Hands-On
Data Structures

and Algorithms
with Python

Second Edition

Hands-On Data Structures and
Algorithms with Python
Second Edition

Write complex and powerful code using the latest features of
Python 3.7

Dr. Basant Agarwal
Benjamin Baka

BIRMINGHAM - MUMBAI

Hands-On Data Structures and Algorithms
with Python
Second Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Denim Pinto

Content Development Editor: Tiksha Sarang
Technical Editor: Mehul Singh

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik
Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Jisha Chirayil

Production Coordinator: Shraddha Falebhai

First published: May 2017
Second edition: October 2018

Production reference: 2221118
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-557-3

www.packtpub.com

http://www.packtpub.com

OFF ANY PACKT

Python Deep Python
Leamin: Flask Web o}
9 Davaloprant Automation

S

and use this code in the checkout:

This book is dedicated to my parents, wife, and kids Charvi, Kaavy.

- Dr. Basant Agarwal

Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

e Improve your learning with skill plans designed especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Dr. Basant Agarwal works as an associate professor at Swami Keshvanand Institute of
Technology, Management, and Gramothan, India. He has been awarded an M.Tech and
Ph.D. from MNIT, Jaipur, India, and has more than 8 years' experience in academia and
research. He has been awarded the prestigious PostDoc Fellowship by ERCIM (the
European Research Consortium for Informatics and Mathematics) through the Alain
Bensoussan Fellowship Programme. He has also worked at Temasek Laboratories, the
National University of Singapore. He has authored a book on sentiment analysis in the
Springer Book Series: Socio-Affective Computing series, and is published in more than 50
reputed conferences and journals. His research interests are focused on NLP, machine
learning, and deep learning.

Benjamin Baka works as a software developer who considers himself to be language
agnostic and thus seeks out the elegant solutions to which his toolset can enable him to
accomplish. Notable amongst ones are C, Java, Python, and Ruby. With a huge interest in
algorithms, he seeks to always write code that borrows from Dr. Knuth's words, both
simple and elegant. He also enjoys playing the bass guitar and listening to silence. He
currently works with mPedigree Network.

About the reviewers

David Julian has written two books Designing Machine Learning Systems with Python, and
Deep Learning with Pytorch Quickstart Guide both published by Packt. He has worked for
Urban Ecological Systems Pty Ltd on a project to detect insect outbreaks in greenhouse
environments using machine learning. He currently works as a technical consultant and
information technology trainer for several private and non-government organizations.

Yogendra Sharma is a developer with experience in architecture, design, and the
development of scalable and distributed applications, with a core interest in microservices
and Spring. He is currently working as an IoT and cloud architect at Intelizign Engineering
Services, Pune. He also has hands-on experience with technologies such as AWS Cloud,
IoT, Python, J2SE, J2EE, NodeJS, Angular, MongoDB, and Docker. He is constantly
exploring technical novelties, and is open-minded and eager to learn about new
technologies and frameworks.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Acknowledgments

This book would not have been possible without the contribution of many individuals, to
whom I would like to express my sincere appreciation and gratitude. First of all, I would
like to acknowledge the great support of the Packt Publishing team. I am very grateful to
the editor of the book, Tiksha Sarang, whose support throughout its development was
marvelous. I would like to express my sincere gratitude to the acquisition editor of the
book, Denim Pinto, who has given me the chance to contribute to this book. I would also
like to thank Benjamin Baka for great work in the first edition of the book.

I would especially like to thank the editors and technical reviewers of the book for
performing the extensive review process. I would like to express my thanks to all the
reviewers for their constructive comments and suggestions. I am also grateful to Mehul
Singh for his fantastic efforts as a technical reviewer. I would also like to express my
gratitude to all those who were involved in the copy editing, proofreading, and production
of this book.

I am grateful to the Swami Keshvanand Institute of Technology for providing me with a
fantastic work environment and their kind cooperation. I would also like to express my
sincere gratitude and thanks to Prof. S. L. Surana, Director (Academics), SKIT, for being a
constant source of support and motivation. I am especially thankful to Prof. C. M.
Choudhary, head of the Department of Computer Science and Engineering, for his help,
advice, support, and encouragement. Special thanks also to all my wonderful friends and
colleagues for helping me in eradicating the minor errors and for proofreading the book. I
would also like to thank Dr. Mukesh Gupta, Dr. S.R. Dogiwal, and Gaurav Arora for their
help.

And last, but by no means least, my sincere thanks go to my family and friends, for their
endless encouragement and support throughout the production of this book. They always
motivated me to work harder on the book. For any inadequacies that may remain in this
book, the responsibility is entirely my own.

Table of Contents

Preface 1
Chapter 1: Python Objects, Types, and Expressions 8
Technical requirements 8
Installing Python 9
Understanding data structures and algorithms 10
Python for data 12
The Python environment 12
Variables and expressions 13
Variable scope 14
Flow control and iteration 16
Overview of data types and objects 17
Strings 18
Lists 20
Functions as first class objects 23

Higher order functions 24
Recursive functions 27
Generators and co-routines 28
Classes and object programming 29
Special methods 31
Inheritance 32

Data encapsulation and properties 35
Summary 35
Further reading 36
Chapter 2: Python Data Types and Structures 37
Technical requirements 37
Built-in data types 38
None type 38
Numeric types 39
Representation error 41
Membership, identity, and logical operations 43
Sequences 43
Learning about tuples 45
Beginning with dictionaries 47
Python 49
Sorting dictionaries 49
Dictionaries for text analysis 51

Sets 52

Table of Contents

Immutable sets 55
Modules for data structures and algorithms 56
Collections 57
Deques 57
ChainMap objects 60
Counter objects 61
Ordered dictionaries 63
defaultdict 64
Learning about named tuples 65

Arrays 66
Summary 68
Chapter 3: Principles of Algorithm Design 69
Technical requirements 69
An introduction to algorithms 70
Algorithm design paradigms 71
Recursion and backtracking 74
Backtracking 75
Divide and conquer — long multiplication 76

The recursive approach 77
Runtime analysis 80
Asymptotic analysis 88

Big O notation 89
Composing complexity classes 91
Omega notation (Q) 93

Theta notation (8) 93
Amortized analysis 93
Summary 96
Chapter 4: Lists and Pointer Structures 97
Technical requirements 97
Beginning with an example 98
Arrays 99
Pointer structures 99
Nodes 99
Finding endpoints 100

Node class 101
Other node types 101
Introducing lists 102
Singly linked lists 102
Singly linked list class 103

The append operation 103

A faster append operation 104

Getting the size of the list 105
Improving list traversal 106
Deleting nodes 106

List search 108

[ii]

Table of Contents

Clearing a list

Doubly linked lists
A doubly linked list node
Doubly linked list class
Append operation
The delete operation
List search

Circular lists
Appending elements
Deleting an element in a circular list
Iterating through a circular list

Summary

Chapter 5: Stacks and Queues
Technical requirements
Stacks

Stack implementation
Push operation
Pop operation
Peek operation
Bracket-matching application
Queues
List-based queues
The enqueue operation
The dequeue operation
Stack-based queues
Enqueue operation
Dequeue operation
Node-based queues
Queue class
The enqueue operation
The dequeue operation
Application of queues
Media player queues
Summary

Chapter 6: Trees
Technical requirements
Terminology
Tree nodes
Tree traversal
Depth-first traversal
In-order traversal and infix notation
Pre-order traversal and prefix notation
Post-order traversal and postfix notation
Breadth-first traversal
Binary trees

[iii]

108
108
110
110
111
112
116
117
118
118
119

120

121
121
122
124
124
126
127
127
129
131
131
133
134
134
135
137
138
138
139
139
140

143

144
144
145
146
148
149
149
151
152
154
156

Table of Contents

Binary search trees 157
Binary search tree implementation 158
Binary search tree operations 158
Finding the minimum and maximum nodes 159
Inserting nodes 160
Deleting nodes 164
Searching the tree 168
Benefits of a binary search tree 169
Balancing trees 171
Expression trees 172
Parsing a reverse Polish expression 173
Heaps 174
Ternary search tree 176
Summary 179
Chapter 7: Hashing and Symbol Tables 180
Technical requirements 181
Hashing 181
Perfect hashing functions 182
Hash tables 184
Storing elements in a hash table 186
Retrieving elements from the hash table 188
Testing the hash table 190
Using [] with the hash table 190
Non-string keys 191
Growing a hash table 192
Open addressing 192
Chaining 193
Symbol tables 195
Summary 197
Chapter 8: Graphs and Other Algorithms 198
Technical requirements 198
Graphs 199
Directed and undirected graphs 200
Weighted graphs 201
Graph representations 202
Adjacency lists 202
Adjacency matrices 204
Graph traversals 206
Breadth-first traversal 206
Depth-first search 210
Other useful graph methods 216
Priority queues and heaps 216
Insert operation 219

[iv]

Table of Contents

Pop operation
Testing the heap
Selection algorithms

Summary

Chapter 9: Searching
Technical requirements
Introduction to searching

Linear search
Unordered linear search
Ordered linear search
Binary search
Interpolation search
Choosing a search algorithm
Summary

Chapter 10: Sorting
Technical requirements
Sorting algorithms
Bubble sort algorithms
Insertion sort algorithms
Selection sort algorithms
Quick sort algorithms

List partitioning
Pivot selection

An illustration with an example

Implementation
Heap sort algorithms
Summary

Chapter 11: Selection Algorithms

Technical requirements

Selection by sorting

Randomized selection
Quick select

Understanding the partition step

Deterministic selection
Pivot selection
Median of medians
Partitioning step
Summary

Chapter 12: String Algorithms and Techniques

Technical requirements

String notations and concepts

Pattern matching algorithms

221
225
228
228

229
229
230
230
230
232
234
238
243
244

245
246
246
246
251
255
258
258
259
259
262
266
268

269
269
269
270

270
274

275
278
279
281
282

283
284
284
285

Table of Contents

The brute-force algorithm
The Rabin-Karp algorithm
Implementing the Rabin-Karp algorithm
The Knuth-Morris-Pratt algorithm
The prefix function
Understanding KMP algorithms
Implementing the KMP algorithm
The Boyer-Moore algorithm
Understanding the Boyer-Moore algorithm
Bad character heuristic
Good suffix heuristic
Implementing the Boyer-Moore algorithm

Summary

Chapter 13: Design Techniques and Strategies
Technical requirements
Classification of algorithms
Classification by implementation
Recursion
Logic
Serial or parallel algorithms
Deterministic versus nondeterministic algorithms
Classification by complexity
Complexity curves
Classification by design
Divide and conquer
Dynamic programming
Greedy algorithms
Technical implementation
Implementation using dynamic programming
Memoization
Tabulation
The Fibonacci series
The memoization technique
The tabulation technique
Implementation using divide and conquer
Divide
Conquer
Merge
Merge sort
Implementation using greedy algorithms
Coin-counting problem
Shortest path algorithm
Complexity classes
P versus NP
NP-Hard
NP-Complete
Summary

285
288
290
293
294
296
299
301
301
302
304
307

309

310
311
311
311
311
312
312
312
313
313
314
314
315
315
315
315
316
316
316
317
319
320
320
320
320
321
323
324
326
338
338
340
340
341

[vil

Table of Contents

Chapter 14: Implementations, Applications, and Tools 342
Technical requirements 342
Knowledge discovery in data 344
Data preprocessing 344

Processing raw data 344
Missing data 345
Feature scaling 346
Min-max scalar form of normalization 347
Standard scalar 347
Binarizing data 348
Learning about machine learning 348
Types of machine learning 348
The hello classifier 349

A supervised learning example 351
Gathering data 351

Bag of words 352
Prediction 354

An unsupervised learning example 355
K-means algorithm 356
Prediction 359

Data visualization 359
Bar chart 359
Multiple bar charts 361
Box plot 362
Pie chart 363
Bubble chart 363
Summary 364
Other Books You May Enjoy 366
Index 369

[vii]

Preface

Data structures and algorithms are two of the most important core subjects in the study of
information technology and computer science engineering. This book aims to provide in-
depth knowledge, along with programming implementation experience, of data structures
and algorithms. It is designed for graduates and undergraduates who are studying data
structures with Python programming at beginner and intermediate level, and explains the
complex algorithms through the use of examples.

In this book, you will learn the essential Python data structures and the most common
algorithms. This book will provide a basic knowledge of Python and give the reader an
insight into data algorithms. In it, we provide Python implementations and explain them in
relation to almost every important and popular data structure algorithm. We will look at
algorithms that provide solutions to the most common problems in data analysis, including
searching and sorting data, as well as being able to extract important statistics from data.
With this easy-to-read book, you will learn how to create complex data structures, such as
linked lists, stacks, heaps, and queues, as well as sort algorithms, including bubble sort,
insertion sort, heapsort, and quicksort. We also describe a variety of selection algorithms,
including randomized and deterministic selection. We provide a detailed discussion of
various data structure algorithms and design paradigms, such as greedy algorithms,
divide-conquer algorithms, and dynamic programming, along with how they can be used
in real-time applications. In addition, complex data structures, such as trees and graphs, are
explained using straightforward pictorial examples to explore the concepts of these useful
data structures. You will also learn various important string processing and pattern
matching algorithms, such as KMP, and Boyer-Moore algorithms, along with their easy
implementation in Python. You will learn the common techniques and structures used in
tasks, including preprocessing, modeling, and transforming data.

The importance of having a good understanding of data structures and algorithms cannot
be overemphasized. It is an important arsenal to have at your disposal in order to
understand new problems and find elegant solutions to them. By gaining a deeper
understanding of algorithms and data structures, you may find uses for them in many
more ways than originally intended. You will develop a consideration for the code you
write and how it affects the amount of memory. Python has further opened the door to
many professionals and students to come to appreciate programming. The language is fun
to work with and concise in its description of problems. We leverage the language's mass
appeal to examine a number of widely studied and standardized data structures and
algorithms. The book begins with a concise tour of the Python programming language. As
such, it is not required that you know Python before picking up this book.

Preface

Who this book is for

This book is intended for Python developers who are studying courses concerned with data
structures and algorithms at a beginner or intermediate level. The book is also designed for
all those undergraduate and graduate engineering students who attend, or have attended,
courses on data structures and algorithms, as it covers almost all the algorithms, concepts,
and designs that are studied in this course. Thus, this book can also be adapted as a
textbook for data structure and algorithm courses. This book is also a useful tool for generic
software developers who want to deploy various applications using a specific data
structure as it provides efficient ways of storing the relevant data. It also provides a
practical and straightforward approach to learning complex algorithms.

It is assumed that the reader has some basic knowledge of Python. However, it is not
mandatory as we provide a quick overview of Python and its object-oriented concepts in
this book. There is no requirement to have any prior knowledge of computer-related
concepts in order to understand this book, since all the concepts and algorithms are
explained in sufficient detail, with a good number of examples and pictorial
representations. Most of the concepts are explained with the help of everyday scenarios to
make the concepts and algorithms easy to understand.

What this book covers

Chapter 1, Python Objects, Types, and Expressions, introduces you to the basic types and
objects of Python. We will give an overview of the language features, execution
environment, and programming styles. We will also review the common programming
techniques and language functionality.

Chapter 2, Python Data Types and Structures, explains Python's various built-in data types. It
also describes each of the five numeric and five sequence data types, as well as one
mapping and two set data types, and examines the operations and expressions applicable
to each type. We will also provide many examples of typical use cases.

Chapter 3, Principles of Algorithm Design, covers various important data structure design
paradigms, such as greedy algorithms, dynamic programming, divide and conquer,
recursion, and backtracking. In general, the data structures we create need to conform to a
number of principles. These principles include robustness, adaptability, reusability, and
separating the structure from a function. We look at the role iteration plays and introduce
recursive data structures. We also discuss various Big O notations and complexity classes.

[2]

Preface

Chapter 4, Lists and Pointer Structures, covers linked lists, which are one of the most
common data structures, and are often used to implement other structures, such as stacks
and queues. In this chapter, we describe their operation and implementation. We compare
their behavior to arrays and discuss the relative advantages and disadvantages of each.

Chapter 5, Stacks and Queues, discusses the behavior of these linear data structures and
demonstrates a number of implementations. We give examples of typical real-life example
applications.

Chapter 6, Trees, looks at how to implement a binary tree. Trees form the basis of many of
the most important advanced data structures. We will examine how to traverse trees and
retrieve and insert values. We discuss binary and ternary search trees. We will also look at
how to create structures such as heaps.

Chapter 7, Hashing and Symbol Tables, describes symbol tables, gives some typical
implementations, and discusses various applications. We will look at the process of
hashing, provide an implementation of a hash table, and discuss the various design
considerations.

Chapter 8, Graphs and Other Algorithms, looks at some of the more specialized structures,
including graphs and spatial structures. Representing data as a set of nodes and vertices is
convenient in a number of applications and, from this, we can create structures including
directed and undirected graphs. We will also introduce a number of other structures and
concepts, such as priority queues, heaps, and selection algorithms.

Chapter 9, Searching, discusses the most common searching algorithms, for example,
binary search and interpolation searching algorithms. We also give examples of their uses
in relation to various data structures. Searching for a data structure is a key task and there
are a number of different approaches.

Chapter 10, Sorting, looks at the most common approaches to sorting. These approaches
include bubble sort, insertion sort, selection sort, quick sort, and heap sort algorithms. This
chapter provides a detailed explanation of each, along with their Python implementation.

Chapter 11, Selection Algorithms, covers algorithms that involve finding statistics, such as
the minimum, maximum, or median elements in a list. The chapter also discusses various
selection algorithms for locating a specific element in a list by sorting, as well as
randomized and deterministic selection algorithms.

Chapter 12, String Algorithms and Techniques, covers basic concepts and definitions related
to strings. Various string and pattern matching algorithms are discussed in detailed, such
as the naive approach, Knuth-Morris-Pratt (KMP), and Boyer-Moore pattern matching
algorithms.

[3]

Preface

Chapter 13, Design Techniques and Strategies, relates to how we look for solutions for similar
problems when we are trying to solve a new problem. Understanding how we can classify
algorithms and the types of problem that they most naturally solve is a key aspect of
algorithm design. There are many ways in which we can classify algorithms, but the most
useful classifications tend to revolve around either the implementation method or the
design method. This chapter explains various algorithm design paradigms using many
important applications, such as mergesort, Dijkstra's shortest path algorithm, and the coin-
counting problem.

Chapter 14, Implementations, Applications, and Tools, discusses a variety of real-world
applications. These include data analysis, machine learning, prediction, and visualization.
In addition, there are libraries and tools that make our work with algorithms more
productive and enjoyable.

To get the most out of this book

1. The code in the book will require you to run on Python 3.7 or higher.
2. The Python interactive environment can also be used to run the code snippets.

3. Readers are advised to learn the algorithms and concepts by executing the codes
provided in the book that are designed to facilitate understanding of the
algorithms.

4. The book aims to give readers practical exposure, so it is recommended that you
carry out programming for all the algorithms in order to get the maximum out of
this book.

Download the example code files

You can download the example code files for this book from your account
at www.packt . com. If you purchased this book elsewhere, you can
visit www.packt .com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

= LN =

[4]

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Data-Structures—and-Algorithms-with-Python-Second-

Edition. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781788995573_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "We instantiate the CountVectorizer class and pass training_data.data to
the fit_transformmethod of the count_vect object."

A block of code is set as follows:

class Node:
def _ _init__ (self, data=None):
self.data = data
self.next = None

[5]

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788995573_ColorImages.pdf

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

def dequeue (self):
if not self.outbound_stack:
while self.inbound_stack:
self.outbound_stack.append(self.inbound_stack.pop())
return self.outbound_stack.pop ()

Any command-line input or output is written as follows:

0 1 2

0 4.0 45.0 0984.0
1 0.1 0.1 5.0
2 94.0 23.0 55.0

Bold: Indicates a new term, an important word, or words that you see on screen.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

[6]

http://www.packt.com/submit-errata

Preface

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[7]

http://authors.packtpub.com/
https://www.packt.com/

Python Objects, Types, and
Expressions

Data structures and algorithms are two of the core elements of a large and complex
software project. They are a systematic way of storing and organizing data in software so
that it can be used efficiently. Python has efficient high-level data structures and an
effective object-oriented programming language. Python is the language of choice for many
advanced data tasks, for a very good reason. It is one of the easiest advanced programming
languages to learn. Intuitive structures and semantics mean that for people who are not
computer scientists, but maybe biologists, statisticians, or the directors of a start-up, Python
is a straightforward way to perform a wide variety of data tasks. It is not just a scripting
language, but a full-featured, object-oriented programming language.

In Python, there are many useful data structures and algorithms built into the language.
Also, because Python is an object-based language, it is relatively easy to create custom data
objects. In this book, we will examine Python's internal libraries and some of the external
libraries, and we'll learn how to build your own data objects from first principles.

In this chapter, we will look at the following topics:

¢ Obtaining a general working knowledge of data structures and algorithms
e Understanding core data types and their functions
¢ Exploring the object-oriented aspects of the Python programming language

Technical requirements

The data structures and algorithms are presented using the Python programming language
(version 3.7) in this book. This book does assume that you know Python. However, if you
are a bit rusty, coming from another language, or do not know Python at all, don't
worry—this first chapter should get you quickly up to speed.

Python Objects, Types, and Expressions Chapter 1

The following is the GitHub link: https://github.com/PacktPublishing/Hands-On-Data-
Structures—and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01l.

If you are not familiar with Python, then visit https://docs.python.org/
3/tutorial/index.html, and you can also find the documentation

at https://www.python.org/doc/. These are all excellent resources for
easily learning this programming language.

Installing Python

To install Python, we use the following method.

Python is an interpreted language, and statements are executed line by line. A programmer
can typically write down the series of commands in a source code file. For Python, the
source code is stored in a file with a . py file extension.

Python is fully integrated and usually already installed on most of the Linux and Mac
operating systems. Generally, the pre-installed Python version is 2.7. You can check the
version installed on the system using the following commands:

>>> import sys

>>> print (sys.version)

3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:06:47) [MSC v.1914 32 bit
(Intel)]

You can also install a different version of Python using the following commands on Linux:

Open the Terminal
sudo apt-get update
sudo apt—-get install -y python3-pip

L

pip3 install <package_name>

Python has to be installed on systems with Windows operating systems, as it is not pre-
installed, unlike Linux/macOS. Any version of Python can be downloaded from this link:
https://www.python.org/downloads/. You can download the software installer and run
it—select Install for all users and then click on Next. You need to specify the location
where you want to install the package, then click Next. After that, select the option Add
Python to environment variables in the Customize Python dialog box, then just click Next
again for final installation. When the installation is finished, you can confirm the
installation by opening up Command Prompt and typing the following command:

python -V

[9]

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter01
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/doc/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

Python Objects, Types, and Expressions Chapter 1

The latest stable Python version is Python 3.7.0. The Python program can be executed by
typing the following in the command line:

python <sourcecode_filename>.py

Understanding data structures and
algorithms

Algorithms and data structures are the most fundamental concepts in computing. They are
the main building blocks from which complex software is built. Having an understanding
of these foundation concepts is extremely important in software design and this involves
the following three characteristics:

¢ How algorithms manipulate information contained within data structures
e How data is arranged in memory
e What the performance characteristics of particular data structures are

In this book, we will examine the topic from several perspectives. Firstly, we will look at
the fundamentals of the Python programming language from the perspective of data
structures and algorithms. Secondly, it is important that we have the correct mathematical
tools. We need to understand the fundamental concepts of computer science and for this we
need mathematics. By taking a heuristic approach, developing some guiding principles
means that, in general, we do not need any more than high school mathematics to
understand the principles of these key ideas.

Another important aspect is an evaluation. Measuring the performance of algorithms
requires an understanding of how the increase in data size affects operations on that data.
When we are working on large datasets or real-time applications, it is essential that our
algorithms and structures are as efficient as they can be.

Finally, we need a strong experimental design strategy. Being able to conceptually translate
a real-world problem into the algorithms and data structures of a programming language
involves being able to understand the important elements of a problem and a methodology
for mapping these elements to programming structures.

[10]

Python Objects, Types, and Expressions Chapter 1

To better understand the importance of algorithmic thinking, let's consider a real-world
example. Imagine we are at an unfamiliar market and we are given the task of purchasing a
list of items. We assume that the market is laid out randomly, each vendor sells a random
subset of items, and some of these items may be on our list. Our aim is to minimize the
price for each item we buy, as well as minimize the time spent at the market. One way to
approach this problem is to write an algorithm like the following:

1. Does the vendor have items that are on our list and the cost is less than a predicted
cost for that item?

2.If yes, buy and remove from list; if no, move on to the next vendor.
3. If no more vendors, end.

This is a simple iterator, with a decision and an action. If we have to implement this using
programming language, we would need data structures to define and store in memory both
the list of items we want to buy and the list of items the vendor is selling. We would need
to determine the best way of matching items in each list and we need some sort of logic to
decide whether to purchase or not.

There are several observations that we can make regarding this algorithm. Firstly, since the
cost calculation is based on a prediction, we don't know what the real cost is. As such, we
do not purchase an item because we underpredicted the cost of the item, and we reach the
end of the market with items remaining on our list. To handle this situation, we need an
effective way of storing the data so that we can efficiently backtrack to the vendor with the
lowest cost.

Also, we need to understand the time taken to compare items on our shopping list with the
items being sold by each vendor. It is important because as the number of items on our
shopping list, or the number of items sold by each vendor, increases, searching for an item
takes a lot more time. The order in which we search through items and the shape of the
data structures can make a big difference to the time it takes to do a search. Clearly, we
would like to arrange our list as well as the order we visit each vendor in such a way that
we minimize the search time.

Also, consider what happens when we change the buy condition to purchase at

the cheapest price, not just the below-average predicted price. This changes the problem
entirely. Instead of sequentially going from one vendor to the next, we need to traverse the
market once and, with this knowledge, we can order our shopping list with regards to the
vendors we want to visit.

[11]

Python Objects, Types, and Expressions Chapter 1

Obviously, there are many more subtleties involved in translating a real-world problem
into an abstract construct such as a programming language. For example, as we progress
through the market, our knowledge of the cost of a product improves, so our predicted
average-price variable becomes more accurate until, by the last stall, our knowledge of the
market is perfect. Assuming any kind of backtracking algorithm incurs a cost, we can see
cause to review our entire strategy. Conditions such as high price variability, the size and
shape of our data structures, and the cost of backtracking all determine the most
appropriate solution. The whole discussion clearly demonstrates the importance of data
structures and algorithms in building a complex solution.

Python for data

Python has several built-in data structures, including lists, dictionaries, and sets, which we
use to build customized objects. In addition, there are a number of internal libraries, such as
collections and math object, which allow us to create more advanced structures as well as
perform calculations on those structures. Finally, there are the external libraries such as
those found in the SciPy packages. These allow us to perform a range of advanced data
tasks such as logistic and linear regression, visualization, and mathematical calculations,
such as operations on matrices and vectors. External libraries can be very useful for an out-
of-the-box solution. However, we must also be aware that there is often a performance
penalty compared to building customized objects from the ground up. By learning how to
code these objects ourselves, we can target them to specific tasks, making them more
efficient. This is not to exclude the role of external libraries and we will look at this in
Chapter 12, Design Techniques and Strategies.

To begin, we will take an overview of some of the key language features that make Python
such a great choice for data programming.

The Python environment

Python is one of the most popular and extensively used programming languages all over
the world due to its readability and flexibility. A feature of the Python environment is its
interactive console, allowing you to both use Python as a desktop-programmable calculator
and also as an environment to write and test snippets of code.

[12]

Python Objects, Types, and Expressions Chapter 1

The read. . .evaluate...print loop of the console is a very convenient way to interact
with a larger code base, such as to run functions and methods or to create instances of
classes. This is one of the major advantages of Python over compiled languages such as
C/C++ or Java, where the write...compile...test...recompile cycle can increase
development time considerably compared to Python's read. . .evaluate...print loop.
Being able to type in expressions and get an immediate response can greatly speed up data
science tasks.

There are some excellent distributions of Python apart from the official CPython version.
Two of the most popular are available at: Anaconda
(https://www.continuum.io/downloads)and(:anopy

(https://www.enthought .com/products/canopy/). Most distributions come with their own
developer environments. Both Canopy and Anaconda include libraries for scientific,
machine learning, and other data applications. Most distributions come with an editor.

There are also a number of implementations of the Python console, apart from the CPython
version. Most notable among these is the IPython/Jupyter platform which is based on a
web-based computational environment.

Variables and expressions

To solve a real-world problem through algorithm implementation, we first have to select
the variables and then apply the operations on these variables. Variables are labels that are
attached to the objects. Variables are not objects nor containers for objects; they only act as a
pointer or a reference to the object. For example, consider the following code:

In [1]: a=[2,4,6]
In [2]: b=a
In [3]: a.append(a)

In [4]: b
outl[4]: [2, 4, &6, 8]

Here, we have created a variable, a, that points to a list object. We create another variable,
b, that points to this same list object. When we append an element to this list object, this
change is reflected in both a and b.

[13]

https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/

Python Objects, Types, and Expressions Chapter 1

In Python, variable names are attached to different data types during the program
execution; it is not required to first declare the datatype for the variables. Each value is of a
type (for example, a string or integer); however, the variable name that points to this value
does not have a specific type. More specifically, variables point to an object that can change
their type depending on the kind of values assigned to them. Consider the following
example:

In [1]: a=1

In [2]: typelal]
Outl[2]: int

In [3]: a=a+0.1

In [4]: typela)
out[4]: float

In the preceding code example, the type of a is changed from int to float, depending
upon the value stored in the variable.

Variable scope

Scoping rules of variables inside functions are important. Whenever a function executes, a
local environment (namespace) is created. This local namespace contains all the variables
and parameter names that are assigned by the functions. Whenever a function is called,
Python Interpreter first looks into the local namespace that is the function itself—if no
match is found, then it looks at the global namespace. If the name is still not found, then it
searches in the built-in namespace. If it is not found, then the interpreter would raise a
NameError exception. Consider the following code:

a=15;b=25

def my_function() :
global a
a=11;b=21

my_function ()
print (a) #fprints 11
print (b) #fprints 25

[14]

Python Objects, Types, and Expressions Chapter 1

In the preceding code, we define two global variables. We need to tell the interpreter,
using the keyword global, that inside the function we are referring to a global variable.
When we change this variable to 11, these changes are reflected in the global scope.
However, the b variable we set to 21 is local to the function, and any changes made to it
inside the function are not reflected in the global scope. When we run the function and
print b, we see that it retains its global value.

In addition, let's consider another interesting example:

>>> a = 10

>>> def my_function():
print (a)

>>> my_function ()

10

The code works, and gives an output of 10, but see the following code:

>>> a = 10

>>> def my_function():
print (a)
a= a+l

>>> my_function()
UnboundLocalError: local variable 'a' referenced before assignment

The preceding code gives an error because assignment to a variable in a scope makes that
variable a local variable to that scope. In the preceding example, in the my_function ()
assignment to the a variable, the compiler assumes a as a local variable, and that is why the
earlier print () function tries to print a local variable a, which is not initialized as a local
variable; thus, it gives an error. It can be resolved by accessing the outer scope variable by
declaring it as global:

>>> a = 10

>>> def my_function():
global a
print (a)

.. a = a+l

>>> my_function ()

10

So, in Python, the variables that are referenced inside a function are global implicitly, and if
the a variable is assigned a value anywhere inside the function's body, it is assumed to be a
local variable unless explicitly declared as global.

[15]

Python Objects, Types, and Expressions Chapter 1

Flow control and iteration

Python programs consist of a sequence of statements. The interpreter executes each
statement in order until there are no more statements. This is true if files run as the main
program, as well as if they are loaded via import. All statements, including variable
assignment, function definitions, class definitions, and module imports, have equal status.
There are no special statements that have higher priority than any other, and every
statement can be placed anywhere in a program. All the instructions/statements in the
program are executed in sequence in general. However, there are two main ways of
controlling the flow of program execution—conditional statements and loops.

The if...else and elif statements control the conditional execution of statements. The
general format is a series of i f and e1if statements followed by a final else statement:

x="'one'
if x==0:
print ('False')
elif x==1:
print ('True')
else: print('Something else')

#prints'Something else'

Note the use of the == operator to compare the two values. This returns True if both the
values are equal; it returns False otherwise. Note also that setting x to a string will

return Something else rather than generate a type error as may happen in languages that
are not dynamically typed. Dynamically typed languages, such as Python, allow flexible
assignment of objects with different types.

The other way of controlling program flow is with loops. Python offers two ways of
constructing looping, such as the while and for loop statements. A while loop repeats
executing statements until a Boolean condition is true. A for loop provides a way of
repeating the execution into the loop through a series of elements. Here is an example:

n [6]: while x = 3 : print(x); = +=1

[16]

Python Objects, Types, and Expressions Chapter 1

In this example, the while loop executes the statements until the condition x < 3is true.
Let's consider another example that uses a for loop:

>>>words = ['cat', 'dog', 'elephant']
>>> for w in words:
print (w)

cat
dog
elephant

In this example, the for loop executes iterating for all the items over the list.

Overview of data types and objects

Python contains various built-in data types. These include four numeric types (int, float,
complex, bool), four sequence types (str, 1ist, tuple, range), one mapping type (dict),
and two set types. It is also possible to create user-defined objects, such as functions or
classes. We will look at the string and the list data types in this chapter and the remaining
built-in types in the next chapter.

All data types in Python are objects. In fact, pretty much everything is an object in Python,
including modules, classes, and functions, as well as literals such as strings and integers.
Each object in Python has a type, a value, and an identity. When we write greet=
"helloworld", we are creating an instance of a string object with the value "hello
world" and the identity of greet. The identity of an object acts as a pointer to the object's
location in memory. The type of an object, also known as the object's class, describes the
object's internal representation, as well as the methods and operations it supports. Once an
instance of an object is created, its identity and type cannot be changed.

We can get the identity of an object by using the built-in function id () . This returns an
identifying integer and on most systems, this refers to its memory location, although you
should not rely on this in any of your code.

Also, there are a number of ways to compare objects; for example, see the following:

if a==b: # a and b have the same value
if a is b: # if a and b are the same object
if type(a) is type(b): #a and b are the same type

[17]

Python Objects, Types, and Expressions Chapter 1

An important distinction needs to be made between mutable and immutable objects.
Mutable objects such as lists can have their values changed. They have methods, such as
insert () or append (), that change an object's value. Immutable objects such as strings
cannot have their values changed, so when we run their methods, they simply return a
value rather than change the value of an underlying object. We can, of course, use this
value by assigning it to a variable or using it as an argument in a function. For example, the
int class is immutable—once an instance of it is created, its value cannot be changed,
however, an identifier referencing this object can be reassigned another value.

Strings

Strings are immutable sequence objects, with each character representing an element in the
sequence. As with all objects, we use methods to perform operations. Strings, being
immutable, do not change the instance; each method simply returns a value. This value can
be stored as another variable or given as an argument to a function or method.

The following table is a list of some of the most commonly used string methods and their
descriptions:

Method Description

Returns a string with only the first character

s.capitalize 1 -
b capitalized, the rest remaining lowercase.

s.count (substring, [start, end]) Counts occurrences of a substring.
s.expandtabs ([tabsize]) Replaces tabs with spaces.
. . T if i ith ifi
s.endswith (substring, [start, end] Returr}s rue if a string ends with a specified
substring.
s.find (substring, [start,end]) Returns index of first presence of a substring.

Returns True if all chars are alphanumeric of

s.isalnum{() string s

Returns True if all chars are alphabetic of

s.isalpha () string s

s.isdigit () Returns True if all chars are digits in the string.

Splits a string separated by whitespace or an

.spli 1i . .
s.split ([separator], [maxsplit]) optional separator. Returns a list.

s.join(t) Joins the strings in sequence t.
s.lower () Converts the string to all lowercase.
s.replace (old, new[maxreplace]) Replaces old substring with a new substring.

[18]

Python Objects, Types, and Expressions Chapter 1

Returns True if the string starts with a

s.startswith (substring, [start, end]]) > .
specified substring.

Returns a copy of the string with swapped case

s.swapcase () in the string

s.strip([characters]) Removes whitespace or optional characters.

Returns a copy of the string with leading
characters removed.

s.lstrip([characters])

Strings, like all sequence types, support indexing and slicing. We can retrieve any character
from a string by using its index s [1]. We can retrieve a slice of a string by using s [1:7],
where i and j are the start and end points of the slice. We can return an extended slice by
using a stride, as in the following—s [i: j:stride]. The following code should make this
clear:

In [19]: greet = 'hello world

In [20]: greet[1]
out[20]: ‘e’

In [21]: greet[o:2]
out[21]: 'hello we'

In [22]: greet[o:3:2]
out[22]: 'hlow'

In [23]: greet[o::2]
out[23]: 'hlowrd®

The first two examples are pretty straightforward, returning the character located at index 1
and the first seven characters of the string, respectively. Notice that indexing begins at 0. In
the third example, we are using a stride of 2. This results in every second character being
returned. In the final example, we omit the end index and the slice returns every second
character in the entire string.

You can use any expression, variable, or operator as an index as long as the value is an
integer:

In [9]: greet[1+2]
out[e]: 'l

In [18]: greet[len(greet)-11]
outl1el: 'd'

[19]

Python Objects, Types, and Expressions Chapter 1

Another common operation is traversing through a string with a loop:

In [24]: for 1 in enumeratel(greet[®:5]): print(1)
(e, 'h)
(1, 'e')
(2, '11)
(z, '1)
(a4, 'o0')

Given that strings are immutable, a common question that arises is how we perform
operations such as inserting values. Rather than changing a string, we need to think of
ways to build new string objects for the results we need. For example, if we wanted to
insert a word into our greeting, we could assign a variable to the following:

In [19]: greetl[:5] + ' wonderful® + greet[5:]
out[19]: 'hello wonderful world'

As this code shows, we use the slice operator to split the string at index position 5 and use
+ to concatenate. Python never interprets the contents of a string as a number. If we need to
perform mathematical operations on a string, we need to first convert them to a numeric

type:

In [15]: =='3"; y="2"

In [16]: x + y #concatenation
out[16]: r32°'

In [17]: int(x) + int(y) #addition
out(17]: 5

Lists

List is one of the most commonly used built-in data structures, as they can store any
number of different data types. They are simple representations of objects and are indexed
by integers starting from zero, as we saw in the case of strings.

[20]

Python Objects, Types, and Expressions

Chapter 1

The following table contains the most commonly used list methods and their descriptions:

Method

Description

list (s)

Returns a list of sequence s.

s.append (x)

Appends element x at the end of list s.

s.extend (x)

Appends list x at the end of list s.

s.count (x)

Returns the count of the occurrence of x in list s.

s.index (x, [start
1, [stop])

Returns the smallest index i, where s [1]==x. We can include an optional start
and stop index for the lookup.

s.insert (i, e)

Inserts x at index 1i.

s.pop (1)

Returns the element i and removes it from the list s.

s.remove (x)

Removes element x from the list s.

s.reverse ()

Reverses the order of list s.

s.sort (key, [reve
rsel])

Sorts list s with optional key and reverses it.

In Python, lists implementation is different when compared to other languages. Python
does not create multiple copies of a variable. For example, when we assign a value of one
variable in another variable, both variables point to the same memory address where the
value is stored. A copy would only be allocated if the variables change their values. This
feature makes Python memory efficient, in the sense that it only creates multiple copies

when it is required.

This has important consequences for mutable compound objects such as lists. Consider the

following code:

[8]:
[9]:

x=1;y=2;z=3

listl =[x,y,z]
[18]: list2 = listl
[11]: list2[1] = 4

listl
[1, 4, 3]

In [12]:
outl12]:

In the preceding code, both the 1ist1 and 1ist2 variables are pointing to the same
memory location. However, when we change the y through 1ist2 to 4, we are actually
changing the same y variable that 1ist1 is pointing to as well.

[21]

Python Objects, Types, and Expressions Chapter 1

An important feature of 1ist is that it can contain nested structures; that is, list can contain
other lists. For example, in the following code, list items contains three other lists:

In [5]: items = [["rice",2.4, & 1,["flour", 1.9, 51, ["corn", 4.7, 6]]

In [6]: for item in 1tems:)))
print("Product: %s Price: %.2f Quality: %i" % (item[8], item[1], item[2]))

Product: rice Price: 2.48 Quality: 8
Product: flour Price: 1.96 Quality: 5
Product: Corn Price: 4.70 Quality: 6

We can access the values of the list using the bracket operators and, since lists are mutable,
they are copied in place. The following example demonstrates how we can use this to
update elements; for example, here we are raising the price of flour by 20 percent:

In [26]: 1tems[1][1] = atems[1][1] = 1.2

In [27]: items[1][1]
Qutf[27]: 2.28

We can create a list from expressions using a very common and intuitive method; that
is, list comprehensions. It allows us to create a list through an expression directly into the
list. Consider the following example, where a list 1 is created using this expression:

o

In [27]: 1= [2,4,2,16]

In [28]: [1#**3 for 1 in 1]
out[28]: [8, 64, 512, 4096]

List comprehensions can be quite flexible; for example, consider the following code. It
essentially shows two different ways to performs a function composition, where we apply
one function (x*4) to another (x*2). The following code prints out two lists representing
the function composition of £1 and £2, calculated first using a for loop and then using a list
comprehension:

def f1(x): return x*2
def f2(x): return x*4
lst=[]

for i in range (16):
lst.append(f1(f2(1)))

print (1lst)
print ([f1(x) for x in range(64) if x in [f2(3j) for j in range(16)]])

[22]

Python Objects, Types, and Expressions Chapter 1

The first line of output is from the for loop construct. The second is from the list
comprehension expression:

[, &, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 184, 112, 120]
[, &, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 184, 112, 120]

List comprehensions can also be used to replicate the action of nested loops in a more
compact form. For example, we multiply each of the elements contained within 1ist1 with
each other:

In [13]: listl= [[1,2,2], [4,5,6]]

In [14]: [1 = j for 1 in listi[e] for j in Llist1[1]]
Out[14]: [4, 5, 6, 8, 18, 12, 12, 15, 18]

We can also use list comprehensions with other objects such as strings, to build more
complex structures. For example, the following code creates a list of words and their letter
count:

In [20]: words = 'here 1s a sentence'.split()
In [21]: [[word, len(word)] for word in words]
out[21]: [['here', 41, [*'is', 21, ['a', 1], ['sentence', 8]

As we will see, lists form the foundation of many of the data structures we will look at.
Their versatility, ease of creation, and use enable them to build more specialized and
complex data structures.

Functions as first class objects

In Python, it is not only data types that are treated as objects. Both functions and classes are
what are known as first class objects, allowing them to be manipulated in the same ways as
built-in data types. By definition, first class objects are the following:

Created at runtime

Assigned as a variable or in a data structure

Passed as an argument to a function

Returned as the result of a function

[23]

Python Objects, Types, and Expressions Chapter 1

In Python, the term first class object is a bit of a misnomer, since it implies some sort of
hierarchy, whereas all Python objects are essentially first class.

To have a look at how this works, let's define a simple function:

def greeting(language) :
if language=='eng':
return 'hello world'
if language =='fr'
return 'Bonjour le monde'
else: return 'language not supported’

Since user-defined functions are objects, we can do things such as include them in other
objects, such as lists:

In [9]: 1=[greeting('eng'), greeting('fr*), greeting('ger')]

In [18]: 1[1]
out[18]: ' Bonjour le monde®

Functions can also be used as arguments for other functions. For example, we can define
the following function:

In [14]: def callf(f):
- lang="eng’
return (f{lang))

In [15]: callf(greeting)
out[15]: 'helle world®

Here, callf () takes a function as an argument, sets a language variable to 'eng"', and
then calls the function with the language variable as its argument. We could see how this
would be useful if, for example, we wanted to produce a program that returns specific
sentences in a variety of languages, perhaps for some sort of natural language application.
Here, we have a central place to set the language. As well as our greeting function, we
could create similar functions that return different sentences. By having one point where
we set the language, the rest of the program logic does not have to worry about this. If we
want to change the language, we simply change the language variable and we can keep
everything else the same.

[24]

Python Objects, Types, and Expressions Chapter 1

Higher order functions

Functions that take other functions as arguments, or that return functions, are called higher
order functions. Python 3 contains two built-in higher order functions—filter () and
map () . Note that in earlier versions of Python, these functions returned lists; in Python 3,
they return an iterator, making them much more efficient. The map () function provides an
easy way to transform each item into an iterable object. For example, here is an efficient,
compact way to perform an operation on a sequence. Note the use of the 1lambda

anonymous function:

In [41l]: for item in map(lambda n: n*2, list): print{item)

[s:]

Similarly, we can use the filter built-in function to filter items in a list:

In [3]: list = [1,2,3,4]

In [4]: for item in filter(lambda n: n<4, list): print(item)
Cut [4]:

1

2

3

Note that both map and filter perform the same function similar to what can be achieved by
list comprehensions. There does not seem to be a great deal of difference in the
performance characteristics, apart from a slight performance advantage when using the in-
built functions map and filter without the 1ambda operator, compared to list
comprehensions. Despite this, most style guides recommend the use of list comprehensions
over built-in functions, possibly because they tend to be easier to read.

[25]

Python Objects, Types, and Expressions Chapter 1

Creating our own higher order functions is one of the hallmarks of functional programming
style. A practical example of how higher order functions can be useful is demonstrated by
the following. Here, we are passing the 1en function as the key to the sort function. This
way, we can sort a list of words by length:

In [19]: words=str.split('The longest word in this sentence')

In [28]: sorted(words, key=len)
outl[2e]: ['in', 'The', 'word', 'this', 'longest', 'sentence']

Here is another example for case-insensitive sorting:

In [84]: sl=['a','b",'a", 'Cc', 'c']
In [85]: sl.sort(key=str.lower)

In [86]: sl

out[se]: ['a', 'a', 'b', 'Cc", "c']
In [87]: sl.sort()

In [88]: sl

out[sa]: ['a', 'Cc', 'a', 'b*, 'c']

Note the difference between the 1ist.sort () method and the sorted built-in function. The
list.sort () method, a method of the list object, sorts the existing instance of a list
without copying it. This method changes the target object and returns None. It is an
important convention in Python that functions or methods that change the object return
None, to make it clear that no new object was created and that the object itself was changed.

On the other hand, the sorted built-in function returns a new list. It actually accepts any
iterable object as an argument, but it will always return a list. Both list sort and sorted take
two optional keyword arguments as key.

A simple way to sort more complex structures is to use the index of the element to sort,
using the lambda operator, for example:

In [3]: items= [['rice',2.4,8],["flour",1.9,5],["Corn™, 4.7,6
In [4]: items.sort(key=lambda item: item[1])

In [5]: print (items)

Qut [[['flcur', 1.9, 5], ['rice', 2.4, 8], ['Corn', 4.7, &

[26]

Python Objects, Types, and Expressions Chapter 1

Here we have sorted the items by price.

Recursive functions

Recursion is one of the most fundamental concepts of computer science. It is called
recursion when a function takes one or more calls to itself during execution. Loop iterations
and recursion are different in the sense that loops execute statements repeatedly through a
Boolean condition or through a series of elements, whereas recursion repeatedly calls a
function. In Python, we can implement a recursive function simply by calling it within its
own function body. To stop a recursive function turning into an infinite loop, we need at
least one argument that tests for a terminating case to end the recursion. This is sometimes
called the base case. It should be pointed out that recursion is different from iteration.
Although both involve repetition, iteration loops through a sequence of operations,
whereas recursion repeatedly calls a function. Technically, recursion is a special case of
iteration known as tail iteration, and it is usually always possible to convert an iterative
function to a recursive function and vice versa. The interesting thing about recursive
functions is that they are able to describe an infinite object within a finite statement.

The following code should demonstrate the difference between recursion and iteration.
Both these functions simply print out numbers between low and high, the first one using
iteration and the second using recursion:

def iterTest(low,high):

while low == high:
print(low)
low=low+1

def recurTest(low,high):
1t low == high:
print(low]
recurTest(low+l, high)

Notice that for iterTest, the iteration example, we use a while statement to test for the
condition, then call the print method, and finally increment the low value. The recursive
example tests for the condition, prints, then calls itself, incrementing the low variable in
its argument. In general, iteration is more efficient; however, recursive functions are often
easier to understand and write. Recursive functions are also useful for manipulating
recursive data structures such as linked lists and trees, as we will see.

[27]

Python Objects, Types, and Expressions Chapter 1

Generators and co-routines

We can create functions that do not just return one result but rather an entire sequence of
results, by using the yield statement. These functions are called generators. Python contains
generator functions, which are an easy way to create iterators and are especially useful as a
replacement for unworkably long lists. A generator yields items rather than builds lists. For
example, the following code shows why we might choose to use a generator, as opposed to
creating a list:

#compares the running time of a list compared to a generator
import time
#generator function creates an iterator of odd numbers between n and m
def oddGen (n,m) :
while n<m:
yield n
n+=2

#builds a list of odd numbers between n and m
def oddLst (n,m) :
1st=[]
while n<m:
lst.append(n)
n+=2
return lst

#the time it takes to perform sum on an iterator
tl=time.time ()

sum (oddGen (1, 1000000))

print ("Time to sum an iterator: $f" % (time.time() - t1))

#the time it takes to build and sum a list

tl=time.time ()

sum (oddLst (1, 1000000))

print ("Time to build and sum a list: %f" % (time.time() - tl1))

This prints out the following:

Time to sum an iterator: 0.133119
Time to build and sum a list: ©.191172

[28]

Python Objects, Types, and Expressions Chapter 1

As we can see, building a list to do this calculation takes significantly longer. The
performance improvement as a result of using generators is because the values are
generated on demand, rather than saved as a list in memory. A calculation can begin before
all the elements have been generated and elements are generated only when they are
needed.

In the preceding example, the sum method loads each number into memory when it is
needed for the calculation. This is achieved by the generator object repeatedly calling the
__next__ () special method. Generators never return a value other than None.

Typically, generator objects are used in for loops. For example, we can make use of the
oddLst generator function created in the preceding code to print out odd integers between
1 and 10:

for i in oddLst (1,10) :print (i)

We can also create a generator expression, which, apart from replacing square brackets
with parentheses, uses the same syntax and carries out the same operation as list
comprehensions. Generator expressions, however, do not create a list; they create a
generator object. This object does not create the data, but rather creates that data on
demand. This means that generator objects do not support sequence methods such as
append () and insert ().

You can, however, change a generator into a list using the 1ist () function:

In [5]: 1stl= [1,2,2,4]
In [6]: genl = (10=*1 for 1 in lstl)

In [7]: genl
out[7]: =generator object <genexpr> at OxGABEA1BI21564C50>

In [8]: for x in genl: print(x)
16

@@

1666

18086

Classes and object programming

Classes are a way to create new kinds of objects and they are central to object-oriented
programming. A class defines a set of attributes that are shared across instances of that
class. Typically, classes are sets of functions, variables, and properties.

[29]

Python Objects, Types, and Expressions Chapter 1

The object-oriented paradigm is compelling because it gives us a concrete way to think
about and represent the core functionality of our programs. By organizing our programs
around objects and data rather than actions and logic, we have a robust and flexible way to
build complex applications. The actions and logic are still present, of course, but by
embodying them in objects, we have a way to encapsulate functionality, allowing objects to
change in very specific ways. This makes our code less error-prone, easier to extend and
maintain, and able to model real-world objects.

Classes are created in Python using the class statement. This defines a set of shared
attributes associated with a collection of class instances. A class usually consists of

a number of methods, class variables, and computed properties. It is important to
understand that defining a class does not, by itself, create any instances of that class. To
create an instance, a variable must be assigned to a class. The class body consists of a series
of statements that execute during the class definition. The functions defined inside a class
are called instance methods. They apply some operations to the class instance by passing
an instance of that class as the first argument. This argument is called self by convention,
but it can be any legal identifier. Here is a simple example:

class Employee (object) :
numEmployee=0
def init (self,name, rate):
self.owed=0
self.name=name
self.rate=rate
Employee.numEmployee += 1

def del (self):
Employee.numEmployee—=

def hours (self,numHours) :
self.owed += numHours*self.rate

)

return ("%.2f hours worked" % numHours)

def pay(self):
self.owed=0
return ("payed %s " % self.name)

Class variables, such as numEmployee, share values among all the instances of the class. In
this example, numEmployee is used to count the number of employee instances. Note that
the Employee class implements the __init__ and __del__ special methods, which we
will discuss in the next section.

[30]

Python Objects, Types, and Expressions Chapter 1

We can create instances of the Employee objects, run methods, and return class and
instance variables by doing the following;:

In [3]: empl=Employee("Jill", 12.58)
In [4]: emp2=Employee(“Jack", 15.508)

In [5]: Employee.numEmployee
out[s]: 2

In [6]: empl.hours(zo)
out[6]: '20.00 hours worked'

In [7]: empl.owed
outl[7]: 370.0

In [8]: empl.pay()
outlal: 'payed Jil1l '

Special methods

We can use the dir (object) function to get a list of attributes of a particular object. The
methods that begin and end with two underscores are called special methods. Apart from
the following exception, special methods are generally called by the Python interpreter
rather than the programmer; for example, when we use the + operator, we are actually
invoking a to _add_ () call. For example, rather than using my_object._len_ (), we
can use len (my_object); using len () on a string object is actually much faster, because it
returns the value representing the object's size in memory, rather than making a call to the
object's _len_ method.

The only special method we actually call in our programs, as common practice, is the
init method, to invoke the initializer of the superclass in our own class definitions. It is
strongly advised not to use the double underscore syntax for your own objects because of
potential current or future conflicts with Python's own special methods.

We may, however, want to implement special methods in custom objects, to give them
some of the behavior of built-in types. In the following code, we create a class that
implements the _repr_ method. This method creates a string representation of our object
that is useful for inspection purposes:

class my_class|():
def __init__ (self,greet):
self.greet=greet
def __repr__ (self):
return 'a custom object (%r) ' % (self.greet)

[31]

Python Objects, Types, and Expressions Chapter 1

When we create an instance of this object and inspect it, we can see we get our customized
string representation. Notice the use of the $r format placeholder to return the standard
representation of the object. This is useful and best practice because, in this case, it shows us
that the greet object is a string indicated by the quotation marks:

In [13]: a=my_class('giday’)

In [14]: a
out[14]: a custom object ('giday')

Inheritance

Inheritance is one of the most powerful features of object-oriented programming languages.
It allows us to inherit the functionality from other classes. It is possible to create a new class
that modifies the behavior of an existing class through inheritance. Inheritance means that
if an object of one class is created by inheriting another class, then the object would have all
the functionality, methods, and variables of both the classes; that is, the parent class and
new class. The existing class from which we inherit the functionalities is called the
parent/base class, and the new class is called the derived/child class.

Inheritance can be explained with a very simple example—we create an employee class
with attributes such as name of employee and rate at which he is going to be paid hourly.
We can now create a new specialEmployee class inheriting all the attributes from the
employee class.

Inheritance in Python is done by passing the inherited class as an argument in the class
definition. It is often used to modify the behavior of existing methods.

An instance of the specialEmployee class is identical to an Employee instance, except for
the changed hours () method. For example, in the following code we create a new
specialEmployee class that inherits all the functionalities of the Employee class, and also
change the hours () method:

class specialEmployee (Employee) :
def hours (self,numHours) :
self.owed += numHours*self.rate*2

o)

return("%.2f hours worked" % numHours)

[32]

Python Objects, Types, and Expressions Chapter 1

For a subclass to define new class variables, it needs to definean __init__ () method, as
follows:

class specialEmployee (Employee) :
def _ _init_ (self,name, rate,bonus):
Employee.__init__ (self,name, rate) #calls the base classes
self.bonus=bonus

def hours (self, numHours) :
self.owed += numHours*self.ratet+self.bonus

o)

return("%.2f hours worked" % numHours)

Notice that the methods of the base class are not automatically invoked and it is necessary
for the derived class to call them. We can test for the class membership using the built-
inisinstance (obj1, obj2) function. This returns True if obj1 belongs to the class of
obj2 or any class derived from obj2. Let's consider the following example to understand
this, where obj1 and obj2 are the objects of the Employee and specialEmployee classes
respectively:

#Example issubclass() to check whether a class is a subclass of another
class
#Example isinstance() to check if an object belongs to a class or not

print (issubclass (specialEmployee, Employee))
print (issubclass (Employee, specialEmployee))

d = specialEmployee ("packt", 20, 100)
b = Employee ("packt", 20)

print (isinstance (b, specialEmployee))
print (isinstance (b, Employee))

the output prints
True
False
False
True

Generally, all the methods operate on the instance of a class defined within a class.
However, it is not a requirement. There are two types of methods—static

methods and class methods. A static method is quite similar to a class method, which is
mainly bound to the class, and not bound with the object of the class. It is defined within a
class and does not require an instance of a class to execute. It does not perform any
operations on the instance and it is defined using the @staticmethod class decorator.
Static methods cannot access the attributes of an instance, so their most common usage is as
a convenience to group utility functions together.

[33]

Python Objects, Types, and Expressions Chapter 1

A class method operates on the class itself and does not work with the instances. A class
method works in the same way that class variables are associated with the classes rather
than instances of that class. Class methods are defined using the @classmethod decorator
and are distinguished from instance methods in the class. It is passed as the first argument,
and this is named c1s by convention. The exponentialB class inherits from

the exponentialA class and changes the base class variable to 4. We can also run the
parent class's exp () method as follows:

class exponentialA (object) :
base=3
@classmethod
def exp(cls,x):
return (cls.base**x)

@staticmethod
def addition(x, Vvy):

return (x+y)

class exponentialB (exponentiald) :

base=4
a = exponentialA()
b= a.exp(3)
print ("the value: 3 to the power 3 is", D)
print ('The sum is:', exponentialA.addition (15, 10))

print (exponentialB.exp (3))

#prints the following output

the value: 3 to the power 3 is 27
The sum is: 25

64

The difference between a static method and a class method is that a static method doesn't
know anything about the class, it only deals with the parameters, whereas the class method
works only with the class, and its parameter is always the class itself.

There are several reasons why class methods may be useful. For example, because a
subclass inherits all the same features of its parent, there is the potential for it to break
inherited methods. Using class methods is a way to define exactly what methods are run.

[34]

Python Objects, Types, and Expressions Chapter 1

Data encapsulation and properties

Unless otherwise specified, all attributes and methods are accessible without restriction.
This also means that everything defined in a base class is accessible from a derived class.
This may cause problems when we are building object-oriented applications where we may
want to hide the internal implementation of an object. This can lead to namespace conflicts
between objects defined in derived classes with the base class. To prevent this, the methods
we define private attributes with have a double underscore, such as __privateMethod ().
These method names are automatically changed to __Classname_privateMethod () to
prevent name conflicts with methods defined in base classes. Be aware that this does not
strictly hide private attributes, rather it just provides a mechanism for preventing name
conflicts.

It is recommended to use private attributes when using a class property to define mutable
attributes. A property is a kind of attribute that rather than returning a stored value
computes its value when called. For example, we could redefine the exp () property with
the following:

class Bexp (Aexp) :
base=3
def exp(self):
return (x**cls.base)

Summary

This chapter has given us a basic fundamental and an introduction to the Python
programming. We described various data structures and algorithms provided by the
python. We covered the use of variables, lists, a couple of control structures, and learned
how to use the conditional statement. We also discussed how functions are used in python.
The various kinds of objects were discussed, together with some materials on the object-
oriented aspects of the Python language. We created our own objects and inherited from
them.

There is still more that Python offers. As we prepare to examine the later chapters on some
implementations of algorithms, the next chapter will focus on numbers, sequences, maps,
and sets. These are also data types in Python that prove useful when organizing data for a
series of operations.

[35]

Python Objects, Types, and Expressions Chapter 1

Further reading

¢ Learning Python by Fabrizio Romano: https://www.packtpub.com/application-

development/learning—python.

[36]

https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python
https://www.packtpub.com/application-development/learning-python

Python Data Types and
Structures

In this chapter, we are going to examine Python data types in more detail. We have already
introduced two data types, the string and list, str () and 1ist (). However, these data
types are not sufficient, and we often need more specialized data objects to represent/store
our data. Python has various other standard data types that are used to store and manage
data, which we will be discussing in this chapter. In addition to the built-in types, there are
several internal modules that allow us to address common issues when working with data
structures. First, we are going to review some operations and expressions that are common
to all data types, and we will discuss more related to data types in Python.

This chapter's objectives are as follows:

¢ Understanding various important built-in data types supported in Python 3.7

¢ Exploring various additional collections of high-performance alternatives to
built-in data types

Technical requirements

All of the code used in this chapter is given at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Data-Structures—-and-Algorithms-with-Python-Second-
Edition/tree/master/Chapter02.

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter02

Python Data Types and Structures Chapter 2

Built-in data types

Python data types can be divided into three categories: numeric, sequence, and mapping.
There is also the None object that represents Null, or the absence of a value. It should not
be forgotten that other objects such as classes, files, and exceptions can also properly be
considered types; however, they will not be considered here.

Every value in Python has a data type. Unlike many programming languages, in Python
you do not need to explicitly declare the type of a variable. Python keeps track of object
types internally.

Python built-in data types are outlined in the following table:

Category |Name Description
None None It is a null object.
Numeric |int This is an integer data type.
float This data type can store a floating-point number.
complex [It stores a complex number.
bool It is Boolean type and returns True or False.
Sequences|str It is used to store a string of characters.
liXst It can store a list of arbitrary objects.
Tuple It can store a group of arbitrary items.
range It is used to create a range of integers.
Mapping |dict It is a dictionary data type that stores data in key/value pairs.
set It is a mutable and unordered collection of unique items.

frozenset|It is an immutable set.

None type

The None type is immutable. It is used as None to show the absence of a value; it is similar
to null in many programming languages, such as C and C++. Objects return None when
there is actually nothing to return. It is also returned by False Boolean expressions. None is
often used as a default value in function arguments to detect whether a function call has
passed a value or not.

[38]

Python Data Types and Structures Chapter 2

Numeric types

Number types include integers (int), that is, whole numbers of unlimited range, floating-
point numbers (f1oat), complex numbers (complex), which are represented by two float
numbers, and Boolean (bool) in Python. Python provides the int data type that allows
standard arithmetic operators (+, -, * and /) to work on them, similar to other
programming languages. A Boolean data type has two possible values, True and False.
These values are mapped to 1 and 0, respectively. Let's consider an example:

>>> a=4; b=5 # Operator (=) assigns the value to variable
>>>print (a, "is of type", type(a))

4 is of type

<class 'int'>

>>> 9/5

1.8

>>>c= b/a # division returns a floating point number
>>> print(c, "is of type", type(c))

1.25 is of type <class 'float'>

>>> C # No need to explicitly declare the datatype
1.25

The a and b variables are of the int type and c is a floating-point type. The

division operator (/) always returns a f1loat type; however, if you wish to get the int type
after division, you can use the floor division operator (/ /), which discards any fractional
part and will return the largest integer value that is less than or equal to x. Consider the
following example:

>>> a=4; b=5

>>>d= b//a

>>> print (d, "is of type", type(d))
1 is of type <class 'int'>

>>>7/5 # true division

1.4

>>> -7//5 4 floor division operator
-2

It is advised that readers use the division operator carefully, as its function differs
according to the Python version. In Python 2, the division operator returns only integer,
not float.

[39]

Python Data Types and Structures Chapter 2

The exponent operator (**) can be used to get the power of a number (for example, x **
y), and the modulus operator (%) returns the remainder of the division (for example, a%
b returns the remainder of a/b):

>>> a=7; b=5

>>> e= b**a # The operator (**)calculates power
>>>e

78125

>>>a%b

2

Complex numbers are represented by two floating-point numbers. They are assigned using
the j operator to signify the imaginary part of the complex number. We can access the real
and imaginary parts with f£.real and f. imag, respectively, as shown in the following
code snippet. Complex numbers are generally used for scientific computations. Python
supports addition, subtraction, multiplication, power, conjugates, and so forth on complex
numbers, as shown in the following:

>>> f=3+5j

>>>print (£, "is of type", type(f))
(3+5j) is of type <class 'complex'>
>>> f.real

3.0

>>> f.imag

5.0

>>> £*2 # multiplication

(6+107)

>>> f+3 # addition

(6+57)

>>> f -1 # subtraction

(2+57)

In Python, Boolean types are represented using truth values, that is, True and False;it's
similar to 0 and 1. There is a bool class in Python, which returns True or False. Boolean
values can be combined with logical operators such as and, or, and not:

>>>bool (2)
True
>>>bool (-2)
True
>>>pbool (0)
False

[40]

Python Data Types and Structures Chapter 2

A Boolean operation returns either True or False. Boolean operations are ordered in
priority, so if more than one Boolean operation occurs in an expression, the operation with
the highest priority will occur first. The following table outlines the three Boolean operators
in descending order of priority:

Operator Example

not x It returns False if x is True, and returns True if x is False.

x and y It returns True if x and y are both True; otherwise, it returns False.
X ory It returns True if either x or y is True; otherwise, it returns False.

Python is very efficient when evaluating Boolean expressions as it will only evaluate an
operator if it needs to. For example, if x is True in an expression x or vy, then there is no
need to evaluate y since the expression is True anyway—that is why in Python the y is not
evaluated. Similarly, in an expression x and vy, if x is False, the interpreter will simply
evaluate x and return False, without evaluating y.

The comparison operators (<, <=, >, >=, ==, and !=) work with numbers, lists, and other
collection objects and return True if the condition holds. For collection objects, comparison
operators compare the number of elements and the equivalence operator (==) returns True
if each collection object is structurally equivalent, and the value of each element is identical.
Let's see an example:

>>>See_boolean = (4 * 3 > 10) and (6 + 5 >= 11)
>>>print (See_boolean)
True

>>>1f (See_boolean):
print ("Boolean expression returned True")
else:
print ("Boolean expression returned False")

Boolean expression returned True

Representation error

It should be noted that the native double precision representation of floating-point numbers
leads to some unexpected results. For example, consider the following:

>>> 1-0.9
0.09999999999999998
>>> 1-0.9==.

False

[41]

Python Data Types and Structures Chapter 2

This is a result of the fact that most decimal fractions are not exactly representable as a
binary fraction, which is how most underlying hardware represents floating-point
numbers. For algorithms or applications where this may be an issue, Python provides a
decimal module. This module allows for the exact representation of decimal numbers and
facilitates greater control of properties, such as rounding behavior, number of significant
digits, and precision. It defines two objects, a Decimal type, representing decimal numbers,
and a Context type, representing various computational parameters such as precision,
rounding, and error handling. An example of its usage can be seen in the following snippet:

>>> import decimal
>>> x=decimal.Decimal (3.14)
>>> y=decimal.Decimal (2.74)

>>> x*y

Decimal ('8.603600000000001010036498883")
>>> decimal.getcontext () .prec=4

>>> x*y

Decimal ('8.604")

Here we have created a global context and set the precision to 4. The Decimal object can be
treated pretty much as you would treat int or £loat. They are subject to all of the same
mathematical operations and can be used as dictionary keys, placed in sets, and so on. In
addition, Decimal objects also have several methods for mathematical operations, such as
natural exponents, x . exp () ; natural logarithms, x. 1n () ; and base 10 logarithms,
x.1ogl0 ().

Python also has a fractions module that implements a rational number type. The
following example shows several ways to create fractions:

>>> import fractions

>>> fractions.Fraction(3,4)
Fraction (3, 4)

>>> fractions.Fraction(0.5)
Fraction (1, 2)

>>> fractions.Fraction("0.25")
Fraction (1, 4)

It is also worth mentioning here the NumPy extension. This has types for mathematical
objects, such as arrays, vectors, and matrices, and capabilities for linear algebra, calculation
of Fourier transforms, eigenvectors, logical operations, and much more.

[42]

Python Data Types and Structures Chapter 2

Membership, identity, and logical operations

Membership operators (in and not in) test for variables in sequences, such as lists or
strings, and do what you would expect; x in y returns True if an x variable is found in y.
The is operator compares object identity. For example, the following snippet

shows contrast equivalence with object identity:

>>> x=[1,
>>> y=[1,
>>> x==y

]
]

test equivalence

2,3
2,3

True

>>> x is y # test object identity
False

>>> x=y # assignment

>>> x 1s y

True

Sequences

Sequences are ordered sets of objects indexed by non-negative integers. Sequences include
string, list, tuple, and range objects. Lists and tuples are sequences of arbitrary
objects, whereas strings are sequences of characters. However, string, tuple, and range
objects are immutable, whereas, the 1ist object is mutable. All sequence types have a
number of operations in common. Note that, for the immutable types, any operation will
only return a value rather than actually change the value.

For all sequences, the indexing and slicing operators apply as described in the previous
chapter. The string and 1ist data types were discussed in detail in Chapter 1, Python
Objects, Types, and Expressions. Here, we present some of the important methods and
operations that are common to all of the sequence types (string, 1list, tuple, and range
objects).

All sequences have the following methods:

Method Description

len(s) Returns the number of elements in s.

Returns the minimum value in s (alphabetically

min(s, [,default=0bj, key=func]) R
for strings).

Returns the maximum value in s (alphabetically

max (s, [,default=0bj, key=func]) .
for strings).

[43]

Python Data Types and Structures Chapter 2

Returns the sum of the elements (returns
sum (s, [, start=0]) TypeErrorifs
is not numeric).

Returns True if all elements in s are True (that is,

all(s)
not 0, False, or Null).

any (s) Checks whether any item in s is True.

In addition, all sequences support the following operations:

Operation Description

s+r Concatenates two sequences of the same type.

s*n Makes n copies of s, where n is an integer.
vl,v2...,vn=s|Unpacks n variables from s to v1, v2, and so on.

s[i] Indexing returns the i element of s.

s[i:j:stride]|Slicing returns elements between i and j with optional stride.
x in s Returns True if the x element is in s.

x not in s Returns True if the x element is not in s.

Let's consider an example code snippet implementing some of the preceding operations on
the 1ist data type:

>>>1ist () # an empty list

>>>1istl = [1,2,3, 4]
>>>1istl.append(1l) # append value 1 at the end of the list
>>>1istl

(1, 2, 3, 4, 11

>>>1ist2 = listl *2

(1, 2, 3, 4, 1, 1, 2, 3, 4, 1]
>>> min(listl)

1

>>> max (listl)

4

>>>1istl.insert (0, 2) # insert an value 2 at index 0

>>> listl

(2, 1, 2, 3, 4, 1]
>>>1listl.reverse ()
>>> listl

(1, 4, 3, 2, 1, 2]
>>>11ist2=[11,12]
>>>1listl.extend (1list2)

>>> listl

(1, 4, 3, 2, 1, 2, 11, 12]

[44]

Python Data Types and Structures Chapter 2

>>>sum(listl)

36

>>> len(listl)

8

>>> listl.sort ()

>>> listl

1, 1, 2, 2, 3, 4, 11, 12]

>>>1istl.remove (12) #remove value 12 form the list
>>> listl

(1, 1, 2, 2, 3, 4, 11]

Learning about tuples

Tuples are immutable sequences of arbitrary objects. A tuple is a comma-separated
sequence of values; however, it is common practice to enclose them in parentheses. Tuples
are very useful when we want to set up multiple variables in one line, or to allow a function
to return multiple values of different objects. Tuple is an ordered sequence of items similar
to the 1ist data type. The only difference is that tuples are immutable; hence, once created
they cannot be modified, unlike 1ist. Tuples are indexed by integers greater than zero.
Tuples are hashable, which means we can sort lists of them and they can be used as keys to
dictionaries.

We can also create a tuple using the built-in function: tuple (). With no argument, this
creates an empty tuple. If the argument to tuple () is a sequence then this creates a tuple of
elements of that sequence. It is important to remember to use a trailing comma when
creating a tuple with one element—without the trailing comma, this will be interpreted as a
string. An important use of tuples is to allow us to assign more than one variable at a time
by placing a tuple on the left-hand side of an assignment.

Consider an example:

>>> t= tuple() # create an empty tuple

>>> type (t)

<class 'tuple'>

>>> t=('a',) # create a tuple with 1 element
>>> t

('a'y,)

>>> print ('type is ',type(t))

type is <class 'tuple'>

>>> tpl=('a','b','c")

>>> tpl('a', 'b', 'c'")

>>> tuple ('sequence')

('s'", 'e', 'g', 'u', 'e', 'n', 'c', 'e")
>>> x,y,z= tpl #multiple assignment

[45]

Python Data Types and Structures Chapter 2

>>> x

lal

>>> y

lbl

>>> z

lcl

>>> 'a' in tpl # Membership can be tested
True

>>> 'z' in tpl

False

Most operators, such as those for slicing and indexing, work as they do on lists. However,
because tuples are immutable, trying to modify an element of a tuple will give you
TypeError. We can compare tuples in the same way that we compare other sequences,
using the ==, > and < operators. Consider an example code snippet:

>>> tupl =1, 2,3,4,5 # braces are optional
>>>print ("tuple value at index 1 is ", tupll[l])
tuple value at index 1 is 2

>>> print ("tuple[1:3] is ", tupl[l1l:31])
tuple[1:3] is (2, 3)

>>>tupl2 = (11, 12,13)

>>>tupl3= tupl + tupl2 # tuple concatenation
>>> tupl3

(1, 2, 3, 4, 5, 11, 12, 13)

>>> tupl*2 # repetition for tuples

(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)

>>> 5 in tupl # membership test

True

>>> tupl[-1] # negative indexing

5

>>> len (tupl) # length function for tuple

5

>>> max (tupl)

5

>>> min (tupl)

1

>>> tupl[l] = 5 # modification in tuple is not allowed.

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>>print (tupl== tupl2)
False
>>>print (tupl>tupl2)
False

[46]

Python Data Types and Structures Chapter 2

Let's consider another example to better understand tuples. For example, we can
use multiple assignments to swap values in a tuple:

>>> 1 = ['one', 'two']
>>> x,y =1

('one', 'two')

>>> X,y = Y,X

>>> X,y

('two', 'one')

Beginning with dictionaries

In Python, the Dictionary data type is one of the most popular and useful data types. A
dictionary stores the data in a mapping of key and value pair. Dictionaries are mainly a
collection of objects; they are indexed by numbers, strings, or any other immutable objects.
Keys should be unique in the dictionaries; however, the values in the dictionary can be
changed. Python dictionaries are the only built-in mapping type; they can be thought of as
a mapping from a set of keys to a set of values. They are created using the

{key:value} syntax. For example, the following code can be used to create a dictionary
that maps words to numerals using different methods:

>>>a= {'Monday':1, 'Tuesday':2, 'Wednesday':3} #creates a dictionary
>>>b =dict ({'Monday':1 , 'Tuesday': 2, 'Wednesday': 3})

>>> Db

{'Monday': 1, 'Tuesday': 2, 'Wednesday': 3}

>>> c= dict(zip(['Monday', 'Tuesday', 'Wednesday'], [1,2,3]))

>>> c={'Monday': 1, 'Tuesday': 2, 'Wednesday': 3}

>>> d= dict ([('Monday',1), ('Tuesday',2), ('Wednesday',3)])

>>>d

{'Monday': 1, 'Tuesday': 2, 'Wednesday': 3}

We can add keys and values. We can also update multiple values, and test for the
membership or occurrence of a value using the in operator, as shown in the following code

example:

>>>d['Thursday']=4 #add an item
>>>d.update ({'Friday':5, 'Saturday':6}) #add multiple items
>>>d

{'Monday': 1, 'Tuesday': 2, 'Wednesday': 3, 'Thursday': 4, 'Friday': 5,
'Saturday': 6}

>>>'Wednesday' in d # membership test (only in keys)

True

>>>5 in d # membership do not check in values

False

[47]

Python Data Types and Structures Chapter 2

The in operator to find an element in a list takes too much time if the list is long. The
running time required to look up an element in a list increases linearly with an increase in
the size of the list. Whereas, the in operator in dictionaries uses a hashing function, which
enables dictionaries to be very efficient, as the time taken in looking up an element is
independent of the size of the dictionary.

Notice when we print out the {key: value} pairs of the dictionary it does so in no
particular order. This is not a problem since we use specified keys to look up each
dictionary value rather than an ordered sequence of integers, as is the case for strings and
lists:

>>> dict (zip('packt', range(5)))
{'p': 0, 'a': 1, 'c¢': 2, 'k': 3, 't': 4}

>>> a = dict (zip('packt', range(5)))

>>> len(a) # length of dictionary a

5

>>> af'c'] # to check the value of a key

2

>>> a.pop('a')

1

>>> a{'p': 0, 'c': 2, 'k': 3, 't': 4}

>>> b= a.copy () # make a copy of the dictionary
>>> Db

{'p': 0, 'c': 2, 'k': 3, '"t': 4}
>>> a.keys ()
dict_keys(["
>>> a.values
dict_values (

(

[

p', 'c', 'k', 't'])

()

(0, 2, 3, 41)

>>> a.items ()

dict_items ([('p', 0), ('c', 2), ('k', 3), ('t', 4)]1)
>>> a.update({'a':1}) # add an item in the dictionary
>>> a{'p': 0, 'c¢': 2, 'k': 3, 't': 4, 'a': 1}

>>> a.update(a=22) # update the value of key 'a'

>>> a{'p': 0, 'c': 2, 'k': 3, 't': 4, 'a': 22}

The following table contains all the dictionary methods and their descriptions:

Method Description

len (d) Returns total number of items in the dictionary, d.

d.clear () Removes all of the items from the dictionary, d.

d.copy () Returns a shallow copy of the dictionary, d.

4. fromkeys (s[,value]) Returns a new dictionary with keys from the s sequence and
values set to value.

[48]

Python Data Types and Structures Chapter 2

Returns d[k] if it is found; otherwise, it returns v (None if v is

d.get (k[,Vv]) .

not given).
d.items () Returns all of the key : value pairs of the dictionary, d.
d.keys () Returns all of the keys defined in the dictionary, d.
d.pop (k[,default]) Returns d[k] and removes it from d.

Removes a random key : value pair from the dictionary, d,
and returns it as a tuple.

d.setdefault (k[,v]) |Returns d[k].If it is not found, it returns v and sets d [k] to v.
Adds all of the objects from the b dictionary to

the d dictionary .

d.popitem()

d.update (b)

d.values () Returns all of the values in the dictionary, d.

Python

It should be noted that the in operator, when applied to dictionaries, works in a slightly
different way to when it is applied to a list. When we use the in operator on a list, the
relationship between the time it takes to find an element and the size of the list is
considered linear. That is, as the size of the list gets bigger, the corresponding time it takes
to find an element grows, at most, linearly. The relationship between the time an algorithm
takes to run compared to the size of its input is often referred to as its time complexity. We
will talk more about this important topic in the next (and subsequent) chapters.

In contrast to the 1ist object, when the in operator is applied to dictionaries, it uses a
hashing algorithm, and this has the effect of an increase in each lookup time that is almost
independent of the size of the dictionary. This makes dictionaries extremely useful as a way
to work with large amounts of indexed data. We will talk more about this important topic
of rates of growth hashing in chapter 4, Lists and Pointer Structures, and

Chapter 14, Implementations, Applications, and Tools.

Sorting dictionaries

If we want to do a simple sort on either the keys or values of a dictionary, we can do the
following;:

>>> d = {'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6}
>>> sorted(list (d))

["five', 'four', 'one', 'six', 'three', 'two']

>>> sorted(list (d.values()))

(1, 2, 3, 4, 5, 6]

[49]

Python Data Types and Structures Chapter 2

Note that the first line in the preceding code sorts the keys alphabetically and the second
line sorts the values in order of the integer value.

The sorted () method has two optional arguments that are of interest: key and reverse.
The key argument has nothing to do with the dictionary keys, but rather is a way of
passing a function to the sort algorithm to determine the sort order. For example, in the
following code, we use the __getitem__ special method to sort the dictionary keys
according to the dictionary values:

sorted(list(d), key = d.__getitem_)
['one', "two', 'three', "four', 'five', "six']

Essentially, what the preceding code is doing is, for every key in d, it uses the
corresponding value to sort. We can also sort the values according to the sorted order of
the dictionary keys. However, since dictionaries do not have a method to return a key by
using its value, the equivalent of the 1ist . index method for lists, using the optional
key argument to do this is a little tricky. An alternative approach is to use a list
comprehension, as the following example demonstrates:

In [7]: [value for (key, value) in sorted(d.items())]
outl[7]: [5, 4, 1, &, 3, 2]

The sorted () method also has an optional reverse argument, and unsurprisingly this
does exactly what it says—reverses the order of the sorted list, as in the following example:

In [11]: sorted(list(d), key = d.__getitem__ , reverse=True)
out[11]: ['six*, *five', 'four', "three', 'two', 'one']

Now, let's say we are given the following dictionary, with English words as keys and
French words as values. Our task is to place the string values in the correct numerical
order:

d2={'one':'uno', 'two':'deux', 'three':'trois', 'four':'quatre', 'five':'cing',
'six':'six'}

[50]

Python Data Types and Structures Chapter 2

Of course, when we print this dictionary out, it will be unlikely to print in the correct order.
Because all keys and values are strings, we have no context for numerical ordering. To
place these items in correct order, we need to use the first dictionary we created, mapping
words to numerals as a way to order our English to French dictionary:

In [15]: sorted(d2, key=d. getitem)
out[15]: ['one', '"two', 'three®, 'four', "five', 'six']

Notice we are using the values of the first dictionary, d, to sort the keys of the second
dictionary, d2. Since our keys in both dictionaries are the same, we can use a list
comprehension to sort the values of the French to English dictionary:

In [16]: [d2[1] for 1 in sorted(d2, key=d. getitem_]
Oout[16]: ['uno', 'deux', 'trois', 'guatre', 'cing', 'six'l]

We can, of course, define our own custom method that we can use as the key argument to
the sorted method. For example, here we define a function that simply returns the last letter
of a string:

def corder (string):
return (string[len(string)-1])

We can then use this as the key to our sorted function to sort each element by its last letter:

sorted(d2.values(), key=corder)
['quatre', 'uno', 'cing', 'trois', 'deux', 'six']

Dictionaries for text analysis

A common use of dictionaries is to count the occurrences of like items in a sequence; a
typical example is counting the occurrences of words in a body of text. The following code
creates a dictionary where each word in the text is used as a key and the number of
occurrences as its value. This uses a very common idiom of nested loops. Here we are using
it to traverse the lines in a file in an outer loop and the keys of a dictionary on the

inner loop:

def wordcount (fname) :
try:
fhand=open (fname)
except:
print ('File can not be opened')

[51]

Python Data Types and Structures Chapter 2

exit ()

count=dict ()
for line in fhand:
words=line.split ()
for word in words:
if word not in count:
count [word]=1
else:
count [word]+=1
return (count)

This will return a dictionary with an element for each unique word in the text file. A
common task is to filter items such as these into subsets we are interested in. You will need
a text file saved in the same directory as you run the code. Here we have used alice.txt,
a short excerpt from Alice in Wonderland. To obtain the same results, you can download
alice.txt from davejulian.net/bo5630 or use a text file of your own. In the following
code, we create another dictionary, filtered, containing a subset of items from count:

count=wordcount ('alice.txt"')
filtered={key:value for key, value in count.items() if value <20 and
value>16 }

When we print the filtered dictionary, we get the following:

{'once': 18, 'eyes': 18, 'There': 19, 'this,': 17, 'before': 19, 'take':
18, 'tried': 18, 'even': 17, 'things': 19, 'sort': 17, 'her,': 18, '"And':
17, 'sat': 17, '“But': 19, "it,'": 18, 'cried': 18, '“Oh,': 19, 'and,': 19,
"“I'm": 19, 'voice': 17, 'being': 19, 'till': 19, 'Mouse': 17, '‘but': 19,
'Queen,': 17}

Note the use of the dictionary comprehension used to construct the filtered dictionary.
Dictionary comprehensions work in an identical way to the list comprehensions we looked
atin chapter 1, Python Objects, Types, and Expressions.

Sets

Sets are unordered collections of unique items. Sets are themselves mutable—we can add
and remove items from them; however, the items themselves must be immutable. An
important distinction with sets is that they cannot contain duplicate items. Sets are typically
used to perform mathematical operations such as intersection, union, difference, and
complement.

[52]

http://davejulian.net/bo5630

Python Data Types and Structures Chapter 2

Unlike sequence types, set types do not provide any indexing or slicing operations. There
are two types of set objects in Python, the mutable set object and the immutable
frozenset object. Sets are created using comma-separated values within curly braces. By
the way, we cannot create an empty set using a={ }, because this will create a dictionary. To
create an empty set, we write either a=set () or a=frozenset ().

Methods and operations of sets are described in the following table:

Method Description

len (a) Provides the total number of elements in the a set.
a.copy () Provides another copy of the a set.

a.difference (t) Provides a set of elements that are in the a set but not in t.
a.intersection (t) Provides a set of elements that are in both sets, a and t.
a.isdisjoint (t) Returns True if no element is common in both the sets, a and t.

Returns True if all of the elements of the a set are also in

a.issubset (t
) the t set.

Returns True if all of the elements of the t set are also in the a

a.lssuperset (t)
set.

Returns a set of elements that are in either the a or t sets,
but not in both.

a.union (t) Returns a set of elements that are in either the a or t sets.

a.symmetric_difference (t)

In the preceding table, the t parameter can be any Python object that supports iteration and
all methods are available to both set and frozenset objects. It is important to be aware
that the operator versions of these methods require their arguments to be sets, whereas the
methods themselves can accept any iterable type. For example, s-[1, 2, 3], for any set, s,
will generate an unsupported operand type. Using the

equivalent, s.difference ([1, 2, 3]) will return a result.

Mutable set objects have additional methods, described in the following table:

Method Description

s.add (item) Adds an item to s; nothing happens if the item is
already added.

s.clear() Removes all elements from the set, s.

Removes those elements from the s set that are
also in the other set, t.

s.discard (item) Removes the item from the set, s.

s.difference_update (t)

[53]

Python Data Types and Structures Chapter 2

Remove the items from the set, s, which are not in

s.intersection_update (t) .)
P the intersection of the sets, s and t.

Returns an arbitrary item from the set, s, and it

s.pop () .
pop removes it from the s set.

s.remove (item) Deletes the item from the s set.

Deletes all of the elements from the s set that are
not in the symmetric difference of the sets, s and
t.

N>

s.symetric_difference_update (t

Appends all of the items in an iterable object, t, to

s.update (t) the s set

Here, consider a simple example showing addition, removal, discard, and clear operations:

>>> sl = set ()
>>> sl.add (1
>>> sl.add (2
>>> sl.add (3
>>> sl.add (4
>>> sl

{1, 2, 3, 4}
>>> sl.remove (4)
>>> sl

{1, 2, 3}

>>> sl.discard(3)
>>> sl

{1, 2}
>>>sl.clear ()
>>>s1

set ()

)
)
)
)

The following example demonstrates some simple set operations and their results:

In [1]: s1={'ab',2,4,(5,68)}
In [2]: s2={'ab",7,(7,6)}

Fa

In [3]: sl-52 # same as sl.difi
out[3]: {(5, 8), 3, 4}

erence(s2)
In [4]: sl.intersection(s2)
out[4]: {'ab'}

In [5]: sl.union(s2)
out[5]1: {3, 4, 'ab', 7, (5, 6), (7, 6]}

[54]

Python Data Types and Structures Chapter 2

Notice that the set object does not care that its members are not all of the same type, as
long as they are all immutable. If you try to use a mutable object such as a list or dictionary
in a set, you will receive an unhashable type error. Hashable types all have a hash value
that does not change throughout the lifetime of the instance. All built-in immutable types
are hashable. All built-in mutable types are not hashable, so they cannot be used as
elements of sets or keys to dictionaries.

Notice also in the preceding code that when we print out the union of s1 and s2, there is
only one element with the value 'ab'. This is a natural property of sets in that they do not
include duplicates.

In addition to these built-in methods, there are a number of other operations that we can
perform on sets. For example, to test for membership of a set, use the following:

In [6]: 'ab' in s1
out[6]: True

In [7]: 'ab" not im sl
Out[7]: False

We can loop through elements in a set using the following:

In [8]: for element in sl1: print(element)
(5, 6)

ab

3

4

Immutable sets

Python has an immutable set type called frozenset. It works pretty much exactly like set,
apart from not allowing methods or operations that change values such as the add () or
clear () methods. There are several ways that this immutability can be useful.

[551]

Python Data Types and Structures Chapter 2

For example, since normal sets are mutable and therefore not hashable, they cannot be used
as members of other sets. On the other hand frozenset is immutable and therefore able to
be used as a member of a set:

In [26]: sl.add(s2)
Traceback (most recent call last):

File "=ipython-input-26-05d7ba45d78a=", line 1, in <module=
sl.add(s2)

TypeError: unhashable type: 'set’

In [27]: sl.add{frozenset(s2))

In [28]:

51
outl28]: 1

5, 6), 'ab', 3, 4, frozenset({(7, &), *ab*, 7¥)}

Also, the immutable property of frozenset means we can use it for a key to a dictionary,
as in the following example:

In [38]: fs1 = frozenset(sl)
In [39]: fs2 = frozenset(s2)

In [48]: {fs1: 'fs1' , fs2: 'fs2'}
Outl[40]: {frozenset({(7, 6), 'ab', 7}): *fs2', frozenset({(5, 6), 'ab', 3, 4}): 'fs1'}

Modules for data structures and algorithms

In addition to the built-in types, there are several Python modules that we can use to extend
the built-in types and functions. In many cases, these Python modules may offer efficiency
and programming advantages that allow us to simplify our code.

So far, we have looked at the built-in datatypes of strings, lists, sets, and dictionaries as well
as the decimal and fraction modules. They are often described by the term Abstract Data
Types (ADTs). ADTs can be considered mathematical specifications for the set of
operations that can be performed on data. They are defined by their behavior rather than
their implementation. In addition to the ADTs that we have looked at, there are several
Python libraries that provide extensions to the built-in datatypes. These will be discussed in
the following section.

[561]

Python Data Types and Structures Chapter 2

Collections

The collections module provides more specialized, high-performance alternatives for
the built-in data types as well as a utility function to create named tuples. The following
table lists the datatypes and operations of the collections module and their descriptions:

Datatype or operation Description
namedtuple () Creates tuple subclasses with named fields.
deque Lists with fast appends and pops either end.
ChainMap Dictiqnary—like class to create a single view of multiple
mappings.
Counter Dictionary subclass for counting hashable objects.
OrderedDict Dictionary subclass that remembers the entry order.
defaultdict Dictionary subclass that calls a function to supply missing
values.
These three data types are simply wrappers for their
UserDict UserList underlying base classes. Their use has largely been supplanted
UserString by the ability to subclass their respective base classes directly.
Can be used to access the underlying object as an attribute.
Deques

Double-ended queues, or deques (usually pronounced decks), are list-like objects that
support thread-safe, memory-efficient appends. Deques are mutable and support some of
the operations of lists, such as indexing. Deques can be assigned by index, for example,
dg[1] = z; however, we cannot directly slice deques. For example, dgq[1:2] results in
TypeError (we will look at a way to return a slice from a deque as a list shortly).

The major advantage of deques over lists is that inserting items at the beginning of a deque
is much faster than inserting items at the beginning of a list, although inserting items at the
end of a deque is very slightly slower than the equivalent operation on a list. Deques are
thread-safe and can be serialized using the pickle module.

[571

Python Data Types and Structures Chapter 2

A useful way of thinking about deques is in terms of populating and consuming items.
Items in deques are usually populated and consumed sequentially from either end:

In [18]: from collections import deque

In [19]: dq = dequel('abc') #creates deque(['a','b','c'])

In [28]: dq.append('d') #adds the valwe "d' to the right

In [21]: dqg.appendleft('z') #adds the value 'z' to the left

In [22]: dg.extend('efg') #adds multiple items to the right

In [23]: dg.extendleft('yxw') #adds multiple items to the left

In [24]: dg
out[24]: degue(['w', 'x', 'y', 'z', 'a', 'b*', 'c', 'd', 'e', 'f', 'g'])

We can use the pop () and popleft () methods for consuming items in the deque, as in the
following example:

In [25]: dg.pop() #returns and removes an item from the right
out[25]: 'g’

In [26]: dg.popleft() #returns and removes an item from the left
out[26]: 'w’

In [27]: dq
outl[27]: deque(l'x', 'y', 'z', 'a', 'b*, 'c', 'd", 'e', "f'])

We can also use the rotate (n) method to move and rotate all items of n steps to the right
for positive values of the n integer or negative values of n steps to the left, using positive
integers as the argument, as in the following example:

In [45]: dq.rotate(2) #rotates all items 2 steps to the right

In [46]: dg
Dut[45]: deque([lelII |-F|r |x|II Iylr |2|II |a|r |b|r |c|II |d|])

In [47]: dq.rotate(-2) #rotates all items 2 steps to the left

In [48]: dg
Dut[45]: deque([lxlII Iylr |z|II |a|r |b|II |c|r |d|r |e|II |f|])

[581]

Python Data Types and Structures Chapter 2

Note that we can use the rotate and pop methods to delete selected elements. Also worth
knowing is a simple way to return a slice of a deque, as a list, which can be done as follows:

In [14]: dq
out[14]: deque(['x", 'y', 'z', 'a', 'b*, 'c', 'd', 'e', 'f']1)

In [15]: list(itertools.isliceldq,3,9))
outl[1s]: [*a*, 'b*, 'c', 'd", 'e', 'f']

The itertools.islice () method works in the same way that slice works on a list, except
rather than taking a list for an argument, it takes an iterable and returns selected values, by
start and stop indices, as a list.

A useful feature of deques is that they support a maxlen optional parameter that restricts
the size of the deque. This makes it ideally suited to a data structure known as a circular
buffer. This is a fixed-size structure that is effectively connected end to end and they are
typically used for buffering data streams. The following is a basic example:

dg2=deque ([],maxlen=3)

for i in range(6):
dg2.append (i)
print (dg2)

This prints out the following;:

dequel[8], maxlen=3)
deque([®, 1], maxlen=3)
deque(l®, 1, 21, maxlen=3)
deque([1, 2, 3], maxlen=3)
dequel[2, 2, 4], maxlen=3)
dequell[3, 4, 5], maxlen=3)

In this example, we are populating from the right and consuming from the left. Notice that
once the buffer is full the oldest values are consumed first and values are replaced from the
right. We will look at circular buffers again in chapter 4, Lists and Pointer Structures, when
implementing circular lists.

[591]

Python Data Types and Structures Chapter 2

ChainMap objects

The collections.chainmap class was added in Python 3.2, and it provides a way to link
a number of dictionaries, or other mappings, so that they can be treated as one object. In
addition, there is a maps attribute, a new_child () method, and a parents property. The
underlying mappings for ChainMap objects are stored in a list and are accessible using the
maps [1] attribute to retrieve the ith dictionary. Note that, even though dictionaries
themselves are unordered, ChainMap objects are ordered lists of dictionaries.

ChainMap is useful in applications where we are using a number of dictionaries containing
related data. The consuming application expects data in terms of a priority, where the same
key in two dictionaries is given priority if it occurs at the beginning of the underlying list.
ChainMap is typically used to simulate nested contexts such as when we have multiple
overriding configuration settings. The following example demonstrates a possible use case
for ChainMap:

>>> import collections

>>> dictl= {'a':1, 'b':2, 'c':3}

>>> dict2 = {'d':4, 'e':5}

>>> chainmap = collections.ChainMap(dictl, dict2) # linking two
dictionaries

>>> chainmap

ChainMap ({'a': 1, 'b': 2, 'c': 3}, {'d': 4, 'e': 5})

>>> chainmap.maps

({'a': 1, 'b': 2, 'c': 3}, {'d': 4, 'e': 5}]

>>> chainmap.values

<bound method Mapping.values of ChainMap({'a': 1, 'b': 2, 'c': 3}, {'d': 4,

'e': 5})

>>>> chainmap['b'] #accessing values
2

>>> chainmap(['e']

5

The advantage of using ChainMap objects, rather than just a dictionary, is that we retain
previously set values. Adding a child context overrides values for the same key, but it does
not remove it from the data structure. This can be useful when we may need to keep a
record of changes so that we can easily roll back to a previous setting.

We can retrieve and change any value in any of the dictionaries by providing the map ()
method with an appropriate index. This index represents a dictionary in ChainMap. Also,
we can retrieve the parent setting, that is, the default settings, by using the parents ()
method:

>>> from collections import ChainMap
>>> defaults= {'theme':'Default', 'language':'eng', 'showIndex':True,

[60]

Python Data Types and Structures Chapter 2

'showFooter':True}

>>> cm= ChainMap (defaults) #creates a chainMap with defaults
configuration

>>> cm.maps[{'theme': 'Default', 'language': 'eng', 'showIndex': True,
'showFooter': True}]

>>> cm.values ()

ValuesView (ChainMap ({ 'theme': 'Default', 'language': 'eng', 'showIndex':
True, 'showFooter': True}))

>>> cm2= cm.new_child ({'theme':'bluesky'}) # create a new chainMap with a
child that overrides the parent.

>>> cm2 ['theme'] #returns the overridden theme'bluesky'

>>> cm2.pop('theme') # removes the child theme value

'bluesky’

>>> cm2['theme']

'Default’

>>> cm2.maps[{}, {'theme': 'Default', 'language': 'eng', 'showIndex': True,
'showFooter': True}]

>>> cm2.parents

ChainMap ({'theme': 'Default', 'language': 'eng', 'showIndex': True,
'showFooter': True})

Counter objects

Counter is a subclass of a dictionary where each dictionary key is a hashable object and the
associated value is an integer count of that object. There are three ways to initialize a
counter. We can pass it any sequence object, a dictionary of key: value pairs, or a tuple of
the format (object=value, ...), as in the following example:

>>> from collections import Counter
>>> Counter ('anysequence')
Counter ({'e': 3, 'n': 2, 'a': 1, 'y': 1, 's': 1, 'g': 1, 'u': 1, 'c': 1})

>>> cl = Counter ('anysequence')

>>> c2= Counter({'a':1, 'c': 1, 'e':3})

>>> ¢3= Counter (a=1, c= 1, e=3)

>>> ¢l

Counter ({'e': 3, 'n': 2, 'a': 1, 'y': 1, 's': 1, 'g': 1, 'u': 1, 'c': 1})
>>> c2

Counter({'e': 3, 'a': 1, 'c': 1})

>>> ¢3

Counter({'e': 3, 'a': 1, 'c': 1})

[61]

Python Data Types and Structures Chapter 2

We can also create an empty counter object and populate it by passing its update method
an iterable or a dictionary. Notice how the update method adds the counts rather than
replacing them with new values. Once the counter is populated, we can access stored
values in the same way we would do for dictionaries, as in the following example:

>>> from collections import Counter

>>> ct = Counter() # creates an empty counter object
>>> ct

Counter ()

>>> ct.update ('abca') # populates the object

>>> ct

Counter({'a': 2, 'b': 1, 'c': 1})
>>> ct.update({'a':3}) # update the count of 'a'
>>> ct
Counter({'a': 5, 'b': 1, 'c': 1})
>>> for item in ct:
print ('$s: %d' % (item, ct[item]))
5
1
1

QO o

The most notable difference between counter objects and dictionaries is that counter objects
return a zero count for missing items rather than raising a key error. We can create an
iterator out of a Counter object by using its elements () method. This returns an iterator
where counts below one are not included and the order is not guaranteed. In the following
code, we perform some updates, create an iterator from Counter elements, and use
sorted () to sort the keys alphabetically:

>>> ct
Counter({'a': 5, 'b': 1, 'c': 1})
>>> ct['x"]

0

>>> ct.update({'a':-3, 'b':-2, 'e':2})

>>> ct

Counter({'a': 2, 'e': 'c! 1, 'b' -11})

2,
>>>sorted (ct.elements ())
[lall 'a', 'C', 'e', lel

[62]

Python Data Types and Structures Chapter 2

Two other Counter methods worth mentioning are most_common () and subtract (). The
most common method takes a positive integer argument that determines the number of
most common elements to return. Elements are returned as a list of (key,value) tuples.

The subtract method works exactly like update except, instead of adding values, it subtracts
them, as in the following example:

>>> ct.most__common ()

[(ra', 2), ('e', 2), ('c', 1), ('b', -1)]
>>> ct.subtract ({'e':2})

>>> ct

Counter({'a': 2, 'c¢': 1, 'e': 0, 'b': -1})

Ordered dictionaries

The important thing about ordered dictionaries is that they remember the insertion order,
so when we iterate over them, they return values in the order they were inserted. This is in
contrast to a normal dictionary, where the order is arbitrary. When we test to see whether
two dictionaries are equal, this equality is only based on their keys and values; however,
with OrderedbDict, the insertion order is also considered an equality test between two
OrderedDict objects with the same keys and values, but a different insertion order will
return False:

>>> import collections

>>> odl= <collections.OrderedDict ()
>>> odl['one'] =1

>>> odl['two'] = 2

>>> od2 = collections.OrderedDict ()
>>> od2['two'] = 2

>>> od2['one'] =1

>>> odl==0d2

False

Similarly, when we add values from a list using update, OrderedDict will retain the same
order as the list. This is the order that is returned when we iterate the values, as in the
following example:

>>> kvs = [('three',3), ('four',4), ('five',5)]

>>> odl.update (kvs)

>>> odl

OrderedDict ([('one', 1), ('two', 2), ('three', 3), ('four', 4), ('five',
5)1)

>>> for k, v in odl.items(): print(k, wv)

[63]

Python Data Types and Structures Chapter 2

one 1
two 2
three 3
four 4
five 5

OrderedDict is often used in conjunction with the sorted method to create a sorted
dictionary. In the following example, we use a Lambda function to sort the values, and here
we use a numerical expression to sort the integer values:

>>> od3 = collections.OrderedDict (sorted(odl.items (), key= lambda t

(4*t[1])- t[1]**2))

>>>0d3

OrderedDict ([('five', 5), ('four', 4), ('one', 1), ('three', 3), ('two',
2)1)

>>> od3.values ()
odict_values ([5, 4, 1, 3, 2])

defaultdict

The defaultdict objectis a subclass of dict, and therefore they share methods and
operations. It acts as a convenient way to initialize dictionaries. With dict, Python will
throw KeyError when attempting to access a key that is not already in the dictionary. The
defaultdict overrides one method, missing (key), and creates a new instance variable,
default_factory. With defaultdict, rather than throw an error, it will run the function
supplied as the default_factory argument, which will generate a value. A simple use of
defaultdict is toset default_factory to int and use it to quickly tally the counts of
items in the dictionary, as in the following example:

>>> from collections import defaultdict

>>> dd = defaultdict (int)

>>> words = str.split('red blue green red yellow blue red green green red')
>>> for word in words: dd[word] +=1

>>> dd
defaultdict (<class 'int'>, {'red': 4, 'blue': 2, 'green': 3, 'yellow': 1})
You will notice that if we tried to do this with an ordinary dictionary, we would get a key

error when we tried to add the first key. The int we supplied as an argument to the
defaultdict isreally the int () function that simply returns a zero.

[64]

Python Data Types and Structures Chapter 2

We can, of course, create a function that will determine the dictionary's values. For
example, the following function returns True if the supplied argument is a primary color,
thatis red, green, or blue, or returns False otherwise:

def isprimary(c):
if (c=='red') or (c=='blue') or (c=='green'):
return True
else:
return False

Learning about named tuples

The namedtuple method returns a tuple-like object that has fields accessible with named
indexes as well as the integer indexes of normal tuples. This allows for code that is, to a
certain extent, self-documenting and more readable. It can be especially useful in an
application where there are a large number of tuples and we need to easily keep track of
what each tuple represents. Furthermore, namedtuple inherits methods from tuple and it
is backward-compatible with tuple.

The field names are passed to the namedtuple method as comma and/or whitespace-
separated values. They can also be passed as a sequence of strings. Field names are single
strings, and they can be any legal Python identifier that does not begin with a digit or an
underscore. A typical example is shown here:

>>> from collections import namedtuple
>>> space = namedtuple ('space', 'x y z')
>>> sl= space(x=2.0, y=4.0, z=10) # we can also use space(2.0,4.0, 10)

>>> sl

space (x=2.0, y=4.0, z=10)

>>> sl.x * sl.y * sl.z # calculate the volume
80.0

In addition to the inherited tuple methods, the named tuple also defines three methods of
its own, _make (), asdict (), and _replace. These methods begin with an underscore to
prevent potential conflicts with field names. The _make () method takes an iterable as an
argument and turns it into a named tuple object, as in the following example:

>>> sl = [4,5,6]

>>> space._make (sl)
space (x=4, y=5, z=6)
>>> s1._ 1

4

[65]

Python Data Types and Structures Chapter 2

The _asdict method returns an OrderedDict object with the field names mapped to
index keys and the values mapped to the dictionary values. The _replace method returns
a new instance of the tuple, replacing the specified values. In addition, _fields returns the
tuple of string listing the fields names. The _fields_defaults method provides
dictionary mapping field names to the default values. Consider the example code snippet:

>>> gl._asdict ()
OrderedDict ([('x"', 3), ('
>>> sl._replace(x=7, z=9)
space2 (x=7, _1=4, z=9)
>>> space._fields

("x', 'y', 'z')

>>> space._fields_defaults

{3}

1 4, ('z', 5)1)

Arrays

The array module defines a data type array that is similar to the list data type except for
the constraint that their contents must be of a single type of the underlying representation,
as is determined by the machine architecture or underlying C implementation.

The type of an array is determined at creation time and it is indicated by one of the
following type codes:

Code|C type Python type Minimum bytes

b’ signedchar int 1

'B' unsignedchar |int 1

u' Py_UNICODE Unicodecharacter|2

'h' signedshort [int 2

'H' [unsignedshort|int 2

7' signedint int 2
T unsignedint int 2
T signedlong int 4
' unsignedlong int 8
'q' signedlonglong int 8
Q' unsignedlonlong int 8
'f' float float 4
'd' double float 8

[66]

Python Data Types and Structures Chapter 2

The array objects support the attributes and methods:

Attribute or method

Description

a.itemsize

The size of one array item in bytes.

a.append (x)

Appends an x element at the end of the a array.

a.buffer_info()

Returns a tuple containing the current memory location and length of
the buffer used to store the array.

a.byteswap ()

Swaps the byte order of each item in the a array.

a.count (x)

Returns the occurrences of x in the a array.

a.extend (b)

Appends all the elements from iterable b at the end of the a array.

a.frombytes (s)

Appends elements from an s string, where the string is an array of
machine values.

a.fromfile(f,n)

Reads n machine values from the file and appends them at the end of
the array.

a.fromlist (1)

Appends all of the elements from the 1 list to the array.

~

a.fromunicode (s

Extends an array of the u type with the Unicode string, s.

index (x)

Returns the first (smallest) index of the x element.

a.insert (i, x)

Inserts an item of which the value is x, in the array at i index
position.

.pop ([i])

Returns the item at index, I, and removes it from the array.

.remove (x)

Removes the first occurrence of the x item from the array.

Reverses the order of items in the a array.

.tofile (f)

Writes all the elements to the £ file object.

.tolist ()

Converts the array into a list.

a
a
a.reverse ()
a
a
a

.tounicode ()

Converts an array of the u type into a Unicode string

Array objects support all of the normal sequence operations such as indexing, slicing,
concatenation, and multiplication.

[671]

Python Data Types and Structures Chapter 2

Using arrays, as opposed to lists, is a much more efficient way of storing data that is of the
same type. In the following example, we have created an integer array of the digits from 0
to one million minus 1, and an identical list. Storing one million integers in an integer array
requires around 90% of the memory of an equivalent list:

>>> import array

>>> ba = array.array('i', range (10**6))

>>> bl list (range (10**6))

>>> import sys

>>> 100*sys.getsizeof (ba)/sys.getsizeof (bl)
90.92989871246161

Because we are interested in saving space, that is, we are dealing with large datasets and
limited memory size, we usually perform in-place operations on arrays, and only create
copies when we need to. Typically, enumerate is used to perform an operation on each
element. In the following snippet, we perform the simple operation of adding one to each
item in the array.

It should be noted that when performing operations on arrays that create lists, such as list
comprehensions, the memory efficiency gains of using an array in the first place will be
negated. When we need to create a new data object, a solution is to use a generator
expression to perform the operation.

Arrays created with this module are unsuitable for work that requires a matrix of vector
operations. In the next chapter, we will build our own abstract data type to deal with these
operations. Also important for numerical work is the NumPy extension, available at

WWW . NUmpy .org .

Summary

In the last two chapters, we presented the language features and data types of Python. We
looked at the built-in data types and some internal Python modules, most notably the
collections module. There are also several other Python modules that are relevant to the
topic of this book, but rather than examining them separately, their use and functionality
should become self-evident as we begin using them. There are also a number of external
libraries, for example, SciPy.

In the next chapter, we will introduce the basic theory and techniques of algorithm design.

[68]

http://www.numpy.org/

Principles of Algorithm Design

Why do we study algorithm design? There are, of course, many reasons, and our
motivations for learning something is very much dependent on our own circumstances.
There are, without a doubt, important professional reasons for being interested in
algorithm design. Algorithms are the foundation of all computing. We can think of a
computer as being a piece of hardware, with a hard drive, memory chips, processors, and
so on. However, the essential component, the thing that, if missing, would render modern
technology impossible, is algorithms. Let's learn more about it in the upcoming sections.

In this chapter, we will look at the following topics:

¢ An introduction to algorithms
¢ Recursion and backtracking
¢ Big O notation

Technical requirements

We will need to install the matplotlib library with Python to plot the diagram in this
chapter.

It can be installed on Ubuntu/Linux by running the following commands on the terminal:
python3 -mpip install matplotlib
You can also use the following;:

sudo apt-get install python3-matplotlib

Principles of Algorithm Design Chapter 3

To install matplot1ib on Windows:

If Python is already installed on the Windows operating system, matplotlib can be
obtained from the following link to install it on Windows: https://github.com/
matplotlib/matplotlib/downloads Or https://matplotlib.org.

Code files for this chapter can be found at: https://github.com/PacktPublishing/Hands—
On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/

Chapter03.

An introduction to algorithms

The theoretical foundation of algorithms, in the form of the Turing machine, was
established several decades before digital logic circuits could actually implement such a
machine. The Turing machine is essentially a mathematical model that, using a predefined
set of rules, translates a set of inputs into a set of outputs. The first implementations of
Turing machines were mechanical and the next generation may likely see digital logic
circuits replaced by quantum circuits or something similar. Regardless of the platform,
algorithms play a central predominant role.

Another aspect is the effect algorithms have on technological innovation. As an obvious
example, consider the page rank search algorithm, a variation of which the Google Search
engine is based on. Using this and similar algorithms allows researchers, scientists,
technicians, and others to quickly search through vast amounts of information extremely
quickly. This has a massive effect on the rate at which new research can be carried out, new
discoveries made, and new innovative technologies developed. An algorithm is a
sequential set of instructions to execute a particular task. They are very important, as we
can break a complex problem into a smaller one to prepare simple steps to execute a big
problem—that is the most important part of algorithms. A good algorithm is key for an
efficient program to solve a specific problem. The study of algorithms is also important
because it trains us to think very specifically about certain problems. It can help to increase
our problem-solving abilities by isolating the components of a problem and defining
relationships between these components. In summary, there are some important reasons for
studying algorithms:

¢ They are essential for computer science and intelligent systems

¢ They are important in many other domains (computational biology, economics,
ecology, communications, ecology, physics, and so on)

e They play a role in technology innovation
¢ They improve problem-solving and analytical thinking

[70]

https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://github.com/matplotlib/matplotlib/downloads
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition/tree/master/Chapter03

Principles of Algorithm Design Chapter 3

There are mainly two important aspects to solve a given problem. Firstly, we need an
efficient mechanism to store, manage, and retrieve the data, which is important to solve a
problem (this comes under data structures); secondly, we require an efficient algorithm
which is a finite set of instructions to solve that problem. Thus, the study of data structures
and algorithms is key to solving any problem using computer programs. An efficient
algorithm should have the following characteristics:

e It should be as specific as possible

It should have each instruction properly defined

There should not be any ambiguous instruction

All the instructions of the algorithm should be executable in a finite amount of
time and in a finite number of steps

It should have clear input and output to solve the problem

Each instruction of the algorithm should be important in solving the given
problem

Algorithms, in their simplest form, are just a sequence of actions—a list of instructions. It
may just be a linear construct of the form do x, then do y, then do z, then finish. However,
to make things more useful we add clauses to the effect of do x then do y; in Python, these
are if-else statements. Here, the future course of action is dependent on some conditions;
say the state of a data structure. To this, we also add the operation, iteration, the while, and
the for statements. Expanding our algorithmic literacy further, we add recursion. Recursion
can often achieve the same results as iteration, however, they are fundamentally different.
A recursive function calls itself, applying the same function to progressively smaller inputs.
The input of any recursive step is the output of the previous recursive step.

Algorithm design paradigms

In general, we can discern three broad approaches to algorithm design. They are:

¢ Divide and conquer
e Greedy algorithms

e Dynamic programming

As the name suggests, the divide and conquer paradigm involves breaking a problem into
smaller simple sub-problems, and then solving these sub-problems, and finally, combining
the results to obtain a global optimal solution. This is a very common and natural problem-
solving technique, and is, arguably, the most commonly used approach to algorithm
design. For example, merge sort is an algorithm to sort a list of n natural numbers
increasingly.

[71]

Principles of Algorithm Design Chapter 3

In this algorithm, we divide the list iteratively in equal parts until each sub-list contains one
element, and then we combine these sub-lists to create a new list in a sorted order. We will
be discussing merge sort in more detail later in this section/chapter.

Some examples of divide and conquer algorithm paradigms are as follows:

¢ Binary search

¢ Merge sort

Quick sort

Karatsuba algorithm for fast multiplication

Strassen's matrix multiplication

Closest pair of points

Greedy algorithms often involve optimization and combinatorial problems. In greedy
algorithms, the objective is to obtain the best optimum solution from many possible
solutions in each step, and we try to get the local optimum solution which may eventually
lead us to obtain the overall optimum solution. Generally, greedy algorithms are used for
optimization problems. Here are many popular standard problems where we can use
greedy algorithms to obtain the optimum solution:

Kruskal's minimum spanning tree

Dijkstra's shortest path

Knapsack problem
e Prim's minimal spanning tree algorithm

Travelling salesman problem

Greedy algorithms often involve optimization and combinatorial problems; the classic
example is to apply the greedy algorithm to the traveling salesperson problem, where a
greedy approach always chooses the closest destination first. This shortest-path strategy
involves finding the best solution to a local problem in the hope that this will lead to a
global solution.

Another classic example is to apply the greedy algorithm to the traveling salesperson
problem;<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>