

Mastering Python Networking
Second Edition

Your one-stop solution to using Python for network
automation, DevOps, and Test-Driven Development

Eric Chou

BIRMINGHAM - MUMBAI

Mastering Python Networking
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Prachi Bisht
Content Development Editor: Deepti Thore
Technical Editor: Varsha Shivhare
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: June 2017
Second edition: August 2018

Production reference: 1280818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-599-2

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Eric Chou is a seasoned technologist with over 18 years of industry experience. He has
worked on and helped managed some of the largest networks in the industry while
working at Amazon AWS, Microsoft Azure, and other companies. Eric is passionate about
network automation, Python, and helping companies build better security postures. Eric is
the author of several books and online classes on networking with Python and network
security. He is the proud inventor of two patents in IP telephony. Eric shares his deep
interest in technology through his books, classes, and his blog, and contributes to some of
the popular Python open source projects.

I would like to thank the open source and Python community members for generously
sharing their knowledge and code with the public. Without their contribution, many of the
projects referenced in this book would not have been possible.
I would like to thank the Packt Publishing team for the opportunity to work on the second
edition of the book, and the technical reviewer, Rickard Körkkö, for generously agreeing to
review the book.
To my wife and best friend, Joanna, I won the lottery the day I met you. To my two girls,
Mikaelyn and Esmie, you make me so proud, I love you both dearly.

About the reviewer
Rickard Körkkö, CCNP (Routing and Switching) and Cisco Network Programmability
Design and Implementation Specialist, is a NetOps consultant at SDNit, where he's part of a
group of experienced technical specialists with a great interest in and focus on emerging
network technologies. His daily work includes working with orchestration tools such as
Ansible to manage network devices. He's a self-taught programmer with a primary focus
on Python. He has also served as a technical reviewer for the book A Practical Guide to Linux
Commands, Editors, and Shell Programming, Third Edition by Mark G. Sobell.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Review of TCP/IP Protocol Suite and Python 7
An overview of the internet 8

Servers, hosts, and network components 9
The rise of data centers 10

Enterprise data centers 10
Cloud data centers 11
Edge data centers 12

The OSI model 13
Client-server model 15
Network protocol suites 15

The transmission control protocol 16
Functions and characteristics of TCP 16
TCP messages and data transfer 17

User datagram protocol 17
The internet protocol 18

The IP NAT and security 19
IP routing concepts 20

Python language overview 20
Python versions 22
Operating system 23
Running a Python program 23
Python built-in types 24

The None type 25
Numerics 25
Sequences 25
Mapping 28
Sets 29

Python operators 29
Python control flow tools 30
Python functions 32
Python classes 33
Python modules and packages 34

Summary 36

Chapter 2: Low-Level Network Device Interactions 37
The challenges of the CLI 38
Constructing a virtual lab 39

Cisco VIRL 41
VIRL tips 43

Table of Contents

[ii]

Cisco DevNet and dCloud 46
GNS3 48

Python Pexpect library 49
Pexpect installation 49
Pexpect overview 50
Our first Pexpect program 55
More Pexpect features 56
Pexpect and SSH 57
Putting things together for Pexpect 58

The Python Paramiko library 59
Installation of Paramiko 60
Paramiko overview 61
Our first Paramiko program 64
More Paramiko features 65

Paramiko for servers 65
Putting things together for Paramiko 66

Looking ahead 68
Downsides of Pexpect and Paramiko compared to other tools 68

Idempotent network device interaction 68
Bad automation speeds bad things up 69

Summary 69

Chapter 3: APIs and Intent-Driven Networking 70
Infrastructure as code 71

Intent-Driven Networking 72
Screen scraping versus API structured output 73
Data modeling for infrastructure as code 76

The Cisco API and ACI 77
Cisco NX-API 78

Lab software installation and device preparation 78
NX-API examples 79

The Cisco and YANG models 84
The Cisco ACI 85

The Python API for Juniper networks 87
Juniper and NETCONF 88

Device preparation 88
Juniper NETCONF examples 90

Juniper PyEZ for developers 92
Installation and preparation 93
PyEZ examples 95

The Arista Python API 97
Arista eAPI management 97

The eAPI preparation 98
eAPI examples 101

The Arista Pyeapi library 103
Pyeapi installation 103
Pyeapi examples 104

Table of Contents

[iii]

Vendor-neutral libraries 108
Summary 108

Chapter 4: The Python Automation Framework – Ansible Basics 109
A more declarative framework 111
A quick Ansible example 112

The control node installation 113
Running different versions of Ansible from source 114
Lab setup 115
Your first Ansible playbook 116

The public key authorization 116
The inventory file 117
Our first playbook 118

The advantages of Ansible 120
Agentless 120
Idempotent 121
Simple and extensible 122
Network vendor support 123

The Ansible architecture 124
YAML 125
Inventories 126
Variables 127
Templates with Jinja2 131

Ansible networking modules 131
Local connections and facts 131
Provider arguments 132

The Ansible Cisco example 134
Ansible 2.5 connection example 137

The Ansible Juniper example 139
The Ansible Arista example 141
Summary 143

Chapter 5: The Python Automation Framework – Beyond Basics 144
Ansible conditionals 145

The when clause 145
Ansible network facts 148
Network module conditional 150

Ansible loops 152
Standard loops 152
Looping over dictionaries 153

Templates 155
The Jinja2 template 157
Jinja2 loops 158
The Jinja2 conditional 159

Group and host variables 161

Table of Contents

[iv]

Group variables 162
Host variables 163

The Ansible Vault 164
The Ansible include and roles 166

The Ansible include statement 166
Ansible roles 168

Writing your own custom module 171
The first custom module 172
The second custom module 174

Summary 176

Chapter 6: Network Security with Python 177
The lab setup 178
Python Scapy 181

Installing Scapy 182
Interactive examples 183
Sniffing 184
The TCP port scan 186
The ping collection 189
Common attacks 190
Scapy resources 191

Access lists 192
Implementing access lists with Ansible 193
MAC access lists 196

The Syslog search 197
Searching with the RE module 198

Other tools 200
Private VLANs 200
UFW with Python 201
Further reading 202

Summary 203

Chapter 7: Network Monitoring with Python – Part 1 204
Lab setup 205
SNMP 206

Setup 207
PySNMP 210

Python for data visualization 216
Matplotlib 217

Installation 217
Matplotlib – the first example 217
Matplotlib for SNMP results 220
Additional Matplotlib resources 225

Pygal 225
Installation 225
Pygal – the first example 226

Table of Contents

[v]

Pygal for SNMP results 228
Additional Pygal resources 231

Python for Cacti 231
Installation 232
Python script as an input source 234

Summary 236

Chapter 8: Network Monitoring with Python – Part 2 237
Graphviz 239

Lab setup 240
Installation 241
Graphviz examples 242
Python with Graphviz examples 244
LLDP neighbor graphing 245

Information retrieval 247
Python parser script 248
Final playbook 252

Flow-based monitoring 254
NetFlow parsing with Python 255

Python socket and struct 257
ntop traffic monitoring 260

Python extension for ntop 264
sFlow 268

SFlowtool and sFlow-RT with Python 268
Elasticsearch (ELK stack) 272

Setting up a hosted ELK service 273
The Logstash format 274
Python helper script for Logstash formatting 275

Summary 277

Chapter 9: Building Network Web Services with Python 278
Comparing Python web frameworks 280
Flask and lab setup 282
Introduction to Flask 284

The HTTPie client 286
URL routing 287
URL variables 288
URL generation 289
The jsonify return 290

Network resource API 291
Flask-SQLAlchemy 291
Network content API 293
Devices API 296
The device ID API 298

Network dynamic operations 299
Asynchronous operations 302

Table of Contents

[vi]

Security 304
Additional resources 307
Summary 308

Chapter 10: AWS Cloud Networking 310
AWS setup 311

AWS CLI and Python SDK 314
AWS network overview 317
Virtual private cloud 321

Route tables and route targets 326
Automation with CloudFormation 328
Security groups and the network ACL 332
Elastic IP 334
NAT Gateway 335

Direct Connect and VPN 337
VPN Gateway 337
Direct Connect 338

Network scaling services 340
Elastic Load Balancing 340
Route53 DNS service 341
CloudFront CDN services 341

Other AWS network services 342
Summary 342

Chapter 11: Working with Git 344
Introduction to Git 345

Benefits of Git 346
Git terminology 347
Git and GitHub 347

Setting up Git 348
Gitignore 349

Git usage examples 350
GitHub example 357

Collaborating with pull requests 361
Git with Python 365

GitPython 365
PyGitHub 366

Automating configuration backup 368
Collaborating with Git 371
Summary 372

Chapter 12: Continuous Integration with Jenkins 373
Traditional change-management process 373
Introduction to continuous integration 375
Installing Jenkins 376

Table of Contents

[vii]

Jenkins example 379
First job for the Python script 380
Jenkins plugins 386
Network continuous integration example 388

Jenkins with Python 397
Continuous integration for Networking 399
Summary 399

Chapter 13: Test-Driven Development for Networks 401
Test-driven development overview 402

Test definitions 403
Topology as code 403

Python's unittest module 408
More on Python testing 412

pytest examples 412
Writing tests for networking 415

Testing for reachability 415
Testing for network latency 417
Testing for security 418
Testing for transactions 418
Testing for network configuration 419
Testing for Ansible 419

Pytest in Jenkins 420
Jenkins integration 420

Summary 425

Other Books You May Enjoy 426

Index 431

Preface
As Charles Dickens wrote in A Tale of Two Cities, "It was the best of times, it was the worse of
times, it was the age of wisdom, it was the age of foolishness." His seemingly contradictory words
perfectly describe the chaos and mood felt during a time of change and transition. We are
no doubt experiencing a similar time with the rapid changes in the fields of network
engineering. As software development becomes more integrated into all aspects of
networking, the traditional command-line interface and vertically integrated network stack
methods are no longer the best ways to manage today's networks. For network engineers,
the changes we are seeing are full of excitement and opportunities and yet challenging,
particularly for those who need to quickly adapt and keep up. This book has been written
to help ease the transition for networking professionals by providing a practical guide that
addresses how to evolve from a traditional platform to one built on software-driven
practices.

In this book, we use Python as the programming language of choice to master network
engineering tasks. Python is an easy-to-learn, high-level programming language that can
effectively complement network engineers' creativity and problem-solving skills to
streamline daily operations. Python is becoming an integral part of many large-scale
networks, and through this book, I hope to share with you the lessons I've learned.

Since the publication of the first edition, I have been able to have interesting and
meaningful conversations with many of the readers of the book. I am humbled by the
success of the first edition of the book and took to the heart of the feedback I was given. In
the second edition, I have tried to make the examples and technologies more relevant. In
particular, the traditional OpenFlow SDN chapters were replaced with some of the
Network DevOps tools. I sincerely hope the new addition is useful to you.

A time of change presents great opportunities for technological advancement. The concepts
and tools in this book have helped me tremendously in my career, and I hope they can do
the same for you.

Who this book is for
This book is ideal for IT professionals and operations engineers who already manage
groups of network devices and would like to expand their knowledge on using Python and
other tools to overcome network challenges. Basic knowledge of networking and Python is
recommended.

Preface

[2]

What this book covers
Chapter 1, Review of TCP/IP Protocol Suite and Python, reviews the fundamental
technologies that make up internet communication today, from the OSI and client-server
model to TCP, UDP, and IP protocol suites. The chapter will review the basics of Python
languages such as types, operators, loops, functions, and packages.

Chapter 2, Low-Level Network Device Interactions, uses practical examples to illustrate how
to use Python to execute commands on a network device. It will also discuss the challenges
of having a CLI-only interface in automation. The chapter will use the Pexpect and
Paramiko libraries for the examples.

Chapter 3, APIs and Intent-Driven Networking, discusses the newer network devices that
support Application Programming Interfaces (APIs) and other high-level interaction
methods. It also illustrates tools that allow abstraction of low-level tasks while focusing on
the intent of the network engineers. A discussion about and examples of Cisco NX-API,
Juniper PyEZ, and Arista Pyeapi will be used in the chapter.

Chapter 4, The Python Automation Framework – Ansible Basics, discusses the basics of
Ansible, an open source, Python-based automation framework. Ansible moves one step
further from APIs and focuses on declarative task intent. In this chapter, we will cover the
advantages of using Ansible, its high-level architecture, and see some practical examples of
Ansible with Cisco, Juniper, and Arista devices.

Chapter 5, The Python Automation Framework – Beyond Basics, builds on the knowledge in
the previous chapter and covers the more advanced Ansible topics. We will cover
conditionals, loops, templates, variables, Ansible Vault, and roles. It will also cover the
basics of writing custom modules.

Chapter 6, Network Security with Python, introduces several Python tools to help you secure
your network. It will discuss using Scapy for security testing, using Ansible to quickly
implement access lists, and using Python for network forensic analysis.

Chapter 7, Network Monitoring with Python – Part 1, covers monitoring the network using
various tools. The chapter contains some examples using SNMP and PySNMP for queries
to obtain device information. Matplotlib and Pygal examples will be shown for graphing
the results. The chapter will end with a Cacti example using a Python script as an input
source.

Preface

[3]

Chapter 8, Network Monitoring with Python – Part 2, covers more network monitoring tools.
The chapter will start with using Graphviz to graph the network from LLDP information.
We will move to use examples with push-based network monitoring using Netflow and
other technologies. We will use Python to decode flow packets and ntop to visualize the
results. An overview of Elasticsearch and how it can be used for network monitoring will
also be covered.

Chapter 9, Building Network Web Services with Python, shows you how to use the Python
Flask web framework to create our own API for network automation. The network API
offers benefits such as abstracting the requester from network details, consolidating and
customizing operations, and providing better security by limiting the exposure of available
operations.

Chapter 10, AWS Cloud Networking, shows how we can use AWS to build a virtual network
that is functional and resilient. We will cover virtual private cloud technologies such as
CloudFormation, VPC routing table, access-list, Elastic IP, NAT Gateway, Direct Connect,
and other related topics.

Chapter 11, Working with Git, we will illustrate how we can leverage Git for collaboration
and code version control. Practical examples of using Git for network operations will be
used in this chapter.

Chapter 12, Continuous Integration with Jenkins, uses Jenkins to automatically create
operations pipelines that can save us time and increase reliability.

Chapter 13, Test-Driven Development for Networks, explains how to use Python's unittest and
PyTest to create simple tests to verify our code. We will also see examples of writing tests
for our network to verify reachability, network latency, security, and network transactions.
We will also see how we can integrate the tests into continuous integration tools, such as
Jenkins.

To get the most out of this book
To get the most out of this book, some basic hands-on network operation knowledge and
Python is recommended. Most of the chapters can be read in any order, with the exceptions
of chapters 4 and 5, which should be read in sequence. Besides the basic software and
hardware tools introduced at the beginning of the book, new tools relevant to each of the
chapters will be introduced.

It is highly recommended to follow and practice the examples shown in your own network
lab.

Preface

[4]

Download the example code files
You can download the example code files for this book from your account
at www.packtpub.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Mastering- Python- Networking- Second- Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/MasteringPythonNetworkingSecondEdition_ ColorImages. pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPythonNetworkingSecondEdition_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The auto-config also generated vty access for both telnet and SSH."

A block of code is set as follows:

This is a comment
print("hello world")

Any command-line input or output is written as follows:

$ python
Python 2.7.12 (default, Dec 4 2017, 14:50:18)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> exit()

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the Topology Design option, I set the Management Network option to Shared Flat
Network in order to use VMnet2 as the management network on the virtual routers."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

Preface

[6]

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Review of TCP/IP Protocol

Suite and Python
Welcome to the new age of network engineering. When I first started working as a network
engineer 18 years ago, at the turn of the millennium, the role was distinctly different than
other technical roles. Network engineers mainly possessed domain-specific knowledge to
manage and operate local and wide area networks, while occasionally crossing over to
systems administration, but there was no expectation to write code or understand
programming concepts. This is no longer the case. Over the years, the DevOps and
Software-Defined Networking (SDN) movement, among other factors, have significantly
blurred the lines between network engineers, systems engineers, and developers.

The fact that you have picked up this book suggests that you might already be an adopter
of network DevOps, or maybe you are considering going down that path. Maybe you have
been working as a network engineer for years, just as I was, and want to know what the
buzz around the Python programming language is about. Or you might already be fluent in
Python but wonder what its applications are in network engineering. If you fall into any of
these camps, or are simply just curious about Python in the network engineering field, I
believe this book is for you:

The intersection between Python and network engineering

Review of TCP/IP Protocol Suite and Python Chapter 1

[8]

Many books that dive into the topics of network engineering and Python have already been
written. I do not intend to repeat their efforts with this book. Instead, this book assumes
that you have some hands-on experience of managing networks, as well as a basic
understanding of network protocols and the Python language. You do not need to be an
expert in Python or network engineering, but should find that the concepts in this
chapter form a general review. The rest of the chapter should set the level of expectation of
the prior knowledge required to get the most out of this book. If you want to brush up on
the contents of this chapter, there are lots of free or low-cost resources to bring you up to
speed. I would recommend the free Khan Academy (https:/ /www. khanacademy. org/) and
the Python tutorials at: https://www.python.org/.

This chapter will pay a very quick visit to the relevant networking topics. From my
experience working in the field, a typical network engineer or developer might not
remember the exact TCP state machine to accomplish their daily tasks (I know I don't), but
they would be familiar with the basics of the OSI model, the TCP and UDP operations,
different IP headers fields, and other fundamental concepts.

We will also look at a high-level review of the Python language; just enough for those
readers who do not code in Python on a daily basis to have ground to walk on for the rest
of the book.

Specifically, we will cover the following topics:

An overview of the internet
The OSI and client-server model
TCP, UDP, and IP protocol suites
Python syntax, types, operators, and loops
Extending Python with functions, classes, and packages

Of course, the information presented in this chapter is not exhaustive; please do check out
the references for further information.

An overview of the internet
What is the internet? This seemingly easy question might receive different answers
depending on your background. The internet means different things to different people; the
young, the old, students, teachers, business people, poets, could all give different answers
to the question.

https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.python.org/
https://www.python.org/

Review of TCP/IP Protocol Suite and Python Chapter 1

[9]

To a network engineer, the internet is a global computer network consisting of a web of
inter-networks connecting large and small networks together. In other words, it is a
network of networks without a centralized owner. Take your home network as an example.
It might consist of a home Ethernet switch and a wireless access point connecting your
smartphone, tablet, computers, and TV together for the devices to communicate with each
other. This is your Local Area Network (LAN). When your home network needs to
communicate with the outside world, it passes information from your LAN to a larger
network, often appropriately named the Internet Service Provider (ISP). Your ISP often
consists of edge nodes that aggregate the traffic to their core network. The core network's
function is to interconnect these edge networks via a higher speed network. At special edge
nodes, your ISP is connected to other ISPs to pass your traffic appropriately to your
destination. The return path from your destination to your home computer, tablet, or
smartphone may or may not follow the same path through all of these networks back to
your device, while the source and destination remain the same.

Let's take a look at the components making up this web of networks.

Servers, hosts, and network components
Hosts are end nodes on the network that communicate to other nodes. In today's world, a
host can be a traditional computer, or can be your smartphone, tablet, or TV. With the rise
of the Internet of Things (IoT), the broad definition of a host can be expanded to include
an IP camera, TV set-top boxes, and the ever-increasing type of sensors that we use in
agriculture, farming, automobiles, and more. With the explosion of the number of hosts
connected to the internet, all of them need to be addressed, routed, and managed. The
demand for proper networking has never been greater.

Most of the time when we are on the internet, we make requests for services. This could be
viewing a web page, sending or receiving emails, transferring files, and so on. These
services are provided by servers. As the name implies, servers provide services to multiple
nodes and generally have higher levels of hardware specification because of this. In a way,
servers are special super-nodes on the network that provide additional capabilities to its
peers. We will look at servers later on in the client-server model section.

If you think of servers and hosts as cities and towns, the network components are the roads
and highways that connect them together. In fact, the term information superhighway
comes to mind when describing the network components that transmit the ever increasing
bits and bytes across the globe. In the OSI model that we will look at in a bit, these network
components are layer one to three devices. They are layer two and three routers and
switches that direct traffic, as well as layer one transports such as fiber optic cables, coaxial
cables, twisted copper pairs, and some DWDM equipment, to name a few.

Review of TCP/IP Protocol Suite and Python Chapter 1

[10]

Collectively, hosts, servers, and network components make up the internet as we know it
today.

The rise of data centers
In the last section, we looked at the different roles that servers, hosts, and network
components play in the inter-network. Because of the higher hardware capacity that servers
demand, they are often put together in a central location, so they can be managed more
efficiently. We often refer to these locations as data centers.

Enterprise data centers
In a typical enterprise, the company generally has the need for internal tools such as
emailing, document storage, sales tracking, ordering, HR tools, and a knowledge sharing
intranet. These services translate into file and mail servers, database servers, and web
servers. Unlike user computers, these are generally high-end computers that require a lot of
power, cooling, and network connections. A byproduct of the hardware is also the amount
of noise they make. They are generally placed in a central location, called the Main
Distribution Frame (MDF), in the enterprise to provide the necessary power feed, power
redundancy, cooling, and network connectivity.

To connect to the MDF, the user's traffic is generally aggregated at a location closer to the
user, which is sometimes called the Intermediate Distribution Frame (IDF), before they are
bundled up and connected to the MDF. It is not unusual for the IDF-MDF spread to follow
the physical layout of the enterprise building or campus. For example, each building floor
can consist of an IDF that aggregates to the MDF on another floor. If the enterprise consists
of several buildings, further aggregation can be done by combining the buildings' traffic
before connecting them to the enterprise data center.

Enterprise data centers generally follow the network design of three layers. These layers are
access, distribution, and a core. The access layer is analogous to the ports each user
connects to, the IDF can be thought of as the distribution layer, while the core layer consists
of the connection to the MDF and the enterprise data centers. This is, of course, a
generalization of enterprise networks, as some of them will not follow the same model.

Review of TCP/IP Protocol Suite and Python Chapter 1

[11]

Cloud data centers
With the rise of cloud computing and software, or infrastructure as a service, the data
centers cloud providers build are at a hyper-scale. Because of the number of servers they
house, they generally demand a much, much higher capacity for power, cooling, network
speed, and feed than any enterprise data center. Even after working on cloud provider data
centers for many years, every time I visit a cloud provider data center, I am still amazed at
the scale of them. In fact, cloud data centers are so big and power-hungry that they are
typically built close to power plants where they can get the cheapest power rate, without
losing too much efficiency during the transportation of the power. Their cooling needs are
so great, some are forced to be creative about where the data center is built, building in a
generally cold climate just so they can just open the doors and windows to keep the server
running at a safe temperature when needed. Any search engine can give you some of the
astounding numbers when it comes to the science of building and managing cloud data
centers for the likes of Amazon, Microsoft, Google, and Facebook:

Utah data center (source: https://en.wikipedia.org/wiki/Utah_Data_Center)

At the cloud provider scale, the services that they need to provide are generally not cost
efficient or able to feasibly be housed in a single server. They are spread between a fleet of
servers, sometimes across many different racks, to provide redundancy and flexibility for
service owners. The latency and redundancy requirements put a tremendous amount of
pressure on the network. The number of interconnections equates to an explosive growth of
network equipment; this translates into the number of times this network equipment needs
to be racked, provisioned, and managed. A typical network design would be a multi-
staged, CLOS network:

CLOS network

Review of TCP/IP Protocol Suite and Python Chapter 1

[12]

In a way, cloud data centers are where network automation becomes a necessity for speed
and reliability. If we follow the traditional way of managing network devices via a
Terminal and command-line interface, the number of engineering hours required would
not allow the service to be available in a reasonable amount of time. This is not to mention
that human repetition is error-prone, inefficient, and a terrible waste of engineering talent.

Cloud data centers are where I started my path of network automation with Python a
number of years ago, and I've never looked back since.

Edge data centers
If we have sufficient computing power at the data center level, why keep anything
anywhere else but at these data centers? All the connections from clients around the world
can be routed back to the data center servers providing the service, and we can call it a day,
right? The answer, of course, depends on the use case. The biggest limitation in routing the
request and session all the way back from the client to a large data center is the latency
introduced in the transport. In other words, large latency is where the network becomes a
bottleneck. The latency number would never be zero: even as fast as light can travel in a
vacuum, it still takes time for physical transportation. In the real world, latency would be
much higher than light in a vacuum when the packet is traversing through multiple
networks, and sometimes through an undersea cable, slow satellite links, 3G or 4G cellular
links, or Wi-Fi connections.

The solution? Reduce the number of networks the end user traverses through. Be as closely
connected to the user as possible at the edge where the user enters your network and place
enough resources at the edge location to serve the request. Let's take a minute and imagine
that you are building the next generation of video streaming service. In order to increase
customer satisfaction with smooth streaming, you would want to place the video server as
close to the customer as possible, either inside or very near to the customer's ISP. Also, the
upstream of the video server farm would not just be connected to one or two ISPs, but all
the ISPs that I can connect to to reduce the hop count. All the connections would be with as
much bandwidth as needed to decrease latency during peak hours. This need gave rise to
the peering exchange's edge data centers of big ISP and content providers. Even when the
number of network devices is not as high as cloud data centers, they too can benefit from
network automation in terms of the increased reliability, security, and visibility network
automation brings.

We will cover security and visibility in later chapters of this book.

Review of TCP/IP Protocol Suite and Python Chapter 1

[13]

The OSI model
No network book is complete without first going over the Open System Interconnection
(OSI) model. The model is a conceptional model that componentizes the
telecommunication functions into different layers. The model defines seven layers, and
each layer sits independently on top of another one, as long as they follow defined
structures and characteristics. For example, in the network layer, IP, can sit on top of the
different types of data link layers, such as Ethernet or frame relay. The OSI reference model
is a good way to normalize different and diverse technologies into a set of common
language that people can agree on. This greatly reduces the scope for parties working on
individual layers and allows them to look at specific tasks in depth without worrying too
much about compatibility:

OSI model

The OSI model was initially worked on in the late 1970s and was later published jointly by
the International Organization for Standardization (ISO) and what's now known as
the Telecommunication Standardization Sector of the International Telecommunication
Union (ITU-T). It is widely accepted and commonly referred to when introducing a new
topic in telecommunication.

Review of TCP/IP Protocol Suite and Python Chapter 1

[14]

Around the same time period of the OSI model development, the internet was taking
shape. The reference model the original designer used is often referred to as the TCP/IP
model. The Transmission Control Protocol (TCP) and the Internet Protocol (IP) were the
original protocol suites contained in the design. This is somewhat similar to the OSI model
in the sense that they divide end-to-end data communication into abstraction layers. What
is different is the model combines layers 5 to 7 in the OSI model in the Application layer,
while the Physical and Data link layers are combined in the Link layer:

Internet protocol suite

Both the OSI and TCP/IP models are useful for providing standards for end-to-end data
communication. However, for the most part, we will refer to the TCP/IP model more, since
that is what the internet was built on. We will specify the OSI model when needed, such as
when we are discussing the web framework in upcoming chapters.

Review of TCP/IP Protocol Suite and Python Chapter 1

[15]

Client-server model
The reference models demonstrated a standard way for data to communicate between two
nodes. Of course, by now, we all know that not all nodes are created equal. Even in its
DARPA-net days, there were workstation nodes, and there were nodes with the purpose of
providing content to other nodes. These server nodes typically have higher hardware
specifications and are managed more closely by engineers. Since these nodes provide
resources and services to others, they are typically referred to as servers. Servers typically
sit idle, waiting for clients to initiate requests for their resources. This model of distributed
resources that are asked for by the client is referred to as the client-server model.

Why is this important? If you think about it for a minute, the importance of networking is
highlighted by this client-server model. Without it, there is really not a lot of need for
network interconnections. It is the need to transfer bits and bytes from client to server that
shines a light on the importance of network engineering. Of course, we are all aware of how
the biggest network of them all, the internet, has been transforming the lives of all of us and
continuing to do so.

How, you asked, can each node determine the time, speed, source, and destination every
time they need to talk to each other? This brings us to network protocols.

Network protocol suites
In the early days of computer networking, protocols were proprietary and closely
controlled by the company who designed the connection method. If you were using
Novell's IPX/SPX protocol in your hosts, you would not able to communicate with Apple's
AppleTalk hosts and vice versa. These proprietary protocol suites generally have
analogous layers to the OSI reference model and follow the client-server communication
method. They generally work great in Local Area Networks (LAN) that are closed, without
the need to communicate with the outside world. When traffic does need to move beyond
the local LAN, typically, an internet working device, such as a router, is used to translate
from one protocol to another. An example would be a router connecting an AppleTalk
network to an IP-based network. The translation is usually not perfect, but since most of the
communication happens within the LAN in the early days, it is okay.

However, as the need for inter-network communication rises beyond the LAN, the need for
standardizing the network protocol suites becomes greater. The proprietary protocols
eventually gave way to the standardized protocol suites of TCP, UDP, and IP, which
greatly enhanced the ability of one network to talk to another. The internet, the greatest
network of them all, relies on these protocols to function properly. In the next few sections,
we will take a look at each of the protocol suites.

Review of TCP/IP Protocol Suite and Python Chapter 1

[16]

The transmission control protocol
The Transmission Control Protocol (TCP) is one of the main protocols used on the internet
today. If you have opened a web page or have sent an email, you have come across the TCP
protocol. The protocol sits at layer 4 of the OSI model, and it is responsible for delivering
the data segment between two nodes in a reliable and error-checked manner. The TCP
consists of a 160-bit header consisting of, among others, source and destination ports, a
sequence number, an acknowledgment number, control flags, and a checksum:

TCP header

Functions and characteristics of TCP
TCP uses datagram sockets or ports to establish a host-to-host communication. The
standard body, called Internet Assigned Numbers Authority (IANA) designates well-
known ports to indicate certain services, such as port 80 for HTTP (web) and port 25 for
SMTP (mail). The server in the client-server model typically listens on one of these well-
known ports in order to receive communication requests from the client. The TCP
connection is managed by the operating system by the socket that represents the local
endpoint for connection.

The protocol operation consists of a state machine, where the machine needs to keep track
of when it is listening for an incoming connection, during the communication session, as
well as releasing resources once the connection is closed. Each TCP connection goes
through a series of states such as Listen, SYN-SENT, SYN-RECEIVED, ESTABLISHED, FIN-
WAIT, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT, and CLOSED.

Review of TCP/IP Protocol Suite and Python Chapter 1

[17]

TCP messages and data transfer
The biggest difference between TCP and User Datagram Protocol (UDP), which is its close
cousin on the same layer, is that it transmits data in an ordered and reliable fashion. The
fact that the operation guarantees delivery is often referred to TCP as a connection-oriented
protocol. It does this by first establishing a three-way handshake to synchronize the
sequence number between the transmitter and the receiver, SYN, SYN-ACK, and ACK.

The acknowledgment is used to keep track of subsequent segments in the conversation.
Finally, at the end of the conversation, one side will send a FIN message, and the other side
will ACK the FIN message as well as sending a FIN message of its own. The FIN initiator
will then ACK the FIN message that it received.

As many of us who have troubleshot a TCP connection can tell you, the operation can get
quite complex. One can certainly appreciate that, most of the time, the operation just
happens silently in the background.

A whole book could be written about the TCP protocol; in fact, many excellent books have
been written on the protocol.

As this section is a quick overview, if interested, The TCP/IP Guide
(http:/ / www. tcpipguide. com/) is an excellent free resource that you can
use to dig deeper into the subject.

User datagram protocol
The User Datagram Protocol (UDP) is also a core member of the internet protocol suite.
Like TCP, it operates on layer 4 of the OSI model that is responsible for delivering data
segments between the application and the IP layer. Unlike TCP, the header is only 64-bit,
which only consists of a source and destination port, length, and checksum. The
lightweight header makes it ideal for applications that prefer faster data delivery without
setting up the session between two hosts or needing reliable data delivery. Perhaps it is
hard to imagine with today's fast internet connections, but the extra header made a big
difference to the speed of transmission in the early days of X.21 and frame relay links.
Although, as important as the speed difference is, not having to maintain various states,
such as TCP, also saves computer resources on the two endpoints:

UDP header

http://www.tcpipguide.com/
http://www.tcpipguide.com/
http://www.tcpipguide.com/
http://www.tcpipguide.com/
http://www.tcpipguide.com/
http://www.tcpipguide.com/
http://www.tcpipguide.com/
http://www.tcpipguide.com/
http://www.tcpipguide.com/
http://www.tcpipguide.com/

Review of TCP/IP Protocol Suite and Python Chapter 1

[18]

You might now wonder why UDP was ever used at all in the modern age; given the lack of
reliable transmission, wouldn't we want all the connections to be reliable and error-free? If
you think about multimedia video streaming or Skype calling, those applications benefit
from a lighter header when the application just wants to deliver the datagram as quickly as
possible. You can also consider the fast DNS lookup process based on the UDP protocol.
When the address you type in on the browser is translated into a computer understandable
address, the user will benefit from a lightweight process, since this has to happen before
even the first bit of information is delivered to you from your favorite website.

Again, this section does not do justice to the topic of UDP, and the reader is encouraged to
explore the topic through various resources if you are is interested in learning more about
UDP.

The internet protocol
As network engineers will tell you, they live at the Internet Protocol (IP) layer, which is
layer 3 on the OSI model. IP has the job of addressing and routing between end nodes,
among others. The addressing of an IP is probably its most important job. The address
space is divided into two parts: the network and the host portion. The subnet mask is used
to indicate which portion in the network address consists of the network and which portion
is the host by matching the network portion with a 1 and the host portion with a 0. Both
IPv4 and, later, IPv6 expresses the address in the dotted notation, for example,
192.168.0.1. The subnet mask can either be in a dotted notation (255.255.255.0) or use
a forward slash to express the number of bits that should be considered in the network bit
(/24):

IPv4 header

Review of TCP/IP Protocol Suite and Python Chapter 1

[19]

The IPv6 header, the next generation of the IP header of IPv4, has a fixed portion and
various extension headers:

IPv6 fixed header

The Next Header field in the fixed header section can indicate an extension header to be
followed that carries additional information. The extension headers can include routing and
fragment information. As much as the protocol designer would like to move from IPv4 to
IPv6, the internet today is still pretty much addressed with IPv4, with some of the service
provider networks addressed with IPv6 internally.

The IP NAT and security
Network Address Translation (NAT) is typically used for translating a range of private
IPv4 addresses into publicly routable IPv4 addresses. But it can also mean a translation
between IPv4 to IPv6, such as at a carrier edge when they use IPv6 inside of the network
that needs to be translated to IPv4 when the packet leaves the network. Sometimes, NAT6
to 6 is used as well for security reasons.

Security is a continuous process that integrates all the aspects of networking, including
automation and Python. This book aims to use Python to help you manage the network;
security will be addressed as part of the following chapters in the book, such as using
SSHv2 over telnet. We will also look at how we can use Python and other tools to gain
visibility in the network.

Review of TCP/IP Protocol Suite and Python Chapter 1

[20]

IP routing concepts
In my opinion, IP routing is about having the intermediate devices between the two
endpoints transmit the packets between them based on the IP header. For all
communication via the internet, the packet will traverse through various intermediate
devices. As mentioned, the intermediate devices consist of routers, switches, optical gears,
and various other gears that do not examine beyond the network and transport layer. In a
road trip analogy, you might travel in the United States from the city of San Diego in
California to the city of Seattle in Washington. The IP source address is analogous to San
Diego and the destination IP address can be thought of as Seattle. On your road trip, you
will stop by many different intermediate spots, such as Los Angeles, San Francisco, and
Portland; these can be thought of as the routers and switches between the source and
destination.

Why was this important? In a way, this book is about managing and optimizing these
intermediate devices. In the age of mega data centers that span the size of multiple
American football fields, the need for efficient, agile, reliable, and cost-effective ways to
manage the network becomes a major point of competitive advantage for companies. In
future chapters, we will dive into how we can use Python programming to effectively
manage a network.

Python language overview
In a nutshell, this book is about making our network engineering lives easier with Python.
But what is Python and why is it the language of choice of many DevOps engineers? In the
words of the Python Foundation Executive Summary (https:/ / www.python. org/ doc/
essays/blurb/):

"Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics. Its high-level, built-in data structure, combined with dynamic typing
and dynamic binding, makes it very attractive for Rapid Application Development, as well
as for use as a scripting or glue language to connect existing components together.
Python's simple, easy-to-learn syntax emphasizes readability and therefore reduces the
cost of program maintenance."

https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/

Review of TCP/IP Protocol Suite and Python Chapter 1

[21]

If you are somewhat new to programming, the object-oriented, dynamic semantics
mentioned previously probably do not mean much to you. But I think we can all agree that
for rapid application development, simple, and easy-to-learn syntax sounds like a good
thing. Python, as an interpreted language, means there is no compilation process required,
so the time to write, test, and edit Python programs is greatly reduced. For simple scripts, if
your script fails, a print statement is usually all you need to debug what was going on.
Using the interpreter also means that Python is easily ported to different types of operating
systems, such as Windows and Linux, and a Python program written on one operating
system can be used on another.

The object-oriented nature encourages code reuse by breaking a large program into simple
reusable objects, as well as other reusable formats with functions, modules, and packages.
In fact, all Python files are modules that can be reused or imported into another Python
program. This makes it easy to share programs between engineers and encourages code
reuse. Python also has a batteries included mantra, which means that for common tasks, you
need not download any additional packages. In order to achieve this without the code
being too bloated, a set of standard libraries is installed when you install the Python
interpreter. For common tasks such as regular expression, mathematics functions, and
JSON decoding, all you need is the import statement, and the interpreter will move those
functions into your program. This is what I would consider one of the killer features of the
Python language.

Lastly, the fact that Python code can start in a relatively small-sized script with a few lines
of code and grow into a full production system is very handy for network engineers. As
many of us know, the network typically grows organically without a master plan. A
language that can grow with your network in size is invaluable. You might be surprised to
see a language that was deemed as a scripting language by many is being used for full
production systems by many cutting-edge companies (organizations using Python, https:/
/wiki.python.org/ moin/ OrganizationsUsingPython).

If you have ever worked in an environment where you have to switch between working on
different vendor platforms, such as Cisco IOS and Juniper Junos, you know how painful it
is to switch between syntaxes and usage when trying to achieve the same task. With Python
being flexible enough for large and small programs, there is no such context switching,
because it is just Python.

For the rest of the chapter, we will take a high-level tour of the Python language for a bit of
a refresher. If you are already familiar with the basics, feel free to quickly scan through it or
skip the rest of the chapter.

https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython
https://wiki.python.org/moin/OrganizationsUsingPython

Review of TCP/IP Protocol Suite and Python Chapter 1

[22]

Python versions
As many readers are already aware, Python has been going through a transition from
Python 2 to Python 3 for the last few years. Python 3 was released back in 2008, over 10
years ago, with active development with the most recent release of 3.7. Unfortunately,
Python 3 is not backward compatible with Python 2. At the time of writing the second
edition of this book, in the middle of 2018, the Python community has largely moved over
to Python 3. The latest Python 2.x release, 2.7, was released over six years ago in mid-2010.
Fortunately, both versions can coexist on the same machine. Personally, I use Python 2 as
my default interpreter when I type in Python at the Command Prompt, and I use Python 3
when I need to use Python 3. More information is given in the next section about invoking
Python interpreter, but here is an example of invoking Python 2 and Python 3 on an
Ubuntu Linux machine:

$ python
Python 2.7.12 (default, Dec 4 2017, 14:50:18)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> exit()

$ python3
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> exit()

With the 2.7 release being end-of-life, most Python frameworks now support Python 3.
Python 3 also has lots of good features, such as asynchronous I/O that can be taken
advantage of when we need to optimize our code. This book will use Python 3 for its code
examples unless otherwise stated. We will also try to point out the Python 2 and Python 3
differences when applicable.

If a particular library or framework is better suited for Python 2, such as Ansible (see the
following information), it will be pointed out and we will use Python 2 instead.

At the time of writing, Ansible 2.5 and above have support for Python 3.
Prior to 2.5, Python 3 support was considered a tech preview. Given the
relatively new supportability, many of the community modules are still
yet to migrate to Python 3. For more information on Ansible and Python 3,
please see https:/ /docs. ansible. com/ansible/ 2.5/ dev_ guide/
developing_ python_ 3. html.

https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html
https://docs.ansible.com/ansible/2.5/dev_guide/developing_python_3.html

Review of TCP/IP Protocol Suite and Python Chapter 1

[23]

Operating system
As mentioned, Python is cross-platform. Python programs can be run on Windows, Mac,
and Linux. In reality, certain care needs to be taken when you need to ensure cross-
platform compatibility, such as taking care of the subtle difference between backslashes in
Windows filenames. Since this book is for DevOps, systems, and network engineers, Linux
is the preferred platform for the intended audience, especially in production. The code in
this book will be tested on the Linux Ubuntu 16.06 LTS machine. I will also try my best to
make sure the code runs the same on the Windows and the MacOS platform.

If you are interested in the OS details, they are as follows:

$ uname -a
Linux packt-network-python 4.13.0-45-generic #50~16.04.1-Ubuntu SMP Wed May
30 11:18:27 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux

Running a Python program
Python programs are executed by an interpreter, which means the code is fed through this
interpreter to be executed by the underlying operating system and results are displayed.
There are several different implementations of the interpreter by the Python development
community, such as IronPython and Jython. In this book, we will use the most common
Python interpreter in use today, CPython. Whenever we mention Python in this book, we
are referring to CPython unless otherwise indicated.

One way you can use Python is by taking advantage of the interactive prompt. This is
useful when you want to quickly test a piece of Python code or concept without writing a
whole program. This is typically done by simply typing in the Python keyword:

Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> print("hello world")
hello world
>>>

In Python 3, the print statement is a function; therefore, it requires
parentheses. In Python 2, you can omit the parentheses.

Review of TCP/IP Protocol Suite and Python Chapter 1

[24]

The interactive mode is one of Python's most useful features. In the interactive shell, you
can type any valid statement or sequence of statements and immediately get a result back. I
typically use this to explore a feature or library that I am not familiar with. Talk about
instant gratification!

On Windows, if you do not get a Python shell prompt back, you might not
have the program in your system search path. The latest Windows Python
installation program provides a checkbox for adding Python to your
system path; make sure that is checked. Or you can add the program in
the path manually by going to Environment Settings.

A more common way to run the Python program, however, is to save your Python file and
run it via the interpreter after. This will save you from typing in the same statements over
and over again like you have to do in the interactive shell. Python files are just regular text
files that are typically saved with the .py extension. In the *Nix world, you can also add the
shebang (#!) line on top to specify the interpreter that will be used to run the file. The #
character can be used to specify comments that will not be executed by the interpreter. The
following file, helloworld.py, has the following statements:

This is a comment
print("hello world")

This can be executed as follows:

$ python helloworld.py
hello world
$

Python built-in types
Python has several standard types built in to the interpreter:

None: The Null object
Numerics: int, long, float, complex, and bool (the subclass of int with
a True or False value)
Sequences: str, list, tuple, and range
Mappings: dict
Sets: set and frozenset

Review of TCP/IP Protocol Suite and Python Chapter 1

[25]

The None type
The None type denotes an object with no value. The None type is returned in functions that
do not explicitly return anything. The None type is also used in function arguments to error
out if the caller does not pass in an actual value.

Numerics
Python numeric objects are basically numbers. With the exception of Booleans, the numeric
types of int, long, float, and complex are all signed, meaning they can be positive or
negative. A Boolean is a subclass of the integer, which can be one of two values: 1 for True,
and 0 for False. The rest of the numeric types are differentiated by how precisely they can
represent the number; for example, int are whole numbers with a limited range while
long are whole numbers with unlimited range. Floats are numbers using the double-
precision representation (64-bit) on the machine.

Sequences
Sequences are ordered sets of objects with an index of non-negative integers. In this and the
next few sections, we will use the interactive interpreter to illustrate the different types.
Please feel free to type along on your own computer.

Sometimes it surprises people that string is actually a sequence type. But if you look
closely, strings are a series of characters put together. Strings are enclosed by either single,
double, or triple quotes. Note in the following examples, the quotes have to match, and
triple quotes allow the string to span different lines:

>>> a = "networking is fun"
>>> b = 'DevOps is fun too'
>>> c = """what about coding?
... super fun!"""
>>>

The other two commonly used sequence types are lists and tuples. Lists are sequences of
arbitrary objects. Lists can be created by enclosing objects in square brackets. Just like
strings, lists are indexed by non-zero integers that start at zero. The values of lists are
retrieved by referencing the index number:

>>> vendors = ["Cisco", "Arista", "Juniper"]
>>> vendors[0]
'Cisco'
>>> vendors[1]

Review of TCP/IP Protocol Suite and Python Chapter 1

[26]

'Arista'
>>> vendors[2]
'Juniper'

Tuples are similar to lists, created by enclosing values in parentheses. Like lists, the values
in the tuple are retrieved by referencing its index number. Unlike lists, the values cannot be
modified after creation:

>>> datacenters = ("SJC1", "LAX1", "SFO1")
>>> datacenters[0]
'SJC1'
>>> datacenters[1]
'LAX1'
>>> datacenters[2]
'SFO1'

Some operations are common to all sequence types, such as returning an element by index
as well as slicing:

>>> a
'networking is fun'
>>> a[1]
'e'
>>> vendors
['Cisco', 'Arista', 'Juniper']
>>> vendors[1]
'Arista'
>>> datacenters
('SJC1', 'LAX1', 'SFO1')
>>> datacenters[1]
'LAX1'
>>>
>>> a[0:2]
'ne'
>>> vendors[0:2]
['Cisco', 'Arista']
>>> datacenters[0:2]
('SJC1', 'LAX1')
>>>

Remember that index starts at 0. Therefore, the index of 1 is actually the
second element in the sequence.

Review of TCP/IP Protocol Suite and Python Chapter 1

[27]

There are also common functions that can be applied to sequence types, such as checking
the number of elements and the minimum and maximum values:

>>> len(a)
17
>>> len(vendors)
3
>>> len(datacenters)
3
>>>
>>> b = [1, 2, 3, 4, 5]
>>> min(b)
1
>>> max(b)
5

It will come as no surprise that there are various methods that apply only to strings. It is
worth noting that these methods do not modify the underlying string data itself and always
return a new string. If you want to use the new value, you will need to catch the return
value and assign it to a different variable:

>>> a
'networking is fun'
>>> a.capitalize()
'Networking is fun'
>>> a.upper()
'NETWORKING IS FUN'
>>> a
'networking is fun'
>>> b = a.upper()
>>> b
'NETWORKING IS FUN'
>>> a.split()
['networking', 'is', 'fun']
>>> a
'networking is fun'
>>> b = a.split()
>>> b
['networking', 'is', 'fun']
>>>

Review of TCP/IP Protocol Suite and Python Chapter 1

[28]

Here are some of the common methods for a list. This list is a very useful structure in terms
of putting multiple items together and iterating through them one at a time. For example,
we can make a list of data center spine switches and apply the same access list to all of them
by iterating through them one by one. Since a list's value can be modified after creation
(unlike tuples), we can also expand and contrast the existing list as we move along the
program:

>>> routers = ['r1', 'r2', 'r3', 'r4', 'r5']
>>> routers.append('r6')
>>> routers
['r1', 'r2', 'r3', 'r4', 'r5', 'r6']
>>> routers.insert(2, 'r100')
>>> routers
['r1', 'r2', 'r100', 'r3', 'r4', 'r5', 'r6']
>>> routers.pop(1)
'r2'
>>> routers
['r1', 'r100', 'r3', 'r4', 'r5', 'r6']

Mapping
Python provides one mapping type, called the dictionary. The dictionary is what I think of
as a poor man's database because it contains objects that can be indexed by keys. This is
often referred to as the associated array or hashing table in other languages. If you have
used any of the dictionary-like objects in other languages, you will know that this is a
powerful type, because you can refer to the object with a human-readable key. This key will
make more sense for the poor guy who is trying to maintain and troubleshoot the code.
That guy could be you only a few months after you wrote the code and troubleshooting at 2
a.m.. The object in the dictionary value can also be another data type, such as a list. You can
create a dictionary with curly braces:

>>> datacenter1 = {'spines': ['r1', 'r2', 'r3', 'r4']}
>>> datacenter1['leafs'] = ['l1', 'l2', 'l3', 'l4']
>>> datacenter1
{'leafs': ['l1', 'l2', 'l3', 'l4'], 'spines': ['r1',
'r2', 'r3', 'r4']}
>>> datacenter1['spines']
['r1', 'r2', 'r3', 'r4']
>>> datacenter1['leafs']
['l1', 'l2', 'l3', 'l4']

Review of TCP/IP Protocol Suite and Python Chapter 1

[29]

Sets
A set is used to contain an unordered collection of objects. Unlike lists and tuples, sets are
unordered and cannot be indexed by numbers. But there is one character that makes sets
standout as useful: the elements of a set are never duplicated. Imagine you have a list of IPs
that you need to put in an access list of. The only problem in this list of IPs is that they are
full of duplicates. Now, think about how many lines of code you would use to loop through
the list of IPs to sort out unique items, one at a time. However, the built-in set type would
allow you to eliminate the duplicate entries with just one line of code. To be honest, I do not
use set that much, but when I need it, I am always very thankful it exists. Once the set or
sets are created, they can be compared with each other using the union, intersection, and
differences:

>>> a = "hello"
>>> set(a)
{'h', 'l', 'o', 'e'}
>>> b = set([1, 1, 2, 2, 3, 3, 4, 4])
>>> b
{1, 2, 3, 4}
>>> b.add(5)
>>> b
{1, 2, 3, 4, 5}
>>> b.update(['a', 'a', 'b', 'b'])
>>> b
{1, 2, 3, 4, 5, 'b', 'a'}
>>> a = set([1, 2, 3, 4, 5])
>>> b = set([4, 5, 6, 7, 8])
>>> a.intersection(b)
{4, 5}
>>> a.union(b)
{1, 2, 3, 4, 5, 6, 7, 8}
>>> 1 *
{1, 2, 3}
>>>

Python operators
Python has some numeric operators that you would expect; note that the truncating
division, (//, also known as floor division) truncates the result to an integer and a floating
point and returns the integer value. The modulo (%) operator returns the remainder value in
the division:

>>> 1 + 2
3

Review of TCP/IP Protocol Suite and Python Chapter 1

[30]

>>> 2 - 1
1
>>> 1 * 5
5
>>> 5 / 1
5.0
>>> 5 // 2
2
>>> 5 % 2
1

There are also comparison operators. Note the double equals sign for comparison and a
single equals sign for variable assignment:

>>> a = 1
>>> b = 2
>>> a == b
False
>>> a > b
False
>>> a < b
True
>>> a <= b
True

We can also use two of the common membership operators to see whether an object is in a
sequence type:

>>> a = 'hello world'
>>> 'h' in a
True
>>> 'z' in a
False
>>> 'h' not in a
False
>>> 'z' not in a
True

Python control flow tools
The if, else, and elif statements control conditional code execution. As one would
expect, the format of the conditional statement is as follows:

if expression:
 do something
elif expression:

Review of TCP/IP Protocol Suite and Python Chapter 1

[31]

 do something if the expression meets
elif expression:
 do something if the expression meets
...
else:
 statement

Here is a simple example:

>>> a = 10
>>> if a > 1:
... print("a is larger than 1")
... elif a < 1:
... print("a is smaller than 1")
... else:
... print("a is equal to 1")
...
a is larger than 1
>>>

The while loop will continue to execute until the condition is false, so be careful with this
one if you don't want to continue to execute (and crash your process):

while expression:
 do something

>>> a = 10
>>> b = 1
>>> while b < a:
... print(b)
... b += 1
...
1
2
3
4
5
6
7
8
9

Review of TCP/IP Protocol Suite and Python Chapter 1

[32]

The for loop works with any object that supports iteration; this means all the built-in
sequence types, such as lists, tuples, and strings, can be used in a for loop. The letter i in
the following for loop is an iterating variable, so you can typically pick something that
makes sense within the context of your code:

for i in sequence:
 do something

>>> a = [100, 200, 300, 400]
>>> for number in a:
... print(number)
...
100
200
300
400

You can also make your own object that supports the iterator protocol and be able to use
the for loop for this object.

Constructing such an object is outside the scope of this chapter, but it is
useful knowledge to have; you can read more about it at https:/ / docs.
python. org/ 3/ c- api/ iter. html.

Python functions
Most of the time, when you find yourself copy and pasting some pieces of code, you should
break it up into a self-contained chunk into functions. This practice allows for better
modularity, is easier to maintain, and allows for code reuse. Python functions are defined
using the def keyword with the function name, followed by the function parameters. The
body of the function consists of the Python statements that are to be executed. At the end of
the function, you can choose to return a value to the function caller, or by default, it will
return the None object if you do not specify a return value:

def name(parameter1, parameter2):
 statements
 return value

We will see a lot more examples of function in the following chapters, so here is a quick
example:

>>> def subtract(a, b):
... c = a - b

https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html
https://docs.python.org/3/c-api/iter.html

Review of TCP/IP Protocol Suite and Python Chapter 1

[33]

... return c

...
>>> result = subtract(10, 5)
>>> result
5
>>>

Python classes
Python is an object-oriented programming (OOP) language. The way Python creates
objects is with the class keyword. A Python object is most commonly a collection of
functions (methods), variables, and attributes (properties). Once a class is defined, you can
create instances of such a class. The class serves as a blueprint for subsequent instances.

The topic of OOP is outside the scope of this chapter, so here is a simple example of a
router object definition:

>>> class router(object):
... def __init__(self, name, interface_number,
vendor):
... self.name = name
... self.interface_number = interface_number
... self.vendor = vendor
...
>>>

Once defined, you are able to create as many instances of that class as you'd like:

>>> r1 = router("SFO1-R1", 64, "Cisco")
>>> r1.name
'SFO1-R1'
>>> r1.interface_number
64
>>> r1.vendor
'Cisco'
>>>
>>> r2 = router("LAX-R2", 32, "Juniper")
>>> r2.name
'LAX-R2'
>>> r2.interface_number
32
>>> r2.vendor
'Juniper'
>>>

Review of TCP/IP Protocol Suite and Python Chapter 1

[34]

Of course, there is a lot more to Python objects and OOP. We will look at more examples in
future chapters.

Python modules and packages
Any Python source file can be used as a module, and any functions and classes you define
in that source file can be reused. To load the code, the file referencing the module needs to
use the import keyword. Three things happen when the file is imported:

The file creates a new namespace for the objects defined in the source file1.
The caller executes all the code contained in the module2.
The file creates a name within the caller that refers to the module being imported.3.
The name matches the name of the module

Remember the subtract() function that you defined using the interactive shell? To reuse
the function, we can put it into a file named subtract.py:

def subtract(a, b):
 c = a - b
 return c

In a file within the same directory of subtract.py, you can start the Python interpreter
and import this function:

Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for
more information.
>>> import subtract
>>> result = subtract.subtract(10, 5)
>>> result
5

This works because, by default, Python will first search for the current directory for the
available modules. If you are in a different directory, you can manually add a search path
location using the sys module with sys.path. Remember the standard library that we
mentioned a while back? You guessed it, those are just Python files being used as modules.

Review of TCP/IP Protocol Suite and Python Chapter 1

[35]

Packages allow a collection of modules to be grouped together. This further organizes
Python modules into a more namespace protection to further reusability. A package is
defined by creating a directory with a name you want to use as the namespace, then you
can place the module source file under that directory. In order for Python to recognize it as
a Python-package, just create a __init__.py file in this directory. In the same example as
the subtract.py file, if you were to create a directory called math_stuff and create a
__init__.py file:

echou@pythonicNeteng:~/Master_Python_Networking/
Chapter1$ mkdir math_stuff
echou@pythonicNeteng:~/Master_Python_Networking/
Chapter1$ touch math_stuff/__init__.py
echou@pythonicNeteng:~/Master_Python_Networking/
Chapter1$ tree .
.
├── helloworld.py
└── math_stuff
 ├── __init__.py
 └── subtract.py

1 directory, 3 files
echou@pythonicNeteng:~/Master_Python_Networking/
Chapter1$

The way you will now refer to the module will need to include the package name:

>>> from math_stuff.subtract import subtract
>>> result = subtract(10, 5)
>>> result
5
>>>

As you can see, modules and packages are great ways to organize large code files and make
sharing Python code a lot easier.

Review of TCP/IP Protocol Suite and Python Chapter 1

[36]

Summary
In this chapter, we covered the OSI model and reviewed network protocol suites, such as
TCP, UDP, and IP. They work as the layers that handle the addressing and communication
negotiation between any two hosts. The protocols were designed with extensibility in mind
and have largely been unchanged from their original design. Considering the explosive
growth of the internet, that is quite an accomplishment.

We also quickly reviewed the Python language, including built-in types, operators, control
flows, functions, classes, modules, and packages. Python is a powerful, production-ready
language that is also easy to read. This makes the language an ideal choice when it comes to
network automation. Network engineers can leverage Python to start with simple scripts
and gradually move on to other advanced features.

In Chapter 2, Low-Level Network Device Interactions, we will start to look at using Python to
programmatically interact with network equipment.

2
Low-Level Network Device

Interactions
In Chapter 1, Review of TCP/IP Protocol Suite and Python, we looked at the theories and
specifications behind network communication protocols. We also took a quick tour of the
Python language. In this chapter, we will start to dive deeper into the management of
network devices using Python. In particular, we will examine the different ways in which
we can use Python to programmatically communicate with legacy network routers and
switches.

What do I mean by legacy network routers and switches? While it is hard to imagine any
networking device coming out today without an Application Program Interface (API) for
programmatic communication, it is a known fact that many of the network devices
deployed in previous years did not contain API interfaces. The intended method of
management for those devices was through Command Line Interfaces (CLIs) using
terminal programs, which were originally developed with a human engineer in mind. The
management relied on the engineer's interpretation of the data returned from the device for
appropriate action. As the number of network devices and the complexity of the network
grew, it became increasingly difficult to manually manage them one by one.

Python has two great libraries that can help with these tasks, Pexpect and Paramiko, as well
as other libraries derived from them. This chapter will cover Pexpect first, then move on
with examples from Paramiko. Once you understand the basics of Paramiko, it is easy to
branch out to expanded libraries such as Netmiko. It is also worth mentioning that Ansible
(covered in Chapters 4, The Python Automation Framework – Ansible Basics, and Chapter
5, The Python Automation Framework – Beyond Basics) relies heavily on Paramiko for its
network modules. In this chapter, we will take a look at the following topics:

The challenges of the CLI
Constructing a virtual lab
The Python Pexpect library

Low-Level Network Device Interactions Chapter 2

[38]

The Python Paramiko library
The downsides of Pexpect and Paramiko

Let's get started!

The challenges of the CLI
At the Interop expo in Las Vegas in 2014, BigSwitch Networks' CEO Douglas Murray
displayed the following slide to illustrate what had changed in Data Center Networking
(DCN) in the 20 years between 1993 to 2013:

Data center networking changes (source: https:/ / www. bigswitch. com/ sites/ default/ files/ presentations/
murraydouglasstartuphotseatpanel. pdf)

His point was apparent: not much had changed in those 20 years in the way we manage
network devices. While he might have been negatively biased toward the incumbent
vendors when displaying this slide, his point is well taken. In his opinion, the only thing
that had changed about managing routers and switches in 20 years was the protocol
changing from the less secure Telnet to the more secure SSH.

https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf
https://www.bigswitch.com/sites/default/files/presentations/murraydouglasstartuphotseatpanel.pdf

Low-Level Network Device Interactions Chapter 2

[39]

It was right around the same time in 2014 that we started to see the industry coming to a
consensus about the clear need to move away from manual, human-driven CLI toward an
automatic, computer-centric automation API. Make no mistake, we still need to directly
communicate with the device when making network designs, bringing up initial proof of
concepts, and deploying the topology for the first time. However, once we have moved
beyond the initial deployment, the requirement is to consistently make the same changes
reliably, to make them error-free, and to repeat them over and over again without the
engineer being distracted or feeling tired. This requirement sounds like an ideal job for
computers and our favorite language, Python.

Referring back to the slide, the main challenge is the interaction between the router and the
administrator. The router will output a series of information and will expect the
administrator to enter a series of manual commands from the engineer's interpretation of
the output. For example, you have to type in enable to get into a privileged mode, and
upon receiving the returned prompt with the # sign, you then type in configure
terminal in order to go into the configuration mode. The same process can further be
expanded into the interface configuration mode and routing protocol configuration mode.
This is in sharp contrast to a computer-driven, programmatic mindset. When the computer
wants to accomplish a single task, say, put an IP address on an interface, it wants to
structurally give all the information to the router at once, and it would expect a single yes
or no answer from the router to indicate the success or failure of the task.

The solution, as implemented by both Pexpect and Paramiko, is to treat the interactive
process as a child process and watch over the interaction between the process and the
destination device. Based on the returned value, the parent process will decide the
subsequent action, if any.

Constructing a virtual lab
Before we dive into the packages, let's examine the options of putting together a lab for the
benefit of learning. As the old saying goes, practice makes perfect: we need an isolated
sandbox to safely make mistakes, try out new ways of doing things, and repeat some of the
steps to reinforce concepts that were not clear in the first try. It is easy enough to install
Python and the necessary packages for the management host, but what about those routers
and switches that we want to simulate?

Low-Level Network Device Interactions Chapter 2

[40]

To put together a network lab, we basically have two options, each with its advantages and
disadvantages:

Physical device: This option consists of physical devices that you can see and
touch. If you are lucky enough, you might be able to put together a lab that is an
exact replication of your production environment:

Advantages: It is an easy transition from lab to production, easier
to understand by managers and fellow engineers who can look at
and touch the devices. In short, the comfort level with physical
devices is extremely high because of familiarity.
Disadvantages: It is relatively expensive to pay for a device that is
only used in the lab. Devices require engineering hours to rack and
stack and are not very flexible once constructed.

Virtual devices: These are emulations or simulations of actual network devices.
They are either provided by the vendors or by the open source community:

Advantages: Virtual devices are easier to set up, relatively cheap,
and can make changes to the topology quickly.
Disadvantages: They are usually a scaled-down version of their
physical counterpart. Sometimes there are feature gaps between
the virtual and the physical device.

Of course, deciding on a virtual or physical lab is a personal decision derived from a trade-
off between the cost, ease of implementation, and the risk of having a gap between lab and
production. In some of the environments I have worked on, the virtual lab is used when
doing an initial proof-of-concept while the physical lab is used when we move closer to the
final design.

In my opinion, as more and more vendors decide to produce virtual appliances, the virtual
lab is the way to proceed in a learning environment. The feature gap of the virtual
appliance is relatively small and specifically documented, especially when the virtual
instance is provided by the vendor. The cost of the virtual appliance is relatively small
compared to buying physical devices. The time-to-build using virtual devices is quicker
because they are usually just software programs.

For this book, I will use a combination of physical and virtual devices for
concept demonstration with a preference for virtual devices. For the examples we will see,
the differences should be transparent. If there are any known differences between the
virtual and physical devices pertaining to our objectives, I will make sure to list them.

Low-Level Network Device Interactions Chapter 2

[41]

On the virtual lab front, besides images from various vendors, I am using a program from
Cisco called Virtual Internet Routing Lab (VIRL), https:/ /learningnetworkstore. cisco.
com/virtual-internet- routing- lab- virl/ cisco- personal- edition- pe- 20- nodes- virl-
20.

I want to point out that the use of this program is entirely optional for the
reader. But it is strongly recommended that the reader have some lab
equipment to follow along with the examples in this book.

Cisco VIRL
I remember when I first started to study for my Cisco Certified Internetwork Expert
(CCIE) lab exam, I purchased some used Cisco equipment from eBay to study with. Even at
a discount, each router and switch cost hundreds of US dollars, so to save money, I
purchased some really outdated Cisco routers from the 1980s (search for Cisco AGS routers
in your favorite search engine for a good chuckle), which significantly lacked features and
horsepower, even for lab standards. As much as it made for an interesting conversation
with family members when I turned them on (they were really loud), putting the physical
devices together was not fun. They were heavy and clunky, it was a pain to connect all the
cables, and to introduce link failure, I would literally unplug a cable.

Fast-forward a few years. Dynamip was created and I fell in love with how easy it was to
create different network scenarios. This was especially important when I tried to learn a
new concept. All you need is the IOS images from Cisco, a few carefully constructed
topology files, and you can easily construct a virtual network that you can test your
knowledge on. I had a whole folder of network topologies, pre-saved configurations, and
different version of images, as called for by the scenario. The addition of a GNS3 frontend
gives the whole setup a beautiful GUI facelift. With GNS3, you can just click and drop your
links and devices; you can even just print out the network topology for your manager right
out of the GNS3 design panel. The only thing that was lacking was the tool not being
officially blessed by the vendor and the perceived lack of credibility because of it.

In 2015, the Cisco community decided to fulfill this need by releasing the Cisco VIRL. If you
have a server that meets the requirements and you are willing to pay for the required
annual license, this is my preferred method of developing and trying out much of the
Python code, both for this book and my own production use.

https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20
https://learningnetworkstore.cisco.com/virtual-internet-routing-lab-virl/cisco-personal-edition-pe-20-nodes-virl-20

Low-Level Network Device Interactions Chapter 2

[42]

As of January 1 2017, only the personal edition 20-Node license is
available for purchase for USD $199.99 per year.

Even at a monetary cost, in my opinion, the VIRL platform offers a few advantages over
other alternatives:

Ease of use: All the images for IOSv, IOS-XRv, CSR100v, NX-OSv, and ASAv are
included in a single download.
Official (kind of): Although support is community-driven, it is a widely used
tool internally at Cisco. Because of its popularity, the bugs get fixed quickly, new
features are carefully documented, and useful knowledge is widely shared
among its users.
The cloud migration path: The project offers a logical migration path when your
emulation grows out of the hardware power you have, such as Cisco dCloud
(https:/ / dcloud. cisco. com/), VIRL on Packet (http:/ / virl. cisco. com/ cloud/
), and Cisco DevNet (https:/ /developer. cisco. com/). This is an important
feature that sometimes gets overlooked.
The link and control-plane simulation: The tool can simulate latency, jitter, and
packet loss on a per-link basis for real-world link characteristics. There is
also a control-plane traffic generator for external route injection.
Others: The tool offers some nice features, such as VM Maestro topology design
and simulation control, AutoNetkit for automatic config generation, and user
workspace management if the server is shared. There are also open source
projects such as virlutils (https:/ /github. com/ CiscoDevNet/ virlutils), which
are actively worked on by the community to enhance the workability of the tool.

We will not use all of the features in VIRL in this book. But since this is a relatively new tool
that is worth your consideration, if you do decide this is the tool you would like to use, I
want to offer some of the setups I used.

Again, I want to stress the importance of having a lab, but it does not need
to be the Cisco VIRL lab. The code examples provided in this book should
work across any lab device, as long as they run the same software type
and version.

https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
http://virl.cisco.com/cloud/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils
https://github.com/CiscoDevNet/virlutils

Low-Level Network Device Interactions Chapter 2

[43]

VIRL tips
The VIRL website (http:/ /virl. cisco. com/) offers lots of guidance, preparation, and
documentation. I also find that the VIRL user community generally offers quick and
accurate help. I will not repeat information already offered in those two places; however,
here are some of the setups I use for the lab in this book:

VIRL uses two virtual Ethernet interfaces for connections. The first interface is set1.
up as NAT for the host machine's internet connection, and the second is used for
local management interface connectivity (VMnet2 in the following example). I
use a separate virtual machine with a similar network setup in order to run my
Python code, with the first primary Ethernet used for internet connectivity and
the second Ethernet connection to Vmnet2 for lab device management network:

http://virl.cisco.com/
http://virl.cisco.com/
http://virl.cisco.com/
http://virl.cisco.com/
http://virl.cisco.com/
http://virl.cisco.com/
http://virl.cisco.com/
http://virl.cisco.com/
http://virl.cisco.com/
http://virl.cisco.com/

Low-Level Network Device Interactions Chapter 2

[44]

VMnet2 is a custom network created to connect the Ubuntu host with the VIRL2.
virtual machine:

In the Topology Design option, I set the Management Network option to3.
Shared flat network in order to use VMnet2 as the management network on the
virtual routers:

Low-Level Network Device Interactions Chapter 2

[45]

Under the node configuration, you have the option to statically configure the4.
management IP. I try to statically set the management IP addresses instead of
having them dynamically assigned by the software. This allows for more
deterministic accessibility:

Low-Level Network Device Interactions Chapter 2

[46]

Cisco DevNet and dCloud
Cisco provides two other excellent, and, at the time of writing, free, methods for practicing
network automation with various Cisco gears. Both of the tools require a Cisco Connection
Online (CCO) login. They are both really good, especially for the price point (they are
free!). It is hard for me to imagine that these online tools will remain free for long; it is my
belief that, at some point, these tools will need to charge money for their usage or be rolled
into a bigger initiative that requires a fee. However, we can take advantage of them while
they are available at no charge.

The first tool is the Cisco DevNet (https:/ /developer. cisco. com/) sandbox, which
includes guided learning tracks, complete documentation, and sandbox remote labs, among
other benefits. Some of the labs are always on, while others you need to reserve. The lab
availability will depend on usage. It is a great alternative if you do not already have a lab at
your own disposal. In my experience with DevNet, some of the documentation and links
were outdated, but they can be easily retrieved for the most updated version. In a rapidly
changing field such as software development, this is somewhat expected. DevNet is
certainly a tool that you should take full advantage of, regardless of whether you have a
locally run VIRL host or not:

https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/
https://developer.cisco.com/

Low-Level Network Device Interactions Chapter 2

[47]

Another online lab option for Cisco is https:/ /dcloud. cisco. com/. You can think of
dCloud as running VIRL on other people's servers without having to manage or pay for
those resources. It seems that Cisco is treating dCloud as both a standalone product as well
as an extension to VIRL. For example, in the use case of when you are unable to run more
than a few IOX-XR or NX-OS instances locally, you can use dCloud to extend your local
lab. It is a relatively new tool, but it is definitely worth a look:

https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/
https://dcloud.cisco.com/

Low-Level Network Device Interactions Chapter 2

[48]

GNS3
There are a few other virtual labs that I use for this book and other purposes. The GNS3 tool
is one of them:

As mentioned previously in this chapter, GNS3 is what a lot of us used to study for
certification tests and to practice for labs. The tool has really grown up from the early days
of the simple frontend for Dynamips into a viable commercial product. Cisco-made tools,
such as VIRL, DevNet, and dCloud, only contain Cisco technologies. Even though they
provide ways for virtual lab devices to communicate with the outside world, they are not as
easy as just having multi-vendor virtualized appliances living directly in the simulation
environment. GNS3 is vendor-neutral and can include a multi-vendor virtualized platform
directly in the lab. This is typically done either by making a clone of the image (such as
Arista vEOS) or by directly launching the network device image via other hypervisors
(such as Juniper Olive emulation). Some might argue that GNS3 does not have the breadth
and depth of the Cisco VIRL project, but since they can run different variation Cisco
technologies, I often use it when I need to incorporate other vendor technologies into the
lab.

https://gns3.com/

Low-Level Network Device Interactions Chapter 2

[49]

Another multi-vendor network emulation environment that has gotten a lot of great
reviews is the Emulated Virtual Environment Next Generation (EVE-NG), http:/ /www.
eve-ng.net/. I personally do not have much experience with the tool, but many of my
colleagues and friends in the industry use it for their network labs.

There are also other virtualized platforms, such as Arista vEOS (https:/ / eos.arista. com/
tag/veos/), Juniper vMX (http:/ /www. juniper. net/ us/en/ products- services/ routing/
mx-series/vmx/), and vSRX (http:/ /www. juniper. net/ us/en/ products- services/
security/srx-series/ vsrx/), which you can use as a standalone virtual appliance during
testing. They are great complementary tools for testing platform-specific features, such as
the differences between the API versions on the platform. Many of them are offered as paid
products on public cloud provider marketplaces for easier access. They are often offered the
identical feature as their physical counterpart.

Python Pexpect library
Pexpect is a pure Python module for spawning child applications, controlling them, and
responding to expected patterns in their output. Pexpect works like Don Libes' Expect.
Pexpct allows your script to spawn a child application and control it as if a human were
typing commands. Pexpect, Read the Docs: https:/ /pexpect. readthedocs. io/en/
stable/index. html

Let's take a look at the Python Pexpect library. Similar to the original Tcl Expect module by
Don Libe, Pexpect launches or spawns another process and watches over it in order to
control the interaction. The Expect tool was originally developed to automate interactive
processes such as FTP, Telnet, and rlogin, and was later expanded to include network
automation. Unlike the original Expect, Pexpect is entirely written in Python, which does
not require TCL or C extensions to be compiled. This allows us to use the familiar Python
syntax and its rich standard library in our code.

Pexpect installation
Since this is the first package we will install, we will install both the pip tool with
the pexpect package. The process is pretty straightforward:

sudo apt-get install python-pip #Python2
sudo apt-get install python3-pip
sudo pip3 install pexpect
sudo pip install pexpect #Python2

http://www.eve-ng.net/
http://www.eve-ng.net/
http://www.eve-ng.net/
http://www.eve-ng.net/
http://www.eve-ng.net/
http://www.eve-ng.net/
http://www.eve-ng.net/
http://www.eve-ng.net/
http://www.eve-ng.net/
http://www.eve-ng.net/
http://www.eve-ng.net/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
https://eos.arista.com/tag/veos/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
http://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html

Low-Level Network Device Interactions Chapter 2

[50]

I am using pip3 to install Python 3 packages, while using pip to install
packages in the Python 2 environment.

Do a quick to test to make sure the package is usable:

>>> import pexpect
>>> dir(pexpect)
['EOF', 'ExceptionPexpect', 'Expecter', 'PY3',
 'TIMEOUT', '__all__', '__builtins__', '__cached__',
 '__doc__', '__file__', '__loader__', '__name__',
 '__package__', '__path__', '__revision__',
 '__spec__', '__version__', 'exceptions', 'expect',
 'is_executable_file', 'pty_spawn', 'run', 'runu',
 'searcher_re', 'searcher_string', 'spawn',
 'spawnbase', 'spawnu', 'split_command_line', 'sys',
 'utils', 'which']
>>>

Pexpect overview
For our first lab, we will construct a simple network with two IOSv devices connected back
to back:

Lab topology

The devices will each have a loopback address in the 192.16.0.x/24 range and the
management IP will be in the 172.16.1.x/24 range. The VIRL topology file is included in
the accommodated book downloadable files. You can import the topology to your own
VIRL software. If you do not have VIRL, you can also view the necessary information by
opening the topology file with a text editor. The file is simply an XML file with each node's
information under the node element:

Low-Level Network Device Interactions Chapter 2

[51]

Lab node information

With the devices ready, let's take a look at how you would interact with the router if you
were to Telnet into the device:

echou@ubuntu:~$ telnet 172.16.1.20
Trying 172.16.1.20...
Connected to 172.16.1.20.
Escape character is '^]'.
<skip>
User Access Verification

Username: cisco
Password:

I used VIRL AutoNetkit to automatically generate the initial configuration of the routers,
which generated the default username cisco, and the password cisco. Notice that the
user is already in privileged mode because of the privilege assigned in the configuration:

iosv-1#sh run | i cisco
enable password cisco
username cisco privilege 15 secret 5 1Wiwq$7xt2oE0P9ThdxFS02trFw.

Low-Level Network Device Interactions Chapter 2

[52]

 password cisco
 password cisco
iosv-1#

The auto-config also generated vty access for both Telnet and SSH:

line vty 0 4
 exec-timeout 720 0
 password cisco
 login local
 transport input telnet ssh

Let's see a Pexpect example using the Python interactive shell:

Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pexpect
>>> child = pexpect.spawn('telnet 172.16.1.20')
>>> child.expect('Username')
0
>>> child.sendline('cisco')
6
>>> child.expect('Password')
0
>>> child.sendline('cisco')
6
>>> child.expect('iosv-1#')
0
>>> child.sendline('show version | i V')
19
>>> child.expect('iosv-1#')
0
>>> child.before
b'show version | i VrnCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE (fc2)rnProcessor
board ID 9MM4BI7B0DSWK40KV1IIRrn'
>>> child.sendline('exit')
5
>>> exit()

Starting from Pexpect version 4.0, you can run Pexpect on a Windows
platform. But, as noted in the Pexpect documentation, running Pexpect on
Windows should be considered experimental for now.

Low-Level Network Device Interactions Chapter 2

[53]

In the previous interactive example, Pexpect spawns off a child process and watches over it
in an interactive fashion. There are two important methods shown in the example,
expect() and sendline(). The expect() line indicates that the string the Pexpect
process looks for as an indicator for when the returned string is considered done. This is the
expected pattern. In our example, we knew the router had sent us all the information when
the hostname prompt (iosv-1#) was returned. The sendline() method indicates which
words should be sent to the remote device as the command. There is also a method called
send() but sendline() includes a linefeed, which is similar to pressing the Enter key at
the end of the words you sent in your previous telnet session. From the router's
perspective, it is just as if someone typed in the text from a Terminal. In other words, we
are tricking the routers into thinking they are interfacing with a human being when they
are actually communicating with a computer.

The before and after properties will be set to the text printed by the child application.
The before properties will be set to the text printed by the child application up to the
expected pattern. The after string will contain the text that was matched by the expected
pattern. In our case, the before text will be set to the output between the two expected
matches (iosv-1#), including the show version command. The after text is the router
hostname prompt:

>>> child.sendline('show version | i V')
19
>>> child.expect('iosv-1#')
0
>>> child.before
b'show version | i VrnCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE (fc2)rnProcessor
board ID 9MM4BI7B0DSWK40KV1IIRrn'
>>> child.after
b'iosv-1#'

What would happen if you expected the wrong term? For example, if you typed in
username instead of Username after spawning the child application, then the Pexpect
process would look for a string of username from the child process. In that case, the
Pexpect process would just hang because the word username would never be returned by
the router. The session would eventually timeout, or you could manually exit out via Ctrl +
C.

The expect() method waits for the child application to return a given string, so in the
previous example, if you wanted to accommodate both lowercase and uppercase u, you
could use the following term:

>>> child.expect('[Uu]sername')

Low-Level Network Device Interactions Chapter 2

[54]

The square bracket serves as an or operation that tells the child application to expect a
lowercase or uppercase u followed by sername as the string. What we are telling the
process is that we will accept either Username or username as the expected string.

For more information on Python regular expressions, go to https:/ /docs.
python. org/ 3. 5/ library/ re. html.

The expect() method can also contain a list of options instead of just a single string; these
options can also be regular expression themselves. Going back to the previous example,
you can use the following list of options to accommodate the two different possible strings:

>>> child.expect(['Username', 'username'])

Generally speaking, use the regular expression for a single expect string when you can fit
the different hostname in a regular expression, whereas use the possible options if you need
to catch completely different responses from the router, such as a password rejection. For
example, if you use several different passwords for your login, you want to catch % Login
invalid as well as the device prompt.

One important difference between Pexpect regular expressions and Python regular
expressions is that the Pexpect matching is non-greedy, which means they will match as
little as possible when using special characters. Because Pexpect performs regular
expression on a stream, you cannot look ahead, as the child process generating the stream
may not be finished. This means the special dollar sign character $ typically matching the
end of the line is useless because .+ will always return no characters, and the .* pattern
will match as little as possible. In general, just keep this in mind and be as specific as you
can be on the expect match strings.

Let's consider the following scenario:

>>> child.sendline('show run | i hostname')
22
>>> child.expect('iosv-1')
0
>>> child.before
b'show run | i hostnamernhostname '
>>>

Hmm... Something is not quite right here. Compare it to the Terminal output before; the
output you expect would be hostname iosv-1:

iosv-1#show run | i hostname
hostname iosv-1

https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/library/re.html

Low-Level Network Device Interactions Chapter 2

[55]

iosv-1#

Taking a closer look at the expected string will reveal the mistake. In this case, we were
missing the hash (#) sign behind the iosv-1 hostname. Therefore, the child application
treated the second part of the return string as the expected string:

>>> child.sendline('show run | i hostname')
22
>>> child.expect('iosv-1#')
0
>>> child.before
b'show run | i hostnamernhostname iosv-1rn'
>>>

You can see a pattern emerging from the usage of Pexpect after a few examples. The user
maps out the sequence of interactions between the Pexpect process and the child
application. With some Python variables and loops, we can start to construct a useful
program that will help us gather information and make changes to network devices.

Our first Pexpect program
Our first program, chapter2_1.py, extends what we did in the last section with some
additional code:

 #!/usr/bin/python3

 import pexpect

 devices = {'iosv-1': {'prompt': 'iosv-1#', 'ip': '172.16.1.20'},
'iosv-2': {'prompt': 'iosv-2#', 'ip': '172.16.1.21'}}
 username = 'cisco'
 password = 'cisco'

 for device in devices.keys():
 device_prompt = devices[device]['prompt']
 child = pexpect.spawn('telnet ' + devices[device]['ip'])
 child.expect('Username:')
 child.sendline(username)
 child.expect('Password:')
 child.sendline(password)
 child.expect(device_prompt)
 child.sendline('show version | i V')
 child.expect(device_prompt)
 print(child.before)
 child.sendline('exit')

Low-Level Network Device Interactions Chapter 2

[56]

We use a nested dictionary in line 5:

 devices = {'iosv-1': {'prompt': 'iosv-1#', 'ip':
 '172.16.1.20'}, 'iosv-2': {'prompt': 'iosv-2#',
 'ip': '172.16.1.21'}}

The nested dictionary allows us to refer to the same device (such as iosv-1) with the
appropriate IP address and prompt symbol. We can then use those values for the expect()
method later on in the loop.

The output prints out the show version | i V output on the screen for each of the
devices:

 $ python3 chapter2_1.py
 b'show version | i VrnCisco IOS Software, IOSv
 Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T,
 RELEASE SOFTWARE (fc2)rnProcessor board ID
 9MM4BI7B0DSWK40KV1IIRrn'
 b'show version | i VrnCisco IOS Software, IOSv
 Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T,
 RELEASE SOFTWARE (fc2)rn'

More Pexpect features
In this section, we will look at more Pexpect features that might come in handy when
certain situations arise.

If you have a slow or fast link to your remote device, the default expect() method timeout
is 30 seconds, which can be increased or decreased via the timeout argument:

>>> child.expect('Username', timeout=5)

You can choose to pass the command back to the user using the interact() method. This
is useful when you just want to automate certain parts of the initial task:

>>> child.sendline('show version | i V')
19
>>> child.expect('iosv-1#')
0
>>> child.before
b'show version | i VrnCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE (fc2)rnProcessor
board ID 9MM4BI7B0DSWK40KV1IIRrn'
>>> child.interact()
iosv-1#show run | i hostname

Low-Level Network Device Interactions Chapter 2

[57]

hostname iosv-1
iosv-1#exit
Connection closed by foreign host.
>>>

You can get a lot of information about the child.spawn object by printing it out in string
format:

>>> str(child)
"<pexpect.pty_spawn.spawn object at 0x7fb01e29dba8>ncommand:
/usr/bin/telnetnargs: ['/usr/bin/telnet', '172.16.1.20']nsearcher:
Nonenbuffer (last 100 chars): b''nbefore (last 100 chars): b'NTERPRISEK9-
M), Version 15.6(2)T, RELEASE SOFTWARE (fc2)rnProcessor board ID
9MM4BI7B0DSWK40KV1IIRrn'nafter: b'iosv-1#'nmatch: <_sre.SRE_Match object;
span=(164, 171), match=b'iosv-1#'>nmatch_index: 0nexitstatus: 1nflag_eof:
Falsenpid: 2807nchild_fd: 5nclosed: Falsentimeout: 30ndelimiter: <class
'pexpect.exceptions.EOF'>nlogfile: Nonenlogfile_read: Nonenlogfile_send:
Nonenmaxread: 2000nignorecase: Falsensearchwindowsize:
Nonendelaybeforesend: 0.05ndelayafterclose: 0.1ndelayafterterminate: 0.1"
>>>

The most useful debug tool for Pexpect is to log the output in a file:

>>> child = pexpect.spawn('telnet 172.16.1.20')
>>> child.logfile = open('debug', 'wb')

Use child.logfile = open('debug', 'w') for Python 2. Python 3
uses byte strings by default. For more information on Pexpect features,
check out https:/ /pexpect. readthedocs. io/en/ stable/ api/ index.
html.

Pexpect and SSH
If you try to use the previous Telnet example and plug it into an SSH session instead, you
might find yourself pretty frustrated with the experience. You always have to include the
username in the session, answering the ssh new key question, and much more mundane
tasks. There are many ways to make SSH sessions work, but luckily, Pexpect has a subclass
called pxssh, which specializes in setting up SSH connections. The class adds methods for
login, log out, and various tricky things to handle the different situations in the ssh login
process. The procedures are mostly the same, with the exception of login() and
logout():

>>> from pexpect import pxssh
>>> child = pxssh.pxssh()

https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html

Low-Level Network Device Interactions Chapter 2

[58]

>>> child.login('172.16.1.20', 'cisco', 'cisco', auto_prompt_reset=False)
True
>>> child.sendline('show version | i V')
19
>>> child.expect('iosv-1#')
0
>>> child.before
b'show version | i VrnCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE (fc2)rnProcessor
board ID 9MM4BI7B0DSWK40KV1IIRrn'
>>> child.logout()
>>>

Notice the auto_prompt_reset=False argument in the login() method. By default,
pxssh uses the Shell prompt to synchronize the output. But since it uses the PS1 option for
most of bash or CSH, they will error out on Cisco or other network devices.

Putting things together for Pexpect
As the final step, let's put everything you have learned so far about Pexpect into a script.
Putting code into a script makes it easier to use in a production environment, as well as
easier to share with your colleagues. We will write our second script, chapter2_2.py.

You can download the script from the book GitHub repository, https:/ /
github. com/ PacktPublishing/ Mastering- Python- Networking- second-
edition, as well as looking at the output generated from the script as a
result of the commands.

Refer to the following code:
 #!/usr/bin/python3

 import getpass
 from pexpect import pxssh

 devices = {'iosv-1': {'prompt': 'iosv-1#', 'ip': '172.16.1.20'},
 'iosv-2': {'prompt': 'iosv-2#', 'ip': '172.16.1.21'}}
 commands = ['term length 0', 'show version', 'show run']

 username = input('Username: ')
 password = getpass.getpass('Password: ')

 # Starts the loop for devices
 for device in devices.keys():
 outputFileName = device + '_output.txt'
 device_prompt = devices[device]['prompt']

https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition
https://github.com/PacktPublishing/Mastering-Python-Networking-second-edition

Low-Level Network Device Interactions Chapter 2

[59]

 child = pxssh.pxssh()
 child.login(devices[device]['ip'], username.strip(),
password.strip(), auto_promp t_reset=False)
 # Starts the loop for commands and write to output
 with open(outputFileName, 'wb') as f:
 for command in commands:
 child.sendline(command)
 child.expect(device_prompt)
 f.write(child.before)

 child.logout()

The script further expands from our first Pexpect program with the following additional
features:

It uses SSH instead of Telnet
It supports multiple commands instead of just one by making the commands into
a list (line 8) and loops through the commands (starting at line 20)
It prompts the user for their username and password instead of hardcoding them
in the script
It writes the output in two files, iosv-1_output.txt, and ios-2_output.txt,
to be further analyzed

For Python 2, use raw_input() instead of input() for the username
prompt. Also, use w for the file mode instead of wb.

The Python Paramiko library
Paramiko is a Python implementation of the SSHv2 protocol. Just like the pxssh subclass of
Pexpect, Paramiko simplifies the SSHv2 interaction between the host and the remote
device. Unlike pxssh, Paramiko focuses only on SSHv2 with no Telnet support. It also
provides both client and server operations.

Paramiko is the low-level SSH client behind the high-level automation framework Ansible
for its network modules. We will cover Ansible in later chapters. Let's take a look at the
Paramiko library.

Low-Level Network Device Interactions Chapter 2

[60]

Installation of Paramiko
Installing Paramiko is pretty straightforward with Python pip. However, there is a hard
dependency on the cryptography library. The library provides low-level, C-based
encryption algorithms for the SSH protocol.

The installation instruction for Windows, Mac, and other flavors of Linux
can be found at https:/ / cryptography. io/ en/latest/ installation/ .

We will show the Paramiko installation of our Ubuntu 16.04 virtual machine in the
following output. The following output shows the installation steps, as well as Paramiko
successfully imported into the Python interactive prompt.

If you are using Python 2, please follow the steps below. We will try to import the library in
the interactive prompt to make sure the library can be used:

sudo apt-get install build-essential libssl-dev libffi-dev python-dev
sudo pip install cryptography
sudo pip install paramiko
$ python
Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import paramiko
>>> exit()

If you are using Python 3, please refer the following command-lines for installing the
dependencies. After installation, we will import the library to make sure it is correctly
installed:

sudo apt-get install build-essential libssl-dev libffi-dev python3-dev
sudo pip3 install cryptography
sudo pip3 install paramiko
$ python3
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import paramiko
>>>

https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/
https://cryptography.io/en/latest/installation/

Low-Level Network Device Interactions Chapter 2

[61]

Paramiko overview
Let's look at a quick Paramiko example using the Python 3 interactive shell:

>>> import paramiko, time
>>> connection = paramiko.SSHClient()
>>> connection.set_missing_host_key_policy(paramiko.AutoAddPolicy())
>>> connection.connect('172.16.1.20', username='cisco', password='cisco',
look_for_keys=False, allow_agent=False)
>>> new_connection = connection.invoke_shell()
>>> output = new_connection.recv(5000)
>>> print(output)
b"rn***
***rn* IOSv is strictly limited to use for evaluation, demonstration and
IOS *rn* education. IOSv is provided as-is and is not supported by Cisco's
rn Technical Advisory Center. Any use or disclosure, in whole or in part,
rn of the IOSv Software or Documentation to any third party for any *rn*
purposes is expressly prohibited except as otherwise authorized by *rn*
Cisco in writing.
*rn**
**rniosv-1#"
>>> new_connection.send("show version | i Vn")
19
>>> time.sleep(3)
>>> output = new_connection.recv(5000)
>>> print(output)
b'show version | i VrnCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE (fc2)rnProcessor
board ID 9MM4BI7B0DSWK40KV1IIRrniosv-1#'
>>> new_connection.close()
>>>

The time.sleep() function inserts a time delay to ensure that all the
outputs were captured. This is particularly useful on a slower network
connection or a busy device. This command is not required but is
recommended depending on your situation.

Even if you are seeing the Paramiko operation for the first time, the beauty of Python and
its clear syntax means that you can make a pretty good educated guess at what the program
is trying to do:

>>> import paramiko
>>> connection = paramiko.SSHClient()
>>> connection.set_missing_host_key_policy(paramiko.AutoAddPolicy())
>>> connection.connect('172.16.1.20', username='cisco', password='cisco',
look_for_keys=False, allow_agent=False)

Low-Level Network Device Interactions Chapter 2

[62]

The first four lines create an instance of the SSHClient class from Paramiko. The next line
sets the policy that the client should use when the SSH server's hostname; in this case,
iosv-1, is not present in either the system host keys or the application's keys. In our
scenario, we will automatically add the key to the application's HostKeys object. At this
point, if you log on to the router, you will see the additional login session from Paramiko:

iosv-1#who
 Line User Host(s) Idle Location
*578 vty 0 cisco idle 00:00:00 172.16.1.1
 579 vty 1 cisco idle 00:01:30 172.16.1.173
Interface User Mode Idle Peer Address
iosv-1#

The next few lines invoke a new interactive shell from the connection and a repeatable
pattern of sending a command and retrieving the output. Finally, we close the connection.

Some readers who have used Paramiko before might be familiar with
the exec_command() method instead of invoking a shell. Why do we need to invoke an
interactive shell instead of using exec_command() directly? Unfortunately,
exec_command() on Cisco IOS only allows a single command. Consider the following
example with exec_command() for the connection:

>>> connection.connect('172.16.1.20', username='cisco', password='cisco',
look_for_keys=False, allow_agent=False)
>>> stdin, stdout, stderr = connection.exec_command('show version | i V')
>>> stdout.read()
b'Cisco IOS Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version
15.6(2)T, RELEASE SOFTWARE (fc2)rnProcessor board ID
9MM4BI7B0DSWK40KV1IIRrn'
>>>

Everything works great; however, if you look at the number of sessions on the Cisco device,
you will notice that the connection is dropped by the Cisco device without you closing the
connection:

iosv-1#who
 Line User Host(s) Idle Location
*578 vty 0 cisco idle 00:00:00 172.16.1.1
Interface User Mode Idle Peer Address
iosv-1#

Because the SSH session is no longer active, exec_command() will return an error if you
want to send more commands to the remote device:

>>> stdin, stdout, stderr = connection.exec_command('show version | i V')
Traceback (most recent call last):

Low-Level Network Device Interactions Chapter 2

[63]

 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.5/dist-packages/paramiko/client.py", line
435, in exec_command
 chan = self._transport.open_session(timeout=timeout)
 File "/usr/local/lib/python3.5/dist-packages/paramiko/transport.py", line
711, in open_session
 timeout=timeout)
 File "/usr/local/lib/python3.5/dist-packages/paramiko/transport.py", line
795, in open_channel
 raise SSHException('SSH session not active')
paramiko.ssh_exception.SSHException: SSH session not active
>>>

The Netmiko library by Kirk Byers is an open source Python library that
simplifies SSH management to network devices. To read about it, check
out this article, https:/ / pynet. twb- tech. com/ blog/ automation/
netmiko. html, and the source code, https:/ / github. com/ ktbyers/
netmiko.

What would happen if you did not clear out the received buffer? The output would just
keep on filling up the buffer and would overwrite it:

>>> new_connection.send("show version | i Vn")
19
>>> new_connection.send("show version | i Vn")
19
>>> new_connection.send("show version | i Vn")
19
>>> new_connection.recv(5000)
b'show version | i VrnCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE (fc2)rnProcessor
board ID 9MM4BI7B0DSWK40KV1IIRrniosv-1#show version | i VrnCisco IOS
Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE
SOFTWARE (fc2)rnProcessor board ID 9MM4BI7B0DSWK40KV1IIRrniosv-1#show
version | i VrnCisco IOS Software, IOSv Software (VIOS-ADVENTERPRISEK9-M),
Version 15.6(2)T, RELEASE SOFTWARE (fc2)rnProcessor board ID
9MM4BI7B0DSWK40KV1IIRrniosv-1#'
>>>

For consistency of the deterministic output, we will retrieve the output from the buffer each
time we execute a command.

https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko

Low-Level Network Device Interactions Chapter 2

[64]

Our first Paramiko program
Our first program will use the same general structure as the Pexpect program we have put
together. We will loop over a list of devices and commands while using Paramiko instead
of Pexpect. This will give us a good compare and contrast of the differences between
Paramiko and Pexpect.

If you have not done so already, you can download the code, chapter2_3.py, from the
book's GitHub repository, https:/ /github. com/ PacktPublishing/ Mastering- Python-
Networking-second- edition. I will list the notable differences here:

devices = {'iosv-1': {'ip': '172.16.1.20'}, 'iosv-2': {'ip':
'172.16.1.21'}}

We no longer need to match the device prompt using Paramiko; therefore, the device
dictionary can be simplified:

commands = ['show version', 'show run']

There is no sendline equivalent in Paramiko; instead, we manually include the newline
break in each of the commands:

def clear_buffer(connection):
 if connection.recv_ready():
 return connection.recv(max_buffer)

We include a new method to clear the buffer for sending commands, such as terminal
length 0 or enable, because we do not need the output for those commands. We simply
want to clear the buffer and get to the execution prompt. This function will later be used in
the loop, such as in line 25 of the script:

output = clear_buffer(new_connection)

The rest of the program should be pretty self-explanatory, similar to what we have seen in
this chapter. The last thing I would like to point out is that since this is an interactive
program, we place some buffer and wait for the command to be finished on the remote
device before retrieving the output:

time.sleep(2)

After we clear the buffer, during the time between the execution of commands, we will wait
two seconds. This will give the device adequate time to respond if it is busy.

https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking
https://github.com/PacktPublishing/Mastering-Python-Networking

Low-Level Network Device Interactions Chapter 2

[65]

More Paramiko features
We will look at Paramiko a bit later in the book, when we discuss Ansible, as Paramiko is
the underlying transport for many of the network modules. In this section, we will take a
look at some of the other features of Paramiko.

Paramiko for servers
Paramiko can be used to manage servers through SSHv2 as well. Let's look at an example of
how we can use Paramiko to manage servers. We will use key-based authentication for the
SSHv2 session.

In this example, I used another Ubuntu virtual machine on the same
hypervisor as the destination server. You can also use a server on the
VIRL simulator or an instance in one of the public cloud providers, such
as Amazon AWS EC2.

We will generate a public-private key pair for our Paramiko host:

ssh-keygen -t rsa

This command, by default, will generate a public key named id_rsa.pub, as the public
key under the user home directory ~/.ssh along with a private key named id_rsa. Treat
the private key with the same attention as you would private passwords that you do not
want to share with anybody else. You can think of the public key as a business card that
identifies who you are. Using the private and public keys, the message will be encrypted by
your private key locally and decrypted by the remote host using the public key. We should
copy the public key to the remote host. In production, we can do this via out-of-band using
a USB drive; in our lab, we can simply copy the public key to the remote host's
~/.ssh/authorized_keys file. Open up a Terminal window for the remote server, so you
can paste in the public key.

Copy the content of ~/.ssh/id_rsa on your management host with Paramiko:

<Management Host with Pramiko>$ cat ~/.ssh/id_rsa.pub
ssh-rsa <your public key> echou@pythonicNeteng

Then, paste it to the remote host under the user directory; in this case, I am using echou
for both sides:

<Remote Host>$ vim ~/.ssh/authorized_keys
ssh-rsa <your public key> echou@pythonicNeteng

Low-Level Network Device Interactions Chapter 2

[66]

You are now ready to use Paramiko to manage the remote host. Notice in this example that
we will use the private key for authentication as well as the exec_command() method for
sending commands:

Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import paramiko
>>> key = paramiko.RSAKey.from_private_key_file('/home/echou/.ssh/id_rsa')
>>> client = paramiko.SSHClient()
>>> client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
>>> client.connect('192.168.199.182', username='echou', pkey=key)
>>> stdin, stdout, stderr = client.exec_command('ls -l')
>>> stdout.read()
b'total 44ndrwxr-xr-x 2 echou echou 4096 Jan 7 10:14 Desktopndrwxr-xr-x 2
echou echou 4096 Jan 7 10:14 Documentsndrwxr-xr-x 2 echou echou 4096 Jan 7
10:14 Downloadsn-rw-r--r-- 1 echou echou 8980 Jan 7 10:03
examples.desktopndrwxr-xr-x 2 echou echou 4096 Jan 7 10:14 Musicndrwxr-xr-x
2 echou echou 4096 Jan 7 10:14 Picturesndrwxr-xr-x 2 echou echou 4096 Jan 7
10:14 Publicndrwxr-xr-x 2 echou echou 4096 Jan 7 10:14 Templatesndrwxr-xr-x
2 echou echou 4096 Jan 7 10:14 Videosn'
>>> stdin, stdout, stderr = client.exec_command('pwd')
>>> stdout.read()
b'/home/echoun'
>>> client.close()
>>>

Notice that in the server example, we do not need to create an interactive session to execute
multiple commands. You can now turn off password-based authentication in your remote
host's SSHv2 configuration for more secure key-based authentication with automation
enabled. Some network devices, such as Cumulus and Vyatta switches, also support key-
based authentication.

Putting things together for Paramiko
We are almost at the end of the chapter. In this last section, let's make the Paramiko
program more reusable. There is one downside of our existing script: we need to open up
the script every time we want to add or delete a host, or whenever we need to change the
commands we want to execute on the remote host. This is due to the fact that both the host
and command information are statically entered inside of the script. Hardcoding the host
and command has a higher chance of making mistakes. Besides, if you were to pass on the
script to colleagues, they might not feel comfortable working in Python, Paramiko, or
Linux.

Low-Level Network Device Interactions Chapter 2

[67]

By making both the host and command files be read in as parameters for the script, we can
eliminate some of these concerns. Users (and a future you) can simply modify these text
files when you need to make host or command changes.

We have incorporated the change in the script named chapter2_4.py.

Instead of hardcoding the commands, we broke the commands into a
separate commands.txt file. Up to this point, we have been using show commands; in this
example, we will make configuration changes. In particular, we will change the logging
buffer size to 30000 bytes:

$ cat commands.txt
config t
logging buffered 30000
end
copy run start

The device's information is written into a devices.json file. We choose JSON format for
the device's information because JSON data types can be easily translated into Python
dictionary data types:

$ cat devices.json
{
 "iosv-1": {"ip": "172.16.1.20"},
 "iosv-2": {"ip": "172.16.1.21"}
}

In the script, we made the following changes:

 with open('devices.json', 'r') as f:
 devices = json.load(f)

 with open('commands.txt', 'r') as f:
 commands = [line for line in f.readlines()]

Here is an abbreviated output from the script execution:

$ python3 chapter2_4.py
Username: cisco
Password:
b'terminal length 0rniosv-2#config trnEnter configuration commands, one per
line. End with CNTL/Z.rniosv-2(config)#'
b'logging buffered 30000rniosv-2(config)#'
...

Low-Level Network Device Interactions Chapter 2

[68]

Do a quick check to make sure the change has taken place in both running-config and
startup-config:

iosv-1#sh run | i logging
logging buffered 30000
iosv-1#sh start | i logging
logging buffered 30000

iosv-2#sh run | i logging
logging buffered 30000
iosv-2#sh start | i logging
logging buffered 30000

Looking ahead
We have taken a pretty huge leap forward in this chapter as far as automating our network
using Python is concerned. However, the method we have used feels like somewhat of a
workaround for automation. We attempted to trick the remote devices into thinking they
were interacting with a human on the other end.

Downsides of Pexpect and Paramiko compared
to other tools
The biggest downside of our method so far is that the remote devices do not return
structured data. They return data that is ideal to be fitted on a terminal to be interpreted by
a human, not by a computer program. The human eye can easily interpret a space, while a
computer only sees a return character.

We will take a look at a better way in the upcoming chapter. As a prelude to Chapter 3,
APIs and Intent-Driven Networking, let's discuss the idea of idempotency.

Idempotent network device interaction
The term idempotency has different meanings, depending on its context. But in this book's
context, the term means that when a client makes the same call to a remote device, the
result should always be the same. I believe we can all agree that this is necessary. Imagine a
scenario where each time you execute the same script, you get a different result back. I find
that scenario very scary. How can you trust your script if that is the case? It would render
our automation effort useless because we need to be prepared to handle different returns.

Low-Level Network Device Interactions Chapter 2

[69]

Since Pexpect and Paramiko are blasting out a series of commands interactively, the chance
of having a non-idempotent interaction is higher. Going back to the fact that the return
results needed to be screen scraped for useful elements, the risk of difference is much
higher. Something on the remote end might have changed between the time we wrote the
script and the time when the script is executed for the 100th time. For example, if the
vendor makes a screen output change between releases without us updating the script, the
script might break.

If we need to rely on the script for production, we need the script to be idempotent as much
as possible.

Bad automation speeds bad things up
Bad automation allows you to poke yourself in the eye a lot faster, it is as simple as that.
Computers are much faster at executing tasks than us human engineers. If we had the same
set of operating procedures executed by a human versus a script, the script would finish
faster than humans, sometimes without the benefit of having a solid feedback loop between
procedures. The internet is full of horror stories of when someone pressed the Enter key and
immediately regretted it.

We need to make sure the chances of bad automation scripts screwing things up are as
small as possible. We all make mistakes; carefully test your script before any production
work and small blast radius are two keys to making sure you can catch your mistake before
it comes back and bites you.

Summary
In this chapter, we covered low-level ways to communicate directly with network devices.
Without a way to programmatically communicate and make changes to network devices,
there is no automation. We looked at two libraries in Python that allow us to manage
devices that were meant to be managed by the CLI. Although useful, it is easy to see how
the process can be somewhat fragile. This is mostly due to the fact that the network gears in
question were meant to be managed by human beings and not computers.

In Chapter 3, APIs and Intent-Driven Networking, we will look at network devices
supporting API and intent-driven networking.

3
APIs and Intent-Driven

Networking
In Chapter 2, Low-Level Network Device Interactions, we looked at ways to interact with the
network devices using Pexpect and Paramiko. Both of these tools use a persistent session
that simulates a user typing in commands as if they are sitting in front of a Terminal. This
works fine up to a point. It is easy enough to send commands over for execution on the
device and capture the output. However, when the output becomes more than a few lines
of characters, it becomes difficult for a computer program to interpret the output. The
returned output from Pexpect and Paramiko is a series of characters meant to be read by a
human being. The structure of the output consists of lines and spaces that are human-
friendly but difficult to be understood by computer programs.

In order for our computer programs to automate many of the tasks we want to perform, we
need to interpret the returned results and make follow-up actions based on the returned
results. When we cannot accurately and predictably interpret the returned results, we
cannot execute the next command with confidence.

Luckily, this problem was solved by the internet community. Imagine the difference
between a computer and a human being when they are both reading a web page. The
human sees words, pictures, and spaces interpreted by the browser; the computer sees raw
HTML code, Unicode characters, and binary files. What happens when a website needs to
become a web service for another computer? The same web resources need to
accommodate both human clients and other computer programs. Doesn't this problem
sound familiar to the one that we presented before? The answer is the Application Program
Interface (API). It is important to note that an API is a concept and not a particular
technology or framework, according to Wikipedia.

APIs and Intent-Driven Networking Chapter 3

[71]

In computer programming, an Application Programming Interface (API) is a set of
subroutine definitions, protocols, and tools for building application software. In general
terms, it's a set of clearly defined methods of communication between various software
components. A good API makes it easier to develop a computer program by providing all
the building blocks, which are then put together by the programmer.

In our use case, the set of clearly defined methods of communication would be between our
Python program and the destination device. The APIs from our network devices provide a
separate interface for the computer programs. The exact API implementation is vendor
specific. One vendor will prefer XML over JSON, some might provide HTTPS as the
underlying transport protocol, and others might provide Python libraries as wrappers.
Despite the differences, the idea of an API remains the same: it is a separate communication
method optimized for other computer programs.

In this chapter, we will look at the following topics:

Treating infrastructure as code, intent-driven networking, and data modeling
Cisco NX-API and the application-centric infrastructure
Juniper NETCONF and PyEZ
Arista eAPI and PyEAPI

Infrastructure as code
In a perfect world, network engineers and architects who design and manage networks
should focus on what they want the network to achieve instead of the device-level
interactions. In my first job as an intern for a local ISP, wide-eyed and excited, my first
assignment was to install a router on a customer's site to turn up their fractional frame relay
link (remember those?). How would I do that? I asked. I was handed a standard operating
procedure for turning up frame relay links. I went to the customer site, blindly typed in the
commands, and looked at the green lights flashing, then happily packed my bag and patted
myself on the back for a job well done. As exciting as that first assignment was, I did not
fully understand what I was doing. I was simply following instructions without thinking
about the implication of the commands I was typing in. How would I troubleshoot
something if the light was red instead of green? I think I would have called back to the
office and cried for help (tears optional).

APIs and Intent-Driven Networking Chapter 3

[72]

Of course, network engineering is not about typing in commands into a device, but it is
about building a way that allows services to be delivered from one point to another with as
little friction as possible. The commands we have to use and the output that we have to
interpret are merely means to an end. In other words, we should be focused on our intent
for the network. What we want our network to achieve is much more important than the
command syntax we use to get the device to do what we want it to do. If we further extract
that idea of describing our intent as lines of code, we can potentially describe our whole
infrastructure as a particular state. The infrastructure will be described in lines of code with
the necessary software or framework enforcing that state.

Intent-Driven Networking
Since the publication of the first edition of this book, the term Intent-Based Networking
has seen an uptick in use after major network vendors chose to use it to describe their next-
generation devices. In my opinion, Intent-Driven Networking is the idea of defining a state
that the network should be in and having software code to enforce that state. As an
example, if my goal is to block port 80 from being externally accessible, that is how I should
declare it as the intention of the network. The underlying software will be responsible for
knowing the syntax of configuring and applying the necessary access-list on the border
router to achieve that goal. Of course, Intent-Driven Networking is an idea with no clear
answer on the exact implementation. But the idea is simple and clear, I would hereby argue
that we should focus as much on the intent of the network and abstract ourselves from the
device-level interaction.

In using an API, it is my opinion that it gets us closer to a state of intent-driven networking.
In short, because we abstract the layer of a specific command executed on our destination
device, we focus on our intent instead of the specific commands. For example, going back
to our block port 80 access-list example, we might use access-list and access-group on a
Cisco and filter-list on a Juniper. However, in using an API, our program can start asking
the executor for their intent while masking what kind of physical device it is they are
talking to. We can even use a higher-level declarative framework, such as Ansible, which
we will cover in Chapter 4, The Python Automation Framework – Ansible Basics. But for now,
let's focus on network APIs.

APIs and Intent-Driven Networking Chapter 3

[73]

Screen scraping versus API structured output
Imagine a common scenario where we need to log into the network device and make sure
all the interfaces on the devices are in an up/up state (both the status and the protocol are
showing as up). For the human network engineers getting into a Cisco NX-OS device, it is
simple enough to issue the show IP interface brief command in the Terminal to
easily tell from the output which interface is up:

 nx-osv-2# show ip int brief
 IP Interface Status for VRF "default"(1)
 Interface IP Address Interface Status
 Lo0 192.168.0.2 protocol-up/link-up/admin-up
 Eth2/1 10.0.0.6 protocol-up/link-up/admin-up
 nx-osv-2#

The line break, white spaces, and the first line of the column title are easily distinguished
from the human eye. In fact, they are there to help us line up, say, the IP addresses of each
interface from line one to line two and three. If we were to put ourselves in the computer's
position, all these spaces and line breaks only takes us away from the really important
output, which is: which interfaces are in the up/up state? To illustrate this point, we can
look at the Paramiko output for the same operation:

 >>> new_connection.send('sh ip int briefn')
 16
 >>> output = new_connection.recv(5000)
 >>> print(output)
 b'sh ip int briefrrnIP Interface Status for VRF
 "default"(1)rnInterface IP Address Interface
 StatusrnLo0 192.168.0.2 protocol-up/link-up/admin-up
 rnEth2/1 10.0.0.6 protocol-up/link-up/admin-up rnrnx-
 osv-2# '
 >>>

If we were to parse out that data, here is what I would do in a pseudo-code fashion
(simplified representation of the code I would write):

Split each line via the line break.1.
I may or may not need the first line that contains the executed command of show2.
ip interface brief. For now, I don't think I need it.
Take out everything on the second line up until the VRF, and save it in a variable3.
as we want to know which VRF the output is showing.
For the rest of the lines, because we do not know how many interfaces there are,4.
we will use a regular expression statement to search if the line starts with
possible interfaces, such as lo for loopback and Eth for Ethernet interfaces.

APIs and Intent-Driven Networking Chapter 3

[74]

We will need to split this line into three sections via space, each consisting of the5.
name of the interface, IP address, and then the interface status.
The interface status will then be split further using the forward slash (/) to give6.
us the protocol, link, and the admin status.

Whew, that is a lot of work just for something that a human being can tell at a glance! You
might be able to optimize the code and the number of lines, but in general this is what we
need to do when we need to screen scrap something that is somewhat unstructured. There
are many downsides to this method, but some of the bigger problems that I can see are
listed as follows:

Scalability: We spent so much time on painstaking details to parse out the
outputs from each command. It is hard to imagine how we can do this for the
hundreds of commands that we typically run.
Predictability: There is really no guarantee that the output stays the same
between different software versions. If the output is changed ever so slightly, it
might just render our hard-earned battle of information gathering useless.
Vendor and software lock-in: Perhaps the biggest problem is that once we spend
all this time parsing the output for this particular vendor and software version, in
this case, Cisco NX-OS, we need to repeat this process for the next vendor that
we pick. I don't know about you, but if I were to evaluate a new vendor, the new
vendor is at a severe on-boarding disadvantage if I have to rewrite all the screen
scrap code again.

Let's compare that with an output from an NX-API call for the same show IP interface
brief command. We will go over the specifics of getting this output from the device later
in this chapter, but what is important here is to compare the following output to the
previous screen scraping output:

 {
 "ins_api":{
 "outputs":{
 "output":{
 "body":{
 "TABLE_intf":[
 {
 "ROW_intf":{
 "admin-state":"up",
 "intf-name":"Lo0",
 "iod":84,
 "ip-disabled":"FALSE",
 "link-state":"up",
 "prefix":"192.168.0.2",
 "proto-state":"up"

APIs and Intent-Driven Networking Chapter 3

[75]

 }
 },
 {
 "ROW_intf":{
 "admin-state":"up",
 "intf-name":"Eth2/1",
 "iod":36,
 "ip-disabled":"FALSE",
 "link-state":"up",
 "prefix":"10.0.0.6",
 "proto-state":"up"
 }
 }
],
 "TABLE_vrf":[
 {
 "ROW_vrf":{
 "vrf-name-out":"default"
 }
 },
 {
 "ROW_vrf":{
 "vrf-name-out":"default"
 }
 }
]
 },
 "code":"200",
 "input":"show ip int brief",
 "msg":"Success"
 }
 },
 "sid":"eoc",
 "type":"cli_show",
 "version":"1.2"
 }
 }

NX-API can return output in XML or JSON, and this is the JSON output that we are looking
at. Right away, you can see the output is structured and can be mapped directly to the
Python dictionary data structure. There is no parsing required—you can simply pick the
key and retrieve the value associated with the key. You can also see from the output that
there are various metadata in the output, such as the success or failure of the command. If
the command fails, there will be a message telling the sender the reason for the failure. You
no longer need to keep track of the command issued, because it is already returned to you
in the input field. There is also other useful metadata in the output, such as the NX-API
version.

APIs and Intent-Driven Networking Chapter 3

[76]

This type of exchange makes life easier for both vendors and operators. On the vendor side,
they can easily transfer configuration and state information. They can add extra fields when
the need to expose additional data arises using the same data structure. On the operator
side, they can easily ingest the information and build their infrastructure around it. It is
generally agreed on that automation is much needed and a good thing. The questions are
usually centered on the format and structure of the automation. As you will see later in this
chapter, there are many competing technologies under the umbrella of API. On the
transport side alone, we have REST API, NETCONF, and RESTCONF, among others.
Ultimately, the overall market might decide about the final data format in the future. In the
meantime, each of us can form our own opinions and help drive the industry forward.

Data modeling for infrastructure as code
According to Wikipedia (https:/ /en. wikipedia. org/wiki/ Data_ model), the definition for
a data model is as follows:

A data model is an abstract model that organizes elements of data and standardizes how
they relate to one another and to properties of the real-world entities. For instance, a data
model may specify that the data element representing a car be composed of a number of
other elements which, in turn, represent the color and size of the car and define its owner.

The data modeling process can be illustrated in the following diagram:

Data modeling process

https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_model

APIs and Intent-Driven Networking Chapter 3

[77]

When applied to the network, we can apply this concept as an abstract model that describes
our network, be it a data center, campus, or global wide area network. If we take a closer
look at a physical data center, a layer 2 Ethernet switch can be thought of as a device
containing a table of MAC addresses mapped to each port. Our switch data model
describes how the MAC address should be kept in a table, which includes the keys,
additional characteristics (think of VLAN and private VLAN), and more. Similarly, we can
move beyond devices and map the whole data center in a model. We can start with the
number of devices in each of the access, distribution, and core layers, how they are
connected, and how they should behave in a production environment. For example, if we
have a fat-tree network, how many links should each of the spine routers have, how many
routes they should contain, and how many next-hops should each of the prefixes have?
These characteristics can be mapped out in a format that can be referenced against the ideal
state that we should always check against.

One of the relatively new network data modeling languages that is gaining traction is Yet
Another Next Generation (YANG) (despite common belief, some of the IETF workgroups
do have a sense of humor). It was first published in RFC 6020 in 2010, and has since gained
traction among vendors and operators. At the time of writing, the support for YANG has
varied greatly from vendors to platforms. The adaptation rate in production is therefore
relatively low. However, it is a technology worth keeping an eye out for.

The Cisco API and ACI
Cisco Systems, the 800-pound gorilla in the networking space, have not missed out on the
trend of network automation. In their push for network automation, they have made
various in-house developments, product enhancements, partnerships, as well as many
external acquisitions. However, with product lines spanning routers, switches, firewalls,
servers (unified computing), wireless, the collaboration software and hardware, and
analytic software, to name a few, it is hard to know where to start.

Since this book focuses on Python and networking, we will scope this section to the main
networking products. In particular, we will cover the following:

Nexus product automation with NX-API
Cisco NETCONF and YANG examples
The Cisco application-centric infrastructure for the data center
The Cisco application-centric infrastructure for the enterprise

APIs and Intent-Driven Networking Chapter 3

[78]

For the NX-API and NETCONF examples here, we can either use the Cisco DevNet always-
on lab devices or locally run Cisco VIRL. Since ACI is a separate product and is licensed
with the physical switches for the following ACI examples, I would recommend using the
DevNet labs to get an understanding of the tools. If you are one of the lucky engineers who
has a private ACI lab that you can use, please feel free to use it for the relevant examples.

We will use the similar lab topology as we did in Chapter 2, Low-Level Network Device
Interactions, with the exception of one of the devices running nx-osv:

 Lab topology

Let's take a look at NX-API.

Cisco NX-API
Nexus is Cisco's primary product line of data center switches. The NX-API (http:/ /www.
cisco.com/c/en/us/ td/ docs/ switches/ datacenter/ nexus9000/ sw/ 6-x/ programmability/
guide/b_Cisco_Nexus_ 9000_ Series_NX-
OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-

OS_Programmability_Guide_chapter_011.html) allows the engineer to interact with the
switch outside of the device via a variety of transports including SSH, HTTP, and HTTPS.

Lab software installation and device preparation
Here are the Ubuntu packages that we will install. You may already have some of the
packages such pip and git:

$ sudo apt-get install -y python3-dev libxml2-dev libxslt1-dev libffi-dev
libssl-dev zlib1g-dev python3-pip git python3-requests

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html

APIs and Intent-Driven Networking Chapter 3

[79]

If you are using Python 2, use the following packages instead: sudo apt-
get install -y python-dev libxml2-dev libxslt1-dev
libffi-dev libssl-dev zlib1g-dev python-pip git python-

requests.

The ncclient (https:/ / github. com/ ncclient/ ncclient) library is a Python library for
NETCONF clients. We will install this from the GitHub repository so that we can install the
latest version:

$ git clone https://github.com/ncclient/ncclient
$ cd ncclient/
$ sudo python3 setup.py install
$ sudo python setup.py install #for Python 2

NX-API on Nexus devices is turned off by default, so we will need to turn it on. We can
either use the user that is already created (if you are using VIRL auto-config), or create a
new user for the NETCONF procedures:

feature nxapi
username cisco password 5 1Nk7ZkwH0$fyiRmMMfIheqE3BqvcL0C1 role network-
operator
username cisco role network-admin
username cisco passphrase lifetime 99999 warntime 14 gracetime 3

For our lab, we will turn on both HTTP and the sandbox configuration, as they should be
turned off in production:

nx-osv-2(config)# nxapi http port 80
nx-osv-2(config)# nxapi sandbox

We are now ready to look at our first NX-API example.

NX-API examples
NX-API sandbox is a great way to play around with various commands, data formats, and
even copy the Python script directly from the web page. In the last step, we turned it on for
learning purposes. It should be turned off in production. Let's launch a web browser and
take a look at the various message formats, requests, and responses based on the CLI
commands that we are already familiar with:

https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient
https://github.com/ncclient/ncclient

APIs and Intent-Driven Networking Chapter 3

[80]

In the following example, I have selected JSON-RPC and the CLI command type for the
show version command:

APIs and Intent-Driven Networking Chapter 3

[81]

The sandbox comes in handy if you are unsure about the supportability of the message
format, or if you have questions about the response data field keys for the value you want
to retrieve in your code.

In our first example, we are just going to connect to the Nexus device and print out the
capabilities exchanged when the connection was first made:

 #!/usr/bin/env python3
 from ncclient import manager
 conn = manager.connect(
 host='172.16.1.90',
 port=22,
 username='cisco',
 password='cisco',
 hostkey_verify=False,
 device_params={'name': 'nexus'},
 look_for_keys=False)
 for value in conn.server_capabilities:
 print(value)
 conn.close_session()

The connection parameters of the host, port, username, and password are pretty self-
explanatory. The device parameter specifies the kind of device the client is connecting to.
We will see a different response in the Juniper NETCONF sections when using the ncclient
library. The hostkey_verify bypasses the known_host requirement for SSH; if not, the
host needs to be listed in the ~/.ssh/known_hosts file. The look_for_keys option
disables public-private key authentication, but uses a username and password for
authentication.

If you run into an issue with https:/ /github. com/ paramiko/ paramiko/
issues/ 748 with Python 3 and Paramiko, please feel free to use Python 2.
Hopefully, by the time you read this section, the issue is already fixed.

The output will show the XML and NETCONF supported features by this version of NX-
OS:

$ python cisco_nxapi_1.py
urn:ietf:params:netconf:capability:writable-running:1.0
urn:ietf:params:netconf:capability:rollback-on-error:1.0
urn:ietf:params:netconf:capability:validate:1.0
urn:ietf:params:netconf:capability:url:1.0?scheme=file
urn:ietf:params:netconf:base:1.0
urn:ietf:params:netconf:capability:candidate:1.0
urn:ietf:params:netconf:capability:confirmed-commit:1.0
urn:ietf:params:xml:ns:netconf:base:1.0

https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748
https://github.com/paramiko/paramiko/issues/748

APIs and Intent-Driven Networking Chapter 3

[82]

Using ncclient and NETCONF over SSH is great because it gets us closer to the native
implementation and syntax. We will use the same library later on in this book. For NX-API,
it might be easier to deal with HTTPS and JSON-RPC. In the earlier screenshot of NX-API
Developer Sandbox, if you noticed, in the Request box, there is a box labeled Python. If
you click on it, you will be able to get an automatically converted Python script based on
the request library.

The following script uses an external Python library named requests.
requests is a very popular, self-proclaimed HTTP for the human library
used by companies like Amazon, Google, NSA, and more. You can find
more information about it on the official site (http:/ / docs. python-
requests. org/ en/ master/).

For the show version example, the following Python script is automatically generated for
you. I am pasting in the output without any modification:

 """
 NX-API-BOT
 """
 import requests
 import json

 """
 Modify these please
 """
 url='http://YOURIP/ins'
 switchuser='USERID'
 switchpassword='PASSWORD'

 myheaders={'content-type':'application/json-rpc'}
 payload=[
 {
 "jsonrpc": "2.0",
 "method": "cli",
 "params": {
 "cmd": "show version",
 "version": 1.2
 },
 "id": 1
 }
]
 response = requests.post(url,data=json.dumps(payload),
 headers=myheaders,auth=(switchuser,switchpassword)).json()

http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/

APIs and Intent-Driven Networking Chapter 3

[83]

In the cisco_nxapi_2.py script, you will see that I have only modified the URL,
username, and password of the preceding file. The output was parsed to include only the
software version. Here is the output:

$ python3 cisco_nxapi_2.py
7.2(0)D1(1) [build 7.2(0)ZD(0.120)]

The best part about using this method is that the same overall syntax structure works with
both configuration commands as well as show commands. This is illustrated in the
cisco_nxapi_3.py file. For multiline configuration, you can use the ID field to specify the
order of operations. In cisco_nxapi_4.py, the following payload was listed for changing
the description of the interface Ethernet 2/12 in the interface configuration mode:

 {
 "jsonrpc": "2.0",
 "method": "cli",
 "params": {
 "cmd": "interface ethernet 2/12",
 "version": 1.2
 },
 "id": 1
 },
 {
 "jsonrpc": "2.0",
 "method": "cli",
 "params": {
 "cmd": "description foo-bar",
 "version": 1.2
 },
 "id": 2
 },
 {
 "jsonrpc": "2.0",
 "method": "cli",
 "params": {
 "cmd": "end",
 "version": 1.2
 },
 "id": 3
 },
 {
 "jsonrpc": "2.0",
 "method": "cli",
 "params": {
 "cmd": "copy run start",
 "version": 1.2
 },

APIs and Intent-Driven Networking Chapter 3

[84]

 "id": 4
 }
]

We can verify the result of the previous configuration script by looking at the running-
configuration of the Nexus device:

hostname nx-osv-1-new
...
interface Ethernet2/12
description foo-bar
shutdown
no switchport
mac-address 0000.0000.002f

In the next section, we will look at some examples for Cisco NETCONF and the YANG
model.

The Cisco and YANG models
Earlier in this chapter, we looked at the possibility of expressing the network by using the
data modeling language YANG. Let's look into it a little bit more with examples.

First off, we should know that the YANG model only defines the type of data sent over
the NETCONF protocol without dictating what the data should be. Secondly, it is worth
pointing out that NETCONF exists as a standalone protocol, as we saw in the NX-API
section. YANG, being relatively new, has a spotty supportability across vendors and
product lines. For example, if we run the same capability exchange script that we have used
before for a Cisco 1000v running IOS-XE, this is what we will see:

 urn:cisco:params:xml:ns:yang:cisco-virtual-service?module=cisco-
 virtual-service&revision=2015-04-09
 http://tail-f.com/ns/mibs/SNMP-NOTIFICATION-MIB/200210140000Z?
 module=SNMP-NOTIFICATION-MIB&revision=2002-10-14
 urn:ietf:params:xml:ns:yang:iana-crypt-hash?module=iana-crypt-
 hash&revision=2014-04-04&features=crypt-hash-sha-512,crypt-hash-
 sha-256,crypt-hash-md5
 urn:ietf:params:xml:ns:yang:smiv2:TUNNEL-MIB?module=TUNNEL-
 MIB&revision=2005-05-16
 urn:ietf:params:xml:ns:yang:smiv2:CISCO-IP-URPF-MIB?module=CISCO-
 IP-URPF-MIB&revision=2011-12-29
 urn:ietf:params:xml:ns:yang:smiv2:ENTITY-STATE-MIB?module=ENTITY-
 STATE-MIB&revision=2005-11-22
 urn:ietf:params:xml:ns:yang:smiv2:IANAifType-MIB?module=IANAifType-
 MIB&revision=2006-03-31

APIs and Intent-Driven Networking Chapter 3

[85]

 <omitted>

Compare this to the output that we saw for NX-OS. Clearly, IOS-XE supports the YANG
model features more than NX-OS. Industry-wide, network data modeling when supported,
is clearly something that can be used across your devices, which is beneficial for network
automation. However, given the uneven support of vendors and products, it is not yet
mature enough to be used exclusively for the production network, in my opinion. For this
book, I have included a script called cisco_yang_1.py that shows how to parse out the
NETCONF XML output with YANG filters called
urn:ietf:params:xml:ns:yang:ietf-interfaces as a starting point to see the
existing tag overlay.

You can check the latest vendor support on the YANG GitHub project
page (https:/ /github. com/ YangModels/ yang/ tree/ master/ vendor).

The Cisco ACI
The Cisco Application Centric Infrastructure (ACI) is meant to provide a centralized
approach to all of the network components. In the data center context, it means that the
centralized controller is aware of and manages the spine, leaf, and top of rack switches, as
well as all the network service functions. This can be done through GUI, CLI, or API. Some
might argue that the ACI is Cisco's answer to the broader controller-based software-defined
networking.

One of the somewhat confusing points for ACI is the difference between ACI and APIC-
EM. In short, ACI focuses on data center operations while APIC-EM focuses on enterprise
modules. Both offer a centralized view and control of the network components, but each
has its own focus and share of tool sets. For example, it is rare to see any major data center
deploy a customer-facing wireless infrastructure, but a wireless network is a crucial part of
enterprises today. Another example would be the different approaches to network security.
While security is important in any network, in the data center environment, lots of security
policies are pushed to the edge node on the server for scalability. In enterprise security,
policies are somewhat shared between the network devices and servers.

Unlike NETCONF RPC, ACI API follows the REST model to use the HTTP verb (GET, POST,
DELETE) to specify the operation that's intended.

https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor

APIs and Intent-Driven Networking Chapter 3

[86]

We can look at the cisco_apic_em_1.py file, which is a modified
version of the Cisco sample code on lab2-1-get-network-device-
list.py (https:/ /github. com/CiscoDevNet/ apicem- 1.3- LL-sample-
codes/ blob/ master/ basic- labs/ lab2- 1- get-network- device- list. py).

The abbreviated version without comments and spaces are listed in the following section.

The first function named getTicket() uses HTTPS POST on the controller with the path
of /api/v1/ticket with a username and password embedded in the header. This
function will return the parsed response for a ticket that is only valid for a limited time:

 def getTicket():
 url = "https://" + controller + "/api/v1/ticket"
 payload = {"username":"usernae","password":"password"}
 header = {"content-type": "application/json"}
 response= requests.post(url,data=json.dumps(payload), headers=header,
verify=False)
 r_json=response.json()
 ticket = r_json["response"]["serviceTicket"]
 return ticket

The second function then calls another path called /api/v1/network-devices with the
newly acquired ticket embedded in the header, then parses the results:

url = "https://" + controller + "/api/v1/network-device"
header = {"content-type": "application/json", "X-Auth-Token":ticket}

This is a pretty common workflow for API interactions. The client will authenticate itself
with the server in the first request and receive a time-based token. This token will be used
in subsequent requests and will be served as a proof of authentication.

The output displays both the raw JSON response output as well as a parsed table. A partial
output when executed against a DevNet lab controller is shown here:

 Network Devices =
 {
 "version": "1.0",
 "response": [
 {
 "reachabilityStatus": "Unreachable",
 "id": "8dbd8068-1091-4cde-8cf5-d1b58dc5c9c7",
 "platformId": "WS-C2960C-8PC-L",
 <omitted>
 "lineCardId": null,
 "family": "Wireless Controller",
 "interfaceCount": "12",

https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py
https://github.com/CiscoDevNet/apicem-1.3-LL-sample-codes/blob/master/basic-labs/lab2-1-get-network-device-list.py

APIs and Intent-Driven Networking Chapter 3

[87]

 "upTime": "497 days, 2:27:52.95"
 }
]
 }
 8dbd8068-1091-4cde-8cf5-d1b58dc5c9c7 Cisco Catalyst 2960-C Series
 Switches
 cd6d9b24-839b-4d58-adfe-3fdf781e1782 Cisco 3500I Series Unified
 Access Points
 <omitted>
 55450140-de19-47b5-ae80-bfd741b23fd9 Cisco 4400 Series Integrated
 Services Routers
 ae19cd21-1b26-4f58-8ccd-d265deabb6c3 Cisco 5500 Series Wireless LAN
 Controllers

As you can see, we only query a single controller device, but we are able to get a high-level
view of all the network devices that the controller is aware of. In our output, the Catalyst
2960-C switch, 3500 Access Points, 4400 ISR router, and 5500 Wireless Controller can all be
explored further. The downside is, of course, that the ACI controller only supports Cisco
devices at this time.

The Python API for Juniper networks
Juniper networks have always been a favorite among the service provider crowd. If we take
a step back and look at the service provider vertical, it would make sense that automating
network equipment is on the top of their list of requirements. Before the dawn of cloud-
scale data centers, service providers were the ones with the most network equipment. A
typical enterprise network might have a few redundant internet connections at the
corporate headquarter with a few hub-and-spoke remote sites connected back to the HQ
using the service provider's private MPLS network. To a service provider, they are the ones
who need to build, provision, manage, and troubleshoot the connections and the
underlying networks. They make their money by selling the bandwidth along with value-
added managed services. It would make sense for the service providers to invest in
automation to use the least amount of engineering hours to keep the network humming
along. In their use case, network automation is the key to their competitive advantage.

In my opinion, the difference between a service provider's network needs compared to a
cloud data center is that, traditionally, service providers aggregate more services into a
single device. A good example would be Multiprotocol Label Switching (MPLS) that
almost all major service providers provide but rarely adapt in the enterprise or data center
networks. Juniper, as they have been very successful, has identified this need and excel at
fulfilling the service provider requirements of automating. Let's take a look at some of
Juniper's automation APIs.

APIs and Intent-Driven Networking Chapter 3

[88]

Juniper and NETCONF
The Network Configuration Protocol (NETCONF) is an IETF standard, which was first
published in 2006 as RFC 4741 and later revised in RFC 6241. Juniper networks contributed
heavily to both of the RFC standards. In fact, Juniper was the sole author for RFC 4741. It
makes sense that Juniper devices fully support NETCONF, and it serves as the underlying
layer for most of its automation tools and frameworks. Some of the main characteristics of
NETCONF include the following:

It uses Extensible Markup Language (XML) for data encoding.1.
It uses Remote Procedure Calls (RPC), therefore in the case of HTTP(s) as the2.
transport, the URL endpoint is identical while the operation intended is specified
in the body of the request.
It is conceptually based on layers from top to bottom. The layers include the3.
content, operations, messages, and transport:

NETCONF model

Juniper networks provide an extensive NETCONF XML management protocol developer
guide (https:// www. juniper. net/ techpubs/ en_ US/ junos13. 2/ information- products/
pathway-pages/netconf- guide/ netconf. html#overview) in its technical library. Let's take
a look at its usage.

Device preparation
In order to start using NETCONF, let's create a separate user as well as turn on the required
services:

 set system login user netconf uid 2001
 set system login user netconf class super-user
 set system login user netconf authentication encrypted-password

https://tools.ietf.org/html/rfc4741
https://tools.ietf.org/html/rfc6241
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview

APIs and Intent-Driven Networking Chapter 3

[89]

 "$1$0EkA.XVf$cm80A0GC2dgSWJIYWv7Pt1"
 set system services ssh
 set system services telnet
 set system services netconf ssh port 830

For the Juniper device lab, I am using an older, unsupported platform
called Juniper Olive. It is solely used for lab purposes. You can use your
favorite search engine to find out some interesting facts and history about
Juniper Olive.

On the Juniper device, you can always take a look at the configuration either in a flat file or
in XML format. The flat file comes in handy when you need to specify a one-liner
command to make configuration changes:

 netconf@foo> show configuration | display set
 set version 12.1R1.9
 set system host-name foo
 set system domain-name bar
 <omitted>

The XML format comes in handy at times when you need to see the XML structure of the
configuration:

 netconf@foo> show configuration | display xml
 <rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.1R1/junos">
 <configuration junos:commit-seconds="1485561328" junos:commit-
 localtime="2017-01-27 23:55:28 UTC" junos:commit-user="netconf">
 <version>12.1R1.9</version>
 <system>
 <host-name>foo</host-name>
 <domain-name>bar</domain-name>

We have installed the necessary Linux libraries and the ncclient Python
library in the Cisco section. If you have not done so, refer back to that
section and install the necessary packages.

We are now ready to look at our first Juniper NETCONF example.

APIs and Intent-Driven Networking Chapter 3

[90]

Juniper NETCONF examples
We will use a pretty straightforward example to execute show version. We will name this
file junos_netconf_1.py:

 #!/usr/bin/env python3

 from ncclient import manager

 conn = manager.connect(
 host='192.168.24.252',
 port='830',
 username='netconf',
 password='juniper!',
 timeout=10,
 device_params={'name':'junos'},
 hostkey_verify=False)

 result = conn.command('show version', format='text')
 print(result)
 conn.close_session()

All the fields in the script should be pretty self-explanatory, with the exception of
device_params. Starting with ncclient 0.4.1, the device handler was added to specify
different vendors or platforms. For example, the name can be juniper, CSR, Nexus, or
Huawei. We also added hostkey_verify=False because we are using a self-signed
certificate from the Juniper device.

The returned output is rpc-reply encoded in XML with an output element:

 <rpc-reply message-id="urn:uuid:7d9280eb-1384-45fe-be48-
 b7cd14ccf2b7">
 <output>
 Hostname: foo
 Model: olive
 JUNOS Base OS boot [12.1R1.9]
 JUNOS Base OS Software Suite [12.1R1.9]
 <omitted>
 JUNOS Runtime Software Suite [12.1R1.9]
 JUNOS Routing Software Suite [12.1R1.9]
 </output>
 </rpc-reply>

We can parse the XML output to just include the output text:

 print(result.xpath('output')[0].text)

APIs and Intent-Driven Networking Chapter 3

[91]

In junos_netconf_2.py, we will make configuration changes to the device. We will start
with some new imports for constructing new XML elements and the connection manager
object:

 #!/usr/bin/env python3

 from ncclient import manager
 from ncclient.xml_ import new_ele, sub_ele

 conn = manager.connect(host='192.168.24.252', port='830',
 username='netconf' , password='juniper!', timeout=10,
 device_params={'name':'junos'}, hostkey_v erify=False)

We will lock the configuration and make configuration changes:

 # lock configuration and make configuration changes
 conn.lock()

 # build configuration
 config = new_ele('system')
 sub_ele(config, 'host-name').text = 'master'
 sub_ele(config, 'domain-name').text = 'python'

Under the build configuration section, we create a new element of system with
subelements of host-namre and domain-name. If you were wondering about the
hierarchy structure, you can see from the XML display that the node structure with
system is the parent of host-name and domain-name:

 <system>
 <host-name>foo</host-name>
 <domain-name>bar</domain-name>
 ...
 </system>

After the configuration is built, the script will push the configuration and commit the
configuration changes. These are the normal best practice steps (lock, configure, unlock,
commit) for Juniper configuration changes:

 # send, validate, and commit config
 conn.load_configuration(config=config)
 conn.validate()
 commit_config = conn.commit()
 print(commit_config.tostring)

 # unlock config
 conn.unlock()

APIs and Intent-Driven Networking Chapter 3

[92]

 # close session
 conn.close_session()

Overall, the NETCONF steps map pretty well to what you would have done in the CLI
steps. Please take a look at the junos_netconf_3.py script for a more reusable code. The
following example combines the step-by-step example with a few Python functions:

make a connection object
def connect(host, port, user, password):
 connection = manager.connect(host=host, port=port, username=user,
 password=password, timeout=10, device_params={'name':'junos'},
 hostkey_verify=False)
 return connection

execute show commands
def show_cmds(conn, cmd):
 result = conn.command(cmd, format='text')
 return result

push out configuration
def config_cmds(conn, config):
 conn.lock()
 conn.load_configuration(config=config)
 commit_config = conn.commit()
 return commit_config.tostring

This file can be executed by itself, or it can be imported to be used by other Python scripts.

Juniper also provides a Python library to be used with their devices called PyEZ. We will
take a look at a few examples of using the library in the following section.

Juniper PyEZ for developers
PyEZ is a high-level Python implementation that integrates better with your existing
Python code. By utilizing the Python API, you can perform common operation and
configuration tasks without the extensive knowledge of the Junos CLI.

Juniper maintains a comprehensive Junos PyEZ developer guide at
https:/ /www. juniper. net/ techpubs/ en_ US/junos- pyez1. 0/
information- products/ pathway- pages/ junos- pyez- developer- guide.
html#configuration on their technical library. If you are interested in
using PyEZ, I would highly recommend at least a glance through the
various topics in the guide.

https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration

APIs and Intent-Driven Networking Chapter 3

[93]

Installation and preparation
The installation instructions for each of the operating systems can be found on the Installing
Junos PyEZ (https:/ / www. juniper. net/ techpubs/ en_US/ junos- pyez1. 0/ topics/ task/
installation/junos- pyez- server- installing. html) page. We will show the installation
instructions for Ubuntu 16.04.

The following are some dependency packages, many of which should already be on the
host from running previous examples:

$ sudo apt-get install -y python3-pip python3-dev libxml2-dev libxslt1-dev
libssl-dev libffi-dev

PyEZ packages can be installed via pip. Here, I have installed for both Python 3 and Python
2:

$ sudo pip3 install junos-eznc
$ sudo pip install junos-eznc

On the Juniper device, NETCONF needs to be configured as the underlying XML API for
PyEZ:

set system services netconf ssh port 830

For user authentication, we can either use password authentication or an SSH key pair.
Creating the local user is straightforward:

set system login user netconf uid 2001
set system login user netconf class super-user
set system login user netconf authentication encrypted-password
"$1$0EkA.XVf$cm80A0GC2dgSWJIYWv7Pt1"

For the ssh key authentication, first, generate the key pair on your host:

$ ssh-keygen -t rsa

By default, the public key will be called id_rsa.pub under ~/.ssh/, while the private key
will be named id_rsa under the same directory. Treat the private key like a password that
you never share. The public key can be freely distributed. In our use case, we will move the
public key to the /tmp directory and enable the Python 3 HTTP server module to create a
reachable URL:

$ mv ~/.ssh/id_rsa.pub /tmp
$ cd /tmp
$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 ...

https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html

APIs and Intent-Driven Networking Chapter 3

[94]

For Python 2, use python -m SimpleHTTPServer instead.

From the Juniper device, we can create the user and associate the public key by
downloading the public key from the Python 3 web server:

netconf@foo# set system login user echou class super-user authentication
load-key-file http://192.168.24.164:8000/id_rsa.pub
/var/home/netconf/...transferring.file........100% of 394 B 2482 kBps

Now, if we try to ssh with the private key from the management station, the user will be
automatically authenticated:

$ ssh -i ~/.ssh/id_rsa 192.168.24.252
--- JUNOS 12.1R1.9 built 2012-03-24 12:52:33 UTC
echou@foo>

Let's make sure that both of the authentication methods work with PyEZ. Let's try the
username and password combination:

Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from jnpr.junos import Device
>>> dev = Device(host='192.168.24.252', user='netconf',
password='juniper!')
>>> dev.open()
Device(192.168.24.252)
>>> dev.facts
{'serialnumber': '', 'personality': 'UNKNOWN', 'model': 'olive',
'ifd_style': 'CLASSIC', '2RE': False, 'HOME': '/var/home/juniper',
'version_info': junos.version_info(major=(12, 1), type=R, minor=1,
build=9), 'switch_style': 'NONE', 'fqdn': 'foo.bar', 'hostname': 'foo',
'version': '12.1R1.9', 'domain': 'bar', 'vc_capable': False}
>>> dev.close()

We can also try to use the SSH key authentication:

>>> from jnpr.junos import Device
>>> dev1 = Device(host='192.168.24.252', user='echou',
ssh_private_key_file='/home/echou/.ssh/id_rsa')
>>> dev1.open()
Device(192.168.24.252)
>>> dev1.facts
{'HOME': '/var/home/echou', 'model': 'olive', 'hostname': 'foo',

APIs and Intent-Driven Networking Chapter 3

[95]

'switch_style': 'NONE', 'personality': 'UNKNOWN', '2RE': False, 'domain':
'bar', 'vc_capable': False, 'version': '12.1R1.9', 'serialnumber': '',
'fqdn': 'foo.bar', 'ifd_style': 'CLASSIC', 'version_info':
junos.version_info(major=(12, 1), type=R, minor=1, build=9)}
>>> dev1.close()

Great! We are now ready to look at some examples for PyEZ.

PyEZ examples
In the previous interactive prompt, we already saw that when the device connects, the
object automatically retrieves a few facts about the device. In our first example,
junos_pyez_1.py, we were connecting to the device and executing an RPC call for show
interface em1:

 #!/usr/bin/env python3
 from jnpr.junos import Device
 import xml.etree.ElementTree as ET
 import pprint

 dev = Device(host='192.168.24.252', user='juniper',
passwd='juniper!')

 try:
 dev.open()
 except Exception as err:
 print(err)
 sys.exit(1)

 result =
 dev.rpc.get_interface_information(interface_name='em1', terse=True)
 pprint.pprint(ET.tostring(result))

 dev.close()

The device class has an rpc property that includes all operational commands. This is pretty
awesome because there is no slippage between what we can do in CLI versus API. The
catch is that we need to find out the xml rpc element tag. In our first example, how do we
know show interface em1 equates to get_interface_information? We have three
ways of finding out this information:

We can reference the Junos XML API Operational Developer Reference1.
We can use the CLI and display the XML RPC equivalent and replace the dash (-2.
) between the words with an underscore (_)

APIs and Intent-Driven Networking Chapter 3

[96]

We can also do this programmatically by using the PyEZ library3.

I typically use the second option to get the output directly:

 netconf@foo> show interfaces em1 | display xml rpc
 <rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.1R1/junos">
 <rpc>
 <get-interface-information>
 <interface-name>em1</interface-name>
 </get-interface-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
 </rpc-reply>

Here is an example of using PyEZ programmatically (the third option):

 >>> dev1.display_xml_rpc('show interfaces em1', format='text')
 '<get-interface-information>n <interface-name>em1</interface-
 name>n</get-interface-information>n'

Of course, we will need to make configuration changes as well. In the junos_pyez_2.py
configuration example, we will import an additional Config() method from PyEZ:

 #!/usr/bin/env python3
 from jnpr.junos import Device
 from jnpr.junos.utils.config import Config

We will utilize the same block for connecting to a device:

 dev = Device(host='192.168.24.252', user='juniper',
 passwd='juniper!')

 try:
 dev.open()
 except Exception as err:
 print(err)
 sys.exit(1)

The new Config() method will load the XML data and make the configuration changes:

 config_change = """
 <system>
 <host-name>master</host-name>
 <domain-name>python</domain-name>
 </system>
 """

APIs and Intent-Driven Networking Chapter 3

[97]

 cu = Config(dev)
 cu.lock()
 cu.load(config_change)
 cu.commit()
 cu.unlock()

 dev.close()

The PyEZ examples are simple by design. Hopefully, they demonstrate the ways you can
leverage PyEZ for your Junos automation needs.

The Arista Python API
Arista Networks have always been focused on large-scale data center networks. In its
corporate profile page (https:/ /www. arista. com/ en/ company/ company- overview), it is
stated as follows:

"Arista Networks was founded to pioneer and deliver software-driven cloud networking
solutions for large data center storage and computing environments."

Notice that the statement specifically called out large data centers, which we already know
are exploded with servers, databases, and, yes, network equipment. It makes sense that
automation has always been one of Arista's leading features. In fact, they have a Linux
underpin behind their operating system, allowing many added benefits such as Linux
commands and a built-in Python interpreter.

Like other vendors, you can interact with Arista devices directly via eAPI, or you can
choose to leverage their Python library. We will see examples of both. We will also look at
Arista's integration with the Ansible framework in later chapters.

Arista eAPI management
Arista's eAPI was first introduced in EOS 4.12 a few years ago. It transports a list of show or
configuration commands over HTTP or HTTPS and responds back in JSON. An important
distinction is that it is a Remote Procedure Call (RPC) and JSON-RPC, instead of a pure
RESTFul API that's served over HTTP or HTTPS. For our intents and purposes, the
difference is that we make the request to the same URL endpoint using the same HTTP
method (POST). Instead of using HTTP verbs (GET, POST, PUT, DELETE) to express our
action, we simply state our intended action in the body of the request. In the case of eAPI,
we will specify a method key with a runCmds value for our intention.

https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview
https://www.arista.com/en/company/company-overview

APIs and Intent-Driven Networking Chapter 3

[98]

For the following examples, I am using a physical Arista switch running EOS 4.16.

The eAPI preparation
The eAPI agent on the Arista device is disabled by default, so we will need to enable it on
the device before we can use it:

arista1(config)#management api http-commands
arista1(config-mgmt-api-http-cmds)#no shut
arista1(config-mgmt-api-http-cmds)#protocol https port 443
arista1(config-mgmt-api-http-cmds)#no protocol http
arista1(config-mgmt-api-http-cmds)#vrf management

As you can see, we have turned off the HTTP server and are using HTTPS as the sole
transport instead. Starting from a few EOS versions ago, the management interfaces, by
default, reside in a VRF called management. In my topology, I am accessing the device via
the management interface; therefore, I have specified the VRF for eAPI management. You
can check that API management state via the "show management api http-commands"
command:

arista1#sh management api http-commands
Enabled: Yes
HTTPS server: running, set to use port 443
HTTP server: shutdown, set to use port 80
Local HTTP server: shutdown, no authentication, set to use port 8080
Unix Socket server: shutdown, no authentication
VRF: management
Hits: 64
Last hit: 33 seconds ago
Bytes in: 8250
Bytes out: 29862
Requests: 23
Commands: 42
Duration: 7.086 seconds
SSL Profile: none
QoS DSCP: 0
 User Requests Bytes in Bytes out Last hit
----------- -------------- -------------- --------------- --------------
 admin 23 8250 29862 33 seconds ago

URLs

Management1 : https://192.168.199.158:443

arista1#

APIs and Intent-Driven Networking Chapter 3

[99]

After enabling the agent, you will be able to access the exploration page for eAPI by going
to the device's IP address. If you have changed the default port for access, just append it at
the end. The authentication is tied into the method of authentication on the switch. We will
use the username and password configured locally on the device. By default, a self-signed
certificate will be used:

Arista EOS explorer

You will be taken to an explorer page where you can type in the CLI command and get a
nice output for the body of your request. For example, if I want to see how to make a
request body for show version, this is the output I will see from the explorer:

APIs and Intent-Driven Networking Chapter 3

[100]

Arista EOS explorer viewer

The overview link will take you to the sample use and background information while the
command documentation will serve as reference points for the show commands. Each of
the command references will contain the returned value field name, type, and a brief
description. The online reference scripts from Arista use jsonrpclib (https:/ /github. com/
joshmarshall/jsonrpclib/), which is what we will use. However, as of the time of writing
this book, it has a dependency of Python 2.6+ and has not yet ported to Python 3; therefore,
we will use Python 2.7 for these examples.

By the time you read this book, there might be an updated status. Please
read the GitHub pull request (https:/ / github. com/ joshmarshall/
jsonrpclib/ issues/ 38) and the GitHub README (https:/ /github. com/
joshmarshall/ jsonrpclib/) for the latest status.

Installation is straightforward using easy_install or pip:

$ sudo easy_install jsonrpclib
$ sudo pip install jsonrpclib

https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/

APIs and Intent-Driven Networking Chapter 3

[101]

eAPI examples
We can then write a simple program called eapi_1.py to look at the response text:

 #!/usr/bin/python2

 from __future__ import print_function
 from jsonrpclib import Server
 import ssl

 ssl._create_default_https_context = ssl._create_unverified_context

 switch = Server("https://admin:arista@192.168.199.158/command-api")

 response = switch.runCmds(1, ["show version"])
 print('Serial Number: ' + response[0]['serialNumber'])

Note that, since this is Python 2, in the script, I used the from
__future__ import print_function to make future migration easier.
The ssl-related lines are for Python version > 2.7.9. For more information,
please see https:/ /www. python. org/ dev/ peps/ pep- 0476/ .

This is the response I received from the previous runCms() method:

 [{u'memTotal': 3978148, u'internalVersion': u'4.16.6M-
 3205780.4166M', u'serialNumber': u'<omitted>', u'systemMacAddress':
 u'<omitted>', u'bootupTimestamp': 1465964219.71, u'memFree':
 277832, u'version': u'4.16.6M', u'modelName': u'DCS-7050QX-32-F',
 u'isIntlVersion': False, u'internalBuildId': u'373dbd3c-60a7-4736-
 8d9e-bf5e7d207689', u'hardwareRevision': u'00.00', u'architecture':
 u'i386'}]

As you can see, the result is a list containing one dictionary item. If we need to grab the
serial number, we can simply reference the item number and the key:

 print('Serial Number: ' + response[0]['serialNumber'])

The output will contain only the serial number:

$ python eapi_1.py
Serial Number: <omitted>

To be more familiar with the command reference, I recommend that you click on the
Command Documentation link on the eAPI page, and compare your output with the
output of show version in the documentation.

https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/
https://www.python.org/dev/peps/pep-0476/

APIs and Intent-Driven Networking Chapter 3

[102]

As noted earlier, unlike REST, the JSON-RPC client uses the same URL endpoint for calling
the server resources. You can see from the previous example that the runCmds() method
contains a list of commands. For the execution of configuration commands, you can follow
the same framework, and configure the device via a list of commands.

Here is an example of configuration commands named eapi_2.py. In our example, we
wrote a function that takes the switch object and the list of commands as attributes:

 #!/usr/bin/python2

 from __future__ import print_function
 from jsonrpclib import Server
 import ssl, pprint

 ssl._create_default_https_context = ssl._create_unverified_context

 # Run Arista commands thru eAPI
 def runAristaCommands(switch_object, list_of_commands):
 response = switch_object.runCmds(1, list_of_commands)
 return response

 switch = Server("https://admin:arista@192.168.199.158/command-
 api")

 commands = ["enable", "configure", "interface ethernet 1/3",
 "switchport acc ess vlan 100", "end", "write memory"]

 response = runAristaCommands(switch, commands)
 pprint.pprint(response)

Here is the output of the command's execution:

$ python2 eapi_2.py
[{}, {}, {}, {}, {}, {u'messages': [u'Copy completed successfully.']}]

Now, do a quick check on the switch to verify the command's execution:

arista1#sh run int eth 1/3
interface Ethernet1/3
 switchport access vlan 100
arista1#

Overall, eAPI is fairly straightforward and simple to use. Most programming languages
have libraries similar to jsonrpclib, which abstracts away JSON-RPC internals. With a
few commands, you can start integrating Arista EOS automation into your network.

APIs and Intent-Driven Networking Chapter 3

[103]

The Arista Pyeapi library
The Python client Pyeapi (http:/ /pyeapi. readthedocs. io/ en/ master/ index. html) library
is a native Python library wrapper around eAPI. It provides a set of bindings to configure
Arista EOS nodes. Why do we need Pyeapi when we already have eAPI? Picking between
Pyeapi versus eAPI is mostly a judgment call if you are in a Python environment.

However, if you are in a non-Python environment, eAPI is probably the way to go. From
our examples, you can see that the only requirement of eAPI is a JSON-RPC capable client.
Thus, it is compatible with most programming languages. When I first started out in the
field, Perl was the dominant language for scripting and network automation. There are still
many enterprises that rely on Perl scripts as their primary automation tool. If you're in a
situation where the company has already invested a ton of resources and the code base is in
another language than Python, eAPI with JSON-RPC would be a good bet.

However, for those of us who prefer to code in Python, a native Python library means a
more natural feeling in writing our code. It certainly makes extending a Python program to
support the EOS node easier. It also makes keeping up with the latest changes in Python
easier. For example, we can use Python 3 with Pyeapi!

At the time of writing this book, Python 3 (3.4+) support is officially a
work-in-progress, as stated in the documentation (http:/ /pyeapi.
readthedocs. io/ en/ master/ requirements. html). Please check the
documentation for more details.

Pyeapi installation
Installation is straightforward with pip:

$ sudo pip install pyeapi
$ sudo pip3 install pyeapi

Note that pip will also install the netaddr library as it is part of the stated
requirements (http:/ / pyeapi. readthedocs. io/ en/master/
requirements. html) for Pyeapi.

http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/index.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html

APIs and Intent-Driven Networking Chapter 3

[104]

By default, the Pyeapi client will look for an INI style hidden (with a period in front) file
called eapi.conf in your home directory. You can override this behavior by specifying the
eapi.conf file path, but it is generally a good idea to separate your connection credential
and lock it down from the script itself. You can check out the Arista Pyeapi documentation
(http://pyeapi.readthedocs. io/ en/ master/ configfile. html#configfile) for the fields
contained in the file. Here is the file I am using in the lab:

cat ~/.eapi.conf
[connection:Arista1]
host: 192.168.199.158
username: admin
password: arista
transport: https

The first line, [connection:Arista1], contains the name that we will use in our Pyeapi
connection; the rest of the fields should be pretty self-explanatory. You can lock down the
file to be read-only for the user using this file:

$ chmod 400 ~/.eapi.conf
$ ls -l ~/.eapi.conf
-r-------- 1 echou echou 94 Jan 27 18:15 /home/echou/.eapi.conf

Pyeapi examples
Now, we are ready to take a look around the usage. Let's start by connecting to the EOS
node by creating an object in the interactive Python shell:

Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyeapi
>>> arista1 = pyeapi.connect_to('Arista1')

We can execute show commands to the node and receive the output:

>>> import pprint
>>> pprint.pprint(arista1.enable('show hostname'))
[{'command': 'show hostname',
 'encoding': 'json',
 'result': {'fqdn': 'arista1', 'hostname': 'arista1'}}]

The configuration field can be either a single command or a list of commands using the
config() method:

>>> arista1.config('hostname arista1-new')
[{}]

http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile

APIs and Intent-Driven Networking Chapter 3

[105]

>>> pprint.pprint(arista1.enable('show hostname'))
[{'command': 'show hostname',
 'encoding': 'json',
 'result': {'fqdn': 'arista1-new', 'hostname': 'arista1-new'}}]
>>> arista1.config(['interface ethernet 1/3', 'description my_link'])
[{}, {}]

Note that command abbreviation (show run versus show running-config) and some
extensions will not work:

>>> pprint.pprint(arista1.enable('show run'))
Traceback (most recent call last):
...
 File "/usr/local/lib/python3.5/dist-packages/pyeapi/eapilib.py", line 396,
in send
 raise CommandError(code, msg, command_error=err, output=out)
pyeapi.eapilib.CommandError: Error [1002]: CLI command 2 of 2 'show run'
failed: invalid command [incomplete token (at token 1: 'run')]
>>>
>>> pprint.pprint(arista1.enable('show running-config interface ethernet
1/3'))
Traceback (most recent call last):
...
pyeapi.eapilib.CommandError: Error [1002]: CLI command 2 of 2 'show
running-config interface ethernet 1/3' failed: invalid command [incomplete
token (at token 2: 'interface')]

However, you can always catch the results and get the desired value:

>>> result = arista1.enable('show running-config')
>>> pprint.pprint(result[0]['result']['cmds']['interface Ethernet1/3'])
{'cmds': {'description my_link': None, 'switchport access vlan 100': None},
'comments': []}

So far, we have been doing what we have been doing with eAPI for show and configuration
commands. Pyeapi offers various APIs to make life easier. In the following example, we
will connect to the node, call the VLAN API, and start to operate on the VLAN parameters
of the device. Let's take a look:

>>> import pyeapi
>>> node = pyeapi.connect_to('Arista1')
>>> vlans = node.api('vlans')
>>> type(vlans)
<class 'pyeapi.api.vlans.Vlans'>
>>> dir(vlans)
[...'command_builder', 'config', 'configure', 'configure_interface',
'configure_vlan', 'create', 'default', 'delete', 'error', 'get',
'get_block', 'getall', 'items', 'keys', 'node', 'remove_trunk_group',

APIs and Intent-Driven Networking Chapter 3

[106]

'set_name', 'set_state', 'set_trunk_groups', 'values']
>>> vlans.getall()
{'1': {'vlan_id': '1', 'trunk_groups': [], 'state': 'active', 'name':
'default'}}
>>> vlans.get(1)
{'vlan_id': 1, 'trunk_groups': [], 'state': 'active', 'name': 'default'}
>>> vlans.create(10)
True
>>> vlans.getall()
{'1': {'vlan_id': '1', 'trunk_groups': [], 'state': 'active', 'name':
'default'}, '10': {'vlan_id': '10', 'trunk_groups': [], 'state': 'active',
'name': 'VLAN0010'}}
>>> vlans.set_name(10, 'my_vlan_10')
True

Let's verify that VLAN 10 was created on the device:

arista1#sh vlan
VLAN Name Status Ports
----- -------------------------------- --------- --------------------------

1 default active
10 my_vlan_10 active

As you can see, the Python native API on the EOS object is really where Pyeapi excels
beyond eAPI. It abstracts the lower-level attributes into the device object and makes the
code cleaner and easier to read.

For a full list of ever increasing Pyeapi APIs, check the official
documentation (http:/ /pyeapi. readthedocs. io/ en/master/ api_
modules/ _list_ of_ modules. html).

To round up this chapter, let's assume that we repeat the previous steps enough times that
we would like to write another Python class to save us some work.
The pyeapi_1.py script is shown as follows:

 #!/usr/bin/env python3

 import pyeapi

 class my_switch():

 def __init__(self, config_file_location, device):
 # loads the config file
 pyeapi.client.load_config(config_file_location)
 self.node = pyeapi.connect_to(device)

http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html

APIs and Intent-Driven Networking Chapter 3

[107]

 self.hostname = self.node.enable('show hostname')[0]
 ['result']['host name']
 self.running_config = self.node.enable('show running-
 config')

 def create_vlan(self, vlan_number, vlan_name):
 vlans = self.node.api('vlans')
 vlans.create(vlan_number)
 vlans.set_name(vlan_number, vlan_name)

As you can see from the script, we automatically connect to the node and set the hostname
and running_config upon connection. We also create a method to the class that creates
VLAN by using the VLAN API. Let's try out the script in an interactive shell:

Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyeapi_1
>>> s1 = pyeapi_1.my_switch('/tmp/.eapi.conf', 'Arista1')
>>> s1.hostname
'arista1'
>>> s1.running_config
[{'encoding': 'json', 'result': {'cmds': {'interface Ethernet27': {'cmds':
{}, 'comments': []}, 'ip routing': None, 'interface face Ethernet29':
{'cmds': {}, 'comments': []}, 'interface Ethernet26': {'cmds': {},
'comments': []}, 'interface Ethernet24/4': h.':
<omitted>
'interface Ethernet3/1': {'cmds': {}, 'comments': []}}, 'comments': [],
'header': ['! device: arista1 (DCS-7050QX-32, EOS-4.16.6M)n!n']},
'command': 'show running-config'}]
>>> s1.create_vlan(11, 'my_vlan_11')
>>> s1.node.api('vlans').getall()
{'11': {'name': 'my_vlan_11', 'vlan_id': '11', 'trunk_groups': [], 'state':
'active'}, '10': {'name': 'my_vlan_10', 'vlan_id': '10', 'trunk_groups':
[], 'state': 'active'}, '1': {'name': 'default', 'vlan_id': '1',
'trunk_groups': [], 'state': 'active'}}
>>>

APIs and Intent-Driven Networking Chapter 3

[108]

Vendor-neutral libraries
There are several excellent efforts of vendor-neutral libraries such as Netmiko (https:/ /
github.com/ktbyers/ netmiko) and NAPALM (https:/ / github. com/ napalm- automation/
napalm). Because these libraries do not come natively from the device vendor, they are
sometimes a step slower to support the latest platform or features. However, because the
libraries are vendor-neutral, if you do not like vendor lock-in for your tools, then these
libraries are a good choice. Another benefit of using these libraries is the fact that they are
normally open source, so you can contribute back upstream for new features and bug fixes.

On the other hand, because these libraries are community supported, they are not
necessarily the ideal fit if you need to rely on somebody else to fix bugs or implement new
features. If you have a relatively small team that still needs to comply with certain service-
level assurances for your tools, you might be better off using a vendor-backed library.

Summary
In this chapter, we looked at various ways to communicate and manage network devices
from Cisco, Juniper, and Arista. We looked at both direct communication with the likes of
NETCONF and REST, as well as using vendor-provided libraries such as PyEZ and Pyeapi.
These are different layers of abstractions, meant to provide a way to programmatically
manage your network devices without human intervention.

In Chapter 4, The Python Automation Framework – Ansible Basics, we will take a look at a
higher level of vendor-neutral abstraction framework called Ansible. Ansible is an open
source, general purpose automation tool written in Python. It can be used to automate
servers, network devices, load balancers, and much more. Of course, for our purpose, we
will focus on using this automation framework for network devices.

https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm

4
The Python Automation

Framework – Ansible Basics
The previous two chapters incrementally introduced different ways to interact with
network devices. In Chapter 2, Low-Level Network Device Interactions, we discussed Pexpect
and Paramiko libraries that manage an interactive session to control the interactions. In
Chapter 3, APIs and Intent-Driven Networking, we started to think of our network in terms
of API and intent. We looked at various APIs that contain a well-defined command
structure and provide a structured way of getting feedback from the device. As we moved
from Chapter 2, Low-Level Network Device Interactions, to Chapter 3, APIs and Intent-Driven
Networking, we began to think about our intent for the network and gradually expressed
our network in terms of code.

The Python Automation Framework – Ansible Basics Chapter 4

[110]

Let's expand upon the idea of translating our intention into network requirements. If you
have worked on network designs, chances are the most challenging part of the process is
not the different pieces of network equipment, but rather qualifying and translating
business requirements into the actual network design. Your network design needs to solve
business problems. For example, you might be working within a larger infrastructure team
that needs to accommodate a thriving online e-commerce site that experiences slow site
response times during peak hours. How do you determine if the network is the problem? If
the slow response on the website was indeed due to network congestion, which part of the
network should you upgrade? Can the rest of the system take advantage of the bigger
speed and feed? The following diagram is an illustration of a simple process of the steps
that we might go through when trying to translate our business requirements into a
network design:

Business logic to network deployment

In my opinion, network automation is not just about faster configuration. It should also be
about solving business problems, and accurately and reliably translating our intention into
device behavior. These are the goals that we should keep in mind as we march on the
network automation journey. In this chapter, we will start to look at a Python-based
framework called Ansible that allows us to declare our intention for the network and
abstract even more from the API and CLI.

The Python Automation Framework – Ansible Basics Chapter 4

[111]

A more declarative framework
You woke up one morning in a cold sweat from a nightmare you had about a potential
network security breach. You realized that your network contains valuable digital assets
that should be protected. You have been doing your job as a network administrator, so it is
pretty secure, but you want to put more security measures around your network devices
just to be sure.

To start with, you break the objective down into two actionable items:

Upgrading the devices to the latest version of the software, which requires:
Uploading the image to the device.1.
Instructing the device to boot from the new image.2.
Proceeding to reboot the device.3.
Verifying that the device is running with the new software image.4.

Configuring the appropriate access control list on the networking devices, which
includes the following:

Constructing the access list on the device.1.
Configuring the access list on the interface, which in most cases is2.
under the interface configuration section so that it can be applied to the
interfaces.

Being an automation-focused network engineer, you want to write scripts to reliably
configure the devices and receive feedback from the operations. You begin to research the
necessary commands and APIs for each of the steps, validate them in the lab, and finally
deploy them in production. Having done a fair amount of work for OS upgrade and ACL
deployment, you hope the scripts are transferable to the next generation of devices.
Wouldn't it be nice if there was a tool that could shorten this design-develop-deployment
cycle?

In this chapter and in Chapter 5, The Python Automation Framework – Beyond Basics, we will
work with an open source automation tool called Ansible. It is a framework that can
simplify the process of going from business logic to network commands. It can configure
systems, deploy software, and orchestrate a combination of tasks. Ansible is written in
Python and has emerged as one of the leading automation tools supported by network
equipment vendors.

In this chapter, we will take a look at the following topics:

A quick Ansible example
The advantages of Ansible

The Python Automation Framework – Ansible Basics Chapter 4

[112]

The Ansible architecture
Ansible Cisco modules and examples
Ansible Juniper modules and examples
Ansible Arista modules and examples

At the time of writing this book, Ansible release 2.5 is compatible with Python 2.6 and 2.7,
with Python 3 support recently coming out of the technical review. Just like Python, many
of the useful features of Ansible come from the community-driven extension modules. Even
with Ansible core module supportability with Python 3, many of the extension modules
and production deployments are still in Python 2 mode. It will take some time to bring all
the extension modules up from Python 2 to Python 3. Due to this reason, for the rest of this
book, we will use Python 2.7 with Ansible 2.2.

Why Ansible 2.2? Ansible 2.5, released in March 2018, offers many new network module
features with a new connection method, syntax, and best practices. Given its relatively new
features, most of the production deployment is still pre-2.5 release. However, in this
chapter, you will also find sections dedicated to Ansible 2.5 examples for those who want to
take advantage of the new syntax and features.

For the latest information on Ansible Python 3 support, check out http:/ /
docs. ansible. com/ ansible/ python_ 3_support. html.

As one can tell from the previous chapters, I am a believer in learning by examples. Just like
the underlying Python code for Ansible, the syntax for Ansible constructs are easy enough
to understand, even if you have not worked with Ansible before. If you have some
experience with YAML or Jinja2, you will quickly draw the correlation between the syntax
and the intended procedure. Let's take a look at an example first.

A quick Ansible example
As with other automation tools, Ansible started out by managing servers before expanding
its ability to manage networking equipment. For the most part, the modules and what
Ansible refers to as the playbook are similar between server modules and network modules
with subtle differences. In this chapter, we will look at a server task example first and draw
comparisons later on with network modules.

http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html
http://docs.ansible.com/ansible/python_3_support.html

The Python Automation Framework – Ansible Basics Chapter 4

[113]

The control node installation
First, let's clarify the terminology we will use in the context of Ansible. We will refer to the
virtual machine with Ansible installed as the control machine, and the machines being
managed as the target machines or managed nodes. Ansible can be installed on most of the
Unix systems, with the only dependency of Python 2.6 or 2.7. Currently, the Windows
operating system is not officially supported as the control machine. Windows hosts can still
be managed by Ansible, as they are just not supported as the control machine.

As Windows 10 starts to adopt the Windows Subsystem for Linux,
Ansible might soon be ready to run on Windows as well. For more
information, please check the Ansible documentation for Windows
(https:/ /docs. ansible. com/ansible/ 2.4/ intro_ windows. html).

On the managed node requirements, you may notice some documentation mentioning that
Python 2.4 or later is a requirement. This is true for managing target nodes with operating
systems such as Linux, but obviously not all network equipment supports Python. We will
see how this requirement is bypassed for networking modules by local execution on the
control node.

For Windows, Ansible modules are implemented in PowerShell.
Windows modules in the core and extra repository live in a
Windows/subdirectory if you would like to take a look.

We will be installing Ansible on our Ubuntu virtual machine. For instructions on
installation on other operating systems, check out the installation documentation (http:/ /
docs.ansible.com/ ansible/ intro_ installation. html). In the following code block, you
will see the steps for installing the software packages:

$ sudo apt-get install software-properties-common
$ sudo apt-add-repository ppa:ansible/ansible
$ sudo apt-get update
$ sudo apt-get install ansible

We can also use pip to install Ansible: pip install ansible. My
personal preference is to use the operating system's package management
system, such as Apt on Ubuntu.

We can now do a quick verification as follows:

$ ansible --version
ansible 2.6.1

https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
https://docs.ansible.com/ansible/2.4/intro_windows.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html

The Python Automation Framework – Ansible Basics Chapter 4

[114]

 config file = /etc/ansible/ansible.cfg

Now, let's see how we can run different versions of Ansible on the same control node. This
is a useful feature to adopt if you'd like to try out the latest development features without
permanent installation. We can also use this method if we intend on running Ansible on a
control node for which we do not have root permissions.

As we saw from the output, at the time of writing this book, the latest
release is 2.6.1. Feel free to use this version, but given the relatively new
release, we will focus on Ansible version 2.2 in this book.

Running different versions of Ansible from
source
You can run Ansible from a source code checkout (we will look at Git as a version control
mechanism in Chapter 11, Working with Git):

$ git clone https://github.com/ansible/ansible.git --recursive
$ cd ansible/
$ source ./hacking/env-setup
...
Setting up Ansible to run out of checkout...
$ ansible --version
ansible 2.7.0.dev0 (devel cde3a03b32) last updated 2018/07/11 08:39:39 (GMT
-700)
 config file = /etc/ansible/ansible.cfg
...

To run different versions, we can simply use git checkout for the different branch or tag
and perform the environment setup again:

$ git branch -a
$ git tag --list
$ git checkout v2.5.6
...
HEAD is now at 0c985fe... New release v2.5.6
$ source ./hacking/env-setup
$ ansible --version
ansible 2.5.6 (detached HEAD 0c985fee8a) last updated 2018/07/11 08:48:20
(GMT -700)
 config file = /etc/ansible/ansible.cfg

The Python Automation Framework – Ansible Basics Chapter 4

[115]

If the Git commands seem a bit strange to you, we will cover Git in more
detail in Chapter 11, Working with Git.

Once we are at the version you need, such as Ansible 2.2, we can run the update for the
core modules for that version:

$ ansible --version
ansible 2.2.3.0 (detached HEAD f5be18f409) last updated 2018/07/14 07:40:09
(GMT -700)
...
$ git submodule update --init --recursive
Submodule 'lib/ansible/modules/core'
(https://github.com/ansible/ansible-modules-core) registered for path
'lib/ansible/modules/core'

Let's take a look at the lab topology we will use in this chapter and Chapter 5, The Python
Automation Framework – Beyond Basics.

Lab setup
In this chapter and in Chapter 5, The Python Automation Framework – Beyond Basics, our lab
will have an Ubuntu 16.04 control node machine with Ansible installed. This control
machine will have reachability for the management network for our VIRL devices, which
consist of IOSv and NX-OSv devices. We will also have a separate Ubuntu VM for our
playbook example when the target machine is a host:

Lab topology

The Python Automation Framework – Ansible Basics Chapter 4

[116]

Now, we are ready to see our first Ansible playbook example.

Your first Ansible playbook
Our first playbook will be used between the control node and a remote Ubuntu host. We
will take the following steps:

Make sure the control node can use key-based authorization.1.
Create an inventory file.2.
Create a playbook.3.
Execute and test it.4.

The public key authorization
The first thing to do is copy your SSH public key from your control machine to the target
machine. A full public key infrastructure tutorial is outside the scope of this book, but here
is a quick walkthrough on the control node:

$ ssh-keygen -t rsa <<<< generates public-private key pair on the host
machine if you have not done so already
$ cat ~/.ssh/id_rsa.pub <<<< copy the content of the output and paste it to
the ~/.ssh/authorized_keys file on the target host

You can read more about PKI at https:/ /en. wikipedia. org/ wiki/
Public_ key_ infrastructure.

Because we are using key-based authentication, we can turn off password-based
authentication on the remote node and be more secure. You will now be able to ssh from
the control node to the remote node using the private key without being prompted for a
password.

Can you automate the initial public key copying? It is possible, but is
highly dependent on your use case, regulation, and environment. It is
comparable to the initial console setup for network gears to establish
initial IP reachability. Do you automate this? Why or why not?

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure

The Python Automation Framework – Ansible Basics Chapter 4

[117]

The inventory file
We do not need Ansible if we have no remote target to manage, right? Everything starts
with the fact that we need to perform some task on a remote host. In Ansible, the way we
specify the potential remote target is with an inventory file. We can have this inventory file
as the /etc/ansible/hosts file or use the -i option to specify the file during playbook
runtime. Personally, I prefer to have this file in the same directory where my playbook is
and use the -i option.

Technically, this file can be named anything you like as long as it is in a
valid format. However, the convention is to name this file hosts. You can
potentially save yourself and your colleagues some headaches in the
future by following this convention.

The inventory file is a simple, plaintext INI-style (https:/ /en. wikipedia. org/ wiki/ INI_
file) file that states your target. By default, the target can either be a DNS FQDN or an IP
address:

$ cat hosts
192.168.199.170

We can now use the command-line option to test Ansible and the hosts file:

$ ansible -i hosts 192.168.199.170 -m ping
192.168.199.170 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

By default, Ansible assumes that the same user executing the playbook
exists on the remote host. For example, I am executing the playbook as
echou locally; the same user also exists on my remote host. If you want to
execute as a different user, you can use the -u option when executing, that
is, -u REMOTE_USER.

The previous line in the example reads in the host file as the inventory file and executes the
ping module on the host called 192.168.199.170. Ping (http:/ /docs. ansible. com/
ansible/ping_module. html) is a trivial test module that connects to the remote host,
verifies a usable Python installation, and returns the output pong upon success.

You may take a look at the ever-expanding module list (http:/ / docs.
ansible. com/ ansible/ list_of_ all_ modules. html) if you have any
questions about the use of existing modules that were shipped with
Ansible.

https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/list_of_all_modules.html

The Python Automation Framework – Ansible Basics Chapter 4

[118]

If you get a host key error, it is typically because the host key is not in the known_hosts
file, and is typically under ~/.ssh/known_hosts. You can either SSH to the host and
answer yes when adding the host, or you can disable this by checking
on /etc/ansible/ansible.cfg or ~/.ansible.cfg with the following code:

[defaults]
host_key_checking = False

Now that we have validated the inventory file and Ansible package, we can make our first
playbook.

Our first playbook
Playbooks are Ansible's blueprint to describe what you would like to do to the hosts using
modules. This is where we will be spending the majority of our time as operators when
working with Ansible. If you are building a tree house, the playbook will be your manual,
the modules will be your tools, while the inventory will be the components that you will be
working on when using the tools.

The playbook is designed to be human readable, and is in YAML format. We will look at
the common syntax used in the Ansible architecture section. For now, our focus is to run an
example playbook to get the look and feel of Ansible.

Originally, YAML was said to mean Yet Another Markup Language, but
now, http:/ / yaml. org/ has repurposed the acronym to be YAML ain't
markup language.

Let's look at this simple 6-line playbook, df_playbook.yml:

- hosts: 192.168.199.170

 tasks:
 - name: check disk usage
 shell: df > df_temp.txt

http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/

The Python Automation Framework – Ansible Basics Chapter 4

[119]

In a playbook, there can be one or more plays. In this case, we have one play (lines two to
six). In any play, we can have one or more tasks. In our example play, we have just one task
(lines four to six). The name field specifies the purpose of the task in a human readable
format and the shell module was used. The module takes one argument of df. The shell
module reads in the command in the argument and executes it on the remote host. In this
case, we execute the df command to check the disk usage and copy the output to a file
named df_temp.txt.

We can execute the playbook via the following code:

$ ansible-playbook -i hosts df_playbook.yml
PLAY [192.168.199.170]

TASK [setup]

ok: [192.168.199.170]

TASK [check disk usage] **
changed: [192.168.199.170]

PLAY RECAP

192.168.199.170 : ok=2 changed=1 unreachable=0 failed=0

If you log into the managed host (192.168.199.170, for me), you will see that the
df_temp.txt file contains the output of the df command. Neat, huh?

You may have noticed that there were actually two tasks executed in our output, even
though we only specified one task in the playbook; the setup module is automatically
added by default. It is executed by Ansible to gather information about the remote host,
which can be used later on in the playbook. For example, one of the facts that the setup
module gathers is the operating system. What is the purpose of gathering facts about the
remote target? You can use this information as a conditional for additional tasks in the
same playbook. For example, the playbook can contain additional tasks to install packages.
It can do this specifically to use apt for Debian-based hosts and yum for Red Hat-based
hosts, based on the operation system facts that were gathered in the setup module.

If you are curious about the output of a setup module, you can find out
what information Ansible gathers via $ ansible -i hosts <host> -m
setup.

The Python Automation Framework – Ansible Basics Chapter 4

[120]

Underneath the hood, there are actually a few things that have happened for our simple
task. The control node copies the Python module to the remote host, executes the module,
copies the module output to a temporary file, then captures the output and deletes the
temporary file. For now, we can probably safely ignore these underlying details until we
need them.

It is important that we fully understand the simple process that we have just gone through
because we will be referring back to these elements later in this chapter. I purposely chose a
server example to be presented here, because this will make more sense as we dive into the
networking modules when we need to deviate from them (remember that we mentioned
the Python interpreter is most likely not on the network gear).

Congratulations on executing your first Ansible playbook! We will look more into the
Ansible architecture, but for now let's take a look at why Ansible is a good fit for network
management. Remember that Ansible modules are written in Python? That is one
advantage for a Pythonic network engineer, right?

The advantages of Ansible
There are many infrastructure automation frameworks besides Ansible—namely Chef,
Puppet, and SaltStack. Each framework offers its own unique features and models; there is
no one right framework that fits all the organizations. In this section, I would like to list
some of the advantages of Ansible over other frameworks and why I think this is a good
tool for network automation.

I am listing the advantages of Ansible without comparing them to other frameworks. Other
frameworks might adopt some of the same philosophy or certain aspects of Ansible, but
rarely do they contain all of the features that I will be mentioning. I believe it is the
combination of all the following features and philosophy that makes Ansible ideal for
network automation.

Agentless
Unlike some of its peers, Ansible does not require a strict master-client model. No software
or agent needs to be installed on the client that communicates back to the server. Outside of
the Python interpreter, which many platforms have by default, there is no additional
software needed.

The Python Automation Framework – Ansible Basics Chapter 4

[121]

For network automation modules, instead of relying on remote host agents, Ansible uses
SSH or API calls to push the required changes to the remote host. This further reduces the
need for the Python interpreter. This is huge for network device management, as network
vendors are typically reluctant to put third-party software on their platforms. SSH, on the
other hand, already exists on the network equipment. This mentality has changed a bit in
the last few years, but overall SSH is the common denominator for all network equipment
while configuration management agent support is not. As you will remember from Chapter
2, Low-Level Network Device Interactions, newer network devices also provide an API layer,
which can also be leveraged by Ansible.

Because there is no agent on the remote host, Ansible uses a push model to push the
changes to the device, as opposed to the pull model where the agent pulls the information
from the master server. The push model, in my opinion, is more deterministic as everything
originates from the control machine. In a pull model, the timing of the pull might vary
from client to client, and therefore results in change timing variance.

Again, the importance of being agentless cannot be stressed enough when it comes to
working with the existing network equipment. This is usually one of the major reasons
network operators and vendors embrace Ansible.

Idempotent
According to Wikipedia, idempotence is the property of certain operations in mathematics
and computer science that can be applied multiple times without changing the result
beyond the initial application (https:/ /en.wikipedia. org/ wiki/ Idempotence). In more
common terms, it means that running the same procedure over and over again does not
change the system after the first time. Ansible aims to be idempotent, which is good for
network operations that require a certain order of operations.

The advantage of idempotence is best compared to the Pexpect and Paramiko scripts that
we have written. Remember that these scripts were written to push out commands as if an
engineer was sitting at the terminal. If you were to execute the script 10 times, the script
will make changes 10 times. If we write the same task via the Ansible playbook, the existing
device configuration will be checked first, and the playbook will only execute if the changes
do not exist. If we execute the playbook 10 times, the change will only be applied during
the first run, with the next 9 runs suppressing the configuration change.

Being idempotent means we can repeatedly execute the playbook without worrying that
there will be unnecessary changes made. This is important as we need to automatically
check for state consistency without any extra overhead.

https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Idempotence

The Python Automation Framework – Ansible Basics Chapter 4

[122]

Simple and extensible
Ansible is written in Python and uses YAML for the playbook language, both of which are
considered relatively easy to learn. Remember the Cisco IOS syntax? This is a domain-
specific language that is only applicable when you are managing Cisco IOS devices or other
similarly structured equipment; it is not a general purpose language beyond its limited
scope. Luckily, unlike some other automation tools, there is no extra domain-specific
language or DSL to learn for Ansible because YAML and Python are both widely used as
general purpose languages.

As you can see from the previous example, even if you have not seen YAML before, it is
easy to accurately guess what the playbook is trying to do. Ansible also uses Jinja2 as a
template engine, which is a common tool used by Python web frameworks such as Django
and Flask, so the knowledge is transferable.

I cannot stress enough the extensibility of Ansible. As illustrated by the preceding example,
Ansible starts out with automating server (primarily Linux) workloads in mind. It then
branches out to manage Windows machines with PowerShell. As more and more people in
the industry started to adapt Ansible, the network became a topic that started to get more
attention. The right people and team were hired at Ansible, network professionals started
to get involved, and customers started to demand vendors for support. Starting with
Ansible 2.0, network automation has become a first-class citizen alongside server
management. The ecosystem is alive and well, with continuous improvement in each of the
releases.

Just like the Python community, the Ansible community is friendly, and the attitude is
inclusive of new members and ideas. I have first-hand experience of being a noob and
trying to make sense of contribution procedures and wishing to write modules to be
merged upstream. I can testify to the fact that I felt welcomed and respected for my
opinions at all times.

The simplicity and extensibility really speak well for future proofing. The technology world
is evolving fast, and we are constantly trying to adapt to it. Wouldn't it be great to learn a
technology once and continue to use it, regardless of the latest trend? Obviously, nobody
has a crystal ball to accurately predict the future, but Ansible's track record speaks well for
future technology adaptation.

The Python Automation Framework – Ansible Basics Chapter 4

[123]

Network vendor support
Let's face it, we don't live in a vacuum. There is a running joke in the industry that the OSI
layer should include a layer 8 (money) and 9 (politics). Every day, we need to work with
network equipment made by various vendors.

Take API integration as an example. We saw the difference between the Pexpect and API
approach in previous chapters. API clearly has an upper hand in terms of network
automation. However, the API interface does not come cheap. Each vendor needs to invest
time, money, and engineering resources to make the integration happen. The willingness
for the vendor to support a technology matters greatly in our world. Luckily, all the major
vendors support Ansible, as clearly indicated by the ever increasingly available network
modules (http:/ /docs. ansible. com/ ansible/ list_ of_network_ modules. html).

Why do vendors support Ansible more than other automation tools? Being agentless
certainly helps, since having SSH as the only dependency greatly lowers the bar of entry.
Engineers who have been on the vendor side know that the feature request process is
usually months long and many hurdles have to be jumped through. Any time a new feature
is added, it means more time spent on regression testing, compatibility checking,
integration reviews, and many more. Lowering the bar of entry is usually the first step in
getting vendor support.

The fact that Ansible is based on Python, a language liked by many networking
professionals, is another great propeller for vendor support. For vendors such as Juniper
and Arista who already made investments in PyEZ and Pyeapi, they can easily leverage the
existing Python modules and quickly integrate their features into Ansible. As you will see
in Chapter 5, The Python Automation Framework – Beyond Basics, we can use our existing
Python knowledge to easily write our own modules.

Ansible already had a large number of community-driven modules before it focused on
networking. The contribution process is somewhat baked and established, or as baked as an
open source project can be. The core Ansible team is familiar with working with the
community for submission and contribution.

Another reason for the increased network vendor support also has to do with Ansible's
ability to give vendors the ability to express their own strength in the module context. We
will see in the coming section that, besides SSH, the Ansible module can also be executed
locally and communicate with these devices by using API. This ensures that vendors can
express their latest and greatest features as soon as they make them available through the
API. In terms of network professionals, this means that you can use the cutting-edge
features to select the vendors when you are using Ansible as an automation platform.

http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html
http://docs.ansible.com/ansible/list_of_network_modules.html

The Python Automation Framework – Ansible Basics Chapter 4

[124]

We have spent a relatively large portion of space discussing vendor support because I feel
that this is often an overlooked part in the Ansible story. Having vendors willing to put
their weight behind the tool means you, the network engineer, can sleep at night knowing
that the next big thing in networking will have a high chance of Ansible support, and you
are not locked into your current vendor as your network needs to grow.

The Ansible architecture
The Ansible architecture consists of playbooks, plays, and tasks. Take a look
at df_playbook.yml that we used previously:

Ansible playbook

The whole file is called a playbook, which contains one or more plays. Each play can consist
of one or more tasks. In our simple example, we only have one play, which contains a
single task. In this section, we will take a look at the following:

YAML: This format is extensively used in Ansible to express playbooks and
variables.
Inventory: The inventory is where you can specify and group hosts in your
infrastructure. You can also optionally specify host and group variables in the
inventory file.
Variables: Each of the network devices is different. It has a different hostname,
IP, neighbor relations, and so on. Variables allow for a standard set of plays
while still accommodating these differences.
Templates: Templates are nothing new in networking. In fact, you are probably
using one without thinking of it as a template. What do we typically do when we
need to provision a new device or replace an RMA (return
merchandise authorization)? We copy the old configuration over and replace the
differences such as the hostname and the loopback IP addresses. Ansible
standardizes the template formatting with Jinja2, which we will dive deeper into
later on.

The Python Automation Framework – Ansible Basics Chapter 4

[125]

In Chapter 5, The Python Automation Framework – Beyond Basics, we will cover some more
advanced topics such as conditionals, loops, blocks, handlers, playbook roles, and how they
can be included with network management.

YAML
YAML is the syntax used for Ansible playbooks and some other files. The official YAML
documentation contains the full specifications of the syntax. Here is a compact version as it
pertains to the most common usage for Ansible:

A YAML file starts with three dashes (---)
Whitespace indentation is used to denote structures when they are lined up, just
like Python
Comments begin with the hash (#) sign
List members are denoted by a leading hyphen (-), with one member per line
Lists can also be denoted via square brackets ([]), with elements separated by
a comma (,)
Dictionaries are denoted by key: value pairs, with a colon for separation
Dictionaries can be denoted by curly braces, with elements separated by
a comma (,)
Strings can be unquoted, but can also be enclosed in double or single quotes

As you can see, YAML maps well into JSON and Python datatypes. If I were to
rewrite df_playbook.yml into df_playbook.json, this is what it would look like:

 [
 {
 "hosts": "192.168.199.170",
 "tasks": [
 "name": "check disk usage",
 "shell": "df > df_temp.txt"
]
 }
]

This is obviously not a valid playbook, but serves as an aid in helping to understand the
YAML formats while using the JSON format as a comparison. Most of the time, comments
(#), lists (-), and dictionaries (key: value) are what you will see in a playbook.

The Python Automation Framework – Ansible Basics Chapter 4

[126]

Inventories
By default, Ansible looks at the /etc/ansible/hosts file for hosts specified in your
playbook. As mentioned previously, I find it more expressive to specify the host file via the
-i option. This is what we have been doing up to this point. To expand on our previous
example, we can write our inventory host file as follows:

[ubuntu]
192.168.199.170

[nexus]
192.168.199.148
192.168.199.149

[nexus:vars]
username=cisco
password=cisco

[nexus_by_name]
switch1 ansible_host=192.168.199.148
switch2 ansible_host=192.168.199.149

As you may have guessed, the square bracket headings specify group names, so later on in
the playbook we can point to this group. For example, in cisco_1.yml and cisco_2.yml,
I can act on all of the hosts specified under the nexus group to the group name of nexus:

- name: Configure SNMP Contact
hosts: "nexus"
gather_facts: false
connection: local
<skip>

A host can exist in more than one group. The group can also be nested as children:

[cisco]
router1
router2

[arista]
switch1
switch2

[datacenter:children]
cisco
arista

The Python Automation Framework – Ansible Basics Chapter 4

[127]

In the previous example, the datacenter group includes both the cisco and arista
members.

We will discuss variables in the next section. However, you can optionally specify variables
belonging to the host and group in the inventory file as well. In our first inventory file
example, [nexus:vars] specifies variables for the whole nexus group. The ansible_host
variable declares variables for each of the hosts on the same line.

For more information on the inventory file, check out the official documentation (http:/ /
docs.ansible.com/ ansible/ intro_ inventory. html).

Variables
We discussed variables a bit in the previous section. Because our managed nodes are not
exactly alike, we need to accommodate the differences via variables. Variable names should
be letters, numbers, and underscores, and should always start with a letter. Variables are
commonly defined in three locations:

The playbook
The inventory file
Separate files to be included in files and roles

Let's look at an example of defining variables in a playbook, cisco_1.yml:

- name: Configure SNMP Contact
hosts: "nexus"
gather_facts: false
connection: local

vars:
cli:
host: "{{ inventory_hostname }}"
username: cisco
password: cisco
transport: cli

tasks:
- name: configure snmp contact
nxos_snmp_contact:
contact: TEST_1
state: present
provider: "{{ cli }}"

http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html

The Python Automation Framework – Ansible Basics Chapter 4

[128]

register: output

- name: show output
debug:
var: output

You can see the cli variable declared under the vars section, which is being used in the
task of nxos_snmp_contact.

For more information on the nxso_snmp_contact module, check out the
online documentation (http:/ /docs. ansible. com/ ansible/ nxos_ snmp_
contact_ module. html).

To reference a variable, you can use the Jinja2 templating system convention of a double
curly bracket. You don't need to put quotes around the curly bracket unless you are starting
a value with it. I typically find it easier to remember and put a quote around the variable
value regardless.

You may have also noticed the {{ inventory_hostname }} reference, which is not
declared in the playbook. It is one of the default variables that Ansible provides for you
automatically, and it is sometimes referred to as the magic variable.

There are not many magic variables, and you can find the list in the
documentation (http:/ /docs. ansible. com/ ansible/ playbooks_
variables. html#magic- variables- and-how- to- access- information-
about- other- hosts).

We have declared variables in an inventory file in the previous section:

[nexus:vars]
username=cisco
password=cisco

[nexus_by_name]
switch1 ansible_host=192.168.199.148
switch2 ansible_host=192.168.199.149

To use the variables in the inventory file instead of declaring them in the playbook, let's
add the group variables for [nexus_by_name] in the host file:

[nexus_by_name]
switch1 ansible_host=192.168.199.148
switch2 ansible_host=192.168.199.149

[nexus_by_name:vars]

http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/nxos_snmp_contact_module.html
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts)

The Python Automation Framework – Ansible Basics Chapter 4

[129]

username=cisco
password=cisco

Then, modify the playbook to match what we can see here in cisco_2.yml, to reference
the variables:

- name: Configure SNMP Contact
hosts: "nexus_by_name"
gather_facts: false
connection: local

vars:
 cli:
 host: "{{ ansible_host }}"
 username: "{{ username }}"
 password: "{{ password }}"
 transport: cli

tasks:
 - name: configure snmp contact
 nxos_snmp_contact:
 contact: TEST_1
 state: present
 provider: "{{ cli }}"

 register: output

- name: show output
 debug:
 var: output

Notice that in this example, we are referring to the nexus_by_name group in the inventory
file, the ansible_host host variable, and the username and password group variables.
This is a good way of hiding the username and password in a write-protected file and
publish the playbook without the fear of exposing your sensitive data.

To see more examples of variables, check out the Ansible documentation
(http:/ / docs. ansible. com/ ansible/ playbooks_ variables. html).

http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html

The Python Automation Framework – Ansible Basics Chapter 4

[130]

To access complex variable data that's provided in a nested data structure, you can use two
different notations. Noted in the nxos_snmp_contact task, we registered the output in a
variable and displayed it using the debug module. You will see something like the
following during playbook execution:

 TASK [show output]

 ok: [switch1] => {
 "output": {
 "changed": false,
 "end_state": {
 "contact": "TEST_1"
 },
 "existing": {
 "contact": "TEST_1"
 },
 "proposed": {
 "contact": "TEST_1"
 },
 "updates": []
 }
 }

In order to access the nested data, we can use the following notation, as specified in
cisco_3.yml:

msg: '{{ output["end_state"]["contact"] }}'
msg: '{{ output.end_state.contact }}'

You will receive just the value indicated:

TASK [show output in output["end_state"]["contact"]]

ok: [switch1] => {
 "msg": "TEST_1"
}
ok: [switch2] => {
 "msg": "TEST_1"
}

TASK [show output in output.end_state.contact]

ok: [switch1] => {
 "msg": "TEST_1"
}
ok: [switch2] => {
 "msg": "TEST_1"
}

The Python Automation Framework – Ansible Basics Chapter 4

[131]

Lastly, we mentioned variables can also be stored in a separate file. To see how we can use
variables in a role or included file, we should get a few more examples under our belt,
because they are a bit complicated to start with. We will see more examples of roles in
Chapter 5, The Python Automation Framework – Beyond Basics.

Templates with Jinja2
In the previous section, we used variables with the Jinja2 syntax of {{ variable }}.
While you can do a lot of complex things in Jinja2, luckily, we only need some of the basic
things to get started.

Jinja2 (http:/ / jinja. pocoo. org/) is a full-featured, powerful template
engine that originated in the Python community. It is widely used in
Python web frameworks such as Django and Flask.

For now, it is enough to just keep in mind that Ansible utilizes Jinja2 as the template
engine. We will revisit the topics of Jinja2 filters, tests, and lookups as the situations call for
them. You can find more information on the Ansible Jinja2 template here: http:/ /docs.
ansible.com/ansible/ playbooks_ templating. html.

Ansible networking modules
Ansible was originally made for managing nodes with full operating systems such as Linux
and Windows before it was extended to support network equipment. You may have
already noticed the subtle differences in playbooks that we have used so far for network
devices, such as the lines of gather_facts: false and connection: local; we will
take a closer look at the differences in the following sections.

Local connections and facts
Ansible modules are Python code that's executed on the remote host by default. Because of
the fact that most network equipment does not expose Python directly, or they simply do
not contain Python, we are almost always executing the playbook locally. This means that
the playbook is interpreted locally first and commands or configurations are pushed out
later on as needed.

http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html

The Python Automation Framework – Ansible Basics Chapter 4

[132]

Recall that the remote host facts were gathered via the setup module, which was added by
default. Since we are executing the playbook locally, the setup module will gather the facts
on the localhost instead of the remote host. This is certainly not needed, therefore when the
connection is set to local, we can reduce this unnecessary step by setting the fact gathering
to false.

Because network modules are executed locally, for those modules that offer a backup
option, the files are backed up locally on the control node as well.

One of the most important changes in Ansible 2.5 was the introduction of different
communication protocols (https:/ / docs. ansible. com/ ansible/ latest/ network/
getting_started/ network_ differences. html#multiple- communication- protocols). The
connection method now includes network_cli, netconf, httpapi, and local. If the
network device uses CLI over SSH, you indicate the connection method as network_cli in
one of the device variables. However, due to the fact that this is a relatively recent change,
you might still see the connection stated as local in many of the existing playbooks.

Provider arguments
As we have seen from Chapter 2, Low-Level Network Device Interactions, and Chapter 3,
APIs and Intent-Driven Networking, network equipment can be connected via both SSH or
API, depending on the platform and software release. All core networking modules
implement a provider argument, which is a collection of arguments used to define how to
connect to the network device. Some modules only support cli while some support other
values, for example, Arista EAPI and Cisco NXAPI. This is where Ansible's "let the vendor
shine" philosophy is demonstrated. The module will have documentation on which
transport method they support.

Starting with Ansible 2.5, the recommended way to specify the transport method is by
using the connection variable. You will start to see the provider parameter being
gradually phased out from future Ansible releases. Using the ios_command module as an
example, https:// docs. ansible. com/ ansible/ latest/ modules/ ios_ command_ module.
html#ios-command- module, the provider parameter still works, but is being labeled as
deprecated. We will see an example of this later in this chapter.

Some of the basic arguments supported by the provider transport are as follows:

host: This defines the remote host
port: This defines the port to connect to
username: This is the username to be authenticated

https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html#multiple-communication-protocols
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module
https://docs.ansible.com/ansible/latest/modules/ios_command_module.html#ios-command-module

The Python Automation Framework – Ansible Basics Chapter 4

[133]

password: This is the password to be authenticated
transport: This is the type of transport for the connection
authorize: This enables privilege escalation for devices that require it
auth_pass: This defines the privilege escalation password

As you can see, not all arguments need to be specified. For example, for our previous
playbooks, our user is always at the admin privilege when logged in, therefore we do not
need to specify the authorize or the auth_pass arguments.

These arguments are just variables, so they follow the same rules for variable precedence.
For example, if I change cisco_3.yml to cisco_4.yml and observe the following
precedence:

 - name: Configure SNMP Contact
 hosts: "nexus_by_name"
 gather_facts: false
 connection: local

 vars:
 cli:
 host: "{{ ansible_host }}"
 username: "{{ username }}"
 password: "{{ password }}"
 transport: cli

 tasks:
 - name: configure snmp contact
 nxos_snmp_contact:
 contact: TEST_1
 state: present
 username: cisco123
 password: cisco123
 provider: "{{ cli }}"

 register: output

 - name: show output in output["end_state"]["contact"]
 debug:
 msg: '{{ output["end_state"]["contact"] }}'

 - name: show output in output.end_state.contact
 debug:
 msg: '{{ output.end_state.contact }}'

The Python Automation Framework – Ansible Basics Chapter 4

[134]

The username and password defined on the task level will override the username and
password at the playbook level. I will receive the following error when trying to connect
because the user does not exist on the device:

PLAY [Configure SNMP Contact]
**

TASK [configure snmp contact]
**
fatal: [switch2]: FAILED! => {"changed": false, "failed": true,
"msg": "failed to connect to 192.168.199.149:22"}
fatal: [switch1]: FAILED! => {"changed": false, "failed": true,
"msg": "failed to connect to 192.168.199.148:22"}
to retry, use: --limit
@/home/echou/Master_Python_Networking/Chapter4/cisco_4.retry

PLAY RECAP

switch1 : ok=0 changed=0 unreachable=0 failed=1
switch2 : ok=0 changed=0 unreachable=0 failed=1

The Ansible Cisco example
Cisco's support in Ansible is categorized by the operating systems IOS, IOS-XR, and NX-
OS. We have already seen a number of NX-OS examples, so in this section let's try to
manage IOS-based devices.

Our host file will consist of two hosts, R1 and R2:

[ios_devices]
R1 ansible_host=192.168.24.250
R2 ansible_host=192.168.24.251

[ios_devices:vars]
username=cisco
password=cisco

Our playbook, cisco_5.yml, will use the ios_command module to execute arbitrary show
commands:

 - name: IOS Show Commands
 hosts: "ios_devices"
 gather_facts: false
 connection: local

The Python Automation Framework – Ansible Basics Chapter 4

[135]

 vars:
 cli:
 host: "{{ ansible_host }}"
 username: "{{ username }}"
 password: "{{ password }}"
 transport: cli

 tasks:
 - name: ios show commands
 ios_command:
 commands:
 - show version | i IOS
 - show run | i hostname
 provider: "{{ cli }}"

 register: output

 - name: show output in output["end_state"]["contact"]
 debug:
 var: output

The result is what we would expect as the show version and show run output:

 $ ansible-playbook -i ios_hosts cisco_5.yml

 PLAY [IOS Show Commands]

 TASK [ios show commands]

 ok: [R1]
 ok: [R2]

 TASK [show output in output["end_state"]["contact"]]

 ok: [R1] => {
 "output": {
 "changed": false,
 "stdout": [
 "Cisco IOS Software, 7200 Software (C7200-A3JK9S-M), Version
 12.4(25g), RELEASE SOFTWARE (fc1)",
 "hostname R1"
],
 "stdout_lines": [
 [
 "Cisco IOS Software, 7200 Software (C7200-A3JK9S-M), Version
 12.4(25g), RELEASE SOFTWARE (fc1)"
],

The Python Automation Framework – Ansible Basics Chapter 4

[136]

 [
 "hostname R1"
]
]
 }
 }
 ok: [R2] => {
 "output": {
 "changed": false,
 "stdout": [
 "Cisco IOS Software, 7200 Software (C7200-A3JK9S-M), Version
 12.4(25g), RELEASE SOFTWARE (fc1)",
 "hostname R2"
],
 "stdout_lines": [
 [
 "Cisco IOS Software, 7200 Software (C7200-A3JK9S-M), Version
 12.4(25g), RELEASE SOFTWARE (fc1)"
],
 [
 "hostname R2"
]
]
 }
 }

 PLAY RECAP

 R1 : ok=2 changed=0 unreachable=0 failed=0
 R2 : ok=2 changed=0 unreachable=0 failed=0

I wanted to point out a few things illustrated by this example:

The playbook between NXOS and IOS is largely identical
The syntax nxos_snmp_contact and ios_command modules follow the same
pattern, with the only difference being the argument for the modules
The IOS version of the devices are pretty old with no understanding of API, but
the modules still have the same look and feel

As you can see from the preceding example, once we have the basic syntax down for the
playbooks, the subtle difference relies on the different modules for the task we would like
to perform.

The Python Automation Framework – Ansible Basics Chapter 4

[137]

Ansible 2.5 connection example
We have briefly talked about the addition of network connection changes in Ansible
playbooks, starting with version 2.5. Along with the changes, Ansible also released a
network best practices document, https:/ /docs. ansible. com/ansible/ latest/ network/
user_guide/network_ best_ practices_ 2. 5.html. Let's build an example based on the best
practices guide. For our topology, we will reuse the topology in Chapter 2, Low-Level
Network Device Interactions, with two IOSv devices. Since there are multiple files involved in
this example, the files are grouped into a subdirectory named ansible_2-5_example.

Our inventory file is reduced to the group and the name of the hosts:

$ cat hosts
[ios-devices]
iosv-1
iosv-2

We have created a host_vars directory with two files. Each corresponds to the name
specified in the inventory file:

$ ls -a host_vars/
. .. iosv-1 iosv-2

The variable file for the hosts contains what was previously included in the CLI variable.
The additional variable of ansible_connection specifies network_cli as the transport:

$ cat host_vars/iosv-1

ansible_host: 172.16.1.20
ansible_user: cisco
ansible_ssh_pass: cisco
ansible_connection: network_cli
ansible_network_os: ios
ansbile_become: yes
ansible_become_method: enable
ansible_become_pass: cisco

$ cat host_vars/iosv-2

ansible_host: 172.16.1.21
ansible_user: cisco
ansible_ssh_pass: cisco
ansible_connection: network_cli
ansible_network_os: ios
ansbile_become: yes
ansible_become_method: enable

https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_best_practices_2.5.html

The Python Automation Framework – Ansible Basics Chapter 4

[138]

ansible_become_pass: cisco

Our playbook will use the ios_config module with the backup option enabled. Notice
the use of the when condition in this example so that if there are other hosts with a different
operating system, this task will not be applied:

$ cat my_playbook.yml

- name: Chapter 4 Ansible 2.5 Best Practice Demonstration
 connection: network_cli
 gather_facts: false
 hosts: all
 tasks:
 - name: backup
 ios_config:
 backup: yes
 register: backup_ios_location
 when: ansible_network_os == 'ios'

When the playbook is run, a new backup folder will be created with the configuration
backed up for each of the hosts:

$ ansible-playbook -i hosts my_playbook.yml

PLAY [Chapter 4 Ansible 2.5 Best Practice Demonstration]

TASK [backup]
**
ok: [iosv-2]
ok: [iosv-1]

PLAY RECAP

iosv-1 : ok=1 changed=0 unreachable=0 failed=0
iosv-2 : ok=1 changed=0 unreachable=0 failed=0

$ ls -l backup/
total 8
-rw-rw-r-- 1 echou echou 3996 Jul 11 19:01
iosv-1_config.2018-07-11@19:01:55
-rw-rw-r-- 1 echou echou 3996 Jul 11 19:01
iosv-2_config.2018-07-11@19:01:55

$ cat backup/iosv-1_config.2018-07-11@19\:01\:55
Building configuration...

The Python Automation Framework – Ansible Basics Chapter 4

[139]

Current configuration : 3927 bytes
!
! Last configuration change at 01:46:00 UTC Thu Jul 12 2018 by cisco
!
version 15.6
service timestamps debug datetime msec
service timestamps log datetime msec
...

This example illustrates the network_connection variable and the recommended
structure based on network best practices. We will look at offloading variables into
the host_vars directory and conditionals in Chapter 5, The Python Automation Framework –
Beyond Basics. This structure can also be used for the Juniper and Arista examples in this
chapter. For the different devices, we will just use different values for
network_connection.

The Ansible Juniper example
The Ansible Juniper module requires the Juniper PyEZ package and NETCONF. If you
have been following the API example in Chapter 3, APIs and Intent-Driven Networking, you
are good to go. If not, refer back to that section for installation instructions as well as some
test script to make sure PyEZ works. The Python package called jxmlease is also required:

$ sudo pip install jxmlease

In the host file, we will specify the device and connection variables:

[junos_devices]
J1 ansible_host=192.168.24.252

[junos_devices:vars]
username=juniper
password=juniper!

In our Juniper playbook, we will use the junos_facts module to gather basic facts for the
device. This module is equivalent to the setup module and will come in handy if we need to
take action depending on the returned value. Note the different value of transport and port
in the example here:

 - name: Get Juniper Device Facts
 hosts: "junos_devices"
 gather_facts: false
 connection: local

The Python Automation Framework – Ansible Basics Chapter 4

[140]

 vars:
 netconf:
 host: "{{ ansible_host }}"
 username: "{{ username }}"
 password: "{{ password }}"
 port: 830
 transport: netconf

 tasks:
 - name: collect default set of facts
 junos_facts:
 provider: "{{ netconf }}"

 register: output

 - name: show output
 debug:
 var: output

When executed, you will receive this output from the Juniper device:

PLAY [Get Juniper Device Facts]
**

TASK [collect default set of facts]
**
ok: [J1]

TASK [show output]

ok: [J1] => {
"output": {
"ansible_facts": {
"HOME": "/var/home/juniper",
"domain": "python",
"fqdn": "master.python",
"has_2RE": false,
"hostname": "master",
"ifd_style": "CLASSIC",
"model": "olive",
"personality": "UNKNOWN",
"serialnumber": "",
"switch_style": "NONE",
"vc_capable": false,
"version": "12.1R1.9",
"version_info": {
"build": 9,
"major": [

The Python Automation Framework – Ansible Basics Chapter 4

[141]

12,
1
],
"minor": "1",
"type": "R"
}
},
"changed": false
 }
}

PLAY RECAP

J1 : ok=2 changed=0 unreachable=0 failed=0

The Ansible Arista example
The final playbook example we will look at will be the Arista command module. At this
point, we are quite familiar with our playbook syntax and structure. The Arista device can
be configured to use transport using cli or eapi, so, in this example, we will use cli.

This is the host file:

[eos_devices]
A1 ansible_host=192.168.199.158

The playbook is also similar to what we have seen previously:

 - name: EOS Show Commands
 hosts: "eos_devices"
 gather_facts: false
 connection: local

 vars:
 cli:
 host: "{{ ansible_host }}"
 username: "arista"
 password: "arista"
 authorize: true
 transport: cli

 tasks:
 - name: eos show commands
 eos_command:
 commands:

The Python Automation Framework – Ansible Basics Chapter 4

[142]

 - show version | i Arista
 provider: "{{ cli }}"
 register: output

 - name: show output
 debug:
 var: output

The output will show the standard output as we would expect from the command line:

 PLAY [EOS Show Commands]

 TASK [eos show commands]

 ok: [A1]

 TASK [show output]

 ok: [A1] => {
 "output": {
 "changed": false,
 "stdout": [
 "Arista DCS-7050QX-32-F"
],
 "stdout_lines": [
 [
 "Arista DCS-7050QX-32-F"
]
],
 "warnings": []
 }
 }

 PLAY RECAP

 A1 : ok=2 changed=0 unreachable=0 failed=0

The Python Automation Framework – Ansible Basics Chapter 4

[143]

Summary
In this chapter, we took a grand tour of the open source automation framework Ansible.
Unlike Pexpect-based and API-driven network automation scripts, Ansible provides a
higher layer of abstraction called the playbook to automate our network devices.

Ansible was originally constructed to manage servers and was later extended to network
devices; therefore we took a look at a server example. Then, we compared and contrasted
the differences when it came to network management playbooks. Later, we looked at the
example playbooks for Cisco IOS, Juniper JUNOS, and Arista EOS devices. We also looked
at the best practices recommended by Ansible if you are using Ansible version 2.5 and
later.

In Chapter 5, The Python Automation Framework – Beyond Basics, we will leverage the
knowledge we gained in this chapter and start to look at some of the more advanced
features of Ansible.

5
The Python Automation

Framework – Beyond Basics
In Chapter 1, Review of TCP/IP Protocol Suite and Python, we looked at some of the basic
structures to get Ansible up and running. We worked with Ansible inventory files,
variables, and playbooks. We also looked at some examples of using network modules for
Cisco, Juniper, and Arista devices.

In this chapter, we will further build on the knowledge we have gained from the previous
chapters and dive deeper into the more advanced topics of Ansible. Many books have been
written about Ansible, and there is more to Ansible than we can cover in two chapters. The
goal here is to introduce the majority of the features and functions of Ansible that I believe
you will need as a network engineer and shorten the learning curve as much as possible.

It is important to point out that if you were not clear on some of the points made in Chapter
4, The Python Automation Framework – Ansible Basics, now is a good time to go back and
review them as they are a prerequisite for this chapter.

In this chapter, we will look into the following topics:

Ansible conditionals
Ansible loops
Templates
Group and host variables
The Ansible Vault
Ansible roles
Writing your own module

We have a lot of ground to cover, so let's get started!

The Python Automation Framework – Beyond Basics Chapter 5

[145]

Ansible conditionals
Ansible conditionals are similar to conditional statements in programming languages. In
Chapter 1, Review of TCP/IP Protocol Suite and Python, we saw that Python uses conditional
statements to only execute a section of the code using if.. then or while statements. In
Ansible, it uses conditional keywords to only run a task when the condition is met. In many
cases, the execution of a play or task may depend on the value of a fact, variable, or the
previous task result. For example, if you have a play to upgrading router images, you want
to include a step to make sure the new router image is on the device before you move on to
the next play of rebooting the router.

In this section, we will discuss the when clause, which is supported for all modules, as well
as unique conditional states that are supported in Ansible networking command modules.
Some of the conditions are as follows:

Equal to (eq)
Not equal to (neq)
Greater than (gt)
Greater than or equal to (ge)
Less than (lt)
Less than or equal to (le)
Contains

The when clause
The when clause is useful when you need to check the output of a variable or a play
execution result and act accordingly. We saw a quick example of the when clause in
Chapter 4, The Python Automation Framework – Ansible Basics, when we looked at the
Ansible 2.5 best practices structure. If you recall, the task only ran when the network
operating system of the device was the Cisco IOS. Let's look at another example of its use in
chapter5_1.yml:

 - name: IOS Command Output
 hosts: "iosv-devices"
 gather_facts: false
 connection: local
 vars:
 cli:
 host: "{{ ansible_host }}"

The Python Automation Framework – Beyond Basics Chapter 5

[146]

 username: "{{ username }}"
 password: "{{ password }}"
 transport: cli
 tasks:
 - name: show hostname
 ios_command:
 commands:
 - show run | i hostname
 provider: "{{ cli }}"
 register: output
 - name: show output
 when: '"iosv-2" in "{{ output.stdout }}"'
 debug:
 msg: '{{ output }}'

We have seen all the elements in this playbook before in Chapter 4, The Python Automation
Framework – Ansible Basics, up to the end of the first task. For the second task in the play, we
are using the when clause to check if the output contains the iosv-2 keyword. If true, we
will proceed to the task, which is using the debug module to display the output. When the
playbook is run, we will see the following output:

 <skip>
 TASK [show output]

 skipping: [ios-r1]
 ok: [ios-r2] => {
 "msg": {
 "changed": false,
 "stdout": [
 "hostname iosv-2"
],
 "stdout_lines": [
 [
 "hostname iosv-2"
]
],
 "warnings": []
 }
 }
 <skip>

We can see that the iosv-r1 device is skipped from the output because the clause did not
pass. We can further expand this example in chapter5_2.yml to only apply certain
configuration changes when the condition is met:

 <skip>
 tasks:

The Python Automation Framework – Beyond Basics Chapter 5

[147]

 - name: show hostname
 ios_command:
 commands:
 - show run | i hostname
 provider: "{{ cli }}"
 register: output
 - name: config example
 when: '"iosv-2" in "{{ output.stdout }}"'
 ios_config:
 lines:
 - logging buffered 30000
 provider: "{{ cli }}"

We can see the execution output here:

 TASK [config example]
 **
 skipping: [ios-r1]
 changed: [ios-r2]

 PLAY RECAP

 ios-r1 : ok=1 changed=0 unreachable=0 failed=0
 ios-r2 : ok=2 changed=1 unreachable=0 failed=0

Again, note in the execution output that ios-r2 was the only change applied while ios-
r1 was skipped. In this case, the logging buffer size was only changed on ios-r2.

The when clause is also very useful in situations when the setup or facts module is used –
you can act based on some of the facts that were gathered initially. For example, the
following statement will ensure that only the Ubuntu host with major release 16 will be
acted upon by placing a conditional statement in the clause:

when: ansible_os_family == "Debian" and ansible_lsb.major_release|int >= 16

For more conditionals, check out the Ansible conditionals documentation
(http:/ / docs. ansible. com/ ansible/ playbooks_ conditionals. html).

http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html

The Python Automation Framework – Beyond Basics Chapter 5

[148]

Ansible network facts
Prior to 2.5, Ansible networking shipped with a number of network-specific fact modules.
The network fact modules exist, but the naming and usage was different between
vendors. Starting with version 2.5, Ansible started to standardize its network fact module
usage. The Ansible network fact modules gather information from the system and store the
results in facts prefixed with ansible_net_. The data collected by these modules is
documented in the return values in the module documentation. This is a pretty big
milestone for Ansible networking modules, as it does a lot of the heavy lifting for you to
abstract the fact-gathering process by default.

Let's use the same structure we saw in Chapter 4, The Python Automation Framework –
Ansible Basics, Ansible 2.5 best practices, but expand upon it to see how the ios_facts
module was used to gather facts. As a review, our inventory file contains two iOS hosts
with the host variables residing in the host_vars directory:

$ cat hosts
[ios-devices]
iosv-1
iosv-2

$ cat host_vars/iosv-1

ansible_host: 172.16.1.20
ansible_user: cisco
ansible_ssh_pass: cisco
ansible_connection: network_cli
ansible_network_os: ios
ansbile_become: yes
ansible_become_method: enable
ansible_become_pass: cisco

Our playbook will have three tasks. The first task will use the ios_facts module to gather
facts for both of our network devices. The second task will display certain facts gathered
and stored for each of the two devices. You will see that the facts we displayed were the
default ansible_net facts, as opposed to a registered variable from the first task. The third
task will display all the facts we collected for the iosv-1 host:

$ cat my_playbook.yml

- name: Chapter 5 Ansible 2.5 network facts
 connection: network_cli
 gather_facts: false
 hosts: all
 tasks:

The Python Automation Framework – Beyond Basics Chapter 5

[149]

 - name: Gathering facts via ios_facts module
 ios_facts:
 when: ansible_network_os == 'ios'

 - name: Display certain facts
 debug:
 msg: "The hostname is {{ ansible_net_hostname }} running {{
ansible_net_version }}"

 - name: Display all facts for a host
 debug:
 var: hostvars['iosv-1']

When we run the playbook, you can see that the result for the first two tasks were what we
would have expected:

$ ansible-playbook -i hosts my_playbook.yml

PLAY [Chapter 5 Ansible 2.5 network facts]

TASK [Gathering facts via ios_facts module]

ok: [iosv-2]
ok: [iosv-1]

TASK [Display certain facts]

ok: [iosv-2] => {
 "msg": "The hostname is iosv-2 running 15.6(3)M2"
}
ok: [iosv-1] => {
 "msg": "The hostname is iosv-1 running 15.6(3)M2"
}

The third task will display all the network device facts gathered for iOS devices. There is a
ton of information that has been gathered for iOS devices that can help with your
networking automation needs:

TASK [Display all facts for a host]
**
ok: [iosv-1] => {
 "hostvars['iosv-1']": {
 "ansbile_become": true,
 "ansible_become_method": "enable",
 "ansible_become_pass": "cisco",
 "ansible_check_mode": false,
 "ansible_connection": "network_cli",

The Python Automation Framework – Beyond Basics Chapter 5

[150]

 "ansible_diff_mode": false,
 "ansible_facts": {
 "net_all_ipv4_addresses": [
 "10.0.0.5",
 "172.16.1.20",
 "192.168.0.1"
],
 "net_all_ipv6_addresses": [],
 "net_filesystems": [
 "flash0:"
],
 "net_gather_subset": [
 "hardware",
 "default",
 "interfaces"
],
 "net_hostname": "iosv-1",
 "net_image": "flash0:/vios-adventerprisek9-m",
 "net_interfaces": {
 "GigabitEthernet0/0": {
 "bandwidth": 1000000,
 "description": "OOB Management",
 "duplex": "Full",
 "ipv4": [
 {
 "address": "172.16.1.20",
 "subnet": "24"
 }
[skip]

The network facts module in Ansible 2.5 was a big step forward in streamlining your
workflow and brought it on par with other server modules.

Network module conditional
Let's take a look at another network device conditional example by using the comparison
keyword we saw at the beginning of this chapter. We can take advantage of the fact that
both IOSv and Arista EOS provide the outputs in JSON format for the show commands. For
example, we can check the status of the interface:

 arista1#sh interfaces ethernet 1/3 | json
 {
 "interfaces": {
 "Ethernet1/3": {
 "interfaceStatistics": {
 <skip>

The Python Automation Framework – Beyond Basics Chapter 5

[151]

 "outPktsRate": 0.0
 },
 "name": "Ethernet1/3",
 "interfaceStatus": "disabled",
 "autoNegotiate": "off",
 <skip>
 }
 arista1#

If we have an operation that we want to perform and it depends on Ethernet1/3 being
disabled in order to have no user impact, such as to ensure no users are actively connected
to Ethernet1/3, we can use the following tasks in the chapter5_3.yml playbook. It uses
the eos_command module to gather the interface state output, and checks the interface
status using the waitfor and eq keywords before proceeding to the next task:

 <skip>
 tasks:
 - name: "sh int ethernet 1/3 | json"
 eos_command:
 commands:
 - "show interface ethernet 1/3 | json"
 provider: "{{ cli }}"
 waitfor:
 - "result[0].interfaces.Ethernet1/3.interfaceStatus eq
 disabled"
 register: output
 - name: show output
 debug:
 msg: "Interface Disabled, Safe to Proceed"

Upon the condition being met, the second task will be executed:

 TASK [sh int ethernet 1/3 | json]
 **
 ok: [arista1]

 TASK [show output]

 ok: [arista1] => {
 "msg": "Interface Disabled, Safe to Proceed"
 }

If the interface is active, an error will be given as follows following the first task:

 TASK [sh int ethernet 1/3 | json]
 **
 fatal: [arista1]: FAILED! => {"changed": false, "commands": ["show
 interface ethernet 1/3 | json | json"], "failed": true, "msg":

The Python Automation Framework – Beyond Basics Chapter 5

[152]

 "matched error in response: show interface ethernet 1/3 | json |
 jsonrn% Invalid input (privileged mode required)rn********1>"}
 to retry, use: --limit
 @/home/echou/Master_Python_Networking/Chapter5/chapter5_3.retry

 PLAY RECAP
 **
 arista1 : ok=0 changed=0 unreachable=0 failed=1

Check out the other conditions such as contains, greater than, and less than, as they
fit into your situation.

Ansible loops
Ansible provides a number of loops in the playbook, such as standard loops, looping over
files, subelements, do-until, and many more. In this section, we will look at two of the most
commonly used loop forms: standard loops and looping over hash values.

Standard loops
Standard loops in playbooks are often used to easily perform similar tasks multiple times.
The syntax for standard loops is very easy: the {{ item }} variable is the placeholder
looping over the with_items list. For example, take a look at the following section in
the chapter5_4.yml playbook:

 tasks:
 - name: echo loop items
 command: echo {{ item }}
 with_items: ['r1', 'r2', 'r3', 'r4', 'r5']

It will loop over the five list items with the same echo command:

TASK [echo loop items]

changed: [192.168.199.185] => (item=r1)
changed: [192.168.199.185] => (item=r2)
changed: [192.168.199.185] => (item=r3)
changed: [192.168.199.185] => (item=r4)
changed: [192.168.199.185] => (item=r5)

The Python Automation Framework – Beyond Basics Chapter 5

[153]

We will combine the standard loop with the network command module in
the chapter5_5.yml playbook to add multiple VLANs to the device:

 tasks:
 - name: add vlans
 eos_config:
 lines:
 - vlan {{ item }}
 provider: "{{ cli }}"
 with_items:
 - 100
 - 200
 - 300

The with_items list can also be read from a variable, which gives greater flexibility to the
structure of your playbook:

vars:
 vlan_numbers: [100, 200, 300]
<skip>
tasks:
 - name: add vlans
 eos_config:
 lines:
 - vlan {{ item }}
 provider: "{{ cli }}"
 with_items: "{{ vlan_numbers }}"

The standard loop is a great time saver when it comes to performing redundant tasks in a
playbook. It also makes the playbook more readable by reducing the lines required for the
task.

In the next section, we will take a look at looping over dictionaries.

Looping over dictionaries
Looping over a simple list is nice. However, we often have an entity with more than one
attribute associated with it. If you think about the vlan example in the last section, each
vlan would have several unique attributes to it, such as the vlan description, the gateway
IP address, and possibly others. Oftentimes, we can use a dictionary to represent the entity
to incorporate multiple attributes to it.

The Python Automation Framework – Beyond Basics Chapter 5

[154]

Let's expand on the vlan example in the last section for a dictionary example in
chapter5_6.yml. We defined the dictionary values for three vlans, each with a nested
dictionary for the description and the IP address:

 <skip>
 vars:
 cli:
 host: "{{ ansible_host }}"
 username: "{{ username }}"
 password: "{{ password }}"
 transport: cli
 vlans: {
 "100": {"description": "floor_1", "ip": "192.168.10.1"},
 "200": {"description": "floor_2", "ip": "192.168.20.1"}
 "300": {"description": "floor_3", "ip": "192.168.30.1"}
 }

We can configure the first task, add vlans, by using the key of the each of items as the
vlan number:

 tasks:
 - name: add vlans
 nxos_config:
 lines:
 - vlan {{ item.key }}
 provider: "{{ cli }}"
 with_dict: "{{ vlans }}"

We can proceed with configuring the vlan interfaces. Note that we use
the parents parameter to uniquely identify the section the commands should be checked
against. This is due to the fact that the description and the IP address are both configured
under the interface vlan <number> subsection in the configuration:

 - name: configure vlans
 nxos_config:
 lines:
 - description {{ item.value.name }}
 - ip address {{ item.value.ip }}/24
 provider: "{{ cli }}"
 parents: interface vlan {{ item.key }}
 with_dict: "{{ vlans }}"

Upon execution, you will see the dictionary being looped through:

TASK [configure vlans]

changed: [nxos-r1] => (item={'key': u'300', 'value': {u'ip':

The Python Automation Framework – Beyond Basics Chapter 5

[155]

u'192.168.30.1', u'name': u'floor_3'}})
changed: [nxos-r1] => (item={'key': u'200', 'value': {u'ip':
u'192.168.20.1', u'name': u'floor_2'}})
changed: [nxos-r1] => (item={'key': u'100', 'value': {u'ip':
u'192.168.10.1', u'name': u'floor_1'}})

Let's check if the intended configuration is applied to the device:

nx-osv-1# sh run | i vlan
<skip>
vlan 1,10,100,200,300
nx-osv-1#

nx-osv-1# sh run | section "interface Vlan100"
interface Vlan100
 description floor_1
 ip address 192.168.10.1/24
nx-osv-1#

For more loop types of Ansible, feel free to check out the documentation
(http:/ / docs. ansible. com/ ansible/ playbooks_ loops. html).

Looping over dictionaries takes some practice the first few times you use them. But just like
standard loops, looping over dictionaries will be an invaluable tool in your tool belt.

Templates
For as long as I can remember, working as a network engineer, I have always used a kind of
network template. In my experience, many of the network devices have sections of the
network configuration that are identical, especially if these devices serve the same role in
the network.

Most of the time, when we need to provision a new device, we use the same configuration
in the form of a template, replace the necessary fields, and copy the file over to the new
device. With Ansible, you can automate all of the work by using the template module
(http://docs.ansible. com/ ansible/ template_ module. html).

http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html

The Python Automation Framework – Beyond Basics Chapter 5

[156]

The base template file we are using utilizes the Jinja2 template language (http:/ /jinja.
pocoo.org/docs/). We briefly discussed the Jinja2 templating language in Chapter 4, The
Python Automation Framework – Ansible Basics, and we will look at it a bit more here. Just like
Ansible, Jinja2 has its own syntax and method of doing loops and conditionals; fortunately,
we just need to know the very basics of it for our purpose. The Ansible template is an
important tool that we will be using in our daily task, and we will spend more of this
section exploring it. We will learn the syntax by gradually building up our playbook from
simple to more complex.

The basic syntax for template usage is very simple; you just need to specify the source file
and the destination location that you want to copy it to.

We will create an empty file for now:

$ touch file1

Then, we will use the following playbook to copy file1 to file2. Note that the playbook
is executed on the control machine only. Next, we will specify the path of both the source
and destination files as arguments for the template module:

- name: Template Basic
 hosts: localhost

 tasks:
 - name: copy one file to another
 template:
 src=./file1
 dest=./file2

We do not need to specify a host file during playbook execution since the localhost is
available by default. However, you will get a warning:

$ ansible-playbook chapter5_7.yml
 [WARNING]: provided hosts list is empty, only localhost is available
<skip>
TASK [copy one file to another]
**

changed: [localhost]
<skip>

http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/

The Python Automation Framework – Beyond Basics Chapter 5

[157]

The source file can have any extension, but since they are processed through the Jinja2
template engine, let's create a text file called nxos.j2 as the template source. The template
will follow the Jinja2 convention of using double curly brace to specify the variables:

 hostname {{ item.value.hostname }}
 feature telnet
 feature ospf
 feature bgp
 feature interface-vlan

 username {{ item.value.username }} password {{ item.value.password
 }} role network-operator

The Jinja2 template
Let's also modify the playbook accordingly. In chapter5_8.yml, we will make the
following changes:

Change the source file to nxos.j21.
Change the destination file to be a variable2.
Provide the variable values as a dictionary that we will substitute in the template:3.

 - name: Template Looping
 hosts: localhost

 vars:
 nexus_devices: {
 "nx-osv-1": {"hostname": "nx-osv-1", "username": "cisco",
 "password": "cisco"}
 }

 tasks:
 - name: create router configuration files
 template:
 src=./nxos.j2
 dest=./{{ item.key }}.conf
 with_dict: "{{ nexus_devices }}"

After running the playbook, you will find the destination file called nx-osv-1.conf with
the values filled in and ready to be used:

$ cat nx-osv-1.conf
hostname nx-osv-1

The Python Automation Framework – Beyond Basics Chapter 5

[158]

feature telnet
feature ospf
feature bgp
feature interface-vlan

username cisco password cisco role network-operator

Jinja2 loops
We can also loop through a list as well as a dictionary in Jinja2. We will use both as loops in
nxos.j2:

 {% for vlan_num in item.value.vlans %}
 vlan {{ vlan_num }}
 {% endfor %}

 {% for vlan_interface in item.value.vlan_interfaces %}
 interface {{ vlan_interface.int_num }}
 ip address {{ vlan_interface.ip }}/24
 {% endfor %}

Provide the additional list and dictionary variables in the chapter5_8.yml playbook:

 vars:
 nexus_devices: {
 "nx-osv-1": {
 "hostname": "nx-osv-1",
 "username": "cisco",
 "password": "cisco",
 "vlans": [100, 200, 300],
 "vlan_interfaces": [
 {"int_num": "100", "ip": "192.168.10.1"},
 {"int_num": "200", "ip": "192.168.20.1"},
 {"int_num": "300", "ip": "192.168.30.1"}
]
 }
 }

Run the playbook, and you will see the configuration for both vlan and vlan_interfaces
filled in on the router config.

The Python Automation Framework – Beyond Basics Chapter 5

[159]

The Jinja2 conditional
Jinja2 also supports an if conditional check. Let's add this field in for turning on the
netflow feature for certain devices. We will add the following to the nxos.j2 template:

 {% if item.value.netflow_enable %}
 feature netflow
 {% endif %}

We will list out the difference in the playbook:

 vars:
 nexus_devices: {
 <skip>
 "netflow_enable": True
 <skip>
 }

The last step we will undertake is to make nxos.j2 more scalable by placing the vlan
interface section inside of a true-false conditional check. In the real world, more often
than not, we will have multiple devices with knowledge of the vlan information, but only
one device as the gateway for client hosts:

 {% if item.value.l3_vlan_interfaces %}
 {% for vlan_interface in item.value.vlan_interfaces %}
 interface {{ vlan_interface.int_num }}
 ip address {{ vlan_interface.ip }}/24
 {% endfor %}
 {% endif %}

We will also add a second device, called nx-osv-2, in the playbook:

 vars:
 nexus_devices: {
 <skip>
 "nx-osv-2": {
 "hostname": "nx-osv-2",
 "username": "cisco",
 "password": "cisco",
 "vlans": [100, 200, 300],
 "l3_vlan_interfaces": False,
 "netflow_enable": False
 }
 <skip>
 }

The Python Automation Framework – Beyond Basics Chapter 5

[160]

We are now ready to run our playbook:

$ ansible-playbook chapter5_8.yml
 [WARNING]: provided hosts list is empty, only localhost is available. Note
that the implicit localhost does not match 'all'

PLAY [Template Looping]
**

TASK [Gathering Facts]

ok: [localhost]

TASK [create router configuration files]

ok: [localhost] => (item={'value': {u'username': u'cisco', u'password':
u'cisco', u'hostname': u'nx-osv-2', u'netflow_enable': False, u'vlans':
[100, 200, 300], u'l3_vlan_interfaces': False}, 'key': u'nx-osv-2'})
ok: [localhost] => (item={'value': {u'username': u'cisco', u'password':
u'cisco', u'hostname': u'nx-osv-1', u'vlan_interfaces': [{u'int_num':
u'100', u'ip': u'192.168.10.1'}, {u'int_num': u'200', u'ip':
u'192.168.20.1'}, {u'int_num': u'300', u'ip': u'192.168.30.1'}],
u'netflow_enable': True, u'vlans': [100, 200, 300], u'l3_vlan_interfaces':
True}, 'key': u'nx-osv-1'})

PLAY RECAP

localhost : ok=2 changed=0 unreachable=0 failed=0

Let's check the differences in the two configuration files to make sure that the conditional
changes are taking place:

$ cat nx-osv-1.conf
hostname nx-osv-1

feature telnet
feature ospf
feature bgp
feature interface-vlan

feature netflow

username cisco password cisco role network-operator

vlan 100
vlan 200
vlan 300

The Python Automation Framework – Beyond Basics Chapter 5

[161]

interface 100
 ip address 192.168.10.1/24
interface 200
 ip address 192.168.20.1/24
interface 300
 ip address 192.168.30.1/24

$ cat nx-osv-2.conf
hostname nx-osv-2

feature telnet
feature ospf
feature bgp
feature interface-vlan

username cisco password cisco role network-operator

vlan 100
vlan 200
vlan 300

Neat, huh? This can certainly save us a ton of time for something that required repeated
copy and paste before. Personally, the template module was a big game changer for me.
This module alone was enough to motivate me to learn and use Ansible a few years ago.

Our playbook is getting kind of long. In the next section, we will see how we can optimize
the playbook by offloading the variable files into groups and directories.

Group and host variables
Note that, in the previous playbook, chapter5_8.yml, we have repeated ourselves in the
username and password variables for the two devices under the nexus_devices variable:

 vars:
 nexus_devices: {
 "nx-osv-1": {
 "hostname": "nx-osv-1",
 "username": "cisco",
 "password": "cisco",
 "vlans": [100, 200, 300],
 <skip>
 "nx-osv-2": {
 "hostname": "nx-osv-2",
 "username": "cisco",

The Python Automation Framework – Beyond Basics Chapter 5

[162]

 "password": "cisco",
 "vlans": [100, 200, 300],
 <skip>

This is not ideal. If we ever need to update the username and password values, we will
need to remember to update at two locations. This increases the management burden as
well as the chances of making mistakes. For a best practice, Ansible suggests that we use
the group_vars and host_vars directories to separate out the variables.

For more Ansible best practices, check out http:/ /docs. ansible. com/
ansible/ playbooks_ best_ practices. html.

Group variables
By default, Ansible will look for group variables in the same directory as the playbook
called group_vars for variables that can be applied to the group. By default, it will look for
the filename that matches the group name in the inventory file. For example, if we have a
group called [nexus-devices] in the inventory file, we can have a file under group_vars
named nexus-devices to house all the variables that can be applied to the group.

We can also use a special file named all to include variables applied to all the groups.

We will utilize this feature for our username and password variables. First, we will create
the group_vars directory:

$ mkdir group_vars

Then, we can create a YAML file called all to include the username and password:

$ cat group_vars/all

username: cisco
password: cisco

We can then use variables for the playbook:

 vars:
 nexus_devices: {
 "nx-osv-1": {
 "hostname": "nx-osv-1",
 "username": "{{ username }}",
 "password": "{{ password }}",
 "vlans": [100, 200, 300],

http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/playbooks_best_practices.html

The Python Automation Framework – Beyond Basics Chapter 5

[163]

 <skip>
 "nx-osv-2": {
 "hostname": "nx-osv-2",
 "username": "{{ username }}",
 "password": "{{ password }}",
 "vlans": [100, 200, 300],
 <skip>

Host variables
We can further separate out the host variables in the same format as the group variables.
This was how we were able to apply the variables in the Ansible 2.5 playbook examples in
Chapter 4, The Python Automation Framework – Ansible Basics, and earlier in this chapter:

$ mkdir host_vars

In our case, we execute the commands on the localhost, and so the file under host_vars
should be named accordingly, such as host_vars/localhost. In our
host_vars/localhost file, we can also keep the variables declared in group_vars:

$ cat host_vars/localhost

"nexus_devices":
 "nx-osv-1":
 "hostname": "nx-osv-1"
 "username": "{{ username }}"
 "password": "{{ password }}"
 "vlans": [100, 200, 300]
 "l3_vlan_interfaces": True
 "vlan_interfaces": [
 {"int_num": "100", "ip": "192.168.10.1"},
 {"int_num": "200", "ip": "192.168.20.1"},
 {"int_num": "300", "ip": "192.168.30.1"}
]
 "netflow_enable": True

 "nx-osv-2":
 "hostname": "nx-osv-2"
 "username": "{{ username }}"
 "password": "{{ password }}"
 "vlans": [100, 200, 300]
 "l3_vlan_interfaces": False
 "netflow_enable": False

The Python Automation Framework – Beyond Basics Chapter 5

[164]

After we separate out the variables, the playbook now becomes very lightweight and only
consists of the logic of our operation:

 $ cat chapter5_9.yml

 - name: Ansible Group and Host Variables
 hosts: localhost

 tasks:
 - name: create router configuration files
 template:
 src=./nxos.j2
 dest=./{{ item.key }}.conf
 with_dict: "{{ nexus_devices }}"

The group_vars and host_vars directories not only decrease our operations
overhead, they can also help with securing the files by allowing us to encrypt the sensitive
information with Ansible Vault, which we will look at next.

The Ansible Vault
As you can see from the previous section, in most cases, the Ansible variable provides
sensitive information such as a username and password. It would be a good idea to put
some security measures around the variables so that we can safeguard against them. The
Ansible Vault (https:/ /docs. ansible. com/ ansible/ 2.5/user_ guide/ vault. html)
provides encryption for files so they appear in plaintext.

All Ansible Vault functions start with the ansible-vault command. You can manually
create an encrypted file via the create option. You will be asked to enter a password. If you
try to view the file, you will find that the file is not in clear text. If you have downloaded
the book example, the password I used was just the word password:

$ ansible-vault create secret.yml
Vault password: <password>

$ cat secret.yml
$ANSIBLE_VAULT;1.1;AES256
336564626462373962326635326361323639323635353630646665656430353261383737623
<skip>653537333837383863636530356464623032333432386139303335663262
3962

https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html
https://docs.ansible.com/ansible/2.5/user_guide/vault.html

The Python Automation Framework – Beyond Basics Chapter 5

[165]

To edit or view an encrypted file, we will use the edit option for edit or view the file via
the view option:

$ ansible-vault edit secret.yml
Vault password:

$ ansible-vault view secret.yml
Vault password:

Let's encrypt the group_vars/all and host_vars/localhost variable files:

$ ansible-vault encrypt group_vars/all host_vars/localhost
Vault password:
Encryption successful

Now, when we run the playbook, we will get a decryption failed error message:

ERROR! Decryption failed on
/home/echou/Master_Python_Networking/Chapter5/Vaults/group_vars/all

We will need to use the --ask-vault-pass option when we run the playbook:

$ ansible-playbook chapter5_10.yml --ask-vault-pass
Vault password:

The decryption will happen in memory for any Vault-encrypted files that are accessed.

Prior to Ansible 2.4, Ansible Vault required all the files to be encrypted
with the same password. Since Ansible 2.4 and later, you can use vault ID
to supply a different password file (https:/ /docs. ansible. com/ ansible/
2.5/user_ guide/ vault. html#multiple- vault- passwords).

We can also save the password in a file and make sure that the specific file has restricted
permission:

$ chmod 400 ~/.vault_password.txt
$ ls -lia ~/.vault_password.txt
809496 -r-------- 1 echou echou 9 Feb 18 12:17
/home/echou/.vault_password.txt

We can then execute the playbook with the --vault-password-file option:

$ ansible-playbook chapter5_10.yml --vault-password-file
~/.vault_password.txt

https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#multiple-vault-passwords

The Python Automation Framework – Beyond Basics Chapter 5

[166]

We can also encrypt just a string and embed the encrypted string inside of the playbook by
using the encrypt_string option (https:/ /docs. ansible. com/ ansible/ 2. 5/user_
guide/vault.html#use- encrypt- string- to-create- encrypted- variables- to- embed- in-
yaml):

$ ansible-vault encrypt_string
New Vault password:
Confirm New Vault password:
Reading plaintext input from stdin. (ctrl-d to end input)
new_user_password
!vault |
 $ANSIBLE_VAULT;1.1;AES256
616364386438393262623139623561613539656664383834643338323966623836343737373
361326134663232623861313338383534613865303864616364380a62636539366531613361
646264383165333266326364373436386366663263646463656361626530366562636463656
2316635636462323135663163663331320a6235636132663933316539396266396230663030
376165643563396663343761303032663333643836626462646436613832366637623965663
3623233353832

Encryption successful

The string can then be placed in the playbook file as a variable. In the next section, we will
optimize our playbook even further with include and roles.

The Ansible include and roles
The best way to handle complex tasks is to break them down into smaller pieces. Of course,
this approach is common in both Python and network engineering. In Python, we break
complicated code into functions, classes, modules, and packages. In networking, we also
break large networks into sections such as racks, rows, clusters, and datacenters. In Ansible,
we can use roles and includes to segment and organize a large playbook into multiple
files. Breaking up a large Ansible playbook simplifies the structure as each of the files
focuses on fewer tasks. It also allows the sections of the playbook to be reused.

The Ansible include statement
As the playbook grows in size, it will eventually become obvious that many of the tasks
and plays can be shared across different playbooks. The Ansible include statement is
similar to many Linux configuration files that just tell the machine to extend the file the
same way as if the file was directly written in. We can use an include statement for both
playbooks and tasks. Here, we will look at a simple example of extending our task.

https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml
https://docs.ansible.com/ansible/2.5/user_guide/vault.html#use-encrypt-string-to-create-encrypted-variables-to-embed-in-yaml

The Python Automation Framework – Beyond Basics Chapter 5

[167]

Let's assume that we want to show outputs for two different playbooks. We can make a
separate YAML file called show_output.yml as an additional task:

 - name: show output
 debug:
 var: output

Then, we can reuse this task in multiple playbooks, such as in chapter5_11_1.yml, which
looks largely identical to the last playbook with the exception of registering the output and
the include statement at the end:

 - name: Ansible Group and Host Varibles
 hosts: localhost

 tasks:
 - name: create router configuration files
 template:
 src=./nxos.j2
 dest=./{{ item.key }}.conf
 with_dict: "{{ nexus_devices }}"
 register: output

 - include: show_output.yml

Another playbook, chapter5_11_2.yml, can reuse show_output.yml in the same way:

 - name: show users
 hosts: localhost

 tasks:
 - name: show local users
 command: who
 register: output

 - include: show_output.yml

Note that both playbooks use the same variable name, output, because
in show_output.yml, we hard coded the variable name for simplicity. You can also pass
variables into the included file.

The Python Automation Framework – Beyond Basics Chapter 5

[168]

Ansible roles
Ansible roles separate the logical function with a physical host to fit your network better.
For example, you can construct roles such as spines, leafs, core, as well as Cisco, Juniper,
and Arista. The same physical host can belong to multiple roles; for example, a device can
belong to both Juniper and the core. This flexibility allows us to perform operations, such as
upgrade all Juniper devices, without worrying about the device's location in the layer of the
network.

Ansible roles can automatically load certain variables, tasks, and handlers based on a
known file infrastructure. The key is that this is a known file structure that we
automatically include. In fact, you can think of roles as pre-made include statements by
Ansible.

The Ansible playbook role documentation (http:/ / docs. ansible. com/ ansible/
playbooks_roles. html#roles) describes a list of role directories that we can configure. We
do not need to use all of them. In our example, we will only modify the tasks and the
vars folders. However, it is good to know all of the available options in the Ansible role
directory structure.

The following is what we will use as an example for our roles:

├── chapter5_12.yml
├── chapter5_13.yml
├── hosts
└── roles
 ├── cisco_nexus
 │ ├── defaults
 │ ├── files
 │ ├── handlers
 │ ├── meta
 │ ├── tasks
 │ │ └── main.yml
 │ ├── templates
 │ └── vars
 │ └── main.yml
 └── spines
 ├── defaults
 ├── files
 ├── handlers
 ├── tasks
 │ └── main.yml
 ├── templates
 └── vars
 └── main.yml

http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/playbooks_roles.html#roles

The Python Automation Framework – Beyond Basics Chapter 5

[169]

You can see that, at the top level, we have the hosts file as well as the playbooks. We also
have a folder named roles. Inside the folder, we have two roles defined: cisco_nexus
and spines. Most of the subfolders under the roles were empty, with the exception of the
tasks and vars folders. There is a file named main.yml inside each of them. This is the
default behavior: the main.yml file is your entry point that is automatically included in the
playbook when you specify the role in the playbook. If you need to break out additional
files, you can use the include statement in the main.yml file.

Here is our scenario:

We have two Cisco Nexus devices, nxos-r1 and nxos-r2. We will configure the
logging server as well as the log link-status for all of them, utilizing the
cisco_nexus role for them.
In addition, nxos-r1 is also a spine device, where we will want to configure more
verbose logging, perhaps because spines are at a more critical position within our
network.

For our cisco_nexus role, we have the following variables in
roles/cisco_nexus/vars/main.yml:

cli:
 host: "{{ ansible_host }}"
 username: cisco
 password: cisco
 transport: cli

We have the following configuration tasks in roles/cisco_nexus/tasks/main.yml:

- name: configure logging parameters
 nxos_config:
 lines:
 - logging server 191.168.1.100
 - logging event link-status default
 provider: "{{ cli }}"

Our playbook is extremely simple, as it just needs to specify the hosts that we would like to
configure according to cisco_nexus role:

- name: playbook for cisco_nexus role
 hosts: "cisco_nexus"
 gather_facts: false
 connection: local

The Python Automation Framework – Beyond Basics Chapter 5

[170]

 roles:
 - cisco_nexus

When you run the playbook, the playbook will include the tasks and variables defined in
the cisco_nexus role and configure the devices accordingly.

For our spine role, we will have an additional task of more verbose logging in
roles/spines/tasks/mail.yml:

- name: change logging level
 nxos_config:
 lines:
 - logging level local7 7
 provider: "{{ cli }}"

In our playbook, we can specify that it contains both the role of cisco_nexus as well as
spines:

- name: playbook for spine role
 hosts: "spines"
 gather_facts: false
 connection: local

 roles:
 - cisco_nexus
 - spines

When we include both roles in this order, the cisco_nexus role tasks will be executed,
followed by the spines role:

TASK [cisco_nexus : configure logging parameters]

changed: [nxos-r1]

TASK [spines : change logging level]

ok: [nxos-r1]

Ansible roles are flexible and scalable – just like Python functions and classes. Once your
code grows beyond a certain level, it is almost always a good idea to break it into smaller
pieces for maintainability.

The Python Automation Framework – Beyond Basics Chapter 5

[171]

You can find more examples of roles in the Ansible examples Git
repository at https:/ / github. com/ansible/ ansible- examples.

Ansible Galaxy (https:/ /docs. ansible. com/ansible/ latest/ reference_ appendices/
galaxy.html) is a free community site for finding, sharing, and collaborating on roles. You
can see an example of the Juniper networks supplied by the Ansible role on Ansible Galaxy:

JUNOS Role on Ansible Galaxy (https:/ / galaxy. ansible. com/ Juniper/ junos)

In the next section, we will take a look at how to write our own custom Ansible module.

Writing your own custom module
By now, you may get the feeling that network management in Ansible is largely dependent
on finding the right module for your task. There is certainly a lot of truth in that logic.
Modules provide a way to abstract the interaction between the managed host and the
control machine; they allow us to focus on the logic of our operations. Up to this point, we
have seen the major vendors providing a wide range of modules for Cisco, Juniper, and
Arista.

https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://docs.ansible.com/ansible/latest/reference_appendices/galaxy.html
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos
https://galaxy.ansible.com/Juniper/junos

The Python Automation Framework – Beyond Basics Chapter 5

[172]

Use the Cisco Nexus modules as an example, besides specific tasks such as managing the
BGP neighbor (nxos_bgp) and the aaa server (nxos_aaa_server). Most vendors also
provide ways to run arbitrary show (nxos_config) and configuration commands
(nxos_config). This generally covers most of our use cases.

Starting with Ansible 2.5, there is also the streamline naming and usage of
network facts modules.

What if the device you are using does not currently have the module for the task that you
are looking for? In this section, we will look at several ways that we can remedy this
situation by writing our own custom module.

The first custom module
Writing a custom module does not need to be complicated; in fact, it doesn't even need to
be in Python. But since we are already familiar with Python, we will use Python for our
custom modules. We are assuming that the module is what we will be using ourselves and
our team without submitting back to Ansible, therefore we will ignore some of the
documentation and formatting for the time being.

If you are interested in developing modules that can be submitted
upstream to Ansible, please consult the developing modules guide from
Ansible (https:/ / docs. ansible. com/ ansible/ latest/ dev_ guide/
developing_ modules. html).

By default, if we create a folder named library in the same directory as the playbook,
Ansible will include the directory in the module search path. Therefore, we can put our
custom module in the directory and we will be able to use it in our playbook. The
requirement for the custom module is very simple: all the module needs is to return a JSON
output to the playbook.

Recall that in Chapter 3, APIs and Intent-Driven Networking, we used the following NXAPI
Python script to communicate to the NX-OS device:

 import requests
 import json

 url='http://172.16.1.142/ins'
 switchuser='cisco'
 switchpassword='cisco'

https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html

The Python Automation Framework – Beyond Basics Chapter 5

[173]

 myheaders={'content-type':'application/json-rpc'}
 payload=[
 {
 "jsonrpc": "2.0",
 "method": "cli",
 "params": {
 "cmd": "show version",
 "version": 1.2
 },
 "id": 1
 }
]
 response = requests.post(url,data=json.dumps(payload),
 headers=myheaders,auth=(switchuser,switchpassword)).json()

 print(response['result']['body']['sys_ver_str'])

When we executed it, we simply received the system version. We can simply modify the
last line to be a JSON output, as shown in the following code:

 version = response['result']['body']['sys_ver_str']
 print json.dumps({"version": version})

We will place this file under the library folder:

$ ls -a library/
. .. custom_module_1.py

In our playbook, we can then use the action plugin (https:/ /docs. ansible. com/ ansible/
dev_guide/developing_ plugins. html), chapter5_14.yml, to call this custom module:

 - name: Your First Custom Module
 hosts: localhost
 gather_facts: false
 connection: local

 tasks:
 - name: Show Version
 action: custom_module_1
 register: output

 - debug:
 var: output

https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html
https://docs.ansible.com/ansible/dev_guide/developing_plugins.html

The Python Automation Framework – Beyond Basics Chapter 5

[174]

Note that, just like the ssh connection, we are executing the module locally with the
module making API calls outbound. When you execute this playbook, you will get the
following output:

$ ansible-playbook chapter5_14.yml
 [WARNING]: provided hosts list is empty, only localhost is available

PLAY [Your First Custom Module]
**

TASK [Show Version]
**
ok: [localhost]

TASK [debug]

ok: [localhost] => {
 "output": {
 "changed": false,
 "version": "7.3(0)D1(1)"
 }
}

PLAY RECAP

localhost : ok=2 changed=0 unreachable=0 failed=0

As you can see, you can write any module that is supported by API, and Ansible will
happily take any returned JSON output.

The second custom module
Building upon the last module, let's utilize the common module boilerplate from Ansible
that's stated in the module development documentation (http:/ / docs. ansible. com/
ansible/dev_guide/ developing_ modules_ general. html). We will modify the last custom
module and create custom_module_2.py to ingest inputs from the playbook.

First, we will import the boilerplate code from ansible.module_utils.basic:

 from ansible.module_utils.basic import AnsibleModule
 if __name__ == '__main__':
 main()

http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html

The Python Automation Framework – Beyond Basics Chapter 5

[175]

From there, we can define the main function where we will house our code.
AnsibleModule, which we have already imported, provides lots of common code for
handling returns and parsing arguments. In the following example, we will parse three
arguments for host, username, and password, and make them required fields:

 def main():
 module = AnsibleModule(
 argument_spec = dict(
 host = dict(required=True),
 username = dict(required=True),
 password = dict(required=True)
)
)

The values can then be retrieved and used in our code:

 device = module.params.get('host')
 username = module.params.get('username')
 password = module.params.get('password')

 url='http://' + host + '/ins'
 switchuser=username
 switchpassword=password

Finally, we will follow the exit code and return the value:

 module.exit_json(changed=False, msg=str(data))

Our new playbook, chapter5_15.yml, will look identical to the last playbook, except now
we can pass values for different devices in the playbook:

 tasks:
 - name: Show Version
 action: custom_module_1 host="172.16.1.142" username="cisco"
 password="cisco"
 register: output

When executed, this playbook will produce the exact same output as the last playbook.
However, because we are using arguments in the custom module, the custom module can
now be passed around for other people to use without them knowing the details of our
module. They can write in their own username, password, and host IP in the playbook.

Of course, this is a functional but incomplete module. For one, we did not perform any
error checking, nor did we provide any documentation for usage. However, it is a good
demonstration of how easy it is to build a custom module. The additional benefit is that we
saw how we can use an existing script that we already made and turn it into a custom
Ansible module.

The Python Automation Framework – Beyond Basics Chapter 5

[176]

Summary
In this chapter, we covered a lot of ground. Building from our previous knowledge of
Ansible, we expanded into more advanced topics such as conditionals, loops, and
templates. We looked at how to make our playbook more scalable with host variables,
group variables, include statements, and roles. We also looked at how to secure our
playbook with the Ansible Vault. Finally, we used Python to make our own custom
modules.

Ansible is a very flexible Python framework that can be used for network automation. It
provides another abstraction layer separated from the likes of the Pexpect and API-based
scripts. It is declarative in nature in that it is more expressive in terms of matching our
intent. Depending on your needs and network environment, it might be the ideal
framework that you can use to save time and energy.

In Chapter 6, Network Security with Python, we will look at network security with Python.

6
Network Security with Python

In my opinion, network security is a tricky topic to write about. The reason is not a
technical one, but rather to do with setting up the right scope. The boundaries of network
security are so wide that they touch all seven layers of the OSI model. From layer 1 of
wiretapping to layer 4 of the transport protocol vulnerability, to layer 7 of man-in-the-
middle spoofing, network security is everywhere. The issue is exacerbated by all the newly
discovered vulnerabilities, which sometimes seem to be at a daily rate. This does not even
include the human social engineering aspect of network security.

As such, in this chapter, I would like to set the scope for what we will discuss. As we have
been doing up to this point, we will primarily focus on using Python for network device
security at OSI layers 3 and 4. We will look at Python tools that we can use to manage
individual network devices for security purposes, as well as using Python as a glue to
connect different components. Hopefully, we can treat network security with a holistic
view by using Python in different OSI layers.

In this chapter, we will take a look at the following topics:

The lab setup
Python Scapy for security testing
Access lists
Forensic analysis with Syslog and UFW using Python
Other tools, such as a MAC address filter list, private VLAN, and Python IP table
binding

Network Security with Python Chapter 6

[178]

The lab setup
The devices being used in this chapter are a bit different from the previous chapters. In the
previous chapters, we were isolating a particular device by focusing on the topic at hand.
For this chapter, we will use a few more devices in our lab in order to illustrate the function
of the tools that we will be using. The connectivity and operating system information are
important as they have ramifications regarding the security tools that we will show later in
this chapter. For example, if we want to apply an access list to protect the server, we need to
know what the topology looks like and which direction the client is making their
connections from. The Ubuntu host connections are a bit different than what we have seen
so far, so please make reference back to this lab section when you see the example later if
needed.

We will be using the same Cisco VIRL tool with four nodes: two hosts and two network
devices. If you need a refresher on Cisco VIRL, feel free to go back to Chapter 2, Low-Level
Network Device Interactions, where we first introduced the tool:

Lab topology

The IP addresses listed will be different in your own lab. They are listed
here for an easy reference for the rest of the chapter.

Network Security with Python Chapter 6

[179]

As illustrated, we will rename the host on the top as the client and the bottom host as the
server. This is analogous to an internet client trying to access a corporate server within our
network. We will again use the Shared flat network option for the management network to
access the devices for the out-of-band management:

For the two switches, I will choose Open Shortest Path First (OSPF) as IGP and put both
the devices in area 0. By default, BGP is turned on and both the devices are using AS 1.
From the configuration auto generation, the interfaces connected to the Ubuntu hosts are
put into OSPF area 1, so they will show up as inter-area routes. The NX-OSv
configurations are shown here and the IOSv configuration and output are similar:

 interface Ethernet2/1
 description to iosv-1
 no switchport
 mac-address fa16.3e00.0001
 ip address 10.0.0.6/30
 ip router ospf 1 area 0.0.0.0
 no shutdown

 interface Ethernet2/2
 description to Client
 no switchport
 mac-address fa16.3e00.0002
 ip address 10.0.0.9/30
 ip router ospf 1 area 0.0.0.0
 no shutdown

 nx-osv-1# sh ip route
 <skip>
 10.0.0.12/30, ubest/mbest: 1/0
 *via 10.0.0.5, Eth2/1, [110/41], 04:53:02, ospf-1, intra
 192.168.0.2/32, ubest/mbest: 1/0
 *via 10.0.0.5, Eth2/1, [110/41], 04:53:02, ospf-1, intra
 <skip>

Network Security with Python Chapter 6

[180]

The OSPF neighbor and the BGP output for NX-OSv are shown here, and the IOSv output
is similar:

nx-osv-1# sh ip ospf neighbors
 OSPF Process ID 1 VRF default
 Total number of neighbors: 1
 Neighbor ID Pri State Up Time Address Interface
 192.168.0.2 1 FULL/DR 04:53:00 10.0.0.5 Eth2/1

nx-osv-1# sh ip bgp summary
BGP summary information for VRF default, address family IPv4 Unicast
BGP router identifier 192.168.0.1, local AS number 1
BGP table version is 5, IPv4 Unicast config peers 1, capable peers 1
2 network entries and 2 paths using 288 bytes of memory
BGP attribute entries [2/288], BGP AS path entries [0/0]
BGP community entries [0/0], BGP clusterlist entries [0/0]

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
192.168.0.2 4 1 321 297 5 0 0 04:52:56 1

The hosts in our network are running Ubuntu 14.04, similar to the Ubuntu VM 16.04 that
we have been using up to this point:

cisco@Server:~$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 14.04.2 LTS
Release: 14.04
Codename: trusty

On both of the Ubuntu hosts, there are two network interfaces, eth0 and eth1. eth0
connects to the management network (172.16.1.0/24) while eth1 connects to the
network devices (10.0.0.x/30). The routes to the device loopback are directly connected
to the network block, and the remote host network is statically routed to eth1 with the
default route going toward the management network:

cisco@Client:~$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 172.16.1.2 0.0.0.0 UG 0 0 0 eth0
10.0.0.4 10.0.0.9 255.255.255.252 UG 0 0 0 eth1
10.0.0.8 0.0.0.0 255.255.255.252 U 0 0 0 eth1
10.0.0.8 10.0.0.9 255.255.255.248 UG 0 0 0 eth1
172.16.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.0.1 10.0.0.9 255.255.255.255 UGH 0 0 0 eth1
192.168.0.2 10.0.0.9 255.255.255.255 UGH 0 0 0 eth1

Network Security with Python Chapter 6

[181]

To verify the client-to-server path, let's ping and trace the route to make sure that traffic
between our hosts is going through the network devices instead of the default route:

Our server IP is 10.0.0.14
cisco@Server:~$ ifconfig
<skip>
eth1 Link encap:Ethernet HWaddr fa:16:3e:d6:83:02
 inet addr:10.0.0.14 Bcast:10.0.0.15 Mask:255.255.255.252

From the client ping toward server
cisco@Client:~$ ping -c 1 10.0.0.14
PING 10.0.0.14 (10.0.0.14) 56(84) bytes of data.
64 bytes from 10.0.0.14: icmp_seq=1 ttl=62 time=6.22 ms

--- 10.0.0.14 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 6.223/6.223/6.223/0.000 ms

Traceroute from client to server
cisco@Client:~$ traceroute 10.0.0.14
traceroute to 10.0.0.14 (10.0.0.14), 30 hops max, 60 byte packets
 1 10.0.0.9 (10.0.0.9) 11.335 ms 11.745 ms 12.113 ms
 2 10.0.0.5 (10.0.0.5) 24.221 ms 41.635 ms 41.638 ms
 3 10.0.0.14 (10.0.0.14) 37.916 ms 38.275 ms 38.588 ms
cisco@Client:~$

Great! We have our lab; we are now ready to look at some security tools and measures
using Python.

Python Scapy
Scapy (https:// scapy. net) is a powerful Python-based interactive packet crafting
program. Outside of some expensive commercial programs, very few tools can do what
Scapy can do, to my knowledge. It is one of my favorite tools in Python.

The main advantage of Scapy is that it allows you to craft your own packet from the very
basic level. In the words of Scapy's creator:

"Scapy is a powerful interactive packet manipulation program. It is able to forge or decode
packets of a wide number of protocols, send them on the wire, capture them, match
requests and replies, and much more.... with most other tools, you won't build something
the author did not imagine. These tools have been built for a specific goal and can't deviate
much from it."

https://scapy.net/
https://scapy.net/
https://scapy.net/
https://scapy.net/
https://scapy.net/
https://scapy.net/
https://scapy.net/

Network Security with Python Chapter 6

[182]

Let's take a look at the tool.

Installing Scapy
At the time of writing, Scapy 2.3.1 supported Python 2.7. Unfortunately, there were a few
misfires regarding Python 3 support for Scapy and it is still relatively new for Scapy 2.3.3.
For your environment, please feel free to try out Python 3 with version 2.3.3 and later. In
this chapter, we will use Scapy 2.3.1 with Python 2.7. See the information sidebar if you
would like to learn more about the reason behind the choice.

The long story for Python 3 support in Scapy is that there was an
independent fork of Scapy from version 2.2.0 in 2015, aimed at supporting
only Python 3. The project was named Scapy3k. The fork diverged from
the main Scapy code base. If you read the first edition of this book, that
was the information provided at the time of writing. There were
confusions surrounding python3-scapy on PyPI and the official support
of the Scapy code base. Our main purpose was to learn about Scapy in this
chapter, and so therefore I made the choice to use an older, Python 2-
based Scapy version.

In our lab, since we are crafting packet sources from the client to the destination server,
Scapy needs to be installed on the client:

cisco@Client:~$ sudo apt-get update
cisco@Client:~$ sudo apt-get install git
cisco@Client:~$ git clone https://github.com/secdev/scapy
cisco@Client:~$ cd scapy/
cisco@Client:~/scapy$ sudo python setup.py install

Here is a quick test to make sure that the packages have been installed correctly:

cisco@Client:~/scapy$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from scapy.all import *

Network Security with Python Chapter 6

[183]

Interactive examples
In our first example, we will craft an Internet Control Message Protocol (ICMP) packet on
the client and send it to the server. On the server side, we will use tcpdump with a host
filter to see the packet coming in:

Client Side
cisco@Client:~/scapy$ sudo scapy
<skip>
Welcome to Scapy (2.3.3.dev274)
>>> send(IP(dst="10.0.0.14")/ICMP())
.
Sent 1 packets.
>>>

Server Side
cisco@Server:~$ sudo tcpdump -i eth1 host 10.0.0.10
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
02:45:16.400162 IP 10.0.0.10 > 10.0.0.14: ICMP echo request, id 0, seq 0,
length 8
02:45:16.400192 IP 10.0.0.14 > 10.0.0.10: ICMP echo reply, id 0, seq 0,
length 8

As you can see, it is very simple to craft a packet from Scapy. Scapy allows you to build the
packet layer by layer using the slash (/) as the separator. The send function operates at the
layer 3 level, which takes care of routing and layer 2 for you. There is also a sendp()
alternative that operates at layer 2, which means you will need to specify the interface and
link layer protocol.

Let's look at capturing the returned packet by using the send-request (sr) function. We are
using a special variation of sr, called sr1, which only returns one packet that answers from
the packet sent:

>>> p = sr1(IP(dst="10.0.0.14")/ICMP())
>>> p
<IP version=4L ihl=5L tos=0x0 len=28 id=26713 flags= frag=0L ttl=62
proto=icmp chksum=0x71 src=10.0.0.14 dst=10.0.0.10 options=[] |<ICMP
type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |>>

One thing to note is that the sr() function itself returns a tuple containing answered and
unanswered lists:

>>> p = sr(IP(dst="10.0.0.14")/ICMP())
>>> type(p)
<type 'tuple'>

Network Security with Python Chapter 6

[184]

unpacking
>>> ans,unans = sr(IP(dst="10.0.0.14")/ICMP())
>>> type(ans)
<class 'scapy.plist.SndRcvList'>
>>> type(unans)
<class 'scapy.plist.PacketList'>

If we were to only take a look at the answered packet list, we can see it is another tuple
containing the packet that we have sent as well as the returned packet:

>>> for i in ans:
... print(type(i))
...
<type 'tuple'>
>>> for i in ans:
... print i
...
(<IP frag=0 proto=icmp dst=10.0.0.14 |<ICMP |>>, <IP version=4L ihl=5L
tos=0x0 len=28 id=27062 flags= frag=0L ttl=62 proto=icmp chksum=0xff13
src=10.0.0.14 dst=10.0.0.10 options=[] |<ICMP type=echo-reply code=0
chksum=0xffff id=0x0 seq=0x0 |>>)

Scapy also provides a layer 7 construct as well, such as a DNS query. In the following
example, we are querying an open DNS server for the resolution of www.google.com:

>>> p =
sr1(IP(dst="8.8.8.8")/UDP()/DNS(rd=1,qd=DNSQR(qname="www.google.com")))
>>> p
<IP version=4L ihl=5L tos=0x0 len=76 id=21743 flags= frag=0L ttl=128
proto=udp chksum=0x27fa src=8.8.8.8 dst=172.16.1.152 options=[] |<UDP
sport=domain dport=domain len=56 chksum=0xc077 |<DNS id=0 qr=1L
opcode=QUERY aa=0L tc=0L rd=1L ra=1L z=0L ad=0L cd=0L rcode=ok qdcount=1
ancount=1 nscount=0 arcount=0 qd=<DNSQR qname='www.google.com.' qtype=A
qclass=IN |> an=<DNSRR rrname='www.google.com.' type=A rclass=IN ttl=299
rdata='172.217.3.164' |> ns=None ar=None |>>>
>>>

Sniffing
Scapy can also be used to easily capture packets on the wire:

>>> a = sniff(filter="icmp and host 172.217.3.164", count=5)
>>> a.show()
0000 Ether / IP / TCP 192.168.225.146:ssh > 192.168.225.1:50862 PA / Raw
0001 Ether / IP / ICMP 192.168.225.146 > 172.217.3.164 echo-request 0 / Raw
0002 Ether / IP / ICMP 172.217.3.164 > 192.168.225.146 echo-reply 0 / Raw

Network Security with Python Chapter 6

[185]

0003 Ether / IP / ICMP 192.168.225.146 > 172.217.3.164 echo-request 0 / Raw
0004 Ether / IP / ICMP 172.217.3.164 > 192.168.225.146 echo-reply 0 / Raw
>>>

We can look at the packets in some more detail, including the raw format:

>>> for i in a:
... print i.show()
...
<skip>
###[Ethernet]###
 dst= <>
 src= <>
 type= 0x800
###[IP]###
 version= 4L
 ihl= 5L
 tos= 0x0
 len= 84
 id= 15714
 flags= DF
 frag= 0L
 ttl= 64
 proto= icmp
 chksum= 0xaa8e
 src= 192.168.225.146
 dst= 172.217.3.164
 options
###[ICMP]###
 type= echo-request
 code= 0
 chksum= 0xe1cf
 id= 0xaa67
 seq= 0x1
###[Raw]###
 load=
'xd6xbfxb1Xx00x00x00x00x1axdcnx00x00x00x00x00x10x11x12x13x14x15x16x17x18x19
x1ax1bx1cx1dx1ex1f !"#$%&'()*+,-./01234567'
None

We have seen the basic workings of Scapy. Let's move on and see how we can use Scapy for
some of the common security testings.

Network Security with Python Chapter 6

[186]

The TCP port scan
The first step for any potential hackers is almost always trying to learn which service is
open on the network, so they can concentrate their effort on the attack. Of course, we need
to open certain ports in order to service our customer; that is part of the risk we need to
accept. But we should also close any other open port that needlessly expose a larger attack
surface. We can use Scapy to do a simple TCP open port scan to scan our own host.

We can send a SYN packet and see whether the server will return with SYN-ACK:

>>> p = sr1(IP(dst="10.0.0.14")/TCP(sport=666,dport=23,flags="S"))
>>> p.show()
###[IP]###
 version= 4L
 ihl= 5L
 tos= 0x0
 len= 40
 id= 25373
 flags= DF
 frag= 0L
 ttl= 62
 proto= tcp
 chksum= 0xc59b
 src= 10.0.0.14
 dst= 10.0.0.10
 options
###[TCP]###
 sport= telnet
 dport= 666
 seq= 0
 ack= 1
 dataofs= 5L
 reserved= 0L
 flags= RA
 window= 0
 chksum= 0x9907
 urgptr= 0
 options= {}

Note that, in the output here, the server is responding with a RESET+ACK for TCP port 23.
However, TCP port 22 (SSH) is open; therefore, a SYN-ACK is returned:

>>> p = sr1(IP(dst="10.0.0.14")/TCP(sport=666,dport=22,flags="S"))
>>> p.show()
###[IP]###
 version= 4L
<skip>

Network Security with Python Chapter 6

[187]

 proto= tcp
 chksum= 0x28b5
 src= 10.0.0.14
 dst= 10.0.0.10
 options
###[TCP]###
 sport= ssh
 dport= 666
<skip>
 flags= SA
<skip>

We can also scan a range of destination ports from 20 to 22; note that we are using sr() for
send-receive instead of the sr1() send-receive-one-packet variant:

>>> ans,unans =
sr(IP(dst="10.0.0.14")/TCP(sport=666,dport=(20,22),flags="S"))
>>> for i in ans:
... print i
...
(<IP frag=0 proto=tcp dst=10.0.0.14 |<TCP sport=666 dport=ftp_data flags=S
|>>, <IP version=4L ihl=5L tos=0x0 len=40 id=4126 flags=DF frag=0L ttl=62
proto=tcp chksum=0x189b src=10.0.0.14 dst=10.0.0.10 options=[] |<TCP
sport=ftp_data dport=666 seq=0 ack=1 dataofs=5L reserved=0L flags=RA
window=0 chksum=0x990a urgptr=0 |>>)
(<IP frag=0 proto=tcp dst=10.0.0.14 |<TCP sport=666 dport=ftp flags=S |>>,
<IP version=4L ihl=5L tos=0x0 len=40 id=4127 flags=DF frag=0L ttl=62
proto=tcp chksum=0x189a src=10.0.0.14 dst=10.0.0.10 options=[] |<TCP
sport=ftp dport=666 seq=0 ack=1 dataofs=5L reserved=0L flags=RA window=0
chksum=0x9909 urgptr=0 |>>)
(<IP frag=0 proto=tcp dst=10.0.0.14 |<TCP sport=666 dport=ssh flags=S |>>,
<IP version=4L ihl=5L tos=0x0 len=44 id=0 flags=DF frag=0L ttl=62 proto=tcp
chksum=0x28b5 src=10.0.0.14 dst=10.0.0.10 options=[] |<TCP sport=ssh
dport=666 seq=4187384571 ack=1 dataofs=6L reserved=0L flags=SA window=29200
chksum=0xaaab urgptr=0 options=[('MSS', 1460)] |>>)
>>>

We can also specify a destination network instead of a single host. As you can see from the
10.0.0.8/29 block, hosts 10.0.0.9, 10.0.0.13, and 10.0.0.14 returned with SA,
which corresponds to the two network devices and the host:

>>> ans,unans =
sr(IP(dst="10.0.0.8/29")/TCP(sport=666,dport=(22),flags="S"))
>>> for i in ans:
... print(i)
...
(<IP frag=0 proto=tcp dst=10.0.0.9 |<TCP sport=666 dport=ssh flags=S |>>,
<IP version=4L ihl=5L tos=0x0 len=44 id=7304 flags= frag=0L ttl=64

Network Security with Python Chapter 6

[188]

proto=tcp chksum=0x4a32 src=10.0.0.9 dst=10.0.0.10 options=[] |<TCP
sport=ssh dport=666 seq=541401209 ack=1 dataofs=6L reserved=0L flags=SA
window=17292 chksum=0xfd18 urgptr=0 options=[('MSS', 1444)] |>>)
(<IP frag=0 proto=tcp dst=10.0.0.14 |<TCP sport=666 dport=ssh flags=S |>>,
<IP version=4L ihl=5L tos=0x0 len=44 id=0 flags=DF frag=0L ttl=62 proto=tcp
chksum=0x28b5 src=10.0.0.14 dst=10.0.0.10 options=[] |<TCP sport=ssh
dport=666 seq=4222593330 ack=1 dataofs=6L reserved=0L flags=SA window=29200
chksum=0x6a5b urgptr=0 options=[('MSS', 1460)] |>>)
(<IP frag=0 proto=tcp dst=10.0.0.13 |<TCP sport=666 dport=ssh flags=S |>>,
<IP version=4L ihl=5L tos=0x0 len=44 id=41992 flags= frag=0L ttl=254
proto=tcp chksum=0x4ad src=10.0.0.13 dst=10.0.0.10 options=[] |<TCP
sport=ssh dport=666 seq=2167267659 ack=1 dataofs=6L reserved=0L flags=SA
window=4128 chksum=0x1252 urgptr=0 options=[('MSS', 536)] |>>)

Based on what we have learned so far, we can make a simple script for reusability,
scapy_tcp_scan_1.py. We start with the suggested importing of scapy and the sys
module for taking in arguments:

 #!/usr/bin/env python2

 from scapy.all import *
 import sys

The tcp_scan() function is similar to what we have seen up to this point:

 def tcp_scan(destination, dport):
 ans, unans =
sr(IP(dst=destination)/TCP(sport=666,dport=dport,flags="S"))
 for sending, returned in ans:
 if 'SA' in str(returned[TCP].flags):
 return destination + " port " + str(sending[TCP].dport) + "
is open"
 else:
 return destination + " port " + str(sending[TCP].dport) + "
is not open"

We can then acquire the input from arguments, and then call the tcp_scan() function in
main():

 def main():
 destination = sys.argv[1]
 port = int(sys.argv[2])
 scan_result = tcp_scan(destination, port)
 print(scan_result)

 if __name__ == "__main__":
 main()

Network Security with Python Chapter 6

[189]

Remember that access to the low-level network requires root access; therefore, our script
needs to be executed as sudo:

cisco@Client:~$ sudo python scapy_tcp_scan_1.py "10.0.0.14" 23
<skip>
10.0.0.14 port 23 is not open
cisco@Client:~$ sudo python scapy_tcp_scan_1.py "10.0.0.14" 22
<skip>
10.0.0.14 port 22 is open

This was a relatively lengthy example of the TCP scan script, which demonstrated the
power of crafting your own packet with Scapy. We tested out the steps in the interactive
shell and finalized the usage with a simple script. Let's look at some more examples of
Scapy's usage for security testing.

The ping collection
Let's say our network contains a mix of Windows, Unix, and Linux machines with users
adding their own Bring Your Own Device (BYOD); they may or may not support an ICMP
ping. We can now construct a file with three types of common pings for our network, the
ICMP, TCP, and UDP pings, in scapy_ping_collection.py:

#!/usr/bin/env python2

from scapy.all import *

def icmp_ping(destination):
 # regular ICMP ping
 ans, unans = sr(IP(dst=destination)/ICMP())
 return ans

def tcp_ping(destination, dport):
 # TCP SYN Scan
 ans, unans = sr(IP(dst=destination)/TCP(dport=dport,flags="S"))
 return ans

def udp_ping(destination):
 # ICMP Port unreachable error from closed port
 ans, unans = sr(IP(dst=destination)/UDP(dport=0))
 return ans

Network Security with Python Chapter 6

[190]

In this example, we will also use summary() and sprintf() for the output:

def answer_summary(answer_list):
 # example of lambda with pretty print
 answer_list.summary(lambda(s, r): r.sprintf("%IP.src% is alive"))

If you were wondering why there is a lambda in the preceding
answer_summary() function, it is a way to create a small anonymous
function. Basically, it is a function without a name. More information on it
can be found at https:/ / docs.python. org/ 3.5/tutorial/ controlflow.
html#lambda- expressions.

We can then execute all three types of pings on the network in one script:

def main():
 print("** ICMP Ping **")
 ans = icmp_ping("10.0.0.13-14")
 answer_summary(ans)
 print("** TCP Ping **")
 ans = tcp_ping("10.0.0.13", 22)
 answer_summary(ans)
 print("** UDP Ping **")
 ans = udp_ping("10.0.0.13-14")
 answer_summary(ans)

if __name__ == "__main__":
 main()

At this point, hopefully, you will agree with me that, by having the ability to construct your
own packet, you can be in charge of the type of operations and tests that you would like to
run.

Common attacks
In this example, let's look at how we can construct our packet to conduct some of the classic
attacks, such as Ping of Death (https:/ /en. wikipedia. org/ wiki/ Ping_ of_death) and Land
Attack (https:// en. wikipedia. org/ wiki/ Denial- of-service_ attack). This is perhaps the
network penetration tests that you previously had to pay for with a similar commercial
software. With Scapy, you can conduct the test while maintaining full control as well as
adding more tests in the future.

https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3.5/tutorial/controlflow.html#lambda-expressions
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack

Network Security with Python Chapter 6

[191]

The first attack basically sends the destination host with a bogus IP header, such as the
length of 2 and the IP version 3:

def malformed_packet_attack(host):
 send(IP(dst=host, ihl=2, version=3)/ICMP())

The ping_of_death_attack consists of the regular ICMP packet with a payload bigger
than 65,535 bytes:

def ping_of_death_attack(host):
 # https://en.wikipedia.org/wiki/Ping_of_death
 send(fragment(IP(dst=host)/ICMP()/("X"*60000)))

The land_attack wants to redirect the client response back to the client itself and exhausts
the host's resources:

 def land_attack(host):
 # https://en.wikipedia.org/wiki/Denial-of-service_attack
 send(IP(src=host, dst=host)/TCP(sport=135,dport=135))

These are pretty old vulnerabilities or classic attacks that the modern operating system is no
longer susceptible to. For our Ubuntu 14.04 host, none of the preceding attacks will bring it
down. However, as more security issues are being discovered, Scapy is a great tool to start
tests against our own network and host without having to wait for the impacted vendor to
give you a validation tool. This is especially true for the zero-day (published without prior
notification) attacks that seem to be more and more common on the internet.

Scapy resources
We have spent quite a bit of effort working with Scapy in this chapter. This is partially due
to how highly I personally think of the tool. I hope you agree with me that Scapy is a great
tool to keep in your toolset as a network engineer. The best part about Scapy is that it is
constantly being developed with an engaged community of users.

I would highly recommend at least going through the Scapy tutorial at
http:/ / scapy. readthedocs. io/ en/ latest/ usage. html#interactive-
tutorial, as well as any of the documentation that is of interest to you.

http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial

Network Security with Python Chapter 6

[192]

Access lists
The network access lists are usually the first line of defense against outside intrusions and
attacks. Generally speaking, routers and switches process packets at a much faster rate than
servers, because they utilize hardware such as Ternary Content-Addressable Memory
(TCAM). They do not need to see the application layer information, rather they just
examine the layer 3 and layer 4 information, and decide whether the packets can be
forwarded on or not. Therefore, we generally utilize network device access lists as the first
step in safeguarding our network resources.

As a rule of thumb, we want to place access lists as close to the source (client) as possible.
Inherently, we also trust the inside host and distrust the clients outside of our network
boundary. The access list is therefore usually placed on the inbound direction on the
external facing network interface(s). In our lab scenario, this means we will place an
inbound access list at Ethernet2/2 that is directly connected to the client host.

If you are unsure of the direction and placement of the access list, a few points might help
here:

Think of the access list from the perspective of the network device
Simplify the packets in terms of just source and destination IP and use one host
as an example:

In our lab, traffic from our server will have a source IP of
10.0.0.14 with the destination IP of 10.0.0.10
The traffic from the client will have a source IP of 10.10.10.10
and the destination IP of 10.0.0.14

Obviously, every network is different and how the access list should be constructed
depends on the services provided by your server. But as an inbound border access list, you
should do the following:

Deny RFC 3030 special-use address sources, such as 127.0.0.0/8
Deny RFC 1918 space, such as 10.0.0.0/8
Deny our own space as the source IP; in this case, 10.0.0.12/30
Permit inbound TCP port 22 (SSH) and 80 (HTTP) to host 10.0.0.14
Deny everything else

Network Security with Python Chapter 6

[193]

Implementing access lists with Ansible
The easiest way to implement this access list would be to use Ansible. We have already
looked at Ansible in the last two chapters, but it is worth repeating the advantages of using
Ansible in this scenario:

Easier management: For a long access list, we are able to utilize the include
statement to break it into more manageable pieces. The smaller pieces can then
be managed by other teams or service owners.
Idempotency: We can schedule the playbook at a regular interval and only the
necessary changes will be made.
Each task is explicit: We can separate the construct of the entries as well as apply
the access list to the proper interface.
Reusability: In the future, if we add additional external-facing interfaces, we just
need to add the device to the list of devices for the access list.
Extensible: You will notice that we can use the same playbook for constructing
the access list and apply it to the right interface. We can start small and expand to
separate playbooks in the future as needed.

The host file is pretty standard. For simplicity, we are putting the host variables directly in
the inventory file:

[nxosv-devices]
nx-osv-1 ansible_host=172.16.1.155 ansible_username=cisco
ansible_password=cisco

We will declare the variables in the playbook for the time being:

- name: Configure Access List
 hosts: "nxosv-devices"
 gather_facts: false
 connection: local

 vars:
 cli:
 host: "{{ ansible_host }}"
 username: "{{ ansible_username }}"
 password: "{{ ansible_password }}"
 transport: cli

Network Security with Python Chapter 6

[194]

To save space, we will illustrate denying the RFC 1918 space only. Implementing the denial
of RFC 3030 and our own space will be identical to the steps used for the RFC 1918 space.
Note that we did not deny 10.0.0.0/8 in our playbook, because our configuration
currently uses the 10.0.0.0 network for addressing. Of course, we could perform the
single host permit first and deny 10.0.0.0/8 in a later entry, but in this example, we just
choose to omit it:

tasks:
 - nxos_acl:
 name: border_inbound
 seq: 20
 action: deny
 proto: tcp
 src: 172.16.0.0/12
 dest: any
 log: enable
 state: present
 provider: "{{ cli }}"
 - nxos_acl:
 name: border_inbound
 seq: 40
 action: permit
 proto: tcp
 src: any
 dest: 10.0.0.14/32
 dest_port_op: eq
 dest_port1: 22
 state: present
 log: enable
 provider: "{{ cli }}"
 - nxos_acl:
 name: border_inbound
 seq: 50
 action: permit
 proto: tcp
 src: any
 dest: 10.0.0.14/32
 dest_port_op: eq
 dest_port1: 80
 state: present
 log: enable
 provider: "{{ cli }}"
 - nxos_acl:
 name: border_inbound
 seq: 60
 action: permit
 proto: tcp

Network Security with Python Chapter 6

[195]

 src: any
 dest: any
 state: present
 log: enable
 established: enable
 provider: "{{ cli }}"
 - nxos_acl:
 name: border_inbound
 seq: 1000
 action: deny
 proto: ip
 src: any
 dest: any
 state: present
 log: enable
 provider: "{{ cli }}"

Note that we are allowing the established connection sourcing from the server inside to be
allowed back in. We use the final explicit deny ip any any statement as a high sequence
number (1000), so we can insert any new entries later on.

We can then apply the access list to the right interface:

- name: apply ingress acl to Ethernet 2/2
 nxos_acl_interface:
 name: border_inbound
 interface: Ethernet2/2
 direction: ingress
 state: present
 provider: "{{ cli }}"

The access list on VIRL NX-OSv is only supported on the management
interface. You will see this warning: Warning: ACL may not behave as
expected since only management interface is supported if you configure
this ACL via the CLI. This warning is okay, as our purpose is only to
demonstrate the configuration automation of the access list.

This might seem to be a lot of work for a single access list. For an experienced engineer,
using Ansible to do this task will take longer than just logging in to the device and
configuring the access list. However, remember that this playbook can be reused many
times in the future, so it will save you time in the long run.

Network Security with Python Chapter 6

[196]

It is my experience that often, for a long access list, a few entries will be for one service, a
few entries will be for another, and so on. The access lists tend to grow organically over
time, and it becomes very hard to keep track of the origin and purpose of each entry. The
fact that we can break them apart makes management of a long access list much simpler.

MAC access lists
In the case where you have an L2 environment or where you are using non-IP protocols on
Ethernet interfaces, you can still use a MAC address access list to allow or deny hosts based
on MAC addresses. The steps are similar to the IP access list but the match will be based on
MAC addresses. Recall that for MAC addresses, or physical addresses, the first six
hexadecimal symbols belong to an Organizationally Unique Identifier (OUI). So, we can
use the same access list matching pattern to deny a certain group of hosts.

We are testing this on IOSv with the ios_config module. For older
Ansible versions, the change will be pushed out every single time the
playbook is executed. For newer Ansible versions, the control node will
check for change first and only make changes when needed.

The host file and the top portion of the playbook are similar to the IP access list; the tasks
portion is where the different modules and arguments are used:

<skip>
 tasks:
 - name: Deny Hosts with vendor id fa16.3e00.0000
 ios_config:
 lines:
 - access-list 700 deny fa16.3e00.0000 0000.00FF.FFFF
 - access-list 700 permit 0000.0000.0000 FFFF.FFFF.FFFF
 provider: "{{ cli }}"
 - name: Apply filter on bridge group 1
 ios_config:
 lines:
 - bridge-group 1
 - bridge-group 1 input-address-list 700
 parents:
 - interface GigabitEthernet0/1
 provider: "{{ cli }}"

As more virtual networks become popular, the L3 information sometimes becomes
transparent to the underlying virtual links. In these scenarios, the MAC access list becomes
a good option if you need to restrict access to those links.

Network Security with Python Chapter 6

[197]

The Syslog search
There are plenty of documented network security breaches that took place over an
extended period of time. In these slow breaches, quite often, we saw signs and traces in logs
indicating that there were suspicious activities. These can be found in both server and
network device logs. The activities were not detected, not because there was a lack of
information, but rather because there was too much information. The critical information
that we were looking for is usually buried deep in a mountain of information that is hard to
sort out.

Besides Syslog, Uncomplicated Firewall (UFW) is another great source of
log information for servers. It is a frontend to iptables, which is a server
firewall. UFW makes managing firewall rules very simple and logs a good
amount of information. See the Other tools section for more information on
UFW.

In this section, we will try to use Python to search through the Syslog text in order to detect
the activities that we were looking for. Of course, the exact terms that we will search for
depend on the device we are using. For example, Cisco provides a list of messages to look
for in Syslog for any the access list violation logging. It is available at http:/ /www. cisco.
com/c/en/us/about/ security- center/ identify- incidents- via- syslog. html.

For more understanding of access control list logging, go to http:/ /www.
cisco. com/ c/ en/ us/ about/ security- center/ access- control- list-
logging. html.

For our exercise, we will use a Nexus switch anonymized syslog file containing about
65,000 lines of log messages this file is included in the accommodated book GitHub
repository for you:

$ wc -l sample_log_anonymized.log
65102 sample_log_anonymized.log

We have inserted some Syslog messages from the Cisco documentation (http:/ /www.
cisco.com/c/en/us/ support/ docs/ switches/ nexus- 7000- series- switches/ 118907-
configure-nx7k-00. html) as the log message that we should be looking for:

2014 Jun 29 19:20:57 Nexus-7000 %VSHD-5-VSHD_SYSLOG_CONFIG_I: Configured
from vty by admin on console0
2014 Jun 29 19:21:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:
10.1 0.10.1,
 Dst IP: 172.16.10.10, Src Port: 0, Dst Port: 0, Src Intf: Ethernet4/1, Pro
tocol: "ICMP"(1), Hit-count = 2589

http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html

Network Security with Python Chapter 6

[198]

2014 Jun 29 19:26:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:
10.1 0.10.1, Dst IP: 172.16.10.10, Src Port: 0, Dst Port: 0, Src Intf:
Ethernet4/1, Pro tocol: "ICMP"(1), Hit-count = 4561

We will be using simple examples with regular expressions. If you are already familiar with
the regular expression in Python, feel free to skip the rest of the section.

Searching with the RE module
For our first search, we will simply use the regular expression module to look for the terms
we are looking for. We will use a simple loop to the following:

#!/usr/bin/env python3

import re, datetime

startTime = datetime.datetime.now()

with open('sample_log_anonymized.log', 'r') as f:
 for line in f.readlines():
 if re.search('ACLLOG-5-ACLLOG_FLOW_INTERVAL', line):
 print(line)

endTime = datetime.datetime.now()
elapsedTime = endTime - startTime
print("Time Elapsed: " + str(elapsedTime))

The result took about 6/100 of a second to search through the log file:

$ python3 python_re_search_1.py
2014 Jun 29 19:21:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:
10.1 0.10.1,

2014 Jun 29 19:26:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:
10.1 0.10.1,

Time Elapsed: 0:00:00.065436

It is recommended to compile the search term for a more efficient search. It will not impact
us much since the script is already pretty fast. In fact, the Python interpretative nature
might actually make it slower. However, it will make a difference when we search through
a larger text body, so let's make the change:

searchTerm = re.compile('ACLLOG-5-ACLLOG_FLOW_INTERVAL')

with open('sample_log_anonymized.log', 'r') as f:

Network Security with Python Chapter 6

[199]

 for line in f.readlines():
 if re.search(searchTerm, line):
 print(line)

The timing result is actually slower:

Time Elapsed: 0:00:00.081541

Let's expand the example a bit. Assuming we have several files and multiple terms to
search through, we will copy the original file to a new file:

$ cp sample_log_anonymized.log sample_log_anonymized_1.log

We will also include searching for the PAM: Authentication failure term. We will add
another loop to search both the files:

term1 = re.compile('ACLLOG-5-ACLLOG_FLOW_INTERVAL')
term2 = re.compile('PAM: Authentication failure')

fileList = ['sample_log_anonymized.log', 'sample_log_anonymized_1.log']

for log in fileList:
 with open(log, 'r') as f:
 for line in f.readlines():
 if re.search(term1, line) or re.search(term2, line):
 print(line)

We can now see the difference in performance by expanding our search terms and the
number of messages:

$ python3 python_re_search_2.py
2016 Jun 5 16:49:33 NEXUS-A %DAEMON-3-SYSTEM_MSG: error: PAM:
Authentication failure for illegal user AAA from 172.16.20.170 - sshd[4425]

2016 Sep 14 22:52:26.210 NEXUS-A %DAEMON-3-SYSTEM_MSG: error: PAM:
Authentication failure for illegal user AAA from 172.16.20.170 - sshd[2811]

<skip>

2014 Jun 29 19:21:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:
10.1 0.10.1,

2014 Jun 29 19:26:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:
10.1 0.10.1,

<skip>

Time Elapsed: 0:00:00.330697

Network Security with Python Chapter 6

[200]

Of course, when it comes to performance tuning, it is a never-ending, impossible race to
zero, and the performance sometimes depends on the hardware you are using. But the
important point is to regularly perform audits of your log files using Python, so you can
catch the early signals of any potential breach.

Other tools
There are other network security tools that we can use and automate with Python. Let's
take a look at a few of them.

Private VLANs
Virtual Local Area Networks (VLANs) have been around for a long time. They are
essentially a broadcast domain where all hosts can be connected to a single switch, but are
partitioned out to different domains, so we can separate the hosts out according to which
host can see others via broadcasts. Let's look at an mapped based on IP subnets. For
example, in an enterprise building, I would likely see one IP subnet per physical
floor: 192.168.1.0/24 for the first floor, 192.168.2.0/24 for the second floor, and so on.
In this pattern, we use a 1/24 block for each floor. This gives a clear delineation of my
physical network as well as my logical network. A host wanting to communicate beyond its
own subnet will need to traverse through its layer 3 gateway, where I can use an access list
to enforce security.

What happens when different departments reside on the same floor? Perhaps the finance
and sales teams are both on the second floor, and I would not want the sales team's hosts in
the same broadcast domain as the finance team's. I can break the subnet down further, but
that might become tedious and break the standard subnet scheme that was previously set
up. This is where a private VLAN can help.

The private VLAN essentially breaks up the existing VLAN into sub-VLANs. There are
three categories within a private VLAN:

The Promiscuous (P) port: This port is allowed to send and receive layer 2
frames from any other port on the VLAN; this usually belongs to the port
connecting to the layer 3 router

Network Security with Python Chapter 6

[201]

The Isolated (I) port: This port is only allowed to communicate with P ports, and
they are typically connected to hosts when you do not want it to communicate
with other hosts in the same VLAN
The Community (C) port: This port is allowed to communicate with other C
ports in the same community and P ports

We can again use Ansible or any of the other Python scripts introduced so far to accomplish
this task. By now, we should have enough practice and confidence to implement this
feature via automation, so I will not repeat the steps here. Being aware of the private VLAN
feature would come in handy at times when you need to isolate ports even further in an L2
VLAN.

UFW with Python
We briefly mentioned UFW as the frontend for iptables on Ubuntu hosts. Here is a quick
overview:

$ sudo apt-get install ufw
$ sudo ufw status
$ sudo ufw default outgoing
$ sudo ufw allow 22/tcp
$ sudo ufw allow www
$ sudo ufw default deny incoming

We can see the status of UFW:

$ sudo ufw status verbose
Status: active
Logging: on (low)
Default: deny (incoming), allow (outgoing), disabled (routed)
New profiles: skip

To Action From
-- ------ ----
22/tcp ALLOW IN Anywhere
80/tcp ALLOW IN Anywhere
22/tcp (v6) ALLOW IN Anywhere (v6)
80/tcp (v6) ALLOW IN Anywhere (v6)

Network Security with Python Chapter 6

[202]

As you can see, the advantage of UFW is a simple interface to construct otherwise
complicated IP table rules. There are several Python-related tools we can use with UFW to
make things even simpler:

We can use the Ansible UFW module to streamline our operations. More
information is available at http:/ /docs. ansible. com/ansible/ ufw_ module.
html. Because Ansible is written in Python, we can go further and examine what
is inside the Python module source code. More information is available
at https:/ /github. com/ ansible/ ansible/ blob/ devel/ lib/ ansible/ modules/
system/ufw. py.

There are Python wrapper modules around UFW as an API (visit https:/ /
gitlab.com/ dhj/ easyufw). This can make integration easier if you need to
dynamically modify UFW rules based on certain events.
UFW itself is written in Python.Therefore, you can use the existing Python
knowledge if you ever need to extend the current command sets. More
information is available at https:/ /launchpad. net/ ufw.

UFW proves to be a good tool to safeguard your network server.

Further reading
Python is a very common language used in many of the security-related fields. A few of the
books I would recommend are listed as follows:

Violent Python: A cookbook for hackers, forensic analysts, penetration testers,
and security engineers by T.J. O'Connor (ISBN-10: 1597499579)
Black Hat Python: Python programming for hackers and pentesters by Justin
Seitz (ISBN-10: 1593275900)

I have personally used Python extensively in our research work on Distributed Denial of
Service (DDoS) at A10 Networks. If you are interested in learning more, the guide can be
downloaded for free at https:/ / www. a10networks. com/ resources/ ebooks/ distributed-
denial-service-ddos.

http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
http://docs.ansible.com/ansible/ufw_module.html
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://github.com/ansible/ansible/blob/devel/lib/ansible/modules/system/ufw.py
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://launchpad.net/ufw
https://launchpad.net/ufw
https://launchpad.net/ufw
https://launchpad.net/ufw
https://launchpad.net/ufw
https://launchpad.net/ufw
https://launchpad.net/ufw
https://launchpad.net/ufw
https://launchpad.net/ufw
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos

Network Security with Python Chapter 6

[203]

Summary
In this chapter, we looked at network security with Python. We used the Cisco VIRL tool to
set up our lab with both hosts and network devices, consisting of NX-OSv and IOSv types.
We took a tour around Scapy, which allows us to construct packets from the ground up.
Scapy can be used in the interactive mode for quick testing. Once completed in interactive
mode, we can put the steps into a file for more scalable testing. It can be used to perform
various network penetration testing for known vulnerabilities.

We also looked at how we can use both an IP access list as well as a MAC access list to
protect our network. They are usually the first line of defense in our network protection.
Using Ansible, we are able to deploy access lists consistently and quickly to multiple
devices.

Syslog and other log files contain useful information that we should regularly comb
through to detect any early signs of a breach. Using Python regular expressions, we can
systematically search for known log entries that can point us to security events that
require our attention. Besides the tools we have discussed, private VLAN and UFW are
among some other useful tools that we can use for more security protection.

In Chapter 7, Network Monitoring with Python – Part 1, we will look at how to use Python
for network monitoring. Monitoring allows us to know what is happening in our network
and the state of the network.

7
Network Monitoring with Python

– Part 1
Imagine you get a call at 2:00 a.m. in the morning. The person on the other end says: "Hi,
we are facing a difficult issue that is impacting production services. We suspect it might be
network-related. Can you check this for us? For this type of urgent, open-ended question,
what would be the first thing you do?" Most of the time, the thing that comes to mind
would be: What changed between the time when the network was working until something
went wrong? Chances are you would check your monitoring tool and see if any of the key
metrics changed in the last few hours. Better yet is if you have received any monitoring
alerts from any metric baseline deviation.

Throughout this book, we have been discussing various ways to systematically make
predictable changes to our network, with the goal of keeping the network running as
smoothly as possible. However, networks are not static – far from it – they are probably one
of the most fluid parts of the entire infrastructure. By definition, a network connects
different parts of the infrastructure together, constantly passing traffic back and forth.
There are lots of moving parts that can cause your network to stop working as expected:
hardware failures, software with bugs, human mistakes despite their best intentions, and
many more. It is not a question of whether things would go wrong, but rather a question of
when and what went wrong when it happens. We need ways to monitor our network to
make sure it works as expected and hopefully be notified when it does not.

In upcoming two chapters, we will look at various ways to perform network monitoring
tasks. Many of the tools we have looked at thus far can be tied together or directly managed
by Python. Like many tools we have looked at, network monitoring has to do with two
parts. First, we need to know what information the equipment is capable of transmitting.
Second, we need to identify what useful information we can interpret from them.

Network Monitoring with Python – Part 1 Chapter 7

[205]

We will look at a few tools that allow us to monitor the network effectively:

The Simple Network Management Protocol (SNMP)
Matplotlib and Pygal visualization
MRTG and Cacti

This list is not exhaustive, and there is certainly no lack of commercial vendors in the
network monitoring space. The basics of network monitoring that we will look at, however,
carry well for both open source and commercial tools.

Lab setup
The lab for this chapter is similar to the one in Chapter 6, Network Security with Python, but
with this difference: both of the network devices are IOSv devices. Here's an illustration of
this:

The two Ubuntu hosts will be used to generate traffic across the network so that we can
look at some non-zero counters.

Network Monitoring with Python – Part 1 Chapter 7

[206]

SNMP
SNMP is a standardized protocol used to collect and manage devices. Although the
standard allows you to use SNMP for device management, in my experience, most network
administrators prefer to keep SNMP as an information collection mechanism only. Since
SNMP operates on UDP, which is connectionless, and considering the relatively weak
security mechanism in versions 1 and 2, making device changes via SNMP tends to make
network operators a bit uneasy. SNMP version 3 has added cryptographic security and new
concepts and terminologies to the protocol, but the way the technology is adapted varies
among network device vendors.

SNMP is widely used in network monitoring and has been around since 1988 as part of
RFC 1065. The operations are straightforward, with the network manager sending GET and
SET requests toward the device and the device with the SNMP agent responding with the
information per request. The most widely adopted standard is SNMPv2c, which is defined
in RFC 1901 – RFC 1908. It uses a simple community-based security scheme for security. It
has also introduced new features, such as the ability to get bulk information. The following
diagram displays the high-level operation for SNMP:

SNMP operations

Network Monitoring with Python – Part 1 Chapter 7

[207]

The information residing in the device is structured in the Management Information Base
(MIB). The MIB uses a hierarchical namespace containing an Object Identifier (OID),
which represents the information that can be read and fed back to the requester. When we
talk about using SNMP to query device information, we are really talking about using the
management station to query the specific OID that represents the information we are after.
There is a common OID structure, such as systems and interfaces OID, that is shared
among vendors. Besides common OID, each vendor can also supply an enterprise-level
OID that is specific to them.

As an operator, you are required to put some effort into consolidating information into an
OID structure in your environment to retrieve useful information. This can sometimes be a
tedious process of finding one OID at a time. For example, you might be making a request
to a device OID and receive a value of 10,000. What is that value? Is that interface traffic? Is
it in bytes or bits? Or maybe it is a number of packets? How do we know? We will need to
consult either the standard or the vendor documentation to find out. There are tools that
help with this process, such as a MIB browser that can provide more metadata to the value.
But, at least in my experience, constructing an SNMP-based monitoring tool for your
network can sometimes feel like a cat-and-mouse game of trying to find that one missing
value.

Some of the main points to take away from the operation are as follows:

The implementation relies heavily on the amount of information the device agent
can provide. This, in turn, relies on how the vendor treats SNMP: as a core
feature or an added feature.
SNMP agents generally require CPU cycles from the control plane to return a
value. Not only is this inefficient for devices with, say, large BGP tables, it is also
not feasible to use SNMP to query the data at small intervals.
The user needs to know the OID in order to query the data.

Since SNMP has been around for a while, my assumption is that you have some experience
with it already. Let's jump directly into package installation and our first SNMP example.

Setup
First, let's make sure that we have the SNMP managing device and agent work in our
setup. The SNMP bundle can be installed on either the hosts (client or server) in our lab or
the managing device on the management network. As long as the SNMP manager has IP
reachability to the device and the managed device allows the inbound connection, SNMP
should work. In production, you should only install the software on the management host
and only allow SNMP traffic in the control plane.

Network Monitoring with Python – Part 1 Chapter 7

[208]

In this lab, we have installed SNMP on both the Ubuntu host on the management network
and the client host in the lab to test security:

$ sudo apt-get install snmp

The next step would be to turn on and configure the SNMP options on the network
devices, iosv-1 and iosv-2. There are many optional parameters you can configure on
the network device, such as contact, location, chassis ID, and SNMP packet size. The
options are device-specific and you should check the documentation on your device. For
IOSv devices, we will configure an access list to limit only the desired host for querying the
device as well as tying the access list with the SNMP community string. In our case, we will
use the word secret as the read-only community string and permit_snmp as the access
list name:

!
ip access-list standard permit_snmp
 permit 172.16.1.173 log
 deny any log
!
!
snmp-server community secret RO permit_snmp
!

The SNMP community string is acting as a shared password between the manager and the
agent; therefore, it needs to be included any time you want to query the device.

As mentioned earlier in this chapter, finding the right OID is oftentimes half of the battle
when working with SNMP. We can use tools such as the Cisco IOS MIB locator (http:/ /
tools.cisco.com/ ITDIT/ MIBS/ servlet/ index) for finding specific OIDs to query.
Alternatively, we can just start walking through the SNMP tree, starting from the top of
Cisco's enterprise tree at .1.3.6.1.4.1.9. We will perform the walk to make sure that the
SNMP agent and the access-list are working:

$ snmpwalk -v2c -c secret 172.16.1.189 .1.3.6.1.4.1.9
iso.3.6.1.4.1.9.2.1.1.0 = STRING: "
Bootstrap program is IOSv
"
iso.3.6.1.4.1.9.2.1.2.0 = STRING: "reload"
iso.3.6.1.4.1.9.2.1.3.0 = STRING: "iosv-1"
iso.3.6.1.4.1.9.2.1.4.0 = STRING: "virl.info"
...

http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index
http://tools.cisco.com/ITDIT/MIBS/servlet/index

Network Monitoring with Python – Part 1 Chapter 7

[209]

We can be more specific about the OID we need to query as well:

$ snmpwalk -v2c -c secret 172.16.1.189 .1.3.6.1.4.1.9.2.1.61.0
iso.3.6.1.4.1.9.2.1.61.0 = STRING: "cisco Systems, Inc.
170 West Tasman Dr.
San Jose, CA 95134-1706
U.S.A.
Ph +1-408-526-4000
Customer service 1-800-553-6387 or +1-408-526-7208
24HR Emergency 1-800-553-2447 or +1-408-526-7209
Email Address tac@cisco.com
World Wide Web http://www.cisco.com"

As a matter of demonstration, what if we type in the wrong value by 1 digit from 0 to 1 at
the end of the last OID? This is what we would see:

$ snmpwalk -v2c -c secret 172.16.1.189 .1.3.6.1.4.1.9.2.1.61.1
iso.3.6.1.4.1.9.2.1.61.1 = No Such Instance currently exists at this OID

Unlike API calls, there are no useful error codes nor messages; it simply stated that the OID
does not exist. This can be pretty frustrating at times.

The last thing to check would be the access list we configured will deny unwanted SNMP
queries. Because we had the log keyword for both the permit and deny entries in the
access-list, only 172.16.1.173 is permitted to query the devices:

*Mar 3 20:30:32.179: %SEC-6-IPACCESSLOGNP: list permit_snmp permitted 0
172.16.1.173 -> 0.0.0.0, 1 packet
*Mar 3 20:30:33.991: %SEC-6-IPACCESSLOGNP: list permit_snmp denied 0
172.16.1.187 -> 0.0.0.0, 1 packet

As you can see, the biggest challenge in setting up SNMP is to find the right OID. Some of
the OIDs are defined in standardized MIB-2; others are under the enterprise portion of the
tree. Vendor documentation is the best bet, though. There are a number of tools that can
help, such as a MIB browser; you can add MIBs (again, provided by the vendors) to the
browser and see the description of the enterprise-based OIDs. A tool such as Cisco's SNMP
Object Navigator (http:/ / snmp. cloudapps. cisco. com/ Support/ SNMP/ do/ BrowseOID. do?
local=en) proves to be very valuable when you need to find the correct OID of the object
you are looking for.

http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en

Network Monitoring with Python – Part 1 Chapter 7

[210]

PySNMP
PySNMP is a cross-platform, pure Python SNMP engine implementation developed by Ilya
Etingof (https:// github. com/ etingof). It abstracts a lot of SNMP details for you, as great
libraries do, and supports both Python 2 and Python 3.

PySNMP requires the PyASN1 package. The following is taken from to Wikipedia:

"ASN.1 is a standard and notation that describes rules and structures for representing,
encoding, transmitting, and decoding data in telecommunication and computer
networking."

PyASN1 conveniently provides a Python wrapper around ASN.1. Let's install the package
first:

cd /tmp
git clone https://github.com/etingof/pyasn1.git
cd pyasn1/
git checkout 0.2.3
sudo python3 setup.py install

Next, install the PySNMP package:

git clone https://github.com/etingof/pysnmp
cd pysnmp/
git checkout v4.3.10
sudo python3 setup.py install

We are using an older version of PySNMP due to the fact that
pysnmp.entity.rfc3413.oneliner was removed starting with version
5.0.0 (https:/ /github. com/ etingof/ pysnmp/ blob/
a93241007b970c458a0233c16ae2ef82dc107290/ CHANGES. txt). If you use
pip to install the packages, the examples will likely break.

https://github.com/etingof
https://github.com/etingof
https://github.com/etingof
https://github.com/etingof
https://github.com/etingof
https://github.com/etingof
https://github.com/etingof
https://github.com/etingof
https://github.com/etingof
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt

Network Monitoring with Python – Part 1 Chapter 7

[211]

Let's look at how to use PySNMP to query the same Cisco contact information we used in
the previous example. The steps we will take are slightly modified versions from the
PySNMP example at http:/ / pysnmp. sourceforge. net/ faq/ response- values- mib-
resolution.html. We will import the necessary module and create a CommandGenerator
object first:

>>> from pysnmp.entity.rfc3413.oneliner import cmdgen
>>> cmdGen = cmdgen.CommandGenerator()
>>> cisco_contact_info_oid = "1.3.6.1.4.1.9.2.1.61.0"

We can perform SNMP using the getCmd method. The result is unpacked into various
variables; of these, we care most about varBinds, which contains the query result:

>>> errorIndication, errorStatus, errorIndex, varBinds = cmdGen.getCmd(
... cmdgen.CommunityData('secret'),
... cmdgen.UdpTransportTarget(('172.16.1.189', 161)),
... cisco_contact_info_oid
...)
>>> for name, val in varBinds:
... print('%s = %s' % (name.prettyPrint(), str(val)))
...
SNMPv2-SMI::enterprises.9.2.1.61.0 = cisco Systems, Inc.
170 West Tasman Dr.
San Jose, CA 95134-1706
U.S.A.
Ph +1-408-526-4000
Customer service 1-800-553-6387 or +1-408-526-7208
24HR Emergency 1-800-553-2447 or +1-408-526-7209
Email Address tac@cisco.com
World Wide Web http://www.cisco.com
>>>

Note that the response values are PyASN1 objects. The prettyPrint() method will
convert some of these values into a human-readable format, but since the result in our case
was not converted, we will convert it into a string manually.

We can write a script based on the preceding interactive example. We will name
it pysnmp_1.py with error checking. We can also include multiple OIDs in the getCmd()
method:

#!/usr/bin/env/python3

from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator()

system_up_time_oid = "1.3.6.1.2.1.1.3.0"

http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html
http://pysnmp.sourceforge.net/faq/response-values-mib-resolution.html

Network Monitoring with Python – Part 1 Chapter 7

[212]

cisco_contact_info_oid = "1.3.6.1.4.1.9.2.1.61.0"

errorIndication, errorStatus, errorIndex, varBinds = cmdGen.getCmd(
 cmdgen.CommunityData('secret'),
 cmdgen.UdpTransportTarget(('172.16.1.189', 161)),
 system_up_time_oid,
 cisco_contact_info_oid
)

Check for errors and print out results
if errorIndication:
 print(errorIndication)
else:
 if errorStatus:
 print('%s at %s' % (
 errorStatus.prettyPrint(),
 errorIndex and varBinds[int(errorIndex)-1] or '?'
)
)
 else:
 for name, val in varBinds:
 print('%s = %s' % (name.prettyPrint(), str(val)))

The result will be unpacked and list out the values of the two OIDs:

$ python3 pysnmp_1.py
SNMPv2-MIB::sysUpTime.0 = 660959
SNMPv2-SMI::enterprises.9.2.1.61.0 = cisco Systems, Inc.
170 West Tasman Dr.
San Jose, CA 95134-1706
U.S.A.
Ph +1-408-526-4000
Customer service 1-800-553-6387 or +1-408-526-7208
24HR Emergency 1-800-553-2447 or +1-408-526-7209
Email Address tac@cisco.com
World Wide Web http://www.cisco.com

Network Monitoring with Python – Part 1 Chapter 7

[213]

In the following example, we will persist the values we received from the queries so that
we can perform other functions, such as visualization, with the data. For our example, we
will use ifEntry within the MIB-2 tree for interface-related values to be graphed. You can
find a number of resources that map out the ifEntry tree; here is a screenshot of the Cisco
SNMP Object Navigator site that we accessed previously for ifEntry:

SNMP ifEntry OID tree

Network Monitoring with Python – Part 1 Chapter 7

[214]

A quick test will illustrate the OID mapping of the interfaces on the device:

$ snmpwalk -v2c -c secret 172.16.1.189 .1.3.6.1.2.1.2.2.1.2
iso.3.6.1.2.1.2.2.1.2.1 = STRING: "GigabitEthernet0/0"
iso.3.6.1.2.1.2.2.1.2.2 = STRING: "GigabitEthernet0/1"
iso.3.6.1.2.1.2.2.1.2.3 = STRING: "GigabitEthernet0/2"
iso.3.6.1.2.1.2.2.1.2.4 = STRING: "Null0"
iso.3.6.1.2.1.2.2.1.2.5 = STRING: "Loopback0"

From the documentation, we can map the values of ifInOctets(10),
ifInUcastPkts(11), ifOutOctets(16), and ifOutUcastPkts(17) into their respective
OID values. From a quick check on the CLI and MIB documentation, we can see that the
value of the GigabitEthernet0/0 packets output maps to OID
1.3.6.1.2.1.2.2.1.17.1. We will follow the rest of the same process to map out the rest
of the OIDs for the interface statistics. When checking between CLI and SNMP, keep in
mind that the values should be close but not exactly the same since there might be some
traffic on the wire between the time of CLI output and the SNMP query time:

Command Line Output
iosv-1#sh int gig 0/0 | i packets
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 38532 packets input, 3635282 bytes, 0 no buffer
 53965 packets output, 4723884 bytes, 0 underruns

SNMP Output
$ snmpwalk -v2c -c secret 172.16.1.189 .1.3.6.1.2.1.2.2.1.17.1
iso.3.6.1.2.1.2.2.1.17.1 = Counter32: 54070

If we are in a production environment, we will likely write the results into a database. But
since this is just an example, we will write the query values to a flat file. We will write
the pysnmp_3.py script for information query and write the results to the file. In the script,
we have defined various OIDs that we need to query:

 # Hostname OID
 system_name = '1.3.6.1.2.1.1.5.0'

 # Interface OID
 gig0_0_in_oct = '1.3.6.1.2.1.2.2.1.10.1'
 gig0_0_in_uPackets = '1.3.6.1.2.1.2.2.1.11.1'
 gig0_0_out_oct = '1.3.6.1.2.1.2.2.1.16.1'
 gig0_0_out_uPackets = '1.3.6.1.2.1.2.2.1.17.1'

Network Monitoring with Python – Part 1 Chapter 7

[215]

The values were consumed in the snmp_query() function, with the host, community, and
oid as input:

 def snmp_query(host, community, oid):
 errorIndication, errorStatus, errorIndex, varBinds = cmdGen.getCmd(
 cmdgen.CommunityData(community),
 cmdgen.UdpTransportTarget((host, 161)),
 oid
)

All of the values are put in a dictionary with various keys and written to a file called
results.txt:

 result = {}
 result['Time'] = datetime.datetime.utcnow().isoformat()
 result['hostname'] = snmp_query(host, community, system_name)
 result['Gig0-0_In_Octet'] = snmp_query(host, community, gig0_0_in_oct)
 result['Gig0-0_In_uPackets'] = snmp_query(host, community,
gig0_0_in_uPackets)
 result['Gig0-0_Out_Octet'] = snmp_query(host, community, gig0_0_out_oct)
 result['Gig0-0_Out_uPackets'] = snmp_query(host, community,
gig0_0_out_uPackets)

 with open('/home/echou/Master_Python_Networking/Chapter7/results.txt',
'a') as f:
 f.write(str(result))
 f.write('n')

The outcome will be a file with results showing the interface packets represented at the
time of the query:

Sample output
$ cat results.txt
{'Gig0-0_In_Octet': '3990616', 'Gig0-0_Out_uPackets': '60077',
'Gig0-0_In_uPackets': '42229', 'Gig0-0_Out_Octet': '5228254', 'Time':
'2017-03-06T02:34:02.146245', 'hostname': 'iosv-1.virl.info'}
{'Gig0-0_Out_uPackets': '60095', 'hostname': 'iosv-1.virl.info',
'Gig0-0_Out_Octet': '5229721', 'Time': '2017-03-06T02:35:02.072340',
'Gig0-0_In_Octet': '3991754', 'Gig0-0_In_uPackets': '42242'}
{'hostname': 'iosv-1.virl.info', 'Gig0-0_Out_Octet': '5231484',
'Gig0-0_In_Octet': '3993129', 'Time': '2017-03-06T02:36:02.753134',
'Gig0-0_In_uPackets': '42257', 'Gig0-0_Out_uPackets': '60116'}
{'Gig0-0_In_Octet': '3994504', 'Time': '2017-03-06T02:37:02.146894',
'Gig0-0_In_uPackets': '42272', 'Gig0-0_Out_uPackets': '60136',
'Gig0-0_Out_Octet': '5233187', 'hostname': 'iosv-1.virl.info'}
{'Gig0-0_In_uPackets': '42284', 'Time': '2017-03-06T02:38:01.915432',

Network Monitoring with Python – Part 1 Chapter 7

[216]

'Gig0-0_In_Octet': '3995585', 'Gig0-0_Out_Octet': '5234656',
'Gig0-0_Out_uPackets': '60154', 'hostname': 'iosv-1.virl.info'}
...

We can make this script executable and schedule a cron job to be executed every five
minutes:

$ chmod +x pysnmp_3.py

Crontab configuration
*/5 * * * * /home/echou/Master_Python_Networking/Chapter7/pysnmp_3.py

As mentioned previously, in a production environment, we would put the information in a
database. For a SQL database, you can use a unique ID as the primary key. In a NoSQL
database, we might use time as the primary index (or key) because it is always unique,
followed by various key-value pairs.

We will wait for the script to be executed a few times for the values to be populated. If you
are the impatient type, you can shorten the cron job interval to be one minute. After you
see enough values in the results.txt file to make an interesting graph, we can move on
to the next section to see how we can use Python to visualize the data.

Python for data visualization
We gather network data for the purpose of gaining insight into our network. One of the
best ways to know what the data means is to visualize it with graphs. This is true for almost
all data, but especially true for time series data in the context of network monitoring. How
much data was transmitted over the network in the last week? What is the percentage of
the TCP protocol among all of the traffic? These are values we can glean from using data-
gathering mechanisms, such as SNMP, and we can produce visualization graphs with some
of the popular Python libraries.

In this section, we will use the data we collected from the last section using SNMP and use
two popular Python libraries, Matplotlib and Pygal, to graph them.

Network Monitoring with Python – Part 1 Chapter 7

[217]

Matplotlib
Matplotlib (http:/ / matplotlib. org/) is a Python 2D plotting library for the Python
language and its NumPy mathematical extension. It can produce publication-quality
figures, such as plots, histograms, and bar graphs, with a few lines of code.

NumPy is an extension of the Python programming language. It is open
source and widely used in various data science projects. You can learn
more about it at https:/ /en.wikipedia. org/ wiki/ NumPy.

Installation
The installation can be done using the Linux package management system, depending on
your distribution:

$ sudo apt-get install python-matplotlib # for Python2
$ sudo apt-get install python3-matplotlib

Matplotlib – the first example
For the following examples, the output figures are displayed as the standard output by
default. During development, it is often easier to try out the code initially and produce the
graph on the standard output first before finalizing the code with a script. If you have been
following along with this book via a virtual machine, it is recommended that you use the
VM window instead of SSH so that you can see the graphs. If you do not have access to the
standard output, you can save the figure and view it after you download it (as you will see
soon). Note that you will need to set the $DISPLAY variable in some of the graphs that we
will produce in this section.

The following is a screenshot of the Ubuntu desktop used in this chapter's visualization
example. As soon as the plt.show() command is issued in the Terminal window, Figure
1 will appear on the screen. When you close the figure, you will return to the Python shell:

http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy

Network Monitoring with Python – Part 1 Chapter 7

[218]

Matplotlib visualization with the Ubuntu desktop

Let's look at the line graph first. A line graph simply gives two lists of numbers that
correspond to the x axis and y axis values:

>>> import matplotlib.pyplot as plt
>>> plt.plot([0,1,2,3,4], [0,10,20,30,40])
[<matplotlib.lines.Line2D object at 0x7f932510df98>]
>>> plt.ylabel('Something on Y')
<matplotlib.text.Text object at 0x7f93251546a0>
>>> plt.xlabel('Something on X')
<matplotlib.text.Text object at 0x7f9325fdb9e8>
>>> plt.show()

Network Monitoring with Python – Part 1 Chapter 7

[219]

The graph will show up as a line graph:

Matplotlib line graph

Alternatively, if you do not have access to standard output or have saved the figure first,
you can use the savefig() method:

>>> plt.savefig('figure1.png')
or
>>> plt.savefig('figure1.pdf')

With this basic knowledge of graphing plots, we can now graph the results we receive from
SNMP queries.

Network Monitoring with Python – Part 1 Chapter 7

[220]

Matplotlib for SNMP results
In our first Matplotlib example, namely matplotlib_1.py, we will import the dates
module besides pyplot. We will use the matplotlib.dates module instead of the
Python standard library dates module. Unlike the Python dates module,
the mapplotlib.dates library will convert the date value internally into the float type,
which is required by Matplotlib:

 import matplotlib.pyplot as plt
 import matplotlib.dates as dates

Matplotlib provides sophisticated date plotting capabilities; you can find
more information on this at http:/ /matplotlib. org/api/ dates_ api.
html.

In the script, we will create two empty lists, each representing the x-axis and y-axis values.
Note that, on line 12, we used the built-in eval() Python function to read the input as a
dictionary instead of a default string:

 x_time = []
 y_value = []

 with open('results.txt', 'r') as f:
 for line in f.readlines():
 line = eval(line)
 x_time.append(dates.datestr2num(line['Time']))
 y_value.append(line['Gig0-0_Out_uPackets'])

In order to read the x-axis value back in a human-readable date format, we will need to use
the plot_date() function instead of plot(). We will also tweak the size of the figure a bit
as well as rotate the value on the x-axis so that we can read the value in full:

 plt.subplots_adjust(bottom=0.3)
 plt.xticks(rotation=80)

 plt.plot_date(x_time, y_value)
 plt.title('Router1 G0/0')
 plt.xlabel('Time in UTC')
 plt.ylabel('Output Unicast Packets')
 plt.savefig('matplotlib_1_result.png')
 plt.show()

http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html

Network Monitoring with Python – Part 1 Chapter 7

[221]

The final result will display the Router1 Gig0/0 and Output Unicast Packet, as follows:

Router1 Matplotlib graph

Note that if you prefer a straight line instead of dots, you can use the third optional
parameter in the plot_date() function:

 plt.plot_date(x_time, y_value, "-")

Network Monitoring with Python – Part 1 Chapter 7

[222]

We can repeat the steps for the rest of the values for output octets, input unicast packets,
and input as individual graphs. However, in our coming example, that
is, matplotlib_2.py, we will show you how to graph multiple values against the same
time range, as well as additional Matplotlib options.

In this case, we will create additional lists and populate the values accordingly:

 x_time = []
 out_octets = []
 out_packets = []
 in_octets = []
 in_packets = []

 with open('results.txt', 'r') as f:
 for line in f.readlines():
 ...
 out_packets.append(line['Gig0-0_Out_uPackets'])
 out_octets.append(line['Gig0-0_Out_Octet'])
 in_packets.append(line['Gig0-0_In_uPackets'])
 in_octets.append(line['Gig0-0_In_Octet'])

Since we have identical x-axis values, we can just add the different y-axis values to the same
graph:

 # Use plot_date to display x-axis back in date format
 plt.plot_date(x_time, out_packets, '-', label='Out Packets')
 plt.plot_date(x_time, out_octets, '-', label='Out Octets')
 plt.plot_date(x_time, in_packets, '-', label='In Packets')
 plt.plot_date(x_time, in_octets, '-', label='In Octets')

Also, add grid and legend to the graph:

 plt.legend(loc='upper left')
 plt.grid(True)

Network Monitoring with Python – Part 1 Chapter 7

[223]

The final result will combine all of the values in a single graph. Note that some of the
values in the upper-left corner are blocked by the legend. You can resize the figure and/or
use the pan/zoom option to move around the graph in order to see the value:

Router 1 – Matplotlib multiline graph

There are many more graphing options available in Matplotlib; we are certainly not limited
to plot graphs. For example, we can use the following mock data to graph the percentage of
different traffic types that we can see on the wire:

#!/usr/bin/env python3
Example from
http://matplotlib.org/2.0.0/examples/pie_and_polar_charts/pie_demo_features
.html
import matplotlib.pyplot as plt

Network Monitoring with Python – Part 1 Chapter 7

[224]

Pie chart, where the slices will be ordered and plotted counter-
clockwise:
labels = 'TCP', 'UDP', 'ICMP', 'Others'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0) # Make UDP stand out

fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
 shadow=True, startangle=90)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a
circle.

plt.show()

The preceding code leads to this pie chart from plt.show():

Matplotlib pie chart

Network Monitoring with Python – Part 1 Chapter 7

[225]

Additional Matplotlib resources
Matplotlib is one of the best Python plotting libraries that is able to produce publication-
quality figures. Like Python, its aim is to make complex tasks simple. With over 7,550 stars
(and counting) on GitHub, it is also one of the most popular open source projects. Its
popularity directly translates into faster bug fixes, a friendly user community, and general
usability. It takes a bit of time to learn the package, but it is well worth the effort.

In this section, we barely scratched the surface of Matplotlib. You'll find
additional resources at http:/ /matplotlib. org/ 2.0. 0/index. html (the
Matplotlib project page) and https:/ /github. com/ matplotlib/
matplotlib (the Matplotlib GitHub repository).

In the coming section, we will take a look at another popular Python graph library: Pygal.

Pygal
Pygal (http://www. pygal. org/) is a dynamic SVG charting library written in Python. The
biggest advantage of Pygal, in my opinion, is that it produces Scalable Vector Graphics
(SVG) format graphs easily and natively. There are many advantages of SVG over other
graph formats, but two of the main advantages are that it is web browser-friendly and it
provides scalability without sacrificing image quality. In other words, you can display the
resulting image in any modern web browser and zoom in and out of the image without
losing the details of the graph. Did I mention that we can do this in a few lines of Python
code? How cool is that?

Installation
The installation is done via pip:

$ sudo pip install pygal #Python 2
$ sudo pip3 install pygal

http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
http://matplotlib.org/2.0.0/index.html
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
http://www.pygal.org/
http://www.pygal.org/
http://www.pygal.org/
http://www.pygal.org/
http://www.pygal.org/
http://www.pygal.org/
http://www.pygal.org/
http://www.pygal.org/
http://www.pygal.org/
http://www.pygal.org/

Network Monitoring with Python – Part 1 Chapter 7

[226]

Pygal – the first example
Let's look at the line chart example demonstrated on Pygal's documentation, available at
http://pygal.org/ en/ stable/ documentation/ types/ line. html:

>>> import pygal
>>> line_chart = pygal.Line()
>>> line_chart.title = 'Browser usage evolution (in %)'
>>> line_chart.x_labels = map(str, range(2002, 2013))
>>> line_chart.add('Firefox', [None, None, 0, 16.6, 25, 31, 36.4, 45.5,
46.3, 42.8, 37.1])
<pygal.graph.line.Line object at 0x7fa0bb009c50>
>>> line_chart.add('Chrome', [None, None, None, None, None, None, 0, 3.9,
10.8, 23.8, 35.3])
<pygal.graph.line.Line object at 0x7fa0bb009c50>
>>> line_chart.add('IE', [85.8, 84.6, 84.7, 74.5, 66, 58.6, 54.7, 44.8,
36.2, 26.6, 20.1])
<pygal.graph.line.Line object at 0x7fa0bb009c50>
>>> line_chart.add('Others', [14.2, 15.4, 15.3, 8.9, 9, 10.4, 8.9, 5.8,
6.7, 6.8, 7.5])
<pygal.graph.line.Line object at 0x7fa0bb009c50>
>>> line_chart.render_to_file('pygal_example_1.svg')

In this example, we created a line object with the x_labels automatically
rendered as strings for 11 units. Each of the objects can be added with the
label and the value in a list format, such as Firefox, Chrome, and IE.

http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html

Network Monitoring with Python – Part 1 Chapter 7

[227]

Here's the resulting graph, as viewed in Firefox:

Pygal sample graph

Now that we can see the general usage of Pygal, we can use the same method to graph the
SNMP results we have in hand. We will do this in the coming section.

Network Monitoring with Python – Part 1 Chapter 7

[228]

Pygal for SNMP results
For the Pygal line graph, we can largely follow the same pattern as our Matplotlib example,
where we create lists of values by reading the file. We no longer need to convert the x-axis
value into an internal float, as we did for Matplotlib; however, we do need to convert the
numbers in each of the values we would have received in the float:

 #!/usr/bin/env python3

 import pygal

 x_time = []
 out_octets = []
 out_packets = []
 in_octets = []
 in_packets = []

 with open('results.txt', 'r') as f:
 for line in f.readlines():
 line = eval(line)
 x_time.append(line['Time'])
 out_packets.append(float(line['Gig0-0_Out_uPackets']))
 out_octets.append(float(line['Gig0-0_Out_Octet']))
 in_packets.append(float(line['Gig0-0_In_uPackets']))
 in_octets.append(float(line['Gig0-0_In_Octet']))

We can use the same mechanism that we saw to construct the line graph:

 line_chart = pygal.Line()
 line_chart.title = "Router 1 Gig0/0"
 line_chart.x_labels = x_time
 line_chart.add('out_octets', out_octets)
 line_chart.add('out_packets', out_packets)
 line_chart.add('in_octets', in_octets)
 line_chart.add('in_packets', in_packets)
 line_chart.render_to_file('pygal_example_2.svg')

Network Monitoring with Python – Part 1 Chapter 7

[229]

The outcome is similar to what we have already seen, but the graph is now in an SVG
format that can be easily displayed on a web page. It can be viewed from a modern web
browser:

Router 1—Pygal multiline graph

Just like Matplotlib, Pygal provides many more options for graphs. For example, to graph
the pie chart we saw previously in Pygal, we can use the pygal.Pie() object:

#!/usr/bin/env python3

import pygal

line_chart = pygal.Pie()
line_chart.title = "Protocol Breakdown"
line_chart.add('TCP', 15)

Network Monitoring with Python – Part 1 Chapter 7

[230]

line_chart.add('UDP', 30)
line_chart.add('ICMP', 45)
line_chart.add('Others', 10)
line_chart.render_to_file('pygal_example_3.svg')

The resulting SVG file would be similar to the PNG generated by Matplotlib:

Pygal pie chart

Network Monitoring with Python – Part 1 Chapter 7

[231]

Additional Pygal resources
Pygal provides many more customizable features and graphing capabilities for the data
you collect from basic network monitoring tools such as SNMP. We demonstrated a simple
line graph and pie graphs in this section. You can find more information about the project
here:

Pygal documentation: http:/ /www.pygal. org/en/ stable/ index. html

Pygal GitHub project page: https:/ /github. com/Kozea/ pygal

In the coming section, we will continue with the SNMP theme of network monitoring but
with a fully featured network monitoring system called Cacti.

Python for Cacti
In my early days working as a junior network engineer at a regional ISP, we used the open
source cross-platform Multi Router Traffic Grapher (MRTG), (https:/ /en.wikipedia.
org/wiki/Multi_Router_ Traffic_ Grapher) tool to check the traffic load on network links.
We relied on the tool almost exclusively for traffic monitoring. I was really amazed at how
good and useful an open source project could be. It was one of the first open source high-
level network monitoring systems that abstracted the details of SNMP, the database, and
HTML for network engineers. Then came the Round-Robin Database Tool (RRDtool),
(https://en.wikipedia. org/ wiki/ RRDtool). In its first release in 1999, it was referred to as
"MRTG Done Right". It had greatly improved the database and poller performance in the
backend.

Released in 2001, Cacti (https:/ /en. wikipedia. org/ wiki/ Cacti_ (software)) is an open
source web-based network monitoring and graphing tool designed as an improved
frontend for RRDtool. Because of the heritage of MRTG and RRDtool, you will notice a
familiar graph layout, templates, and SNMP poller. As a packaged tool, the installation and
usage will need to stay within the boundary of the tool itself. However, Cacti offers the
custom data query feature that we can use Python for. In this section, we will see how we
can use Python as an input method for Cacti.

http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
http://www.pygal.org/en/stable/index.html
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://github.com/Kozea/pygal
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)
https://en.wikipedia.org/wiki/Cacti_(software)

Network Monitoring with Python – Part 1 Chapter 7

[232]

Installation
Installation on Ubuntu is straightforward when using APT on the Ubuntu management
VM:

$ sudo apt-get install cacti

It will trigger a series of installation and setup steps, including the MySQL database, web
server (Apache or lighttpd), and various configuration tasks. Once installed, navigate to
http://<ip>/cacti to get started. The last step is to log in with the default username and
password (admin/admin); you will be prompted to change the password.

Once you are logged in, you can follow the documentation to add a device and associate it
with a template. There is a Cisco router premade template that you can go with. Cacti has
good documentation on http:/ / docs. cacti. net/ for adding a device and creating your
first graph, so we will quickly look at some screenshots that you can expect to see:

http://docs.cacti.net/
http://docs.cacti.net/
http://docs.cacti.net/
http://docs.cacti.net/
http://docs.cacti.net/
http://docs.cacti.net/
http://docs.cacti.net/
http://docs.cacti.net/
http://docs.cacti.net/
http://docs.cacti.net/

Network Monitoring with Python – Part 1 Chapter 7

[233]

A sign indicating the SNMP communication is working is when you can see the device
uptime:

You can add graphs to the device for interface traffic and other statistics:

After some time, you will start seeing traffic, as shown here:

Network Monitoring with Python – Part 1 Chapter 7

[234]

We are now ready to look at how to use Python scripts to extend Cacti's data gathering
functionality.

Python script as an input source
There are two documents that we should read before we try to use our Python script as an
input source:

Data input methods: http:/ / www.cacti. net/ downloads/ docs/ html/ data_
input_methods. html

Making your scripts work with Cacti: http:/ /www. cacti. net/ downloads/ docs/
html/making_ scripts_ work_ with_ cacti. html

One might wonder what the use cases for using Python script are as an extension for data
inputs. One of the use cases would be to provide monitoring to resources that do not have a
corresponding OID, for example, if we would like to know how to graph how many times
the access list permit_snmp has allowed the host 172.16.1.173 for conducting an SNMP
query. We know we can see the number of matches via the CLI:

iosv-1#sh ip access-lists permit_snmp | i 172.16.1.173
 10 permit 172.16.1.173 log (6362 matches)

However, chances are that there are no OIDs associated with this value (or we can just
pretend that there are none). This is where we can use an external script to produce an
output that can be consumed by the Cacti host.

We can reuse the Pexpect script we discussed in Chapter 2, Low-Level Network Device
Interactions, chapter1_1.py. We will rename it to cacti_1.py. Everything should be
familiar to the original script, except that we will execute the CLI command and save the
output:

for device in devices.keys():
...
 child.sendline('sh ip access-lists permit_snmp | i 172.16.1.173')
 child.expect(device_prompt)
 output = child.before
...

The output in its raw form will appear as follows:

b'sh ip access-lists permit_snmp | i 172.16.1.173rn 10 permit 172.16.1.173
log (6428 matches)rn'

http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html

Network Monitoring with Python – Part 1 Chapter 7

[235]

We will use the split() function for the string to only leave the number of matches and
print them out on standard output in the script:

print(str(output).split('(')[1].split()[0])

To test this, we can see the number of increments by executing the script a number of times:

$./cacti_1.py
6428
$./cacti_1.py
6560
$./cacti_1.py
6758

We can make the script executable and put it into the default Cacti script location:

$ chmod a+x cacti_1.py
$ sudo cp cacti_1.py /usr/share/cacti/site/scripts/

The Cacti documentation, available at http:/ / www.cacti. net/downloads/ docs/ html/ how_
to.html, provides detailed steps on how to add the script result to the output graph.
These steps include adding the script as a data input method, adding the input method to a
data source, and then creating a graph to be viewed:

SNMP is a common way to provide network monitoring services to the devices. RRDtool
with Cacti as the frontend provides a good platform to be used for all the network devices
via SNMP.

http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html

Network Monitoring with Python – Part 1 Chapter 7

[236]

Summary
In this chapter, we explored ways to perform network monitoring via SNMP. We
configured SNMP-related commands on network devices and used our network
management VM with SNMP poller to query the devices. We used the PySNMP module to
simplify and automate our SNMP queries. We also learned how to save the query results in
a flat file or database to be used for future examples.

Later in this chapter, we used two different Python visualization packages, namely
Matplotlib and Pygal, to graph SNMP results. Each package has its distinct advantages.
Matplotlib is a mature, feature-rich library that is widely used in data science projects.
Pygal can natively generate SVG format graphs that are flexible and web-friendly. We saw
how we can generate line and pie graphs that are relevant for network monitoring.

Toward the end of this chapter, we looked at an all-inclusive network monitoring tool
named Cacti. It uses primarily SNMP for network monitoring, but we saw how we can use
Python scripts as an input source to extend the platform's monitoring capabilities when
SNMP OID is not available on the remote host.

In Chapter 8, Network Monitoring with Python – Part 2, we will continue to discuss the tools
we can use to monitor our networks and gain insight into whether the network is behaving
as expected. We will look at flow-based monitoring using NetFlow, sFlow, and IPFIX. We
will also use tools such as Graphviz to visualize our network topology and detect any
topological changes. Finally, we will use Elasticsearch, Logstash, and Kibana, commonly
referred to as the ELK stack, to monitor network log data as well as other network-related
input.

8
Network Monitoring with Python

– Part 2
In Chapter 7, Network Monitoring with Python – Part 1, we used SNMP to query information
from network devices. We did this by using an SNMP manager to query the SNMP agent
residing on the network device. The SNMP information is structured in a hierarchy format
with a specific object ID as the way to represent the value of the object. Most of the time, the
value we care about is a number, such as CPU load, memory usage, or interface traffic. It's
something we can graph against time to give us a sense of how the value has changed over
time.

We can typically classify the SNMP approach as a pull method as we are constantly asking
the device for a particular answer. This particular method adds burden to the device
because it needs to spend a CPU cycle on the control plane to find answers from the
subsystem, package the answer in an SNMP packet, and transport the answer back to the
poller. If you have ever been to a family reunion where you have that one family member
who keeps asking you the same questions over and over again, that would be analogous to
the SNMP manager polling the managed node.

Over time, if we have multiple SNMP pollers querying the same device every 30 seconds
(you would be surprised how often this happens), the management overhead would
become substantial. In the same family reunion example we have given, instead of one
family member, imagine there are many other people interrupting you every 30 seconds to
ask you a question. I don't know about you, but I know I would be very annoyed even if it
was a simple question (or worse if all of them are asking the same question).

Network Monitoring with Python – Part 2 Chapter 8

[238]

Another way we can provide more efficient network monitoring is to reverse the
relationship between the management station from a pull to a push model. In other words,
the information can be pushed from the device toward the management station in an
agreed-upon format. This concept is what flow-based monitoring is based on. In a flow-
based model, the network device streams the traffic information, called flow, to the
management station. The format can be the Cisco proprietary NetFlow (version 5 or version
9), the industry standard IPFIX, or the open source sFlow format. In this chapter, we will
spend some time looking into NetFlow, IPFIX, and sFlow with Python.

Not all monitoring comes in the form of time series data. You can represent information
such as network topology and Syslog in a time series format if you really want to, but, this
is not ideal. We can use Python to check network topology information and see if the
topology has changed over time. We can use tools, such as Graphviz, with a Python
wrapper, to illustrate the topology. As already seen in Chapter 6, Network Security with
Python, Syslog contains security information. In this chapter, we will look at using the ELK
stack (Elasticsearch, Logstash, Kibana) as an efficient way to collect and index network log
information.

Specifically, in this chapter, we will cover the following topics:

Graphviz, which is an open source graph visualization software that can help us
quickly and efficiently graph our network
Flow-based monitoring, such as NetFlow, IPFIX, and sFlow
Using ntop to visualize the flow information
Using Elasticsearch to index and analyze our collected data

Let's start by looking at how to use Graphviz as a tool to monitor network topology
changes.

Network Monitoring with Python – Part 2 Chapter 8

[239]

Graphviz
Graphviz is an open source graph visualization software. Imagine if we have to describe
our network topology to a colleague without the benefit of a picture. We might say, our
network consists of three layers: core, distribution, and access. The core layer comprises
two routers for redundancy, and both of the routers are full-meshed toward the four
distribution routers; the distribution routers are also full-meshed toward the access routers.
The internal routing protocol is OSPF, and externally, we use BGP for peering with our
service provider. While this description lacks some details, it is probably enough for your
colleague to paint a pretty good high-level picture of your network.

Graphviz works similarly to the process by describing the graph in the text format that
Graphviz can understand, then we can feed the file to the Graphviz program to construct
the graph for us. Here, the graph is described in a text format called DOT (https:/ /en.
wikipedia.org/wiki/ DOT_ (graph_ description_ language)) and Graphviz renders the
graph based on the description. Of course, because the computer lacks human imagination,
the language has to be very precise and detailed.

For Graphviz-specific DOT grammar definitions, take a look at http:/ /
www.graphviz. org/ doc/ info/ lang. html.

In this section, we will use the Link Layer Discovery Protocol (LLDP) to query the device
neighbors and create a network topology graph via Graphviz. Upon completing this
extensive example, we will see how we can take something new, such as Graphviz, and
combine it with things we have already learned to solve interesting problems.

Let's start by constructing the lab we will be using.

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html

Network Monitoring with Python – Part 2 Chapter 8

[240]

Lab setup
We will use VIRL to construct our lab. As in the previous chapters, we will put together a
lab with multiple routers, a server, and a client. We will use five IOSv network nodes along
with two server hosts:

If you are wondering about our choice of IOSv as opposed to NX-OS or IOS-XR and the
number of devices, here are a few points for you to consider when you build your own lab:

Nodes virtualized by NX-OS and IOS-XR are much more memory-intensive than
IOS
The VIRL virtual manager I am using has 8 GB of RAM, which seems enough to
sustain nine nodes but could be a bit unstable (nodes changing from reachable to
unreachable at random)

Network Monitoring with Python – Part 2 Chapter 8

[241]

If you wish to use NX-OS, consider using NX-API or other API calls that would
return structured data

For our example, we are going to use LLDP as the protocol for link layer neighbor
discovery because it is vendor-neutral. Note that VIRL provides an option to automatically
enable CDP, which can save you some time and is similar to LLDP in functionality;
however, it is a Cisco proprietary technology so we will disable it for our lab:

Once the lab is up and running, proceed to installing the necessary software packages.

Installation
Graphviz can be obtained via apt:

$ sudo apt-get -y install graphviz

After the installation is complete, note that verification is performed by using the dot
command:

$ dot -V
dot - graphviz version 2.38.0 (20140413.2041)~

We will use the Python wrapper for Graphviz, so let's install it now while we are at it:

$ sudo pip install graphviz #Python 2
$ sudo pip3 install graphviz

$ python3
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import graphviz
>>> graphviz.__version__
'0.8.4'
>>> exit()

Network Monitoring with Python – Part 2 Chapter 8

[242]

Let's take a look at how we can use the software.

Graphviz examples
Like most popular open source projects, the documentation of Graphviz (http:/ /www.
graphviz.org/Documentation. php) is extensive. The challenge for someone new to the
software is often where to start. For our purpose, we will focus on the dot graph, which
draws directed graphs as hierarchies (not to be confused with the DOT language, which is a
graph description language).

Let's start with some of the basic concepts:

Nodes represent our network entities, such as routers, switches, and servers
The edge represents the link between the network entities
The graph, nodes, and edges each have attributes (https:/ / www.graphviz. org/
doc/info/ attrs. html) that can be tweaked
After describing the network, we can output the network graph (https:/ /www.
graphviz. org/ doc/ info/ output. html) in either PNG, JPEG, or PDF format

Our first example is an undirected dot graph consisting of four nodes (core,
distribution, access1, and access2). The edges, represented by the dash - sign,
join the core node to the distribution node, as well as the distribution node to both of the
access nodes:

$ cat chapter8_gv_1.gv
graph my_network {
 core -- distribution;
 distribution -- access1;
 distribution -- access2;
}

The graph can be output in the dot -T<format> source -o <output file> command
line:

$ dot -Tpng chapter8_gv_1.gv -o output/chapter8_gv_1.png

http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html

Network Monitoring with Python – Part 2 Chapter 8

[243]

The resultant graph can be viewed from the following output folder:

Just like Chapter 7, Network Monitoring with Python – Part 1, it might be
easier to work in the Linux desktop window while working with these
graphs so you can see the graphs right away.

Note that we can use a directional graph by specifying the graph as a digraph as well as
using the arrow (->) sign to represent the edges. There are several attributes we can modify
in the case of nodes and edges, such as the node shape, edge labels, and so on. The same
graph can be modified as follows:

$ cat chapter8_gv_2.gv
digraph my_network {
 node [shape=box];
 size = "50 30";
 core -> distribution [label="2x10G"];
 distribution -> access1 [label="1G"];
 distribution -> access2 [label="1G"];
}

We will output the file in PDF this time:

$ dot -Tpdf chapter8_gv_2.gv -o output/chapter8_gv_2.pdf

Network Monitoring with Python – Part 2 Chapter 8

[244]

Take a look at the directional arrows in the new graph:

Now let's take a look at the Python wrapper around Graphviz.

Python with Graphviz examples
We can reproduce the same topology graph as before using the Python Graphviz package
which we have installed:

$ python3
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
>>> from graphviz import Digraph
>>> my_graph = Digraph(comment="My Network")
>>> my_graph.node("core")
>>> my_graph.node("distribution")
>>> my_graph.node("access1")
>>> my_graph.node("access2")
>>> my_graph.edge("core", "distribution")
>>> my_graph.edge("distribution", "access1")
>>> my_graph.edge("distribution", "access2")

Network Monitoring with Python – Part 2 Chapter 8

[245]

The code basically produces what you would normally write in the DOT language but in a
more Pythonic way. You can view the source of the graph before the graph generation:

>>> print(my_graph.source)
// My Network
digraph {
 core
 distribution
 access1
 access2
 core -> distribution
 distribution -> access1
 distribution -> access2
}

The graph can be rendered by the render() method; by default, the output format is PDF:

>>> my_graph.render("output/chapter8_gv_3.gv")
'output/chapter8_gv_3.gv.pdf'

The Python package wrapper closely mimics all the API options of Graphviz. You can find
documentation about the options on the Graphviz Read the Docs website (http:/ /
graphviz.readthedocs. io/ en/ latest/ index. html). You can also refer to the source code
on GitHub for more information (https:/ /github. com/ xflr6/ graphviz). We are now
ready to use the tool to map out our network.

LLDP neighbor graphing
In this section, we will use the example of mapping out LLDP neighbors to illustrate a
problem-solving pattern that has helped me over the years:

Modularize each task into smaller pieces, if possible. In our example, we can1.
combine a few steps, but if we break them into smaller pieces, we will be able to
reuse and improve them more easily.
Use an automation tool to interact with the network devices, but keep the more2.
complex logic aside at the management station. For example, the router has
provided an LLDP neighbor output that is a bit messy. In this case, we will stick
with the working command and the output and use a Python script at the
management station to parse out the output we need.

http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz
https://github.com/xflr6/graphviz

Network Monitoring with Python – Part 2 Chapter 8

[246]

When presented with choices for the same task, pick the one that can be reused.3.
In our example, we can use low-level Pexpect, Paramiko, or Ansible playbooks to
query the routers. In my opinion, Ansible is a more reusable option, so that is
what I have picked.

To get started, since LLDP is not enabled on the routers by default, we will need to
configure them on the devices first. By now, we know we have a number of options to
choose from; in this case, I chose the Ansible playbook with the ios_config module for
the task. The hosts file consists of five routers:

$ cat hosts
[devices]
r1 ansible_hostname=172.16.1.218
r2 ansible_hostname=172.16.1.219
r3 ansible_hostname=172.16.1.220
r5-tor ansible_hostname=172.16.1.221
r6-edge ansible_hostname=172.16.1.222

The cisco_config_lldp.yml playbook consists of one play with variables embedded in
the playbook to configure LLDP:

<skip>
 vars:
 cli:
 host: "{{ ansible_hostname }}"
 username: cisco
 password: cisco
 transport: cli tasks:
 - name: enable LLDP run
 ios_config:
 lines: lldp run
 provider: "{{ cli }}"
<skip>

After a few seconds, to allow LLDP exchange, we can verify that LLDP is indeed active on
the routers:

$ ansible-playbook -i hosts cisco_config_lldp.yml

PLAY [Enable LLDP]

...
PLAY RECAP

r1 : ok=2 changed=1 unreachable=0 failed=0
r2 : ok=2 changed=1 unreachable=0 failed=0
r3 : ok=2 changed=1 unreachable=0 failed=0

Network Monitoring with Python – Part 2 Chapter 8

[247]

r5-tor : ok=2 changed=1 unreachable=0 failed=0
r6-edge : ok=2 changed=1 unreachable=0 failed=0

SSH to R1 for verification
r1#show lldp neighbors

Capability codes: (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable
Device (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other

Device ID Local Intf Hold-time Capability Port ID
r2.virl.info Gi0/0 120 R Gi0/0
r3.virl.info Gi0/0 120 R Gi0/0
r5-tor.virl.info Gi0/0 120 R Gi0/0
r5-tor.virl.info Gi0/1 120 R Gi0/1
r6-edge.virl.info Gi0/2 120 R Gi0/1
r6-edge.virl.info Gi0/0 120 R Gi0/0

Total entries displayed: 6

In the output, you will see that G0/0 is configured as the MGMT interface; therefore, you
will see LLDP peers as if they are on a flat management network. What we really care about
is the G0/1 and G0/2 interfaces connected to other peers. This knowledge will come in
handy as we prepare to parse the output and construct our topology graph.

Information retrieval
We can now use another Ansible playbook, namely cisco_discover_lldp.yml, to
execute the LLDP command on the device and copy the output of each device to a tmp
directory:

<skip>
 tasks:
 - name: Query for LLDP Neighbors
 ios_command:
 commands: show lldp neighbors
 provider: "{{ cli }}"
<skip>

The ./tmp directory now consists of all the routers' output (showing LLDP neighbors) in its
own file:

$ ls -l tmp/
total 20
-rw-rw-r-- 1 echou echou 630 Mar 13 17:12 r1_lldp_output.txt
-rw-rw-r-- 1 echou echou 630 Mar 13 17:12 r2_lldp_output.txt
-rw-rw-r-- 1 echou echou 701 Mar 12 12:28 r3_lldp_output.txt

Network Monitoring with Python – Part 2 Chapter 8

[248]

-rw-rw-r-- 1 echou echou 772 Mar 12 12:28 r5-tor_lldp_output.txt
-rw-rw-r-- 1 echou echou 630 Mar 13 17:12 r6-edge_lldp_output.txt

The r1_lldp_output.txt content is the output.stdout_lines variable from our
Ansible playbook:

$ cat tmp/r1_lldp_output.txt

[["Capability codes:", " (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS
Cable Device", " (W) WLAN Access Point, (P) Repeater, (S) Station, (O)
Other", "", "Device ID Local Intf Hold-time Capability Port ID",
"r2.virl.info Gi0/0 120 R Gi0/0", "r3.virl.info Gi0/0 120 R Gi0/0", "r5-
tor.virl.info Gi0/0 120 R Gi0/0", "r5-tor.virl.info Gi0/1 120 R Gi0/1",
"r6-edge.virl.info Gi0/0 120 R Gi0/0", "", "Total entries displayed: 5",
""]]

Python parser script
We can now use a Python script to parse the LLDP neighbor output from each device and
construct a network topology graph from the results. The purpose is to automatically check
the device to see whether any of the LLDP neighbors have disappeared due to link failure
or other issues. Let's take a look at the cisco_graph_lldp.py file and see how that is
done.

We start with the necessary imports of the packages: an empty list that we will populate
with tuples of node relationships. We also know that Gi0/0 on the devices are connected to
the management network; therefore, we are only searching for Gi0/[1234] as our regular
expression pattern in the show LLDP neighbors output:

import glob, re
from graphviz import Digraph, Source
pattern = re.compile('Gi0/[1234]')
device_lldp_neighbors = []

We will use the glob.glob() method to traverse the ./tmp directory of all the files, parse
out the device name, and find the neighbors that the device is connected to. There are some
embedded print statements in the script that we can comment out for the final version; if
the statements were uncommented, we can see the parsed result:

device: r1
 neighbors: r5-tor
 neighbors: r6-edge
device: r5-tor
 neighbors: r2
 neighbors: r3

Network Monitoring with Python – Part 2 Chapter 8

[249]

 neighbors: r1
device: r2
 neighbors: r5-tor
 neighbors: r6-edge
device: r3
 neighbors: r5-tor
 neighbors: r6-edge
device: r6-edge
 neighbors: r2
 neighbors: r3
 neighbors: r1

The fully populated edge list contains tuples that consist of the device and its neighbors:

Edges: [('r1', 'r5-tor'), ('r1', 'r6-edge'), ('r5-tor', 'r2'), ('r5-tor',
'r3'), ('r5-tor', 'r1'), ('r2', 'r5-tor'), ('r2', 'r6-edge'), ('r3', 'r5-
tor'), ('r3', 'r6-edge'), ('r6-edge', 'r2'), ('r6-edge', 'r3'), ('r6-edge',
'r1')]

We can now construct the network topology graph using the Graphviz package. The most
important part is the unpacking of the tuples that represent the edge relationship:

my_graph = Digraph("My_Network")
<skip>
construct the edge relationships
for neighbors in device_lldp_neighbors:
 node1, node2 = neighbors
 my_graph.edge(node1, node2)

If we were to print out the resulting source dot file, it would be an accurate representation
of our network:

digraph My_Network {
 r1 -> "r5-tor"
 r1 -> "r6-edge"
 "r5-tor" -> r2
 "r5-tor" -> r3
 "r5-tor" -> r1
 r2 -> "r5-tor"
 r2 -> "r6-edge"
 r3 -> "r5-tor"
 r3 -> "r6-edge"
 "r6-edge" -> r2
 "r6-edge" -> r3
 "r6-edge" -> r1
}

Network Monitoring with Python – Part 2 Chapter 8

[250]

Sometimes, it is confusing to see the same link twice; for example, the r2 to r5-tor link
appeared twice in the previous diagram for each of the directions of the link. As network
engineers, we understand that sometimes a fault in the physical link will result in
a unidirectional link, which we want to see.

If we were to graph the diagram as is, the placement of the nodes would be a bit funky. The
placement of the nodes is auto-rendered. The following diagram illustrates the rendering in
a default layout as well as the neato layout, namely a digraph (My_Network,
engine='neato'):

The neato layout represents an attempt to draw undirected graphs with even less
hierarchy:

Network Monitoring with Python – Part 2 Chapter 8

[251]

Sometimes, the default layout presented by the tool is just fine, especially if your goal is to
detect faults as opposed to making it visually appealing. However, in this case, let's see
how we can insert raw DOT language knobs into the source file. From research, we know
that we can use the rank command to specify the level where some nodes can stay on the
same level. However, there is no option presented in the Graphviz Python API. Luckily, the
dot source file is just a string, which we can insert as raw dot comments using the
replace() method with the following:

source = my_graph.source
original_text = "digraph My_Network {"
new_text = 'digraph My_Network {n{rank=same Client "r6-edge"}n{rank=same r1
r2 r3}n'
new_source = source.replace(original_text, new_text)
new_graph =
Source(new_source)new_graph.render("output/chapter8_lldp_graph.gv")

The end result is a new source that we can render the final topology graph from:

digraph My_Network {
{rank=same Client "r6-edge"}
{rank=same r1 r2 r3}
 Client -> "r6-edge"
 "r5-tor" -> Server
 r1 -> "r5-tor"
 r1 -> "r6-edge"
 "r5-tor" -> r2
 "r5-tor" -> r3
 "r5-tor" -> r1
 r2 -> "r5-tor"
 r2 -> "r6-edge"
 r3 -> "r5-tor"
 r3 -> "r6-edge"
 "r6-edge" -> r2
 "r6-edge" -> r3
 "r6-edge" -> r1
}

Network Monitoring with Python – Part 2 Chapter 8

[252]

The graph is now good to go:

Final playbook
We are now ready to incorporate this new parser script back into our playbook. We can
now add the additional task of rendering the output with graph generation in
cisco_discover_lldp.yml:

 tasks:
 - name: Query for LLDP Neighbors
 ios_command:
 commands: show lldp neighbors
 provider: "{{ cli }}"

 register: output

 - name: show output
 debug:
 var: output

 - name: copy output to file
 copy: content="{{ output.stdout_lines }}" dest="./tmp/{{
inventory_hostname }}_lldp_output.txt"

 - name: Execute Python script to render output
 command: ./cisco_graph_lldp.py

This playbook will now include four tasks, covering the end-to-end process of executing the
show lldp command on the Cisco devices, displaying the output on the screen, copying
the output to a separate file, and then rendering the output via a Python script.

Network Monitoring with Python – Part 2 Chapter 8

[253]

The playbook can now be scheduled to run regularly via cron or other means. It will
automatically query the devices for LLDP neighbors and construct the graph, and the graph
will represent the current topology as known by the routers.

We can test this by shutting down the Gi0/1 and Go0/2 interfaces on r6-edge. When the
LLDP neighbor passes the hold timer, they will disappear from the LLDP table on r6-
edge:

r6-edge#sh lldp neighbors
...
Device ID Local Intf Hold-time Capability Port ID
r2.virl.info Gi0/0 120 R Gi0/0
r3.virl.info Gi0/3 120 R Gi0/2
r3.virl.info Gi0/0 120 R Gi0/0
r5-tor.virl.info Gi0/0 120 R Gi0/0
r1.virl.info Gi0/0 120 R Gi0/0

Total entries displayed: 5

If we execute the playbook, the graph will automatically show that r6-edge only connects
to r3 and we can start to troubleshoot why that is the case:

This is a relatively long example. We used the tools we have learned so far in the
book—Ansible and Python—to modularize and break tasks into reusable pieces. We then
used a new tool, namely Graphviz, to help monitor the network for non-time series data,
such as network topology relationships.

Network Monitoring with Python – Part 2 Chapter 8

[254]

Flow-based monitoring
As mentioned in the chapter introduction, besides polling technology, such as SNMP, we
can also use a push strategy, which allows the device to push network information toward
the management station. NetFlow and its closely associated cousins, IPFIX and sFlow, are
examples of such information pushed from the direction of the network device toward the
management station. We can make the argument that the push method is more
sustainable since the network device is inherently in charge of allocating the necessary
resources to push the information. If the device CPU is busy, for example, it can choose to
skip the flow export process in favor of routing packets, which is what we want.

A flow, as defined by IETF (https:/ /www. ietf. org/ proceedings/ 39/ slides/ int/ ip1394-
background/tsld004. htm), is a sequence of packets moving from an application sending
something to the application receiving it. If we refer back to the OSI model, a flow is what
constitutes a single unit of communication between two applications. Each flow comprises
a number of packets; some flows have more packets (such as a video stream), while some
have just a few (such as an HTTP request). If you think about flows for a minute, you'll
notice that routers and switches might care about packets and frames, but the application
and user usually care more about the network flows.

Flow-based monitoring usually refers to NetFlow, IPFIX, and sFlow:

NetFlow: NetFlow v5 is a technology where the network device caches flow
entries and aggregate packets by matching the set of tuples (source interface,
source IP/port, destination IP/port, and so on). Here, once a flow is completed,
the network device exports the flow characteristics, including total bytes and
packet counts in the flow, to the management station.
IPFIX: IPFIX is the proposed standard for structured streaming and is similar to
NetFlow v9, also known as Flexible NetFlow. Essentially, it is a definable flow
export, which allows the user to export nearly anything that the network device
knows about. The flexibility often comes at the expense of simplicity compared to
NetFlow v5. The configuration of IPFIX is more complex than the traditional
NetFlow v5. Additional complexity makes it less ideal for introductory learning.
However, once you are familiar with NetFlow v5, you will be able to parse IPFIX
as long as you match the template definition.

https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm

Network Monitoring with Python – Part 2 Chapter 8

[255]

sFlow: sFlow actually has no notion of a flow or packet aggregation by itself. It
performs two types of sampling of packets. It randomly samples one out of n
packets/applications and has a time-based sampling counter. It sends the
information to the management station, and the station derives the network flow
information by referring to the type of packet sample received along with the
counters. As it doesn't perform any aggregation on the network device, you can
argue that sFlow is more scalable than NetFlow and IPFIX.

The best way to learn about each one of these is probably to dive right into examples.

NetFlow parsing with Python
We can use Python to parse the NetFlow datagram being transported on the wire. This
gives us a way to look at the NetFlow packet in detail as well as troubleshoot any NetFlow
issues when it is not working as expected.

First, let's generate some traffic between the client and server across the VIRL network. We
can use the built-in HTTP server module from Python to quickly launch a simple HTTP
server on the VIRL host acting as the server:

cisco@Server:~$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 ...

For Python 2, the module is named SimpleHTTPServer; for example,
python2 -m SimpleHTTPServer.

We can create a short while loop in a Python script to continuously send HTTP GET to the
web server on the client:

sudo apt-get install python-pip python3-pip
sudo pip install requests
sudo pip3 install requests

$ cat http_get.py
import requests, time
while True:
 r = requests.get('http://10.0.0.5:8000')
 print(r.text)
 time.sleep(5)

Network Monitoring with Python – Part 2 Chapter 8

[256]

The client should get a very plain HTML page:

cisco@Client:~$ python3 http_get.py
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
...
</body>
</html>

We should also see the requests continuously coming in from the client every five seconds:

cisco@Server:~$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 ...
10.0.0.9 - - [15/Mar/2017 08:28:29] "GET / HTTP/1.1" 200 -
10.0.0.9 - - [15/Mar/2017 08:28:34] "GET / HTTP/1.1" 200 -

We can export NetFlow from any of the devices, but since r6-edge is the first hop for the
client host, we will have this router export NetFlow to the management host at port 9995.

In this example, we use only one device for demonstration; therefore, we
manually configure it with the necessary commands. In the next section,
when we enable NetFlow on all the devices, we will use an Ansible
playbook to configure all the routers at once.

The following configurations are necessary for exporting NetFlow on the Cisco IOS devices:

!
ip flow-export version 5
ip flow-export destination 172.16.1.173 9995 vrf Mgmt-intf
!
interface GigabitEthernet0/4
 description to Client
 ip address 10.0.0.10 255.255.255.252
 ip flow ingress
 ip flow egress
...
!

Next, let's take a look at the Python parser script.

Network Monitoring with Python – Part 2 Chapter 8

[257]

Python socket and struct
The script, netFlow_v5_parser.py, was modified from Brian Rak's blog post at http:/ /
blog.devicenull.org/ 2013/ 09/ 04/ python- netflow- v5- parser. html. The modification
was mainly for Python 3 compatibility as well as parsing additional NetFlow version 5
fields. The reason we choose NetFlow v5 instead of NetFlow v9 is that v9 is more complex
and uses templates to map out the fields, making it more difficult to learn in an
introductory session. However, since NetFlow version 9 is an extended format of the
original NetFlow version 5, all the concepts we introduced in this section are applicable to
it.

Because NetFlow packets are represented in bytes over the wire, we will use the Python
struct module included in the standard library to convert bytes into native Python data
types.

You'll find more information about the two modules at https:/ /docs.
python. org/ 3. 5/ library/ socket. html and https:/ /docs. python. org/
3.5/library/ struct. html.

We will start by using the socket module to bind and listen for the UDP datagrams. With
socket.AF_INET, we intend on listing for the IPv4 address sockets; with
socket.SOCK_DGRAM, we specify that we'll see the UDP datagram:

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(('0.0.0.0', 9995))

We will start a loop and retrieve information off the wire 1,500 bytes at a time:

while True:
 buf, addr = sock.recvfrom(1500)

The following line is where we begin to deconstruct or unpack the packet. The first
argument of !HH specifies the network's big-endian byte order with the exclamation sign
(big-endian) as well as the format of the C type (H = 2 byte unsigned short integer):

(version, count) = struct.unpack('!HH',buf[0:4])

http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/socket.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html
https://docs.python.org/3.5/library/struct.html

Network Monitoring with Python – Part 2 Chapter 8

[258]

The first four bytes include the version and the number of flows exported in this packet. If
you do not remember the NetFlow version 5 header off the top of your head (that was a
joke, by the way; I only read the header when I want to fall asleep quickly), here is a quick
glance:

NetFlow v5 header (source: http://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_engine/3-6/user/guide/format.html#wp1006108)

The rest of the header can be parsed accordingly, depending on the byte location and data
type:

 (sys_uptime, unix_secs, unix_nsecs, flow_sequence) =
struct.unpack('!IIII', buf[4:20])
 (engine_type, engine_id, sampling_interval) = struct.unpack('!BBH',
buf[20:24])

Network Monitoring with Python – Part 2 Chapter 8

[259]

The while loop that follows will fill the nfdata dictionary with the flow record that
unpacks the source address and port, destination address and port, packet count, and byte
count, and print the information out on the screen:

for i in range(0, count):
 try:
 base = SIZE_OF_HEADER+(i*SIZE_OF_RECORD)
 data = struct.unpack('!IIIIHH',buf[base+16:base+36])
 input_int, output_int = struct.unpack('!HH', buf[base+12:base+16])
 nfdata[i] = {}
 nfdata[i]['saddr'] = inet_ntoa(buf[base+0:base+4])
 nfdata[i]['daddr'] = inet_ntoa(buf[base+4:base+8])
 nfdata[i]['pcount'] = data[0]
 nfdata[i]['bcount'] = data[1]
...

The output of the script allows you to visualize the header as well as the flow content at a
glance:

Headers:
NetFlow Version: 5
Flow Count: 9
System Uptime: 290826756
Epoch Time in seconds: 1489636168
Epoch Time in nanoseconds: 401224368
Sequence counter of total flow: 77616
0 192.168.0.1:26828 -> 192.168.0.5:179 1 packts 40 bytes
1 10.0.0.9:52912 -> 10.0.0.5:8000 6 packts 487 bytes
2 10.0.0.9:52912 -> 10.0.0.5:8000 6 packts 487 bytes
3 10.0.0.5:8000 -> 10.0.0.9:52912 5 packts 973 bytes
4 10.0.0.5:8000 -> 10.0.0.9:52912 5 packts 973 bytes
5 10.0.0.9:52913 -> 10.0.0.5:8000 6 packts 487 bytes
6 10.0.0.9:52913 -> 10.0.0.5:8000 6 packts 487 bytes
7 10.0.0.5:8000 -> 10.0.0.9:52913 5 packts 973 bytes
8 10.0.0.5:8000 -> 10.0.0.9:52913 5 packts 973 bytes

Note that, in NetFlow version 5, the size of the record is fixed at 48 bytes; therefore, the
loop and script are relatively straightforward. However, in the case of NetFlow version 9 or
IPFIX, after the header, there is a template FlowSet (http:/ / www.cisco. com/en/ US/
technologies/tk648/ tk362/ technologies_ white_ paper09186a00800a3db9. html) that
specifies the field count, field type, and field length. This allows the collector to parse the
data without knowing the data format in advance.

http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html

Network Monitoring with Python – Part 2 Chapter 8

[260]

By parsing the NetFlow data in a script, we gained a solid understanding of the fields, but
this is very tedious and hard to scale. As you may have guessed, there are other tools that
save us the problem of parsing NetFlow records one by one. Let's look at one such tool,
called ntop, in the coming section.

ntop traffic monitoring
Just like the PySNMP script in Chapter 7, Network Monitoring with Python – Part 1, and the
NetFlow parser script in this chapter, we can use Python scripts to handle low-level tasks
on the wire. However, there are tools such as Cacti, which is an all-in-one open source
package, that include data collection (poller), data storage (RRD), and a web frontend for
visualization. These tools can save you a lot of work by packing the frequently used
features and software in one package.

In the case of NetFlow, there are a number of open source and commercial NetFlow
collectors you can choose from. If you do a quick search for top N open source NetFlow
analyzers, you will see a number of comparison studies for different tools. Each one of
them has its own strong and weak points; which one to use is really a matter of preference,
platform, and your appetite for customization. I would recommend choosing a tool that
would support both v5 and v9, and potentially sFlow as well. A secondary consideration
would be if the tool is written in a language that you can understand; I imagine having
Python extensibility would be a nice thing.

Two of the open source NetFlow tools that I like and have used before are NfSen (with
NFDUMP as the backend collector) and ntop (or ntopng). Between the two of them, ntop
is the better-known traffic analyzer; it runs on both Windows and Linux platforms and
integrates well with Python. Therefore, let's use ntop as an example in this section.

The installation of our Ubuntu host is straightforward:

$ sudo apt-get install ntop

The installation process will prompt for the necessary interface for listening and setting the
administrator password. By default, the ntop web interface listens on port 3000, while the
probe listens on UDP port 5556. On the network device, we need to specify the location of
the NetFlow exporter:

!
ip flow-export version 5
ip flow-export destination 172.16.1.173 5556 vrf Mgmt-intf
!

Network Monitoring with Python – Part 2 Chapter 8

[261]

By default, IOSv creates a VRF called Mgmt-intf and places Gi0/0 under
VRF.

We will also need to specify the direction of traffic exports, such as ingress or egress, under
the interface configuration:

!
interface GigabitEthernet0/0
...
 ip flow ingress
 ip flow egress
...

For your reference, I have included the Ansible playbook, cisco_config_netflow.yml,
to configure the lab device for the NetFlow export.

The r5-tor and r6-edge have two interfaces more than r1, r2, and
r3 do.

Execute the playbook and make sure the changes were applied properly on the devices:

$ ansible-playbook -i hosts cisco_config_netflow.yml

TASK [configure netflow export station]
**
changed: [r1]
changed: [r3]
changed: [r2]
changed: [r5-tor]
changed: [r6-edge]

TASK [configure flow export on Gi0/0]
**
changed: [r2]
changed: [r1]
changed: [r6-edge]
changed: [r5-tor]
changed: [r3]
...
PLAY RECAP

r1 : ok=4 changed=4 unreachable=0 failed=0
r2 : ok=4 changed=4 unreachable=0 failed=0

Network Monitoring with Python – Part 2 Chapter 8

[262]

r3 : ok=4 changed=4 unreachable=0 failed=0
r5-tor : ok=6 changed=6 unreachable=0 failed=0
r6-edge : ok=6 changed=6 unreachable=0 failed=0

##Checking r2 for NetFlow configuration
r2#sh run | i flow
 ip flow ingress
 ip flow egress
 ip flow ingress
 ip flow egress
 ip flow ingress
 ip flow egress
ip flow-export version 5
ip flow-export destination 172.16.1.173 5556 vrf Mgmt-intf

Once everything is set up, you can check the ntop web interface for local IP traffic:

Network Monitoring with Python – Part 2 Chapter 8

[263]

One of the most often used features of ntop is using it to look at the top talker graph:

The ntop reporting engine is written in C; it is fast and efficient, but the need to have
adequate knowledge of C in order to do something as simple as change the web frontend
does not fit the modern agile development mindset.

After a few false starts with Perl in the mid-2000s, the good folks at ntop finally settled on
embedding Python as an extensible scripting engine. Let's take a look.

Network Monitoring with Python – Part 2 Chapter 8

[264]

Python extension for ntop
We can use Python to extend ntop through the ntop web server. The ntop web server can
execute Python scripts. At a high level, the scripts will perform the following:

Methods to access the state of ntop
The Python CGI module to process forms and URL parameters
Making templates that generate dynamic HTML pages
Each Python script can read from stdin and print out stdout/stderr
The stdout script is the returned HTTP page

There are several resources that come in handy with the Python integration. Under the web
interface, you can click on About|Show Configuration to see the Python interpreter
version as well as the directory for your Python script:

Python version

You can also check the various directories where the Python script should reside:

Plugin directories

Network Monitoring with Python – Part 2 Chapter 8

[265]

Under About | Online Documentation | Python ntop Engine, there are links for the
Python API as well as the tutorial:

Python ntop documentation

As mentioned, the ntop web server directly executes the Python script placed under the
designated directory:

$ pwd
/usr/share/ntop/python

We will place our first script, namely chapter8_ntop_1.py, in the directory. The Python
CGI module processes forms and parses URL parameters:

Import modules for CGI handling
import cgi, cgitb
import ntop

Parse URL
cgitb.enable();

Network Monitoring with Python – Part 2 Chapter 8

[266]

ntop implements three Python modules; each one of them has a specific purpose:

ntop: This module interacts with the ntop engine
Host: This module is used to drill down into a specific host's information
Interfaces: This module represents the information about the localhost interfaces

In our script, we will use the ntop module to retrieve the ntop engine information as well
as use the sendString() method to send the HTML body text:

form = cgi.FieldStorage();
name = form.getvalue('Name', default="Eric")

version = ntop.version()
os = ntop.os()
uptime = ntop.uptime()

ntop.printHTMLHeader('Mastering Python Networking', 1, 0)
ntop.sendString("Hello, "+ name +"
")
ntop.sendString("Ntop Information: %s %s %s" % (version, os, uptime))
ntop.printHTMLFooter()

We will execute the Python script using http://<ip>:3000/python/<script name>.
Here is the result of our chapter8_ntop_1.py script:

Network Monitoring with Python – Part 2 Chapter 8

[267]

We can look at another example that interacts with the interface
module, chapter8_ntop_2.py. We will use the API to iterate through the interfaces:

import ntop, interface, json

ifnames = []
try:
 for i in range(interface.numInterfaces()):
 ifnames.append(interface.name(i))

except Exception as inst:
 print type(inst) # the exception instance
 print inst.args # arguments stored in .args
 print inst # __str__ allows args to printed directly
...

The resulting page will display the ntop interfaces:

Besides the community version, ntop also offers a few commercial products that you can
choose from. With the active open source community, commercial backing, and Python
extensibility, ntop is a good choice for your NetFlow monitoring needs.

Next, let's take a look at NetFlow's cousin: sFlow.

Network Monitoring with Python – Part 2 Chapter 8

[268]

sFlow
sFlow, which stands for sampled flow, was originally developed by InMon (http:/ /www.
inmon.com) and later standardized by way of RFC. The current version is v5. Many in the
industry believe the primary advantage of sFlow is its scalability. sFlow uses random one
in n packets flow samples along with the polling interval of counter samples to derive an
estimate of the traffic; this is less CPU-intensive than NetFlow for the network devices.
sFlow's statistical sampling is integrated with the hardware and provides real-time, raw
exports.

For scalability and competitive reasons, sFlow is generally preferred over NetFlow for
newer vendors, such as Arista Networks, Vyatta, and A10 Networks. While Cisco supports
sFlow on its Nexus line of products, sFlow is generally not supported on Cisco platforms.

SFlowtool and sFlow-RT with Python
Unfortunately, at this point, sFlow is something that our VIRL lab devices do not support
(not even with the NX-OSv virtual switches). You can either use a Cisco Nexus 3000 switch
or other vendor switches, such as Arista, that support sFlow. Another good option for the
lab is to use an Arista vEOS virtual instance. I happen to have access to a Cisco Nexus 3048
switch running 7.0 (3), which I will be using for this section as the sFlow exporter.

The configuration of Cisco Nexus 3000 for sFlow is straightforward:

Nexus-2# sh run | i sflow
feature sflow
sflow max-sampled-size 256
sflow counter-poll-interval 10
sflow collector-ip 192.168.199.185 vrf management
sflow agent-ip 192.168.199.148
sflow data-source interface Ethernet1/48

The easiest way to ingest sFlow is to use sflowtool. For installation instructions, refer to
the document at http:/ /blog. sflow. com/ 2011/ 12/ sflowtool. html:

$ wget http://www.inmon.com/bin/sflowtool-3.22.tar.gz
$ tar -xvzf sflowtool-3.22.tar.gz
$ cd sflowtool-3.22/
$./configure
$ make
$ sudo make install

http://www.inmon.com
http://www.inmon.com
http://www.inmon.com
http://www.inmon.com
http://www.inmon.com
http://www.inmon.com
http://www.inmon.com
http://www.inmon.com
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html
http://blog.sflow.com/2011/12/sflowtool.html

Network Monitoring with Python – Part 2 Chapter 8

[269]

After the installation, you can launch sflowtool and look at the datagram Nexus 3048 is
sending on the standard output:

$ sflowtool
startDatagram =================================
datagramSourceIP 192.168.199.148
datagramSize 88
unixSecondsUTC 1489727283
datagramVersion 5
agentSubId 100
agent 192.168.199.148
packetSequenceNo 5250248
sysUpTime 4017060520
samplesInPacket 1
startSample ----------------------
sampleType_tag 0:4
sampleType COUNTERSSAMPLE
sampleSequenceNo 2503508
sourceId 2:1
counterBlock_tag 0:1001
5s_cpu 0.00
1m_cpu 21.00
5m_cpu 20.80
total_memory_bytes 3997478912
free_memory_bytes 1083838464
endSample ----------------------
endDatagram =================================

There are a number of good usage examples on the sflowtool GitHub repository (https:/
/github.com/sflow/ sflowtool); one of them is to use a script to receive the sflowtool
input and parse the output. We can use a Python script for this purpose. In the
chapter8_sflowtool_1.py example, we will use sys.stdin.readline to receive the
input and use a regular expression search to print out only the lines containing the word
agent when we see the sFlow packets:

import sys, re
for line in iter(sys.stdin.readline, ''):
 if re.search('agent ', line):
 print(line.strip())

The script can be piped to sflowtool:

$ sflowtool | python3 chapter8_sflowtool_1.py
agent 192.168.199.148
agent 192.168.199.148

https://github.com/sflow/sflowtool
https://github.com/sflow/sflowtool
https://github.com/sflow/sflowtool
https://github.com/sflow/sflowtool
https://github.com/sflow/sflowtool
https://github.com/sflow/sflowtool
https://github.com/sflow/sflowtool
https://github.com/sflow/sflowtool
https://github.com/sflow/sflowtool
https://github.com/sflow/sflowtool

Network Monitoring with Python – Part 2 Chapter 8

[270]

There are a number of other useful output examples, such as tcpdump, output as NetFlow
version 5 records, and a compact line-by-line output. This makes sflowtool very flexible
to suit your monitoring environment.

ntop supports sFlow, which means you can directly export your sFlow to the ntop collector.
If your collector is only NetFlow-aware, you can use the -c option for the sflowtool
output in the NetFlow version 5 format:

$ sflowtool --help
...
tcpdump output:
 -t - (output in binary tcpdump(1) format)
 -r file - (read binary tcpdump(1) format)
 -x - (remove all IPV4 content)
 -z pad - (extend tcpdump pkthdr with this many zeros
 e.g. try -z 8 for tcpdump on Red Hat Linux 6.2)

NetFlow output:
 -c hostname_or_IP - (netflow collector host)
 -d port - (netflow collector UDP port)
 -e - (netflow collector peer_as (default = origin_as))
 -s - (disable scaling of netflow output by sampling rate)
 -S - spoof source of netflow packets to input agent IP

Alternatively, you can also use InMon's sFlow-RT (http:/ /www. sflow- rt.com/ index. php)
as your sFlow analytics engine. What sets sFlow-RT apart from an operator perspective is
its vast REST API that can be customized to support your use cases. You can also easily
retrieve the metrics from the API. You can take a look at its extensive API reference
at http://www.sflow- rt. com/ reference. php.

Note that sFlow-RT requires Java to run the following:

$ sudo apt-get install default-jre
$ java -version
openjdk version "1.8.0_121"
OpenJDK Runtime Environment (build 1.8.0_121-8u121-b13-0ubuntu1.16.04.2-
b13)
OpenJDK 64-Bit Server VM (build 25.121-b13, mixed mode)

Once installed, downloading and running sFlow-RT is straightforward (https:/ /sflow-
rt.com/download. php):

$ wget http://www.inmon.com/products/sFlow-RT/sflow-rt.tar.gz
$ tar -xvzf sflow-rt.tar.gz
$ cd sflow-rt/
$./start.sh

http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php

Network Monitoring with Python – Part 2 Chapter 8

[271]

2017-03-17T09:35:01-0700 INFO: Listening, sFlow port 6343
2017-03-17T09:35:02-0700 INFO: Listening, HTTP port 8008

We can point the web browser to HTTP port 8008 and verify the installation:

sFlow-RT about

As soon as sFlow-RT receives any sFlow packets, the agents and other metrics will appear:

sFlow-RT agents

Network Monitoring with Python – Part 2 Chapter 8

[272]

Here are two examples of using Python requests to retrieve information from sFlow-RT's
REST API:

>>> import requests
>>> r = requests.get("http://192.168.199.185:8008/version")
>>> r.text
'2.0-r1180'
>>> r = requests.get("http://192.168.199.185:8008/agents/json")
>>> r.text
'{"192.168.199.148": {n "sFlowDatagramsLost": 0,n "sFlowDatagramSource":
["192.168.199.148"],n "firstSeen": 2195541,n "sFlowFlowDuplicateSamples":
0,n "sFlowDatagramsReceived": 441,n "sFlowCounterDatasources": 2,n
"sFlowFlowOutOfOrderSamples": 0,n "sFlowFlowSamples": 0,n
"sFlowDatagramsOutOfOrder": 0,n "uptime": 4060470520,n
"sFlowCounterDuplicateSamples": 0,n "lastSeen": 3631,n
"sFlowDatagramsDuplicates": 0,n "sFlowFlowDrops": 0,n
"sFlowFlowLostSamples": 0,n "sFlowCounterSamples": 438,n
"sFlowCounterLostSamples": 0,n "sFlowFlowDatasources": 0,n
"sFlowCounterOutOfOrderSamples": 0n}}'

Consult the reference documentation for additional REST endpoints available for your
needs. Next, we will take a look at another tool called Elasticsearch, which is becoming
pretty popular for both Syslog index and general network monitoring.

Elasticsearch (ELK stack)
As we have seen so far in this chapter, using just the Python tools as we have done would
adequately monitor your network with enough scalability for all types of networks, large
and small alike. However, I would like to introduce one additional open source, general-
purpose, distributed search and analytics engine called Elasticsearch (https:/ /www.
elastic.co/). It is often referred to as just Elastic or ELK stack for combining Elastic with
the frontend and input packages Logstash, and Kibana, respectively.

If you look at network monitoring in general, it is really about analyzing network data and
making sense out of it. The ELK stack contains Elasticsearch, Logstash, and Kibana as a full
stack to ingest information with Logstash, index and analyze data with Elasticsearch, and
present the graphics output via Kibana. It is really three projects in one. It also has the
flexibility to substitute Logstash with another input, such as Beats. Alternatively, you can
use other tools, such as Grafana, instead of Kibana for visualization. The ELK stack by
Elastic Co. also provides many add-on tools, referred to as X-Pack, for additional security,
alerting, monitoring, and so on.

https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/

Network Monitoring with Python – Part 2 Chapter 8

[273]

As you can probably tell by the description, ELK (or even Elasticsearch alone) is a deep
topic to cover, and there are many books written on the subject. Even covering the basic
usage would take up more space than we can spare in this book. I have considered leaving
the subject out of the book simply because of its depth. However, ELK has become a very
important tool for many of the projects that I am working on, including network
monitoring. I feel leaving it out would be a huge disservice to you.

Therefore, I am going to take a few pages to briefly introduce the tool and a few use cases
along with information for you to dig deeper if desired. We will go through the following
topics:

Setting up a hosted ELK service
The Logstash format
Python's helper script for Logstash formatting

Setting up a hosted ELK service
The entire ELK stack can be installed as a standalone server or distributed across multiple
servers. The installation steps are available at https:/ /www. elastic. co/ guide/ en/
elastic-stack/current/ installing- elastic- stack. html. In my experience, even with a
minimal amount of data, a single VM running the ELK stack often stretches the resources.
My first attempt at running ELK as a single VM lasted no more than a few days with barely
two or three network devices sending log information toward it. After a few more
unsuccessful attempts at running my own cluster as a beginner, I eventually settled on
running the ELK stack as a hosted service, and this is what I would recommend you to start
with.

As a hosted service, there are two providers that you can consider:

Amazon Elasticsearch Service (https:/ /aws. amazon. com/ elasticsearch-
service/)
Elastic Cloud (https:/ /cloud. elastic. co/)

Currently, AWS offers a free tier which is easy to get started with and is tightly integrated
with the current suite of AWS tools, such as identity services (https:/ /aws. amazon. com/
iam/) and lambda functions (https:/ /aws.amazon. com/ lambda/). However, AWS's
Elasticsearch Service does not have the latest features as compared to Elastic Cloud, nor
does it have extended x-pack integration. However, because AWS offers a free tier, my
recommendation would be that you start with the AWS Elasticsearch Service. If you find
out later that you need more features than AWS can provide, you can always move to
Elastic Cloud.

https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://cloud.elastic.co/
https://cloud.elastic.co/
https://cloud.elastic.co/
https://cloud.elastic.co/
https://cloud.elastic.co/
https://cloud.elastic.co/
https://cloud.elastic.co/
https://cloud.elastic.co/
https://cloud.elastic.co/
https://cloud.elastic.co/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

Network Monitoring with Python – Part 2 Chapter 8

[274]

Setting up the service is straightforward; we just need to choose our region and give a name
for our first domain. After setting it up, we can use the access policy to restrict input via an
IP address; make sure this is the IP that AWS will see as the source IP (specify your
corporate public IP if your host's IP address is translated behind the NAT firewall):

The Logstash format
Logstash can be installed on the server where you are comfortable sending your network
log to. The installation steps are available at https:/ /www. elastic. co/guide/ en/
logstash/current/ installing- logstash. html. By default, you can put the Logstash
configuration file under /etc/logstash/conf.d/. The file is in the input-filter-
output format (https:/ /www. elastic. co/guide/ en/ logstash/ current/ advanced-
pipeline.html). In the following example, we specified the input as a network log file,
with a placeholder for filtering the input, and the output as both printing out messages to
the console as well as having the output exported toward our AWS Elasticsearch Service
instance:

input {
 file {

https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html
https://www.elastic.co/guide/en/logstash/current/advanced-pipeline.html

Network Monitoring with Python – Part 2 Chapter 8

[275]

 type => "network_log"
 path => "path to your network log file"
 }
}
filter {
 if [type] == "network_log" {
 }
}
output {
 stdout { codec => rubydebug }
 elasticsearch {
 index => "logstash_network_log-%{+YYYY.MM.dd}"
 hosts => ["http://<instance>.<region>.es.amazonaws.com"]
 }
}

Now let's look at other things we can do with Python and Logstash.

Python helper script for Logstash formatting
The preceding Logstash configuration will allow us to ingest network logs and create the
index on Elasticsearch. What would happen if the text format we intend on putting into
ELK is not a standard log format? This is where Python can help. In the next example, we
will perform the following:

Use the Python script to retrieve a list of IPs that the Spamhaus project considers1.
to be a drop list (https:/ /www. spamhaus. org/drop/ drop. txt)
Use the Python logging module to format the information in such a way that2.
Logstash can ingest it
Modify the Logstash configuration file so any new input could be sent to the3.
AWS Elasticsearch Service

The chapter8_logstash_1.py script contains the code we will use. Besides the module
imports, we will define the basic logging configuration. This section directly configures
what the output would be and should be matched closely to the Logstash format:

#!/usr/env/bin python

#https://www.spamhaus.org/drop/drop.txt

import logging, pprint, re
import requests, json, datetime
from collections import OrderedDict

https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt
https://www.spamhaus.org/drop/drop.txt

Network Monitoring with Python – Part 2 Chapter 8

[276]

#logging configuration
logging.basicConfig(filename='./tmp/spamhaus_drop_list.log',
level=logging.INFO, format='%(asctime)s %(message)s', datefmt='%b %d
%I:%M:%S')

We will define a few more variables and save the list of IP addresses from the requests in a
variable:

host = 'python_networking'
process = 'spamhause_drop_list'

r = requests.get('https://www.spamhaus.org/drop/drop.txt')
result = r.text.strip()

timeInUTC = datetime.datetime.utcnow().isoformat()
Item = OrderedDict()
Item["Time"] = timeInUTC

The final section of the script is a loop meant for parsing the output and writing it to the
new log file:

for line in result.split('n'):
 if re.match('^;', line) or line == 'r': # comments
 next
 else:
 ip, record_number = line.split(";")
 logging.warning(host + ' ' + process + ': ' + 'src_ip=' +
ip.split("/")[0] + ' record_number=' + record_number.strip())

Here's a sample of the log file entry:

$ cat tmp/spamhaus_drop_list.log
...
Jul 14 11:35:26 python_networking spamhause_drop_list: src_ip=212.92.127.0
record_number=SBL352250
Jul 14 11:35:26 python_networking spamhause_drop_list: src_ip=216.47.96.0
record_number=SBL125132
Jul 14 11:35:26 python_networking spamhause_drop_list: src_ip=223.0.0.0
record_number=SBL230805
Jul 14 11:35:26 python_networking spamhause_drop_list: src_ip=223.169.0.0
record_number=SBL208009
...

We can then modify the Logstash configuration file accordingly to our new log format,
starting with adding the input file location:

input {
 file {

Network Monitoring with Python – Part 2 Chapter 8

[277]

 type => "network_log"
 path => "path to your network log file"
 }
 file {
 type => "spamhaus_drop_list"
 path =>
"/home/echou/Master_Python_Networking/Chapter8/tmp/spamhaus_drop_list.log"
 }
}

We can add more filter configurations using grok:

filter {
 if [type] == "spamhaus_drop_list" {
 grok {
 match => ["message", "%{SYSLOGTIMESTAMP:timestamp}
%{SYSLOGHOST:hostname} %{NOTSPACE:process} src_ip=%{IP:src_ip}
%{NOTSPACE:record_number}.*"]
 add_tag => ["spamhaus_drop_list"]
 }
 }
}

We can leave the output section unchanged, as the additional entries will be stored in the
same index. We can now use the ELK stack to query, store, and view the network log as
well as the Spamhaus IP information.

Summary
In this chapter, we looked at additional ways in which we can utilize Python to enhance
our network monitoring effort. We began by using Python's Graphviz package to create
network topology graphs with real-time LLDP information reported by the network
devices. This allows us to effortlessly show the current network topology as well as easily
notice any link failures.

Next, we used Python to parse NetFlow version 5 packets to enhance our understanding
and troubleshooting of NetFlow. We also looked at how to use ntop and Python to extend
ntop for NetFlow monitoring. sFlow is an alternative packet sampling technology that we
looked at where we use sflowtool and sFlow-RT to interpret the results. We ended the
chapter with a general-purpose data analyzing tool, namely Elasticsearch, or the ELK stack.

In Chapter 9, Building Network Web Services with Python, we will explore how to use the
Python web framework Flask to build network web services.

9
Building Network Web Services

with Python
In the previous chapters, we were a consumer of the APIs provided by various tools. In
Chapter 3, APIs and Intent-Driven Networking, we saw that we can use a HTTP POST
method to NX-API at the http://<your router ip>/ins URL with the CLI command
embedded in the body to execute commands remotely on the Cisco Nexus device; the
device then returns the command execution output in return. In Chapter 8, Network
Monitoring with Python – Part 2, we used the GET method for our sFlow-RT at
http://<your host ip>:8008/version with an empty body to retrieve the version of
the sFlow-RT software. These exchanges are examples of RESTful web services.

According to Wikipedia (https:/ /en. wikipedia. org/wiki/ Representational_ state_
transfer):

"Representational state transfer (REST) or RESTful web services is one way of providing
interoperability between computer systems on the internet. REST-compliant web services
allow requesting systems to access and manipulate the textual representation of web
resources using a uniform and predefined set of stateless operations."

As noted, REST web services using the HTTP protocol is only one of many methods of
information exchange on the web; other forms of web services also exist. However, it is the
most commonly used web service today, with the associated GET, POST, PUT, and
DELETE verbs as a predefined way of information exchange.

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer

Building Network Web Services with Python Chapter 9

[279]

One of the advantages of using RESTful services is the ability it provides for you to hide
your internal operations from the user while still providing them with the service. For
example, in the case of sFlow-RT, if we were to log in to the device where our software is
installed, we would need more in-depth knowledge of the tool to know where to check for
the software version. However, by providing the resources in the form of a URL, the
software abstracts the version-checking operations from the requester, making the
operation much simpler. The abstraction also provides a layer of security, as it can now
open up the endpoints only as needed.

As the master of the network universe, RESTful web services provide many notable
benefits that we can enjoy, such as the following:

You can abstract the requester from learning about the internals of the network
operations. For example, we can provide a web service to query the switch
version without the requester having to know the exact CLI command or API
format required.
We can consolidate and customize operations that uniquely fit our network
needs, such as a resource to upgrade all our top-of-rack switches.
We can provide better security by only exposing the operations as needed. For
example, we can provide read-only URLs (GET) to core network devices and
read-write URLs (GET / POST / PUT / DELETE) to access-level switches.

In this chapter, we will use one of the most popular Python web frameworks, Flask, to
create our own REST web service for our network. In this chapter, we will learn about the
following:

Comparing Python web frameworks
Introduction to Flask
Operations involving static network contents
Operations involving dynamic network operations

Let's get started by looking at the available Python web frameworks and why we chose
Flask.

Building Network Web Services with Python Chapter 9

[280]

Comparing Python web frameworks
Python is known for its great many web frameworks. There is a running joke at PyCon,
which is that you can never work as a full-time Python developer without working with
any of the Python web frameworks. There is even an annual conference held for Django,
one of the most popular Python frameworks, called DjangoCon. It attracts hundreds of
attendees every year. If you sort the Python web frameworks on https:/ /hotframeworks.
com/languages/python, you can see that there is no shortage of choices when it comes to
Python and web frameworks:

Python web frameworks ranking

https://hotframeworks.com/languages/python
https://hotframeworks.com/languages/python
https://hotframeworks.com/languages/python
https://hotframeworks.com/languages/python
https://hotframeworks.com/languages/python
https://hotframeworks.com/languages/python
https://hotframeworks.com/languages/python
https://hotframeworks.com/languages/python
https://hotframeworks.com/languages/python
https://hotframeworks.com/languages/python

Building Network Web Services with Python Chapter 9

[281]

With so many options to choose from, which framework should we pick? Clearly, trying all
the frameworks out yourself would be really time-consuming. The question about which
web framework is better is also a passionate topic among web developers. If you ask this
question on any of the forums, such as Quora, or search on Reddit, get ready for some
highly opinionated answers and heated debates.

Speaking of Quora and Reddit, here's an interesting fact: both Quora and
Reddit were written in Python. Reddit uses Pylons (https:/ /www. reddit.
com/wiki/ faq#wiki_ so_ what_ python_ framework_ do_ you_use. 3F), while
Quora started with Pylons but replaced a portion of the framework with
their in-house code (https:/ /www. quora. com/ What- languages- and-
frameworks- are- used- to- code- Quora).

Of course, I have my own bias toward programming languages (Python!) and web
frameworks (Flask!). In this section, I hope to convey to you my reasoning behind choosing
one over the other. Let's pick the top two frameworks from the preceding HotFrameworks
list and compare them:

Django: The self-proclaimed "web framework for perfectionists with deadlines"
is a high-level Python web framework that encourages rapid development and a
clean, pragmatic design (https:/ /www. djangoproject. com/). It is a large
framework with pre-built code that provides an administrative panel and built-in
content management.
Flask: This is a microframework for Python and is based on Werkzeug, Jinja2,
and good intentions (http:/ / flask. pocoo. org/). By being a microframework,
Flask intends on keeping the core small and being easy to extend when needed.
The "micro" in microframework does not mean that Flask is lacking in
functionality, nor does it mean it cannot work in a production environment.

Personally, I find Django a bit difficult to extend, and most of the time, I only use a fraction
of the pre-built code. The Django framework also has a strong opinion on how things
should be done; any deviation from it would sometimes leave the user feeling that they are
"fighting with the framework". For example, if you look at the Django Database
documentation, (https:/ /docs. djangoproject. com/ en/2. 1/ref/ databases/), you will
notice that the framework supports a number of different SQL databases. However, they
are all variants of SQL database such as MySQL, PostgreSQL, SQLite, and others. What if
you want to use a NoSQL database such as MongoDB or CouchDB? It might be possible
but could be leaving you in your own hands. Being an opinionated framework is certainly
not a bad thing, it is just a matter of opinion (no pun intended).

https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F.
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/
https://docs.djangoproject.com/en/2.1/ref/databases/

Building Network Web Services with Python Chapter 9

[282]

The idea of keeping the core code small and extending it when needed is very appealing to
me. The initial example on the documentation to get Flask up and running consists of only
eight lines of code and is easy to understand, even if you don't have any prior experience.
Since Flask is built with extensions in mind, writing your own extensions, such as
decorator, is pretty easy. Even though it is a microframework, the Flask core still includes
the necessary components, such as a development server, debugger, integration with unit
tests, RESTful request dispatching, and more, to get you started out of the box. As you can
see, besides Django, Flask is the second most popular Python framework by some measure.
The popularity that comes with community contribution, support, and quick development
helps it further expand its reach.

For the preceding reasons, I feel that Flask is an ideal choice for us when it comes to
building network web services.

Flask and lab setup
In this chapter, we will use virtualenv to isolate the environment we will work in. As the
name indicates, virtualenv is a tool that creates a virtual environment. It can keep the
dependencies required by different projects in separate places while keeping the global site-
packages clean. In other words, when you install Flask in the virtual environment, it is only
installed in the local virtualenv project directory, not the global site-packages. This make
porting the code to other places very easy.

The chances are high that you may have already come across virtualenv while working
with Python before, so we will run through this process quickly. If you have not, feel free to
pick up one of many excellent tutorials online, such as http:/ /docs. python- guide. org/
en/latest/dev/virtualenvs/ .

To use , we will first need to install virtualenv:

Python 3
$ sudo apt-get install python3-venv
$ python3 -m venv venv

Python 2
$ sudo apt-get install python-virtualenv
$ virtualenv venv-python2

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Building Network Web Services with Python Chapter 9

[283]

The proceeding command uses the venv module (-m venv) to get a venv folder with a full
Python interpreter inside it. We can use source venv/bin/activate and deactivate to
move in and out of the local Python environment:

$ source venv/bin/activate
(venv) $ python
$ which python
/home/echou/Master_Python_Networking_second_edition/Chapter09/venv/bin/pyth
on
$ python
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> exit()
(venv) $ deactivate

In this chapter, we will install quite a few Python packages. To make life easier, I have
included a requirements.txt file on the book's GitHub repository; we can use it to install
all the necessary packages (remember to activate your virtualenv). You should see packages
being downloaded and successfully installed at the end of the process:

(venv) $ pip install -r requirements.txt
Collecting Flask==0.10.1 (from -r requirements.txt (line 1))
 Downloading
https://files.pythonhosted.org/packages/db/9c/149ba60c47d107f85fe5256413334
8458f093dd5e6b57a5b60ab9ac517bb/Flask-0.10.1.tar.gz (544kB)
 100% |████████████████████████████████| 552kB
2.0MB/s
Collecting Flask-HTTPAuth==2.2.1 (from -r requirements.txt (line 2))
 Downloading
https://files.pythonhosted.org/packages/13/f3/efc053c66a7231a5a38078a813aee
06cd63ca90ab1b3e269b63edd5ff1b2/Flask-HTTPAuth-2.2.1.tar.gz
... <skip>
 Running setup.py install for Pygments ... done
 Running setup.py install for python-dateutil ... done
Successfully installed Flask-0.10.1 Flask-HTTPAuth-2.2.1 Flask-
SQLAlchemy-1.0 Jinja2-2.7.3 MarkupSafe-0.23 Pygments-1.6 SQLAlchemy-0.9.6
Werkzeug-0.9.6 httpie-0.8.0 itsdangerous-0.24 python-dateutil-2.2
requests-2.3.0 six-1.11.0

Building Network Web Services with Python Chapter 9

[284]

For our network topology, we will use a simple four-node network, as shown here:

 Lab topology

Let's take a look at Flask in the next section.

Please note that, from here on out, I will assume that you will always
execute from the virtual environment and that you have installed the
necessary packages in the requirements.txt file.

Introduction to Flask
Like most popular open source projects, Flask has very good documentation, which is
available at http:/ /flask. pocoo. org/ docs/ 0.10/ . If any of the examples are unclear, you
can be sure to find the answer on the project documentation.

http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/
http://flask.pocoo.org/docs/0.10/

Building Network Web Services with Python Chapter 9

[285]

I would also highly recommend Miguel Grinberg's (https:/ /blog.
miguelgrinberg. com/) work related to Flask. His blog, book, and video
training have taught me a lot about Flask. In fact, Miguel's class Building
Web APIs with Flask inspired me to write this chapter. You can take a look
at his published code on GitHub: https:/ / github. com/ miguelgrinberg/
oreilly- flask- apis- video.

Our first Flask application is contained in one single file, chapter9_1.py:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_networkers():
 return 'Hello Networkers!'

if __name__ == '__main__':
 app.run(host='0.0.0.0', debug=True)

This will almost always be your design pattern for Flask initially. We create an instance of
the Flask class with the first argument as the name of the application's module package. In
this case, we used a single module; while doing this yourself, type in a name of your choice
to indicate whether it is started as an application or imported as a module. We then use the
route decorator to tell Flask which URL should be handled by the hello_networkers()
function; in this case, we indicated the root path. We end the file with the usual name
(https://docs.python. org/ 3. 5/ library/ __main_ _.html). We only added the host and
debug options, which allow more verbose output and also allow us to listen on all the
interfaces of the host (by default, it only listens on loopback). We can run this application
using the development server:

(venv) $ python chapter9_1.py
 * Running on http://0.0.0.0:5000/
 * Restarting with reloader

Now that we have a server running, let's test the server response with an HTTP client.

https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://github.com/miguelgrinberg/oreilly-flask-apis-video
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html
https://docs.python.org/3.5/library/__main__.html

Building Network Web Services with Python Chapter 9

[286]

The HTTPie client
We have already installed HTTPie (https:/ /httpie. org/) as part of the installation from
reading the requirements.txt file. Although this book is printed in black and white text
so it does not show up here, in your installation, you can see that HTTPie has better syntax
highlighting for HTTP transactions. It also has a more intuitive command-line interaction
with the RESTful HTTP server. We can use it to test our first Flask application (more
examples on HTTPie to follow):

$ http GET http://172.16.1.173:5000/
HTTP/1.0 200 OK
Content-Length: 17
Content-Type: text/html; charset=utf-8
Date: Wed, 22 Mar 2017 17:37:12 GMT
Server: Werkzeug/0.9.6 Python/3.5.2

Hello Networkers!

Alternatively, you can also use the -i switch with curl to see the HTTP
headers: curl -i http://172.16.1.173:5000/.

We will use HTTPie as our client for this chapter; it is worth taking a minute or two to take
a look at its usage. We will use the free website HTTP Bin (https:/ / httpbin. org/) to show
the use of HTTPie. The usage of HTTPie follows this simple pattern:

$ http [flags] [METHOD] URL [ITEM]

Following the preceding pattern, a GET request is very straightforward, as we have seen
with our Flask development server:

$ http GET https://httpbin.org/user-agent
...
{
 "user-agent": "HTTPie/0.8.0"
}

https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/

Building Network Web Services with Python Chapter 9

[287]

JSON is the default implicit content type for HTTPie. If your HTTP body contains just
strings, no other operation is needed. If you need to apply non-string JSON fields, use := or
other documented special characters:

$ http POST https://httpbin.org/post name=eric twitter=at_ericchou
married:=true
HTTP/1.1 200 OK
...
Content-Type: application/json
...
{
 "headers": {
...
 "User-Agent": "HTTPie/0.8.0"
 },
 "json": {
 "married": true,
 "name": "eric",
 "twitter": "at_ericchou"
 },
 ...
 "url": "https://httpbin.org/post"
}

As you can see, HTTPie is a big improvement from the traditional curl syntax and makes
testing the REST API a breeze.

More usage examples are available at https:/ /httpie. org/ doc#usage.

Getting back to our Flask program, a large part of API building is based on the flow of URL
routing. Let's take a deeper look at the app.route() decorator.

URL routing
We added two additional functions and paired them up with the appropriate
app.route() route in chapter9_2.py:

$ cat chapter9_2.py
from flask import Flask
app = Flask(__name__)

@app.route('/')

https://httpie.org/doc#usage.
https://httpie.org/doc#usage.
https://httpie.org/doc#usage.
https://httpie.org/doc#usage.
https://httpie.org/doc#usage.
https://httpie.org/doc#usage.
https://httpie.org/doc#usage.
https://httpie.org/doc#usage.
https://httpie.org/doc#usage.

Building Network Web Services with Python Chapter 9

[288]

def index():
 return 'You are at index()'

@app.route('/routers/')
def routers():
 return 'You are at routers()'

if __name__ == '__main__':
 app.run(host='0.0.0.0', debug=True)

The result is that different endpoints are passed to different functions. We can verify this
with two http requests:

Server
$ python chapter9_2.py

Client
$ http GET http://172.16.1.173:5000/
...

You are at index()

$ http GET http://172.16.1.173:5000/routers/
...

You are at routers()

Of course, the routing will be pretty limited if we have to keep it static all the time. There
are ways to pass variables from the URL to Flask; we will look at an example of this in the
coming section.

URL variables
As mentioned previously, we can also pass variables to the URL, as seen in the examples
discussed in chapter9_3.py:

...
@app.route('/routers/<hostname>')
def router(hostname):
 return 'You are at %s' % hostname

@app.route('/routers/<hostname>/interface/<int:interface_number>')
def interface(hostname, interface_number):
 return 'You are at %s interface %d' % (hostname, interface_number)
...

Building Network Web Services with Python Chapter 9

[289]

Note that, in the /routers/<hostname> URL, we pass the <hostname> variable as a
string; <int:interface_number> will specify that the variable should only be an integer:

$ http GET http://172.16.1.173:5000/routers/host1
...
You are at host1

$ http GET http://172.16.1.173:5000/routers/host1/interface/1
...
You are at host1 interface 1

Throws exception
$ http GET http://172.16.1.173:5000/routers/host1/interface/one
HTTP/1.0 404 NOT FOUND
...
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>404 Not Found</title>
<h1>Not Found</h1>
<p>The requested URL was not found on the server. If you entered the URL
manually please check your spelling and try again.</p>

The converter includes integers, float, and path (it accepts slashes).

Besides matching static routes, we can also generate URLs on the fly. This is very useful
when we do not know the endpoint variable in advance or if the endpoint is based on other
conditions, such as the values queried from a database. Let's take a look at an example of
this.

URL generation
In chapter9_4.py, we wanted to dynamically create a URL in the form of
'/<hostname>/list_interfaces' in code:

from flask import Flask, url_for
...
@app.route('/<hostname>/list_interfaces')
def device(hostname):
 if hostname in routers:
 return 'Listing interfaces for %s' % hostname
 else:
 return 'Invalid hostname'

routers = ['r1', 'r2', 'r3']
for router in routers:
 with app.test_request_context():

Building Network Web Services with Python Chapter 9

[290]

 print(url_for('device', hostname=router))
...

Upon its execution, you will have a nice and logical URL, as follows:

(venv) $ python chapter9_4.py
/r1/list_interfaces
/r2/list_interfaces
/r3/list_interfaces
 * Running on http://0.0.0.0:5000/
 * Restarting with reloader

For now, you can think of app.text_request_context() as a dummy request object
that is necessary for demonstrative purposes. If you are interested in the local context, feel
free to take a look at http:/ / werkzeug. pocoo. org/ docs/ 0. 14/local/ .

The jsonify return
Another time saver in Flask is the jsonify() return, which wraps json.dumps() and
turns the JSON output into a response object with application/json as the content type
in the HTTP header. We can tweak the last script a bit, just like we will do in
chapter9_5.py:

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/routers/<hostname>/interface/<int:interface_number>')
def interface(hostname, interface_number):
 return jsonify(name=hostname, interface=interface_number)

if __name__ == '__main__':
 app.run(host='0.0.0.0', debug=True)

We will see the result returned as a JSON object with the appropriate header:

$ http GET http://172.16.1.173:5000/routers/r1/interface/1
HTTP/1.0 200 OK
Content-Length: 36
Content-Type: application/json
...

{
 "interface": 1,
 "name": "r1"
}

http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/
http://werkzeug.pocoo.org/docs/0.14/local/

Building Network Web Services with Python Chapter 9

[291]

Having looked at URL routing and the jsonify() return in Flask, we are now ready to
build an API for our network.

Network resource API
Often, your network consists of network devices that do not change a lot once put into
production. For example, you would have core devices, distribution devices, spine, leaf,
top-of-rack switches, and so on. Each of the devices would have certain characteristics and
features that you would like to keep in a persistent location so that you can easily retrieve
them later on. This is often done in terms of storing data in a database. However, you
would not normally want to give other users, who might want this information, direct
access to the database; nor do they want to learn all the complex SQL query language. For
this case, we can leverage Flask and the Flask-SQLAlchemy extension of Flask.

You can learn more about Flask-SQLAlchemy at http:/ /flask-
sqlalchemy. pocoo. org/ 2. 1/.

Flask-SQLAlchemy
Of course, SQLAlchemy and the Flask extension are a database abstraction layer and object
relational mapper, respectively. It's a fancy way of saying to use the Python object for a
database. To make things simple, we will use SQLite as the database, which is a flat file that
acts as a self-contained SQL database. We will look at the content of chapter9_db_1.py as
an example of using Flask-SQLAlchemy to create a network database and insert a table
entry into the database.

To begin with, we will create a Flask application and load the configuration for
SQLAlchemy, such as the database path and name, then create the SQLAlchemy object by
passing the application to it:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy

Create Flask application, load configuration, and create
the SQLAlchemy object
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///network.db'
db = SQLAlchemy(app)

http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/
http://flask-sqlalchemy.pocoo.org/2.1/

Building Network Web Services with Python Chapter 9

[292]

We can then create a database object and its associated primary key and various columns:

class Device(db.Model):
 __tablename__ = 'devices'
 id = db.Column(db.Integer, primary_key=True)
 hostname = db.Column(db.String(120), index=True)
 vendor = db.Column(db.String(40))

 def __init__(self, hostname, vendor):
 self.hostname = hostname
 self.vendor = vendor

 def __repr__(self):
 return '<Device %r>' % self.hostname

We can invoke the database object, create entries, and insert them into the database table.
Keep in mind that anything we add to the session needs to be committed to the database in
order to be permanent:

if __name__ == '__main__':
 db.create_all()
 r1 = Device('lax-dc1-core1', 'Juniper')
 r2 = Device('sfo-dc1-core1', 'Cisco')
 db.session.add(r1)
 db.session.add(r2)
 db.session.commit()

We will run the Python script and check for the existence of the database file:

$ python chapter9_db_1.py
$ ls network.db
network.db

We can use the interactive prompt to check the database table entries:

>>> from flask import Flask
>>> from flask_sqlalchemy import SQLAlchemy
>>>
>>> app = Flask(__name__)
>>> app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///network.db'
>>> db = SQLAlchemy(app)
>>> from chapter9_db_1 import Device
>>> Device.query.all()
[<Device 'lax-dc1-core1'>, <Device 'sfo-dc1-core1'>]
>>> Device.query.filter_by(hostname='sfo-dc1-core1')
<flask_sqlalchemy.BaseQuery object at 0x7f1b4ae07eb8>
>>> Device.query.filter_by(hostname='sfo-dc1-core1').first()
<Device 'sfo-dc1-core1'>

Building Network Web Services with Python Chapter 9

[293]

We can also create new entries in the same manner:

>>> r3 = Device('lax-dc1-core2', 'Juniper')
>>> db.session.add(r3)
>>> db.session.commit()
>>> Device.query.all()
[<Device 'lax-dc1-core1'>, <Device 'sfo-dc1-core1'>, <Device 'lax-dc1-
core2'>]

Network content API
Before we dive into the code, let's take a moment to think about the API that we are trying
to create. Planning for an API is usually more art than science; it really depends on your
situation and preference. What I suggest next is, by no means, the right way, but for now,
stay with me for the purposes of getting started.

Recall that, in our diagram, we have four Cisco IOSv devices. Let's pretend that two of
them, iosv-1 and iosv-2, are of the network role of the spine. The other two devices,
iosv-3 and iosv-4, are in our network service as leafs. These are obviously arbitrary
choices and can be modified later on, but the point is that we want to serve data about our
network devices and expose them via an API.

To make things simple, we will create two APIs: a devices group API and a single device
API:

Network content API

The first API will be our http://172.16.1.173/devices/ endpoint that supports two
methods: GET and POST. The GET request will return the current list of devices, while the
POST request with the proper JSON body will create the device. Of course, you can choose
to have different endpoints for creation and query, but in this design, we choose to
differentiate the two by the HTTP methods.

Building Network Web Services with Python Chapter 9

[294]

The second API will be specific to our device in the form of
http://172.16.1.173/devices/<device id>. The API with the GET request will show
the details of the device that we have entered into the database. The PUT request will
modify the entry with the update. Note that we use PUT instead of POST. This is typical of
HTTP API usage; when we need to modify an existing entry, we will use PUT instead of
POST.

At this point, you should have a good idea about what your API will look like. To better
visualize the end result, I am going to jump ahead and show the end result quickly before
we take a look at the code.

A POST request to the /devices/ API will allow you to create an entry. In this case, I
would like to create our network device with attributes such as hostname, loopback IP,
management IP, role, vendor, and the operating system it runs on:

$ http POST http://172.16.1.173:5000/devices/ 'hostname'='iosv-1'
'loopback'='192.168.0.1' 'mgmt_ip'='172.16.1.225' 'role'='spine'
'vendor'='Cisco' 'os'='15.6'
HTTP/1.0 201 CREATED
Content-Length: 2
Content-Type: application/json
Date: Fri, 24 Mar 2017 01:45:15 GMT
Location: http://172.16.1.173:5000/devices/1
Server: Werkzeug/0.9.6 Python/3.5.2

{}

I can repeat the preceding step for the additional three devices:

$ http POST http://172.16.1.173:5000/devices/ 'hostname'='iosv-2'
'loopback'='192.168.0.2' 'mgmt_ip'='172.16.1.226' 'role'='spine'
'vendor'='Cisco' 'os'='15.6'
...
$ http POST http://172.16.1.173:5000/devices/ 'hostname'='iosv-3',
'loopback'='192.168.0.3' 'mgmt_ip'='172.16.1.227' 'role'='leaf'
'vendor'='Cisco' 'os'='15.6'
...
$ http POST http://172.16.1.173:5000/devices/ 'hostname'='iosv-4',
'loopback'='192.168.0.4' 'mgmt_ip'='172.16.1.228' 'role'='leaf'
'vendor'='Cisco' 'os'='15.6'

If we can use the same API with the GET request, we will be able to see the list of network
devices that we created:

$ http GET http://172.16.1.173:5000/devices/
HTTP/1.0 200 OK

Building Network Web Services with Python Chapter 9

[295]

Content-Length: 188
Content-Type: application/json
Date: Fri, 24 Mar 2017 01:53:15 GMT
Server: Werkzeug/0.9.6 Python/3.5.2

{
 "device": [
 "http://172.16.1.173:5000/devices/1",
 "http://172.16.1.173:5000/devices/2",
 "http://172.16.1.173:5000/devices/3",
 "http://172.16.1.173:5000/devices/4"
]
}

Similarly, using the GET request for /devices/<id> will return specific information
related to the device:

$ http GET http://172.16.1.173:5000/devices/1
HTTP/1.0 200 OK
Content-Length: 188
Content-Type: application/json
...
{
 "hostname": "iosv-1",
 "loopback": "192.168.0.1",
 "mgmt_ip": "172.16.1.225",
 "os": "15.6",
 "role": "spine",
 "self_url": "http://172.16.1.173:5000/devices/1",
 "vendor": "Cisco"
}

Let's pretend we have downgraded the r1 operating system from 15.6 to 14.6. We can
use the PUT request to update the device record:

$ http PUT http://172.16.1.173:5000/devices/1 'hostname'='iosv-1'
'loopback'='192.168.0.1' 'mgmt_ip'='172.16.1.225' 'role'='spine'
'vendor'='Cisco' 'os'='14.6'
HTTP/1.0 200 OK

Verification
$ http GET http://172.16.1.173:5000/devices/1
...
{
 "hostname": "r1",
 "loopback": "192.168.0.1",
 "mgmt_ip": "172.16.1.225",
 "os": "14.6",

Building Network Web Services with Python Chapter 9

[296]

 "role": "spine",
 "self_url": "http://172.16.1.173:5000/devices/1",
 "vendor": "Cisco"
}

Now, let's take a look at the code in chapter9_6.py that helped create the preceding APIs.
What's cool, in my opinion, is that all of these APIs were done in a single file, including the
database interaction. Later on, when we outgrow the APIs at hand, we can always separate
the components out, such as having a separate file for the database class.

Devices API
The chapter9_6.py file starts with the necessary imports. Note that the following request
import is the request object from the client and not the requests package that we were
using in the previous chapters:

from flask import Flask, url_for, jsonify, request
from flask_sqlalchemy import SQLAlchemy
The following is deprecated but still used in some examples
from flask.ext.sqlalchemy import SQLAlchemy

We declared a database object with its id as the primary key and string fields for
hostname, loopback, mgmt_ip, role, vendor, and os:

class Device(db.Model):
 __tablename__ = 'devices'
 id = db.Column(db.Integer, primary_key=True)
 hostname = db.Column(db.String(64), unique=True)
 loopback = db.Column(db.String(120), unique=True)
 mgmt_ip = db.Column(db.String(120), unique=True)
 role = db.Column(db.String(64))
 vendor = db.Column(db.String(64))
 os = db.Column(db.String(64))

The get_url() function returns a URL from the url_for() function. Note that the
get_device() function that's called is not defined just yet under the
'/devices/<int:id>' route:

def get_url(self):
 return url_for('get_device', id=self.id, _external=True)

Building Network Web Services with Python Chapter 9

[297]

The export_data() and import_data() functions are mirror images of each other. One
is used to get the information from the database to the user (export_data()) when we use
the GET method. The other is to put information from the user to the database
(import_data()) when we use the POST or PUT method:

def export_data(self):
 return {
 'self_url': self.get_url(),
 'hostname': self.hostname,
 'loopback': self.loopback,
 'mgmt_ip': self.mgmt_ip,
 'role': self.role,
 'vendor': self.vendor,
 'os': self.os
 }

def import_data(self, data):
 try:
 self.hostname = data['hostname']
 self.loopback = data['loopback']
 self.mgmt_ip = data['mgmt_ip']
 self.role = data['role']
 self.vendor = data['vendor']
 self.os = data['os']
 except KeyError as e:
 raise ValidationError('Invalid device: missing ' + e.args[0])
 return self

With the database object in place as well as the import and export functions created, the
URL dispatch is straightforward for device operations. The GET request will return a list of
devices by querying all the entries in the devices table and also return the URL of each
entry. The POST method will use the import_data() function with the global request
object as the input. It will then add the device and commit the information to the database:

@app.route('/devices/', methods=['GET'])
def get_devices():
 return jsonify({'device': [device.get_url()
 for device in Device.query.all()]})

@app.route('/devices/', methods=['POST'])
def new_device():
 device = Device()
 device.import_data(request.json)
 db.session.add(device)
 db.session.commit()
 return jsonify({}), 201, {'Location': device.get_url()}

Building Network Web Services with Python Chapter 9

[298]

If you look at the POST method, the returned body is an empty JSON body, with the status
code 201 (created) as well as extra headers:

HTTP/1.0 201 CREATED
Content-Length: 2
Content-Type: application/json
Date: ...
Location: http://172.16.1.173:5000/devices/4
Server: Werkzeug/0.9.6 Python/3.5.2

Let's look at the API that queries and returns information pertaining to individual devices.

The device ID API
The route for individual devices specifies that the ID should be an integer, which can act as
our first line of defense against a bad request. The two endpoints follow the same design
pattern as our /devices/ endpoint, where we use the same import and export functions:

@app.route('/devices/<int:id>', methods=['GET'])
def get_device(id):
 return jsonify(Device.query.get_or_404(id).export_data())

@app.route('/devices/<int:id>', methods=['PUT'])
def edit_device(id):
 device = Device.query.get_or_404(id)
 device.import_data(request.json)
 db.session.add(device)
 db.session.commit()
 return jsonify({})

Note the query_or_404() method; it provides a convenient way for returning 404 (not
found) if the database query returns negative for the ID passed in. This is a pretty elegant
way of providing a quick check on the database query.

Finally, the last part of the code creates the database table and starts the Flask development
server:

if __name__ == '__main__':
 db.create_all()
 app.run(host='0.0.0.0', debug=True)

This is one of the longer Python scripts in this book, which is why we took more time to
explain it in detail. The script provides a way to illustrate how we can utilize the database
in the backend to keep track of the network devices and only expose them to the external
world as APIs, using Flask.

Building Network Web Services with Python Chapter 9

[299]

In the next section, we will take a look at how to use the API to perform asynchronous tasks
on either individual devices or a group of devices.

Network dynamic operations
Our API can now provide static information about the network; anything that we can store
in the database can be returned to the requester. It would be great if we can interact with
our network directly, such as a query for the device information or to push configuration
changes to the device.

We will start this process by leveraging the script we have already seen in Chapter 2, Low-
Level Network Device Interactions, for interacting with a device via Pexpect. We will modify
the script slightly into a function we can repeatedly use in chapter9_pexpect_1.py:

We need to install pexpect for our virtual env
$ pip install pexpect

$ cat chapter9_pexpect_1.py
import pexpect

def show_version(device, prompt, ip, username, password):
 device_prompt = prompt
 child = pexpect.spawn('telnet ' + ip)
 child.expect('Username:')
 child.sendline(username)
 child.expect('Password:')
 child.sendline(password)
 child.expect(device_prompt)
 child.sendline('show version | i V')
 child.expect(device_prompt)
 result = child.before
 child.sendline('exit')
 return device, result

We can test the new function via the interactive prompt:

$ pip3 install pexpect
$ python
>>> from chapter9_pexpect_1 import show_version
>>> print(show_version('iosv-1', 'iosv-1#', '172.16.1.225', 'cisco',
'cisco'))
('iosv-1', b'show version | i V\r\nCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(3)M2, RELEASE SOFTWARE (fc2)\r\n')
>>>

Building Network Web Services with Python Chapter 9

[300]

Make sure that your Pexpect script works before you proceed. The
following code assumes that you have entered the necessary database
information from the previous section.

We can add a new API for querying the device version in chapter9_7.py:

from chapter9_pexpect_1 import show_version
...
@app.route('/devices/<int:id>/version', methods=['GET'])
def get_device_version(id):
 device = Device.query.get_or_404(id)
 hostname = device.hostname
 ip = device.mgmt_ip
 prompt = hostname+"#"
 result = show_version(hostname, prompt, ip, 'cisco', 'cisco')
 return jsonify({"version": str(result)})

The result will be returned to the requester:

$ http GET http://172.16.1.173:5000/devices/4/version
HTTP/1.0 200 OK
Content-Length: 210
Content-Type: application/json
Date: Fri, 24 Mar 2017 17:05:13 GMT
Server: Werkzeug/0.9.6 Python/3.5.2

{
 "version": "('iosv-4', b'show version | i V\r\nCisco IOS Software, IOSv
Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE
(fc2)\r\nProcessor board ID 9U96V39A4Z12PCG4O6Y0Q\r\n')"
}

We can also add another endpoint that will allow us to perform a bulk action on multiple
devices, based on their common fields. In the following example, the endpoint will take the
device_role attribute in the URL and match it up with the appropriate device(s):

@app.route('/devices/<device_role>/version', methods=['GET'])
def get_role_version(device_role):
 device_id_list = [device.id for device in Device.query.all() if
device.role == device_role]
 result = {}
 for id in device_id_list:
 device = Device.query.get_or_404(id)
 hostname = device.hostname
 ip = device.mgmt_ip
 prompt = hostname + "#"

Building Network Web Services with Python Chapter 9

[301]

 device_result = show_version(hostname, prompt, ip, 'cisco',
'cisco')
 result[hostname] = str(device_result)
 return jsonify(result)

Of course, looping through all the devices in Device.query.all() is not
efficient, as in the preceding code. In production, we will use a SQL query
that specifically targets the role of the device.

When we use the REST API, we can see that all the spine, as well as leaf, devices can be
queried at the same time:

$ http GET http://172.16.1.173:5000/devices/spine/version
HTTP/1.0 200 OK
...
{
 "iosv-1": "('iosv-1', b'show version | i V\r\nCisco IOS Software, IOSv
Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE
(fc2)\r\n')",
 "iosv-2": "('iosv-2', b'show version | i V\r\nCisco IOS Software, IOSv
Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE
(fc2)\r\nProcessor board ID 9T7CB2J2V6F0DLWK7V48E\r\n')"
}

$ http GET http://172.16.1.173:5000/devices/leaf/version
HTTP/1.0 200 OK
...
{
 "iosv-3": "('iosv-3', b'show version | i V\r\nCisco IOS Software, IOSv
Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE
(fc2)\r\nProcessor board ID 9MGG8EA1E0V2PE2D8KDD7\r\n')",
 "iosv-4": "('iosv-4', b'show version | i V\r\nCisco IOS Software, IOSv
Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE
(fc2)\r\nProcessor board ID 9U96V39A4Z12PCG4O6Y0Q\r\n')"
}

As illustrated, the new API endpoints query the device(s) in real time and return the result
to the requester. This works relatively well when you can guarantee a response from the
operation within the timeout value of the transaction (30 seconds, by default) or if you are
OK with the HTTP session timing out before the operation is completed. One way to deal
with the timeout issue is to perform the tasks asynchronously. We will look at how to do so
in the next section.

Building Network Web Services with Python Chapter 9

[302]

Asynchronous operations
Asynchronous operations are, in my opinion, an advanced topic of Flask. Luckily, Miguel
Grinberg (https:/ /blog. miguelgrinberg. com/), whose Flask work I am a big fan of,
provides many posts and examples on his blog and on GitHub. For asynchronous
operations, the example code in chapter9_8.py referenced Miguel's GitHub code on the
Raspberry Pi file (https:/ /github. com/ miguelgrinberg/ oreilly- flask- apis- video/
blob/master/camera/ camera. py) for the background decorator. We will start by importing
a few more modules:

from flask import Flask, url_for, jsonify, request,
 make_response, copy_current_request_context
...
import uuid
import functools
from threading import Thread

The background decorator takes in a function and runs it as a background task using thread
and UUID for the task ID. It returns the status code 202 accepted and the location of the
new resources for the requester to check. We will make a new URL for status checking:

@app.route('/status/<id>', methods=['GET'])
def get_task_status(id):
 global background_tasks
 rv = background_tasks.get(id)
 if rv is None:
 return not_found(None)

 if isinstance(rv, Thread):
 return jsonify({}), 202, {'Location': url_for('get_task_status',
id=id)}

 if app.config['AUTO_DELETE_BG_TASKS']:
 del background_tasks[id]
 return rv

Once we retrieve the resource, it is deleted. This was done by setting
app.config['AUTO_DELETE_BG_TASKS'] to true at the top of the app. We will add this
decorator to our version endpoints without changing the other part of the code because all
of the complexity is hidden in the decorator (how cool is that!):

@app.route('/devices/<int:id>/version', methods=['GET'])
@background
def get_device_version(id):
 device = Device.query.get_or_404(id)
...

https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://blog.miguelgrinberg.com/
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py

Building Network Web Services with Python Chapter 9

[303]

@app.route('/devices/<device_role>/version', methods=['GET'])
@background
def get_role_version(device_role):
 device_id_list = [device.id for device in Device.query.all() if
device.role == device_role]
...

The end result is a two-part process. We will perform the GET request for the endpoint and
receive the location header:

$ http GET http://172.16.1.173:5000/devices/spine/version
HTTP/1.0 202 ACCEPTED
Content-Length: 2
Content-Type: application/json
Date: <skip>
Location: http://172.16.1.173:5000/status/d02c3f58f4014e96a5dca075e1bb65d4
Server: Werkzeug/0.9.6 Python/3.5.2

{}

We can then make a second request to the location to retrieve the result:

$ http GET http://172.16.1.173:5000/status/d02c3f58f4014e96a5dca075e1bb65d4
HTTP/1.0 200 OK
Content-Length: 370
Content-Type: application/json
Date: <skip>
Server: Werkzeug/0.9.6 Python/3.5.2

{
 "iosv-1": "('iosv-1', b'show version | i V\r\nCisco IOS Software, IOSv
Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE
(fc2)\r\n')",
 "iosv-2": "('iosv-2', b'show version | i V\r\nCisco IOS Software, IOSv
Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE
(fc2)\r\nProcessor board ID 9T7CB2J2V6F0DLWK7V48E\r\n')"
}

To verify that the status code 202 is returned when the resource is not ready, we will use
the following script, chapter9_request_1.py, to immediately make a request to the new
resource:

import requests, time

server = 'http://172.16.1.173:5000'
endpoint = '/devices/1/version'

First request to get the new resource

Building Network Web Services with Python Chapter 9

[304]

r = requests.get(server+endpoint)
resource = r.headers['location']
print("Status: {} Resource: {}".format(r.status_code, resource))

Second request to get the resource status
r = requests.get(resource)
print("Immediate Status Query to Resource: " + str(r.status_code))

print("Sleep for 2 seconds")
time.sleep(2)
Third request to get the resource status
r = requests.get(resource)
print("Status after 2 seconds: " + str(r.status_code))

As you can see in the result, the status code is returned while the resource is still being run
in the background as 202:

$ python chapter9_request_1.py
Status: 202 Resource:
http://172.16.1.173:5000/status/1de21f5235c94236a38abd5606680b92
Immediate Status Query to Resource: 202
Sleep for 2 seconds
Status after 2 seconds: 200

Our APIs are coming along nicely! Because our network resource is valuable to us, we
should secure API access to only authorized personnel. We will add basic security
measures to our API in the next section.

Security
For user authentication security, we will use Flask's httpauth extension, written by Miguel
Grinberg, as well as the password functions in Werkzeug. The httpauth extension should
have been installed as part of the requirements.txt installation at the beginning of this
chapter. The new file illustrating the security feature is named chapter9_9.py; we will
start with a few more module imports:

...
from werkzeug.security import generate_password_hash, check_password_hash
from flask.ext.httpauth import HTTPBasicAuth
...

Building Network Web Services with Python Chapter 9

[305]

We will create an HTTPBasicAuth object as well as the user database object. Note that,
during the user creation process, we will pass the password value; however, we are only
storing password_hash instead of the password itself. This ensures that we are not storing
a clear text password for the user:

auth = HTTPBasicAuth()

class User(db.Model):
 __tablename__ = 'users'
 id = db.Column(db.Integer, primary_key=True)
 username = db.Column(db.String(64), index=True)
 password_hash = db.Column(db.String(128))

 def set_password(self, password):
 self.password_hash = generate_password_hash(password)

 def verify_password(self, password):
 return check_password_hash(self.password_hash, password)

The auth object has a verify_password decorator that we can use, along with Flask's g
global context object that was created when the request started for password verification.
Because g is global, if we save the user to the g variable, it will live through the entire
transaction:

@auth.verify_password
def verify_password(username, password):
 g.user = User.query.filter_by(username=username).first()
 if g.user is None:
 return False
 return g.user.verify_password(password)

There is a handy before_request handler that can be used before any API endpoint is
called. We will combine the auth.login_required decorator with the before_request
handler that will be applied to all the API routes:

@app.before_request
@auth.login_required
def before_request():
 pass

Lastly, we will use the unauthorized error handler to return a response object for the
401 unauthorized error:

@auth.error_handler
def unauthorized():
 response = jsonify({'status': 401, 'error': 'unauthorized',
 'message': 'please authenticate'})

Building Network Web Services with Python Chapter 9

[306]

 response.status_code = 401
 return response

Before we can test user authentication, we will need to create users in our database:

>>> from chapter9_9 import db, User
>>> db.create_all()
>>> u = User(username='eric')
>>> u.set_password('secret')
>>> db.session.add(u)
>>> db.session.commit()
>>> exit()

Once you start your Flask development server, try to make a request, like we did
previously. You should see that, this time, the server will reject the request with a 401
unauthorized error:

$ http GET http://172.16.1.173:5000/devices/
HTTP/1.0 401 UNAUTHORIZED
Content-Length: 81
Content-Type: application/json
Date: <skip>
Server: Werkzeug/0.9.6 Python/3.5.2
WWW-Authenticate: Basic realm="Authentication Required"

{
 "error": "unauthorized",
 "message": "please authenticate",
 "status": 401
}

We will now need to provide the authentication header for our requests:

$ http --auth eric:secret GET http://172.16.1.173:5000/devices/
HTTP/1.0 200 OK
Content-Length: 188
Content-Type: application/json
Date: <skip>
Server: Werkzeug/0.9.6 Python/3.5.2

{
 "device": [
 "http://172.16.1.173:5000/devices/1",
 "http://172.16.1.173:5000/devices/2",
 "http://172.16.1.173:5000/devices/3",
 "http://172.16.1.173:5000/devices/4"
]
}

Building Network Web Services with Python Chapter 9

[307]

We now have a decent RESTful API set up for our network. The user will be able to interact
with the APIs now instead of the network devices. They can query for the static content of
the network and perform tasks for individual devices or a group of devices. We also added
basic security measures to ensure that only the users we created are able to retrieve the
information from our API. The cool part is that this is all done within a single file in less
than 250 lines of code (less than 200 if you subtract the comments)!

We have now abstracted the underlying vendor API away from our network and replaced
them with our own RESTful API. We are free to use what is required in the backend, such
as Pexpect, while still providing a uniform frontend to our requester.

Let's take a look at additional resources for Flask so that we can continue to build on our
API framework.

Additional resources
Flask is no doubt a feature-rich framework that is growing in features and in the
community. We have covered a lot of topics in this chapter, but we have still only scraped
the surface of the framework. Besides APIs, you can use Flask for web applications as well
as your websites. There are a few improvements that I think we can still make to our
network API framework:

Separate out the database and each endpoint in its own file so that the code is
cleaner and easier to troubleshoot.
Migrate from SQLite to other production-ready databases.
Use token-based authentication instead of passing the username and password
for every transaction. In essence, we will receive a token with finite expiration
time upon initial authentication and use the token for further transactions until
the expiration.
Deploy your Flask API app behind a production web server, such as Nginx,
along with the Python WSGI server for production use.
Use an automation process control system, such as Supervisor (http:/ /
supervisord. org/), to control the Nginx and Python scripts.

http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/

Building Network Web Services with Python Chapter 9

[308]

Obviously, the recommended improvement choices will vary greatly from company to
company. For example, the choice of database and web server may have implications for
the company's technical preference as well as the other teams' input. The use of token-based
authentication might not be necessary if the API is only used internally and other forms of
security have been put into place. For these reasons, I would like to provide you with
additional links as extra resources should you choose to move forward with any of the
preceding items.

Here are some of the links I find useful when thinking about design patterns, database
options, and general Flask features:

Best practices on Flask design patterns: http:/ /flask. pocoo. org/ docs/ 0.10/
patterns/

Flask API: http:/ /flask. pocoo. org/ docs/ 0.12/ api/

Deployment options: http:/ /flask. pocoo. org/ docs/ 0.12/ deploying/

Due to the nature of Flask and the fact that it relies on the extension outside of its small
core, sometimes, you might find yourself jumping from one document to another. This can
be frustrating, but the upside is that you only need to know about the extension you are
using, which I feel saves time in the long run.

Summary
In this chapter, we started to move onto the path of building REST APIs for our network.
We looked at different popular Python web frameworks, namely Django and Flask, and
compared and contrasted the two. By choosing Flask, we are able to start small and expand
on features by using Flask extensions.

In our lab, we used the virtual environment to separate the Flask installation base from our
global site-packages. The lab network consists of four nodes, two of which we have
designated as spine routers while the other two are designated as leaf routers. We took a
tour of the basics of Flask and used the simple HTTPie client for testing our API setup.

http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.10/patterns/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/api/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/

Building Network Web Services with Python Chapter 9

[309]

Among the different setups of Flask, we placed special emphasis on URL dispatch as well
as the URL variables because they are the initial logic between the requesters and our API
system. We took a look at using Flask-SQLAlchemy and SQLite to store and return network
elements that are static in nature. For operation tasks, we also created API endpoints while
calling other programs, such as Pexpect, to accomplish configuration tasks. We improved
the setup by adding asynchronous handling as well as user authentication to our API.
Toward the end of this chapter, we looked at some of the additional resource links we can
follow to add even more security and other features.

In Chapter 10, AWS Cloud Networking, we will shift our gear to look at cloud networking
using Amazon Web Services (AWS).

10
AWS Cloud Networking

Cloud computing is one of the major trends in computing today. Public cloud
providers have transformed the high-tech industry and what it means to launch a service
from scratch. We no longer need to build our own infrastructure; we can pay the public
cloud providers to rent a portion of their resources for our infrastructure needs. Nowadays,
walking around any technology conferences or meetups, we will be hard-pressed to find a
person who has not learned about, used, or built services based in the cloud. Cloud
computing is here, and we better get used to working with it.

There are several service models of cloud computing, roughly divided into Software-as-a-
Service (SaaS) (https:/ / en. wikipedia. org/ wiki/ Software_ as_ a_service), Platform-as-a-
Service (PaaS) (https:/ / en. wikipedia. org/wiki/ Cloud_ computing#Platform_ as_ a_
service_(PaaS)), and Infrastructure-as-a-Service (IaaS) (https:/ /en.wikipedia. org/
wiki/Infrastructure_ as_ a_service). Each service model offers a different level of
abstraction from the user's perspective. For us, networking is part of the Infrastructure-as-a-
Service offering and the focus of this chapter.

Amazon Web Services (AWS—https:/ /aws. amazon. com/) is the first company to offer
IaaS public cloud services and the clear leader in the space by market share in 2018. If we
define the term Software Defined Networking (SDN) as a group of software services
working together to create network constructs – IP addresses, access lists, Network Address
Translation, routers – we can make the argument that AWS is the world's largest
implementation of SDN. They utilize their massive scale of the global network, data
centers, and hosts to offer an amazing array of networking services.

https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/

AWS Cloud Networking Chapter 10

[311]

If you are interested in learning about Amazon's scale and networking, I
would highly recommend taking a look at James Hamilton's AWS
re:Invent 2014 talk: https:/ /www. youtube. com/ watch? v= JIQETrFC_ SQ. It is
a rare insider's view of the scale and innovation at AWS.

In this chapter, we will discuss the networking services offered by the AWS cloud services
and how we can use Python to work with them:

AWS setup and networking overview
Virtual private cloud
Direct Connect and VPN
Networking scaling services
Other AWS network services

AWS setup
If you do not already have an AWS account and wish to follow along with these examples,
please log on to https:/ /aws. amazon. com/ and sign up. The process is pretty
straightforward and simple; you will need a credit card and some form of verification.
AWS offers a number of services in a free tier (https:/ /aws. amazon. com/ free/), where you
can use some of the most popular services for free up to a certain level.

https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/

AWS Cloud Networking Chapter 10

[312]

Some of the services listed are free for the first year, and others are free up to a certain limit
without time restraint. Please check the AWS site for the latest offerings:

AWS free tier

AWS Cloud Networking Chapter 10

[313]

Once you have an account, you can sign in via the AWS console (https:/ /console. aws.
amazon.com/) and take a look at the different services offered by AWS. The console is where
we can configure all the services and look at our monthly bills:

AWS console

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/

AWS Cloud Networking Chapter 10

[314]

AWS CLI and Python SDK
We can also manage the AWS services via the command-line interface. The AWS CLI is a
Python package that can be installed via PIP (https:/ /docs. aws. amazon. com/ cli/ latest/
userguide/installing. html). Let's install it on our Ubuntu host:

$ sudo pip3 install awscli
$ aws --version
aws-cli/1.15.59 Python/3.5.2 Linux/4.15.0-30-generic botocore/1.10.58

Once the AWS CLI is installed, for easier and more secure access, we will create a user and
configure AWS CLI with the user credentials. Let's go back to the AWS console and select
IAM for user and access management:

AWS IAM

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

AWS Cloud Networking Chapter 10

[315]

We can choose Users on the left panel to create a user:

Select programmatic access and assign the user to the default administrator group:

AWS Cloud Networking Chapter 10

[316]

The last step will show an Access key ID and a Secret access key. Copy them into a text file
and keep it in a safe place:

We will complete the AWS CLI authentication credential setup via aws configure in the
terminal. We will go over AWS regions in the upcoming section; we will use us-east-1
for now, but feel free to come back and change this value later:

$ aws configure
AWS Access Key ID [None]: <key>
AWS Secret Access Key [None]: <secret>
Default region name [None]: us-east-1
Default output format [None]: json

We will also install the AWS Python SDK, Boto3 (https:/ /boto3. readthedocs. io/ en/
latest/):

$ sudo pip install boto3
$ sudo pip3 install boto3

verification
$ python3
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto3
>>> exit()

We are now ready to move on to the subsequent sections, starting with an introduction to
AWS cloud networking services.

https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/

AWS Cloud Networking Chapter 10

[317]

AWS network overview
When we discuss AWS services, we need to start at the top with regions and availability
zones. They have big implications for all of our services. At the time of writing this book,
AWS listed 18 Regions, 55 Availability Zones (AZ), and one local region around the
world. In the words of AWS Global Infrastructure, (https:/ /aws. amazon. com/ about- aws/
global-infrastructure/):

"The AWS Cloud infrastructure is built around Regions and Availability Zones (AZs).
AWS Regions provide multiple, physically separated and isolated Availability Zones
which are connected with low latency, high throughput, and highly redundant
networking."

Some of the services AWS offer are global, but most of the services are region-based. What
this means for us is that we should build our infrastructure in a region that is closest to our
intended users. This will reduce the latency of the service to our customer. If our users are
in the United States east coast, we should pick us-east-1 (N. Virginia) or us-east-2
(Ohio) as our region if the service is regional-based:

AWS regions

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/

AWS Cloud Networking Chapter 10

[318]

Not all regions are available to all users, for example, GovCloud and the China region are
not available to users in the United States by default. You can list the regions available to
you via aws ec2 describe-regions:

$ aws ec2 describe-regions
{
 "Regions": [
 {
 "RegionName": "ap-south-1",
 "Endpoint": "ec2.ap-south-1.amazonaws.com"
 },
 {
 "RegionName": "eu-west-3",
 "Endpoint": "ec2.eu-west-3.amazonaws.com"
 },
...

All the regions are completely independent of one another. Most resources are not
replicated across regions. If we have multiple regions, say US-East and US-West, and need
redundancy between them, we will need to replicate the necessary resources ourselves. The
way you choose a region is on the top right corner of the console:

If the service is region-based, for example, EC2, the portal will only show
the service when the right region is selected. If our EC2 instances are in
us-east-1 and we are looking at the us-west-1 portal, none of the EC2
instances will show up. I have made this mistake a few times, and
wondered where all of my instances went!

AWS Cloud Networking Chapter 10

[319]

The number behind the regions in the preceding AWS regions screenshot represents the
number of AZ in each region. Each region has multiple availability zones. Each availability
zone is isolated, but the AZs in a region are connected through low-latency fiber
connections:

AWS regions and availability zones

Many of the resources we built are copied across availability zones. The concept of AZ is
very important, and its constraints are important to us for the network services we will
build.

AWS independently maps availability zones to identifiers for each
account. For example, my availability zone, us-eas-1a, might not be the
same as us-east-1a for another account.

We can check the AZs in a region in AWS CLI:

$ aws ec2 describe-availability-zones --region us-east-1
{
 "AvailabilityZones": [
 {
 "Messages": [],
 "RegionName": "us-east-1",
 "State": "available",
 "ZoneName": "us-east-1a"
 },
 {
 "Messages": [],
 "RegionName": "us-east-1",
 "State": "available",
 "ZoneName": "us-east-1b"
 },
...

AWS Cloud Networking Chapter 10

[320]

Why do we care about regions and availability zones so much? As we will see in the
coming few sections, the networking services are usually bound by the region and
availability zones. Virtual Private Cloud (VPC), for example, needs to reside entirely in one
region, and each subnet needs to reside entirely in one availability zone. On the other hand,
NAT Gateway is AZ-bound, so we will need to create one per AZ if we needed
redundancy. We will go over both services in more detail, but their use cases are offered
here as examples of how regions and availability zones are the basis of the AWS network
services offering.

AWS Edge locations are part of the AWS CloudFront content delivery network in 59 cities
across 26 countries. These edge locations are used to distribute content with low latency
with a smaller footprint than the full data center Amazon builds for the region and
availability zones. Sometimes, people mistook the edge locations' point-of-presence for full
AWS regions. If the footprint is listed as an edge location only, the AWS services such as
EC2 or S3 will not be offered. We will revisit the edge location in the AWS CloudFront
section.

AWS Transit Centers is one of the least documented aspects of AWS networks. It was
mentioned in James Hamilton's 2014 AWS re:Invent keynote (https:/ /www. youtube. com/
watch?v=JIQETrFC_ SQ) as the aggregation points for different AZs in the region. To be fair,
we do not know if the transit center still exists and functions the same way after all these
years. However, it is fair to make an educated guess about the placement of the transit
center and its correlation about the AWS Direct Connect service that we will look at later in
this chapter.

James Hamilton, a VP and distinguished engineer from AWS, is one of the
most influential technologists at AWS. If there is anybody who I would
consider authoritative when it comes to AWS networking, it would be
him. You can read more about his visions on his blog, Perspectives,
at https:/ / perspectives. mvdirona. com/ .

It is impossible to cover all of the services related to AWS in one chapter. There are some
relevant services not directly related to networking that we do not have the space to cover,
but we should be familiar with:

The Identify and Access Management (IAM) service, https:/ /aws. amazon. com/
iam/, is the service that enables us to manage access to AWS services and
resources securely.

https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/

AWS Cloud Networking Chapter 10

[321]

Amazon Resource Names (ARNs), https:/ /docs. aws. amazon. com/general/
latest/gr/ aws- arns- and- namespaces. html, uniquely identify AWS resources
across all of AWS. This resource name is important when we need to identify a
service, such as DynamoDB and API Gateway, that needs access to our VPC
resources.
Amazon Elastic Compute Cloud (EC2), https:/ /aws. amazon. com/ ec2/ , is the
service that enables us to obtain and provision compute capacities, such as Linux
and Windows instances, via AWS interfaces. We will use EC2 instances
throughout this chapter in our examples.

For the sake of learning, we will exclude AWS GovCloud (US) and China,
neither of which uses the AWS global infrastructure and have their own
limitations.

This was a relatively long introduction to the AWS network overview, but an important
one. These concepts and terms will be referred to in the rest of the chapters in this book. In
the upcoming section, we will take a look at the most import concept (in my opinion) for
AWS networking: the virtual private cloud.

Virtual private cloud
Amazon Virtual Private Cloud (Amazon VPC) enables customers to launch AWS
resources into a virtual network dedicated to the customer's account. It is truly a
customizable network that allows you to define your own IP address range, add and delete
subnets, create routes, add VPN gateways, associate security policies, connect EC2
instances to your own datacenter, and much more. In the early days when VPC was not
available, all EC2 instances in the AZ were on a single, flat network that was shared among
all customers. How comfortable would the customer be with putting their information in
the cloud? Not very, I'd imagine. Between the launch of EC2 in 2007 until the launch of
VPC in 2009, VPC functions was one of the most requested features of AWS.

The packets leaving your EC2 host in a VPC are intercepted by the
Hypervisor. The Hypervisor will check them with a mapping service
which understands our VPC construct. The packets leaving your EC2
hosts are encapsulated with the AWS real servers' source and destination
addresses. The encapsulation and mapping service allows for the
flexibility of VPC, but also some of the limitations (multicast, sniffing) of
VPC. This is, after all, a virtual network.

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

AWS Cloud Networking Chapter 10

[322]

Since December 2013, all EC2 instances are VPC-only. If we use a launch wizard to create
our EC2 instance, it will automatically be put into a default VPC with a virtual internet
gateway for public access. In my opinion, all but the most basic use cases should use the
default VPC. For most cases, we would need to define our non-default, customized VPC.

Let's create the following VPC using the AWS console in us-east-1:

Our first VPC in US-East-1

If you recall, VPC is AWS region-bound, and the subnets are Availability Zone-based. Our
first VPC will be based in us-east-1; the three subnets will be allocated to three different
availability zones in 1a, 1b, and 1c.

AWS Cloud Networking Chapter 10

[323]

Using the AWS console to create the VPC and subnets is pretty straightforward, and AWS
provides a number of good tutorials online. I have listed the steps with the associated links
on the VPC dashboard:

The first two steps are point and click processes that most network engineers can work
through, even without prior experience. By default, the VPC only contains the local route,
10.0.0.0/16. Now, we will create an internet gateway and associate it with the VPC:

AWS Cloud Networking Chapter 10

[324]

We can then create a custom route table with a default route pointing to the internet
gateway. We will associate this route table with our subnet in us-east-1a, 10.0.0.0/24,
thus allowing it to be public facing:

Route table

Let's use Boto3 Python SDK to see what we have created; I used the tag
mastering_python_networking_demo as the tag for the VPC, which we can use as the
filer:

$ cat Chapter10_1_query_vpc.py
#!/usr/bin/env python3

import json, boto3

region = 'us-east-1'
vpc_name = 'mastering_python_networking_demo'

ec2 = boto3.resource('ec2', region_name=region)
client = boto3.client('ec2')

filters = [{'Name':'tag:Name', 'Values':[vpc_name]}]

vpcs = list(ec2.vpcs.filter(Filters=filters))
for vpc in vpcs:
 response = client.describe_vpcs(
 VpcIds=[vpc.id,]

AWS Cloud Networking Chapter 10

[325]

)
 print(json.dumps(response, sort_keys=True, indent=4))

This script will allow us to programmatically query the region for the VPC we created:

$ python3 Chapter10_1_query_vpc.py
{
 "ResponseMetadata": {
 "HTTPHeaders": {
 "content-type": "text/xml;charset=UTF-8",
 ...
 },
 "HTTPStatusCode": 200,
 "RequestId": "48e19be5-01c1-469b-b6ff-9c45f2745483",
 "RetryAttempts": 0
 },
 "Vpcs": [
 {
 "CidrBlock": "10.0.0.0/16",
 "CidrBlockAssociationSet": [
 {
 "AssociationId": "...",
 "CidrBlock": "10.0.0.0/16",
 "CidrBlockState": {
 "State": "associated"
 }
 }
],
 "DhcpOptionsId": "dopt-....",
 "InstanceTenancy": "default",
 "IsDefault": false,
 "State": "available",
 "Tags": [
 {
 "Key": "Name",
 "Value": "mastering_python_networking_demo"
 }
],
 "VpcId": "vpc-...."
 }
]
}

The Boto3 VPC API documentation can be found at https:/ / boto3.
readthedocs. io/ en/ latest/ reference/ services/ ec2. html#vpc.

https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc

AWS Cloud Networking Chapter 10

[326]

You may be wondering about how the subnets can reach one another within the VPC. In a
physical network, the network needs to connect to a router to reach beyond its own local
network. It is not so different in VPC, except it is an implicit router with a default routing
table of the local network, which in our example is 10.0.0.0/16. This implicit router was
created when we created our VPC.

Route tables and route targets
Routing is one of the most important topics in network engineering. It is worth looking at it
more closely. We already saw that we had an implicit router and the main routing table
when we created the VPC. From the last example, we created an internet gateway, a custom
routing table with a default route pointing to the internet gateway, and associated the
custom routing table with a subnet.

The concept of the route target is where VPC is a bit different than traditional networking.
In summary:

Each VPC has an implicit router
Each VPC has the main routing table with the local route populated
You can create custom-routing tables
Each subnet can follow a custom-routing table or the default main routing table
The route table route target can be an internet gateway, NAT gateway, VPC
peers, and so on

We can use Boto3 to look at the custom route tables and association with the subnets:

$ cat Chapter10_2_query_route_tables.py
#!/usr/bin/env python3

import json, boto3

region = 'us-east-1'
vpc_name = 'mastering_python_networking_demo'

ec2 = boto3.resource('ec2', region_name=region)
client = boto3.client('ec2')

response = client.describe_route_tables()
print(json.dumps(response['RouteTables'][0], sort_keys=True, indent=4))

AWS Cloud Networking Chapter 10

[327]

We only have one custom route table:

$ python3 Chapter10_2_query_route_tables.py
{
 "Associations": [
 {

 }
],
 "PropagatingVgws": [],
 "RouteTableId": "rtb-6bee5514",
 "Routes": [
 {
 "DestinationCidrBlock": "10.0.0.0/16",
 "GatewayId": "local",
 "Origin": "CreateRouteTable",
 "State": "active"
 },
 {
 "DestinationCidrBlock": "0.0.0.0/0",
 "GatewayId": "igw-...",
 "Origin": "CreateRoute",
 "State": "active"
 }
],
 "Tags": [
 {
 "Key": "Name",
 "Value": "public_internet_gateway"
 }
],
 "VpcId": "vpc-..."
}

Creating the subnets are straight forward by clicking on the left subnet section and follow
the on-screen instruction. For our purpose, we will create three subnets, 10.0.0.0/24
public subnet, 10.0.1.0/24, and 10.0.2.0/24 private subnets.

We now have a working VPC with three subnets: one public and two private. So far, we
have used the AWS CLI and Boto3 library to interact with AWS VPC. Let's take a look at
another automation tool, CloudFormation.

AWS Cloud Networking Chapter 10

[328]

Automation with CloudFormation
AWS CloudFomation (https:/ / aws. amazon. com/ cloudformation/), is one way in which
we can use a text file to describe and launch the resource that we need. We can use
CloudFormation to provision another VPC in the us-west-1 region:

VPC for US-West-1

The CloudFormation template can be in YAML or JSON; we will use YAML for our first
template for provisioning:

$ cat Chapter10_3_cloud_formation.yml
AWSTemplateFormatVersion: '2010-09-09'
Description: Create VPC in us-west-1
Resources:
 myVPC:
 Type: AWS::EC2::VPC
 Properties:

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/

AWS Cloud Networking Chapter 10

[329]

 CidrBlock: '10.1.0.0/16'
 EnableDnsSupport: 'false'
 EnableDnsHostnames: 'false'
 Tags:
 - Key: Name
 Value: 'mastering_python_networking_demo_2'

We can execute the template via the AWS CLI. Notice that we specify a region of us-
west-1 in our execution:

$ aws --region us-west-1 cloudformation create-stack --stack-name 'mpn-
ch10-demo' --template-body file://Chapter10_3_cloud_formation.yml
{
 "StackId": "arn:aws:cloudformation:us-west-1:<skip>:stack/mpn-ch10-
demo/<skip>"
}

We can verify the status via AWS CLI:

$ aws --region us-west-1 cloudformation describe-stacks --stack-name mpn-
ch10-demo
{
 "Stacks": [
 {
 "CreationTime": "2018-07-18T18:45:25.690Z",
 "Description": "Create VPC in us-west-1",
 "DisableRollback": false,
 "StackName": "mpn-ch10-demo",
 "RollbackConfiguration": {},
 "StackStatus": "CREATE_COMPLETE",
 "NotificationARNs": [],
 "Tags": [],
 "EnableTerminationProtection": false,
 "StackId": "arn:aws:cloudformation:us-west-1<skip>"
 }
]
}

For demonstration purposes, the last CloudFormation template created a VPC without any
subnet. Let's delete that VPC and use the following template to create both the VPC as well
as the subnet. Notice that we will not have the VPC-id before VPC creation, so we will use a
special variable to reference the VPC-id in the subnet creation. This is the same technique
we can use for other resources, such as the routing table and internet gateway:

$ cat Chapter10_4_cloud_formation_full.yml
AWSTemplateFormatVersion: '2010-09-09'
Description: Create subnet in us-west-1
Resources:

AWS Cloud Networking Chapter 10

[330]

 myVPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: '10.1.0.0/16'
 EnableDnsSupport: 'false'
 EnableDnsHostnames: 'false'
 Tags:
 - Key: Name
 Value: 'mastering_python_networking_demo_2'

 mySubnet:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref myVPC
 CidrBlock: '10.1.0.0/24'
 AvailabilityZone: 'us-west-1a'
 Tags:
 - Key: Name
 Value: 'mpn_demo_subnet_1'

We can execute and verify the creation of the resources as follows:

$ aws --region us-west-1 cloudformation create-stack --stack-name mpn-ch10-
demo-2 --template-body file://Chapter10_4_cloud_formation_full.yml
{
 "StackId": "arn:aws:cloudformation:us-west-1:<skip>:stack/mpn-ch10-
demo-2/<skip>"
}

$ aws --region us-west-1 cloudformation describe-stacks --stack-name mpn-
ch10-demo-2
{
 "Stacks": [
 {
 "StackStatus": "CREATE_COMPLETE",
 ...
 "StackName": "mpn-ch10-demo-2",
 "DisableRollback": false
 }
]
}

AWS Cloud Networking Chapter 10

[331]

We can also verify the VPC and subnet information from the AWS console. We will verify
the VPC from the console first:

VPC in us-west-1

We can also take a look at the subnet:

Subnet in us-west-1

AWS Cloud Networking Chapter 10

[332]

We now have two VPCs in the two coasts of the United States. They are currently behaving
like two islands, each by themselves. This may or may not be your desired state of
operation. If you would like the to VPC to be able to connect them to each other, we can use
VPC peering (https:/ /docs. aws. amazon. com/ AmazonVPC/ latest/ PeeringGuide/ vpc-
peering-basics.html) to allow direct communication.

VPC peering is not limited to the same account. You can connect VPCs
across different accounts, as long as the request was accepted and the
other aspects (security, routing, DNS name) are taken care of.

In the coming section, we will take a look at VPC security groups and the network access
control list.

Security groups and the network ACL
AWS Security Groups and the Access Control list can be found under the Security section
of your VPC:

VPC security

https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html

AWS Cloud Networking Chapter 10

[333]

A security group is a stateful virtual firewall that controls inbound and outbound access for
resources. Most of the time, we will use the security group as a way to limit public access to
our EC2 instance. The current limitation is 500 security groups in each VPC. Each security
group can contain up to 50 inbound and 50 outbound rules. You can use the following
sample script to create a security group and two simple ingress rules:

$ cat Chapter10_5_security_group.py
#!/usr/bin/env python3

import boto3

ec2 = boto3.client('ec2')

response = ec2.describe_vpcs()
vpc_id = response.get('Vpcs', [{}])[0].get('VpcId', '')

Query for security group id
response = ec2.create_security_group(GroupName='mpn_security_group',
 Description='mpn_demo_sg',
 VpcId=vpc_id)
security_group_id = response['GroupId']
data = ec2.authorize_security_group_ingress(
 GroupId=security_group_id,
 IpPermissions=[
 {'IpProtocol': 'tcp',
 'FromPort': 80,
 'ToPort': 80,
 'IpRanges': [{'CidrIp': '0.0.0.0/0'}]},
 {'IpProtocol': 'tcp',
 'FromPort': 22,
 'ToPort': 22,
 'IpRanges': [{'CidrIp': '0.0.0.0/0'}]}
])
print('Ingress Successfully Set %s' % data)

Describe security group
#response = ec2.describe_security_groups(GroupIds=[security_group_id])
print(security_group_id)

AWS Cloud Networking Chapter 10

[334]

We can execute the script and receive confirmation on the creation of the security group
that can be associated with other AWS resources:

$ python3 Chapter10_5_security_group.py
Ingress Successfully Set {'ResponseMetadata': {'RequestId': '<skip>',
'HTTPStatusCode': 200, 'HTTPHeaders': {'server': 'AmazonEC2', 'content-
type': 'text/xml;charset=UTF-8', 'date': 'Wed, 18 Jul 2018 20:51:55 GMT',
'content-length': '259'}, 'RetryAttempts': 0}}
sg-<skip>

Network Access Control Lists (ACLs) is an additional layer of security that is stateless.
Each subnet in VPC is associated with a network ACL. Since ACL is stateless, you will need
to specify both inbound and outbound rules.

The important differences between the security group and ACLs are as follows:

The security group operates at the network interface level where ACL operates at
the subnet level
For a security group, we can only specify allow rules but not deny rules, whereas
ACL supports both allow and deny rules
A security group is stateful; return traffic is automatically allowed. Return traffic
needs to be specifically allowed in ACL

Let's take a look at one of the coolest feature of AWS networking, Elastic IP. When I initially
learned about Elastic IP, I was blown away by the ability of assigning and reassigning IP
addresses dynamically.

Elastic IP
Elastic IP (EIP) is a way to use a public IPv4 address that's reachable from the internet. It
can be dynamically assigned to an EC2 instance, network interface, or other resources. A
few characteristics of Elastic IP are as follows:

The Elastic IP is associated with the account and is region-specific. For example,
the EIP in us-east-1 can only be associated with resources in us-east-1.
You can disassociate an Elastic IP from a resource, and re-associate it with a
different resource. This flexibility can sometimes be used to ensure high
availability. For example, you can migrate from a smaller EC2 instance to a larger
EC2 instance by reassigning the same IP address from the small EC2 instance to
the larger one.
There is a small hourly charge associated with Elastic IP.

AWS Cloud Networking Chapter 10

[335]

You can request Elastic IP from the portal. After assignment, you can associate it with the
desired resources:

Elastic IP

Unfortunately, Elastic IP has a default limit of five per region, https:/ /
docs. aws. amazon. com/ vpc/ latest/ userguide/ amazon- vpc- limits. html.

In the coming section, we will look at how we can use the NAT Gateway to allow
communication for the private subnets to the internet.

NAT Gateway
To allow the hosts in our EC2 public subnet to be accessed from the internet, we can
allocate an Elastic IP and associate it with the network interface of the EC2 host. However,
at the time of writing this book, there is a limit of five Elastic IPs per EC2-VPC (https:/ /
docs.aws.amazon. com/ AmazonVPC/ latest/ UserGuide/ VPC_Appendix_ Limits. html#vpc-
limits-eips). Sometimes, it would be nice to allow the host in a private subnet outbound
access when needed without creating a permanent one-to-one mapping between the Elastic
IP and the EC2 host.

https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips

AWS Cloud Networking Chapter 10

[336]

This is where NAT Gateway can help, by allowing the hosts in the private subnet
temporarily outbound access by performing a Network Address Translation (NAT). This
operation is similar to the Port Address Translation (PAT) that we normally perform on
the corporate firewall. To use a NAT Gateway, we can perform the following steps:

Create a NAT Gateway in a subnet with access to the internet gateway via the
AWS CLI, Boto3 library, or AWS console. The NAT Gateway will need to be
assigned with an Elastic IP.
Point the default route in the private subnet to the NAT Gateway.
The NAT Gateway will follow the default route to the internet gateway for
external access.

This operation can be illustrated in the following diagram:

NAT Gateway operations

AWS Cloud Networking Chapter 10

[337]

One of the most common questions for NAT Gateway typically surrounds which subnet
the NAT Gateway should reside in. The rule of thumb is to remember that the NAT
Gateway needs public access. Therefore, it should be created in the subnet with public
internet access with an available Elastic IP to be assigned to it:

NAT Gateway creation

In the coming section, we will take a look at how to connect our shiny virtual network in
AWS to our physical network.

Direct Connect and VPN
Up to this point, our VPC is a self-contained network that resides in the AWS network. It is
flexible and functional, but to access the resources inside of the VPC, we will need to access
them with their internet-facing services such as SSH and HTTPS.

In this section, we will look at the two ways AWS allow us to connect to the VPC from our
private network: IPSec VPN Gateway and Direct Connect.

VPN Gateway
The first way to connect our on-premise network to VPC is with traditional IPSec VPN
connections. We will need a publicly accessible device that can establish VPN connections
to AWS's VPN device. The customer gateway needs to support route-based IPSec VPNs
where the VPN connection is treated as a connection that a routing protocol can run over
the virtual link. Currently, AWS recommends using BGP to exchange routes.

AWS Cloud Networking Chapter 10

[338]

On the VPC side, we can follow a similar routing table where we can route a particular
subnet toward the Virtual Private Gateway target:

VPC VPN connection (source: https:/ /docs. aws. amazon. com/ AmazonVPC/ latest/ UserGuide/ VPC_VPN.
html)

Besides IPSec VPN, we can also use a dedicated circuit to connect.

Direct Connect
The IPSec VPN connection we saw is an easy way to provide connectivity for on-premise
equipment to the AWS cloud resources. However, it suffers the same faults that IPSec over
the internet always does: it is unreliable, and we have very little control over it. There is
very little performance monitoring and no Service-Level Agreement (SLA) until the
connection reaches a part of the internet that we can control.

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html

AWS Cloud Networking Chapter 10

[339]

For all of these reasons, any production-level, mission-critical traffic is more likely to
traverse through the second option Amazon provides, that is, AWS Direct Connect. AWS
Direct Connect allows customers to connect their data center and colocation to their AWS
VPC with a dedicated virtual circuit. The somewhat difficult part of this operation is
usually bringing our network to where we can connect with AWS physically, typically in a
carrier hotel. You can find a list of the AWS Direct Connect locations here: https:/ /aws.
amazon.com/directconnect/ details/ . The Direct Connect link is just a fiber patch
connection that you can order from the particular carrier hotel to patch the network to a
network port and configure the dot1q trunk's connectivity.

There are also increasingly more connectivity options for Direct Connect via a third-party
carrier with MPLS circuits and aggregated links. One of the most affordable options that I
found and use is the Equinix Cloud Exchange (https:/ /www. equinix. com/services/
interconnection-connectivity/ cloud- exchange/). By using the Equinix Cloud Exchange,
we can leverage the same circuit and connect to different cloud providers at a fraction of
the cost of dedicated circuits:

Equinix Cloud Exchange (source: https:/ / www. equinix. com/ services/ interconnection- connectivity/
cloud- exchange/)

In the upcoming section, we will take a look at some of the network scaling services AWS
offers.

https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/

AWS Cloud Networking Chapter 10

[340]

Network scaling services
In this section, we will take a look at some of the network services AWS offers. Many of the
services do not have a direct network implication, such as DNS and content distribution
network. They are relevant in our discussion due to their close relationship with the
network and application's performance.

Elastic Load Balancing
Elastic Load Balancing (ELB) allows incoming traffic from the internet to be automatically
distributed across multiple EC2 instances. Just like load balancers in the physical world,
this allows us to have better redundancy and fault tolerance while reducing the per-server
load. ELB comes in two flavors: application and network load balancing.

The application load balancer handles web traffic via HTTP and HTTPS; the network load
balancer operates on a TCP level. If your application runs on HTTP or HTTPS, it is
generally a good idea to go with the application load balancer. Otherwise, using the
network load balancer is a good bet.

A detailed comparison of the application and network load balancer can be found
at https://aws.amazon. com/ elasticloadbalancing/ details/ :

Elastic Load Balancer Comparison (Source: https:/ /aws. amazon. com/ elasticloadbalancing/ details/)

https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/

AWS Cloud Networking Chapter 10

[341]

Elastic Load Balancer offers a way to load balance traffic once it enters the resource in our
region. The AWS Route53 DNS service allows geographic load balance between regions.

Route53 DNS service
We all know what domain name services are; Route53 is AWS's DNS service. Route53 is a
full-service domain registrar where you can purchase and manage domains directly from
AWS. Regarding network services, DNS allows a way to load balance between geographic
regions by service domain names in a round-robin fashion between regions.

We need the following items before we can use DNS for load balancing:

An Elastic Load Balancer in each of the intended load balance regions.
A registered domain name. We do not need Route53 as the domain registrar.
Route53 is the DNS service for the domain.

We can then use the Route 53 latency-based routing policy with health-check in an active-
active environment between the two Elastic Load Balancers.

CloudFront CDN services
CloudFront is Amazon's Content Delivery Network (CDN) that reduces the latency for
content delivery by physically serving the content closer to the customer. The content can
be static web page content, videos, applications, APIs, or most recently, Lambda functions.
CloudFront edge locations include the existing AWS regions, but are also in many other
locations around the globe. The high-level operation of CloudFront is as follows:

Users access your website for one or more objects
DNS routes the request to the Amazon CloudFront edge location closest to the
user's request
The CloudFront edge location will either service the content via the cache or
request the object from the origin

AWS CloudFront and CDN services in general are typically handled by application
developers or DevOps engineers. However, it is always good to be aware of their
operations.

AWS Cloud Networking Chapter 10

[342]

Other AWS network services
There are lots of other AWS Network Services that we do not have the space to cover. Some
of the more important ones are listed in this section:

AWS Transit VPC (https:/ / aws.amazon. com/blogs/ aws/aws- solution-
transit- vpc/): This is a way to connect multiple virtual private clouds to a
common VPC that serves as a transit center. This is a relatively new service, but it
can minimize the connection that you need to set up and manage. This can also
serve as a tool when you need to share resources between separate AWS
accounts.
Amazon GuardDuty (https:/ /aws. amazon. com/ guardduty/): This is a managed
threat detection service that continuously monitors for malicious or unauthorized
behavior to help protect our AWS workloads. It monitors API calls or potentially
unauthorized deployments.
AWS WAF (https:/ /aws. amazon. com/ waf/): This is a web application firewall
that helps protect web applications from common exploits. We can define
customized web security rules to allow or block web traffic.
AWS Shield (https:/ /aws. amazon. com/ shield/): This is a managed Distributed
Denial of Service (DDoS) protection service that safeguards applications
running on AWS. The protection service is free for all customers at the basic
level; the advanced version of AWS Shield is a fee-based service.

Summary
In this chapter, we looked at AWS Cloud Networking services. We went over the AWS
network definitions of Region, Availability Zone, Edge Locations, and Transit Center. By
understanding the overall AWS network, this gives us a good idea of some of the
limitations and contains for the other AWS network services. Throughout this chapter, we
used the AWS CLI, the Python Boto3 library, as well as CloudFormation to automate some
of the tasks.

We covered the AWS virtual private cloud in depth with the configuration of the route
table and route targets. The example on security groups and network ACL controls the
security for our VPC. We also looked at Elastic IP and NAT Gateways regarding allowing
external access.

https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/

AWS Cloud Networking Chapter 10

[343]

There are two ways to connect AWS VPC to on-premise networks: Direct Connect and
IPSec VPN. We briefly looked at each and the advantages of using them. Toward the end of
this chapter, we looked at network scaling services offered by AWS, including Elastic Load
Balancing, Route53 DNS, and CloudFront.

In Chapter 11, Working with Git, we will take a more in-depth look at the version control
system we have been working with: Git.

11
Working with Git

We have worked on various aspects of network automation with Python, Ansible, and
many other tools. If you have been following along with the examples, in the first nine
chapters of the book, we have used over 150 files containing over 5,300 lines of code. That's
pretty good for network engineers who may have been working primarily with the
command-line interface! With our new set of scripts and tools, we are now ready to go out
and conquer our network tasks, right? Well, not so fast, my fellow network ninjas.

The first task we face with the code files is how to keep them in a location where they can
be retrieved and used by us and others. Ideally, this location would be the only place where
the latest version of the file is kept. After the initial release, we might add features and fix
bugs in the future, so we would like a way to track these changes and keep the latest ones
available for download. If the new changes do not work, we would like to rollback the
changes and reflect the differences in the history of the file. This would give us a good idea
of the evolution of the code files.

The second question is the collaboration process between our team members. If we work
with other network engineers, we will need to work collectively on the files. The files can be
the Python scripts, Ansible Playbook, Jinja2 templates, INI-style configuration files, and
many others. The point is any kind of text-based files should be tracked with multiple input
that everybody in the team should be able to see.

The third question is accountability. Once we have a system that allows for multiple inputs
and changes, we need to mark these changes with an appropriate track record to reflect the
owner of the change. The track record should also include a brief reason for the change so
the person reviewing the history can get an understanding of why the change was made.

Working with Git Chapter 11

[345]

These are some of the main challenges a version-control (or source-control) system tries to
solve. To be fair, version control can exist in forms other than a dedicated system. For
example, if I open up my Microsoft Word program, the file constantly saves itself, and I can
go back in time to revisit the changes or rollback to a previous version. The version-control
system we are focused on here is standalone software tools with the primary purpose of
tracking software changes.

There is no shortage of different source-control tools in software engineering, both
proprietary and open source. Some of the more popular open source version-control
systems are CVS, SVN, Mercurial, and Git. In this chapter, we will focus on the source-
control system Git, the tool that we have been downloading in many of the .software
packages we have used in this book. We will be taking a more in-depth look at the tool. Git
is the de facto version-control system for many large, open source projects, including
Python and the Linux kernel.

As of February 2017, the CPython development process has moved to
GitHub. It was a work in progress since January 2015. For more
information, check out PEP 512 at https:/ / www.python. org/ dev/peps/
pep-0512/ .

Before we dive into the working examples of Git, let's take a look at the history and
advantages of the Git system.

Introduction to Git
Git was created by Linus Torvalds, the creator of the Linux kernel, in April 2005. With his
dry wit, he has affectionately called the tool the information manager from hell. In an
interview with the Linux Foundation, Linus mentioned that he felt source-control
management was just about the least interesting thing in the computing world (https:/ /
www.linuxfoundation. org/ blog/ 10- years- of-git- an- interview- with- git- creator-
linus-torvalds/). Nevertheless, he created the tool after a disagreement between the
Linux kernel developer community and BitKeeper, the proprietary system they were using
at the time.

What does the name Git stand for? In British English slang, a Git is an
insult denoting an unpleasant, annoying, childish person. With his dry
humor, Linus said he is an egotistical bastard and that he named all of his
projects after himself. First Linux, now Git. However, some suggested that
the name is short for Global Information Tracker (GIT). You can be the
judge.

https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.python.org/dev/peps/pep-0512/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://www.linuxfoundation.org/blog/10-years-of-git-an-interview-with-git-creator-linus-torvalds/

Working with Git Chapter 11

[346]

The project came together really quickly. About ten days after its creation (yeah, you read
that right), Linus felt the basic ideas for Git were right and started to commit the first Linux
kernel code with Git. The rest, as they say, is history. More than ten years after its creation,
it is still meeting all the expectations of the Linux kernel project. It took over as the version-
control system for many other open source projects despite the inherent inertia in switching
source-control systems. After many years of hosting the Python code from Mercurial at
https://hg.python. org/ , the project was switched to Git on GitHub in February of 2017.

Benefits of Git
The success of hosting large and distributed open source projects, such as the Linux kernel
and Python, speaks to the advantages of Git. This is especially significant given that Git is a
relatively new source-control tool and people do not tend to switch to a new tool unless it
offers significant advantages over the old tool. Let's look at some of the benefits of Git:

Distributed development: Git supports parallel, independent, and simultaneous
development in private repositories offline. Compare this to some other version-
control systems that require constant synchronization with a central repository;
this allows significantly greater flexibility for the developers.
Scale to handle thousands of developers: The number of developers working on
different parts of some of the open source projects is in the thousands. Git
supports the integration of their work reliably.
Performance: Linus was determined to make sure Git was fast and efficient. To
save space and transfer time for the sheer volume of updates for the Linux kernel
code alone, compression and a delta check would be needed to make Git fast and
efficient.
Accountability and immutability: Git enforces a change log on every commit
that changes a file so that there is a trail for all the changes and the reason behind
them. The data objects in Git cannot be modified after they were created and
placed in the database, making them immutable. This further enforces
accountability.
Atomic transactions: The integrity of the repository is ensured as the different,
but related, change is performed either all together or not at all. This will ensure
the repository is not left in a partially-changed or corrupted state.
Complete repositories: Each repository has a complete copy of all historical
revisions of every file.
Free, as in freedom: The origin of the Git tool was born out of the disagreement
between free, as in beer version of the Linux kernel with BitKeeper VCS, it makes
sense that the tool has a very liberal usage license.

https://hg.python.org/
https://hg.python.org/
https://hg.python.org/
https://hg.python.org/
https://hg.python.org/
https://hg.python.org/
https://hg.python.org/
https://hg.python.org/
https://hg.python.org/
https://hg.python.org/

Working with Git Chapter 11

[347]

Let's take a look at some of the terms used in Git.

Git terminology
Here are some Git terminologies we should be familiar with:

Ref: The name that begins with refs that point to an object.
Repository: A database that contains all of a project's information, files,
metadata, and history. It contains a collection of ref for all the collections of
objects.
Branch: An active line of development. The most recent commit is the tip or the
HEAD of that branch. A repository can have multiple branches, but your working
tree or working directory can only be associated with one branch. This is
sometimes referred to as the current or checked out branch.
Checkout: The action of updating all or part of the working tree to a particular
point.
Commit: A point in time in Git history, or it can mean to store a new snapshot
into the repository.
Merge: The action to bring the content of another branch into the current branch.
For example, I am merging the development branch with the master branch.
Fetch: The action of getting the content from a remote repository.
Pull: Fetching and merging a repository.
Tag: A mark in a point in time in a repository that is significant. In Chapter 4,
The Python Automation Framework – Ansible Basics, we saw the tag used to specify
the release points, v2.5.0a1.

This is not a complete list; please refer to the Git glossary, https:/ /git- scm. com/ docs/
gitglossary, for more terms and their definitions.

Git and GitHub
Git and GitHub are not the same thing. Sometimes, for engineers who are new to version-
control systems, this is confusing. Git is a revision-control system while GitHub, https:/ /
github.com/, is a centralized hosting service for Git repositories.

https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Working with Git Chapter 11

[348]

Because Git is a decentralized system, GitHub stores a copy of our project's repository, just
like any other developer. Often, we just designate the GitHub repository as the project's
central repository and all other developers push and pull their changes to and from that
repository.

GitHub takes this idea of being the centralized repository in a distributed system further by
using the fork and pull requests mechanisms. For projects hosted on
GitHub, encourage developers to fork the repository, or make a copy of the repository,
and work on that copy as their centralized repository. After making changes, they can send
a pull request to the main project, and the project maintainers can review the changes
and commit the changes if they see fit. GitHub also adds the web interface to the
repositories besides command line; this makes Git more user-friendly.

Setting up Git
So far, we have been using Git to just download files from GitHub. In this section, we will
go a bit further by setting up Git variables so we can start committing our files. I am going
to use the same Ubuntu 16.04 host in the example. The installation process is well-
documented; if you are using a different version of Linux or other operating systems, a
quick search should land you at the right set of instructions.

If you have not done so already, install Git via the apt package-management tool:

$ sudo apt-get update
$ sudo apt-get install -y git
$ git --version
git version 2.7.4

Once git is installed, we need to configure a few things so our commit messages can
contain the correct information:

$ git config --global user.name "Your Name"
$ git config --global user.email "email@domain.com"
$ git config --list
user.name=Your Name
user.email=email@domain.com

Alternatively, you can modify the information in the ~/.gitconfig file:

$ cat ~/.gitconfig
[user]
 name = Your Name
 email = email@domain.com

Working with Git Chapter 11

[349]

There are many other options in Git that we can change, but the name and email are the
ones that allow us to commit the change without getting a warning. Personally, I like to use
VIM, instead of the default Emac, as my text editor for typing commit messages:

(optional)
$ git config --global core.editor "vim"
$ git config --list
user.name=Your Name
user.email=email@domain.com
core.editor=vim

Before we move on to using Git, let's go over the idea of a gitignore file.

Gitignore
From time to time, there are files you do not want Git to check into GitHub or other
repositories. The easiest way to do this is to create .gitignore in the repository folder;
Git will use it to determine which files a directory should ignore before you make a
commit. This file should be committed into the repository to share the ignore rules with
other users.

This file can include language-specific files, for example, let's exclude the Python Byte-
compiled files:

Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

We can also include files that are specific to your operating system:

OSX
=========================

.DS_Store

.AppleDouble

.LSOverride

You can learn more about .gitignore on GitHub's help page: https:/ /help. github. com/
articles/ignoring- files/ . Here are some other references:

Gitignore manual: https:/ /git-scm. com/ docs/ gitignore

GitHub's collection of .gitignore templates: https:/ /github. com/github/
gitignore

https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore

Working with Git Chapter 11

[350]

Python language .gitignore example: https:/ / github. com/ github/
gitignore/ blob/ master/ Python. gitignore

The .gitignore file for this book's repository: https:/ /github. com/
PacktPublishing/ Mastering- Python- Networking- Second- Edition/ blob/
master/. gitignore

I see the .gitignore file as a file that should be created at the same time as any new
repository. That is why this concept is introduced as early as possible. We will take a look
at some of the Git usage examples in the next section.

Git usage examples
Most of the time, when we work with Git, we will use the command line:

$ git --help
usage: git [--version] [--help] [-C <path>] [-c name=value]
 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
 [-p | --paginate | --no-pager] [--no-replace-objects] [--bare]
 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
 <command> [<args>]

We will create a repository and create a file inside the repository:

$ mkdir TestRepo
$ cd TestRepo/
$ git init
Initialized empty Git repository in
/home/echou/Master_Python_Networking_second_edition/Chapter11/TestRepo/.git
/
$ echo "this is my test file" > myFile.txt

When the repository was initialized with Git, a new hidden folder of .git was added to
the directory. It contains all the Git-related files:

$ ls -a
. .. .git myFile.txt

$ ls .git/
branches config description HEAD hooks info objects refs

https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Second-Edition/blob/master/.gitignore

Working with Git Chapter 11

[351]

There are several locations Git receives its configurations in a hierarchy format. You can use
the git config -l command to see the aggregated configuration:

$ ls .git/config
.git/config

$ ls ~/.gitconfig
/home/echou/.gitconfig

$ git config -l
user.name=Eric Chou
user.email=<email>
core.editor=vim
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true

When we create a file in the repository, it is not tracked. For git to be aware of the file, we
need to add the file:

$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 myFile.txt

nothing added to commit but untracked files present (use "git add" to
track)

$ git add myFile.txt
$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: myFile.txt

Working with Git Chapter 11

[352]

When you add the file, it is in a staged status. To make the changes official, we will need to
commit the change:

$ git commit -m "adding myFile.txt"
[master (root-commit) 5f579ab] adding myFile.txt
 1 file changed, 1 insertion(+)
 create mode 100644 myFile.txt

$ git status
On branch master
nothing to commit, working directory clean

In the last example, we provided the commit message with the -m option
when we issue the commit statement. If we did not use the option, we
would have been taken to a page to provide the commit message. In our
scenario, we configured the text editor to be vim so we will be able to use
vim to edit the message.

Let's make some changes to the file and commit it:

$ vim myFile.txt
$ cat myFile.txt
this is the second iteration of my test file
$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: myFile.txt
$ git add myFile.txt
$ git commit -m "made modificaitons to myFile.txt"
[master a3dd3ea] made modificaitons to myFile.txt
 1 file changed, 1 insertion(+), 1 deletion(-)

The git commit number is a SHA1 hash, which an important feature. If we had followed
the same step on another computer, our SHA1 hash value would be the same. This is how
Git knows the two repositories are identical even when they are worked on in parallel.

We can show the history of the commits with git log. The entries are shown in reverse
chronological order; each commit shows the author's name and email address, the date, the
log message, as well as the internal identification number of the commit:

$ git log
commit a3dd3ea8e6eb15b57d1f390ce0d2c3a03f07a038
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 09:58:24 2018 -0700

Working with Git Chapter 11

[353]

 made modificaitons to myFile.txt

commit 5f579ab1e9a3fae13aa7f1b8092055213157524d
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 08:05:09 2018 -0700

 adding myFile.txt

We can also show more details about the change using the commit ID:

$ git show a3dd3ea8e6eb15b57d1f390ce0d2c3a03f07a038
commit a3dd3ea8e6eb15b57d1f390ce0d2c3a03f07a038
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 09:58:24 2018 -0700

 made modificaitons to myFile.txt

diff --git a/myFile.txt b/myFile.txt
index 6ccb42e..69e7d47 100644
--- a/myFile.txt
+++ b/myFile.txt
@@ -1 +1 @@
-this is my test file
+this is the second iteration of my test file

If you need to revert the changes you have made, you can choose between revert and
reset. Revert changes all the file for a specific commit back to their state before the
commit:

$ git revert a3dd3ea8e6eb15b57d1f390ce0d2c3a03f07a038
[master 9818f29] Revert "made modificaitons to myFile.txt"
 1 file changed, 1 insertion(+), 1 deletion(-)

Check to verified the file content was before the second change.
$ cat myFile.txt
this is my test file

The revert command will keep the commit you reverted and make a new commit. You
will be able to see all the changes up to that point, including the revert:

$ git log
commit 9818f298f477fd880db6cb87112b50edc392f7fa
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 13:11:30 2018 -0700

 Revert "made modificaitons to myFile.txt"

 This reverts commit a3dd3ea8e6eb15b57d1f390ce0d2c3a03f07a038.

Working with Git Chapter 11

[354]

 modified: reverted the change to myFile.txt

commit a3dd3ea8e6eb15b57d1f390ce0d2c3a03f07a038
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 09:58:24 2018 -0700

 made modificaitons to myFile.txt

commit 5f579ab1e9a3fae13aa7f1b8092055213157524d
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 08:05:09 2018 -0700

 adding myFile.txt

The reset option will reset the status of your repository to an older version and discard all
the changes in between:

$ git reset --hard a3dd3ea8e6eb15b57d1f390ce0d2c3a03f07a038
HEAD is now at a3dd3ea made modificaitons to myFile.txt

$ git log
commit a3dd3ea8e6eb15b57d1f390ce0d2c3a03f07a038
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 09:58:24 2018 -0700

 made modificaitons to myFile.txt

commit 5f579ab1e9a3fae13aa7f1b8092055213157524d
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 08:05:09 2018 -0700

 adding myFile.txt

Personally, I like to keep all the history, including any rollbacks that I have done. Therefore,
when I need to rollback a change, I usually pick revert instead of reset.

A branch in git is a line of development within a repository. Git allows many branches
and thus different lines of development within a repository. By default, we have the master
branch. There are many reasons for branching, but most of them represent an individual
customer release or a development phase, that is, the dev branch. Let's create a dev branch
within our repository:

$ git branch dev
$ git branch
 dev
* master

Working with Git Chapter 11

[355]

To start working on the branch, we will need to checkout the branch:

$ git checkout dev
Switched to branch 'dev'
$ git branch
* dev
 master

Let's add a second file to the dev branch:

$ echo "my second file" > mySecondFile.txt
$ git add mySecondFile.txt
$ git commit -m "added mySecondFile.txt to dev branch"
[dev c983730] added mySecondFile.txt to dev branch
 1 file changed, 1 insertion(+)
 create mode 100644 mySecondFile.txt

We can go back to the master branch and verify that the two lines of development are
separate:

$ git branch
* dev
 master
$ git checkout master
Switched to branch 'master'
$ ls
myFile.txt
$ git checkout dev
Switched to branch 'dev'
$ ls
myFile.txt mySecondFile.txt

To have the contents in the dev branch be written into the master branch, we will need to
merge them:

$ git branch
* dev
 master
$ git checkout master
$ git merge dev master
Updating a3dd3ea..c983730
Fast-forward
 mySecondFile.txt | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 mySecondFile.txt
$ git branch
 dev
* master

Working with Git Chapter 11

[356]

$ ls
myFile.txt mySecondFile.txt

We can use git rm to remove a file. Let's create a third file and remove it:

$ touch myThirdFile.txt
$ git add myThirdFile.txt
$ git commit -m "adding myThirdFile.txt"
[master 2ec5f7d] adding myThirdFile.txt
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 myThirdFile.txt
$ ls
myFile.txt mySecondFile.txt myThirdFile.txt
$ git rm myThirdFile.txt
rm 'myThirdFile.txt'
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: myThirdFile.txt
$ git commit -m "deleted myThirdFile.txt"
[master bc078a9] deleted myThirdFile.txt
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 myThirdFile.txt

We will be able to see the last two changes in the log:

$ git log
commit bc078a97e41d1614c1ba1f81f72acbcd95c0728c
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 14:02:02 2018 -0700

 deleted myThirdFile.txt

commit 2ec5f7d1a734b2cc74343ce45075917b79cc7293
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 14:01:18 2018 -0700

 adding myThirdFile.txt

We have gone through most of the basic operations we would use for Git. Let's take a look
at how to use GitHub to share our repository.

Working with Git Chapter 11

[357]

GitHub example
In this example, we will use GitHub as the centralized location to synchronize our local
repository and share with other users.

We will create a repository on GitHub. By default, GitHub has a free public repository; in
my case, I pay a small monthly fee to host private repositories. At the time of creation, you
can choose to create the license and the .gitignore file:

GitHub private repository

Working with Git Chapter 11

[358]

Once the repository is created, we can find the URL for this repository:

GitHub repository URL

We will use this URL to create a remote target; we will name it gitHubRepo:

$ git remote add gitHubRepo https://github.com/ericchou1/TestRepo.git
$ git remote -v
gitHubRepo https://github.com/ericchou1/TestRepo.git (fetch)
gitHubRepo https://github.com/ericchou1/TestRepo.git (push)

Working with Git Chapter 11

[359]

Since we chose to create a README.md and LICENSE file during creation, the remote
repository and current repository are not the same. If we were to push local changes to the
GitHub repository, we would receive the following error:

$ git push gitHubRepo master
Username for 'https://github.com': echou@yahoo.com
Password for 'https://echou@yahoo.com@github.com':
To https://github.com/ericchou1/TestRepo.git
 ! [rejected] master -> master (fetch first)

We will go ahead and use git pull to get the new files from GitHub:

$ git pull gitHubRepo master
Username for 'https://github.com': <username>
Password for 'https://<username>@github.com':
From https://github.com/ericchou1/TestRepo
 * branch master -> FETCH_HEAD
Merge made by the 'recursive' strategy.
 .gitignore | 104
+++
 LICENSE | 21 +++++++++++++
 README.md | 2 ++
 3 files changed, 127 insertions(+)
 create mode 100644 .gitignore
 create mode 100644 LICENSE
 create mode 100644 README.md

Now we will be able to push the contents over to GitHub:

$ git push gitHubRepo master
Username for 'https://github.com': <username>
Password for 'https://<username>@github.com':
Counting objects: 15, done.
Compressing objects: 100% (9/9), done.
Writing objects: 100% (15/15), 1.51 KiB | 0 bytes/s, done.
Total 15 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), done.
To https://github.com/ericchou1/TestRepo.git
 a001b81..0aa362a master -> master

Working with Git Chapter 11

[360]

We can verify the content of the GitHub repository on the web page:

GitHub repository

Now another user can simply make a copy, or clone, of the repository:

[This is operated from another host]
$ cd /tmp
$ git clone https://github.com/ericchou1/TestRepo.git
Cloning into 'TestRepo'...
remote: Counting objects: 20, done.
remote: Compressing objects: 100% (13/13), done.
remote: Total 20 (delta 2), reused 15 (delta 1), pack-reused 0
Unpacking objects: 100% (20/20), done.
$ cd TestRepo/
$ ls
LICENSE myFile.txt
README.md mySecondFile.txt

Working with Git Chapter 11

[361]

This copied repository will be the exact copy of my original repository, including all the
commit history:

$ git log
commit 0aa362a47782e7714ca946ba852f395083116ce5 (HEAD -> master,
origin/master, origin/HEAD)
Merge: bc078a9 a001b81
Author: Eric Chou <echou@yahoo.com>
Date: Fri Jul 20 14:18:58 2018 -0700

 Merge branch 'master' of https://github.com/ericchou1/TestRepo

commit a001b816bb75c63237cbc93067dffcc573c05aa2
Author: Eric Chou <ericchou1@users.noreply.github.com>
Date: Fri Jul 20 14:16:30 2018 -0700

 Initial commit
...

I can also invite another person as a collaborator for the project under the repository
setting:

Repository invite

In the next example, we will see how we can fork a repository and perform a pull request
for a repository that we do not maintain.

Working with Git Chapter 11

[362]

Collaborating with pull requests
As mentioned, Git supports collaboration between developers for a single project. We will
take a look at how it is done when the code is hosted on GitHub.

In this case, I am going to take a look at the GitHub repository for this book. I am going to
use a different GitHub handle, so I appear as a different user. I will click on the Fork
bottom to make a copy of the repository in my personal account:

Git fork bottom

It will take a few seconds to make a copy:

Git fork in progress

Working with Git Chapter 11

[363]

After it is forked, we will have a copy of the repository in our personal account:

Git fork

We can follow the same steps we have used before to make some modifications to the files.
In this case, I will make some changes to the README.md file. After the change is made, I
can click on the New pull request button to create a pull request:

Pull request

Working with Git Chapter 11

[364]

When making a pull request, we should fill in as much information as possible to provide
justifications for making the change:

Pull request details

Working with Git Chapter 11

[365]

The repository maintainer will receive a notification of the pull request; if accepted, the
change will make its way to the original repository:

Pull request record

GitHub provides an excellent platform for collaboration with other developers; this is
quickly becoming the de facto development choice for many large, open source projects. In
the following section, let's take a look at how we can use Git with Python.

Git with Python
There are some Python packages that we can use with Git and GitHub. In this section, we
will take a look at the GitPython and PyGithub libraries.

GitPython
We can use the GitPython package, https:/ /gitpython. readthedocs. io/ en/stable/
index.html, to work with our Git repository. We will install the package and use the
Python shell to construct a Repo object. From there, we can list all the commits in the
repository:

$ sudo pip3 install gitpython
$ python3

https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html

Working with Git Chapter 11

[366]

>>> from git import Repo
>>> repo =
Repo('/home/echou/Master_Python_Networking_second_edition/Chapter11/TestRep
o')
>>> for commits in list(repo.iter_commits('master')):
... print(commits)
...
0aa362a47782e7714ca946ba852f395083116ce5
a001b816bb75c63237cbc93067dffcc573c05aa2
bc078a97e41d1614c1ba1f81f72acbcd95c0728c
2ec5f7d1a734b2cc74343ce45075917b79cc7293
c98373069f27d8b98d1ddacffe51b8fa7a30cf28
a3dd3ea8e6eb15b57d1f390ce0d2c3a03f07a038
5f579ab1e9a3fae13aa7f1b8092055213157524d

We can also look at the index entries:

>>> for (path, stage), entry in index.entries.items():
... print(path, stage, entry)
...
mySecondFile.txt 0 100644 75d6370ae31008f683cf18ed086098d05bf0e4dc 0
mySecondFile.txt
LICENSE 0 100644 52feb16b34de141a7567e4d18164fe2400e9229a 0 LICENSE
myFile.txt 0 100644 69e7d4728965c885180315c0d4c206637b3f6bad 0 myFile.txt
.gitignore 0 100644 894a44cc066a027465cd26d634948d56d13af9af 0 .gitignore
README.md 0 100644 a29fe688a14d119c20790195a815d078976c3bc6 0 README.md
>>>

GitPython offers good integration with all the Git functions. However, it is not the easiest to
work with. We need to understand the terms and structure of Git to take full advantage of
GitPython. But it is always good to keep it in mind in case we need it for other projects.

PyGitHub
Let's look at using the PyGitHub package, http:/ /pygithub. readthedocs. io/ en/ latest/ ,
to interact with GitHub repositories. The package is a wrapper around GitHub APIv3,
https://developer. github. com/ v3/ :

$ sudo pip install pygithub
$ sudo pip3 install pygithub

http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
http://pygithub.readthedocs.io/en/latest/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/

Working with Git Chapter 11

[367]

Let's use the Python shell to print out the user's current repository:

$ python3
>>> from github import Github
>>> g = Github("ericchou1", "<password>")
>>> for repo in g.get_user().get_repos():
... print(repo.name)
...
ansible
...
-Hands-on-Network-Programming-with-Python
Mastering-Python-Networking
Mastering-Python-Networking-Second-Edition
>>>

For more programmatic access, we can also create more granular control using an access
token. Github allows a token to be associated with the selected rights:

GitHub token generation

Working with Git Chapter 11

[368]

The output is a bit different if you use the access token as the authentication mechanism:

>>> from github import Github
>>> g = Github("<token>")
>>> for repo in g.get_user().get_repos():
... print(repo)
...
Repository(full_name="oreillymedia/distributed_denial_of_service_ddos")
Repository(full_name="PacktPublishing/-Hands-on-Network-Programming-with-
Python")
Repository(full_name="PacktPublishing/Mastering-Python-Networking")
Repository(full_name="PacktPublishing/Mastering-Python-Networking-Second-
Edition")
...

Now that we are familiar with Git, GitHub, and some of the Python packages, we can use
them to work with the technology. We will take a look at some practical examples in the
coming section.

Automating configuration backup
In this example, we will use PyGithub to back up a directory containing our router
configurations. We have seen how we can retrieve the information from our devices with
Python or Ansible; we can now check them into GitHub.

We have a subdirectory, named config, with our router configs in text format:

$ ls configs/
iosv-1 iosv-2

$ cat configs/iosv-1
Building configuration...

Current configuration : 4573 bytes
!
! Last configuration change at 02:50:05 UTC Sat Jun 2 2018 by cisco
!
version 15.6
service timestamps debug datetime msec
...

Working with Git Chapter 11

[369]

We can use the following script to retrieve the latest index from our GitHub repository,
build the content that we need to commit, and automatically commit the configuration:

$ cat Chapter11_1.py
#!/usr/bin/env python3
reference:
https://stackoverflow.com/questions/38594717/how-do-i-push-new-files-to-git
hub

from github import Github, InputGitTreeElement
import os

github_token = '<token>'
configs_dir = 'configs'
github_repo = 'TestRepo'

Retrieve the list of files in configs directory
file_list = []
for dirpath, dirname, filenames in os.walk(configs_dir):
 for f in filenames:
 file_list.append(configs_dir + "/" + f)

g = Github(github_token)
repo = g.get_user().get_repo(github_repo)

commit_message = 'add configs'
master_ref = repo.get_git_ref('heads/master')
master_sha = master_ref.object.sha
base_tree = repo.get_git_tree(master_sha)

element_list = list()

for entry in file_list:
 with open(entry, 'r') as input_file:
 data = input_file.read()
 element = InputGitTreeElement(entry, '100644', 'blob', data)
 element_list.append(element)

Create tree and commit
tree = repo.create_git_tree(element_list, base_tree)
parent = repo.get_git_commit(master_sha)
commit = repo.create_git_commit(commit_message, tree, [parent])
master_ref.edit(commit.sha)

Working with Git Chapter 11

[370]

We can see the configs directory in the GitHub repository:

Configs directory

The commit history shows the commit from our script:

Commit history

Working with Git Chapter 11

[371]

In the GitHub example section, we saw how we could collaborate with other developers by
forking the repository and making pull requests. Let's look at how we can further
collaborate with Git.

Collaborating with Git
Git is an awesome collaboration technology, and GitHub is an incredibly effective way to
develop projects together. GitHub provides a place for anyone in the world with internet
access to share their thoughts and code for free. We know how to use Git and some of the
basic collaboration steps using GitHub, but how do we join and contribute to a project?
Sure, we would like to give back to these open source projects that have given us so much,
but how do we get started?

In this section, we'll look at some of the things to know about software-development
collaboration using Git and GitHub:

Start small: One of the most important things to understand is the role we can
play within a team. We might be awesome at network engineering but a
mediocre Python developer. There are plenty of things we can do that don't
involve being a highly-skilled developer. Don't be afraid to start small,
documentation and testing are two good ways to get your foot in the door as a
contributor.
Learn the ecosystem: With any project, large or small, there is a set of
conventions and a culture that has been established. We are all drawn to Python
for its easy-to-read syntax and beginner-friendly culture; they also have a
development guide that is centered around that ideology (https:/ /devguide.
python.org/). The Ansible project, on the other hand, also has an extensive
community guide (https:/ /docs. ansible. com/ ansible/ latest/ community/
index.html). It includes the code of conduct, the pull request process, how to
report bugs, and the release process. Read these guides and learn the ecosystem
for the project of interest.
Make a branch: I have made the mistake of forking a project and making a pull
request for the main branch. The main branch should be left alone for the core
contributors to make changes to. We should create a separate branch for our
contribution and allow the branch to be merged at a later date.

https://devguide.python.org/
https://devguide.python.org/
https://devguide.python.org/
https://devguide.python.org/
https://devguide.python.org/
https://devguide.python.org/
https://devguide.python.org/
https://devguide.python.org/
https://devguide.python.org/
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html

Working with Git Chapter 11

[372]

Keep forked repository synchronized: Once you have forked a project, there is
no rule that forces the cloned repository to sync with the main repository. We
should make a point to regularly do git pull (get the code and merge locally)
or git fetch (get the code with any change locally) to make sure we have the
latest copy of the main repository.
Be friendly: Just as in the real world, the virtual world has no place for hostility.
When discussing an issue, be civil and friendly, even in disagreements.

Git and GitHub provide a way for any motivated individual to make a difference by
making it easy to collaborate on projects. We are all empowered to contribute to any open
source or private projects that we find interesting.

Summary
In this chapter, we looked at the version-control system known as Git and its close sibling,
GitHub. Git was developed by Linus Torvolds in 2005 to help develop the Linux kernel and
later adopted by other open source projects as the source-control system. Git is a fast,
distributed, and scalable system. GitHub provides a centralized location to host Git
repositories on the internet that allow anybody with an internet connection to collaborate.

We looked at how to use Git in the command line, its various operations, and how they are
applied in GitHub. We also studied two of the popular Python libraries for working with
Git: GitPython and PyGitHub. We ended the chapter with a configuration backup example
and notes about project collaboration.

In Chapter 12, Continuous Integration with Jenkins, we will look at another popular open
source tool used for continuous integration and deployment: Jenkins.

12
Continuous Integration with

Jenkins
The network touches every part of the technology stack; in all of the environments I have
worked in, it is always a Tier-Zero service. It is a foundation service that other services rely
on for their services to work. In the minds of other engineers, business managers, operators,
and support staff, the network should just work. It should always be accessible and
function correctly—a good network is a network that nobody hears about.

Of course, as network engineers, we know the network is as complex as any other
technology stack. Due to its complexity, the constructs that make up a running network can
be fragile at times. Sometimes, I look at a network and wonder how it can work at all, let
alone how it's been running for months and years without business impacts.

Part of the reason we are interested in network automation is to find ways to repeat our
network-change process reliably and consistently. By using Python scripts or the Ansible
framework, we can make sure the change that we make will stay consistent and be
reliably applied. As we saw in the last chapter, we can use Git and GitHub to store
components of the process, such as templates, scripts, requirements, and files, reliably. The
code that makes up the infrastructure is version-controlled, collaborated, and accountable
for changes. But how do we tie all the pieces together? In this chapter, we will look at a
popular open source tool that can optimize the network-management pipeline, called
Jenkins.

Traditional change-management process
For engineers who have worked in a large network environment, they know the impact of a
network change gone wrong can be big. We can make hundreds of changes without any
issues, but all it takes is one bad change that can cause the network to have a negative
impact on the business.

Continuous Integration with Jenkins Chapter 12

[374]

There is no shortage of war stories about network outages causing
business pain. One of the most visible and large-scale AWS EC2 outage in
2011 was caused by a network change that was part of our normal AWS
scaling activities in the AWS US-East region. The change occurred at 00:47
PDT and caused a brown-out for various services for over 12 hours,
losing millions of dollars for Amazon in the process. More importantly,
the reputation of the relatively young service took a serious hit. IT
decision makers will point to the outage as reasons to NOT migrate to AWS
cloud. It took many years to rebuild its reputation. You can read more
about the incident report at https:/ /aws. amazon. com/message/ 65648/ .

Due to its potential impact and complexity, in many environments, the Change-Advisory
Board (CAB) is implemented for networks. The typical CAB process is as follows:

The network engineer will design the change and write out the detail steps1.
required of the change. This can include the reason for the change, the devices
involved, the commands that will be applied or deleted, how to verify the
output, and the expected outcome for each of the steps.
The network engineer is typically required to ask for a technical review from a2.
peer first. Depending on the nature of the change, there can be different levels of
peer review. The simple changes can require a single peer technical review; the
complex change might require a senior designated engineer for approval.
The CAB meeting is generally scheduled for set times with emergency ad-hoc3.
meetings available.
The engineer will present the change to the board. The board will ask the4.
necessary questions, assess the impact, and either approve or deny the change
request.
The change will be carried out, either by the original engineer or another5.
engineer, at the scheduled change window.

This process sounds reasonable and inclusive but proves to have a few challenges in
practice:

Write-ups are time-consuming: It typically takes a lot of time for the design
engineer to write up the document, and sometimes the writing process takes
longer than the time to apply the change. This is generally due to the fact that all
network changes are potentially impactful and we need to document the process
for both technical and non-technical CAB members.

https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/

Continuous Integration with Jenkins Chapter 12

[375]

Engineer expertise: There are different levels of engineering expertise, some are
more experienced, and they are typically the most sought-after resources. We
should reserve their time for tackling the most complex network issues, not
reviewing basic network changes.
Meetings are time-consuming: It takes a lot of effort to put together meetings
and have each member show up. What happens if a required approval person is
on vacation or sick? What if you need the network change to be made prior to the
scheduled CAB time?

These are just some of the bigger challenges of the human-based CAB process. Personally, I
hate the CAB process with a passion. I do not dispute the need for peer review and
prioritization; however, I think we need to minimize the potential overhead involved. Let's
look at a potential pipeline that has been adopted in the software-engineering pipeline.

Introduction to continuous integration
Continuous Integration (CI) in software development is a way to publish small changes to
the code base quickly, in the context of tests and validation built-in. The keys are to classify
the changes to be CI-compatible, that is, not overly complex, and small enough to be
applied that they can be backed out easily. The tests and validation process is built in an
automated way to gain a baseline of confidence that it will be applied without breaking the
whole system.

Before CI, changes to the software were often made in large batches and often required a
long validation process. It can be months before developers see their changes in production,
receive feedback loops, and correct any bugs. In short, the CI process aims to shorten the
process from idea to change.

The general workflow typically involves the following steps:

The first engineer takes a current copy of the code base and works on their1.
change
The first engineer submits the change to the repository2.
The repository can notify the necessary parties of a change in the repository to a3.
group of engineers who can review the change. They can either approve or reject
the change
The continuous-integration system can continuously pull the repository for4.
changes, or the repository can send a notification to the CI system when changes
happen. Either way, the CI system will pull the latest version of the code

Continuous Integration with Jenkins Chapter 12

[376]

The CI system will run automated tests to try to catch any breakage5.
If there is no fault found, the CI system can choose to merge the change into the6.
main code and optionally deploy to the production system

This is a generalized list of steps. The process can be different for each organization; for
example, automated tests can be run as soon as the delta code is checked in instead of after
code review. Sometimes, the organization might choose to have a human engineer involved
for sanity checks in between the steps.

In the next section, we will illustrate the instructions to install Jenkins on an Ubuntu 16.04
system.

Installing Jenkins
For the examples we will use in this chapter, we can install Jenkins on the management host
or a separate machine. My personal preference is to install it on a separate virtual machine.
The virtual machine will have a similar network set up as the management host up to this
point, with one interface for the internet connection and another interface for VMNet 2
connection to the VIRL management network.

The Jenkins image and installation instruction per operating system can be found
at https://jenkins. io/ download/ . The following is the instructions I used for installing
Jenkins on the Ubuntu 16.04 host:

$ wget -q -O - https://pkg.jenkins.io/debian-stable/jenkins.io.key | sudo
apt-key add -

added Jenkins to /etc/apt/sources.list
$ cat /etc/apt/sources.list | grep jenkins
deb https://pkg.jenkins.io/debian-stable binary/

install Java8
$ sudo add-apt-repository ppa:webupd8team/java
$ sudo apt update; sudo apt install oracle-java8-installer

$ sudo apt-get update
$ sudo apt-get install jenkins

Start Jenkins
$ /etc/init.d/jenkins start

https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/

Continuous Integration with Jenkins Chapter 12

[377]

At the time of writing, we have to install Java separately because Jenkins
does not work with Java 9; see https:/ /issues. jenkins- ci. org/ browse/
JENKINS- 40689 for more details. Hopefully, by the time you read this, the
issue is resolved.

Once Jenkins is installed, we can point the browser to the IP at port 8080 to continue the
process:

Unlock Jenkins screen

https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689
https://issues.jenkins-ci.org/browse/JENKINS-40689

Continuous Integration with Jenkins Chapter 12

[378]

As stated on the screen, get the admin password from
/var/lib/jenkins/secrets/initialAdminPassword and paste the output in the
screen. For the time being, we will choose the Install suggested plugins option:

Install suggested plugins

You will be redirected to create the admin user; once created, Jenkins will be ready. If you
see the Jenkins dashboard, the installation was successful:

Jenkins dashboard

Continuous Integration with Jenkins Chapter 12

[379]

We are now ready to use Jenkins to schedule our first job.

Jenkins example
In this section, we will take a look at a few Jenkins examples and how they tie into the
various technologies we have covered in this book. The reason Jenkins is one of the last
chapters of this book is because it will leverage many of the other tools, such as our Python
script, Ansible, Git, and GitHub. Feel free to refer back to Chapters 11, Working with Git, if
needed.

In the examples, we will use the Jenkins master to execute our jobs. In
production, it is recommended to add Jenkins nodes to handle the
execution of jobs.

For our lab, we will use a simple two-node topology with IOSv devices:

Chapter 12 lab topology

Let's build our first job.

Continuous Integration with Jenkins Chapter 12

[380]

First job for the Python script
For our first job, let's use the Parmiko script that we built in Chapter 2, Low-Level Network
Device Interactions, chapter2_3.py. If you recall, this is a script that uses Paramiko to ssh
to the remote devices and grabs the show run and show version output of the devices:

$ ls
chapter12_1.py
$ python3 /home/echou/Chapter12/chapter12_1.py
...
$ ls
chapter12_1.py iosv-1_output.txt iosv-2_output.txt

We will use the create new job link to create the job and pick the Freestyle project option:

Example 1 freestyle project

We will leave everything as default and unchecked; select Execute shell as the build
option:

Continuous Integration with Jenkins Chapter 12

[381]

Example 1 build step

When the prompt appears, we will enter in the exact commands we use in the shell:

Example 1 shell command

Continuous Integration with Jenkins Chapter 12

[382]

Once we save the job configuration, we will be redirected to the project dashboard. We can
choose the Build Now option, and the job will appear under Build History:

Example 1 build

You can check the status of the build by clicking on it and choosing the Console Output on
the left panel:

Continuous Integration with Jenkins Chapter 12

[383]

Example 1 console output

As an optional step, we can schedule this job at a regular interval, much like cron would do
for us. The job can be scheduled under Build Triggers, choose to Build Periodically and
entered the cron-like schedule. In this example, the script will run daily at 02:00 and 22:00:

Example 1 build trigger

Continuous Integration with Jenkins Chapter 12

[384]

We can also configure the SMTP server on Jenkins to allow notification of the build results.
First, we will need to configure the SMTP server settings under Manage Jenkins |
Configure Systems from the main menu:

Example 1 configure system

We will see the SMTP server settings toward the bottom of the page. Click on the
Advanced settings to configure the SMTP server settings as well as to send out a test
email:

Continuous Integration with Jenkins Chapter 12

[385]

Example 1 configure SMTP

We will be able to configure email notifications as part of the post-build actions for our job:

Example 1 email notification

Continuous Integration with Jenkins Chapter 12

[386]

Congratulations! We have just used Jenkins to create our first job. Functionally, this has not
done anything more than what we could have achieved with our management host.
However, there are several advantages of using Jenkins:

We can utilize Jenkins' various database-authentication integrations, such as
LDAP, to allow existing users to execute our script.
We can use Jenkins' role-based authorization to limit users. For example, some
users can only execute jobs without modification access while others can have
full administrative access.
Jenkins provides a web-based graphical interface that allows users to access, the
scripts easily.
We can use the Jenkins email and logging services to centralize our jobs and be
notified of the results.

Jenkins is a great tool by itself. Just like Python, it has a big third-party plugin ecosystem
that can be used to expand its features and functionalities.

Jenkins plugins
We will install a simple schedule plugin as an example illustrating the plugin-installation
process. The plugins are managed under Manage Jenkins | Manage Plugins:

Jenkins plugin

Continuous Integration with Jenkins Chapter 12

[387]

We can use the search function to look for the Schedule Build plugin under the available
tab:

Jenkins plugin search

From there, we will just click on Install without restart, and we will be able to check the
installation progress on the following page:

Jenkins plugin installation

Continuous Integration with Jenkins Chapter 12

[388]

After the installation is completed, we will be able to see a new icon that allows us to
schedule jobs more intuitively:

Jenkins plugin result

It is one of the strengths of a popular open source project to have the ability to grow over
time. For Jenkins, the plugins provide a way to customize the tool for different customer
needs. In the coming section, we will look at how to integrate version control and the
approval process into our workflow.

Network continuous integration example
In this section, let's integrate our GitHub repository with Jenkins. By integrating the GitHub
repository, we can take advantage of the GitHub code review and collaboration tools.

First, we will create a new GitHub repository, I will call this repository
chapter12_example2. We can clone this repository locally and add the files we wanted to
the repository. In this case, I am adding an Ansible playbook that copies the output of the
show version command to a file:

$ cat chapter12_playbook.yml

- name: show version
 hosts: "ios-devices"
 gather_facts: false
 connection: local

 vars:
 cli:
 host: "{{ ansible_host }}"
 username: "{{ ansible_user }}"
 password: "{{ ansible_password }}"

 tasks:
 - name: show version
 ios_command:

Continuous Integration with Jenkins Chapter 12

[389]

 commands: show version
 provider: "{{ cli }}"

 register: output

 - name: show output
 debug:
 var: output.stdout

 - name: copy output to file
 copy: content="{{ output }}" dest=./output/{{ inventory_hostname
}}.txt

By now, we should be pretty familiar with running an Ansible playbook. I will skip the
output of host_vars and the inventory file. However, the most important thing is to verify
that it runs on the local machine before committing to the GitHub repository:

$ ansible-playbook -i hosts chapter12_playbook.yml

PLAY [show version]
**

TASK [show version]
**
ok: [iosv-1]
ok: [iosv-2]
...
TASK [copy output to file]

changed: [iosv-1]
changed: [iosv-2]

PLAY RECAP

iosv-1 : ok=3 changed=1 unreachable=0 failed=0
iosv-2 : ok=3 changed=1 unreachable=0 failed=0

Continuous Integration with Jenkins Chapter 12

[390]

We can now push the playbook and associated files to our GitHub repository:

Example 2 GitHub repository

Let's log back into the Jenkins host to install git and Ansible:

$ sudo apt-get install git
$ sudo apt-get install software-properties-common
$ sudo apt-get update
$ sudo apt-get install ansible

Continuous Integration with Jenkins Chapter 12

[391]

Some of the tools can be installed under Global Tool Configuration; Git is one of them.
However, since we are installing Ansible, we can install Git in the same Command Prompt:

Global tools configuration

Continuous Integration with Jenkins Chapter 12

[392]

We can create a new freestyle project named chapter12_example2. Under the source-
code management, we will specify the GitHub repository as the source:

Example 2 source-code management

Continuous Integration with Jenkins Chapter 12

[393]

Before we move on to the next step, let's save the project and run a build. In the build
console output, we should be able to see the repository being cloned and the index value
match what we see on GitHub:

Example 2 console output 1

We can now add the Ansible playbook command in the build section:

Example 2 build shell

Continuous Integration with Jenkins Chapter 12

[394]

If we run the build again, we can see from the console output that Jenkins will fetch the
code from GitHub before executing the Ansible playbook:

Example 2 build console output 2

Continuous Integration with Jenkins Chapter 12

[395]

One of the benefits of integrating GitHub with Jenkins is that we can see all the Git
information on the same screen:

Example 2 Git build data

The results of the project, such as the output of the Ansible playbook, can be seen in the
workspace folder:

Example 2 workspace

Continuous Integration with Jenkins Chapter 12

[396]

At this point, we can follow the same step as before to use periodic build as the build
trigger. If the Jenkins host is publicly accessible, we can also use GitHub's Jenkins plugin to
notify Jenkins as a trigger for the build. This is a two-step process, the first step is to enable
the plugin on your GitHub repository:

Example 2 GitHub Jenkins service

The second step is to specify the GitHub hook trigger as the Build Triggers for our project:

Example 2 Jenkins build trigger

Continuous Integration with Jenkins Chapter 12

[397]

Having the GitHub repository as the source allows for a brand new set of possibilities of
treating infrastructure as code. We can now use GitHub's tool of a fork, pull requests, issue
tracking, and project management to work together efficiently. Once the code is ready,
Jenkins can automatically pull the code down and execute it on our behalf.

You will notice we did not mention anything about automated testing. We
will go over testing in Chapter 13, Test-Driven Development for Networks.

Jenkins is a full-featured system that can become complex. We have just scratched the
surface of it with the two examples presented in this chapter. The Jenkins pipeline,
environmental setup, multibranch pipeline, and so on, are all useful features that can
accommodate the most complex automation projects. Hopefully, this chapter will serve as
an interesting introduction for you to further explore the Jenkins tool.

Jenkins with Python
Jenkins provides a full set of REST APIs for its functionalities: https:/ /wiki. jenkins. io/
display/JENKINS/ Remote+access+API. There are also a number of Python wrappers that
make the interaction even easier. Let's take a look at the Python-Jenkins package:

$ sudo pip3 install python-jenkins
$ python3
>>> import jenkins
>>> server = jenkins.Jenkins('http://192.168.2.123:8080',
username='<user>', password='<pass>')
>>> user = server.get_whoami()
>>> version = server.get_version()
>>> print('Hello %s from Jenkins %s' % (user['fullName'], version))
Hello Admin from Jenkins 2.121.2

We can work with the management of the server, such as plugins:

>>> plugin = server.get_plugins_info()
>>> plugin
[{'supportsDynamicLoad': 'MAYBE', 'downgradable': False,
'requiredCoreVersion': '1.642.3', 'enabled': True, 'bundled': False,
'shortName': 'pipeline-stage-view', 'url':
'https://wiki.jenkins-ci.org/display/JENKINS/Pipeline+Stage+View+Plugin',
'pinned': False, 'version': 2.10, 'hasUpdate': False, 'deleted': False,
'longName': 'Pipeline: Stage View Plugin', 'active': True, 'backupVersion':
None, 'dependencies': [{'shortName': 'pipeline-rest-api', 'version':
'2.10', 'optional': False}, {'shortName': 'workflow-job', 'version': '2.0',

https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://wiki.jenkins.io/display/JENKINS/Remote+access+API

Continuous Integration with Jenkins Chapter 12

[398]

'optional': False}, {'shortName': 'handlebars', 'version': '1.1',
'optional': False}...

We can also manage the Jenkins jobs:

>>> job = server.get_job_config('chapter12_example1')
>>> import pprint
>>> pprint.pprint(job)
("<?xml version='1.1' encoding='UTF-8'?>\n"
 '<project>\n'
 ' <actions/>\n'
 ' <description>Paramiko Python Script for Show Version and Show '
 'Run</description>\n'
 ' <keepDependencies>false</keepDependencies>\n'
 ' <properties>\n'
 ' <jenkins.model.BuildDiscarderProperty>\n'
 ' <strategy class="hudson.tasks.LogRotator">\n'
 ' <daysToKeep>10</daysToKeep>\n'
 ' <numToKeep>5</numToKeep>\n'
 ' <artifactDaysToKeep>-1</artifactDaysToKeep>\n'
 ' <artifactNumToKeep>-1</artifactNumToKeep>\n'
 ' </strategy>\n'
 ' </jenkins.model.BuildDiscarderProperty>\n'
 ' </properties>\n'
 ' <scm class="hudson.scm.NullSCM"/>\n'
 ' <canRoam>true</canRoam>\n'
 ' <disabled>false</disabled>\n'
 ' '
'<blockBuildWhenDownstreamBuilding>false</blockBuildWhenDownstreamBuilding>
\n'
 '
<blockBuildWhenUpstreamBuilding>false</blockBuildWhenUpstreamBuilding>\n'
 ' <triggers>\n'
 ' <hudson.triggers.TimerTrigger>\n'
 ' <spec>0 2,20 * * *</spec>\n'
 ' </hudson.triggers.TimerTrigger>\n'
 ' </triggers>\n'
 ' <concurrentBuild>false</concurrentBuild>\n'
 ' <builders>\n'
 ' <hudson.tasks.Shell>\n'
 ' <command>python3 /home/echou/Chapter12/chapter12_1.py</command>\n'
 ' </hudson.tasks.Shell>\n'
 ' </builders>\n'
 ' <publishers/>\n'
 ' <buildWrappers/>\n'
 '</project>')
>>>

Continuous Integration with Jenkins Chapter 12

[399]

Using Python-Jenkins allows us to have a way to interact with Jenkins in a programmatic
way.

Continuous integration for Networking
Continuous integration has been adopted in the software-development world for a while,
but it is relatively new to network engineering. We are admittedly a bit behind in terms of
using continuous integration in our network infrastructure. It is no doubt a bit of a
challenge to think of our network in terms of code when we are still struggling to figure out
how to stop using the CLI to manage our devices.

There are a number of good examples of using Jenkins for network automation. One is by
Tim Fairweather and Shea Stewart at AnsibleFest 2017 network track: https:/ /www.
ansible.com/ansible- for- networks- beyond- static- config- templates. Another use case
was shared by Carlos Vicente from Dyn at NANOG 63: https:/ /www. nanog. org/ sites/
default/files/monday_ general_ autobuild_ vicente_ 63.28. pdf.

Even though continuous integration might be an advanced topic for network engineers
who are just beginning to learn coding and the toolsets, in my opinion, it is worth the effort
to start learning and using continuous integration in production today. Even at the basic
level, the experience will trigger more innovative ways for network automation that will no
doubt help the industry move forward.

Summary
In this chapter, we examined the traditional change-management process and why it is not
a good fit for today's rapidly changing environment. The network needs to evolve with the
business to become more agile and adapt to change quickly and reliably.

We looked at the concept of continuous integration, in particular the open source Jenkins
system. Jenkins is a full-featured, expandable, continuous-integration system that is widely
used in software development. We installed and used Jenkins to execute our Python script
based on Paramiko in a periodic interval with email notifications. We also saw how we can
install plugins for Jenkins to expand its features.

https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.ansible.com/ansible-for-networks-beyond-static-config-templates
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf
https://www.nanog.org/sites/default/files/monday_general_autobuild_vicente_63.28.pdf

Continuous Integration with Jenkins Chapter 12

[400]

We looked at how we can use Jenkins to integrate with our GitHub repository and trigger
builds based on code-checking. By integrating Jenkins with GitHub, we can utilize the
GitHub process of collaboration.

In Chapter 13, Test-Driven Development for Networks, we will look at test-driven
development with Python.

13
Test-Driven Development for

Networks
The idea of Test-Driven Development (TDD) has been around for a while. American
software engineer Kent Beck, among others, is typically credited with bringing and leading
the TDD movement along with agile software development. Agile software development
requires very short build-test-deploy development cycles; all of the software requirements
are turned into test cases. These test cases are usually written before the code is written, and
the software code is only accepted when the test passes.

The same idea can be drawn in parallel with network engineering. When we face the
challenge of designing a modern network, we can break the process down into the
following steps:

We start with the overall requirement for the new network. Why do we need to
design a new or part of a new network? Maybe it is for new server hardware, a
new storage network, or a new micro-service software architecture.
The new requirements are broken down into smaller, more specific requirements.
This can be looking at a new switch platform, a more efficient routing protocol,
or a new network topology (for example, fat-tree). Each of the smaller
requirements can be broken down into the categories of must-have and optional.
We draw out the test plan and evaluate it against the potential candidates for
solutions.
The test plan will work in reverse order; we will start by testing the features, then
integrate the new feature into a bigger topology. Finally, we will try to run our
test as close to a production environment as possible.

Test-Driven Development for Networks Chapter 13

[402]

The point is, even if we don't realize it, we might already be adopting a test-driven
development methodology in network engineering. This was part of my revelation when I
was studying the TDD mindset. We are already implicitly following this best practice
without formalizing the method.

By gradually moving parts of the network as code, we can use TDD for the network even
more. If our network topology is described in a hierarchical format in XML or JSON, each
of the components can be correctly mapped and expressed in the desired state. This is the
desired state that we can write test cases against. For example, if our desired state calls for a
full mesh of switches, we can always write a test case to check against our production
devices for the number of BGP neighbors it has.

Test-driven development overview
The sequence of TDD is loosely based on the following six steps:

Write a test with the result in mind 1.
Run all tests and see whether the new test fails 2.
Write the code3.
Run the test again4.
Make necessary changes if the test fails5.
Repeat6.

I just follow the guidelines loosely. The TDD process calls for writing the test cases before
writing any code, or in our instance, before any components of the network are built. As a
matter of personal preference, I always like to see a working version of the working
network or code before writing test cases. It gives me a higher level of confidence. I also
jump around the levels of testing; sometimes I test a small portion of the network; other
times I conduct a system-level end-to-end test, such as a ping or traceroute test.

The point is, I do not believe there is a one-size-fits-all approach when it comes to testing. It
depends on personal preference and the scope of the project. This is true for most of the
engineers I have worked with. It is a good idea to keep the framework in mind, so we have
a working blueprint to follow, but you are the best judge of your style of problem-solving.

Test-Driven Development for Networks Chapter 13

[403]

Test definitions
Let's look at some of the terms commonly used in TDD:

Unit test: Checks a small piece of code. This is a test that is run against a single
function or class
Integration test: Checks multiple components of a code base; multiple units are
combined and tested as a group. This can be a test that checks against a Python
module or multiple modules
System test: Checks from end to end. This is a test that runs as close to what an
end user would see
Functional test: Checks against a single function
Test coverage: A term defined as the determination of whether our test cases
cover the application code. This is typically done by examining how much code
is exercised when we run the test cases
Test fixtures: A fixed state that forms a baseline for running our tests. The
purpose of a test fixture is to ensure there is a well-known and fixed environment
in which tests are run, so they are repeatable
Setup and teardown: All the prerequisite steps are added in the setup and
cleaned up in the teardown

The terms might seem very software-development-centric, and some might not be relevant
to network engineering. Keep in mind that the terms are a way for us to communicate a
concept or step we will be using these terms in the rest of this chapter. As we use the terms
more in the network engineering context, they might become clearer. Let's dive into
treating network topology as code.

Topology as code
Before we declare that the network is too complex, it is impossible to summarize it into
code! Let's keep an open mind. Would it help if I tell you we have been using code to
describe our topology in this book already?

If you take a look at any of the VIRL topology graphs that we have been using in this book,
they are simply XML files that include a description of the relationship between nodes.

Test-Driven Development for Networks Chapter 13

[404]

In this chapter, we will use the following topology for our lab:

If we open up the topology file, chapter13_topology.virl, with a text editor, we will
see that the file is an XML file describing the node and the relationship between the nodes.
The top root level is the <topology> node with child nodes of <node>. Each of the child
nodes consists of various extensions and entries. The device configurations are embedded
in the file as well:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<topology xmlns="http://www.cisco.com/VIRL"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" schemaVersion="0.95"
xsi:schemaLocation="http://www.cisco.com/VIRL
https://raw.github.com/CiscoVIRL/schema/v0.95/virl.xsd">
 <extensions>
 <entry key="management_network" type="String">flat</entry>
 </extensions>
 <node name="iosv-1" type="SIMPLE" subtype="IOSv" location="182,162"
ipv4="192.168.0.3">
 <extensions>
 <entry key="static_ip" type="String">172.16.1.20</entry>
 <entry key="config" type="string">! IOS Config generated on
2018-07-24 00:23
! by autonetkit_0.24.0
!
hostname iosv-1
boot-start-marker
boot-end-marker
!
...
 </node>
 <node name="nx-osv-1" type="SIMPLE" subtype="NX-OSv" location="281,161"

Test-Driven Development for Networks Chapter 13

[405]

ipv4="192.168.0.1">
 <extensions>
 <entry key="static_ip" type="String">172.16.1.21</entry>
 <entry key="config" type="string">! NX-OSv Config generated on
2018-07-24 00:23
! by autonetkit_0.24.0
!
version 6.2(1)
license grace-period
!
hostname nx-osv-1

...
<node name="host2" type="SIMPLE" subtype="server" location="347,66">
 <extensions>
 <entry key="static_ip" type="String">172.16.1.23</entry>
 <entry key="config" type="string">#cloud-config
bootcmd:
- ln -s -t /etc/rc.d /etc/rc.local
hostname: host2
manage_etc_hosts: true
runcmd:
- start ttyS0
- systemctl start getty@ttyS0.service
- systemctl start rc-local
 <annotations/>
 <connection dst="/virl:topology/virl:node[1]/virl:interface[1]"
src="/virl:topology/virl:node[3]/virl:interface[1]"/>
 <connection dst="/virl:topology/virl:node[2]/virl:interface[1]"
src="/virl:topology/virl:node[1]/virl:interface[2]"/>
 <connection dst="/virl:topology/virl:node[4]/virl:interface[1]"
src="/virl:topology/virl:node[2]/virl:interface[2]"/>
</topology>

By expressing the network as code, we can declare a source of truth for our network. We
can write test code to compare the actual production value against this blueprint. We will
use this topology file as the base, and compare the production network value against it. But
first, we will need to grab the values we want from the XML file. In chapter13_1_xml.py,
we will use ElementTree to parse the virl topology file and construct a dictionary
consisting of the information of our devices:

#!/usr/env/bin python3

import xml.etree.ElementTree as ET
import pprint

with open('chapter13_topology.virl', 'rt') as f:

Test-Driven Development for Networks Chapter 13

[406]

 tree = ET.parse(f)

devices = {}

for node in tree.findall('./{http://www.cisco.com/VIRL}node'):
 name = node.attrib.get('name')
 devices[name] = {}
 for attr_name, attr_value in sorted(node.attrib.items()):
 devices[name][attr_name] = attr_value

Custom attributes
devices['iosv-1']['os'] = '15.6(3)M2'
devices['nx-osv-1']['os'] = '7.3(0)D1(1)'
devices['host1']['os'] = '16.04'
devices['host2']['os'] = '16.04'

pprint.pprint(devices)

The result is a Python dictionary that consists of the devices according to our topology file.
We can also add customary items to the dictionary:

$ python3 chapter13_1_xml.py
{'host1': {'location': '117,58',
 'name': 'host1',
 'os': '16.04',
 'subtype': 'server',
 'type': 'SIMPLE'},
 'host2': {'location': '347,66',
 'name': 'host2',
 'os': '16.04',
 'subtype': 'server',
 'type': 'SIMPLE'},
 'iosv-1': {'ipv4': '192.168.0.3',
 'location': '182,162',
 'name': 'iosv-1',
 'os': '15.6(3)M2',
 'subtype': 'IOSv',
 'type': 'SIMPLE'},
 'nx-osv-1': {'ipv4': '192.168.0.1',
 'location': '281,161',
 'name': 'nx-osv-1',
 'os': '7.3(0)D1(1)',
 'subtype': 'NX-OSv',
 'type': 'SIMPLE'}}

Test-Driven Development for Networks Chapter 13

[407]

We can use our example from Chapter 3, APIs and Intent-Driven
Networking, cisco_nxapi_2.py, to retrieve the NX-OSv version. When we combine the
two files, we can compare the value we received from our topology file as well as the
production device information. We can use Python's built-in unittest module to write
test cases.

We will discuss the unittest module later. Feel free to skip ahead and
come back to this example if you'd like.

Here is the relevant unittest portion in chapter13_2_validation.py:

import unittest

Unittest Test case
class TestNXOSVersion(unittest.TestCase):
 def test_version(self):
 self.assertEqual(nxos_version, devices['nx-osv-1']['os'])

if __name__ == '__main__':
 unittest.main()

When we run the validation test, we can see that the test passes because the software
version in production matches what we expected:

$ python3 chapter13_2_validation.py
.
--
Ran 1 test in 0.000s

OK

If we manually change the expected NX-OSv version value to introduce a failure case, we
will see the following failed output:

$ python3 chapter13_3_test_fail.py
F
==
FAIL: test_version (__main__.TestNXOSVersion)
--
Traceback (most recent call last):
 File "chapter13_3_test_fail.py", line 50, in test_version
 self.assertEqual(nxos_version, devices['nx-osv-1']['os'])
AssertionError: '7.3(0)D1(1)' != '7.4(0)D1(1)'
- 7.3(0)D1(1)
? ^

Test-Driven Development for Networks Chapter 13

[408]

+ 7.4(0)D1(1)
? ^

--
Ran 1 test in 0.004s

FAILED (failures=1)

We can see that the test case result was returned as failed; the reason for failure was the
version mismatch between the two values.

Python's unittest module
In the previous example, we saw how we could use the assertEqual() method to
compare the two values to return either True or False. Here is an example of the built-in
unittest module to compare two values:

$ cat chapter13_4_unittest.py
#!/usr/bin/env python3

import unittest

class SimpleTest(unittest.TestCase):
 def test(self):
 one = 'a'
 two = 'a'
 self.assertEqual(one, two)

Using the python3 command-line interface, the unittest module can automatically
discover the test cases in the script:

$ python3 -m unittest chapter13_4_unittest.py
.
--
Ran 1 test in 0.000s

OK

Test-Driven Development for Networks Chapter 13

[409]

Besides comparing two values, here are more examples of testing if the expected value is
True or False. We can also generate custom failure messages when a failure occurs:

$ cat chapter13_5_more_unittest.py
#!/usr/bin/env python3
Examples from https://pymotw.com/3/unittest/index.html#module-unittest

import unittest

class Output(unittest.TestCase):
 def testPass(self):
 return

 def testFail(self):
 self.assertFalse(True, 'this is a failed message')

 def testError(self):
 raise RuntimeError('Test error!')

 def testAssesrtTrue(self):
 self.assertTrue(True)

 def testAssertFalse(self):
 self.assertFalse(False)

We can use -v for the option to display a more detailed output:

$ python3 -m unittest -v chapter13_5_more_unittest.py
testAssertFalse (chapter13_5_more_unittest.Output) ... ok
testAssesrtTrue (chapter13_5_more_unittest.Output) ... ok
testError (chapter13_5_more_unittest.Output) ... ERROR
testFail (chapter13_5_more_unittest.Output) ... FAIL
testPass (chapter13_5_more_unittest.Output) ... ok

==
ERROR: testError (chapter13_5_more_unittest.Output)
--
Traceback (most recent call last):
 File
"/home/echou/Master_Python_Networking_second_edition/Chapter13/chapter13_5_
more_unittest.py", line 14, in testError
 raise RuntimeError('Test error!')
RuntimeError: Test error!

==
FAIL: testFail (chapter13_5_more_unittest.Output)
--
Traceback (most recent call last):

Test-Driven Development for Networks Chapter 13

[410]

 File
"/home/echou/Master_Python_Networking_second_edition/Chapter13/chapter13_5_
more_unittest.py", line 11, in testFail
 self.assertFalse(True, 'this is a failed message')
AssertionError: True is not false : this is a failed message

--
Ran 5 tests in 0.001s

FAILED (failures=1, errors=1)

Starting from Python 3.3, the unittest module includes the module object library by
default (https:// docs. python. org/ 3/ library/ unittest. mock. html). This is a very useful
module to make a fake HTTP API call to a remote resource without actually making the
call. For example, we have seen the example of using NX-API to retrieve the NX-OS version
number. What if we want to run our test, but we do not have an NX-OS device available?
We can use the unittest mock object.

In chapter13_5_more_unittest_mocks.py, we created a simple class with a method to
make HTTP API calls and expect a JSON response:

Our class making API Call using requests
class MyClass:
 def fetch_json(self, url):
 response = requests.get(url)
 return response.json()

We also created a function that mocks two URL calls:

This method will be used by the mock to replace requests.get
def mocked_requests_get(*args, **kwargs):
 class MockResponse:
 def __init__(self, json_data, status_code):
 self.json_data = json_data
 self.status_code = status_code

 def json(self):
 return self.json_data

 if args[0] == 'http://url-1.com/test.json':
 return MockResponse({"key1": "value1"}, 200)
 elif args[0] == 'http://url-2.com/test.json':
 return MockResponse({"key2": "value2"}, 200)

 return MockResponse(None, 404)

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html

Test-Driven Development for Networks Chapter 13

[411]

Finally, we make the API call to the two URLs in our test case. However, we are using the
mock.patch decorator to intercept the API calls:

Our test case class
class MyClassTestCase(unittest.TestCase):
 # We patch 'requests.get' with our own method. The mock object is
passed in to our test case method.
 @mock.patch('requests.get', side_effect=mocked_requests_get)
 def test_fetch(self, mock_get):
 # Assert requests.get calls
 my_class = MyClass()
 # call to url-1
 json_data = my_class.fetch_json('http://url-1.com/test.json')
 self.assertEqual(json_data, {"key1": "value1"})
 # call to url-2
 json_data = my_class.fetch_json('http://url-2.com/test.json')
 self.assertEqual(json_data, {"key2": "value2"})
 # call to url-3 that we did not mock
 json_data = my_class.fetch_json('http://url-3.com/test.json')
 self.assertIsNone(json_data)

if __name__ == '__main__':
 unittest.main()

When we run the test, we will see that the test passes without needing to make an actual
API call to the remote endpoint:

$ python3 -m unittest -v chapter13_5_more_unittest_mocks.py
test_fetch (chapter13_5_more_unittest_mocks.MyClassTestCase) ... ok

--
Ran 1 test in 0.001s

OK

For more information on the unittest module, Doug Hellmann's Python module of the
week (https://pymotw. com/ 3/ unittest/ index. html#module- unittest) is an excellent
source of short and precise examples on the unittest module. As always, the Python
documentation is a good source of information as well: https:/ /docs. python. org/ 3/
library/unittest. html.

https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://pymotw.com/3/unittest/index.html#module-unittest
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

Test-Driven Development for Networks Chapter 13

[412]

More on Python testing
In addition to the built-in library of unittest, there are lots of other Python testing
frameworks in the community. Pytest is another robust Python testing framework that is
worth a look. pytest can be used for all types and levels of software testing. It can be used
by developers, QA engineers, individuals practicing Test-Driven Development, and open
source projects. Many of the large-scale open source projects have switched from
unittest or nose to pytest, including Mozilla and Dropbox. The main attractive features
of pytest were a third-party plugin model, a simple fixture model, and assert rewriting.

If you want to learn more about the pytest framework, I would highly
recommend Python Testing with PyTest by Brian Okken (ISBN
978-1-68050-240-4). Another great source is the pytest
documentation: https:/ /docs. pytest. org/ en/latest/ .

pytest is command-line-driven; it can find the tests we have written automatically and
run them:

$ sudo pip install pytest
$ sudo pip3 install pytest
$ python3
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pytest
>>> pytest.__version__
'3.6.3'

Let's look at some examples using pytest.

pytest examples
The first pytest example will be a simple assert for two values:

$ cat chapter13_6_pytest_1.py
#!/usr/bin/env python3

def test_passing():
 assert(1, 2, 3) == (1, 2, 3)

def test_failing():
 assert(1, 2, 3) == (3, 2, 1)

https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/

Test-Driven Development for Networks Chapter 13

[413]

When you run with the -v option, pytest will give us a pretty robust answer for the
failure reason:

$ pytest -v chapter13_6_pytest_1.py
============================== test session starts
===============================
platform linux -- Python 3.5.2, pytest-3.6.3, py-1.5.4, pluggy-0.6.0 --
/usr/bin/python3
cachedir: .pytest_cache
rootdir: /home/echou/Master_Python_Networking_second_edition/Chapter13,
inifile:
collected 2 items

chapter13_6_pytest_1.py::test_passing PASSED [50%]
chapter13_6_pytest_1.py::test_failing FAILED [100%]

==================================== FAILURES
====================================
__________________________________ test_failing

 def test_failing():
> assert(1, 2, 3) == (3, 2, 1)
E assert (1, 2, 3) == (3, 2, 1)
E At index 0 diff: 1 != 3
E Full diff:
E - (1, 2, 3)
E ? ^ ^
E + (3, 2, 1)
E ? ^ ^

chapter13_6_pytest_1.py:7: AssertionError
======================= 1 failed, 1 passed in 0.03 seconds
=======================

In the second example, we will create a router object. The router object will be initiated
with some values in None and some values with default values. We will use pytest to test
one instance with the default and one instance without:

$ cat chapter13_7_pytest_2.py
#!/usr/bin/env python3

class router(object):
 def __init__(self, hostname=None, os=None, device_type='cisco_ios'):
 self.hostname = hostname
 self.os = os
 self.device_type = device_type
 self.interfaces = 24

Test-Driven Development for Networks Chapter 13

[414]

def test_defaults():
 r1 = router()
 assert r1.hostname == None
 assert r1.os == None
 assert r1.device_type == 'cisco_ios'
 assert r1.interfaces == 24

def test_non_defaults():
 r2 = router(hostname='lax-r2', os='nxos', device_type='cisco_nxos')
 assert r2.hostname == 'lax-r2'
 assert r2.os == 'nxos'
 assert r2.device_type == 'cisco_nxos'
 assert r2.interfaces == 24

When we run the test, we will see whether the instance was accurately applied with the
default values:

$ pytest chapter13_7_pytest_2.py
============================== test session starts
===============================
platform linux -- Python 3.5.2, pytest-3.6.3, py-1.5.4, pluggy-0.6.0
rootdir: /home/echou/Master_Python_Networking_second_edition/Chapter13,
inifile:
collected 2 items

chapter13_7_pytest_2.py .. [100%]

============================ 2 passed in 0.04 seconds
============================

If we were to replace the previous unittest example with pytest,
in chapter13_8_pytest_3.py we will have a simple test case:

pytest test case
def test_version():
 assert devices['nx-osv-1']['os'] == nxos_version

Then we run the test with the pytest command line:

$ pytest chapter13_8_pytest_3.py
============================== test session starts
===============================
platform linux -- Python 3.5.2, pytest-3.6.3, py-1.5.4, pluggy-0.6.0
rootdir: /home/echou/Master_Python_Networking_second_edition/Chapter13,
inifile:
collected 1 item

chapter13_8_pytest_3.py . [100%]

Test-Driven Development for Networks Chapter 13

[415]

============================ 1 passed in 0.19 seconds
============================

If we are writing tests for ourselves, we are free to choose any modules. Between unittest
and pytest, I find pytest a more intuitive tool to use. However, since unittest is
included in the standard library, many teams might have a preference for using the
unittest module for their testing.

Writing tests for networking
So far, we have been mostly writing tests for our Python code. We have used both
the unittest and pytest libraries to assert True/False and equal/Non-equal values.
We were also able to write mocks to intercept our API calls when we do not have an actual
API-capable device but still want to run our tests.

A few years ago, Matt Oswalt announced the Testing On Demand:
Distributed (ToDD) validation tool for network changes. It is an open
source framework aimed at testing network connectivity and distributed
capacity. You can find more information about the project on its GitHub
page: https:/ /github. com/ toddproject/ todd. Oswalt also talked about
the project on this Packet Pushers Priority Queue 81, Network Testing
with ToDD: https:/ / packetpushers. net/ podcast/ podcasts/ pq- show-
81-network- testing- todd/ .

In this section, let's look at how we can write tests that are relevant to the networking
world. There is no shortage of commercial products when it comes to network monitoring
and testing. Over the years, I have come across many of them. However, in this section, I
prefer to use simple, open source tools for our tests.

Testing for reachability
Often, the first step of troubleshooting is to conduct a small reachability test. For network
engineers, ping is our best friend when it comes to network reachability tests. It is a way to
test the reachability of a host on an IP network by sending a small package across the
network to the destination.

We can automate the ping test via the OS module or the subprocess module:

>>> import os
>>> host_list = ['www.cisco.com', 'www.google.com']
>>> for host in host_list:

https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://github.com/toddproject/todd
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/
https://packetpushers.net/podcast/podcasts/pq-show-81-network-testing-todd/

Test-Driven Development for Networks Chapter 13

[416]

... os.system('ping -c 1 ' + host)

...
PING e2867.dsca.akamaiedge.net (69.192.206.157) 56(84) bytes of data.
64 bytes from a69-192-206-157.deploy.static.akamaitechnologies.com
(69.192.206.157): icmp_seq=1 ttl=54 time=14.7 ms

--- e2867.dsca.akamaiedge.net ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 14.781/14.781/14.781/0.000 ms
0
PING www.google.com (172.217.3.196) 56(84) bytes of data.
64 bytes from sea15s12-in-f196.1e100.net (172.217.3.196): icmp_seq=1 ttl=54
time=12.8 ms

--- www.google.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 12.809/12.809/12.809/0.000 ms
0
>>>

The subprocess module offers the additional benefit of catching the output back:

>>> import subprocess
>>> for host in host_list:
... print('host: ' + host)
... p = subprocess.Popen(['ping', '-c', '1', host],
stdout=subprocess.PIPE)
... print(p.communicate())
...
host: www.cisco.com
(b'PING e2867.dsca.akamaiedge.net (69.192.206.157) 56(84) bytes of
data.\n64 bytes from a69-192-206-157.deploy.static.akamaitechnologies.com
(69.192.206.157): icmp_seq=1 ttl=54 time=14.3 ms\n\n---
e2867.dsca.akamaiedge.net ping statistics ---\n1 packets transmitted, 1
received, 0% packet loss, time 0ms\nrtt min/avg/max/mdev =
14.317/14.317/14.317/0.000 ms\n', None)
host: www.google.com
(b'PING www.google.com (216.58.193.68) 56(84) bytes of data.\n64 bytes from
sea15s07-in-f68.1e100.net (216.58.193.68): icmp_seq=1 ttl=54 time=15.6
ms\n\n--- www.google.com ping statistics ---\n1 packets transmitted, 1
received, 0% packet loss, time 0ms\nrtt min/avg/max/mdev =
15.695/15.695/15.695/0.000 ms\n', None)
>>>

These two modules prove to be very useful in many situations. Any command we can
execute in the Linux and Unix environment can be executed via the OS or subprocess
module.

Test-Driven Development for Networks Chapter 13

[417]

Testing for network latency
The topic of network latency can sometimes be subjective. Working as a network engineer,
we are often faced with the user saying that the network is slow. However, slow is a very
subjective term. If we could construct tests that turn subjective terms into objective values,
it would be very helpful. We should do this consistently so that we can compare the values
over a time series of data.

This can sometimes be difficult to do since the network is stateless by design. Just because
one packet is successful does not guarantee success for the next packet. The best approach I
have seen over the years is just to use ping across many hosts frequently and log the data,
conducting a ping-mesh graph. We can leverage the same tools we used in the
previous example, catch the return-result time, and keep a record:

$ cat chapter13_10_ping.py
#!/usr/bin/env python3

import subprocess

host_list = ['www.cisco.com', 'www.google.com']

ping_time = []

for host in host_list:
 p = subprocess.Popen(['ping', '-c', '1', host], stdout=subprocess.PIPE)
 result = p.communicate()[0]
 host = result.split()[1]
 time = result.split()[14]
 ping_time.append((host, time))

print(ping_time)

In this case, the result is kept in a tuple and put into a list:

$ python3 chapter13_10_ping.py
[(b'e2867.dsca.akamaiedge.net', b'time=13.8'), (b'www.google.com',
b'time=14.8')]

This is by no means perfect, and is merely a starting point for monitoring and
troubleshooting. However, in the absence of other tools, this offers some baseline of
objective values.

Test-Driven Development for Networks Chapter 13

[418]

Testing for security
We already saw the best tool for security testing in Chapter 6, Network Security with Python,
with Scapy, in my opinion. There are lots of open source tools for security, but none offers
the flexibility that comes with constructing our packets.

Another great tool for network security testing is hping3 (http:/ /www. hping. org/). It
offers a simple way to generate a lot of packets at once. For example, you can use the
following one-liner to generate a TCP Syn flood:

DON'T DO THIS IN PRODUCTION
echou@ubuntu:/var/log$ sudo hping3 -S -p 80 --flood 192.168.1.202
HPING 192.168.1.202 (eth0 192.168.1.202): S set, 40 headers + 0 data bytes
hping in flood mode, no replies will be shown
^C
--- 192.168.1.202 hping statistic ---
2281304 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
echou@ubuntu:/var/log$

Again, since this is a command-line tool, we can use the subprocess module to automate
any hping3 test we want.

Testing for transactions
The network is a crucial part of the infrastructure, but it is only a part of it. What the users
care about is often the service that runs on top of the network. If the user is trying to watch
a YouTube video or listen to a podcast but cannot, in their opinion, the service is broken.
We might know that it is not the network transport, but that doesn't comfort the user.

For this reason, we should implement tests that are as similar to the user's experience as
possible. In the example of a YouTube video, we might not be able to duplicate the
YouTube experience 100% (unless you are part of Google), but we can implement a layer-
seven service as close to the network edge as possible. We can then simulate the transaction
from a client at a regular interval as a transactional test.

The Python HTTP standard library module is a module that I often use when I need to
quickly test layer-seven reachability on a web service:

Python 2
$ python -m SimpleHTTPServer 8080
Serving HTTP on 0.0.0.0 port 8080 ...
127.0.0.1 - - [25/Jul/2018 10:14:39] "GET / HTTP/1.1" 200 -

http://www.hping.org/
http://www.hping.org/
http://www.hping.org/
http://www.hping.org/
http://www.hping.org/
http://www.hping.org/
http://www.hping.org/
http://www.hping.org/
http://www.hping.org/
http://www.hping.org/

Test-Driven Development for Networks Chapter 13

[419]

Python 3
$ python3 -m http.server 8080
Serving HTTP on 0.0.0.0 port 8080 ...
127.0.0.1 - - [25/Jul/2018 10:15:23] "GET / HTTP/1.1" 200 -

If we can simulate a full transaction for the expected service, that is even better. But the
Python simple HTTP server module in the standard library is always a great one for running
some ad hoc web service tests.

Testing for network configuration
In my opinion, the best test for network configuration is using standardized templates to
generate the configuration and back up the production configuration often. We have seen
how we can use the Jinja2 template to standardize our configuration per device type or role.
This will eliminate many of the mistakes caused by human error, such as copy and paste.

Once the configuration is generated, we can write tests against the configuration for known
characteristics that we would expect before we push the configuration to production
devices. For example, there should be no overlap of IP address in all of the network when it
comes to loopback IP, so we can write a test to see whether the new configuration contains
a loopback IP that is unique across our devices.

Testing for Ansible
For the time I have been using Ansible, I can not recall using a unittest like tool to test a
Playbook. For the most part, the Playbooks are utilizing modules that were tested by the
module developers.

Ansible provides unit tests for their library of modules. Unit tests in Ansible are currently
the only way to drive tests from Python within Ansible's continuous-integration process.
The unit tests that are run today can be found under /test/units (https:/ / github. com/
ansible/ansible/ tree/ devel/ test/ units).

The Ansible testing strategy can be found in the following documents:

Testing Ansible: https:/ / docs.ansible. com/ ansible/ 2. 5/dev_ guide/
testing. html

Unit tests: https:/ / docs. ansible. com/ ansible/ 2. 5/dev_ guide/ testing_
units.html

Unit testing Ansible modules: https:/ /docs. ansible. com/ ansible/ 2. 5/dev_
guide/testing_ units_ modules. html

https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/2.5/dev_guide/testing_units_modules.html

Test-Driven Development for Networks Chapter 13

[420]

One of the interesting Ansible testing frameworks is molecule (https:/ / pypi. org/
project/molecule/ 2. 16. 0/). It intends to aid in the development and testing of Ansible
roles. Molecule provides support for testing with multiple instances, operating systems,
and distributions. I have not used this tool, but it is where I would start if I wanted to
perform more testing on my Ansible roles.

Pytest in Jenkins
Continuous-integration (CI) systems, such as Jenkins, are frequently used to launch tests
after each of the code commits. This is one of the major benefits of using a CI system.
Imagine that there is an invisible engineer who is always watching for any change in the
network; upon detecting change, the engineer will faithfully test a bunch of functions to
make sure that nothing breaks. Who wouldn't want that?

Let's look at an example of integrating pytest into the Jenkins tasks.

Jenkins integration
Before we can insert the test cases into our continuous integration, let's install some of the
plugins that can help us visualize the operation. The two plugins we will install are build-
name-setter and Test Result Analyzer:

Jenkins plugin installation

https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/
https://pypi.org/project/molecule/2.16.0/

Test-Driven Development for Networks Chapter 13

[421]

The test we will run will reach out to the NXOS device and retrieve the operating system
version number. This will ensure that we have API reachability to the Nexus device. The
full script content can be read in chapter13_9_pytest_4.py the relevant pytest portion
and result are as follows:

def test_transaction():
 assert nxos_version != False

Test Output
$ pytest chapter13_9_pytest_4.py
============================== test session starts
===============================
platform linux -- Python 3.5.2, pytest-3.6.3, py-1.5.4, pluggy-0.6.0
rootdir: /home/echou/Chapter13, inifile:
collected 1 item

chapter13_9_pytest_4.py . [100%]

============================ 1 passed in 0.13 seconds
============================

We will use the --junit-xml=results.xml option to produce the file Jenkins needs:

$ pytest --junit-xml=results.xml chapter13_9_pytest_4.py
$ cat results.xml
<?xml version="1.0" encoding="utf-8"?><testsuite errors="0" failures="0"
name="pytest" skips="0" tests="1" time="0.134"><testcase
classname="chapter13_9_pytest_4" file="chapter13_9_pytest_4.py" line="25"
name="test_transaction"
time="0.0009090900421142578"></testcase></testsuite>

The next step would be to check this script into the GitHub repository. I prefer to put the
test under its directory. Therefore, I created a /test directory and put the test file there:

Project repository

Test-Driven Development for Networks Chapter 13

[422]

We will create a new project named chapter13_example1:

Chapter 13 example 1

We can copy over the previous task, so we do not need to repeat all the steps:

Copy task from chapter 12 example 2

In the execute shell section, we will add the pytest step:

Project execute shell

Test-Driven Development for Networks Chapter 13

[423]

We will add a post-build step of Publish JUnit test result report:

Post-build step

We will specify the results.xml file as the JUnit result file:

Test report XML location

Test-Driven Development for Networks Chapter 13

[424]

After we run the build a few times, we will be able to see the Test Result Analyzer graph:

Test result analyzer

The test result can also be seen on the project homepage. Let's introduce a test failure by
shutting down the management interface of the Nexus device. If there is a test failure, we
will be able to see it right away on the Test Result Trend graph on the project dashboard:

Test-Driven Development for Networks Chapter 13

[425]

Test result trend

This is a simple but complete example. There are many ways we can integrate testing into
Jenkins.

Summary
In this chapter, we looked at test-driven development and how it can be applied to network
engineering. We started with an overview of TDD; then we looked at examples of using
the unittest and pytest Python modules. Python and simple Linux command-line tools
can be used to construct various tests for network reachability, configuration, and security.

We also looked at how we can utilize testing in Jenkins, a continuous-integration tool. By
integrating tests into our CI tool, we can gain more confidence in the sanity of our change.
At the very least, we hope to catch any errors before our users do.

Simply put, if it is not tested, it is not trusted. Everything in our network should be
programmatically tested as much as possible. As with many software concepts, test-driven
development is a never-ending service wheel. We strive to have as much test coverage as
possible, but even at 100% test coverage, we can always find new ways and test cases to
implement. This is especially true in networking, where the network is often the internet,
and 100% test coverage of the internet is just not possible.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Practical Network Automation
Abhishek Ratan

ISBN: 9781788299466

Get the detailed analysis of Network automation
Trigger automations through available data factors
Improve data center robustness and security through specific access and data
digging
Get an Access to APIs from Excel for dynamic reporting
Set up a communication with SSH-based devices using netmiko
Make full use of practical use cases and best practices to get accustomed with the
various aspects of network automation

https://www.packtpub.com/networking-and-servers/practical-network-automation

Other Books You May Enjoy

[427]

Network Analysis using Wireshark 2 Cookbook - Second Edition
Nagendra Kumar Nainar, Yogesh Ramdoss, Yoram Orzach

ISBN: 9781786461674

Configure Wireshark 2 for effective network analysis and troubleshooting
Set up various display and capture filters
Understand networking layers, including IPv4 and IPv6 analysis
Explore performance issues in TCP/IP
Get to know about Wi-Fi testing and how to resolve problems related to wireless
LANs
Get information about network phenomena, events, and errors
Locate faults in detecting security failures and breaches in networks

https://www.packtpub.com/networking-and-servers/network-analysis-using-wireshark-2-cookbook-second-edition

Other Books You May Enjoy

[428]

Practical AWS Networking
Mitesh Soni

ISBN: 9781788398299

Overview of all networking services available in AWS.
Gain Work with load balance application across different regions.
Learn auto scale instance based on the increase and decrease of the traffic.
Deploy application in highly available and fault tolerant manner.
Configure Route 53 for a web application.
Troubleshooting tips and best practices at the end

https://www.packtpub.com/virtualization-and-cloud/practical-aws-networking

Other Books You May Enjoy

[429]

Python Network Programming Cookbook - Second Edition
Pradeeban Kathiravelu, Dr. M. O. Faruque Sarker

ISBN: 9781786463999

Develop TCP/IP networking client/server applications
Administer local machines' IPv4/IPv6 network interfaces
Write multi-purpose efficient web clients for HTTP and HTTPS protocols
Perform remote system administration tasks over Telnet and SSH connections
Interact with popular websites via web services such as XML-RPC, SOAP, and
REST APIs
Monitor and analyze major common network security vulnerabilities
Develop Software-Defined Networks with Ryu, OpenDaylight, Floodlight,
ONOS, and POX Controllers
Emulate simple and complex networks with Mininet and its extensions for
network and systems emulations
Learn to configure and build network systems and Virtual Network Functions
(VNF) in heterogeneous deployment environments
Explore various Python modules to program the Internet

https://www.packtpub.com/networking-and-servers/python-network-programming-cookbook-second-edition

Other Books You May Enjoy

[430]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access control list
 reference 197
Access Control Lists (ACLs) 334
access lists
 about 192
 implementing, with Ansible 193, 195
 MAC access lists 196
action plugin
 reference 173
Amazon Elastic Compute Cloud (EC2)
 about 321
 reference 321
Amazon Elasticsearch Service
 reference 273
Amazon GuardDuty
 about 342
 reference 342
Amazon Resource Names (ARNs)
 about 321
 reference 321
Amazon Virtual Private Cloud (Amazon VPC) 321
Amazon Web Services (AWS)
 about 310
 reference 310, 311, 313
 setting up 311, 313
Ansible Galaxy
 about 171
 reference 171
Ansible Jinja2 template
 reference 131
Ansible playbook
 about 116, 118, 119, 120
 inventory file 117, 118
 public key authorization 116
Ansible UFW module

 reference 202
Ansible Vault
 about 164, 165, 166
 reference 164, 165
Ansible, advantages
 about 120
 agentless 120, 121
 extensible 122
 idempotent 121
 network vendor support 123, 124
 simplification 122
Ansible
 about 111, 112
 advantages 193
 architecture 124
 Arista example 141
 Cisco example 134
 conditional statements 145
 connection example 137
 control node installation 113
 different versions, executing from source 114,

115

 example 112
 include statement 166, 167
 Juniper example 139
 loops 152
 networking modules 131
 reference 22, 112, 113, 137
 roles 166, 168, 169, 170
 setting up 115
API structured output
 versus screen scraping 73, 74, 76
AppleTalk 15
Application Program Interface (API) 37, 70
architecture, Ansible
 about 124
 inventory 124, 126, 127

[432]

 templates 124
 templates, with Jinja2 131
 variables 124, 127, 130, 131
 YAML 124, 125
Arista eAPI management
 about 97
 eAPI, preparation 98, 99, 100
 examples 101, 102
 reference 101
Arista Networks
 about 97
 reference 97
Arista Pyeapi library
 about 103
 examples 104, 105, 106
 installation 103
 reference 103, 104, 106
Arista Python API
 about 97
 Arista eAPI management 97
 Arista Pyeapi library 103
Arista vEOS
 reference 49
automation
 bad automation 69
Availability Zones (AZ) 317
AWS CLI
 Python SDK 314, 315, 316
 reference 314
AWS CloudFront 320
AWS Direct Connect 320
AWS Direct Connect locations
 reference 339
AWS Edge locations 320
AWS Global Infrastructure
 reference 317
AWS network
 overview 317, 318, 319, 320, 321
 services 342
AWS Shield
 about 342
 reference 342
AWS Transit Centers 320
AWS Transit VPC
 about 342

 reference 342
AWS WAF
 about 342
 reference 342

B
Beats 272
Boto3 VPC API
 reference 326
Boto3
 reference 316
Bring Your Own Device (BYOD) 189
built-in types, Python
 about 24
 mapping 28
 None type 25
 numerics 25
 sequences 25, 27, 28
 sets 29

C
Cacti
 about 231
 installation 232, 233, 234
 Python script, as input source 234, 235
 reference 231, 235
change-advisory board (CAB) 374
Cisco API
 about 77
 Cisco NX-API 78
 YANG models 84
Cisco Application Centric Infrastructure (ACI)
 about 77, 85, 86, 87
 reference 85
Cisco Certified Internetwork Expert (CCIE) 41
Cisco Connection Online (CCO) 46
Cisco dCloud
 reference 42
Cisco DevNet
 about 46, 47
 reference 42, 46
Cisco IOS MIB locator
 reference 208
Cisco NX-API
 about 78

[433]

 device preparation 78, 79
 examples 79, 80, 81, 82, 83, 84
 installation 78, 79
 reference 78
Cisco VIRL
 about 41
 advantages 42
 reference 43
 tips 43, 44, 45
classes, Python 33
client-server model 15
cloud computing 310
cloud data centers 11, 12
CloudFormation
 about 328
 for automation 328, 329, 331, 332
 reference 328
CloudFront CDN services 341
Command Line Interface (CLI)
 about 37
 challenges 38, 39
communication protocols
 reference 132
conditional statements, Ansible
 about 145
 network facts 148, 149, 150
 network module conditional 150, 152
 reference 147
 when clause 145, 146, 147
configuration backup
 automating 368, 370, 371
Content Delivery Network (CDN) 341
Continuous Integration (CI)
 about 375, 420
 workflow 375
continuous integration
 for networking 399
custom module
 reference 172, 174
 writing 171, 172, 173, 174, 175

D
Data Center Networking (DCN) 38
data centers
 about 10

 cloud data centers 11, 12
 edge data centers 12
 enterprise data centers 10
data model
 about 76
 reference 76
data modeling
 for infrastructure as code 76, 77
data visualization
 Matplotlib 217
 Pygal 225
 with Python 216
dCloud
 about 46, 47
 reference 47
declarative framework 111, 112
device ID API 298, 299
devices API 296, 297, 298
dictionary 28
Direct Connect
 about 337, 338, 339
 reference 339
Distributed Denial of Service (DDoS)
 about 342
 reference 202
Django Database
 reference 281
Django
 about 281
 reference 281
DjangoCon 280
DOT format
 reference 239
Dynamip 41

E
edge data centers 12
Elastic Cloud
 reference 273
Elastic IP (EIP)
 about 334
 reference 335
Elasticsearch (ELK stack)
 about 272, 273
 hosted ELK service, setting up 273, 274

[434]

 logstash format 274
Elasticsearch
 reference 272
Emulated Virtual Environment Next Generation

(EVE-NG)
 reference 49
enterprise data centers 10
Equinix Cloud Exchange
 reference 339
Extensible Markup Language (XML) 88

F
Flask-SQLAlchemy
 about 291, 292
 reference 291
Flask
 about 281, 284
 additional resources 307
 HTTPie client 286, 287
 jsonify return 290
 reference 281, 284, 308
 setting up 282, 283, 284
 URL, generation 289
 URL, routing 287
 URL, variables 288
floor division 29
flow-based monitoring
 about 254
 IPFIX 254
 NetFlow 254
 ntop traffic monitoring 260, 262, 263
 sFlow 255, 268
FlowSet
 reference 259
functions, Python 32

G
Git, terminology
 branch 347
 checkout 347
 commit 347
 fetch 347
 merge 347
 pull 347
 ref 347

 repository 347
 tag 347
Git, with Python
 about 365
 GitPython 365
 PyGitHub 366, 368
Git
 about 345
 benefits 346
 collaboration technology 371
 examples 350, 351, 352, 354, 355, 356
 reference 347
 setting up 348
 software-development collaboration 371
 terminology 347
GitHub
 about 348
 collaborating, with pull requests 362, 363, 364,

365

 example 357, 358, 359, 360, 361
 reference 347
Gitignore
 about 349
 reference 350
GitPython
 reference 365
Global Information Tracker (GIT) 346
GNS3 48, 49
Grafana 272
Graphix
 installing 241
Graphviz
 about 239
 examples 242, 243, 244
 installing 241
 LLDP neighbor graphing 245, 246
 reference 242, 245
 setting up 240, 241
group variables
 about 161, 162, 164
 reference 162

H
host variables
 about 161, 163

[435]

 reference 162
hosted ELK service
 setting up 273, 274
hosts 9
hping3
 reference 418
HTTP-bin
 reference 286
HTTPie client
 about 286, 287
 reference 286
HTTPie
 reference 287

I
idempotence
 reference 121
idempotency 68, 69
Identify and Access Management (IAM)
 about 320
 reference 320
IETF
 reference 254
include statement, Ansible 166, 167
infrastructure as code
 about 71
 data modeling 76, 77
 Intent-Driven Networking 72
 screen scraping, versus API structured output

73, 74, 76
Infrastructure-as-a-Service (IaaS)
 reference 310
InMon
 reference 268
Intent-Based Networking 72
Intent-Driven Networking 72
Intermediate Distribution Frame (IDF) 10
International Organization for Standardization

(ISO) 13
International Telecommunication Union (ITU-T) 13
Internet Assigned Numbers Authority (IANA) 16
Internet Control Message Protocol (ICMP) 183
Internet of Things (IoT) 9
Internet Protocol (IP)
 about 14, 18, 19

 Network Address Translation (NAT) 19
 routing 20
 security 19
Internet Service Provider (ISP) 9
internet
 data centers 10
 hosts 9
 network components 9
 overview 8, 9
 servers 9
inventory file
 about 117
 reference 117
inventory, Ansible
 about 126, 127
 reference 127
ios_command module
 reference 132
IPFIX 254

J
Jenkins
 example 379
 installing 376, 378, 379
 job, building for Python script 380, 381, 382,

384, 385, 386
 network continuous integration example 388,

389, 390, 393, 394, 395, 396, 397
 plugins, managing 386, 387, 388
 Pytest 420
 pytest, integrating 420, 421, 422, 423, 424, 425
 reference 376
 with Python 397, 399
Jinja2 template
 about 157
 reference 156
Jinja2
 about 131
 conditional statement 159, 160, 161
 loops 158
 reference 131
 templates 131
JSON-RPC 97
jsonrpclib
 reference 100

[436]

Juniper networks
 Network Configuration Protocol (NETCONF) 88
 PyEZ 92
 Python API 87
Juniper Olive 89
Juniper vMX
 reference 49

K
Kibana 272

L
lambda expressions
 reference 190
large data center 97
Link Layer Discovery Protocol (LLDP) 239
LLDP neighbor graphing
 about 245, 246
 final playbook 252, 253
 information retrieval 247
 Python parser script 248, 249, 251
Local Area Network (LAN) 9, 15
Logstash 272
logstash format
 reference 274
loops, Ansible
 about 152
 over dictionaries 153, 154, 155
 reference 155
 standard loops 152, 153

M
MAC access lists 196
Main Distribution Frame (MDF) 10
Management Information Base (MIB) 207
Matplotlib
 about 217
 example 217, 218, 219
 for SNMP results 220, 221, 222, 224
 installation 217
 reference 217, 220, 225
 resources 225
modules, Ansible
 reference 117
modules, Python 34, 35

molecule
 about 420
 reference 420
Multi Router Traffic Grapher (MRTG)
 reference 231
Multiprotocol Label Switching (MPLS) 87

N
NAPALM
 reference 108
NAT Gateway
 about 320, 335, 337
 using 336
ncclient library
 about 79
 reference 79
NetFlow
 about 254
 parsing, with Python 255
 Python socket 257, 258
 reference 257
 struct 257, 258
Netmiko
 reference 63, 108
Network Address Translation (NAT) 19
network automation
 reference 399
network components 9
Network Configuration Protocol (NETCONF)
 about 88
 characteristics 88
 device preparation 88, 89
 examples 90, 92
 reference 88
network dynamic operations
 about 299, 300, 301
 asynchronous operations 302, 303, 304
network module conditional 150, 152
network modules
 reference 123
network protocol suites
 about 15
 Internet Protocol (IP) 18, 19
 Transmission Control Protocol (TCP) 16
 User Datagram Protocol (UDP) 17, 18

[437]

network resource API
 about 291
 device ID API 298, 299
 devices API 296, 297, 298
 Flask-SQLAlchemy 291, 292
 network content API 293, 294, 295
network scaling services
 about 340
 CloudFront CDN services 341
 Elastic Load Balancing (ELB) 340
 Route53 DNS service 341
network security tools
 private VLANs 200
 reference 202
 UFW, with Python 201, 202
network security
 setting up 178, 179, 180, 181
networking modules, Ansible
 about 131
 facts 131, 132
 local connections 131, 132
 provider arguments 132, 133, 134
networking
 continuous integration 399
 testing, for Ansible 419
 testing, for network configuration 419
 testing, for network latency 417
 testing, for reachability 415, 416
 testing, for security 418
 testing, for transactions 418
 tests, writing 415
ntop
 about 260, 262, 263
 Python extension 264, 265, 266, 267
NumPy
 about 217
 reference 217
nxso_snmp_contact module
 reference 128

O
Object Identifier (OID) 207
object-oriented programming (OOP) 33
Open Shortest Path First (OSPF) 179
Open System Interconnection (OSI) model

 about 13
 Application layer 14
 Data link layer 14
 Physical layer 14
Organizationally Unique Identifier (OUI) 196

P
Paramiko library
 about 59
 drawbacks 68
 features 65
 for servers 65, 66
 implementing 66, 67, 68
 installation 60
 overview 61, 62
 program 64
 reference 60, 81
Pexpect library
 about 49
 drawbacks 68
 features 56, 59
 implementing 58
 installation 49, 50
 overview 50, 51, 53, 54
 program 55, 56
 reference 49, 57
 SSH 57
ping module
 reference 117
Ping of Death
 reference 190
Platform-as-a-Services (PaaS)
 reference 310
port address translation (PAT) 336
private VLANs
 about 201
 Community (C) port 201
 Isolated (I) port 201
 Promiscuous (P) port 200
PyEZ
 about 92
 examples 95, 96
 installation 93, 94, 95
 preparation 93, 94, 95
 reference 92, 93

[438]

Pygal
 about 225
 example 226, 227
 for SNMP results 228, 229, 230
 installation 225
 reference 225, 226
 resources 231
PyGitHub
 reference 366
PySNMP
 about 210, 211, 212, 214, 215, 216
 reference 210, 211
Pytest
 about 412
 example 412, 413, 415
 in Jenkins 420
 reference 412
Python API
 for Juniper networks 87
Python helper script
 for Logstash formatting 275, 276, 277
Python SDK 314, 315, 316
Python socket
 reference 257
Python web frameworks
 comparing 280, 281, 282
 reference 280
Python's unittest module
 about 408, 409, 411
 reference 411
Python
 built-in types 24
 classes 33
 control flow tools 30, 32
 executing 23, 24
 for Cacti 231
 for data visualization 216
 functions 32
 modules 34, 35
 NetFlow, parsing 255
 operating system 23
 operators 29
 overview 20, 21
 packages 34, 35
 reference 8, 21

 versions 22
 with Graphviz, examples 244

Q
Quora
 reference 281

R
Raspberry Pi file
 reference 302
Reddit
 reference 281
regular expressions
 reference 54
Remote Procedure Call (RPC) 97
Representational state transfer (REST)
 about 278
 reference 278
Requests
 reference 82
roles, Ansible
 about 168, 169, 170
 reference 168, 170
Round-Robin Database Tool (RRDtool)
 reference 231

S
Scalable Vector Graphics (SVG) 225
Scapy
 about 181
 common attacks 190, 191
 examples 183, 184
 installing 182
 ping collection 189
 reference 181, 191
 resources 191
 sniffing 184
 TCP port scan 186, 188
screen scraping
 drawbacks 74
 versus API structured output 73, 74, 76
security 304
Service-Level Agreement (SLA) 338
sets 29
sFlow 255, 268

[439]

sFlow-RT
 reference 270
 with Python 268, 269, 270, 271
SFlowtool
 about 268, 269, 270, 271
 reference 269
sflowtool
 reference 268
Simple Network Management Protocol (SNMP)
 about 206, 207
 PySNMP 210, 211, 212, 214, 215, 216
 setting up 205, 207, 209
SNMP Object Navigator
 reference 209
Software Defined Networking (SDN) 310
Software-as-a-Service (SaaS)
 reference 310
SSH
 Pexpect library 57
struct
 reference 257
Supervisor
 reference 307
Syslog search
 about 197
 reference 197
 with RE module 198, 200

T
Telecommunication Standardization Sector 13
template module
 reference 155
templates
 about 155, 156, 157
 Jinja2 template 157
 with Jinja2 131
Ternary Content-Addressable Memory (TCAM)

192

test-driven development (TDD)
 about 401
 definitions 403
 overview 402
Testing On Demand
 Distributed (ToDD) 415
testing strategy

 reference 419
topology, as code
 about 403, 405, 407, 408
 Python's unittest module 408, 409, 411
traditional change-management process 373, 375
Transmission Control Protocol (TCP)
 about 14, 16
 characteristics 16
 data transfer 17
 functions 16
 messages 17
 reference 17

U
Uncomplicated Firewall (UFW) 197
unittest module
 reference 410
User Datagram Protocol (UDP) 17

V
variables, Ansible
 about 127, 130, 131
 reference 128, 129
vendor-neutral libraries 108
VIRL on Packet
 reference 42
virlutils
 reference 42
Virtual Internet Routing Lab (VIRL)
 reference 41
virtual lab
 advantages 40
 Cisco DevNet 46, 47
 Cisco VIRL 41, 42
 constructing 39, 40, 41
 dCloud 46, 47
 disadvantages 40
 GNS3 48, 49
Virtual Local Area Networks (VLANs) 200
Virtual Private Cloud (VPC) 320
virtual private cloud
 about 321
 automation, with CloudFormation 328
 creating 322, 323, 324, 325, 326
 Elastic IP (EIP) 334

 NAT Gateway 335, 337
 network ACL 332, 333, 334
 route tables 326, 327
 route targets 326, 327
 security groups 332, 333, 334
virtual private clouds
 automation, with CloudFormation 328, 329, 331,

332

Virtual Private Gateway 338
virtualenv
 reference 282
VPC peering
 reference 332
VPN Gateway 337
vSRX
 reference 49

W
when clause 145, 146, 147

X
X-Pack 272

Y
YAML
 about 125
 reference 118
YANG models
 and Cisco API 84
 reference 85
Yet Another Next Generation (YANG) 77

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Review of TCP/IP Protocol Suite and Python
	An overview of the internet
	Servers, hosts, and network components
	The rise of data centers
	Enterprise data centers
	Cloud data centers
	Edge data centers

	The OSI model
	Client-server model
	Network protocol suites
	The transmission control protocol
	Functions and characteristics of TCP
	TCP messages and data transfer

	User datagram protocol
	The internet protocol
	The IP NAT and security
	IP routing concepts

	Python language overview
	Python versions
	Operating system
	Running a Python program
	Python built-in types
	The None type
	Numerics
	Sequences
	Mapping
	Sets

	Python operators
	Python control flow tools
	Python functions
	Python classes
	Python modules and packages

	Summary

	Chapter 2: Low-Level Network Device Interactions
	The challenges of the CLI
	Constructing a virtual lab
	Cisco VIRL
	VIRL tips

	Cisco DevNet and dCloud
	GNS3

	Python Pexpect library
	Pexpect installation
	Pexpect overview
	Our first Pexpect program
	More Pexpect features
	Pexpect and SSH
	Putting things together for Pexpect

	The Python Paramiko library
	Installation of Paramiko
	Paramiko overview
	Our first Paramiko program
	More Paramiko features
	Paramiko for servers

	Putting things together for Paramiko

	Looking ahead
	Downsides of Pexpect and Paramiko compared to other tools
	Idempotent network device interaction
	Bad automation speeds bad things up

	Summary

	Chapter 3: APIs and Intent-Driven Networking
	Infrastructure as code
	Intent-Driven Networking
	Screen scraping versus API structured output
	Data modeling for infrastructure as code

	The Cisco API and ACI
	Cisco NX-API
	Lab software installation and device preparation
	NX-API examples

	The Cisco and YANG models
	The Cisco ACI

	The Python API for Juniper networks
	Juniper and NETCONF
	Device preparation
	Juniper NETCONF examples

	Juniper PyEZ for developers
	Installation and preparation
	PyEZ examples

	The Arista Python API
	Arista eAPI management
	The eAPI preparation
	eAPI examples

	The Arista Pyeapi library
	Pyeapi installation
	Pyeapi examples

	Vendor-neutral libraries
	Summary

	Chapter 4: The Python Automation Framework – Ansible Basics
	A more declarative framework
	A quick Ansible example
	The control node installation
	Running different versions of Ansible from source
	Lab setup
	Your first Ansible playbook
	The public key authorization
	The inventory file
	Our first playbook

	The advantages of Ansible
	Agentless
	Idempotent
	Simple and extensible
	Network vendor support

	The Ansible architecture
	YAML
	Inventories
	Variables
	Templates with Jinja2

	Ansible networking modules
	Local connections and facts
	Provider arguments

	The Ansible Cisco example
	Ansible 2.5 connection example

	The Ansible Juniper example
	The Ansible Arista example
	Summary

	Chapter 5: The Python Automation Framework – Beyond Basics
	Ansible conditionals
	The when clause
	Ansible network facts
	Network module conditional

	Ansible loops
	Standard loops
	Looping over dictionaries

	Templates
	The Jinja2 template
	Jinja2 loops
	The Jinja2 conditional

	Group and host variables
	Group variables
	Host variables

	The Ansible Vault
	The Ansible include and roles
	The Ansible include statement
	Ansible roles

	Writing your own custom module
	The first custom module
	The second custom module

	Summary

	Chapter 6: Network Security with Python
	The lab setup
	Python Scapy
	Installing Scapy
	Interactive examples
	Sniffing
	The TCP port scan
	The ping collection
	Common attacks
	Scapy resources

	Access lists
	Implementing access lists with Ansible
	MAC access lists

	The Syslog search
	Searching with the RE module

	Other tools
	Private VLANs
	UFW with Python
	Further reading

	Summary

	Chapter 7: Network Monitoring with Python – Part 1
	Lab setup
	SNMP
	Setup
	PySNMP

	Python for data visualization
	Matplotlib
	Installation
	Matplotlib – the first example
	Matplotlib for SNMP results
	Additional Matplotlib resources

	Pygal
	Installation
	Pygal – the first example
	Pygal for SNMP results
	Additional Pygal resources

	Python for Cacti
	Installation
	Python script as an input source

	Summary

	Chapter 8: Network Monitoring with Python – Part 2
	Graphviz
	Lab setup
	Installation
	Graphviz examples
	Python with Graphviz examples
	LLDP neighbor graphing
	Information retrieval
	Python parser script
	Final playbook

	Flow-based monitoring
	NetFlow parsing with Python
	Python socket and struct

	ntop traffic monitoring
	Python extension for ntop

	sFlow
	SFlowtool and sFlow-RT with Python

	Elasticsearch (ELK stack)
	Setting up a hosted ELK service
	The Logstash format
	Python helper script for Logstash formatting

	Summary

	Chapter 9: Building Network Web Services with Python
	Comparing Python web frameworks
	Flask and lab setup
	Introduction to Flask
	The HTTPie client
	URL routing
	URL variables
	URL generation
	The jsonify return

	Network resource API
	Flask-SQLAlchemy
	Network content API
	Devices API
	The device ID API

	Network dynamic operations
	Asynchronous operations

	Security
	Additional resources
	Summary

	Chapter 10: AWS Cloud Networking
	AWS setup
	AWS CLI and Python SDK

	AWS network overview
	Virtual private cloud
	Route tables and route targets
	Automation with CloudFormation
	Security groups and the network ACL
	Elastic IP
	NAT Gateway

	Direct Connect and VPN
	VPN Gateway
	Direct Connect

	Network scaling services
	Elastic Load Balancing
	Route53 DNS service
	CloudFront CDN services

	Other AWS network services
	Summary

	Chapter 11: Working with Git
	Introduction to Git
	Benefits of Git
	Git terminology
	Git and GitHub

	Setting up Git
	Gitignore

	Git usage examples
	GitHub example
	Collaborating with pull requests

	Git with Python
	GitPython
	PyGitHub

	Automating configuration backup
	Collaborating with Git
	Summary

	Chapter 12: Continuous Integration with Jenkins
	Traditional change-management process
	Introduction to continuous integration
	Installing Jenkins
	Jenkins example
	First job for the Python script
	Jenkins plugins
	Network continuous integration example

	Jenkins with Python
	Continuous integration for Networking
	Summary

	Chapter 13: Test-Driven Development for Networks
	Test-driven development overview
	Test definitions

	Topology as code
	Python's unittest module

	More on Python testing
	pytest examples

	Writing tests for networking
	Testing for reachability
	Testing for network latency
	Testing for security
	Testing for transactions
	Testing for network configuration
	Testing for Ansible

	Pytest in Jenkins
	Jenkins integration

	Summary

	Other Books You May Enjoy
	Index

