

Python Deep Learning Projects

9 projects demystifying neural network and deep learning
models for building intelligent systems

Matthew Lamons
Rahul Kumar
Abhishek Nagaraja

BIRMINGHAM - MUMBAI

Python Deep Learning Projects
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Karan Jain
Content Development Editor: Karan Thakkar
Technical Editor: Nilesh Sawakhande
Copy Editor: Safis Editing
Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Jisha Chirayil
Production Coordinator: Nilesh Mohite

First published: October 2018

Production reference: 1311018

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-709-6

www.packtpub.com

http://www.packtpub.com

To my wife Kristine for her impatience with unintelligent technology and superhuman
patience with me. The first provided me with the goal to study and apply deep learning to
everyday problems, the second the time!

To my children Ethan and Margarete & husband Derek, and colleagues at The Intelligence
Factory and Skejul Inc., for your support & encouragement as we work together to be the
architects of the future and not it's victims.

– Matthew Lamons

To my mom, dad and sister for constant support and motivation. To Late Prof. Pervez Ahmed
for his wisdom and guidance which helped me to build my foundation and all my teachers for
showing me the way.

To my friends for discussing ideas. And to the amazing team at Jatana.ai and BotSupply.ai. for
pushing the boundaries of what I could achieve while creating technology products that drive
innovation for a better future.

– Rahul Kumar

To my mom, Nagarathna, and my dad, Nagaraja for your support, love, and for always being
there for me. To my sisters Deepthi and Madhuri for always encouraging and guiding me all
the way. To my amazing colleagues at Skejul Inc., for your constant support and believing in
me. To Matthew Lamons for his guidance and for this opportunity.

– Abhishek Nagaraja

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Mapt is fully searchable
Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Matthew Lamons's background is in experimental psychology and deep learning. Founder
and CEO of Skejul—the AI platform to help people manage their activities. Named by
Gartner, Inc. as a "Cool Vendor" in the "Cool Vendors in Unified Communication, 2017"
report. He founded The Intelligence Factory to build AI strategy, solutions, insights, and
talent for enterprise clients and incubate AI tech startups based on the success of his
Applied AI MasterMinds group. Matthew's global community of more than 85 K are
leaders in AI, forecasting, robotics, autonomous vehicles, marketing tech, NLP, computer
vision, reinforcement, and deep learning. Matthew invites you to join him on his mission to
simplify the future and to build AI for good.

Rahul Kumar is an AI scientist, deep learning practitioner, and independent researcher.
His expertise in building multilingual NLU systems and large-scale AI infrastructures has
brought him to Copenhagen, where he leads a large team of AI engineers as Chief AI
Scientist at Jatana.ai.
Often invited to speak at AI conferences, he frequently travels between India, Europe, and
the US where, among other research initiatives, he collaborates with The Intelligence
Factory as NLP data science fellow. Keen to explore the ramifications of emerging
technologies for his next book, he's currently involved in various research projects on
Quantum Computing (QC), high-performance computing (HPC), and the brain-computer
interaction (BCI).

Abhishek Nagaraja was born and raised in India. Graduated Magna Cum Laude from the
University of Illinois at Chicago, United States, with a Masters Degree in Mechanical
Engineering with a concentration in Mechatronics and Data Science. Abhishek specializes
in Keras and TensorFlow for building and evaluation of custom architectures in deep
learning recommendation models. His deep learning skills and interest span computational
linguistics and NLP to build chatbots to computer vision and reinforcement learning. He
has been working as a Data Scientist for Skejul Inc. building an AI-powered activity
forecast engine and engaged as a Deep Learning Data Scientist with The Intelligence
Factory building solutions for enterprise clients.

About the reviewers
Doug Ortiz is the founder of Illustris, LLC and is an experienced enterprise cloud, big data,
data analytics, and solutions architect who has architected, designed, developed, re-
engineered, and integrated enterprise solutions. His other areas of expertise include
Amazon Web Services, Azure, Google Cloud, Business Intelligence, Hadoop, Spark, NoSQL
Databases, and SharePoint, to name but a few.

Huge thanks to my wonderful wife, Milla, Maria, and Nikolay, and to my children, for all
their support.

Juan Tomás Oliva Ramos is an environmental engineer from University of Guanajuato,
Mexico, with a master's degree in administrative engineering and quality. He is working
Know in the Instituto Tecnologico Superior de Purísima del Rincón Guanajuato, México. He
has more than 5 years of experience in management and development of patents,
technological innovation projects, and technological solutions through the statistical control
of processes. He has been a teacher of statistics, entrepreneurship, and technological
development since 2011. He has developed prototypes via programming and automation
technologies for the improvement of operations, which have been registered for patents.

I want to thank God for giving me the wisdom and humility to review this book. I thank
Packt for giving me the opportunity to review this amazing book and to collaborate with a
group of committed people. I want to thank my beautiful wife, Brenda, our two magic
princesses
(Maria Regina and Maria Renata), and Angel Tadeo. All of you give me the strength,
happiness, and joy to start a new day. Thanks for being my family.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Building Deep Learning Environments 9
Building a common DL environment 9

Get focused and into the code! 10
DL environment setup locally 10

Downloading and installing Anaconda 11
Installing DL libraries 12

Setting up a DL environment in the cloud 13
Cloud platforms for deployment 14

Prerequisites 14
Setting up the GCP 14

Automating the setup process 15
Summary 18

Chapter 2: Training NN for Prediction Using Regression 19
Building a regression model for prediction using an MLP deep
neural network 20
Exploring the MNIST dataset 21
Intuition and preparation 23

Defining regression 24
Defining the project structure 24

Let's code the implementation! 25
Defining hyperparameters 25
Model definition 26
Building the training loop 29

Overfitting and underfitting 34
Building inference 36

Concluding the project 39
Summary 40

Chapter 3: Word Representation Using word2vec 41
Learning word vectors 42

Loading all the dependencies 43
Preparing the text corpus 44
Defining our word2vec model 45
Training the model 47
Analyzing the model 47
Plotting the word cluster using the t-SNE algorithm 49

Visualizing the embedding space by plotting the model on
TensorBoard 51

Table of Contents

[ii]

Building language models using CNN and word2vec 54
Exploring the CNN model 55

Understanding data format 61
Integrating word2vec with CNN 63
Executing the model 63

Deploy the model into production 64
Summary 64

Chapter 4: Building an NLP Pipeline for Building Chatbots 66
Basics of NLP pipelines 67

Tokenization 68
Part-of-Speech tagging 69

Extracting nouns 70
Extracting verbs 71

Dependency parsing 72
NER 72

Building conversational bots 73
What is TF-IDF? 73

Preparing the dataset 73
Implementation 74

Creating the vectorizer 75
Processing the query 76
Rank results 76

Advanced chatbots using NER 76
Installing Rasa 77
Preparing dataset 78
Training the model 79
Deploying the model 80

Serving chatbots 82
Summary 83

Chapter 5: Sequence-to-Sequence Models for Building Chatbots 85
Introducing RNNs 86

RNN architectures 88
Implementing basic RNNs 89

Importing all of the dependencies 90
Preparing the dataset 90
Hyperparameters 92
Defining a basic RNN cell model 92
Training the RNN Model 95
Evaluation of the RNN model 97

LSTM architecture 98
Implementing an LSTM model 100

Defining our LSTM model 100
Training the LSTM model 101
Evaluation of the LSTM model 104

Sequence-to-sequence models 104

Table of Contents

[iii]

Data preparation 106
Defining a seq2seq model 107
Hyperparameters 109
Training the seq2seq model 110
Evaluation of the seq2seq model 111

Summary 112

Chapter 6: Generative Language Model for Content Creation 114
LSTM for text generation 115

Data pre-processing 116
Defining the LSTM model for text generation 117
Training the model 118
Inference and results 120

Generating lyrics using deep (multi-layer) LSTM 121
Data pre-processing 122
Defining the model 125
Training the deep TensorFlow-based LSTM model 127
Inference 130
Output 131

Generating music using a multi-layer LSTM 132
Pre-processing data 133
Defining the model and training 138
Generating music 141

Summary 143

Chapter 7: Building Speech Recognition with DeepSpeech2 145
Data preprocessing 146

Corpus exploration 147
Feature engineering 149
Data transformation 153

DS2 model description and intuition 154
Training the model 158
Testing and evaluating the model 163
Summary 164

Chapter 8: Handwritten Digits Classification Using ConvNets 165
Code implementation 166

Importing all of the dependencies 166
Exploring the data 166
Defining the hyperparameters 168
Building and training a simple deep neural network 169

Fitting a model 172
Evaluating a model 173
MLP – Python file 175

Convolution 176
Convolution in Keras 177

Table of Contents

[iv]

Fitting the model 180
Evaluating the model 180
Convolution – Python file 182

Pooling 183
Fitting the model 187
Evaluating the model 188
Convolution with pooling – Python file 190

Dropout 191
Fitting the model 193
Evaluating the model 194
Convolution with pooling – Python file 196

Going deeper 197
Compiling the model 198
Fitting the model 199
Evaluating the model 200
Convolution with pooling and Dropout – Python file 202

Data augmentation 203
Using ImageDataGenerator 204
Fitting ImageDataGenerator 206
Compiling the model 207
Fitting the model 207
Evaluating the model 208
Augmentation – Python file 210

Additional topic – convolution autoencoder 212
Importing the dependencies 213
Generating low-resolution images 214
Scaling 214
Defining the autoencoder 214
Fitting the autoencoder 217
Loss plot and test results 217
Autoencoder – Python file 220

Conclusion 222
Summary 223

Chapter 9: Object Detection Using OpenCV and TensorFlow 224
Object detection intuition 225

Improvements in object detection models 227
Object detection using OpenCV 228

A handcrafted red object detector 229
Installing dependencies 229
Exploring image data 230
Normalizing the image 232
Preparing a mask 233
Post-processing of a mask 234
Applying a mask 236

Object detection using deep learning 237
Quick implementation of object detection 237

Installing all the dependencies 237
Implementation 239

Table of Contents

[v]

Deployment 242
Object Detection In Real-Time Using YOLOv2 245

Preparing the dataset 245
Using the pre-existing COCO dataset 246
Using the custom dataset 247

Installing all the dependencies 248
Configuring the YOLO model 249
Defining the YOLO v2 model 250
Training the model 251
Evaluating the model 256

Image segmentation 259
Importing all the dependencies 259
Exploring the data 260

Images 260
Annotations 262

Preparing the data 264
Normalizing the image 265
Encoding 266
Model data 267

Defining hyperparameters 268
Define SegNet 269

Compiling the model 272
Fitting the model 272
Testing the model 273

Conclusion 275
Summary 275

Chapter 10: Building Face Recognition Using FaceNet 276
Setup environment 278

Getting the code 278
Building the Docker image 278
Downloading pre-trained models 281

Building the pipeline 283
Preprocessing of images 285

Face detection 285
Aligning faces 286
Feature extraction 290
Execution on Docker 292

Training the classifier 292
Evaluation 293
Summary 295

Chapter 11: Automated Image Captioning 296
Data preparation 297

Initialization 298
Download and prepare the MS-COCO dataset 298
Data preparation for a deep CNN encoder 300

Table of Contents

[vi]

Performing feature extraction 301
Data prep for a language generation (RNN) decoder 302
Setting up the data pipeline 304

Defining the captioning model 305
Attention 305
CNN encoder 306
RNN decoder 306
Loss function 307

Training the captioning model 307
Evaluating the captioning model 310
Deploying the captioning model 313
Summary 316

Chapter 12: Pose Estimation on 3D models Using ConvNets 317
Code implementation 318
Importing the dependencies 319

Exploring and pre-processing the data 320
Preparing the data 330

Cropping 330
Resizing 332
Plotting the joints and limbs 333
Transforming the images 334

Defining hyperparameters for training 336
Building the VGG16 model 337

Defining the VGG16 model 337
Training loop 341
Plot training and validation loss 344

Predictions 345
Scripts in modular form 347

Module 1 – crop_resize_transform.py 348
Module 2 – plotting.py 350
Module 3 – test.py 352
Module 4 – train.py 354

Conclusion 359
Summary 360

Chapter 13: Image Translation Using GANs for Style Transfer 361
Let's code the implementation! 363

Importing all of the dependencies 363
Exploring the data 364
Preparing the data 366

Type conversion, centering, and scaling 366
Masking/inserting noise 367
Reshaping 369
MNIST classifier 369

Defining hyperparameters for GAN 372
Building the GAN model components 372

Table of Contents

[vii]

Defining the generator 373
Defining the discriminator 376
Defining the DCGAN 377

Training GAN 378
Plotting the training – part 1 378
Plotting the training – part 2 380
Training loop 382

Predictions 391
CNN classifier predictions on the noised and generated images 391

Scripts in modular form 393
Module 1 – train_mnist.py 393
Module 2 – training_plots.py 394
Module 3 – GAN.py 394
Module 4 – train_gan.py 395

The conclusion to the project 397
Summary 398

Chapter 14: Develop an Autonomous Agent with Deep R Learning 399
Let's get to the code! 401
Deep Q-learning 401

Importing all of the dependencies 401
Exploring the CartPole game 402

Interacting with the CartPole game 402
Loading the game 402
Resetting the game 403
Playing the game 404

Q-learning 406
Defining hyperparameters for Deep Q Learning (DQN) 407
Building the model components 408

Defining the agent 408
Defining the agent action 410
Defining the memory 410
Defining the performance plot 411
Defining replay 412
Training loop 414
Testing the DQN model 416

Deep Q-learning scripts in modular form 417
Module 1 – hyperparameters_dqn.py 418
Module 2 – agent_replay_dqn.py 418
Module 3 – test_dqn.py 419
Module 4 – train_dqn.py 420

Deep SARSA learning 421
SARSA learning 421

Importing all of the dependencies 422
Loading the game environment 422
Defining the agent 423
Training the agent 423
Testing the agent 424

Deep SARSA learning script in modular form 426

Table of Contents

[viii]

The conclusion to the project 427
Summary 428

Chapter 15: Summary and Next Steps in Your Deep Learning Career 429
Python deep learning – building the foundation – two projects 429

Chapter 1 – Building the Deep Learning Environment 430
Chapter 2 – Training NN for Prediction Using Regression 430

Python deep learning – NLP – 5 projects 431
Chapter 3 – Word Representations Using word2vec 431
Chapter 4 – Build an NLP Pipeline for Building Chatbots 431
Chapter 5 – Sequence-to-Sequence Models for Building Chatbots 432
Chapter 6 – Generative Language Model for Content Creation 433
Chapter 7 – Building Speech Recognition with DeepSpeech2 433

Deep learning – computer vision – 6 projects 434
Chapter 8 – Handwritten Digit Classification Using ConvNets 434
Chapter 9 – Object Detection Using OpenCV and TensorFlow 435
Chapter 10 – Building Facial Recognition Using OpenFace 436
Chapter 11 – Automated Image Captioning 436
Chapter 12 – Pose Estimation on 3D Models Using ConvNets 437
Chapter 13 – Image Translation Using GANs for Style Transfer 437

Python deep learning – autonomous agents – 1 project 438
Chapter 14 – Develop an Autonomous Agent with Deep Reinforcement
Learning 438

Next steps – AI strategy and platforms 439
AI strategy 439
Deep learning platforms – TensorFlow Extended (TFX) 440

Conclusion and thank you! 440

Other Books You May Enjoy 441

Index 444

Preface
Have you ever tried to get something novel out of a computer? I can ask you to make up a
story or look at a picture and tell me what's in it. How would you make a computer
program behave like this in contrast to the digital storage and transfer unit we've used
them for these past 30+ yrs?

If you had perfect knowledge and all the time in the world, you could write all the rules by
which a computer program would need to operate. Of course, if you had all the knowledge
to define the operational rules, you wouldn't need the computer to do anything! So what do
you do if you need a computer to function in complex ways (making predictions,
classifications, optimizing processes, generating content, responding to interactions,
performing robotic controls), but don't have all the heuristic rules defined?

You build an algorithmically-based application that can learn the rules, find the pattern, or
determine the signal, from data that comes from the domain space in question. You set up
the training such that it iterates incredibly fast and with a great number of cycles (we call
them epochs) to provide the "experience" to incrementally train the model in a process that
would not be possible in a human lifetime.

When we build these algorithmic architectures in layers, we create deep learning models
that can learn features (for example, dogs have tails and cars have wheels) and these
learned features are powerful! What we really find in Python Deep Learning Projects is that
we can ask profound questions not possible before. It's these questions that drive our deep
learning technologies to solve problems that range from healthcare diagnostics in radiology
to cancer screening. Deep learning applications drive chatbot experiences, facial
recognition, autonomous vehicles, recommendation engines, and marketing tech. The hard
sciences of physics, biology, and chemistry are incorporating deep learning skills training
just as they have in the past with regard to statistics and microscopes.

Preface

[2]

Who this book is for
This book is perfect for you if you've undertaken at least one course in machine learning
and have a modest functional proficiency in Python (meaning you can create programs in
Python when supported by examples). Many of our readers will be undergraduates at
university studying computer science, statistics, mathematics, physics, biology, chemistry,
marketing, and business. Deep learning technologies are being applied to all the
professions that these degrees prepare you for, and this book is a great way to learn skills
that will be applicable to your success. Postgraduates will appreciate the instruction level,
too, as the projects selected are directly applicable to the modern job market, from tech
start-ups to enterprise applications.

Python Deep Learning Projects is focused at the core of the data science pipeline – model
building, training, evaluation, and validation. Additional pre- and post-data science
engineering processes are required in the data pipeline for production applications that we
cannot address here due to space considerations, but that we are looking to address in a
future publication.

What this book covers
Chapter 1, Building Deep Learning Environments, in this chapter we will establish a common
workspace for our projects with core technologies such as Ubuntu, Anaconda, Python,
TensorFlow, Keras, and Google Cloud Platform (GCP).

Chapter 2, Training a Neural Net for Prediction Using Regression, in this chapter we will build
a 2 layer (minimally deep) neural network in TensorFlow and train it on the classic MNIST
dataset of handwritten digits for a restaurant patron text notification business use case.

Chapter 3, Word Representations Using word2vec, in this chapter we will learn and use
word2vec to transform words into dense vectors (that is, tensors) creating embedding
representations for a corpus, then create a convolutional neural network (CNN) to build a
language model for sentiment analysis in a text exchange business use case.

Chapter 4, Build a NLP Pipeline for Building Chatbots, in this chapter we will create an NLP
pipeline to tokenized a corpus, tag parts of speech, determine relationships between words
with dependency parsing, and that conducts Named Entity Recognition. Use TF-IDF to
vectorize the features in the document to create a simple FAQ type chatbot. Enhance this
chatbot with NER and implementation of Rasa NLU to build a chatbot which understands
the context (intent) to provide an accurate response.

Preface

[3]

Chapter 5, Sequence-to-sequence Models for Building Chatbots, in this chapter we will
use Chapter 4, Build a NLP Pipeline for Building Chatbots, chatbots to build a more advanced
chatbot combining learnings from earlier projects in a number of technologies to make a
chatbot that is more contextually aware and robust. We avoided some of the limitations
of CNNs in chatbots by building a recurrent neural network (RNN) model with long
short-term memory (LSTM) units specifically designed to capture the signal represented in
sequences of characters or words.

Chapter 6, Generative Language Model for Content Creation, in this chapter we implement a
generative model to generate content using the long short-term memory (LSTM),
variational autoencoders, and Generative Adversarial Networks (GANs). You will
effectively implement models for both text and music which can generate song lyrics,
scripts, and music for artists and various creative businesses.

Chapter 7, Building Speech Recognition with DeepSpeech2, in this chapter we build and train
an automatic speech recognition (ASR) system to accept then convert an audio call to text
that could then be used as the input into a text-based chatbot. Work with speech and
spectrograms to build an end-to-end speech recognition system with a Connectionist
Temporal Classification (CTC) loss function, batch normalization and SortaGrad for the
RNNs. This chapter is the capstone in the Natural Language Processing section of
the Python Deep Learning Projects Book.

Chapter 8, Handwritten Digit Classification Using ConvNets, in this chapter we will teach the
fundamentals of Convolutional Neural Networks (ConvNets) in an examination of the
convolution operation, pooling, and dropout regularization. These are the levers you'll
adjust in tuning your models in your career. See the value of deploying a more complex
and deeper model in the performance results compared to an earlier Python Deep Learning
Project in Chapter 2, Training a Neural Net for Prediction Using Regression.

Chapter 9, Object Detection Using OpenCV and TensorFlow, in this chapter we will learn to
master object detection and classification while using significantly more informationally
complex data than previous projects, to produce impressive outcomes. Learn to use the
deep learning package YOLOv2 and gain experience how this model architecture gets
deeper and more complex and produces good results.

Chapter 10, Building Facial Recognition Using FaceNet, in this chapter we will be using
FaceNet to build a model that looks at a picture and identifies all the possible faces in it,
then performs face extraction to understand the quality of the face part of the image.
Performing feature extraction on the face identified parts of the image provides the basis
for comparison to another data point (a labeled image of the person's face). This Python
Deep Learning Project demonstrates the exciting potential for this technology in applications
from social media to security.

https://cdp.packtpub.com/python_deep_learning_projects/wp-admin/post.php?post=727&action=edit#post_27

Preface

[4]

Chapter 11, Automated Image Captioning, in this chapter we will combine the current state-
of-the-art techniques we've learned so far in Python Deep Learning Projects in both computer
vision and natural language processing to form a complete image description approach. The
clever idea that makes this possible is to replace the Encoder (RNN layer) in an Encoder-
Decoder architecture with a deep Convolutional Neural Network (CNN) trained to
classify objects in images. This model is capable of constructing computer-generated
natural language descriptions of any image provided.

Chapter 12, Pose Estimation on 3D Models Using ConvNets, in this chapter we
will successfully build a deep convolution neural network/VGG16 model in Keras on
Frames Labeled In Cinema (FLIC) images. Get hands-on experience in preparing the
images for modeling. Successfully implement transfer learning and test the modified
VGG16 model performance on unseen data to determined success.

Chapter 13, Image Translation Using GANs for Style Transfer, in this chapter you will build a
neural network that fills in the missing part of a handwritten digit. Focusing on the model
creation -the generation/reconstruction of the missing sections of a digit with the help of
neural inpainting with GANs, you will then reconstruct (generate back) the missing parts of
the handwritten numbers so that the classifier can receive clear handwritten numbers for
conversion into digits.

Chapter 14, Develop an Autonomous Agent with Deep R Learning, in this chapter we will build
a deep reinforcement learning model to successfully play the game of CartPole-v1 from
OpenAI Gym. Learn and demonstrate professional competency in the Gym toolkit, Q and
SARSA learning, how to code the reinforcement learning model and define
hyperparameters, build the training loop and test the model.

Chapter 15, Summary and Next Steps in Your Deep Learning Career, in this chapter you will
find reviews key learnings, with a summary of deep learning projects intuition and looks to
what could be next in your deep learning career.

To get the most out of this book
We approach deep learning projects from a very practical point of view. In thinking about
how to share what we know, our experiences, the strategies that we've learned, and the
tactics we employ, it was natural for us to format this book as if you (the reader) were a
member of our Applied AI Engineering team here at The Intelligence Factory.

Preface

[5]

To get the most out of these projects, you should have at least an average working
knowledge of Python and some familiarity with deep learning concepts. This Python Deep
Learning Projects book is primarily a technical instruction book with content related to the
intuition side of deep learning as required in order to learn the code that will produce
functioning models. It is outside the scope of this book to dive deep into the calculus that is
the foundation for these technologies.

Each chapter is like participating in the AI team's weekly standup. As you engage with the
material, you will hopefully do the following:

See the big picture
What's the real-world use case and the goal of the project?
What's the impact of success?
What's our strategy to achieve the goal?

Get focused and into the code!
Identify specific tactics to achieve the project goal
Why is this the right approach?
Loop through executing the tactics

What are the inputs or establishing context?
Code examples
Outputs and success criteria

Questions and answers
What questions did we have?
What questions might you have?

Expand back out to the big picture
Let's confirm that we have achieved our goal
What intuition can we gain from the experience?
How to generalize this successful experience in relation to new use
cases?

Explaining Python deep learning is as easy as 1-2-3! But talking about deep learning isn't
the same thing as doing, and that's what this book is about. What follows are a few thought
provoking and exciting experiences. We will be using the most sophisticated Python
libraries and advanced technologies available to empower you (our newest Applied AI
Engineering team member) to contribute in your career using the projects we've created in
this book. We're happy to have you in our weekly AI team standup.

Now let's learn a bunch, have some fun, and do great work in these Python deep learning
projects!

Preface

[6]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Python-Deep-Learning-Projects. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781788997096_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Python-Deep-Learning-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788997096_ColorImages.pdf

Preface

[7]

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Once you have Docker installed, you should be able to use the docker command
in Terminal."

A block of code is set as follows:

import sys
import dlib
from skimage import io

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Create a HOG face detector using the built-in dlib class
face_detector = dlib.get_frontal_face_detector()

Any command-line input or output is written as follows:

curl https://get.docker.com | sh

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[8]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Building Deep Learning

Environments
Welcome to the applied AI deep-learning team, and to our first project—Building a Common
Deep Learning Environment! We're excited about the projects we've assembled in this book.
The foundation of a common working environment will help us work together and learn
very cool and powerful deep learning (DL) technologies, such as computer vision (CV)
and natural language processing (NLP), that you will be able to use in your professional
career as a data scientist.

The following topics will be covered in this chapter:

Components in building a common DL environment
Setting up a local DL environment
Setting up a DL environment in the cloud
Using the cloud for deployment for DL applications
Automating the setup process to reduce errors and get started quickly

Building a common DL environment
Our main goal to achieve by the end of this chapter is to standardize the toolsets to work
together and achieve consistently accurate results.

In the process of building applications using DL algorithms that can also scale for
production, it's very important to have the right kind of setup, whether local or on the
cloud, to make things work end to end. So, in this chapter, we will learn how to set up a DL
environment that we will be using to run all the experiments and finally take the AI models
into production.

Building Deep Learning Environments Chapter 1

[10]

First, we will discuss the major components required to code, build, and
deploy the DL models, then various ways to do this, and finally, look at a
few code snippets that will help to automate the whole process.

The following is the list of required components that we need to build DL applications:

Ubuntu 16.04 or greater
Anaconda Package
Python 2.x/3.x
TensorFlow/Keras DL packages
CUDA for GPU support
Gunicorn for deployment at scale

Get focused and into the code!
We'll start by setting up your local DL environment. Much of the work that you'll do can be
done on local machines. But with large datasets and complex model architectures,
processing time slows down dramatically. This is why we are also setting up a DL
environment in the cloud, because the processing time for these complex and repetitive
calculations just becomes too long to be able to efficiently get things done otherwise.

We will work straight through the preceding list, and by the end (and with the help of a bit
of automated script), you'll have everything set up!

DL environment setup locally
Throughout this book, we will be using Ubuntu OS to run all the experiments, because
there is great community support for Linux and mostly any DL application can be set
up easily on Linux. For any assistance on installation and setup related to Ubuntu, please
refer to the tutorials at https:/ / tutorials. ubuntu. com/ . On top of that, this book will use
the Anaconda package with Python 2.7+ to write our code, train, and test. Anaconda comes
with a huge list of pre-installed Python packages, such as numpy, pandas, sklearn, and so
on, which are commonly used in all kinds of data science projects.

https://tutorials.ubuntu.com/
https://tutorials.ubuntu.com/
https://tutorials.ubuntu.com/
https://tutorials.ubuntu.com/
https://tutorials.ubuntu.com/
https://tutorials.ubuntu.com/
https://tutorials.ubuntu.com/
https://tutorials.ubuntu.com/
https://tutorials.ubuntu.com/
https://tutorials.ubuntu.com/

Building Deep Learning Environments Chapter 1

[11]

Why do we need Anaconda? Can't we use Vanilla Python?
Anaconda is a generic bundle that contains iPython Notebook, editor, and
lots of Python libraries preinstalled, which saves a lot of time on setting
up everything. With Anaconda, we can quickly get started on solving the
data science problem, instead of configuring the environment.
But, yes, you can use the default Python—it's totally the reader's choice,
and we will learn at the end of this chapter how to configure python env
using script.

Downloading and installing Anaconda
Anaconda is a very popular data science platform for people using Python to build
machine learning and DL models, and deployable applications. The Anaconda marketing
team put it best on their What is Anaconda? page, available at https:/ /www. anaconda. com/
what-is-anaconda/ . To install Anaconda, perform the following steps:

Click Anaconda on the menu, then click Downloads to go to the download page1.
at https:/ /www. anaconda. com/ download/ #linux

Choose the download suitable for your platform (Linux, OS X, or Windows):2.
Choose Python 3.6 version*1.
Choose the Graphical Installer2.

Follow the instructions on the wizard, and in 10 to 20 minutes, your Anaconda3.
environment (Python) setup will be ready

Once the installation process is completed, you can use following command to check the
Python version on your Terminal:

python -V

You should see the following output:

Python 3.6 :: Anaconda,Inc.

If the command does not work, or returns an error, please check the documentation for
help for your platform.

https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux
https://www.anaconda.com/download/#linux

Building Deep Learning Environments Chapter 1

[12]

Installing DL libraries
Now, let's install the Python libraries used for DL, specifically, TensorFlow and Keras.

What is TensorFlow?
TensorFlow is a Python library developed and maintained by Google. You
can implement many powerful machine learning and DL architectures in
custom models and applications using TensorFlow. To find out more,
visit https:/ /www. tensorflow. org/ .

Install the TensorFlow DL library (for all OS except Windows) by typing the following
command:

conda install -c conda-forge tensorflow

Alternatively, you may choose to install using pip and a specific version of TensorFlow for
your platform, using the following command:

pip install tensorflow==1.6

You can find the installation instructions for TensorFlow at https:/ /www. tensorflow. org/
get_started/os_setup#anaconda_ installation.

Now we will install keras using the following command:

pip install keras

To validate the environment and the version of the packages, let's write the following
script, which will print the version numbers of each library:

Import the tensorflow library
import tensorflow
Import the keras library
import keras

print('tensorflow: %s' % tensorflow.__version__)
print('keras: %s' % keras.__version__)

Save the script as dl_versions.py. Run the script by typing the following command:

python dl_version.py

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation
https://www.tensorflow.org/get_started/os_setup#anaconda_installation

Building Deep Learning Environments Chapter 1

[13]

You should see the following output:

tensorflow: 1.6.0
Using TensorFlow backend.
keras: 2.1.5

Voila! Now our Python development environment is ready for us to write some awesome
DL applications in our local.

Setting up a DL environment in the cloud
All the steps we performed up to now remain the same for the cloud as well, but there are a
few additional modules required to configure the cloud virtual machines to make your DL
applications servable and scalable. So, before setting up your server, follow the instructions
from the preceding section.

To deploy your DL applications in the cloud, you will need a server good enough to train
your models and serve at the same time. With huge development in the sphere of DL, the
need for cloud servers to practice and deploy projects has increased drastically, and so have
the options on the market. The following is a list of some of the best options on offer:

Paperspace (https:/ / www. paperspace. com/)
FloydHub (https:/ / www. floydhub. com)
Amazon Web Services (https:/ /aws. amazon. com/)
Google Cloud Platform (https:/ / cloud. google. com/)
DigitalOcean (https:/ /cloud. digitalocean. com/)

All of these options have their own pro and cons, and the final choice totally depends on
your use case and preferences, so feel free to explore more. In this book, we will build and
deploy our models mostly on Google Compute Engine (GCE), which is a part of Google
Cloud Platform (GCP). Follow the steps mentioned in this chapter to spin up a VM server
and get started.

Google has released an internal notebook platform, Google
Colab (https:/ /colab. research. google. com/), which is pre-installed
with all the DL packages and other Python libraries. You can write all of
your ML/DL applications on the Google Cloud, leveraging free GPUs for
10 hours.

https://www.paperspace.com/
https://www.paperspace.com/
https://www.paperspace.com/
https://www.paperspace.com/
https://www.paperspace.com/
https://www.paperspace.com/
https://www.paperspace.com/
https://www.paperspace.com/
https://www.paperspace.com/
https://www.paperspace.com/
https://www.floydhub.com
https://www.floydhub.com
https://www.floydhub.com
https://www.floydhub.com
https://www.floydhub.com
https://www.floydhub.com
https://www.floydhub.com
https://www.floydhub.com
https://www.floydhub.com
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.digitalocean.com/
https://cloud.digitalocean.com/
https://cloud.digitalocean.com/
https://cloud.digitalocean.com/
https://cloud.digitalocean.com/
https://cloud.digitalocean.com/
https://cloud.digitalocean.com/
https://cloud.digitalocean.com/
https://cloud.digitalocean.com/
https://cloud.digitalocean.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/

Building Deep Learning Environments Chapter 1

[14]

Cloud platforms for deployment
The main idea behind this book is to empower you to build and deploy DL applications. In
this section, we will discuss some critical components required to make your applications
accessible to millions of users.

The best way to make your application accessible is to expose it as a web service, using
REST or SOAP APIs. To do so, we have many Python web frameworks to choose
from, such as web.py, Flask, Bottle, and many more. These frameworks allow us to easily
build web services and deploy them.

Prerequisites
You should have a Google Cloud (https:/ /cloud. google. com/) account. Google is
promoting the usage of its platform right now, and is giving away $300 dollars of credit
and 12 months as a free tier user.

Setting up the GCP
Follow these instructions to set up your GCP:

Creating a new project: Click on the three dots, as shown in the following1.
screenshot, and then click on the + sign to create a new project:

Spinning a VM instance: Click on the three lines on the upper-left corner of the2.
screen, select the compute option, and click on Compute Engine. Now choose
Create new instance. Name the VM instance, and select your zone as us-west2b.
Choose the machine type size.

Choose your boot disk as Ubuntu 16.04 LTS. In firewall options, choose both
the http and https option (it's important to make it accessible from the outer
world). To opt for GPU options, you can click on customize button, and find the
GPU options. You can choose between two NVIDIA GPUs. Check both Allow
HTTP traffic and Allow HTTPS traffic.

Now click on Create. Boom! your new VM is getting ready.

https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/

Building Deep Learning Environments Chapter 1

[15]

Modify the firewall settings: Now click on the Firewall rules setting under3.
Networking. Under Protocols and Ports, we need to select the port that we will
use to export our APIs. We have chosen tcp:8080 as our port number. Now
click on the Save button. This will assign a rule in the firewall of your VM to
access the applications from the external world.

Boot your VM: Now start your VM instance. When you see the green tick, click4.
on SSH—this will open a command window, and you are now inside the VM.
You can also use gcloud cli to log in and access your VMs.

Then follow the same steps as we performed to set up the local environment, or5.
read further to learn how to create an automation script that will perform all the
setup automatically.

Now we need a web framework to write our DL applications as web services—again, there
are lots of options, but to make it simple, we will be using a combination of
web.py and Gunicorn.

If you want to know which web framework to choose based on memory
consumption, CPU utilization, and so on, you can have a look at the
comprehensive list of benchmarks at http:/ /klen. github. io/py-
frameworks- bench.

Let's install them using following commands:

pip install web.py
pip install gunicorn

Now we are ready to deploy our DL solution as a web service, and scale it to production
level.

Automating the setup process
Installing of Python packages and DL libraries can be a tedious process, requiring lots of
time and repetitive effort. So, to ease the job, we will create a bash script that can be used to
install everything using a single command.

http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench
http://klen.github.io/py-frameworks-bench

Building Deep Learning Environments Chapter 1

[16]

The following is a list of components that will get installed and configured:

Java 8
Bazel for building
Python and associated dependencies
TensorFlow
Keras
Git
Unzip
Dependencies for all of the aforementioned services (see the script for exact
details)

You can simply download the automation script to your server or locally, execute it, and
you're done. Here are the steps to follow:

Save the script to your home directory, by cloning the code from the repository:1.

git clone
https://github.com/PacktPublishing/Python-Deep-Learning-Projects

Once you have the copy of the complete repository, move to the Chapter012.
folder, which will contain a script file named setupDeepLearning.sh. This is
the script that we will execute to start the setup process, but, before execution, we
will have to make it executable using the chmod command:

cd Python-Deep-Learning-Projects/Chapter01/
chmod +x setupDeepLearning.sh

Once this is done, we are ready to execute it as follows:3.

./setupDeepLearning.sh

Follow any instructions that appear (basically, say yes to everything and accept Java's
license). It should take about 10 to 15 minutes to install everything. Once it has finished,
you will see the list of Python packages being installed, as shown in the following
screenshot:

Building Deep Learning Environments Chapter 1

[17]

Listed packages with TensorFlow and other Python dependencies

There are a couple of other options, too, such as getting Docker images from TensorFlow
and other DL packages, which can set up fully functional DL machines for large-scale and
production-ready environments. You can find out more about Docker at https:/ /www.
docker.com/what- docker. Also, for a quick-start guide, follow the instructions on this
repository for an all-in-one Docker image for DL at https:/ /github. com/ floydhub/ dl-
docker.

https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker
https://github.com/floydhub/dl-docker

Building Deep Learning Environments Chapter 1

[18]

Summary
In this chapter, we worked to get the team set up in a common environment with a
standardized toolset. We are looking to deploy our project applications by utilizing
Gunicorn and CUDA. Those projects will rely on highly advanced and effective DL
libraries, such as TensorFlow and Keras running in Python 2.x/3.x. We'll write our code
using the resources in the Anaconda package, and all of this will be running on Ubuntu
16.04 or greater.

Now we are all set to perform experiments and deploy our DL models in production!

2
Training NN for Prediction

Using Regression
Welcome to our first proper project in Python deep learning! What we'll be doing today is
building a classifier to solve the problem of identifying specific handwriting samples from a
dataset of images. We've been asked (in this hypothetical use case) to do this by a
restaurant chain that has the need to accurately classify handwritten numbers into digits.
What they have their customers do is write their phone numbers in a simple iPad
application. At the time when they can be seated, the guest will get a text prompting them
to come and see the restaurant's host. We need to accurately classify the handwritten
numbers, so that the output from the app will be accurately predicted labels for the digits of
a phone number. This can then be sent to their (hypothetical) auto dialer service for text
messages, and the notice gets to the right hungry customer!

Define success: A good practice is to define the criteria for success at the
beginning of a project. What metric should we use for this project? Let's
use a global accuracy test as a percentage to measure our performance in
this project.

The data science approach to the problem of classification can be configured in a number of
ways. In fact, later in this book, we'll look at how to increase accuracy in image
classification with convolutional neural networks.

Training NN for Prediction Using Regression Chapter 2

[20]

Transfer learning: This means pretraining a deep learning model on a
different (but quite similar) dataset to speed up the rate of learning and
accuracy on another (often smaller) dataset. In this project and our
hypothetical use case, the pretraining of our deep learning multi-layer
perceptron (MLP) on the MNIST dataset would enable the deployment of
a production system of handwriting classification, without having a huge
period of time where we were collecting data samples in a live but non-
functional system. Python deep learning projects are cool!

Let's start with the baseline deep neural network model architecture. We will get our
intuition and skills firmly established, and this will prepare us for learning more complex
architectures to solve a wider variety of problems as we go progress through the projects in
this book.

What we'll learn in this chapter includes the following:

What is an MLP?
Exploring a common open source handwriting dataset—the MNIST dataset
Building our intuition and preparations for model architecture
Coding the model and defining hyperparameters
Building the training loop
Testing the model

Building a regression model for prediction
using an MLP deep neural network
In any real job working in an AI team, one of the primary goals will be to build regression
models that can make predictions in non-linear datasets. Because of the complexity of the
real world and the data that you'll be working with, simple linear regression models won't
provide the predictive power you're seeking. That is why, in this chapter, we will discuss
how to build world-class prediction models using MLP. More information can be found at
http://www.deeplearningbook. org/ contents/ mlp. html, and an example of the MLP
architecture is shown here:

http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html

Training NN for Prediction Using Regression Chapter 2

[21]

An MLP with two hidden layers

We will implement a neural network with a simple architecture of only two layers, using
TensorFlow, that will perform regression on the MNIST dataset (http:/ /yann. lecun. com/
exdb/mnist/) that we will provide. We can (and will) go deeper in architecture in later
projects! We assume that you are already familiar with backpropagation (if not, please read
article on backpropagation by Michal Nielsen at http:/ /neuralnetworksanddeeplearning.
com/chap2.html). We'll not spend much time on how TensorFlow works, but you can refer
to the official tutorial, available at https:/ /www. tensorflow. org/ versions/ r0.10/ get_
started/basic_usage. html, if you are interested in looking under the hood of that
technology.

Exploring the MNIST dataset
Before we jump into building our awesome neural network, let's first have a look at the
famous MNIST dataset. So let's visualize the MNIST dataset in this section.

Words of wisdom: You must know your data and how it has been
preprocessed, in order to know why the models you build perform the
way they do. This section reviews the significant work that has been done
in preparation on the dataset, to make our current job of building the MLP
easier. Always remember: data science begins with DATA!

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.html

Training NN for Prediction Using Regression Chapter 2

[22]

Let's start therefore by downloading the data, using the following commands:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

If we examine the mnist variable content, we can see that it is structured in a specific
format, with three major components—TRAIN, TEST, and VALIDATION. Each set has
handwritten images and their respective labels. The images are stored in a flattened way as
a single vector:

The format of the MNIST dataset

Let's extract one image from the dataset and plot it. Since the stored shape of a single image
matrix is [1,784], we need to reshape these vectors into [28,28] to visualize the original
image:

sample_image = mnist.train.images[0].reshape([28,28])

Once we have the image matrix, we will use matplotlib to plot it, as follows:

import matplotlib.pyplot as plt
plt.gray()
plt.imshow(sample_image)

Training NN for Prediction Using Regression Chapter 2

[23]

The output will be as follows:

A sample of the MNIST dataset

In the same vein as this image, there are a total of 55,000 similar images of handwritten
digits [0-9]. The labels in the MNIST dataset are the true value of the digits present in the
image. Our objective, then, is to train a model with this set of images and labels, so that it
can predict the labels of any image provided from the MNIST dataset.

Be a deep learning explorer: If you are interested in playing around with
the dataset, you can try the Colab Notebook, available at https:/ /drive.
google. com/ file/ d/ 1- GVlob72EyiJyQpk8EL2fg2mvzaEayJ_ /view? usp=
sharing.

Intuition and preparation
Let's build our intuition around this project. What we need to do is build a deep learning
technology that accurately assigns class labels to an input image. We're using a deep neural
network, known as an MLP, to do this. The core of this technology is the mathematics of
regression. The specific calculus proofs are outside the scope of this book, but in this
section, we provide a foundational basis for your understanding. We also outline the
structure of the project, so that it's easy to understand the primary steps needed to create
our desired results.

https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing
https://drive.google.com/file/d/1-GVlob72EyiJyQpk8EL2fg2mvzaEayJ_/view?usp=sharing

Training NN for Prediction Using Regression Chapter 2

[24]

Defining regression
Our first task is to define the model that will perform regression on the provided MNIST
dataset. So, we will create a TensorFlow model with two hidden layers as part of a fully
connected neural network. You may also hear it referred to as MLP.

The model will perform the operation that will fit the following equation, where y is the
label, x is the image, W is the weight that the model will learn, and b is the bias, which will
also be learned by the model, following is the regression equation for the model:

The regression equation for the model

Supervised learning: When you have data and accurate labels for the
training set (that is, you know the answer), you are in a supervised deep
learning paradigm. Model training is a mathematical process by which the
features of the data are learned and associated with the proper labels, so
that when a new data point (test data) is presented, the accurate output
class label can be produced. In other words, when you present a new data
point and do not have the label (that is, you don't know the answer), your
model can produce it for you with a highly reliable class prediction.

Each iteration will try to generalize the values of weight and bias and reduce the error rate.
Also, keep in mind that we need to ensure that the model is not overfitting, which may lead
to wrong predictions for the unseen dataset. We'll show you how to code this and visualize
the progress to aid in your intuition of model performance.

Defining the project structure
Let's structure our project as shown in the following pattern:

hy_param.py: All the hyperparameters and other configurations are defined
here
model.py: The definition and architecture of the model are defined here
train.py: The code to train the model is written here
inference.py: The code to execute the trained model and make predictions is
defined here
/runs: This folder will store all of the checkpoints that get created during the
training process

Training NN for Prediction Using Regression Chapter 2

[25]

You can clone the code from the repository—the code for this can be found in
the Chapter02 folder, available at https:/ /github. com/ PacktPublishing/ Python- Deep-
Learning-Projects/ .

Let's code the implementation!
To code the implementation, we'll start by defining the hyperparameters, then we will
define the model, followed by building and executing the training loop. We conclude by
checking to see if our model is overfitting and build an inference code that loads the latest
checkpoints and then makes predictions on the basis of learned parameters.

Defining hyperparameters
We will define all of the required hyperparameters in the hy_param.py file and then
import it as a module in our other codes. This makes it easy in deployment, and is good
practice to make your code as modular as possible. Let's look into the hyperparameter
configurations that we have in our hy_param.py file:

#!/usr/bin/env python2

Hyperparameters and all other kind of params

Parameters
learning_rate = 0.01
num_steps = 100
batch_size = 128
display_step = 1

Network Parameters
n_hidden_1 = 300 # 1st layer number of neurons
n_hidden_2 = 300 # 2nd layer number of neurons
num_input = 784 # MNIST data input (img shape: 28*28)
num_classes = 10 # MNIST total classes (0-9 digits)

#Training Parameters
checkpoint_every = 100
checkpoint_dir = './runs/'

We will be using these values throughout our code, and they're totally configurable.

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/

Training NN for Prediction Using Regression Chapter 2

[26]

As a Python deep learning projects exploration opportunity, we invite
you, our project teammate and reader, to try different values of learning
rate and numbers of hidden layers to experiment and build better models!

Since the flat vectors of images shown previously are of a size of [1 x 786],
the num_input=784 is fixed in this case. In addition, the class count in the MNIST dataset
is 10. We have digits from 0-9, so obviously we have num_classes=10.

Model definition
First, we will load the Python modules; in this case, the TensorFlow package and the
hyperparameters that we defined previously:

import tensorflow as tf
import hy_param

Then, we define the placeholders that we will be using to input data into the
model. tf.placeholder allows us to feed input data to the computational graph. We can
define constraints with the shape of the placeholder to only accept a tensor of a certain
shape. Note that it is common to provide None for the first dimension, which allows us to
the size of the batch at runtime.

Master your craft: Batch size can often have a big impact on the
performance of deep learning models. Explore different batch sizes in this
project. What changes as a result? What's your intuition? Batch size is
another tool in your data science toolkit!

We have also assigned names to the placeholders, so that we can use them later on while
building our inference code:

X = tf.placeholder("float", [None, hy_param.num_input],name="input_x")
Y = tf.placeholder("float", [None, hy_param.num_classes],name="input_y")

Now we will define variables that will hold values for weights and bias.
tf.Variable allows us to store and update tensors in our graph. To initialize our variables
with random values from a normal distribution, we will use tf.random_normal() (more
details can be found at https:/ /www. tensorflow. org/ api_ docs/ python/ tf/ random_
normal). The important thing to notice here is the mapping variable size between layers:

weights = {
 'h1': tf.Variable(tf.random_normal([hy_param.num_input,
hy_param.n_hidden_1])),

https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal
https://www.tensorflow.org/api_docs/python/tf/random_normal

Training NN for Prediction Using Regression Chapter 2

[27]

 'h2': tf.Variable(tf.random_normal([hy_param.n_hidden_1,
hy_param.n_hidden_2])),
 'out': tf.Variable(tf.random_normal([hy_param.n_hidden_2,
hy_param.num_classes]))
 }
 biases = {
 'b1': tf.Variable(tf.random_normal([hy_param.n_hidden_1])),
 'b2': tf.Variable(tf.random_normal([hy_param.n_hidden_2])),
 'out': tf.Variable(tf.random_normal([hy_param.num_classes]))
 }

Now, let's set up the operation that we defined in the equation earlier in this chapter. This
is the logistic regression operation:

layer_1 = tf.add(tf.matmul(X, weights['h1']), biases['b1'])
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
logits = tf.matmul(layer_2, weights['out']) + biases['out']

The logistic values are converted into the probabilistic values
using tf.nn.softmax(). The softmax activation squashes the output values of each unit
to a value between zero and one:

prediction = tf.nn.softmax(logits, name='prediction')

Next, let's use tf.nn.softmax_cross_entropy_with_logits to define our cost
function. We will optimize our performance using the Adam Optimizer. Finally, we can use
the built-in minimize() function to calculate the stochastic gradient descent (SGD)
update rule for each parameter in our network:

loss_op =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,
labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=hy_param.learning_rate)
train_op = optimizer.minimize(loss_op)

Next, we make our prediction. These functions are needed to calculate and capture the
accuracy values in a batch:

correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)
,name='accuracy')

The complete code is as follows:

#!/usr/bin/env python2
-*- coding: utf-8 -*-

import tensorflow as tf

Training NN for Prediction Using Regression Chapter 2

[28]

import hy_param

Defining Placeholders which will be used as inputs for the model
X = tf.placeholder("float", [None, hy_param.num_input],name="input_x")
Y = tf.placeholder("float", [None, hy_param.num_classes],name="input_y")

Defining variables for weights & bias
weights = {
 'h1': tf.Variable(tf.random_normal([hy_param.num_input,
hy_param.n_hidden_1])),
 'h2': tf.Variable(tf.random_normal([hy_param.n_hidden_1,
hy_param.n_hidden_2])),
 'out': tf.Variable(tf.random_normal([hy_param.n_hidden_2,
hy_param.num_classes]))
}
biases = {
 'b1': tf.Variable(tf.random_normal([hy_param.n_hidden_1])),
 'b2': tf.Variable(tf.random_normal([hy_param.n_hidden_2])),
 'out': tf.Variable(tf.random_normal([hy_param.num_classes]))
}

Hidden fully connected layer 1 with 300 neurons
layer_1 = tf.add(tf.matmul(X, weights['h1']), biases['b1'])
Hidden fully connected layer 2 with 300 neurons
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
Output fully connected layer with a neuron for each class
logits = tf.matmul(layer_2, weights['out']) + biases['out']

Performing softmax operation
prediction = tf.nn.softmax(logits, name='prediction')

Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
 logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=hy_param.learning_rate)
train_op = optimizer.minimize(loss_op)

Evaluate model
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)
,name='accuracy')

Training NN for Prediction Using Regression Chapter 2

[29]

Hurray! The heavy lifting part of the code is done. We save the model code in
the model.py file. So, up until now, we've defined the simple two-hidden-layer model
architecture, with 300 neurons in each layer, which will try to learn the best weight
distribution using the Adam Optimizer and predict the probability of ten classes. These
layers are shown in the following diagram:

An illustration of the model that we created

Building the training loop
The next step is to utilize the model for training, and record the learned model parameters,
which we will accomplish in train.py.

Let's start by importing the dependencies:

import tensorflow as tf
import hy_param

MLP Model which we defined in previous step
import model

Training NN for Prediction Using Regression Chapter 2

[30]

Then, we define the variables that we require to be fed into our MLP:

This will feed the raw images
X = model.X
This will feed the labels associated with the image
Y = model.Y

Let's create the folder to which we will save our checkpoints. Checkpoints are basically the
intermediate steps that capture the values of W and b in the process of learning. Then, we
will use the tf.train.Saver() function (more details on this function can be found
at https://www.tensorflow. org/ api_ docs/python/ tf/train/ Saver) to save and restore
checkpoints:

checkpoint_dir = os.path.abspath(os.path.join(hy_param.checkpoint_dir,
"checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
 os.makedirs(checkpoint_dir)

We only keep the last 2 checkpoints to manage storage
saver = tf.train.Saver(tf.global_variables(), max_to_keep=2)

In order to begin training, we need to create a new session in TensorFlow. In this session,
we'll initialize the graph variables and feed the model operations the valid data:

Initialize the variables
init = tf.global_variables_initializer()

Start training
with tf.Session() as sess:

 # Run the initializer
 sess.run(init)

 for step in range(1, hy_param.num_steps+1):
 # Extracting
 batch_x, batch_y = mnist.train.next_batch(hy_param.batch_size)
 # Run optimization op (backprop)
 sess.run(model.train_op, feed_dict={X: batch_x, Y: batch_y})
 if step % hy_param.display_step == 0 or step == 1:
 # Calculate batch loss and accuracy
 loss, acc = sess.run([model.loss_op, model.accuracy],
feed_dict={X: batch_x,
 Y:
batch_y})
 print("Step " + str(step) + ", Minibatch Loss= " + \
 "{:.4f}".format(loss) + ", Training Accuracy= " + \

https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver

Training NN for Prediction Using Regression Chapter 2

[31]

 "{:.3f}".format(acc))
 if step % hy_param.checkpoint_every == 0:
 path = saver.save(
 sess, checkpoint_prefix, global_step=step)
 print("Saved model checkpoint to {}\n".format(path))

 print("Optimization Finished!")

We will extract batches of 128 training image-label pairs from the MNIST dataset and feed
them into the model. After subsequent steps or epochs, we will store the checkpoints using
the saver operation:

#!/usr/bin/env python2
-*- coding: utf-8 -*-

from __future__ import print_function

Import MNIST data
import os
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

import tensorflow as tf
import model
import hy_param

tf Graph input
X = model.X
Y = model.Y

checkpoint_dir = os.path.abspath(os.path.join(hy_param.checkpoint_dir,
"checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
 os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=2)
#loss = tf.Variable(0.0)
Initialize the variables
init = tf.global_variables_initializer()
all_loss = []
Start training
with tf.Session() as sess:
 writer_1 = tf.summary.FileWriter("./runs/summary/",sess.graph)
 sum_var = tf.summary.scalar("loss", model.accuracy)

Training NN for Prediction Using Regression Chapter 2

[32]

 write_op = tf.summary.merge_all()

 # Run the initializer
 sess.run(init)

 for step in range(1, hy_param.num_steps+1):
 # Extracting
 batch_x, batch_y = mnist.train.next_batch(hy_param.batch_size)
 # Run optimization op (backprop)
 sess.run(model.train_op, feed_dict={X: batch_x, Y: batch_y})
 if step % hy_param.display_step == 0 or step == 1:
 # Calculate batch loss and accuracy
 loss, acc, summary = sess.run([model.loss_op, model.accuracy,
write_op], feed_dict={X: batch_x,
 Y:
batch_y})
 all_loss.append(loss)
 writer_1.add_summary(summary, step)
 print("Step " + str(step) + ", Minibatch Loss= " + \
 "{:.4f}".format(loss) + ", Training Accuracy= " + \
 "{:.3f}".format(acc))
 if step % hy_param.checkpoint_every == 0:
 path = saver.save(
 sess, checkpoint_prefix, global_step=step)
print("Saved model checkpoint to {}\n".format(path))

 print("Optimization Finished!")

 # Calculate accuracy for MNIST test images
 print("Testing Accuracy:", \
 sess.run(model.accuracy, feed_dict={X: mnist.test.images,
 Y: mnist.test.labels}))

Training NN for Prediction Using Regression Chapter 2

[33]

Once we have executed the train.py file, you will see the progress on your console, as
shown in the preceding screenshot. This depicts the loss being reduced after every step,
along with accuracy increasing over each step:

The training epoch's output with minibatch loss and training accuracy parameters

Training NN for Prediction Using Regression Chapter 2

[34]

Also, you can see in the plot of minibatch loss, shown in the following diagram, that it
approaches toward the minima with each step:

Plotting the loss values computed at each step

It is very important to visualize how your model is performing, so that you can analyze and
prevent it from underfitting or overfitting. Overfitting is a very common scenario when you
are dealing with the deeper models. Let's spend some time getting to understand them in
detail and learning a few tricks to overcome them.

Overfitting and underfitting
With great power comes great responsibility and with deeper models come deeper
problems. A fundamental challenge with deep learning is striking the right balance
between generalization and optimization. In the deep learning process, we are tuning
hyperparameters and often continuously configuring and tweaking the model to produce
the best results, based on the data we have for training. This is optimization. The key
question is, how well does our model generalize in performing predictions on unseen data?

Training NN for Prediction Using Regression Chapter 2

[35]

As professional deep learning engineers, our goal is to build models with good real-world
generalization. However, generalization is subjective to the model architecture and the
training dataset. We work to guide our model for maximum utility by reducing the
likelihood that it learns irrelevant patterns or simple similar patterns found in the data used
for training. If this is not done, it can affect the generalization process. A good solution is to
provide the model with more information that is likely to have a better (that is, more
complete and often complex) signal of what you're trying to actually model, by
getting more data to train on and to work to optimize the model architecture. Here are few
quick tricks that can improve your model by preventing overfitting:

Getting more data for training
Reducing network capacity by altering the number of layers or nodes
Employing L2 (and trying L1) weight regularization techniques
Adding dropout layers or polling layers in the model

L1 regularization, where the cost added is proportional to the absolute
value of the weights coefficients, is also known as L1 norm. L2
regularization, where the cost added is proportional to the square of the
value of the weight's coefficients, is also known as L2 norm or weight decay.

When the model gets trained completely, its output, as checkpoints, will get dumped into
the /runs folder, which will contain the binary dump of checkpoints, as shown in the
following screenshot:

The checkpoint folder after the training process is completed

Training NN for Prediction Using Regression Chapter 2

[36]

Building inference
Now, we will create an inference code that loads the latest checkpoints and then makes
predictions on the basis of learned parameters. For that, we need to create a saver
operation that will pick the latest checkpoints and load the metadata. Metadata contains the
information regarding the variables and the nodes that we created in the graph:

Pointing the model checkpoint
checkpoint_file =
tf.train.latest_checkpoint(os.path.join(hy_param.checkpoint_dir,
'checkpoints'))
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))

We know the importance of this, because we want to load similar variables and operations
back from the stored checkpoint. We load them into memory
using tf.get_default_graph().get_operation_by_name(), by passing the operation
name in the parameter that we defined in the model:

Load the input variable from the model
input_x =
tf.get_default_graph().get_operation_by_name("input_x").outputs[0]

Load the Prediction operation
prediction =
tf.get_default_graph().get_operation_by_name("prediction").outputs[0]

Now, we need to initialize the session and pass data for a test image to the operation that
makes the prediction, as follows:

Load the test data
test_data = np.array([mnist.test.images[0]])

with tf.Session() as sess:
 # Restore the model from the checkpoint
 saver.restore(sess, checkpoint_file)
 # Execute the model to make predictions
 data = sess.run(prediction, feed_dict={input_x: test_data })
 print("Predicted digit: ", data.argmax())

Following is the full code:

#!/usr/bin/env python2
-*- coding: utf-8 -*-

from __future__ import print_function

Training NN for Prediction Using Regression Chapter 2

[37]

import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

import hy_param

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

Pointing the model checkpoint
checkpoint_file =
tf.train.latest_checkpoint(os.path.join(hy_param.checkpoint_dir,
'checkpoints'))
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))

Loading test data
test_data = np.array([mnist.test.images[6]])

Loading input variable from the model
input_x =
tf.get_default_graph().get_operation_by_name("input_x").outputs[0]

Loading Prediction operation
prediction =
tf.get_default_graph().get_operation_by_name("prediction").outputs[0]

with tf.Session() as sess:
 # Restoring the model from the checkpoint
 saver.restore(sess, checkpoint_file)
 # Executing the model to make predictions
 data = sess.run(prediction, feed_dict={input_x: test_data })
 print("Predicted digit: ", data.argmax())

Display the feed image
print ("Input image:")
plt.gray()
plt.imshow(test_data.reshape([28,28]))

Training NN for Prediction Using Regression Chapter 2

[38]

And with that, we are done with our first project that predicts the digits provided in a
handwritten image! Here are some of the results that the model predicted when provided
with the test image from the MNIST dataset:

The output of the model, depicting the prediction of the model and the input image

Training NN for Prediction Using Regression Chapter 2

[39]

Concluding the project
Today's project was to build a classifier to solve the problem of identifying specific
handwriting samples from a dataset of images. Our hypothetical use case was to apply
deep learning to enable customers of a restaurant chain to write their phone numbers in a
simple iPad application, so that they could get a text notification that their party was ready
to be seated. Our specific task was to build the intelligence that would drive this
application.

Revisit our success criteria: How did we do? Did we succeed? What was
the impact of our success? Just as we defined success at the beginning of
the project, these are the key questions that we need to ask as deep
learning data scientists, as we look to wrap up a project.

Our MLP model accuracy hit 87.42%! Not bad, given the depth of the model and the
hyperparameters that we chose at the beginning. See if you can tweak the model to get an
even higher test set accuracy.

What are the implications of this accuracy? Let's calculate the incidence of an error
occurring that would result in a customer service issue (that is, the customer not getting the
text that their table is ready, and getting upset due to an excessively long wait time at the
restaurant).

Each customer's phone number is ten digits long. Let's say that our hypothetical restaurant
has an average of 30 tables at each location, and those tables turn over two times per night
during the rush hour, when the system is likely to be used, and finally, the restaurant chain
has 35 locations. This means that each day of operation, there are approximately 21,000
handwritten numbers captured (30 tables x 2 turns/day x 35 locations x 10 digit phone
number).

Obviously, all digits must be correctly classified for the text to get to the waiting restaurant
patron. So, any single digit misclassification causes a failure. A model accuracy of
87.42% would improperly classify 2,642 digits per day in our example. The worst case for
the hypothetical scenario would be if there occurred only one improperly classified digit in
each phone number. Since there are only 2,100 patrons and corresponding phone numbers,
this would mean that every phone number had an error in classification (a 100% failure
rate), and not a single customer would get their text notification that their party could be
seated! The best case, in this scenario, would be if all 10 digits were misclassified in each
phone number, which would result in 263 wrong phone numbers out of 2,100 (a 12.5%
failure rate). This is still not a level of performance that the restaurant chain would be likely
be happy with.

Training NN for Prediction Using Regression Chapter 2

[40]

Words of wisdom: Model performance may not equal system or app
performance. Many factors contribute to a system being robust or fragile
in the real world. Model performance is a key factor, but other items with
individual fault tolerances definitely play a part. Know how your deep
learning models integrate into the larger project so that you can set proper
expectations!

Summary
In the project in this chapter, we successfully built an MLP to produce a regression
classification prediction, based on handwritten digits. We gained experience with the
MNIST dataset and a deep neural network model architecture, which gave us the added
opportunity to define some key hyperparameters. Finally, we looked at the model
performance in testing and determined whether we succeeded in achieving our goals.

3
Word Representation Using

word2vec
Our Python Deep Learning Projects team is doing good work, and our (hypothetical) business
use case has expanded! In the last project, we were asked to accurately classify handwritten
digits to generate a phone number so that an available table notification text could be sent out
to patrons of a restaurant chain. What we learned after the project was that the text that the
restaurant sent out had a message that was friendly and well received. The restaurant was
actually getting texts back!

The notification text was: We're excited that you're here and your table is ready! See the greeter,
and we'll seat you now.

Response texts were varied and usually short, but the responses were noticed by the greeter
and the restaurant management, who started thinking that maybe they could use this
simple system to get feedback on the dining experience. This feedback would provide
useful business intelligence on how the food tasted, how the service was delivered, and the
overall quality of the experience.

Define success: The goal of this project is to build a computational
linguistic model, using word2vec, that can take a text response (as
identified in our hypothetical use case for this chapter) and output a
sentiment classification that is meaningful.

In this chapter, we introduce the foundational knowledge of deep learning (DL) for
computational linguistics.

Word Representation Using word2vec Chapter 3

[42]

We present the role of the dense vector representation of words in various computational
linguistic tasks and how to construct them from an unlabeled monolingual corpus.

We'll then present the role of language models in various computational linguistic tasks,
such as text classification, and how to construct them from an unlabeled monolingual
corpus using convolutional neural networks (CNNs). We'll also explore CNN architecture
for language modeling.

While working with machine learning/DL, the structure of data is very
important. Unfortunately, raw data is often very unclean
and unstructured, especially in the practice of natural language
processing (NLP). When working with textual data, we cannot feed
strings as input in most DL algorithms; hence, word embedding methods
come to the rescue. Word embedding is used to transform the textual data
into dense vector (tensors) form, which we can feed to the learning
algorithm.

There are several ways in which we can perform word embeddings, such as one-hot
encoding, GloVe, word2vec, and many more, and each of them have their own pros and
cons. Our current favorite is word2vec because it has been proven to be the most efficient
approach when it comes to learning high quality features.

If you have ever worked on a use case where the input data is in text form,
then you know that it's a really messy affair because you have to teach a
computer about the irregularities of human language. Language has lots
of ambiguities, and you have to teach sort of like hierarchical and the
sparse nature of grammar. So these are the kinds of problems that word
vectors solve by removing the ambiguities and making all different kinds
of concepts similar.

In this chapter, we will learn how to build word2vec models and analyze what
characteristics we can learn about the provided corpus. Also, we will learn how to build a
language model that utilizes a CNN with trained word vectors.

Learning word vectors
To implement a fully functional word embedding model, we will perform the
following steps:

Loading all the dependencies1.
Preparing the text corpus2.

Word Representation Using word2vec Chapter 3

[43]

Defining the model3.
Training the model4.
Analyzing the model 5.
Plotting the word cluster using the t-Distributed Stochastic Neighbor6.
Embedding (t-SNE) algorithm
Plotting the model on TensorBoard7.

Let's make some world-class word embedding models!

The code for this section is available at https:/ /github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ blob/ master/
Chapter03/ create_ word2vec. ipynb.

Loading all the dependencies
In this chapter, we will be using the gensim module (https:/ /github. com/ RaRe-
Technologies/gensim) to train our word2vec model. Gensim provides large-scale multi-
core processing support to many popular algorithms, including Latent Dirichlet Allocation
(LDA), Hierarchical Dirichlet Process (HDP), and word2vec. There are other approaches
that we could take, such as the use of TensorFlow (https:/ / github. com/ tensorflow/
models/blob/master/ tutorials/ embedding/ word2vec_ optimized. py) to define our own
computation graph and build the model—this is something that we will look into later on.

Know the code! Python dependencies are quite manageable. You can
learn more at https:/ /packaging. python. org/ tutorials/ managing-
dependencies/ .

This tutorial walks you through the use of Pipenv to manage
dependencies for an application. It will show you how to install and use
the necessary tools and make strong recommendations on best practices.
Keep in mind that Python is used for a great many different purposes, and
precisely how you want to manage your dependencies may change based
on how you decide to publish your software. The guidance presented here
is most directly applicable to the development and deployment of
network services (including web applications), but is also very well suited
to managing development and testing environments for any kind of
project.

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter03/create_word2vec.ipynb
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec_optimized.py
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/
https://packaging.python.org/tutorials/managing-dependencies/

Word Representation Using word2vec Chapter 3

[44]

We will be using the seaborn package to plot the word clusters, sklearn to implement the
t-SNE algorithm, and tensorflow for building TensorBoard plots:

import multiprocessing
import os , json , requests
import re
import nltk
import gensim.models.word2vec as w2v
import sklearn.manifold
import pandas as pd
import seaborn as sns
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector

Preparing the text corpus
We will use the previously trained Natural Language Toolkit (NLTK) tokenizer (http:/ /
www.nltk.org/index. html) and stop words for the English language to clean our
corpus and extract relevant unique words from the corpus. We will also create a small
module to clean the provided collection, with a list of unprocessed sentences, to output the
list of words:

"""**Download NLTK tokenizer models (only the first time)**"""

nltk.download("punkt")
nltk.download("stopwords")

def sentence_to_wordlist(raw):
 clean = re.sub("[^a-zA-Z]"," ", raw)
 words = clean.split()
 return map(lambda x:x.lower(),words)

Since we haven't yet captured the data from the text responses in our hypothetical business
use case, let's collect a good quality dataset that's available on the web. Demonstrating our
understanding and skills with this corpus will prepare us for the hypothetical business use
case data. You can also use your own dataset, but it's important to have a huge amount of
words so that the word2vec model can generalize well. So, we will load our data from the
Project Gutenberg website, available at Gutenberg.org.

http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://www.nltk.org/index.html
http://Gutenberg.org

Word Representation Using word2vec Chapter 3

[45]

Then we tokenize the raw corpus into the list of unique clean words, as shown in the
following diagram:

This process depicts the data transformation, from raw data, to the list of words that will be fed into the word2vec model

Here we will download the text data from the URL and process them as shown in the
preceding figure:

Article 0on earth from Gutenberg website
filepath = 'http://www.gutenberg.org/files/33224/33224-0.txt

corpus_raw = requests.get(filepath).text

tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')

raw_sentences = tokenizer.tokenize(corpus_raw)

#sentence where each word is tokenized
sentences = []
for raw_sentence in raw_sentences:
 if len(raw_sentence) > 0:
 sentences.append(sentence_to_wordlist(raw_sentence))

Defining our word2vec model
Now let's use gensim in our definition of the word2vec model. To begin, let's define a few
hyperparameters for our model, such as the dimension, which means how many low-level
features we want to learn. Each dimension will learn a unique concept of gender, objects,
age, and so on.

Word Representation Using word2vec Chapter 3

[46]

Computational linguistics model tip #1: Increasing the number of
dimensions leads to better generalization... but it also adds more
computational complexity. The right number is an empirical question for
you to determine as an applied AI deep learning engineer!

Computational linguistics model tip #2: Pay attention to
context_size. This is important because it sets the upper limit for the
distance between the current and target word prediction within a
sentence. This helps the model in learning the deeper relationships
between a word and the other nearby words.

Using the gensim instance, we will define our model, including all the hyperparameters:

num_features = 300

Minimum word count threshold.
min_word_count = 3

Number of threads to run in parallel.

#more workers, faster we train
num_workers = multiprocessing.cpu_count()

Context window length.
context_size = 7

Downsample setting for frequent words. 0 - 1e-5 is good for this
downsampling = 1e-3

seed = 1

model2vec = w2v.Word2Vec(
 sg=1,
 seed=seed,
 workers=num_workers,
 size=num_features,
 min_count=min_word_count,
 window=context_size,
 sample=downsampling
)
model2vec.build_vocab(sentences)

Word Representation Using word2vec Chapter 3

[47]

Training the model
Once we have configured the gensim word2vec object, we need to give the model some
training. Be prepared, as this might take some time depending on the amount of data and
the computation power you have. In this process, we have to define the number of
epochs we need to run, which can vary depending on your data size. You can play around
with these values and evaluate your word2vec model's performance.

Also, we will save the trained model so that we can use it later on while building our
language models:

"""**Start training, this might take a minute or two...**"""

model2vec.train(sentences ,total_examples=model2vec.corpus_count ,
epochs=100)

"""**Save to file, can be useful later**"""

if not os.path.exists(os.path.join("trained",'sample')):
 os.makedirs(os.path.join("trained",'sample'))

model2vec.save(os.path.join("trained",'sample', ".w2v"))

Once the training process is complete, you can see a binary file stored in
/trained/sample.w2v. You can share the sample.w2v file with others and they can use
this word vectors in their NLP usecases and load it later into any other NLP task.

Analyzing the model
Now that we have trained our word2vec model, let's explore what our model was able to
learn. We will use most_similar() to explore the relations between various words. In the
following example, you see that the model was able to learn that the word earth is related
to crust, globe, and other words. It is interesting to see that we only provided the raw
data and the model was able to learn all of these relations and concepts automatically! The
following is the example:

model2vec.most_similar("earth")

[(u'crust', 0.6946468353271484),
 (u'globe', 0.6748907566070557),
 (u'inequalities', 0.6181437969207764),
 (u'planet', 0.6092090606689453),
 (u'orbit', 0.6079996824264526),
 (u'laboring', 0.6058655977249146),

Word Representation Using word2vec Chapter 3

[48]

 (u'sun', 0.5901342630386353),
 (u'reduce', 0.5893668532371521),
 (u'moon', 0.5724939107894897),
 (u'eccentricity', 0.5709577798843384)]

Let's try to find words related to human and see what the model has learned:

model2vec.most_similar("human")

 [(u'art', 0.6744576692581177),
 (u'race', 0.6348963975906372),
 (u'industry', 0.6203593611717224),
 (u'man', 0.6148483753204346),
 (u'population', 0.6090731620788574),
 (u'mummies', 0.5895125865936279),
 (u'gods', 0.5859177112579346),
 (u'domesticated', 0.5857442021369934),
 (u'lives', 0.5848811864852905),
 (u'figures', 0.5809590816497803)]

Critical thinking tip: It's interesting to observe that art, race, and
industry are the most similar outputs. Remember that these similarities
are based on the corpus of text that we used for training, and they should
be thought of in that context. Generalization, and its unwanted sidekick,
bias, can come into play when similarities from outdated or dissimilar
training corpora are used to train a model that is applied to a new set of
language data or cultural norms.

Even when we try to derive an analogy by using two positive vectors, earth and moon, and
a negative vector, orbit, the model predicts the word sun, which makes sense because
there is a semantic relation between the moon orbiting around the earth, and the earth
orbiting around the sun:

model2vec.most_similar_cosmul(positive=['earth','moon'],
negative=['orbit'])

(u'sun', 0.8161555624008179)

So, we learned that by using the word2vec model we can derive valuable information from
raw unlabeled data. This process is crucial in terms of learning the grammar of a language
and the semantic correlations between words.

Word Representation Using word2vec Chapter 3

[49]

Later, we will learn how to use these word2vec features as an input for
the classification model, which helps in boosting the model's accuracy and
performance.

Plotting the word cluster using the t-SNE algorithm
So, after our analysis, we know that our word2vec model has learned some concepts from
the provided corpus, but how do we visualize it? Because we have created a 300-
dimensional space to learn the features, it's practically impossible for us to visualize. To
make it possible, we will use a dimension reduction algorithm, called t-SNE, which is very
well known for reducing a high dimensional space into more humanly understandable two
or three-dimensional space.

"t-Distributed Stochastic Neighbor Embedding (t-SNE) (https:/ /lvdmaaten. github. io/
tsne/) is a (prize-winning) technique for dimensionality reduction that is particularly well
suited for the visualization of high-dimensional datasets. The technique can be implemented via
Barnes-Hut approximations, allowing it to be applied on large real-world datasets. We applied
it on data sets with up to 30 million examples."
 – Laurens van der Maaten

To implement this, we will use the sklearn package, and define n_components=2, which
means we want to have 2-D space as the output. Next, we will perform the transformation
by feeding the word vectors into the t-SNE object.

After this step, we now have a set of values for each word that we can use as x and y
coordinates, respectively, to plot it on the 2D plane. Let's prepare a DataFrame to store all
the words and their x and y coordinates in the same variable, as shown in the following
screenshot, and take data from there to create a scatter plot:

tsne = sklearn.manifold.TSNE(n_components=2, random_state=0)

all_word_vectors_matrix = model2vec.wv.vectors

all_word_vectors_matrix_2d = tsne.fit_transform(all_word_vectors_matrix)

points = pd.DataFrame(
 [
 (word, coords[0], coords[1])
 for word, coords in [
 (word,
all_word_vectors_matrix_2d[model2vec.wv.vocab[word].index])
 for word in model2vec.wv.vocab

https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/

Word Representation Using word2vec Chapter 3

[50]

]
],
 columns=["word", "x", "y"]
)

sns.set_context("poster")
ax = points.plot.scatter("x", "y", s=10, figsize=(20, 12))
fig = ax.get_figure()

This is our DataFrame containing words and coordinates for both x and y:

Our word list with the coordinate values obtained using t-SNE

This is what the entire cluster looks like after plotting 425,633 tokens on the 2D plane. Each
point is positioned after learning the features and correlations between the nearby words,
as shown:

Word Representation Using word2vec Chapter 3

[51]

A scatter plot of all the unique words on a 2D plane

Visualizing the embedding space by plotting
the model on TensorBoard
There is no benefit to visualization if you cannot make use of it, in terms of understanding
how and what the model has learned. To gain a better intuition of what the model has
learned, we will be using TensorBoard.

TensorBoard is a powerful tool that can be used to build various kinds of plots to monitor
your models while in the training process, as well as building DL architectures and word
embeddings. Let's build a TensorBoard embedding projection and make use of it to do
various kinds of analysis.

Word Representation Using word2vec Chapter 3

[52]

To build an embedding plot in TensorBoard, we need to perform the following steps:

Collect the words and the respective tensors (300-D vectors) that we learned in1.
previous steps.
Create a variable in the graph that will hold the tensors.2.
Initialize the projector.3.
Include an appropriately named embedding layer.4.
Store all the words in a .tsv formatted metadata file. These file types are used5.
by TensorBoard to load and display words.
 Link the .tsv metadata file to the projector object.6.
Define a function that will store all of the summary checkpoints. 7.

The following is the code to complete the preceding seven steps:

vocab_list = points.word.values.tolist()
embeddings = all_word_vectors_matrix

embedding_var = tf.Variable(all_word_vectors_matrix, dtype='float32',
name='embedding')
projector_config = projector.ProjectorConfig()

embedding = projector_config.embeddings.add()
embedding.tensor_name = embedding_var.name

LOG_DIR='./'
metadata_file = os.path.join("sample.tsv")

with open(os.path.join(LOG_DIR, metadata_file), 'wt') as metadata:
 metadata.writelines("%s\n" % w.encode('utf-8') for w in vocab_list)

embedding.metadata_path = os.path.join(os.getcwd(), metadata_file)

Use the same LOG_DIR where you stored your checkpoint.
summary_writer = tf.summary.FileWriter(LOG_DIR)

The next line writes a projector_config.pbtxt in the LOG_DIR. TensorBoard
will
read this file during startup.
projector.visualize_embeddings(summary_writer, projector_config)

saver = tf.train.Saver([embedding_var])

with tf.Session() as sess:

Word Representation Using word2vec Chapter 3

[53]

 # Initialize the model
 sess.run(tf.global_variables_initializer())

 saver.save(sess, os.path.join(LOG_DIR, metadata_file+'.ckpt'))

Once the TensorBoard preparation module is executed, the binaries, metadata, and
checkpoints get stored in the disk, as shown in the following screenshot:

The outputs created by TensorBoard

To visualize the TensorBoard, execute the following command in the Terminal:

tensorboard --logdir=/path/of/the/checkpoint/

Now, in the browser, open http://localhost:6006/#projector, you should see
TensorBoard with all the data points projected in 3D space. You can zoom in, zoom out,
look for specific words, as well as retrain the model using t-SNE, and visualize the cluster
formation of the dataset:

The TensorBoard embedding projection

Word Representation Using word2vec Chapter 3

[54]

Data visualization helps you tell your story! TensorBoard is very cool!
Your business use case stakeholders love impressive dynamic data
visualizations. They help with your model intuition, and with generating
new hypotheses to test.

Building language models using CNN and
word2vec
Now that we have learned the core concepts of computational linguistics, and trained
relations from the provided dataset, we can use this learning to implement a language
model that can perform a task.

In this section, we will build a text classification model to perform sentiment analysis. For
classification, we will be using a combination of CNN and a pre-trained word2vec model,
which we learned about in the previous section of this chapter.

This task is the simulation of our hypothetical business use case of taking
text responses from restaurant patrons and classifying what they text back
into meaningful classes for the restaurant.

We have been inspired by Denny Britz's (https:/ / twitter. com/ dennybritz) work
on Implementing a CNN for Text Classification in TensorFlow (http:/ /www. wildml. com/2015/
12/implementing-a- cnn- for- text- classification- in- tensorflow/) in our own CNN
and text classification build. We invite you to review the blog he created to gain a more
complete understanding of the internal mechanisms that make CNNs useful for text
classification.

https://twitter.com/dennybritz
https://twitter.com/dennybritz
https://twitter.com/dennybritz
https://twitter.com/dennybritz
https://twitter.com/dennybritz
https://twitter.com/dennybritz
https://twitter.com/dennybritz
https://twitter.com/dennybritz
https://twitter.com/dennybritz
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

Word Representation Using word2vec Chapter 3

[55]

As an overview, this architecture starts with an input embedding step, then a 2D
convolution utilizing max pooling with multiple filters, and a softmax activation layer
producing the output.

Exploring the CNN model
You might be asking yourself, how do you use CNNs to classify text when they are most
commonly used in image processing?

There are many discussions in the literature, linked at the bottom of this
tip, which have proven that CNNs are a generic feature extraction
function that can compute location invariance and compositionality. The
location invariance property helps the model to capture the context of
words, irrespective of their occurrence in the corpus. Compositionality
helps to derive higher-level representations using lower-level features:

Convolutional Neural Networks for Sentence Classification
(https:/ /arxiv. org/ abs/ 1408. 5882)

A CNN Based Scene Chinese Text Recognition Algorithm with
Synthetic Data Engine (https:/ /arxiv. org/ abs/ 1604. 01891)

Text-Attentional Convolutional Neural Networks for Scene Text
Detection (https:/ /arxiv. org/ pdf/ 1510. 03283. pdf)

So instead of sending pixel values for an image into the model, we feed one-hot encoded
word vectors or the word2vec matrix, which represent a word or a character (for character-
based models). Denny Britz's implementation has two filters each in three region sizes of
two, three, and four. The convolution operation is performed by these filters as it processes
over the sentence matrix to generate feature maps. Downsampling is performed by a max
pooling operation over each activation map. Finally, all the outputs are concatenated and
passed into the softmax classifier.

https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/abs/1604.01891
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf
https://arxiv.org/pdf/1510.03283.pdf

Word Representation Using word2vec Chapter 3

[56]

Because we are performing sentiment analysis, there will be both a positive and a negative
output class target. The softmax classifier will output probabilities for each class, as shown:

This diagram is taken from Denny Britz's blog post describing the functioning of the CNN language model

Let's look into the implementation of the model. We have modified the existing
implementation by adding the input of the previously trained word2vec model
component.

Word Representation Using word2vec Chapter 3

[57]

The code for this project can be found at https:/ / github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ tree/ master/
Chapter03/ sentiment_ analysis.

The model resides in text_cnn.py. We created a class, named TextCNN, which takes a few
parameters as an input for the model's configuration, also known as hyperparameters. The
following is a list of hyperparameters:

sequence_length: The fixed sentence length
num_classes: The number of output classes that will be produced by the
softmax activation (positive and negative)
vocab_size: The count of unique words in our embeddings
embedding_size: Embedding dimensionality that we created
filter_sizes: The convolutional filter will cover this many words
num_filters: Each filter size will have this many filters
pre_trained: Integrates the word2vec representation that has been previously
trained

Following is the declaration of the TextCNN() class with the init() function initializing
all the hyperparameter values:

import tensorflow as tf
import numpy as np

class TextCNN(object):
 """
 A CNN for text classification.
 Uses an embedding layer, followed by a convolutional, max-pooling and
softmax layer.
 """

 def __init__(self,
 sequence_length,
 num_classes,
 vocab_size,
 embedding_size,
 filter_sizes,
 num_filters,
 l2_reg_lambda=0.0,
 pre_trained=False):

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter03/sentiment_analysis

Word Representation Using word2vec Chapter 3

[58]

The code is divided into six main parts:

Placeholders for inputs: All the placeholders that we need to contain the input1.
values for our model are defined first. In this case, inputs are the sentence vector
and associated labels (either positive or negative). input_x holds the sentence,
input_y holds the value of label, and we use dropout_keep_prob for the
probability that we keep a neuron in the dropout layer. The following code
shows an example of this:

Placeholders for input, output and dropout
self.input_x = tf.placeholder(
 tf.int32, [
 None,
 sequence_length,
], name="input_x")
self.input_y = tf.placeholder(
 tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(
 tf.float32, name="dropout_keep_prob")
Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)

Embedding: Our model's first layer, in which we feed the word representations2.
learned in the process of training the word2vec model, is the embedding layer.
We will modify the baseline code that's in the repository to use our pre-trained
embedding model, instead of learning the embedding from scratch. This will
enhance the model accuracy. It is also a kind of a transfer learning, where
we transfer the general knowledge learned from a generic Wikipedia or social
media corpus. The embedding matrix that is initialized with the word2vec
model is named W, as seen as follows:

Embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
 if pre_trained:
 W_ = tf.Variable(
 tf.constant(0.0, shape=[vocab_size, embedding_size]),
 trainable=False,
 name='W')
 self.embedding_placeholder = tf.placeholder(
 tf.float32, [vocab_size, embedding_size],
 name='pre_trained')
 W = tf.assign(W_, self.embedding_placeholder)
 else:
 W = tf.Variable(
 tf.random_uniform([vocab_size, embedding_size], -1.0,
1.0),

Word Representation Using word2vec Chapter 3

[59]

 name="W")
 self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
 self.embedded_chars_expanded = tf.expand_dims(
 self.embedded_chars, -1)

Convolution with maxpooling: Defining the convolution layer is done3.
with tf.nn.conv2d(). This takes, as inputs, the previous embedding layer's
weight (W—filter matrix) and applies a nonlinear ReLU activation function.
Further max polling is performed over each filter size
using tf.nn.max_pool(). Results are concatenated, creating a single vector that
will become the inputs for the following layer of the model:

Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
 with tf.name_scope("conv-maxpool-%s" % filter_size):
 # Convolution Layer
 filter_shape = [filter_size, embedding_size, 1,
num_filters]
 W = tf.Variable(
 tf.truncated_normal(filter_shape, stddev=0.1),
name="W")
 b = tf.Variable(
 tf.constant(0.1, shape=[num_filters]), name="b")
 conv = tf.nn.conv2d(
 self.embedded_chars_expanded,
 W,
 strides=[1, 1, 1, 1],
 padding="VALID",
 name="conv")
 # Apply nonlinearity
 h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
 # Maxpooling over the outputs
 pooled = tf.nn.max_pool(
 h,
 ksize=[1, sequence_length - filter_size + 1, 1, 1],
 strides=[1, 1, 1, 1],
 padding='VALID',
 name="pool")
 pooled_outputs.append(pooled)

Combine all the pooled features
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])

Word Representation Using word2vec Chapter 3

[60]

Dropout layer: To regularize CNN and prevent the model from overfitting, a4.
minor percentage of signals from neurons are blocked. This forces the model to
learn more unique or individual features:

Add dropout
with tf.name_scope("dropout"):
 self.h_drop = tf.nn.dropout(self.h_pool_flat,
 self.dropout_keep_prob)

Prediction: A TensorFlow wrapper performs the W * x+b metric multiplications,5.
where x is the output of the previous layer. This computation will compute the
values for the scores and the predictions will be produced by tf.argmax():

Final (unnormalized) scores and predictions
with tf.name_scope("output"):
 W = tf.get_variable(
 "W",
 shape=[num_filters_total, num_classes],
 initializer=tf.contrib.layers.xavier_initializer())
 b = tf.Variable(tf.constant(0.1, shape=[num_classes]),
name="b")
 l2_loss += tf.nn.l2_loss(W)
 l2_loss += tf.nn.l2_loss(b)
 self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
 self.predictions = tf.argmax(self.scores, 1,
name="predictions")

Accuracy: We can define the loss function with our scores. Remember that the6.
measurement of the error our network makes is called loss. As good DL
engineers, we want to minimize this and make our model more accurate. For the
problem of categorization, the cross-entropy loss (http:/ / cs231n. github. io/
linear-classify/ #softmax) is the standard loss function used:

CalculateMean cross-entropy loss
with tf.name_scope("loss"):
 losses = tf.nn.softmax_cross_entropy_with_logits(
 labels=self.input_y, logits=self.scores)
 self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss

Accuracy
with tf.name_scope("accuracy"):
 correct_predictions = tf.equal(self.predictions,
 tf.argmax(self.input_y, 1))
 self.accuracy = tf.reduce_mean(
 tf.cast(correct_predictions, "float"), name="accuracy")

http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax
http://cs231n.github.io/linear-classify/#softmax

Word Representation Using word2vec Chapter 3

[61]

That's it, we're done with our model. Let's use TensorBoard to visualize the network and
improve our intuition, as shown:

The CNN model architecture definition

Understanding data format
An interesting dataset, Movie Review Data from Rotten Tomatoes (http:/ /www. cs.cornell.
edu/people/pabo/ movie- review- data/), was used in this case. Half of the reviews are
positive, the other half negative, and there are about 10,000 sentences in total. There are
around 20,000 different words in the vocabulary. The dataset is stored in the data folder.

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/

Word Representation Using word2vec Chapter 3

[62]

It contains two files: one, rt-polarity.neg, contains all the negative sentences, and
another, rt-polarity.pos, contains only positive sentences. To perform classification, we
need to associate them with the labels. Each positive sentence is associated with a one-hot
encoded label, [0, 1], and each negative sentence is associated with [1, 0], as shown in
the following screenshot:

A sample of few positive sentences and the label associated with the sentence

Pre-processing the text data is done with these four steps:

Load: Make sure to load both the positive and negative sentence data files1.
Clean: Use regex to remove punctuation and other special characters2.
Pad: Make each sentence the same size by appending <PAD> tokens3.
Index: Map each word to an integer in an index so that each sentence can become4.
a vector of integers

Now that we have our data formatted as vectors, we can feed them into our model.

Word Representation Using word2vec Chapter 3

[63]

Integrating word2vec with CNN
So, the last time we created our word2vec model, we dumped that model into a binary file.
Now it's time to use that model as part of our CNN model. We perform this by initializing
the W weights in the embeddings to these values.

Since we trained on a very small corpus in our previous word2vec model, let's choose the
word2vec model that was pre-trained on the huge corpus. A good strategy is to use
fastText embedding, which is trained on documents available online and for 294 languages
(https://github.com/ facebookresearch/ fastText/ blob/ master/ pretrained- vectors.
md). We do this as follows:

We will download the English Embedding fastText dataset (https:/ /s3-us-1.
west-1. amazonaws. com/ fasttext- vectors/ wiki. en.zip)
Next, extract the vocab and embedding vectors into a separate file2.
Load them into the train.py file3.

That's it—by introducing this step, we can now feed the embedding layer with the pre-
training word2vec model. This incorporation of information has a sufficient amount of
features to improve the learning process of the CNN model.

Executing the model
Now it's time to train our model with the provided dataset and the pre-trained embedding
model. A few hyperparameters will need fine-tuning to achieve good results. But once we
have executed the train.py file with reasonably good configurations, we can demonstrate
that the model is able to distinguish well between the positive and negative sentences when
classifying.

As we can see in the following graph, the performance metric of accuracy is tending
towards 1 and the loss factor is reducing towards 0 over each iteration:

A plot of the performance metrics accuracy and loss of the CNN model during the training process

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip

Word Representation Using word2vec Chapter 3

[64]

Voila! We just used the pre-trained embedding model to train our CNN classifier with an
average loss of 6.9 and accuracy of 72.6%.

Once the model training is completed successfully, the output of the model will have the
following:

The checkpoints stored in /runs/folder. We will use these checkpoints to make
predictions.
A summary with all the loss, accuracy, histogram, and gradient value
distribution captured during the training process. We can visualize it using the
TensorBoard.

Deploy the model into production
Now that we have our model binaries stored in the /runs/ folder, we just need to write a
restful API, for which you can use Flask, and then call the sentiment_engine() defined
in the model_inference.py code.

Always make sure that you use the checkpoints of the best model and the correct
embedding file, which is defined as the following:

checkpoint_dir = "./runs/1508847544/"
embedding = np.load('fasttext_embedding.npy')

Summary
Today's project was to build a DL computational linguistics model using word2vec to
accurately classify text in a sentiment analysis paradigm. Our hypothetical use case was to
apply DL to enable the management of a restaurant chain to understand the general
sentiment of text responses their customers made, in response to a phone text question
asking about their experience after dining. Our specific task was to build the natural
language processing model that would create business intelligence from the data obtained
in this simple (hypothetical) application.

Revisit our success criteria: How did we do? Did we succeed? What is the
impact of success? Just as we defined success at the beginning of the
project, these are the key questions we ask as DL data scientists as we look
to wrap up a project.

Word Representation Using word2vec Chapter 3

[65]

Our CNN model, which was built on the trained word2vec model created earlier in the
chapter, reached an accuracy of 72.6%! This means that we were able to reasonably
accurately classify the unstructured text sentences as positive or negative.

What are the implications of this accuracy? In our hypothetical example, this means that we
can take a body of data that is difficult to summarize outside of this DL NLP model and
summarize it to produce actionable insights for the restaurant management. With summary
data points of positive or negative sentiment to the questions asked in a phone text, the
restaurant chain can track performance over time, make adjustments, and possibly even
reward staff for improvements.

In this chapter's project, we learned how to build word2vec models and analyze what
characteristics we can learn about the provided corpus. We also learned how to build a
language model with CNN, using the trained word embeddings.

Finally, we looked at the model performance in testing and determined whether we
succeeded in achieving our goals. In the next chapter's project, we're going to leverage even
more power from our computational linguistic skills to create a natural language pipeline
that will power a chatbot for open domain question answering. This is exciting work—let's
see what next!

4
Building an NLP Pipeline for

Building Chatbots
Our project has expanded once again, thanks to the good work that we've been doing. We
started off working for a restaurant chain, helping them to classify handwritten digits for
use in a text notification system, used to alert their waiting guests that their table was
ready. Based on this success, and when the owners realized that their customers were
actually responding to the texts, we were asked to contribute a deep learning solution using
Natural Language Processing (NLP) to accurately classify text into a meaningful sentiment
category that would give the owners an indication as to their satisfaction with the dining
experience.

Do you know what happens to deep learning engineers that do good
work? They get asked to do more!

This project for the next business use case is pretty cool. What we're being asked to do is to
create a natural language pipeline that would power a chatbot for open domain question
answering. The (hypothetical) restaurant chain has a website with their menu, history,
location, hours, and other information, and they would like to add the ability for a website
visitor to ask a question in a query box, and have our deep learning NLP chatbot find the
relevant information and present that back. They think that getting the right information
back to the website visitor quickly would help drive in-store visits and improve the general
customer experience.

Named Entity Recognition (NER) is the approach we will be using, which will give us the
power we need to quickly classify the input text, which we can then match to the relevant
content for a response. It's a great way to take advantage of a large corpus of unstructured
data that changes without using hardcoded heuristics.

Building an NLP Pipeline for Building Chatbots Chapter 4

[67]

In this chapter, we will learn about the building blocks of the NLP model, including pre-
processing, tokenizing, and tagging parts of speech. We will use this understanding to
build a system able to read an unstructured piece of text, in order to formulate an answer
for a specific question. We will also describe how to include this deep learning component
in a classic NLP pipeline to retrieve information, in order to provide an open-domain
question answering system that doesn't require a structured knowledge base.

In this chapter, we will do the following:

Build a basic FAQ-based chatbot using statistical modeling in a framework,
capable of detecting intents and entities for answering open-domain questions
Learn to generate dense representations of sentences
Build a document reader for extracting answers from unstructured text
Learn how to integrate deep learning models into a classic NLP pipeline

Define the goal: To build a chatbot that understands the context (intent)
and can also extract the entities. To do this, we need an NLP pipeline that
can perform intent classification, along with NER extraction to then
provide an accurate response.

Skills learned: You will learn how to build an open-domain question
answering system using a classic NLP pipeline, with a document reader
component that uses deep learning techniques to generate sentence
representations.

Let's get started!

Basics of NLP pipelines
Textual data is a very large source of information, and properly handling it is crucial to
success. So, to handle this textual data, we need to follow some basic text processing steps.

Most of the processing steps covered in this section are commonly used in
NLP and involve combining a number of steps into one executable flow.
This is what we refer to as the NLP pipeline. This flow can be a
combination of tokenization, stemming, word frequency, parts of speech
tagging, and many more elements.

Building an NLP Pipeline for Building Chatbots Chapter 4

[68]

Let's look into the details on how to implement the steps in the NLP pipeline and,
specifically, what each stage of processing does. We will use the Natural Language Toolkit
(NLTK) package—an NLP toolkit written in Python, which you can install with the
following:

import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')

The code for this project is available at https:/ / github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ blob/ master/
Chapter04/ Basic%20NLP%20Pipeline. ipynb.

Tokenization
Tokenization separates a corpus into sentences, words, or tokens. Tokenization is needed to
make our texts ready for further processing and is the first step in creating an NLP pipeline.
A token can vary according to the task we are performing or the domain in which we are
working, so keep an open mind as to what you consider as a token!

Know the code: NLTK is powerful, as much of the hard coding work is
already done in the library. You can read more about NLTK tokenization
at http:/ /www. nltk. org/ api/nltk. tokenize. html#nltk. tokenize. api.
TokenizerI. tokenize_ sents.

Let's try to load a corpus and use NLTK tokenizer to first tokenize the raw corpus into
sentences, and then tokenize each sentence further into words:

text = u"""
Dealing with textual data is very crucial so to handle these text data we
need some
basic text processing steps. Most of the processing steps covered in this
section are
commonly used in NLP and involve the combination of several steps into a
single
executable flow. This is usually referred to as the NLP pipeline. These
flow
can be a combination of tokenization, stemming, word frequency, parts of
speech tagging, etc.
"""

Sentence Tokenization
sentenses = nltk.sent_tokenize(text)

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter04/Basic%20NLP%20Pipeline.ipynb
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.api.TokenizerI.tokenize_sents

Building an NLP Pipeline for Building Chatbots Chapter 4

[69]

Word Tokenization
words = [nltk.word_tokenize(s) for s in sentenses]

OUTPUT:
SENTENCES:
[u'\nDealing with textual data is very crucial so to handle these text data
we need some \nbasic text processing steps.',
u'Most of the processing steps covered in this section are \ncommonly used
in NLP and involve the combination of several steps into a single
\nexecutable flow.',
u'This is usually referred to as the NLP pipeline.',
u'These flow \ncan be a combination of tokenization, stemming, word
frequency, parts of \nspeech tagging, etc.']

WORDS:
[[u'Dealing', u'with', u'textual', u'data', u'is', u'very', u'crucial',
u'so', u'to', u'handle', u'these', u'text', u'data', u'we', u'need',
u'some', u'basic', u'text', u'processing', u'steps', u'.'], [u'Most',
u'of', u'the', u'processing', u'steps', u'covered', u'in', u'this',
u'section', u'are', u'commonly', u'used', u'in', u'NLP', u'and',
u'involve', u'the', u'combination', u'of', u'several', u'steps', u'into',
u'a', u'single', u'executable', u'flow', u'.'], [u'This', u'is',
u'usually', u'referred', u'to', u'as', u'the', u'NLP', u'pipeline', u'.'],
[u'These', u'flow', u'can', u'be', u'a', u'combination', u'of',
u'tokenization', u',', u'stemming', u',', u'word', u'frequency', u',',
u'parts', u'of', u'speech', u'tagging', u',', u'etc', u'.']]

Part-of-Speech tagging
Some words have multiple meanings, for example, charge is a noun, but can also be a verb,
(to) charge. Knowing a Part-of-Speech (POS) can help to disambiguate the meaning. Each
token in a sentence has several attributes that we can use for our analysis. The POS of a
word is one example: nouns are a person, place, or thing; verbs are actions or occurrences
and adjectives are words that describe nouns. Using these attributes, it becomes
straightforward to create a summary of a piece of text by counting the most common
nouns, verbs, and adjectives:

tagged_wt = [nltk.pos_tag(w)for w in words]

[[('One', 'CD'), ('way', 'NN'), ('to', 'TO'), ('extract', 'VB'),
('meaning', 'VBG'), ('from', 'IN'), ('text', 'NN'), ('is', 'VBZ'), ('to',
'TO'), ('analyze', 'VB'), ('individual', 'JJ'), ('words', 'NNS'), ('.',
'.')], [('The', 'DT'), ('processes', 'NNS'), ('of', 'IN'), ('breaking',
'VBG'), ('up', 'RP'), ('a', 'DT'), ('text', 'NN'), ('into', 'IN'),
('words', 'NNS'), ('is', 'VBZ'), ('called', 'VBN'), ('tokenization', 'NN'),

Building an NLP Pipeline for Building Chatbots Chapter 4

[70]

('--', ':'), ('the', 'DT'), ('resulting', 'JJ'), ('words', 'NNS'), ('are',
'VBP'), ('referred', 'VBN'), ('to', 'TO'), ('as', 'IN'), ('tokens', 'NNS'),
('.', '.')], [('Punctuation', 'NN'), ('marks', 'NNS'), ('are', 'VBP'),
('also', 'RB'), ('tokens', 'NNS'), ('.', '.')], [('Each', 'DT'), ('token',
'NN'), ('in', 'IN'), ('a', 'DT'), ('sentence', 'NN'), ('has', 'VBZ'),
('several', 'JJ'), ('attributes', 'IN'), ('we', 'PRP'), ('can', 'MD'),
('use', 'VB'), ('for', 'IN'), ('analysis', 'NN'), ('.', '.')]]

patternPOS= []
for tag in tagged_wt:
 patternPOS.append([v for k,v in tag])

[['CD', 'NN', 'TO', 'VB', 'VBG', 'IN', 'NN', 'VBZ', 'TO', 'VB', 'JJ',
'NNS', '.'], ['DT', 'NNS', 'IN', 'VBG', 'RP', 'DT', 'NN', 'IN', 'NNS',
'VBZ', 'VBN', 'NN', ':', 'DT', 'JJ', 'NNS', 'VBP', 'VBN', 'TO', 'IN',
'NNS', '.'], ['NN', 'NNS', 'VBP', 'RB', 'NNS', '.'], ['DT', 'NN', 'IN',
'DT', 'NN', 'VBZ', 'JJ', 'IN', 'PRP', 'MD', 'VB', 'IN', 'NN', '.'], ['DT',
'NN', 'IN', 'NN', 'IN', 'DT', 'NN', 'VBZ', 'CD', 'NN', ':', 'NNS', 'VBP',
'DT', 'NN', ',', 'NN', ',', 'CC', 'NN', ':', 'NNS', 'VBP', 'NNS', 'CC',
'NNS', ':', 'NNS', 'VBP', 'NNS', 'IN', 'NN', 'NNS', '.'], ['VBG', 'DT',
'NNS', ',', 'PRP', 'VBZ', 'JJ', 'TO', 'VB', 'DT', 'NN', 'IN', 'DT', 'NN',
'IN', 'NN', 'IN', 'VBG', 'DT', 'RBS', 'JJ', 'NNS', ',', 'NNS', ',', 'CC',
'NNS', '.']]

Extracting nouns
Let's extract all of the nouns present in the corpus. This is very useful practice when you
want to extract something specific. We are using NN, NNS, NNP, and NNPS tags to extract the
nouns:

nouns = []
for tag in tagged_wt:
nouns.append([k for k,v in tag if v in ['NN','NNS','NNP','NNPS']])

[['way', 'text', 'words'], ['processes', 'text', 'words', 'tokenization',
'words', 'tokens'], ['Punctuation', 'marks', 'tokens'], ['token',
'sentence', 'analysis'], ['part', 'speech', 'word', 'example', 'nouns',
'person', 'place', 'thing', 'verbs', 'actions', 'occurences', 'adjectives',
'words', 'describe', 'nouns'], ['attributes', 'summary', 'piece', 'text',
'nouns', 'verbs', 'adjectives']]

Building an NLP Pipeline for Building Chatbots Chapter 4

[71]

Extracting verbs
Let's extract all of the verbs present in the corpus. In this case, we are using VB, VBD, VBG,
VBN, VBP, and VBZ as verb tags:

verbs = []
for tag in tagged_wt:
verbs.append([k for k,v in tag if v in
['VB','VBD','VBG','VBN','VBP','VBZ']])

[['extract', 'meaning', 'is', 'analyze'], ['breaking', 'is', 'called',
'are', 'referred'], ['are'], ['has', 'use'], ['is', 'are', 'are', 'are'],
['Using', "'s", 'create', 'counting']]

Now, let's use spacy to tokenize a piece of text and access the POS attribute for each token.
As an example application, we'll tokenize the previous paragraph and count the most
common nouns with the following code. We'll also lemmatize the tokens, which gives the
root form a word, to help us standardize across forms of a word:

! pip install -q spacy
! pip install -q tabulate
! python -m spacy download en_core_web_lg

from collections import Counter
import spacy
from tabulate import tabulate
nlp = spacy.load('en_core_web_lg')

doc = nlp(text)
noun_counter = Counter(token.lemma_ for token in doc if token.pos_ ==
'NOUN')

print(tabulate(noun_counter.most_common(5), headers=['Noun', 'Count']))

Following is the output:

Noun Count
----------- -------
step 3
combination 2
text 2
processing 2
datum 2

Building an NLP Pipeline for Building Chatbots Chapter 4

[72]

Dependency parsing
Dependency parsing is a way to understand the relationships between words in a sentence.
Dependency relations are a more fine-grained attribute, available to help build the model's
understanding of the words through their relationships in a sentence:

doc = nlp(sentenses[2])
spacy.displacy.render(doc,style='dep', options={'distance' : 140},
jupyter=True)

 These relationships between words can get complicated, depending on how sentences are
structured. The result of dependency-parsing a sentence is a tree data structure, with the
verb as the root, as shown in the following diagram:

The tree structure of the dependency parsing of a sentence, with the verb as the root.

NER
Finally, there's NER. Named entities are the proper nouns of sentences. Computers have
gotten pretty good at figuring out if they're in a sentence and at classifying what type of
entity they are. spacy handles NER at the document level, since the name of an entity can
span several tokens:

doc = nlp(u"My name is Jack and I live in India.")
entity_types = ((ent.text, ent.label_) for ent in doc.ents)
print(tabulate(entity_types, headers=['Entity', 'Entity Type']))

Output:
Entity Entity Type
-------- -------------
Jack PERSON
India GPE

Building an NLP Pipeline for Building Chatbots Chapter 4

[73]

So, we just saw some of the basic building blocks of the NLP pipeline. These pipelines are
consistently used in various NLP projects, be it in machine learning or in the deep learning
space.

Does something look familiar?
We used a few of these NLP pipeline building blocks in the previous
chapter, Chapter 3, Word Representation Using word2vec, to build our
word2vec models. This more in-depth explanation of the building blocks
of the NLP pipeline helps us take the next step in our projects, as we look
to deploy more and more complex models!

As with everything in this book on Python Deep Learning Projects, we encourage you to also
try your own combinations of the previous processes for the use cases you work on in your
data science career. Now, let's implement a chatbot using these pipelines!

Building conversational bots
In this section, we will learn about some basic statistical modeling approaches to build an
information retrieval system using term frequency-inverse document frequency (TF-IDF),
which we can use with the NLP pipelines to build fully functional chatbots. Also, later on,
we will learn to build a much more advanced conversational bot that can extract a specific
piece of information, such as location, capture time, and so on, using NER.

What is TF-IDF?
TF-IDFs are a way to represent documents as feature vectors. But what are they? TF-IDFs
can be understood as a modification of the raw term frequency (TF) and inverse document
frequency (IDF). The TF is the count of how often a particular word occurs in a given
document. The concept behind the TF-IDF is to downweight terms proportionally to the
number of documents in which they occur. Here, the idea is that terms that occur in many
different documents are likely to be unimportant, or don't contain any useful information
for NLP tasks, such as document classification.

Preparing the dataset
If we think about building a chatbot with the TF-IDF approach, we first need to form a data
structure that supports training data with labels. Now, let's take an example of a chatbot
built to answer questions from users.

Building an NLP Pipeline for Building Chatbots Chapter 4

[74]

In this case, using historical data, we can form a dataset where we have two columns, one
of which is the question, and the second of which is the answer to that question, as shown
in the following table:

Question Answer

When does your shop open? Our shop timings are 9:00 A.M-9:00 P.M on weekdays and
11:00 A.M-12:00 midnight on weekends.

What is today's special? Today, we have a variety of Italian pasta, with special sauce
and a lot more other options in the bakery.

What is the cost of an
Americano?

Americano with a single shot will cost $1.4 and the double
shot will cost $2.3.

Do you sell ice-creams? We do have desserts such as ice-cream, brownies, and
pastries.

Let's take the previous example, and consider it a sample dataset. It is a very small example
and, in the original hypothetical scenario, we will have a much larger dataset to work with.
The typical process will be as follows: the user will interact with the bot and write a
random query about the store. The bot will simply send that query to the NLP engine,
using an API, and then it is up to the NLP model to decide what to return for a new query
(test data). In reference to our dataset, all of the questions are the training data and the
answers are labels. In the event of a new query, the TF-IDF algorithm will match it to one of
the questions with a confidence score, which tells us that the new question asked by the
user is close to some specific question from the dataset, and the answer against that
question is the answer that our bots return.

Let's take the preceding example even further. When the user queries, "Can I get an
Americano, btw how much it will cost?", we can see that words like I, an, and it are the ones
that will have a higher occurrence frequency in other questions as well.

Now, if we match our remaining important words, we will see that this question is most
close to: "What is the cost of an Americano?" So, our bot will respond back with the
historical answer to this type of question: "Americano with a single shot will cost $1.4 and
the double shot will cost $2.3."

Implementation
After creating the data structure in tabular format, as mentioned previously, we will be
calculating the predicted answer to a question every time a user queries our bot. We load
all of the question-answer pairs from the dataset.

Building an NLP Pipeline for Building Chatbots Chapter 4

[75]

Let's load our CSV file using pandas, and perform some pre-processing on the dataset:

import pandas as pd

filepath = 'sample_data.csv'
csv_reader=pd.read_csv(filepath)

question_list = csv_reader[csv_reader.columns[0]].values.tolist()
answers_list = csv_reader[csv_reader.columns[1]].values.tolist()

query= 'Can I get an Americano, btw how much it will cost ?'

The code for this project can be found at https:/ / github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ tree/ master/
Chapter04/ tfidf_ version.

Creating the vectorizer
Now, let's initialize the TF-IDF vectorizer and define a few parameters:

min_df: When building the vocabulary, ignore terms that have a document
frequency strictly lower than the given threshold
ngram_range: Configures our vectorizer to capture n-words at a time
norm: This is used to normalize term vectors using L1 or L2 norms
encoding: Handles Unicode characters

There are many more parameters that you can look into, configure, and play around with:

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(min_df=0, ngram_range=(2, 4),
strip_accents='unicode',norm='l2' , encoding='ISO-8859-1')

Now, we train the model on the questions:

We create an array for our train data set (questions)
X_train = vectorizer.fit_transform(np.array([''.join(que) for que in
question_list]))

Next step is to transform the query sent by user to bot (test data)
X_query=vectorizer.transform(query)

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/tfidf_version

Building an NLP Pipeline for Building Chatbots Chapter 4

[76]

Processing the query
To process the query, we find out its similarity with other questions. We do this by taking a
dot product of the training data matrix with a transpose of the query data:

XX_similarity=np.dot(X_train.todense(), X_query.transpose().todense())

Now, we take out the similarity between the query and train data as a list:

XX_sim_scores= np.array(XX_similarity).flatten().tolist()

Rank results
We create a sorted dictionary of similarities for a query:

dict_sim= dict(enumerate(XX_sim_scores))

sorted_dict_sim = sorted(dict_sim.items(), key=operator.itemgetter(1),
reverse =True)

Finally, in the sorted dictionary, we check for the index of the most similar question, and
the response with the value at that index in the answers column. If nothing is found, then
we can return our default answer:

if sorted_dict_sim[0][1]==0:
 print("Sorry I have no answer, please try asking again in a nicer
way :)")
elif sorted_dic_sim[0][1]>0:
 print answer_list [sorted_dic_sim[0][0]]

Advanced chatbots using NER
We just created a very basic chatbot that can understand the user's query and then respond
to the customer accordingly. But it is not yet capable of understanding the context, because
it can not extract information such as the product name, places, or any other entities.

To build a bot that understands the context (intent) and can also extract the entities, we
need an NLP pipeline that can perform intent classification, along with NER extraction, and
then provide an accurate response.

Keep your eyes on the goal! This is the goal of our open-domain question
answering bot.

Building an NLP Pipeline for Building Chatbots Chapter 4

[77]

To do that, we will use an open source project called Rasa NLU (https:/ /github. com/
RasaHQ/rasa_nlu).

Rasa NLU is a Natural Language Understanding tool for understanding a text; in
particular, what is being said in short pieces of text. For example, imagine that the system is
given a short message like the following:

"I'm looking for an Italian restaurant in the center of town"

In such a case, the system returns the following:

intent: search_restaurant
entities:
 - cuisine : Italian
 - location : center of town

So, by harnessing the power of RASA, we can build a chatbot that can do intent
classification and NER extraction.

Great, let's do it!

The code for this project can be found at https:/ / github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ tree/ master/
Chapter04/ rasa_ version

Installing Rasa
Let's install Rasa in our local environment or server using these commands:

pip install rasa_nlu
pip install coloredlogs sklearn_crfsuite spacy
python -m spacy download en

If it fails to install, then you can look into a detailed approach at https:/ /nlu. rasa. com/
installation.html.

Rasa uses a variety of NLP pipelines such as spacy, sklearn, or MITIE. You can use any
one of them or build your own custom pipelines, which can include any deep model, such
as CNN with word2vec, which we created in the previous chapter. In our case, we will be
using spacy with sklearn.

https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/RasaHQ/rasa_nlu
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04/rasa_version
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html
https://nlu.rasa.com/installation.html

Building an NLP Pipeline for Building Chatbots Chapter 4

[78]

Preparing dataset
In our previous project, we created a dataset in a CSV file with two columns for question
and answer pairs. We need to do this again, but in a different format. In this case, we need
questions associated with its intent, as shown in the following diagram, so we have a query
as hello with its intent labeled as greet. Similarly, we will label all of the questions with
their respective intents.

Once we have all of the forms of questions and intents ready, we need to label the entities.
In this case, as shown in the following diagram, we have a location entity with
a centre value, and a cuisine entity with the value as mexican:

The figure illustrated the content of the data what we are preparing for the chatbot. Lest most is the list of all intents which we need out bot to understand. Then we have respective
sample utterneces for each intent. And the right most part represents the annotation of the specific entity with its label 'location' and 'cuisine' in this case.

To feed data into Rasa, we need to store this information in a specific JSON format, which
looks like the following:

intent_list : Only intent part
[
 {
 "text": "hey",
 "intent": "greet"
 },
 {
 "text": "hello",
 "intent": "greet"
 }

Building an NLP Pipeline for Building Chatbots Chapter 4

[79]

]

entity_list : Intent with entities
[{
 "text": "show me indian restaurants",
 "intent": "restaurant_search",
 "entities": [
 {
 "start": 8,
 "end": 15,
 "value": "indian",
 "entity": "cuisine"
 }
]
},
]

The final version of the JSON should have this structure:

{
 "rasa_nlu_data": {
 "entity_examples": [entity_list],
 "intent_examples": [intent_list]
 }
}

To make it simple, there is an online tool into which you can feed and
annotate all of the data, and download the JSON version of it. You can run
the editor locally by following the instructions from https:/ /github. com/
RasaHQ/ rasa- nlu- trainer or simply use the online version of it
from https:/ /rasahq. github. io/ rasa- nlu- trainer/ .

Save this JSON file as restaurant.json in the current working directory.

Training the model
Now we're going to create a configuration file. This configuration file will define the
pipeline that is to be used in the process of training and building of the model.

Create a file called config_spacy.yml in your working directory, and insert the following
code into it:

language: "en"
pipeline: "spacy_sklearn"
fine_tune_spacy_ner: true

https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://github.com/RasaHQ/rasa-nlu-trainer
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/
https://rasahq.github.io/rasa-nlu-trainer/

Building an NLP Pipeline for Building Chatbots Chapter 4

[80]

Know the code: spaCy configuration customization is there for a reason.
Other data scientists have found some utility in the ability to change
values here, and it's good practice to explore this as you get more familiar
with this technology. There is a huge list of configurations, which you can
look into at https:/ /nlu. rasa.com/ config. html.

This configuration states that we will be using English language models, and the pipeline
running on the backend will be spaCy with scikit-learn. Now, to begin the training process,
execute the following command:

python -m rasa_nlu.train \
 --config config_spacy.yml \
 --data restaurant.json \
 --path projects

This takes the configuration file and the training data file as input. The --path parameter is
the location where the trained model will be stored.

Once the model training process is completed, you'll see a new folder named in
the projects/default/model_YYYYMMDD-HHMMSS format, with the timestamp when the
training finished. The complete project structure will look as shown in the following
screenshot:

The folder structure after the training process is completed. The model folder will contain all the binary files and metadata which was learned during the training process.

Deploying the model
Now it's the moment to make your bot go live! While using Rasa, you don't need to write
any API services—everything is available in the package itself. So, to expose the trained
model as a service, you need to execute the following command, which takes the path of
the stored trained model:

python -m rasa_nlu.server --path projects

https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html
https://nlu.rasa.com/config.html

Building an NLP Pipeline for Building Chatbots Chapter 4

[81]

If everything goes fine, then a RESTful API will be exposed at port 5000, and you should
see this log on the console screen:

2018-05-23 21:34:23+0530 [-] Log opened.
2018-05-23 21:34:23+0530 [-] Site starting on 5000
2018-05-23 21:34:23+0530 [-] Starting factory <twisted.web.server.Site
instance at 0x1062207e8>

To access the API, you can use the following command. We are querying the model,
making a statement such as "I am looking for Mexican food":

curl -X POST localhost:5000/parse -d '{"q":"I am looking for Mexican
food"}' | python -m json.tool

Output:
{
 "entities": [
 {
 "confidence": 0.5348393725109971,
 "end": 24,
 "entity": "cuisine",
 "extractor": "ner_crf",
 "start": 17,
 "value": "mexican"
 }
],
 "intent": {
 "confidence": 0.7584285478135262,
 "name": "restaurant_search"
 },
 "intent_ranking": [
 {
 "confidence": 0.7584285478135262,
 "name": "restaurant_search"
 },
 {
 "confidence": 0.11009204166074991,
 "name": "goodbye"
 },
 {
 "confidence": 0.08219245368495268,
 "name": "affirm"
 },
 {
 "confidence": 0.049286956840770876,
 "name": "greet"
 }

Building an NLP Pipeline for Building Chatbots Chapter 4

[82]

],
 "model": "model_20180523-213216",
 "project": "default",
 "text": "I am looking for Mexican food"
}

So here, we can see that model has performed quite accurately with the intent classification
and the entity extraction process. It is able to classify the intent as restaurant_search
with 75.8% of accuracy, and is also able to detect the cuisine entity with the value as
mexican.

Serving chatbots
Up to now, we have seen how to build chatbots using the two methods of TF-IDF and Rasa
NLU. Let's expose both of them as APIs. The architecture of this simple chatbot framework
will look like this:

This chatbot pipeline illustrates that we can have any User Interface (Slack, Skype, and so on) integrated with the chatbot_api which we exposed . And under the hood we can
setup any number of algorithms 'TFIDF' and 'RASA'

Refer to the Packt repository for this chapter (available at https:/ / github. com/
PacktPublishing/Python- Deep- Learning- Projects/ tree/ master/ Chapter04) for the API
code and look into the chatbot_api.py file. Here, we have implemented a common API
that can load both versions of bot, and you can now build a whole framework on top of
this.

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter04

Building an NLP Pipeline for Building Chatbots Chapter 4

[83]

To execute the serving of the APIs, follow these steps:

Enter the chapter directory using the following command:1.

cd Chapter04/

This will expose the Rasa module at localhost:5000. If you have not trained2.
the Rasa engine, then please apply the following command:

python -m rasa_nlu.server --path ./rasa_version/projects

In a separate console, execute the following command. This will expose an API3.
at localhost:8080:

python chatbot_api.py

Now your chatbot is ready to be accessed via API. Try the following:4.

Call the following API to execute the TFIDF version:

curl http://localhost:8080/version1?query=Can I get an
Americano

Call the following API to execute the Rasa version:

http://localhost:8080/version2?query=where is Indian cafe

Summary
In this project, we were asked to create a natural language pipeline that would power a
chatbot for open domain question answering. A (hypothetical) restaurant chain has much
text-based data on their website, including their menu, history, location, hours, and other
information, and they would like to add the ability for a website visitor to ask a question in
a query box. Our deep learning NLP chatbot would then find the relevant information and
present that back to the visitor.

We got started by showing how we could build a simple FAQ chatbot that took in random
queries, matched that up to predefined questions, and returned a response with a
confidence score that indicated the similarity between the input question and the question
in our database. But this was only a stepping stone to our real goal, which was to create a
chatbot that could capture the intent of the question and prepare an appropriate response.

Building an NLP Pipeline for Building Chatbots Chapter 4

[84]

We explored an NER approach to give us the added power that we needed to quickly
classify input text, which we could then match to the relevant content for a response. This
was determined to fit our goal of allowing for open-domain question answering and to take
advantage of a large corpus of unstructured data that changes without
using hardcoded heuristics (as in our hypothetical restaurant example).

We learned to use the building blocks of the NLP model, including pre-
processing, tokenizing, and tagging POS. We used this understanding to build a system
able to read an unstructured text in order to comprehend an answer to a specific question.

Specifically, we gained these skills in this project:

Building a basic FAQ-based chatbot using statistical modeling in a framework
capable of detecting intents and entities for answering open-domain questions
Generating a dense representation of sentences
Building a document reader for extracting answers from unstructured text
Learned how to integrate deep learning models into a classic NLP pipeline

These skills will come very much in handy in your career, as you see similar business use
cases, and also as conversational user interfaces continue to gain in popularity. Well
done—let's see what's in store for our next deep learning project in Python!

5
Sequence-to-Sequence Models

for Building Chatbots
We're learning a lot and doing some valuable work! In the evolution of our hypothetical
business use case, this chapter builds directly on Chapter 4, Building an NLP Pipeline for
Building Chatbots, where we created our Natural Language Processing (NLP) pipeline. The
skills we learned so far in computational linguistics should give us the confidence to
expand past the training examples in this book and tackle this next project. We're going to
build a more advanced chatbot for our hypothetical restaurant chain to automate the
process of fielding call-in orders.

This requirement would mean that we'd have to combine a number of technologies that
we've learned so far. But for this project, we'll be interested in learning how to make a
chatbot that is more contextually aware and robust, so that we could integrate it into a
larger system in this hypothetical. By demonstrating mastery on this training example, we'll
have the confidence to execute this in a real situation.

In the previous chapters, we learned about representational learning methods, such as
word2vec, and how to use them in combination with a type of deep learning algorithm
called a Convolutional Neural Network (CNN). But there are few constraints while using
CNNs to build language models, such as the following:

The model will not be able to preserve the state information
The length of sentences needs to be of a fixed size for both input values and
output values
 CNNs are sometimes unable to adequately handle complex sequential contexts
 Recurrent Neural Networks (RNNs) do better at modeling information in
sequence

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[86]

So, to overcome all of these problems, we have an alternative algorithm, which is specially
designed to handle input data that comes in the form of sequences (including sequences of
words, or of characters). This class of algorithm is called RNN.

In this chapter, we will do the following:

Learn about RNN and its various forms
Create a language model implementation using RNN
Build our intuition on the Long Short-Term Memory (LSTM) model
Create an LSTM language model implementation and compare it to the RNN
model
Implement an encoder-decoder RNN, based on the LSTM unit, for a simple
sequence of question-answer tasks

Define the goal: Build a more robust chatbot with memory to provide
more contextually correct responses to questions.

Let's get started!

Introducing RNNs
RNN is a deep learning model architecture specifically designed for sequential data. The
purpose of this type of model is to extract relevant features of words and characters of text
by using a small window that traverses the corpus.

RNN applies a non-linear function to each item in the sequence. This is called the RNN
cell or step and, in our case, the items are words or characters in the sequence. The layer's
output in an RNN is derived from the output of the RNN cell, which is applied to each
element in the sequence. With regard to NLP and chatbots that use text data as input, the
outputs of the model are successive characters or words.

Each RNN cell holds an internal memory that summarizes the history of
the sequence it has seen so far.

This diagram helps us to visualize the RNN model architecture:

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[87]

Vanilla version of RNN model architecture.

At the heart of the purpose of an RNN was the idea to introduce a feedback mechanism
that enables context modeling through the use of fixed-weight feedback structures. What
this does is build a connection between the features in the current mapping to the previous
version. Basically, it employs a strategy of using an earlier version of a sequence to instruct
a later version.

This is quite clever; however, it's not without its challenges. Exploding and vanishing
gradients make it extremely frustrating to train these types of modes in instances where the
problem is of a complex time series nature.

A great reference to dive into that expertly outlines the vanishing and
exploding gradient problem, and gives a technical explanation of viable
solutions, can be found in Sepp's work from 1998 (https:/ /dl. acm.org/
citation. cfm? id= 355233).

A second problem that was discovered was that RNNs were picking up only one of two
temporal structures: either the short-term or long-term structures. But what was needed for
the best model performance was a model that was able to learn from both types of features
(short-term and long-term) at the same time. The solution came in changing the basic RNN
cell for a Gated Recurrent Unite (GRU) or LSTM cell.

For additional information on the GRU refer to http:/ / www.wildml. com/
2015/ 10/ recurrent- neural- network- tutorial- part- 4-implementing- a-
grulstm- rnn- with- python- and- theano/ or, to learn more on the LSTM,
refer to http:/ / colah. github. io/ posts/ 2015- 08-Understanding- LSTMs/
.

https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
https://dl.acm.org/citation.cfm?id=355233
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[88]

We'll explore the LSTM architecture in detail later in this chapter. Let's gain some intuition
on the value of LSTM that will help us achieve our goal first.

RNN architectures
We will mostly use the LSTM cell, since it has proven better in most NLP tasks. The
principle benefit of the LSTM in RNN architectures is that it enables model training over
long sequences, while retaining memory. To solve the gradient problem, LSTMs include
more gates that effectively control access to the cell state.

We've found that Colah's blog post (http:/ / colah. github. io/ posts/
2015- 08- Understanding- LSTMs/) is a great place to go to obtain a good
understand the working of LSTMs.

These small LSTM units of RNN can be combined in multiple forms to solve various kinds
of use-cases. RNNs are quite flexible in terms of combining the different input and output
patterns, as follows:

Many to one: The model takes a complete input sequence to make a single
prediction. This is used in sentiment models.
One to many: This model transforms a single input, such as a numerical date, to
generate a sequence string such as "day", "month", or "year".
Many to many: This is a sequence-to-sequence (seq2seq) model, which takes the
entire sequence as input into a second sequence form, as Q/A systems do.

This diagram maps out these relationships nicely:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[89]

In this chapter, we will focus on the many to many relationship, also known as seq2seq
architecture, to build a question-answer chatbot. The standard RNN approach to solving
the seq2seq problem involves three primary components:

Encoders: These transform the input sentences into some abstract encoded
representation
Hidden layer: Encoded sentence transformation representations are manipulated
here
Decoders: These output a decoded target sequence

Let's have a look at the following diagram:

The illustration of building the encode decoder model which takes input text (question) in the encoder, it gets transformed in the intermediate step and gets mapped with the
decoder which represents the respective text (answer).

Let's build our intuition on RNNs by first implementing basic forms of RNN models.

Implementing basic RNNs
In this section, we will implement a language model, using a basic RNN to perform
sentiment classification. Code files for the model can found at https:/ /github. com/
PacktPublishing/Python- Deep- Learning- Projects/ blob/ master/ Chapter05/ 1.%20rnn.
py.

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/1.%20rnn.py

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[90]

Importing all of the dependencies
This code imports TensorFlow and key dependencies for our RNN:

from utils import *
import tensorflow as tf
from sklearn.cross_validation import train_test_split
import time

Preparing the dataset
The dataset we'll use in this project is the Movie Review Data from Rotten Tomatoes (http:/
/www.cs.cornell. edu/ people/ pabo/ movie- review- data/). It contains 10,662 example
review sentences, with approximately half of them positive and half negative. The dataset
has a vocabulary of around 20,000 words. We will use the sklearn wrapper to load the
dataset from a raw file and then a separate_dataset() helper function to clean the
dataset and transform it from its raw form to the separate list structure:

#Helper function
def separate_dataset(trainset,ratio=0.5):
 datastring = []
 datatarget = []
 for i in range(int(len(trainset.data)*ratio)):
 data_ = trainset.data[i].split('\n')
 data_ = list(filter(None, data_))
 for n in range(len(data_)):
 data_[n] = clearstring(data_[n])
 datastring += data_
 for n in range(len(data_)):
 datatarget.append(trainset.target[i])
 return datastring, datatarget

Here, trainset is an object that stores all of the text data and the sentiment label data:

trainset = sklearn.datasets.load_files(container_path = './data', encoding
= 'UTF-8')
trainset.data, trainset.target = separate_dataset(trainset,1.0)
print (trainset.target_names)
print ('No of training data' , len(trainset.data))
print ('No. of test data' , len(trainset.target))

Output:
['negative', 'positive']
No of training data 10662
No of test data 10662

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[91]

Now we will transform the labels into the one-hot encoding.

It's important to understand the dimensions of the one-hot encoding
vector. Since we have 10662 separate sentences, and two
sentiments, negative and positive, our one-hot vector size will be of a
size of [10662, 2].

We will be using a popular train_test_split() sklearn wrapper to randomly shuffle
the data and divide the dataset into two parts: the training set and the test set. Further,
with another build_dataset() helper function, we will create the vocabulary using a
word-count-based approach:

ONEHOT = np.zeros((len(trainset.data),len(trainset.target_names)))
ONEHOT[np.arange(len(trainset.data)),trainset.target] = 1.0
train_X, test_X, train_Y, test_Y, train_onehot, test_onehot =
train_test_split(trainset.data, trainset.target,
ONEHOT, test_size = 0.2)

concat = ' '.join(trainset.data).split()
vocabulary_size = len(list(set(concat)))
data, count, dictionary, rev_dictionary = build_dataset(concat,
vocabulary_size)
print('vocab from size: %d'%(vocabulary_size))
print('Most common words', count[4:10])
print('Sample data', data[:10], [rev_dictionary[i] for i in data[:10]])

OUTPUT:
vocab from size: 20465
'Most common words', [(u'the', 10129), (u'a', 7312), (u'and', 6199),
(u'of', 6063), (u'to', 4233), (u'is', 3378)]

'Sample data':
[4, 662, 9, 2543, 8, 22, 4, 3558, 18064, 98] -->
[u'the', u'rock', u'is', u'destined', u'to', u'be', u'the', u'21st',
u'centurys', u'new']

You can also try to feed any embedding model in here to make the model
more accurate.

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[92]

There are a few important things to remember while preparing the dataset for the RNN
models. We need to add explicitly special tags in the vocabulary to keep track of the start of
sentences, extra padding, the ends of sentences, and any unknown words. Hence, we have
reserved the following positions for special tags in our vocabulary dictionary:

Tag to mark the beginning of the sentence
'GO' = 0th position
Tag to add extra padding in the sentence
'PAD'= 1st position
Tag to mark the end of the sentence
'EOS'= 2nd position
Tag to mark the unknown word
'UNK'= 3rd position

Hyperparameters
We will define some of the hyperparameters for our model, as follows:

size_layer = 128
num_layers = 2
embedded_size = 128
dimension_output = len(trainset.target_names)
learning_rate = 1e-3
maxlen = 50
batch_size = 128

Defining a basic RNN cell model
Now we will create the RNN model, which takes a few input parameters, including the
following:

size_layer: The number of units in the RNN cell
num_layers: The number of hidden layers
embedded_size: The size of the embedding
dict_size: The vocabulary size
dimension_output: The number of classes we need to classify
learning_rate: The learning rate of the optimization algorithm

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[93]

The architecture of our RNN model consists of the following parts:

Two placeholders; one to feed sequence data into the model and the second for1.
the output
A variable to store the embedding lookup from the dictionary2.
Then, add the RNN layer with multiple basic RNN cells3.
Create weight and bias variables4.
Compute logits 5.
Compute loss6.
Add the Adam Optimizer7.
Calculate prediction and accuracy8.

This model is similar to the CNN model created in the previous chapter, Chapter 4,
Building an NLP Pipeline for Building Chatbots, except for the RNN cell part:

class Model:
 def __init__(self, size_layer, num_layers, embedded_size,
 dict_size, dimension_output, learning_rate):
 def cells(reuse=False):
 return tf.nn.rnn_cell.BasicRNNCell(size_layer,reuse=reuse)
 self.X = tf.placeholder(tf.int32, [None, None])
 self.Y = tf.placeholder(tf.float32, [None, dimension_output])

 encoder_embeddings = tf.Variable(tf.random_uniform([dict_size,
embedded_size], -1, 1))
 encoder_embedded = tf.nn.embedding_lookup(encoder_embeddings,
self.X)

 rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in
range(num_layers)])
 outputs, _ = tf.nn.dynamic_rnn(rnn_cells, encoder_embedded, dtype =
tf.float32)

 W = tf.get_variable('w',shape=(size_layer,
dimension_output),initializer=tf.orthogonal_initializer())
 b =
tf.get_variable('b',shape=(dimension_output),initializer=tf.zeros_initializ
er())

 self.logits = tf.matmul(outputs[:, -1], W) + b
 self.cost =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits =
self.logits, labels = self.Y))
 self.optimizer = tf.train.AdamOptimizer(learning_rate =
learning_rate).minimize(self.cost)

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[94]

 correct_pred = tf.equal(tf.argmax(self.logits, 1),
tf.argmax(self.Y, 1))
 self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

In this model, the data flows from the variables that we created in Step 1. Then, it moves to
the embedding layer defined in Step 2, followed by our RNN layer, which performs the
computation in two hidden layers of RNN cells. Later, logits are computed by
performing a matrix multiplication of the weight, the output from the RNN layer, and
addition of bias. The last step is that we define the cost function; we will be using the
softmax_cross_entropy function.

This is what the complete model looks like after computation:

TensorBoard graph visualization of the RNN architecture

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[95]

The following diagram represents the structure of the RNN block from the preceding
screenshot. In this architecture, we have two RNN cells incorporated in hidden layers:

TensorBoard visualization of the RNN block containing 2 hidden layers as defined in the code

Training the RNN Model
Now that we have our model architecture defined, let's train our model. We begin with a
TensorFlow graph initialization and execute the training steps as follows:

tf.reset_default_graph()
sess = tf.InteractiveSession()
model =
Model(size_layer,num_layers,embedded_size,vocabulary_size+4,dimension_outpu

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[96]

t,learning_rate)
sess.run(tf.global_variables_initializer())

EARLY_STOPPING, CURRENT_CHECKPOINT, CURRENT_ACC, EPOCH = 5, 0, 0, 0
while True:
 lasttime = time.time()
 if CURRENT_CHECKPOINT == EARLY_STOPPING:
 print('break epoch:%d\n'%(EPOCH))
 break
 train_acc, train_loss, test_acc, test_loss = 0, 0, 0, 0
 for i in range(0, (len(train_X) // batch_size) * batch_size,
batch_size):
 batch_x = str_idx(train_X[i:i+batch_size],dictionary,maxlen)
 acc, loss, _ = sess.run([model.accuracy, model.cost,
model.optimizer],
 feed_dict = {model.X : batch_x, model.Y :
train_onehot[i:i+batch_size]})
 train_loss += loss
 train_acc += acc
 for i in range(0, (len(test_X) // batch_size) * batch_size,
batch_size):
 batch_x = str_idx(test_X[i:i+batch_size],dictionary,maxlen)
 acc, loss = sess.run([model.accuracy, model.cost],
 feed_dict = {model.X : batch_x, model.Y :
train_onehot[i:i+batch_size]})
 test_loss += loss
 test_acc += acc
 train_loss /= (len(train_X) // batch_size)
 train_acc /= (len(train_X) // batch_size)
 test_loss /= (len(test_X) // batch_size)
 test_acc /= (len(test_X) // batch_size)
 if test_acc > CURRENT_ACC:
 print('epoch: %d, pass acc: %f, current acc:
%f'%(EPOCH,CURRENT_ACC, test_acc))
 CURRENT_ACC = test_acc
 CURRENT_CHECKPOINT = 0
 else:
 CURRENT_CHECKPOINT += 1
 print('time taken:', time.time()-lasttime)
 print('epoch: %d, training loss: %f, training acc: %f, valid loss: %f,
valid acc: %f\n'%(EPOCH,train_loss, train_acc,test_loss,test_acc))
 EPOCH += 1

While the RNN model is being trained, we can see the logs of each epoch, shown as
follows:

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[97]

Evaluation of the RNN model
Let's look at our results. Once the model is trained, we can feed the test data that we
prepared earlier in this chapter and evaluate the predictions. In this case, we will use a few
different metrics to evaluate our model: precision, recall, and F1-scores.

To evaluate your model, it is important to choose the right kind of metrics—F1-scores are
considered more practical compared to the accuracy score.

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[98]

Some key points to help you understand them in simple terms are as follows:

Accuracy: The count of correct predictions, divided by the count of total
examples that have been evaluated.
Precision: High precision means you identified nearly all positives
appropriately; a low precision score means you often incorrectly predicted a
positive when there was none.
Recall: High recall means you correctly predicted almost all of the real positives
present in the data; a low score means you frequently missed positives that were
present.
F1-score: The balanced harmonic mean of recall and precision, giving both
metrics equal weight. The higher the F-measure, the better.

Now we will execute the model by feeding the test data with vocabulary and the max
length of the text. This will produce the logits values which we will use to generate the
evaluation metrics:

logits = sess.run(model.logits,
feed_dict={model.X:str_idx(test_X,dictionary,maxlen)})
print(metrics.classification_report(test_Y, np.argmax(logits,1),
target_names = trainset.target_names))

The output is as follows:

So here, we can see that our average f1-score is 66% while using basic RNN cells. Let's
see if this can be improved on by using other variations of RNN architectures.

LSTM architecture
The desire to model sequential data more effectively, without the limitations of the gradient
problem, led researchers to create the LSTM variant of the previous RNN model
architecture. LSTM achieves better performance because it incorporates gates to control the
process of memory in the cell. The following diagram shows an LSTM cell:

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[99]

An LSTM unit (source: http://colah.github.io/posts/2015-08-Understanding-LSTMs)

LSTM consist of three primary elements, labeled as 1, 2, and 3 in the preceding diagram:

The forget gate f(t): This gate provides the ability, in the LSTM cell architecture,1.
to forget information that is not needed. The sigmoid activation accepts the
inputs X(t) and h(t-1), and effectively decides to remove pieces of old output
information by passing a 0. The output of this gate is f(t)*c(t-1).
Information from the new input, X(t), that is determined to be retained needs to2.
be stored in the next step in the cell state. A sigmoid activation is used in this
process to update or ignore parts of the new information. Next, a vector of all
possible values for the new input is created by a tanh activation function. The
new cell state is the product of these two values, then this new memory is added
to the old memory, c(t-1), to give c(t).
The last process of the LSTM cell is to determine the final output. A sigmoid3.
layer decides which parts of the cell state to output. We then put the cell state
through a tanh activation to generate all of the possible values, and multiply it by
the output of the sigmoid gate, to produce desired outputs according to a non-
linear function.

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[100]

These three steps in the LSTM cell process produce a significant result, that being that the
model can be trained to learn which information to retain in long-term memory and which
information to forget. Genius!

Implementing an LSTM model
The process that we performed previously, to build the basic RNN model, will remain the
same, except for the model definition part. So, let's implement this and check the
performance of the new model.

The code for the model can be viewed at https:/ /github. com/ PacktPublishing/ Python-
Deep-Learning-Projects/ blob/ master/ Chapter05/ 2. %20rnn_ lstm. py.

Defining our LSTM model
Again, most of the code will remain same—the only the major change will be to use
tf.nn.rnn_cell.LSTMCell(), instead of tf.nn.rnn_cell.BasicRNNCell(). While
initializing the LSTM cell, we are using an orthogonal initializer that will generate a
random orthogonal matrix, which is an effective way of combating exploding and
vanishing gradients:

class Model:
 def __init__(self, size_layer, num_layers, embedded_size,
 dict_size, dimension_output, learning_rate):
 def cells(reuse=False):
 return
tf.nn.rnn_cell.LSTMCell(size_layer,initializer=tf.orthogonal_initializer(),
reuse=reuse)
 self.X = tf.placeholder(tf.int32, [None, None])
 self.Y = tf.placeholder(tf.float32, [None, dimension_output])

 encoder_embeddings = tf.Variable(tf.random_uniform([dict_size,
embedded_size], -1, 1))
 encoder_embedded = tf.nn.embedding_lookup(encoder_embeddings,
self.X)

 rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in
range(num_layers)])
 outputs, _ = tf.nn.dynamic_rnn(rnn_cells, encoder_embedded, dtype =
tf.float32)

 W = tf.get_variable('w',shape=(size_layer,

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/2.%20rnn_lstm.py

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[101]

dimension_output),initializer=tf.orthogonal_initializer())
 b =
tf.get_variable('b',shape=(dimension_output),initializer=tf.zeros_initializ
er())

 self.logits = tf.matmul(outputs[:, -1], W) + b
 self.cost =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits =
self.logits, labels = self.Y))
 self.optimizer = tf.train.AdamOptimizer(learning_rate =
learning_rate).minimize(self.cost)

 correct_pred = tf.equal(tf.argmax(self.logits, 1),
tf.argmax(self.Y, 1))
 self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

So this is what the architecture of the LSTM model looks like—almost the same, compared
to the previous basic model, except with the addition of the LSTM cells in the RNN Block:

Training the LSTM model
Now that we've established our LSTM intuition and built the model, let's train it as follows:

EARLY_STOPPING, CURRENT_CHECKPOINT, CURRENT_ACC, EPOCH = 5, 0, 0, 0
while True:
 lasttime = time.time()
 if CURRENT_CHECKPOINT == EARLY_STOPPING:
 print('break epoch:%d\n'%(EPOCH))
 break
 train_acc, train_loss, test_acc, test_loss = 0, 0, 0, 0

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[102]

 for i in range(0, (len(train_X) // batch_size) * batch_size,
batch_size):
 batch_x = str_idx(train_X[i:i+batch_size],dictionary,maxlen)
 acc, loss, _ = sess.run([model.accuracy, model.cost,
model.optimizer],
 feed_dict = {model.X : batch_x, model.Y :
train_onehot[i:i+batch_size]})
 train_loss += loss
 train_acc += acc
 for i in range(0, (len(test_X) // batch_size) * batch_size,
batch_size):
 batch_x = str_idx(test_X[i:i+batch_size],dictionary,maxlen)
 acc, loss = sess.run([model.accuracy, model.cost],
 feed_dict = {model.X : batch_x, model.Y :
train_onehot[i:i+batch_size]})
 test_loss += loss
 test_acc += acc
 train_loss /= (len(train_X) // batch_size)
 train_acc /= (len(train_X) // batch_size)
 test_loss /= (len(test_X) // batch_size)
 test_acc /= (len(test_X) // batch_size)
 if test_acc > CURRENT_ACC:
 print('epoch: %d, pass acc: %f, current acc:
%f'%(EPOCH,CURRENT_ACC, test_acc))
 CURRENT_ACC = test_acc
 CURRENT_CHECKPOINT = 0
 else:
 CURRENT_CHECKPOINT += 1
 print('time taken:', time.time()-lasttime)
 print('epoch: %d, training loss: %f, training acc: %f, valid loss: %f,
valid acc: %f\n'%(EPOCH,train_loss,
train_acc,test_loss,
test_acc))
 EPOCH += 1

While the LSTM model is being trained, we can see the logs of each epoch as shown in the
following screenshot:

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[103]

Following is the output:

('time taken:', 18.061596155166626)
epoch: 10, training loss: 0.015714, training acc: 0.994910, valid loss:
4.252270, valid acc: 0.500000

('time taken:', 17.786305904388428)
epoch: 11, training loss: 0.011198, training acc: 0.995975, valid loss:
4.644272, valid acc: 0.502441

('time taken:', 19.031064987182617)
epoch: 12, training loss: 0.009245, training acc: 0.996686, valid loss:
4.575824, valid acc: 0.499512

('time taken:', 16.996762990951538)
epoch: 13, training loss: 0.006528, training acc: 0.997751, valid loss:
4.449901, valid acc: 0.501953

('time taken:', 17.008245944976807)
epoch: 14, training loss: 0.011770, training acc: 0.995739, valid loss:
4.282045, valid acc: 0.499023

break epoch:15

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[104]

You will notice that, even after using the same configurations of the model, the training
time required for the LSTM-based model will be greater than the RNN model.

Evaluation of the LSTM model
Now, let's again compute the metrics and compare the performance:

logits = sess.run(model.logits,
feed_dict={model.X:str_idx(test_X,dictionary,maxlen)})
print(metrics.classification_report(test_Y, np.argmax(logits,1),
target_names = trainset.target_names))

The computed outputs are shown as follows:

So, we can clearly see the boost in the performance of the model! Now, with the LSTM, the
f1-score is bumped to 72% whereas, in our previous basic RNN model, it was 66%, which
is quite a good improvement of 7%.

Sequence-to-sequence models
In this section, we'll implement a seq2seq model (an encoder-decoder RNN), based on the
LSTM unit, for a simple sequence-to-sequence question-answer task. This model can be
trained to map an input sequence (questions) to an output sequence (answers), which are
not necessarily of the same length as each other.

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[105]

This type of seq2seq model has shown impressive performance in various other tasks such
as speech recognition, machine translation, question answering, Neural Machine
Translation (NMT), and image caption generation.

The following diagram helps us visualize our seq2seq model:

The illustration of the sequence to sequence (seq2seq) model. Each rectangle box is the RNN cell in which blue ones are the encoders and Red been the Decoders.

In the encoder-decoder structure, one RNN (blue) encodes the input sequence. The encoder
emits the context C, usually as a simple function of its final hidden state. And the second
RNN (red) decoder calculates the target values and generates the output sequence. One
essential step is to let the encoder and decoder communicate. In the simplest approach, you
use the last hidden state of the encoder to initialize the decoder. Other approaches let the
decoder attend to different parts of the encoded input at different timesteps in the decoding
process.

So, let's get started with data preparation, model building, training, tuning, and evaluating
our seq2seq model, and see how it performs.

The model file can be found at https:/ / github. com/ PacktPublishing/ Python- Deep-
Learning-Projects/ blob/ master/ Chapter05/ 3. %20rnn_ lstm_ seq2seq. py.

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter05/3.%20rnn_lstm_seq2seq.py

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[106]

Data preparation
Here, we will build our question-answering system. For the project, we need a dataset with
question and answer pairs, as shown in the following screenshot. Both of the columns
contain sequences of words, which is what we need to feed into our seq2seq model. Also,
note that our sentences can be of dynamic length:

The dataset which we prepared with set of questions and answers

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[107]

Let's load them and perform the same data processing using build_dataset(). In the
end, we will have a dictionary with words as keys, where the associated values are the
counts of the word in the respective corpus. Also, we have four extras values that we talked
about before in this chapter:

import numpy as np
import tensorflow as tf
import collections
from utils import *

file_path = './conversation_data/'

with open(file_path+'from.txt', 'r') as fopen:
 text_from = fopen.read().lower().split('\n')
with open(file_path+'to.txt', 'r') as fopen:
 text_to = fopen.read().lower().split('\n')
print('len from: %d, len to: %d'%(len(text_from), len(text_to)))

concat_from = ' '.join(text_from).split()
vocabulary_size_from = len(list(set(concat_from)))
data_from, count_from, dictionary_from, rev_dictionary_from =
build_dataset(concat_from, vocabulary_size_from)

concat_to = ' '.join(text_to).split()
vocabulary_size_to = len(list(set(concat_to)))
data_to, count_to, dictionary_to, rev_dictionary_to =
build_dataset(concat_to, vocabulary_size_to)

GO = dictionary_from['GO']
PAD = dictionary_from['PAD']
EOS = dictionary_from['EOS']
UNK = dictionary_from['UNK']

Defining a seq2seq model
In this section, we will outline the TensorFlow seq2seq model definition. We employed an
embedding layer to go from integer representation to the vector representation of the input.
This seq2seq model has four major components: the embedding layer, encoders, decoders,
and cost/optimizers.

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[108]

You can see the model in graphical form in the following diagram:

The TensorBoard visualization of the seq2seq model. This graph shows the connection between the encode and the decoder with other relevent components like the optimizer.

The following is a formal outline of the TensorFlow seq2seq model definition:

class Chatbot:
 def __init__(self, size_layer, num_layers, embedded_size,
 from_dict_size, to_dict_size, learning_rate, batch_size):

 def cells(reuse=False):
 return
tf.nn.rnn_cell.LSTMCell(size_layer,initializer=tf.orthogonal_initializer(),
reuse=reuse)

 self.X = tf.placeholder(tf.int32, [None, None])
 self.Y = tf.placeholder(tf.int32, [None, None])
 self.X_seq_len = tf.placeholder(tf.int32, [None])

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[109]

 self.Y_seq_len = tf.placeholder(tf.int32, [None])

 with tf.variable_scope("encoder_embeddings"):
 encoder_embeddings = tf.Variable(tf.random_uniform([from_dict_size,
embedded_size], -1, 1))
 encoder_embedded = tf.nn.embedding_lookup(encoder_embeddings, self.X)
 main = tf.strided_slice(self.X, [0, 0], [batch_size, -1], [1, 1])

 with tf.variable_scope("decoder_embeddings"):
 decoder_input = tf.concat([tf.fill([batch_size, 1], GO), main], 1)
 decoder_embeddings = tf.Variable(tf.random_uniform([to_dict_size,
embedded_size], -1, 1))
 decoder_embedded = tf.nn.embedding_lookup(encoder_embeddings,
decoder_input)

 with tf.variable_scope("encoder"):
 rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in
range(num_layers)])
 _, last_state = tf.nn.dynamic_rnn(rnn_cells, encoder_embedded,
 dtype = tf.float32)
 with tf.variable_scope("decoder"):
 rnn_cells_dec = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in
range(num_layers)])
 outputs, _ = tf.nn.dynamic_rnn(rnn_cells_dec, decoder_embedded,
 initial_state = last_state,
 dtype = tf.float32)
 with tf.variable_scope("logits"):
 self.logits = tf.layers.dense(outputs,to_dict_size)
 print(self.logits)
 masks = tf.sequence_mask(self.Y_seq_len, tf.reduce_max(self.Y_seq_len),
dtype=tf.float32)
 with tf.variable_scope("cost"):
 self.cost = tf.contrib.seq2seq.sequence_loss(logits = self.logits,
 targets = self.Y,
 weights = masks)
 with tf.variable_scope("optimizer"):
 self.optimizer = tf.train.AdamOptimizer(learning_rate =
learning_rate).minimize(self.cost)

Hyperparameters
Now that we have our model definition ready, we will define the hyperparameters. We will
keep most of the configurations the same as in the previous one:

size_layer = 128
num_layers = 2

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[110]

embedded_size = 128
learning_rate = 0.001
batch_size = 32
epoch = 50

Training the seq2seq model
Now, let's train the model. We will need some helper functions for the padding of the
sentence and to calculate the accuracy of the model:

def pad_sentence_batch(sentence_batch, pad_int):
 padded_seqs = []
 seq_lens = []
 max_sentence_len = 50
 for sentence in sentence_batch:
 padded_seqs.append(sentence + [pad_int] * (max_sentence_len -
len(sentence)))
 seq_lens.append(50)
 return padded_seqs, seq_lens

def check_accuracy(logits, Y):
 acc = 0
 for i in range(logits.shape[0]):
 internal_acc = 0
 for k in range(len(Y[i])):
 if Y[i][k] == logits[i][k]:
 internal_acc += 1
 acc += (internal_acc / len(Y[i]))
 return acc / logits.shape[0]

We initialize our model and iterate the session for the defined number of epochs:

tf.reset_default_graph()
sess = tf.InteractiveSession()
model = Chatbot(size_layer, num_layers, embedded_size, vocabulary_size_from
+ 4,
 vocabulary_size_to + 4, learning_rate, batch_size)
sess.run(tf.global_variables_initializer())

for i in range(epoch):
 total_loss, total_accuracy = 0, 0
 for k in range(0, (len(text_from) // batch_size) * batch_size,
batch_size):
 batch_x, seq_x = pad_sentence_batch(X[k: k+batch_size], PAD)
 batch_y, seq_y = pad_sentence_batch(Y[k: k+batch_size], PAD)
 predicted, loss, _ = sess.run([tf.argmax(model.logits,2), model.cost,

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[111]

model.optimizer],
 feed_dict={model.X:batch_x,
 model.Y:batch_y,
 model.X_seq_len:seq_x,
 model.Y_seq_len:seq_y})
 total_loss += loss
 total_accuracy += check_accuracy(predicted,batch_y)
 total_loss /= (len(text_from) // batch_size)
 total_accuracy /= (len(text_from) // batch_size)
 print('epoch: %d, avg loss: %f, avg accuracy: %f'%(i+1, total_loss,
total_accuracy))

OUTPUT:
epoch: 47, avg loss: 0.682934, avg accuracy: 0.000000
epoch: 48, avg loss: 0.680367, avg accuracy: 0.000000
epoch: 49, avg loss: 0.677882, avg accuracy: 0.000000
epoch: 50, avg loss: 0.678484, avg accuracy: 0.000000
.
.
.
epoch: 1133, avg loss: 0.000464, avg accuracy: 1.000000
epoch: 1134, avg loss: 0.000462, avg accuracy: 1.000000
epoch: 1135, avg loss: 0.000460, avg accuracy: 1.000000
epoch: 1136, avg loss: 0.000457, avg accuracy: 1.000000

Evaluation of the seq2seq model
So, after running the training process for few hours on a GPU, you can see that the accuracy
has reached a value of 1.0, and loss has significantly reduced to 0.00045. Let's see how
the model performs when we ask some generic questions.

To make predictions, we will create a predict() function that will take the raw text of any
size as input and return the response to the question that we asked. We did a quick fix to
handle the Out Of Vocab (OOV) words by replacing them with the PAD:

def predict(sentence):
 X_in = []
 for word in sentence.split():
 try:
 X_in.append(dictionary_from[word])
 except:
 X_in.append(PAD)
 pass
 test, seq_x = pad_sentence_batch([X_in], PAD)
 input_batch = np.zeros([batch_size,seq_x[0]])
 input_batch[0] =test[0]

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[112]

 log = sess.run(tf.argmax(model.logits,2),
 feed_dict={
 model.X:input_batch,
 model.X_seq_len:seq_x,
 model.Y_seq_len:seq_x
 }
)
 result=' '.join(rev_dictionary_to[i] for i in log[0])
 return result

When the model was trained for the first 50 epochs, we had the following result:

>> predict('where do you live')
>> i PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD

>> print predict('how are you ?')
>> i am PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD

When the model was trained for 1,136 epochs:

>> predict('where do you live')
>> miami florida PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD

>> print predict('how are you ?')
>> i am fine thank you PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD

Well! That's impressive, right? Now your model is not just able to understand the context,
but can also generate answers word by word.

Summary
In this chapter, we covered basic RNN cells, LSTM cells, and the seq2seq model in building
a language model that can be used for multiple NLP tasks. We implemented a chatbot,
from scratch, to answer questions by generating a sequence of words from the provided
dataset.

Sequence-to-Sequence Models for Building Chatbots Chapter 5

[113]

The experience in this exercise demonstrates the value of LSTM as an often necessary
component of the RNN. With the LSTM, we were able to see the following improvements
over past CNN models:

The LSTM was able to preserve state information
The length of sentences for both inputs and outputs could be variable and
different
 The LSTM was able to adequately handle complex context

Specifically, in this chapter, we did the following:

Gained an intuition about the RNN and its primary forms
Implemented a language model using RNN
Learned about the LSTM model
Implemented the LSTM language model and compared it to the RNN
Implemented an encoder-decoder RNN based on the LSTM unit for a simple
sequence-to-sequence question-answer task

With the right training data, it would be possible to use this model to achieve the goal of
the hypothetical client (the restaurant chain) of building a robust chatbot (in combination
with other computational linguistic technologies that we've explored) that could automate
the over-the-phone food ordering process.

Well done!

6
Generative Language Model for

Content Creation
This work is certainly getting exciting, and the word is out that we're demonstrating a
professional set of deep learning capabilities by producing solutions for a wide range of
business use cases! As data scientists, we understand the transferability of our skills. We
know that we can provide value by employing core skills when working on problems that
we know are similar in structure but that may seem different at first glance. This couldn't
be more true than in the next deep learning project. Next, we're (hypothetically) going to be
working on a project in which a creative group has asked us to help produce some original
content for movie scripts, song lyrics, and even music!

How can we leverage our experience in solving problems for restaurant chains to such a
different industry? Let's explore what we know and what we're going to be asked to do. In
past projects, we demonstrated that we could take an image as input and output a class
label (Chapter 2, Training NN for Prediction Using Regression); we trained a model to take
text input and output sentiment classifications (Chapter 3, Word Representation Using
word2vec); we built a NLP pipeline for an open domain question and answering chatbot
where we took text as input and identified text in a corpus to present as the appropriate
output (Chapter 4, Building an NLP Pipeline for Building Chatbots); and we expanded that
chatbot's functionality so that it was able to serve a restaurant with an automated ordering
system (Chapter 5, Sequence-to-Sequence Models for Building Chatbots).

Define the goal: In this next project, we're going to take the next step in
our computational linguistics journey in Python Deep Learning Projects and
generate new content for our client. We need to help them by providing a
deep learning solution that generates new content that can be used in
movie scrips, song lyrics, and music.

Generative Language Model for Content Creation Chapter 6

[115]

In this chapter, we will implement a generative model that can generate content using long
short-term memory (LSTM), variational autoencoders, and Generative Adversarial
Networks (GANs). We will be implementing models for both text and images, which can
then generate images and text for artists and various businesses.

In this chapter, we'll cover the following topics:

Text generation with LSTM
Additional power of a bi-directional LSTM for text generation
Deep (multi-layer) LSTM to generate lyrics for a song
Deep (multi-layer) LSTM music generation for a song

LSTM for text generation
In this section, we'll explore a popular deep learning model: the recurrent neural network
(RNN), and how it can be used in the generation of sequence data. The universal way to
create sequence data in deep learning is to train a model (usually a RNN or a ConvNet) to
predict the next token or next few tokens in a series, based on the previous tokens as input.
For instance, let's imagine that we're given the sentence with these words as input: I love
to work in deep learning. We will train the network to predict the next character as
our target.

When working with textual data, tokens are typically words or characters,
and any network that can model the probability of the next token given
the previous ones is called a language model that can capture the latent
space of language.

Upon training the language model, we can then proceed to feed some initial text and ask it
to generate the next token, then add the generated token back into the language model to
predict more tokens. For our hypothetical use case, our creative client will use this model
and later provide examples of text that we would then be asked to create novel content for
in that style.

The first step in building the generative model for text is to import all the modules
required. Keras APIs will be used in this project to create the models and Keras utils will be
used to download the dataset. In order to build text generation modules, we need a
significant amount of simple text data.

Generative Language Model for Content Creation Chapter 6

[116]

You can find the code file for this at https:/ /github. com/ PacktPublishing/ Python- Deep-
Learning-Projects/ blob/ master/ Chapter06/ Basics/ generative_ text. py:

import keras
import numpy as np
from keras import layers
Gather data
path = keras.utils.get_file(
 'sample.txt',
 origin='https://s3.amazonaws.com/text-datasets/nietzsche.txt')
text = open(path).read().lower()
print('Number of words in corpus:', len(text))

Data pre-processing
Let's perform the data pre-processing to convert the raw data into its encoded form. We
will extract fixed length sentences, encode them using a one-hot encoding process, and
finally build a tensor of the (sequence, maxlen, unique_characters) shape, as shown in
the following diagram. At the same time, we will prepare the target vector, y, to contain the
associated next character that follows each extracted sequence.

The following is the code we'll use to pre-process the data:

Length of extracted character sequences
maxlen = 100

We sample a new sequence every 5 characters
step = 5

List to hold extracted sequences
sentences = []

List to hold the target characters
next_chars = []

Extracting sentences and the next characters.
for i in range(0, len(text) - maxlen, step):
 sentences.append(text[i: i + maxlen])
 next_chars.append(text[i + maxlen])
print('Number of sequences:', len(sentences))

List of unique characters in the corpus
chars = sorted(list(set(text)))

Dictionary mapping unique characters to their index in `chars`

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Basics/generative_text.py

Generative Language Model for Content Creation Chapter 6

[117]

char_indices = dict((char, chars.index(char)) for char in chars)

Converting characters into one-hot encoding.
x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
 for t, char in enumerate(sentence):
 x[i, t, char_indices[char]] = 1
 y[i, char_indices[next_chars[i]]] = 1

Following is how data preprocessing looks like. We have transformed the raw data into the
tensors which we will further use for the training purpose:

Defining the LSTM model for text generation
This deep model is a network that's made up of one hidden LSTM layer with 128 memory
units, followed by a Dense classifier layer with a softmax activation function over all
possible characters. Targets are one-hot encoded, and this means that we'll train the model
using categorical_crossentropy as the loss function.

Generative Language Model for Content Creation Chapter 6

[118]

The following code block defines the model's architecture:

model = keras.models.Sequential()
model.add(layers.LSTM(128, input_shape=(maxlen, len(chars))))
model.add(layers.Dense(len(chars), activation='softmax'))

optimizer = keras.optimizers.RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)

The following diagram helps us visualize the model's architecture:

Training the model
In text generation, the way we choose the succeeding character is crucial. The most
common way (greedy sampling) leads to repetitive characters that does not produce a
coherent language. This is why we use a different approach called stochastic sampling.
This adds a degree of randomness to the prediction probability distribution.

Use the following code to re-weight the prediction probability distribution and sample a
character index:

def sample(preds, temperature=1.0):
 preds = np.asarray(preds).astype('float64')
 preds = np.log(preds) / temperature
 exp_preds = np.exp(preds)
 preds = exp_preds / np.sum(exp_preds)
 probas = np.random.multinomial(1, preds, 1)
 return np.argmax(probas)

Generative Language Model for Content Creation Chapter 6

[119]

Now, we iterate the training and text generation, beginning with 30 training epochs and
then fitting the model for 1 iteration. Then, perform a random selection of the seed text,
convert it into one-hot encoding format, and perform predictions of 100 characters. Finally,
append the newly generated character to the seed text in each iteration.

After each epoch, generation is performed by utilizing a different temperature from a range
of values. This makes it possible to see and understand the evolution of the generated text
at model convergence, and the consequences of temperature in the sampling strategy.

Temperature is an LSTM hyperparameter that is used to influence
prediction randomness by logit scaling before applying softmax.

We need to execute the following code so that we can train the model:

for epoch in range(1, 30):
 print('epoch', epoch)
 # Fit the model for 1 epoch
 model.fit(x, y, batch_size=128, epochs=1, callbacks=callbacks_list)

 # Select a text seed randomly
 start_index = random.randint(0, len(text) - maxlen - 1)
 generated_text = text[start_index: start_index + maxlen]
 print('---Seeded text: "' + generated_text + '"')

 for temperature in [0.2, 0.5, 1.0, 1.2]:
 print('------ Selected temperature:', temperature)
 sys.stdout.write(generated_text)

 # We generate 100 characters
 for i in range(100):
 sampled = np.zeros((1, maxlen, len(chars)))
 for t, char in enumerate(generated_text):
 sampled[0, t, char_indices[char]] = 1.

 preds = model.predict(sampled, verbose=0)[0]
 next_index = sample(preds, temperature)
 next_char = chars[next_index]

 generated_text += next_char
 generated_text = generated_text[1:]

 sys.stdout.write(next_char)
 sys.stdout.flush()
 print()

Generative Language Model for Content Creation Chapter 6

[120]

Inference and results
This gets us to the exciting part of our generative language model—creating custom
content! The inference step in deep learning is where we take a trained model and expose it
to new data to make predictions or classifications. In the current context of this project,
we're looking for model outputs, that is, new sentences, which will be our novel custom
content. Let's see what our deep learning model can do!

We will use the following code to store and load the checkpoints into a binary file that
stores all of the weights:

from keras.callbacks import ModelCheckpoint

filepath="weights-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1,
save_best_only=True, mode='min')
callbacks_list = [checkpoint]

Now, we will use the trained model and generate new text:

seed_text = 'i want to generate new text after this '
print (seed_text)

load the network weights
filename = "weights-30-1.545.hdf5"
model.load_weights(filename)
model.compile(loss='categorical_crossentropy', optimizer='adam')

for temperature in [0.5]:
 print('------ temperature:', temperature)
 sys.stdout.write(seed_text)

 # We generate 400 characters
 for i in range(40):
 sampled = np.zeros((1, maxlen, len(chars)))
 for t, char in enumerate(seed_text):
 sampled[0, t, char_indices[char]] = 1.

 preds = model.predict(sampled, verbose=0)[0]
 next_index = sample(preds, temperature)
 next_char = chars[next_index]

 seed_text += next_char
 seed_text = seed_text[1:]

 sys.stdout.write(next_char)

Generative Language Model for Content Creation Chapter 6

[121]

 sys.stdout.flush()
 print()

After successfully training the model, we will see the following results at the 30th epoch:

--- Generating with seed:
the "good old time" to which it belongs, and as an expressio"
------ temperature: 0.2
the "good old time" to which it belongs, and as an expression of the sense
of the stronger and subli
------ temperature: 0.5
and as an expression of the sense of the stronger and sublication of
possess and more spirit and in
------ temperature: 1.0
e stronger and sublication of possess and more spirit and instinge, and it:
he ventlumentles, no dif
------ temperature: 1.2
d more spirit and instinge, and it: he ventlumentles, no differific and
does amongly domen--whete ac

We find that, with low values for the temperature hyperparameter, the model is able to
generate more practical and realistic words. When we use higher temperatures, the
generated text becomes more interesting and unusual—some might even say creative.
Sometimes, the model will even invent new words that often sound vaguely credible. So,
the idea of using low temperature is more reasonable for business use cases where you
need to be realistic, while higher temperature values can be used in more creative and
artistic use cases.

The art of deep learning and generative linguistic models is a balance
between the learned structure and randomness, which makes the output
interesting.

Generating lyrics using deep (multi-layer)
LSTM
Now that we have built a basic LSTM model for text generation and learned its value, let's
move one step further and create a deep LSTM model suited for the task of generating
music lyrics. We now have a new goal: to build and train a model that outputs entirely new
and original lyrics that is in the style of an arbitrary number of artists.

Generative Language Model for Content Creation Chapter 6

[122]

Let's begin. You can refer to the code file found at Lyrics-ai (https:/ /github. com/
PacktPublishing/Python- Deep- Learning- Projects/ tree/ master/ Chapter06/ Lyrics- ai)
for this exercise.

Data pre-processing
To build a model that can generate lyrics, we will need a huge amount of lyric data, which
can easily be extracted from various sources. We collected lyrics from around 10,000 songs
and stored them in a text file called lyrics_data.txt. You can find the data file in our
GitHub repository (https:/ /github. com/ PacktPublishing/ Python- Deep- Learning-
Projects/blob/master/ Chapter06/ Lyrics- ai/lyrics_ data. txt).

Now that we have our data, we need to convert this raw text into the one-hot encoding
version:

import numpy as np
import codecs

Class to perform all preprocessing operations
class Preprocessing:
 vocabulary = {}
 binary_vocabulary = {}
 char_lookup = {}
 size = 0
 separator = '->'
This will take the data file and convert data into one hot encoding and
dump the vocab into the file.
 def generate(self, input_file_path):
 input_file = codecs.open(input_file_path, 'r', 'utf_8')
 index = 0
 for line in input_file:
 for char in line:
 if char not in self.vocabulary:
 self.vocabulary[char] = index
 self.char_lookup[index] = char
 index += 1
 input_file.close()
 self.set_vocabulary_size()
 self.create_binary_representation()

This method is to load the vocab into the memory
 def retrieve(self, input_file_path):
 input_file = codecs.open(input_file_path, 'r', 'utf_8')
 buffer = ""
 for line in input_file:

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Lyrics-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter06/Lyrics-ai/lyrics_data.txt

Generative Language Model for Content Creation Chapter 6

[123]

 try:
 separator_position = len(buffer) +
line.index(self.separator)
 buffer += line
 key = buffer[:separator_position]
 value = buffer[separator_position + len(self.separator):]
 value = np.fromstring(value, sep=',')

 self.binary_vocabulary[key] = value
 self.vocabulary[key] = np.where(value == 1)[0][0]
 self.char_lookup[np.where(value == 1)[0][0]] = key

 buffer = ""
 except ValueError:
 buffer += line
 input_file.close()
 self.set_vocabulary_size()

Below are some helper functions to perform pre-processing.
 def create_binary_representation(self):
 for key, value in self.vocabulary.iteritems():
 binary = np.zeros(self.size)
 binary[value] = 1
 self.binary_vocabulary[key] = binary

 def set_vocabulary_size(self):
 self.size = len(self.vocabulary)
 print "Vocabulary size: {}".format(self.size)

 def get_serialized_binary_representation(self):
 string = ""
 np.set_printoptions(threshold='nan')
 for key, value in self.binary_vocabulary.iteritems():
 array_as_string = np.array2string(value, separator=',',
max_line_width=self.size * self.size)
 string += "{}{}{}\n".format(key.encode('utf-8'),
self.separator, array_as_string[1:len(array_as_string) - 1])
 return string

Generative Language Model for Content Creation Chapter 6

[124]

The overall objective of the pre-processing module is to convert the raw text data into one-
hot encoding, as shown in the following diagram:

This figure represents the data preprocessing part. The law lyrics data is used to build the vocabulary mapping which is further been transformed into the on-hot encoding.

After the successful execution of the pre-processing module, a binary file will be dumped
as {dataset_filename}.vocab. This vocab file is one of the mandatory files that needs
to be fed into the model during the training process, along with the dataset.

Generative Language Model for Content Creation Chapter 6

[125]

Defining the model
We will be using a approach from the Keras model that we used earlier in this project to
build this model. To build a more complex model, we will use TensorFlow to write each
layer from scratch. TensorFlow gives us, as data scientists and deep learning engineers,
more fine-tuned control over our model's architecture.

For this model, we will use the code in the following block to create two placeholders that
will store the input and output values:

import tensorflow as tf
import pickle
from tensorflow.contrib import rnn

 def build(self, input_number, sequence_length, layers_number,
units_number, output_number):
 self.x = tf.placeholder("float", [None, sequence_length,
input_number])
 self.y = tf.placeholder("float", [None, output_number])
 self.sequence_length = sequence_length

Next, we need to store the weights and bias in the variables that we've created:

 self.weights = {
 'out': tf.Variable(tf.random_normal([units_number,
output_number]))
 }
 self.biases = {
 'out': tf.Variable(tf.random_normal([output_number]))
 }

 x = tf.transpose(self.x, [1, 0, 2])
 x = tf.reshape(x, [-1, input_number])
 x = tf.split(x, sequence_length, 0)

We can build this model by using multiple LSTM layers, with the basic LSTM cells
assigning each layer with the specified number of cells, as shown in the following diagram:

Generative Language Model for Content Creation Chapter 6

[126]

Tensorboard visualization of the LSTM architecture

The following is the code for this:

 lstm_layers = []
 for i in range(0, layers_number):
 lstm_layer = rnn.BasicLSTMCell(units_number)
 lstm_layers.append(lstm_layer)

 deep_lstm = rnn.MultiRNNCell(lstm_layers)

 self.outputs, states = rnn.static_rnn(deep_lstm, x,
dtype=tf.float32)

Generative Language Model for Content Creation Chapter 6

[127]

 print "Build model with input_number: {}, sequence_length: {},
layers_number: {}, " \
 "units_number: {}, output_number: {}".format(input_number,
sequence_length, layers_number,
 units_number,
output_number)
This method is using to dump the model configurations
 self.save(input_number, sequence_length, layers_number,
units_number, output_number)

Training the deep TensorFlow-based LSTM model
Now that we have the mandatory inputs, that is, the dataset file path, the vocab file path,
and the model name, we will initiate the training process. Let's define all of the
hyperparameters for the model:

import os
import argparse
from modules.Model import *
from modules.Batch import *

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('--training_file', type=str, required=True)
 parser.add_argument('--vocabulary_file', type=str, required=True)
 parser.add_argument('--model_name', type=str, required=True)

 parser.add_argument('--epoch', type=int, default=200)
 parser.add_argument('--batch_size', type=int, default=50)
 parser.add_argument('--sequence_length', type=int, default=50)
 parser.add_argument('--log_frequency', type=int, default=100)
 parser.add_argument('--learning_rate', type=int, default=0.002)
 parser.add_argument('--units_number', type=int, default=128)
 parser.add_argument('--layers_number', type=int, default=2)
 args = parser.parse_args()

Since we are batch training the model, we will divide the dataset into batches of a defined
batch_size using the Batch module:

batch = Batch(training_file, vocabulary_file, batch_size, sequence_length)

Each batch will return two arrays. One will be the input vector of the input sequence, which
will have a shape of [batch_size, sequence_length, vocab_size], and the other array
will hold the label vector, which will have a shape of [batch_size, vocab_size].

Generative Language Model for Content Creation Chapter 6

[128]

Now, we initialize our model and create the optimizer function. In this model, we used the
Adam Optimizer.

The Adam Optimizer is a powerful tool. You can read up on it from the
official TensorFlow documentation at
https:/ /www. tensorflow. org/ api_ docs/ python/ tf/ train/
AdamOptimizer.

Then, we will train our model and perform the optimization over each batch:

Building model instance and classifier
 model = Model(model_name)
 model.build(input_number, sequence_length, layers_number, units_number,
classes_number)
 classifier = model.get_classifier()

Building cost functions
 cost = tf.reduce_mean(tf.square(classifier - model.y))
 optimizer =
tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

Computing the accuracy metrics
 expected_prediction = tf.equal(tf.argmax(classifier, 1),
tf.argmax(model.y, 1))
 accuracy = tf.reduce_mean(tf.cast(expected_prediction, tf.float32))

Preparing logs for Tensorboard
 loss_summary = tf.summary.scalar("loss", cost)
 acc_summary = tf.summary.scalar("accuracy", accuracy)
 train_summary_op = tf.summary.merge_all()
 out_dir = "{}/{}".format(model_name, model_name)
 train_summary_dir = os.path.join(out_dir, "summaries")

##

Initializing the session and executing the training

init = tf.global_variables_initializer()
with tf.Session() as sess:
 sess.run(init)
 iteration = 0

 while batch.dataset_full_passes < epoch:
 iteration += 1
 batch_x, batch_y = batch.get_next_batch()
 batch_x = batch_x.reshape((batch_size, sequence_length,
input_number))

https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer

Generative Language Model for Content Creation Chapter 6

[129]

 sess.run(optimizer, feed_dict={model.x: batch_x, model.y:
batch_y})
 if iteration % log_frequency == 0:
 acc = sess.run(accuracy, feed_dict={model.x: batch_x,
model.y: batch_y})
 loss = sess.run(cost, feed_dict={model.x: batch_x, model.y:
batch_y})
 print("Iteration {}, batch loss: {:.6f}, training accuracy:
{:.5f}".format(iteration * batch_size,
loss, acc))
 batch.clean()

Once the model completes its training, the checkpoints are stored. We can use later on for
inferencing. The following is a graph of the accuracy and the loss that occurred during the
training process:

The accuracy (top) and the loss (bottom) plot with respect to the time. We can see that accuracy getting increased and loss getting reduced over the period of time.

Generative Language Model for Content Creation Chapter 6

[130]

Inference
Now that the model is ready, we can use it to make predictions. We will start by defining
all of the parameters. While building inference, we need to provide some seed text, just like
we did in the previous model. Along with that, we will also provide the path of the vocab
file and the output file in which we will store the generated lyrics. We will also provide the
length of the text that we need to generate:

import argparse
import codecs
from modules.Model import *
from modules.Preprocessing import *
from collections import deque

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('--model_name', type=str, required=True)
 parser.add_argument('--vocabulary_file', type=str, required=True)
 parser.add_argument('--output_file', type=str, required=True)

 parser.add_argument('--seed', type=str, default="Yeah, oho ")
 parser.add_argument('--sample_length', type=int, default=1500)
 parser.add_argument('--log_frequency', type=int, default=100)

Next, we will load the model by providing the name of model that we used in the training
step in the preceding code, and we will restore the vocabulary from the file:

 model = Model(model_name)
 model.restore()
 classifier = model.get_classifier()

 vocabulary = Preprocessing()
 vocabulary.retrieve(vocabulary_file)

We will be using the stack methods to store the generated characters, append the stack, and
then use the same stack to feed it into the model in an interactive fashion:

Preparing the raw input data
 for char in seed:
 if char not in vocabulary.vocabulary:
 print char,"is not in vocabulary file"
 char = u' '
 stack.append(char)
 sample_file.write(char)

Restoring the models and making inferences
 with tf.Session() as sess:

Generative Language Model for Content Creation Chapter 6

[131]

 tf.global_variables_initializer().run()

 saver = tf.train.Saver(tf.global_variables())
 ckpt = tf.train.get_checkpoint_state(model_name)

 if ckpt and ckpt.model_checkpoint_path:
 saver.restore(sess, ckpt.model_checkpoint_path)

 for i in range(0, sample_length):
 vector = []
 for char in stack:
 vector.append(vocabulary.binary_vocabulary[char])
 vector = np.array([vector])
 prediction = sess.run(classifier, feed_dict={model.x:
vector})
 predicted_char =
vocabulary.char_lookup[np.argmax(prediction)]

 stack.popleft()
 stack.append(predicted_char)
 sample_file.write(predicted_char)

 if i % log_frequency == 0:
 print "Progress: {}%".format((i * 100) / sample_length)

 sample_file.close()
 print "Sample saved in {}".format(output_file)

Output
After successful execution, we will get our own freshly brewed, AI generated lyrics
reviewed and published. The following is one sample of such lyrics. We have modified
some of the spelling so that the sentence makes sense:

Yeah, oho once upon a time, on ir intasd

I got monk that wear your good
So heard me down in my clipp

Cure me out brick
Coway got baby, I wanna sheart in faic

I could sink awlrook and heart your all feeling in the firing of to the
still hild, gavelly mind, have before you, their lead
Oh, oh shor,s sheld be you und make

Generative Language Model for Content Creation Chapter 6

[132]

Oh, fseh where sufl gone for the runtome
Weaaabe the ligavus I feed themust of hear

Here, we can see that the model has learned in the way it has generated the paragraphs and
sentences with appropriate spacing. It still lacks perfection and also doesn't make sense.

Seeing signs of success: The first task is to create a model that can learn,
and then the second one is used to improve on that model. This can be
obtained by training the model with a larger training dataset and longer
training durations.

Generating music using a multi-layer LSTM
Our (hypothetical) creative agency client loves what we've done in how we can generate
music lyrics. Now, they want us to create some music. We will be using multiple layers of
LSTMs, as shown in the following diagram:

Generative Language Model for Content Creation Chapter 6

[133]

By now, we know that RNNs are good for sequential data, and we can also represent a
music track as notes and chord sequences. In this paradigm, notes become data objects
containing octave, offset, and pitch information. Chords become data container objects
holding information for the combination of notes played at one time.

Pitch is the sound frequency of a note. Musicians represent notes with
letter designations [A, B, C, D, E, F, G], with G being the lowest and A
being the highest.

Octave identifies the set of pitches used at any one time while playing an
instrument.

Offset identifies the location of a note in the piece of music.

Let's explore the following section to build our intuition on how to generate music by first
processing the sound files, converting them into the sequential mapping data, and then
using the RNN to train the model.

Let's do it. You can refer to the Music-ai code for this exercise, which can be found
at https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master
/Chapter06/Music-ai.

Pre-processing data
To generate music, we will need a good size set of training data of music files. These will be
used to extract sequences while building our training dataset. To simplify this process, in
this chapter, we are using the soundtrack of a single instrument. We collected some
melodies and stored them in MIDI files. The following sample of a MIDI file shows you
what this looks like:

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai

Generative Language Model for Content Creation Chapter 6

[134]

The image represents the pitch and note distribution for a sample MIDI file

We can see the intervals between notes, the offset for each note, and the pitch.

To extract the contents of our dataset, we will be using music21. This also
takes the output of the model and translates it into musical
notation. Music21 (http:/ /web. mit. edu/ music21/) is a very
helpful Python toolkit that's used for computer-aided musicology.

http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://web.mit.edu/music21/

Generative Language Model for Content Creation Chapter 6

[135]

To get started, we will load each file and use the converter.parse(file) function to
create a music21 stream object. We will get a list of all of the notes and chords in the file by
using this stream object later. Because the most salient features of a note's pitch can be
recreated from string notation, we'll append the pitch of every note. To handle chords, we
will encode the ID of every note in the chord as a single string, where each note is separated
by a dot, and append this to the chord. This encoding process makes it possible for us to
decode the model generated output with ease into the correct notes and chords.

We will load the data from the MIDI files into an array, as you can see in the following code
snippet:

from music21 import converter, instrument, note, chord
import glob

notes = []

for file in glob.glob("/data/*.mid"):
 midi = converter.parse(file)
 notes_to_parse = None
 parts = instrument.partitionByInstrument(midi)
 if parts: # file has instrument parts
 notes_to_parse = parts.parts[0].recurse()
 else: # file has notes in a flat structure
 notes_to_parse = midi.flat.notes
 for element in notes_to_parse:
 if isinstance(element, note.Note):
 notes.append(str(element.pitch))
 elif isinstance(element, chord.Chord):
 notes.append('.'.join(str(n) for n in element.normalOrder))

The next step is to create input sequences for the model and the corresponding outputs, as
shown in the following diagram:

Generative Language Model for Content Creation Chapter 6

[136]

The overview of data processing part in which we take the MIDI files, extract the notes and chords from each file and strore them as an array.

The model outputs a note or chord for each input sequence. We use the first note or chord,
following the input sequence in our list of notes. To complete the final step in data
preparation for our network, we need to one-hot encode the output. This normalizes the
input for the next iteration.

We can do this with the following code:

sequence_length = 100
get all pitch names

Generative Language Model for Content Creation Chapter 6

[137]

pitchnames = sorted(set(item for item in notes))

create a dictionary to map pitches to integers
note_to_int = dict((note, number) for number, note in
enumerate(pitchnames))
network_input = []
network_output = []
create input sequences and the corresponding outputs
for i in range(0, len(notes) - sequence_length, 1):
 sequence_in = notes[i:i + sequence_length]
 sequence_out = notes[i + sequence_length]
 network_input.append([note_to_int[char] for char in sequence_in])
 network_output.append(note_to_int[sequence_out])
n_patterns = len(network_input)
reshape the input into a format compatible with LSTM layers
network_input = numpy.reshape(network_input, (n_patterns, sequence_length,
1))
normalize input
network_input = network_input / float(n_vocab)
network_output = np_utils.to_categorical(network_output)

Now that we have all the notes and chords extracted. We will create our training data X
and Y as shown in the following figure:

The captured notes any chords in the array is further transformed into a one -hot encoding vector by mapping the values from the vocabulary. So we will fed the sequences in X
matrix and expect the model to learn to predict Y for the given sequence.

Generative Language Model for Content Creation Chapter 6

[138]

Defining the model and training
Now, we are getting to the part that all deep learning engineers love: designing the model's
architecture! We will be using four distinctive types of layers in our model architecture:

LSTM: This is a type of RNN layer.
Dropout: A technique for regularization. This helps prevent the model from
overfitting by randomly dropping some nodes.
Dense: This is a fully connected layer where every input node is connected to
every output node.
Activation: This determines the activation function that's going to be used to
produce the node's output.

We will again employ the Keras APIs to make the implementation quick:

model = Sequential()
model.add(LSTM(
 256,
 input_shape=(network_input.shape[1], network_input.shape[2]),
 return_sequences=True
))
model.add(Dropout(0.5))
model.add(LSTM(512, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(256))
model.add(Dense(256))
model.add(Dropout(0.3))
model.add(Dense(n_vocab))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
 optimizer='rmsprop',
 metrics=['accuracy'])

The generative model architecture we designed has three LSTM layers, three Dropout
layers, two Dense layers, and one Activation layer, as shown in the following diagram:

Generative Language Model for Content Creation Chapter 6

[139]

The model architecture for music generation

Generative Language Model for Content Creation Chapter 6

[140]

Categorical cross entropy will be used to calculate the loss for each iteration of the
training. We will once again use the Adam optimizer in this network. Now that we have
our deep learning model architecture configured, it's time to train the model. We have
decided to train the model for 200 epochs, each with 25 batches, by using model.fit().
We also want to track the reduction in loss over each epoch and will use checkpoints for
this purpose.

Now we will perform the training operation and dump the model in the file mentioned in
the following code:

filepath = "weights-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(
 filepath,
 monitor='loss',
 verbose=0,
 save_best_only=True,
 mode='min'
)
callbacks_list = [checkpoint]

history = model.fit(network_input, network_output, epochs=200,
batch_size=64, callbacks=callbacks_list)

The performance of the model can be seen as follows:

The accuracy and the loss plot over the epochs

Now that the training process is completed, we will load the trained models and generate
our own music.

Generative Language Model for Content Creation Chapter 6

[141]

Generating music
It's time for the real fun! Let's generate some instrumental music. We will use the code from
the model setup and training, but instead of executing the training (as our model is already
trained), we will insert the learned weights that we obtained in earlier training.

The following code block executes these two steps:

model = Sequential()
model.add(LSTM(
 512,
 input_shape=(network_input.shape[1], network_input.shape[2]),
 return_sequences=True
))
model.add(Dropout(0.5))
model.add(LSTM(512, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(512))
model.add(Dense(256))
model.add(Dropout(0.3))
model.add(Dense(n_vocab))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')

Load the weights to each node
model.load_weights('weights_file.hdf5')

By doing this, we created the same model, but this time for prediction purposes, and added
one extra line of code to load the weights into memory.

Because we need a seed input so that the model can start generating music, we chose to use
a random sequence of notes that we obtained from our processed files. You can also send
your own nodes as long as you can ensure that the sequence length is precisely 100:

Randomly selected a note from our processed data
start = numpy.random.randint(0, len(network_input)-1)
pattern = network_input[start]

int_to_note = dict((number, note) for number, note in
enumerate(pitchnames))

prediction_output = []

Generate 1000 notes of music
for note_index in range(1000):
 prediction_input = numpy.reshape(pattern, (1, len(pattern), 1))
 prediction_input = prediction_input / float(n_vocab)

Generative Language Model for Content Creation Chapter 6

[142]

 prediction = model.predict(prediction_input, verbose=0)

 index = numpy.argmax(prediction)
 result = int_to_note[index]
 prediction_output.append(result)

 pattern.append(index)
 pattern = pattern[1:len(pattern)]

We iterated the model generation 1,000 times, which created 1,000 notes using the network,
producing approximately five minutes of music. The process we used to select the next
sequence for each iteration was that we'd start with the first sequence to submit, since it
was of the sequence of notes that was at the starting index. For subsequent input sequences,
we removed the first note and appended the output from the previous iteration at the end
of the sequence. This is a very crude way to do this and is known as the sliding window
approach. You can play around and add some randomness to each sequence we select,
which could give more creativity to the music that is generated.

It is at this point that we have an array of all of the encoded representations of the notes
and chords. To turn this array back into Note and Chord objects, we need to decode it.

When we detect that the pattern is that of a Chord object, we will separate the string into an
array of notes. We will then loop through the string's representation of each note to create a
Note object for each item. The Chord object is then created, which contains each of these
notes.

When the pattern is that of a Note object, we will use the string representation of the pitch
pattern to create a Note object. At the end of each iteration, we increase the offset by 0.5,
which can again be changed and randomness can be introduced to it.

The following function is responsible for determining whether the output is a Note
or Chord object. Finally, can we use the music21 output stream object to create the MIDI
file. Here are a few samples of generated music: https:/ /github. com/PacktPublishing/
Python-Deep-Learning- Projects/ tree/ master/ Chapter06/ Music- ai/generated_ music.

To execute these steps, you can make use of this helper function, as shown in the
following code block:

def create_midi_file(prediction_output):
 """ convert the output from the prediction to notes and create a midi
file"""
 offset = 0
 output_notes = []

 for pattern in prediction_output:

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter06/Music-ai/generated_music

Generative Language Model for Content Creation Chapter 6

[143]

 # pattern is a chord
 if ('.' in pattern) or pattern.isdigit():
 notes_in_chord = pattern.split('.')
 notes = []
 for current_note in notes_in_chord:
 new_note = note.Note(int(current_note))
 new_note.storedInstrument = instrument.Piano()
 notes.append(new_note)
 new_chord = chord.Chord(notes)
 new_chord.offset = offset
 output_notes.append(new_chord)
 # pattern is a note
 else:
 new_note = note.Note(pattern)
 new_note.offset = offset
 new_note.storedInstrument = instrument.Piano()
 output_notes.append(new_note)

 # increase offset each iteration so that notes do not stack
 offset += 0.5

 midi_stream = stream.Stream(output_notes)

 midi_stream.write('midi', fp='generated.mid')

Summary
Wow, that's an impressive set of practical examples of using deep learning projects in
Python to build solutions in a creative space! Let's revisit the goals we set up for ourselves.

Defining the goal:
In this project, we're going to take the next step in our computational
linguistics journey in deep learning projects in Python and generate new
content for our client. We need to help them by providing a deep learning
solution that generates new content that can be used in movie scripts,
song lyrics, and music.

Generative Language Model for Content Creation Chapter 6

[144]

Deep learning generated content for creative purposes is obviously very tricky. Our
realistic goal in this chapter was to demonstrate and train you on the skills and architecture
needed to get started on these types of projects. Producing acceptable results takes
interacting with the data, the model, and the outputs and testing it with the appropriate
audiences. The key takeaway to remember is that the outputs of your models can be quite
personalized to the task at hand and that you can expand your thinking of what types of
business use cases you should feel comfortable working on in your career.

In this chapter, we implemented a generative model, which generated content with the use
of LSTMs. We implemented models for both text and audio that generated content for
artists and various businesses in the creative space (hypothetically): the music and movie
industries.

What we learned in this chapter was the following:

Text generation with LSTM
The additional power of a Bi-directional LSTM for text generation
Deep (multi-layer) LSTM to generate lyrics for a song
Deep (multi-layer) LSTM to generate the music for a song

This is some exciting work regarding deep learning, and it keeps on coming in the next
chapter. Let's see what's in store!

7
Building Speech Recognition

with DeepSpeech2
It's been a great journey, building awesome deep learning projects in Python using image,
text, and sound data.

We've been working quite heavily on language models in building chatbots in our previous
chapters. Chatbots are a powerful tool for customer engagement and the automation of a
wide range of business processes from customer service to sales. Chatbots enable the
automation of repetitive and/or redundant interactions such as frequently asked questions
or product-ordering workflows. This automation saves time and money for businesses and
enterprises. If we've done our job well as deep-learning engineers, it also means that the
consumers are receiving a much-improved user experience (UX) as a result.

The new interaction between a business and its customers via a chatbot is very effective in
each party receiving value. Let's look at the interaction scenario and see if we can identify
any constraints that should be the focus of our next project. Up until now, all of our chat
interactions have been through text. Let's think about what this means for the consumer.
Text interactions are often (but not exclusively) initiated via mobile devices. Secondly,
chatbots open up a new user interaction (UI)—for conversational UI. Part of the power of
conversational UI is that it can remove the constraint of the physical keyboard and open the
range of locations and devices that are now possible for this interaction to take place.

Conversational UI is made possible by speech recognition systems
working through popular devices, such as your smartphone with Apple's
Siri, Amazon's Echo, and Google Home. It's very cool technology,
consumers love it, and businesses that adopt this technology gain an
advantage over those in their industry that do not keep up with the times.

In this chapter, we will build a system that recognizes English speech, using the
DeepSpeech2 (DS2) model.

Building Speech Recognition with DeepSpeech2 Chapter 7

[146]

You will learn the following:

To work with speech and spectrograms
To build an end-to-end speech recognition system
The Connectionist Temporal Classification (CTC) loss function
Batch normalization and SortaGrad for recurrent neural networks (RNNs)

Let's get started and deep dive into the speech data, learn to feature engineer the speech
data, extract various kinds of features from it, and then build a speech recognition system
that can detect your or a registered user's voice.

Define the goal: The goal of this project is to build and train an automatic
speech recognition (ASR) system to take in and convert an audio call to
text that could then be used as input for a text-based chatbot that could
understand and respond.

Data preprocessing
In this project, we will use LibriSpeech ASR corpus (http:/ /www. openslr. org/ 12/), which is
1,000 hours of 16 kHz-read English speech.

Let's use the following commands to download the corpus and unpack the LibriSpeech
data:

mkdir -p data/librispeech
cd data/librispeech
wget http://www.openslr.org/resources/12/train-clean-100.tar.gz
wget http://www.openslr.org/resources/12/dev-clean.tar.gz
wget http://www.openslr.org/resources/12/test-clean.tar.gz
mkdir audio
cd audio
tar xvzf ../train-clean-100.tar.gz LibriSpeech/train-clean-100 --strip-
components=1
tar xvzf ../dev-clean.tar.gz LibriSpeech/dev-clean --strip-components=1
tar xvzf ../test-clean.tar.gz LibriSpeech/test-clean --strip-components=1

This will take a while and once the process is completed, we will have the data folder
structure, as shown in the following screenshot:

http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/
http://www.openslr.org/12/

Building Speech Recognition with DeepSpeech2 Chapter 7

[147]

We now have three folders named as train-clean-100, dev-clean, and test-clean.
Each folder will have subfolders that are the associated IDs used for mapping the small
segment of the transcript and the audio. All the audio files are in the .flac extension, and
all the folders will have one .txt file, which is the transcript for the audio files.

Corpus exploration
Let's explore the dataset in detail. First, let's look into the audio file by reading it from the
file and plotting it. To read the audio file, we will use the pysoundfile package with the
following command:

pip install pysoundfile

Building Speech Recognition with DeepSpeech2 Chapter 7

[148]

Next, we will import the modules, read the audio files, and plot them with the following
code block:

import soundfile as sf
import matplotlib.pyplot as plt

def plot_audio(audio):
 fig, axs = plt.subplots(4, 1, figsize=(20, 7))
 axs[0].plot(audio[0]);
 axs[0].set_title('Raw Audio Signals')
 axs[1].plot(audio[1]);
 axs[2].plot(audio[2]);
 axs[3].plot(audio[3]);

audio_list =[]
for i in xrange(4):
 file_path = 'data/128684/911-128684-000{}.flac'.format(i+1)
 a, sample_rate = sf.read(file_path)
 audio_list.append(a)
plot_audio(audio_list)

The following is the frequency representation of each segment of speech:

The raw audio signal plot from the audio MIDI file

Now let's look into the content of the transcript text file. It's a clean version of the text with
the audio file IDs in the beginning and the associated text following:

Building Speech Recognition with DeepSpeech2 Chapter 7

[149]

The transcript data is stored a specific format. Left numbers are the midi file name and the right part is the actually transcript. This helps in building the mapping between the midi
file and its respective transcript.

What we see is that each audio file is the narration of the transcript contained in the file.
Our model will try to learn this sequence pattern. But before we work on the model, we
need to extract some features from the audio file and convert the text into one-hot encoding
format.

Feature engineering
So, before we feed the raw audio data into our model, we need to transform the data into
numerical representations that are features. In this section, we will explore various
techniques to extract features from the speech data that we can use to feed into the model.
The accuracy and performance of the model vary based on the type of features we use. As
an inquisitive deep-learning engineer, it's your opportunity to explore and learn the
features with these techniques and use the best one for the use case at hand.

The following table gives us a list of techniques and their properties:

Techniques Properties

Principal component
analysis (PCA)

• Eigenvector-based method
• Non-linear feature extraction method
• Supported to linear map
• Faster than other techniques
• Good for Gaussian data

Linear discriminate
analysis (LDA)

• Linear feature extraction method
• Supported to the supervised linear map
• Faster than other techniques
• Better than PCA for classification

Independent component
analysis (ICA)

• Blind course separation method
• Support to linear map
• Iterative in nature
• Good for non-Gaussian data

Building Speech Recognition with DeepSpeech2 Chapter 7

[150]

Cepstral analysis
• Static feature extraction method
• Power spectrum method
• Used to represent spectral envelope

Mel-frequency scale analysis
• Static feature extraction method
• Spectral analysis method
• Mel scale is calculated

Mel-frequency cepstral
coefficient (MFFCs)

• Power spectrum is computed by performing Fourier Analysis
• Robust and dynamic method for speech feature extraction

Wavelet technique
• Better time resolution than Fourier transform
• Real-time factor is minimum

The MFCC technique is the most efficient and is often used for the extraction of speech
features for speech recognition. The MFCC is based on the known variation of the human
ear's critical bandwidth frequencies, with filters spaced linearly at low frequencies. The
process of MFCC is shown in the following diagram:

Block diagram of MFCC process

Building Speech Recognition with DeepSpeech2 Chapter 7

[151]

For our implementation purposes, we are not going to perform each step; instead, we will
use a Python package called python_speech_features that provides common speech
features for ASR, including MFCCs and filterbank energies.

Let's pip install the package with the following command:

pip install python_speech_features

So, let's define a function that will normalize the audio time series data and extract the
MFCC features:

from python_speech_features import mfcc

def compute_mfcc(audio_data, sample_rate):
 ''' Computes the MFCCs.
 Args:
 audio_data: time series of the speech utterance.
 sample_rate: sampling rate.
 Returns:
 mfcc_feat:[num_frames x F] matrix representing the mfcc.
 '''

 audio_data = audio_data - np.mean(audio_data)
 audio_data = audio_data / np.max(audio_data)
 mfcc_feat = mfcc(audio_data, sample_rate, winlen=0.025, winstep=0.01,
 numcep=13, nfilt=26, nfft=512, lowfreq=0,
highfreq=None,
 preemph=0.97, ceplifter=22, appendEnergy=True)
 return mfcc_feat

Let's plot the audio and MFCC features and visualize them:

audio, sample_rate = sf.read(file_path)
feats[audio_file] = compute_mfcc(audio, sample_rate)
plot_audio(audio,feats[audio_file])

Building Speech Recognition with DeepSpeech2 Chapter 7

[152]

The following is the output of the spectrogram:

Building Speech Recognition with DeepSpeech2 Chapter 7

[153]

Data transformation
Once we have all the features that we need to feed into the model, we will transform the
raw NumPy tensors into the TensorFlow specific format called TFRecords.

In the following code snippet, we are creating the folders to store all the processed records.
The make_example() function creates the sequence example for a single utterance given
the sequence length, MFCC features, and corresponding transcript. Multiple sequence
records are then written into TFRecord files using the
tf.python_io.TFRecordWriter() function:

if os.path.basename(partition) == 'train-clean-100':
 # Create multiple TFRecords based on utterance length for training
 writer = {}
 count = {}
 print('Processing training files...')
 for i in range(min_t, max_t+1):
 filename = os.path.join(write_dir, 'train' + '_' + str(i) +
 '.tfrecords')
 writer[i] = tf.python_io.TFRecordWriter(filename)
 count[i] = 0

 for utt in tqdm(sorted_utts):
 example = make_example(utt_len[utt], feats[utt].tolist(),
 transcripts[utt])
 index = int(utt_len[utt]/100)
 writer[index].write(example)
 count[index] += 1

 for i in range(min_t, max_t+1):
 writer[i].close()
 print(count)

 # Remove bins which have fewer than 20 utterances
 for i in range(min_t, max_t+1):
 if count[i] < 20:
 os.remove(os.path.join(write_dir, 'train' +
 '_' + str(i) + '.tfrecords'))
else:
 # Create single TFRecord for dev and test partition
 filename = os.path.join(write_dir, os.path.basename(write_dir) +
 '.tfrecords')
 print('Creating', filename)
 record_writer = tf.python_io.TFRecordWriter(filename)
 for utt in sorted_utts:
 example = make_example(utt_len[utt], feats[utt].tolist(),
 transcripts[utt])

Building Speech Recognition with DeepSpeech2 Chapter 7

[154]

 record_writer.write(example)
 record_writer.close()
 print('Processed '+str(len(sorted_utts))+' audio files')

All the data-processing code is written in the preprocess_LibriSpeech.py file, which
will perform all the previously mentioned data manipulation part, and once the operation
is complete, the resulting processed data gets stored at
the data/librispeech/processed/ location. Use the following command to run the file:

python preprocess_LibriSpeech.py

DS2 model description and intuition
DS2 architecture is composed of many layers of recurrent connections, convolutional filters,
and non-linearities, as well as the impact of a specific instance of batch normalization,
applied to RNNs, as shown here:

Building Speech Recognition with DeepSpeech2 Chapter 7

[155]

To learn from datasets with a large amount of data, DS2 model's capacity is increased by
adding more depth. The architectures are made up to 11 layers of many bidirectional
recurrent layers and convolutional layers. To optimize these models successfully, batch
normalization for RNNs and a novel optimization curriculum called SortaGrad were used.

The training data is a combination of input sequence x(i) and the transcript y(i), whereas
the goal of the RNN layers is to learn the features between x(i) and y(i):

training set X = {(x(1), y(1)), (x(2), y(2)), . . .}
utterance = x(i)
label = y(i)

The spectrogram of power normalized audio clips are used as the features to the system
and the outputs of the network are the graphemes of each language. In terms of adding
non-linearity, the clipped rectified linear unit (ReLU) function σ(x) = min{max{x, 0}, 20} was
used. After the bidirectional recurrent layers, one or more fully connected layers are placed
and the output layer L is a softmax, computing a probability distribution over characters.

Now let's look into the implementation of the DS2 architecture. You can find the full code
https://github.com/ PacktPublishing/ Python- Deep- Learning- Projects/ tree/ master/
Chapter07.

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter07

Building Speech Recognition with DeepSpeech2 Chapter 7

[156]

The following is what the model looks like in TensorBoard:

For the convolution layers, we have the kernel of size [11, input_seq_length,
number_of_filter] followed by the 2D convolution operation on the input sequence,
and then dropout is applied to prevent overfitting.

The following code segment executes these steps:

 with tf.variable_scope('conv1') as scope:
 kernel = _variable_with_weight_decay(
 'weights',
 shape=[11, feat_len, 1, params.num_filters],

Building Speech Recognition with DeepSpeech2 Chapter 7

[157]

 wd_value=None, use_fp16=params.use_fp16)

 feats = tf.expand_dims(feats, dim=-1)
 conv = tf.nn.conv2d(feats, kernel,
 [1, params.temporal_stride, 1, 1],
 padding='SAME')
 biases = _variable_on_cpu('biases', [params.num_filters],
 tf.constant_initializer(-0.05),
 params.use_fp16)
 bias = tf.nn.bias_add(conv, biases)
 conv1 = tf.nn.relu(bias, name=scope.name)
 _activation_summary(conv1)

 # dropout
 conv1_drop = tf.nn.dropout(conv1, params.keep_prob)

Then, we next have the recurrent layer, where we reshape the output of the convolution
layer to fit the data into the RNN layer. Then, the custom RNN cells are created based on
the hyperparameter called rnn_type, which can be of two types, uni-directional or bi-
directional, followed by the dropout cells.

The following code block creates the RNN part of the model:

 with tf.variable_scope('rnn') as scope:

 # Reshape conv output to fit rnn input
 rnn_input = tf.reshape(conv1_drop, [params.batch_size, -1,
 feat_len*params.num_filters])
 # Permute into time major order for rnn
 rnn_input = tf.transpose(rnn_input, perm=[1, 0, 2])
 # Make one instance of cell on a fixed device,
 # and use copies of the weights on other devices.
 cell = rnn_cell.CustomRNNCell(
 params.num_hidden, activation=tf.nn.relu6,
 use_fp16=params.use_fp16)
 drop_cell = tf.contrib.rnn.DropoutWrapper(
 cell, output_keep_prob=params.keep_prob)
 multi_cell = tf.contrib.rnn.MultiRNNCell(
 [drop_cell] * params.num_rnn_layers)

 seq_lens = tf.div(seq_lens, params.temporal_stride)
 if params.rnn_type == 'uni-dir':
 rnn_outputs, _ = tf.nn.dynamic_rnn(multi_cell, rnn_input,
 sequence_length=seq_lens,
 dtype=dtype,
time_major=True,
 scope='rnn',
 swap_memory=True)

Building Speech Recognition with DeepSpeech2 Chapter 7

[158]

 else:
 outputs, _ = tf.nn.bidirectional_dynamic_rnn(
 multi_cell, multi_cell, rnn_input,
 sequence_length=seq_lens, dtype=dtype,
 time_major=True, scope='rnn',
 swap_memory=True)
 outputs_fw, outputs_bw = outputs
 rnn_outputs = outputs_fw + outputs_bw
 _activation_summary(rnn_outputs)

Further more, the linear layer is created to perform the CTC loss function and output from
the softmax layer:

 with tf.variable_scope('softmax_linear') as scope:
 weights = _variable_with_weight_decay(
 'weights', [params.num_hidden, NUM_CLASSES],
 wd_value=None,
 use_fp16=params.use_fp16)
 biases = _variable_on_cpu('biases', [NUM_CLASSES],
 tf.constant_initializer(0.0),
 params.use_fp16)
 logit_inputs = tf.reshape(rnn_outputs, [-1, cell.output_size])
 logits = tf.add(tf.matmul(logit_inputs, weights),
 biases, name=scope.name)
 logits = tf.reshape(logits, [-1, params.batch_size, NUM_CLASSES])
 _activation_summary(logits)

Production scale tip: Training a single model at these scales requires tens
of exaFLOPs that would take three to six weeks to execute on a single
GPU. This makes model exploration a very time-consuming exercise, so
the developers of DeepSpeech have built a highly optimized training
system that uses eight or 16 GPUs to train one model, as well as
synchronous stochastic gradient descent (SGD), which is easier to debug
while testing new ideas, and also converges faster for the same degree of
data parallelism.

Training the model
Now that we understand the data that we are using and the DeepSpeech model
architecture, let's set up the environment to train the model. There are some preliminary
steps to create a virtual environment for the project that are optional, but always
recommended to use. Also, it's recommended to use GPUs to train these models.

Building Speech Recognition with DeepSpeech2 Chapter 7

[159]

Along with Python Version 3.5 and TensorFlow version 1.7+, the following are some of the
prerequisites:

python-Levenshtein: To compute character error rate (CER), basically the
distance
python_speech_features: To extract MFCC features from raw data
pysoundfile: To read FLAC files
scipy: Helper functions for windowing
tqdm: For displaying a progress bar

Let's create the virtual environment and install all the dependencies:

conda create -n 'SpeechProject' python=3.5.0
source activate SpeechProject

Install the following dependencies:

(SpeechProject)$ pip install python-Levenshtein
(SpeechProject)$ pip install python_speech_features
(SpeechProject)$ pip install pysoundfile
(SpeechProject)$ pip install scipy
(SpeechProject)$ pip install tqdm

Install TensorFlow with GPU support:

(SpeechProject)$ conda install tensorflow-gpu

If you see a sndfile error, use the following command:

(SpeechProject)$ sudo apt-get install libsndfile1

Now you will need to clone the repository that contains all the code:

(SpeechRecog)$ git clone https://github.com/FordSpeech/deepSpeech.git
(SpeechRecog)$ cd deepSpeech

Let's move the TFRecord files that we created in the Data transformation section. The
computed MFCC features are stored inside
the data/librispeech/processed/ directory:

cp -r ./data/librispeech/audio /home/deepSpeech/data/librispeech
cp -r ./data/librispeech/processed /home/deepSpeech/librispeech

Building Speech Recognition with DeepSpeech2 Chapter 7

[160]

Once we have all the data files in place, it's time to train the model. We are defining four
hyperparameters as num_rnn_layers set to 3, rnn_type set to bi-dir, max_steps is set
to 30000, and initial_lr is set to 3e-4:

(SpeechRecog)$python deepSpeech_train.py --num_rnn_layers 3 --rnn_type 'bi-
dir' --initial_lr 3e-4 --max_steps 30000 --train_dir ./logs/

Also, if you want to resume the training using the pre-trained models
from https:/ /drive. google. com/ file/ d/
1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/ view, you can download and
unzip them to the logs folder:
(SpeechRecog)$python deepSpeech_train.py --checkpoint_dir
./logs/ --max_steps 40000

Note that during the first epoch, the cost will increase and it will take longer to train on
later steps because the utterances are presented in a sorted order to the network.

The following are the steps involved during the training process:

Learning rate set up from the hyper-param.
learning_rate, global_step = set_learning_rate()

Create an optimizer that performs gradient descent.
optimizer = tf.train.AdamOptimizer(learning_rate)

Fetch a batch worth of data for each tower to train.
data = fetch_data()

Construct loss and gradient ops.
loss_op, tower_grads, summaries = get_loss_grads(data, optimizer)

Calculate the mean of each gradient. Note that this is the
synchronization point across all towers.
grads = average_gradients(tower_grads)

Apply the gradients to adjust the shared variables.
apply_gradient_op = optimizer.apply_gradients(grads,
 global_step=global_step)

Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
 ARGS.moving_avg_decay, global_step)
variables_averages_op = variable_averages.apply(
 tf.trainable_variables())

Group all updates to into a single train op.

https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view
https://drive.google.com/file/d/1E65g4HlQU666RhgY712Sn6FuU2wvZTnQ/view

Building Speech Recognition with DeepSpeech2 Chapter 7

[161]

train_op = tf.group(apply_gradient_op, variables_averages_op)

Build summary op.
summary_op = add_summaries(summaries, learning_rate, grads)

Create a saver.
saver = tf.train.Saver(tf.all_variables(), max_to_keep=100)

Start running operations on the Graph with allow_soft_placement set to
True
to build towers on GPU.
sess = tf.Session(config=tf.ConfigProto(
 allow_soft_placement=True,
 log_device_placement=ARGS.log_device_placement))

Initialize vars depending on the checkpoints.
if ARGS.checkpoint is not None:
 global_step = initialize_from_checkpoint(sess, saver)
else:
 sess.run(tf.initialize_all_variables())

Start the queue runners.
tf.train.start_queue_runners(sess)

Run training loop.
run_train_loop(sess, (train_op, loss_op, summary_op), saver)

While the training process happens, we can see significant improvements, as shown in the
following plots. Following graph shows the accuracy of the plot after 50k steps:

Building Speech Recognition with DeepSpeech2 Chapter 7

[162]

Here are the loss plots over 50k steps:

The learning rate is slowing down over the period of time:

Building Speech Recognition with DeepSpeech2 Chapter 7

[163]

Testing and evaluating the model
Once the model is trained, you can perform the following command to execute the test
steps using the test dataset:

(SpeechRecog)$python deepSpeech_test.py --eval_data 'test' --checkpoint_dir
./logs/

We evaluate its performance by testing it on previously unseen utterances from a test
set. The model generates sequences of probability vectors as outputs, so we need to build a
decoder to transform the model's output into word sequences. Despite being trained on
character sequences, DS2 models are still able to learn an implicit language model and are
already quite adept at spelling out words phonetically, as shown in the following table. The
model's spelling performance is typically measured using CERs calculated using the
Levenshtein distance (https:/ / en. wikipedia. org/ wiki/ Levenshtein_ distance) at the
character level:

Ground truth Model output
This had some effect in calming him This had some offectind calming him
He went in and examined his letters but there
was nothing from carrier

He went in an examined his letters but there was
nothing from carry

The design was different but the thing was
clearly the same

The design was differampat that thing was clarly the
same

Although the model exhibit excellent CERs, their tendency to spell out
words phonetically results in relatively high word-error rates. You can
improve the model's performance word-error rate (WER) by allowing the
decoder to incorporate constraints from an external lexicon and language
model.

We have observed that many of the errors in the model's predictions occur in words that do
not appear in the training set. It is thus reasonable to expect that the overall CER would
continue to improve as we increased the size of the training set and training steps. It
achieved 15% CERs after 30k steps or training.

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance

Building Speech Recognition with DeepSpeech2 Chapter 7

[164]

Summary
We dove right into this deep-learning project in Python, creating and training an ASR
model that understands speech data. We learned to feature engineer the speech data to
extract various kinds of features from it and then build a speech recognition system that
could detect a user's voice.

We're happy to have achieved our stated goal!

In this chapter, we built a system that recognizes English speech, using the DS2 model.

You learned following:

To work with speech and spectrograms
To build an end-to-end speech recognition system
The CTC loss function
Batch normalization and SortaGrad for RNNs

This caps off a major section of the deep-learning projects in this Python book that explores
chatbots, NLP, and speech recognition with RNNs (uni and bi-directional, with and
without LSTM components), and CNNs. We've seen the power of these technologies to
provide intelligence to existing business processes and to create entirely new and smart
systems. This is exciting work at the cutting edge of applied AI using deep learning! In the
remaining half of the book, we'll explore deep-learning projects in Python that are generally
grouped into computer vision technologies.

Let's turn the page and get started!

8
Handwritten Digits

Classification Using ConvNets
Welcome to this chapter on using convolution neural networks (ConvNets) for the
classification of handwritten digits. In Chapter 2, Training NN for Prediction Using
Regression, we built a simple neural network for classifying handwritten digits. This was
87% accurate, but we were not happy with its performance. In this chapter, we will
understand what convolution is and build a ConvNet for classifying the handwritten digits
to help the restaurant chain become more accurate in sending text messages to the right
person. If you have not been through Chapter 2, Training NN for Prediction Using
Regression, please go through it once so that you can get an understanding of the use case.

The following topics will be covered in this chapter:

Convolution
Pooling
Dropout
Training the model
Testing the model
Building deeper models

It would be better if you implement the code snippets as you go through this chapter, either
in a Jupyter Notebook or any source code editor. This will make it easier for you to follow
along as well as understand how the different sections of the code work.

All of the Python files and the Jupyter Notebook files for this chapter can be found
at https://github. com/ PacktPublishing/ Python- Deep- Learning- Projects/ tree/
master/Chapter08.

https://cdp.packtpub.com/python_deep_learning_projects/wp-admin/post.php?post=31&action=edit#post_25
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter08

Handwritten Digits Classification Using ConvNets Chapter 8

[166]

Code implementation
In this exercise, we will be using the Keras deep learning library, which is a high-level
neural network API capable of running on top of TensorFlow, Theano, and CNTK.

Know the code! We will not spend time understanding how Keras works,
but if you are interested, refer to this easy-to-understand official
documentation from Keras at https:/ /keras. io/.

Importing all of the dependencies
We will be using the numpy, matplotlib, keras, scipy, and tensorflow packages in this
exercise. Here, TensorFlow is used as the backend for Keras. You can install these packages
with pip. For the MNIST data, we will be using the dataset available in the keras module
with a simple import:

import numpy as np

It is important that you set seed for reproducibility:

set seed for reproducibility
seed_val = 9000
np.random.seed(seed_val)

Exploring the data
Let's import the mnist module that's available in keras with the following code:

from keras.datasets import mnist

Then, unpack the mnist train and test images with the following code:

unpack mnist data
(X_train, y_train), (X_test, y_test) = mnist.load_data()

Now that the data has been imported, let's explore these digits:

print('Size of the training_set: ', X_train.shape)
print('Size of the test_set: ', X_test.shape)
print('Shape of each image: ', X_train[0].shape)
print('Total number of classes: ', len(np.unique(y_train)))
print('Unique class labels: ', np.unique(y_train))

https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/

Handwritten Digits Classification Using ConvNets Chapter 8

[167]

The following is the output of the preceding code:

Figure 8.1: Printout information of the data

From the preceding screenshot, we can see that we have 60000 train images, 10000 test
images with each image being 28*28 in size, and a total of 10 predictable classes.

Now, let's plot 9 handwritten digits. Before that, we will need to import matplotlib for
plotting:

import matplotlib.pyplot as plt
Plot of 9 random images
for i in range(0, 9):
 plt.subplot(331+i) # plot of 3 rows and 3 columns
 plt.axis('off') # turn off axis
 plt.imshow(X_train[i], cmap='gray') # gray scale

The following is the output of the preceding code:

Figure 8.2: Visualizing MNIST digits

Print out the maximum and minimum pixel value of the pixels in the training_set:

maximum and minimum pixel values
print('Maximum pixel value in the training_set: ', np.max(X_train))
print('Minimum pixel value in the training_set: ', np.min(X_train))

Handwritten Digits Classification Using ConvNets Chapter 8

[168]

The following is the output of the preceding code:

Figure 8.3: Printout of the maximum and minimum pixel value in the data

We can see that the maximum and minimum pixel values in the training set are 255 and 0.

Defining the hyperparameters
The following are some of the hyperparameters that we will be using throughout our code.
These are totally configurable:

Number of epochs
epochs = 20

Batchsize
batch_size = 128

Optimizer for the generator
from keras.optimizers import Adam
optimizer = Adam(lr=0.0001)

Shape of the input image
input_shape = (28,28,1)

If you look back at Chapter 2, Training NN for Prediction Using Regression, you'll see that the
optimizer used there was Adam. Therefore, we will import the Adam optimizer from the
keras module and set its learning rate, as shown in the preceding code. For most cases that
will follow, we will be training for 20 epochs for ease of comparison.

To learn more about the optimizers and their APIs in Keras,
visit https:/ /keras. io/ optimizers/ .

Experiment with different learning rates, optimizers, and batch sizes to
see how these factors affect the quality of your model. If you get better
results, show this to the deep learning community.

https://cdp.packtpub.com/python_deep_learning_projects/wp-admin/post.php?post=31&action=edit#post_25
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/

Handwritten Digits Classification Using ConvNets Chapter 8

[169]

Building and training a simple deep neural
network
Now that we have loaded the data into memory, we need to build a simple neural network
model to predict the MNIST digits. We will use the same architecture we used in Chapter
2, Training NN for Prediction Using Regression.

We will be building a Sequential model. So, let's import it from Keras and initialize
it with the following code:

from keras.models import Sequential
model = Sequential()

To learn more about the Keras Model API, visit https:/ /keras. io/
models/ model/ .

The next thing that we need to do is define the Dense/Perceptron layer. In Keras, this can
be done by importing the Dense layer, as follows:

from keras.layers import Dense

Then, we need to add the Dense layer to the Sequential model as follows:

model.add(Dense(300, input_shape=(784,), activation = 'relu'))

To learn more about the Keras Dense API call, visit https:/ / keras. io/
layers/ core/ .

The add command performs the job of appending a layer to the Sequential model, in this
case, Dense.

In the Dense layer in the preceding code, we have defined the number of neurons in the
first hidden layer, which is 300. We have also defined the input_shape parameter as
being equal to (784,) to indicate to the model that it will be accepting input arrays of the
shape (784,). This means that the input layer will have 784 neurons.

https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/layers/core/
https://keras.io/layers/core/
https://keras.io/layers/core/
https://keras.io/layers/core/
https://keras.io/layers/core/
https://keras.io/layers/core/
https://keras.io/layers/core/
https://keras.io/layers/core/
https://keras.io/layers/core/
https://keras.io/layers/core/
https://keras.io/layers/core/

Handwritten Digits Classification Using ConvNets Chapter 8

[170]

The type of activation function that needs to be applied to the result can be defined with the
activation parameter. In this case, this is relu.

Add another Dense layer of 300 neurons by using the following code:

model.add(Dense(300, activation='relu'))

And the final Dense layer with the following code:

model.add(Dense(10, activation='softmax'))

Here, the final layer has 10 neurons as we need it to predict scores for 10 classes. The
activation function that has been chosen here is softmax so that we can limit the scores
between 0 and 1, and the sum of scores to 1.

Compiling the model in Keras is super-easy and can be done with following code:

compile the model
model.compile(loss = 'sparse_categorical_crossentropy', optimizer=optimizer
, metrics = ['accuracy'])

All you need to do to compile the model is call the compile method of the model and
specify the loss, optimizer, and metrics parameters, which in this case are
sparse_categorical_crossentropy, Adam, and ['accuracy'].

To learn more about the Keras Model's compile method, visit https:/ /
keras. io/ models/ model/ .

The metrics that need to be monitored during this learning process must be specified as a
list to the metrics parameter of the compile method.

Print out the summary of the model with the following code:

print model summary
model.summary()

The following is the output of the preceding code:

https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/

Handwritten Digits Classification Using ConvNets Chapter 8

[171]

Figure 8.4: Summary of the multilayer Perceptron model

Notice that this model has 328,810 trainable parameters, which is reasonable.

Now, split the train data into train and validation data by using the train_test_split
function that we imported from sklearn:

from sklearn.model_selection import train_test_split

create train and validation data
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
stratify = y_train, test_size = 0.08333, random_state=42)

X_train = X_train.reshape(-1, 784)
X_val = X_val.reshape(-1, 784)
X_test = X_test.reshape(-1, 784)

print('Training Examples', X_train.shape[0])
print('Validation Examples', X_val.shape[0])
print('Test Examples', X_test.shape[0])

We have split the data so that we end up with 55,000 training examples and 5,000
validation examples.

You will also see that we have reshaped the arrays so that each image is of shape (784,).
This is because we have defined the model to accept images/arrays of shape (784,).

Like we did in Chapter 2, Training NN for Prediction Using Regression, we will now train our
model on 55,000 training examples, validate on 5,000 examples, and test on 10,000
examples.

Handwritten Digits Classification Using ConvNets Chapter 8

[172]

Assigning the fit to a variable stores relevant information inside it, such as train and
validation loss and accuracy at each epoch, which can then be used for plotting the
learning process.

Fitting a model
To fit a model in Keras, along with train digits and train labels, call the fit method of the
model with the following parameters:

epochs: The number of epochs
batch_size: The number of images in each batch
validation_data: The tuple of validation images and validation labels

Look at the Defining the hyperparameters section of the chapter for the defined values of
epochs and batch_size:

fit the model
history = model.fit(X_train, y_train, epochs = epochs,
batch_size=batch_size, validation_data=(X_val, y_val))

The following is the output of the preceding code:

The following is the output at the end of the code's execution:

Figure 8.5: Metrics printed out during the training of MLP

Handwritten Digits Classification Using ConvNets Chapter 8

[173]

Evaluating a model
To evaluate the model on test data, you can call the evaluate method of the model by
feeding the test images and test labels:

evaluate the model
loss, acc = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', acc)

The following is the output of the preceding code:

Figure 8.6: Printout of the evaluation of MLP

From the validation and test accuracy, we can see that after 20 epochs of training, we have
reached the same level of accuracy as we did in Chapter 2, Training NN for Prediction Using
Regression, but with very few lines of code.

Now, let's define a function to plot the train and validation loss and accuracy that we have
stored in the history variable:

import matplotlib.pyplot as plt

def loss_plot(history):
 train_acc = history.history['acc']
 val_acc = history.history['val_acc']

 plt.figure(figsize=(9,5))
 plt.plot(np.arange(1,21),train_acc, marker = 'D', label = 'Training
Accuracy')
 plt.plot(np.arange(1,21),val_acc, marker = 'o', label = 'Validation
Accuracy')
 plt.xlabel('Epochs')
 plt.ylabel('Accuracy')
 plt.title('Train/Validation Accuracy')
 plt.legend()
 plt.margins(0.02)
 plt.show()

 train_loss = history.history['loss']
 val_loss = history.history['val_loss']

Handwritten Digits Classification Using ConvNets Chapter 8

[174]

 plt.figure(figsize=(9,5))
 plt.plot(np.arange(1,21),train_loss, marker = 'D', label = 'Training
Loss')
 plt.plot(np.arange(1,21),val_loss, marker = 'o', label = 'Validation
Loss')
 plt.xlabel('Epochs')
 plt.ylabel('Loss')
 plt.title('Train/Validation Loss')
 plt.legend()
 plt.margins(0.02)
 plt.show()
plot training loss
loss_plot(history)

The following is the output of the preceding code:

Figure 8.7: MLP loss/accuracy plot during training

Handwritten Digits Classification Using ConvNets Chapter 8

[175]

MLP – Python file
This module implements training and evaluation of a simple MLP:

"""This module implements a simple multi layer perceptron in keras."""
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from loss_plot import loss_plot

Number of epochs
epochs = 20
Batchsize
batch_size = 128
Optimizer for the generator
from keras.optimizers import Adam
optimizer = Adam(lr=0.0001)
Shape of the input image
input_shape = (28,28,1)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
 stratify = y_train,
 test_size = 0.08333,
 random_state=42)

X_train = X_train.reshape(-1, 784)
X_val = X_val.reshape(-1, 784)
X_test = X_test.reshape(-1, 784)

model = Sequential()
model.add(Dense(300, input_shape=(784,), activation = 'relu'))
model.add(Dense(300, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss = 'sparse_categorical_crossentropy',
optimizer=optimizer,
 metrics = ['accuracy'])

history = model.fit(X_train, y_train, epochs = epochs,
batch_size=batch_size,
 validation_data=(X_val, y_val))

loss,acc = model.evaluate(X_test, y_test)

Handwritten Digits Classification Using ConvNets Chapter 8

[176]

print('Test loss:', loss)
print('Accuracy:', acc)

loss_plot(history)

Convolution
Convolution can be defined as the process of striding a small kernel/filter/array over a
target array and obtaining the sum of element-wise multiplication between the kernel and a
subset of equal size of the target array at that location.

Consider the following example:

array = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
kernel = np.array([-1, 1, 0])

Here, you have a target array of length 10 and a kernel of length 3.

When you start the convolution, implement the following steps:

The kernel will be multiplied with the subset of the target array within indices1.
0 through 2. This will be between [-1,1,0] (kernel) and [0,1,0] (from index 0
through to 2 of the target array). The result of this element-wise multiplication
will then be summed up to obtain what is called the result of convolution.
The kernel will then be stridden by 1 unit and then multiplied with the subset2.
of the target array within the indices 1 through 3, just like in Step 1, and the
result is obtained.
Step 2 is repeated until a subset equal to the length of the kernel is not possible3.
at a new stride location.

The result of convolution at each stride is stored in an array. This array that's holding the
result of the convolution is called the feature map. The length of the 1-D feature map (with
step/stride of 1) is equal to the difference in length of the kernel and the target array plus
1.

Only in this case, we need to take the following equation into account:

length of the feature map = length of the target array - length of the kernel + 1

Handwritten Digits Classification Using ConvNets Chapter 8

[177]

Here is a code snippet implementing 1-D convolution:

array = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
kernel = np.array([-1, 1, 0])

empty feature map
conv_result = np.zeros(array.shape[0] - kernel.shape[0] +1).astype(int)

for i in range(array.shape[0] - kernel.shape[0] +1):
 # convolving
 conv_result[i] = (kernel * array[i:i+3]).sum()
 print(kernel, '*', array[i:i+3], '=', conv_result[i])
print('Feature Map :', conv_result)

The following is the output of the preceding code:

Figure 8.8: Printout of example feature map

Convolution in Keras
Now that you have an understanding of how convolution works, let's put it into use and
build a CNN classifier on MNIST digits.

For this, import the Conv2D API from the layers module of Keras. You can do this with
the following code:

from keras.layers import Conv2D

Since the convolution will be defined to accept images of shape 28*28*1, we need to
reshape all the images to be of 28*28*1:

reshape data
X_train = X_train.reshape(-1,28,28,1)
X_val = X_val.reshape(-1,28,28,1)

Handwritten Digits Classification Using ConvNets Chapter 8

[178]

X_test = X_test.reshape(-1,28,28,1)

print('Train data shape:', X_train.shape)
print('Val data shape:', X_val.shape)
print('Test data shape:', X_test.shape)

The following is the output of the preceding code:

Figure 8.9: Shape of data after reshaping

To build the model, just like we did previously, we need to initialize the model as
Sequential:

model = Sequential()

Now, add the Conv2D layer to the model with the following code:

model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape, activation
= 'relu'))

In the Conv2D API, we have defined the following parameters:

units: 32 (number of kernels/filters)
kernel_size: (3,3) (size of each kernel)
input_shape: 28*28*1 (shape of the input array it will receive)
activation: relu

For additional information on the Conv2D API, visit https:/ /keras. io/
layers/ convolutional/ .

The result of the preceding convolution is 32 feature maps of size 26*26. These 2-D feature
maps now have to be converted into a 1-D feature map. This can be done in Keras with the
following code:

from keras.layers import Flatten
model.add(Flatten())

https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/

Handwritten Digits Classification Using ConvNets Chapter 8

[179]

The result of the preceding snippet is just like a layer of neurons in a simple neural
network. The Flatten function converts all of the 2-D feature maps into a single Dense
layer. In this layer, will we add a Dense layer with 128 neurons:

model.add(Dense(128, activation = 'relu'))

Since we need to get scores for each of the 10 possible classes, we must add another Dense
layer with 10 neurons, with softmax as the activation function:

model.add(Dense(10, activation = 'softmax'))

Now, just like in the case of the simple dense neural network we built in the preceding
code, we will compile and fit the model:

compile model
model.compile(loss = 'sparse_categorical_crossentropy',
optimizer=optimizer, metrics = ['accuracy'])

print model summary
model.summary()

The following is the output of the preceding code:

Figure 8.10: Summary of the convolution classifier

From the model's summary, we can see that this convolution classifier has 2,770,634
parameters. This is a lot of parameters compared to the Perceptron model. Let's fit this
model and evaluate its performance.

Handwritten Digits Classification Using ConvNets Chapter 8

[180]

Fitting the model
Fit the convolution neural network model on the data with the following code:

fit model
history = model.fit(X_train, y_train, epochs = epochs,
batch_size=batch_size, validation_data=(X_val, y_val))

The following is the output of the preceding code:

The following is the output from the end of the code's execution:

Figure 8.11: Metrics printed out during the training of the convolution classifier

We can see that the convolution classifier's accuracy is 97.72% on the validation data.

Evaluating the model
You can evaluate the convolution model on the test data with the following code:

evaluate model
loss,acc = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', acc)

The following is the output of the preceding code:

Figure 8.12: Printout of the evaluation of the convolution classifier

Handwritten Digits Classification Using ConvNets Chapter 8

[181]

We can see that the model is 97.92% accurate on test data, 97.72% on validation data, and
99.71% on train data. It is clear from the loss as well that the model is slightly overfitting on
the train data. We will talk about how to handle overfitting later.

Now, let's plot the train and validation metrics to see how the training has progressed:

plot training loss
loss_plot(history)

The following is the output of the preceding code:

Figure 8.13: Loss/accuracy plot of the convolution classifier during training

Handwritten Digits Classification Using ConvNets Chapter 8

[182]

Convolution – Python file
This module implements the training and evaluation of a convolution classifier:

"""This module implements a simple convolution classifier."""
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from loss_plot import loss_plot

Number of epochs
epochs = 20
Batchsize
batch_size = 128
Optimizer for the generator
from keras.optimizers import Adam
optimizer = Adam(lr=0.0001)
Shape of the input image
input_shape = (28,28,1)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
 stratify = y_train,
 test_size = 0.08333,
 random_state=42)

X_train = X_train.reshape(-1,28,28,1)
X_val = X_val.reshape(-1,28,28,1)
X_test = X_test.reshape(-1,28,28,1)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape,
 activation = 'relu'))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss = 'sparse_categorical_crossentropy',
optimizer=optimizer,
 metrics = ['accuracy'])

history = model.fit(X_train, y_train, epochs = epochs,
batch_size=batch_size,
 validation_data=(X_val, y_val))

Handwritten Digits Classification Using ConvNets Chapter 8

[183]

loss,acc = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', acc)

loss_plot(history)

Pooling
Max pooling can be defined as the process of summarizing a group of values with the
maximum value within that group. Similarly, if you computed the average, it would be
average pooling. Pooling operations are usually performed on the generated feature maps
after convolution to reduce the number of parameters.

Let's take the example array we considered for convolution:

array = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])

Now, if you were to perform max pooling on this array with the pool size set to size 1*2
and a stride of 2, the result would be an array of [1,1,1,1,1]. The array of size 1*10 has been
reduced to a size of 1*5 due to max pooling.

Here, since the pool size is of shape 1*2, you would take the subset of the target array from
index 0 to index 2, which will be [0,1], and compute the maximum of this subset as 1. You
would do the same for the subset from index 2 to index 4, from index 4 to index 6, index 6
to index 8, and finally index 8 to 10.

Similarly, average pooling can be implemented by computing the average value of the
pooled section. In this case, it would result in the array [0.5, 0.5, 0.5, 0.5, 0.5].

The following are a couple of code snippets that are implementing max and average
pooling:

1D Max Pooling
array = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
result = np.zeros(len(array)//2)
for i in range(len(array)//2):
 result[i] = np.max(array[2*i:2*i+2])
result

Handwritten Digits Classification Using ConvNets Chapter 8

[184]

The following is the output of the preceding code:

Figure 8.14: Max pooling operation's result on an array

The following is the code snippet for average pooling:

1D Average Pooling
array = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
result = np.zeros(len(array)//2)
for i in range(len(array)//2):
 result[i] = np.mean(array[2*i:2*i+2])
result

The following is the output of the preceding code:

Figure 8.15: Average pooling operation's result on an array

The following is a diagram explaining the max pooling operation:

Figure 8.16: 2*2 max pooling with stride 2 (Source: https://en.wikipedia.org/wiki/Convolutional_neural_network)

Consider the following code for a digit:

plt.imshow(X_train[0].reshape(28,28), cmap='gray')

Handwritten Digits Classification Using ConvNets Chapter 8

[185]

The following is the output of the preceding code:

Figure 8.17: Random MNIST digit

This image is of shape 28*28. Now, if you were to perform a 2*2 max pooling operation of
this, the resulting image would have a shape of 14*14.

Now, let's write a function to implement a 2*2 max pooling operation on a MNIST digit:

def square_max_pool(image, pool_size=2):
 result = np.zeros((14,14))
 for i in range(result.shape[0]):
 for j in range(result.shape[1]):
 result[i,j] = np.max(image[i*pool_size : i*pool_size+pool_size,
j*pool_size : j*pool_size+pool_size])
 return result

plot a pooled image
plt.imshow(square_max_pool(X_train[0].reshape(28,28)), cmap='gray')

Handwritten Digits Classification Using ConvNets Chapter 8

[186]

The following is the output of the preceding code:

Figure 8.18: Random MNIST digit after max pooling

You may have noticed that the convolution classifier that we built in the previous section
has around 2.7 million parameters. It has been proven that having a lot of parameters can
lead to overfitting in a lot of cases. This is where pooling comes in. It helps us to retain the
important features in the data as well as reduce the number of parameters.

Now, let's implement a convolution classifier with max pooling.

Import the max pool operation from Keras with the following code:

from keras.layers import MaxPool2D

Then, define and compile the model:

model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape, activation
= 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))

Handwritten Digits Classification Using ConvNets Chapter 8

[187]

model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dense(10, activation = 'softmax'))

compile model
model.compile(loss = 'sparse_categorical_crossentropy', optimizer=
optimizer, metrics = ['accuracy'])

print model summary
model.summary()

The following is the output of the preceding code:

Figure 8.19: Summary of the convolution classifier with max pooling

From the summary, we can see that with a pooling filter of 2*2 with stride 2, the number of
parameters has come down to 693,962, which is 1/4th of the number of parameters in the
convolution classifier.

Fitting the model
Now, let's fit the model on the data:

fit model
history = model.fit(X_train, y_train, epochs = epochs,
batch_size=batch_size, validation_data=(X_val, y_val))

Handwritten Digits Classification Using ConvNets Chapter 8

[188]

The following is the output of the preceding code:

The following is the output at the end of the code's execution:

Figure 8.20: Metrics printed out during the training of the convolution classifier with max pooling

We can see that the convolution classifier with max pooling has an accuracy of 97.72% on
the validation data.

Evaluating the model
Now, evaluate the convolution model with max pooling on the test data:

evaluate model
loss, acc = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', acc)

The following is the output of the preceding code:

Figure 8.21: Printout of the evaluation of the convolution classifier with max pooling

We can see that the model is 97.88% accurate on the test data, 97.72% on the validation data,
and 99.74% on the train data. The convolution model with pooling gives the same level of
performance as the convolution model without pooling, but with four times less
parameters.

In this case, we can clearly see from the loss that the model is slightly overfitting on the
train data.

Handwritten Digits Classification Using ConvNets Chapter 8

[189]

Just like we did previously, plot the train and validation metrics to see how the training has
progressed:

plot training loss
loss_plot(history)

The following is the output of the preceding code:

Figure 8.22: Loss/accuracy plot of the convolution classifier with max pooling during training

Handwritten Digits Classification Using ConvNets Chapter 8

[190]

Convolution with pooling – Python file
This module implements the training and evaluation of a convolution classifier with the
pooling operation:

"""This module implements a convolution classifier with maxpool
operation."""
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, MaxPool2D
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from loss_plot import loss_plot

Number of epochs
epochs = 20
Batchsize
batch_size = 128
Optimizer for the generator
from keras.optimizers import Adam
optimizer = Adam(lr=0.0001)
Shape of the input image
input_shape = (28,28,1)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
 stratify = y_train,
 test_size = 0.08333,
 random_state=42)

X_train = X_train.reshape(-1,28,28,1)
X_val = X_val.reshape(-1,28,28,1)
X_test = X_test.reshape(-1,28,28,1)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape,
 activation='relu'))
model.add(MaxPool2D(2,2))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss = 'sparse_categorical_crossentropy',
optimizer=optimizer,
 metrics = ['accuracy'])

Handwritten Digits Classification Using ConvNets Chapter 8

[191]

history = model.fit(X_train, y_train, epochs = epochs,
batch_size=batch_size,
 validation_data=(X_val, y_val))

loss,acc = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', acc)

loss_plot(history)

Dropout
Dropout is a regularization technique used to prevent overfitting. During training, it is
implemented by randomly sampling a neural network from the original neural network
during each forward and backward propagation, and then training this subset network on
the batch of input data. During testing, no dropout is implemented. The test results are
obtained as an ensemble of all of the sampled networks:

Figure 8.23: Dropout, as shown in the Dropout: A Simple Way to Prevent Neural Networks from
Overfitting paper (Source: http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf)

Handwritten Digits Classification Using ConvNets Chapter 8

[192]

In Keras, implementing Dropout is easy. First, import it from the layers module of
keras:

from keras.layers import Dropout

Then, place the layer where needed. In the case of our CNN, we will place one after the
max pool operation and one after the Dense layer, as shown in the following code:

model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape, activation
= 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation = 'softmax'))

compile model
model.compile(loss = 'sparse_categorical_crossentropy', optimizer=
optimizer, metrics = ['accuracy'])

model summary
model.summary()

The following is the output of the preceding code:

Handwritten Digits Classification Using ConvNets Chapter 8

[193]

Figure 8.24: Summary of the convolution classifier

Since Dropout is a regularization technique, adding it to a model will not result in a change
in the number of trainable parameters.

Fitting the model
Again, train the model on the standard 20 epochs:

fit model
history = model.fit(X_train, y_train, epochs = epochs,
batch_size=batch_size, validation_data=(X_val, y_val))

The following is the output of the preceding code:

Handwritten Digits Classification Using ConvNets Chapter 8

[194]

The following is the output at the end of the code's execution:

Figure 8.25: Metrics printed out during the training of the convolution classifier with max pooling and dropout

We see that the convolution classifier with max pooling and dropout is 98.52% accurate on
the validation data.

Evaluating the model
Now, let’s evaluate the model and capture the loss and the accuracy:

evaluate model
loss, acc = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', acc)

The following is the output of the preceding code:

Figure 8.26: Printout of the evaluation of the convolution classifier with max pooling and dropout

We can see that the model is 98.42% accurate on the test data, 98.52% on the validation data,
and 99.26% on the train data. The convolution model with pooling and dropout gives the
same level of performance as the convolution model without pooling, but with four times
fewer parameters. If you look at the loss as well, this model was able to reach a better
minima than the other models we have trained before.

Plot the metrics to understand how the training has progressed:

plot training loss
loss_plot(history)

Handwritten Digits Classification Using ConvNets Chapter 8

[195]

The following is the output of the preceding code:

Figure 8.27: Loss/accuracy plot of the convolution classifier with max pooling and dropout during training

Handwritten Digits Classification Using ConvNets Chapter 8

[196]

Convolution with pooling – Python file
This module implements the training and evaluation of a convolution classifier with the
max pool and Dropout operations:

"""This module implements a deep conv classifier with max pool and
dropout."""
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, MaxPool2D, Dropout
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from loss_plot import loss_plot

Number of epochs
epochs = 20
Batchsize
batch_size = 128
Optimizer for the generator
from keras.optimizers import Adam
optimizer = Adam(lr=0.0001)
Shape of the input image
input_shape = (28,28,1)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
 stratify = y_train,
 test_size = 0.08333,
 random_state=42)

X_train = X_train.reshape(-1,28,28,1)
X_val = X_val.reshape(-1,28,28,1)
X_test = X_test.reshape(-1,28,28,1)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape,
 activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Conv2D(64, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Conv2D(128, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))

Handwritten Digits Classification Using ConvNets Chapter 8

[197]

model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation = 'softmax'))

model.compile(loss = 'sparse_categorical_crossentropy', optimizer=
optimizer,
 metrics = ['accuracy'])

history = model.fit(X_train, y_train, epochs = epochs,
batch_size=batch_size,
 validation_data=(X_val, y_val))

loss,acc = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', acc)

loss_plot(history)

Going deeper
The convolution classifier with max pooling and dropout seems to be the best classifier so
far. However, we also noticed that there was a slight amount of overfitting on the train
data.

Let's build a deeper model to see if we can create a classifier that is more accurate than the
other models we have trained so far, and see if we can get it to reach an even better minima.

We will build a deeper model by adding two more convolution layers to our best model so
far:

The first layer is a convolution 2-D layer with 32 filters of size 3*3 with
activation as relu, followed by downsampling with max pooling of size 2*2,
followed by Dropout as the regularizer
The second layer is a convolution 2-D layer with 64 filters of size 3*3 with
activation as relu, followed by downsampling with max pooling of size 2*2,
followed by Dropout as the regularizer
The third layer is a convolution 2-D layer with 128 filters of size 3*3 with
activation as relu, followed by downsampling with max pooling of size 2*2,
followed by Dropout as the regularizer

Handwritten Digits Classification Using ConvNets Chapter 8

[198]

Compiling the model
The following is the code for the deeper model:

model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape, activation
= 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Conv2D(64, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Conv2D(128, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation = 'softmax'))

compile model
model.compile(loss = 'sparse_categorical_crossentropy', optimizer=
optimizer, metrics = ['accuracy'])

print model summary
model.summary()

The following is the output of the preceding code:

Handwritten Digits Classification Using ConvNets Chapter 8

[199]

Figure 8.28: Summary of the deep convolution classifier

From the summary, we can see that the deeper model has only 110,474 parameters. Now,
let's see if a deeper model with fewer parameters can do a better job than we have done so
far.

Fitting the model
Just like we did previously, fit the model, but with epochs set as 40 instead of 20, since the
deeper model takes longer to learn. Try training the model for 20 epochs first to see what
happens:

fit model
history = model.fit(X_train, y_train, epochs = 40, batch_size=batch_size,
validation_data=(X_val, y_val))

Handwritten Digits Classification Using ConvNets Chapter 8

[200]

The following is the output of the preceding code:

The following is the output at the end of the code's execution:

Figure 8.29: Metrics printed out during the training of the deep convolution classifier

Evaluating the model
Now, evaluate the model with the following code:

evaluate model
loss,acc = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', acc)

The following is the output of the preceding code:

Figure 8.30: Printout of the evaluation of the deep convolution classifier

We can see that the model is 99.01% accurate on the test data, 98.84% on the validation data,
and 98.38% on the train data. The deeper convolution model with pooling and dropout
gives a much better performance with just 110,000 parameters. If you look at the loss as
well, this model was able to reach a better minima than the other models that we trained
previously:

Plot the metrics to understand how the training has progressed:

plot training loss
loss_plot(history)

Handwritten Digits Classification Using ConvNets Chapter 8

[201]

The following is the output of the preceding code:

Figure 8.31: Loss/accuracy plot of the deep convolution classifier during training

This is one of the best training plots you can get. We can see no overfitting at all.

Handwritten Digits Classification Using ConvNets Chapter 8

[202]

Convolution with pooling and Dropout – Python file
This module implements the training and evaluation of a deep convolution classifier with
the max pool and Dropout operations:

"""This module implements a deep conv classifier with max pool and
dropout."""
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, MaxPool2D, Dropout
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from loss_plot import loss_plot

Number of epochs
epochs = 20
Batchsize
batch_size = 128
Optimizer for the generator
from keras.optimizers import Adam
optimizer = Adam(lr=0.0001)
Shape of the input image
input_shape = (28,28,1)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
 stratify = y_train,
 test_size = 0.08333,
 random_state=42)

X_train = X_train.reshape(-1,28,28,1)
X_val = X_val.reshape(-1,28,28,1)
X_test = X_test.reshape(-1,28,28,1)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape,
 activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Conv2D(64, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Conv2D(128, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))

Handwritten Digits Classification Using ConvNets Chapter 8

[203]

model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation = 'softmax'))

model.compile(loss = 'sparse_categorical_crossentropy', optimizer=
optimizer,
 metrics = ['accuracy'])

history = model.fit(X_train, y_train, epochs = epochs,
batch_size=batch_size,
 validation_data=(X_val, y_val))

loss,acc = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Accuracy:', acc)

loss_plot(history)

Data augmentation
Imagine a situation where you might want to build a convolution classifier on a small set of
images. The problem here is that the classifier will easily overfit on this small set of data.
The reason why the classifier will overfit is that there are very few images that are similar.
That is, there are not a lot of variations for the model to capture within a specific class so
that it can be robust and perform well on new data.

Keras provides a preprocessing utility called ImageDataGenerator that can be used to
augment image data with simple configuration.

Its capabilities include the following:

zoom_range: Randomly zoom in on images to a given zoom level
horizontal_flip: Randomly flip images horizontally
vertical_flip: Randomly flip images vertically
rescale: Multiply the data with the factor provided

It also includes capabilities for random rotations, random shear, and many more.

Visit the official Keras documentation (https:/ /keras. io/
preprocessing/ image/) to learn more about some of the additional
functionalities of the image_data_generator API.

https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/

Handwritten Digits Classification Using ConvNets Chapter 8

[204]

Using ImageDataGenerator
The image_data_generator API transforms and augments the data in batches on the go,
and is also super easy to use.

First, import the ImageDataGenerator:

from keras.preprocessing.image import ImageDataGenerator

Implement a random horizontal flip augmenter:

train_datagen = ImageDataGenerator(horizontal_flip=True)

Fit the augmenter on the train data:

fit the augmenter
train_datagen.fit(X_train)

After the fit, we usually use the transform command. Here, instead of transform, we
have the flow command. It accepts the images and its corresponding labels, and then
generates batches of transformed data of the specified batch size.

Let's transform a bunch of images and look at the result:

transform the data
for img, label in train_datagen.flow(X_train, y_train, batch_size=6):
 for i in range(0, 6):
 plt.subplot(2,3,i+1)
 plt.title('Label {}'.format(label[i]))
 plt.imshow(img[i].reshape(28, 28), cmap='gray')
 break
plt.tight_layout()
plt.show()

Handwritten Digits Classification Using ConvNets Chapter 8

[205]

The following is the output of the preceding code:

Figure 8.32: Digits after horizontal flip augmentation

Similarly, we can implement a random zoom augmenter, like so:

train_datagen = ImageDataGenerator(zoom_range=0.3)

#fit
train_datagen.fit(X_train)

#transform
for img, label in train_datagen.flow(X_train, y_train, batch_size=6):
 for i in range(0, 6):
 plt.subplot(2,3,i+1)
 plt.title('Label {}'.format(label[i]))
 plt.imshow(img[i].reshape(28, 28), cmap='gray')
 break
plt.tight_layout()
plt.show()

Handwritten Digits Classification Using ConvNets Chapter 8

[206]

The following is the output of the preceding code:

Figure 8.33: Digits after zoom augmentation

Fitting ImageDataGenerator
Now, let's build a classifier using the same architecture as the deep convolution model with
pooling and Dropout, but on augmented data.

First, define the features of the ImageDataGenerator, as follows:

train_datagen = ImageDataGenerator(
 rescale = 1./255,
 zoom_range = 0.2,
 horizontal_flip = True)

We have defined that the ImageDataGenerator can perform the following operations

Rescaling
Random zoom
Random horizontal flip

Handwritten Digits Classification Using ConvNets Chapter 8

[207]

The rescaling operation scales the pixel values to a range between 0 and 1.

The next step is to fit this generator on the train data:

train_datagen.fit(X_train)

Compiling the model
We need to define and compile the deep convolution model like so:

define model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape, activation
= 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Conv2D(64, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Conv2D(128, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation = 'softmax'))

compile model
model.compile(loss = 'sparse_categorical_crossentropy', optimizer=
optimizer, metrics = ['accuracy'])

Fitting the model
Finally, we need to fit the model:

fit the model on batches with real-time data augmentation
history = model.fit_generator(train_datagen.flow(X_train, y_train,
batch_size=128), steps_per_epoch=len(X_train) / 128, epochs=10,
validation_data=(train_datagen.flow(X_val, y_val)))

Handwritten Digits Classification Using ConvNets Chapter 8

[208]

The following is the output of the preceding code:

The following is the output at the end of the code's execution:

Figure 8.34: Metrics printed out during the training of the deep convolution classifier on augmented data

Evaluating the model
Now, we need to evaluate the model:

transform/augment test data
for test_img, test_lab in train_datagen.flow(X_test, y_test, batch_size =
X_test.shape[0]):
 break

evaluate model on test data
loss,acc = model.evaluate(test_img, test_lab)
print('Test loss:', loss)
print('Accuracy:', acc)

The following is the output of the preceding code:

Figure 8.35: Printout of the evaluation of the deep convolution classifier on augmented data

Then, we need to plot the deep convolution classifier:

plot the learning
loss_plot(history)

Handwritten Digits Classification Using ConvNets Chapter 8

[209]

The following is the output of the preceding code:

Figure 8.36: Loss/accuracy plot of the deep convolution classifier during training on augmented data

Handwritten Digits Classification Using ConvNets Chapter 8

[210]

Augmentation – Python file
This module implements the training and evaluation of a deep convolution classifier on
augmented data:

"""This module implements a deep conv classifier on augmented data."""
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, MaxPool2D, Dropout
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator

from sklearn.model_selection import train_test_split
from loss_plot import loss_plot

Number of epochs
epochs = 10
Batchsize
batch_size = 128
Optimizer for the generator
from keras.optimizers import Adam
optimizer = Adam(lr=0.001)
Shape of the input image
input_shape = (28,28,1)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
 stratify = y_train,
 test_size = 0.08333,
 random_state=42)

X_train = X_train.reshape(-1,28,28,1)
X_val = X_val.reshape(-1,28,28,1)
X_test = X_test.reshape(-1,28,28,1)

train_datagen = ImageDataGenerator(
 rescale=1./255,
 zoom_range=0.2,
 horizontal_flip=True)

train_datagen.fit(X_train)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape,
 activation = 'relu'))
model.add(MaxPool2D(2,2))

Handwritten Digits Classification Using ConvNets Chapter 8

[211]

model.add(Dropout(0.2))
model.add(Conv2D(64, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Conv2D(128, kernel_size=(3,3), activation = 'relu'))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation = 'softmax'))

model.compile(loss = 'sparse_categorical_crossentropy', optimizer=
optimizer,
 metrics = ['accuracy'])

fits the model on batches with real-time data augmentation:
history = model.fit_generator(train_datagen.flow(X_train, y_train,
 batch_size=128),
 steps_per_epoch=len(X_train) / 128,
epochs=epochs,
 validation_data=(train_datagen.flow(X_val,
 y_val)))

for test_img, test_lab in train_datagen.flow(X_test, y_test,
 batch_size = X_test.shape[0]):
 break

loss,acc = model.evaluate(test_img, test_lab)
print('Test loss:', loss)
print('Accuracy:', acc)

loss_plot(history)

Handwritten Digits Classification Using ConvNets Chapter 8

[212]

Additional topic – convolution autoencoder
An autoencoder is a combination of two parts: an encoder and a decoder. The encoder and
decoder of a simple autoencoder are usually made up of dense layers, whereas in a
convolution autoencoder, they are made of convolution layers:

Figure 8.37: The structure of an autoencoder (image source: Wikipedia)

The encoder part of the autoencoder accepts an image and compresses it into a smaller size
with the help of a pooling operation. In our case, this is max pooling. The decoder accepts
the input of the encoder and learns to expand the image to our desired size by using
convolution and upsampling.

Imagine a situation where you want to build high-resolution images out of blurred images:

Handwritten Digits Classification Using ConvNets Chapter 8

[213]

 Figure 8.38: Low-resolution digits on the left and high-resolution digits on the right

Convolution autoencoders are capable of doing this job very well. The preceding high-
resolution digits that you can see were actually generated using convolution autoencoders.

By the end of this section, you will have built a convolution autoencoder that accepts low-
resolution 14*14*1 MNIST digits and generates high-resolution 28*28*1 digits.

Importing the dependencies
Consider restarting your session before starting this section:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()

from keras.layers import Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model, Sequential
from keras.optimizers import Adam
from keras import backend as k

for resizing images
from scipy.misc import imresize

Handwritten Digits Classification Using ConvNets Chapter 8

[214]

Generating low-resolution images
To generate low-resolution images, define a function called reshape() that will resize the
input image/digit to size 14*14. After defining this, we will use the reshape() function to
generate low-resolution train and test images:

def reshape(x):
 """Reshape images to 14*14"""
 img = imresize(x.reshape(28,28), (14, 14))
 return img

create 14*14 low resolution train and test images
XX_train = np.array([*map(reshape, X_train.astype(float))])
XX_test = np.array([*map(reshape, X_test.astype(float))])

XX_train and XX_test will be the images that we will feed into the encoder, and
X_train and X_test will be the targets.

Scaling
Scale the train input, test input, and target images to range between 0 and 1 so that the
learning process is faster:

scale images to range between 0 and 1
14*14 train images
XX_train = XX_train/255
28*28 train label images
X_train = X_train/255

14*14 test images
XX_test = XX_test/255
28*28 test label images
X_test = X_test/255

Defining the autoencoder
The convolution autoencoder we are going to build will accept 14*14*1 images as input
with 28*28*1 images as the targets, and will have the following characteristics:

Handwritten Digits Classification Using ConvNets Chapter 8

[215]

In the encoder:

The first layer is a convolution 2-D layer with 64 filters of size 3*3, followed by
batch normalization, with activation as relu, followed by downsampling
with MaxPooling2D of size 2*2
The second layer, or the final layer in this encoder part, is again a convolution 2-
D layer with 128 filters of size 3*3, batch normalization, with activation
as relu

In the decoder:

The first layer is a convolution 2-D layer with 128 filters of size 3*3 with
activation as relu, followed by upsampling that's performed with
UpSampling2D

The second layer is a convolution 2-D layer with 64 filters of size 3*3 with
activation as relu, followed by upsampling with UpSampling2D
The third layer, or the final layer in this decoder part, is again a convolution 2-D
layer with 1 filter of size 3*3 with activation as sigmoid

The following is the code for our autoencoder:

batch_size = 128
epochs = 40
input_shape = (14,14,1)

define autoencoder
def make_autoencoder(input_shape):
 generator = Sequential()
 generator.add(Conv2D(64, (3, 3), activation='relu', padding='same',
input_shape=input_shape))
 generator.add(MaxPooling2D(pool_size=(2, 2)))
 generator.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
 generator.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
 generator.add(UpSampling2D((2, 2)))
 generator.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
 generator.add(UpSampling2D((2, 2)))
 generator.add(Conv2D(1, (3, 3), activation='sigmoid', padding='same'))

 return generator

autoencoder = make_autoencoder(input_shape)

compile auto encoder
autoencoder.compile(loss='mean_squared_error', optimizer = Adam(lr=0.0002,
beta_1=0.5))

Handwritten Digits Classification Using ConvNets Chapter 8

[216]

auto encoder summary
autoencoder.summary()

The following is the output of the preceding code:

Figure 8.39: Autoencoder summary

We are using mean_squared_error as the loss, as we want the model to predict the pixel
values.

If you take a look at the summary, the input image of size 14*14*1 is compressed along the
width and the height dimensions to a size of 7*7, but is expanded along the channel
dimension from 1 to 128. These small/compressed feature maps are then fed to the decoder
to learn the mappings that are required to generate high-resolution images of the defined
dimension, which in this case is 28*28*1.

If you have any questions about the usage of he Keras API, please visit the
Keras official documentation at https:/ /keras. io/ .

https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/

Handwritten Digits Classification Using ConvNets Chapter 8

[217]

Fitting the autoencoder
Like any regular model fit, fit the autoencoder:

fit autoencoder
autoencoder_train = autoencoder.fit(XX_train.reshape(-1,14,14,1),
X_train.reshape(-1,28,28,1), batch_size=batch_size,
 epochs=epochs, verbose=1,
 validation_split = 0.2)

The following is the output of the preceding code:

The following is the output at the end of the code's execution:

Figure 8.40: Printout during the training of the autoencoder

You will notice that inside the fit, we have specified a parameter called
validation_split and that we have set it to 0.2. This will split the train data into train
and validation data, with validation data having 20% of the original train data.

Loss plot and test results
Now, let's get to plotting the train and validation loss progression during training. We will
also plot the high-resolution image result from the model by feeding the test images:

loss = autoencoder_train.history['loss']
val_loss = autoencoder_train.history['val_loss']
epochs_ = [x for x in range(epochs)]
plt.figure()
plt.plot(epochs_, loss, label='Training loss')
plt.plot(epochs_, val_loss, label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

Handwritten Digits Classification Using ConvNets Chapter 8

[218]

plt.show()

print('Input')
plt.figure(figsize=(5,5))
for i in range(9):
 plt.subplot(331 + i)
 plt.imshow(np.squeeze(XX_test.reshape(-1,14,14)[i]), cmap='gray')
plt.show()

Test set results
print('GENERATED')
plt.figure(figsize=(5,5))
for i in range(9):
 pred = autoencoder.predict(XX_test.reshape(-1,14,14,1)[i:i+1],
verbose=0)
 plt.subplot(331 + i)
 plt.imshow(pred[0].reshape(28,28), cmap='gray')
plt.show()

The following is the output of the preceding code:

Figure 8.41: Train/val loss plot

The following is the output of high-resolution images that have been generated from low-
resolution images:

Handwritten Digits Classification Using ConvNets Chapter 8

[219]

Figure 8.42: High-resolution test (28*28) images generated from low-resolution test (14*14) images

Handwritten Digits Classification Using ConvNets Chapter 8

[220]

Autoencoder – Python file
This module implements training an autoencoder on MNIST data:

"""This module implements a convolution autoencoder on MNIST data."""
import numpy as np
import matplotlib.pyplot as plt

from keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()

from keras.layers import Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model, Sequential
from keras.optimizers import Adam
from keras import backend as k

for resizing images
from scipy.misc import imresize

def reshape(x):
 """Reshape images to 14*14"""
 img = imresize(x.reshape(28,28), (14, 14))
 return img

create 14*14 low resolution train and test images
XX_train = np.array([*map(reshape, X_train.astype(float))])
XX_test = np.array([*map(reshape, X_test.astype(float))])

scale images to range between 0 and 1
#14*14 train images
XX_train = XX_train/255
#28*28 train label images
X_train = X_train/255

#14*14 test images
XX_test = XX_test/255
#28*28 test label images
X_test = X_test/255

batch_size = 128
epochs = 40
input_shape = (14,14,1)

def make_autoencoder(input_shape):

 generator = Sequential()
 generator.add(Conv2D(64, (3, 3), activation='relu', padding='same',
 input_shape=input_shape))

Handwritten Digits Classification Using ConvNets Chapter 8

[221]

 generator.add(MaxPooling2D(pool_size=(2, 2)))

 generator.add(Conv2D(128, (3, 3), activation='relu', padding='same'))

 generator.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
 generator.add(UpSampling2D((2, 2)))

 generator.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
 generator.add(UpSampling2D((2, 2)))

 generator.add(Conv2D(1, (3, 3), activation='sigmoid', padding='same'))

 return generator

autoencoder = make_autoencoder(input_shape)
autoencoder.compile(loss='mean_squared_error', optimizer = Adam(lr=0.0002,
beta_1=0.5))

autoencoder_train = autoencoder.fit(XX_train.reshape(-1,14,14,1),
 X_train.reshape(-1,28,28,1),
 batch_size=batch_size,
 epochs=epochs, verbose=1,
 validation_split = 0.2)

loss = autoencoder_train.history['loss']
val_loss = autoencoder_train.history['val_loss']
epochs_ = [x for x in range(epochs)]
plt.figure()
plt.plot(epochs_, loss, label='Training loss', marker = 'D')
plt.plot(epochs_, val_loss, label='Validation loss', marker = 'o')
plt.title('Training and validation loss')
plt.legend()
plt.show()

print('Input')
plt.figure(figsize=(5,5))
for i in range(9):
 plt.subplot(331 + i)
 plt.imshow(np.squeeze(XX_test.reshape(-1,14,14)[i]), cmap='gray')
plt.show()

Test set results
print('GENERATED')
plt.figure(figsize=(5,5))
for i in range(9):
 pred = autoencoder.predict(XX_test.reshape(-1,14,14,1)[i:i+1],
verbose=0)

Handwritten Digits Classification Using ConvNets Chapter 8

[222]

 plt.subplot(331 + i)
 plt.imshow(pred[0].reshape(28,28), cmap='gray')
plt.show()

Conclusion
This project was all about building a CNN classifier to classify handwritten digits better
than we did in Chapter 2, Training NN for Prediction Using Regression, with a multilayer
Perceptron.

Our deep convolution neural network classifier with max pooling and dropout hit 99.01%
accuracy on a test set of 10,000 images/digits. This is good. This is almost 12% better than
our multilayer Perceptron model.

However, there are some implications. What are the implications of this accuracy? It is
important that we understand this. Just like we did in Chapter 2, Training NN for Prediction
Using Regression, let's calculate the incidence of an error occurring that would result in a
customer service issue.

Just to refresh our memory, in this hypothetical use case, we assumed that the restaurant
has an average of 30 tables at each location, and that those tables turn over two times per
night during the rush hour when the system is likely to be used, and finally that the
restaurant chain has 35 locations. This means that each day of operation, there are
approximately 21,000 handwritten numbers being captured (30 tables x 2 turns/day x 35
locations x 10-digit phone number).

The ultimate goal is to classify all of the digits properly, since even a single-digit
misclassification will result in a failure. With the classifier that we have built, it would
improperly classify 208 digits per day. If we consider the worst case scenario, out of the
2,100 patrons, 208 phone numbers would be misclassified. That is, even in the worst case,
90.09% ((2,100-208)/2,100) of the time, we would be sending the text to the right patron.

The best case scenario would be that if all ten digits were misclassified in each phone
number, we would only be improperly classifying 21 phone numbers. This means that we
would have a failure rate of ((2,100-21)/2,100) 1%. This is as good as it gets.

Unless you aim at reducing that 1% error...

https://cdp.packtpub.com/python_deep_learning_projects/wp-admin/post.php?post=31&action=edit#post_25

Handwritten Digits Classification Using ConvNets Chapter 8

[223]

Summary
In this chapter, we understood how to implement a convolution neural network classifier in
Keras. You now have a brief understanding of what convolution, average, max pooling,
and dropout are, and you also built a deep model. You understood how to reduce
overfitting as well as how to generate more/validation in data to build a generalizable
model when you have less data than you need. Finally, we assessed the model's
performance on test data and determined that we succeeded in achieving our goal. We
ended this chapter by introducing you to autoencoders.

9
Object Detection Using

OpenCV and TensorFlow
Welcome to the second chapter focusing on computer vision in Python Deep Learning
Projects (a data science pun to kick us off!). Let's think about what we accomplished in
Chapter 8, Handwritten Digits Classification Using ConvNets, where we were able to train an
image classifier with a convolutional neural network (CNN) to accurately classify
handwritten digits in an image. What was a key characteristic of the raw data, and what
was our business objective? The data was less complicated than it could have been because
each image only had one handwritten digit in it and our goal was to accurately assign a
digital label to the image.

What would have happened if each image had multiple handwritten digits in it? What
would have happened if we had a video of the digits? What if we want to identify where
the digits are in the image? These questions represent challenges that real-world data
embodies, and they drive our data science innovation to new models and capabilities.

Let's expand our line of questions and imagination to the next (hypothetical) business use
case for our Python deep learning project, where we're looking to build, train, and test an
object detection and classification model to be used by an automobile manufacturer in their
new line of self-driving cars. Autonomous vehicles need to have fundamental computer
vision capabilities that you and I have organically by way of our physiology and
experiential learning. We as humans can examine our field of vision and report whether or
not a specific item is present and where in relation to other objects that item (if present) is
located. So, if I were to ask you if you see a chicken, you'd likely say no, unless you live on
a farm and are looking out your window. But if I ask you if you see a keyboard, you'd
likely say yes, and could even say that the keyboard is different from other objects and is in
front of the wall before you.

Object Detection Using OpenCV and TensorFlow Chapter 9

[225]

This is no trivial task for a computer. As Deep Learning Engineers, you are going to learn
the intuition and model architecture that empowers you to build a powerful
object detection and classification engine that we can envision being tested for use in
autonomous vehicles. The data inputs that we're going to be working with in this chapter
will be much more informationally complex than what we've had in previous projects, and
the outcomes when we get them right will be that much more impressive.

So, let's get started!

Object detection intuition
When you need your application to find and name things in an image, you need to build a
deep neural network for object detection. The visual field is very complex, and a camera for
still images and video captures frames with many, many objects in them. Object detection is
used in manufacturing for process automation in production lines; autonomous vehicles
sensing pedestrians, other cars, the road, and signs, for example; and, of course, facial
recognition. Computer vision solutions based on machine learning and deep learning
require you, the Data Scientist, to build, train, and evaluate models that can differentiate
one object from another and then accurately classify those detected objects.

As you've seen in other projects we've worked on, CNNs are very powerful models for
image data. We need to look at expansions on the basic architecture that has performed so
well on a single (still) image with simple information to see what works best for complex
images and video.

Progress recently has been made with these networks: Faster R-CNN, region-based fully
convolutional network (R-FCN), MultiBox, solid-state drive (SSD), and you only look
once (YOLO). We've seen the value of these models in common consumer applications
such as Google Photos and Pinterest Visual Search. We are even seeing some of these that
are lightweight and fast enough to perform well on mobile devices.

Object Detection Using OpenCV and TensorFlow Chapter 9

[226]

Recent progress in the field can be researched with the following list of references:

PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection,
arXiv:1608.08021
R-CNN: Rich feature hierarchies for accurate object detection and semantic
segmentation, CVPR, 2014.
SPP: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,
ECCV, 2014.
Fast R-CNN, arXiv:1504.08083.
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,
arXiv:1506.01497.
R-CNN minus R, arXiv:1506.06981.
End-to-end people detection in crowded scenes, arXiv:1506.04878.
YOLO – You Only Look Once: Unified, Real-Time Object Detection, arXiv:1506.02640
Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent
Neural Networks
Deep Residual Network: Deep Residual Learning for Image Recognition
R-FCN: Object Detection via Region-based Fully Convolutional Networks
SSD: Single Shot MultiBox Detector, arXiv:1512.02325

Also, following is the timeline of how the evolution of object detection has developed from
1999–2017:

Figure 9.1: The timeline of the evolution of object detection from 1999 to 2017

Object Detection Using OpenCV and TensorFlow Chapter 9

[227]

The files for this chapter can be found at https:/ /github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ tree/ master/
Chapter09.

Improvements in object detection models
Object detection and classification has been the subject of study for quite some time. The
models that have been used build on the great success of previous researchers. A brief
summary of progress history starts by highlighting the computer vision model called
Histogram of Oriented Gradients (HOG) features that was developed by Navneet Dalal
and Bill Triggs in 2005.

HOG features were fast and performed well. Interest in deep learning and the great success
of CNNs that were more accurate classifiers due to their deep networks. But the problem
was that the CNNs of the time were too slow in comparison.

The solution was to take advantage of the CNNs, improved classification capabilities and
improve their speed with a technique and employ a selective search paradigm in what
became known as R-CNN. Reducing the number of bounding boxes did show
improvements in speed, but not sufficiently for the expectations.

SPP-net was a proposed solution, wherein a CNN representation for the whole image was
calculated and drove CNN-calculated representations for each sub-section generated by
selective search. Selective search uses image features to generate all the possible locations
for an object by looking at pixel intensity, color, image texture, and a measure of insideness.
These identified objects are then fed into the CNN model for classification.

This, in turn, saw improvements in a model named Fast R-CNN that trained end-to-end,
and thereby fixed the primary problems with SPP-net and R-CNN. Advancing this
technology further with a model named Faster R-CNN, the technique of using small
regional proposal CNNs in place of the selective search performed very well.

Here is a quick overview of the Faster R-CNN object detection pipeline:

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter09

Object Detection Using OpenCV and TensorFlow Chapter 9

[228]

A quick benchmark comparison of the versions of R-CNN discussed previously shows the
following:

R-CNN Fast R-CNN Faster R-CNN
Average response time ~50 sec ~2 sec ~0.2 sec
Speed boost 1x 25x 250x

The performance improvement is impressive, with Faster R-CNN being one of the most
accurate and fastest object detection algorithms deployed in real-time use cases. Other
recent powerful alternatives include YOLO models, which we will look into in detail later
in this chapter.

Object detection using OpenCV
Let's start our project with a basic or traditional implementation of Open Source Computer
Vision (OpenCV). This library is primarily targeted at real-time applications that need
computer vision capabilities.

Object Detection Using OpenCV and TensorFlow Chapter 9

[229]

OpenCV has its API wrappers in various languages such as C, C++,
Python, and so on, and the best way forward is to build a quick prototype
using Python wrappers or any other language you are comfortable with,
and once you are ready with your code, rewrite it in C/C++ for
production.

In this chapter, we will be using the Python wrappers to create our initial object detection
module.

So, let's do it.

A handcrafted red object detector
In this section, we will learn how to create a feature extractor that will be able to detect any
red object from the provided image using various image processing techniques such as
erosion, dilation, blurring, and so on.

Installing dependencies
First, we need to install OpenCV, which we do with this simple pip command:

pip install opencv-python

Then we will import it along with other modules for visualizations and matrix operations:

import cv2
import matplotlib
from matplotlib import colors
from matplotlib import pyplot as plt
import numpy as np
from __future__ import division

Also, let's define some helper functions that will help us to plot the images and the
contours:

Defining some helper function
def show(image):
 # Figure size in inches
 plt.figure(figsize=(15, 15))
 # Show image, with nearest neighbour interpolation
 plt.imshow(image, interpolation='nearest')
def show_hsv(hsv):
 rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
 show(rgb)

Object Detection Using OpenCV and TensorFlow Chapter 9

[230]

def show_mask(mask):
 plt.figure(figsize=(10, 10))
 plt.imshow(mask, cmap='gray')
def overlay_mask(mask, image):
 rgb_mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
 img = cv2.addWeighted(rgb_mask, 0.5, image, 0.5, 0)
 show(img)

def find_biggest_contour(image):
 image = image.copy()
 im2,contours, hierarchy = cv2.findContours(image, cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)

 contour_sizes = [(cv2.contourArea(contour), contour) for contour in
contours]
 biggest_contour = max(contour_sizes, key=lambda x: x[0])[1]

 mask = np.zeros(image.shape, np.uint8)
 cv2.drawContours(mask, [biggest_contour], -1, 255, -1)
 return biggest_contour, mask

def circle_countour(image, countour):
 image_with_ellipse = image.copy()
 ellipse = cv2.fitEllipse(countour)

 cv2.ellipse(image_with_ellipse, ellipse, (0,255,0), 2)
 return image_with_ellipse

Exploring image data
The first thing in any data science problem is to explore and understand the data. This
helps us to make our objective clear. So, let's first load the image and examine the
properties of that image, such as the color spectrum and the dimensions:

Loading image and display
image = cv2.imread('./ferrari.png')
show(image)

Object Detection Using OpenCV and TensorFlow Chapter 9

[231]

Following is the output:

Since the order of the image stored in the memory is Blue Green Red (BGR), we need to
convert it into Red Green Blue (RGB):

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
show(image)

Object Detection Using OpenCV and TensorFlow Chapter 9

[232]

Following is the output:

Figure 9.2: The raw input image in RGB color format.

Normalizing the image
We will be scaling down the image dimensions, for which we will be using the
cv2.resize() function:

max_dimension = max(image.shape)
scale = 700/max_dimension
image = cv2.resize(image, None, fx=scale,fy=scale)

Now we will perform a blur operation to make the pixels more normalized, for which we
will be using the Gaussian kernel. Gaussian filters are very popular in the research field
and are used for various operations, one of which is the blurring effect that reduces the
noise and balances the image. The following code performs a blur operation:

image_blur = cv2.GaussianBlur(image, (7, 7), 0)

Object Detection Using OpenCV and TensorFlow Chapter 9

[233]

Then we will convert the RGB-based image into an HSV color spectrum, which will help us
to extract other characteristics of the image using color intensity, brightness, and shades:

image_blur_hsv = cv2.cvtColor(image_blur, cv2.COLOR_RGB2HSV)

Following is the output:

Figure: 9.3: The raw input image in HSV color format.

Preparing a mask
We need to create a mask that can detect the specific color spectrum; let's say red in our
case. Now we will create two masks that will be performing feature extraction using the
color values and the brightness factors:

filter by color
min_red = np.array([0, 100, 80])
max_red = np.array([10, 256, 256])
mask1 = cv2.inRange(image_blur_hsv, min_red, max_red)

filter by brightness
min_red = np.array([170, 100, 80])
max_red = np.array([180, 256, 256])
mask2 = cv2.inRange(image_blur_hsv, min_red, max_red)

Object Detection Using OpenCV and TensorFlow Chapter 9

[234]

Concatenate both the mask for better feature extraction
mask = mask1 + mask2

Following is how our mask looks:

Post-processing of a mask
Once we are able to create our mask successfully, we need to perform some morphological
operations, which are basic image processing operations used for the analysis and
processing of geometrical structures.

First, we will create a kernel that will perform various morphological operations over the
input image:

kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15))

Closing: Dilation followed by erosion is helpful to close small pieces inside
the foreground objects or small black points on the object.

Object Detection Using OpenCV and TensorFlow Chapter 9

[235]

Now let's perform the close operation over the mask:

mask_closed = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

The opening operation erosion followed by dilation is used to remove noise.

Then we perform the opening operation:

mask_clean = cv2.morphologyEx(mask_closed, cv2.MORPH_OPEN, kernel)

Following is the output:

Figure 9.4: This figure illustrated the output of morphological close and open operation (left side) and we combine the both to get the final processed mask(right side).

Object Detection Using OpenCV and TensorFlow Chapter 9

[236]

In the preceding screenshot you can see (in the left part of the screenshot) how the
morphological operation changes the structure of the mask and when combining both the
operations (in the right side of the screenshot) you get a denoised cleaner structure.

Applying a mask
It's time to use the mask that we created to extract the object from the image. First, we will
find the biggest contour using the helper function, which is the largest region of our object
that we need to extract. Then apply the mask to the image and draw a circle bounding box
on the extracted object:

Extract biggest bounding box
big_contour, red_mask = find_biggest_contour(mask_clean)

Apply mask
overlay = overlay_mask(red_mask, image)

Draw bounding box
circled = circle_countour(overlay, big_contour)

show(circled)

Following is the output:

Figure 9.5: This figure shows that we have detected the red region (car body) from the image and plotted an ellipes around it.

Object Detection Using OpenCV and TensorFlow Chapter 9

[237]

Voila! So, we successfully extracted the image and also drew the bounding box around the
object using simple image processing techniques.

Object detection using deep learning
In this section, we will learn how to build a world-class object detection module without
much use of traditional handcrafting techniques. Here, will be using the deep learning
approach, which is powerful enough to extract features automatically from the raw image
and then use those features for classification and detection purposes.

First, we will build an object detector using a pre-baked Python library that can use most of
the state-of-the-art pre-trained models, and later on, we will learn how to implement a
really fast and accurate object detector using YOLO architecture.

Quick implementation of object detection
Object detection saw an increase in adoption as a result of the industry trend towards deep
learning after 2012. Accurate and increasingly fast models such as R-CNN, Fast-RCNN,
Faster-RCNN, and RetinaNet, and fast yet highly accurate ones like SSD and YOLO are in
production today. In this section, we will use fully-functional pre-baked feature extractors
in a Python library that can be used in just a few lines of code. Also, we will touch base
regarding the production-grade setup for the same.

So, let's do it.

Installing all the dependencies
This is the same drill that we performed in the previous chapters. First let's install all the
dependencies. Here, we are using a Python module called ImageAI (https:/ /github. com/
OlafenwaMoses/ImageAI), which is an effective way to start building your own object
detection application from scratch in no time:

pip install tensorflow
pip install keras
pip install numpy
pip install scipy
pip install opencv-python
pip install pillow
pip install matplotlib
pip install h5py

https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI

Object Detection Using OpenCV and TensorFlow Chapter 9

[238]

Here we are installing ImageAI
pip3 install
https://github.com/OlafenwaMoses/ImageAI/releases/download/2.0.2/imageai-2.
0.2-py3-none-any.whl

We will be using the Python 3.x environment to run this module.

For this implementation, we are going to use a pre-trained ResNet model that is trained on
the COCO dataset (http:/ /cocodataset. org/ #home) (a large-scale object detection,
segmentation, and captioning dataset). You can also use other pre-trained models such as
follows:

DenseNet-BC-121-32.h5 (https:/ /github. com/ OlafenwaMoses/ ImageAI/
releases/ download/ 1.0/ DenseNet- BC- 121- 32.h5) (31.7 MB)
inception_v3_weights_tf_dim_ordering_tf_kernels.h5 (https:/ /
github.com/ OlafenwaMoses/ ImageAI/ releases/ download/ 1. 0/inception_ v3_
weights_ tf_ dim_ ordering_ tf_ kernels. h5) (91.7 MB)
resnet50_coco_best_v2.0.1.h5 (https:/ /github. com/ OlafenwaMoses/
ImageAI/ releases/ download/ 1. 0/resnet50_ coco_ best_ v2. 0.1.h5) (146 MB)
resnet50_weights_tf_dim_ordering_tf_kernels.h5 (https:/ /github.
com/OlafenwaMoses/ ImageAI/ releases/ download/ 1.0/ resnet50_ weights_ tf_
dim_ordering_ tf_ kernels. h5) (98.1 MB)
squeezenet_weights_tf_dim_ordering_tf_kernels.h5 (https:/ /github.
com/OlafenwaMoses/ ImageAI/ releases/ download/ 1.0/ squeezenet_ weights_ tf_
dim_ordering_ tf_ kernels. h5) (4.83 MB)
yolo-tiny.h5 (https:/ / github. com/ OlafenwaMoses/ ImageAI/ releases/
download/ 1. 0/ yolo- tiny. h5) (33.9 MB)
yolo.h5 (https:/ / github. com/ OlafenwaMoses/ ImageAI/ releases/ download/ 1.
0/yolo. h5): 237 MB

http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/DenseNet-BC-121-32.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5

Object Detection Using OpenCV and TensorFlow Chapter 9

[239]

To get the dataset, use the following command:

wget
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coc
o_best_v2.0.1.h5

Implementation
Now that we have all the dependencies and pre-trained models ready, we will implement a
state-of-the-art object detection model. We will import the ImageAI's ObjectDetection
class using the following code:

from imageai.Detection import ObjectDetection
import os
model_path = os.getcwd()

Then we create the instance for the ObjectDetection object and set the model type as
RetinaNet(). Next, we set the part of the ResNet model that we downloaded and call the
loadModel() function:

object_detector = ObjectDetection()
object_detector.setModelTypeAsRetinaNet()
object_detector.setModelPath(os.path.join(model_path ,
"resnet50_coco_best_v2.0.1.h5"))
object_detector.loadModel()

Once the model is loaded into the memory, we can feed a new image to the model, which
can be of any popular image format, such as JPEG, PNG, and so on. Also, the function has
no constraint on the size of the image, so, you can use any dimensional data and the model
will handle it internally. We are using detectObjectsFromImage() to feed the input
image. This method returns the image with some more information such as the bounding
box coordinates of the detected object, the label of the detected object, and the confidence
score.

Object Detection Using OpenCV and TensorFlow Chapter 9

[240]

Following are some images that are used as input into the model and to perform the object
detection:

Figure 9.6: Since I was traveling to Asia (Malaysia/Langkawi) while writing this chapter, I decided to give it a shot and use some real images that I captured on the go.

The following code is used for inputting images into the model:

object_detections =
object_detector.detectObjectsFromImage(input_image=os.path.join(model_path
, "image.jpg"), output_image_path=os.path.join(model_path ,
"imagenew.jpg"))

Further, we iterate over the object_detection object to read all the objects that the model
predicted with the respective confidence score:

for eachObject in object_detections:
 print(eachObject["name"] , " : " ,
eachObject["percentage_probability"])

Object Detection Using OpenCV and TensorFlow Chapter 9

[241]

Following are how the results look:

Figure 9.7: The results extracted from the object detection model with the bounding box around the detected object. Results contain the name of the object and the confidence
score.

Object Detection Using OpenCV and TensorFlow Chapter 9

[242]

So, we can see that the pre-trained models performed well enough with very few lines of
code.

Deployment
Now that we have all base code ready, let's deploy the ObjectDetection modules into
production. In this section, we will write a RESTful service that will accept the image as an
input and returns the detected object as a response.

We will define a POST function that accepts the image files with the PNG, JPG, JPEG, and
GIF extensions. The uploaded image path is sent to the ObjectDetection module, which
performs the detection and returns the following JSON results:

from flask import Flask, request, jsonify, redirect
import os , json
from imageai.Detection import ObjectDetection

model_path = os.getcwd()

PRE_TRAINED_MODELS = ["resnet50_coco_best_v2.0.1.h5"]

Creating ImageAI objects and loading models

object_detector = ObjectDetection()
object_detector.setModelTypeAsRetinaNet()
object_detector.setModelPath(os.path.join(model_path ,
PRE_TRAINED_MODELS[0]))
object_detector.loadModel()
object_detections =
object_detector.detectObjectsFromImage(input_image='sample.jpg')

Define model paths and the allowed file extentions
UPLOAD_FOLDER = model_path
ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg', 'gif'])

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

def allowed_file(filename):
 return '.' in filename and \
 filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@app.route('/predict', methods=['POST'])

Object Detection Using OpenCV and TensorFlow Chapter 9

[243]

def upload_file():
 if request.method == 'POST':
 # check if the post request has the file part
 if 'file' not in request.files:
 print('No file part')
 return redirect(request.url)
 file = request.files['file']
 # if user does not select file, browser also
 # submit a empty part without filename
 if file.filename == '':
 print('No selected file')
 return redirect(request.url)
 if file and allowed_file(file.filename):
 filename = file.filename
 file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
 file.save(file_path)

 try:
 object_detections =
object_detector.detectObjectsFromImage(input_image=file_path)
 except Exception as ex:
 return jsonify(str(ex))
 resp = []
 for eachObject in object_detections :
 resp.append([eachObject["name"],
 round(eachObject["percentage_probability"],3)
]
)

 return json.dumps(dict(enumerate(resp)))
if __name__ == "__main__":
 app.run(host='0.0.0.0', port=4445)

Save the file as object_detection_ImageAI.py and execute the following command to
run the web services:

python object_detection_ImageAI.py

Object Detection Using OpenCV and TensorFlow Chapter 9

[244]

Following is the output:

Figure 9.8: Output on the Terminal screen after successful execution of the web service.

In a separate Terminal, you can now try to call the API, as shown in the following
command:

curl -X POST \
 http://0.0.0.0:4445/predict \
 -H 'content-type: multipart/form-data; boundary=----
WebKitFormBoundary7MA4YWxkTrZu0gW' \
 -F file=@/Users/rahulkumar/Downloads/IMG_1651.JPG

Following will be the response output:

{
 "0": ["person",54.687],
 "1": ["person",56.77],
 "2": ["person",55.837],
 "3": ["person",75.93],
 "4": ["person",72.956],
 "5": ["bird",81.139]
}

So, this was awesome; with just a few hours' work, you are ready with a production-grade
object detection module that is something close to state-of-the-art.

Object Detection Using OpenCV and TensorFlow Chapter 9

[245]

Object Detection In Real-Time Using YOLOv2
A great advancement in object detection and classification was made possible with a
process where You Only Look Once (YOLO) at an input image. In this single pass, the goal
is to set the coordinates for the corners of the bounding box to be drawn around the
detected object and to then classify the object with a regression model. This process is
capable of avoiding false positives because it takes into account contextual information
from the whole image, and not just a smaller section as in a regional proposal of earlier
described methods. The convolutional neural network (CNN) as follows can pass over the
image once, and therefore be fast enough to function in applications where real-time
processing is a requirement.

YOLOv2 predicts an N number of bounding boxes and associates a confidence level for the
classification of the object for each individual grid in an S-by-S grid that is established in the
immediately preceding step.

Figure 9.9: The overview of how YOLO works. The input image is divided into grids and then been sent into the detection process which results in lots of bounding boxes which is
further been filtered by applying some thresholds.

The outcome of this process is to produce a total of S-by-S by N complement of boxes. For a
great percentage of these boxes you’ll get confidence scores that are quite low, and by
applying a lower threshold (30% in this case), you can eliminate a majority of inaccurately
classified objects as shown in the figure.

We will be using a pre-trained YOLOv2 model in this section for object detection and
classification.

Preparing the dataset
In this part, we will explore the data preparation using the existing the COCO dataset and a
custom dataset. If you want to train the YOLO model with lots of classes, then you can
follow the instructions provided in the pre-existing part, or else if you want to build your
custom object detector, then follow the instructions provided in the custom build section.

Object Detection Using OpenCV and TensorFlow Chapter 9

[246]

Using the pre-existing COCO dataset
For this implementation, we will be using the COCO dataset. This is a great resource
dataset for training YOLOv2 to detect, segment, and caption images on a large scale.
Download the dataset from http:/ / cocodataset. org and run the following command in
the terminal:

Get the training dataset:1.

wget http://images.cocodataset.org/zips/train2014.zip

Get the validation dataset:2.

wget http://images.cocodataset.org/zips/val2014.zip

Get the train and validation annotations:3.

wget
http://images.cocodataset.org/annotations/annotations_trainval2014.
zip

Now, let's convert the annotations in the COCO format to VOC format:

Install Baker:1.

pip install baker

Create the folders to store the images and annotations:2.

mkdir images annotations

Unzip train2014.zip and val2014.zip under the images folder:3.

unzip train2014.zip -d ./images/
unzip val2014.zip -d ./images/

Unzip annotations_trainval2014.zip into annotations folder:4.

unzip annotations_trainval2014.zip -d ./annotations/

Create a folder to store the converted data:5.

mkdir output
mkdir output/train
mkdir output/val

python coco2voc.py create_annotations /TRAIN_DATA_PATH train
/OUTPUT_FOLDER/train

http://cocodataset.org
http://cocodataset.org
http://cocodataset.org
http://cocodataset.org
http://cocodataset.org
http://cocodataset.org
http://cocodataset.org

Object Detection Using OpenCV and TensorFlow Chapter 9

[247]

python coco2voc.py create_annotations /TRAIN_DATA_PATH val
/OUTPUT_FOLDER/val

This is how the folder structure will look after the final transformation:

Figure 9.10: The illustration of the COCO data extraction and formatting process

This establishes a perfect correspondence between the image and the
annotation. When the validation set is empty, we will use a ratio of eight
to automatically split the training and validation sets.

The result is that we will have two folders, ./images and ./annotation, for the training
purpose.

Using the custom dataset
Now, if you want to build an object detector for your specific use case, then you will need
to scrape around 100–200 images from the web and annotate them. There are lots of
annotation tools available online, such as LabelImg (https:/ /github. com/ tzutalin/
labelImg) or Fast Image Data Annotation Tool (FIAT) (https:/ / github. com/
christopher5106/FastAnnotationTool).

For you to play around with the custom object detector, we have provided some sample
images with respective annotations. Look into the repository folder called Chapter0
9/yolo/new_class/.

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool

Object Detection Using OpenCV and TensorFlow Chapter 9

[248]

Each image has its respective annotations, as shown in the following picture:

Figure 9.11: The relation between the image and the annotation which is shown here

Also, let's download the pre-trained weights from https:/ /pjreddie. com/ darknet/ yolo/ ,
which we will use to initialize our model, and which will train the custom object detector
on top of these pretrained weights:

wget https://pjreddie.com/media/files/yolo.weights

Installing all the dependencies
We will be using the Keras APIs with a TensorFlow approach to create the YOLOv2
architecture. Let's import all the dependencies:

pip install keras tensorflow tqdm numpy cv2 imgaug

Following is the code for this:

from keras.models import Sequential, Model
from keras.layers import Reshape, Activation, Conv2D, Input, MaxPooling2D,
BatchNormalization, Flatten, Dense, Lambda
from keras.layers.advanced_activations import LeakyReLU
from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard
from keras.optimizers import SGD, Adam, RMSprop

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

Object Detection Using OpenCV and TensorFlow Chapter 9

[249]

from keras.layers.merge import concatenate
import matplotlib.pyplot as plt
import keras.backend as K
import tensorflow as tf
import imgaug as ia
from tqdm import tqdm
from imgaug import augmenters as iaa
import numpy as np
import pickle
import os, cv2
from preprocessing import parse_annotation, BatchGenerator
from utils import WeightReader, decode_netout, draw_boxes

#Setting GPU configs
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = ""

It is always recommended to use GPUs to train any YOLO models.

Configuring the YOLO model
YOLO models are designed with the set of hyperparameter and some other configuration.
This configuration defines the type of model to construct, as well as other parameters of the
model such as the input image size and the list of anchors. You have two options at the
moment: tiny YOLO and full YOLO. The following code defines the type of model to
construct:

List of object that YOLO model will learn to detect from COCO dataset

#LABELS = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis
racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog',
'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining
table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell
phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

Label for the custom curated dataset.

Object Detection Using OpenCV and TensorFlow Chapter 9

[250]

LABEL = ['kangaroo']
IMAGE_H, IMAGE_W = 416, 416
GRID_H, GRID_W = 13 , 13
BOX = 5
CLASS = len(LABELS)
CLASS_WEIGHTS = np.ones(CLASS, dtype='float32')
OBJ_THRESHOLD = 0.3
NMS_THRESHOLD = 0.3
ANCHORS = [0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434,
7.88282, 3.52778, 9.77052, 9.16828]

NO_OBJECT_SCALE = 1.0
OBJECT_SCALE = 5.0
COORD_SCALE = 1.0
CLASS_SCALE = 1.0

BATCH_SIZE = 16
WARM_UP_BATCHES = 0
TRUE_BOX_BUFFER = 50

Configure the path of the pre-trained model and the images, as in the following code:

wt_path = 'yolo.weights'
train_image_folder = '/new_class/images/'
train_annot_folder = '/new_class/anno/'
valid_image_folder = '/new_class/images/'
valid_annot_folder = '/new_class/anno/'

Defining the YOLO v2 model
Now let's have a look at the model architecture of the YOLOv2 model:

the function to implement the organization layer (thanks to
github.com/allanzelener/YAD2K)
def space_to_depth_x2(x):
 return tf.space_to_depth(x, block_size=2)
input_image = Input(shape=(IMAGE_H, IMAGE_W, 3))
true_boxes = Input(shape=(1, 1, 1, TRUE_BOX_BUFFER , 4))

Layer 1
x = Conv2D(32, (3,3), strides=(1,1), padding='same', name='conv_1',
use_bias=False)(input_image)
x = BatchNormalization(name='norm_1')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)

Layer 2

Object Detection Using OpenCV and TensorFlow Chapter 9

[251]

x = Conv2D(64, (3,3), strides=(1,1), padding='same', name='conv_2',
use_bias=False)(x)
x = BatchNormalization(name='norm_2')(x)
x = LeakyReLU(alpha=0.1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)

Layer 3
Layer 4
Layer 23
For the entire architecture, please refer to the yolo/Yolo_v2_train.ipynb
notebook here:
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/maste
r/Chapter09/yolo/Yolo_v2_train.ipynb

The network architecture that we just created can be found here: https:/ /github. com/
PacktPublishing/Python- Deep- Learning- Projects/ blob/ master/ Chapter09/ Network_
architecture/network_ architecture. png

Following is the output:

Total params: 50,983,561
Trainable params: 50,962,889
Non-trainable params: 20,672

Training the model
Following are the steps to train the model:

Load the weights that we downloaded and use them to initialize the model:1.

weight_reader = WeightReader(wt_path)
weight_reader.reset()
nb_conv = 23
for i in range(1, nb_conv+1):
 conv_layer = model.get_layer('conv_' + str(i))
 if i < nb_conv:
 norm_layer = model.get_layer('norm_' + str(i))
 size = np.prod(norm_layer.get_weights()[0].shape)

 beta = weight_reader.read_bytes(size)
 gamma = weight_reader.read_bytes(size)
 mean = weight_reader.read_bytes(size)
 var = weight_reader.read_bytes(size)

 weights = norm_layer.set_weights([gamma, beta, mean, var])

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter09/Network_architecture/network_architecture.png

Object Detection Using OpenCV and TensorFlow Chapter 9

[252]

 if len(conv_layer.get_weights()) > 1:
 bias =
weight_reader.read_bytes(np.prod(conv_layer.get_weights()[1].shape)
)
 kernel =
weight_reader.read_bytes(np.prod(conv_layer.get_weights()[0].shape)
)
 kernel =
kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape)))
 kernel = kernel.transpose([2,3,1,0])
 conv_layer.set_weights([kernel, bias])
 else:
 kernel =
weight_reader.read_bytes(np.prod(conv_layer.get_weights()[0].shape)
)
 kernel =
kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape)))
 kernel = kernel.transpose([2,3,1,0])
 conv_layer.set_weights([kernel])

Randomize the weights of the last layer:2.

layer = model.layers[-4] # the last convolutional layer
weights = layer.get_weights()

new_kernel =
np.random.normal(size=weights[0].shape)/(GRID_H*GRID_W)
new_bias =
np.random.normal(size=weights[1].shape)/(GRID_H*GRID_W)

layer.set_weights([new_kernel, new_bias])

Generate the configurations as in the following code:3.

generator_config = {
 'IMAGE_H' : IMAGE_H,
 'IMAGE_W' : IMAGE_W,
 'GRID_H' : GRID_H,
 'GRID_W' : GRID_W,
 'BOX' : BOX,
 'LABELS' : LABELS,
 'CLASS' : len(LABELS),
 'ANCHORS' : ANCHORS,
 'BATCH_SIZE' : BATCH_SIZE,
 'TRUE_BOX_BUFFER' : 50,
}

Object Detection Using OpenCV and TensorFlow Chapter 9

[253]

Create a training and validation batch:4.

Training batch data
train_imgs, seen_train_labels =
parse_annotation(train_annot_folder, train_image_folder,
labels=LABELS)
train_batch = BatchGenerator(train_imgs, generator_config,
norm=normalize)

Validation batch data
valid_imgs, seen_valid_labels =
parse_annotation(valid_annot_folder, valid_image_folder,
labels=LABELS)
valid_batch = BatchGenerator(valid_imgs, generator_config,
norm=normalize, jitter=False)

Set early stop and checkpoint callbacks:5.

early_stop = EarlyStopping(monitor='val_loss',
 min_delta=0.001,
 patience=3,
 mode='min',
 verbose=1)

checkpoint = ModelCheckpoint('weights_coco.h5',
 monitor='val_loss',
 verbose=1,
 save_best_only=True,
 mode='min',
 period=1)

Use the following code to train the model:6.

tb_counter = len([log for log in
os.listdir(os.path.expanduser('~/logs/')) if 'coco_' in log]) + 1
tensorboard = TensorBoard(log_dir=os.path.expanduser('~/logs/') +
'coco_' + '_' + str(tb_counter),
 histogram_freq=0,
 write_graph=True,
 write_images=False)

optimizer = Adam(lr=0.5e-4, beta_1=0.9, beta_2=0.999,
epsilon=1e-08, decay=0.0)
#optimizer = SGD(lr=1e-4, decay=0.0005, momentum=0.9)
#optimizer = RMSprop(lr=1e-4, rho=0.9, epsilon=1e-08, decay=0.0)

Object Detection Using OpenCV and TensorFlow Chapter 9

[254]

model.compile(loss=custom_loss, optimizer=optimizer)

model.fit_generator(generator = train_batch,
 steps_per_epoch = len(train_batch),
 epochs = 100,
 verbose = 1,
 validation_data = valid_batch,
 validation_steps = len(valid_batch),
 callbacks = [early_stop, checkpoint,
tensorboard],
 max_queue_size = 3)

Following is the output:

Epoch 1/2
11/11 [==============================] - 315s 29s/step - loss: 3.6982 -
val_loss: 1.5416

Epoch 00001: val_loss improved from inf to 1.54156, saving model to
weights_coco.h5
Epoch 2/2
11/11 [==============================] - 307s 28s/step - loss: 1.4517 -
val_loss: 1.0636

Epoch 00002: val_loss improved from 1.54156 to 1.06359, saving model to
weights_coco.h5

Following is the TensorBoard plots output for just two epochs:

Object Detection Using OpenCV and TensorFlow Chapter 9

[255]

Figure 9.12: The figure represents the loss plots for 2 epochs

Object Detection Using OpenCV and TensorFlow Chapter 9

[256]

Evaluating the model
Once the training is complete, let's perform the prediction by feeding an input image into
the model:

First we will load the model into the memory:1.

model.load_weights("weights_coco.h5")

Now set the test image path and read it:2.

input_image_path = "my_test_image.jpg"
image = cv2.imread(input_image_path)
dummy_array = np.zeros((1,1,1,1,TRUE_BOX_BUFFER,4))
plt.figure(figsize=(10,10))

Normalize the image:3.

input_image = cv2.resize(image, (416, 416))
input_image = input_image / 255.
input_image = input_image[:,:,::-1]
input_image = np.expand_dims(input_image, 0)

Make a prediction:4.

netout = model.predict([input_image, dummy_array])

boxes = decode_netout(netout[0],
 obj_threshold=OBJ_THRESHOLD,
 nms_threshold=NMS_THRESHOLD,
 anchors=ANCHORS,
 nb_class=CLASS)

image = draw_boxes(image, boxes, labels=LABELS)

plt.imshow(image[:,:,::-1]); plt.show()

Object Detection Using OpenCV and TensorFlow Chapter 9

[257]

So, here are some of the results:

Object Detection Using OpenCV and TensorFlow Chapter 9

[258]

Congratulations—you have developed a state-of-the-art object detector that is very fast and
reliable.

We learned about building a world class object detection model using YOLO architecture
and the results seems to be very promising. Now you can also deploy the same on other
mobile devices or Raspberry Pi.

Object Detection Using OpenCV and TensorFlow Chapter 9

[259]

Image segmentation
Image segmentation is the process of categorizing what is in a picture at a pixel level. For
example, if you were given a picture with a person in it, separating the person from the
image is known as segmentation and is done using pixel-level information.

We will be using the COCO dataset for image segmentation.

Following is what you should do before executing any of the SegNet scripts:

cd SegNet
wget http://images.cocodataset.org/zips/train2014.zip
mkdir images
unzip train2014.zip -d images

When executing SegNet scripts, make sure that your present working directory is SegNet.

Importing all the dependencies
Make sure to restart the session before proceeding forward.

We will be using numpy, pandas, keras, pylab, skimage, matplotlib, and
pycocotools, as in the following code:

from __future__ import absolute_import
from __future__ import print_function

import pylab
import numpy as np
import pandas as pd
import skimage.io as io
import matplotlib.pyplot as plt

from pycocotools.coco import COCO
pylab.rcParams['figure.figsize'] = (8.0, 10.0)
import cv2

import keras.models as models, Sequential
from keras.layers import Layer, Dense, Dropout, Activation, Flatten,
Reshape, Permute
from keras.layers import Conv2D, MaxPool2D, UpSampling2D, ZeroPadding2D
from keras.layers import BatchNormalization

from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from keras.optimizers import Adam

Object Detection Using OpenCV and TensorFlow Chapter 9

[260]

import keras
keras.backend.set_image_dim_ordering('th')

from tqdm import tqdm
import itertools
%matplotlib inline

Exploring the data
We will start off by defining the location of the annotation file we will be using for image
segmentation, and then we will initialize the COCO API:

set the location of the annotation file associated with the train images
annFile='annotations/annotations/instances_train2014.json'

initialize COCO api with
coco = COCO(annFile)

Following should be the output:

loading annotations into memory...
Done (t=12.84s)
creating index...
index created!

Images
Since we are building a binary segmentation model, let us consider the images from the
images/train2014 folder that are only tagged with the person label so that we can
segment the person out of the image. The COCO API provides us with easy-to-use
methods, two of which are the getCatIds and getImgIds. The following snippet will help
us extract the image IDs of all the images with the label person tagged to it:

extract the category ids using the label 'person'
catIds = coco.getCatIds(catNms=['person'])

extract the image ids using the catIds
imgIds = coco.getImgIds(catIds=catIds)

print number of images with the tag 'person'
print("Number of images with the tag 'person' :" ,len(imgIds))

This should be the output:

Number of images with the tag 'person' : 45174

Object Detection Using OpenCV and TensorFlow Chapter 9

[261]

Now let us use the following snippet to plot an image:

extract the details of image with the image id
img = coco.loadImgs(imgIds[2])[0]
print(img)

load the image using the location of the file listed in the image
variable
I = io.imread('images/train2014/'+img['file_name'])

display the image
plt.imshow(I)

Following should be the output:

{'height': 426, 'coco_url':
'http://images.cocodataset.org/train2014/COCO_train2014_000000524291.jpg',
'date_captured': '2013-11-18 09:59:07', 'file_name':
'COCO_train2014_000000524291.jpg', 'flickr_url':
'http://farm2.staticflickr.com/1045/934293170_d1b2cc58ff_z.jpg', 'width':
640, 'id': 524291, 'license': 3}

We get the following picture as an output:

Figure 9.13: The plot representation a sample image from the dataset.

Object Detection Using OpenCV and TensorFlow Chapter 9

[262]

In the previous code snippet, we feed in an image ID to the loadImgs method of COCO to
extract the details of the image it corresponds to. If you look at the output of the
img variable, one of the keys listed is the file_name key. This key holds the name of the
image located in the images/train2014/ folder.

Then we read the image using the imread method of the io module we have already
imported and plot it using matplotlib.pyplot.

Annotations
Now let us load the annotation corresponding to the previous picture and plot the
annotation on top of the picture. The coco.getAnnIds() function helps load the
annotation info of an image using its ID. Then, with the help of the coco.loadAnns()
function, we load the annotations and plot it using the coco.showAnns() function. It is
important that you first plot the image and then perform the annotation operations as
shown in the following code snippet:

display the image
plt.imshow(I)

extract the annotation id
annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)

load the annotation
anns = coco.loadAnns(annIds)

plot the annotation on top of the image
coco.showAnns(anns)

Object Detection Using OpenCV and TensorFlow Chapter 9

[263]

Following should be the output:

Figure 9.14: Visualizing annotation on an image

To be able to obtain the annotation label array, use the coco.annToMask() function as
shown in the following code snippet. This array will help us form the segmentation target:

build the mask for display with matplotlib
mask = coco.annToMask(anns[0])

display the mask
plt.imshow(mask)

Following should be the output:

Figure 9.15: Visualizing just the annotation

Object Detection Using OpenCV and TensorFlow Chapter 9

[264]

Preparing the data
Let us now define a data_list() function that will automate the process of loading an
image and its segmentation array into memory and resize them to the shape of 360*480
using OpenCV. This function returns two lists containing images and segmentation array:

def data_list(imgIds, count = 12127, ratio = 0.2):
 """Function to load image and its target into memory."""
 img_lst = []
 lab_lst = []

 for x in tqdm(imgIds[0:count]):
 # load image details
 img = coco.loadImgs(x)[0]
 # read image
 I = io.imread('images/train2014/'+img['file_name'])
 if len(I.shape)<3:
 continue
 # load annotation information
 annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds,
iscrowd=None)
 # load annotation
 anns = coco.loadAnns(annIds)
 # prepare mask
 mask = coco.annToMask(anns[0])
 # This condition makes sure that we select images having only one
person
 if len(np.unique(mask)) == 2:
 # Next condition selects images where ratio of area covered by
the
 # person to the entire image is greater than the ratio
parameter
 # This is done to not have large class imbalance
 if (len(np.where(mask>0)[0])/len(np.where(mask>=0)[0])) > ratio
:
 # If you check, generated mask will have 2 classes i.e 0
and 2
 # (0 - background/other, 1 - person).
 # to avoid issues with cv2 during the resize operation
 # set label 2 to 1, making label 1 as the person.
 mask[mask==2] = 1
 # resize image and mask to shape (480, 360)
 I= cv2.resize(I, (480,360))
 mask = cv2.resize(mask, (480,360))

 # append mask and image to their lists
 img_lst.append(I)

Object Detection Using OpenCV and TensorFlow Chapter 9

[265]

 lab_lst.append(mask)
 return (img_lst, lab_lst)

get images and their labels
img_lst, lab_lst = data_list(imgIds)

print('Sum of images for training, validation and testing :', len(img_lst))
print('Unique values in the labels array :', np.unique(lab_lst[0]))

Following should be the output:

Sum of images for training, validation and testing : 1997
Unique values in the labels array : [0 1]

Normalizing the image
First, let's define the make_normalize() function, which accepts an image and performs
the histogram normalization operation on it. The return object is a normalized array:

def make_normalize(img):
 """Function to histogram normalize images."""
 norm_img = np.zeros((img.shape[0], img.shape[1], 3),np.float32)

 b=img[:,:,0]
 g=img[:,:,1]
 r=img[:,:,2]

 norm_img[:,:,0]=cv2.equalizeHist(b)
 norm_img[:,:,1]=cv2.equalizeHist(g)
 norm_img[:,:,2]=cv2.equalizeHist(r)

 return norm_img

plt.figure(figsize = (14,5))
plt.subplot(1,2,1)
plt.imshow(img_lst[9])
plt.title(' Original Image')
plt.subplot(1,2,2)
plt.imshow(make_normalize(img_lst[9]))
plt.title(' Histogram Normalized Image')

Following should be the output:

Object Detection Using OpenCV and TensorFlow Chapter 9

[266]

Figure 9.16: Before and After histogram normalization on an image

In the preceding screenshot, we see the original picture on the left, which is very visible,
and on the right we see the normalized picture, which is not at all visible.

Encoding
With the make_normalize() function defined, let's now define a make_target function.
This function accepts the segmentation array of shape (360,480) and then returns a
segmentation target of shape (360,480,2). In the target, channel 0 represents the
background and will have 1 in locations that represent the background in the image and
zero elsewhere. Channel 1 represents the person and will have 1 in locations
that represent the person in the image and 0 elsewhere. The following code implements the
function:

def make_target(labels):
 """Function to one hot encode targets."""
 x = np.zeros([360,480,2])
 for i in range(360):
 for j in range(480):
 x[i,j,labels[i][j]]=1
 return x

plt.figure(figsize = (14,5))
plt.subplot(1,2,1)
plt.imshow(make_target(lab_lst[0])[:,:,0])
plt.title('Background')
plt.subplot(1,2,2)
plt.imshow(make_target(lab_lst[0])[:,:,1])
plt.title('Person')

Object Detection Using OpenCV and TensorFlow Chapter 9

[267]

Following should be the output:

Figure 9.17: Visualizing the encoded target arrays

Model data
We will now define a function called model_data() that accepts a list of images and a list
of labels. This function will apply the make_normalize() function on each image for the
purpose of normalizing, and it will apply the make_encode() function on each
label/segmentation array to obtain the encoded array.

The return of this function is two lists, one containing the normalized images and the other
containing the corresponding target arrays:

def model_data(images, labels):
 """Function to perform normalize and encode operation on each image."""
 # empty label and image list
 array_lst = []
 label_lst=[]
 # apply normalize function on each image and encoding function on each
label
 for x,y in tqdm(zip(images, labels)):
 array_lst.append(np.rollaxis(normalized(x), 2))
 label_lst.append(make_target(y))
 return np.array(array_lst), np.array(label_lst)

Get model data
train_data, train_lab = model_data(img_lst, lab_lst)

Object Detection Using OpenCV and TensorFlow Chapter 9

[268]

flat_image_shape = 360*480

reshape target array
train_label = np.reshape(train_lab,(-1,flat_image_shape,2))

test data
test_data = test_data[1900:]
validation data
val_data = train_data[1500:1900]
train data
train_data = train_data[:1500]

test label
test_label = test_label[1900:]
validation label
val_label = train_label[1500:1900]
train label
train_label = train_label[:1500]

In the preceding snippet, we have also split the data into train, test, and validation sets,
with the train set containing 1500 data points, the validation set containing 400 data
points, and the test set containing 97 data points.

Defining hyperparameters
The following are some of the defined hyperparameters that we will be using throughout
the code, and they are totally configurable:

define optimizer
optimizer = Adam(lr=0.002)

input shape to the model
input_shape=(3, 360, 480)

training batchsize
batch_size = 6

number of training epochs
nb_epoch = 60

To learn more about optimizers and their APIs in Keras, visit https:/ /
keras. io/ optimizers/ . Reduce batch_size if you get a resource
exhaustion error with respect to the GPU.

https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/
https://keras.io/optimizers/

Object Detection Using OpenCV and TensorFlow Chapter 9

[269]

Experiment with different learning rates, optimizers, and batch_size
to see how these factors affect the quality of your model, and if you get
better results, show them to the deep learning community.

Define SegNet
For the purpose of image segmentation, we will build a SegNet model, which is very
similar to the autoencoder we built in Chapter 8: Handwritten Digits Classification Using
ConvNets, as shown:

Figure 9.18: SegNet architecture used in this chapter

Object Detection Using OpenCV and TensorFlow Chapter 9

[270]

The SegNet model we'll define will accept (3,360, 480) images as input with (172800, 2)
segmentation arrays as the targets, and it will have the following characteristics in the
encoder:

The first layer is a Convolution 2D layer with 64 filters of size 3*3, with
activation as relu, followed by batch normalization, followed by
downsampling with MaxPooling2D of size 2*2.
The second layer is a Convolution 2D layer with 128 filters of size 3*3, with
activation as relu, followed by batch normalization, followed by
downsampling with MaxPooling2D of size 2*2.
The third layer is a Convolution 2D layer with 256 filters of size 3*3, with
activation as relu, followed by batch normalization, followed by
downsampling with MaxPooling2D of size 2*2.
The fourth layer is again a Convolution 2D layer with 512 filters of size 3*3, with
activation as relu, followed by batch normalization.

And the model will have the following characteristics in the decoder:

The first layer is a Convolution 2D layer with 512 filters of size 3*3, with
activation as relu, followed by batch normalization, followed by
downsampling with UpSampling2D of size 2*2.
The second layer is a Convolution 2D layer with 256 filters of size 3*3, with
activation as relu, followed by batch normalization, followed by
downsampling with UpSampling2D of size 2*2.
The third layer is a Convolution 2D layer with 128 filters of size 3*3, with
activation as relu, followed by batch normalization, followed by
downsampling with UpSampling2D of size 2*2.
The fourth layer is a Convolution 2D layer with 64 filters of size 3*3 with
activation as relu, followed by batch normalization.
The fifth layer is a Convolution 2D layer with 2 filters of size 1*1, followed by
Reshape, Permute and a softmax as activation layer for predicting scores.

Object Detection Using OpenCV and TensorFlow Chapter 9

[271]

The model is described with the following code:

model = Sequential()
Encoder
model.add(Layer(input_shape=input_shape))
model.add(ZeroPadding2D())
model.add(Conv2D(filters=64, kernel_size=(3,3), padding='valid',
activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))

model.add(ZeroPadding2D())
model.add(Conv2D(filters=128, kernel_size=(3,3), padding='valid',
activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))

model.add(ZeroPadding2D())
model.add(Conv2D(filters=256, kernel_size=(3,3), padding='valid',
activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))

model.add(ZeroPadding2D())
model.add(Conv2D(filters=512, kernel_size=(3,3), padding='valid',
activation='relu'))
model.add(BatchNormalization())

Decoder
For the remaining part of this section of the code refer to the
segnet.ipynb file in the SegNet folder. Here is the github link:
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/maste
r/Chapter09

Object Detection Using OpenCV and TensorFlow Chapter 9

[272]

Compiling the model
With the model defined, compile the model with 'categorical_crossentropy' as loss
and optimizer as Adam, as defined by the optimizer variable in the hyperparameters
section. We will also define ReduceLROnPlateau to reduce the learning rate as needed
when training, as follows:

compile model
model.compile(loss="categorical_crossentropy", optimizer=Adam(lr=0.002),
metrics=["accuracy"])

use ReduceLROnPlateau to adjust the learning rate
reduceLROnPlat = ReduceLROnPlateau(monitor='val_acc', factor=0.75,
patience=5,
 min_delta=0.005, mode='max', cooldown=3, verbose=1)

callbacks_list = [reduceLROnPlat]

Fitting the model
With the model compiled, we will now fit the model on the data using the fit method of
the model. Here, since we are training on a small set of data, it is important to set the
parameter shuffle to True so that the images are shuffled after each epoch:

fit the model
history = model.fit(train_data, train_label, callbacks=callbacks_list,
 batch_size=batch_size, epochs=nb_epoch,
 verbose=1, shuffle = True, validation_data = (val_data,
val_label))

This should be the output:

Figure 9.19: Training output

Object Detection Using OpenCV and TensorFlow Chapter 9

[273]

The following shows the accuracy and loss plots:

Figure 9.20: Plot showing training progression

Testing the model
With the model trained, evaluate the model on test data, as in the following:

loss,acc = model.evaluate(test_data, test_label)
print('Loss :', loss)
print('Accuracy :', acc)

This should be the output:

97/97 [==============================] - 7s 71ms/step
Loss : 0.5390811630131043
Accuracy : 0.7633129960482883

We see that the SegNet model we built has a loss of 0.539 and accuracy of 76.33 on test
images.

Let's plot the test images and their corresponding generated segmentations to understand
model learning:

for i in range(3):
 plt.figure(figsize = (10,3))
 plt.subplot(1,2,1)
 plt.imshow(img_lst[1900+i])
 plt.title('Input')
 plt.subplot(1,2,2)
plt.imshow(model.predict_classes(test_data[i:(i+1)*1]).reshape(360,480))
 plt.title('Segmentation')

Object Detection Using OpenCV and TensorFlow Chapter 9

[274]

Following should be the output:

Figure 9.21: Segmentation generated on test images

From the preceding figure, we see that the model was able to segment the person from the
image.

Object Detection Using OpenCV and TensorFlow Chapter 9

[275]

Conclusion
The first part of the project was to build an object detection classifier using YOLO
architecture in Keras.

The second part of the project was to build a binary image segmentation model on COCO
images that contain just a person, aside from the background. The goal was to build a good
enough model to segment out the person from the background in the image.

The model we build by training on 1500 images, each of shape 360*480*3, has an accuracy
of 79% on train data, and 78% on validation and test data. The model is successfully able to
segment the person in the image, but the borders of the segmentations are slightly off from
where they should be. This is due to using a small training set. Considering the number of
images used for training, the model did a good job of segmenting.

There are more images available in this dataset that can be used for training, and it might
take over a day to train on all of them using a Nvidia Tesla K80 GPU, but doing so will give
you really good segmentation.

Summary
In the first part of this chapter, we learnt how to build a RESTful service for object detection
using an existing classifier, and we also learned to build an accurate object detector using
the YOLO architecture object detection classifier using Keras, while also implementing
transfer learning. In the second part of the chapter, we understood what image
segmentation is and built an image segmentation model on images from the COCO
dataset. We also tested the performance of the object detector and the image segmenter on
test data, and determined that we succeeded in achieving the goal.

10
Building Face Recognition

Using FaceNet
In the previous chapter, we learned how to detect objects in an image. In this chapter, we
will look into a specific use case of object detection—face recognition. Face recognition is a
combination of two major operations: face detection, followed by face classification.

The (hypothetical) client that provides our business use case for us in this project is a high-
performance computing data center Tier III, certified for sustainability. They have designed
the facility to meet the very highest standards for protection against natural disasters, with
many redundant systems.

The facility currently has ultra-high security protocols in place to prevent malicious, man-
made disasters, and they are looking to augment their security profile with facial
recognition for access to secure areas throughout the facility.

The stakes are high, as the servers they house and maintain process some of the most
sensitive, valuable, and influential data in the world:

Building Face Recognition Using FaceNet Chapter 10

[277]

This facial recognition system would need to be able to accurately identify not only their
own employees, but employees of their clients, who occasionally tour the data center for
inspection.

They have asked us to provide a POC for this intelligence-based capability, for review and
later inclusion throughout their data center.

So, in this chapter, we will learn how to build a world-class face recognition system. We
will define the pipeline as follows:

Face detection: First, look at an image and find all the possible faces in it1.
Face extraction: Second, focus on each face image and understand it, for example2.
if it is turned sideways or badly lit
Feature extraction: Third, extract unique features from the faces using3.
convolutional neural networks (CNNs)
Classifier training: Finally, compare the unique features of that face to all the4.
people already known, to determine the person's name

You will learn the main ideas behind each step, and how to build your own facial
recognition system in Python using the following deep-learning technologies:

dlib (http:/ / dlib. net/): Provides a library that can be used for facial detection
and alignment.
OpenFace (https:/ / cmusatyalab. github. io/openface/): A deep-learning facial
recognition model, developed by Brandon Amos et al (http:/ /bamos. github. io/
). It is able to run on real-time mobile devices as well.
FaceNet (https:/ /arxiv. org/ abs/1503. 03832): A CNN architecture that is used
for feature extraction. For a loss function, FaceNet uses triplet loss. Triplet loss
relies on minimizing the distance from positive examples, while maximizing the
distance from negative examples.

http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
https://cmusatyalab.github.io/openface/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832

Building Face Recognition Using FaceNet Chapter 10

[278]

Setup environment
Since setup can get very complicated and take a long time, which is not on the agenda for
this chapter, we will be building a Docker image that contains all the dependencies,
including dlib, OpenFace, and FaceNet.

Getting the code
Fetch the code that we will use to build face recognition from the repository:

git clone https://github.com/PacktPublishing/Python-Deep-Learning-Projects
cd Chapter10/

Building the Docker image
Docker is a container platform that simplifies deployment. It solves the problem of
installing software dependencies onto different server environments. If you are new to
Docker, you can read more at https:/ / www. docker. com/ .

To install Docker on Linux machines, run the following command:

curl https://get.docker.com | sh

For other systems such as macOS and Windows, visit https:/ /docs. docker. com/install/
. You can skip this step if you already have Docker installed.

https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/

Building Face Recognition Using FaceNet Chapter 10

[279]

Once Docker is installed, you should be able to use the docker command in the Terminal,
as follows:

Building Face Recognition Using FaceNet Chapter 10

[280]

Now we will create a docker file that will install all the dependencies, including OpenCV,
dlib, and TensorFlow. This file is available in the repository at https:/ /github. com/
PacktPublishing/Python- Deep- Learning- Projects/ tree/ master/ Chapter10/ Dockerfile:

#Dockerfile for our env setup
FROM tensorflow/tensorflow:latest

RUN apt-get update -y --fix-missing
RUN apt-get install -y ffmpeg
RUN apt-get install -y build-essential cmake pkg-config \
 libjpeg8-dev libtiff5-dev libjasper-dev libpng12-dev \
 libavcodec-dev libavformat-dev libswscale-dev libv4l-
dev \
 libxvidcore-dev libx264-dev \
 libgtk-3-dev \
 libatlas-base-dev gfortran \
 libboost-all-dev \
 python3 python3-dev python3-numpy

RUN apt-get install -y wget vim python3-tk python3-pip

WORKDIR /
RUN wget -O opencv.zip https://github.com/Itseez/opencv/archive/3.2.0.zip \
 && unzip opencv.zip \
 && wget -O opencv_contrib.zip
https://github.com/Itseez/opencv_contrib/archive/3.2.0.zip \
 && unzip opencv_contrib.zip

install opencv3.2
RUN cd /opencv-3.2.0/ \
 && mkdir build \
 && cd build \
 && cmake -D CMAKE_BUILD_TYPE=RELEASE \
 -D INSTALL_C_EXAMPLES=OFF \
 -D INSTALL_PYTHON_EXAMPLES=ON \
 -D OPENCV_EXTRA_MODULES_PATH=/opencv_contrib-3.2.0/modules \
 -D BUILD_EXAMPLES=OFF \
 -D BUILD_opencv_python2=OFF \
 -D BUILD_NEW_PYTHON_SUPPORT=ON \
 -D CMAKE_INSTALL_PREFIX=$(python3 -c "import sys;
print(sys.prefix)") \
 -D PYTHON_EXECUTABLE=$(which python3) \
 -D WITH_FFMPEG=1 \
 -D WITH_CUDA=0 \
 .. \
 && make -j8 \
 && make install \
 && ldconfig \

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter10/Dockerfile

Building Face Recognition Using FaceNet Chapter 10

[281]

 && rm /opencv.zip \
 && rm /opencv_contrib.zip

Install dlib 19.4
RUN wget -O dlib-19.4.tar.bz2 http://dlib.net/files/dlib-19.4.tar.bz2 \
 && tar -vxjf dlib-19.4.tar.bz2

RUN cd dlib-19.4 \
 && cd examples \
 && mkdir build \
 && cd build \
 && cmake .. \
 && cmake --build . --config Release \
 && cd /dlib-19.4 \
 && pip3 install setuptools \
 && python3 setup.py install \
 && cd $WORKDIR \
 && rm /dlib-19.4.tar.bz2

ADD $PWD/requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt

CMD ["/bin/bash"]

Now execute the following command to build the image:

docker build -t hellorahulk/facerecognition -f Dockerfile

It will take approximately 20-30 mins to install all the dependencies and build the
Docker image:

Downloading pre-trained models
We will download a few more artifacts, which we will use and discuss in detail later in this
chapter.

Building Face Recognition Using FaceNet Chapter 10

[282]

Download dlib's face landmark predictor, using the following commands:

curl -O http://dlib.net/

files/shape_predictor_68_face_landmarks.dat.bz2
bzip2 -d shape_predictor_68_face_landmarks.dat.bz2
cp shape_predictor_68_face_landmarks.dat facenet/

Download the pre-trained Inception model:

curl -L -O https://www.dropbox.com/s/hb75vuur8olyrtw/Resnet-185253.pb
cp Resnet-185253.pb pre-model/

Once we have all the components ready, the folder structure should look roughly as
follows:

The folder structure of the code

Building Face Recognition Using FaceNet Chapter 10

[283]

Make sure that you keep the images of the person you want to train the model with in
the /data folder, and name the folder as
/data/<class_name>/<class_name>_000<count>.jpg.

The /output folder will contain the trained SVM classifier and all preprocessed images
inside a subfolder /intermediate, using the same folder nomenclature as in the /data
folder.

Pro tip: For better performance in terms of accuracy, always keep more
than five samples of images for each class. This will help the model to
converge faster and generalize better.

Building the pipeline
Facial recognition is a biometric solution that measures the unique characteristics of
faces. To perform facial recognition, you'll need a way to uniquely represent a face.

The main idea behind any face recognition system is to break the face down into unique
features, and then use those features to represent identity.

Building a robust pipeline for feature extraction is very important, as it
will directly affect the performance and accuracy of our system. In 1960,
Woodrow Bledsoe used a technique involving marking the coordinates of
prominent features of a face. Among these features were the location of
hairline, eyes, and nose.

Later, in 2005, a much robust technique was invented, Histogram of
Oriented Gradients (HOG). This captured the orientation of the dense
pixels in the provided image.

The most advanced technique yet, outperforming all others at the time of
writing, uses CNNs. In 2015, researchers from Google released a paper
describing their system, FaceNet (https:/ /arxiv. org/ abs/ 1503. 03832),
which uses a CNN relying on image pixels to identify features, rather than
extracting them manually.

https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832

Building Face Recognition Using FaceNet Chapter 10

[284]

To build the face recognition pipeline, we will devise the following flow (represented by
orange blocks in the diagram):

Preprocessing: Finding all the faces, fixing the orientation of the faces
Feature extraction: Extracting unique features from the processed faces
Classifier training: Training the SVM classifier with 128 dimensional features

The diagram is as follows:

This image illustrates the end to end flow for face recognition pipeline

We will look into each of the steps, and build our world-class face recognition system.

Building Face Recognition Using FaceNet Chapter 10

[285]

Preprocessing of images
The first step in our pipeline is face detection. We will then align the faces, extract features,
and then finalize our preprocessing on Docker.

Face detection
Obviously, it's very important to first locate the faces in the given photograph so that they
can be fed into the later part of the pipeline. There are lots of ways to detect faces, such as
detecting skin textures, oval/round shape detection, and other statistical methods. We're
going to use a method called HOG.

HOG is a feature descriptor that represents the distribution (histograms)
of directions of gradients (oriented gradients), which are used as features.
Gradients (x and y derivatives) of an image are useful, because the
magnitude of gradients is large around edges and corners (regions of
abrupt intensity changes), which are excellent features in a given image.

To find faces in an image, we'll convert the image into greyscale. Then we'll look at every
single pixel in our image, one at a time, and try to extract the orientation of the pixels using
the HOG detector. We'll be using dlib.get_frontal_face_detector() to create our
face detector.

The following small snippet demonstrates the HOG-based face detector being used in the
implementation:

import sys
import dlib
from skimage import io

Create a HOG face detector using the built-in dlib class
face_detector = dlib.get_frontal_face_detector()

Load the image into an array
file_name = 'sample_face_image.jpeg'
image = io.imread(file_name)

Run the HOG face detector on the image data.
The result will be the bounding boxes of the faces in our image.
detected_faces = face_detector(image, 1)

print("Found {} faces.".format(len(detected_faces)))

Building Face Recognition Using FaceNet Chapter 10

[286]

Loop through each face we found in the image
for i, face_rect in enumerate(detected_faces):
 # Detected faces are returned as an object with the coordinates
 # of the top, left, right and bottom edges
 print("- Face #{} found at Left: {} Top: {} Right: {} Bottom:
{}".format(i+1, face_rect.left(), face_rect.top(), face_rect.right(),
face_rect.bottom()))

The output is as follows:

Found 1 faces.
-Face #1 found at Left: 365 Top: 365 Right: 588 Bottom: 588

Aligning faces
Once we know the region in which the face is located, we can perform various kinds of
isolation techniques to extract the face from the overall image.

One challenge to deal with is that faces in images may be turned in different directions,
making them look different to the machine.

To solve this issue, we will warp each image so that the eyes and lips are always in the
sample place in the provided images. This will make it a lot easier for us to compare faces
in the next steps. To do so, we are going to use an algorithm called face landmark
estimation.

The basic idea is we will come up with 68 specific points (called landmarks)
that exist on every face—the top of the chin, the outside edge of each eye,
the inner edge of each eyebrow, and so on. Then we will train a machine
learning algorithm to be able to find these 68 specific points on any face.

Building Face Recognition Using FaceNet Chapter 10

[287]

The 68 landmarks we will locate on every face are shown in the following diagram:

This image was created by Brandon Amos (http:/ /bamos. github. io/), who works
on OpenFace (https:/ /github. com/ cmusatyalab/ openface).

Here is a small snippet demonstrating how to use face landmarks, which we downloaded
in the Setup environment section:

import sys
import dlib
import cv2
import openface

predictor_model = "shape_predictor_68_face_landmarks.dat"

Create a HOG face detector , Shape Predictor and Aligner
face_detector = dlib.get_frontal_face_detector()
face_pose_predictor = dlib.shape_predictor(predictor_model)
face_aligner = openface.AlignDlib(predictor_model)

Take the image file name from the command line

http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
http://bamos.github.io/
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface
https://github.com/cmusatyalab/openface

Building Face Recognition Using FaceNet Chapter 10

[288]

file_name = 'sample_face_image.jpeg'

Load the image
image = cv2.imread(file_name)

Run the HOG face detector on the image data
detected_faces = face_detector(image, 1)

print("Found {} faces.".format(len(detected_faces))

Loop through each face we found in the image
for i, face_rect in enumerate(detected_faces):

 # Detected faces are returned as an object with the coordinates
 # of the top, left, right and bottom edges
 print("- Face #{} found at Left: {} Top: {} Right: {} Bottom:
{}".format(i, face_rect.left(), face_rect.top(), face_rect.right(),
face_rect.bottom()))

 # Get the the face's pose
 pose_landmarks = face_pose_predictor(image, face_rect)

 # Use openface to calculate and perform the face alignment
 alignedFace = face_aligner.align(534, image, face_rect,
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)

 # Save the aligned image to a file
 cv2.imwrite("aligned_face_{}.jpg".format(i), alignedFace)

Using this, we can perform various basic image transformations such as rotation and
scaling while preserving parallel lines. These are also known as affine transformations
(https://en.wikipedia. org/ wiki/ Affine_ transformation).

The output is as follows:

https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation

Building Face Recognition Using FaceNet Chapter 10

[289]

With segmentation, we solved finding the largest face in an image, and with alignment,
we standardized the input image to be in the center based on the location of eyes and
bottom lip.

Here is a sample from our dataset, showing the raw image and processed image:

Building Face Recognition Using FaceNet Chapter 10

[290]

Feature extraction
Now that we've segmented and aligned the data, we'll generate vector embeddings of each
identity. These embeddings can then be used as input to a classification, regression, or
clustering task.

This process of training a CNN to output face embeddings requires a lot of data and
computer power. However, once the network has been trained, it can generate
measurements for any face, even ones it has never seen before! So this step only needs to be
done once.

For convenience, we have provided a model that has been pre-trained on Inception-Resnet-
v1, which you can run over any face image to get the 128 dimension feature vectors. We
downloaded this file in the Setup environment section, and it's located in the /pre-
model/Resnet-185253.pb directory.

If you want to try this step yourself, OpenFace provides a Lua script
(https:/ /github. com/ cmusatyalab/ openface/ blob/ master/ batch-
represent/ batch- represent. lua) that will generate embeddings for all
images in a folder and write them to a CSV file.

The code to create the embeddings for the input images can be found further after the
paragraph. The code is available in the repository at https:/ / github. com/
PacktPublishing/Python- Deep- Learning- Projects/ blob/ master/ Chapter10/ facenet/
train_classifier.py.

In the process, we are loading trained components from the Resnet model such
as embedding_layer, images_placeholder, and phase_train_placeholder, along
with the images and the labels:

def _create_embeddings(embedding_layer, images, labels, images_placeholder,
phase_train_placeholder, sess):
 """
 Uses model to generate embeddings from :param images.
 :param embedding_layer:
 :param images:
 :param labels:
 :param images_placeholder:
 :param phase_train_placeholder:
 :param sess:
 :return: (tuple): image embeddings and labels
 """
 emb_array = None
 label_array = None

https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/cmusatyalab/openface/blob/master/batch-represent/batch-represent.lua
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter10/facenet/train_classifier.py

Building Face Recognition Using FaceNet Chapter 10

[291]

 try:
 i = 0
 while True:
 batch_images, batch_labels = sess.run([images, labels])
 logger.info('Processing iteration {} batch of size:
{}'.format(i, len(batch_labels)))
 emb = sess.run(embedding_layer,
 feed_dict={images_placeholder: batch_images,
phase_train_placeholder: False})

 emb_array = np.concatenate([emb_array, emb]) if emb_array is
not None else emb
 label_array = np.concatenate([label_array, batch_labels]) if
label_array is not None else batch_labels
 i += 1

 except tf.errors.OutOfRangeError:
 pass

 return emb_array, label_array

Here is a quick view of the embedding creating process. We fed the image and the label
data along with few components from the pre-trained model:

The output of the process will be a vector of 128 dimensions, representing the facial image.

Building Face Recognition Using FaceNet Chapter 10

[292]

Execution on Docker
We will implement preprocessing on our Docker image. We'll mount the project
directory as a volume inside the Docker container (using a -v flag), and run the
preprocessing script on the input data. The results will be written to a directory specified
with command-line arguments.

The align_dlib.py file is sourced from CMU. It provides methods for detecting a face in
an image, finding facial landmarks, and aligning these landmarks:

docker run -v $PWD:/facerecognition \
-e PYTHONPATH=$PYTHONPATH:/facerecognition \
-it hellorahulk/facerecognition python3
/facerecognition/facenet/preprocess.py \
--input-dir /facerecognition/data \
--output-dir /facerecognition/output/intermediate \
--crop-dim 180

In the preceding command we are setting the input data path using a --input-dir flag.
This directory should contain the images that we want to process.

We are also setting the output path using a --output-dir flag, which will store the
segmented aligned images. We will be using these output images as input for training.

The --crop-dim flag is to define the output dimensions of the image. In this case, all
images will be stored at 180 × 180.

The outcome of this process will be an /intermediate folder being created inside
the /output folder, containing all the preprocessed images.

Training the classifier
First, we'll load the segmented and aligned images from the input directory --input-
dir flag. While training, we'll apply preprocessing to the image. This preprocessing will
add random transformations to the image, creating more images to train on.

These images will be fed in a batch size of 128 into the pre-trained model. This model will
return a 128-dimensional embedding for each image, returning a 128 x 128 matrix for each
batch.

Building Face Recognition Using FaceNet Chapter 10

[293]

After these embeddings are created, we'll use them as feature inputs into a scikit-learn SVM
classifier to train on each identity.

The following command will start the process, and train the classifier. The classifier will be
dumped as a pickle file in the path defined in the --classifier-path argument:

docker run -v $PWD:/facerecognition \
-e PYTHONPATH=$PYTHONPATH:/facerecognition \
-it hellorahulk/facerecognition \
python3 /facerecognition/facenet/train_classifier.py \
--input-dir /facerecognition/output/intermediate \
--model-path /facerecognition/pre-model/Resnet-185253.pb \
--classifier-path /facerecognition/output/classifier.pkl \
--num-threads 16 \
--num-epochs 25 \
--min-num-images-per-class 10 \
--is-train

A few custom arguments are tunable:

--num-threads: Modify according to the CPU/GPU config
--num-epochs: Change according to your dataset
--min-num-images-per-class: Change according to your dataset
--is-train: Set the True flag for training

This process will take a while, depending on the number of images you are training on.
Once the process is completed, you will find a classifier.pkl file inside the /output
folder.

Now you can use the classifier.pkl file to make predictions, and deploy it on
production.

Evaluation
We will evaluate the performance of the trained model. To do that, we will execute the
following command:

docker run -v $PWD:/facerecognition \
-e PYTHONPATH=$PYTHONPATH:/facerecognition \
-it hellorahulk/facerecognition \
python3 /facerecognition/facenet/train_classifier.py \
--input-dir /facerecognition/output/intermediate \
--model-path /facerecognition/pre-model/Resnet-185253.pb \

Building Face Recognition Using FaceNet Chapter 10

[294]

--classifier-path /facerecognition/output/classifier.pkl \
--num-threads 16 \
--num-epochs 2 \
--min-num-images-per-class 10 \

Once the execution is completed, you will see predictions with a confidence score, as shown
in the following screenshot:

We can see that the model is able to predict with 99.5% accuracy. It is also relatively fast.

Building Face Recognition Using FaceNet Chapter 10

[295]

Summary
We have successfully completed a world-class facial recognition POC for our hypothetical
high-performance data center, utilizing the deep-learning technologies of OpenFace, dlib,
and FaceNet.

We built a pipeline that included:

Face detection: To examine an image and find all the faces it contains
Face extraction: To focus on each face and understand its general qualities
Feature extraction: To pull out unique features from the faces using CNNs
Classifier training: To compare those unique features to all the people already
known, and determine the person's name

The added security level of a robust facial recognition system for access control is in
keeping with the high standards demanded by this Tier III facility. This project is a great
example of the power of deep learning to produce solutions that make a meaningful impact
on the business operations of our clients.

11
Automated Image Captioning

In the previous chapter, we learned about building an object detection and classification
model, which was really exciting. But in this chapter, we are going to do something even
more impressive by combining current state-of-the-art techniques in both computer
vision and natural language processing to form a complete image description approach
(https://www.cs. cmu. edu/ ~afarhadi/ papers/ sentence. pdf). This will be responsible
for constructing computer-generated natural descriptions of any provided images.

Our team has been asked to build this model to generate natural language descriptions of
images to be used as the core intelligence of a company that wants to help the visually
impaired take advantage of the explosion of photo sharing that's done on the web. It's
exciting to think that this deep learning technology could have the power to effectively
bring image content alive to this community. People who are likely to enjoy the outcome of
our work are those who are visually impaired from birth right up to our aging population.
Each of these user types and many more could use an image captioning bot that could be
based on the model in this project so that they can keep up with family by knowing the
content of posted images, for example.

With this in mind, let's look at the deep learning engineering that we need to do. The idea is
to replace the encoder (RNN layer) in an encoder-decoder architecture with a deep
convolutional neural network (CNN) trained to classify objects in images.

Normally, the CNN's last layer is the softmax layer, which assigns the probability that each
object might be in the image. But if we remove that softmax layer from CNN, we can feed
the CNN's rich encoding of the image into the decoder (language generation RNN)
designed to produce phrases. We can then train the whole system directly on images and
their captions, so it maximizes the likelihood that the descriptions it produces best match
the training descriptions for each image.

https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf

Automated Image Captioning Chapter 11

[297]

Here is the small illustration of the Auto Image Captioning Model. In the top left corner is
the Encoder-Decoder architecture for sequence-to-sequence model which is combined with
the Object Detection model as shown in the following diagram:

In this implementation, we will be using a pretrained Inception-v3 model as a feature
extractor in an encoder trained on the ImageNet dataset.

Data preparation
Let's import all of the dependencies that we will need to build an auto-captioning model.

Automated Image Captioning Chapter 11

[298]

All of the Python files and the Jupyter Notebooks for this chapter can be found at https:/ /
github.com/PacktPublishing/ Python- Deep- Learning- Projects/ tree/ master/ Chapter11.

Initialization
For this implementation, we need a TensorFlow version greater than or equal to 1.9 and we
will also enable the eager execution (https:/ /www. tensorflow. org/ guide/ eager)
mode, which will help us use the debug the code more effectively. Here is the code for this:

Import TensorFlow and enable eager execution
import tensorflow as tf
tf.enable_eager_execution()

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle

import re
import numpy as np
import os
import time
import json
from glob import glob
from PIL import Image
import pickle

Download and prepare the MS-COCO dataset
We are going to use the MS-COCO dataset (http:/ /cocodataset. org/ #home) to train our
model. This dataset contains more than 82,000 images, each of which has been annotated
with at least five different captions. The following code will download and extract the
dataset automatically:

annotation_zip = tf.keras.utils.get_file('captions.zip',
cache_subdir=os.path.abspath('.'),
 origin =
'http://images.cocodataset.org/annotations/annotations_trainval2014.zip',
 extract = True)
annotation_file =
os.path.dirname(annotation_zip)+'/annotations/captions_train2014.json'

name_of_zip = 'train2014.zip'
if not os.path.exists(os.path.abspath('.') + '/' + name_of_zip):

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter11
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home
http://cocodataset.org/#home

Automated Image Captioning Chapter 11

[299]

 image_zip = tf.keras.utils.get_file(name_of_zip,
 cache_subdir=os.path.abspath('.'),
 origin =
'http://images.cocodataset.org/zips/train2014.zip',
 extract = True)
 PATH = os.path.dirname(image_zip)+'/train2014/'
else:
 PATH = os.path.abspath('.')+'/train2014/'

This involves a large download ahead. We'll use the training set; it's a 13
GB file.

The following will be the output:

Downloading data from
http://images.cocodataset.org/annotations/annotations_trainval2014.zip
252878848/252872794 [==============================] - 6s 0us/step
Downloading data from http://images.cocodataset.org/zips/train2014.zip
13510574080/13510573713 [==============================] - 322s 0us/step

For this example, we'll select a subset of 40,000 captions and use these and the
corresponding images to train our model. As always, captioning quality will improve if you
choose to use more data:

read the json annotation file
with open(annotation_file, 'r') as f:
 annotations = json.load(f)

storing the captions and the image name in vectors
all_captions = []
all_img_name_vector = []

for annot in annotations['annotations']:
 caption = '<start> ' + annot['caption'] + ' <end>'
 image_id = annot['image_id']
 full_coco_image_path = PATH + 'COCO_train2014_' + '%012d.jpg' %
(image_id)
 all_img_name_vector.append(full_coco_image_path)
 all_captions.append(caption)

shuffling the captions and image_names together
setting a random state
train_captions, img_name_vector = shuffle(all_captions,
 all_img_name_vector,
 random_state=1)

Automated Image Captioning Chapter 11

[300]

selecting the first 40000 captions from the shuffled set
num_examples = 40000
train_captions = train_captions[:num_examples]
img_name_vector = img_name_vector[:num_examples]

Once the data preparation is completed, we will have all of the image path stored in
the img_name_vector list variable, and the associated captions are stored in
train_caption, as shown in the following screenshot:

Data preparation for a deep CNN encoder
Next, we will use Inception-v3 (pretrained on ImageNet) to classify each image. We will
extract features from the last convolutional layer. We will create a helper function that will
transform the input image to the format that is expected by Inception-v3:

#Resizing the image to (299, 299)
#Using the preprocess_input method to place the pixels in the range of -1
to 1.

def load_image(image_path):
 img = tf.read_file(image_path)
 img = tf.image.decode_jpeg(img, channels=3)
 img = tf.image.resize_images(img, (299, 299))
 img = tf.keras.applications.inception_v3.preprocess_input(img)
 return img, image_path

Now let's initialize the Inception-v3 model and load the pretrained ImageNet weights. To
do so, we'll create a tf.keras model where the output layer is the last convolutional layer
in the Inception-v3 architecture.

Automated Image Captioning Chapter 11

[301]

While creating the keras model, you can see a parameter called include_top=False that
indicates whether to include the fully connected layer at the top of the network or not:

image_model = tf.keras.applications.InceptionV3(include_top=False,
 weights='imagenet')
new_input = image_model.input
hidden_layer = image_model.layers[-1].output

image_features_extract_model = tf.keras.Model(new_input, hidden_layer)

The output is as follows:

Downloading data from
https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inc
eption_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
87916544/87910968 [==============================] - 40s 0us/step

So, the image_features_extract_model is our deep CNN encoder, which is responsible
for learning the features from the given image.

Performing feature extraction
Now we will pre-process each image with the deep CNN encoder and dump the output to
the disk:

We will load the images in batches using the load_image() helper function that1.
we created before
We will feed the images into the encoder to extract the features2.
Dump the features as a numpy array:3.

encode_train = sorted(set(img_name_vector))
#Load images
image_dataset = tf.data.Dataset.from_tensor_slices(
encode_train).map(load_image).batch(16)
Extract features
for img, path in image_dataset:
 batch_features = image_features_extract_model(img)
 batch_features = tf.reshape(batch_features,
 (batch_features.shape[0], -1,
batch_features.shape[3]))
#Dump into disk
 for bf, p in zip(batch_features, path):
 path_of_feature = p.numpy().decode("utf-8")
 np.save(path_of_feature, bf.numpy())

Automated Image Captioning Chapter 11

[302]

Data prep for a language generation (RNN)
decoder
The first step is to pre-process the captions.

We will perform a few basic pre-processing steps on the captions, such as the following:

First, we'll tokenize the captions (for example, by splitting on spaces). This will
help us to build a vocabulary of all the unique words in the data (for example,
"playing", "football", and so on).
Next, we'll limit the vocabulary size to the top 5,000 words to save memory. We'll
replace all other words with the token unk (for unknown). You can obviously
optimize that according to the use case.
Finally, we will create a word --> index mapping and vice versa.
We will then pad all sequences to be the same length as the longest one.

Here is the code for that:

Helper func to find the maximum length of any caption in our dataset

def calc_max_length(tensor):
 return max(len(t) for t in tensor)

Performing tokenization on the top 5000 words from the vocabulary
top_k = 5000
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=top_k,
 oov_token="<unk>",
 filters='!"#$%&()*+.,-
/:;=?@[\]^_`{|}~ ')

Converting text into sequence of numbers
tokenizer.fit_on_texts(train_captions)
train_seqs = tokenizer.texts_to_sequences(train_captions)

tokenizer.word_index = {key:value for key, value in
tokenizer.word_index.items() if value <= top_k}

putting <unk> token in the word2idx dictionary
tokenizer.word_index[tokenizer.oov_token] = top_k + 1
tokenizer.word_index['<pad>'] = 0

creating the tokenized vectors
train_seqs = tokenizer.texts_to_sequences(train_captions)

Automated Image Captioning Chapter 11

[303]

creating a reverse mapping (index -> word)
index_word = {value:key for key, value in tokenizer.word_index.items()}

padding each vector to the max_length of the captions
cap_vector = tf.keras.preprocessing.sequence.pad_sequences(train_seqs,
padding='post')

calculating the max_length
used to store the attention weights
max_length = calc_max_length(train_seqs)

So, the end result will be an array of a sequence of integers, as shown in the following
screenshot:

Now, we will split the data into training and validation samples using an 80:20 split ratio:

img_name_train, img_name_val, cap_train, cap_val =
train_test_split(img_name_vector,cap_vector,test_size=0.2,random_state=0)

Checking the sample counts
print ("No of Training Images:",len(img_name_train))
print ("No of Training Caption: ",len(cap_train))
print ("No of Training Images",len(img_name_val))
print ("No of Training Caption:",len(cap_val))

No of Training Images: 24000
No of Training Caption: 24000
No of Training Images 6000
No of Training Caption: 6000

Automated Image Captioning Chapter 11

[304]

Setting up the data pipeline
Our images and captions are ready! Next, let's create a tf.data dataset (https:/ / www.
tensorflow.org/api_ docs/ python/ tf/ data/ Dataset) to use for training our model. Now
we will prepare the pipeline for an image and the text model by
performing transformations and batching on them:

Defining parameters
BATCH_SIZE = 64
BUFFER_SIZE = 1000
embedding_dim = 256
units = 512
vocab_size = len(tokenizer.word_index)

shape of the vector extracted from Inception-V3 is (64, 2048)
these two variables represent that
features_shape = 2048
attention_features_shape = 64

loading the numpy files
def map_func(img_name, cap):
 img_tensor = np.load(img_name.decode('utf-8')+'.npy')
 return img_tensor, cap

#We use the from_tensor_slices to load the raw data and transform them into
the tensors

dataset = tf.data.Dataset.from_tensor_slices((img_name_train, cap_train))

Using the map() to load the numpy files in parallel
NOTE: Make sure to set num_parallel_calls to the number of CPU cores you
have
https://www.tensorflow.org/api_docs/python/tf/py_func
dataset = dataset.map(lambda item1, item2: tf.py_func(
 map_func, [item1, item2], [tf.float32, tf.int32]),
num_parallel_calls=8)

shuffling and batching
dataset = dataset.shuffle(BUFFER_SIZE)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(1)

https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset

Automated Image Captioning Chapter 11

[305]

Defining the captioning model
The model architecture we are using to build the auto captioning is inspired by the Show,
Attend and Tell paper (https:/ / arxiv. org/ pdf/ 1502. 03044. pdf). The features that we
extracted from the lower convolutional layer of Inception-v3 gave us a vector of a shape of
(8, 8, 2048). Then, we squash that to a shape of (64, 2048).

This vector is then passed through the CNN encoder, which consists of a single fully
connected layer. The RNN (GRU in our case) attends over the image to predict the next
word:

def gru(units):
 if tf.test.is_gpu_available():
 return tf.keras.layers.CuDNNGRU(units,
 return_sequences=True,
 return_state=True,
 recurrent_initializer='glorot_uniform')
 else:
 return tf.keras.layers.GRU(units,
 return_sequences=True,
 return_state=True,
 recurrent_activation='sigmoid',
 recurrent_initializer='glorot_uniform')

Attention
Now we will define the attention mechanism popularly known as Bahdanau attention
(https://arxiv.org/ pdf/ 1409. 0473. pdf). We will need the features from the CNN
encoder of a shape of (batch_size, 64, embedding_dim). This attention mechanism will
return the context vector and the attention weights over the time axis:

class BahdanauAttention(tf.keras.Model):
 def __init__(self, units):
 super(BahdanauAttention, self).__init__()
 self.W1 = tf.keras.layers.Dense(units)
 self.W2 = tf.keras.layers.Dense(units)
 self.V = tf.keras.layers.Dense(1)
 def call(self, features, hidden):
 # hidden_with_time_axis shape == (batch_size, 1, hidden_size)
 hidden_with_time_axis = tf.expand_dims(hidden, 1)
 # score shape == (batch_size, 64, hidden_size)
 score = tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis))
 # attention_weights shape == (batch_size, 64, 1)
 # we get 1 at the last axis because we are applying score to self.V
 attention_weights = tf.nn.softmax(self.V(score), axis=1)

https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf

Automated Image Captioning Chapter 11

[306]

 # context_vector shape after sum == (batch_size, hidden_size)
 context_vector = attention_weights * features
 context_vector = tf.reduce_sum(context_vector, axis=1)
 return context_vector, attention_weights

CNN encoder
Now let's define the CNN encoder that will be the single, fully connected layer followed by
the ReLU activation:

class CNN_Encoder(tf.keras.Model):
 # Since we have already extracted the features and dumped it using
pickle
 # This encoder passes those features through a Fully connected layer
 def __init__(self, embedding_dim):
 super(CNN_Encoder, self).__init__()
 # shape after fc == (batch_size, 64, embedding_dim)
 self.fc = tf.keras.layers.Dense(embedding_dim)
 def call(self, x):
 x = self.fc(x)
 x = tf.nn.relu(x)
 return x

RNN decoder
Here, we will define the RNN decoder which will take the encoded features from the
encoder. The features are fed into the attention layer, which is concatenated with the input
embedding vector. Then, the concatenated vector is passed into the GRU module, which is
further passed through two fully connected layers:

class RNN_Decoder(tf.keras.Model):
 def __init__(self, embedding_dim, units, vocab_size):
 super(RNN_Decoder, self).__init__()
 self.units = units

 self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
 self.gru = gru(self.units)
 self.fc1 = tf.keras.layers.Dense(self.units)
 self.fc2 = tf.keras.layers.Dense(vocab_size)
 self.attention = BahdanauAttention(self.units)
 def call(self, x, features, hidden):
 # defining attention as a separate model
 context_vector, attention_weights = self.attention(features, hidden)
 # x shape after passing through embedding == (batch_size, 1,

Automated Image Captioning Chapter 11

[307]

embedding_dim)
 x = self.embedding(x)
 # x shape after concatenation == (batch_size, 1, embedding_dim +
hidden_size)
 x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
 # passing the concatenated vector to the GRU
 output, state = self.gru(x)
 # shape == (batch_size, max_length, hidden_size)
 x = self.fc1(output)
 # x shape == (batch_size * max_length, hidden_size)
 x = tf.reshape(x, (-1, x.shape[2]))
 # output shape == (batch_size * max_length, vocab)
 x = self.fc2(x)

 return x, state, attention_weights

 def reset_state(self, batch_size):
 return tf.zeros((batch_size, self.units))

encoder = CNN_Encoder(embedding_dim)
decoder = RNN_Decoder(embedding_dim, units, vocab_size)

Loss function
We are using the Adam optimizer to train the model and masking the loss calculated for
the <PAD> key:

optimizer = tf.train.AdamOptimizer()

We are masking the loss calculated for padding
def loss_function(real, pred):
 mask = 1 - np.equal(real, 0)
 loss_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=real,
logits=pred) * mask
 return tf.reduce_mean(loss_)

Training the captioning model
Now, let's train the model. The first thing we need to do is to extract the features stored in
the respective .npy files and then pass those features through the CNN encoder.

Automated Image Captioning Chapter 11

[308]

The encoder output, hidden state (initialized to 0) and the decoder input (which is the start
token) are passed to the decoder. The decoder returns the predictions and the decoder
hidden state.

The decoder hidden state is then passed back into the model and the predictions are used to
calculate the loss. While training, we use the teacher forcing technique to decide the next
input to the decoder.

Teacher forcing is the technique where the target word is passed as the
next input to the decoder. This technique helps to learn the correct
sequence or correct statistical properties for the sequence, quickly.

The final step is to calculate the gradient and apply it to the optimizer and backpropagate:

EPOCHS = 20
loss_plot = []

for epoch in range(EPOCHS):
 start = time.time()
 total_loss = 0
 for (batch, (img_tensor, target)) in enumerate(dataset):
 loss = 0
 # initializing the hidden state for each batch
 # because the captions are not related from image to image
 hidden = decoder.reset_state(batch_size=target.shape[0])

 dec_input = tf.expand_dims([tokenizer.word_index['<start>']] *
BATCH_SIZE, 1)
 with tf.GradientTape() as tape:
 features = encoder(img_tensor)
 for i in range(1, target.shape[1]):
 # passing the features through the decoder
 predictions, hidden, _ = decoder(dec_input, features,
hidden)

 loss += loss_function(target[:, i], predictions)
 # using teacher forcing
 dec_input = tf.expand_dims(target[:, i], 1)
 total_loss += (loss / int(target.shape[1]))
 variables = encoder.variables + decoder.variables
 gradients = tape.gradient(loss, variables)
 optimizer.apply_gradients(zip(gradients, variables),
tf.train.get_or_create_global_step())
 if batch % 100 == 0:
 print ('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
 batch,

Automated Image Captioning Chapter 11

[309]

 loss.numpy() /
int(target.shape[1])))
 # storing the epoch end loss value to plot later
 loss_plot.append(total_loss / len(cap_vector))
 print ('Epoch {} Loss {:.6f}'.format(epoch + 1,
 total_loss/len(cap_vector)))
 print ('Time taken for 1 epoch {} sec\n'.format(time.time() - start))

The following is the output:

After performing the training process over few epochs lets plot the Epoch vs Loss graph:

plt.plot(loss_plot)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Loss Plot')
plt.show()

Automated Image Captioning Chapter 11

[310]

The output is as follows:

The loss vs Epoch plot during training process

Evaluating the captioning model
The evaluation function is similar to the training loop, except we don't use teacher forcing
here. The input to the decoder at each time step is its previous predictions, along with the
hidden state and the encoder output.

A few key points to remember while making predictions:

Stop predicting when the model predicts the end token
Store the attention weights for every time step

Let’s define the evaluate() function:

def evaluate(image):
 attention_plot = np.zeros((max_length, attention_features_shape))

 hidden = decoder.reset_state(batch_size=1)

 temp_input = tf.expand_dims(load_image(image)[0], 0)
 img_tensor_val = image_features_extract_model(temp_input)

Automated Image Captioning Chapter 11

[311]

 img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[0], -1,
img_tensor_val.shape[3]))

 features = encoder(img_tensor_val)

 dec_input = tf.expand_dims([tokenizer.word_index['<start>']], 0)
 result = []

 for i in range(max_length):
 predictions, hidden, attention_weights = decoder(dec_input, features,
hidden)

 attention_plot[i] = tf.reshape(attention_weights, (-1,)).numpy()

 predicted_id = tf.argmax(predictions[0]).numpy()
 result.append(index_word[predicted_id])

 if index_word[predicted_id] == '<end>':
 return result, attention_plot

 dec_input = tf.expand_dims([predicted_id], 0)

 attention_plot = attention_plot[:len(result), :]
 return result, attention_plot

Also, let's create a helper function to visualize the attention points that predict the words:

def plot_attention(image, result, attention_plot):
 temp_image = np.array(Image.open(image))

 fig = plt.figure(figsize=(10, 10))
 len_result = len(result)
 for l in range(len_result):
 temp_att = np.resize(attention_plot[l], (8, 8))
 ax = fig.add_subplot(len_result//2, len_result//2, l+1)
 ax.set_title(result[l])
 img = ax.imshow(temp_image)
 ax.imshow(temp_att, cmap='gray', alpha=0.6,
extent=img.get_extent())

 plt.tight_layout()
 plt.show()

captions on the validation set
rid = np.random.randint(0, len(img_name_val))
image = img_name_val[rid]
real_caption = ' '.join([index_word[i] for i in cap_val[rid] if i not in
[0]])

Automated Image Captioning Chapter 11

[312]

result, attention_plot = evaluate(image)

print ('Real Caption:', real_caption)
print ('Prediction Caption:', ' '.join(result))
plot_attention(image, result, attention_plot)
opening the image
Image.open(img_name_val[rid])

The output is as follows:

Automated Image Captioning Chapter 11

[313]

Deploying the captioning model
Now let's deploy the complete module as a RESTful service. To do so, we will write an
inference code that loads the latest checkpoint and makes the prediction on the given
image.

Look into the inference.py file in the repository. All the code is similar to the training
loop except we don't use teacher forcing here. The input to the decoder at each time step is
its previous predictions, along with the hidden state and the encoder output.

One important part is to load the model in memory for which we are using the
tf.train.Checkpoint() method, which loads all of the learned weights for optimizer,
encoder, decoder into the memory. Here is the code for that:

checkpoint_dir = './my_model'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(
 optimizer=optimizer,
 encoder=encoder,
 decoder=decoder,
)

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

So, we will create an evaluate() function, which defines the prediction loop. To make
sure that the prediction ends after certain words, we will stop predicting when the model
predicts the end token, <end>:

def evaluate(image):
 attention_plot = np.zeros((max_length, attention_features_shape))

 hidden = decoder.reset_state(batch_size=1)

 temp_input = tf.expand_dims(load_image(image)[0], 0)
 # Extract features from the test image
 img_tensor_val = image_features_extract_model(temp_input)
 img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[0],
-1, img_tensor_val.shape[3]))
 # Feature is fed into the encoder
 features = encoder(img_tensor_val)

 dec_input = tf.expand_dims([tokenizer.word_index['<start>']], 0)
 result = []
 # Prediction loop
 for i in range(max_length):
 predictions, hidden, attention_weights = decoder(dec_input,

Automated Image Captioning Chapter 11

[314]

features, hidden)

 attention_plot[i] = tf.reshape(attention_weights, (-1,)).numpy()

 predicted_id = tf.argmax(predictions[0]).numpy()
 result.append(index_word[predicted_id])
 # Hard stop when end token is predicted
 if index_word[predicted_id] == '<end>':
 return result, attention_plot

 dec_input = tf.expand_dims([predicted_id], 0)

 attention_plot = attention_plot[:len(result), :]
 return result, attention_plot

Now let's use this evaluate() function in our web application code:

#!/usr/bin/env python2
-*- coding: utf-8 -*-
"""
@author: rahulkumar
"""

from flask import Flask , request, jsonify

import time
from inference import evaluate
import tensorflow as tf

app = Flask(__name__)

@app.route("/wowme")
def AutoImageCaption():
 image_url=request.args.get('image')
 print('image_url')
 image_extension = image_url[-4:]
 image_path =
tf.keras.utils.get_file(str(int(time.time()))+image_extension,
origin=image_url)
 result, attention_plot = evaluate(image_path)
 data = {'Prediction Caption:': ' '.join(result)}
 return jsonify(data)

if __name__ == "__main__":
 app.run(host = '0.0.0.0',port=8081)

Automated Image Captioning Chapter 11

[315]

Execute the following command in the Terminal to run the web app:

python caption_deploy_api.py

You should get the following output:

* Running on http://0.0.0.0:8081/ (Press CTRL+C to quit)

Now we request the API, as follows:

curl
0.0.0.0:8081/wowme?image=https://www.beautifulpeopleibiza.com/images/BPI/im
g_bpi_destacada.jpg

We should get our caption predicted, as shown in the following screenshot:

Make sure to train the model on the large image to get better predictions.

Voila! We just deployed the state-of-the-art automatic captioning module.

Automated Image Captioning Chapter 11

[316]

Summary
In this implementation, we used a pretrained Inception-v3 model as a feature extractor in
an encoder trained on the ImageNet dataset as part of a deep learning solution. This
solution combines current state-of-the-art techniques in both computer vision and natural
language processing, to form a complete image description approach (https:/ /www. cs. cmu.
edu/~afarhadi/papers/ sentence. pdf) able to construct computer-generated natural
descriptions of any provided images. We've effectively broken the barrier between images
and language with this trained model and we've provided a technology that could be used
as part of an application, helping the visually impaired enjoy the benefits of the megatrend
of photo sharing! Great work!

https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf

12
Pose Estimation on 3D models

Using ConvNets
Welcome to our chapter on human pose estimation. In this chapter, we will be building a
neural network that will predict 3D human poses using 2D images. We will do this with the
help of transfer learning by using the VGG16 model architecture and modifying it
accordingly for our current problem. By the end of this chapter, you will have a deep
learning (DL) model that does a really good job of predicting human poses.

Visual effects (VFX) in movies are expensive. They involve using a lot of expensive sensors
that will be placed on the body of the actor when shooting. The information from these
sensors will then be used to build visual effects, all of which ends up being super
expensive. We have been asked (in this hypothetical use case) by a major movie studio
whether we can help their graphics department build cheaper and better visual effects by
building a human pose estimator, which they will use to better estimate poses on the screen
while editing.

For this task, we will be using images from Frames Labeled In Cinema (FLIC). These
images are not ready to be used for modeling just yet. So, get ready to spend a bit more
time on preparing the image data in this chapter. Also, we will only be estimating the pose
of arms, shoulders, and the head.

In this chapter, we'll learn about the following topics:

Processing/preparing images for pose estimation
The VGG16 model
Transfer learning
Building and understanding the training loop
Testing the model

Pose Estimation on 3D models Using ConvNets Chapter 12

[318]

It would be better if you implement the code snippets as you go along in this chapter, either
in a Jupyter notebook or any source code editor. This will make it easier for you to follow
along, as well as understand what each part of the code does.

All of the Python files and the Jupyter Notebooks for this chapter can be found at https:/ /
github.com/PacktPublishing/ Python- Deep- Learning- Projects/ tree/ master/ Chapter12.

Code implementation
In this exercise, we will be using the Keras deep learning library, which is a high-level
neural network API capable of running on top of TensorFlow, Theano, and CNTK.

If you ever have a question related to Keras, refer to this easy-to-
understand Keras documentation at https:/ / keras. io.

Please download the Chapter12 folder from GitHub before moving forward with this
chapter.

This project involves downloading files from various sources that will be called inside the
scripts. To make sure that the Python scripts or the Jupyter Notebook have no issues
locating the downloaded files, follow these steps:

Open a Terminal and change your directory by using the cd command in1.
the Chapter12 folder.
Download the FLIC-full data file with the following command:2.

wget http://vision.grasp.upenn.edu/video/FLIC-full.zip

Unzip the ZIP file with the following command:3.

unzip FLIC-full.zip

Remove the ZIP file with the following command:4.

rm -rf FLIC-full.zip

Change directories in the FLIC-full folder by using the following command:5.

cd FLIC-full

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter12
https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://keras.io

Pose Estimation on 3D models Using ConvNets Chapter 12

[319]

Download the file containing the training indices:6.

wget http://cims.nyu.edu/~tompson/data/tr_plus_indices.mat

Change the directory back to the Chapter12 folder.7.
Launch your Jupyter Notebook or run the Python scripts from the Chapter128.
directory.

Further information on the FLIC-full data folder can be found
at https:/ / bensapp. github. io/flic- dataset. html.

Importing the dependencies
We will be using numpy, matplotlib, keras, tensorflow, and the tqdm package in this
exercise. Here, TensorFlow is used as the backend for Keras. You can install these packages
with pip. For the MNIST data, we will be using the dataset that's available in the keras
module with a simple import:

import matplotlib.pyplot as plt
%matplotlib inline

import os
import random
import glob
import h5py
from scipy.io import loadmat
import numpy as np
import pandas as pd
import cv2 as cv
from __future__ import print_function

from sklearn.model_selection import train_test_split

from keras.models import Sequential, Model
from keras.layers.core import Flatten, Dense, Dropout
from keras.optimizers import Adam
from keras import backend as K
from keras import applications
K.clear_session()

https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html

Pose Estimation on 3D models Using ConvNets Chapter 12

[320]

It is important that you set seed for reproducibility:

set seed for reproducibility
seed_val = 9000
np.random.seed(seed_val)
random.seed(seed_val)

Exploring and pre-processing the data
With the FLIC-full data folder downloaded and unpacked, inside the FLIC-full folder
you should find the tr_plus_indices.mat and examples.mat MATLAB files, and
also the folder named images, inside which are the images that will be used in this project.

You will find that the images have been captured from movies such as 2 Fast 2 Furious,
Along Came Polly, American Wedding, and a few others. Each of these images is 480*720 px in
size. These images are nothing but screenshots of scenes involving actors from the selected
movies, which we will use for pose estimation.

Let's load the MATLAB file examples.mat. We will do this with the help of
the loadmat module, which we have imported already, along with other imports. Also,
let's print out some of the information from this file:

load the examples file
examples = loadmat('FLIC-full/examples.mat')

print type of the loaded file
print('examples variable is of', type(examples))

print keys in the dictionary examples
print('keys in the dictionary examples:\n', examples.keys())ut

Following is the output:

Figure 12.1: Example file information from printout 1

Pose Estimation on 3D models Using ConvNets Chapter 12

[321]

From the printout, we can see that the MATLAB file has been loaded as a dictionary with
four keys, one of which is the one we need: the examples key. Let's see what this key
holds:

print type and shape of values in examples key
print('Shape of value in examples key: ',examples['examples'].shape)

print examples
print('Type: ',type(examples['examples']))

reshape the examples array
examples = examples['examples'].reshape(-1,)

print shape of examples array
print("Shape of reshaped 'examples' array:", examples.shape)

Following is the output:

Figure 12.2: Example file information from printout 1

The notable thing here is that the value of the examples key is a numpy array of shape (1,
20928). You will also see that the array has been reshaped to shape (20928,). The
examples key contains the IDs of the images (in the images folder) and the corresponding
pose coordinates that can be used for modeling.

Let's print out an image ID and its corresponding coordinates array with its shape. The
image ID we need is stored at index 3, and the corresponding coordinates are at index 2.
Let's print these out:

print('Coordinates at location/index 3 of example 0:\n' ,examples[0][2].T)

print('\n Data type in which the coordinates are stored:
',type(examples[0][2]))

print('\n Shape of the coordinates:', examples[0][2].shape)

print('\n Name of the image file the above coordinates correspond to :\n
',examples[0][3][0])

Pose Estimation on 3D models Using ConvNets Chapter 12

[322]

Following is the output:

Figure 12.3: Example file information from printout 2

Pose Estimation on 3D models Using ConvNets Chapter 12

[323]

From the preceding screenshot, we can see that the coordinates array is of shape (2,29):

each coordinate corresponds to the the below listed body joints/locations
and in the same order
joint_labels = ['lsho', 'lelb', 'lwri', 'rsho', 'relb', 'rwri', 'lhip',
 'lkne', 'lank', 'rhip', 'rkne', 'rank', 'leye', 'reye',
 'lear', 'rear', 'nose', 'msho', 'mhip', 'mear', 'mtorso',
 'mluarm', 'mruarm', 'mllarm', 'mrlarm', 'mluleg', 'mruleg',
 'mllleg', 'mrlleg']

print joint_labels
print(joint_labels)

Following is the output:

Figure 12.4: List of joint labels

But, if you look back at the coordinates array that we printed in the preceding screenshot,
out of the 29 coordinates, we only have information on 11 of the body joints/locations.
These are as follows:

print list of known joints
known_joints = [x for i,x in enumerate(joint_labels) if i in np.r_[0:7, 9,
12:14, 16]]
print(known_joints)

Following is the output:

Figure 12.5: List of joint labels with coordinates

For the purpose of this project, we only need information on the following body
joints/locations:

print needed joints for the task
target_joints = ['lsho', 'lelb', 'lwri', 'rsho', 'relb',
 'rwri', 'leye', 'reye', 'nose']
print('Joints necessary for the project:\n', target_joints)

Pose Estimation on 3D models Using ConvNets Chapter 12

[324]

print the indices of the needed joints in the coordinates array
joints_loc_id = np.r_[0:6, 12:14, 16]
print('\nIndices of joints necessary for the project:\n',joints_loc_id)

Following is the output:

Figure 12.6: Required joints and their indices in the array

lsho: Left shoulder
lelb: Left elbow
lwri: Left wrist
rsho: Right shoulder
relb: Right elbow
rwri: Right wrist
leye: Left eye
reye: Right eye
nose: Nose

Now, let's define a function that takes in a dictionary of nine joint labels and coordinates
and returns a list with seven coordinates (7 (x,y) pairs). The reason for seven coordinates is
that the leye, reye, and the nose coordinates are converted into one head coordinate
when we take the mean across them:

def joint_coordinates(joint):
 """Store necessary coordinates to a list"""
 joint_coor = []
 # Take mean of the leye, reye, nose to obtain coordinates for the head
 joint['head'] = (joint['leye']+joint['reye']+joint['nose'])/3
 joint_coor.extend(joint['lwri'].tolist())
 joint_coor.extend(joint['lelb'].tolist())
 joint_coor.extend(joint['lsho'].tolist())
 joint_coor.extend(joint['head'].tolist())
 joint_coor.extend(joint['rsho'].tolist())
 joint_coor.extend(joint['relb'].tolist())
 joint_coor.extend(joint['rwri'].tolist())
 return joint_coor

Pose Estimation on 3D models Using ConvNets Chapter 12

[325]

Now let's load the tr_plus_indices.mat MATLAB file, just like we did previously:

The reason why we need to use the tr_plus_indices.mat file is
because it contains indices of images that should only be used for training,
as well as some unlisted ones for testing. The reason for such a split is to
make sure that the train set and the test set have frames from completely
different movies so as to avoid overfitting. More on this can be found
at https:/ / bensapp. github. io/flic- dataset. html.

load the indices matlab file
train_indices = loadmat('FLIC-full/tr_plus_indices.mat')

print type of the loaded file
print('train_indices variable is of', type(train_indices))

print keys in the dictionary training_indices
print('keys in the dictionary train_indices:\n', train_indices.keys())

Following is the output:

Figure 12.7: train_indices file information printout 1

From the preceding screenshot, you can see that the MATLAB file has been loaded as a
dictionary with four keys, one of which is tr_plus_indices, which is the one we need.
Let's look at the content of this key:

print type and shape of values in tr_plus_indices key
print('Shape of values in tr_plus_indices key:
',train_indices['tr_plus_indices'].shape)

print tr_plus_indices
print('Type: ',type(train_indices['tr_plus_indices']))

reshape the training_indices array
train_indices = train_indices['tr_plus_indices'].reshape(-1,)

print shape of train_indices array
print("Shape of reshaped 'train_indices' array:", train_indices.shape)

https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html

Pose Estimation on 3D models Using ConvNets Chapter 12

[326]

Following is the output:

Figure 12.8: train_indices file information printout 2

We can see that the tr_plus_indices key corresponds to a (17380*1) shaped array. We
will reshape this to (17380,) for convenience.

tr_plus_indices contains the indices of the data in the examples key of
the examples.mat file, which should only be used for training. Using this information, we
will subset the data into a train set and a test set:

empty list to store train image ids
train_ids = []
empty list to store train joints
train_jts = []
empty list to store test image ids
test_ids = []
empty list to store test joints
test_jts = []

for i, example in enumerate(examples):
 # image id
 file_name = example[3][0]
 # joint coordinates
 joint = example[2].T
 # dictionary that goes into the joint_coordinates function
 joints = dict(zip(target_joints, [x for k,x in enumerate(joint) if k in
joints_loc_id]))
 # obtain joints for the task
 joints = joint_coordinates(joints)
 # use train indices list to decide if an image is to be used for
training or testing
 if i in train_indices:
 train_ids.append(file_name)
 train_jts.append(joints)
 else:
 test_ids.append(file_name)
 test_jts.append(joints)

Concatenate image ids dataframe and the joints dataframe and save it as a
csv

Pose Estimation on 3D models Using ConvNets Chapter 12

[327]

For the remaining part of this code snippet, please refer to the
deeppose.ipynb file here : https:/ / github. com/ PacktPublishing/
Python- Deep- Learning- Projects/ blob/ master/ Chapter12/ deeppose.
ipynb

We can see that the train data has 17,380 data points, with each data point having an image
ID and 7(x,y) joint coordinates. Similarly, the test data has 3,548 data points.

In the preceding snippet, we first initialize four empty lists, two for saving train and test
image IDs, and two for saving train and test joints. Then, for each data point in the
examples key, we do the following:

Extract the file name.1.
Extract the joint coordinates.2.
ZIP the target joints (target joint labels) and the corresponding joint coordinates3.
and convert them into a dictionary.
Feed the dictionary to the joint_coordinates function to obtain the joints4.
needed for this task.
Append the image IDs and the resulting joints from the previous step to a train5.
or test list by using the train_indices list.

Finally, convert the lists into train and test data frames and save them as a CSV file. Make
sure that you don't set the index and header parameters to False when saving the data
frame as a CSV file.

Let's load the train_joints.csv and test_joints.csv files we saved in the previous
step and print out some details:

load train_joints.csv
train_data = pd.read_csv('FLIC-full/train_joints.csv', header=None)

load test_joints.csv
test_data = pd.read_csv('FLIC-full/test_joints.csv', header = None)

train image ids
train_image_ids = train_data[0].values
print('train_image_ids shape', train_image_ids.shape)

train joints
train_joints = train_data.iloc[:,1:].values
print('train_image_ids shape', train_joints.shape)

test image ids
test_image_ids = test_data[0].values

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb

Pose Estimation on 3D models Using ConvNets Chapter 12

[328]

print('train_image_ids shape', test_image_ids.shape)

test joints
test_joints = test_data.iloc[:,1:].values
print('train_image_ids shape', test_joints.shape)

Following is the output:

Figure 12.9: Printout of image IDs and the joint's array shape

Now, let's load some images from the images folder and plot them to see what they look
like:

import glob
image_list = glob.glob('FLIC-full/images/*.jpg')[0:8]

plt.figure(figsize=(12,5))
for i in range(8):
 plt.subplot(2,4,(i+1))
 img = plt.imread(image_list[i])
 plt.imshow(img, aspect='auto')
 plt.axis('off')
 plt.title('Shape: '+str(img.shape))

plt.tight_layout()
plt.show()

Pose Estimation on 3D models Using ConvNets Chapter 12

[329]

Following is the output:

Figure 12.10: Plot of eight images from the images folder in the FLIC_full folder

We can see that each image is of shape (480*720*3). Our next task will be to crop the
original image and focus on the person of interest by using the joint coordinates that are
available to us. We do this by resizing the images into a shape of 224*24*3 so that we can
feed them into the VGG16 model. Finally, we will also build a plotting function to plot
the joints on the image:

Figure 12.11: Plot showing the transformation each image has to go through

Pose Estimation on 3D models Using ConvNets Chapter 12

[330]

Preparing the data
Now let's implement the functions that will perform the tasks that we discussed when we
ended the previous section.

Cropping
We will first start off with the image_cropping() function. This function accepts an image
ID and its corresponding joint coordinates. It loads the image into memory and then crops
the image so that it only includes the section of the image that's bound within the
coordinates. The cropped image is then padded so that the joints and limbs are completely
visible. For the added padding, the joint coordinates are also adjusted accordingly. When it
has done this, the image is returned. This is the most important part of the transformation.
Take your time and dissect the function to see exactly what is happening
(the crop_pad_inf and crop_pad_sup parameters control the amount of padding):

def image_cropping(image_id, joints, crop_pad_inf = 1.4, crop_pad_sup=1.6,
shift = 5, min_dim = 100):
 """Function to crop original images"""
 ## image cropping
 # load the image
 image = cv.imread('FLIC-full/images/%s' % (image_id))
 # convert joint list to array
 joints = np.asarray([int(float(p)) for p in joints])
 # reshape joints to shape (7*2)
 joints = joints.reshape((len(joints) // 2, 2))
 # transform joints to list of (x,y) tuples
 posi_joints = [(j[0], j[1]) for j in joints if j[0] > 0 and j[1] > 0]
 # obtain the bounding rectangle using opencv boundingRect
 x_loc, y_loc, width, height =
cv.boundingRect(np.asarray([posi_joints]))
 if width < min_dim:
 width = min_dim
 if height < min_dim:
 height = min_dim

 ## bounding rect extending
 inf, sup = crop_pad_inf, crop_pad_sup
 r = sup - inf
 # define width padding
 pad_w_r = np.random.rand() * r + inf # inf~sup
 # define height padding
 pad_h_r = np.random.rand() * r + inf # inf~sup
 # adjust x, y, w and h by the defined padding
 x_loc -= (width * pad_w_r - width) / 2

Pose Estimation on 3D models Using ConvNets Chapter 12

[331]

 y_loc -= (height * pad_h_r - height) / 2
 width *= pad_w_r
 height *= pad_h_r

 ## shifting
 ## clipping
 ## joint shifting

For the remaining part of this code snippet please refer to the file
deeppose.ipynb here : https:/ /github. com/ PacktPublishing/ Python-
Deep- Learning- Projects/ blob/ master/ Chapter12/ deeppose. ipynb

Let's pass an image ID and its joints to the image_cropping() function and plot the
output image:

plot the original image
plt.figure(figsize = (15,5))
plt.subplot(1,2,1)
plt.title('Original')
plt.imshow(plt.imread('FLIC-full/images/'+train_image_ids[0]))

plot the cropped image
image, joint = image_cropping(train_image_ids[0], train_joints[0])
plt.subplot(1,2,2)
plt.title('Cropped')
plt.imshow(image)

Following is the output:

Figure 12.12: Plot of the resulting cropped image compared to the original image

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb

Pose Estimation on 3D models Using ConvNets Chapter 12

[332]

Resizing
In the Cropping section, we saw that the original image of shape (480*720*3) is cropped to
shape (393*254*3). However, the VGG16 architecture accepts images of shape (224*224*3).
Hence, we will define a function called image_resize() that does the resizing for us. It
accepts the cropped image and the joint resulting from the image_cropping() function as
input and returns the resized image and its joint coordinates:

def image_resize(image, joints, new_size = 224):
 """Function resize cropped images"""
 orig_h, orig_w = image.shape[:2]
 joints[0::2] = joints[0::2] / float(orig_w) * new_size
 joints[1::2] = joints[1::2] / float(orig_h) * new_size
 image = cv.resize(image, (new_size, new_size),
interpolation=cv.INTER_NEAREST)
 return image, joints
plot resized image
image, joint = image_resize(image, joint)
plt.title('Cropped + Resized')
plt.imshow(image)

Following is the output:

Figure 12.13: Plot of the resized image

After passing the cropped image to the image_resize() function, we can see that the
resulting image is of shape (224*224*3). Now this image and its joints can be passed into the
model for training.

Pose Estimation on 3D models Using ConvNets Chapter 12

[333]

Plotting the joints and limbs
Let's also define the plotting functions that will plot the limbs on the resized image. The
following defined plot_joints() function accepts the resized image and its joints and
returns an image of the same shape with the limbs plotted on top:

def plot_limb(img, joints, i, j, color):
 """Function to plot the limbs"""
 cv.line(img, joints[i], joints[j], (255, 255, 255), thickness=2,
lineType=16)
 cv.line(img, joints[i], joints[j], color, thickness=1, lineType=16)
 return img

def plot_joints(img, joints, groundtruth=True, text_scale=0.5):
 """Function to draw the joints"""
 h, w, c = img.shape
 if groundtruth:
 # left hand to left elbow
 img = plot_limb(img, joints, 0, 1, (0, 255, 0))
 # left elbow to left shoulder
 img = plot_limb(img, joints, 1, 2, (0, 255, 0))
 # left shoulder to right shoulder
 img = plot_limb(img, joints, 2, 4, (0, 255, 0))
 # right shoulder to right elbow
 img = plot_limb(img, joints, 4, 5, (0, 255, 0))
 # right elbow to right hand
 img = plot_limb(img, joints, 5, 6, (0, 255, 0))
 # neck coordinate
 neck = tuple((np.array(joints[2]) + np.array(joints[4])) // 2)
 joints.append(neck)
 # neck to head
 img = plot_limb(img, joints, 3, 7, (0, 255, 0))
 joints.pop()

 # joints
 for j, joint in enumerate(joints):
 # plot joints
 cv.circle(img, joint, 5, (0, 255, 0), -1)
 # plot joint number black
 cv.putText(img, '%d' % j, joint, cv.FONT_HERSHEY_SIMPLEX,
text_scale,
 (0, 0, 0), thickness=2, lineType=16)
 # plot joint number white
 cv.putText(img, '%d' % j, joint, cv.FONT_HERSHEY_SIMPLEX,
text_scale,
 (255, 255, 255), thickness=1, lineType=16)

 else:

Pose Estimation on 3D models Using ConvNets Chapter 12

[334]

For the remaining part of this code snippet please refer to the
deeppose.ipynb file here: https:/ / github. com/ PacktPublishing/
Python- Deep- Learning- Projects/ blob/ master/ Chapter12/ deeppose.
ipynb

Following is the output:

Figure 12.14: Plot showing the true joint coordinates on top of the image

Transforming the images
Now let's transform the images and their corresponding joints to the desired form by using
the functions we have defined previously. We will do this with the help of the
model_data() function, which is defined as follows:

def model_data(image_ids, joints, train = True):
 """Function to generate train and test data."""
 if train:
 # empty list
 train_img_joints = []
 # create train directory inside FLIC-full
 if not os.path.exists(os.path.join(os.getcwd(), 'FLIC-
full/train')):
 os.mkdir('FLIC-full/train')

 for i, (image, joint) in enumerate(zip(image_ids, joints)):
 # crop the image using the joint coordinates

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb

Pose Estimation on 3D models Using ConvNets Chapter 12

[335]

 image, joint = image_cropping(image, joint)
 # resize the cropped image to shape (224*224*3)
 image, joint = image_resize(image, joint)
 # save the image in train folder
 cv.imwrite('FLIC-full/train/train{}.jpg'.format(i), image)
 # store joints and image id/file name of the saved image in the
initialized list
 train_img_joints.append(['train{}.jpg'.format(i)] +
joint.tolist())
 # convert to a dataframe and save as a csv
 pd.DataFrame(train_img_joints).to_csv('FLIC-
full/train/train_joints.csv', index=False, header=False)
 else:
 # empty list
 test_img_joints = []

For the remaining part of this code snippet, please refer to the
deeppose.ipynb file here: https:/ / github. com/ PacktPublishing/
Python- Deep- Learning- Projects/ blob/ master/ Chapter12/ deeppose.
ipynb

The preceding defined model_data() function accepts three parameters: image_ids
(array of image IDs), joints (array of joints), and a Boolean parameter called train. Set
the train parameter to True when transforming the training images and joints and
to False when transforming the test images and joints.

When the train parameter is set to True, perform the following steps:

Initialize an empty list to store the ID of the transformed image and its joint1.
coordinates.
A new directory called train will be created inside the images folder if the2.
folder does not exist.
An image and its joint coordinates are first passed to the image_cropping3.
function we defined previously, which will return the cropped image and joint
coordinates.
The result of Step 3 is passed to the image_resize function, which will then4.
resize the image to the desired shape. In our case, this is 224*224*3.

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb

Pose Estimation on 3D models Using ConvNets Chapter 12

[336]

The resized image is then written into the train folder via the OpenCV5.
imwrite() function with a new image ID (for example, train0.jpg).
The new image ID and its joints are appended to the list initialized in Step 1.6.
Step 3 through Step 6 are repeated until all of the training images are7.
transformed.
The list defined in Step 1 now contains the new image IDs and the joint8.
coordinates, which are then converted to a data frame and saved as a CSV file in
the train folder.

For transforming the test data, the preceding procedure is repeated by setting the train
parameter to False and feeding the test image IDs and the joints.

The train and test data frames that get generated inside the
model_data() function are stored as a CSV file with no header and no
index column. Take this into consideration when loading these files.

Defining hyperparameters for training
The following are some of the hyperparameters that have been defined that we will be
using throughout our code. These are totally configurable:

Number of epochs
epochs = 3

Batchsize
batch_size = 128

Optimizer for the model
optimizer = Adam(lr=0.0001, beta_1=0.5)

Shape of the input image
input_shape = (224, 224, 3)

Batch interval at which loss is to be stored
store = 40

Experiment with different learning rates, optimizers, batch size, as well as
smoothing value to see how these factors affect the quality of your model.
If you get better results, show these to the deep learning community.

Pose Estimation on 3D models Using ConvNets Chapter 12

[337]

Building the VGG16 model
The VGG16 model is a deep convolution neural network image classifier. The model uses a
combination of Conv2D, MaxPooling2D, and Dense layers to form the final architecture,
and the activation function that's used is ReLU. It accepts color images of shape 224*224*3,
and is capable of predicting 1,000 classes. This means that the final Dense layer has 1,000
neurons, and it uses softmax activation to get scores for each class.

Defining the VGG16 model
In this project, we want to feed in images of shape 224*224*3 and be able to predict the joint
coordinates for the body in the image. That is, we want to be able to predict 14 numerical
values (7 (x,y) pairs). Therefore, we modify the final Dense layer to have 14 neurons and
use ReLU activation instead of sigmoid.

Training a deep learning model such as VGG16 can take up to a week on a local machine.
This is a lot of time. An alternative to this in our case is to use the weights of a trained
VGG16 model through transfer learning.

We will do this with the help of the applications module in Keras that we imported in the
beginning, along with the other imports.

In the following code, we will load part of the VGG16 model up to, but not including, the
Flatten layer and the corresponding weights. Setting the include_top parameter to False
does this for us:

The first line of the following snippet will also download the VGG16
weights from the Keras server, so you don't have to worry about
downloading the weights file from anywhere else.

load the VGG16 model
model = applications.VGG16(weights = "imagenet", include_top=False,
input_shape = input_shape)

print summary of VGG16 model
model.summary()

Pose Estimation on 3D models Using ConvNets Chapter 12

[338]

Following is the output:

Figure 12.15: Summary of the VGG16 model (up to Flatten)

Pose Estimation on 3D models Using ConvNets Chapter 12

[339]

From the summary, we can see that all of the layers of the VGG16 model up to, but not
including, the Flatten layer have been loaded with their weights.

To learn more about the additional functionality of the applications
module of Keras, take a look at the official documentation at https:/ /
keras. io/ applications/ .

We don't want weights of any of these layers to be trained. So, in the following code, we
need to set the trainable parameter of each layer to False:

set layers as non trainable
for layer in model.layers:
 layer.trainable = False

As a next step, flatten the output of the preceding section of the model and then add three
Dense layers, of which two layers have 1,024 neurons each with a dropout between them,
and a final Dense layer with 14 neurons to obtain the 14 joint coordinates. We will only be
training the weights of the layers defined in the following code snippet:

Adding custom Layers
x = model.output
x = Flatten()(x)
x = Dense(1024, activation="relu")(x)
x = Dropout(0.5)(x)
x = Dense(1024, activation="relu")(x)

Dense layer with 14 neurons for predicting 14 numeric values
predictions = Dense(14, activation="relu")(x)

Once all of the layers have been defined and configured, we will combine them by using
the Model function in Keras, as follows:

creating the final model
model_final = Model(inputs = model.input, outputs = predictions)

print summary
model_final.summary()

https://keras.io/applications/
https://keras.io/applications/
https://keras.io/applications/
https://keras.io/applications/
https://keras.io/applications/
https://keras.io/applications/
https://keras.io/applications/
https://keras.io/applications/
https://keras.io/applications/

Pose Estimation on 3D models Using ConvNets Chapter 12

[340]

Following is the output:

Figure 12.16: Summary of the customized VGG16 model

Pose Estimation on 3D models Using ConvNets Chapter 12

[341]

From the summary, we can see that 26,755,086 parameters are trainable and
that 14,714,688 parameters are untrainable, since we have set them as untrainable.

The model is then compiled with mean_squared_error as loss. The optimizer used
here is Adam, which has a learning rate of 0.0001, as defined by the optimizer variable in
the hyperparameter section:

compile the model
model_final.compile(loss = "mean_squared_error", optimizer = optimizer)

Training loop
Now that the VGG16 model is all set to be used for training, let's load the
train_joints.csv file from the train folder containing the IDs of the cropped and
resized images with their joint coordinates.

Then, split the data into an 80:20 train and validation set by using the train_test_split
module from sklearn. We imported it with the other imports at the beginning of this
chapter. Since the validation data is small, load all of the corresponding images into
memory:

Be mindful of how many validation images you load into memory, as this
may become an issue with systems that have less RAM.

load the train data
train = pd.read_csv('FLIC-full/train/train_joints.csv', header = None)

split train into train and validation
train_img_ids, val_img_ids, train_jts, val_jts =
train_test_split(train.iloc[:,0], train.iloc[:,1:], test_size=0.2,
random_state=42)

load validation images
val_images = np.array([cv.imread('FLIC-full/train/{}'.format(x)) for x in
val_img_ids.values])

convert validation images to dtype float
val_images = val_images.astype(float)

Pose Estimation on 3D models Using ConvNets Chapter 12

[342]

Explore the data with the pandas head, tail, and info functions. Please
note that when loading the .csv file using pandas, set the header
parameter to False so that pandas knows that the file has no header.

We will now define the training() function, which will train the VGG16 model on the
train images. This function accepts the VGG16 model, train image IDs, train joints,
validation images, and validation joints as parameters. The following steps define what is
happening in the training() function:

The function defines empty lists by using loss_lst to store the train loss1.
and val_loss_lst to store the validation loss. It also defines a counter count to
keep track of the total number of batches.
It then creates a batch of train image IDs and their corresponding joints.2.
Using the batch image IDs, it loads the corresponding images into memory by3.
using the OpenCV imread() function.
It then converts the loaded train images into a float, which it feeds along with4.
the joint IDs to the train_on_batch() function of the model for the fit.
At every 40th batch, it evaluates the model on the validation data and stores the5.
train and validation loss in the defined lists.
It then repeats Steps 2 through 5 for the desired number of epochs.6.

Following is the code:

def training(model, image_ids, joints ,val_images, val_jts, batch_size =
128, epochs=3, store = 40):
 # empty train loss list
 loss_lst = []
 # empty validation loss list
 val_loss_lst = []
 # counter
 count = 0
 count_lst = []
 # create shuffled batches
 batches = np.arange(len(image_ids)//batch_size)
 data_idx = np.arange(len(image_ids))
 random.shuffle(data_idx)
 print('......Training......')
 for epoch in range(epochs):
 for batch in (batches):
 # batch of training image ids
 imgs = image_ids[data_idx[batch*batch_size :
(batch+1)*batch_size:]]
 # corresponding joints for the above images

Pose Estimation on 3D models Using ConvNets Chapter 12

[343]

 jts = joints[data_idx[batch*batch_size :
(batch+1)*batch_size:]]
 # load the training image batch
 batch_imgs = np.array([cv.imread('FLIC-
full/train/{}'.format(x)) for x in imgs])

 # fit model on the batch
 loss = model.train_on_batch(batch_imgs.astype(float), jts)
 if batch%store==0:

For the remaining part of this code snippet, please refer to the
deeppose.ipynb file here: https:/ / github. com/ PacktPublishing/
Python- Deep- Learning- Projects/ blob/ master/ Chapter12/ deeppose.
ipynb

The output is as follows:

The following is the output at the end of the code's execution:

Figure 12.17: Loss output when training the model

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter12/deeppose.ipynb

Pose Estimation on 3D models Using ConvNets Chapter 12

[344]

If you are using a small GPU for training, reduce the batch size to avoid
GPU memory issues. Also, remember that a smaller batch size may or
may not result in the same fit that this chapter indicates.

Plot training and validation loss
With loss_lst and val_loss_lst containing the train and validation MSE loss at
intervals of 40 batches, let's plot this and see how the learning has progressed:

plt.style.use('ggplot')
plt.figure(figsize=(10, 6))
plt.plot(count_lst, loss_lst, marker='D', label = 'training_loss')
plt.plot(count_lst, val_loss_lst, marker='o', label = 'validation_loss')
plt.ylabel('Mean Squared Error')
plt.title('Plot of MSE over time')
plt.legend(loc = 'upper right')
plt.show()

Following is the output:

Figure 12.18: Plot of train and validation loss

Pose Estimation on 3D models Using ConvNets Chapter 12

[345]

A smoother train validation loss plot can be obtained by reducing the
store hyperparameter. A small store value will result in a longer training
time.

Predictions
This is what we have been waiting for...

Making test predictions!

We will define a function that takes the model as input and tests the model on the test data
we have preprocessed and saved in the test folder. Along with predictions, it will also
save test images with the true and predicted joints plotted on it by using the plot_limb()
and the plot_joints() functions we defined in the preceding section:

def test(model, nrows=200, batch_size=128):
 # load the train data
 test = pd.read_csv('FLIC-full/test/test_joints.csv', header = None,
nrows=nrows)
 test_img_ids = test.iloc[:,0].values
 # load validation images
 test_images = np.array([cv.imread('FLIC-full/test/{}'.format(x)) for x
in test_img_ids])

 # convert validation images to dtype float
 test_images = test_images.astype(float)
 # joints
 test_joints = test.iloc[:,1:].values
 # evaluate
 test_loss = model.evaluate(test_images, test_joints, verbose = 0,
batch_size=batch_size)
 # predict
 predictions = model.predict(test_images, verbose = 0,
batch_size=batch_size)

 # folder to save the results
 if not os.path.exists(os.path.join(os.getcwd(), 'FLIC-
full/test_plot')):
 os.mkdir('FLIC-full/test_plot')
 for i, (ids, image, joint, pred) in enumerate(zip(test_img_ids,
test_images, test_joints, predictions)):
 joints = joint.tolist()
 joints = list(zip(joints[0::2], joints[1::2]))
 # plot original joints

Pose Estimation on 3D models Using ConvNets Chapter 12

[346]

 image = plot_joints(image.astype(np.uint8), joints,
groundtruth=True, text_scale=0.5)
 pred = pred.astype(np.uint8).tolist()
 pred = list(zip(pred[0::2], pred[1::2]))
 # plot predicted joints
 image = plot_joints(image.astype(np.uint8), pred,
groundtruth=False, text_scale=0.5)
 # save resulting images with the same id
 plt.imsave('FLIC-full/test_plot/'+ids, image)
 return test_loss

test and save results
test_loss = test(m, batch_size)

print test loss
print('Test Loss:', test_loss)

Following is the output:

Figure 12.19: Test loss

On a test set with 200 images, the test MSE loss is 454.80, which is very close to the
validation MSE loss of 503.85, indicating that the model is not overfitting on the train data.

Train the model for a few more epochs if possible, and check if a better fit
is possible. Be mindful of how many test images you want to load into
memory for evaluation since it might become a problem on machines with
RAM limitations.

Now let's plot the images we saved during testing to get a measure of how the true joints
compare to the predicted joints:

image_list = glob.glob('FLIC-full/test_plot/*.jpg')[8:16]

plt.figure(figsize=(16,8))
for i in range(8):
 plt.subplot(2,4,(i+1))
 img = cv.imread(image_list[i])
 plt.imshow(img, aspect='auto')
 plt.axis('off')
 plt.title('Green-True/Red-Predicted Joints')

plt.tight_layout()
plt.show()

Pose Estimation on 3D models Using ConvNets Chapter 12

[347]

Following is the output:

Figure 12.20: Test images with true and predicted joints plotted on top

From the preceding picture, we can see that the model is doing a really good job of
predicting the seven joints on unseen images.

Scripts in modular form
The entire script can be split into four modules named train.py, test.py, plotting.py,
and crop_resize_transform.py. You should be able to find these scripts in the
Chapter12 folder. Follow the instructions under the Code implementation section of this
chapter to run the scripts. Set Chapter12 as the project folder in your favorite source code
editor and just run the train.py file.

The train.py Python file will import functions from all of the other modules in places
where they are needed for execution.

Now let's walk through the contents of each file.

Pose Estimation on 3D models Using ConvNets Chapter 12

[348]

Module 1 – crop_resize_transform.py
This Python file contains the image_cropping(), image_resize(), and model_data()
functions, as shown:

"""This module contains functions to crop and resize images."""

import os
import cv2 as cv
import numpy as np
import pandas as pd

def image_cropping(image_id, joints, crop_pad_inf=1.4, crop_pad_sup=1.6,
 shift=5, min_dim=100):
 """Crop Function."""
 # # image cropping
 # load the image
 image = cv.imread('FLIC-full/images/%s' % (image_id))
 # convert joint list to array
 joints = np.asarray([int(float(p)) for p in joints])
 # reshape joints to shape (7*2)
 joints = joints.reshape((len(joints) // 2, 2))
 # transform joints to list of (x,y) tuples
 posi_joints = [(j[0], j[1]) for j in joints if j[0] > 0 and j[1] > 0]
 # obtain the bounding rectangle using opencv boundingRect
 x_loc, y_loc, width, height =
cv.boundingRect(np.asarray([posi_joints]))
 if width < min_dim:
 width = min_dim
 if height < min_dim:
 height = min_dim

 # # bounding rect extending
 inf, sup = crop_pad_inf, crop_pad_sup
 r = sup - inf
 # define width padding
 pad_w_r = np.random.rand() * r + inf # inf~sup
 # define height padding
 pad_h_r = np.random.rand() * r + inf # inf~sup
 # adjust x, y, w and h by the defined padding
 x_loc -= (width * pad_w_r - width) / 2
 y_loc -= (height * pad_h_r - height) / 2
 width *= pad_w_r
 height *= pad_h_r

 # # shifting
 x_loc += np.random.rand() * shift * 2 - shift

Pose Estimation on 3D models Using ConvNets Chapter 12

[349]

 y_loc += np.random.rand() * shift * 2 - shift

 # # clipping
 x_loc, y_loc, width, height = [int(z) for z in [x_loc, y_loc,
 width, height]]
 x_loc = np.clip(x_loc, 0, image.shape[1] - 1)
 y_loc = np.clip(y_loc, 0, image.shape[0] - 1)
 width = np.clip(width, 1, image.shape[1] - (x_loc + 1))
 height = np.clip(height, 1, image.shape[0] - (y_loc + 1))
 image = image[y_loc: y_loc + height, x_loc: x_loc + width]

 # # joint shifting
 # adjust joint coordinates onto the padded image
 joints = np.asarray([(j[0] - x_loc, j[1] - y_loc) for j in joints])
 joints = joints.flatten()

 return image, joints

def image_resize(image, joints, new_size=224):
 """Resize Function."""
 orig_h, orig_w = image.shape[:2]
 joints[0::2] = joints[0::2] / float(orig_w) * new_size
 joints[1::2] = joints[1::2] / float(orig_h) * new_size
 image = cv.resize(image, (new_size, new_size),
 interpolation=cv.INTER_NEAREST)
 return image, joints

def model_data(image_ids, joints, train=True):
 """Function to generate train and test data."""
 if train:
 # empty list
 train_img_joints = []
 # create train directory inside FLIC-full
 if not os.path.exists(os.path.join(os.getcwd(), 'FLIC-
full/train')):
 os.mkdir('FLIC-full/train')

 for i, (image, joint) in enumerate(zip(image_ids, joints)):
 # crop the image using the joint coordinates
 image, joint = image_cropping(image, joint)
 # resize the cropped image to shape (224*224*3)
 image, joint = image_resize(image, joint)
 # save the image in train folder
 cv.imwrite('FLIC-full/train/train{}.jpg'.format(i), image)
 # store joints and image id/file name of the saved image in
 # the initialized list

Pose Estimation on 3D models Using ConvNets Chapter 12

[350]

 train_img_joints.append(['train{}.jpg'.format(i)] +
joint.tolist())

 # convert to a dataframe and save as a csv
 pd.DataFrame(train_img_joints
).to_csv('FLIC-full/train/train_joints.csv',
 index=False, header=False)
 else:
 # empty list
 test_img_joints = []
 # create test directory inside FLIC-full
 if not os.path.exists(os.path.join(os.getcwd(), 'FLIC-full/test')):
 os.mkdir('FLIC-full/test')

 for i, (image, joint) in enumerate(zip(image_ids, joints)):
 # crop the image using the joint coordinates
 image, joint = image_cropping(image, joint)
 # resize the cropped image to shape (224*224*3)
 image, joint = image_resize(image, joint)
 # save the image in test folder
 cv.imwrite('FLIC-full/test/test{}.jpg'.format(i), image)
 # store joints and image id/file name of the saved image
 # in the initialized list
 test_img_joints.append(['test{}.jpg'.format(i)] +
joint.tolist())

 # convert to a dataframe and save as a csv
 pd.DataFrame(test_img_joints).to_csv('FLIC-
full/test/test_joints.csv',
 index=False, header=False)

Module 2 – plotting.py
This Python file contains two functions, namely plot_limb() and plot_joints(), as
shown:

"""This module contains functions to plot the joints and the limbs."""
import cv2 as cv
import numpy as np

def plot_limb(img, joints, i, j, color):
 """Limb plot function."""
 cv.line(img, joints[i], joints[j], (255, 255, 255), thickness=2,
 lineType=16)
 cv.line(img, joints[i], joints[j], color, thickness=1, lineType=16)
 return img

Pose Estimation on 3D models Using ConvNets Chapter 12

[351]

def plot_joints(img, joints, groundtruth=True, text_scale=0.5):
 """Joint and Limb plot function."""
 h, w, c = img.shape
 if groundtruth:
 # left hand to left elbow
 img = plot_limb(img, joints, 0, 1, (0, 255, 0))

 # left elbow to left shoulder
 img = plot_limb(img, joints, 1, 2, (0, 255, 0))

 # left shoulder to right shoulder
 img = plot_limb(img, joints, 2, 4, (0, 255, 0))

 # right shoulder to right elbow
 img = plot_limb(img, joints, 4, 5, (0, 255, 0))

 # right elbow to right hand
 img = plot_limb(img, joints, 5, 6, (0, 255, 0))

 # neck coordinate
 neck = tuple((np.array(joints[2]) + np.array(joints[4])) // 2)
 joints.append(neck)
 # neck to head
 img = plot_limb(img, joints, 3, 7, (0, 255, 0))
 joints.pop()

 # joints
 for j, joint in enumerate(joints):
 # plot joints
 cv.circle(img, joint, 5, (0, 255, 0), -1)
 # plot joint number black
 cv.putText(img, '%d' % j, joint, cv.FONT_HERSHEY_SIMPLEX,
text_scale,
 (0, 0, 0), thickness=2, lineType=16)
 # plot joint number white
 cv.putText(img, '%d' % j, joint, cv.FONT_HERSHEY_SIMPLEX,
text_scale,
 (255, 255, 255), thickness=1, lineType=16)

 else:
 # left hand to left elbow
 img = plot_limb(img, joints, 0, 1, (0, 0, 255))

 # left elbow to left shoulder
 img = plot_limb(img, joints, 1, 2, (0, 0, 255))

 # left shoulder to right shoulder
 img = plot_limb(img, joints, 2, 4, (0, 0, 255))

Pose Estimation on 3D models Using ConvNets Chapter 12

[352]

 # right shoulder to right elbow
 img = plot_limb(img, joints, 4, 5, (0, 0, 255))

 # right elbow to right hand
 img = plot_limb(img, joints, 5, 6, (0, 0, 255))

 # neck coordinate
 neck = tuple((np.array(joints[2]) + np.array(joints[4])) // 2)
 joints.append(neck)

 # neck to head
 img = plot_limb(img, joints, 3, 7, (0, 0, 255))
 joints.pop()

 # joints
 for j, joint in enumerate(joints):
 # plot joints
 cv.circle(img, joint, 5, (0, 0, 255), -1)
 # plot joint number black
 cv.putText(img, '%d' % j, joint, cv.FONT_HERSHEY_SIMPLEX,
text_scale,
 (0, 0, 0), thickness=3, lineType=16)
 # plot joint number white
 cv.putText(img, '%d' % j, joint, cv.FONT_HERSHEY_SIMPLEX,
text_scale,
 (255, 255, 255), thickness=1, lineType=16)

 return img

Module 3 – test.py
This module contains the test() function that will be called in the train_dqn.py script
so that it can test the performance of the trained model, as shown:

"""This module contains the function to test the vgg16 model
performance."""
from plotting import *

import os
import pandas as pd
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

def test(model, nrows=200, batch_size=128):
 """Test trained vgg16."""

Pose Estimation on 3D models Using ConvNets Chapter 12

[353]

 # load the train data
 test = pd.read_csv('FLIC-full/test/test_joints.csv', header=None,
 nrows=nrows)
 test_img_ids = test.iloc[:, 0].values

 # load validation images
 test_images = np.array(
 [cv.imread('FLIC-full/test/{}'.format(x)) for x in
test_img_ids])

 # convert validation images to dtype float
 test_images = test_images.astype(float)

 # joints
 test_joints = test.iloc[:, 1:].values

 # evaluate
 test_loss = model.evaluate(test_images, test_joints,
 verbose=0, batch_size=batch_size)

 # predict
 predictions = model.predict(test_images, verbose=0,
batch_size=batch_size)

 # folder to save the results
 if not os.path.exists(os.path.join(os.getcwd(), 'FLIC-
full/test_plot')):
 os.mkdir('FLIC-full/test_plot')

 for i, (ids, image, joint, pred) in enumerate(zip(test_img_ids,
 test_images,
 test_joints,
 predictions)):
 joints = joint.tolist()
 joints = list(zip(joints[0::2], joints[1::2]))

 # plot original joints
 image = plot_joints(image.astype(np.uint8), joints,
 groundtruth=True, text_scale=0.5)

 pred = pred.astype(np.uint8).tolist()
 pred = list(zip(pred[0::2], pred[1::2]))

 # plot predicted joints
 image = plot_joints(image.astype(np.uint8), pred,
 groundtruth=False, text_scale=0.5)

 # save resulting images with the same id

Pose Estimation on 3D models Using ConvNets Chapter 12

[354]

 plt.imsave('FLIC-full/test_plot/'+ids, image)
 return test_loss

Module 4 – train.py
In this module, we have the joint_coordinates() and training() functions, as well as
the calls to train and test the VGG16 model:

"""This module imports other modules to train the vgg16 model."""
from __future__ import print_function

from crop_resize_transform import model_data
from test import test

import matplotlib.pyplot as plt

import random
from scipy.io import loadmat
import numpy as np
import pandas as pd
import cv2 as cv
import glob

from sklearn.model_selection import train_test_split

from keras.models import Model
from keras.optimizers import Adam
from keras.layers import Flatten, Dense, Dropout
from keras import backend as K
from keras import applications
K.clear_session()

set seed for reproducibility
seed_val = 9000
np.random.seed(seed_val)
random.seed(seed_val)

load the examples file
examples = loadmat('FLIC-full/examples.mat')
reshape the examples array
examples = examples['examples'].reshape(-1,)

each coordinate corresponds to the the below listed body joints/locations
in the same order
joint_labels = ['lsho', 'lelb', 'lwri', 'rsho', 'relb', 'rwri', 'lhip',
 'lkne', 'lank', 'rhip', 'rkne', 'rank', 'leye', 'reye',

Pose Estimation on 3D models Using ConvNets Chapter 12

[355]

 'lear', 'rear', 'nose', 'msho', 'mhip', 'mear', 'mtorso',
 'mluarm', 'mruarm', 'mllarm', 'mrlarm', 'mluleg', 'mruleg',
 'mllleg', 'mrlleg']

print list of known joints
known_joints = [x for i, x in enumerate(joint_labels) if i in np.r_[0:7, 9,
 12:14,
16]]
target_joints = ['lsho', 'lelb', 'lwri', 'rsho', 'relb',
 'rwri', 'leye', 'reye', 'nose']
indices of the needed joints in the coordinates array
joints_loc_id = np.r_[0:6, 12:14, 16]

def joint_coordinates(joint):
 """Store necessary coordinates to a list."""
 joint_coor = []
 # Take mean of the leye, reye, nose to obtain coordinates for the head
 joint['head'] = (joint['leye']+joint['reye']+joint['nose'])/3
 joint_coor.extend(joint['lwri'].tolist())
 joint_coor.extend(joint['lelb'].tolist())
 joint_coor.extend(joint['lsho'].tolist())
 joint_coor.extend(joint['head'].tolist())
 joint_coor.extend(joint['rsho'].tolist())
 joint_coor.extend(joint['relb'].tolist())
 joint_coor.extend(joint['rwri'].tolist())
 return joint_coor

load the indices matlab file
train_indices = loadmat('FLIC-full/tr_plus_indices.mat')
reshape the training_indices array
train_indices = train_indices['tr_plus_indices'].reshape(-1,)

empty list to store train image ids
train_ids = []
empty list to store train joints
train_jts = []
empty list to store test image ids
test_ids = []
empty list to store test joints
test_jts = []

for i, example in enumerate(examples):
 # image id
 file_name = example[3][0]
 # joint coordinates
 joint = example[2].T

Pose Estimation on 3D models Using ConvNets Chapter 12

[356]

 # dictionary that goes into the joint_coordinates function
 joints = dict(zip(target_joints,
 [x for k, x in enumerate(joint) if k in
joints_loc_id]))
 # obtain joints for the task
 joints = joint_coordinates(joints)
 # use train indices list to decide if an image is to be used for
training
 # or testing
 if i in train_indices:
 train_ids.append(file_name)
 train_jts.append(joints)
 else:
 test_ids.append(file_name)
 test_jts.append(joints)

Concatenate image ids dataframe and the joints dataframe and save it as a
csv
train_df = pd.concat([pd.DataFrame(train_ids), pd.DataFrame(train_jts)],
 axis=1)
test_df = pd.concat([pd.DataFrame(test_ids), pd.DataFrame(test_jts)],
axis=1)
train_df.to_csv('FLIC-full/train_joints.csv', index=False, header=False)
test_df.to_csv('FLIC-full/test_joints.csv', index=False, header=False)

load train_joints.csv
train_data = pd.read_csv('FLIC-full/train_joints.csv', header=None)
load test_joints.csv
test_data = pd.read_csv('FLIC-full/test_joints.csv', header=None)

train image ids
train_image_ids = train_data[0].values
train joints
train_joints = train_data.iloc[:, 1:].values
test image ids
test_image_ids = test_data[0].values
test joints
test_joints = test_data.iloc[:, 1:].values

model_data(train_image_ids, train_joints, train=True)
model_data(test_image_ids, test_joints, train=False)

Number of epochs
epochs = 3
Batchsize
batch_size = 128
Optimizer for the model
optimizer = Adam(lr=0.0001, beta_1=0.5)

Pose Estimation on 3D models Using ConvNets Chapter 12

[357]

Shape of the input image
input_shape = (224, 224, 3)
Batch interval at which loss is to be stores
store = 40

load the vgg16 model
model = applications.VGG16(weights="imagenet", include_top=False,
 input_shape=input_shape)

set layers as non trainable
for layer in model.layers:
 layer.trainable = False

Adding custom Layers
x = model.output
x = Flatten()(x)
x = Dense(1024, activation="relu")(x)
x = Dropout(0.5)(x)
x = Dense(1024, activation="relu")(x)

Dense layer with 14 neurons for predicting 14 numeric values
predictions = Dense(14, activation="relu")(x)
creating the final model
model_final = Model(inputs=model.input, outputs=predictions)
compile the model
model_final.compile(loss="mean_squared_error", optimizer=optimizer)
load the train data
train = pd.read_csv('FLIC-full/train/train_joints.csv', header=None)
split train into train and validation
train_img_ids, val_img_ids, train_jts, val_jts = train_test_split(
 train.iloc[:, 0], train.iloc[:, 1:], test_size=0.2,
random_state=42)

load validation images
val_images = np.array(
 [cv.imread('FLIC-full/train/{}'.format(w)) for w in
val_img_ids.values])

convert validation images to dtype float
val_images = val_images.astype(float)

def training(model, image_ids, joints, val_images, val_jts,
 batch_size=128, epochs=2):
 """Train vgg16."""
 # empty train loss and validation loss list
 loss_lst = []
 val_loss_lst = []

Pose Estimation on 3D models Using ConvNets Chapter 12

[358]

 count = 0 # counter
 count_lst = []

 # create shuffled batches
 batches = np.arange(len(image_ids)//batch_size)
 data_idx = np.arange(len(image_ids))
 random.shuffle(data_idx)
 print('......Training......')
 for epoch in range(epochs):
 for batch in (batches):
 # batch of training image ids
 imgs =
image_ids[data_idx[batch*batch_size:(batch+1)*batch_size:]]
 # corresponding joints for the above images
 jts = joints[data_idx[batch*batch_size:(batch+1)*batch_size:]]
 # load the training image batch
 batch_imgs = np.array(
 [cv.imread('FLIC-full/train/{}'.format(x)) for x in
imgs])
 # fit model on the batch
 loss = model.train_on_batch(batch_imgs.astype(float), jts)
 if batch % 40 == 0:
 # evaluate model on validation set
 val_loss = model.evaluate(val_images, val_jts, verbose=0,
 batch_size=batch_size)
 # store train and val loss
 loss_lst.append(loss)
 val_loss_lst.append(val_loss)
 print('Epoch:{}, End of batch:{},
loss:{:.2f},val_loss:{:.2f}\
 '.format(epoch+1, batch+1, loss, val_loss))

 count_lst.append(count)
 else:
 print('Epoch:{}, End of batch:{}, loss:{:.2f}\
 '.format(epoch+1, batch+1, loss))
 count += 1
 count_lst.append(count)
 loss_lst.append(loss)
 val_loss = model.evaluate(val_images, val_jts, verbose=0,
 batch_size=batch_size)
 val_loss_lst.append(val_loss)
 print('Epoch:{}, End of batch:{}, VAL_LOSS:{:.2f}\
 '.format(epoch+1, batch+1, val_loss))
 return model, loss_lst, val_loss_lst, count_lst

m, loss_lst, val_loss_lst, count_lst = training(model_final,

Pose Estimation on 3D models Using ConvNets Chapter 12

[359]

 train_img_ids.values,
 train_jts.values,
 val_images,
 val_jts.values,
 epochs=epochs,
 batch_size=batch_size)

plot the learning
plt.style.use('ggplot')
plt.figure(figsize=(10, 6))
plt.plot(count_lst, loss_lst, marker='D', label='training_loss')
plt.plot(count_lst, val_loss_lst, marker='o', label='validation_loss')
plt.xlabel('Batches')
plt.ylabel('Mean Squared Error')
plt.title('Plot of MSE over time')
plt.legend(loc='upper right')
plt.show()

test and save results
test_loss = test(m)

print test_loss
print('Test Loss:', test_loss)

image_list = glob.glob('FLIC-full/test_plot/*.jpg')[8:16]

plt.figure(figsize=(16, 8))
for i in range(8):
 plt.subplot(2, 4, (i+1))
 img = cv.imread(image_list[i])
 plt.imshow(img, aspect='auto')
 plt.axis('off')
 plt.title('Green-True/Red-Predicted Joints')

plt.tight_layout()
plt.show()

Conclusion
This project was all about building a convolutional neural network (CNN) classifier to
solve the problem of estimating 3D human poses using frames captured from movies. Our
hypothetical use case was to enable visual effects specialists to easily estimate the pose of
actors (from their shoulders, necks, and heads from the frames in a video. Our task was to
build the intelligence for this application.

Pose Estimation on 3D models Using ConvNets Chapter 12

[360]

The modified VGG16 architecture we built using transfer learning has a test mean squared
error loss of 454.81 squared units over 200 test images for each of the 14 coordinates (that is,
the 7(x, y) pairs). We can also say that the test root mean squared error over 200 test images
for each of the 14 coordinates is 21.326 units. What does this mean?

The root mean squared error (RMSE), in this case, is a measure of how far off the predicted
joint coordinates/joint pixel location are from the actual joint coordinate/joint pixel location.

An RMSE loss of 21.32 units is equivalent to having each predicted coordinate off by 21.32
pixels within an image of shape 224*224*3. The test results plotted in Figure 13.20 represent
this measure.

Each coordinate being off by 21.32 pixels is good at a general level, but we want to build a
product that will be used in movies for which the margin for error is much less, and being
off by 21 pixels is not acceptable.

To improve the model, you can do the following:

Try using a lower learning rate for a larger number of epochs
Try using a different loss function (for example, mean absolute error (MAE))
Try using an even deeper model, such as RESNET50 or VGG19
Try centering and scaling the data
Get more data

These are some of the additional steps you should take if you are interested in becoming an
expert in this specific area once you are done with this chapter.

Summary
In this chapter, we successfully built a deep convolution neural network/VGG16 model in
Keras on FLIC images. We got hands-on experience in preparing these images for
modeling. We successfully implemented transfer learning, and understood that doing so
will save us a lot of time. We defined some key hyperparameters as well in some places,
and reasoned about why we used what we used. Finally, we tested the modified VGG16
model performance on unseen data and determined that we succeeded in achieving our
goals.

13
Image Translation Using GANs

for Style Transfer
Welcome to the chapter on Generative Adversarial Networks (GANs). In this chapter, we
will be building a neural network that fills in the missing part of a handwritten digit.
Previously, we have built a digit classifier for the restaurant chain. But they have also
noticed that sometimes, when customers write in their phone number, small
sections/regions of the digits are missing. This may be a combination of the customer not
having a smooth flow when writing on the iPad application, as well as issues with the
iPad application not processing the complete user gesture on the screen. This makes it hard
for the handwritten digit classifier to predict the correct digit corresponding to the
handwritten number. Now, they want us to reconstruct (generate back) the missing parts of
the handwritten numbers so that the classifier receives clear handwritten numbers for
conversion into digits. With this, the classifier will be able to do a much more accurate job
of classifying handwritten digits and the notice gets sent to the right hungry customer!

Image Translation Using GANs for Style Transfer Chapter 13

[362]

We will mostly focus on the generation/reconstruction of the missing sections of a digit and
we will do this with the help of neural inpainting with GANs; see the following flowchart:

Figure 13.1: GAN flowchart

What we'll learn in this chapter is the following:

What is a GAN
What is a generator and a discriminator
Coding the model and defining hyperparameters
Building and understanding the training loop
Testing the model
Extending the model to new datasets

In this chapter, you will implement the following:

Build an MNIST digit classifier
Simulate a dataset of handwritten digits with sections of the handwritten
numbers missing
Use the MNIST classifier to predict on noised/masked MNIST digits dataset
(simulated dataset)
Implement GAN to generate back the missing regions of the digit
Use the MNIST classifier to predict on the generated digits from GAN
Compare performance between masked data and generated data

Image Translation Using GANs for Style Transfer Chapter 13

[363]

It would be better if you implement the code snippets as you go along in this chapter, either
in a Jupyter Notebook or any source code editor. This will make it easier for you to follow
along, as well as understand what each part of the code does.

All of the Python files and Jupyter Notebook files for this chapter can be found
here: https://github. com/ PacktPublishing/ Python- Deep- Learning- Projects/ tree/
master/Chapter13.

Let's code the implementation!
In this exercise, we will be using the Keras deep learning library, which is a high-level
neural network API, capable of running on top of Tensorflow, Theano, or Cognitive Toolkit
(CNTK).

Know the code! We will not spend time on understanding how Keras
works but, if you are interested, refer to this easy-to-understand Keras
official documentation at https:/ /keras. io/ .

Importing all of the dependencies
We will be using numpy, matplotlib, keras, tensorflow, and the tqdm package in this
exercise. Here, TensorFlow is used as the backend for Keras. You can install these packages
with pip. For the MNIST data, we will be using the dataset available in the keras module
with a simple import:

import numpy as np
import random
import matplotlib.pyplot as plt
%matplotlib inline

from tqdm import tqdm

from keras.layers import Input, Conv2D
from keras.layers import AveragePooling2D, BatchNormalization
from keras.layers import UpSampling2D, Flatten, Activation
from keras.models import Model, Sequential
from keras.layers.core import Dense, Dropout
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam
from keras import backend as k

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter13
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/

Image Translation Using GANs for Style Transfer Chapter 13

[364]

from keras.datasets import mnist

It is important that you set seed for reproducibility:

set seed for reproducibility
seed_val = 9000
np.random.seed(seed_val)
random.seed(seed_val)

Exploring the data
We will load the MNIST data into our session from the keras module with
mnist.load_data(). After doing so, we will print the shape and the size of the dataset, as
well as the number of classes and unique labels in the dataset:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

print('Size of the training_set: ', X_train.shape)
print('Size of the test_set: ', X_test.shape)
print('Shape of each image: ', X_train[0].shape)
print('Total number of classes: ', len(np.unique(y_train)))
print('Unique class labels: ', np.unique(y_train))

We have a dataset with 10 different classes and 60,000 images, with each image having a
shape of 28*28 and each class having 6,000 images.

Let's plot and see what the handwritten images look like:

Plot of 9 random images
for i in range(0, 9):
 plt.subplot(331+i) # plot of 3 rows and 3 columns
 plt.axis('off') # turn off axis
 plt.imshow(X_train[i], cmap='gray') # gray scale

The output is as follows:

Figure 13.2: Plot of nine MNIST digits from the training set

Image Translation Using GANs for Style Transfer Chapter 13

[365]

Let's plot a handwritten digit from each class:

plotting image from each class
fig=plt.figure(figsize=(8, 4))
columns = 5
rows = 2
for i in range(0, rows*columns):
 fig.add_subplot(rows, columns, i+1)
 plt.title(str(i)) # label
 plt.axis('off') # turn off axis
 plt.imshow(X_train[np.where(y_train==i)][0], cmap='gray') # gray scale
plt.show()

The output is as follows:

Figure 13.3: Plot of an MNIST digit from each class

Look at the maximum and the minimum pixel value in the dataset:

print('Maximum pixel value in the training_set: ', np.max(X_train))
print('Minimum pixel value in the training_set: ', np.min(X_train))

The output is as follows:

Figure 13.5: Plot of nine noised/masked MNIST digits

We see that the maximum pixel value in the dataset is 255 and the minimum is 0.

Image Translation Using GANs for Style Transfer Chapter 13

[366]

Preparing the data
Type conversion, centering, scaling, and reshaping are some of the pre-processing we will
implement in this chapter.

Type conversion, centering, and scaling
Set the type to np.float32.

Important: One of the main reasons for doing this is that the weights will
all be of the float type, and multiplication between floating numbers is
much faster than between an integer and a float. So it's better to convert
the input into the float type.

For centering, we subtract the dataset by 127.5. The values in the dataset will now range
between -127.5 to 127.5.

For scaling, we divide the centered dataset by half of the maximum pixel value in the
dataset, that is, 255/2. This will result in a dataset with values ranging between -1 and 1:

Converting integer values to float types
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)

Scaling and centering
X_train = (X_train - 127.5) / 127.5
X_test = (X_test - 127.5)/ 127.5
print('Maximum pixel value in the training_set after Centering and Scaling:
', np.max(X_train))
print('Minimum pixel value in the training_set after Centering and Scaling:
', np.min(X_train))

Let's define a function to rescale the pixel values of the scaled image to range between 0 and
255:

Rescale the pixel values (0 and 255)
def upscale(image):
 return (image*127.5 + 127.5).astype(np.uint8)

Lets see if this works
z = upscale(X_train[0])
print('Maximum pixel value after upscaling scaled image: ',np.max(z))
print('Maximum pixel value after upscaling scaled image: ',np.min(z))

Image Translation Using GANs for Style Transfer Chapter 13

[367]

Matplotlib tip: Rescaling needs to be done so that you avoid errors
with Matplotlib if you were to use the scaled image as is without
upscaling.

A plot of 9 centered and scaled images after upscaling:

for i in range(0, 9):
 plt.subplot(331+i) # plot of 3 rows and 3 columns
 plt.axis('off') # turn off axis
 plt.imshow(upscale(X_train[i]), cmap='gray') # gray scale

The output is as follows:

Figure 13.4: Plot of nine centered and scaled MNIST digits after upscaling

Masking/inserting noise
For the needs of this project, we need to simulate a dataset of incomplete digits. So, let's
write a function to mask small regions in the original image to form the noised dataset.

The idea is to mask an 8*8 region of the image with the top-left corner of the mask falling
between the 9th and 13th pixel (between index 8 and 12) along both the x and y axis of the
image. This is to make sure that we are always masking around the center part of the
image:

def noising(image):
 array = np.array(image)
 i = random.choice(range(8,12)) # x coordinate for the top left corner
of the mask
 j = random.choice(range(8,12)) # y coordinate for the top left corner
of the mask
 array[i:i+8, j:j+8]=-1.0 # setting the pixels in the masked region to
-1

Image Translation Using GANs for Style Transfer Chapter 13

[368]

 return array

noised_train_data = np.array([*map(noising, X_train)])
noised_test_data = np.array([*map(noising, X_test)])
print('Noised train data Shape/Dimension : ', noised_train_data.shape)
print('Noised test data Shape/Dimension : ', noised_train_data.shape)

The bigger the size of the mask, the harder it will be for the MNIST
classifier to predict the right digit.

Feel free to experiment with the size of the masked region, that is, try
smaller/bigger, as well as the location of the mask on the image.

A plot of 9 scaled noised images after upscaling:

Plot of 9 scaled noised images after upscaling
for i in range(0, 9):
 plt.subplot(331+i) # plot of 3 rows and 3 columns
 plt.axis('off') # turn off axis
 plt.imshow(upscale(noised_train_data[i]), cmap='gray') # gray scale

The output is as follows:

Figure 13.5: Plot of nine noised/masked MNIST digits

Image Translation Using GANs for Style Transfer Chapter 13

[369]

Reshaping
Reshape the original dataset and the noised dataset to a shape of 60000*28*28*1. This is
important since the 2D convolutions expect to receive images of a shape of 28*28*1:

Reshaping the training data
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1],
X_train.shape[2], 1)
print('Size/Shape of the original training set: ', X_train.shape)

Reshaping the noised training data
noised_train_data = noised_train_data.reshape(noised_train_data.shape[0],
 noised_train_data.shape[1],
 noised_train_data.shape[2],
1)
print('Size/Shape of the noised training set: ', noised_train_data.shape)

Reshaping the testing data
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2],
1)
print('Size/Shape of the original test set: ', X_test.shape)

Reshaping the noised testing data
noised_test_data = noised_test_data.reshape(noised_test_data.shape[0],
 noised_test_data.shape[1],
 noised_test_data.shape[2], 1)
print('Size/Shape of the noised test set: ', noised_test_data.shape)

If you are doing multiple training runs on the GPU, it is always a good
idea to clear space on the GPU after each run so that your next run
executes efficiently without errors related to resource exhaustion, which
is pretty common with GPUs. This can be done with the following code:
from keras import backend as k
k.clear_session()

MNIST classifier
To start off with modeling, let's build a simple convolutional neural network (CNN)
digit classifier.

Image Translation Using GANs for Style Transfer Chapter 13

[370]

The first layer is a convolution layer that has 32 filters of a shape of 3*3, with
relu activation and Dropout as the regularizer. The second layer is a convolution layer
that has 64 filters of a shape of 3*3, with relu activation and Dropout as the
regularizer. The third layer is a convolution layer that has 128 filters of a shape of 3*3, with
relu activation and Dropout as the regularizer, which is finally flattened. The fourth layer
is a Dense layer of 1024 neurons with relu activation. The final layer is a Dense layer with
10 neurons corresponding to the 10 classes in the MNIST dataset, and the activation used
here is softmax, batch_size is set to 128, the optimizer used is adam,
and validation_split is set to 0.2. This means that 20% of the training set will be used
as the validation set:

input image shape
input_shape = (28,28,1)

def train_mnist(input_shape, X_train, y_train):
 model = Sequential()
 model.add(Conv2D(32, (3, 3), strides=2, padding='same',
 input_shape=input_shape))
 model.add(Activation('relu'))
 model.add(Dropout(0.2))

 model.add(Conv2D(64, (3, 3), strides=2, padding='same'))
 model.add(Activation('relu'))
 model.add(Dropout(0.2))

 model.add(Conv2D(128, (3, 3), padding='same'))
 model.add(Activation('relu'))
 model.add(Dropout(0.2))
 model.add(Flatten())

 model.add(Dense(1024, activation = 'relu'))
 model.add(Dense(10, activation='softmax'))
 model.compile(loss = 'sparse_categorical_crossentropy',
 optimizer = 'adam', metrics = ['accuracy'])
 model.fit(X_train, y_train, batch_size = 128,
 epochs = 3, validation_split=0.2, verbose = 1)
 return model

mnist_model = train_mnist(input_shape, X_train, y_train)

Image Translation Using GANs for Style Transfer Chapter 13

[371]

The output is as follows:

Figure 13.6: MNIST CNN classifier training for three epochs

Use the built CNN digit classifier on the masked images to get a measure of its performance
on digits that are missing small sections:

prediction on the masked images
pred_labels = mnist_model.predict_classes(noised_test_data)
print('The model model accuracy on the masked images
is:',np.mean(pred_labels==y_test)*100)

On the masked images, the CNN digit classifier is 74.9% accurate. It might be slightly
different when you run it, but it will still be very close.

We have not used maxpooling in the preceding classifier. Try building the
same classifier with maxpooling or other pooling options.

Image Translation Using GANs for Style Transfer Chapter 13

[372]

Defining hyperparameters for GAN
The following are some of the hyperparameters defined that we will be using throughout
the code and are totally configurable:

Smoothing value
smooth_real = 0.9

Number of epochs
epochs = 5

Batchsize
batch_size = 128

Optimizer for the generator
optimizer_g = Adam(lr=0.0002, beta_1=0.5)

Optimizer for the discriminator
optimizer_d = Adam(lr=0.0004, beta_1=0.5)

Shape of the input image
input_shape = (28,28,1)

Experiment with different learning rates, optimizers, batch sizes, and
smoothing values to see how these factors affect the quality of your model
and, if you get better results, show it to the deep learning community.

Building the GAN model components
With the idea that the final GAN model will be able to fill in the part of the image that is
missing (masked), let's define the generator.

Image Translation Using GANs for Style Transfer Chapter 13

[373]

Defining the generator
The generator that we are using here is a simple convolution autoencoder that is a
combination of two parts—an encoder and a decoder.

In the encoder, we have the following:

The first layer is a convolution 2D layer with 32 filters of a size of 3*3, followed
by batch normalization, with activation as relu, followed by downsampling
done with AveragePooling2D of size 2*2
The second layer is a convolution 2D layer with 64 filters of a size of 3*3,
followed by batch normalization, with activation as relu, followed by
downsampling with AveragePooling2D of a size of 2*2
The third layer or the final layer in this encoder part is again a convolution 2D
layer with 128 filters of a size of 3*3, batch normalization, with activation
as relu

In the decoder, we have the following:

The first layer is a convolution 2D layer with 128 filters of a size of 3*3 with
activation as relu, followed by upsampling done with UpSampling2D
The second layer is a convolution 2D layer with 64 filters of a size of 3*3 with
activation as relu, followed by upsampling with UpSampling2D
The third layer or the final layer in this decoder part is again a convolution 2D
layer with 1 filters of a size of 3*3 with activation as tanh

Remember, in the encoder, if you have 32, 64, 128 filters, it should be followed by 128, 64,
image_channels filters in the decoder. image_channels is the number of channels in the
input image, which is one in the MNIST dataset. If you have 64, 128, 256, 512 filters in the
first, second, third, and fourth layers of the encoder, the following filters in the decoder
should be 256, 128, 64, image_channels:

def img_generator(input_shape):
 generator = Sequential()
 generator.add(Conv2D(32, (3, 3), padding='same',
input_shape=input_shape)) # 32 filters
 generator.add(BatchNormalization())
 generator.add(Activation('relu'))
 generator.add(AveragePooling2D(pool_size=(2, 2)))
 generator.add(Conv2D(64, (3, 3), padding='same')) # 64 filters
 generator.add(BatchNormalization())
 generator.add(Activation('relu'))
 generator.add(AveragePooling2D(pool_size=(2, 2)))

Image Translation Using GANs for Style Transfer Chapter 13

[374]

 generator.add(Conv2D(128, (3, 3), padding='same')) # 128 filters
 generator.add(BatchNormalization())
 generator.add(Activation('relu'))
 generator.add(Conv2D(128, (3, 3), padding='same')) # 128 filters
 generator.add(Activation('relu'))
 generator.add(UpSampling2D((2,2)))
 generator.add(Conv2D(64, (3, 3), padding='same')) # 64 filters
 generator.add(Activation('relu'))
 generator.add(UpSampling2D((2,2)))
 generator.add(Conv2D(1, (3, 3), activation='tanh', padding='same')) # 1
filter
 return generator

Two important things to remember here about the final convolution layer in the generator.
One is to use tanh as the activation function since the dataset range is between -1 and 1,
and the other is, to use the same number of filter(s) as the number of channels in the input
image. This is to make sure that the image being generated has the same number of
channels as the input image.

If you decide to center and scale your data like we have done in this
exercise, you need to use batch normalization in the generator during
downsampling, otherwise, the loss will not converge. You can witness the
effects of not using the batch normalization by training the generator
without the batch normalization layer.

In the following summary of the generator, if you refer to the output shape, you see the
downscaling or compression of the image in the first half of the network and the upscaling
of the images in the second half of the network:

print generator summary
img_generator(input_shape).summary()

Image Translation Using GANs for Style Transfer Chapter 13

[375]

The output is as follows:

Figure 13.7: Summary of the generator (autoencoder)

Image Translation Using GANs for Style Transfer Chapter 13

[376]

Consider the following when you are not obtaining good results with the
autoencoder. Use AveragePooling2D first and then check out
MaxPooling2D for downsampling. Use LeakyReLU first and then relu
next. For all of the convolution layers except the final one, use either
LeakyReLU or relu activation. Try using a deeper autoencoder. Feel free
to use more filters in the convolution layers, play with the filter sizes and
the pooling sizes.

Defining the discriminator
 The discriminator is a simple CNN binary classifier that takes in the image generated by
the generator and tries to classify the image as original or fake.

The first layer is a convolution 2D layer with 64 filters of a size of 3*3 with the activation as
LeakyReLU and Dropout as the regularizer. The second and third layers are the same as the
first layer except the second layer has 128 filters and the third layer has 256 filters. The
final layer is a Dense layer with sigmoid activation since we are doing a binary
classification:

def img_discriminator(input_shape):
 discriminator = Sequential()
 discriminator.add(Conv2D(64, (3, 3), strides=2, padding='same',
input_shape=input_shape, activation = 'linear'))
 discriminator.add(LeakyReLU(0.2))
 discriminator.add(Dropout(0.2))
 discriminator.add(Conv2D(128, (3, 3), strides=2, padding='same',
activation = 'linear'))
 discriminator.add(LeakyReLU(0.2))
 discriminator.add(Dropout(0.2))
 discriminator.add(Conv2D(256, (3, 3), padding='same', activation =
'linear'))
 discriminator.add(LeakyReLU(0.2))
 discriminator.add(Dropout(0.2))
 discriminator.add(Flatten())
 discriminator.add(Dense(1, activation='sigmoid'))

 return discriminator

print summary of the discriminator
img_discriminator(input_shape).summary()

Image Translation Using GANs for Style Transfer Chapter 13

[377]

The output is as follows:

Figure 13.8: Summary of the discriminator

Play around with the parameters of the discriminator to suit the needs of
the problem you are trying to solve. Include a MaxPooling layer in the
model if needed.

Defining the DCGAN
The following function pipes the input followed by the generator, which is then followed
by the discriminator to form the DCGAN architecture:

def dcgan(discriminator, generator, input_shape):
 # Set discriminator as non trainable before compiling GAN
 discriminator.trainable = False

Image Translation Using GANs for Style Transfer Chapter 13

[378]

 # Accepts the noised input
 gan_input = Input(shape=input_shape)
 # Generates image by passing the above received input to the generator
 gen_img = generator(gan_input)
 # Feeds the generated image to the discriminator
 gan_output = discriminator(gen_img)
 # Compile everything as a model with binary crossentropy loss
 gan = Model(inputs=gan_input, outputs=gan_output)
 return gan

If you have not seen how to use the Model function API before, please visit the detailed
documentation by Keras on using the Model function API and compiling it at https:/ /
keras.io/models/ model/ .

Training GAN
We've built the components of the GAN. Let's train the model in the next steps!

Plotting the training – part 1
During each epoch, the following function plots 9 generated images. For comparison, it will
also plot the corresponding 9 original target images and 9 noised input images. We need to
use the upscale function we've defined when plotting to make sure the images are scaled
to range between 0 and 255, so that you do not encounter issues when plotting:

def generated_images_plot(original, noised_data, generator):
 print('NOISED')
 for i in range(9):
 plt.subplot(331 + i)
 plt.axis('off')
 plt.imshow(upscale(np.squeeze(noised_data[i])), cmap='gray') #
upscale for plotting
 plt.show()
 print('GENERATED')
 for i in range(9):
 pred = generator.predict(noised_data[i:i+1], verbose=0)
 plt.subplot(331 + i)
 plt.axis('off')
 plt.imshow(upscale(np.squeeze(pred[0])), cmap='gray') # upscale to
avoid plotting errors
 plt.show()
 print('ORIGINAL')
 for i in range(9):
 plt.subplot(331 + i)

https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/
https://keras.io/models/model/

Image Translation Using GANs for Style Transfer Chapter 13

[379]

 plt.axis('off')
 plt.imshow(upscale(np.squeeze(original[i])), cmap='gray') # upscale
for plotting
 plt.show()

The output of this function is as follows:

Figure 13.9: Sample/expected output of the generated_images_plot function

Image Translation Using GANs for Style Transfer Chapter 13

[380]

Plotting the training – part 2
Let's define another function that plots the images generated during each epoch. To reflect
the difference, we will also include the original and the masked/noised images in the plot.

The top row contains the original images, the middle row contains the masked images, and
the bottom row contains the generated images.

The plot has 12 rows with the sequence, row 1 - original, row 2 - masked, row3 - generated,
row 4 - original, row5 - masked,..., row 12 - generated.

Let's take a look at the code for the same:

def plot_generated_images_combined(original, noised_data, generator):
 rows, cols = 4, 12
 num = rows * cols
 image_size = 28

 generated_images = generator.predict(noised_data[0:num])
 imgs = np.concatenate([original[0:num], noised_data[0:num],
generated_images])
 imgs = imgs.reshape((rows * 3, cols, image_size, image_size))
 imgs = np.vstack(np.split(imgs, rows, axis=1))
 imgs = imgs.reshape((rows * 3, -1, image_size, image_size))
 imgs = np.vstack([np.hstack(i) for i in imgs])
 imgs = upscale(imgs)
 plt.figure(figsize=(8,16))
 plt.axis('off')
 plt.title('Original Images: top rows, '
 'Corrupted Input: middle rows, '
 'Generated Images: bottom rows')
 plt.imshow(imgs, cmap='gray')
 plt.show()

Image Translation Using GANs for Style Transfer Chapter 13

[381]

The output is as follows:

Figure 13.10: Sample/expected output from the plot_generated_images_combined function

Image Translation Using GANs for Style Transfer Chapter 13

[382]

Training loop
Now we are at the most important part of the code; the part where all of the functions we
previously defined will be used. The following are the steps:

Load the generator by calling the img_generator() function. 1.
Load the discriminator by calling the img_discriminator() function and2.
compile it with the binary cross-entropy loss and optimizer as
optimizer_d, which we have defined under the hyperparameters section.
Feed the generator and the discriminator to the dcgan() function and compile it3.
with the binary cross-entropy loss and optimizer as optimizer_g, which we
have defined under the hyperparameters section.
Create a new batch of original images and masked images. Generate new fake4.
images by feeding the batch of masked images to the generator.
Concatenate the original and generated images so that the first 128 images are all5.
original and the next 128 images are all fake. It is important that you do not
shuffle the data here, otherwise it will be hard to train. Label the generated
images as 0 and original images as 0.9 instead of 1. This is one-sided label
smoothing on the original images. The reason for using label smoothing is to
make the network resilient to adversarial examples. It's called one-sided because
we are smoothing labels only for the real images.
Set discriminator.trainable to True to enable training of the discriminator6.
and feed this set of 256 images and their corresponding labels to the
discriminator for classification.
Now, set discriminator.trainable to False and feed a new batch of 1287.
masked images labeled as 1 to the GAN (DCGAN) for classification. It is
important to set discriminator.trainable to False to make sure the
discriminator is not getting trained while training the generator.
Repeat steps 4 through 7 for the desired number of epochs.8.

Batch size used here is 128.

Image Translation Using GANs for Style Transfer Chapter 13

[383]

We have placed the plot_generated_images_combined() function and the
generated_images_plot() function so that we get a plot generated by both
functions after the first iteration in the first epoch and after the end of each epoch.

Feel free to place these plot functions according to the frequency of plots you need
displayed:

def train(X_train, noised_train_data,
 input_shape, smooth_real,
 epochs, batch_size,
 optimizer_g, optimizer_d):

 # define two empty lists to store the discriminator
 # and the generator losses
 discriminator_losses = []
 generator_losses = []
 # Number of iteration possible with batches of size 128
 iterations = X_train.shape[0] // batch_size

 # Load the generator and the discriminator
 generator = img_generator(input_shape)
 discriminator = img_discriminator(input_shape)
 # Compile the discriminator with binary_crossentropy loss
 discriminator.compile(loss='binary_crossentropy',optimizer=optimizer_d)
 # Feed the generator and the discriminator to the function dcgan
 # to form the DCGAN architecture
 gan = dcgan(discriminator, generator, input_shape)
 # Compile the DCGAN with binary_crossentropy loss
 gan.compile(loss='binary_crossentropy', optimizer=optimizer_g)

 for i in range(epochs):
 print ('Epoch %d' % (i+1))
 # Use tqdm to get an estimate of time remaining
 for j in tqdm(range(1, iterations+1)):
 # batch of original images (batch = batchsize)
 original = X_train[np.random.randint(0, X_train.shape[0],
size=batch_size)]
 # batch of noised images (batch = batchsize)
 noise = noised_train_data[np.random.randint(0,
noised_train_data.shape[0], size=batch_size)]

 # Generate fake images
 generated_images = generator.predict(noise)
 # Labels for generated data
 dis_lab = np.zeros(2*batch_size)
 # data for discriminator
 dis_train = np.concatenate([original, generated_images])

Image Translation Using GANs for Style Transfer Chapter 13

[384]

 # label smoothing for original images
 dis_lab[:batch_size] = smooth_real
 # Train discriminator on original images
 discriminator.trainable = True
 discriminator_loss = discriminator.train_on_batch(dis_train,
dis_lab)
 # save the losses
 discriminator_losses.append(discriminator_loss)
 # Train generator
 gen_lab = np.ones(batch_size)
 discriminator.trainable = False
 sample_indices = np.random.randint(0, X_train.shape[0],
size=batch_size)
 original = X_train[sample_indices]
 noise = noised_train_data[sample_indices]
 generator_loss = gan.train_on_batch(noise, gen_lab)
 # save the losses
 generator_losses.append(generator_loss)
 if i == 0 and j == 1:
 print('Iteration - %d', j)
 generated_images_plot(original, noise, generator)
 plot_generated_images_combined(original, noise, generator)
 print("Discriminator Loss: ", discriminator_loss,\
 ", Adversarial Loss: ", generator_loss)
 # training plot 1
 generated_images_plot(original, noise, generator)
 # training plot 2
 plot_generated_images_combined(original, noise, generator)
 # plot the training losses
 plt.figure()
 plt.plot(range(len(discriminator_losses)), discriminator_losses,
 color='red', label='Discriminator loss')
 plt.plot(range(len(generator_losses)), generator_losses,
 color='blue', label='Adversarial loss')
 plt.title('Discriminator and Adversarial loss')
 plt.xlabel('Iterations')
 plt.ylabel('Loss (Adversarial/Discriminator)')
 plt.legend()
 plt.show()
 return generator

generator = train(X_train, noised_train_data,
 input_shape, smooth_real,
 epochs, batch_size,
 optimizer_g, optimizer_d)

Image Translation Using GANs for Style Transfer Chapter 13

[385]

The output is as follows:

Image Translation Using GANs for Style Transfer Chapter 13

[386]

Figure 13.11.1: Generated images plotted with training plots at the end of the first iteration of epoch 1

Image Translation Using GANs for Style Transfer Chapter 13

[387]

Image Translation Using GANs for Style Transfer Chapter 13

[388]

Figure 13.11.2: Generated images plotted with training plots at the end of epoch 2

Image Translation Using GANs for Style Transfer Chapter 13

[389]

Image Translation Using GANs for Style Transfer Chapter 13

[390]

Figure 13.11.3: Generated images plotted with training plots at the end of epoch 5

Image Translation Using GANs for Style Transfer Chapter 13

[391]

Figure 13.12: Plot of discriminator and adversarial loss during training

Play around with the learning rate for both the generator and the
discriminator to find the optimal values for your use case. In general,
when training GANs, you train it for a large number of epochs and then
use the preceding loss versus iteration plot to identify the minimum spot
you would like for the training to stop.

Predictions
This is what we've been building to: making predictions!

CNN classifier predictions on the noised and generated
images
Now, we will call the generator on the masked MNIST test data to generate images, that is,
fill in the missing part of the digits:

restore missing parts of the digit with the generator
gen_imgs_test = generator.predict(noised_test_data)

Image Translation Using GANs for Style Transfer Chapter 13

[392]

Then, we will pass the generated MNIST digits to the digit classifier we have modeled
already:

predict on the restored/generated digits
gen_pred_lab = mnist_model.predict_classes(gen_imgs_test)
print('The model model accuracy on the generated images
is:',np.mean(gen_pred_lab==y_test)*100)

The MNIST CNN classifier is 87.82% accurate on the generated data.

The following is a plot showing 10 generated images by the generator, the actual label of
the generated image, and the label predicted by the digit classifier after processing the
generated image:

plot of 10 generated images and their predicted label
fig=plt.figure(figsize=(8, 4))
plt.title('Generated Images')
plt.axis('off')
columns = 5
rows = 2
for i in range(0, rows*columns):
 fig.add_subplot(rows, columns, i+1)
 plt.title('Act: %d, Pred: %d'%(gen_pred_lab[i],y_test[i])) # label
 plt.axis('off') # turn off axis
 plt.imshow(upscale(np.squeeze(gen_imgs_test[i])), cmap='gray') # gray
scale
plt.show()

The output is as follows:

Figure 13.13: Plot of MNIST classifier predictions on the generated images

Image Translation Using GANs for Style Transfer Chapter 13

[393]

Scripts in modular form
The entire script can be split into four modules named train_mnist.py,
training_plots.py, GAN.py, and train_gan.py. Store these in a folder of your choice,
for example, gan. Set gan as the project folder in your favorite source code editor and just
run the train_gan.py file.

The train_gan.py Python file will import functions from all of the other modules in
places where they're needed for execution.

Now, let's walk through the contents of each file.

Module 1 – train_mnist.py
This Python file contains the train_mnist() function that we have used previously to
train a CNN classifier on MNIST digits:

"""This module is used to train a CNN on mnist."""
from keras.layers import Conv2D
from keras.layers import Flatten, Activation
from keras.models import Sequential
from keras.layers.core import Dense, Dropout

def train_mnist(input_shape, X_train, y_train):
 """Train CNN on mnist data."""
 model = Sequential()
 model.add(Conv2D(32, (3, 3), strides=2, padding='same',
 input_shape=input_shape))
 model.add(Activation('relu'))
 model.add(Dropout(0.2))
 model.add(Conv2D(64, (3, 3), strides=2, padding='same'))
 model.add(Activation('relu'))
 model.add(Dropout(0.2))
 model.add(Conv2D(128, (3, 3), padding='same'))
 model.add(Activation('relu'))
 model.add(Dropout(0.2))
 model.add(Flatten())
 model.add(Dense(1024, activation='relu'))
 model.add(Dense(10, activation='softmax'))
 model.compile(loss='sparse_categorical_crossentropy',
 optimizer='adam', metrics=['accuracy'])
 model.fit(X_train, y_train, batch_size=128,
 epochs=3, validation_split=0.2, verbose=1)
 return model

Image Translation Using GANs for Style Transfer Chapter 13

[394]

Module 2 – training_plots.py
This Python file contains the four functions, upscale(), generated_images_plot(),
plot_generated_images_combined(), and plot_training_loss():

"""This module contains functions to plot image generated when training
GAN."""

import matplotlib.pyplot as plt
import numpy as np

def upscale(image):
 """Scale the image to 0-255 scale."""
 return (image*127.5 + 127.5).astype(np.uint8)

def generated_images_plot(original, noised_data, generator):
 """Plot subplot of images during training."""
 print('NOISED')
 for i in range(9):
 plt.subplot(331 + i)
 plt.axis('off')
 plt.imshow(upscale(np.squeeze(noised_data[i])), cmap='gray')
 plt.show()
 print('GENERATED')
 for i in range(9):
 pred = generator.predict(noised_data[i:i+1], verbose=0)
 plt.subplot(331 + i)
 plt.axis('off')
 plt.imshow(upscale(np.squeeze(pred[0])), cmap='gray')
 plt.show()

For the remaining part of this code, please visit: https:/ /github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ blob/ master/
Chapter13/ training_ plots. py

Module 3 – GAN.py
This module contains the DCGAN components, namely img_generator(),
img_discriminator(), and dcgan():

"""This module contains the DCGAN components."""
from keras.layers import Input, Conv2D, AveragePooling2D
from keras.layers import UpSampling2D, Flatten, Activation,

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/training_plots.py

Image Translation Using GANs for Style Transfer Chapter 13

[395]

BatchNormalization
from keras.models import Model, Sequential
from keras.layers.core import Dense, Dropout
from keras.layers.advanced_activations import LeakyReLU

def img_generator(input_shape):
 """Generator."""
 generator = Sequential()
 generator.add(Conv2D(32, (3, 3), padding='same',
input_shape=input_shape))
 generator.add(BatchNormalization())
 generator.add(Activation('relu'))
 generator.add(AveragePooling2D(pool_size=(2, 2)))
 generator.add(Conv2D(64, (3, 3), padding='same'))
 generator.add(BatchNormalization())
 generator.add(Activation('relu'))
 generator.add(AveragePooling2D(pool_size=(2, 2)))
 generator.add(Conv2D(128, (3, 3), padding='same'))
 generator.add(BatchNormalization())
 generator.add(Activation('relu'))
 generator.add(Conv2D(128, (3, 3), padding='same'))
 generator.add(Activation('relu'))
 generator.add(UpSampling2D((2, 2)))
 generator.add(Conv2D(64, (3, 3), padding='same'))
 generator.add(Activation('relu'))
 generator.add(UpSampling2D((2, 2)))
 generator.add(Conv2D(1, (3, 3), activation='tanh', padding='same'))
 return generator

For the remaining part of this code, please visit: https:/ /github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ blob/ master/
Chapter13/ GAN. py

Module 4 – train_gan.py
In this module, we will include the hyperparameters, pre-process the data, generate
synthetic data, train the GAN, train the CNN classifier, and import all of the necessary
functions from other modules:

import numpy as np
from training_plots import upscale, generated_images_plot,
plot_training_loss
from training_plots import plot_generated_images_combined
from keras.optimizers import Adam

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/GAN.py

Image Translation Using GANs for Style Transfer Chapter 13

[396]

from keras import backend as k
import matplotlib.pyplot as plt
from tqdm import tqdm

from GAN import img_generator, img_discriminator, dcgan

from keras.datasets import mnist
from train_mnist import train_mnist

%matplotlib inline
Smoothing value
smooth_real = 0.9
Number of epochs
epochs = 5
Batchsize
batch_size = 128
Optimizer for the generator
optimizer_g = Adam(lr=0.0002, beta_1=0.5)
Optimizer for the discriminator
optimizer_d = Adam(lr=0.0004, beta_1=0.5)
Shape of the input image
input_shape = (28, 28, 1)

For the remaining part of this module, please visit: https:/ /github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ blob/ master/
Chapter13/ train_ gan. py

You can use the same modules you have created to train on fashion
MNIST data. All you have to do is replace line 11 in
the train_gan.py file with (from keras.datasets import
fashion_mnist) and replace line 28 with ((X_train, y_train),
(X_test, y_test) = fashion_mnist.load_data()). The results
will be good but not excellent since the parameters set here work best on
the MNIST digit data. This will be a good exercise for you to get incredible
results without much effort.

Here is a resource on tips to train GANs that you must check out:

https://github.com/soumith/ganhacks.

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter13/train_gan.py
https://github.com/soumith/ganhacks

Image Translation Using GANs for Style Transfer Chapter 13

[397]

The Jupyter Notebook code files for the preceding DCGAN MNIST inpainting can be found
at https://github. com/ PacktPublishing/ Python- Deep- Learning- Projects/ blob/
master/Chapter%2014/ DCGAN_ MNIST. ipynb. The Jupyter Notebook code files for
the DCGAN Fashion MNIST inpainting can be found at https:/ / github. com/
PacktPublishing/Python- Deep- Learning- Projects/ blob/ master/ Chapter%2014/ DCGAN_
Fashion_MNIST.ipynb.

The conclusion to the project
The goal of this project was to build a GAN to solve the problem of regenerating missing
parts/regions of handwritten digits. In the initial chapters, we applied deep learning to
enable customers of a restaurant chain to write their phone numbers in a simple iPad
application to get a text notification that their party could be seated. The use case of this
chapter was to apply deep learning to generate missing parts of the digits of the phone
number so that a text notification can be sent to the right person.

The CNN digit classifier model accuracy hit 98.84% on the MNIST validation data. With the
data we generated to simulate missing parts of a digit when fed to the CNN digit classifier,
the model was only 74.90% accurate.

The same dataset with missing sections of the digit was passed to the generator to recover
the missing parts. The resulting digits were then passed to the CNN classifier and the
model was 87.82% accurate. See if you can tweak both the CNN classifier and the GAN to
generate clearer digits, as well as much higher accuracy on these generated images.

Let's follow the same technique we have been following in the previous chapters for
evaluating the performance of the models from the restaurant chain point of view.

What are the implications of this accuracy? Let's calculate the incidence of an error
occurring that would result in a customer service issue (that is, the customer not getting the
text that their table is ready and getting upset for an excessively long wait time at the
restaurant).

Each customer's phone number is ten digits long. Let's assume our hypothetical restaurant
has an average of 30 tables at each location and those tables turn over two times per night
during the rush hour when the system is likely to be used, and finally, the restaurant chain
has 35 locations. This means that each day of operation there are approximately 21,000
handwritten numbers captured (30 tables x 2 turns/day x 35 locations x 10 digit phone
number).

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2014/DCGAN_Fashion_MNIST.ipynb

Image Translation Using GANs for Style Transfer Chapter 13

[398]

Obviously, all digits must be correctly classified for the text to get to the proper waiting
restaurant patron. So any single digit misclassification causes a failure. With the simulated
data, the model accuracy was 74.90%, which means a total of 5,271 digits are misclassified.
With the recovered data (on the simulated data) from the generator of the trained GAN, the
model accuracy was 87.82%, which would improperly classify 2,558 digits per day in our
example. The worst case for the hypothetical scenario would be if there occurred only one
improperly classified digit in each phone number. Since there are only 2,100 patrons and
corresponding phone numbers, this would mean that every phone number had an error in
classification (100% failure) and not a single customer would get their text notification that
their party could be seated! The best case scenario would be if all 10 digits were
misclassified in each phone number and that would result in 263 wrong phone numbers
out of 2,100 (12.5% failure rate). Still not a level of performance the restaurant chain would
be likely to be happy with, so you can see why we'd need to continue fine-tuning the
models to get the maximum performance possible.

Summary
In the project in this chapter, we have successfully built a deep convolution GAN in Keras
on handwritten MNIST digits. We understood the function of the generator and the
discriminator component of the GAN. We have defined some key hyperparameters, as well
as, in some places, reasoned with why we used what we did. Finally, we tested the GAN's
performance on unseen data and determined that we succeeded in achieving our goals.

14
Develop an Autonomous Agent

with Deep R Learning
Welcome to the chapter on reinforcement learning. In the previous chapters, we have
worked on solving supervised learning problems. In this chapter, we will learn to build and
train a deep reinforcement learning model capable of playing games.

Reinforcement learning is often a new paradigm for deep learning
engineers and this is why we're using the framework of a game for this
training. The business use cases that we should be looking out for are
typified by process optimization. Reinforcement learning is great for
gaming, but also applicable in use cases ranging from drone
control (https:/ / arxiv. org/pdf/ 1707. 05110. pdf) and navigation to
optimizing file downloads over mobile
networks (http://anrg.usc.edu/www/papers/comsnets_2017.pdf).

https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
https://arxiv.org/pdf/1707.05110.pdf
http://anrg.usc.edu/www/papers/comsnets_2017.pdf

Develop an Autonomous Agent with Deep R Learning Chapter 14

[400]

We will do this with something called deep Q-learning and deep State-Action-Reward-
State-Action (SARSA) learning. The idea is that we will build a deep learning model, also
called an agent in reinforcement learning terms, that interacts with the game environment
and learns how to play the game while maximizing rewards after several attempts at
playing. Here is a diagram illustrating reinforcement learning:

Figure 14.1: Reinforcement learning

For the purpose of this chapter, we will be using the CartPole game from OpenAI Gym.

What we'll learn in this chapter is the following:

How to interact with the Gym toolkit
What is Q-learning and SARSA learning
Coding the RL model and defining hyperparameters
Building and understanding the training loop
Testing the model

It would be better if you implement the code snippets as you go along in this chapter, either
in a Jupyter Notebook or any source code editor. This will make it easier for you to follow
along, as well as understand what each part of the code does.

All of the Python and the Jupyter Notebook files for this chapter can be found
at https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master

/Chapter14.

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter14
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/tree/master/Chapter14

Develop an Autonomous Agent with Deep R Learning Chapter 14

[401]

Let's get to the code!
In this exercise, we will be using the Gym toolkit from OpenAI for developing
reinforcement learning models. It supports teaching agents such as CartPole and pinball
games.

To know more about the Gym toolkit from OpenAI and the games it
supports, visit http:/ /gym. openai. com/ .

We will also be using the Keras deep learning library, which is a high-level neural network
API capable of running on top of TensorFlow, Theano, or Cognitive Toolkit (CNTK).

To learn more about Keras and its functionalities visit https:/ / keras. io/.

Deep Q-learning
In this segment, we will implement deep Q-learning with a deep learning model built using
the Keras deep learning library as the function approximator.

We will start off this segment with a gentle introduction as to how to use the Gym module
and then move on to understanding what Q-learning is, and finally, implement the deep Q-
learning. We will be using the CartPole environment from OpenAI Gym.

To follow along, refer to the Jupyter Notebook code file for the deep Q-learning section
at https://github. com/ PacktPublishing/ Python- Deep- Learning- Projects/ blob/
master/Chapter%2015/ DQN. ipynb.

Importing all of the dependencies
We will be using numpy, gym, matplotlib, keras, and tensorflow packages in this
segment of the exercise. Here, TensorFlow will be used as the backend for Keras. You can
install these packages using pip:

import random
import numpy as np
import matplotlib.pyplot as plt

http://gym.openai.com/
http://gym.openai.com/
http://gym.openai.com/
http://gym.openai.com/
http://gym.openai.com/
http://gym.openai.com/
http://gym.openai.com/
http://gym.openai.com/
http://gym.openai.com/
http://gym.openai.com/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb

Develop an Autonomous Agent with Deep R Learning Chapter 14

[402]

from keras.layers import Dense, Dropout, Activation
from keras.models import Sequential
from keras.optimizers import Adam
from keras import backend as k
from collections import deque
import gym

deque is a list-like container with fast appends and pops on either end.

Exploring the CartPole game
In the CartPole game, you will find a pole attached by an unattached joint to the cart, which
moves on a frictionless track. At the beginning of each game, the pole starts in the upright
position and the goal is to hold it in the upright position as long as possible or for a given
number of time steps. You can control the CartPole system by applying a force of +1 and -1
(to move the cart either to the right or to the left) and prevent the pole from falling over.
The game/episode ends when the cart moves more than 2.4 units from the center or when
the pole is more than 45 degrees from the vertical.

Interacting with the CartPole game
OpenAI Gym makes it super easy to interact with the game. In this section, we will cover
how to load, reset, and play the CartPole game.

Loading the game
Let's load the CartPole-v1 game from the gym module. It's very simple. All you have to
do is feed the gym.make() function the name of the game. In our case, the game is
CartPole-v1. Gym then loads the game into your workspace:

env = gym.make('CartPole-v1')

It is important that you set seed for reproducibility:

Set seed for reproducibility
seed_val = 456
np.random.seed(seed_val)
env.seed(seed_val)
random.seed(seed_val)

Develop an Autonomous Agent with Deep R Learning Chapter 14

[403]

Let's explore how many variables we have in the CartPole game:

states = env.observation_space.shape[0]
print('Number of states/variables in the cartpole environment', states)

The following is the output:

We can see that the CartPole has 4 variables and these are namely the position (x), velocity
(x_dot), angular position (theta), and the angular velocity (theta_dot).

Let's explore how many possible responses we have in this game using the following code:

actions = env.action_space.n
print('Number of responses/classes in the cartpole environment', actions)

The following is the output:

We see that the CartPole environment has 2 possible responses/buttons, namely move left
and move right.

Resetting the game
You can reset the game with the following code:

state = env.reset() # reset the game
print('State of the Cart-Pole after reset', state)
print('Shape of state of the Cart-Pole after reset', state.shape)

The preceding snippet will reset the game and also return you the state (x, x_dot, theta,
theta_dot) of the CartPole after the reset, which will be an array of the shape of (4,).

Develop an Autonomous Agent with Deep R Learning Chapter 14

[404]

Playing the game
Now, once you have reset the game, all there is to do is play. You can feed your
actions/responses to the game with the use of the following code:

action = 0
new_state, reward, done, info = env.step(action)
print((new_state, reward, done, info))

The env.step function accepts your response/action (move left or right) and generates the
new_state/orientation (x, x_dot, theta, theta_dot) of the CartPole system. Along with the
new state, the env.step function also returns the reward, which indicates the score you
receive for the action you just took; done, which indicates if the game has finished; and
info, which has system-related information.

When the game begins, done is set to False. Only when the CartPole orientation exceeds
the game rules will done be set to True, indicating that either the cart moved 2.4 units from
the center or the pole was more than 45 degrees from the vertical.

As long as every step you take is within the game over limits, the reward for that step will
be 1 unit, otherwise zero.

Let's play the game by making random actions:

def random_actions_game(episodes):
 for episode in range(episodes):
 state = env.reset() # reset environment
 done = False # set done to False
 score = 0
 while not done:
 #env.render() # Display cart pole game on the screen
 action = random.choice([0,1]) # Choose between 0 or 1
 new_state, reward, done, info = env.step(action) # perform the
action
 score+=1
 print('Episode: {} Score: {}'.format(episode+1, score))

play game
random_actions_game(10)

Develop an Autonomous Agent with Deep R Learning Chapter 14

[405]

The following is the Terminal output:

Figure 14.2: Scores from random actions game

The following is the CartPole game output:

Figure 14.3: Snapshot of the CartPole game that gets displayed on the screen when rendered

random.choice returns a randomly selected item from a non-empty
sequence such as a list/array.

Develop an Autonomous Agent with Deep R Learning Chapter 14

[406]

Q-learning
Q-learning is a policy-based reinforcement learning technique where the goal of Q-learning
is to learn an optimal policy that helps an agent decide what action to take under which
circumstances of the environment.

To implement Q-learning, you need to understand what a Q function is.

A Q function accepts a state and a corresponding action as input and yields the total
expected reward. It can be expressed as Q(s, a). When at the s state, an optimal Q function
indicates to the agent how good of a choice is picking an action, a.

For a single state, s, and an action, a, Q(s, a) can be expressed in terms of the Q value of the
next state, s', given by using the following equation:

This is known as the Bellman equation. It tells us that the maximum reward is the sum of
the reward the agent received for entering the current state, s, and the discounted
maximum future reward for the next state, s'.

The following is the pseudocode for the Q-learning algorithm from the book Reinforcement
Learning: An Introduction, by Richard S. Sutton and Andrew G. Barto:

Figure 14.4: Pseudocode for Q-learning

Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew
G. Barto (http:/ /incompleteideas. net/ book/ ebook/ the- book. html).

http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html

Develop an Autonomous Agent with Deep R Learning Chapter 14

[407]

Defining hyperparameters for Deep Q Learning
(DQN)
The following are some of the hyperparameters defined that we will be using throughout
the code and are totally configurable:

Discount in Bellman Equation
gamma = 0.95

Epsilon
epsilon = 1.0

Minimum Epsilon
epsilon_min = 0.01

Decay multiplier for epsilon
epsilon_decay = 0.99

Size of deque container
deque_len = 20000

Average score needed over 100 epochs
target_score = 200

Number of games
episodes = 2000

Data points per episode used to train the agent
batch_size = 64

Optimizer for training the agent
optimizer = 'adam'

Loss for training the agent
loss = 'mse'

The following are the parameters used:

gamma : Discount parameter in the Bellman equation
epsilon_decay: Multiplier by which you want to discount the value of
epsilon after each episode/game
epsilon_min: Minimum value of epsilon beyond which you do not want to
decay it
deque_len: Size of the deque container used to store the training examples
(state, reward, done, and action)

Develop an Autonomous Agent with Deep R Learning Chapter 14

[408]

target_score: The average score over 100 epochs that you want the agent to
score after which you stop the learning process
episodes: Maximum number of games you want the agent to play
batch_size: Size of the batch of training data (stored in the deque container)
used to train the agent after each episode
optimizer: Optimizer of choice for training the agent
loss: Loss of choice for training the agent

Experiment with different learning rates, optimizers, batch sizes as well as
epsilon_decay values to see how these factors affect the quality of your
model and, if you get better results, show it to the deep learning
community.

Building the model components
In this section, we will define all of the functions that go into training the reinforcement
learning agent. These functions are as follows:

Agent
Agent action
Memory
Performance plot
Replay
Training and testing to train and test the agent

Defining the agent
Let's define an agent/function approximator.

The agent is nothing but a simple deep neural network that takes in the state (four
variables) of the CartPole system and returns the maximum possible reward for each of the
two actions.

The first, second, and third layers are simple Dense layers with 16 neurons and with
activation as relu.

Develop an Autonomous Agent with Deep R Learning Chapter 14

[409]

The final layer is a Dense layer with two neurons equal to the number of possible actions:

def agent(states, actions):
 """Simple Deep Neural Network."""
 model = Sequential()
 model.add(Dense(16, input_dim=states))
 model.add(Activation('relu'))
 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(actions))
 model.add(Activation('linear'))
 return model

print summary of the agent
print(agent(states, actions).summary())

The following is the output:

Figure 14.5: Summary of the agent

Develop an Autonomous Agent with Deep R Learning Chapter 14

[410]

Play around with the parameters of the agent to suit the needs of the
problem you are trying to solve. Try using leaky relu in the model if
needed.

Defining the agent action
Let's define a function that, when called, will return the action that needs to be taken for
that specific state:

def agent_action(model, epsilon, state, actions):
 """Define action to be taken."""
 if np.random.rand() <= epsilon:
 act = random.randrange(actions)
 else:
 act = np.argmax(model.predict(state)[0])
 return act

For any value from the uniform distribution (between 0 and 1), less than or equal to
epsilon, the action returned will be random. For any value greater than epsilon, the
action chosen will be that predicted by the agent we have defined in the preceding code.

The numpy.random.rand function generates a random number from a
uniform distribution over 0 and 1. numpy.argmax returns the index of the
maximum value in the sequence. random.randrange returns a randomly
selected item from range().

Defining the memory
Let's define a deque object to store the information (state, action, reward, and done)
related to every relevant step we take when playing the game. We will then be using the
data stored in this deque object for training:

training_data = deque(maxlen=deque_len)

We have defined the deque object to be of a size of 20000. Once this container is filled with
20,000 data points, every new append being made at one end will result in popping a data
point at the other end. Then, we will end up retaining only the latest information over time.

Develop an Autonomous Agent with Deep R Learning Chapter 14

[411]

We will define a function called memory, which, when called during the game, will accept
the information related to action, state, reward, and done as input at that time step, and
then will store it in the training data deque container we have defined in the preceding
code. You will see that we are storing these five variables as a tuple entry at each timestep:

def memory(state, new_state, reward, done, action):
 """Function to store data points in the deque container."""
 training_data.append((state, new_state, reward, done, action))

Defining the performance plot
The following performance_plot function plots the performance of the model over time.
This function has been placed such that it is only plotted once our target of 200 points has
been reached. You can also place this function to plot the progress after every 100 episodes
during training:

def performance_plot(scores, target_score):
 """Plot the game progress."""
 scores_arr = np.array(scores) # convert list to array
 scores_arr[np.where(scores_arr > target_score)] = target_score # scores
 plt.figure(figsize=(20, 5)) # set figure size to 20 by 5
 plt.title('Plot of Score v/s Episode') # title
 plt.xlabel('Episodes') # xlabel
 plt.ylabel('Scores') # ylabel
 plt.plot(scores_arr)
 plt.show()

A sample plot output of the function (after the goal has been achieved) is shown in the
following screenshot:

Figure 14.6: Sample plot output of performance_plot function

Develop an Autonomous Agent with Deep R Learning Chapter 14

[412]

Defining replay
The following replay function is called inside the train function (defined in the next
section) at the end of the game for training the agent. It is in this function that we define the
targets for each state using the Q function Bellman equation:

def replay(epsilon, gamma, epsilon_min, epsilon_decay, model,
training_data, batch_size=64):
 """Train the agent on a batch of data."""
 idx = random.sample(range(len(training_data)), min(len(training_data),
batch_size))
 train_batch = [training_data[j] for j in idx]
 for state, new_state, reward, done, action in train_batch:
 target = reward
 if not done:
 target = reward + gamma * np.amax(model.predict(new_state)[0])
 #print('target', target)
 target_f = model.predict(state)
 #print('target_f', target_f)
 target_f[0][action] = target
 #print('target_f_r', target_f)
 model.fit(state, target_f, epochs=1, verbose=0)
 if epsilon > epsilon_min:
 epsilon *= epsilon_decay
 return epsilon

It is inside this function that we train the agent compiled with mean squared error loss to
learn to maximize the reward. We have done so because we are predicting the numerical
value of the reward possible for the two actions. Remember that the agent accepts the state
as input that is of a shape of 1*4. The output of this agent is of shape 1*2, and it basically
contains the expected reward for the two possible actions.

So, when an episode ends, we use a batch of data stored in the deque container to train the
agent.

In this batch of data, consider the 1st tuple:

state = [[-0.07294358 -0.94589796 0.03188364 1.40490844]]
new_state = [[-0.09186154 -1.14140094 0.05998181 1.70738606]]
reward = 1
done = False
action = 0

For the state, we know the action that needs to be taken to enter the
new_state and reward for doing so. We also have done, which indicates whether the
new_state entered is within the game rules.

Develop an Autonomous Agent with Deep R Learning Chapter 14

[413]

As long as the new state, s' ,being entered is within the game rules, that is, done is False,
the total reward according to the Bellman equation for entering the new state s' form state
s by taking an action can be written in Python as follows:

target = reward + gamma * np.amax(model.predict(new_state)[0])

Output of model.predict(new_state)[0] be [-0.55639267, 0.37972435].
The np.amax([-0.55639267, 0.37972435]) will be 0.37972435.

With the discount/gamma as 0.95 and the reward as 1, this gives us the following value.
The reward + gamma * np.amax(model.predict(new_state)[0]) end us up
as 1.36073813587427.

This is the value of the target defined previously.

Using the model, let's predict the reward for the two possible actions for the current
state. target_f = model.predict(state) will be [[-0.4597198 0.31523475]].

Since we already know the action that needs to be taken for the state, which is 0, to
maximize the reward for the next state, we will set the reward at index zero of target_f
equal to the reward computed using the Bellman equation, which
is, target_f[0][action] = 1.3607381358742714.

Finally, target_f will be equal to [[1.3607382 0.31523475]].

We will use the state as input and the target_f as the target reward and fit the
agent/model on it.

This process will be repeated for all of the data points in the batch of training data. Also, for
each call of the replay function, the value of epsilon is reduced by the multiplier epsilon
decay.

random.sample samples n elements from a population set. np.amax
returns the maximum value in an array.

Develop an Autonomous Agent with Deep R Learning Chapter 14

[414]

Training loop
Now, let's put all of the pieces we have formed until now together to implement training of
the agent using the train() function that we have defined here:

Load the agent by calling the agent() function and compile it with the loss as1.
loss and with the optimizer as optimizer, which we have defined in the
Defining hyperparameters for Deep Q Learning (DQN) section.
Reset the environment and reshape the initial state.2.
Call the agent_action function by passing the model, epsilon, and state3.
information and obtain the next action that needs to be taken.
Take the action obtained in Step 3 using the env.step function. Store the4.
resulting information in the training_data deque container by calling the
memory function and passing the required arguments.
Assign the new state obtained in Step 4 to the state variable and increment the5.
time step by 1 unit.
Until done resulting in Step 4 turns True, repeat Step 3 through Step 5.6.
Call the replay function to train the agent on a batch of the training data at the7.
end of the episode/game.
Repeat Step 2 through Step 7 until the target score has been achieved:8.

Following code shows the implementation of the train() function:

def train(target_score, batch_size, episodes,
 optimizer, loss, epsilon,
 gamma, epsilon_min, epsilon_decay, actions, render=False):
 """Training the agent on games."""
 print('----Training----')
 k.clear_session()

 # define empty list to store the score at the end of each
episode
 scores = []

 # load the agent
 model = agent(states, actions)

 # compile the agent with mean squared error loss
 model.compile(loss=loss, optimizer=optimizer)

 for episode in range(1, (episodes+1)):
 # reset environment at the end of each episode
 state = env.reset()

Develop an Autonomous Agent with Deep R Learning Chapter 14

[415]

 # reshape state to shape 1*4
 state = state.reshape(1, states)

 # set done value to False
 done = False

For the remaining part of this code snippet, please refer to the DQN.ipynb
file here: https:/ /github. com/ PacktPublishing/ Python- Deep- Learning-
Projects/ blob/ master/ Chapter14/ DQN.ipynb

To view the CartPole game on your screen when training, set the render
argument to True inside the train function. Also, visualizing the game
will slow down the training.

The following two images are the outputs generated during training of DQN:

Figure 14.7: Scores output when training the agent

Figure 14.8: Plot of scores v/s episodes when training the agent

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/DQN.ipynb

Develop an Autonomous Agent with Deep R Learning Chapter 14

[416]

We can see that, when training the agent, our target score of 200 points averaging over 100
latest episodes was reached at the end of 300 games.

We have been using the epsilon-greedy policy to train the agent. Feel free
to use other policies listed at https:/ /github. com/keras- rl/keras- rl/
blob/ master/ rl/ policy. py, once you have finished mastering the
training of DQN.

It is not always necessary that, when you give a try at training the agent, it
takes you just 300 games. In some cases, it might even take more than 300.
Refer to the notebook at https:/ /github. com/ PacktPublishing/ Python-
Deep- Learning- Projects/ blob/ master/ Chapter%2015/ DQN. ipynb to see
the five tries made at training the agent and the number of episodes it
took to train it.

Testing the DQN model
Now, let's test how our trained DQN model performs on new games. The following test
function uses the trained DQN model to play ten games and see whether our average target
of 200 points will be achieved:

def test(env, model, states, episodes=100, render=False):
 """Test the performance of the DQN agent."""
 scores_test = []
 for episode in range(1, (episodes+1)):
 state = env.reset()
 state = state.reshape(1, states)

 done = False
 time_step = 0

 while not done:
 if render:
 env.render()
 action = np.argmax(model.predict(state)[0])
 new_state, reward, done, info = env.step(action)
 new_state = new_state.reshape(1, states)
 state = new_state
 time_step += 1
 scores_test.append(time_step)
 if episode % 10 == 0:
 print('episode {}, score {} '.format(episode, time_step))
 print('Average score over 100 test games:
{}'.format(np.mean(scores_test)))

https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter%2015/DQN.ipynb

Develop an Autonomous Agent with Deep R Learning Chapter 14

[417]

test(env, model, states, render=False)

To view the CartPole game on your screen when testing, set the render
argument to true inside the test function.

The following is the output:

Figure 14.9: Test scores with the trained Q agent

When the agent is tested on the new 100 CartPole games, it is averaging a score of 277.88.

Remove the threshold of 200 points and aim at training the agent to
consistently score an average of 450 points or more.

Deep Q-learning scripts in modular form
The entire script can be split into four modules named train_dqn.py,
agent_reply_dqn.py, test_dqn.py, and hyperparameters_dqn.py. Store these in a
folder of your choice, for example chapter_15. Set chapter_15 as the project folder in
your favorite source code editor and just run the train_dqn.py file.

The train_dqn.py Python file will import functions from all of the other modules in
places where they are needed for execution.

Now let's walk through the contents of each file.

Develop an Autonomous Agent with Deep R Learning Chapter 14

[418]

Module 1 – hyperparameters_dqn.py
This Python file contains the hyperparameters of the DQN model:

"""This module contains hyperparameters for the DQN model."""

Discount in Bellman Equation
gamma = 0.95
Epsilon
epsilon = 1.0
Minimum Epsilon
epsilon_min = 0.01
Decay multiplier for epsilon
epsilon_decay = 0.99
Size of deque container
deque_len = 20000
Average score needed over 100 epochs
target_score = 200
Number of games
episodes = 2000
Data points per episode used to train the agent
batch_size = 64
Optimizer for training the agent
optimizer = 'adam'
Loss for training the agent
loss = 'mse'

Module 2 – agent_replay_dqn.py
This Python file contains the four functions, namely agent(), agent_action(),
performance_plot(), and replay():

"""This module contains."""
import random
import numpy as np
import matplotlib.pyplot as plt
from keras.layers import Dense, Dropout, Activation
from keras.models import Sequential
from keras.optimizers import Adam

def agent(states, actions):
 """Simple Deep Neural Network."""
 model = Sequential()
 model.add(Dense(16, input_dim=states))
 model.add(Activation('relu'))

Develop an Autonomous Agent with Deep R Learning Chapter 14

[419]

 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(actions))
 model.add(Activation('linear'))
 return model

For the remaining part of this file, please visit here: https:/ /github. com/
PacktPublishing/ Python- Deep- Learning- Projects/ blob/ master/
Chapter14/ agent_ replay_ dqn. py

Module 3 – test_dqn.py
This module contains the test() function, which will be called in the train_dqn.py
script to test the performance of the DQN agent:

"""This module contains function to test the performance of the DQN
model."""
import numpy as np

def test(env, model, states, episodes=100, render=False):
 """Test the performance of the DQN agent."""
 scores_test = []
 for episode in range(1, (episodes+1)):
 state = env.reset()
 state = state.reshape(1, states)

 done = False
 time_step = 0

 while not done:
 if render:
 env.render()
 action = np.argmax(model.predict(state)[0])
 new_state, reward, done, info = env.step(action)
 new_state = new_state.reshape(1, states)
 state = new_state
 time_step += 1
 scores_test.append(time_step)
 if episode % 10 == 0:
 print('episode {}, score {} '.format(episode, time_step))
 print('Average score over 100 test games:
{}'.format(np.mean(scores_test)))

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/agent_replay_dqn.py

Develop an Autonomous Agent with Deep R Learning Chapter 14

[420]

Module 4 – train_dqn.py
In this module, we include the memory() and train() functions and also the calls to train
and test the reinforcement learning model:

"""This module is used to train and test the DQN agent."""
import random
import numpy as np
from agent_replay_dqn import agent, agent_action, replay, performance_plot
from hyperparameters_dqn import *
from test_dqn import test
from keras import backend as k
from collections import deque
import gym

env = gym.make('CartPole-v1')

Set seed for reproducibility
seed_val = 456
np.random.seed(seed_val)
env.seed(seed_val)
random.seed(seed_val)

states = env.observation_space.shape[0]
actions = env.action_space.n
training_data = deque(maxlen=deque_len)

def memory(state, new_state, reward, done, action):
 """Function to store data points in the deque container."""
 training_data.append((state, new_state, reward, done, action))

def train(target_score, batch_size, episodes,
 optimizer, loss, epsilon,
 gamma, epsilon_min, epsilon_decay, actions, render=False):
 """Training the agent on games."""
 print('----Training----')
 k.clear_session()

For the remaining part of this code, please visit here: https:/ / github.
com/PacktPublishing/ Python- Deep- Learning- Projects/ blob/ master/
Chapter14/ train_ dqn. py

https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/train_dqn.py

Develop an Autonomous Agent with Deep R Learning Chapter 14

[421]

Deep SARSA learning
In this segment, we will implement deep SARSA learning with the keras-rl library.
The keras-rl library is a simple neural network API that allows simple and easy
implementation of reinforcement learning models (Q, SARSA, and others). To learn more
about the keras-rl library, visit the documentation at https:/ /keras- rl. readthedocs.
io/en/latest/.

We will be using the same CartPole environment we have been using so far from OpenAI
Gym.

A Jupyter Notebook code example for deep SARSA learning can be found at https:/ /
github.com/PacktPublishing/ Python- Deep- Learning- Projects/ blob/ master/ Chapter14/
Deep%20SARSA.ipynb.

SARSA learning
SARSA learning, like Q-learning, is also a policy-based reinforcement learning technique.
Its goal is to learn an optimal policy, which helps an agent decide on the action that needs
to be taken under various possible circumstances.

SARSA and Q-learning are very similar to each other, except Q-learning is an off-policy
algorithm and SARSA is an on-policy algorithm. The Q value learned by SARSA is not
based on a greedy policy like in Q-learning but is based on the action performed under the
current policy.

For a single state, s, and an action, a, Q(s, a) can be expressed in terms of the Q value of the
next state, s' ,and action, a', given by the following formula:

https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://keras-rl.readthedocs.io/en/latest/
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb
https://github.com/PacktPublishing/Python-Deep-Learning-Projects/blob/master/Chapter14/Deep%20SARSA.ipynb

Develop an Autonomous Agent with Deep R Learning Chapter 14

[422]

The following is the pseudocode for the SARSA learning algorithm from the
book, Reinforcement Learning: An Introduction, by Richard S. Sutton and Andrew G. Barto:

Figure 14.10: Pseudocode for SARSA learning

Importing all of the dependencies
We will be using numpy, gym, matplotlib, keras, tensorflow, and the keras-
rl package in this segment of the exercise. Here, TensorFlow will be used as the backend
for Keras. You can install these packages with pip:

import numpy as np
import gym
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from keras.optimizers import Adam
from rl.agents import SARSAAgent
from rl.policy import EpsGreedyQPolicy

Loading the game environment
Just like we loaded the game in the DQN segment, we will load the game into the
workspace and set seed for reproducibility:

env = gym.make('CartPole-v1')

set seed
seed_val = 456
env.seed(seed_val)
np.random.seed(seed_val)

Develop an Autonomous Agent with Deep R Learning Chapter 14

[423]

states = env.observation_space.shape[0]
actions = env.action_space.n

Defining the agent
For deep SARSA learning, we will be using the same agent we used in the Deep Q-learning
segment:

def agent(states, actions):
 """Simple Deep Neural Network."""
 model = Sequential()
 model.add(Flatten(input_shape=(1,states)))
 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(actions))
 model.add(Activation('linear'))
 return model

model = agent(states, actions)

Training the agent
Training an agent using the keras-rl library is very easy:

Define the policy you want the training to follow. We will be using the epsilon-1.
greedy policy. The equivalent of this in the DQN section would be the agent
action function. To know more about other policies, visit https:/ /github. com/
keras-rl/ keras- rl/ blob/ master/ rl/ policy. py.
Load the agent you would like to use. In this case, the SARSA agent has a lot of2.
parameters of which the important ones that need to be defined are model,
nb_actions, and policy. model is the deep learning agent you have defined in
the preceding code, nb_actions is the number of possible actions in the
system, and policy is your preferred choice of policy to train the SARSA agent.
We compile the SARSA agent with loss and optimizer of choice.3.

https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py
https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py

Develop an Autonomous Agent with Deep R Learning Chapter 14

[424]

We fit the SARSA agent by feeding the .fit function the arguments4.
environment and number of steps to train:

To get complete details on the usage of agents from the keras-rl library
and their parameter definitions, visit this documentation by Keras
at http:/ /keras- rl. readthedocs. io/en/ latest/ agents/ sarsa/
#sarsaagent.

Define the policy
policy = EpsGreedyQPolicy()

Loading SARSA agent by feeding it the policy and the model
sarsa = SARSAAgent(model=model, nb_actions=actions, policy=policy)

compile sarsa with mean squared error loss
sarsa.compile('adam', metrics=['mse'])

train the agent for 50000 steps
sarsa.fit(env, nb_steps=50000, visualize=False, verbose=1)

To view the CartPole game on your screen when training, set visualize
argument to true inside the .fit function. But visualizing the game will
slow down the training.

Here is the scores output when training the SARSA agent:

Figure 14.11: Scores output when training SARSA agent

http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent
http://keras-rl.readthedocs.io/en/latest/agents/sarsa/#sarsaagent

Develop an Autonomous Agent with Deep R Learning Chapter 14

[425]

Testing the agent
Once the agent has been trained, we evaluate its performance over 100 new episodes. This
can be done by calling the .test function and feeding the arguments environment and
number of episodes on which to test:

Evaluate the agent on 100 new episodes
scores = sarsa.test(env, nb_episodes=100, visualize=False)

print('Average score over 100 test games:
{}'.format(np.mean(scores.history['episode_reward'])))

To view the CartPole game on your screen when testing, set
the visualize argument to True inside the .test function.

The following is the output after testing 100 episodes:

Develop an Autonomous Agent with Deep R Learning Chapter 14

[426]

Following the the output at the end of the code execution:

Figure 14.12: Test scores with trained SARSA agent

Deep SARSA learning script in modular form
For SARSA learning, we have only one script, which implements both the training and
testing of the SARSA agent:

"""This module implements training and testing of SARSA agent."""
import gym
import numpy as np
from keras.layers import Dense, Activation, Flatten
from keras.models import Sequential
from rl.agents import SARSAAgent
from rl.policy import EpsGreedyQPolicy

load the environment
env = gym.make('CartPole-v1')

set seed
seed_val = 456
env.seed(seed_val)
np.random.seed(seed_val)

states = env.observation_space.shape[0]
actions = env.action_space.n

def agent(states, actions):
 """Agent/Deep Neural Network."""

Develop an Autonomous Agent with Deep R Learning Chapter 14

[427]

 model = Sequential()
 model.add(Flatten(input_shape=(1, states)))
 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(16))
 model.add(Activation('relu'))
 model.add(Dense(actions))
 model.add(Activation('linear'))
 return model

model = agent(states, actions)

Define the policy
policy = EpsGreedyQPolicy()
Define SARSA agent by feeding it the policy and the model
sarsa = SARSAAgent(model=model, nb_actions=actions, nb_steps_warmup=10,
 policy=policy)
compile sarsa with mean squared error loss
sarsa.compile('adam', metrics=['mse'])
train the agent for 50000 steps
sarsa.fit(env, nb_steps=50000, visualize=False, verbose=1)

Evaluate the agent on 100 new episodes.
scores = sarsa.test(env, nb_episodes=100, visualize=False)
print('Average score over 100 test games: {}'
 .format(np.mean(scores.history['episode_reward'])))

The conclusion to the project
This project was to build a deep reinforcement learning model to successfully play the
game of CartPole-v1 from OpenAI Gym. The use case of this chapter is to build a
reinforcement learning model on a simple game environment and then extend it to other
complex games such as Atari.

In the first half of this chapter, we built a deep Q-learning model to play the CartPole game.
The DQN model during testing scored an average of 277.88 points over 100 games.

In the second half of this chapter, we built a deep SARSA learning model (using the same
epsilon-greedy policy as Q-learning) to play the CartPole game. The SARSA model during
testing scored an average of 365.67 points over 100 games.

Develop an Autonomous Agent with Deep R Learning Chapter 14

[428]

Now, let's follow the same technique we have been following in the previous chapters for
evaluating the performance of the models from the restaurant chain point of view.

What are the implications of this score?

An average score of 277.88 with Q-learning means that we have successfully solved the
game of CartPole as defined on the OpenAI site. It also means that our model survives
slightly more than half the length of the game with the total game length being 500 points.

As regards SARSA learning, on the other hand, an average score of 365.67 with Q-learning
means that we have successfully solved the game of CartPole as defined on the OpenAI site
and that our model survives more than 70% the length of the game, with the total game
length being 500 points.

It is still not a level of performance you should be happy with because the goal should not
just be to solve the problem but to train a model that is really good at scoring a consistent
500 points at each game, so you can see why we'd need to continue fine-tuning the models
to get the maximum performance possible.

Summary
In this chapter, we have successfully built a deep reinforcement learning model, each with
Q-learning and SARSA learning in Keras using the CartPole game from OpenAI Gym. We
understood Q-learning, SARSA learning, how to interact with game environments from
Gym, and the function of the agent (deep learning model). We defined some key
hyperparameters, as well as, in some places, reasoned with why we used what we did.
Finally, we tested the performance of our reinforcement learning on new games and
determined that we succeeded in achieving our goals.

15
Summary and Next Steps in
Your Deep Learning Career

This has been a fantastic journey and you've been quite productive as a member of the
team! We hope that you've enjoyed our practical approach to teaching Python Deep Learning
Projects. Furthermore, it was our intention to provide you with thought-provoking and
exciting experiences that will further your intuition and form the technical foundation for
your career in deep learning engineering.

Each chapter was structured similarly to participating as a member of our Intelligence
Factory team, where, by going through the material, we achieved the following:

Saw the big picture of the real-world use case and identified the success criteria
Got focused and into the code, loaded dependencies and data, and built, trained,
and evaluated our models
Expanded back out to the big picture to confirm that we achieved our goal

We love solving problems and building smart solutions, insights, and people! Let's review
some key learning, summarize some of our intuition, and look at what could be next in
your deep learning career.

Python deep learning – building the
foundation – two projects
The foundation of a common working environment enables us to work together, and
empowers our learning of cool and powerful deep learning technologies in the fields
of computer vision (CV) and natural language processing (NLP). The first two chapters in
this book provide the establishing experience that you will use time and again in your
professional career as a data scientist.

Summary and Next Steps in Your Deep Learning Career Chapter 15

[430]

Chapter 1 – Building the Deep Learning
Environment
The main goal in this chapter was to standardize the toolset for our work together to
achieve consistently accurate results. We want to establish a process for building
applications using deep learning algorithms that can scale for production. Towards the end,
we identified the components of our common deep learning environment, and initially set
up a local deep learning environment, which expanded to a cloud-based environment.
Throughout the projects that followed, you gained experience with Ubuntu, Anaconda,
Python, TensorFlow, Keras, and Google Cloud Platform (GCP), to highlight but a few core
technologies. These will continue to be of value to you in your deep learning engineering
career!

Chapter 2 – Training NN for Prediction Using
Regression
In Chapter 2, Training NN for Prediction Using Regression, we identified our first business
use case—one that would become a theme for a number of projects: that of a restaurant
chain seeking to automate some of its processes. Specifically, in this chapter, the business
use case was to build a deep learning classifier using a multi-layer perceptron (MLP), the
basic building block in deep learning, to accurately classify handwritten digits of a
customer's phone number. If you recall, the goal was to accurately classify (digitize) the
handwritten phone number on an iPad so that the patron could receive a text that their
table was ready.

We built a two-layer (minimally deep) neural network in TensorFlow and trained it on the
classic MNIST dataset. This project provided us the opportunity to address overfitting,
underfitting, hyperparameter tuning, and activation functions in our exploration of the
model's performance. What we found particularly interesting was the impact of the
business use case on interpreting the utility of the model's performance. Our accuracy with
this simple model initially seemed adequate, until we thought about what a single digit
error in a phone number would mean to the accurate delivery of a text to the right patron.
In this context, we quickly understood we would need to do much better. Fortunately, we
had an opportunity later in the book to take a second run at the problem, and in Chapter
8, Handwritten Digits Classification Using ConvNets, we employed a more complex deep
learning model that performed much better!

Summary and Next Steps in Your Deep Learning Career Chapter 15

[431]

Python deep learning – NLP – 5 projects
A third of our Python Deep Learning Projects are in the field of computational linguistics.
Unstructured text data is everywhere, and is being generated at an astonishing rate. We
split up the approaches and technologies employed into five parts, to adequately handle
the breadth of information. Let's review how the projects in Chapters 3, Word
Representation Using word2vec, through Chapter 8, Handwritten Digits Classification Using
ConvNets, relate and build on one another.

Chapter 3 – Word Representations Using
word2vec
Core to computational linguistics is an effective representation of words and the features
they embody. word2vec was used to transform the words into dense vectors (that is,
tensors), creating embedding representations for the corpus. We then created a
convolutional neural network (CNN) to build a language model for sentiment analysis. To
help us frame this task we envisioned the hypothetical use case of our restaurant chain
client asking us to make sense of the response texts that they were receiving from their
patrons getting the notification that their table was ready. Particularly interesting was the
realization that CNNs can be applied to more than just image data! We also took this
project as an opportunity to explore data visualization with t-distributed stochastic
neighbor embedding (t-SNE) and TensorBoard.

Chapter 4 – Build an NLP Pipeline for Building
Chatbots
We dive deeper into computational linguistics in this project by exploring the deep learning
techniques (building blocks) for language models. word2vec models like ours in Chapter
3, Word Representation Using word2vec, are made possible by NLP pipelines. Our task was to
create a natural language pipeline that would power a chatbot for open-domain question-
answering. We pictured our (hypothetical) restaurant chain as having a website with their
menu, history, location, hours, and other information, and that they would like the added
ability for a website visitor to ask a question in a query box, and for our deep-learning NLP
chatbot to find the relevant information and present that back.

https://cdp.packtpub.com/python_deep_learning_projects/wp-admin/post.php?post=39&action=edit#post_26
https://cdp.packtpub.com/python_deep_learning_projects/wp-admin/post.php?post=39&action=edit#post_26

Summary and Next Steps in Your Deep Learning Career Chapter 15

[432]

The NLP pipeline tokenized the corpus, tagged parts of speech, determined the relationship
between words with dependency parsing, and conducted named entity recognition (NER).
This prepared us to use TF-IDF to vectorize the features in the document to create a simple
FAQ-type chatbot. We enhanced this with NER and the implementation of Rasa NLU. We
were then able to build a bot that understood the context (intent) of a piece of text, and
could also extract the entities, because we created an NLP pipeline that could perform
intent classification, along with NER extraction, to allow it to provide an accurate response.

Chapter 5 – Sequence-to-Sequence Models for
Building Chatbots
This chapter builds directly on Chapter 4, Build NLP Pipeline for Building Chatbots to build a
more advanced chatbot for our hypothetical restaurant chain to automate the process of
fielding call in orders. We combined our learning on a number of technologies to make a
chatbot that is more contextually aware and robust. We avoided some of the limitations of
CNNs in chatbots by building a recurrent neural network (RNN) model with long short-
term memory (LSTM) units, specifically designed to capture the signal represented in
sequences of characters or words.

We implemented a language model, with an encoder-decoder RNN based on the LSTM
unit, for a simple sequence-to-sequence question-answer task. This model was able to
handle inputs and outputs of different sizes, preserve the state of information, and
adequately handle complex context. An additional learning of ours was that of the
importance of obtaining a sufficient amount of the right training data as the outputs of the
model are put up against a very high standard for speech interpretability. However, with
the right training data, it would be possible to use this model to achieve the hypothetical
restaurant chain's goal of building a robust chatbot (in combination with other
computational linguistic technologies we've explored) that could automate the over-the-
phone process of ordering food.

Summary and Next Steps in Your Deep Learning Career Chapter 15

[433]

Chapter 6 – Generative Language Model for
Content Creation
In this project, we not only take the next step in our computational linguistics journey; we
take a profound leap to generate new content! We defined the business use case goal of
providing a deep learning solution that generates new content that can be used in movie
scripts, song lyrics, and music. We asked ourselves: how can we leverage our experience in
solving problems for restaurant chains and apply it to different industries? Upon reflection
on what we learned in past projects regarding the inputs and outputs of the models, we
gained confidence that novel content was just another type of output. We demonstrated
that we could take an image as input, and output a class label (Chapter 2, Training NN for
Prediction Using Regression). We trained a model to take inputs of text and output sentiment
classifications (Chapter 3, Word Representation Using word2vec), and we built a NLP pipeline
for an open-domain question-answering chatbot, where we took text as input, and
identified text in a corpus to present the appropriate output (Chapter 4, Build NLP Pipeline
for Building Chatbots). We then expanded that chatbot functionality to be able to serve a
restaurant with an automated ordering system (Chapter 5, Sequence-to-Sequence Models for
Building Chatbots).

In this chapter, we implemented a generative model to generate content using the long
short-term memory (LSTM), variational autoencoders, and generative adversarial
networks (GANs). We effectively implemented models, for both text and music, that can
generate song lyrics, scripts, and music for artists and various creative businesses.

Chapter 7 – Building Speech Recognition with
DeepSpeech2
This project on building speech recognition with DeepSpeech2 is the capstone in the Natural
Language Processing section of the Python Deep Learning Projects book. So far, we've explored
chatbots, natural language processing, and speech recognition with RNNs (both uni- and
bi-directional, with and without LSTM components) and CNNs. We've seen the power of
these technologies to provide intelligence to existing business processes, as well as to create
entirely new and smart systems. This is exciting work at the cutting edge of applied AI
using deep learning!

Summary and Next Steps in Your Deep Learning Career Chapter 15

[434]

The goal of this project was to build and train an automatic speech recognition (ASR)
system to take in and convert an audio call to text, which could then be used as the input
for a text-based chatbot that was capable of parsing the input and responding
appropriately. We made a deep dive into speech data, performing feature engineering to
allow us to extract various kinds of features from the data, to then build a speech
recognition system which can detect a users voice. In the end, we demonstrated mastery by
building a system, using the DeepSpeech2 model, that recognizes English speech. We
worked with speech and spectograms to build an end-to-end speech recognition system
using the connectionist temporal classification (CTC) loss function, batch normalization,
and SortaGrad for the RNNs.

Deep learning – computer vision – 6 projects
The following six Python deep learning projects, focusing on CV, represent the largest
portion of the content of this book. We've already seen how some of the deep learning
technologies we explore in detail, with reference to CV, have some applicability to other
types of data, and in particular, to text-based data. In no small part, that is because of the
enormous utility of CNNs in feature extraction and hierarchical representation. There is no
magic tool that is perfect for all jobs—being a deep learning engineer in data science is no
exception. But you should not underestimate the familiarity you'll get with CNNs, as you'll
find yourself using them time and again, across many different datasets and business use
cases. Being a data scientist without CNN skills is like being a carpenter without a hammer.
The obvious caveat is that not everything in data science is the equivalent of a nail!

Chapter 8 – Handwritten Digit Classification
Using ConvNets
This chapter reminds us of the first deep neural net we created in Chapter 2, Training NN
for Prediction Using Regression, and the business use case to which it was applied. The
purpose of that chapter was to provide a foundation for our understanding of deep neural
networks and how they operate. The complexity of the math underlying deep learning was
highlighted when we compared the model architecture with the more advanced techniques
afforded when we build deeper and more robust models. Complexity isn't cool just because
it's complex; in this case, it's cool because of the improvement in realized performance
utility that it provides.

Summary and Next Steps in Your Deep Learning Career Chapter 15

[435]

We spent a considerable amount of time examining the convolution operation, pooling, and
dropout regularization. These are the levers you'll adjust in tuning your models in your
career, so getting a solid understanding of them early is essential. In reference to the
business use case, we see the value of deploying a more complex model, in that the
performance gain supports the parent product implementation. The error rate obtained in
Chapter 2, Training NN for Prediction Using Regression, was such that, in the worse case, not
a single text would have been appropriately delivered to the right patron at the
hypothetical restaurant chain (and in the best case, it was still dismal and effectively not
functional). The CNN model on the same dataset produces results that mean that, in the
new worst-case scenario, 90% of the patrons would receive the text notifications, and in the
best case, 99% would get the text!

Chapter 9 – Object Detection Using OpenCV and
TensorFlow
Let's think about what we accomplished in Chapter 8, Handwritten Digits Classification
Using ConvNets, where we were able to train an image classifier, with a CNN, to accurately
classify handwritten digits in an image. The data was less complicated than it could have
been, because each image only had one handwritten digit in it, and our goal was to
accurately assign a class label to the image. What would have happened if each image had
multiple handwritten digits in it, or different types of objects? What if we had a video?
What if we want to identify where the digits are in the image? These questions represent the
challenges that real-world data embodies, and drives our data science innovation toward
new models and capabilities.

Object detection and classification is no trivial task for a computer, particularly at scale and
hitting speed requirements. We employed data inputs in this project that were much more
informationally complex than what we've had in previous projects, and the outcomes,
when we got them right, were that much more impressive. We found that the deep learning
package YOLOv2 performed very well, and saw our model architecture get deeper and
more complex with good results.

https://cdp.packtpub.com/python_deep_learning_projects/wp-admin/post.php?post=39&action=edit#post_25

Summary and Next Steps in Your Deep Learning Career Chapter 15

[436]

Chapter 10 – Building Facial Recognition Using
OpenFace
In Chapter 9, Object Detection Using OpenCV and TensorFlow, we demonstrated mastery in
the skills needed to build a deep learning object detection and classification model.
Building on that, we set our objective at a refinement of that classification operation: is the
object identical to another? In our case, we were looking to build a facial recognition system
of the kind that we see in spy movies, and now in high tech security systems. Facial
recognition is a combination of two major operations: face detection, followed by face
classification.

Using OpenFace in this project, we built a model that looked at a picture and identified all
the possible faces in it, then performed face extraction to understand the quality of the part
of the image containing faces. We then performed feature extraction on the face, identifying
parts of the image that gave us the basis for comparison with another data point (a labeled
image of the person's face). This Python deep learning project demonstrates the exciting
potential for this technology, and the future for the engineers that excel at working on these
applications.

Chapter 11 – Automated Image Captioning
In Chapter 9, Object Detection Using OpenCV and TensorFlow, we learned how to detect and
classify objects in an image, and in Chapter 10, Building Face Recognition Using FaceNet, we
learned how to detect, classify, and identify objects as being the same thing (for example,
identifying the same person from two different facial images). In this project, we did
something even more complicated and cool! We combined the current state-of-the-art
techniques that we've learned so far in our Python deep learning projects, in
both CV and NLP, to form a complete image description approach. This model was capable
of constructing computer-generated natural language descriptions of any image provided.

The clever idea that made this possible was to replace the encoder (the RNN layer) in an
encoder-decoder architecture with a deep CNN, trained to classify objects in images.
Normally, the CNN's last layer is the softmax layer, which assigns the probability that each
object might be in the image. But when we remove that softmax layer from the CNN, we
can feed the CNN's rich encoding of the image into the decoder (the language generation
component of the RNN) designed to produce phrases. We can then train the whole system
directly on images and their captions, maximizing the likelihood that the descriptions it
produces best match the training descriptions for each image. This deep learning
technology is the backbone of many intelligence factory solutions!

Summary and Next Steps in Your Deep Learning Career Chapter 15

[437]

Chapter 12 – Pose Estimation on 3D Models
Using ConvNets
Data that we apply to our models are representations of the real world. This is the
fundamental truth that unites computational linguistics and CV. With respect to CV, we
need to remember that 2D images represent a 3D world, in the same way that video
represents 4D, with the added aspects of time and movement. Recalling this obvious fact
lets us ask ever more interesting questions and develop deep learning technologies with
increasing utility. Our hypothetical use case was to enable visual effects specialists to easily
estimate the pose of actors (particularly the shoulders, neck, and head) on frames of a
video. Our task was to build the intelligence for this application.

We successfully built a deep CNN/VGG16 model in Keras on frames labeled in cinema
(FLIC) images. We got hands-on experience in preparing the images for modeling. We
successfully implemented transfer learning, and understood that doing so will save us a lot
of time. We defined some key hyperparameters, as well as understanding why we did what
we did. Finally, we tested the modified VGG16 model performance on unseen data, and
determined that we succeeded in achieving our goals.

Chapter 13 – Image Translation Using GANs for
Style Transfer
GANs are just downright cool. When we look back at the skills and intuition we've built
throughout these projects, we had an interesting idea. Could we predict missing
information? Or, stated in a different way: can we create data that should be in an image,
but that's not there? If we can take text input and generate novel text output, and if we can
take a 2D image and generate or predict a 3D positional output, then it would seem
possible that, if we have a 2D image that's missing some information, maybe we ought to be
able to generate the missing information? So, in this chapter, we built a neural network that
fills in the missing part of a handwritten digit. We previously built a digit classifier for a
hypothetical restaurant chain client. Error rates could be attributable to the digits not being
accurately captured, and the resulting image having incompletely drawn
digits. We focused our efforts on the new part of the model creation—the
generation/reconstruction of the missing sections of a digit with the help of neural
inpainting with GANs. We then reconstructed the missing parts of the handwritten
numbers, so that the classifier received clear handwritten numbers for conversion into
digits. With this, the classifier was able to do a much more accurate job of classifying the
handwritten digits (and our mythical restaurant patrons were able to receive their
notification texts and get seated promptly).

Summary and Next Steps in Your Deep Learning Career Chapter 15

[438]

Python deep learning – autonomous agents
– 1 project
The final project in our book is unlike anything we've done so far, and deserves its own
treatment. Robotic process automation and optimization, and autonomous agents, such as
drones and vehicles, require our deep learning models to learn from environmental cues in
a reinforcement learning paradigm. Unlike previous projects, where we've been primarily
focused on solving supervised learning problems, in this chapter, we learned to build and
train a deep reinforcement learning model capable of playing games.

We employed a deep Q-learning and deep state-action-reward-state-action (SARSA)
learning model. Unlike programming simple models by defining heuristics, deep learning
models mapping A-B in a supervised learning environment, or determining decision
boundaries in cluster analysis in unsupervised learning, it is the rules of the game or
environment (as expressed in the delivery of reinforcement) that provide the feedback for
training in reinforcement learning. The deep learning model, also called the agent in
reinforcement-learning terms, interacts with the game environment and learns how to play
the game, seeking to maximize rewards after several attempts at playing.

Chapter 14 – Develop an Autonomous Agent with
Deep Reinforcement Learning
In this project, we built a deep reinforcement learning model to successfully play the game
of CartPole-v1, from OpenAI Gym. Demonstrating mastery here first, we could then extend
it to other complex games, such as those by Atari.

We learned how to interact with the Gym toolkit, Q-learning, and SARSA learning; how to
code the reinforcement learning model and define hyperparameters; and how to build the
training loop and test the model. We found that our SARSA model performed quite a bit
better than the Q-learning model. Further training and tuning of hyperparameters, and our
own capture of reinforcement units (better scores by our models), should shape our
behavior to build better models that ultimately result in the nearly perfect performance of
our agent!

Summary and Next Steps in Your Deep Learning Career Chapter 15

[439]

Next steps – AI strategy and platforms
Throughout this book, you've gained experiences that form the technical foundations for
professional work in deep learning projects. However, the scope of the book was such that
our focus could only be on a subset of the entire production-scale data science pipeline. We
spent our time in the context of a business use case to ground our thinking on the domain
and success criteria, but quickly dove into deep-learning model training, evaluation, and
validation. These components, comprising the bulk of the training in our projects, are
certainly the core of a data science pipeline for an enterprise, but cannot function in a
vacuum. Additional considerations and training in AI strategy and data science platforms
are the natural next steps in your education and career.

AI strategy
AI strategy is about gaining knowledge from the client that empowers you to determine the
following:

The client's grand vision for an intelligence-based competitive advantage
How to translate that vision into an effective production-scale data science
pipeline:

Take into account the current and near-term digital maturity of the
client
Processes of data ingestion, analysis, and transformation
Technology and engineering resources and constraints
The analytics team's current capabilities
Model selection, customization, training, evaluation, validation,
and serving

Achievement of KPIs and ROI that meets the objectives of the client's leadership

AI strategy consulting uncovers goals and expectations, while aligning outcomes with
machine learning and deep learning technologies. Building an AI solution architecture
must take all of this into account to be successful. You should look to mentors in the
industry, read available case studies, and keep this in mind as your career advances, and
you are called in to provide guidance and opinions earlier and earlier in the solution-
building process.

Summary and Next Steps in Your Deep Learning Career Chapter 15

[440]

Deep learning platforms – TensorFlow Extended
(TFX)
Data science platforms, designed to meet the demands for production-scale deployment,
require significant engineering support. At the Intelligence Factory and Skejul, we've built
deep learning platforms that take in live feeds of constantly updating data to produce
intelligence-based outputs within milliseconds, to be delivered via a cloud-based web
application using API gateways. It's extraordinarily complex and rewarding, once you get
all the pieces to come together!

One technology that will aid in your deep learning and data science career is TFX. This is
Google's TensorFlow-based production-scale machine learning platform. The first few lines
from their abstract from the article
TFX: A TensorFlow-Based Production-Scale Machine Learning Platform (https:/ /ai. google/
research/pubs/pub46484) summarize the potential of the TFX and similar platforms:

"Creating and maintaining a platform for reliably producing and deploying machine
learning models requires careful orchestration of many components—a learner for
generating models based on training data, modules for analyzing and validating both data
as well as models, and finally infrastructure for serving models in production. This
becomes particularly challenging when data changes over time and fresh models need to be
produced continuously."

Data science platform engineering that's based on a smartly crafted AI strategy is our next
step in training, and we look forward to the opportunity to share those experiences with
you too!

Conclusion and thank you!
We want to thank you for choosing our book, Python Deep Learning Projects, as part of your
data science education! It's our hope that you found the projects and the business use cases
intriguing and informative, and that you feel more professionally prepared than when you
started. We look forward to the opportunity to engage with you via our respective blogs, on
social media, and possibly even at conferences or on working together on delivering AI-
based solutions to clients around the world.

We've been happy to have you in our weekly AI team meetings in these projects. Now that
we've learned a bunch of stuff, and had some fun with really cool and powerful data
science technologies, let's go out to do great work based on these Python deep learning
projects!

https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484
https://ai.google/research/pubs/pub46484

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Python Deep Learning Cookbook
Indra den Bakker

ISBN: 978-1-78712-519-3

Implement different neural network models in Python
Select the best Python framework for deep learning such as PyTorch, Tensorflow,
MXNet and Keras
Apply tips and tricks related to neural networks internals, to boost learning
performances
Consolidate machine learning principles and apply them in the deep learning
field
Reuse and adapt Python code snippets to everyday problems
Evaluate the cost/benefits and performance implication of each discussed
solution

https://www.packtpub.com/big-data-and-business-intelligence/python-deep-learning-cookbook

Other Books You May Enjoy

[442]

Hands-On Natural Language Processing with Python
Rajesh Arumugam, Rajalingappaa Shanmugamani

ISBN: 978-1-78913-949-5

Implement semantic embedding of words to classify and find entities
Convert words to vectors by training in order to perform arithmetic operations
Train a deep learning model to detect classification of tweets and news
Implement a question-answer model with search and RNN models
Train models for various text classification datasets using CNN
Implement WaveNet a deep generative model for producing a natural-sounding
voice
Convert voice-to-text and text-to-voice
Train a model to convert speech-to-text using DeepSpeech

https://www.packtpub.com/big-data-and-business-intelligence/hands-natural-language-processing-python

Other Books You May Enjoy

[443]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
affine transformations
 about 288
 reference 288
AI strategy 439
Anaconda installation
 DL libraries, installing 12
 performing 11
automated image captioning
 attention 305
 CNN encoder, defining 306
 data preparation 297
 feature extraction, performing 301
 loss function 307
 model, defining 305
 model, deploying 313, 315
 model, evaluating 310
 RNN decoder, defining 306
 training 307, 308

B
basic RNNs implementation
 basic RNN cell model, defining 92, 93, 95
 dataset, preparing 90, 91, 92
 dependencies, importing 90
 hyperparameters 92
 RNN model, evaluating 97, 98
 RNN model, training 95

C
CartPole game
 exploring 402
 interacting with 402
 loading 402
 playing 404
 Q-learning 406

 resetting 403
centering 366
chatbots
 building, with NER 76
 dataset, preparing 78
 deploying 80
 serving 82, 83
 training 79, 80
cloud platforms, for deployment
 about 14
 GCP, setting up 14
 prerequisites 14
CNN classifier predictions
 on noised and generated images 391
CNN model
 accuracy 60
 convolution layer 59
 data format 61, 62
 deploying, into production 64
 dropout layer 60
 embedding layer 58
 executing 63, 64
 exploring 55, 56, 57
 placeholders, for inputs 58
 predictions 60
 word2vec, integrating with 63
code implementation
 about 318, 319
 data, exploring 320
 data, pre-processing 320, 321, 323, 325, 326,

327, 328, 329
 data, preparing 330
 dependencies, importing 319
 hyperparameters, defining for training 336
 images, transforming 334
 joints, plotting 333
 limbs, plotting 333

[445]

 predictions 345, 347
 scripts, in modular form 347
 VGG16 model, building 337
common DL environment
 building 9, 10
 local DL environment, setting up 10
computer vision (CV) 429
Conv2D API
 reference 178
conversational bots
 advanced chatbots, with NER 76
 building 73
convolution autoencoder
 about 212
 defining 214, 215
 dependencies, importing 213
 fitting 217
 loss plot 217
 low-resolution images, generating 214
 Python file 220
 scaling 214
 test results 217
convolution neural networks (ConvNets) 165
convolution
 implementing 177
 in Keras 177, 179
 model, evaluating 180, 181
 model, fitting 180
 Python file 182
 with pooling 190
convolutional neural networks (CNNs) 42

D
data augmentation
 about 203
 ImageDataGenerator, fitting 206, 207
 ImageDataGenerator, using 204, 205, 206
 model, compiling 207
 model, evaluating 208, 209
 model, fitting 207, 208
 Python file 210
data exploring, in image segmentation
 annotations 262
 images 260
data preparation, automated image captioning

 about 297
 data pipeline, setting up 304
 for deep CNN encoder 300, 301
 for language generation (RNN) decoder 302
 initialization 298
 MS-COCO dataset, downloading 298
 MS-COCO dataset, preparing 298
data preparing, code implementation
 cropping 330
 resizing 332
data preparing, image segmentation
 about 264
 encode 266
 model data 267
 normalize 265, 266
data
 exploring 364, 365
 preparing 366
dataset
 reshaping 369
DCGAN
 defining 377
deep learning (DL) technologies
 computer vision (CV) 9
 natural language processing (NLP) 9
deep learning (DL)
 for computational linguistics 41
Deep Q Learning (DQN)
 CartPole game, exploring 402
 conclusion 427
 dependencies, importing 401
 hyperparameters, defining 407
 implementing 401
 in modular form 417
 model components, building 408
 reference 401
DeepSpeech2 (DS2) model
 building 146
 corpus exploration 147, 148, 149
 data preprocessing 146
 data transformation 153
 defining 154, 155, 156
 evaluating 163
 feature engineering 149, 151
 testing 163

[446]

 training 158, 159, 160, 162
dependencies
 importing 363, 364
dependency parsing 72
discriminator
 defining 376, 377
DL environment local setup
 about 10
 Anaconda, downloading 11
 Anaconda, installing 11
DL environment
 setting up, in cloud 13
dlib
 reference 277
Docker
 reference 278
DQN scripts, modular form
 agent_replay_dqn.py module 418
 hyperparameters_dqn.py module 418
 test_dqn.py module 419
 train_dqn.py module 420
dropout
 about 191, 192, 193
 convolution, with pooling 196
 model, evaluating 194, 195
 model, fitting 193, 194
DS2 architecture
 implementation 155

E
eager execution
 reference 298
embedding plot
 building, in TensorBoard 52

F
face detection
 classifier, training 292, 293
 code, obtaining 278
 Docker image, building 278, 279, 281
 Docker image, preprocessing 292
 environment, setting up 278
 faces, aligning 286, 287, 289
 feature extraction 290
 images, preprocessing 285

 model, evaluation 293
 pre-trained models, downloading 281, 282, 283
face landmark estimation 286
FaceNet
 reference 277
facial recognition
 about 283
 pipeline, building 283, 284
Fast Image Data Annotation Tool (FIAT) 247
Frames Labeled In Cinema (FLIC) 317

G
GAN model components
 building 372
 DCGAN 377
 discriminator 376, 377
 generator 373, 375
GCP setup
 firewall settings, modifying 15
 project, creating 14
 VM instance, spinning 14
 VM, booting 15
Generative Adversarial Networks (GANs)
 about 361
 parameters, defining for 372
 training 378
 training loop 382, 383, 385
 training, plotting 378, 380, 381
generator
 defining 373, 375
Google Cloud Platform (GCP) 13
Google Cloud
 reference 14
Google Colab
 reference 13
Google Compute Engine (GCE) 13
Gym toolkit
 reference 401

H
handcrafted red object detector 229
handwritten digits classification
 code, implementation 166
 convolution, defining 176, 177
 data augmentation 203

[447]

 data, exploring 166, 167, 168
 deep neural network, building 169, 170, 172
 deep neural network, training 169, 170, 172
 deeper model, building 197
 dependencies, importing 166
 dropout, defining 191, 192, 193
 hyperparameters, defining 168
 MLP 175
 model, compiling 198
 model, evaluating 173, 200, 201
 model, fitting 172, 199, 200
 pooling, defining 183, 184, 185, 186
 with pooling and Dropout 202
Hierarchical Dirichlet Process (HDP) 43
Histogram of Oriented Gradients (HOG) 227, 283
hyperparameters
 about 57
 defining 25
 defining, for GAN 372
 embedding_size 57
 filter_sizes 57
 num_classes 57
 num_filters 57
 pre_trained 57
 sequence_length 57
 vocab_size 57

I
image segmentation
 about 259
 data, exploring 260
 data, preparing 264
 dependencies, importing 259
 hyperparameters, defining 268
 SegNet, defining 269
ImageAI
 reference 237
implementation
 coding 25
inference
 building 36, 38
inverse document frequency (IDF) 73

K
Keras Dense API
 reference 169
Keras Model API
 reference 169
keras-rl library
 reference 421
Keras
 reference 166, 170, 203, 216, 363, 401

L
language models
 building, with CNN and word2vec 54
Latent Dirichlet Allocation (LDA) 43
LSTM architecture 98, 99
LSTM model, for generating lyrics
 building 121
 data pre-processing 122, 124
 deep TensorFlow-based LSTM model, training

127, 129
 defining 126
 inference 130
 output 131
LSTM model, for generating music
 building 132, 133
 data pre-processing 133, 135, 136
 defining 138
 music, generating 141, 142
 training 138, 140
LSTM model, for text generation
 about 115
 building 116
 data pre-processing 116
 defining 118
 inference 120
 output 120
 training 118, 119
LSTM model
 defining 100
 evaluating 104
 implementing 100
 training 101, 103

[448]

M
masking 367
MNIST classifier 369, 370, 371
MNIST dataset
 exploring 21, 22, 23
model components, DQN
 agent action, defining 410
 agent, defining 408
 building 408
 loop, training 414, 416
 memory, defining 410
 performance plot, defining 411
 replay, defining 412, 413
 testing 416
model definition 26, 29
modelSegNet model
 fitting 272
modules
 about 347
 crop_resize_transform.py 348
 plotting.py 350
 test.py 352
MS-COCO dataset
 reference 298
multi-layer perceptron (MLP) 20

N
Named Entity Recognition (NER) 66, 72
Natural Language Processing (NLP) 66
natural language processing (NLP) 42, 429
Natural Language Toolkit (NLTK) package 68
Natural Language Toolkit (NLTK) tokenizer
 reference 44
Neural Machine Translation (NMT) 105
NLP pipelines
 basics 67
 dependency parsing 72
 NER 72
 Part-of-Speech tagging 69
 tokenization 68
noise
 inserting 367

O
object detection in real-time, with YOLOv2
 about 245
 custom dataset, using 247, 248
 dataset, preparing 245
 dependencies, installing 248
 model, evaluating 256
 model, training 251, 253
 pre-existing COCO dataset, using 246
 YOLO model, configuring 249
 YOLOv2 model, defining 250
object detection intuition
 about 225
 object detection models, improving 227
object detection, using OpenCV
 about 228
 dependencies, installing 229
 handcrafted red object detector 229
 image data, exploring 230, 231
 image, normalizing 232, 233
 mask, applying 236
 mask, post-processing 234, 235
 mask, preparing 233
object detection, with deep learning
 about 237
 dependencies, installing 237
 deployment 242, 244
 implementation 239, 240
 implementing 237
OpenFace
 reference 277, 287
optimization 34
optimizers, Keras
 reference 168
Out Of Vocab (OOV) 111

P
Part-of-Speech (POS) tagging
 about 69
 nouns, extracting 70
 verbs, extracting 71
pooling
 about 183, 184, 185, 186
 model, evaluating 188, 189

[449]

 model, fitting 187, 188
 Python file 190
predictions 391
Project Gutenberg website
 reference 44
project structure
 defining 24

R
Rasa NLU 77
Rasa
 installing 77
rectified linear unit (ReLU) function 155
region-based fully convolutional network (R-FCN)

225

regression model
 building for predictions, MLP used 20, 21
regression
 defining 24
RNN architectures
 about 88, 89
 many to many 88
 many to one 88
 one to many 88
RNNs
 about 86, 87
 basic RNNs implementation 89

S
SARSA learning
 about 421, 422
 agent, defining 423
 agent, testing 425
 agent, training 423
 dependencies, importing 422
 reference 421
 script, implementing in modular form 426
scaling 366
scripts, in modular form
 about 393
 GAN.py 394
 train_gan.py 395
 train_mnist.py 393
 training_plots.py 394
SegNet model

 compiling 272
 defining 269, 270
 testing 273
sequence-to-sequence (seq2seq) model
 about 88, 104
 data preparation 106, 107
 defining 107, 108
 evaluating 111
 hyperparameters 109
 implementing 105
 training 110
setup process
 automating 15, 16, 17
solid-state drive (SSD) 225
speech recognition
 building, with DeepSpeech2 (DS2) 145
State-Action-Reward-State-Action (SARSA) 400

T
t-Distributed Stochastic Neighbor Embedding (t-

SNE) algorithm
 about 43
 reference 49
 used, for plotting word cluster 49
teacher forcing technique 308
TensorBoard 51
TensorFlow Extended (TFX) 440
TensorFlow
 reference 12
term frequency (TF) 73
TF-IDF
 about 73
 dataset, preparing 73
 implementing 74
 query, processing 76
 rank results 76
 vectorizer, creating 75
tokenization 68
training loop
 building 29, 30, 33, 34
 overfitting 34
 underfitting 35
type conversion 366

V
VGG16 model
 building 337
 defining 337, 339, 341
 plot training 344
 training loop 341, 342, 343
 validation loss 344
visual effects (VFX) 317

W
word embedding model
 dependencies, loading 43
 embedding space, visualizing 51
 text corpus, preparing 44, 45

 word2vec model, defining 45
word embeddings 42
word vectors
 learning 42
word2vec 42, 43
word2vec model
 analyzing 47
 defining 45, 46
 training 47
 word cluster, plotting with t-SNE algorithm 49

Y
YOLOv2 245
you only look once (YOLO) 225

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Building Deep Learning Environments
	Building a common DL environment
	Get focused and into the code!

	DL environment setup locally
	Downloading and installing Anaconda
	Installing DL libraries

	Setting up a DL environment in the cloud
	Cloud platforms for deployment
	Prerequisites
	Setting up the GCP

	Automating the setup process
	Summary

	Chapter 2: Training NN for Prediction Using Regression
	Building a regression model for prediction using an MLP deep neural network
	Exploring the MNIST dataset
	Intuition and preparation
	Defining regression
	Defining the project structure

	Let's code the implementation!
	Defining hyperparameters
	Model definition
	Building the training loop
	Overfitting and underfitting

	Building inference

	Concluding the project
	Summary

	Chapter 3: Word Representation Using word2vec
	Learning word vectors
	Loading all the dependencies
	Preparing the text corpus
	Defining our word2vec model
	Training the model
	Analyzing the model
	Plotting the word cluster using the t-SNE algorithm

	Visualizing the embedding space by plotting the model on TensorBoard
	Building language models using CNN and word2vec
	Exploring the CNN model
	Understanding data format
	Integrating word2vec with CNN
	Executing the model

	Deploy the model into production

	Summary

	Chapter 4: Building an NLP Pipeline for Building Chatbots
	Basics of NLP pipelines
	Tokenization
	Part-of-Speech tagging
	Extracting nouns
	Extracting verbs

	Dependency parsing
	NER

	Building conversational bots
	What is TF-IDF?
	Preparing the dataset
	Implementation
	Creating the vectorizer
	Processing the query
	Rank results

	Advanced chatbots using NER
	Installing Rasa
	Preparing dataset
	Training the model
	Deploying the model

	Serving chatbots
	Summary

	Chapter 5: Sequence-to-Sequence Models for Building Chatbots
	Introducing RNNs
	RNN architectures

	Implementing basic RNNs
	Importing all of the dependencies
	Preparing the dataset
	Hyperparameters
	Defining a basic RNN cell model
	Training the RNN Model
	Evaluation of the RNN model

	LSTM architecture
	Implementing an LSTM model
	Defining our LSTM model
	Training the LSTM model
	Evaluation of the LSTM model

	Sequence-to-sequence models
	Data preparation
	Defining a seq2seq model
	Hyperparameters
	Training the seq2seq model
	Evaluation of the seq2seq model

	Summary

	Chapter 6: Generative Language Model for Content Creation
	LSTM for text generation
	Data pre-processing
	Defining the LSTM model for text generation
	Training the model
	Inference and results

	Generating lyrics using deep (multi-layer) LSTM
	Data pre-processing
	Defining the model
	Training the deep TensorFlow-based LSTM model
	Inference
	Output

	Generating music using a multi-layer LSTM
	Pre-processing data
	Defining the model and training
	Generating music

	Summary

	Chapter 7: Building Speech Recognition with DeepSpeech2
	Data preprocessing
	Corpus exploration
	Feature engineering
	Data transformation

	DS2 model description and intuition
	Training the model
	Testing and evaluating the model
	Summary

	Chapter 8: Handwritten Digits Classification Using ConvNets
	Code implementation
	Importing all of the dependencies
	Exploring the data
	Defining the hyperparameters
	Building and training a simple deep neural network
	Fitting a model
	Evaluating a model
	MLP – Python file

	Convolution
	Convolution in Keras
	Fitting the model
	Evaluating the model
	Convolution – Python file

	Pooling
	Fitting the model
	Evaluating the model
	Convolution with pooling – Python file

	Dropout
	Fitting the model
	Evaluating the model
	Convolution with pooling – Python file

	Going deeper
	Compiling the model
	Fitting the model
	Evaluating the model
	Convolution with pooling and Dropout – Python file

	Data augmentation
	Using ImageDataGenerator
	Fitting ImageDataGenerator
	Compiling the model
	Fitting the model
	Evaluating the model
	Augmentation – Python file

	Additional topic – convolution autoencoder
	Importing the dependencies
	Generating low-resolution images
	Scaling
	Defining the autoencoder
	Fitting the autoencoder
	Loss plot and test results
	Autoencoder – Python file

	Conclusion
	Summary

	Chapter 9: Object Detection Using OpenCV and TensorFlow
	Object detection intuition
	Improvements in object detection models

	Object detection using OpenCV
	A handcrafted red object detector
	Installing dependencies
	Exploring image data
	Normalizing the image
	Preparing a mask
	Post-processing of a mask
	Applying a mask

	Object detection using deep learning
	Quick implementation of object detection
	Installing all the dependencies
	Implementation
	Deployment

	Object Detection In Real-Time Using YOLOv2
	Preparing the dataset
	Using the pre-existing COCO dataset
	Using the custom dataset

	Installing all the dependencies
	Configuring the YOLO model
	Defining the YOLO v2 model
	Training the model
	Evaluating the model

	Image segmentation
	Importing all the dependencies
	Exploring the data
	Images
	Annotations

	Preparing the data
	Normalizing the image
	Encoding
	Model data

	Defining hyperparameters
	Define SegNet
	Compiling the model
	Fitting the model
	Testing the model

	Conclusion
	Summary

	Chapter 10: Building Face Recognition Using FaceNet
	Setup environment
	Getting the code
	Building the Docker image
	Downloading pre-trained models

	Building the pipeline
	Preprocessing of images
	Face detection
	Aligning faces
	Feature extraction
	Execution on Docker

	Training the classifier
	Evaluation
	Summary

	Chapter 11: Automated Image Captioning
	Data preparation
	Initialization
	Download and prepare the MS-COCO dataset
	Data preparation for a deep CNN encoder
	Performing feature extraction

	Data prep for a language generation (RNN) decoder
	Setting up the data pipeline

	Defining the captioning model
	Attention
	CNN encoder
	RNN decoder
	Loss function

	Training the captioning model
	Evaluating the captioning model
	Deploying the captioning model
	Summary

	Chapter 12: Pose Estimation on 3D models Using ConvNets
	Code implementation
	Importing the dependencies
	Exploring and pre-processing the data
	Preparing the data
	Cropping
	Resizing
	Plotting the joints and limbs
	Transforming the images

	Defining hyperparameters for training
	Building the VGG16 model
	Defining the VGG16 model
	Training loop
	Plot training and validation loss

	Predictions
	Scripts in modular form
	Module 1 – crop_resize_transform.py
	Module 2 – plotting.py
	Module 3 – test.py
	Module 4 – train.py

	Conclusion
	Summary

	Chapter 13: Image Translation Using GANs for Style Transfer
	Let's code the implementation!
	Importing all of the dependencies
	Exploring the data
	Preparing the data
	Type conversion, centering, and scaling
	Masking/inserting noise
	Reshaping
	MNIST classifier

	Defining hyperparameters for GAN
	Building the GAN model components
	Defining the generator
	Defining the discriminator
	Defining the DCGAN

	Training GAN
	Plotting the training – part 1
	Plotting the training – part 2
	Training loop

	Predictions
	CNN classifier predictions on the noised and generated images

	Scripts in modular form
	Module 1 – train_mnist.py
	Module 2 – training_plots.py
	Module 3 – GAN.py
	Module 4 – train_gan.py

	The conclusion to the project
	Summary

	Chapter 14: Develop an Autonomous Agent with Deep R Learning
	Let's get to the code!
	Deep Q-learning
	Importing all of the dependencies
	Exploring the CartPole game
	Interacting with the CartPole game
	Loading the game
	Resetting the game
	Playing the game

	Q-learning

	Defining hyperparameters for Deep Q Learning (DQN)
	Building the model components
	Defining the agent
	Defining the agent action
	Defining the memory
	Defining the performance plot
	Defining replay
	Training loop
	Testing the DQN model

	Deep Q-learning scripts in modular form
	Module 1 – hyperparameters_dqn.py
	Module 2 – agent_replay_dqn.py
	Module 3 – test_dqn.py
	Module 4 – train_dqn.py

	Deep SARSA learning
	SARSA learning
	Importing all of the dependencies
	Loading the game environment
	Defining the agent
	Training the agent
	Testing the agent

	Deep SARSA learning script in modular form

	The conclusion to the project
	Summary

	Chapter 15: Summary and Next Steps in Your Deep Learning Career
	Python deep learning – building the foundation – two projects
	Chapter 1 – Building the Deep Learning Environment
	Chapter 2 – Training NN for Prediction Using Regression

	Python deep learning – NLP – 5 projects
	Chapter 3 – Word Representations Using word2vec
	Chapter 4 – Build an NLP Pipeline for Building Chatbots
	Chapter 5 – Sequence-to-Sequence Models for Building Chatbots
	Chapter 6 – Generative Language Model for Content Creation
	Chapter 7 – Building Speech Recognition with DeepSpeech2

	Deep learning – computer vision – 6 projects
	Chapter 8 – Handwritten Digit Classification Using ConvNets
	Chapter 9 – Object Detection Using OpenCV and TensorFlow
	Chapter 10 – Building Facial Recognition Using OpenFace
	Chapter 11 – Automated Image Captioning
	Chapter 12 – Pose Estimation on 3D Models Using ConvNets
	Chapter 13 – Image Translation Using GANs for Style Transfer

	Python deep learning – autonomous agents – 1 project
	Chapter 14 – Develop an Autonomous Agent with Deep Reinforcement Learning

	Next steps – AI strategy and platforms
	AI strategy
	Deep learning platforms – TensorFlow Extended (TFX)

	Conclusion and thank you!

	Other Books You May Enjoy
	Index

