations/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

COUNTRY_CHOICES = (
 ("US", _("United States")),
 ("UK", _("United Kingdom")),
 ("CA", _("Canada")),
 ("DE", _("Germany")),
 ("FR", _("France")),
 ("LT", _("Lithuania")),
)

class Location(models.Model):
 class Meta:
 verbose_name = _("Location")
 verbose_name_plural = _("Locations")

 title = models.CharField(_("title"),
 max_length=255,
 unique=True)
 description = models.TextField(_("description"), blank=True)
 street = models.CharField(_("street address"),
 max_length=255,
 blank=True)
 street2 = models.CharField(_("street address (line 2)"),
 max_length=255,
 blank=True)
 postal_code = models.CharField(_("postal code"),
 max_length=10,
 blank=True)
 city = models.CharField(_("city"),
 max_length=255,
 blank=True)
 country = models.CharField(_("country"),
 max_length=2,
 blank=True,
 choices=COUNTRY_CHOICES)
 _latitude_definition = _(
 "Latitude (Lat.) is the angle between any point and the "

Model Administration Chapter 6

[282]

 "equator (north pole is at 90°; south pole is at -90°).")
 latitude = models.FloatField(_("latitude"),
 blank=True,
 null=True,
 help_text=_latitude_definition)
 _longitude_definition = _(
 "Longitude (Long.) is the angle east or west of a point "
 "on Earth at Greenwich (UK), which is the international "
 "zero-longitude point (longitude = 0°). The anti-meridian "
 "of Greenwich (the opposite side of the planet) is both "
 "180° (to the east) and -180° (to the west).")
 longitude = models.FloatField(_("longitude"),
 blank=True,
 null=True,
 help_text=_longitude_definition)

 def __str__(self):
 return self.title

How to do it...
The administration of the Location model is as simple as it can be. Perform the
following steps:

Let's create the administration settings for the Location model. Note that we are1.
using the get_fieldsets() method to define the field sets, with a description
rendered from a template, as follows:

locations/admin.py
from django.contrib import admin
from django.template.loader import render_to_string
from django.utils.translation import ugettext_lazy as _

from .models import Location

class LocationAdmin(admin.ModelAdmin):
 save_on_top = True
 list_display = ("title", "street", "description")
 search_fields = ("title", "street", "description")

 def get_fieldsets(self, request, obj=None):
 map_html = render_to_string("admin/includes/map.html")
 fieldsets = [
 (_("Main Data"), {"fields": ("title",
 "description")}),

Model Administration Chapter 6

[283]

 (_("Address"), {"fields": ("street",
 "street2",
 "postal_code",
 "city",
 "country",
 "latitude",
 "longitude")}),
 (_("Map"), {"description": map_html, "fields": []}),
]
 return fieldsets

admin.site.register(Location, LocationAdmin)

To create a custom change form template, add a new change_form.html file2.
under admin/locations/location/, in your templates directory. This
template will extend from the default admin/change_form.html template, and
will overwrite the extrastyle and field_sets blocks, as follows:

{# templates/admin/locations/location/change_form.html #}
{% extends "admin/change_form.html" %}
{% load i18n static admin_modify admin_static admin_urls %}

{% block extrastyle %}
 {{ block.super }}
 <link rel="stylesheet" type="text/css"
 href="{% static 'site/css/location.css' %}" />
{% endblock %}

{% block field_sets %}
 {% for fieldset in adminform %}
 {% include "admin/includes/fieldset.html" %}
 {% endfor %}
 <script type="text/javascript"
src="http://maps.google.com/maps/api/js?language=en"></script>
 <script type="text/javascript"
 src="{% static 'site/js/location.js' %}"></script>
{% endblock %}

Then, we have to create the template for the map that will be inserted in the3.
Map field set, as follows:

{# templates/admin/locations/includes/map.html #}
{% load i18n %}
<div class="form-row map">
 <div class="canvas">
 <!-- THE GMAPS WILL BE INSERTED HERE DYNAMICALLY -->

Model Administration Chapter 6

[284]

 </div>
 <ul class="locations">
 <div class="btn-group">
 <button type="button"
 class="btn btn-default locate-address">
 {% trans "Locate address" %}
 </button>
 <button type="button"
 class="btn btn-default remove-geo">
 {% trans "Remove from map" %}
 </button>
 </div>
</div>

Of course, the map won't be styled by default. Therefore, we will have to add4.
some CSS, as shown in the following code:

/* static/locations/css/map.css */
.map {
 box-sizing: border-box;
 width: 98%;
}
.map .canvas,
.map ul.locations,
.map .btn-group {
 margin: 1rem 0;
}
.map .canvas {
 border: 1px solid #000;
 box-sizing: padding-box;
 height: 0;
 padding-bottom: calc(9 / 16 * 100%); /* 16:9 aspect ratio */
 width: 100%;
}
.map .canvas:before {
 color: #eee;
 color: rgba(0, 0, 0, 0.1);
 content: "map";
 display: block;
 font-size: 5rem;
 line-height: 5rem;
 margin-top: -25%;
 padding-top: calc(50% - 2.5rem);
 text-align: center;
}
.map ul.locations {
 padding: 0;
}

Model Administration Chapter 6

[285]

.map ul.locations li {
 border-bottom: 1px solid #ccc;
 list-style: none;
}
.map ul.locations li:first-child {
 border-top: 1px solid #ccc;
}
.map .btn-group .btn.remove-geo {
 float: right;
}

Next, let's create a change_form.js JavaScript file, which will need to be added5.
to the project's static files, either by directly copying or by using the
collectstatic management command. We don't want to pollute the
environment with global variables; therefore, we will start with a closure, to
make a private scope for variables and functions.

A closure is a function scope within which variables that are not
accessible to the outer scope can be defined, but where the enclosing
scope variables can be accessed.

We will be using jQuery in this file (as jQuery comes with the contributed
administration system and makes the work easy and cross-browser), as follows:

// static/locations/js/change_form.js
(function ($, undefined) {
 var gettext = window.gettext || function (val) {
 return val;
 };
 var $map, $foundLocations, $lat, $lng, $street, $street2,
 $city, $country, $postalCode, gMap, gMarker;

 // ...this is where all the further JavaScript functions go...

}(django.jQuery));

We will create JavaScript functions and add them to change_form.js, one by6.
one. The getAddress4search() function will collect the address string from
the address fields that can be used later for geocoding, as follows:

function getAddress4search() {
 var sStreetAddress2 = $street2.val();
 if (sStreetAddress2) {
 sStreetAddress2 = " " + sStreetAddress2;
 }

Model Administration Chapter 6

[286]

 return [
 $street.val() + sStreetAddress2,
 $city.val(),
 $country.val(),
 $postalCode.val()
].join(", ");
}

The updateMarker() function will take the latitude and longitude arguments7.
and draw or move a marker on the map. It will also make the marker draggable,
as follows:

function updateMarker(lat, lng) {
 var point = new google.maps.LatLng(lat, lng);

 if (!gMarker) {
 gMarker = new google.maps.Marker({
 position: point,
 map: gMap
 });
 }

 gMarker.setPosition(point);
 gMap.panTo(point, 15);
 gMarker.setDraggable(true);

 google.maps.event.addListener(gMarker, "dragend", function() {
 var point = gMarker.getPosition();
 updateLatitudeAndLongitude(point.lat(), point.lng());
 });
}

The updateLatitudeAndLongitude() function, referenced in the8.
preceding dragend event listener, takes the latitude and longitude arguments
and updates the values for the fields with the id_latitude and
id_longitude IDs, as follows:

function updateLatitudeAndLongitude(lat, lng) {
 var precision = 1000000;
 $lat.val(Math.round(lng * precision) / precision);
 $lng.val(Math.round(lat * precision) / precision);
}

Model Administration Chapter 6

[287]

The autocompleteAddress() function gets the results from Google Maps9.
geocoding, and lists them under the map, in order to select the correct one; or, if
there is just one result, it updates the geographical position and address fields, as
follows:

function autocompleteAddress(results) {
 var $item = $('');
 var $link = $('');

 $foundLocations.html("");
 results = results || [];

 if (results.length) {
 results.forEach(function (result, i) {
 $link.clone()
 .html(result.formatted_address)
 .click(function (event) {
 event.preventDefault();
 updateAddressFields(result.address_components);

 var point = result.geometry.location;
 updateLatitudeAndLongitude(
 point.lat(), point.lng());
 updateMarker(point.lat(), point.lng());
 $foundLocations.hide();
 })
 .appendTo($item.clone().appendTo($foundLocations));
 });
 $link.clone()
 .html(gettext("None of the above"))
 .click(function(event) {
 event.preventDefault();
 $foundLocations.hide();
 })
 .appendTo($item.clone().appendTo($foundLocations));
 } else {
 $foundLocations.hide();
 }
}

Model Administration Chapter 6

[288]

The updateAddressFields() function takes a nested dictionary, with the10.
address components as an argument, and fills in all of the address fields, as
follows:

function updateAddressFields(addressComponents) {
 var streetName, streetNumber;
 var typeActions = {
 "locality": function(obj) {
 $city.val(obj.long_name);
 },
 "street_number": function(obj) {
 streetNumber = obj.long_name;
 },
 "route": function(obj) {
 streetName = obj.long_name;
 },
 "postal_code": function(obj) {
 $postalCode.val(obj.long_name);
 },
 "country": function(obj) {
 $country.val(obj.short_name);
 }
 };

 addressComponents.forEach(function(component) {
 var action = typeActions[component.types[0]];
 if (typeof action === "function") {
 action(component);
 }
 });

 if (streetName) {
 var streetAddress = streetName;
 if (streetNumber) {
 streetAddress += " " + streetNumber;
 }
 $street.val(streetAddress);
 }
}

Model Administration Chapter 6

[289]

Finally, we have the initialization function, which is called on the page load. It11.
attaches the onclick event handlers to the buttons, creates a Google Map, and,
initially, marks the geoposition that is defined in the latitude and longitude
fields, as follows:

$(function(){
 $map = $(".map");

 $foundLocations = $map.find("ul.locations").hide();
 $lat = $("#id_latitude");
 $lng = $("#id_longitude");
 $street = $("#id_street");
 $street2 = $("#id_street2");
 $city = $("#id_city");
 $country = $("#id_country");
 $postalCode = $("#id_postal_code");

 $map.find("button.locate-address")
 .click(function(event) {
 var oGeocoder = new google.maps.Geocoder();
 oGeocoder.geocode(
 {address: getAddress4search()},
 function (results, status) {
 if (status === google.maps.GeocoderStatus.OK) {
 autocompleteAddress(results);
 } else {
 autocompleteAddress(false);
 }
 }
);
 });

 $map.find("button.remove-geo")
 .click(function() {
 $lat.val("");
 $lng.val("");
 gMarker.setMap(null);
 gMarker = null;
 });

Model Administration Chapter 6

[290]

 gMap = new google.maps.Map($map.find(".canvas").get(0), {
 scrollwheel: false,
 zoom: 16,
 center: new google.maps.LatLng(51.511214, -0.119824),
 disableDoubleClickZoom: true
 });

 google.maps.event.addListener(gMap, "dblclick", function(event)
{
 var lat = event.latLng.lat();
 var lng = event.latLng.lng();
 updateLatitudeAndLongitude(lat, lng);
 updateMarker(lat, lng);
 });

 if ($lat.val() && $lng.val()) {
 updateMarker($lat.val(), $lng.val());
 }
});

How it works...
If you look at the location change form in the browser, you will see a map shown in a field
set, followed by the field set containing the address fields, as shown in the following
screenshot:

Model Administration Chapter 6

[291]

Under the map, there are two buttons: Locate address and Remove from map.

Model Administration Chapter 6

[292]

When you click on the Locate address button, the geocoding is called in order to search for
the geographical coordinates of the entered address. The result of the geocoding is one or
more addresses, with latitudes and longitudes listed in a nested dictionary format. To
see the structure of the nested dictionary in the console of the developer tools, put the
following line at the beginning of the autocompleteAddress() function:

console.log(JSON.stringify(results, null, 4));

If there is just one result, the missing postal code or other missing address fields are
populated, latitude and longitude are filled in, and a marker is put at a specific place
on the map. If there are more results, the entire list is shown under the map, with the option
to select the correct one, as shown in the following screenshot:

Model Administration Chapter 6

[293]

Then, the administrator can move the marker on the map by dragging and dropping. Also,
a double-click anywhere on the map will update the geographical coordinates and the
marker position.

Finally, if the Remove from map button is clicked, the geographical coordinates are
cleaned, and the marker is removed.

See also
The Using HTML5 data attributes recipe, in Chapter 4, Templates and JavaScript

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40

7
Security and Performance

In this chapter, we will cover the following topics:

Making forms secure from Cross Site Request Forgery (CSRF)
Implementing password validation
Downloading authorized files
Authenticating with Auth0
Caching the method return value
Using Memcached to cache Django views
Using Redis to cache Django views

Introduction
Software that inappropriately exposes sensitive information, makes the user suffer through
interminable wait times, or requires extensive amounts of hardware will never last. As a
result, it is our responsibility as developers to make sure that applications are secure and
performant. In this chapter, we will examine just some of the many ways to keep your users
(and yourself) safe while operating within Django applications. Then, we'll cover a few
options for caching that can reduce processing and get data to users at a lower expense in
both money and time.

Security and Performance Chapter 7

[295]

Making forms secure from Cross Site
Request Forgery (CSRF)
Without proper precautions, malicious sites could potentially invoke requests against your
site that would result in undesired changes on your server, such as affecting a user's
authentication, altering content, or accessing sensitive information. Django comes bundled
with a system for preventing CSRF attacks such as these, and we'll review that in this
recipe.

Getting ready
Start with the email_messages app that was created in the Passing the HttpRequest to a form
recipe from Chapter 3, Forms and Views.

How to do it...
In order to enable CSRF prevention in Django, follow these steps:

Make sure that CsrfViewMiddleware is included in your project settings, as1.
shown here:

settings.py or base.py
MIDDLEWARE = [
 # ...
 'django.middleware.csrf.CsrfViewMiddleware',
]

Make sure the form view is rendered using the request context. For example, in2.
the existing email_messages app, we have this:

email_messages/views.py
...

@login_required
def message_to_user(request):
 # ...

 return render(request,
 "email_messages/message_to_user.html",
 {"form": form}

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

Security and Performance Chapter 7

[296]

Update the form template for the form to extend from base.html, making sure3.
it uses the POST method and includes the csrf_token tag:

{# templates/email_messages/message_to_user.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
<form action="" method="POST">
 {% csrf_token %}
 {{ form.as_p }}
 <p>
 <button type="submit">{% trans "Send" %}</button>
 </p>
</form>
{% endblock %}

How it works...
Django uses a hidden field approach to prevent CSRF attacks. A token is generated on the
server, based on a combination of request-specific and randomized information. Through
CsrfViewMiddleware, this token is automatically made available via the request context.

While it is not recommended that this middleware be disabled, it is possible to mark
individual views to get the same behavior by applying the csrf_protect decorator:

from django.views.decorators.csrf import csrf_protect

@csrf_protect
def my_protected_form():
 # ...

Similarly, we can mark individual views as exempt from CSRF checks, even when the
middleware is enabled, using the csrf_exclude decorator:

from django.views.decorators.csrf import csrf_exclude

@csrf_exclude
def my_unsecured_form():
 # ...

Security and Performance Chapter 7

[297]

The built-in {% csrf_token %} tag generates the hidden input field that provides the
token. It is considered invalid to include the token for forms that submit requests using the
GET, HEAD, OPTIONS, or TRACE methods, as any requests using those methods should not
cause side effects in the first place. In most cases, web forms that will require CSRF
protection will be POST forms.

When a protected form using an unsafe method is submitted without the required token,
Django's built-in form validation will recognize this and reject the request outright. Only
those submissions containing a token with a valid value will be allowed to proceed. As a
result, external sites will be unable to effect changes on your server, since they won't be able
to know and include the currently valid token value.

There's more...
In many cases, it is desirable to enhance a form so that it can submit over Ajax. These also
need to be protected using CSRF tokens, and while it is possible to inject the token as extra
data in each request, using such an approach requires developers to remember to do so for
each and every POST. An alternative using a CSRF token header exists and it makes things
more efficient.

First, the token value needs to be retrieved, and how we do this depends upon the value of
the CSRF_USE_SESSIONS setting. When it is True, the token is stored in the session rather
than a cookie, and so we must use the {% csrf_token %} tag to include it in the DOM.
We can then read that element to retrieve the data in JavaScript:

var csrfInput = document.querySelector("[name='csrfmiddlewaretoken']");
var csrfToken = csrfTokenInput && csrfTokenInput.value;

When the CSRF_USE_SESSIONS setting is in the default False state, the preferred source of
the token value is the csrftoken cookie. While it is possible to roll your own cookie
manipulation methods, there are many utilities available that simplify the process. For
example, we can extract the token easily by name using the js-cookie API, available at
https://github.com/ js- cookie/ js- cookie, as shown here:

var token = Cookies.get("crsftoken");

https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie
https://github.com/js-cookie/js-cookie

Security and Performance Chapter 7

[298]

Once the token is extracted, it needs to be set as the CSRF-Token header value for
XmlHttpRequest. Although this might be done separately for each request, doing so has
the same drawbacks as adding the data to the request parameters for each request. Instead,
we might use jQuery and its facility for attaching data to all requests automatically before
they are sent, like so:

CSRF_SAFE_METHODS = ["GET", "HEAD", "OPTIONS", "TRACE"];
$.ajaxSetup({
 beforeSend: function(xhr, settings) {
 if (CSRF_SAFE_METHODS.indexOf(settings.type) < 0
 && !this.crossDomain) {
 xhr.setRequestHeader("X-CSRFToken", csrftoken);
 }
 }
});

See also
The Implementing password validation recipe
The Downloading authorized files recipe
The Authenticating with Auth0 recipe

Implementing password validation
Among the items at the top of the list of software security failures is the choice of insecure
passwords by users. In this recipe, we will see how to enforce minimum password
requirements through both built-in and custom password validators, so that users are
guided toward setting up more secure authentication.

Getting ready
Open the project's settings.py file and locate the AUTH_PASSWORD_VALIDATORS setting.
Also, create a new auth_extra app containing a password_validation.py file.

Security and Performance Chapter 7

[299]

How to do it...
Follow these steps to set up stronger password validation for your project:

Let's customize the settings for the validators included with Django by adding1.
options:

settings.py or base.py
...
AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': 'django.contrib.auth.password_validation.'
 'UserAttributeSimilarityValidator',
 'OPTIONS': {
 'max_similarity': 0.5,
 },
 },
 {
 'NAME': 'django.contrib.auth.password_validation.'
 'MinimumLengthValidator',
 'OPTIONS': {
 'min_length': 12,
 }
 },
 {
 'NAME': 'django.contrib.auth.password_validation.'
 'CommonPasswordValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.'
 'NumericPasswordValidator',
 },
]

Let's add a new auth_extra app and include it in INSTALLED_APPS. Fill in2.
the password_validation.py file in the new app also, as follows:

auth_extra/password_validation.py
from django.core.exceptions import ValidationError
from django.utils.translation import gettext as _

class MaximumLengthValidator:
 def __init__(self, max_length=24):
 self.max_length = max_length

 def validate(self, password, user=None):

Security and Performance Chapter 7

[300]

 if len(password) > self.max_length:
 raise ValidationError(
 self.get_help_text(pronoun="this"),
 code="password_too_long",
 params={'max_length': self.max_length},
)

 def get_help_text(self, pronoun="your"):
 return _(f"{pronoun.capitalize()} password must contain "
 f"no more than {max_length} characters")

class SpecialCharacterInclusionValidator:
 DEFAULT_SPECIAL_CHARACTERS = ('$', '%', ':', '#', '!')

 def __init__(self, special_chars=DEFAULT_SPECIAL_CHARACTERS):
 self.special_chars = special_chars

 def validate(self, password, user=None):
 has_specials_chars = False
 for char in self.special_chars:
 if char in password:
 has_specials_chars = True
 break
 if not has_specials_chars:
 raise ValidationError(
 self.get_help_text(pronoun="this"),
 code="password_missing_special_chars"
)

 def get_help_text(self, pronoun="your"):
 return _(f"{pronoun.capitalize()} password must contain at"
 " least one of the following special characters: "
 f"{', '.join(self.special_chars)}"),

Then, add the new validators to the settings:3.

settings.py or base.py
... existing imports ...
from auth_extra.password_validation import \
 SpecialCharacterInclusionValidator

...
AUTH_PASSWORD_VALIDATORS = [
 # ...
 {
 'NAME': 'auth_extra.password_validation.'
 'MaximumLengthValidator',

Security and Performance Chapter 7

[301]

 'OPTIONS': {
 'max_length': 32,
 },
 },
 {
 'NAME': 'auth_extra.password_validation.'
 'SpecialCharacterInclusionValidator',
 'OPTIONS': {
 'special_chars': ('{', '}', '^', '&') +
 SpecialCharacterInclusionValidator.
 DEFAULT_SPECIAL_CHARACTERS
 }
 },
]

How it works...
Django ships with its own set of default validators:

UserAttributeSimilarityValidator ensures that any password chosen is
not too similar to certain attributes of the user. By default, the similarity ratio is
set to 0.7 and the attributes checked are the username, first and last name, and
email address. If any of these attributes contains multiple parts, each part is
checked independently as well.
MinimumLengthValidator checks that the password entered is at least the
minimum number of characters in length. By default, passwords must be eight or
more characters long.
CommonPasswordValidator refers to a file containing a list of passwords that
are often used, and hence are insecure. The list Django uses by default contains
1,000 such passwords.
NumericPasswordValidator verifies that the password entered is not made up
entirely of numbers.

When you use startproject to create a new project, these are added with their default
options as the initial set of validators. We see here how these options can be adjusted for
our project needs, increasing the minimum length of passwords to 12 characters.

For UserAttributeSimilarityValidator, we have also reduced max_similarity to
0.6, which means that passwords must differ more greatly from user attributes than the
default.

Security and Performance Chapter 7

[302]

Looking at password_validation.py, we have defined two new validators:

MaximumLengthValidator is very similar to the built-in one for minimum
length, ensuring that the password is no longer than a default of 24 characters.
SpecialCharacterInclusionValidator checks that one or more special
characters—defined as the $, %, :, #, and ! symbols by default—are found within
the given password.

Each validator class has two required methods:

The validate() method performs the actual checks against the password
argument. Optionally, a second user argument will be passed when a user has
been authenticated.
We also must provide a get_help_text() method, which returns a string
describing the validation requirements for the user.

Finally, we add the new validators to the settings, overriding the defaults to allow up to a
32-character maximum length, and to add the symbols {, }, ^, and & to the default special
character list.

There's more...
The validators provided in AUTH_PASSWORD_VALIDATORS are executed automatically for
createsuperuser and changepassword management commands, and in built-in forms
used to reset or change passwords. There can be times that you will want to use the same
validation for custom password management code, though. Django provides functions for
that level of integration, also, under the contributed Django auth
app's password_validation module.

First, let's examine the functions that allow you to retrieve instances of validation classes:

We can retrieve a set of validator instances, one for each class represented in a
given configuration list, with get_password_validators(), as follows:

from django.contrib.auth.password_validation import (
 get_password_validators)
...
config = [{
 'NAME': 'auth_extra.password_validation.'
 'MaximumLengthValidator'
}]
max_length_validator = get_password_validators(config)[0]

Security and Performance Chapter 7

[303]

If we want to get instances for each of the default set of validators defined in our
settings, we could use the same method and pass in
the AUTH_PASSWORD_VALIDATORS setting:

from django.conf import settings
from django.contrib.auth.password_validation import (
 get_password_validators)
...
default_validators = get_password_validators(
 settings.AUTH_PASSWORD_VALIDATORS)

However, Django makes this common case easy by providing a shorthand
method to retrieve the default set, as in the following:

from django.contrib.auth.password_validation import (
 get_default_password_validators)
...
default_validators = get_default_password_validators()

Starting with a set of validators instances, then, Django provides the following functions
for extracting help text from each:

We can simply get the basic help text, like so:

from django.contrib.auth.password_validation import (
 get_default_password_validators,
 password_validators_help_texts)
...
default_validators = get_default_password_validators()
help_texts = password_validators_help_texts(validators)

Since Django deals mainly with web applications, it is likely that the help text
will need to be output as HTML. Though we could iterate over help_texts and
wrap them in any markup we wanted, a handy method is provided to get help
text automatically as an unordered list:

from django.contrib.auth.password_validation import (
 get_default_password_validators,
 password_validators_help_text_html)
...
validators = get_default_password_validators()
help_html = password_validators_help_text_html(validators)

Security and Performance Chapter 7

[304]

Most commonly, though, we would want to apply the validation and prevent insecure
passwords from being created. There are functions available for that as well:

To apply validation, we can invoke the validate_password() function,
handling any ValidationError raised when validation fails as needed.
Optionally, a third argument can specify a different list of validators instances,
but the default validators are used if it is omitted, as in the following example:

from django.contrib.auth.password_validation import (
 validate_password)
from django.core.exceptions import ValidationError
...
try:
 validate_password(password, request.user)
except ValidationError:
 # ... handle validation failures ...

In some cases, validator behavior when a password is initially set may differ
from that when the password is later altered. While validate_password() is
appropriate upon creation, a separate function is provided for handling
updates, so that validators execute the appropriate logic in each case:

from django.contrib.auth.password_validation import (
 password_changed)
from django.core.exceptions import ValidationError
...
try:
 password_changed(password, request.user)
except ValidationError:
 # ... handle validation failures ...

See also
The Downloading authorized files recipe
The Authenticating with Auth0 recipe

Security and Performance Chapter 7

[305]

Downloading authorized files
Sometimes, you might need to allow only specific people to download intellectual property
from your website. For example, music, videos, literature, or other artistic works should be
accessible only to paid members. In this recipe, you will learn how to restrict image
downloads only to authenticated users using the contributed Django auth app.

Getting ready
To start, create the quotes app as in the Uploading images recipe from Chapter 3, Forms and
Views.

How to do it...
Execute these steps one by one:

Create the view that will require authentication to download a file, as follows:1.

quotes/views.py
import os

from django.contrib.auth.decorators import login_required
from django.http import FileResponse
from django.shortcuts import get_object_or_404
from django.utils.text import slugify

from .models import InspirationalQuote

@login_required(login_url="user-login")
def download_quote_picture(request, pk):
 quote = get_object_or_404(InspirationalQuote, pk=pk)
 try:
 filename, extension = os.path.splitext(
 quote.picture.file.name)
 extension = extension[1:] # remove the dot
 response = FileResponse(
 quote.picture.file,
 content_type=f"image/{extension}")
 author = slugify(quote.author)[:100]
 excerpt = slugify(quote.quote)[:100]
 response["Content-Disposition"] = \
 "attachment; filename=" \

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

Security and Performance Chapter 7

[306]

 f"{author}---{excerpt}.{extension}"
 except ValueError:
 response = HttpResponseNotFound(
 content='Picture unavailable')
 return response

Add the download view to the URL configuration:2.

quotes/urls.py
from django.urls import path

urlpatterns = [
 # ...
 path('<int:pk>/download', download_quote_picture,
 name='quote-picture-download'),
]

We need to set up the login view in our project URLs:3.

myproject/urls.py
from django.conf.urls.i18n import i18n_patterns
from django.contrib.auth.views import LoginView
from django.urls import include, path

urlpatterns = [
 # ...
 path('login/', LoginView.as_view(), name='user-login'),
]

urlpatterns += i18n_patterns(
 # ...
 path('quotes/', include('quotes.urls')),
)

Let's create a template for the login form, as shown in the following:4.

{# templates/registration/login.html #}
{% extends "base.html" %}
{% load i18n static %}

{% block stylesheet %}
<link rel="stylesheet" href="{% static 'site/css/login.css' %}">
{% endblock %}

{% block content %}
<div class="container">
 <form method="POST" action="{% url 'user-login' %}"

Security and Performance Chapter 7

[307]

 class="form-signin">
 {% csrf_token %}
 <h2 class="my-3">{% trans "Please sign in" %}</h2>

 {{ form.non_field_errors }}

 <fieldset class="mb-3" required>
 <div class="control-group username required mb-3">
 <label for="{{ form.username.id_for_label }}"
 class="control-label requiredField">
 {% trans form.username.label %}
 </label>
 <div class="controls">
 {{ form.username }}
 {{ form.username.errors }}
 </div>
 </div>
 <div class="control-group password required mb-3">
 <label for="{{ form.password.id_for_label }}"
 class="control-label requiredField">
 {% trans form.password.label %}
 </label>
 <div class="controls">
 {{ form.password }}
 {{ form.password.errors }}
 </div>
 </div>
 </fieldset>
 {{ form.next }}
 <div class="form-actions mb-5 text-right">
 <button type="submit" class="btn btn-lg btn-primary">
 {% trans "Login" %}
 </button>
 </div>
 </form>
</div>
{% endblock %}

Security and Performance Chapter 7

[308]

Create the login.css file to add some additional style to the login form, if5.
desired. Basic styles will be provided by Bootstrap already, if the library has been
loaded, as in the example:

form.form-signin {
 background-color: rgba(0, 0, 0, 0.1);
 box-shadow: 0 0 10px 5px rgba(0, 0, 0, 0.25);
 margin: 0 auto;
 max-width: 400px;
 padding: 50px;
}

.controls input {
 border: 0;
 box-shadow: 0 0 4px 2px rgba(0, 0, 0, 0.15);
 font-size: 1.5rem;
 padding: .25em .5em;
 width: 100%;
}

You should restrict users from bypassing Django and downloading restricted6.
files directly. To do so on an Apache web server, you can put a .htaccess file
in the media/quotes directory, using the following content if you are running
Apache 2.2:

media/quotes/.htaccess
Order deny,allow
Deny from all

You would use the following content instead when running Apache 2.4:

media/quotes/.htaccess
Require all denied

Security and Performance Chapter 7

[309]

How it works...
The download_quote_picture() view streams the picture from a specific inspirational
quote. The Content-Disposition header that is set to attachment makes the file
downloadable instead of being immediately shown in the browser. The filename for the file
is also set in this header, and will be something similar to walt-disney---if-you-can-
dream-it-you-can-do-it.png. As a bonus, if the quote has no picture, a 404 page is
shown with a very simple message, as follows:

The @login_required decorator will redirect the visitor to the login page if he or she tries
to access the downloadable file without being logged in. As we want to have a nice
Bootstrap-style login form, we are using customized Bootstrap markup in our login.html
override template, which is automatically rendered through LoginView for the login form.

Security and Performance Chapter 7

[310]

Depending on the custom CSS applied, the login form might look similar to the following:

See also
The Uploading images recipe from Chapter 3, Forms and Views
The Creating a form layout with custom templates recipe from Chapter 3, Forms and
Views
The Creating a form layout with django-crispy-forms recipe from Chapter 3, Forms
and Views
The Arranging the base.html template recipe from Chapter 4, Templates and
JavaScript
The Implementing password validation recipe
The Adding a dynamic watermark to images recipe

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40

Security and Performance Chapter 7

[311]

Adding a dynamic watermark to images
Sometimes, it is desirable to allow users to see images, but keep them from being able to
redistribute them due to intellectual property and artistic rights. In this recipe, we will see
how to apply a watermark to images that are displayed on your site.

Getting ready
To start, create the quotes app as in the Uploading images recipe from Chapter 3, Forms and
Views.

How to do it...
Follow these steps to apply a watermark to displayed quote images:

Add the django-watermark app to your Docker project requirements file (or1.
install it directly if using a virtual environment):

requirements.txt or requirements/base.txt
...
django-watermark~=0.1.8

Make sure that the new app is included in the INSTALLED_APPS setting:2.

project/settings.py
...
INSTALLED_APPS = [
 # ...
 'watermarker',
]

Once you make and run any necessary migrations, open the administration3.
interface to add a watermark. Using a transparent PNG file works best. Here's
what the form might look like:

Security and Performance Chapter 7

[312]

Next, add a detail template to the quotes app:4.

{# templates/quotes/inspirationalquote_detail.html #}
{% extends "base.html" %}
{% load i18n watermark %}

{% block content %}
<h2>{% trans "Inspirational Quote" %}</h2>

{% if inspirationalquote.picture %}
<img src="{{ inspirationalquote.picture.url|watermark:"Basic Two-
Tone,opacity=35,tile=1,position=BL,rotation=30" }}" alt="">
{% endif %}
<blockquote>
 <h3>{{ inspirationalquote.quote }}</h3>
 <cite>{{ inspirationalquote.author }}</cite>
</blockquote>
{% endblock %}

And we will also need a listing template:5.

{# templates/quotes/inspirationalquote_list.html #}
{% extends "base.html" %}
{% load i18n thumbnail %}

Security and Performance Chapter 7

[313]

{% block content %}
<h2>{% trans "Inspirational Quotes" %}</h2>
{% if inspirationalquote_list.count == 0 %}
 <p>{% trans "No quotes to show!" %}</p>
{% else %}
 <ul class="quote-list">
 {% for quote in inspirationalquote_list %}

 {% if quote.picture %}

 <img src="{% thumbnail quote.picture '100x100' %}"
 alt="" class="align-right">
 {% endif %}
 <p>{{ quote.quote|truncatechars:20 }}</p>

 {% endfor %}

{% endif %}
{% endblock %}

The views associated with these templates are trivial and can be created as6.
follows:

quotes/views.py
from django.views.generic import DetailView, ListView

from .models import InspirationalQuote

class QuoteList(ListView):
 model = InspirationalQuote

class QuoteDetail(DetailView):
 model = InspirationalQuote

Add URL rules for the listing and detail views:7.

quotes/urls.py
from django.urls import path

from .views import QuoteList, QuoteDetail

urlpatterns = [
 path('', QuoteList.as_view(),
 name='quotes-list'),
 path('<int:pk>/', QuoteDetail.as_view(),

Security and Performance Chapter 7

[314]

 name='quote-detail'),
 # ...
]

How it works...
If we go to the root URL for the quotes app, we should see the list of current quotes, with
thumbnail images and the first four words of the quote, both linked to the detail page.
Clicking through to the detail, we should see the full-size image masked by our watermark,
similar to this:

Let's examine how this was done. In the detail template, the src attribute for the tag
uses the inspirational quote's photo URL, as usual, but with the watermark filter applied.
Within this filter is where all of the magic happens, as dictated by the options passed to it
through its string argument, as copied here:

"Basic Two-Tone,opacity=35,tile=1,position=BL,rotation=30"

Security and Performance Chapter 7

[315]

Let's examine each of these options to see how it was done:

First is the required name of the watermark, as was entered into the
administration area; Basic Two-Tone in this case. This tells the filter what
watermark image to apply.
Additional options are separated by commas, all of which have defaults, and can
come in any order or be omitted entirely. The first of these optional
configurations used here sets the opacity of the applied watermark to 35%.
We want the watermark to be repeated across the entire image, so we tell the
filter to tile it by setting the associated option to 1 (True) next.
To have the best result, the starting position for each watermark may differ, and
may be set to any of the corners (BL for lower-left, TR for upper-right, and so on),
centered (C), or at a specific point using percentages or pixels (for
example, 50%x100 to center horizontally 100 px below the top edge).
Finally, the original watermark here is rotated by 30 degrees to give it a slightly
more active effect.

There's more...
In addition to the options used here, there are a few more available for the filter:

Using grayscale=1 will remove all color from the watermark.
By default, the filename used for a watermarked image will not include the
original one, making it impossible for users to guess the URL of the image
without watermarks. This can be turned off by setting obscure=0.
If the position is not specified, the starting point of the watermark will be
randomized. By default, the first position is cached for use in all subsequent
requests. Turning off this setting with random_position_once=0 will cause the
watermark to be positioned randomly on every request.
The quality of the watermarked image can also be controlled by setting the
corresponding option to a number representing the percentage quality. The
default would be quality=85.
The watermark can also be scaled via the scale option, with values of F (full
watermark visible), R (watermark at a specified ratio in size to the original
image), or a positive decimal factor.

Security and Performance Chapter 7

[316]

The defaults for some options can be set project-wide in the settings, too:

When using scale=R, the WATERMARK_PERCENTAGE setting controls the scaling,
with a default value of 30, indicating a 30% ratio.
Default quality can be set via WATERMARK_QUALITY.
If all image URLs should be based on the original filename, it might be
appropriate to use WATERMARK_OBSCURE_ORIGINAL=False in the settings.
Finally, when every request for an image should get a freshly positioned
watermark, the WATERMARK_RANDOM_POSITION_ONCE setting can be given as
False.

See also
The Downloading authorized files recipe

Authenticating with Auth0
As the number of services people interact with daily increases, so does the number of
usernames and passwords that they need to remember. Beyond just that, each additional
place where user information is stored is another place that it could be stolen from, in the
event of a security breach. To help mitigate this, services such as Auth0 allow you to
consolidate authentication services on a single, secure platform.

In addition to support of username and password credentials, Auth0 has the ability to
connect users via social platforms such as Google and Facebook. There is even enterprise-
level support including that for Lightweight Directory Access Protocol (LDAP) and Active
Directory (AD). In this recipe, you'll learn how to connect an Auth0 application to Django,
integrating it to handle user authentication.

Getting ready
If you haven't done so yet, create an Auth0 application at https:/ /auth0. com/ and
configure it following the instructions there. We switch need to install some dependencies
in the project.

https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/

Security and Performance Chapter 7

[317]

Update your virtual environment or Docker project's requirements to include the Auth0
dependencies, as follows:

requirements.txt or base.txt
...
python-dotenv~=0.8.0
requests~=2.18.0
social-auth-app-django~=2.1.0

For a virtual environment, install each of these individually using pip3 install ..., as
usual. For Docker projects, make sure to build and restart your containers after updating
the requirements.

How to do it...
To connect Auth0 to your Django project, follow these steps:

Create a new external_auth app module (empty for now), and add both it and1.
the social auth app it toINSTALLED_APPS, like so:

settings.py or base.py
INSTALLED_APPS = [
 # ...
 'social_django',
 'external_auth',
]

Now, add the Auth0 settings required by the social_django app, which will be2.
similar to the following:

settings.py or base.py
import os

...

SOCIAL_AUTH_AUTH0_DOMAIN = os.environ.get('AUTH0_DOMAIN')
SOCIAL_AUTH_AUTH0_KEY = os.environ.get('AUTH0_KEY')
SOCIAL_AUTH_AUTH0_SECRET = os.environ.get('AUTH0_SECRET')
SOCIAL_AUTH_AUTH0_SCOPE = ['openid', 'profile']
SOCIAL_AUTH_TRAILING_SLASH = False

Security and Performance Chapter 7

[318]

More information about scopes can be found in the associated
documentation at https:/ /auth0. com/ docs/ scopes/ current.

The values for the domain, key, and secret are application-specific, and are
available in your Auth0 application's settings.

Sensitive settings can be added via environment variables to keep them
secure. At minimum, this should be done for the
SOCIAL_AUTH_AUTH0_SECRET.

We need to create a backend for the Auth0 connection, as in the following3.
example:

external_auth/backends.py
import requests

from social_core.backends.oauth import BaseOAuth2

class Auth0(BaseOAuth2):
 name = "auth0"
 SCOPE_SEPARATOR = " "
 ACCESS_TOKEN_METHOD = "POST"
 EXTRA_DATA = [
 ("picture", "picture")
]

 def authorization_url(self):
 return f"https://{self.setting('DOMAIN')}/authorize"

 def access_token_url(self):
 return f"https://{self.setting('DOMAIN')}/oauth/token"

 def get_user_id(self, details, response):
 return details['user_id']

 def get_user_details(self, response):
 url = f"https://{self.setting('DOMAIN')}/userinfo"
 headers = {
 "authorization": f"Bearer {response['access_token']}"
 }
 resp = requests.get(url, headers=headers)
 userinfo = resp.json()

https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current
https://auth0.com/docs/scopes/current

Security and Performance Chapter 7

[319]

 return {
 "username": userinfo["nickname"],
 "first_name": userinfo["name"],
 "picture": userinfo["picture"],
 "user_id": userinfo["sub"]
 }

Add the backend to your AUTHENTICATION_BACKENDS setting, as in the4.
following:

settings.py or config/base.py
AUTHENTICATION_BACKENDS = [
 'external_auth.backends.Auth0',
 'django.contrib.auth.backends.ModelBackend',
]

Create a dashboard view for users to land on when they log in, as follows:5.

external_auth/views.py
from django.views.generic import TemplateView

class DashboardView(TemplateView):
 template_name = "external_auth/dashbaord.html"

 def dispatch(self, request, *args, **kwargs):
 self.request = request
 return super().dispatch(request, *args, **kwargs)

 def get_context_data(self, **kwargs):
 user = self.request.user
 auth0_user = user.social_auth.get(provider="auth0")
 context = super().get_context_data(**kwargs)
 context["user_id"] = auth0_user.uid
 context["name"] = user.first_name
 context["picture"] = auth0_user.extra_data["picture"]
 return context

Create a dashboard template accordingly:6.

{# templates/external_auth/dashboard.html #}
{% extends "base.html" %}

{% block content %}
<h2>Welcome {{ name }}</h2>
{% if picture %}
<p>

Security and Performance Chapter 7

[320]

</p>
{% endif %}
<p>
 You are now logged in as {{ user_id }}.
 <a href="{% url 'auth:logout' %}"
 class="btn btn-primary btn-sm btn-logout">
 Logout
</p>
{% endblock %}

Set up a URL rule for the dashboard, like so:7.

external_auth/urls.py
from django.contrib.auth.decorators import login_required
from django.urls import include, path

from .views import DashboardView

urlpatterns = [
 # ...
 path('', login_required(DashboardView.as_view()),
 name='auth-dashboard'),
]

And then add entries for authentication to the project:8.

project/urls.py
from django.contrib.auth.urls import urlpatterns as auth_patterns
from django.urls import include, path

urlpatterns = [
 # ...
 path('dashboard/', include('external_auth.urls')),
 path('', include((auth_patterns, 'auth'))),
 path('', include('social_django.urls',
 namespace='social')),
]

We can configure the login and logout URL settings, as follows:9.

settings or config/base.py
LOGIN_URL = '/login/auth0'
LOGIN_REDIRECT_URL = '/dashboard/'
LOGOUT_REDIRECT_URL = '/'

Security and Performance Chapter 7

[321]

How it works...
If we point a browser to the /dashboard/ path for our project domain (for example,
http://myproject.local/dashboard/), we will be required to log in first, as a result of
applying the login_required decorator to the class-based Dashboard view in the
urls.py project. A series of redirects by the authentication system will bring us to an
Auth0 login screen similar to the following:

This much is enabled out of the box by Django—the integration of the social_django
app, and configuration of its associated SOCIAL_AUTH_* settings.

Security and Performance Chapter 7

[322]

As we can see, there is support for OpenID login through Google already
in place. Other social logins such as Facebook or LinkedIn can be easily
configured through the Auth0 system.

Once a successful login is completed, the Auth0 backend receives the data from the
response and processes it. The associated data is attached to the user object associated with
the request. In the dashboard view, reached as a result of authentication proceeding to
LOGIN_REDIRECT_URL, user details are extracted and added to the template context.
dashboard.html is then rendered, and the result might appear as something like this:

The logout button presented on the dashboard will proceed to log the user back out,
ultimately taking them to the configured LOGOUT_REDIRECT_URL.

There's more...
In addition to simple login handling, as shown here, Auth0 provides a multitude of more
advanced features, including the following:

Single sign-on across applications
Connectivity to LDAP and AD systems

Security and Performance Chapter 7

[323]

Multi-factor authentication for an increased level of security
Support for a variety of passwordless logins, even fingerprint scanning

See also
The Implementing password validation recipe
The Downloading authorized files recipe

Caching the method return value
If you call a model method with heavy calculations or database queries multiple times in
the request-response cycle, the performance of the view might be very slow. In this recipe,
you will learn about a pattern that you can use to cache the return value of a method for
later repetitive use. Note that we are not using the Django cache framework here, only what
Python provides us by default.

Getting ready
Choose an app with a model that has a time-consuming method that will be used
repetitively in the same request-response cycle.

How to do it...
Perform the following steps:

This is a pattern that you can use to cache a method return value of a model for1.
repetitive use in views, forms, or templates, as follows:

class SomeModel(models.Model):
 # ...
 def some_expensive_function(self):
 if not hasattr(self, "_expensive_value_cached"):
 # do some heavy calculations...
 # ... and save the result to result variable
 self._expensive_value_cached = result
 return self._expensive_value_cached

Security and Performance Chapter 7

[324]

For example, let's create a get_thumbnail_url() method for2.
the ViralVideo model created in the Using database query expressions recipe in
Chapter 11, Bells and Whistles:

viral_videos/models.py
import re
... other imports ...

class ViralVideo(CreationModificationDateMixin, UrlMixin):
 # ...
 def get_thumbnail_url(self):
 if not hasattr(self, "_thumbnail_url_cached"):
 url_pattern = re.compile(
 r'src="https://www.youtube.com/embed/([^"]+)"'
)
 match = url_pattern.search(self.embed_code)
 self._thumbnail_url_cached = ""
 if match:
 video_id = match.groups()[0]
 self._thumbnail_url_cached = \
 f"http://img.youtube.com/vi/{video_id}/0.jpg"

 return self._thumbnail_url_cached

How it works...
In the generic example, the method checks whether
the _expensive_value_cached attribute exists for the model instance. If it doesn't exist,
the time-consuming calculations are done and the result is assigned to this new attribute.
At the end of the method, the cached value is returned. Of course, if you have several
weighty methods, you will need to use different attribute names to save each calculated
value.

You can now use something such as {{ object.some_expensive_function }} in the
header and footer of a template, and the time-consuming calculations will be done just
once.

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=69

Security and Performance Chapter 7

[325]

In a template, you can also use the function in both the {% if %} condition and the output
of the value, as follows:

{% if object.some_expensive_function %}

 {{ object.some_expensive_function }}

{% endif %}

In this example, we are checking the thumbnail of a YouTube video by parsing the URL of
the video's embed code, getting its ID, and then composing the URL of the thumbnail
image. Then, you can use it in a template as follows:

{% if video.get_thumbnail_url %}
 <figure>
 <img src="{{ video.get_thumbnail_url }}"
 alt="{{ video.title }}">
 <figcaption>{{ video.title }}</figcaption>
 </figure>
{% endif %}

There's more...
This approach only works if the method is called without arguments, such that the result
will always be the same, but what if the input varies? Since Python 3.2, there is a decorator
we can use to provide basic Least Recently Used (LRU) caching of method calls based on a
hash of the arguments (at least those that are hashable).

For example, let's look at a contrived and trivial example with a function that takes in two
values and returns the result of some expensive logic:

def busy_bee(a, b):
 # expensive logic
 return result

If we had such a function, and wanted to provide a cache to store the result of commonly
used input variations, we could do so easily with the lru_cache decorator from the
functools package, as follows:

from functools import lru_cache

@lru_cache(maxsize=100, typed=True)
def busy_bee(a, b):
 # ...

Security and Performance Chapter 7

[326]

Now, we have provided a caching mechanism that will store up to 100 results under keys
hashed from the input. The typed option was added in Python 3.3 and, by specifying
True, we have made it so that a call having a=1 and b=2.0 will be stored separately from one
with a=1.0 and b=2. Depending on how the logic operates and what the return value is, such
variation may or may not be appropriate.

Learn more about the lru_cache decorator in the functools
documentation at https:/ /docs. python. org/ 3/library/ functools.
html#functools. lru_ cache.

We could use this decorator for the examples earlier in this recipe to simplify the code,
though we would probably use maxsize of 1 since there are no input variations to deal
with, as in the following:

viral_videos/models.py
from functools import lru_cache
... other imports ...

class ViralVideo(CreationModificationDateMixin, UrlMixin):
 # ...
 @lru_cache(maxsize=1)
 def get_thumbnail_url(self):
 # ...

See also
Refer to Chapter 4, Templates and JavaScript, for more details
The Using Memcached to cache Django views recipe
The Using Redis to cache Django views recipe

Using Memcached to cache Django views
Django provides a possibility to speed up the request-response cycle by caching the most
expensive parts such as database queries or template rendering. The fastest and most
reliable caching natively supported by Django is the memory-based cache server
Memcached. In this recipe, you will learn how to use Memcached to cache a view for
the viral_videos app, created in the Using database query expressions recipe in Chapter 11,
Bells and Whistles.

https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=69

Security and Performance Chapter 7

[327]

Getting ready
There are several things to do in order to prepare caching for your Django project. First,
let's examine how this would be done for a virtual environment project:

Install the memcached server, as follows:1.

$ wget http://memcached.org/files/memcached-1.5.7.tar.gz
$ tar -zxvf memcached-1.4.23.tar.gz
$ cd memcached-1.4.23
$./configure && make && make test && sudo make install

Start the memcached server, as shown in the following:2.

$ memcached -d

Install Memcached Python bindings in your virtual environment, as follows:3.

(myproject_env)$ pip3 install python-memcached~=1.59.0

If using a Docker environment, follow these steps instead:

Update your docker-compose.yml file to associate a Memcached container1.
with your app, as in the following:

docker-compose.yml
version: '3'
services:
 # ...
 memcached:
 image: 'memcached:1.5'
 app:
 # ...
 environment:
 # ...
 - "CACHE_LOCATION=memcached:11211"

Include the Memcached Python bindings in the requirements for your app2.
container, like so:

requirements.txt or requirements/base.txt
...
python-memcached~=1.59.0

Stop, build, and restart your containers.3.

Security and Performance Chapter 7

[328]

How to do it...
To integrate caching for your specific views, perform the following steps:

Set CACHES in the project settings, as follows:1.

CACHES = {
 'memcached': {
 'BACKEND': 'django.core.cache.backends.'
 'memcached.MemcachedCache',
 'LOCATION': os.environ.get('CACHE_LOCATION',
 '127.0.0.1:11211'),
 "TIMEOUT": 60, # 1 minute
 "KEY_PREFIX": os.environ.get('CACHE_KEY',
 'myproject_production'),
 },
}
CACHES['default'] = CACHES['memcached']

Modify the views of the viral_videos app, as follows:2.

viral_videos/views.py
from django.views.decorators.cache import cache_page
from django.views.decorators.vary import vary_on_cookie

@vary_on_cookie
@cache_page(60)
def viral_video_detail(request, id):
 # ...

If you follow the Redis setup in the next recipe, there is no change
whatsoever in the views.py file. That shows how we can change the
underlying caching mechanism at will without ever needing to modify the
code that uses it.

How it works...
Now, if you access the first viral video (such as at /en/viral-videos/1/) and refresh the
page a few times, you will see that the number of impressions changes only once a minute.
This is because each request is cached for 60 seconds for every user. We set caching for the
view using the @cache_page decorator.

Security and Performance Chapter 7

[329]

Memcached is a key-value store and it uses the full URL by default to generate the key for
each cached page. When two visitors access the same page simultaneously, the first visitor's
request would receive the page generated by the Python code, and the second one would
get the same HTML code but from the Memcached server.

In our example, to ensure that each visitor gets treated separately even if they access the
same URL, we are using the @vary_on_cookie decorator. This decorator checks the
uniqueness of the Cookie header of the HTTP request.

Learn more about Django's cache framework from the official
documentation at
https://docs.djangoproject.com/en/2.1/topics/cache/. Similarly,
more details on Memcached can be found at https:/ /memcached. org/ .

See also
The Caching the method return value recipe
The Using Redis to cache Django views recipe
The Using database query expressions recipe in Chapter 11, Bells and Whistles

Using Redis to cache Django views
Although Memcached is well established in the market as a caching mechanism, and well
supported by Django, an alternate system that provides all the functionality of Memcached
and more is Redis. Here, we'll revisit the process from the Using Memcached to cache Django
views recipe, and learn how to do the same using Redis instead.

Getting ready
There are several things to do in order to prepare caching for your Django project. First,
let's examine how this would be done for a virtual environment project:

Install Redis server, as follows:1.

$ wget http://download.redis.io/releases/redis-4.0.9.tar.gz
$ tar -zxvf redis-4.0.9.tar.gz
$ cd redis-4.0.9
$ make

https://docs.djangoproject.com/en/2.1/topics/cache/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://memcached.org/
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=69

Security and Performance Chapter 7

[330]

Create a configuration file to run Redis as a LRU key/value cache, like2.
Memcached is:

config/redis.conf
maxmemory 100mb
maxmemory-policy allkeys-lru

Start Redis server using the custom configuration, as shown in the following:3.

$ cd src
$./redis-server /path/to/config/redis.conf

Install the Redis cache backend for Django in your virtual environment, as4.
follows:

(myproject_env)$ pip3 install django-redis~=4.9.0

If using a Docker environment, follow these steps instead:

Update your docker-compose.yml file to associate a Redis container with your1.
app, as in the following:

docker-compose.yml
version: '3'
services:
 # ...
 redis:
 image: 'redis:4.9'
 volumes:
 - './config/redis.conf:/usr/local/etc/redis/redis.conf'
 app:
 # ...
 environment:
 # ...
 - 'CACHE_LOCATION=redis://redis:6379'

Include the Redis cache backend for Django in the requirements for your app2.
container, like so:

requirements.txt or requirements/base.txt
...
django-redis~=4.9.0

Stop, build, and restart your containers.3.

Security and Performance Chapter 7

[331]

How to do it...
To integrate caching for your specific views, perform the following steps:

Set CACHES in the project settings, as follows:1.

CACHES = {
 # ...
 'redis': {
 'BACKEND': 'django_redis.cache.RedisCache',
 'LOCATION': os.environ.get('CACHE_LOCATION',
 'redis://127.0.0.1:6379/1'),
 "TIMEOUT": 60, # 1 minute
 "KEY_PREFIX": os.environ.get('CACHE_KEY',
 'myproject_production'),
 'OPTIONS': {
 'CLIENT_CLASS': 'django_redis.client.DefaultClient',
 'IGNORE_EXCEPTIONS': True,
 },
 },
}
CACHES['default'] = CACHES['redis']

Modify the views of the viral_videos app, as follows:2.

viral_videos/views.py
from django.views.decorators.cache import cache_page
from django.views.decorators.vary import vary_on_cookie

@vary_on_cookie
@cache_page(60)
def viral_video_detail(request, id):
 # ...

If you followed the Memcached setup from the previous recipe, there is
no change whatsoever in the views.py here. That shows how we can
change the underlying caching mechanism at will without ever needing to
modify the code that uses it.

Security and Performance Chapter 7

[332]

How it works...
Now, if you access the first viral video (such as at /en/viral-videos/1/) and refresh the
page a few times, you will see that the number of impressions changes only once a minute.
This is because each request is cached for 60 seconds for every user. We set caching for the
view using the @cache_page decorator.

Just like Memcached, Redis is a key-value store, and when used for caching it generates the
key for each cached page based on the full URL. When two visitors access the same page
simultaneously, the first visitor's request would receive the page generated by the Python
code, and the second one would get the same HTML code but from the Redis server.

In our example, to ensure that each visitor gets treated separately even if they access the
same URL, we are using the @vary_on_cookie decorator. This decorator checks the
uniqueness of the Cookie header of the HTTP request.

Learn more about Django's cache framework from the official
documentation at
https://docs.djangoproject.com/en/2.1/topics/cache/. Similarly,
more details on Redis can be found at https:/ /redis. io/ .

There's more...
While Redis is able to handle caching in the same manner as Memcached, there are a
multitude of additional options for the caching algorithm built right in to the system. In
addition to caching, Redis can also be used as a database or message store. It supports a
variety of data structures, transactions, pub/sub, and automatic failover, among other
things.

Through the django-redis backend, Redis can also be configured as the session backend
with almost no effort, like so:

settings.py or config/base.py
SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
SESSION_CACHE_ALIAS = 'default'

See the documentation of django-redis at http:/ /niwinz. github. io/ django- redis/
latest/ for more possibilities.

https://docs.djangoproject.com/en/2.1/topics/cache/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/
http://niwinz.github.io/django-redis/latest/

Security and Performance Chapter 7

[333]

See also
The Caching the method return value recipe
The Using Memcached to cache Django views recipe
The Using database query expressions recipe in Chapter 11, Bells and Whistles

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=69

8
Django CMS

In this chapter, we will cover the following recipes:

Creating templates for Django CMS
Structuring the page menu
Converting an app to a CMS app
Attaching your own navigation
Writing your own CMS plugin
Adding new fields to the CMS page

Introduction
Django CMS is an open source content management system that is based on Django and
was created by Divio AG, Switzerland. Django CMS takes care of a website's structure,
provides navigation menus, makes it easy to edit page content in the frontend, and
supports using multiple languages on a website. You can also extend it to suit your own
needs by using the provided hooks. To create a website, you have to create a hierarchical
structure of pages, where each page has a template. Templates have placeholders that can
be assigned different plugins with the content. Using special template tags, the menus can
be generated out of the hierarchical page structure. The CMS takes care of mapping URLs
to specific pages.

In this chapter, we will look at Django CMS 3.6 from a developer's perspective. You will see
what is necessary for the templates to function, and we will take a look at the possible page
structure for header and footer navigation. You will also learn how to attach the URL rules
of an app to a CMS page tree node. Then, we will attach custom navigation to the page
menu and create our own CMS content plugins. Finally, you will learn how to add new
fields to the CMS pages.

Django CMS Chapter 8

[335]

At the time of writing, Django CMS 3.6 has not yet been released, and
several plugins are also incompatible with Django 2.x. The examples have
been written based on the in-development version, which is slated to be
released as version 3.6, soon after this book is published.

In this book, we won't guide you through all of the bits and pieces of using Django CMS,
but by the end of this chapter, you will be aware of its purpose and use. The rest can be
learned from the official documentation at http://docs.django-cms.org/en/latest/, and
by trying out the frontend user interface of the CMS.

Creating templates for Django CMS
For every page in your page structure, you have to choose a template from the list of
templates that are defined in the settings. In this recipe, we will look at the minimum
requirements for the templates.

Getting ready
If you want to start a new Django CMS project, execute the following commands in a
virtual environment, and answer all of the prompted questions:

(myproject_env)$ pip3 install djangocms-installer
(myproject_env)$ djangocms -p project/myproject myproject

Here, project/myproject is the path where the project will be created, and myproject is
the project name.

On the other hand, if you want to integrate Django CMS into an existing project, check the
official documentation at http://docs.django-cms.org/en/latest/how_to/install.html.
If you are working with a Docker project, a good place to start from is the Minimally-
required applications and settings section. We will proceed by modifying our existing example
project, with this integration already completed.

http://docs.django-cms.org/en/latest/
http://docs.django-cms.org/en/latest/
http://docs.django-cms.org/en/latest/
http://docs.django-cms.org/en/latest/how_to/install.html

Django CMS Chapter 8

[336]

How to do it...
We will update the Bootstrap-powered base.html template, so that it contains everything
that Django CMS needs. Then, we will create and register two templates, default.html
and start.html, to choose from for CMS pages:

First, we will update the base template that we created in the Arranging the1.
base.html template recipe in Chapter 4, Templates and JavaScript, as follows:

{# templates/base.html #}
<!doctype html>
{% load i18n static cms_tags sekizai_tags menu_tags %}
<html lang="{{ LANGUAGE_CODE }}">
<head>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <title>
 {% block title %}{% endblock %}{% trans "My Website" %}
 </title>
 <link rel="icon" type="image/x-icon"
 href="{% static 'site/img/favicon.ico' %}">

 {% block meta_tags %}{% endblock %}

 {% render_block "css" %}
 {% block base_stylesheet %}
 <link rel="stylesheet" type="text/css"
href="http://code.ionicframework.com/ionicons/2.0.1/css/ionicons.mi
n.css">
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootst
rap.min.css"
 integrity="sha384-
MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
 crossorigin="anonymous">
 <link rel="stylesheet" type="text/css" media="screen"
 href="{% static 'site/css/style.css' %}">
 {% endblock %}
 {% block stylesheet %}{% endblock %}

 {% block extrahead %}{% endblock %}
</head>
<body class="{% block bodyclass %}{% endblock %}">
{% cms_toolbar %}
{% block page %}
<section class="wrapper">

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40

Django CMS Chapter 8

[337]

 <header class="clearfix container navbar navbar-expand-lg
 navbar-light bg-light mb-4 mx-0">
 <h1 class="navbar-brand col mb-0">{% trans "My Website"
%}</h1>
 <nav role="navigation" class="navbar-nav col-10">
 {% block header_navigation %}
 <ul class="navbar-nav col">
 {% show_menu_below_id "start-page" 0 1 1 1 %}

 {% endblock %}
 {% block language_chooser %}
 <ul class="navbar-nav col-3">
 {% language_chooser %}

 {% endblock %}
 </nav>
 </header>
 {% block container %}
 <div id="content" class="clearfix container">
 {% block content %}{% endblock %}
 </div>
 {% endblock %}
 <footer class="clearfix container">
 {% block footer_navigation %}
 <nav class="navbar navbar-default" role="navigation">
 <ul class="nav navbar-nav">
 {% show_menu_below_id "footer-navigation" 0 1 1 1
%}

 </nav>
 {% endblock %}
 </footer>
</section>
{% endblock %}
{% block extrabody %}{% endblock %}

{% block base_js %}
 <script src="https://code.jquery.com/jquery-3.3.1.min.js"
 integrity="sha256-
FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="
 crossorigin="anonymous"></script>
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/po
pper.min.js"
 integrity="sha384-
ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
 <script

Django CMS Chapter 8

[338]

src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstra
p.min.js"
 integrity="sha384-
ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
 <script src="{% url "js_settings" %}"></script>
{% endblock %}
{% block js %}{% endblock %}
{% render_block "js" %}
</body>
</html>

Then, we will create a cms directory under templates and add two templates2.
for CMS pages, the first of which is default.html, for normal pages:

{# templates/cms/default.html #}
{% extends "base.html" %}
{% load cms_tags %}

{% block title %}{% page_attribute "page_title" %} - {% endblock %}

{% block meta_tags %}
 <meta name="description"
 content="{% page_attribute meta_description %}"/>
{% endblock %}

{% block content %}
 <h1>{% page_attribute "page_title" %}</h1>
 <div class="row">
 <div class="col-md-8">{% placeholder main_content %}</div>
 <div class="col-md-4">{% placeholder sidebar %}</div>
 </div>
{% endblock %}

Then, we will add start.html for the home page, as follows:3.

{# templates/cms/start.html #}
{% extends "base.html" %}
{% load cms_tags %}

{% block meta_tags %}
 <meta name="description"
 content="{% page_attribute meta_description %}"/>
{% endblock %}

{% block content %}

Django CMS Chapter 8

[339]

 {% comment %}
 Here goes very customized website-specific content like
 slideshows, latest tweets, latest news, latest profiles, etc.
 {% endcomment %}
{% endblock %}

Finally, we will set the paths of these two templates in the settings, as shown in4.
the following code snippet:

settings.py or conf/base.py
from django.utils.translation import ugettext_lazy as _
...
CMS_TEMPLATES = (
 ("cms/default.html", _("Default")),
 ("cms/start.html", _("Homepage")),
)

How it works...
As usual, the base.html template is the main template that is extended by all of the other
templates. In this template, Django CMS uses the {% render_block %} template tag from
the django-sekizai module to inject CSS and JavaScript into the templates that create a
toolbar and other administration widgets in the frontend. We will insert the {%
cms_toolbar %} template tag at the beginning of the <body> section; that's where the
toolbar will be placed. We will use the {% show_menu_below_id %} template tag to
render the header and footer menus from the specific page menu trees. Also, we will use
the {% language_chooser %} template tag to render the language chooser that switches
to the same page in different languages. All of the navigation is enhanced with Bootstrap 4
classes, for the navbar and other styling.

The default.html and start.html templates that are defined in the CMS_TEMPLATES
setting will be available as a choice when creating a CMS page. In these templates, for each
area that needs to have dynamically entered content, add a {% placeholder %} template
tag (when you need page-specific content) or {% static_placeholder %} (when you
need the content that is shared among different pages). Logged in administrators can add
content plugins to the placeholders when they switch from the Live mode to the Draft
mode in the CMS toolbar and switch to the Structure section.

Django CMS Chapter 8

[340]

Once the settings are correctly configured, the templates are in place, and all CMS-related
static files have been collected, the default page content should look something like the
following:

Django CMS Chapter 8

[341]

See also
The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript
The Structuring the page menu recipe

Structuring the page menu
In this recipe, we will discuss some guidelines for defining the tree structures for the pages
on your website.

Getting ready
It is a good practice to set the available languages for your website before creating the
structure of your pages (although the Django CMS database structure also allows you to
add new languages later on). Beside LANGUAGES, make sure that you have CMS_LANGUAGES
set in your settings. The CMS_LANGUAGES setting defines which languages should be active
for each Django site, as follows:

conf/base.py or settings.py
...
gettext = lambda s: s

LANGUAGES = (
 ("en", "English"),
 ("de", "Deutsch"),
 ("fr", "Français"),
 ("lt", "Lietuvių kalba"),
)

CMS_LANGUAGES = {
 "default": {
 "public": True,
 "hide_untranslated": False,
 "redirect_on_fallback": True,
 },
 1: [
 {

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40

Django CMS Chapter 8

[342]

 "public": True,
 "code": "en",
 "hide_untranslated": False,
 "name": gettext("en"),
 "redirect_on_fallback": True,
 },
 {
 "public": True,
 "code": "de",
 "hide_untranslated": False,
 "name": gettext("de"),
 "redirect_on_fallback": True,
 },
 {
 "public": True,
 "code": "fr",
 "hide_untranslated": False,
 "name": gettext("fr"),
 "redirect_on_fallback": True,
 },
 {
 "public": True,
 "code": "lt",
 "hide_untranslated": False,
 "name": gettext("lt"),
 "redirect_on_fallback": True,
 },
],
}

How to do it...
The page navigation is set in tree structures. The first tree is the main tree, and, contrary to
the other trees, the root node of the main tree is not reflected in the URL structure. The root
node of this tree is the home page of the website. Usually, this page has a specific template,
where you add the content aggregated from different apps, for example, a slideshow, actual
news, newly registered users, the latest tweets, or other latest or featured objects.

Django CMS Chapter 8

[343]

For a convenient way to render items from different apps, check the Creating a template tag
to a QuerySet in a template recipe in Chapter 5, Custom Template Filters and Tags.

If your website has multiple navigation types, such as a top, meta, and footer1.
navigation, give an ID to the root node of each tree in the Advanced Settings of
the page. This ID will be used in the base template with the {%
show_menu_below_id %} template tag. The Advanced Settings will look
something like the following:

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=66

Django CMS Chapter 8

[344]

You can read more about this and other menu-related template tags in
the official documentation at
http://docs.django-cms.org/en/latest/reference/navigation.ht

ml.

The first tree defines the main structure of the website. If you want a page under2.
the root-level URL (for example, /en/search/ but not /en/meta/search/), put
this page under the home page. If you don't want a page to be shown in the
menu, as it will be linked from an icon or widget, just hide it from the menu.
The footer navigation usually shows items different from the top navigation,3.
with some of the items being repeated. For example, the page for developers will
only be shown in the footer, whereas the page for news will be shown in both the
header and footer. For all of the repeated items, just create a page with the
Redirect setting in the advanced settings of the page and set it to the original
page in the main tree. By default, when you create a secondary tree structure, all
pages under the root of that tree will include the slug of the root page in their
URL paths. If you want to skip the slug of the root in the URL path, you will
need to set the Overwrite URL setting in the advanced settings of the page; for
example, the developers page should be under /en/developers/, not
/en/secondary/developers/.

http://docs.django-cms.org/en/latest/reference/navigation.html
http://docs.django-cms.org/en/latest/reference/navigation.html

Django CMS Chapter 8

[345]

How it works...
Finally, your page structure will look similar to the following screenshot (of course, the
page structure can be much more complex, too):

Django CMS Chapter 8

[346]

See also
The Creating a template tag to load a QuerySet in a template recipe in Chapter 5,
Custom Template Filters and Tags
The Creating templates for Django CMS recipe
The Attaching your own navigation recipe

Converting an app to a CMS app
The simplest Django CMS website will have the whole page tree created by using an
administration interface. However, for real-world cases, you will probably need to show
forms or lists of your modeled objects under some page nodes. If you have created an app
that is responsible for some types of objects on your website, such as movies, you can
easily convert it to a Django CMS app and attach it to one of the pages. This will ensure that
the root URL of the app is translatable and the menu item is highlighted when selected. In
this recipe, we will convert the movies app to a CMS app.

Getting ready
Let's start with the movies app that we created in the Filtering object lists recipe in
Chapter 3, Forms and Views.

How to do it...
Follow these steps to convert a usual movies Django app to a Django CMS app:

First of all, remove or comment out the inclusion of the URL configuration of the1.
app, as it will be included by apphook in Django CMS, as follows:

myproject/urls.py
...
urlpatterns = [
 # ...
 # remove or comment out the inclusion of app's urls
 # path("movies/", include("movies.urls")),
 # ...
]

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=66

Django CMS Chapter 8

[347]

Create a cms_apps.py file in the movies directory and create MoviesApphook2.
there, as follows:

movies/cms_apps.py
from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from django.utils.translation import ugettext_lazy as _

@apphook_pool.register
class MoviesApphook(CMSApp):
 app_name = "movies"
 name = _("Movies")

 def get_urls(self, page=None, language=None, **kwargs):
 return ["movies.urls"]

By default, the CMS will automatically discover your apphooks by searching3.
each app in INSTALLED_APPS for the preceding magic file. If you only want to
wire in specific apps instead, you can set the newly created apphook in the
CMS_APPHOOKS settings, as shown in the following code:

settings.py or config/base.py
CMS_APPHOOKS = (
 # ...
 "movies.cms_apps.MoviesApphook",
)

Finally, in all of the movie templates, change the first line to extend from the4.
template of the current CMS page, instead of extending base.html, as follows:

{# templates/movies/movies_list.html #}
{% comment %}
Change {% extends "base.html" %} to: {% endcomment %}
{% extends CMS_TEMPLATE %}

Django CMS Chapter 8

[348]

How it works...
The apphooks are the interfaces that join the URL configuration of apps to the CMS pages.
The apphooks need to extend from CMSApp. To define the name, which will be shown in the
Application selection list under the Advanced Settings of a page, put the path of the
apphook in the CMS_APPHOOKS project setting (only if automatic discovery is not desired),
and restart the web server. The apphook will appear as one of the applications in the
advanced page settings, as shown in the following screenshot:

Django CMS Chapter 8

[349]

After selecting an application for a page and publishing it, you must
restart the server for the URLs to take effect, unless you have included
 cms.middleware.utils.ApphookReloadMiddleware as close to the
start of your MIDDLEWARE list as possible, in settings.py. This
middleware handles reloading the application automatically; in many
cases, a restart would otherwise be necessary.

The templates of the app should extend the page template if you want them to contain the
placeholders or attributes of the page, such as the title or the description meta tags.

See also
The Filtering object lists recipe in Chapter 3, Forms and Views
The Attaching your own navigation recipe

Attaching your own navigation
Once you have an app hooked in the CMS pages, all of the URL paths under the page node
will be controlled by the urls.py file of the app. To add some menu items under this page,
you need to add a dynamic branch of navigation to the page tree. In this recipe, we will
improve the movies app that was converted for CMS use in the previous recipe, and we
will add new navigation items under the Movies page.

Getting ready
Suppose that we have a URL configuration for different lists of movies—editor's picks,
commercial movies, and independent movies - as shown in the following code:

movies/urls.py
from django.shortcuts import redirect
from django.urls import path
from django.conf.urls.i18n import i18n_patterns

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

Django CMS Chapter 8

[350]

from .views import (FeaturedMoviesView, CommercialMoviesView,
 IndependentMoviesView, TopMoviesView,
 MovieDetailView)

urlpatterns = i18n_patterns(
 # path('', movie_list, name='movie-list'),
 path('', lambda request: redirect('featured-movies')),
 path('editors-picks/', FeaturedMoviesView.as_view(),
 name='featured-movies'),
 path('commercial/', CommercialMoviesView.as_view(),
 name='commercial-movies'),
 path('independent/', IndependentMoviesView.as_view(),
 name='independent-movies'),
 path('top/', TopMoviesView.as_view(),
 name='top-movies'),
 path('movie/', lambda request: redirect('featured-movies')),
 path('movie/<slug:slug>/', MovieDetailView.as_view(),
 name='movie-detail'),
)

The Movie model would need to include a few new, simple fields, as follows:

movies/models.py
...other imports...
from django.db import models

...

class Movie(models.Model):
 # ...
 featured = models.BooleanField(default=False)
 commercial = models.BooleanField(default=False)
 independent = models.BooleanField(default=False)
 # ...

To support the added differentiation, we also extend MovieListView to provide the
additional view filtering variations, as follows:

movies/views.py
...other imports...
from django.views.generic import View

...

Django CMS Chapter 8

[351]

class MovieListView(View):
 # ...

class FeaturedMoviesView(MovieListView):
 def get_queryset_and_facets(self, form):
 qs, facets = super().get_queryset_and_facets(form)
 qs.filter(featured=True)
 return qs, facets

class CommercialMoviesView(MovieListView):
 def get_queryset_and_facets(self, form):
 qs, facets = super().get_queryset_and_facets(form)
 qs.filter(commercial=True)
 return qs, facets

class IndependentMoviesView(MovieListView):
 def get_queryset_and_facets(self, form):
 qs, facets = super().get_queryset_and_facets(form)
 qs.filter(independent=True)
 return qs, facets

The MovieDetailView will be defined as follows:

movies/views.py
...other imports...
from django.views.generic import DetailView

...

class MovieDetailView(DetailView):
 model = Movie
 template_name = "movies/movie_detail.html"

Django CMS Chapter 8

[352]

How to do it...
Follow these two steps to attach the Editor's Picks, Commercial Movies, and Independent
Movies menu choices to the navigational menu under the Movies page:

Create a cms_menus.py file in the Movies app and add the MoviesMenu class, as1.
follows:

movies/cms_menus.py
from django.urls import reverse
from django.utils.translation import ugettext_lazy as _
from cms.menu_bases import CMSAttachMenu
from menus.base import NavigationNode
from menus.menu_pool import menu_pool

@menu_pool.register_menu
class MoviesMenu(CMSAttachMenu):
 name = _("Movies Menu")

 def get_nodes(self, request):
 nodes = [
 NavigationNode(title=_("Editor Picks"),
 url=reverse("movies:featured-movies"),
 id=1),
 NavigationNode(title=_("Commercial Movies"),
 url=reverse("movies:commercial-movies"),
 id=2),
 NavigationNode(title=_("Independent Movies"),
 url=reverse("movies:independent-
movies"),
 id=3),
 NavigationNode(title=_("Top 250 Movies"),
 url=reverse("movies:top-movies"),
 id=4),
]
 return nodes

Django CMS Chapter 8

[353]

Restart the web server, then edit the Advanced Settings of the Movies page and2.
select the Movies menu for the Attached menu setting, which resembles the
following screenshot:

Restarts can often be avoided if you include the
cms.middleware.utils.ApphookReloadMiddleware as close to the
start of your MIDDLEWARE list as possible in settings.py. This
middleware handles reloading the application automatically in many
cases when a restart would otherwise be necessary.

Django CMS Chapter 8

[354]

How it works...
In the frontend, you will see the new menu items attached to the Movies page item in the
navigation, similar to the result shown in the following screenshot:

Dynamic menus that can be attached to pages need to extend CMSAttachMenu, define the
name by which they will be selected, and define the get_nodes() method that returns a
list of NavigationNode objects. The NavigationNode class takes at least three parameters,
as follows:

The title of the menu item
The URL path of the menu item
The ID of the node

In this case, we have used reverse() lookups for the URLs (including the app name as a
prefix) so that the lookup can find the right mappings from movies/urls.py. The IDs can
be chosen freely, with the only requirement being that they have to be unique among this
attached menu. The other optional parameters, available but not used here, are as follows:

parent_id: This is the ID of the parent node, if you want to create a hierarchical
dynamic menu.
parent_namespace: This is the name of another menu, if this node is to be
attached to a different menu tree; for example, the name of this menu is
MoviesMenu.

Django CMS Chapter 8

[355]

attr: This is a dictionary of the additional attributes that can be used in a
template or menu modifier.
visible: This sets whether or not the menu item should be visible.

For other examples of attachable menus, refer to the official documentation at
http://docs.django-cms.org/en/latest/how_to/menus.html.

See also
The Structuring the page menu recipe
The Converting an app to a CMS app recipe

Writing your own CMS plugin
Django CMS comes with a lot of content plugins that can be used in template placeholders,
such as text, flash, picture, and Google Maps plugins. However, for more structured and
better styled content from your own models, you will need custom plugins, which are not
too difficult to implement. In this recipe, we will look at how to create a new plugin and
have a custom layout for its data, depending on the chosen template of the page.

Getting ready
Let's create an editorial app and mention it in the INSTALLED_APPS setting. Also, we
will need to create a cms/magazine.html template and add it to the CMS_TEMPLATES
setting, with the Magazine label. You can simply duplicate the cms/default.html
template for this.

http://docs.django-cms.org/en/latest/how_to/menus.html

Django CMS Chapter 8

[356]

How to do it...
To create the EditorialContent plugin, follow these steps:

In the models.py file of the newly created app, add the EditorialContent1.
model extending from CMSPlugin, after which you will need to make and run
migrations against the database. The EditorialContent model will have fields
to store the Title, Subtitle, Description, Website, Image, Image Caption,
and a CSS class:

editorial/models.py
import os

from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.timezone import now as tz_now
from cms.models import CMSPlugin

def upload_to(instance, filename):
 now = tz_now()
 filename_base, filename_ext = os.path.splitext(filename)
 return "editorial/%s%s" % (
 now.strftime("%Y/%m/%Y%m%d%H%M%S"),
 filename_ext.lower())

class EditorialContent(CMSPlugin):
 title = models.CharField(_("Title"),
 max_length=255)
 subtitle = models.CharField(_("Subtitle"),
 max_length=255,
 blank=True)
 description = models.TextField(_("Description"),
 blank=True)
 website = models.CharField(_("Website"),
 max_length=255,
 blank=True)

 image = models.ImageField(_("Image"),
 max_length=255,
 upload_to=upload_to,
 blank=True)
 image_caption = models.TextField(_("Image Caption"),
 blank=True)

 css_class = models.CharField(_("CSS Class"),

Django CMS Chapter 8

[357]

 max_length=255,
 blank=True)

 def __str__(self):
 return self.title

 class Meta:
 ordering = ["title"]
 verbose_name = _("Editorial content")
 verbose_name_plural = _("Editorial contents")

In the same app, create a cms_plugins.py file and add2.
an EditorialContentPlugin class extending CMSPluginBase. This class is a
little bit like ModelAdmin; it defines the appearance of administration settings
for the plugin:

editorial/cms_plugins.py
from django.utils.translation import ugettext as _
from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool

from .models import EditorialContent

class EditorialContentPlugin(CMSPluginBase):
 model = EditorialContent
 module = _("Editorial")
 name = _("Editorial Content")
 render_template = "cms/plugins/editorial_content.html"

 fieldsets = (
 (_("Main Content"), {
 "fields": (
 "title", "subtitle", "description",
 "website"),
 "classes": ["collapse open"]
 }),
 (_("Image"), {
 "fields": ("image", "image_caption"),
 "classes": ["collapse open"]
 }),
 (_("Presentation"), {
 "fields": ("css_class",),
 "classes": ["collapse closed"]
 }),
)

Django CMS Chapter 8

[358]

 def render(self, context, instance, placeholder):
 context.update({
 "object": instance,
 "placeholder": placeholder,
 })
 return context

plugin_pool.register_plugin(EditorialContentPlugin)

To specify which plugins go to which placeholders, rather than having plugins3.
be available to all placeholders, you have to define the CMS_PLACEHOLDER_CONF
setting. You can also define some extra context for the templates of the plugins
that are rendered in a specific placeholder. Let's allow
EditorialContentPlugin for the main_content placeholder and set the
editorial_content_template context variable for the main_content
placeholder in the cms/magazine.html template, as follows:

settings.py
...other imports...
from django.utils.text import gettext_lazy as gettext
...
CMS_PLACEHOLDER_CONF = {
 "main_content": {
 "name": gettext("Main Content"),
 "plugins": (
 "EditorialContentPlugin",
 "TextPlugin",
),
 },
 "cms/magazine.html main_content": {
 "name": gettext("Magazine Main Content"),
 "plugins": (
 "EditorialContentPlugin",
 "TextPlugin"
),
 "extra_context": {
 "editorial_content_template":
 "cms/plugins/editorial_content/magazine.html",
 }
 },
}

Django CMS Chapter 8

[359]

Then, we will create two templates. One of them will be the4.
editorial_content.html template. It checks whether the
editorial_content_template context variable exists. If the variable exists,
the template specified by the variable is included. Otherwise, it renders the
default layout for editorial content:

{# templates/cms/plugins/editorial_content.html #}
{% load i18n %}

{% if editorial_content_template %}
{% include editorial_content_template %}
{% else %}
<div class="card bg-light mb-3 {% if object.css_class %}
 {{ object.css_class }}{% endif %}">
 <!-- editorial content for non-specific placeholders -->
 <figure class="figure">
 {% if object.image %}
 <img src="{{ object.image.url }}"
 class="figure-img img-fluid"
 alt="{{ object.image_caption|striptags }}">
 {% endif %}
 {% if object.image_caption %}
 <figcaption class="figure-caption text-center">
 {{ object.image_caption|safe }}
 </figcaption>
 {% endif %}
 </figure>
 <div class="card-body">
 <h3 class="card-title">{% if object.website %}

 {{ object.title }}{% else %}
 {{ object.title }}{% endif %}</h3>
 <h4 class="card-subtitle">{{ object.subtitle }}</h4>
 <div class="card-text">{{ object.description|safe }}</div>
 </div>
</div>
{% endif %}

Django CMS Chapter 8

[360]

The second template is a specific template for the EditorialContent plugin in5.
the cms/magazine.html template. There's nothing too fancy here - just a change
to the background color and the removal of the outer border via the bg-white
border-0 Bootstrap-specific CSS classes for the container card container to
make the main content plugin stand out:

{# templates/cms/plugins/editorial_content/magazine.html #}
{% load i18n %}
<div class="card bg-white border-0{% if object.css_class %}
 {{ object.css_class }}{% endif %}">
 <!-- editorial content for non-specific placeholders -->
 <figure class="figure">
 {% if object.image %}
 <img src="{{ object.image.url }}"
 class="figure-img img-fluid"
 alt="{{ object.image_caption|striptags }}">
 {% endif %}
 {% if object.image_caption %}
 <figcaption class="figure-caption text-center">
 {{ object.image_caption|safe }}
 </figcaption>
 {% endif %}
 </figure>
 <div class="card-body">
 <h3 class="card-title">{% if object.website %}

 {{ object.title }}{% else %}
 {{ object.title }}{% endif %}</h3>
 <h4 class="card-subtitle">{{ object.subtitle }}</h4>
 <div class="card-text">{{ object.description|safe }}</div>
 </div>
</div>

Django CMS Chapter 8

[361]

How it works...
If you go to the Preview mode of any CMS page and click on the Toggle structure panel
(via the button at the far right of the CMS toolbar), you can add the Editorial Content
plugin to a placeholder, as follows:

Django CMS Chapter 8

[362]

The content of this plugin will be rendered with a specified template, and it can also be
customized, depending on the template of the page where the plugin is chosen. For
example, choose the cms/magazine.html template for the News page, and then add the
Editorial Content plugin. The News page might look similar to the following screenshot:

Here, the Test title with an image and description is the custom plugin inserted into the
main_content placeholder in the magazine.html page template. If the page template
were different, the plugin would be rendered with the same style as the plugin content in
the sidebar, having a gray background and border. However, this differentiation could be
much greater via making further modifications to the editorial_content.html template
or providing other specialized templates.

Django CMS Chapter 8

[363]

See also
The Creating templates for Django CMS recipe
The Structuring the page menu recipe

Adding new fields to the CMS page
CMS pages have several multilingual fields, such as the title, slug, menu title, page title,
description meta tag, and overwrite URL. They also have several common language-
agnostic fields, such as the template, the ID used in the template tags, the attached
application, and the attached menu. However, that might not be enough for more complex
websites. Thankfully, Django CMS features a manageable mechanism to add new database
fields for CMS pages. In this recipe, you will see how to add fields for the CSS classes, for
the navigational menu items and page body.

Getting ready
Let's create the cms_extensions app and put it under INSTALLED_APPS in the settings.

How to do it...
To create a CMS page extension with the CSS class fields for the navigational menu items
and page body, follow these steps:

In the models.py file, create a CSSExtension class extending PageExtension,1.
registered in extension_pool and containing fields for the menu item's CSS
class and <body> CSS class, as follows:

cms_extensions/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _
from cms.extensions import PageExtension
from cms.extensions.extension_pool import extension_pool

MENU_ITEM_CSS_CLASS_CHOICES = (
 ("featured", ".featured"),
)

BODY_CSS_CLASS_CHOICES = (

Django CMS Chapter 8

[364]

 ("serious", ".serious"),
 ("playful", ".playful"),
)

@extension_pool.register
class CSSExtension(PageExtension):
 menu_item_css_class = models.CharField(
 _("Menu Item CSS Class"),
 max_length=200,
 blank=True,
 choices=MENU_ITEM_CSS_CLASS_CHOICES)
 body_css_class = models.CharField(
 _("Body CSS Class"),
 max_length=200,
 blank=True,
 choices=BODY_CSS_CLASS_CHOICES)

After migrating to incorporate the extension model into the database, add2.
an admin.py file. In that file, register the minimum administration options for
the CSSExtension model that we just created, as follows:

cms_extensions/admin.py
from django.contrib import admin
from cms.extensions import PageExtensionAdmin
from .models import CSSExtension

class CSSExtensionAdmin(PageExtensionAdmin):
 pass

admin.site.register(CSSExtension, CSSExtensionAdmin)

Django CMS Chapter 8

[365]

Then, we need to show the CSS extension in the toolbar for each page. The code3.
will need to check whether the user has the permission to change the current
page; if so, it loads the page menu from the current toolbar and adds a new menu
item, CSS, with the link to create or edit CSSExtension. This can be done by
putting the following code into the cms_toolbars.py file of the app:

cms_extensions/cms_toolbars.py
from cms.api import get_page_draft
from cms.toolbar_pool import toolbar_pool
from cms.toolbar_base import CMSToolbar
from cms.utils.page_permissions import user_can_change_page
from django.urls import reverse, NoReverseMatch
from django.utils.translation import ugettext_lazy as _

from .models import CSSExtension

@toolbar_pool.register
class CSSExtensionToolbar(CMSToolbar):
 page = None

 def populate(self):
 # always use draft if we have a page
 self.page = get_page_draft(self.request.current_page)

 if not self.page:
 # Nothing to do
 return

 # check if user has page edit permission
 if user_can_change_page(user=self.request.user,
 page=self.page):
 try:
 extension = CSSExtension.objects.get(
 extended_object_id=self.page.id)
 except CSSExtension.DoesNotExist:
 extension = None

 try:
 if extension:
 url = reverse(
 "admin:cms_extensions_cssextension_change",
 args=(extension.pk,))
 else:
 url = reverse(
 "admin:cms_extensions_cssextension_add")
 url = f"{url}?extended_object={self.page.pk}"

Django CMS Chapter 8

[366]

 except NoReverseMatch:
 # not in urls
 pass
 else:
 not_edit_mode = not self.toolbar.edit_mode_active
 current_page_menu = self.toolbar.\
 get_or_create_menu("page")
 current_page_menu.add_modal_item(
 _("CSS"),
 url=url,
 disabled=not_edit_mode)

As we want to access the CSS extension in the navigation menu, in order to4.
attach a CSS class, we need to create a menu modifier in the cms_menus.py file
of the same app:

cms_extensions/cms_menus.py
from cms.models import Page
from menus.base import Modifier
from menus.menu_pool import menu_pool

@menu_pool.register_modifier
class CSSModifier(Modifier):
 def modify(self, request, nodes, namespace, root_id, post_cut,
 breadcrumb):
 if post_cut:
 return nodes
 for node in nodes:
 try:
 page = Page.objects.get(pk=node.id)
 except:
 continue
 try:
 page.cssextension
 except:
 pass
 else:
 node.cssextension = page.cssextension
 return nodes

Django CMS Chapter 8

[367]

Then, we add the body CSS class to the <body> element in the base.html5.
template, as follows:

{# templates/base.html #}
{# ... #}
<body class="{% block bodyclass %}{% endblock %}
 {% if request.current_page.css_extension %}
 {{ request.current_page.cssextension.body_css_class }}
 {% endif %}">
{# ... #}

Next, we will override the menu.html file, which is the default template for the6.
navigation menu, to work with Bootstrap 4 and add the menu item's CSS class,
like so:

{# templates/menu/menu.html #}
{% load menu_tags %}

{% for child in children %}
<li class="nav-item{% if child.selected %}
 selected{% endif %}{% if child.ancestor %}
 ancestor{% endif %}{% if child.sibling %}
 sibling{% endif %}{% if child.descendant %}
 descendant{% endif %}{% if child.children %}
 dropdown{% endif %}{% if child.cssextension %}
 {{ child.cssextension.menu_item_css_class }}{% endif
%}">
 {% if child.children %}
 <a id="dropdown-{{ child.get_menu_title|slugify }}"
 class="nav-link dropdown-toggle{% if child.selected %}
 active{% endif %}" href="#"
 role="button" data-toggle="dropdown"
 aria-haspopup="true" aria-expanded="false">
 {{ child.get_menu_title }}
 <ul class="dropdown-menu"
 aria-labelledby="dropdown-{{ child.get_menu_title|slugify
}}">
 {% show_menu from_level to_level extra_inactive
extra_active template "" "" child %}

 {% else %}
 <a class="nav-link{% if child.selected %}
 active{% endif %}"
 href="{{
child.attr.redirect_url|default:child.get_absolute_url }}">
 {{ child.get_menu_title }}
 {% endif %}

Django CMS Chapter 8

[368]

{% endfor %}

Finally, make and run migrations for the cms_extensions app, as follows:7.

(myproject_env)$ python3 manage.py makemigrations cms_extensions
(myproject_env)$ python3 manage.py migrate cms_extensions

How it works...
The PageExtension class is a model mixin with a one-to-one relationship with the Page
model. To be able to administrate the custom extension model in Django CMS, there is a
specific PageExtensionAdmin class to extend. Then, in the cms_toolbars.py file, we
create the CSSExtensionToolbar class, inheriting from the CMSToolbar class, to create an
item in the Django CMS toolbar. In the populate() method, we perform the general
routine to check the page permissions, and then, we add a CSS menu item to the toolbar.

If the current user has permission to edit the page, they will see a CSS option in the toolbar,
under the Page menu item, as shown in the following screenshot:

Django CMS Chapter 8

[369]

When the administrator clicks on the new menu item, a pop-up window will open, and
they will be able to select the CSS classes for the navigation menu item and body, as shown
in the following screenshot:

To show a specific CSS class from the page extension in the navigation menu, we need to
attach the CSSExtension object to the navigation items. Then, these objects can be accessed
in the menu.html template, as in {{ child.cssextension }}. In the end, you will see
some navigation menu items highlighted, such as the Music item shown in the following
screenshot (depending on your CSS):

Django CMS Chapter 8

[370]

It is much simpler to show a specific CSS class for <body> of the current page. We can use
{{ request.current_page.cssextension.body_css_class }} right away, as the
extension is attached to the page by Django CMS automatically.

See also
The Creating templates for Django CMS recipe

9
Hierarchical Structures

In this chapter, we will cover the following recipes:

Creating hierarchical categories with django-mptt
Creating a category administration interface with django-mptt-admin
Rendering categories in a template with django-mptt
Using a single selection field to choose a category in forms with django-mptt
Using a checkbox list to choose multiple categories in forms with django-mptt
Creating hierarchical categories with django-treebeard
Creating a basic category administration interface with django-treebeard

Introduction
Whether you build your own forum, threaded comments, or categorization system, there
will be a moment when you need to save hierarchical structures in the database. Although
the tables of relational databases (such as MySQL and PostgreSQL) are of a flat manner,
there is a fast and effective way to store hierarchical structures. It is called Modified
Preorder Tree Traversal (MPTT). MPTT allows you to read the tree structures without
recursive calls to the database.

At first, let's get familiar with the terminology of the tree structures. A tree data structure is
a nested collection of nodes, starting at the root node and having references to child nodes.
There is a restriction that no node references back to create a loop and no reference is
duplicated. The following are some other terms to learn:

Parent is any node that has references to child nodes.
Descendants are the nodes that can be reached by recursively traversing from a
parent to its children. Therefore, a node's descendants will be its child, the child's
children, and so on.

Hierarchical Structures Chapter 9

[372]

Ancestors are the nodes that can be reached by recursively traversing from a
child to its parent. Therefore, a node's ancestors will be its parent, the parent's
parent, and so on up to the root.
Siblings are nodes with the same parent.
Leaf is a node without children.

Now, I'll explain how MPTT works. Imagine that you lay out your tree horizontally with
the root node at the top. Each node in the tree has left and right values. Imagine them as
small left and right handles on the left and right-hand side of the node. Then, you walk
(traverse) around the tree counterclockwise, starting from the root node and mark each left
or right value that you find with a number: 1, 2, 3, and so on. It will look similar to the
following diagram:

In the database table of this hierarchical structure, you have a title, left value, and right
value for each node.

Now, if you want to get the subtree of the B node with 2 as the left value and 11 as the right
value, you will have to select all of the nodes that have a left value between 2 and 11. They
are C, D, E, and F.

To get all of the ancestors of the D node with 5 as the left value and 10 as the right value,
you have to select all of the nodes that have a left value that is less than 5 and a right value
that is more than 10. These would be B and A.

Hierarchical Structures Chapter 9

[373]

To get the number of the descendants for a node, you can use the following formula:
descendants = (right - left - 1) / 2.

Therefore, the number of descendants for the B node can be calculated as shown in the
following formula: (11 - 2 - 1) / 2 = 4.

If we want to attach the E node to the C node, we will have to update the left and right
values only for the nodes of their first common ancestor, the B node. Then, the C node will
still have 3 as the left value; the E node will get 4 as the left value and 5 as the right value;
the right value of the C node will become 6; the left value of the D node will become 7; the
left value of the F node will stay 8; and the others will also remain the same.

Similarly, there are other tree-related operations with nodes in MPTT. It might be too
complicated to manage all this by yourself for every hierarchical structure in your project.
Luckily, there is a Django app called django-mptt that has a long history of handling these
algorithms, and provides an easy API to handle the tree structures. Another app django-
treebeard has also been tried and tested, and gained additional traction as a powerful
alternative when it replaced MPTT in Django CMS 3.1. In this chapter, you will learn how
to use these helper apps.

Creating hierarchical categories with
django-mptt
To illustrate how to deal with MPTT, we will build on top of the movies app from
the Filtering object lists recipe in Chapter 3, Forms and Views. In our changes, we will add a
hierarchical Category model and update the Movie model to have a many-to-many
relationship with the categories. Alternatively, you can create the app fresh, using only the
content shown here to implement a very basic version of the Movie model from scratch.

Getting ready
To get started, perform the following steps:

Install django-mptt in your virtual environment using the following command1.
(or add the same to your requirements file and rebuild if using a Docker project):

(myproject_env)$ pip3 install django-mptt~=0.9.1

Hierarchical Structures Chapter 9

[374]

Create the movies app if you have not done so already. Add the movies app as2.
well as mptt to INSTALLED_APPS in the settings, as follows:

settings.py or config/base.py
INSTALLED_APPS = (
 # ...
 "mptt",
 "movies",
)

How to do it...
We will create a hierarchical Category model and tie it to the Movie model, which will
have a many-to-many relationship with the categories, as follows:

Open the models.py file and add a Category model that extends1.
mptt.models.MPTTModel and CreationModificationDateMixin, which we
defined in Chapter 2, Database Structure. In addition to the fields coming from
the mixins, the Category model will need to have a parent field of the
TreeForeignKey type and a title field:

movies/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _
from mptt.models import MPTTModel
from mptt.fields import TreeForeignKey, TreeManyToManyField

from utils.models import CreationModificationDateMixin

RATING_CHOICES = (
 # ...
)

class Category(MPTTModel, CreationModificationDateMixin):
 class Meta:
 ordering = ["tree_id", "lft"]
 verbose_name = _("Category")
 verbose_name_plural = _("Categories")

 class MPTTMeta:
 order_insertion_by = ["title"]

 parent = TreeForeignKey("self",
 on_delete=models.CASCADE,

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31

Hierarchical Structures Chapter 9

[375]

 blank=True,
 null=True,
 related_name="children")
 title = models.CharField(_("Title"),
 max_length=200)

...

Update the Movie model to extend CreationModificationDateMixin. Also,2.
make sure a title field is included and a categories field of the
TreeManyToManyField type:

class Movie(models.Model):
 # ...
 categories = TreeManyToManyField(Category,
 verbose_name=_("Categories"))
 # ...

Update your database by making migrations and running them for the movies3.
app:

(myproject_env)$ python3 manage.py makemigrations movies
(myproject_env)$ python3 manage.py migrate movies

How it works...
The MPTTModel mixin will add the tree_id, lft, rght, and level fields to the Category
model. The tree_id field is used as you can have multiple trees in the database table. In
fact, each root category is saved in a separate tree. The lft and rght fields store the left
and right values used in the MPTT algorithms. The level field stores the node's depth in
the tree. The root node will be level 0. Through the order_insertion_by meta option
specific to MPTT, we ensure that when new categories are added they stay in alphabetical
order by title.

Hierarchical Structures Chapter 9

[376]

Besides new fields, the MPTTModel mixin adds methods to navigate through the tree
structure similar to how you navigate through DOM elements using JavaScript. These
methods are listed as follows:

If you want to get the ancestors of a category, use the following code. Here,
the ascending parameter defines from which direction to read the nodes (the
default is False), and the include_self parameter defines whether to include
the category itself in QuerySet (the default is False):

ancestor_categories = category.get_ancestors(ascending=False,
 include_self=False)

To just get the root category, use the following code:

root = category.get_root()

If you want to get the direct children of a category, use the following code:

children = category.get_children()

To get all of the descendants of a category, use the following code. Here,
the include_self parameter again defines whether or not to include the
category itself in QuerySet:

descendants = category.get_descendants(include_self=False)

If you want to get the descendant count without querying the database, use the
following code:

descendants_count = category.get_descendant_count()

To get all siblings, call the following method:

siblings = category.get_siblings(include_self=False)

Root categories are considered siblings of other root categories.
To just get the previous and next siblings, call the following methods:

previous_sibling = category.get_previous_sibling()
next_sibling = category.get_next_sibling()

Hierarchical Structures Chapter 9

[377]

Also, there are methods to check whether the category is root, child, or leaf,
as follows:

category.is_root_node()
category.is_child_node()
category.is_leaf_node()

All these methods can be used either in the views, templates, or management commands. If
you want to manipulate the tree structure, you can also use the insert_at() and
move_to() methods. In this case, you can read about them and the tree manager methods
at http://django-mptt.readthedocs.io/en/stable/models.html.

In the preceding models, we used TreeForeignKey and TreeManyToManyField. These
are similar to ForeignKey and ManyToManyField, except that they show the choices
indented in hierarchies in the administration interface.

Also, note that in the Meta class of the Category model, we order the categories by
tree_id and then by the lft value in order to show the categories naturally in the tree
structure.

See also
The Working with Docker recipe in Chapter 1, Getting Started with Django 2.0
The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Database Structure
The Structuring the page menu recipe in Chapter 7, Django CMS
The Creating a category administration interface with django-mptt-admin recipe

Creating a category administration interface
with django-mptt-admin
The django-mptt app comes with a simple model administration mixin that allows you to
create the tree structure and list it with indentation. To reorder trees, you need to either
create this functionality yourself or use a third-party solution. One app that can help you to
create a draggable administration interface for hierarchical models is django-mptt-admin.
Let's take a look at it in this recipe.

http://django-mptt.readthedocs.io/en/stable/models.html

Hierarchical Structures Chapter 9

[378]

Getting ready
First, set up the movies app as described in the Creating hierarchical categories with django-
mptt recipe earlier in this chapter. Then, we need to have the django-mptt-admin app
installed by performing the following steps:

Install the app in your virtual environment using the following command, or add1.
it to your requirements and rebuild for a Docker project:

(myproject_env)$ pip3 install django-mptt-admin~=0.6.0

Put it in INSTALLED_APPS in the settings, as follows:2.

settings.py or config/base.py
INSTALLED_APPS = (
 # ...
 'django_mptt_admin',
)

Make sure that the static files for django-mptt-admin are available to your3.
project:

(myproject_env)$ python3 manage.py collectstatic

How to do it...
Create an admin.py in which we define the administration interface for
the Category model. It will extend DjangoMpttAdmin instead of admin.ModelAdmin, as
follows:

movies/admin.py
from django.contrib import admin
from django_mptt_admin.admin import DjangoMpttAdmin

from .models import Category

class CategoryAdmin(DjangoMpttAdmin):
 list_display = ["title", "created", "modified"]
 list_filter = ["created"]

admin.site.register(Category, CategoryAdmin)

Hierarchical Structures Chapter 9

[379]

How it works...
The administration interface for the categories will have two modes: tree view and grid
view. Your tree view will look similar to the following screenshot:

Hierarchical Structures Chapter 9

[380]

The tree view uses the jqTree jQuery library for node manipulation. You can expand and
collapse categories for a better overview. To reorder them or change the dependencies, you
can drag and drop the titles in this list view. During reordering, the user interface looks
similar to the following screenshot:

Note that any usual list-related settings such as list_display or
list_filter will be ignored. Also, any ordering driven by
the order_insertion_by meta property will be overridden by manual
sorting.

Hierarchical Structures Chapter 9

[381]

If you want to filter categories, sort them by a specific field, or apply admin actions, you can
switch to the grid view, which shows the default category change list, as in the following:

Hierarchical Structures Chapter 9

[382]

See also
The Creating hierarchical categories with django-mptt recipe
The Creating a category administration interface with django-treebeard recipe

Rendering categories in a template with
django-mptt
Once you have created categories in your app, you need to display them hierarchically in a
template. The easiest way to do this with MPTT trees, as described in the Creating
hierarchical categories with django-mptt recipe, is to use the {% recursetree %} template
tag from the django-mptt app. We will show you how to do that in this recipe.

Getting ready
Make sure that your movies app has the Category model created, as per the Creating
hierarchical categories with django-mptt recipe, and some categories are entered in the
database.

How to do it...
Pass QuerySet of your hierarchical categories to the template and then use the {%
recursetree %} template tag as follows:

Create a view that loads all the categories and passes them to a template:1.

movies/views.py
...other imports...
from django.shortcuts import render

from .models import Category

...

class MovieCategoryListView(View):
 template_name = "movies/movie_category_list.html"

 def get(self, request, *args, **kwargs):
 context = {

Hierarchical Structures Chapter 9

[383]

 "categories": Category.objects.all(),
 }
 return render(request, self.template_name, context)

Create a template with the following content to output the hierarchy of2.
categories:

{# templates/movies/category_list.html #}
{% extends "base.html" %}
{% load mptt_tags %}

{% block content %}
 <ul class="root">
 {% recursetree categories %}

 {{ node.title }}
 {% if not node.is_leaf_node %}
 <ul class="children">
 {{ children }}

 {% endif %}

 {% endrecursetree %}

{% endblock %}

Create a URL rule to show the view:3.

movies/urls.py
...other imports...
from django.urls import path

from .views import MovieCategoryListView

urlpatterns = [
 # ...
 path('category/', MovieCategoryListView.as_view(),
 name='category_list')
]

Hierarchical Structures Chapter 9

[384]

How it works...
The template will be rendered as nested lists, as shown in the following screenshot:

Hierarchical Structures Chapter 9

[385]

The {% recursetree %} block template tag takes QuerySet of the categories and renders
the list using the template content nested within the tag. There are two special variables
used here:

The node variable is an instance of the Category model whose fields or methods
can be used to add specific CSS classes or HTML5 data-* attributes for
JavaScript, such as {{ node.get_descendent_count }}, {{ node.level
}}, or {{ node.is_root }}
Secondly, we have a children variable that defines where the rendered child
nodes of the current category will be placed

There's more...
If your hierarchical structure is very complex, with more than 20 depth levels, it is
recommended to use the full_tree_for_model and drilldown_tree_for_node
iterative tags or the non-recursive, tree_info template filter. For more information on
how to do this, refer to the official documentation at https:/ / django- mptt. readthedocs.
io/en/latest/templates. html#iterative- tags.

See also
The Using HTML5 data attributes recipe in Chapter 4, Templates and JavaScript
The Creating hierarchical categories with django-mptt recipe
The Creating hierarchical categories with django-treebeard recipe
The Using a single selection field to choose a category in forms with django-mptt recipe

Using a single selection field to choose a
category in forms with django-mptt
What happens if you want to show category selection in a form? How will the hierarchy be
presented? In django-mptt, there is a special TreeNodeChoiceField form field that you
can use to show the hierarchical structures in a selected field. Let's take a look at how to do
this.

https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://django-mptt.readthedocs.io/en/latest/templates.html#iterative-tags
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=40

Hierarchical Structures Chapter 9

[386]

Getting ready
We will start with the movies app that we defined in the previous recipes.

How to do it...
Let's enhance the filter form for movies that we created in the Filtering object lists recipe
in Chapter 3, Forms and Views, adding a field for filtering by category:

In the forms.py file of the movies app, create a form with a category field as1.
follows:

movies/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _
from django.utils.html import mark_safe
from mptt.forms import TreeNodeChoiceField

from .models import Category

class MovieFilterForm(forms.Form):
 # ...
 category = TreeNodeChoiceField(
 label=_("Category"),
 queryset=Category.objects.all(),
 required=False,
 level_indicator=mark_safe(" "))

We should already have created MovieListView, an associated URL rule, and2.
the movie_list.html template to show this form. Add the Category filter to
the template, as follows:

{# templates/movies/movie_list.html #}
{# ... #}
{% block sidebar %}
 <div class="filters panel-group" id="accordion">
 {# ... #}
 {% with title="Category" %}
 <div class="panel panel-default">
 {% include "movies/includes/filter_heading.html" with
 title=title %}
 <div id="collapse-{{ title|slugify }}"
 class="panel-collapse collapse">
 <div class="panel-body"><div class="list-group">

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

Hierarchical Structures Chapter 9

[387]

 {{ form.category }}
 </div></div>
 </div>
 </div>
 {% endwith %}
 </div>
{% endblock %}
{# ... #}

How it works...
The category selection drop-down menu will look similar to the following:

Hierarchical Structures Chapter 9

[388]

TreeNodeChoiceField acts like ModelChoiceField; however, it shows hierarchical
choices as indented. By default, TreeNodeChoiceField represents each deeper level
prefixed by three dashes, ---. In our example, we have changed the level indicator to be
four non-breaking spaces (the HTML entities) by passing the level_indicator
parameter to the field. To ensure that the non-breaking spaces aren't escaped, we use
the mark_safe() function.

See also
The Rendering categories in a template with django-mptt recipe
The Using a checkbox list to choose multiple categories in forms with django-mptt recipe

Using a checkbox list to choose multiple
categories in forms with django-mptt
When one or more categories need to be selected at once in a form, you can use
the TreeNodeMultipleChoiceField multiple selection field that is provided by django-
mptt. However, multiple selection fields (for example, <select multiple>) are not very
user friendly from an interface point of view, as the user needs to scroll and hold control
keys while clicking in order to make multiple choices. Especially when there are a fairly
large number of items to choose from, the user wants to select several at once, or the user
has accessibility handicaps, such as poor motor control, that can lead to a really awful user
experience. A much better approach is to provide a checkbox list from which to choose the
categories. In this recipe, we will create a field that allows you to show the hierarchical tree
structure as indented checkboxes in the form.

Getting ready
We will start with the movies app that we defined in the previous recipes and
the utils app that you should have in your project.

Hierarchical Structures Chapter 9

[389]

How to do it...
To render an indented list of categories with checkboxes, we will create and use a new
 MultipleChoiceTreeField form field and also create an HTML template for this field.
The specific template will be passed to the crispy_forms layout in the form. To do this,
perform the following steps:

In the utils app, add a fields.py file (or update it if one already exists) and1.
create a MultipleChoiceTreeField form field that
extends ModelMultipleChoiceField, as follows:

utils/fields.py
...other imports...
from django import forms

...

class MultipleChoiceTreeField(forms.ModelMultipleChoiceField):
 widget = forms.CheckboxSelectMultiple

 def label_from_instance(self, obj):
 return obj

Use the new field with the categories to choose from in a new form for movie2.
creation. Also, in the form layout, pass a custom template to the categories field,
as shown in the following:

movies/forms.py
from django import forms
from django.utils.translation import ugettext_lazy as _
from crispy_forms.helper import FormHelper
from crispy_forms import layout, bootstrap

from utils.fields import MultipleChoiceTreeField
from .models import Movie, Category

class MovieForm(forms.ModelForm):
 class Meta:
 model = Movie

 categories = MultipleChoiceTreeField(
 label=_("Categories"),
 required=False,
 queryset=Category.objects.all())

Hierarchical Structures Chapter 9

[390]

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.helper = FormHelper()
 self.helper.form_action = ""
 self.helper.form_method = "POST"
 self.helper.layout = layout.Layout(
 layout.Field("title"),
 layout.Field(
 "categories",
 template="utils/checkbox_multi_select_tree.html"),
 bootstrap.FormActions(
 layout.Submit("submit", _("Save")),
)
)

Create a template for a Bootstrap-style checkbox list, as shown in the following:3.

{# templates/utils/checkbox_multi_select_tree.html #}
{% load crispy_forms_filters %}
{% load l10n %}

<div id="div_{{ field.auto_id }}"
 class="form-group{% if wrapper_class %}
 {{ wrapper_class }}{% endif %}
 {% if form_show_errors and field.errors %}
 has-error{% endif %}
 {% if field.css_classes %}
 {{ field.css_classes }}{% endif %}">
 {% if field.label and form_show_labels %}
 <label for="{{ field.id_for_label }}"
 class="control-label {{ label_class }}
 {% if field.field.required %}
 requiredField{% endif %}">
 {{ field.label|safe }}{% if field.field.required %}
 *{% endif %}
 </label>
 {% endif %}

 <div class="controls {{ field_class }}"{% if flat_attrs %}
 {{ flat_attrs|safe }}{% endif %}>
 {% include 'bootstrap3/layout/field_errors_block.html' %}

 {% for choice_value, choice_instance
 in field.field.choices %}
 <label class="form-check checkbox{% if inline_class
 %}-{{ inline_class }}{% endif %}
 level-{{ choice_instance.level }}">

Hierarchical Structures Chapter 9

[391]

 <input type="checkbox" class="form-check-input"
 {% if choice_value in field.value
 or choice_value|stringformat:'s'
 in field.value
 or choice_value|stringformat:'s' ==
 field.value|stringformat:'s'
 %} checked{% endif %}
 name="{{ field.html_name }}"
 id="id_{{field.html_name}}_{{forloop.counter}}"
 value="{{ choice_value|unlocalize }}"
 {{ field.field.widget.attrs|flatatt }}>
 {{ choice_instance }}
 </label>
 {% endfor %}

 {% include "bootstrap3/layout/help_text.html" %}
 </div>
</div>

Template tags in the snippet above have been split across lines for
legibility, but in practice template tags must be on a single line, and so
cannot be split in this manner.

Create a new view for adding a movie, using the form we just created:4.

movies/views.py
...other imports...
from django.views.generic import FormView

from .forms import MovieForm

...

class MovieAdd(FormView):
 template_name = 'movies/add_form.html'
 form_class = MovieForm
 success_url = '/'

Add the associated template to show the Add Movie form with the {% crispy5.
%} template tag, whose usage you can learn more about in the Creating a form
layout with django-crispy-forms recipe in Chapter 3, Forms and Views:

{# templates/movies/add_form.html #}
{% extends "base.html" %}
{% load i18n static crispy_forms_tags %}

Hierarchical Structures Chapter 9

[392]

{% block stylesheet %}
<link rel="stylesheet" type="text/css"
 href="{% static 'site/css/movie_add.css' %}">
{% endblock %}

{% block content %}
 <h2>{% trans "Add Movie" %}</h2>
 <div id="form_add_movie">
 {% crispy form %}
 </div>
{% endblock %}

We also need a URL rule pointing to the new view, as follows:6.

movies/urls.py
...other imports...
from django.urls import path

from .views import MovieAdd

...

urlpatterns = [
 # ...
 path('add/', views.MovieAdd.as_view(),
 name="add_movie"),
]

Add rules to your CSS file to indent the labels using the classes generated in the7.
checkbox tree field template, such as .level-0, .level-1, and .level-2, by
setting the margin-left parameter. Make sure that you have a reasonable amount
of these CSS classes for the expected maximum depth of trees in your context, as
follows:

/* static/site/movie_add.css */
.level-0 {
 margin-left: 0;
}
.level-1 {
 margin-left: 20px;
}
.level-2 {
 margin-left: 40px;
}

Hierarchical Structures Chapter 9

[393]

How it works...
As a result, we get the following form:

Contrary to the default behavior of Django, which hardcodes field generation in Python
code, the django-crispy-forms app uses templates to render the fields. You can browse
them under crispy_forms/templates/bootstrap3, and copy some of them to an
analogous path in your project's template directory to overwrite them when necessary.

Hierarchical Structures Chapter 9

[394]

In our movie creation form, we pass a custom template for the categories field that will add
the .level-* CSS classes to the <label> tag, wrapping the checkboxes. One problem with
the normal CheckboxSelectMultiple widget is that when rendered it only uses choice
values and choice texts, whereas we need other properties of the category such as the depth
level. To solve this, we also created a custom MultipleChoiceTreeField form field,
which extends ModelMultipleChoiceField and overrides
the label_from_instance method to return the category instance itself, instead of its
Unicode representation. The template for the field looks complicated; however, it is mostly
a combination of a common field template
(crispy_forms/templates/bootstrap3/field.html) and multiple checkbox field
template
(crispy_forms/templates/bootstrap3/layout/checkboxselectmultiple.html),
with all the necessary Bootstrap markup. We just made a slight modification to add
the .level-* CSS classes.

There's more...
One thing to note here is that this approach using the .level-* classes is not very scalable.
The more trees one has, the more classes need to be created, and at some point it is quite
possible that a new level could be added that is more than the classes provide for.

To provide a more robust solution, a nested markup structure similar to the tree recursion
used for tree display in the Rendering categories in a template with django-mptt recipe might be
used. We leave this as an investigation and exercise for the reader.

See also
The Creating a form layout with django-crispy-forms recipe in Chapter 3, Forms and
Views
The Rendering categories in a template with django-mptt recipe
The Using a single selection field to choose a category in forms recipe

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

Hierarchical Structures Chapter 9

[395]

Creating hierarchical categories with
django-treebeard
There are several algorithms for tree structures, each with its own benefits. An app called
django-treebeard, an alternative to django-mptt, which is used by Django CMS, provides
support for three tree forms:

Adjacency List trees are simple structures, where each node has a parent
attribute. Although read operations are fast, this comes at the cost of slow writes.
Nested Sets trees and MPTT trees are the same; they structure nodes as sets
nested beneath the parent. This structure also provides very fast read access, at
the cost of more expensive writing and deletion, particularly when writes require
some particular ordering.
Materialized Path trees are built with each node in the tree having an associated
path attribute, which is a string indicating the full path from the root to the
node—much like a URL path indicates where to find a particular page on a
website. This is the most efficient approach supported.

As a demonstration of the support it has for all of these algorithms, we will use django-
treebeard and its consistent API. We will extend the ideas app from the Implementing a
multilingual search with Haystack and Whoosh recipe in Chapter 3, Forms and Views. In our
changes, we will simply enhance the Category model with support for hierarchy via one
of the supported tree algorithms.

Getting ready
To get started, perform the following steps:

Install django-treebeard in your virtual environment using the following1.
command (or add the same to your requirements file and rebuild if using a
Docker project):

(myproject_env)$ pip3 install django-treebeard~=4.3.0

Hierarchical Structures Chapter 9

[396]

Create the ideas app if you have not done so already. Add the ideas app as2.
well as treebeard to INSTALLED_APPS in the settings, as follows:

settings.py or config/base.py
INSTALLED_APPS = (
 # ...
 "treebeard",
 "ideas",
)

How to do it...
We will enhance the Category model using the Materialized Path algorithm, as follows:

Open the models.py file and update the Category model to1.
extend treebeard.mp_tree.MP_Node instead of the standard Django Model. It
should also inherit from CreationModificationDateMixin, which we defined
in Chapter 2, Database Structure. In addition to the fields coming from the mixins,
the Category model will need to have a title field:

ideas/models.py
from django.urls import reverse, NoReverseMatch
from django.db import models
from django.utils.translation import ugettext_lazy as _
from treebeard.mp_tree import MP_Node

from utils.models import CreationModificationDateMixin, UrlMixin
from utils.fields import (MultilingualCharField,
 MultilingualTextField)

class Category(MP_Node, CreationModificationDateMixin):
 class Meta:
 verbose_name = _("Idea Category")
 verbose_name_plural = _("Idea Categories")

 node_order_by = ["title",]

 title = MultilingualCharField(_("Title"), max_length=200)

 def __str__(self):
 return self.title

...

Hierarchical Structures Chapter 9

[397]

This will require an update to the database, so next we'll need to migrate the2.
ideas app:

(myproject_env)$ python3 manage.py makemigrations ideas
(myproject_env)$ python3 manage.py migrate ideas

With the use of abstract model inheritance, treebeard tree nodes can be related3.
to other models using the standard relationships. As such, the Idea model can
continue to have a simple ManyToManyField relation to Category:

ideas/models.py
class Idea(UrlMixin):
 # ...
 categories = models.ManyToManyField(Category,
 blank=True,
 related_name="ideas",
 verbose_name=_(
 "Categories"))
 # ...

How it works...
The MP_Node abstract model provides the path, depth, numchild, steplen,
and alphabet fields to the Category model that are necessary for constructing the tree:

The depth and numchild fields provide metadata about a node's location and
descendants
The path field is indexed, allowing database queries against it using LIKE to be
very fast
The path is built of fixed-length encoded segments, where the size of each
segment is determined by the steplen value (which defaults to 4), and the
encoding uses characters found in the given alphabet (defaults to Latin
alphanumeric)
The node_order_by field defines a list of fields used for ordering nodes in the
tree, and is respected by all tree operations

Hierarchical Structures Chapter 9

[398]

The path, depth, and numchild fields should be treated as read-only.
Also, steplen, alphabet, and node_order_by values should never be
changed after saving the first object to a tree; otherwise, the data will be
corrupted.

Besides new fields, the MP_Node abstract class adds methods for navigation through the
tree structure. Some important examples of these methods are listed as follows:

If you want to get the ancestors of a category, which are returned as queryset of
ancestors from the root to the parent of the current node, use the following code:

ancestor_categories = category.get_ancestors()

To just get the root category, which is identified by having depth of 1, use the
following code:

root = category.get_root()

If you want to get the direct children of a category, use the following code:

children = category.get_children()

To get all the descendants of a category, returned as queryset of all children
and their children, and so on, but not including the current node itself, use the
following code:

descendants = category.get_descendants()

If you want to get just the descendant count, use the following code:

descendants_count = category.get_descendant_count()

To get all of the siblings, including the reference node, call the following method:

siblings = category.get_siblings()

Root categories are considered to be siblings of other root categories.
To just get the previous and next siblings, call the following methods, where
get_prev_sibling() will return None for the leftmost sibling, as
will get_next_sibling() for the rightmost one:

previous_sibling = category.get_prev_sibling()
next_sibling = category.get_next_sibling()

Hierarchical Structures Chapter 9

[399]

Also, there are methods to check whether the category is root, leaf, or related
to another node, as follows:

category.is_root()
category.is_leaf()
category.is_child_of(node)
category.is_descendant_of(node)
category.is_sibling_of(node)

There's more...
This recipe only scratches the surface of the power of django-treebeard and its
Materialized Path trees. There are many other methods available for navigation as well as
construction of the trees. In addition, the API for Materialized Path trees is largely identical
to those for Nested Sets trees and Adjacency List trees, which are available simply by
implementing your model with the NS_Node or AL_Node abstract classes, respectively,
instead of using MP_Node.

Read the django-treebeard API documentation for a complete listing of
the available properties and methods for each of the tree implementations
at https:/ / django- treebeard. readthedocs. io/en/ latest/ api. html.

See also
The Implementing a multilingual search with Haystack and Whoosh recipe in Chapter
3, Forms and Views
The Creating hierarchical categories with django-mptt recipe
The Creating a category administration interface with django-treebeard recipe

https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://django-treebeard.readthedocs.io/en/latest/api.html
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

Hierarchical Structures Chapter 9

[400]

Creating a basic category administration
interface with django-treebeard
The django-treebeard app provides its own TreeAdmin, extending from the standard
ModelAdmin. This allows you to view tree nodes hierarchically in the administration
interface, with interface features dependent upon the tree algorithm used. Let's take a look
in this recipe.

Getting ready
First, set up the ideas app and django-treebeard as described in the Creating hierarchical
categories with django-treebeard recipe earlier in this chapter. Also, make sure that the static
files for django-treebeard are available to your project:

(myproject_env)$./manage.py collectstatic

How to do it...
Create an administration interface for the Category model from the ideas app that
extends treebeard.admin.TreeAdmin instead of admin.ModelAdmin, as follows:

ideas/admin.py
from django.contrib import admin
from treebeard.admin import TreeAdmin

from .models import Category

class CategoryAdmin(TreeAdmin):
 list_display = ("title", "created", "modified",)
 list_filter = ("created",)

admin.site.register(Category, CategoryAdmin)

Hierarchical Structures Chapter 9

[401]

How it works...
The administration interface for the categories will have two modes, dependent upon the
tree implementation used. For Materialized Path and Nested Sets trees, an advanced user
interface is provided, as seen here:

Hierarchical Structures Chapter 9

[402]

This advanced view allows you to expand and collapse categories for a better overview, as
has been done for Recipes and Prose. To reorder them or change the dependencies, you can
drag and drop the titles. During reordering, the user interface looks similar to the following
screenshot:

Hierarchical Structures Chapter 9

[403]

If you apply filtering or sorting of categories by a specific field, the advanced functionality
is disabled, but the more attractive look and feel of the advanced interface remains. We can
see this intermediate view here, where only categories created Today are shown:

Hierarchical Structures Chapter 9

[404]

However, if your tree uses the Adjacency List algorithm, a basic UI is provided with a less
aesthetic presentation and none of the toggling or reordering functionality given in the
advanced UI.

More details about the django-treebeard administration, including a
screenshot of the basic interface, can be found in their documentation
here https:/ /django- treebeard. readthedocs. io/ en/latest/ admin.
html.

See also
The Creating hierarchical categories with django-mptt recipe
The Creating hierarchical categories with django-treebeard recipe
The Creating a category administration interface with django-mptt-admin recipe

https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html
https://django-treebeard.readthedocs.io/en/latest/admin.html

10
Importing and Exporting Data

In this chapter, we will cover the following recipes:

Importing data from a local CSV file
Importing data from a local Excel file
Importing data from an external JSON file
Importing data from an external XML file
Creating filterable RSS feeds
Using Tastypie to create an API
Using Django REST framework to create an API

Introduction
There are times when your data needs to be transported from a local format to the database,
imported from external resources, or provided to third parties. In this chapter, we will take
a look at some practical examples of how to write management commands and APIs to do
this.

Importing data from a local CSV file
The comma-separated values (CSV) format is probably the simplest way to store tabular
data in a text file. In this recipe, we will create a management command that imports data
from a CSV file to a Django database. We will need a CSV list of movies. You can easily
create such files with Excel, Calc, or another spreadsheet application.

Importing and Exporting Data Chapter 10

[406]

Getting ready
Create a movies app with the Movie model containing the following fields:
title, release_year, rating, and rank. You may already have such an app created if
you worked through the Filtering object lists recipe in Chapter 3, Forms and Views. If you've
just created the app, make sure to add it under INSTALLED_APPS in the settings and
migrate your database.

Movie data can be obtained from the IMDb Top Movies list, though other
sources also exist. For the IMDb data, see https:/ /www. imdb. com/chart/
top.

How to do it...
Follow these steps to create and use a management command that imports movies from a
local CSV file:

In the movies app, create a management directory and then a commands1.
directory in the new management directory. Put empty __init__.py files in
both new directories to make them Python packages.
Add an import_movies_from_csv.py file there with the following content:2.

movies/management/commands/import_movies_from_csv.py
import csv
from django.core.management.base import BaseCommand

from movies.models import Movie

SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3

class Command(BaseCommand):
 help = ("Imports movies from a local CSV file. Expects each"
 " row in the CSV to contain a single movie's"
 " title, release year, rating and rank.")

 def add_arguments(self, parser):
 # Positional arguments
 parser.add_argument("file_path",
 nargs=1,
 type=str)

https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top
https://www.imdb.com/chart/top

Importing and Exporting Data Chapter 10

[407]

 def handle(self, *args, **options):
 verbosity = options.get("verbosity", NORMAL)
 file_path = options["file_path"][0]

 if verbosity >= NORMAL:
 self.stdout.write("=== Importing movies ===")

 with open(file_path) as f:
 reader = csv.reader(f)
 for row in enumerate(reader):
 index, (title, release_year, rating, rank) = row
 if index == 0:
 # let's skip the column headers
 continue
 movie, created = Movie.objects.get_or_create(
 title=title,
 release_year=release_year,
 rank=rank,
 rating=rating)
 if verbosity >= NORMAL:
 self.stdout.write(
 f"{movie.rank}. {movie.title}")

To run the import, call the following in the command line:3.

(myproject_env)$ python3 manage.py import_movies_from_csv \
> data/top-movies.csv

How it works...
For a management command, we need to create a Command class deriving from
BaseCommand and overwriting the add_arguments() and handle() methods. The help
attribute defines the help text for the management command. It can be seen when you type
the following in the command line:

(myproject_env)$ python3 manage.py help import_movies_from_csv

Django management commands use the built-in argparse module to parse the passed
arguments. The add_arguments() method defines what positional or named arguments
should be passed to the management command. In our case, we will add a positional
file_path argument of Unicode type. By nargs set to the 1 attribute, we allow only one
value.

Importing and Exporting Data Chapter 10

[408]

To learn about the other arguments that you can define and how to do
this, refer to the official argparse documentation at
https://docs.python.org/2/library/argparse.html#the-add-argument

-method.

At the beginning of the handle() method, the verbosity argument is checked. Verbosity
defines how much terminal output the command should provide, from 0, not giving any, to
3, providing extensive logging. You can pass this argument to the command as follows:

(myproject_env)$ python3 manage.py import_movies_from_csv \
> ../data/top-movies.csv --verbosity=0

Then, we also expect the filename as the first positional argument. The
options["file_path"] returns a list of the values defined in the nargs; therefore, it is
one value in this case.

We open the given file and pass its pointer to csv.reader. The first line in the file is
assumed to contain headings for each of the columns, so it is skipped. Then, for each
additional line in the file, we will create a new Movie object, if a matching movie doesn't
exist yet. Our command only supports two levels of output verbosity, and we default the
level to --verbosity=1, so the management command will print out the imported movie
ranks and titles to the console, unless you set --verbosity=0.

If you want to debug the errors of a management command while
developing it, pass the --traceback parameter for it. If an error occurs,
you will see the full stack trace of the problem.

Assuming we invoked the command with --verbosity=1 or higher, the start of the sort of
output we could expect might be as follows:

(myproject_env)$ python3 manage.py import_movies_from_csv \
> ../data/movies.csv --verbosity=1
=== Importing movies ===
1. The Shawshank Redemption
2. The Godfather
3. The Godfather: Part II
4. The Dark Knight
5. 12 Angry Men
6. Schindler's List
7. The Lord of the Rings: The Return of the King
8. Pulp Fiction
9. The Good, the Bad and the Ugly
10. Fight Club
...

https://docs.python.org/2/library/argparse.html#the-add-argument-method
https://docs.python.org/2/library/argparse.html#the-add-argument-method

Importing and Exporting Data Chapter 10

[409]

There's more...
You can learn more about the CSV library from the official documentation at
https://docs.python.org/2/library/csv.html.

It also is possible to generalize this command into a form usable for any app and model. To
do so, we need to accept the app and model to import to as additional arguments. Also, the
first row (the column headings) has to be provided and contain the model field names.
From these, in combination with the row data, we construct a kwargs object and pass that
to get or create an instance of the appropriate app model. We leave the implementation of
such a generalized command as an exercise for the reader.

See also
The Filtering object lists recipe in Chapter 3, Forms and Views
The Importing data from a local Excel file recipe

Importing data from a local Excel file
Another popular format for storing tabular data is an Excel spreadsheet. In this recipe, we
will import movies from a file of this format.

Getting ready
Let's start with the movies app that we created in the previous recipe. Install the openpyxl
package to read Excel files, as follows:

(project_env)$ pip3 install openpyxl~=2.5.0

https://docs.python.org/2/library/csv.html
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

Importing and Exporting Data Chapter 10

[410]

How to do it...
Follow these steps to create and use a management command that imports movies from a
local XLSX file:

If you haven't done so, in the movies app, create a management directory, and1.
then a commands subdirectory beneath it. Add empty __init__.py files in both
of the new directories to make them Python packages.
Add an import_movies_from_xlsx.py file with the following content:2.

movies/management/commands/import_movies_from_xlsx.py
from django.core.management.base import BaseCommand
from openpyxl import load_workbook

from movies.models import Movie

SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3

class Command(BaseCommand):
 help = ("Imports movies from a local XLSX file. "
 "Expects title, release year, rating and rank.")

 def add_arguments(self, parser):
 # Positional arguments
 parser.add_argument("file_path",
 nargs=1,
 type=str)

 def handle(self, *args, **options):
 verbosity = options.get("verbosity", NORMAL)
 file_path = options["file_path"][0]

 wb = load_workbook(filename=file_path)
 ws = wb.worksheets[0]

 if verbosity >= NORMAL:
 self.stdout.write("=== Importing movies ===")

 index = 0
 rows = ws.iter_rows(min_row=2) # skip the column captions
 for row in rows:
 index += 1
 row_values = [cell.value for cell in row]
 (title, release_year, rating, rank) = row_values
 movie, created = Movie.objects.get_or_create(
 title=title,

Importing and Exporting Data Chapter 10

[411]

 release_year=release_year,
 rating=rating,
 rank=rank)
 if verbosity >= NORMAL:
 self.stdout.write(f"{movie.rank}. {movie.title}")

To run the import, call the following in the command line:3.

(myproject_env)$ python3 manage.py import_movies_from_xlsx \
> ../data/bottom-movies.xlsx

How it works...
The principle of importing from an XLSX file is the same as with CSV. We open the file,
read it row by row, and create the Movie objects from the provided data. Here is a detailed
explanation:

Excel files are workbooks containing sheets as different tabs.
We are using the openpyxl library to open a file passed as a positional argument
to the command. Then, we read the first sheet from the workbook.
Afterward, we will read the rows one by one (except the first row with the
column titles) and create the Movie objects from them.
Once again, the management command will print out the imported movie titles
to the console, unless you set --verbosity=0.

There's more...
You can learn more about how to work with Excel files at http://www.python-excel.org/.

See also
The Creating admin actions recipe in Chapter 6, Model Administration
The Importing data from a local CSV file recipe
The Importing data from an external JSON file recipe

http://www.python-excel.org/
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=65

Importing and Exporting Data Chapter 10

[412]

Importing data from an external JSON file
The Last.fm music website has an API under the http://ws.audioscrobbler.com/ domain
that you can use to read the albums, artists, tracks, events, and more. The API allows you to
either use the JSON or XML format. In this recipe, we will import the top tracks tagged
disco using the JSON format.

Getting ready
Follow these steps to import data in the JSON format from Last.fm:

To use Last.fm, you need to register and get an API key. The API key can be1.
created at http://www.last.fm/api/account/create.
The API key has to be set in the settings as LAST_FM_API_KEY. We recommend2.
providing it as an environment variable and drawing that into your settings as
shown here:

settings.py or config/base.py
import os
...
LAST_FM_API_KEY = os.environ.get('LAST_FM_API_KEY')

Also, install the requests library in your virtual environment using the3.
following command:

(myproject_env)$ pip install requests~=2.19.1

Let's check the structure of the JSON endpoint for the top disco tracks4.
(http://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag=disco&a
pi_key=xxx&format=json), which should look something like this:

{
 "tracks":{
 "track":[
 {
 "name":"Billie Jean",
 "duration":"293",
 "mbid":"f980fc14-e29b-481d-ad3a-5ed9b4ab6340",
"url":"https://www.last.fm/music/Michael+Jackson/_/Billie+Jean",
 "streamable":{
 "#text":"0",
 "fulltrack":"0"
 },
 "artist":{

http://ws.audioscrobbler.com/
http://www.last.fm/api/account/create
http://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag=disco&api_key=xxx&format=json
http://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag=disco&api_key=xxx&format=json

Importing and Exporting Data Chapter 10

[413]

 "name":"Michael Jackson",
 "mbid":"f27ec8db-af05-4f36-916e-3d57f91ecf5e",
 "url":"https://www.last.fm/music/Michael+Jackson"
 },
 "image":[
 {
"#text":"https://lastfm-img2.akamaized.net/i/u/34s/7a9b0f69d51f41a8
88ef29df9cfe3594.png",
 "size":"small"
 },
 {
"#text":"https://lastfm-img2.akamaized.net/i/u/64s/7a9b0f69d51f41a8
88ef29df9cfe3594.png",
 "size":"medium"
 },
 {
"#text":"https://lastfm-img2.akamaized.net/i/u/174s/7a9b0f69d51f41a
888ef29df9cfe3594.png",
 "size":"large"
 },
 {
"#text":"https://lastfm-img2.akamaized.net/i/u/300x300/7a9b0f69d51f
41a888ef29df9cfe3594.png",
 "size":"extralarge"
 }
],
 "@attr":{
 "rank":"1"
 }
 },
 ...
],
 "@attr":{
 "tag":"disco",
 "page":"1",
 "perPage":"50",
 "totalPages":"577",
 "total":"28810"
 }
 }
}

We want to read the track name, artist, URL, and medium-sized images (shown here in
bold).

Importing and Exporting Data Chapter 10

[414]

How to do it...
Follow these steps to create a Track model and a management command, which imports
the top tracks from Last.fm to the database:

Let's create a music app and add it to the INSTALLED_APPS. For Docker projects,1.
make sure to map the volume and restart the app container as well.
Then, create a models.py file with a simple Track model as follows:2.

music/models.py
import os

from django.utils.translation import ugettext_lazy as _
from django.db import models
from django.utils.text import slugify

def upload_to(instance, filename):
 filename_base, filename_ext = os.path.splitext(filename)
 artist = slugify(instance.artist)
 track = slugify(instance.name)
 return f"tracks/{artist}--{track}{filename_ext.lower()}"

class Track(models.Model):
 class Meta:
 verbose_name = _("Track")
 verbose_name_plural = _("Tracks")

 name = models.CharField(_("Name"),
 max_length=250)
 artist = models.CharField(_("Artist"),
 max_length=250)
 url = models.URLField(_("URL"))
 image = models.ImageField(_("Image"),
 upload_to=upload_to,
 blank=True,
 null=True)

 def __str__(self):
 return f"{self.artist} - {self.name}"

Next, make and run migrations for the music app to get your database ready for3.
the import:

(myproject_env)$ python3 manage.py makemigrations music
(myproject_env)$ python3 manage.py migrate music

Importing and Exporting Data Chapter 10

[415]

Then, create the management command as shown here:4.

music/management/commands/import_top_tracks_from_lastfm_json.py
import os, requests
from io import BytesIO

from django.conf import settings
from django.core.files import File
from django.core.management.base import BaseCommand
from django.utils.encoding import force_text

from music.models import Track

SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3
API_URL = "http://ws.audioscrobbler.com/2.0/"

class Command(BaseCommand):
 help = "Imports top tracks from last.fm as JSON."
 verbosity = NORMAL

 def add_arguments(self, parser):
 # Named (optional) arguments
 parser.add_argument("--max_pages",
 type=int,
 default=0)

 def handle(self, *args, **options):
 self.verbosity = options.get("verbosity", self.verbosity)
 max_pages = options["max_pages"]

 params = {
 "method": "tag.gettoptracks",
 "tag": "disco",
 "api_key": settings.LAST_FM_API_KEY,
 "format": "json",
 }

 r = requests.get(API_URL, params=params)
 response_dict = r.json()
 pages = int(response_dict.get("tracks", {})
 .get("@attr", {})
 .get("totalPages", 1))
 if max_pages > 0:
 pages = min(pages, max_pages)

 if self.verbosity >= NORMAL:

Importing and Exporting Data Chapter 10

[416]

 self.stdout.write(
 f"=== Importing {pages} page(s) of tracks ===")

 self.save_page(response_dict)
 for page_number in range(2, pages + 1):
 params["page"] = page_number
 r = requests.get(API_URL, params=params)
 response_dict = r.json()
 self.save_page(response_dict)

 def save_page(self, data):
 # ...

As the list is paginated, we will implement the save_page() method in the5.
Command class to save a single page of tracks. This method takes the dictionary
with the top tracks from a single page as a parameter, as follows:

def save_page(self, data):
 for track_dict in data.get("tracks", {}).get("track"):
 if not track_dict:
 continue

 name = track_dict.get("name", "")
 artist = track_dict.get("artist", {}).get("name", "")
 url = track_dict.get("url", "")
 track, created = Track.objects.get_or_create(
 name=force_text(name),
 artist=force_text(artist),
 url=force_text(url))

 image_dict = track_dict.get("image", None)
 if created and image_dict:
 image_url = image_dict[1]["#text"]
 image_response = requests.get(image_url)
 track.image.save(
 os.path.basename(image_url),
 File(BytesIO(image_response.content)))

 if self.verbosity >= NORMAL:
 self.stdout.write(f" - {str(track)}")

To run the import, call the following in the command line:6.

(myproject_env)$ python3 manage.py
import_top_tracks_from_lastfm_json \
> --max_pages=3

Importing and Exporting Data Chapter 10

[417]

How it works...
The option named max_pages argument limits the imported data to three pages. Just skip
it, or explicitly pass 0 (zero) if you want to download all the available top tracks.

Beware that there are around 30,000 pages as detailed in the totalPages
value, and this will take a long time, and a lot of processing.

Using the requests.get() method, we read the data from Last.fm, passing the params
query parameters. The response object has a built-in method called json(), which converts
a JSON string to a parsed dictionary object.

We read the total pages value from this dictionary and then save the first page of results.
Then, we get the second and later pages one by one and save them. If the number of pages
to get is only 1, the range returned is empty, so we do not end up retrieving additional
pages.

One interesting part in the import is downloading and saving the image. Here, we also use
requests.get() to retrieve the image data and then we pass it to File through
StringIO, which is accordingly used in the image.save() method. The first parameter of
image.save() is a filename that will be overwritten anyway by the value from the
upload_to function and is necessary only for the file extension.

If the command is invoked with a --verbosity=1 or higher, then a list of the tracks
created by the import will be output, using the string representation of the Track object.

There's more...
You can learn more about how to work with Last.fm at https:/ /www. last. fm/api.

See also
The Importing data from a local CSV file recipe
The Importing data from an external XML file recipe

https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api

Importing and Exporting Data Chapter 10

[418]

Importing data from an external XML file
Just as we showed what could be done with JSON in the preceding recipe, the Last.fm file
also allows you to take data from its services in XML format. In this recipe, we will show
you how to do this.

Getting ready
To prepare importing top tracks from Last.fm in the XML format, follow these steps:

Start with the first three steps from the Getting ready section in the Importing data1.
from an external JSON file recipe.
Then, let's check the structure of the XML endpoint for the top folk tracks (for2.
example, http://ws.audioscrobbler.com/2.0/?method=tag.gettoptrac
ks&tag=disco&api_key=xxx&format=xml, but with a real API key) as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<lfm status="ok">
 <tracks tag="folk" page="1" perPage="50" totalPages="2729"
total="136432">
 <track rank="1">
 <name>Hurt</name>
 <duration>218</duration>
 <mbid>25d8de5e-3662-4ffd-8dea-511a696ac3e7</mbid>
 <url>https://www.last.fm/music/Johnny+Cash/_/Hurt</url>
 <streamable fulltrack="0">0</streamable>
 <artist>
 <name>Johnny Cash</name>
 <mbid>d43d12a1-2dc9-4257-a2fd-0a3bb1081b86</mbid>
 <url>https://www.last.fm/music/Johnny+Cash</url>
 </artist>
 <image size="small">
https://lastfm-img2.akamaized.net/i/u/34s/08dfab76ecc847f0862a950f9
63f5596.png
 </image>
 <image size="medium">
https://lastfm-img2.akamaized.net/i/u/64s/08dfab76ecc847f0862a950f9
63f5596.png
 </image>
 <image size="large">
https://lastfm-img2.akamaized.net/i/u/174s/08dfab76ecc847f0862a950f
963f5596.png
 </image>
 <image size="extralarge">

Importing and Exporting Data Chapter 10

[419]

https://lastfm-img2.akamaized.net/i/u/300x300/08dfab76ecc847f0862a9
50f963f5596.png
 </image>
 </track>
 ...
 </tracks>
</lfm>

How to do it...
Execute the following steps one by one to import the top tracks from Last.fm in the XML
format:

First, perform the first three steps from the How to do it... section in the Importing1.
data from an external JSON file recipe, if you haven't already.
Then, create an import_music_from_lastfm_xml.py management command.2.
We will be using the ElementTree XML API that comes with Python to parse
the XML nodes, as follows:

music/management/commands/import_music_from_lastfm_xml.py
import os, requests
from io import BytesIO
from xml.etree import ElementTree

from django.core.management.base import BaseCommand
from django.utils.encoding import force_text
from django.conf import settings
from django.core.files import File

from music.models import Track

SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3
API_URL = "http://ws.audioscrobbler.com/2.0/"

class Command(BaseCommand):
 help = "Imports top tracks from last.fm as XML."
 verbosity = NORMAL

 def add_arguments(self, parser):
 # Named (optional) arguments
 parser.add_argument("--max_pages",
 type=int,
 default=0)

Importing and Exporting Data Chapter 10

[420]

 def handle(self, *args, **options):
 self.verbosity = options.get("verbosity", self.verbosity)
 max_pages = options["max_pages"]

 params = {
 "method": "tag.gettoptracks",
 "tag": "folk",
 "api_key": settings.LAST_FM_API_KEY,
 "format": "xml",
 }

 r = requests.get(API_URL, params=params)
 root = ElementTree.fromstring(r.content)

 pages = int(root.find("tracks").attrib
 .get("totalPages", 1))
 if max_pages > 0:
 pages = min(pages, max_pages)

 if self.verbosity >= NORMAL:
 self.stdout.write(
 f"=== Importing {pages} page(s) of tracks ===")

 self.save_page(root)

 for page_number in range(2, pages + 1):
 params["page"] = page_number
 r = requests.get(API_URL, params=params)
 root = ElementTree.fromstring(r.content)
 self.save_page(root)

 def save_page(self, root):
 # ...

As the list is paginated, we will implement the save_page() method in the3.
Command class to save a single page of tracks. This method takes the root node of
the XML as a parameter, as shown here:

def save_page(self, root):
 for track_node in root.findall("tracks/track"):
 if not track_node:
 continue

 name = track_node.find("name").text
 artist = track_node.find("artist/name").text
 url = track_node.find("url").text
 track, created = Track.objects.get_or_create(
 name=force_text(name),

Importing and Exporting Data Chapter 10

[421]

 artist=force_text(artist),
 url=force_text(url))

 image_node = track_node.find("image[@size='medium']")
 if created and image_node is not None:
 image_url = image_node.text
 image_response = requests.get(image_url)
 track.image.save(
 os.path.basename(image_url),
 File(BytesIO(image_response.content)))

 if self.verbosity >= NORMAL:
 self.stdout.write(f" - {track}")

To run the import, call the following in the command line:4.

(myproject_env)$ python manage.py import_music_from_lastfm_xml \
> --max_pages=3

How it works...
The process is analogous to the JSON approach. Using the requests.get() method, we
read the data from Last.fm, passing the query parameters as params. The XML content of
the response is passed to the ElementTree parser, and the root node is returned.

The ElementTree nodes have the find() and findall() methods, where you can pass
XPath queries to filter out specific subnodes.

The following is a table of the available XPath syntax supported by ElementTree:

XPath Syntax
Component Meaning

tag This selects all the child elements with the given tag.
* This selects all the child elements.
. This selects the current node.

//
This selects all the subelements on all the levels beneath the
current element.

.. This selects the parent element.
[@attrib] This selects all the elements that have the given attribute.

[@attrib='value']
This selects all the elements for which the given attribute has the
given value.

Importing and Exporting Data Chapter 10

[422]

[tag]
This selects all the elements that have a child named tag. Only
immediate children are supported.

[position]

This selects all the elements that are located at the given
position. The position can either be an integer (1 is the first
position), the last()expression (for the last position), or a
position relative to the last position (for example, last()-1).

Therefore, using root.find("tracks").attrib.get("totalPages", 1), we read the
total amount of pages, defaulting to one if the data is missing somehow. We will save the
first page and then go through the other pages one by one and save them too.

In the save_page() method, root.findall("tracks/track") returns an iterator
through the <track> nodes under the <tracks> node. With
track_node.find("image[@size='medium']"), we get the medium-sized image.

There's more...
If you worked with both the JSON and XML import recipes, you will notice that there are a
large number of similarities between the two management commands. We leave it as an
exercise to generalize the implementation into a single command
to import_music_from_lastfm, which could differentiate its behavior based on receiving
additional arguments for the format, tag, or even the API method.

You can learn more from the following links:

Read about how to work with Last.fm at https:/ /www. last. fm/ api.
Read about XPath at https://en.wikipedia.org/wiki/XPath.
The full documentation of ElementTree can be found at
https://docs.python.org/2/library/xml.etree.elementtree.html.

See also
The Importing data from an external JSON file recipe

https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://www.last.fm/api
https://en.wikipedia.org/wiki/XPath
https://docs.python.org/2/library/xml.etree.elementtree.html

Importing and Exporting Data Chapter 10

[423]

Creating filterable RSS feeds
Django comes with a syndication feed framework that allows you to create RSS and Atom
feeds easily. RSS and Atom feeds are XML documents with specific semantics. They can be
subscribed in an RSS reader, such as Feedly, or they can be aggregated in other websites,
mobile applications, or desktop applications. In this recipe, we will create BulletinFeed,
which provides a bulletin board with images. Moreover, the results will be filterable by
URL query parameters.

Getting ready
Start by creating the bulletin_board app from the Creating a form layout with custom
template recipe in Chapter 3, Forms and Views. Specifically, follow the steps in the Getting
ready section to set up the models.

How to do it...
We will augment the Bulletin model and add an RSS feed to it. We will be able to filter
the RSS feed by type or category so that it is possible to only subscribe to the bulletins that
are, for example, offering used books:

In the models.py file of this app, add the Category model, like so:1.

bulletin_board/models.py
...

class Category(models.Model):
 class Meta:
 verbose_name = _("Category")
 verbose_name_plural = _("Categories")

 title = models.CharField(_("Title"), max_length=200)

 def __str__(self):
 return self.title

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

Importing and Exporting Data Chapter 10

[424]

We'll then augment the Bulletin model to add a foreign key relationship with2.
Category, and to apply the UrlMixin we created in the Creating a model mixin
with URL-related methods recipe in Chapter 2, Database Structure and Modeling, as
follows:

bulletin_board/models.py
import ...
from django.urls import reverse

from utils.models import CreationModificationDateMixin, UrlMixin

...

class Bulletin(CreationModificationDateMixin, UrlMixin):
 class Meta:
 verbose_name = _("Bulletin")
 verbose_name_plural = _("Bulletins")
 ordering = ("-created", "title",)

 category = models.ForeignKey(Category,
 null=True,
 verbose_name=_("Category"),
 on_delete=models.SET_NULL)
 # ...

 def get_url_path(self):
 try:
 path = reverse("bulletin_detail",
 kwargs={"pk": self.pk})
 except:
 # the apphook is not attached yet
 return ""
 else:
 return path

Migrate the bulletin_board app to update the database according to the model3.
changes.
Then, create BulletinFilterForm that allows the visitor to filter the bulletins4.
by type and category, as follows:

bulletin_board/forms.py
...other imports...
from django import forms
from django.utils.translation import ugettext_lazy as _

from .models import Bulletin, Category, TYPE_CHOICES

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31

Importing and Exporting Data Chapter 10

[425]

TYPE_FILTER_CHOICES = (("", "----------"),) + TYPE_CHOICES

class BulletinFilterForm(forms.Form):
 bulletin_type = forms.ChoiceField(
 label=_("Bulletin Type"),
 required=False,
 choices=TYPE_FILTER_CHOICES)
 category = forms.ModelChoiceField(
 label=_("Category"),
 required=False,
 queryset=Category.objects.all())

...

Add a feeds.py file with the BulletinFeed class, as shown here:5.

bulletin_board/feeds.py
from django.contrib.syndication.views import Feed
from django.urls import reverse

from .models import Bulletin, TYPE_CHOICES
from .forms import BulletinFilterForm

class BulletinFeed(Feed):
 description_template = \
 "bulletin_board/feeds/bulletin_description.html"

 def get_object(self, request, *args, **kwargs):
 form = BulletinFilterForm(data=request.GET)
 obj = {}
 if form.is_valid():
 obj = {"query_string": request.META["QUERY_STRING"]}
 for field in ["bulletin_type", "category"]:
 value = form.cleaned_data.get(field, None)
 obj[field] = value
 return obj

 def title(self, obj):
 title_parts = ["Bulletin Board"]

 # add type "Searching" or "Offering"
 type_key = obj.get("bulletin_type", False)
 type = dict(TYPE_CHOICES).get(type_key, False) \
 if type_key else ""
 if type:
 title_parts.append(type)

Importing and Exporting Data Chapter 10

[426]

 # add category
 category = obj.get("category", False)
 if category:
 title_parts.append(category.title)

 return " - ".join(title_parts)

 def link(self, obj):
 return self.get_named_url("bulletin-list", obj)

 def feed_url(self, obj):
 return self.get_named_url("bulletin-rss", obj)

 @staticmethod
 def get_named_url(name, obj):
 url = reverse(name)
 qs = obj.get("query_string", False)
 if qs:
 url = f"{url}?{qs}"
 return url

 def item_pubdate(self, item):
 return item.created

 def items(self, obj):
 type = obj.get("bulletin_type", False)
 category = obj.get("category", False)

 qs = Bulletin.objects.order_by("-created")
 if type:
 qs = qs.filter(bulletin_type=type).distinct()
 if category:
 qs = qs.filter(category=category).distinct()
 return qs[:30]

Create a template for the bulletin description that will be provided in the feed, as6.
shown here:

{# templates/bulletin_board/feeds/bulletin_description.html #}
{% if obj.image %}
<p>

 <img src="{{ MEDIA_URL }}{{ obj.image.url }}"
 alt="" />
</p>
{% endif %}
<p>{{ obj.description }}</p>

Importing and Exporting Data Chapter 10

[427]

Create a URL configuration for the bulletin_board app, or update the existing7.
one, and include it in the root URL configuration. The result should include the
new feed URL rule, as follows:

templates/bulletin_board/urls.py
from django.urls import path, reverse_lazy

from .feeds import BulletinFeed
from .views import (BulletinList, BulletinDetail)

urlpatterns = [
 path('', BulletinList.as_view(),
 name='bulletin-list'),
 path('<int:pk>/', BulletinDetail.as_view(),
 name='bulletin-detail'),
 path('rss/', BulletinFeed(),
 name='bulletin-rss'),
 # ...
]

You will also need views for the filterable list and details of the bulletins:8.

bulletin_board/views.py
...other imports...
from django.views.generic import ListView, DetailView

from .models import Bulletin

...

class BulletinList(ListView):
 model = Bulletin

class BulletinDetail(DetailView):
 model = Bulletin

...

Next, add a Bulletins listing page template, including the RSS feed link, as9.
follows:

{# templates/bulletin_board/bulletin_list.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}

Importing and Exporting Data Chapter 10

[428]

<h2>{% trans "Bulletins" %}</h2>
{% if bulletin_list.count == 0 %}
<p>
 No bulletins to show! Why don't you

 create a new bulletin?
</p>
{% else %}
<dl class="bulletin-list">
 {% for bulletin in bulletin_list %}
 <dt>

 {{ bulletin.title }}
 {% if request.user.is_authenticated %}
 <a class="btn btn-outline-secondary btn-sm"
 href="{% url "bulletin-edit" pk=bulletin.pk %}">
 Edit
 {% endif %}
 </dt>
 <dd>
 {% if bulletin.description %}
 <p>{{ bulletin.description }}</p>
 {% endif %}
 </dd>
 {% endfor %}
</dl>
<p>
 <a href="{% url "bulletin-rss" %}?{{ request.META.QUERY_STRING
}}">
 RSS Feed
</p>
{% endif %}
{% endblock %}

Finally, add a Bulletins detail page template, which can reuse the same10.
bulletin_description.html template, as shown here:

{# templates/bulletin_board/bulletin_detail.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
<h1>
 {{ object.bulletin_type|capfirst }}:
 {{ object.title }}
 {% if request.user.is_authenticated %}
 <a class="btn btn-outline-secondary btn-sm"
 href="{% url "bulletin-edit" pk=bulletin.pk %}">Edit

Importing and Exporting Data Chapter 10

[429]

 {% endif %}
</h1>

{% if category %}
<p>{{ object.category.title }}</p>
{% endif %}

{% include "bulletin_board/feeds/bulletin_description.html" with
obj=object %}

<h3>Contact {{ object.contact_person }}</h3>

{% if object.phone or object.email %}
 {% if object.phone %}
 <p>Phone: {{ object.phone }}</p>
 {% endif %}

 {% if object.email %}
 <p>Email: <a href="mailto:{{ object.email }}?subject={{
object.title|escape }}">
 {{ object.email }}</p>
 {% endif %}
{% endif %}

<p>Back to Listing</p>
{% endblock %}

How it works...
If you have some data in the database and you open
http://127.0.0.1:8000/bulletin-board/rss/?bulletin_type=offering&catego

ry=4 in your browser, you will get an RSS feed of bulletins with the Offering type and the
category ID of 4. The Feed class takes care of automatically generating the XML markup for
the RSS feed.

The BulletinFeed class has the get_objects() method that takes the current
HttpRequest and defines the obj dictionary used in other methods of the same class. The
obj dictionary contains the bulletin type, the category, and the current query string.

Importing and Exporting Data Chapter 10

[430]

The title() method returns the title of the feed. It can either be generic or related to the
selected bulletin type or category. The link() method returns the link to the original
bulletin list with the filtering done. The feed_url() method returns the URL of the
current feed. The items() method does the filtering itself and returns a filtered QuerySet
of bulletins. Finally, the item_pubdate() method returns the creation date of the bulletin.

To see all the available methods and properties of the Feed class that we are extending,
refer to the following documentation at
https://docs.djangoproject.com/en/2.1/ref/contrib/syndication/#feed-class-refer

ence.

The other parts of the code are self-explanatory.

See also
The Creating a model mixin with URL-related methods recipe in Chapter 2, Database
Structure and Modeling
The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Database Structure and Modeling
The Creating a form layout with custom template recipe in Chapter 3, Forms and
Views
The Using Tastypie to create an API recipe

Using Tastypie to create an API
Tastypie is a framework for Django for creating a web service Application Program
Interface (API). It supports the full set of HTTP protocol methods
(GET/POST/PUT/DELETE/PATCH) to deal with online resources. It also supports different
types of authentication and authorization, serialization, caching, throttling, and so on. In
this recipe, you will learn how to provide bulletins to third parties for reading; that is, we
will implement only the GET HTTP method here.

https://docs.djangoproject.com/en/2.1/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/2.1/ref/contrib/syndication/#feed-class-reference
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=34

Importing and Exporting Data Chapter 10

[431]

Getting ready
First of all, install tastypie in your virtual environment using the following command (or
add to your requirements file for a Docker project):

(myproject_env)$ pip install django-tastypie~=0.14.0

Add tastypie to INSTALLED_APPS in the settings. Then, enhance the bulletin_board
app that we worked with in the Creating filterable RSS feeds recipe.

How to do it...
We will create an API for bulletins and inject it in the URL configuration as follows:

In the bulletin_board app, create an api.py file with two resources,1.
CategoryResource and BulletinResource, as follows:

bulletin_board/api.py
from tastypie import fields
from tastypie.authentication import ApiKeyAuthentication
from tastypie.authorization import ReadOnlyAuthorization
from tastypie.resources import (ModelResource,
 ALL,
 ALL_WITH_RELATIONS)

from .models import Category, Bulletin

class CategoryResource(ModelResource):
 class Meta:
 queryset = Category.objects.all()
 resource_name = "categories"
 fields = ["title"]
 allowed_methods = ["get"]
 authentication = ApiKeyAuthentication()
 authorization = ReadOnlyAuthorization()
 filtering = {
 "title": ALL,
 }

class BulletinResource(ModelResource):
 class Meta:
 queryset = Bulletin.objects.all()
 resource_name = "bulletins"

Importing and Exporting Data Chapter 10

[432]

 fields = [
 "bulletin_type", "category", "title",
 "description", "contact_person", "phone",
 "email", "image"
]
 allowed_methods = ["get"]
 authentication = ApiKeyAuthentication()
 authorization = ReadOnlyAuthorization()
 filtering = {
 "bulletin_type": ALL,
 "title": ALL,
 "category": ALL_WITH_RELATIONS,
 "created": ["gt", "gte", "exact", "lte", "lt"],
 }

 category = fields.ForeignKey(CategoryResource, "category",
 null=True,
 blank=True,
 full=True)

In the main URL configuration, include the API URLs, as follows:2.

project/urls.py
...other imports...
from django.conf import settings
from django.urls import include, path
from tastypie.api import Api

from bulletin_board.api import BulletinResource, CategoryResource

v1_api = Api(api_name="v1")
v1_api.register(CategoryResource())
v1_api.register(BulletinResource())

urlpatterns = [
 path('admin/', admin.site.urls),
 path("api/", include(v1_api.urls)),
 path('bulletins/', include('bulletin_board.urls')),
 # ...
]

Importing and Exporting Data Chapter 10

[433]

Create a Tastypie API key for the admin user in the model administration. To do3.
this, navigate to Tastypie | Api key | Add Api key, select the admin user, and
save the entry. This will generate a random API key, as shown in the following
screenshot:

Importing and Exporting Data Chapter 10

[434]

Then, you can open this URL to see the JSON response in action:4.
http://127.0.0.1:8000/api/v1/bulletins/?format=json&username=ad
min&api_key=xxx

Simply replace xxx with your API key, and admin with the appropriate
username if necessary, and the result should appear something like the following
(formatted here using the JSONView extension for Chrome):

How it works...
Each endpoint of Tastypie should have a class extending ModelResource defined. Similar
to the Django models, the configuration of the resource is set in the Meta class:

The queryset parameter defines the QuerySet of objects to list.
The resource_name parameter defines the name of the URL endpoint for
reverse lookup.
The fields parameter lists out the fields of the model that should be shown in
the API. Alternatively, excludes can be used to blacklist fields instead.

Importing and Exporting Data Chapter 10

[435]

The allowed_methods parameter lists the request methods, such as GET, POST,
PUT, DELETE, and PATCH (this being the default set). It is also possible to specify a
different set of list_allowed_methods for listings,
and detail_allowed_methods for individual records.
The authentication parameter defines how third parties can authenticate
themselves when connecting to the API. The available options are
Authentication (default), BasicAuthentication, ApiKeyAuthentication,
SessionAuthentication, DigestAuthentication, OAuthAuthentication,
MultiAuthentication, or your own custom authentication. In our case, we are
using ApiKeyAuthentication as we want each user to use username and
api_key.
The authorization parameter answers the authorization question: is
permission granted to this user to take the stated action? The possible choices are
Authorization, ReadOnlyAuthorization, DjangoAuthorization, or your
own custom authorization. In our case, we are using ReadOnlyAuthorization,
as we only want to allow read access to the users.
The filtering parameter defines which fields you can use to filter lists via the
URL query parameters. For example, with the current configuration, you can
filter the items by titles that contain the word movie:
http://127.0.0.1:8000/api/v1/bulletins/format=json&username=adm

in&api_key=xxx&title__contains=movie.

Also, there is a category foreign key that is defined in BulletinResource with the
full=True argument, meaning that the full list of category fields will be shown in the
bulletin resource instead of an endpoint link.

Besides JSON, Tastypie allows you to use other formats such as XML, YAML, and bplist.

There is a lot more that you can do with APIs using Tastypie. To find out more details,
check the official documentation at
http://django-tastypie.readthedocs.org/en/latest/.

See also
The Creating filterable RSS feeds recipe
The Using Django REST framework to create an API recipe

http://django-tastypie.readthedocs.org/en/latest/

Importing and Exporting Data Chapter 10

[436]

Using Django REST framework to create an
API
Besides Tastypie, the Django REST framework is a newer and fresher framework for
creating an API for your data transfers to and from third parties. This framework has more
extensive documentation and a Django-centric implementation, helping make it more
maintainable. Therefore, if you have to choose between Tastypie or the Django REST
Framework, we recommend the latter. In this recipe, you will learn how to use the Django
REST Framework to allow your project partners, mobile clients, or Ajax-based website to
access data on your site to create, read, update, and delete content as appropriate.

Getting ready
First of all, install Django REST Framework in your virtual environment using the
following command (or, for Docker projects, add it to your requirements file and rebuild):

(myproject_env)$ pip install djangorestframework~=3.8.2

Add rest_framework to INSTALLED_APPS in the settings. Then, enhance the
bulletin_board app that we defined in the Creating filterable RSS feeds recipe. You will
also want to collect the static files provided by the Django REST Framework for the pages it
provides to be as nicely styled as possible:

(myproject_env)$ python3 manage.py collectstatic

How to do it...
To integrate a new REST API in our bulletin_board app, execute the following steps:

Add configurations for the Django REST Framework to the settings as shown1.
here:

settings.py or conf/base.py
REST_FRAMEWORK = {
 "DEFAULT_PERMISSION_CLASSES": [
 "rest_framework.permissions."
 "DjangoModelPermissionsOrAnonReadOnly"
],

Importing and Exporting Data Chapter 10

[437]

 "DEFAULT_PAGINATION_CLASS":
 "rest_framework.pagination.LimitOffsetPagination",
 "PAGE_SIZE": 100,
}

In the bulletin_board app, create the serializers.py file with the following2.
content:

bulletin_board/serializers.py
from rest_framework import serializers

from .models import Category, Bulletin

class CategorySerializer(serializers.ModelSerializer):
 class Meta:
 model = Category
 fields = ["id", "title"]

class BulletinSerializer(serializers.ModelSerializer):
 class Meta:
 model = Bulletin
 fields = ["id", "bulletin_type", "title",
 "description", "contact_person", "phone",
 "email", "image", "category"]

 category = CategorySerializer()

 def create(self, validated_data):
 category_data = validated_data.pop('category')
 category, created = Category.objects.get_or_create(
 title=category_data['title'])
 bulletin = Bulletin.objects.create(category=category,
 **validated_data)
 return bulletin

 def update(self, instance, validated_data):
 category_data = validated_data.pop('category')
 category, created = Category.objects.get_or_create(
 title=category_data['title'])
 for fname, fvalue in validated_data.items():
 setattr(instance, fname, fvalue)
 instance.category = category
 instance.save()
 return instance

Importing and Exporting Data Chapter 10

[438]

Add two new class-based views to the views.py file in the bulletin_board3.
app:

bulletin_board/views.py
from rest_framework import generics

from .models import Bulletin
from .serializers import BulletinSerializer

...

class RESTBulletinList(generics.ListCreateAPIView):
 queryset = Bulletin.objects.all()
 serializer_class = BulletinSerializer

class RESTBulletinDetail(generics.RetrieveUpdateDestroyAPIView):
 queryset = Bulletin.objects.all()
 serializer_class = BulletinSerializer

Finally, plug in the new views to the project URL configuration:4.

project/urls.py
from django.urls import include, path
from bulletin_board.views import (RESTBulletinList,
 RESTBulletinDetail)

urlpatterns = [
 # ...
 path("api-auth/",
 include("rest_framework.urls",
 namespace="rest_framework")),
 path("rest-api/bulletin-board/",
 RESTBulletinList.as_view(),
 name="rest_bulletin_list"),
 path("rest-api/bulletin-board/<int:pk>",
 RESTBulletinDetail.as_view(),
 name="rest_bulletin_detail"),
]

Importing and Exporting Data Chapter 10

[439]

How it works...
What we created here is an API for the bulletin board, where you can read a paginated
bulletin list, create a new bulletin, and read, change, or delete a single bulletin by ID.
Reading is allowed without authentication, but you have to have a user account with the
appropriate permissions to add, change, or delete a bulletin. The Django REST Framework
provides you with a web-based API documentation that is shown when you access the API
endpoints in a browser via GET. Without logging in, the framework would display
something like this:

Importing and Exporting Data Chapter 10

[440]

Here's how you can approach the created API:

URL HTTP Method Description

/rest-api/bulletin-board/ GET List bulletins paginated by 100.

/rest-api/bulletin-board/ POST
Create a new bulletin if the requesting user is
authenticated and authorized to create bulletins.

/rest-api/bulletin-board/1/ GET Get a bulletin with the 1 ID.

/rest-api/bulletin-board/1/ PUT
Update a bulletin with the 1 ID, if the user is
authenticated and authorized to change bulletins.

/rest-api/bulletin-board/1/ DELETE
Delete the bulletin with the 1 ID, if the user is
authenticated and authorized to delete bulletins.

You might ask how you would use the API practically. For example, we might use the curl
command to create a new bulletin via the command line, as follows:

(myproject_env)$ curl "http://127.0.0.1:8000/rest-api/bulletin-board/" \
> -d bulletin_type=searching -d title=TEST -d contact_person=TEST \
> -d category.title=TEST -d description=TEST -u admin
Enter host password for user 'admin':
{"id":2,"bulletin_type":"searching","category":{"id":2,"title":"TEST"},"tit
le":"TEST","description":"TEST","contact_person":"TEST","phone":"","email":
"","image":null}

Importing and Exporting Data Chapter 10

[441]

The same could be done via Postman, which provides a user-friendly interface for
submitting requests, as seen here:

Importing and Exporting Data Chapter 10

[442]

You can also try out the APIs via integrated forms under the framework-generated API
documentation, when logged in, as shown in the following screenshot:

Importing and Exporting Data Chapter 10

[443]

Let's take a quick look at how the code that we wrote works. In the settings, we have set the
access to be dependent on the permissions of the Django system. For anonymous requests,
only reading is allowed. Other access options include allowing any permission to everyone,
allowing any permission only to authenticated users, allowing any permission to staff
users, and so on. The full list can be found at
http://www.django-rest-framework.org/api-guide/permissions/.

Then, in the settings, pagination is set. The current option is to have the limit and offset
parameters as in an SQL query. Other options are to have either the pagination by page
numbers for rather static content or cursor pagination for real-time data. We set the default
pagination to 100 items per page.

Later, we define serializers for categories and bulletins. They handle the data that will be
shown in the output or validated by the input. To handle category retrieval or saving, we
have to overwrite the create() and update() methods of BulletinSerializer. There
are various ways to serialize relations in Django REST Framework, and we chose the most
verbose one in our example. To read more about how to serialize relations, refer to the
documentation at http://www.django-rest-framework.org/api-guide/relations/.

After defining the serializers, we created two class-based views to handle the API
endpoints and plugged them into the URL configuration. In the URL configuration, we
have a rule (/api-auth/) for browsable API pages, login, and logout.

See also
The Creating filterable RSS feeds recipe
The Using Tastypie to create an API recipe
The Testing an API created using Django REST framework recipe in Chapter 11,
Testing and Deployment

http://www.django-rest-framework.org/api-guide/permissions/
http://www.django-rest-framework.org/api-guide/relations/

11
Bells and Whistles

In this chapter, we will cover the following recipes:

Using the Django shell
Using database query expressions
Monkey patching the slugify() function for better internationalization support
Toggling the Debug Toolbar
Using ThreadLocalMiddleware
Using signals to notify administrators about new entries
Checking for missing settings

Introduction
In this chapter, we will go over several important bits and pieces that will help you to better
understand and utilize Django. We will provide an overview of how to use the Django shell
to experiment with the code, before writing it in the files. You will be introduced to monkey
patching, also known as guerrilla patching, which is a powerful feature of dynamic
languages, such as Python and Ruby. Full-text search capabilities will be revealed, and you
will learn how to debug your code and check its performance. Then, you will learn how to
access the currently logged-in user (and other request parameters) from any module. Also,
you will learn how to handle signals and create system checks. Get ready for an interesting
programming experience!

Using the Django shell
With the virtual environment activated and your project directory selected as the current
directory, enter the following command in your command-line tool:

(myproject_env)$ python3 manage.py shell

Bells and Whistles Chapter 11

[445]

If you are using a Docker project, this process is similar; however, first you need to connect
to your app:

$ docker-compose exec app /bin/bash
/usr/src/app# python3 manage.py shell

By executing the preceding command, you will get into an interactive Python shell,
configured for your Django project, where you can play around with the code, inspect the
classes, try out methods, or execute scripts on the fly. In this recipe, we will go over the
most important functions that you need to know in order to work with the Django shell.

Getting ready
You can install either IPython or bpython to provide additional interface options for
Python shells, or you can install both, if you want a choice. These will highlight the syntax
for the output of your Django shell, and will add some other helpers. Install them by using
one of the following commands for a virtual environment, or add them to your
requirements and rebuild for a Docker project:

(myproject_env)$ pip3 install ipython~=6.5.0
(myproject_env)$ pip3 install bpython~=0.17.1

How to do it...
Learn the basics of using the Django shell by following these instructions:

Run the Django shell by typing the following command:1.

(myproject_env)$ python3 manage.py shell

If you have installed IPython or bpython, it will automatically become the
default interface when you are entering the shell. You can also use a particular
interface by adding the -i <interface> option to the preceding command. The
prompt will change, according to which interface you use. The following
screenshot shows what an IPython shell might look like, starting with In [1] as
the prompt:

Bells and Whistles Chapter 11

[446]

If you use bpython, the shell will be shown with the >>> prompt, along with
code highlighting and text autocompletion when typing, as follows:

Bells and Whistles Chapter 11

[447]

The default Python interface shell looks as follows, also using the >>> prompt,
but with a preamble that provides information about the system:

Now, you can import classes, functions, or variables, and play around with them.2.
For example, to see the version of an installed module, you can import the
module and then try to read its __version__, VERSION, or version properties
(shown using bpython, and demonstrating both its highlighting and
autocompletion features), as follows:

Bells and Whistles Chapter 11

[448]

To get a comprehensive description of a module, class, function, method,3.
keyword, or documentation topic, use the help() function. You can either pass a
string with the path to a specific entity, or the entity itself, as follows:

>>> help("django.forms")

This will open the help page for the django.forms module. Use the arrow keys
to scroll the page up and down. Press Q to get back to the shell.

If you run help() without the parameters, it opens an interactive help
page. There, you can enter any path of a module, class, function, and so
onto, and get information on what it does and how to use it. To quit the
interactive help, press Ctrl + D.

The following is an example of passing an entity to the help() function, shown4.
with IPython:

Bells and Whistles Chapter 11

[449]

Doing so will open a help page for the ModelForm class, as follows:

To quickly see what fields and values are available for a model instance, use the5.
__dict__ attribute. Also, use the pprint() function to get the dictionaries
printed in a more readable format (not just one long line), as shown in the
following screenshot. Note that when we are using __dict__, we don't get
many-to-many relationships. However, this might be enough for a quick
overview of the fields and values:

Bells and Whistles Chapter 11

[450]

To get all of the available properties and methods of an object, you can use the6.
dir() function, as follows:

Bells and Whistles Chapter 11

[451]

To get these attributes printed one per line, you can use the following code:

The Django shell is useful for experimenting with QuerySets or regular7.
expressions, before putting them into your model methods, views, or
management commands. For example, to check the email validation regular
expression, you can type the following into the Django shell:

>>> import re
>>> email_pattern = re.compile(r"[^@]+@[^@]+.[^@]+")
>>> email_pattern.match("aidas@bendoraitis.lt")
<_sre.SRE_Match object at 0x1075681d0>

If you want to try out different QuerySets, you need to execute the setup of the8.
models and apps in your project, shown as follows:

>>> import django
>>> django.setup()
>>> from django.contrib.auth.models import User
>>> User.objects.filter(groups__name="Editors")
[<User: admin>]

To exit the Django shell, press Ctrl + D, or type the following command:9.

>>> exit()

Bells and Whistles Chapter 11

[452]

How it works...
The difference between a normal Python shell and the Django shell is that when you run
the Django shell, manage.py sets the DJANGO_SETTINGS_MODULE environment variable so
that it points to the project's settings.py path, and then all of the code in the Django shell
is handled in the context of your project. With the use of the third-party IPython or
bpython interfaces, we can enhance the default Python shell further, with syntax
highlighting, autocompletion, and more.

See also
The Using database query expressions recipe
The Monkey patching the slugify() function for better internationalization support
recipe

Using database query expressions
Django object-relational mapping (ORM) comes with special abstraction constructs that
can be used to build complex database queries. They are called query expressions, and
they allow you to filter data, order it, annotate new columns, and aggregate relations. In
this recipe, you will see how that can be used in practice. We will create an app that shows
viral videos and counts how many times each video has been seen by anonymous (versus
logged-in) users.

Getting ready
To start, let's create the viral_videos app and add it under INSTALLED_APPS:

settings.py or conf/base.py
INSTALLED_APPS = (
 # ...
 # local apps
 "utils",
 "viral_videos",
)

Bells and Whistles Chapter 11

[453]

Next, create a model for viral videos, with creation and modification timestamps, a title,
embedded code, impressions by anonymous users, and impressions by authenticated users,
as follows:

viral_videos/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _
from utils.models import CreationModificationDateMixin, UrlMixin

class ViralVideo(CreationModificationDateMixin, UrlMixin):
 class Meta:
 verbose_name = _("Viral video")
 verbose_name_plural = _("Viral videos")

 title = models.CharField(
 _("Title"),
 max_length=200,
 blank=True)
 embed_code = models.TextField(
 _("YouTube embed code"),
 blank=True)
 anonymous_views = models.PositiveIntegerField(
 _("Anonymous impressions"),
 default=0)
 authenticated_views = models.PositiveIntegerField(
 _("Authenticated impressions"),
 default=0)

 def get_url_path(self):
 from django.urls import reverse
 return reverse("viral-video-detail",
 kwargs={"id": str(self.id)})

 def __str__(self):
 return self.title

Be sure to make and run migrations for the new app, so that your database will be ready to
go:

(myproject_env)$ python3 manage.py makemigrations viral_videos
(myproject_env)$ python3 manage.py migrate viral_videos

Bells and Whistles Chapter 11

[454]

How to do it...
To illustrate the query expressions, let's create the viral video detail view and plug it into
the URL configuration, as follows:

Create the viral_video_detail view in views.py, as follows:1.

viral_videos/views.py
import datetime, logging

from django.conf import settings
from django.db import models
from django.shortcuts import render, get_object_or_404

from .models import ViralVideo

POPULAR_FROM = getattr(
 settings, "VIRAL_VIDEOS_POPULAR_FROM", 500
)

logger = logging.getLogger(__name__)

def viral_video_detail(request, pk):
 yesterday = datetime.date.today() - datetime.timedelta(days=1)

 qs = ViralVideo.objects.annotate(
 total_views=models.F("authenticated_views") +
 models.F("anonymous_views"),
 label=models.Case(
 models.When(total_views__gt=POPULAR_FROM,
 then=models.Value("popular")),
 models.When(created__gt=yesterday,
 then=models.Value("new")),
 default=models.Value("cool"),
 output_field=models.CharField()))

 # DEBUG: check the SQL query that Django ORM generates
 logger.debug(qs.query)

 qs = qs.filter(pk=pk)
 if request.user.is_authenticated:
 qs.update(authenticated_views=models.F(
 "authenticated_views") + 1)
 else:
 qs.update(anonymous_views=models.F(
 "anonymous_views") + 1)

Bells and Whistles Chapter 11

[455]

 video = get_object_or_404(qs)

 return render(request,
 "viral_videos/viral_video_detail.html",
 {'video': video})

Define the URL configuration for the app, shown as follows:2.

viral_videos/urls.py
from django.urls import path

from .views import viral_video_detail

urlpatterns = [
 path('<int:pk>/', viral_video_detail,
 name='viral-video-detail'),
]

Include the URL configuration of the app in the project's root URL configuration,3.
as follows:

project/urls.py
from django.urls import include, path

urlpatterns = [
 # ...
 path('videos/', include('viral_videos.urls')),
]

Create a template for the viral_video_detail view, as follows:4.

{# templates/viral_videos/viral_video_detail.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 <h1>{{ video.title }}
 {{ video.label }}
 </h1>
 <div>{{ video.embed_code|safe }}</div>
 <div>
 <h2>{% trans "Impressions" %}</h2>

 {% trans "Authenticated views" %}:
 {{ video.authenticated_views }}
 {% trans "Anonymous views" %}:
 {{ video.anonymous_views }}
 {% trans "Total views" %}:

Bells and Whistles Chapter 11

[456]

 {{ video.total_views }}

 </div>
{% endblock %}

Set up administration for the viral_videos app, as follows, and add some5.
videos to the database when you are finished:

viral_videos/admin.py
from django.contrib import admin

from .models import ViralVideo

admin.site.register(ViralVideo)

How it works...
You might have noticed the logger.debug() statement in the view. If you run the server
in DEBUG mode and access a video in the browser (for
example, http://127.0.0.1:8000/videos/1/, in local development), you will see a
SQL query like the following printed in the logs (formatted for readability), depending on
your LOGGING settings:

SELECT `viral_videos_viralvideo`.`id`,
 `viral_videos_viralvideo`.`created`,
 `viral_videos_viralvideo`.`updated`,
 `viral_videos_viralvideo`.`title`,
 `viral_videos_viralvideo`.`embed_code`,
 `viral_videos_viralvideo`.`anonymous_views`,
 `viral_videos_viralvideo`.`authenticated_views`,
 (`viral_videos_viralvideo`.`authenticated_views` +
 `viral_videos_viralvideo`.`anonymous_views`) AS `total_views`,
 CASE WHEN (`viral_videos_viralvideo`.`authenticated_views` +
 `viral_videos_viralvideo`.`anonymous_views`) > 500
 THEN popular
 WHEN `viral_videos_viralvideo`.`created` > 2018-10-06
 00:00:00
 THEN new
 ELSE cool
 END AS `label`
FROM `viral_videos_viralvideo`
WHERE `viral_videos_viralvideo`.`id` = 1

Bells and Whistles Chapter 11

[457]

Then in the browser, you will see a simple page showing:

The title of the video
The label of the video
The embedded video
Impressions by authenticated users, anonymous users, and in total

This will be similar to the following image:

The annotate() method in Django QuerySets allows you to add extra columns to the
SELECT SQL statement, as well as properties that were created on the fly, for the objects
retrieved from QuerySets. With models.F(), we can reference different field values from
the selected database table. In this example, we will create the total_views property,
which is the sum of the impressions by authenticated and anonymous users.

With models.Case() and models.When(), we can return the values according to
different conditions. To mark the values, we are using models.Value(). In our example,
we will create the label column for the SQL query and the property for the objects
returned by QuerySet. It will be set to popular if it has more than 500 impressions, new if it
was created today, and cool otherwise.

Bells and Whistles Chapter 11

[458]

At the end of the view, we have called the qs.update() methods. They increment
authenticated_views or anonymous_views of the current video, depending on whether
the user looking at the video was logged in. The incrementation happens at the SQL level.
This solves issues with so-called race conditions, when two or more visitors are accessing
the view at the same time, trying to increase the impression count simultaneously.

See also
The Using the Django shell recipe
The Creating a model mixin with URL-related methods recipe in Chapter 2,
Database Structure and Modeling
The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Database Structure and Modeling

Monkey patching the slugify() function for
better internationalization support
A monkey patch (or guerrilla patch) is a piece of code that extends or modifies another
piece of code at runtime. It is not recommended to use monkey patches often; however,
sometimes, they are the only possible way to fix a bug in third-party modules, without
creating a separate branch of the module. Also, monkey patching can be used to prepare
functional or unit tests, without using complex database or file manipulations.

In this recipe, you will learn how to exchange the default slugify() function with the one
from the third-party transliterate module, which handles the conversion of Unicode
characters to ASCII equivalents more intelligently, and includes a number of language
packs that provide even more specific transformations, as needed. As a quick reminder, we
use the slugify() utility to create a URL-friendly version of an object's title or uploaded
filename. In its processing, the function strips any leading and trailing whitespace, converts
the text to lowercase, removes non-word characters, and converts spaces to hyphens.

Bells and Whistles Chapter 11

[459]

Getting ready
Install transliterate in your virtual environment (as follows), or update your1.
requirements file and rebuild the containers for Docker projects:

(myproject_env)$ pip3 install transliterate~=1.10.2

Then, create a guerrilla_patches app in your project and put it2.
under INSTALLED_APPS in the settings.

How to do it...
In the models.py file of the guerrilla_patches app, add the following content:

guerrilla_patches/models.py
from django.utils import text
from transliterate import slugify

text.slugify = slugify

How it works...
The default Django slugify() function handles German diacritical symbols incorrectly.
To see this for yourself, run the following code in the Django shell, without the monkey
patch:

(myproject_env)$ python3 manage.py shell
>>> from django.utils.text import slugify
>>> slugify("Heizölrückstoßabdämpfung")
'heizolruckstoabdampfung'

This is incorrect in German, as the letter ß is totally stripped out, instead of substituting it
with ss; the letters ä, ö, and ü are changed to a, o, and u, whereas they should be
substituted with ae, oe, and ue.

The monkey patch that we created loads the django.utils.text module at initialization
and reassigns transliteration.slugify in place of the core slugify() function. Now,
if you run the same code in the Django shell, you will get different (but correct) results, as
follows:

(myproject_env)$ python manage.py shell
>>> from django.utils.text import slugify

Bells and Whistles Chapter 11

[460]

>>> slugify("Heizölrückstoßabdämpfung")
'heizoelrueckstossabdaempfung'

To read more about how to utilize the transliterate module, refer
to https://pypi.org/project/transliterate.

There's more...
Before creating a monkey patch, we need to completely understand how the code that we
want to modify works. This can be done by analyzing the existing code and inspecting the
values of different variables. To do this, there is a useful, built-in Python debugger pdb
module that can temporarily be added to the Django code (or any third-party module) to
stop the execution of a development server at any breakpoint. Use the following code to
debug an unclear part of a Python module:

import pdb

pdb.set_trace()

This launches the interactive shell, where you can type in the variables, in order to see their
values. If you type c or continue, the code execution will continue until the next
breakpoint. If you type q or quit, the management command will be aborted. You can
learn more commands of the Python debugger and how to inspect the traceback of the code
at https://docs.python.org/3/library/pdb.html.

Another quick way to see the value of a variable in the development server is to raise a
warning with the variable as a message, as follows:

raise Warning, some_variable

When you are in the DEBUG mode, the Django logger will provide you with the traceback
and other local variables.

Don't forget to remove debugging code before committing your work to a
repository.

See also
The Using the Django shell recipe

https://pypi.org/project/transliterate
https://docs.python.org/3/library/pdb.html

Bells and Whistles Chapter 11

[461]

Toggling the Debug Toolbar
While developing with Django, you may want to inspect request headers and parameters,
check the current template context, or measure the performance of SQL queries. All of this
and more is possible with the Django Debug Toolbar. It is a configurable set of panels that
displays various debug information about the current request and response. In this recipe,
we will guide you through how to toggle the visibility of the Debug Toolbar, depending on
a cookie, whose value can be set by a bookmarklet. A bookmarklet is a bookmark
containing a small piece of JavaScript code that you can run on any page in a browser.

Getting ready
To get started with toggling the visibility of the Debug Toolbar, take a look at the following
steps:

Install the Django Debug Toolbar in your virtual environment, or add it to your1.
requirements and rebuild your containers in a Docker project:

(myproject_env)$ pip3 install django-debug-toolbar~=1.10.1

Add debug_toolbar under INSTALLED_APPS in the settings.2.

How to do it...
Follow these steps to set up the Django Debug Toolbar, which can be switched on or off
using a bookmarklet in the browser:

Add the following project settings:1.

settings.py or conf/base.py
MIDDLEWARE = (
 # ...
 "debug_toolbar.middleware.DebugToolbarMiddleware",
)

DEBUG_TOOLBAR_CONFIG = {
 "DISABLE_PANELS": [],
 "SHOW_TOOLBAR_CALLBACK": "utils.misc.custom_show_toolbar",
 "SHOW_TEMPLATE_CONTEXT": True,
}

DEBUG_TOOLBAR_PANELS = [
 "debug_toolbar.panels.versions.VersionsPanel",

Bells and Whistles Chapter 11

[462]

 "debug_toolbar.panels.timer.TimerPanel",
 "debug_toolbar.panels.settings.SettingsPanel",
 "debug_toolbar.panels.headers.HeadersPanel",
 "debug_toolbar.panels.request.RequestPanel",
 "debug_toolbar.panels.sql.SQLPanel",
 "debug_toolbar.panels.templates.TemplatesPanel",
 "debug_toolbar.panels.staticfiles.StaticFilesPanel",
 "debug_toolbar.panels.cache.CachePanel",
 "debug_toolbar.panels.signals.SignalsPanel",
 "debug_toolbar.panels.logging.LoggingPanel",
 "debug_toolbar.panels.redirects.RedirectsPanel",
]

In the utils module, create a misc.py file with the custom_show_toolbar()2.
function, as follows:

utils/misc.py
def custom_show_toolbar(request):
 return "1" == request.COOKIES.get("DebugToolbar", False)

Open the Chrome or Firefox browser and go to the bookmark manager. Then,3.
create two new bookmarks that contain JavaScript. The first link will show the
toolbar, and will look similar to the following:

Bells and Whistles Chapter 11

[463]

The second JavaScript link will hide the toolbar, and will look similar to the4.
following:

If you wish to copy and paste the preceding scripts, they are as follows,
with the major difference highlighted in bold:

On:
javascript:(function(){document.cookie="DebugTool
bar=1; path=/";location.reload();})();

Off:
javascript:(function(){document.cookie="DebugTool
bar=0; path=/";location.reload();})();

Bells and Whistles Chapter 11

[464]

How it works...
The DEBUG_TOOLBAR_PANELS setting defines the panels to show in the toolbar.
The DEBUG_TOOLBAR_CONFIG dictionary defines the configuration for the toolbar,
including a path to the function that is used to check whether or not to show the toolbar.

By default, when you browse through your project, the Django Debug Toolbar will not be
shown. However, as you click on your bookmarklet, Debug Toolbar On, the
DebugToolbar cookie will be set to 1, the page will be refreshed, and you will see the
toolbar with debugging panels. For example, you will be able to inspect the performance of
SQL statements for optimization, as shown in the following screenshot:

Bells and Whistles Chapter 11

[465]

You will also be able to check the template context variables for the current view, as shown
in the following screenshot:

Clicking on the second bookmarklet, Debug Toolbar Off, will similarly set the
DebugToolbar cookie to 0 and refresh the page, hiding the toolbar again.

See also
The Getting detailed error reporting via email recipe in Chapter 12, Testing and
Deployment

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=70

Bells and Whistles Chapter 11

[466]

Using ThreadLocalMiddleware
The HttpRequest object contains useful information about the current user, language,
server variables, cookies, session, and so on. As a matter of fact, HttpRequest is provided
in the views and middleware, and you can pass it (or its attribute values) to forms, model
methods, model managers, templates, and so on. To make life easier, you can use a so-
called ThreadLocalMiddleware that stores the current HttpRequest object in the
globally accessible Python thread. Therefore, you can access it from model methods, forms,
signal handlers, and any other places that didn't have direct access to the HttpRequest
object previously. In this recipe, we will define such a middleware.

Getting ready
Create the utils app and put it under INSTALLED_APPS in the settings, if you have not
done so already.

How to do it...
Execute the following two steps:

Add a middleware.py file to the utils app, with the following content:1.

utils/middleware.py
from threading import local

_thread_locals = local()

def get_current_request():
 """
 :returns the HttpRequest object for this thread
 """
 return getattr(_thread_locals, "request", None)

def get_current_user():
 """
 :returns the current user if it exists or None otherwise
 """
 request = get_current_request()
 if request:
 return getattr(request, "user", None)

Bells and Whistles Chapter 11

[467]

class ThreadLocalMiddleware(object):
 """
 Middleware to add the HttpRequest to thread local storage
 """
 def __init__(self, get_response):
 self.get_response = get_response

 def __call__(self, request):
 _thread_locals.request = request
 return self.get_response(request)

Add this middleware to MIDDLEWARE in the settings:2.

settings.py or conf/base.py
...
MIDDLEWARE = (
 # ...
 "utils.middleware.ThreadLocalMiddleware",
)
...

How it works...
ThreadLocalMiddleware processes each request and stores the current HttpRequest
object in the current thread. Each request-response cycle in Django is single-threaded. There
are two functions: get_current_request() and get_current_user(). These functions
can be used from anywhere to grab the current HttpRequest object or the current user.

For example, you can use this middleware to create and use CreatorMixin, which will
save the current user as the creator of a new model object, as follows:

utils/models.py
from django.db import models
from django.utils.translation import ugettext_lazy as _

class CreatorMixin(models.Model):
 """
 Abstract base class with a creator
 """
 class Meta:
 abstract = True

 creator = models.ForeignKey(
 "auth.User",
 verbose_name=_("creator"),

Bells and Whistles Chapter 11

[468]

 editable=False,
 blank=True,
 null=True,
 on_delete=models.SET_NULL)

 def save(self, *args, **kwargs):
 from .middleware import get_current_user
 if not self.creator:
 self.creator = get_current_user()
 super(CreatorMixin, self).save(*args, **kwargs)
 save.alters_data = True

See also
The Creating a model mixin with URL-related methods recipe in Chapter 2, Database
Structure and Modeling
The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Database Structure and Modeling
The Creating a model mixin to take care of meta tags recipe in Chapter 2, Database
Structure and Modeling
The Creating a model mixin to handle generic relations recipe in Chapter 2, Database
Structure and Modeling

Using signals to notify administrators about
new entries
The Django framework includes the concept of signals, which are similar to events in
JavaScript. There is a handful of built-in signals that you can use to trigger actions before
and after the initialization of a model, saving or deleting an instance, migrating the
database schema, handling a request, and so on. Moreover, you can create your own signals
in your reusable apps and handle them in other apps. In this recipe, you will learn how to
use signals to send emails to administrators whenever a specific model is saved.

Getting ready
Let's start with the viral_videos app that we created in the Using database query
expressions recipe.

https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=31

Bells and Whistles Chapter 11

[469]

How to do it...
Follow these steps to create notifications for administrators:

Create the signals.py file, with the following content:1.

viral_videos/signals.py
from django.db.models.signals import post_save
from django.dispatch import receiver
from django.template.loader import render_to_string

from .models import ViralVideo

@receiver(post_save, sender=ViralVideo)
def inform_administrators(sender, **kwargs):
 from django.core.mail import mail_admins

 instance = kwargs["instance"]
 created = kwargs["created"]

 if created:
 context = {
 "title": instance.title,
 "link": instance.get_url(),
 }
 plain_text_message = render_to_string(
 'viral_videos/email/administrator/message.txt',
 context)
 html_message = render_to_string(
 'viral_videos/email/administrator/message.html',
 context)
 subject = render_to_string(
 'viral_videos/email/administrator/subject.txt',
 context)

 mail_admins(
 subject=subject.strip(),
 message=plain_text_message,
 html_message=html_message,
 fail_silently=True)

Next, we will need a template for the plain text message—something like the2.
following:

{# templates/viral_videos/email/administrator/message.txt #}
A new viral video called "{{ title }}" has been created.
You can preview it at {{ link }}.

Bells and Whistles Chapter 11

[470]

We will also need a template for the HTML message, as follows:3.

{# templates/viral_videos/email/administrator/message.html #}
<p>A new viral video called "{{ title }}" has been created.</p>
<p>You can preview it here.</p>

Then, we will need a template for the email subject, as follows:4.

{# templates/viral_videos/email/administrator/subject.txt #}
New Viral Video Added

Create the apps.py file, with the following content:5.

viral_videos/apps.py
from django.apps import AppConfig
from django.utils.translation import ugettext_lazy as _

class ViralVideosAppConfig(AppConfig):
 name = "viral_videos"
 verbose_name = _("Viral Videos")

 def ready(self):
 from .signals import inform_administrators

Update the __init__.py file, with the following content:6.

viral_videos/__init__.py
default_app_config = "viral_videos.apps.ViralVideosAppConfig"

Make sure that you have ADMINS set in the project settings, similar to the7.
following:

settings.py or config/base.py
ADMINS = (
 ("Admin User", "administrator@example.com"),
)

How it works...
The ViralVideosAppConfig app configuration class has the ready() method, which will
be called when all of the models of the project are loaded into the memory. According to
the Django documentation, signals allow for certain senders to notify a set of receivers that
some action has taken place. In the ready() method, therefore, we import the
inform_administrators() function.

Bells and Whistles Chapter 11

[471]

Through the @receiver decorator, inform_administrators() is registered for the
post_save signal, and we have limited it to handle only the signals where the
ViralVideo model is sender. Therefore, whenever we save a ViralVideo object, the
receiver function will be called. The inform_administrators() function checks
whether a video is newly created. In that case, it sends an email to the system
administrators that are listed in ADMINS in the settings.

We use templates to generate the content of the plain_text_message,
the html_message, and the subject, so that we can define default templates for each of
these within our app. If we make our viral_videos app publicly available, those who
pull it into their own projects can then customize the templates as desired, perhaps to wrap
them in a company email template wrapper.

Learn more the Django signals in the official documentation
at https://docs.djangoproject.com/en/2.1/topics/signals/.

See also
The Creating app configuration recipe in Chapter 1, Getting Started with Django 2.1
The Using database query expressions recipe
The Checking for missing settings recipe

Checking for missing settings
From Django 1.7 onward, you can use an extensible system-check framework, which
replaces the old validate management command. In this recipe, you will learn how to
create a check if the ADMINS setting is set. Similarly, you will be able to check whether
different secret keys or access tokens are set for the APIs that you are using.

Getting ready
Let's start with the viral_videos app that was created in the Using database query
expressions recipe and was extended in the previous recipe.

https://docs.djangoproject.com/en/2.1/topics/signals/
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=27

Bells and Whistles Chapter 11

[472]

How to do it...
To use the system-check framework, follow these simple steps:

Create the checks.py file, with the following content:1.

viral_videos/checks.py
from django.core.checks import Warning, register, Tags

@register(Tags.compatibility)
def settings_check(app_configs, **kwargs):
 from django.conf import settings

 errors = []

 if not settings.ADMINS:
 errors.append(Warning(
 """
 The system admins are not set in the project settings
 """,
 obj=settings,
 hint="""
 In order to receive notifications when new videos are
 created, define system admins in your settings, like:

 ADMINS = (
 ("Admin", "administrator@example.com"),
)
 """,
 id="viral_videos.W001"))

 return errors

Import the checks in the ready() method of the app configuration, as follows:2.

viral_videos/apps.py
...
class ViralVideosAppConfig(AppConfig):
 # ...
 def ready(self):
 from .signals import inform_administrators
 from .checks import settings_check

Bells and Whistles Chapter 11

[473]

To try the check that you just created, remove or comment out the ADMINS3.
setting, and then run the check management command in your virtual
environment or Docker app container, as follows:

(myproject_env)$ python3 manage.py check
System check identified some issues:

WARNINGS:
<Settings "myproject.settings">: (viral_videos.W001)
The system admins are not set in the project settings

 HINT:
 In order to receive notifications when new videos are
 created, define system admins in your settings, like:

 ADMINS = (
 ("Admin", "administrator@example.com"),
)

System check identified 1 issue (0 silenced).

How it works...
The system-check framework has a bunch of checks in the models, fields, database,
administration, authentication, content types, and security, where it raises errors or
warnings if something in the project is not set correctly. Additionally, you can create your
own checks, similar to what we did in this recipe.

We have registered the settings_check() function, which returns a list with Warning if
there is no ADMINS setting defined for the project.

Aside from the Warning instances from the django.core.checks module, the returned
list can also contain instances of the Debug, Info, Error, and Critical built-in classes, or
any other class inheriting from django.core.checks.CheckMessage. Logging at the
debug, info, and warning levels would fail silently, whereas error and critical levels would
prevent the project from running.

In this example, the check is tagged as a compatibility check via the Tags.compatibility
argument passed to the @register decorator. Other options provided in
Tags include: admin, caches, database, models, security, signals, templates, and
url.

Bells and Whistles Chapter 11

[474]

Learn more about the system check framework in the official documentation at https:/ /
docs.djangoproject. com/ en/ 2. 1/topics/ checks/ .

See also
The Creating app configurations recipe in Chapter 1, Getting Started with Django 2.1
The Using database query expressions recipe
The Using signals to notify administrators about new entries recipe

https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://docs.djangoproject.com/en/2.1/topics/checks/
https://cdp.packtpub.com/web_development_with_django_cookbook_third_edition/wp-admin/post.php?post=27

12
Testing and Deployment

 In this chapter, we will cover the following recipes:

Testing views with mock
Testing APIs created using the Django REST framework
Releasing a reusable Django app
Getting detailed error reporting via email
Deploying on Apache with mod_wsgi
Setting up cron jobs for regular tasks

Introduction
At this point, you should have one or more Django project or reusable app developed and
ready to show to the public. For the final steps of the development cycle, we will take a look
at how to test your project, distribute reusable apps to others, and publish your website on
a remote server. Stay tuned for the final bits and pieces!

Testing views with mock
Django provides tools for you to write test suites for your website. Test suites automatically
check your website and its components, to ensure that everything is working correctly.
When you modify your code, you can run the tests to check whether your changes affected
the application's behavior in a negative way.

The world of automated software testing has a wide range of divisions and terminologies.
For the sake of this book, we will divide testing into the following categories:

Unit testing refers to tests that are strictly targeted at individual pieces, or units,
of code. Most commonly, a unit corresponds to a single file or module, and unit
tests do their best to validate that the logic and behaviors are as expected.

Testing and Deployment Chapter 12

[476]

Integration testing goes one step further, dealing with the way that two or more
units work with one another. Such tests do not get as granular as unit tests, and
they are generally written under the assumption that all unit tests have passed by
the time an integration is validated. Thus, integration tests only cover the set of
behaviors that must be true for the units to work properly with one another.
Component interface testing is a higher-order form of integration testing, in
which a single component is verified from end to end. Such tests are written in a
way that is ignorant of the underlying logic used to provide the behaviors of the
component, so that logic can change without modifying the behavior, and the
tests will still pass.
System testing verifies the end-to-end integration of all components that make
up a system, often corresponding to complete user flows.
Operational acceptance testing checks that all of the non-functional aspects of a
system operate correctly. Acceptance tests check the business logic, to find out
whether the project works the way it is supposed to, from an end user's point of
view.

In this recipe, we will take a look at how to write unit tests. Unit tests are those that check
whether individual functions or methods return the correct results. We will look at the
likes app and write tests that check whether posting to the json_set_like() view
returns a failure response for unauthenticated users, and a successful result for
authenticated users. We will use Mock objects to simulate the HttpRequest and
AnonymousUser objects.

Getting ready
Let's start with the locations and likes apps from the Implementing the Like widget recipe
in Chapter 4, Templates and JavaScript.

Since Python 3.3, the built-in unittest.mock library has been available for mocking. For
earlier versions, install the mock module in your virtual environment (as follows), or add it
to your Docker project's requirements, and rebuild:

(myproject_env)$ pip3 install mock~=2.0.0

We will use the built-in unittest.mock library for all code samples in
this recipe. If you are using the backwards compatibility mock module
instead, your imports will be import mock, as opposed to from
unittest import mock.

Testing and Deployment Chapter 12

[477]

How to do it...
We will test the liking action with mock, by performing the following steps:

Create the tests.py file in your likes app, with the following content:1.

likes/tests.py
import json
from unittest import mock

from django.contrib.auth.models import User
from django.contrib.contenttypes.models import ContentType
from django.test import TestCase
from django.test.client import RequestFactory

from locations.models import Location

class JSSetLikeViewTest(TestCase):
 @classmethod
 def setUpClass(cls):
 super(JSSetLikeViewTest, cls).setUpClass()

 cls.location = Location.objects.create(
 title="Haus der Kulturen der Welt",
 slug="hkw",
 image="locations/2018/10/20181024012345.jpg")

 cls.content_type = ContentType.objects.get_for_model(
 Location)

 cls.superuser = User.objects.create_superuser(
 username="test-admin",
 password="test-admin",
 email="")

 @classmethod
 def tearDownClass(cls):
 super(JSSetLikeViewTest, cls).tearDownClass()
 cls.location.delete()
 cls.superuser.delete()

 def test_authenticated_json_set_like(self):
 from .views import json_set_like
 mock_request = mock.Mock()
 mock_request.user = self.superuser
 mock_request.method = "POST"

Testing and Deployment Chapter 12

[478]

 response = json_set_like(
 mock_request,
 self.content_type.pk,
 self.location.pk)

 expected_result = json.dumps({
 "success": True,
 "action": "add",
 "count": Location.objects.count(),
 })

 self.assertJSONEqual(
 response.content,
 expected_result)

 @mock.patch("django.contrib.auth.models.User")
 def test_anonymous_json_set_like(self, MockUser):
 from .views import json_set_like

 anonymous_user = MockUser()
 anonymous_user.is_authenticated = False

 mock_request = mock.Mock()
 mock_request.user = anonymous_user
 mock_request.method = "POST"

 response = json_set_like(
 mock_request,
 self.content_type.pk,
 self.location.pk)

 expected_result = json.dumps({
 "success": False,
 })

 self.assertJSONEqual(
 response.content,
 expected_result)

Run the tests for the likes app, as follows:2.

(myproject_env)$ python3 manage.py test likes
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..

Ran 2 tests in 0.186s

Testing and Deployment Chapter 12

[479]

OK
Destroying test database for alias 'default'...

How it works...
Just like in the previous recipe, when you run tests for the likes app, at first, a temporary
test database is created. Then, the setUpClass() method is called. Later, the methods
whose names start with test are executed, and, finally, the tearDownClass() method is
called.

Unit tests inherit from the SimpleTestCase class, but, here, we are using TestCase,
which is a specialization that adds safeguards around test isolation when database queries
are involved. In setUpClass(), we create a location and a superuser. Also, we find out
the ContentType object for the Location model; we will need it for the view that sets or
removes likes for different objects. As a reminder, the view looks similar to the following,
and returns the JSON string as a result:

def json_set_like(request, content_type_id, object_id):
 # ...all the view logic goes here...
 return JsonResponse(result)

In the test_authenticated_json_set_like() and
test_anonymous_json_set_like() methods, we use the Mock objects. These are objects
that can have any attributes or methods. Each undefined attribute or method of a Mock
object is another Mock object. Therefore, in the shell, you can try to chain attributes, as
follows:

>>> import mock
>>> m = mock.Mock()
>>> m.whatever.anything().whatsoever
<Mock name='mock.whatever.anything().whatsoever' id='4464778896'>

In our tests, we use the Mock objects to simulate the HttpRequest object. For the
anonymous user, a MockUser is generated as a patch of the standard Django User object,
via the @mock.patch() decorator. For the authenticated user, we still need the real User
object, as the view needs the user's ID to save in the database for the Like object.

Therefore, we call the json_set_like() function, and check that the returned JSON
response is correct:

It returns {"success": false} in the response, if the visitor is
unauthenticated.

Testing and Deployment Chapter 12

[480]

It returns something like {"action": "add", "count": 1, "success":
true} for authenticated users.

In the end, the tearDownClass() class method is called, deleting the location and
superuser from the test database.

See also
The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript
The Testing APIs created using the Django REST framework recipe

Testing APIs created using the Django REST
framework
You should already have an understanding of how to write unit tests. In this recipe, we will
go through component interface testing for the REST API that we created earlier in the
book.

If you are not familiar with what a REST API is and how APIs are used,
you can learn more at http://www.restapitutorial.com/.

Getting ready
Let's start with the bulletin_board app from the Using the Django REST framework to
create APIs recipe in Chapter 10, Importing and Exporting Data.

How to do it...
To test REST APIs, perform the following steps:

Create a tests.py file in your bulletin_board app, with just the setup and1.
teardown methods, as follows:

bulletin_board/tests.py
from django.contrib.auth.models import User

http://www.restapitutorial.com/

Testing and Deployment Chapter 12

[481]

from django.core.urlresolvers import reverse
from rest_framework import status
from rest_framework.test import APITestCase

from .models import Category, Bulletin

class BulletinTests(APITestCase):
 @classmethod
 def setUpClass(cls):
 super(BulletinTests, cls).setUpClass()

 cls.superuser = User.objects.create_superuser(
 username="test-admin",
 password="test-admin",
 email="")

 cls.category = Category.objects.create(title="Movies")

 cls.bulletin = Bulletin.objects.create(
 bulletin_type="searching",
 category=cls.category,
 title="The Matrix",
 description="There is no spoon.",
 contact_person="Thomas A. Anderson")

 cls.bulletin_to_delete = Bulletin.objects.create(
 bulletin_type="searching",
 category=cls.category,
 title="Neo",
 description="You take the blue pill - the story ends, "
 "you wake up in your bed and believe "
 "whatever you want to believe. You take "
 "the red pill – you stay in Wonderland, "
 "and I show you how deep the rabbit hole "
 "goes.",
 contact_person="Morpheus")

 @classmethod
 def tearDownClass(cls):
 super(BulletinTests, cls).tearDownClass()

 cls.category.delete()
 cls.bulletin.delete()
 cls.superuser.delete()

Testing and Deployment Chapter 12

[482]

Add a method to test the API call listing the bulletins, as shown in the following2.
code:

def test_list_bulletins(self):
 url = reverse("rest_bulletin_list")
 data = {}
 response = self.client.get(url, data, format="json")
 self.assertEqual(response.status_code,
 status.HTTP_200_OK)
 self.assertEqual(response.data["count"],
 Bulletin.objects.count())

Add a method to test the API call showing a single bulletin, as follows:3.

def test_get_bulletin(self):
 url = reverse("rest_bulletin_detail",
 kwargs={
 "pk": self.bulletin.pk
 })
 data = {}
 response = self.client.get(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_200_OK)
 self.assertEqual(response.data["id"],
 self.bulletin.pk)
 self.assertEqual(response.data["bulletin_type"],
 self.bulletin.bulletin_type)
 self.assertEqual(response.data["category"]["id"],
 self.category.pk)
 self.assertEqual(response.data["title"],
 self.bulletin.title)
 self.assertEqual(response.data["description"],
 self.bulletin.description)
 self.assertEqual(response.data["contact_person"],
 self.bulletin.contact_person)

Add a method to test the API call creating a bulletin if the current user is4.
authenticated, as follows:

def test_create_bulletin_allowed(self):
 # login
 self.client.force_authenticate(user=self.superuser)

 url = reverse("rest_bulletin_list")
 data = {
 "bulletin_type": "offering",
 "category": {"title": self.category.title},

Testing and Deployment Chapter 12

[483]

 "title": "Back to the Future",
 "description": "Roads? Where we're going, "
 "we don't need roads.",
 "contact_person": "Doc Brown",
 }
 response = self.client.post(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_201_CREATED)

 bulletin = Bulletin.objects.filter(pk=response.data["id"])
 self.assertEqual(bulletin.count(), 1)

 # logout
 self.client.force_authenticate(user=None)

Add a method to test the API call trying to create a bulletin, but failing (as the5.
current visitor is anonymous), as shown in the following code:

def test_create_bulletin_restricted(self):
 # make sure the user is logged out
 self.client.force_authenticate(user=None)

 url = reverse("rest_bulletin_list")
 data = {
 "bulletin_type": "offering",
 "category": {"title": self.category.title},
 "title": "Godfather",
 "description": "I'm gonna make him an offer he can't "
 "refuse",
 "contact_person": "Don Corleone",
 }
 response = self.client.post(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_403_FORBIDDEN)

Add a method to test the API call changing a bulletin if the current user is6.
authenticated, as follows:

def test_change_bulletin_allowed(self):
 # login
 self.client.force_authenticate(user=self.superuser)

 url = reverse("rest_bulletin_detail",
 kwargs={
 "pk": self.bulletin.pk
 })

Testing and Deployment Chapter 12

[484]

 # change only title
 data = {
 "bulletin_type": self.bulletin.bulletin_type,
 "category": {
 "title": self.bulletin.category.title
 },
 "title": "Matrix Resurrection",
 "description": self.bulletin.description,
 "contact_person": self.bulletin.contact_person,
 }
 response = self.client.put(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_200_OK)
 self.assertEqual(response.data["id"],
 self.bulletin.pk)
 self.assertEqual(response.data["bulletin_type"],
 "searching")

 # logout
 self.client.force_authenticate(user=None)

Add a method to test the API call trying to change a bulletin, but failing (as the7.
current visitor is anonymous), as follows:

def test_change_bulletin_restricted(self):
 # make sure the user is logged out
 self.client.force_authenticate(user=None)

 url = reverse("rest_bulletin_detail",
 kwargs={
 "pk": self.bulletin.pk
 })

 # change only title
 data = {
 "bulletin_type": self.bulletin.bulletin_type,
 "category": {
 "title": self.bulletin.category.title
 },
 "title": "Matrix Resurrection",
 "description": self.bulletin.description,
 "contact_person": self.bulletin.contact_person,
 }
 response = self.client.put(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_403_FORBIDDEN)

Testing and Deployment Chapter 12

[485]

Add a method to test the API call trying to delete a bulletin, but failing (as the8.
current visitor is anonymous), as follows:

def test_delete_bulletin_restricted(self):
 # make sure the user is logged out
 self.client.force_authenticate(user=None)

 url = reverse("rest_bulletin_detail",
 kwargs={
 "pk": self.bulletin_to_delete.pk
 })

 data = {}
 response = self.client.delete(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_403_FORBIDDEN)

Add a method to test the API call deleting a bulletin if the current user is9.
authenticated, as shown in the following code:

def test_delete_bulletin_allowed(self):
 # login
 self.client.force_authenticate(user=self.superuser)

 url = reverse("rest_bulletin_detail",
 kwargs={
 "pk": self.bulletin_to_delete.pk
 })

 data = {}
 response = self.client.delete(url, data, format="json")

 self.assertEqual(response.status_code,
 status.HTTP_204_NO_CONTENT)

 # logout
 self.client.force_authenticate(user=None)

Run the tests for the bulletin_board app, as follows:10.

(myproject_env)$ python manage.py test bulletin_board
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
........

Ran 8 tests in 0.774s

Testing and Deployment Chapter 12

[486]

OK
Destroying test database for alias 'default'...

How it works...
This REST API test suite extends the APITestCase class. Once again, we have the
setUpClass() and tearDownClass() class methods that will be executed before and
after the different tests. Also, the test suite has a client attribute of the APIClient type,
which can be used to simulate API calls. The client provides methods for all standard HTTP
calls: get(), post(), put(), patch(), delete(), head(), and options(); in our tests,
we are using the GET, POST, and DELETE requests. Also, the client has methods to force the
authentication of a user based on login credentials, a token, or a User object. In our tests,
we are authenticating the third way: passing a user directly to the
force_authenticate() method.

The rest of the code is self-explanatory.

See also
The Using the Django REST framework to create APIs recipe in Chapter 10,
Importing and Exporting Data
The Testing views with mock recipe

Releasing a reusable Django app
The Django documentation has a tutorial on how to package your reusable apps so that
they can be installed later, with pip, in any virtual environment; this can be viewed
at https://docs.djangoproject. com/ en/ 2.1/ intro/ reusable- apps/ .

However, there is another (and arguably better) way to package and release a reusable
Django app, using the Cookiecutter tool, which creates templates for different coding
projects, such as the new Django CMS website, the Flask website, or the jQuery plugin. One
of the available project templates is cookiecutter-djangopackage. In this recipe, you
will learn how to use it to distribute the reusable likes app.

https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/
https://docs.djangoproject.com/en/2.1/intro/reusable-apps/

Testing and Deployment Chapter 12

[487]

Getting ready
Install cookiecutter in your virtual environment (as follows), or add it to your
requirements file and rebuild Docker containers:

(myproject_env)$ pip3 install cookiecutter~=1.6.0

How to do it...
To release your likes app, follow these steps:

Start a new Django app project, as follows:1.

(myapp_env)$ cookiecutter \
> https://github.com/pydanny/cookiecutter-djangopackage.git

Or, since this is a GitHub-hosted cookiecutter template, we can use a
shorthand syntax, as follows:

(myapp_env)$ cookiecutter gh:pydanny/cookiecutter-djangopackage

Answer the questions to create the app template, as follows:2.

full_name [Your full name here]: Your Name
email [you@example.com]: user@example.com
github_username [yourname]: githubuser
project_name [Django Package]: Django Likes
repo_name [dj-package]: django-likes
app_name [django_likes]: likes
app_config_name [LikesConfig]:
project_short_description [Your project description goes here]:
Django-likes allows your website users to like any object.
models [Comma-separated list of models]: Like
django_versions [1.11,2.0]: 2.0
version [0.1.0]:
create_example_project [N]:
Select open_source_license:
1 - MIT
2 - BSD
3 - ISCL
4 - Apache Software License 2.0
5 - Not open source
Choose from 1, 2, 3, 4, 5 (1, 2, 3, 4, 5) [1]: 2

Testing and Deployment Chapter 12

[488]

This will create a basic file structure for the releasable Django package, similar to
the following screenshot:

└── django-likes/
 ├── docs/
 │ ├── Makefile
 │ ├── authors.rst
 │ ├── conf.py
 │ ├── contributing.rst
 │ ├── history.rst
 │ ├── index.rst
 │ ├── installation.rst
 │ ├── make.bat
 │ ├── readme.rst
 │ └── usage.rst
 ├── likes/
 │ ├── static/
 │ │ ├── css/
 │ │ │ └── likes.css
 │ │ ├── img/
 │ │ └── js/
 │ │ └── likes.js
 │ ├── templates/
 │ │ ├── static/
 │ │ └── views.py
 │ ├── __init__.py
 │ ├── apps.py
 │ ├── models.py
 │ ├── urls.py
 │ └── views.py
 ├── tests/
 │ ├── __init.py
 │ ├── settings.py
 │ ├── test_models.py
 │ └── urls.py
 ├── AUTHORS.rst
 ├── CONTRIBUTING.rst
 ├── HISTORY.rst
 ├── LICENSE
 ├── MANIFEST.in
 ├── Makefile
 ├── README.rst
 ├── manage.py
 ├── requirements.txt
 ├── requirements_dev.txt
 ├── requirements_test.txt
 ├── runtests.py
 ├── setup.cfg

Testing and Deployment Chapter 12

[489]

 ├── setup.py*
 └── tox.ini

Copy the files in the likes app from the Django project where you are using it to3.
the django-likes/likes directory. In cases where the cookiecutter created
the same files, the content will need to be merged, rather than overwritten. For
instance, the likes/__init__.py file will need to contain a version string to
work properly with setup.py in later steps, as follows:

__version__ = "0.1.0"

In the likes app, we have a dependency upon the utils app, so that also needs4.
to be made available. The ideal option would be to release the utils app itself
(in the same manner as likes), and then change the imports in the likes app to
draw from the new package location instead. We could also simply copy the
utils code directly into the files in the likes app, but then we would have to
maintain the code separately, in at least two places. In this case, let's simply
add utils to the django-likes/utils directory, which is something of a
compromise between the two approaches.
Add the reusable app project to the Git repository in GitHub, using the5.
repo_name that was entered previously.
Explore the different files and complete the license, README, documentation,6.
configuration, and other files.
Make sure that the app passes the cookiecutter template tests:7.

(myapp_env)$ pip3 install -r requirements-test.txt
(myapp_env)$ python3 runtests.py
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.

Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'...

If your package is closed source, create a shareable release as a ZIP archive, as8.
follows:

(myapp_env)$ python3 setup.py sdist
running sdist
running egg_info
...intermediary steps here...

Testing and Deployment Chapter 12

[490]

creating dist
Creating tar archive
removing 'django-likes-0.1.0' (and everything under it)

This will create a django-likes/dist/django-likes-0.1.0.tar.gz file that
can then be installed or uninstalled with pip, as follows:

(myproject_env)$ pip3 install django-likes-0.1.0.tar.gz
(myproject_env)$ pip3 uninstall django-likes

If your package is open source, you can register and publish your app in9.
the Python Package Index (PyPI):

(myapp_env)$ python3 setup.py register
(myapp_env)$ python3 setup.py publish

Also, to spread the word, add your app to the Django packages by submitting a10.
form at https://www.djangopackages.com/packages/add/.

How it works...
Cookiecutter fills in the requested data in different parts of the Django app project
template, using the defaults given in [square brackets] if you simply press Enter
without entering anything. As a result, you get the setup.py file ready for distribution to
the Python Package Index, Sphinx documentation, MIT as the default license, universal text
editor configuration for the project, static files and templates included in your app, and
other goodies.

See also
The Creating a virtual environment project file structure recipe in Chapter 1, Getting
Started with Django 2.1
The Creating a Docker project file structure recipe in Chapter 1, Getting Started with
Django 2.1
The Handling project dependencies with pip recipe in Chapter 1, Getting Started with
Django 2.1
The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript

https://www.djangopackages.com/packages/add/

Testing and Deployment Chapter 12

[491]

Getting detailed error reporting via email
To perform system logging, Django uses Python's built-in logging module. The default
Django configuration seems to be quite complex. In this recipe, you will learn how to tweak
it to send error emails with complete HTML, similar to what is provided by Django in the
DEBUG mode when an error happens.

Getting ready
Locate the Django project in your virtual environment or Docker project structure.

How to do it...
The following procedure will help you to send detailed emails about errors:

If you do not already have LOGGING settings set up for your project, set those up1.
first. Find the Django logging utilities file, available at lib/python3.6/site-
packages/django/utils/log.py. This lib/ directory will be in either your
virtual environment myproject_env/ or /usr/local/ in a Docker project's
app container. You can open the file in a text editor (or via the more command in
a terminal) and copy the DEFAULT_LOGGING dictionary to your project's
settings.py as the LOGGING dictionary.
Add the include_html setting to the mail_admins handler. The result of the2.
first two steps should be something like the following:

settings.py or conf/base.py
DEFAULT_LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse',
 },
 'require_debug_true': {
 '()': 'django.utils.log.RequireDebugTrue',
 },
 },
 'formatters': {
 'django.server': {
 '()': 'django.utils.log.ServerFormatter',
 'format': '[{server_time}] {message}',

Testing and Deployment Chapter 12

[492]

 'style': '{',
 }
 },
 'handlers': {
 'console': {
 'level': 'INFO',
 'filters': ['require_debug_true'],
 'class': 'logging.StreamHandler',
 },
 'django.server': {
 'level': 'INFO',
 'class': 'logging.StreamHandler',
 'formatter': 'django.server',
 },
 'mail_admins': {
 'level': 'ERROR',
 'filters': ['require_debug_false'],
 'class': 'django.utils.log.AdminEmailHandler',
 'include_html': True,
 }
 },
 'loggers': {
 'django': {
 'handlers': ['console', 'mail_admins'],
 'level': 'INFO',
 },
 'django.server': {
 'handlers': ['django.server'],
 'level': 'INFO',
 'propagate': False,
 },
 }
}

How it works...
The logging configuration consists of four parts: loggers, handlers, filters, and formatters.
The following list describes them:

Loggers are entry points into the logging system. Each logger can have a log
level: DEBUG, INFO, WARNING, ERROR, or CRITICAL. When a message is written to
the logger, the log level of the message is compared with the logger's level. If it
meets or exceeds the log level of the logger, it will be further processed by a
handler. Otherwise, the message will be ignored.

Testing and Deployment Chapter 12

[493]

Handlers are engines that define what happens to each message in the logger.
They can be written to a console, sent by email to the administrator, saved to a
log file, sent to the Sentry error-logging service, and so on. In our case, we set the
include_html parameter for the mail_admins handler, as we want the full
HTML with traceback and local variables for the error messages that happen in
our Django project.
Filters provide additional control over the messages that are passed from the
loggers to handlers. For example, in our case, the emails will only be sent when
the DEBUG mode is set to false.
Formatters are used to define how to render a log message as a string. They are
not used in this example; however, for more information about logging, you can
refer to the official documentation at
https://docs.djangoproject.com/en/2.1/topics/logging/.

See also
The Deploying on Apache with mod_wsgi recipe

Deploying on Apache with mod_wsgi
There are many options for deploying your Django project. In this recipe, I will guide you
through the deployment of a Django project on a dedicated Linux server, with Virtualmin.

A dedicated server is a type of internet hosting where you lease an entire server machine
that is not shared with anyone else. Virtualmin is a web-hosting control panel that allows
you to manage virtual domains, mailboxes, databases, and entire servers, without having
deep knowledge of the command-line routines of the server administration.

To run the Django project, we will be using the Apache web server with the mod_wsgi
module and a MySQL database.

Getting ready
Make sure that you have Virtualmin installed on your dedicated Linux server. For
instructions, refer to http://www.virtualmin.com/download.html.

https://docs.djangoproject.com/en/2.1/topics/logging/
http://www.virtualmin.com/download.html

Testing and Deployment Chapter 12

[494]

How to do it...
Follow these steps to deploy a Django project on a Linux server with Virtualmin:

Log into Virtualmin as the root user and set bash (instead of sh) as the default1.
shell for the server's users. This can be done by navigating to Virtualmin |
System Customization | Custom Shells, as shown in the following screenshot:

Create a virtual server for your project by navigating to Virtualmin | Create2.
Virtual Server. Enable the following features: Setup website for domain? and
Create MySQL database?. The Custom username and Administration password
that you set for the domain will also be used for the SSH connections, FTP, and
MySQL database access, as follows:

Testing and Deployment Chapter 12

[495]

Log into your domain administration panel and set the A record for your domain3.
to the IP address of your dedicated server.

Due to the delays related to DNS propagation, it can be several hours
before a new domain mapping takes effect in all parts of the globe. In the
interim, it may only be accessible via the IP address, directly.

Connect to the dedicated server via Secure Shell (SSH) as the root user, and4.
install the Python libraries, pip, virtualenv, MySQLdb, and Pillow, system
wide.
Ensure that the default MySQL database encoding is UTF-8. First, we must edit5.
the MySQL configuration file on the remote server. For example, we can connect
via SSH and open the configuration file using the nano editor, as follows:

$ ssh root@myproject.com
root@myproject.com's password:

<root@myproject.com>$ nano /etc/mysql/my.cnf

Testing and Deployment Chapter 12

[496]

Once it has opened, we have to add (or edit) the following configurations:

/etc/mysql/my.cnf
[client]
default-character-set=utf8

[mysql]
default-character-set=utf8

[mysqld]
collation-server=utf8_unicode_ci
init-connect='SET NAMES utf8'
character-set-server=utf8

Press Ctrl + O to save the changes, and Ctrl + X to exit the nano editor. Once the
configuration is saved, restart the MySQL server, as follows:

<root@myproject.com>$ /etc/init.d/mysql restart

Finally, press Ctrl + D to exit the SSH connection, or type the exit command, as
follows:

<root@myproject.com>$ exit
$

When you create a domain with Virtualmin, the user for that domain is created6.
automatically. Connect to the dedicated server via SSH as a user of your Django
project and create a virtual environment for your project, as follows:

$ ssh myproject@myproject.com
myproject@myproject.com's password:

<myproject@myproject.com>$ virtualenv . --system-site-packages
<myproject@myproject.com>$ echo source ~/bin/activate >> .bashrc
<myproject@myproject.com>$ source ~/bin/activate
(myproject)myproject@server$

The .bashrc script will be called each time you connect to your Django
project via SSH as a user related to the domain. The .bashrc script will
automatically activate the virtual environment for this project.

If you host your project code on Bitbucket, you will have to set up SSH keys, in7.
order to avoid password prompts when pulling from or pushing to the Git
repository. To do so, execute the following commands, one by one:

(myproject)myproject@server$ ssh-keygen

Testing and Deployment Chapter 12

[497]

(myproject)myproject@server$ ssh-agent /bin/bash
(myproject)myproject@server$ ssh-add ~/.ssh/id_rsa
(myproject)myproject@server$ cat ~/.ssh/id_rsa.pub

The last command prints your SSH public key, which you need to copy and paste
into the form, under Settings | General | Access Keys | Add Key, for your
repository on the Bitbucket website, as shown in the following screenshot:

Create a project directory, go to it, and clone your project's code, as follows:8.

(myproject)myproject@server$ git clone \
> git@bitbucket.org:somebitbucketuser/myproject.git myproject

Now, your project path should be something similar to the following:
/home/myproject/project/myproject.

Testing and Deployment Chapter 12

[498]

Install the Python requirements for your project, including a specified version of9.
Django 2.1 (or newer), as follows:

(myproject)myproject@server$ pip install -r requirements.txt

Create the media, tmp, and static directories, under your project's directory.10.
Also, create local_settings.py, with settings similar to the following, or use11.
one of the other approaches to environment-specific settings that were
mentioned in Chapter 1, Getting Started with Django 2.1:

/home/myproject/project/myproject/myproject/local_settings.py
DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.mysql",
 "NAME": "myproject",
 "USER": "myproject",
 "PASSWORD": "mypassword",
 }
}
PREPEND_WWW = True
DEBUG = False
ALLOWED_HOSTS = ["myproject.com"]

Import the database dump that you created locally. If you are using a macOS,12.
you can do that with an app such as Sequel Pro (http://www.sequelpro.com/),
using an SSH connection. You can also upload the database dump to the server
by FTP, and then run the following in SSH:

(myproject)myproject@server$ python manage.py \
> dbshell < ~/db_backups/db.sql

Collect static files, as follows:13.

(myproject)myproject@server$ python manage.py collectstatic --
noinput

Go to the ~/public_html directory and create a wsgi file, using the nano editor14.
(or an editor of your choice):

/home/myproject/public_html/my.wsgi
#!/home/myproject/bin/python

import os, sys, site

django_path = os.path.abspath(
 os.path.join(os.path.dirname(__file__),
 "../lib/python2.6/site-packages/"),

http://www.sequelpro.com/

Testing and Deployment Chapter 12

[499]

)
site.addsitedir(django_path)

project_path = os.path.abspath(
 os.path.join(os.path.dirname(__file__),
 "../project/myproject"),
)
sys.path += [project_path]

os.environ["DJANGO_SETTINGS_MODULE"] = "myproject.settings"
from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()

Then, create the .htaccess file in the same directory. The .htaccess file will15.
redirect all of the requests to your Django project set in the wsgi file, as follows:

/home/myproject/public_html/.htaccess
AddHandler wsgi-script .wsgi
DirectoryIndex index.html
RewriteEngine On
RewriteBase /
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME}/index.html !-f
RewriteCond %{REQUEST_URI} !^/media/
RewriteCond %{REQUEST_URI} !^/static/
RewriteRule ^(.*)$ /my.wsgi/$1 [QSA,L]

Copy .htaccess as .htaccess_live.16.
Then, create .htaccess_maintenace for maintenance cases. This new Apache17.
configuration file will show temporarily-offline.html for all of the users
(except for you, recognized by the IP address of your LAN or computer). The
following code snippet shows how the .htaccess_maintenance will look:

/home/myproject/public_html/.htaccess_maintenance
AddHandler wsgi-script .wsgi
DirectoryIndex index.html

RewriteEngine On
RewriteBase /
RewriteCond %{REMOTE_HOST} !^1.2.3.4$
RewriteCond %{REQUEST_URI} !/temporarily-offline.html
RewriteCond %{REQUEST_URI} !^/media/
RewriteCond %{REQUEST_URI} !^/static/
RewriteRule .* /temporarily-offline.html [R=302,L]

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME}/index.html !-f

Testing and Deployment Chapter 12

[500]

RewriteCond %{REQUEST_URI} !^/media/
RewriteCond %{REQUEST_URI} !^/static/
RewriteRule ^(.*)$ /my.wsgi/$1 [QSA,L]

Replace the IP digits in this file, 1.2.3.4, with your own IP. You can
check your IP address by googling "what's my IP," as in https:/ /www.
google. com/ search? q= whats+my+ip.

Then, create an HTML file that will be shown when your website is down. The18.
following is a very simple version:

<!-- /home/myproject/public_html/temporarily-offline.html -->
The site is being updated... Please come back later.

Log into the server as the root user via SSH, and edit the Apache configuration.19.
To do so, open the domain configuration file, as follows:

<root@myproject.com>$ nano \
> /etc/apache2/sites-available/myproject.mydomain.conf

Add the following lines before </VirtualHost>:

Options -Indexes
AliasMatch ^/static/d+/(.*)
"/home/myproject/project/myproject/static/$1"
AliasMatch ^/media/(.*)
"/home/myproject/project/myproject/media/$1"
<FilesMatch ".(ico|pdf|flv|jpe?g|png|gif|js|css|swf)$">
 ExpiresActive On
 ExpiresDefault "access plus 1 year"
</FilesMatch>

Restart Apache for the changes to take effect:

<root@myproject.com>$ /etc/init.d/apache2 restart

Set the default scheduled cron jobs. For more information on how to do this, refer20.
to the Setting up cron jobs for regular tasks recipe.

How it works...
With this configuration, files in the media and static directories are served directly from
Apache, whereas all of the other URLs are handled by the Django project, through the
my.wsgi file.

https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip
https://www.google.com/search?q=whats+my+ip

Testing and Deployment Chapter 12

[501]

Using the <FilesMatch> directive in the Apache site configuration, all media files are set
to be cached for one year. Static URL paths have a numbered prefix that changes whenever
you update the code from the Git repository.

When you need to update the website and want to set it down for maintenance, you'll have
to copy .htaccess_maintenance to .htaccess. When you want to set the website up
again, you'll have to copy .htaccess_live to .htaccess.

There's more...
To find other options for hosting your Django project, refer to http:/ /djangofriendly.
com/hosts/.

See also
The Creating a virtual environment project file structure recipe in Chapter 1, Getting
Started with Django 2.1
The Handling project dependencies with pip recipe in Chapter 1, Getting Started with
Django 2.1
The Setting up STATIC_URL dynamically for Git users recipe in Chapter 1, Getting
Started with Django 2.1
The Setting UTF-8 as the default encoding for MySQL configuration recipe in Chapter
1, Getting Started with Django 2.1
The Setting up cron jobs for regular tasks recipe

Setting up cron jobs for regular tasks
Usually, websites have some management tasks to perform in the background on a regular
interval, such as once a week, once a day, or every hour. This can be achieved by using
scheduled tasks, commonly known as cron jobs. These are scripts that run on the server
after the specified period of time. In this recipe, we will create two cron jobs: one to clear
sessions from the database, and another to back up the database data. Both will be run
every night.

http://djangofriendly.com/hosts/
http://djangofriendly.com/hosts/
http://djangofriendly.com/hosts/
http://djangofriendly.com/hosts/
http://djangofriendly.com/hosts/
http://djangofriendly.com/hosts/
http://djangofriendly.com/hosts/
http://djangofriendly.com/hosts/
http://djangofriendly.com/hosts/

Testing and Deployment Chapter 12

[502]

Getting ready
To start, deploy your Django project to a remote server. Then, connect to the server by SSH.

These steps are written with the assumption that you are using a
virtualenv, but a similar cron job can be created for a Docker project,
and it can even run directly within the app container. Code files are
provided with the alternate syntax, and the steps are otherwise largely the
same. A connection can be made to the app container from your Docker
project root, with the following command:

myproject_docker/$ docker-compose exec app /bin/bash

How to do it...
Let's create the two scripts and make them run regularly, via the following steps:

Navigate to the project root, where your bin and lib directories are located.1.
Create the commands, db_backups, and logs folders alongside the bin2.
directory, as follows:

(myproject)myproject@server$ mkdir commands
(myproject)myproject@server$ mkdir db_backups
(myproject)myproject@server$ mkdir logs

In the commands directory, create a cleanup.sh file. You can edit it with a3.
terminal editor, such as vim or nano, adding the following content:

myproject/commands/cleanup.sh
#! /usr/bin/env bash

PROJECT_PATH=/home/myproject
CRON_LOG_FILE=${PROJECT_PATH}/logs/cleanup.log

echo "Cleaning up the database" > ${CRON_LOG_FILE}

date >> ${CRON_LOG_FILE}

cd ${PROJECT_PATH}

activate if in a virtual environment project
if [[-f "bin/activate"]]; then
 . bin/activate
fi

Testing and Deployment Chapter 12

[503]

cd project/myproject

python3 manage.py cleanup --traceback >> ${CRON_LOG_FILE} 2>&1

Make the cleanup.sh file executable, as follows:4.

(myproject)myproject@server$ chmod +x cleanup.sh

Then, in the same directory, create a backup_db.sh file, with the following5.
content:

myproject/commands/backup_db.sh
#! /usr/bin/env bash

PROJECT_PATH=/home/myproject
mkdir -p "${PROJECT_PATH}/db_backups"
mkdir -p "${PROJECT_PATH}/logs"

CRON_LOG_FILE=${PROJECT_PATH}/logs/backup_db.log

WEEK_DATE=$(LC_ALL=en_US.UTF-8 date +"%w-%A")
BACKUP_PATH=${PROJECT_PATH}/db_backups/${WEEK_DATE}.sql

DATABASE=myproject
HOST=localhost
USER=my_db_user
PASS=my_db_password

EXCLUDED_TABLES=(
django_session
)

IGNORED_TABLES_STRING=''

for TABLE in "${EXCLUDED_TABLES[@]}"; do
 IGNORED_TABLES_STRING+=" --ignore-table=${DATABASE}.${TABLE}"
done

echo "Creating DB Backup" > ${CRON_LOG_FILE}
date >> ${CRON_LOG_FILE}

echo "Dump structure" >> ${CRON_LOG_FILE}
mysqldump -h ${HOST} -u ${USER} -p${PASS} \
 --single-transaction --no-data \
 ${DATABASE} > ${BACKUP_PATH} \
 2>> ${CRON_LOG_FILE}

echo "Dump content" >> ${CRON_LOG_FILE}

Testing and Deployment Chapter 12

[504]

mysqldump -h ${HOST} -u ${USER} -p${PASS} \
 ${DATABASE} ${IGNORED_TABLES_STRING} >> ${BACKUP_PATH} \
 2>> ${CRON_LOG_FILE}

Make this file executable, too, as follows:6.

(myproject)myproject@server$ chmod +x backup_db.sh

Test the scripts to see whether they are executed correctly, by running the scripts7.
and then checking the *.log files in the logs directory, as follows:

(myproject)myproject@server$./cleanup.sh
(myproject)myproject@server$./backup_db.sh

In your project's home directory, create a crontab.txt file, with the following8.
tasks:

00 01 * * * /home/myproject/commands/cleanup.sh
00 02 * * * /home/myproject/commands/backup_db.sh

Install the crontab tasks, as follows:9.

(myproject)myproject@server$ crontab -e crontab.txt

How it works...
With the current setup, every night, cleanup.sh will be executed at 1:00 A.M., and
backup_db.sh will be executed at 2:00 A.M. The execution logs will be saved in
cleanup.log and backup_db.log. If you get any errors, you should check these files for
the traceback.

The cleanup script is fairly straightforward. Every day, it executes the clearsessions
management command, which, as its name alludes to, clears expired sessions from the
database, using the default database settings.

The database backup script is a little more complex. Every day of the week, it creates a
backup file for that day, using a naming scheme of 0-Sunday.sql, 1-Monday.sql, and so
on. Therefore, you will be able to restore data that was backed up seven days ago or later.
First, the backup script dumps the database schema for all of the tables, and then, it dumps
the content data for all of the tables, except for any that are given in the
EXCLUDED_TABLES list (here only including django_session).

Testing and Deployment Chapter 12

[505]

The crontab file follows a specific syntax. Each line contains a specific time of day,
indicated as a series of numbers, and then a task to run at that given moment. The time is
defined in five parts, separated by spaces, as shown in the following list:

Minutes, from 0 to 59.
Hours, from 0 to 23.
Days of the month, from 1 to 31.
Months, from 1 to 12.
Days of the week, from 0 to 7, where 0 is Sunday, 1 is Monday, and so on. 7 is
Sunday again.

An asterisk (*) means that every time frame will be used. Therefore, the following task
defines that cleanup.sh is to be executed at 1:00 AM every day of each month, every
month, and every day of the week:

00 01 * * * /home/myproject/commands/cleanup.sh

You can learn more about the specifics of the crontab at
https://en.wikipedia.org/wiki/Cron.

See also
The Deploying on Apache with mod_wsgi recipe

https://en.wikipedia.org/wiki/Cron

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Django Design Patterns and Best Practices - Second Edition
Arun Ravindran

ISBN: 9781788831345

Make use of common design patterns to help you write better code
Implement best practices and idioms in this rapidly evolving framework
Deal with legacy code and debugging
Use asynchronous tools such as Celery, Channels, and asyncio
Use patterns while designing API interfaces with the Django REST Framework
Reduce the maintenance burden with well-tested, cleaner code
Host, deploy, and secure your Django projects

https://www.packtpub.com/web-development/django-design-patterns-and-best-practices-second-edition

Other Books You May Enjoy

[507]

Django 2 by Example
Antonio Melé

ISBN: 9781788472487

Build practical, real-world web applications with Django
Use Django with other technologies, such as Redis and Celery
Develop pluggable Django applications
Create advanced features, optimize your code, and use the cache framework
Add internationalization to your Django projects
Enhance your user experience using JavaScript and AJAX
Add social features to your projects
Build RESTful APIs for your applications

https://www.packtpub.com/application-development/django-2-example

Other Books You May Enjoy

[508]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Active Directory (AD) 316
Adjacency List trees 395
admin actions
 creating 265, 268, 270
ADMINS setting
 checking 471, 472, 473
Ajax
 images, uploading 215, 216, 219, 222, 225,

226, 227, 229
Apache
 deploying, with mod_wsgi 493, 494, 497, 500,

501

app configuration
 creating 60, 61, 62, 63
Application Program Interface (API)
 creating, with Django REST framework 436,

439, 442, 443
 creating, with Tastypie 430, 431, 434
art direction 192
Auth0
 authenticating with 316, 317, 318, 319, 321,

322

 URL 316
authorized files
 downloading 305, 306, 308, 309, 310

B
base.html template
 arranging 172, 173, 175, 176, 177

C
category administration interface
 creating, with django-mptt-admin 377, 378, 379,

381

 creating, with django-treebeard 400, 401, 402,

404

change form
 map. inserting into 280, 283, 286, 290, 293
change list filters
 developing 271, 272, 274
change list page
 columns, customizing 258, 260, 262, 265
checkbox list
 used, for selecting multiple categories in forms

388, 389, 391, 393, 394
class-based views
 composing 146, 149
CMS app
 app, converting to 346, 348, 349
CMS page
 fields, adding 363, 365, 366, 368, 369
CMS plugin
 writing 355, 356, 358, 360, 361, 362
columns
 customizing, on change list page 258, 260, 262,

265

comma-separated values (CSV) 405
continuous scrolling
 implementing 197, 198, 199, 201, 203, 204,

205

cron jobs
 about 501
 setting up, for regular tasks 501, 502, 504
Cross Site Request Forgery (CSRF)
 forms security, creating 295, 296, 297
custom templates
 used, for creating form layout 117, 119, 122,

125

D
database query expressions
 using 452, 454, 456, 458

[510]

Debug Toolbar
 toggling 461, 463, 464
default admin settings
 customizing 274, 277, 280
detailed error reporting
 obtaining via email 492
 obtaining, via email 491
development
 settings, configuring 41, 42, 43
Django CMS
 templates, creating 335, 336, 339, 340
 URL 335
Django migrations
 South migrations, switching from 98, 99
Django project
 URL 501
Django REST framework
 URL 443
 used, for creating API 436, 439, 442, 443
 used, for creating testing APIs 480, 482, 484,

485, 486
Django shell
 using 444, 445, 448, 450, 452
Django views
 caching, with Memcached 326, 328, 329
 caching, with Redis 329, 331, 332
django-crispy-forms
 used, for creating form layout 126, 129, 132
django-mptt-admin
 category administration interface, creating 377,

378, 379, 381
django-mptt
 categories, rendering in template 382, 384, 385
 checkbox list, used for selecting multiple

categories in forms 388, 389, 391, 393, 394
 hierarchical categories, creating 373, 374, 375,

377

 single selection field, used for selecting forms
category 385, 386, 387

 URL 385
django-treebeard
 category administration interface, creating 400,

401, 402, 404
 hierarchical categories, creating 395, 396, 397,

399

Docker project file structure
 creating 24, 25, 26, 29, 31, 32, 33
Docker
 references 15, 24
 working with 15, 16, 17, 21, 22, 24
Document Object Model (DOM) 177
dynamic watermark
 adding, to images 311, 313, 314, 315, 316

E
external dependencies
 including, in project 38, 39, 40, 41
external JSON file
 data, importing 412, 414, 416, 417
external XML file
 data, importing 418, 419, 421, 422

F
filterable RSS feeds
 creating 423, 426, 428, 429
floats 204
foreign key
 modifying, to many-to-many field 99, 100, 102
form layout
 creating, with custom templates 117, 119, 122,

125

 creating, with django-crispy-forms 126, 129, 132
form
 HttpRequest, passing 104, 106, 108
 save method, utilizing 108, 110

G
generic relations
 handling 77, 78, 80, 81
Git ignore file
 creating 55, 56, 57

H
Haystack
 used, for implementing multilingual search 157,

160, 164, 167
hierarchical categories
 creating, with django-mptt 373, 374, 375, 377
 creating, with django-treebeard 395, 396, 397,

[511]

399

HTML5 data attributes
 using 177, 178, 179, 181, 183, 185
HttpRequest
 passing, to form 104, 106, 108
humanize URLs
 template filter, creating 238, 239

I
images
 dynamic watermark, adding 311, 313, 314, 315,

316

 uploading 110, 113, 116
 uploading, via Ajax 215, 216, 219, 222, 225,

226, 227, 229
infinite scrolling 197
Internet Movie Database
 URL 197

J
JavaScript
 HTML5 data attributes 185
 settings, exposing 169, 170, 171, 172
jQuery File Upload widget
 URL 215

L
Last.fm
 URL 417
Least Recently Used (LRU) 325
Lightweight Directory Access Protocol (LDAP) 316
Like widget
 implementing 206, 207, 208, 209, 211, 213,

214

local CSV file
 data, importing 405, 406, 407, 409
local Excel file
 data, importing 409, 410, 411
local settings
 creating 45, 46, 47, 48
 including 45, 46, 47, 48
logging configuration
 filters 493
 formatters 493
 handlers 493

 loggers 492
 URL 493

M
map
 change form, inserting 280, 283, 286, 290, 293
Materialized Path trees 395
media object
 extracting, by creating template filter 235, 237
Memcached
 used, for caching Django views 326, 328
method return value
 caching 323, 324, 325, 326
migrations
 using 95, 96, 97
mixin class 67
Mock objects
 testing views 475, 476, 477, 479
mod_wsgi
 Apache, deploying 493, 494, 497, 500, 501
modal dialog
 object details, opening 192, 193, 194, 196, 197
model inheritance
 URL 68
model mixins
 creating, for handling dates modifications 72
 creating, with URL-related methods 68, 69, 71,

72

 creation, for handling creation 72
 creation, for handling generic relations 77, 78,

80, 81
 creation, for handling meta tags 74, 76
 using 67, 68
Modified Preorder Tree Traversal (MPTT) 371,

373

monkey patching
 slugify() function 458, 459, 460
Mozilla Developer Network (MDN) 192
multilingual fields
 handling 82, 84, 85, 87
multilingual search
 implementing, with Haystack 157, 160, 164
 implementing, with Whoosh 157, 160, 164, 167
MySQL configuration
 UTF-8, setting as default encoding 51, 52

[512]

N
navigation
 attaching 349, 351, 352, 354, 355
Nested Sets trees 395

O
object lists
 filtering 133, 136, 141
object-relational mapping (ORM) 452
Office Open XML (OOXML) 270
overwritable app settings
 defining 63, 64, 65

P
page menu
 structuring 341, 342, 344, 345
paginated lists
 managing 142, 145
password validation
 implementing 298, 299, 300, 301, 302, 304
PDF documents
 generating 149, 153, 157
PEP 8
 URL 60
pip
 project dependencies, handling 33, 34, 36, 37,

38

 URL 10
polyfill 189
post published time
 tracking, by creating template tag 233, 234
production environments
 settings, configuring 41, 42, 43
Python files
 import order, structuring 59, 60
Python Package Index (PyPI) 38, 490
Python-compiled files
 deleting 58

Q
query expressions 452
QuerySet
 loading, in template by creating tag 244, 246,

248

R
Redis
 used, for caching Django views 329, 331, 332
relative paths
 defining, in settings 44, 45
request query parameters
 modifying, by creating template tag 251, 253,

256

responsive images
 providing 186, 188, 189, 191, 192
reusable Django app
 releasing 486, 487, 490
 URL 486

S
schema microdata
 enhancements, enabling 87, 90, 92, 94
Secure Shell (SSH) 495
Sequel Pro
 URL 498
signals
 used, for notifying administrators 468, 469, 470,

471

single selection field
 used, for selecting forms category with django-

mptt 385, 386, 387
slugify() function
 monkey patching 458, 459, 460
South migrations
 switching, to Django migrations 98, 99
STATIC_URL
 dynamically setting up, for Git users 50, 51
 dynamically setting up, for subversion users 48,

49

Subversion ignore property
 setting 53, 54, 55

T
tags
 conventions 231, 232
Tastypie
 used, for creating API 430, 431, 434
template filter
 creating, for tracking post published time 233,

234

 creating, to extract first media object 235, 237
 creating, to humanize URLs 238, 239
template filters
 conventions 231, 232
template tag
 creating, to include existing template 240, 242,

243

 creating, to load QuerySet in template 244, 246,
248

 creating, to modify request query parameters
251, 254

 creating, to parse content as template 248, 250
testing views
 with mock 475
testing
 component interface testing 476
 integration testing 476
 operational acceptance testing 476
 settings, configuration 41
 settings, configuring 42, 43
 system testing 476
 unit testing 475
ThreadLocalMiddleware
 using 466, 467

transliterate module
 URL 460

U
URL-related methods
 model mixins, creating 68, 69, 71, 72
UTF-8
 setting, as default encoding for MySQL

configuration 51, 52

V
virtual environment
 project file structure, creating 11, 12, 14
 workign with 10
 working with 9, 10, 11
Virtualmin
 URL 493

W
Web Content Accessibility Guidelines (WCAG)

206

Whoosh
 used, for implementing multilingual search 157,

160, 164, 167

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt.com
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Django 2.1
	Introduction
	Working with a virtual environment
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a virtual environment project file structure
	Getting ready
	How to do it...
	How it works...
	See also

	Working with Docker
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a Docker project file structure
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Handling project dependencies with pip
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Including external dependencies in your project
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Configuring settings for development, testing, staging, and production environments
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Defining relative paths in the settings
	Getting ready
	How to do it...
	How it works...
	See also

	Creating and including local settings
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up STATIC_URL dynamically for Subversion users
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up STATIC_URL dynamically for Git users
	Getting ready
	How to do it...
	How it works...
	See also

	Setting UTF-8 as the default encoding for MySQL configuration
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting the Subversion ignore property
	How to do it...
	How it works...
	See also

	Creating the Git ignore file
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deleting Python-compiled files
	Getting ready
	How to do it...
	How it works...
	See also

	Respecting the import order in Python files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating app configuration
	Getting ready
	How to do it...
	How it works...
	There is more...
	See also

	Defining overwritable app settings
	Getting ready
	How to do it...
	How it works...

	Chapter 2: Database Structure and Modeling
	Introduction
	Using model mixins
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a model mixin with URL-related methods
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a model mixin to handle creation and modification dates
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a model mixin to take care of meta tags
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a model mixin to handle generic relations
	Getting ready
	How to do it...
	How it works...
	See also

	Handling multilingual fields
	Getting ready
	How to do it...
	How it works...
	See also

	Enabling schema microdata enhancements
	Getting ready
	How to do it...
	How it works...
	See also

	Using migrations
	Getting ready
	How to do it...
	How it works...
	See also

	Switching from South migrations to Django migrations
	Getting ready
	How to do it...
	How it works...
	See also

	Changing a foreign key to the many-to-many field
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Forms and Views
	Introduction
	Passing HttpRequest to a form
	Getting ready
	How to do it...
	How it works...
	See also

	Utilizing the save method of the form
	Getting ready
	How to do it...
	How it works...
	See also

	Uploading images
	Getting ready
	How to do it...
	How it works...
	There's more
	See also

	Creating a form layout with custom templates
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a form layout with django-crispy-forms
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Filtering object lists
	Getting ready
	How to do it...
	How it works...
	See also

	Managing paginated lists
	Getting ready
	How to do it...
	How it works...
	See also

	Composing class-based views
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Generating PDF documents
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing a multilingual search with Haystack and Whoosh
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 4: Templates and JavaScript
	Introduction
	Exposing settings in JavaScript
	Getting ready
	How to do it...
	How it works...
	See also

	Arranging the base.html template
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using HTML5 data attributes
	Getting ready
	How to do it...
	How it works...
	See also

	Providing responsive images
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Opening object details in a modal dialog
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing a continuous scroll
	Getting ready
	How to do it...
	How it works...
	There's more
	See also

	Implementing the Like widget
	Getting ready
	How to do it...
	How it works...
	See also

	Uploading images via Ajax
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 5: Customizing Template Filters and Tags
	Introduction
	Following conventions for your own template filters and tags
	How to do it...
	See also

	Creating a template filter to show how much time has passed since a post was published
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a template filter to extract the first media object
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a template filter to humanize URLs
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a template tag to include a template if it exists
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a template tag to load a QuerySet in a template
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a template tag to parse content as a template
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a template tag to modify request query parameters
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 6: Model Administration
	Introduction
	Customizing columns on the change list page
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating admin actions
	Getting ready
	How to do it...
	How it works...
	See also

	Developing change list filters
	Getting ready
	How to do it...
	How it works...
	See also

	Customizing default admin settings
	Getting ready
	How to do it...
	How it works...
	See also

	Inserting a map into a change form
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 7: Security and Performance
	Introduction
	Making forms secure from Cross Site Request Forgery (CSRF)
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing password validation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Downloading authorized files
	Getting ready
	How to do it...
	How it works...
	See also

	Adding a dynamic watermark to images
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Authenticating with Auth0
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Caching the method return value
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using Memcached to cache Django views
	Getting ready
	How to do it...
	How it works...
	See also

	Using Redis to cache Django views
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Django CMS
	Introduction
	Creating templates for Django CMS
	Getting ready
	How to do it...
	How it works...
	See also

	Structuring the page menu
	Getting ready
	How to do it...
	How it works...
	See also

	Converting an app to a CMS app
	Getting ready
	How to do it...
	How it works...
	See also

	Attaching your own navigation
	Getting ready
	How to do it...
	How it works...
	See also

	Writing your own CMS plugin
	Getting ready
	How to do it...
	How it works...
	See also

	Adding new fields to the CMS page
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 9: Hierarchical Structures
	Introduction
	Creating hierarchical categories with django-mptt
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a category administration interface with django-mptt-admin
	Getting ready
	How to do it...
	How it works...
	See also

	Rendering categories in a template with django-mptt
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using a single selection field to choose a category in forms with django-mptt
	Getting ready
	How to do it...
	How it works...
	See also

	Using a checkbox list to choose multiple categories in forms with django-mptt
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating hierarchical categories with django-treebeard
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a basic category administration interface with django-treebeard
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 10: Importing and Exporting Data
	Introduction
	Importing data from a local CSV file
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Importing data from a local Excel file
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Importing data from an external JSON file
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Importing data from an external XML file
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating filterable RSS feeds
	Getting ready
	How to do it...
	How it works...
	See also

	Using Tastypie to create an API
	Getting ready
	How to do it...
	How it works...
	See also

	Using Django REST framework to create an API
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 11: Bells and Whistles
	Introduction
	Using the Django shell
	Getting ready
	How to do it...
	How it works...
	See also

	Using database query expressions
	Getting ready
	How to do it...
	How it works...
	See also

	Monkey patching the slugify() function for better internationalization support
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Toggling the Debug Toolbar
	Getting ready
	How to do it...
	How it works...
	See also

	Using ThreadLocalMiddleware
	Getting ready
	How to do it...
	How it works...
	See also

	Using signals to notify administrators about new entries
	Getting ready
	How to do it...
	How it works...
	See also

	Checking for missing settings
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 12: Testing and Deployment
	Introduction
	Testing views with mock
	Getting ready
	How to do it...
	How it works...
	See also

	Testing APIs created using the Django REST framework
	Getting ready
	How to do it...
	How it works...
	See also

	Releasing a reusable Django app
	Getting ready
	How to do it...
	How it works...
	See also

	Getting detailed error reporting via email
	Getting ready
	How to do it...
	How it works...
	See also

	Deploying on Apache with mod_wsgi
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up cron jobs for regular tasks
	Getting ready
	How to do it...
	How it works...
	See also

	Other Books You May Enjoy
	Index

