


Python Machine Learning By
Example

Easy-to-follow examples that get you up and running with
machine learning

Yuxi (Hayden) Liu

 BIRMINGHAM - MUMBAI



Python Machine Learning By Example

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017

Production reference: 1290517

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham 
B3 2PB, UK.

ISBN 978-1-78355-311-2

www.packtpub.com

http://www.packtpub.com




Credits

Author
Yuxi (Hayden) Liu

Copy Editor  
Safis Editing

Reviewer
Alberto Boschetti

Project Coordinator   
Nidhi Joshi

Commissioning Editor  
Veena Pagare

Proofreader  
Safis Editing

Acquisition Editor  
Tushar Gupta

Indexer  
Tejal Daruwale Soni

Content Development Editor  
Aishwarya Pandere

Graphics  
Tania Dutta

Technical Editor  
Prasad Ramesh

Production Coordinator  
Aparna Bhagat



About the Author
Yuxi (Hayden) Liu is currently a data scientist working on messaging app optimization at a
multinational online media corporation in Toronto, Canada. He is focusing on social graph
mining, social personalization, user demographics and interests prediction, spam detection,
and recommendation systems. He has worked for a few years as a data scientist at several
programmatic advertising companies, where he applied his machine learning expertise in
ad optimization, click-through rate and conversion rate prediction, and click fraud
detection. Yuxi earned his degree from the University of Toronto, and published five IEEE
transactions and conference papers during his master's research. He finds it enjoyable to
crawl data from websites and derive valuable insights. He is also an investment enthusiast.



About the Reviewer
Alberto Boschetti is a data scientist with strong expertise in signal processing and statistics.
He holds a PhD in telecommunication engineering and currently lives and works in
London. In his work projects, he faces challenges daily, spanning across natural language
processing (NLP), machine learning, and distributed processing. He is very passionate
about his job and always tries to be updated on the latest developments of data science
technologies, attending meetups, conferences, and other events. He is the author of Python
Data Science Essentials, Regression Analysis with Python, and Large Scale Machine Learning with
Python, all published by Packt.

I would like to thank my family, my friends, and my colleagues. Also, a big thanks to the
open source community.



www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt


Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1783553111.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111
https://www.amazon.com/dp/1783553111


Table of Contents
Preface 1

Chapter 1: Getting Started with Python and Machine Learning 6

What is machine learning and why do we need it? 7
A very high level overview of machine learning 9
A brief history of the development of machine learning algorithms 11
Generalizing with data 13
Overfitting, underfitting and the bias-variance tradeoff 14

Avoid overfitting with cross-validation 16
Avoid overfitting with regularization 18

Avoid overfitting with feature selection and dimensionality reduction 20
Preprocessing, exploration, and feature engineering 21

Missing values 22
Label encoding 23
One-hot-encoding 23
Scaling 24
Polynomial features 24
Power transformations 25
Binning 25

Combining models 25
Bagging 26
Boosting 26
Stacking 27
Blending 27
Voting and averaging 27

Installing software and setting up 28
Troubleshooting and asking for help 29
Summary 29

Chapter 2: Exploring the 20 Newsgroups Dataset with Text Analysis
Algorithms 30

What is NLP? 31
Touring powerful NLP libraries in Python 33
The newsgroups data 37
Getting the data 38



[ ii ]

Thinking about features 40
Visualization 43
Data preprocessing 47
Clustering 49
Topic modeling 52
Summary 56

Chapter 3: Spam Email Detection with Naive Bayes 57

Getting started with classification 58
Types of classification 58
Applications of text classification 61
Exploring naive Bayes 62
Bayes' theorem by examples 62
The mechanics of naive Bayes 65
The naive Bayes implementations 68
Classifier performance evaluation 79
Model tuning and cross-validation 83
Summary 86

Chapter 4: News Topic Classification with Support Vector Machine 87

Recap and inverse document frequency 88
Support vector machine 89

The mechanics of SVM 90
Scenario 1 - identifying the separating hyperplane 90
Scenario 2 - determining the optimal hyperplane 91
Scenario 3 - handling outliers 95

The implementations of SVM 97
Scenario 4 - dealing with more than two classes 98

The kernels of SVM 103
Scenario 5 - solving linearly non-separable problems 103

Choosing between the linear and RBF kernel 107
News topic classification with support vector machine 109
More examples - fetal state classification on cardiotocography with
SVM 113
Summary 115

Chapter 5: Click-Through Prediction with Tree-Based Algorithms 116

Brief overview of advertising click-through prediction 117
Getting started with two types of data, numerical and categorical 118
Decision tree classifier 119

The construction of a decision tree 122
The metrics to measure a split 124



[ iii ]

The implementations of decision tree 130
Click-through prediction with decision tree 138
Random forest - feature bagging of decision tree 142
Summary 144

Chapter 6: Click-Through Prediction with Logistic Regression 145

One-hot encoding - converting categorical features to numerical 146
Logistic regression classifier 149

Getting started with the logistic function 149
The mechanics of logistic regression 151
Training a logistic regression model via gradient descent 155

Click-through prediction with logistic regression by gradient descent 161
Training a logistic regression model via stochastic gradient descent 163
Training a logistic regression model with regularization 166
Training on large-scale datasets with online learning 168
Handling multiclass classification 170

Feature selection via random forest 173
Summary 174

Chapter 7: Stock Price Prediction with Regression Algorithms 175

Brief overview of the stock market and stock price 176
What is regression? 177
Predicting stock price with regression algorithms 178

Feature engineering 180
Data acquisition and feature generation 184
Linear regression 188
Decision tree regression 194
Support vector regression 202
Regression performance evaluation 203
Stock price prediction with regression algorithms 205

Summary 209

Chapter 8: Best Practices 211

Machine learning workflow 211
Best practices in the data preparation stage 212

Best practice 1 - completely understand the project goal 213
Best practice 2 - collect all fields that are relevant 213
Best practice 3 - maintain consistency of field values 214
Best practice 4 - deal with missing data 214

Best practices in the training sets generation stage 218
Best practice 5 - determine categorical features with numerical values 218



[ iv ]

Best practice 6 - decide on whether or not to encode categorical
features 219
Best practice 7 - decide on whether or not to select features and if so,
how 219
Best practice 8 - decide on whether or not to reduce dimensionality and
if so how 221
Best practice 9 - decide on whether or not to scale features 221
Best practice 10 - perform feature engineering with domain expertise 222
Best practice 11 - perform feature engineering without domain expertise 223
Best practice 12 - document how each feature is generated 224

Best practices in the model training, evaluation, and selection stage 224
Best practice 13 - choose the right algorithm(s) to start with 225

Naive Bayes 225
Logistic regression 225
SVM 226
Random forest (or decision tree) 226
Neural networks 227

Best practice 14 - reduce overfitting 227
Best practice 15 - diagnose overfitting and underfitting 227

Best practices in the deployment and monitoring stage 229
Best practice 16 - save, load, and reuse models 230
Best practice 17 - monitor model performance 231
Best practice 18 - update models regularly 231

Summary 232

Index 233



Preface
Data science and machine learning are some of the top buzzwords in the technical world
today. A resurging interest in machine learning is due to the same factors that have made
data mining and Bayesian analysis more popular than ever. This book is your entry point to
machine learning.

What this book covers
Chapter 1, Getting Started with Python and Machine Learning, is the starting point for
someone who is looking forward to enter the field of ML with Python. You will get familiar
with the basics of Python and ML in this chapter and set up the software on your machine.

Chapter 2, Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms, explains
important concepts such as getting the data, its features, and pre-processing. It also covers
the dimension reduction technique, principal component analysis, and the k-nearest
neighbors algorithm.

Chapter 3, Spam Email Detection with Naive Bayes, covers classification, naive Bayes, and its
in-depth implementation, classification performance evaluation, model selection and
tuning, and cross-validation. Examples such as spam e-mail detection are demonstrated.

Chapter 4, News Topic Classification with Support Vector Machine, covers multiclass
classification, Support Vector Machine, and how it is applied in topic classification. Other
important concepts, such as kernel machine, overfitting, and regularization, are discussed
as well.

Chapter 5, Click-Through Prediction with Tree-Based Algorithms, explains decision trees and
random forests in depth over the course of solving an advertising click-through rate
problem.

Chapter 6, Click-Through Prediction with Logistic Regression, explains in depth the logistic
regression classifier. Also, concepts such as categorical variable encoding, L1 and L2
regularization, feature selection, online learning, and stochastic gradient descent are
detailed.



Preface

[ 2 ]

Chapter 7, Stock Price Prediction with Regression Algorithms, analyzes predicting stock market
prices using Yahoo/Google Finance data and maybe additional data. Also, it covers the
challenges in finance and brief explanations of related concepts.

Chapter 8, Best Practices, aims to foolproof your learning and get you ready for production.

After covering multiple projects in this book, the readers will have gathered a broad picture
of the ML ecosystem using Python.

What you need for this book
The following are required for you to utilize this book:

scikit-learn 0.18.0
Numpy 1.1
Matplotlib 1.5.1
NLTK 3.2.2
pandas 0.19.2
GraphViz
Quandl Python API

You can use a 64-bit architecture, 2GHz CPU, and 8GB RAM to perform all the steps in this
book. You will require at least 8GB of hard disk space.

Who this book is for
This book is for anyone interested in entering data science with machine learning. Basic
familiarity with Python is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
target_names key gives the newsgroups names."



Preface

[ 3 ]

Any command-line input or output is written as follows:

ls -1 enron1/ham/*.txt | wc -l
3672
ls -1 enron1/spam/*.txt | wc -l
1500

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Heterogeneity Activity
Recognition Data Set."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors


Preface

[ 4 ]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t   and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /P y t h o n - M a c h i n e - L e a r n i n g - B y - E x a m p l e . We also have other code bundles from
our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/


Preface

[ 5 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


1
Getting Started with Python and

Machine Learning
We kick off our Python and machine learning journey with the basic, yet important
concepts of machine learning. We will start with what machine learning is about, why we
need it, and its evolution over the last few decades. We will then discuss typical machine
learning tasks and explore several essential techniques of working with data and working
with models. It is a great starting point of the subject and we will learn it in a fun way. Trust
me. At the end, we will also set up the software and tools needed in this book.

We will get into details for the topics mentioned:

What is machine learning and why do we need it?
A very high level overview of machine learning
Generalizing with data
Overfitting and the bias variance trade off

Cross validation
Regularization

Dimensions and features
Preprocessing, exploration, and feature engineering

Missing Values
Label encoding
One hot encoding
Scaling
Polynomial features
Power transformations
Binning



Getting Started with Python and Machine Learning

[ 7 ]

Combining models
Bagging
Boosting
Stacking
Blending
Voting and averaging

Installing software and setting up
Troubleshooting and asking for help

What is machine learning and why do we
need it?
Machine learning is a term coined around 1960 composed of two words—machine
corresponding to a computer, robot, or other device, and learning an activity, or event
patterns, which humans are good at.

So why do we need machine learning, why do we want a machine to learn as a human?
There are many problems involving huge datasets, or complex calculations for instance,
where it makes sense to let computers do all the work. In general, of course, computers and
robots don't get tired, don't have to sleep, and may be cheaper. There is also an emerging
school of thought called active learning or human-in-the-loop, which advocates combining
the efforts of machine learners and humans. The idea is that there are routine boring tasks
more suitable for computers, and creative tasks more suitable for humans. According to this
philosophy, machines are able to learn, by following rules (or algorithms) designed by
humans and to do repetitive and logic tasks desired by a human.

Machine learning does not involve the traditional type of programming that uses business
rules. A popular myth says that the majority of the code in the world has to do with simple
rules possibly programmed in Cobol, which covers the bulk of all the possible scenarios of
client interactions. So why can't we just hire many software programmers and continue
programming new rules?



Getting Started with Python and Machine Learning

[ 8 ]

One reason is that defining, maintaining, and updating rules becomes more and more
expensive over time. The number of possible patterns for an activity or event could be
enormous and therefore exhausting all enumeration is not practically feasible. It gets even
more challenging to do so when it comes to events that are dynamic, ever-changing, or
evolve in real-time. It is much easier and more efficient to develop learning rules or
algorithms which command computers to learn and extract patterns, and to figure things
out themselves from abundant data.

Another reason is that the volume of data is exponentially growing. Nowadays, the floods
of textual, audio, image, and video data are hard to fathom. The Internet of Things (IoT) is
a recent development of a new kind of Internet, which interconnects everyday devices. The
Internet of Things will bring data from household appliances and autonomous cars to the
forefront. The average company these days has mostly human clients, but, for instance,
social media companies tend to have many bot accounts. This trend is likely to continue and
we will have more machines talking to each other. Besides the quantity, the quality of data
available has kept increasing over the past few years due to cheaper storage. These have
empowered the evolution of machine learning algorithms and data-driven solutions.

Jack Ma from Alibaba explained in a speech that Information Technology (IT) was the
focus over the past 20 years and now, for the next 30 years, we will be at the age of Data
Technology (DT). During the age of IT, companies have grown larger and stronger thanks
to computer software and infrastructure. Now that businesses in most industries have
already gathered enormous amounts of data, it is presently the right time for exploiting DT
to unlock insights, derive patterns, and to boost new business growth. Broadly speaking,
machine learning technologies enable businesses to better understand customer behavior
and engage with customers, also to optimize operations management. As for us individuals,
machine learning technologies are already making our life better every day.

An application of machine learning that we all are familiar with is spam email filtering.
Another is online advertising where ads are served automatically based on information
advertisers have collected about us. Stay tuned for the next chapters where we will learn
how to develop algorithms in solving these two problems. An application of machine
learning we basically can not live without is search engines. Search engines involve
information retrieval which parses what we look for and queries related records, and
contextual ranking and personalized ranking which sorts pages by topical relevance and to
the user's liking. E-commerce and media companies have been at the forefront of employing
recommendation systems, which help customers find products, services, articles faster. The
application of machine learning is boundless and we just keep hearing new examples
everyday, credit card fraud detection, disease diagnosis, presidential election prediction,
instant speech translation, robo-advisor, you name it!



Getting Started with Python and Machine Learning

[ 9 ]

In the 1983 War Games movie, a computer made life and death decisions, which could have
resulted in Word War III. As far as we know, technology wasn't able to pull off such feats at
the time. However, in 1997 the Deep Blue supercomputer did manage to beat a world chess
champion. In 2005, a Stanford self-driving car drove by itself for more than 130 kilometers
in a desert. In 2007, the car of another team drove through regular traffic for more than 50
kilometers. In 2011, the Watson computer won a quiz against human opponents. In 2016,
the AlphaGo program beat one of the best Go players in the world. If we assume that
computer hardware is the limiting factor, then we can try to extrapolate into the future. Ray
Kurzweil did just that and according to him, we can expect human level intelligence around
2029. What's next?

A very high level overview of machine
learning
Machine learning mimicking human intelligence is a subfield of artificial intelligence—a
field of computer science concerned with creating systems. Software engineering is another
field in computer science. Generally, we can label Python programming as a type of
software engineering. Machine learning is also closely related to linear algebra, probability
theory, statistics, and mathematical optimization. We usually build machine learning
models based on statistics, probability theory, and linear algebra, then optimize the models
using mathematical optimization. The majority of us reading this book should have at least
sufficient knowledge of Python programming. Those who are not feeling confident about
mathematical knowledge, might be wondering, how much time should be spent learning or
brushing up the knowledge of the aforementioned subjects. Don't panic. We will get
machine learning to work for us without going into any mathematical details in this book. It
just requires some basic, 101 knowledge of probability theory and linear algebra, which
helps us understand the mechanics of machine learning techniques and algorithms. And it
gets easier as we will be building models both from scratch and with popular packages in
Python, a language we like and are familiar with.

Those who want to study machine learning systematically can enroll into
computer science, artificial intelligence, and more recently, data science
master's programs. There are also various data science bootcamps.
However the selection for bootcamps is usually stricter as they are more
job oriented, and the program duration is often short ranging from 4 to 10
weeks. Another option is the free massive open online courses (MOOC),
for example, the popular one is Andrew Ng's Machine Learning. Last but
not least, industry blogs and websites are great resources for us to keep up
with the latest development.



Getting Started with Python and Machine Learning

[ 10 ]

Machine learning is not only a skill, but also a bit of sport. We can compete
in several machine learning competitions; sometimes for decent cash
prizes, sometimes for joy, most of the time for playing to strengths.
However, to win these competitions, we may need to utilize certain
techniques, which are only useful in the context of competitions and not in
the context of trying to solve a business problem. That's right, the "no free
lunch" theorem applies here.

A machine learning system is fed with input data—this can be numerical, textual, visual, or
audiovisual. The system usually has outputs—this can be a floating-point number, for
instance, the acceleration of a self-driving car, can be an integer representing a category
(also called a class), for example, a cat or tiger from image recognition.

The main task of machine learning is to explore and construct algorithms that can learn
from historical data and make predictions on new input data. For a data-driven solution, we
need to define (or have it defined for us by an algorithm) an evaluation function called loss
or cost function, which measures how well the models are learning. In this setup, we create
an optimization problem with the goal of learning in the most efficient and effective way.

Depending on the nature of the learning data, machine learning tasks can be broadly
classified into three categories as follows:

Unsupervised learning: when learning data contains only indicative signals
without any description attached, it is up to us to find structure of the data
underneath, to discover hidden information, or to determine how to describe the
data. This kind of learning data is called unlabeled data. Unsupervised learning
can be used to detect anomalies, such as fraud or defective equipment, or to
group customers with similar online behaviors for a marketing campaign.
Supervised learning: when learning data comes with description, targets or
desired outputs besides indicative signals, the learning goal becomes to find a
general rule that maps inputs to outputs. This kind of learning data is called
labeled data. The learned rule is then used to label new data with unknown
outputs. The labels are usually provided by event logging systems and human
experts. Besides, if it is feasible, they may also be produced by members of the
public through crowdsourcing for instance. Supervised learning is commonly
used in daily applications, such as face and speech recognition, products or
movie recommendations, and sales forecasting.
We can further subdivide supervised learning into regression and classification.
Regression trains on and predicts a continuous-valued response, for example
predicting house prices, while classification attempts to find the appropriate class
label, such as analyzing positive/negative sentiment and prediction loan defaults.



Getting Started with Python and Machine Learning

[ 11 ]

If not all learning samples are labeled, but some are, we will have semi-
supervised learning. It makes use of unlabeled data (typically a large amount)
for training, besides a small amount of labeled. Semi-supervised learning is
applied in cases where it is expensive to acquire a fully labeled dataset while
more practical to label a small subset. For example, it often requires skilled
experts to label hyperspectral remote sensing images, and lots of field
experiments to locate oil at a particular location, while acquiring unlabeled data
is relatively easy.
Reinforcement learning: learning data provides feedback so that the system
adapts to dynamic conditions in order to achieve a certain goal. The system
evaluates its performance based on the feedback responses and reacts
accordingly. The best known instances include self-driving cars and chess master
AlphaGo.

Feeling a little bit confused by the abstract concepts? Don't worry. We will encounter many
concrete examples of these types of machine learning tasks later in the book. In Chapter 3,
Spam Email Detection with Naive Bayes, to Chapter 6, Click-Through Prediction with Logistic
Regression, we will see some supervised learning tasks and several classification algorithms;
in Chapter 7, Stock Price Prediction with Regression Algorithms, we will continue with another
supervised learning task, regression, and assorted regression algorithms; while in Chapter
2, Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms, we will be given an
unsupervised task and explore various unsupervised techniques and algorithms.

A brief history of the development of
machine learning algorithms
In fact, we have a whole zoo of machine learning algorithms with popularity varying over
time. We can roughly categorize them into four main approaches: logic-based learning,
statistical learning, artificial neural networks, and genetic algorithms.

The logic-based systems were the first to be dominant. They used basic rules specified by
human experts, and with these rules, systems tried to reason using formal logic,
background knowledge, and hypotheses. In the mid-1980s, artificial neural networks
(ANN) came to the foreground, to be then pushed aside by statistical learning systems in
the 1990s. Artificial neural networks imitate animal brains, and consist of interconnected
neurons that are also an imitation of biological neurons. They try to model complex
relationships between inputs and outputs and to capture patterns in data. Genetic
algorithms (GA) were popular in the 1990s. They mimic the biological process of evolution
and try to find the optimal solutions using methods such as mutation and crossover.



Getting Started with Python and Machine Learning

[ 12 ]

We are currently (2017) seeing a revolution in deep learning, which we may consider to be
a rebranding of neural networks. The term deep learning was coined around 2006, and
refers to deep neural networks with many layers. The breakthrough in deep learning is
amongst others caused by the integration and utilization of graphical processing units
(GPU), which massively speed up computation. GPUs were originally developed to render
video games, and are very good in parallel matrix and vector algebra. It is believed that
deep learning resembles the way humans learn, therefore may be able to deliver on the
promise of sentient machines.

Some of us may have heard of Moore's law-an empirical observation claiming that
computer hardware improves exponentially with time. The law was first formulated by
Gordon Moore, the co-founder of Intel, in 1965. According to the law, the number of
transistors on a chip should double every two years. In the following graph, you can see
that the law holds up nicely (the size of the bubbles corresponds to the average transistor
count in GPUs):

The consensus seems to be that Moore's law should continue to be valid for a couple of
decades. This gives some credibility to Ray Kurzweil's predictions of achieving true
machine intelligence in 2029.



Getting Started with Python and Machine Learning

[ 13 ]

Generalizing with data
The good thing about data is that we have a lot of data in the world. The bad thing is that it
is hard to process this data. The challenges stem from the diversity and noisiness of the
data. We as humans, usually process data coming in our ears and eyes. These inputs are
transformed into electrical or chemical signals. On a very basic level, computers and robots
also work with electrical signals. These electrical signals are then translated into ones and
zeroes. However, we program in Python in this book, and on that level normally we
represent the data either as numbers, images, or text. Actually images and text are not very
convenient, so we need to transform images and text into numerical values.

Especially in the context of supervised learning we have a scenario similar to studying for
an exam. We have a set of practice questions and the actual exams. We should be able to
answer exam questions without knowing the answers for them. This is called
generalization—we learn something from our practice questions and hopefully are able to
apply this knowledge to other similar questions. In machine learning, these practice
questions are called training sets or training samples. They are where the models derive
patterns from. And the actual exams are testing sets or testing samples. They are where the
models are eventually applied and how compatible they are is what it's all about.
Sometimes between practice questions and actual exams, we have mock exams to assess
how well we will do in actual ones and to aid revision. These mock exams are called
validation sets or validation samples in machine learning. They help us verify how well
the models will perform in a simulated setting then we fine-tune the models accordingly in
order to achieve greater hits.

An old-fashioned programmer would talk to a business analyst or other expert, then
implement a rule that adds a certain value multiplied by another value corresponding, for
instance, to tax rules. In a machine learning setting we give the computer example input
values and example output values. Or if we are more ambitious, we can feed the program
the actual tax texts and let the machine process the data further just like an autonomous car
doesn't need a lot of human input.

This means implicitly that there is some function, for instance, a tax formula we are trying
to figure out. In physics we have almost the same situation. We want to know how the
universe works and formulate laws in a mathematical language. Since we don't know the
actual function, all we can do is measure what error is produced, and try to minimize it. In
supervised learning tasks we compare our results against the expected values. In
unsupervised learning we measure our success with related metrics. For instance, we want
clusters of data to be well defined, the metrics could be how similar the data points within
one cluster are and how different the data points from two clusters are. In reinforcement
learning, a program evaluates its moves, for example, in a chess game using some
predefined function.



Getting Started with Python and Machine Learning

[ 14 ]

Overfitting, underfitting and the bias-
variance tradeoff
Overfitting (one word) is such an important concept that I decided to start discussing it
very early in the book.

If we go through many practice questions for an exam, we may start to find ways to answer
questions which have nothing to do with the subject material. For instance, given only five
practice questions, we find that if there are two potato and one tomato in a question, the
answer is always A, if there are one potato and three tomato in a question, the answer is
always B, then we conclude this is always true and apply such theory later on even though
the subject or answer may not be relevant to potatoes or tomatoes. Or even worse, you may
memorize the answers for each question verbatim. We can then score high on the practice
questions; we do so with the hope that the questions in the actual exams will be the same as
practice questions. However, in reality, we will score very low on the exam questions as it is
rare that the exact same questions will occur in the actual exams.

The phenomenon of memorization can cause overfitting. We are over extracting too much
information from the training sets and making our model just work well with them, which
is called low bias in machine learning. However, at the same time, it will not help us
generalize with data and derive patterns from them. The model as a result will perform
poorly on datasets that were not seen before. We call this situation high variance in 
machine learning.

Overfitting occurs when we try to describe the learning rules based on a relatively small
number of observations, instead of the underlying relationship, such the preceding potato
and tomato example. Overfitting also takes place when we make the model excessively
complex so that it fits every training sample, such as memorizing the answers for all
questions as mentioned previously.

The opposite scenario is called underfitting. When a model is underfit, it does not perform
well on the training sets, and will not so on the testing sets, which means it fails to capture
the underlying trend of the data. Underfitting may occur if we are not using enough data  to
train the model, just like we will fail the exam if we did not review enough material; it may
also happen if we are trying to fit a wrong model to the data, just like we will score low in
any exercises or exams if we take the wrong approach and learn it the wrong way. We call
any of these situations high bias in machine learning, although its variance is low as
performance in training and test sets are pretty consistent, in a bad way.



Getting Started with Python and Machine Learning

[ 15 ]

We want to avoid both overfitting and underfitting. Recall bias is the error stemming from
incorrect assumptions in the learning algorithm; high bias results in underfitting, and
variance measures how sensitive the model prediction is to variations in the datasets.
Hence, we need to avoid cases where any of bias or variance is getting high. So, does it
mean we should always make both bias and variance as low as possible? The answer is yes,
if we can. But in practice, there is an explicit trade-off between themselves, where
decreasing one increases the other. This is the so-called bias–variance tradeoff. Does it
sound abstract? Let’s take a look at the following example.

We were asked to build a model to predict the probability of a candidate being the next
president based on the phone poll data. The poll was conducted by zip codes. We randomly
choose samples from one zip code, and from these, we estimate that there's a 61% chance
the candidate will win. However, it turns out he loses the election. Where did our model go
wrong? The first thing we think of is the small size of samples from only one zip code. It is
the source of high bias, also because people in a geographic area tend to share similar
demographics. However, it results in a low variance of estimates. So, can we fix it simply by
using samples from a large number zip codes? Yes, but don’t get happy so early. This might
cause an increased variance of estimates at the same time. We need to find the optimal
sample size, the best number of zip codes to achieve the lowest overall bias and variance.
Minimizing the total error of a model requires a careful balancing of bias and variance.
Given a set of training samples x_1, x_2, …, x_n and their targets y_1, y_2, …, y_n, we want
to find a regression function, ŷ(x), which estimates the true relation y(x) as correctly as
possible. We measure the error of estimation, how good (or bad) the regression model is by
mean squared error (MSE):

The E denotes the expectation. This error can be decomposed into bias and variance
components following the analytical derivation as follows (although it requires a bit of basic
probability theory to understand):



Getting Started with Python and Machine Learning

[ 16 ]

The bias term measures the error of estimations, and the variance term describes how much
the estimation ŷ moves around its mean. The more complex the learning model ŷ(x) and the
larger the size of training samples, the lower the bias will be. However, these will also
create more shift on the model in order to fit better the increased data points. As a result,
the variance will be lifted.
We usually employ the cross-validation technique to find the optimal model balancing bias
and variance and to diminish overfitting.

The last term is the irreducible error.

Avoid overfitting with cross-validation
Recall that between practice questions and actual exams, there are mock exams where we
can assess how well we will perform in the actual ones and conduct necessary revision. In
machine learning, the validation procedure helps evaluate how the models will generalize
to independent or unseen datasets in a simulated setting. In a conventional validation
setting, the original data is partitioned into three subsets, usually 60% for the training set,
20% for the validation set, and the rest 20% for the testing set. This setting suffices if we
have enough training samples after partition and we only need a rough estimate of
simulated performance. Otherwise, cross-validation is preferable.

In one round of cross-validation, the original data is divided into two subsets, for training
and testing (or validation) respectively. The testing performance is recorded. Similarly,
multiple rounds of cross-validation are performed under different partitions. Testing results
from all rounds are finally averaged to generate a more accurate estimate of model
prediction performance. Cross-validation helps reduce variability and therefore limit
problems like overfitting.

There are mainly two cross-validation schemes in use, exhaustive and non-exhaustive. In
the exhaustive scheme, we leave out a fixed number of observations in each round as
testing (or validation) samples, the remaining observations as training samples. This
process is repeated until all possible different subsets of samples are used for testing once.
For instance, we can apply leave-one-out-cross-validation (LOOCV) and let each datum be
in the testing set once. For a dataset of size n, LOOCV requires n rounds of cross-validation.
This can be slow when n gets large.



Getting Started with Python and Machine Learning

[ 17 ]

On the other hand, the non-exhaustive scheme, as the name implies, does not try out all
possible partitions. The most widely used type of this scheme is k-fold cross-validation.
The original data first randomly splits the data into k equal-sized folds. In each trail, one of
these folds becomes the testing set, and the rest of the data becomes the training set. We
repeat this process k times with each fold being the designated testing set once. Finally, we
average the k sets of test results for the purpose of evaluation. Common values for k are 3, 5,
and 10. The following table illustrates the setup for five folds:

Iteration Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 Testing Training Training Training Training

2 Training Testing Training Training Training

3 Training Training Testing Training Training

4 Training Training Training Testing Training

5 Training Training Training Training Testing

We can also randomly split the data into training and testing set numerous times. This is
formally called holdout method. The problem with this algorithm is that some samples may
never end up in the testing set, while some may be selected multiple times in the testing
set. Last but not least, nested cross-validation is a combination of cross-validations. It
consists of the following two phases:

The inner cross-validation, which is conducted to to find the best fit, and can be
implemented as a k-fold cross-validation
The outer cross-validation, which is used for performance evaluation and
statistical analysis

We will apply cross-validation very intensively from Chapter 3, Spam Email Detection with
Naive Bayes, to Chapter 7, Stock Price Prediction with Regression Algorithms. Before that, let’s
see cross-validation through an analogy as follows, which will help us understand it better.

A data scientist plans to take his car to work, and his goal is to arrive before 9 am every day.
He needs to decide the departure time and the route to take. He tries out different
combinations of these two parameters on some Mondays, Tuesdays, and Wednesdays and
records the arrival time for each trial. He then figures out the best schedule and applies it
every day. However, it doesn’t work quite well as expected. It turns out the scheduling
model is overfit with data points gathered in the first three days and may work well on
Thursdays and Fridays. A better solution would be to test the best combination of
parameters derived from Mondays to Wednesdays on Thursdays and Fridays and similarly
repeat this process based on different sets of learning days and testing days of the week.
This analogized cross-validation ensures the selected schedule work for the whole week.



Getting Started with Python and Machine Learning

[ 18 ]

In summary, cross-validation derives a more accurate assessment of model performance by
combining measures of prediction performance on different subsets of data. This technique
not only reduces variances and avoids overfitting but also gives an insight into how the
model will generally perform in practice.

Avoid overfitting with regularization
Another way of preventing overfitting is regularization. Recall that unnecessary complexity
of the model is a source of overfitting just like cross-validation is a general technique to
fight overfitting. Regularization adds extra parameters to the error function we are trying to
minimize in order to penalize complex models.
According to the principle of Occam’s Razor, simpler methods are to be favored. William
Occam was a monk and philosopher who, around 1320, came up with the idea that the
simplest hypothesis that fits data should be preferred. One justification is that we can invent
fewer simple models than complex models. For instance, intuitively, we know that there are
more high-polynomial models than linear ones. The reason is that a line (y=ax+b) is
governed by only two parameters--the intercept b and slope a. The possible coefficients for a
line span a two-dimensional space. A quadratic polynomial adds an extra coefficient to the
quadratic term, and we can span a three-dimensional space with the coefficients. Therefore,
it is much easier to find a model that perfectly captures all the training data points with a
high order polynomial function as its search space is much larger than that of a linear
model. However, these easily-obtained models generalize worse than linear models, which
are more prompt to overfitting. And of course, simpler models require less computation
time. The following figure displays how we try to fit a linear function and a high order
polynomial function respectively to the data:



Getting Started with Python and Machine Learning

[ 19 ]

The linear model is preferable as it may generalize better to more data points drawn from
the underlying distribution. We can use regularization to reduce the influence of the high
orders of polynomial by imposing penalties on them. This will discourage complexity, even
though a less accurate and less strict rule is learned from the training data.

We will employ regularization quite often staring from Chapter 6, Click-Through Prediction
with Logistic Regression. For now, let’s see the following analogy, which will help us
understand it better:

A data scientist wants to equip his robotic guard dog the ability to identify strangers and his
friends. He feeds it with the the following learning samples:

Male Young Tall With glasses In grey Friend

Female Middle Average Without glasses In black Stranger

Male Young Short With glasses In white Friend

Male Senior Short Without glasses In black Stranger

Female Young Average With glasses In white Friend

Male Young Short Without glasses In red Friend

The robot may quickly learn the following rules: any middle-aged female of average height
without glasses and dressed in black is a stranger; any senior short male without glasses
and dressed in black is a stranger; anyone else is his friend. Although these perfectly fit the
training data, they seem too complicated and unlikely to generalize well to new visitors. In
contrast, the data scientist limits the learning aspects. A loose rule that can work well for
hundreds of other visitors could be: anyone without glasses dressed in black is a stranger.

Besides penalizing complexity, we can also stop a training procedure early as a form of
regularization. If we limit the time a model spends in learning or set some internal stopping
criteria, it is more likely to produce a simpler model. The model complexity will be
controlled in this way, and hence, overfitting becomes less probable. This approach is called
early stopping in machine learning.

Last but not least, it is worth noting that regularization should be kept on a moderate level,
or to be more precise, fine-tuned to an optimal level. Regularization, when too small, does
has make any impact; regularization, when too large, will result in underfitting as it moves
the model away from the ground truth. We will explore how to achieve the optimal
regularization mainly in Chapter 6, Click-Through Prediction with Logistic Regression and
Chapter 7, Stock Price Prediction with Regression Algorithms.

https://cdp.packtpub.com/python_machine_learning_by_example/wp-admin/post.php?post=862&action=edit#post_299


Getting Started with Python and Machine Learning

[ 20 ]

Avoid overfitting with feature selection and
dimensionality reduction
We typically represent the data as a grid of numbers (a matrix). Each column represents a
variable, which we call a feature in machine learning. In supervised learning, one of the
variables is actually not a feature but the label that we are trying to predict. And in
supervised learning, each row is an example that we can use for training or testing. The
number of features corresponds to the dimensionality of the data. Our machine learning
approach depends on the number of dimensions versus the number of examples. For
instance, text and image data are very high dimensional, while stock market data has
relatively fewer dimensions. Fitting high dimensional data is computationally expensive
and is also prone to overfitting due to high complexity. Higher dimensions are also
impossible to visualize, and therefore, we can't use simple diagnostic methods.

Not all the features are useful, and they may only add randomness to our results. It is,
therefore, often important to do good feature selection. Feature selection is the process of
picking a subset of significant features for use in better model construction. In practice, not
every feature in a dataset carries information useful for discriminating samples; some
features are either redundant or irrelevant and hence can be discarded with little loss.

In principle, feature selection boils down to multiple binary decisions: whether to include a
feature or not. For n features, we get 2n feature sets, which can be a very large number for a
large number of features. For example, for 10 features, we have 1,024 possible feature sets
(for instance, if we are deciding what clothes to wear, the features can be temperature, rain,
the weather forecast, where we are going, and so on). At a certain point, brute force
evaluation becomes infeasible. We will discuss better methods in Chapter 6, Click-Through
Prediction with Logistic Regression, in this book. Basically, we have two options: we either
start with all the features and remove features iteratively or we start with a minimum set of
features and add features iteratively. We then take the best feature sets for each iteration
and then compare them.

Another common approach of reducing dimensionality reduction approach is to transform
high-dimensional data in lower-dimensional space. This transformation leads to
information loss, but we can keep the loss to a minimum. We will cover this in more detail
later on.

https://cdp.packtpub.com/python_machine_learning_by_example/wp-admin/post.php?post=862&action=edit#post_299


Getting Started with Python and Machine Learning

[ 21 ]

Preprocessing, exploration, and feature
engineering
Data mining, a buzzword in the 1990 is the predecessor of data science (the science of data).
One of the methodologies popular in the data mining community is called cross industry
standard process for data mining (CRISP DM). CRISP DM was created in 1996, and is still
used today. I am not endorsing CRISP DM, however I like its general framework. The
CRISP DM consists of the following phases, which are not mutually exclusive and can occur
in parallel:

Business understanding: This phase is often taken care of by specialized domain
experts. Usually we have a business person formulate a business problem, such
as selling more units of a certain product.
Data understanding: This is also a phase, which may require input from domain
experts, however, often a technical specialist needs to get involved more than in
the business understanding phase. The domain expert may be proficient with
spreadsheet programs, but have trouble with complicated data. In this book, I 
usually call this phase exploration.
Data preparation: This is also a phase where a domain expert with only Excel
know-how may not be able to help you. This is the phase where we create our
training and test datasets. In this book I usually call this phase preprocessing.
Modeling: This is the phase, which most people associate with machine learning.
In this phase we formulate a model, and fit our data.
Evaluation: In this phase, we evaluate our model, and our data to check whether
we were able to solve our business problem.
Deployment: This phase usually involves setting up the system in a production
environment (it is considered good practice to have a separate production
system). Typically this is done by a specialized team.

When we learn, we require high quality learning material. We can't learn from gibberish, so
we automatically ignore anything that doesn't make sense. A machine learning system isn't
able to recognize gibberish, so we need to help it by cleaning the input data. It is often
claimed that cleaning the data forms a large part of machine learning. Sometimes cleaning is
already done for us, but you shouldn't count on it. To decide how to clean the data, we need
to be familiar with the data. There are some projects, which try to automatically explore the
data, and do something intelligent, like producing a report. For now, unfortunately, we
don't have a solid solution, so you need to do some manual work.



Getting Started with Python and Machine Learning

[ 22 ]

We can do two things, which are not mutually exclusive: first scan the data and second
visualize the data. This also depends on the type of data we are dealing with; whether we
have a grid of numbers, images, audio, text, or something else. At the end, a grid of
numbers is the most convenient form, and we will always work towards having numerical
features. I will pretend that we have a table of numbers in the rest of this section.

We want to know if features miss values, how the values are distributed, and what type of
features we have. Values can approximately follow a normal distribution, a binomial
distribution, a Poisson distribution, or another distribution altogether. Features can be
binary: either yes or no, positive or negative, and so on. They can also be categorical:
pertaining to a category, for instance continents (Africa, Asia, Europe, Latin America, North
America, and so on). Categorical variables can also be ordered—for instance high, medium,
and low. Features can also be quantitative, for example temperature in degrees or price in
dollars.

Feature engineering is the process of creating or improving features. It's more of a dark art
than a science. Features are often created based on common sense, domain knowledge, or
prior experience. There are certain common techniques for feature creation, however there
is no guarantee that creating new features will improve your results. We are sometimes able
to use the clusters found by unsupervised learning as extra features. Deep neural networks
are often able to create features automatically.

Missing values
Quite often we miss values for certain features. This could happen for various reasons. It
can be inconvenient, expensive, or even impossible to always have a value. Maybe we were
not able to measure a certain quantity in the past, because we didn't have the right
equipment, or we just didn't know that the feature was relevant. However, we are stuck
with missing values from the past. Sometimes it's easy to figure out that we miss values and
we can discover this just by scanning the data, or counting the number of values we have
for a feature and comparing to the number of values we expect based on the number of
rows. Certain systems encode missing values with, for example, values such as 999999. This
makes sense if the valid values are much smaller than 999999. If you are lucky, you will
have information about the features provided by whoever created the data in the form of a
data dictionary or metadata.

Once we know that we miss values the question arises of how to deal with them. The
simplest answer is to just ignore them. However, some algorithms can't deal with missing
values, and the program will just refuse to continue. In other circumstances, ignoring
missing values will lead to inaccurate results. The second solution is to substitute missing 
values by a fixed value—this is called imputing.



Getting Started with Python and Machine Learning

[ 23 ]

We can impute the arithmetic mean, median or mode of the valid values of a certain feature.
Ideally, we will have a relation between features or within a variable that is somewhat
reliable. For instance, we may know the seasonal averages of temperature for a certain
location and be able to impute guesses for missing temperature values given a date.

Label encoding
Humans are able to deal with various types of values. Machine learning algorithms with
some exceptions need numerical values. If we offer a string such as Ivan, unless we are
using specialized software the program will not know what to do. In this example, we are
dealing with a categorical feature, names probably. We can consider each unique value to
be a label. (In this particular example, we also need to decide what to do with the case-is
Ivan the same as ivan). We can then replace each label by an integer-label encoding. This
approach can be problematic, because the learner may conclude that there is an ordering.

One-hot-encoding
The one-of-K or one-hot-encoding scheme uses dummy variables to encode categorical
features. Originally it was applied to digital circuits. The dummy variables have binary
values like bits, so they take the values zero or one (equivalent to true or false). For instance,
if we want to encode continents, we will have dummy variables, such as is_asia, which
will be true if the continent is Asia and false otherwise. In general, we need as many
dummy variables, as there are unique labels minus one. We can determine one of the labels
automatically from the dummy variables, because the dummy variables are exclusive. If the
dummy variables all have a false value, then the correct label is the label for which we don't
have a dummy variable. The following table illustrates the encoding for continents:

Is_africa Is_asia Is_europe Is_south_america Is_north_america

Africa True False False False False

Asia False True False False False

Europe False False True False False

South America False False False True False

North America False False False False True

Other False False False False False



Getting Started with Python and Machine Learning

[ 24 ]

The encoding produces a matrix (grid of numbers) with lots of zeroes (false values) and
occasional ones (true values). This type of matrix is called a sparse matrix. The sparse
matrix representation is handled well by the SciPy package, and shouldn't be an issue. We
will discuss the SciPy package later in this chapter.

Scaling
Values of different features can differ by orders of magnitude. Sometimes this may mean
that the larger values dominate the smaller values. This depends on the algorithm we are
using. For certain algorithms to work properly we are required to scale the data. There are
several common strategies that we can apply:

Standardization removes the mean of a feature and divides by the standard
deviation. If the feature values are normally distributed, we will get a Gaussian,
which is centered around zero with a variance of one.
If the feature values are not normally distributed, we can remove the median and
divide by the interquartile range. The interquartile range is a range between the
first and third quartile (or 25th and 75th percentile).
Scaling features to a range is a common choice of range which is a range between
zero and one.

Polynomial features
If we have two features a and b, we can suspect that there is a polynomial relation, such as
a2 + ab + b2. We can consider each term in the sum to be a feature, in this example we have
three features. The product ab in the middle is called an interaction. An interaction doesn't
have to be a product, although this is the most common choice, it can also be a sum, a
difference or a ratio. If we are using a ratio to avoid dividing by zero, we should add a small
constant to the divisor and dividend. The number of features and the order of the 
polynomial for a polynomial relation are not limited. However, if we follow Occam's razor
we should avoid higher order polynomials and interactions of many features. In practice,
complex polynomial relations tend to be more difficult to compute and not add much value,
but if you really need better results they may be worth considering.



Getting Started with Python and Machine Learning

[ 25 ]

Power transformations
Power transforms are functions that we can use to transform numerical features into a more
convenient form, for instance to conform better to a normal distribution. A very common
transform for values, which vary by orders of magnitude, is to take the logarithm. Taking
the logarithm of a zero and negative values is not defined, so we may need to add a
constant to all the values of the related feature before taking the logarithm. We can also take
the square root for positive values, square the values, or compute any other power we like.

Another useful transform is the Box-Cox transform named after its creators. The Box-Cox
transform attempts to find the best power need to transform the original data into data that
is closer to the normal distribution. The transform is defined as follows:

Binning
Sometimes it's useful to separate feature values into several bins. For example, we may be
only interested whether it rained on a particular day. Given the precipitation values, we can
binarize the values, so that we get a true value if the precipitation value is not zero, and a
false value otherwise. We can also use statistics to divide values into high, low, and
medium bins.

The binning process inevitably leads to loss of information. However, depending on your
goals this may not be an issue, and actually reduce the chance of overfitting. Certainly there
will be improvements in speed and memory or storage requirements.

Combining models
In (high) school we sit together with other students, and learn together, but we are not
supposed to work together during the exam. The reason is, of course, that teachers want to
know what we have learned, and if we just copy exam answers from friends, we may have
not learned anything. Later in life we discover that teamwork is important. For example,
this book is the product of a whole team, or possibly a group of teams.



Getting Started with Python and Machine Learning

[ 26 ]

Clearly a team can produce better results than a single person. However, this goes against
Occam's razor, since a single person can come up with simpler theories compared to what a
team will produce. In machine learning we nevertheless prefer to have our models
cooperate with the following schemes:

Bagging
Boosting
Stacking
Blending
Voting and averaging

Bagging
Bootstrap aggregating or bagging is an algorithm introduced by Leo Breiman in 1994,
which applies Bootstrapping to machine learning problems. Bootstrapping is a statistical
procedure, which creates datasets from existing data by sampling with replacement.
Bootstrapping can be used to analyze the possible values that arithmetic mean, variance, or
another quantity can assume.

The algorithm aims to reduce the chance of overfitting with the following steps:

We generate new training sets from input train data by sampling with1.
replacement.
Fit models to each generated training set.2.
Combine the results of the models by averaging or majority voting.3.

Boosting
In the context of supervised learning we define weak learners as learners that are just a little
better than a baseline such as randomly assigning classes or average values. Although weak
learners are weak individually like ants, together they can do amazing things just like ants
can. It makes sense to take into account the strength of each individual learner using
weights. This general idea is called boosting. There are many boosting algorithms; boosting
algorithms differ mostly in their weighting scheme. If you have studied for an exam, you
may have applied a similar technique by identifying the type of practice questions you had
trouble with and focusing on the hard problems.



Getting Started with Python and Machine Learning

[ 27 ]

Face detection in images is based on a specialized framework, which also uses boosting.
Detecting faces in images or videos is a supervised learning. We give the learner examples
of regions containing faces. There is an imbalance, since we usually have far more regions
(about ten thousand times more) that don't have faces. A cascade of classifiers progressively
filters out negative image areas stage by stage. In each progressive stage, the classifiers use
progressively more features on fewer image windows. The idea is to spend the most time
on image patches, which contain faces. In this context, boosting is used to select features
and combine results.

Stacking
Stacking takes the outputs of machine learning estimators and then uses those as inputs for
another algorithm. You can, of course, feed the output of the higher-level algorithm to
another predictor. It is possible to use any arbitrary topology, but for practical reasons you
should try a simple setup first as also dictated by Occam's razor.

Blending
Blending was introduced by the winners of the one million dollar Netflix prize. Netflix
organized a contest with the challenge of finding the best model to recommend movies to
their users. Netflix users can rate a movie with a rating of one to five stars. Obviously each
user wasn't able to rate each movie, so the user movie matrix is sparse. Netflix published an
anonymized training and test set. Later researchers found a way to correlate the Netflix
data to IMDB data. For privacy reasons, the Netflix data is no longer available. The
competition was won in 2008 by a group of teams combining their models. Blending is a
form of stacking. The final estimator in blending, however, trains only on a small portion of
the train data.

Voting and averaging
We can arrive at our final answer through majority voting or averaging. It's also possible to
assign different weights to each model in the ensemble. For averaging, we can also use the
geometric mean or the harmonic mean instead of the arithmetic mean. Usually combining
the results of models, which are highly correlated to each other doesn't lead to spectacular
improvements. It's better to somehow diversify the models, by using different features or
different algorithms. If we find that two models are strongly correlated, we may, for
example, decide to remove one of them from the ensemble, and increase the weight of the
other model proportionally.



Getting Started with Python and Machine Learning

[ 28 ]

Installing software and setting up
For most projects in this book we need scikit-learn (refer to,
http://scikit-learn.org/stable/install.html) and matplotlib (refer to,
http://matplotlib.org/users/installing.html). Both packages require NumPy, but we
also need SciPy for sparse matrices as mentioned before. The scikit-learn library is a
machine learning package, which is optimized for performance as a lot of the code runs
almost as fast as equivalent C code. The same statement is true for NumPy and SciPy. There
are various ways to speed up the code, however they are out of scope for this book, so if
you want to know more, please consult the documentation.

matplotlib is a plotting and visualization package. We can also use the seaborn package for
visualization. Seaborn uses matplotlib under the hood. There are several other Python
visualization packages that cover different usage scenarios. matplotlib and seaborn are
mostly useful for the visualization for small to medium datasets. The NumPy package
offers the ndarray class and various useful array functions. The ndarray class is an array,
that can be one or multi-dimensional. This class also has several subclasses representing
matrices, masked arrays, and heterogeneous record arrays. In machine learning we mainly
use NumPy arrays to store feature vectors or matrices composed of feature vectors. SciPy
uses NumPy arrays and offers a variety of scientific and mathematical functions. We also
require the pandas library for data wrangling.

In this book, we will use Python 3. As you may know, Python 2 will no longer be supported
after 2020, so I strongly recommend switching to Python 3. If you are stuck with Python 2
you should still be able to modify the example code to work for you. In my opinion, the
Anaconda Python 3 distribution is the best option. Anaconda is a free Python distribution
for data analysis and scientific computing. It has its own package manager, conda. The
distribution includes more than 200 Python packages, which makes it very convenient. For
casual users, the Miniconda distribution may be the better choice. Miniconda contains the
conda package manager and Python.

The procedures to install Anaconda and Miniconda are similar. Obviously, Anaconda takes
more disk space. Follow the instructions from the Anaconda website at
http://conda.pydata.org/docs/install/quick.html. First, you have to download the
appropriate installer for your operating system and Python version. Sometimes you can
choose between a GUI and a command line installer. I used the Python 3 installer, although
my system Python version is 2.7. This is possible since Anaconda comes with its own
Python. On my machine the Anaconda installer created an anaconda directory in my home
directory and required about 900 MB. The Miniconda installer installs a miniconda
directory in your home directory. Installation instructions for NumPy are at
http://docs.scipy.org/doc/numpy/user/install.html.

http://scikit-learn.org/stable/install.html
http://matplotlib.org/users/installing.html
http://conda.pydata.org/docs/install/quick.html
http://docs.scipy.org/doc/numpy/user/install.html


Getting Started with Python and Machine Learning

[ 29 ]

Alternatively install NumPy with pip as follows:

$ [sudo] pip install numpy

The command for Anaconda users is:

$ conda install numpy

To install the other dependencies, substitute NumPy by the appropriate package. Please
read the documentation carefully, not all options work equally well for each operating
system. The pandas installation documentation is at
http://pandas.pydata.org/pandas-docs/dev/install.html.

Troubleshooting and asking for help
Currently the best forum is at http://stackoverflow.com. You can also reach out on
mailing lists or IRC chat. The following is a list of mailing lists:

Scikit-learn:
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general.
NumPy and SciPy mailing list:
https://www.scipy.org/scipylib/mailing-lists.html.

IRC channels:

#scikit-learn @ freenode
#scipy @ freenode

Summary
We just finished our first mile in the Python and machine learning journey! Through this
chapter, we got familiar with the basics of machine learning. We started with what machine
learning is all about, the importance of machine learning (data technology era) and its brief
history and recent development as well. We also learned typical machine learning tasks and
explored several essential techniques of working with data and working with models. Now
that we are equipped with basic machine learning knowledge, and also get software and
tools set up, let's get ready for the real-world machine learning examples ahead.

http://pandas.pydata.org/pandas-docs/dev/install.html
http://stackoverflow.com
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
https://www.scipy.org/scipylib/mailing-lists.html


2
Exploring the 20 Newsgroups

Dataset with Text Analysis
Algorithms

We went through a bunch of fundamental machine learning concepts in the last chapter. We
learned them along with analogies the fun way, such as studying for the exams, designing
driving schedule, and so on. As promised, starting from this chapter as the second step of
our learning journal, we will be discovering in detail several import machine learning
algorithms and techniques. Beyond analogies, we will be exposed to and will solve real-
world examples, which makes our journal more interesting. We start with a classic natural
language processing problem--newsgroups topic modeling in this chapter. We will gain
hands-on experience in working with text data, especially how to convert words and
phrases into machine-readable values. We will be tackling the project in an unsupervised
learning manner, using clustering algorithms, including k-means clustering and non-
negative matrix factorization.

We will get into details of the following topics:

What is NLP and what are its applications?
Touring Python NLP libraries
Natural Language Toolkit and common NLP tasks
The newsgroups data
Getting the data
Thinking about features
Visualizing the data



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 31 ]

Data preprocessing: tokenization, stemming, and lemmatization
Clustering and unsupervised learning
k-means clustering
Non-negative matrix factorization
Topic modeling

What is NLP?
The 20 newsgroup dataset is composed of text, taken from news articles as its name implies.
It was originally collected by Ken Lang, and is now widely used for experiments in text
applications of machine learning techniques, specifically natural language processing
techniques.

Natural language processing (NLP) is a significant subfield of machine learning, which
deals with the interactions between machine (computer) and human (natural) languages.
Natural languages are not limited to speech and conversation. They can be in writing and
sign languages as well. The data for NLP tasks can be in different forms, for example, text
from social media posts, web pages, even medical prescription, audio from voice mail,
commands to control systems, even a favorite music or movie. Nowadays, NLP has been
broadly involved in our daily lives: we can not live without machine translation; weather
forecast scripts are automatically generated; we find voice search convenient; we get the
answer to a question (such as what is the population of Canada?) quickly thanks to the
intelligent question answering system; speech-to-text technology helps students with
special needs.

If machines are able to understand language like humans do, we can consider them
intelligent. In 1950, the famous mathematician Alan Turing proposed in an
article Computing Machinery and Intelligence a test as a criterion of machine intelligence. It is
now called the Turing test, whose goal is to examine whether a computer is able to
adequately understand languages so as to fool humans into thinking that this machine is
another human. It probably is no surprise to us that no computer has passed the Turing test
yet. But the 1950s are when the history of NLP started. 

Understanding a language might be difficult, but would it be easier to automatically
translate texts from one language to another? In my first ever programming course, the lab
booklet had the algorithm for coarse machine translation. We can imagine that this type of
translation involved consulting dictionaries and generating new text. A more practically
feasible approach would be to gather texts that are already translated by humans and train
a computer program on these texts. In 1954, scientists claimed in the Georgetown–IBM
experiment that machine translation would be solved within three to five years.



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 32 ]

Unfortunately, a machine translation system that can beat human translators doesn’t exist
yet. But machine translation has been greatly evolving since the introduction of deep
learning.

Conversational agents or chatbots are another hot topic in NLP. The fact that computers are
able to have a conversation with us has reshaped the way businesses are run. In 2016,
Microsoft's AI chatbot Tay was unleased to mimic a teenage girl and converse with users on
Twitter in real time. She learned how to speak from all things users posted and commented
on Twitter. However, she was overwhelmed by tweets from trolls and automatically
learned their bad behaviors and started to output inappropriate things on her feeds. She
ended up being terminated within 24 hours.

There are also several tasks attempting to organize knowledge and concepts in such a way
that they become easier for computer programs to manipulate. The way we organize and
represent concepts is called ontology. An ontology defines concepts and the relations
between concepts. For instance, we can have a so-called triple representing the relation
between two concepts, such as Python is a language.

An important use case for NLP at a much lower level compared to the previous cases is part
of speech tagging. A part of speech (POS) is a grammatical word category such as a noun
or verb. Part of speech tagging tries to determine the appropriate tag for each word in a
sentence or a larger document. The following table gives examples of English POS:

Part of speech Examples

Noun David, machine

Pronoun Them, her

Adjective Awesome, amazing

Verb Read, write

Adverb Very, quite

Preposition Out, at

Conjunction And, but

Interjection Unfortunately, luckily

Article A, the



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 33 ]

Touring powerful NLP libraries in Python
After a short list of real-world applications of NLP, we will be touring the essential stack of
Python NLP libraries in this chapter. These packages handle a wide range of NLP tasks as
mentioned above as well as others such as sentiment analysis, text classification, named
entity recognition, and many more.

The most famous NLP libraries in Python include Natural Language Toolkit (NLTK),
Gensim and TextBlob. The scikit-learn library also has NLP related features. NLTK (h t t p

://w w w . n l t k . o r g /) was originally developed for education purposes and is now being
widely used in industries as well. There is a saying that you can't talk about NLP without
mentioning NLTK. It is the most famous and leading platform for building Python-based
NLP applications. We can install it simply by running the sudo pip install -U nltk
command in Terminal.

NLTK comes with over 50 collections of large and well-structured text datasets, which are
called corpora in NLP. Corpora can be used as dictionaries for word occurrences checking
and as training pools for model learning and validating. Some useful and interesting
corpora include Web text corpus, Twitter samples, Shakespeare corpus sample, Sentiment
Polarity, Names corpus (it contains lists of popular names, which we will be exploring very
shortly), Wordnet, and the Reuters benchmark corpus. The full list can be found at h t t p

://w w w . n l t k . o r g /n l t k _ d a t a . Before using any of these corpus resources, we first need to
download it by running the following scripts in Python interpreter:

>>> import nltk
>>> nltk.download()

A new window will pop up and ask us which package or specific corpus to download:

http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data


Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 34 ]

Installing the whole package, which is popular, is strongly recommended since it contains
all important corpora needed for our current study and future research. Once the package is
installed, we can now take a look at its Names corpus:
First, import the corpus:

>>> from nltk.corpus import names

The first ten names in the list can be displayed with the following:

>>> print names.words()[:10]
[u'Abagael', u'Abagail', u'Abbe', u'Abbey', u'Abbi', u'Abbie',
u'Abby', u'Abigael', u'Abigail', u'Abigale']

There are in total 7,944 names:

>>> print len(names.words())
7944

Other corpora are also fun to explore.



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 35 ]

Besides the easy-to-use and abundant corpora pool, more importantly, NLTK is responsible
for conquering many NLP and text analysis tasks, including the following:

Tokenization: Given a text sequence, tokenization is the task of breaking it into
fragments separated with whitespaces. Meanwhile, certain characters are usually
removed, such as punctuations, digits, emoticons. These fragments are the so-
called tokens used for further processing. Moreover, tokens composed of one
word are also called unigrams in computational linguistics; bigrams are
composed of two consecutive words, trigrams of three consecutive words, and n-
grams of n consecutive words. Here is an example of tokenization:

POS tagging: We can apply an off-the-shelf tagger or combine multiple NLTK
taggers to customize the tagging process. It is easy to directly use the built-in
tagging function pos_tag, as in pos_tag(input_tokens) for instance. But
behind the scene, it is actually a prediction from a prebuilt supervised learning
model. The model is trained based on a large corpus composed of words that are
correctly tagged.
Named entities recognition: Given a text sequence, the task of named entities
recognition is to locate and identify words or phrases that are of definitive
categories, such as names of persons, companies, and locations. We will briefly
mention it again in the next chapter.
Stemming and lemmatization: Stemming is a process of reverting an inflected or
derived word to its root form. For instance, machine is the stem of machines,
learning and learned are generated from learn. Lemmatization is a cautious
version of stemming. It considers the POS of the word when conducting
stemming. We will discuss these two text preprocessing techniques in further
detail shortly. For now, let’s quickly take a look at how they are implemented
respectively in NLTK:



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 36 ]

First, import one of the three built-in stemmer algorithms (LancasterStemmer and
SnowballStemmer are the rest two), and initialize a stemmer:

>>> from nltk.stem.porter import PorterStemmer
>>> porter_stemmer = PorterStemmer()

Stem machines, learning:

>>> porter_stemmer.stem('machines')
u'machin'
>>> porter_stemmer.stem('learning')
u'learn'

Note that stemming sometimes involves chopping off letters, if necessary, as we can see in
machin.

Now import a lemmatization algorithm based on Wordnet corpus built-in, and initialize an
lemmatizer:

>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer()

Similarly, lemmatize machines, learning:

>>> lemmatizer.lemmatize('machines')
u'machine'
>>> lemmatizer.lemmatize('learning')
'learning'

Why learning is unchanged? It turns out that this algorithm only lemmatizes on nouns by
default.

Gensim (h t t p s ://r a d i m r e h u r e k . c o m /g e n s i m /), developed by Radim Rehurek, has gained
popularity in recent years. It was initially designed in 2008 to generate a list of similar
articles, given an article, hence the name of this library (generate similar to Gensim). It was
later drastically improved by Radim Rehurek in terms of its efficiency and scalability.
Again, we can easily install it via pip by running the command pip install --upgrade
genism in terminal. Just make sure the dependencies NumPy and SciPy are already
installed.

Gensim is famous for its powerful semantic and topic modeling algorithms. Topic modeling
is a typical text-mining task of discovering the hidden semantic structures in a document.
Semantic structure in plain English is the distribution of word occurrences. It is obviously
an unsupervised learning task. What we need to do is feed in plain text and let the model
figure out the abstract topics.

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/


Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 37 ]

In addition to the robust semantic modelling methods, Gensim also provides the following
functionalities:

Similarity querying, which retrieves objects that are similar to the given query
object
Word vectorization, which is an innovative way to represent words while
preserving word co-occurrence features
Distributed computing, which makes it feasible to efficiently learn from millions
of documents

TextBlob (h t t p s ://t e x t b l o b . r e a d t h e d o c s . i o /e n /d e v /) is a relatively new library built on
top of NLTK. It simplifies NLP and text analysis with easy-to-use built-in functions and
methods and also wrappers around common tasks. We can install TextBlob by running
the pip install -U textblob command in terminal.

Additionally, TextBlob has some useful features, which are not available in NLTK currently,
such as spell checking and correction, language detection and translation.

Last but not least, as mentioned in the first chapter, scikit-learn is the main package we use
throughout the entire book. Luckily, it provides all text processing features we need, such
as tokenization, besides the comprehensive machine learning functionalities. Plus, it comes
with a built-in loader for the 20 newsgroups dataset.

Now that the tools are available and properly installed, what about the data?

The newsgroups data
The first project in this book is about the 20 newsgroups dataset found in scikit-learn. The
data contains approximately 20,000 across 20 online newsgroups. A newsgroup is a place
on the Internet where you can ask and answer questions about a certain topic. The data is
already split into training and test sets. The cutoff point is at a certain date. The original
data comes from h t t p ://q w o n e . c o m /~j a s o n /20N e w s g r o u p s /. 20 different newsgroups are
listed as follows:

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

rec.autos

https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/


Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 38 ]

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

sci.crypt

sci.electronics

sci.med

sci.space

misc.forsale

talk.politics.misc

talk.politics.guns

talk.politics.mideast

talk.religion.misc

alt.atheism

soc.religion.christian

All the documents in the dataset are in English. And from the newsgroup names, you can
deduce the topics.

Some of the newsgroups are closely related or even overlapping, for instance, those five
computer groups (comp.graphics, comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, and comp.windows.x), while
some are strongly irrelevant, such as Christian (soc.religion.christian) and baseball
(rec.sport.baseball). The dataset is labeled, and each document is composed of text
data and a group label. This makes it also a perfect fit for supervised learning, such as text
classification; we will explore it in detail in Chapter 4, News Topic Classification with Support
Vector Machine. But for now, let’s focus on unsupervised learning and get it started with
acquiring the data.

Getting the data
It is possible to download the data manually from the original website or many online
repositories. However, there are also many versions of the dataset--some are cleaned in a
certain way and some in the raw form. To avoid confusion, it is best to use a consistent
acquisition method. The scikit-learn library provides a utility function of loading the
dataset.



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 39 ]

Once the dataset is downloaded, it is automatically cached. We won’t need to download the
same dataset twice. In most cases, caching the dataset, especially for a relatively small one,
is considered a good practice. Other Python libraries also support download utilities, but
not all of them implement automatic caching. This is another reason why we love scikit-
learn.

To load the data, we can import the loader function for the 20 newsgroups data as follows:

>>> from sklearn.datasets import fetch_20newsgroups

Then we can download the dataset with the default parameters:

>>> groups = fetch_20newsgroups()
Downloading dataset from
  http://people.csail.mit.edu/jrennie/20Newsgroups/20news
    bydate.tar.gz (14 MB)

We can also specify one or more certain topic groups and particular sections (training,
testing, or both) and just load such subset of data in the program. The full list of parameters
and options for the loader function are summarized in the following table:

Parameter Default Example values Description

subset train train, test,
all

The dataset to load,
either train, test,
or both.

data_home ~/scikit_learn_data ~/myfiles Directory where
the files are stored.

categories None alt.atheism,
sci.space

List of newsgroups
to load. Loads all
newsgroups by
default.

shuffle True True, False Boolean indicating
whether to shuffle
the data.

random_state 42 7, 43 Seed integer used
to shuffle the data.



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 40 ]

remove () headers,
footers,
quotes

Tuple indicating,
which parts of the
posts to omit.
Doesn't omit
anything by
default.

download_if_missing True True, False Boolean indicating
whether to
download the data
if it is not found
locally.

Thinking about features
After we download the 20 newsgroups by whatever means we prefer, the data object called
groups is now available in the program. The data object is in the form of key-value
dictionary. Its keys are as follows:

>>> groups.keys()
dict_keys(['description', 'target_names', 'target', 'filenames',
  'DESCR', 'data'])

The target_names key gives the newsgroups names:

>>> groups['target_names']
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x',
'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball',
'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space',
'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast',
'talk.politics.misc', 'talk.religion.misc']

The target key corresponds to a newsgroup but is encoded as an integer:

>>> groups.target
array([7, 4, 4, ..., 3, 1, 8])



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 41 ]

Then what are the distinct values for these integers? We can use the unique function from
NumPy to figure it out:

>>> import numpy as np
>>> np.unique(groups.target)
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19])

They range from 0 to 19, representing 20 topics. Let’s now have a look at the first document,
its topic number, and name:

>>> groups.data[0]
"From: lerxst@wam.umd.edu (where's my thing)\nSubject: WHAT car is
this!?\nNntp-Posting-Host: rac3.wam.umd.edu\nOrganization: University of
Maryland, College Park\nLines: 15\n\n I was wondering if anyone out there
could enlighten me on this car I saw\nthe other day. It was a 2-door sports
car, looked to be from the late 60s/\nearly 70s. It was called a Bricklin.
The doors were really small. In addition,\nthe front bumper was separate
from the rest of the body. This is \nall I know. If anyone can tellme a
model name, engine specs, years\nof production, where this car is made,
history, or whatever info you\nhave on this funky looking car, please e-
mail.\n\nThanks,\n- IL\n   ---- brought to you by your neighborhood Lerxst
----\n\n\n\n\n"
>>> groups.target[0]
7
>>> groups.target_names[groups.target[0]]
'rec.autos'

So the first document is from the rec.autos newsgroup, which was assigned number 7.
Reading this post, we can easily figure out it is about about cars. The word car actually
occurs a number of times in the document. Words such as bumper also seem very car-
oriented. However, words such as doors may not be necessarily car related as they may
also have to do with home improvement or another topic. As a side note, it makes sense not
to distinguish between doors, door, or the same word with different capitalization, such as
Doors. There exist some rare cases where capitalization does matter, for instance, we are
trying to find out whether a document is about the band called The Doors or the more
common concept, the doors (in wood).



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 42 ]

We can safely conclude that if we want to figure out whether a document was from the
rec.autos newsgroup, the presence or absence of words such as car, doors, and
bumper can be very helpful features. Presence or not is a Boolean variable, and we can also
propose looking at the count of certain words. For instance, car occurs multiple times in the
document. Maybe the more times such a word is found in a text, the more likely it is that
the document has something to do with the cars. This brings us to another issue of how
many words there are in a document. We can imagine that documents vary in length and in
the number of times a particular word occurs. Obviously, longer texts usually contain more
words, and therefore, we have to compensate for that. For instance, the first two posts differ
in length:

>>> len(groups.data[0])
721
>>> len(groups.data[1])
858

Should we then take the length of a post into account? This book, in my opinion, will not be
more or less about Python and machine learning if the page count was different (within
reason); therefore, the length of a post is probably not a good feature.

How about sequences of words? For example, front bumper, sports car, and engine
specs. These seem to be strong indicators of a car-themed document. However, the word
car occurred far more often than sports car. Also, the number of bigrams in the
document is pretty large compared to the number distinct unigrams. We have the bigrams
this car and looking car, for instance, which basically have the same information
value in the context of newsgroups classification. Apparently, some words just don't have
much information value. Words that we encounter very often in any document of all the
categories, such as a, the, and are are called stop words, and we should ignore them. It
seems that we are only interested in the occurrence of certain words, their count, or a
related measure, and not in the order of the words. We can, therefore, view a text as a bag of
words. This is called the bag of words model. This is a very basic model, but it works pretty
well in practice. We can optionally define a more complex model that takes into account the
order of words and parts of speech tags. However, such a model is going to be more
computationally expensive and difficult to program. Plus, the basic bag of words model in
most cases suffices. Have a doubt? We can try to visualize how the unigrams are distributed
and see whether the bag of words model makes sense or not.



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 43 ]

Visualization
It's good to visualize to get a general idea of how the data is structured, what possible issues
may arise, and if there are any irregularities that we have to take care of.

In the context of multiple topics or categories, it is important to know what the distribution
of topics is. A uniform class distribution is the easiest to deal with because there are no
under-represented or over-represented categories. However, we frequently have a skewed
distribution with one or more categories dominating. We herein use the seaborn package
(h t t p s ://s e a b o r n . p y d a t a . o r g /) to compute the histogram of categories and plot it
utilizing the matplotlib package (h t t p s ://m a t p l o t l i b . o r g /). We can install both packages
via pip. Now let’s display the distribution of the classes as follows:

>>> import seaborn as sns
>>> sns.distplot(groups.target)
<matplotlib.axes._subplots.AxesSubplot object at 0x108ada6a0>
>>> import matplotlib.pyplot as plt
>>> plt.show()

Refer to the following graph for the end result:

https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)


Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 44 ]

As you can see, the distribution is (approximately) uniform, so that's one less thing to worry
about.

The text data we are dealing with in the 20 newsgroups dataset is high dimensional. Each
feature requires an extra dimension. If we use word counts as features, we have as many
dimensions as interesting features. For the unigram counts, we will use the
CountVectorizer class, which is described in the following table:

Constructor parameter Default Example values Description

ngram_range (1,1) (1, 2), (2, 2) Lower and upper bound of the n-
grams to be extracted in the input
text

stop_words None english, [a, the,
of], None

Which stop word list to use. If None,
do not filter stop words.

lowercase True True, False Whether to use lowercase
characters.

max_features None None, 500 If not None, consider only a limited
number of features.

binary False True, False If True sets non-zero counts to
1.

The following code displays a histogram of the 500 highest word counts:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> from sklearn.datasets import fetch_20newsgroups

>>> cv = CountVectorizer(stop_words="english", max_features=500)
>>> groups = fetch_20newsgroups()
>>> transformed = cv.fit_transform(groups.data)
>>> print(cv.get_feature_names())

>>> sns.distplot(np.log(transformed.toarray().sum(axis=0)))
>>> plt.xlabel('Log Count')
>>> plt.ylabel('Frequency')
>>> plt.title('Distribution Plot of 500 Word Counts')
>>> plt.show()



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 45 ]

Refer to the following figure for the end result:

We get the following list of 500 words that have the highest counts:

    ['00', '000', '0d', '0t', '10', '100', '11', '12', '13', '14', '145',
'15', '16', '17', '18', '19', '1993', '1d9', '20', '21', '22', '23', '24',
'25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '34u', '35',
'40', '45', '50', '55', '80', '92', '93', '__', '___', 'a86', 'able', 'ac',
'access', 'actually', 'address', 'ago', 'agree', 'al', 'american',
'andrew', 'answer', 'anybody', 'apple', 'application', 'apr', 'april',
'area', 'argument', 'armenian', 'armenians', 'article', 'ask', 'asked',
'att', 'au', 'available', 'away', 'ax', 'b8f', 'bad', 'based', 'believe',
'berkeley', 'best', 'better', 'bible', 'big', 'bike', 'bit', 'black',
'board', 'body', 'book', 'box', 'buy', 'ca', 'california', 'called',
'came', 'canada', 'car', 'card', 'care', 'case', 'cause', 'cc', 'center',
'certain', 'certainly', 'change', 'check', 'children', 'chip', 'christ',
'christian', 'christians', 'church', 'city', 'claim', 'clinton', 'clipper',
'cmu', 'code', 'college', 'color', 'colorado', 'columbia', 'com', 'come',
'comes', 'company', 'computer', 'consider', 'contact', 'control', 'copy',
'correct', 'cost', 'country', 'couple', 'course', 'cs', 'current', 'cwru',
'data', 'dave', 'david', 'day', 'days', 'db', 'deal', 'death',
'department', 'dept', 'did', 'didn', 'difference', 'different', 'disk',
'display', 'distribution', 'division', 'dod', 'does', 'doesn', 'doing',
'don', 'dos', 'drive', 'driver', 'drivers', 'earth', 'edu', 'email',



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 46 ]

'encryption', 'end', 'engineering', 'especially', 'evidence', 'exactly',
'example', 'experience', 'fact', 'faith', 'faq', 'far', 'fast', 'fax',
'feel', 'file', 'files', 'following', 'free', 'ftp', 'g9v', 'game',
'games', 'general', 'getting', 'given', 'gmt', 'god', 'going', 'good',
'got', 'gov', 'government', 'graphics', 'great', 'group', 'groups',
'guess', 'gun', 'guns', 'hand', 'hard', 'hardware', 'having', 'health',
'heard', 'hell', 'help', 'hi', 'high', 'history', 'hockey', 'home', 'hope',
'host', 'house', 'hp', 'human', 'ibm', 'idea', 'image', 'important',
'include', 'including', 'info', 'information', 'instead', 'institute',
'interested', 'internet', 'isn', 'israel', 'israeli', 'issue', 'james',
'jesus', 'jewish', 'jews', 'jim', 'john', 'just', 'keith', 'key', 'keys',
'keywords', 'kind', 'know', 'known', 'large', 'later', 'law', 'left',
'let', 'level', 'life', 'like', 'likely', 'line', 'lines', 'list',
'little', 'live', 'll', 'local', 'long', 'look', 'looking', 'lot', 'love',
'low', 'ma', 'mac', 'machine', 'mail', 'major', 'make', 'makes', 'making',
'man', 'mark', 'matter', 'max', 'maybe', 'mean', 'means', 'memory', 'men',
'message', 'michael', 'mike', 'mind', 'mit', 'money', 'mr', 'ms', 'na',
'nasa', 'national', 'need', 'net', 'netcom', 'network', 'new', 'news',
'newsreader', 'nice', 'nntp', 'non', 'note', 'number', 'numbers', 'office',
'oh', 'ohio', 'old', 'open', 'opinions', 'order', 'org', 'organization',
'original', 'output', 'package', 'paul', 'pay', 'pc', 'people', 'period',
'person', 'phone', 'pitt', 'pl', 'place', 'play', 'players', 'point',
'points', 'police', 'possible', 'post', 'posting', 'power', 'president',
'press', 'pretty', 'price', 'private', 'probably', 'problem', 'problems',
'program', 'programs', 'provide', 'pub', 'public', 'question', 'questions',
'quite', 'read', 'reading', 'real', 'really', 'reason', 'religion',
'remember', 'reply', 'research', 'right', 'rights', 'robert', 'run',
'running', 'said', 'sale', 'san', 'saw', 'say', 'saying', 'says', 'school',
'science', 'screen', 'scsi', 'season', 'second', 'security', 'seen',
'send', 'sense', 'server', 'service', 'services', 'set', 'similar',
'simple', 'simply', 'single', 'size', 'small', 'software', 'sorry', 'sort',
'sound', 'source', 'space', 'speed', 'st', 'standard', 'start', 'started',
'state', 'states', 'steve', 'stop', 'stuff', 'subject', 'summary', 'sun',
'support', 'sure', 'systems', 'talk', 'talking', 'team', 'technology',
'tell', 'test', 'text', 'thanks', 'thing', 'things', 'think', 'thought',
'time', 'times', 'today', 'told', 'took', 'toronto', 'tried', 'true',
'truth', 'try', 'trying', 'turkish', 'type', 'uiuc', 'uk', 'understand',
'university', 'unix', 'unless', 'usa', 'use', 'used', 'user', 'using',
'usually', 'uucp', 've', 'version', 'video', 'view', 'virginia', 'vs',
'want', 'wanted', 'war', 'washington', 'way', 'went', 'white', 'win',
'window', 'windows', 'won', 'word', 'words', 'work', 'working', 'works',
'world', 'wouldn', 'write', 'writes', 'wrong', 'wrote', 'year', 'years',
'yes', 'york']

This is our first trail of getting the list of top 500 words with the goal of the most indicative
features. It doesn’t look perfect. Can we improve it? Yes, by the data preprocessing
techniques in the next section.



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 47 ]

Data preprocessing
We see items, which are obviously not words, such as 00 and 000. Maybe we should ignore
items that contain only digits. However, 0d and 0t are also not words. We also see items as
__, so maybe we should only allow items that consist only of letters. The posts contain
names such as andrew as well. We can filter names with the Names corpus from NLTK we
just worked with. Of course, with every filtering we apply, we have to make sure that we
don't lose information. Finally, we see words that are very similar, such as try and trying,
and word and words.

We have two basic strategies to deal words from the same root--stemming and
lemmatization. Stemming is the more quick and dirty type approach. It involves chopping,
if necessary, off letters, for example, 'words' becomes 'word' after stemming. The result
of stemming doesn't have to be a valid word. Lemmatizing, on the other hand, is slower but
more accurate. Lemmatizing performs a dictionary lookup and guarantees to return a valid
word unless we start with a non-valid word. Recall that we have implemented both
stemming and lemmatization using NLTK in a previous section.

Let's reuse the code from the previous section to get the 500 words with highest counts, but
this time, we will apply filtering:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> from sklearn.datasets import fetch_20newsgroups
>>> from nltk.corpus import names
>>> from nltk.stem import WordNetLemmatizer

>>> def letters_only(astr):
 return astr.isalpha()

>>> cv = CountVectorizer(stop_words="english", max_features=500)
>>> groups = fetch_20newsgroups()
>>> cleaned = []
>>> all_names = set(names.words())
>>> lemmatizer = WordNetLemmatizer()

>>> for post in groups.data:
 cleaned.append(' '.join([lemmatizer.lemmatize(word.lower()
 for word in post.split()
 if letters_only(word)
 and word not in all_names]))

>>> transformed = cv.fit_transform(cleaned)
>>> print(cv.get_feature_names())



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 48 ]

We are able to obtain the following features:

    ['able', 'accept', 'access', 'according', 'act', 'action', 'actually',
'add', 'address', 'ago', 'agree', 'algorithm', 'allow', 'american',
'anonymous', 'answer', 'anybody', 'apple', 'application', 'apr', 'arab',
'area', 'argument', 'armenian', 'article', 'ask', 'asked', 'assume',
'atheist', 'attack', 'attempt', 'available', 'away', 'bad', 'based',
'basic', 'belief', 'believe', 'best', 'better', 'bible', 'big', 'bike',
'bit', 'black', 'board', 'body', 'book', 'box', 'build', 'bus', 'business',
'buy', 'ca', 'california', 'called', 'came', 'car', 'card', 'care',
'carry', 'case', 'cause', 'center', 'certain', 'certainly', 'chance',
'change', 'check', 'child', 'chip', 'christian', 'church', 'city', 'claim',
'clear', 'clipper', 'code', 'college', 'color', 'come', 'coming',
'command', 'comment', 'common', 'communication', 'company', 'computer',
'computing', 'consider', 'considered', 'contact', 'control', 'controller',
'copy', 'correct', 'cost', 'country', 'couple', 'course', 'cover',
'create', 'crime', 'current', 'cut', 'data', 'day', 'db', 'deal', 'death',
'department', 'design', 'device', 'did', 'difference', 'different',
'discussion', 'disk', 'display', 'division', 'dod', 'doe', 'doing',
'drive', 'driver', 'drug', 'early', 'earth', 'easy', 'effect', 'email',
'encryption', 'end', 'engineering', 'entry', 'error', 'especially',
'event', 'evidence', 'exactly', 'example', 'expect', 'experience',
'explain', 'face', 'fact', 'faq', 'far', 'fast', 'federal', 'feel',
'figure', 'file', 'final', 'following', 'food', 'force', 'form', 'free',
'friend', 'ftp', 'function', 'game', 'general', 'getting', 'given', 'gmt',
'goal', 'god', 'going', 'good', 'got', 'government', 'graphic', 'great',
'greek', 'ground', 'group', 'guess', 'gun', 'guy', 'ha', 'hand', 'hard',
'hardware', 'having', 'head', 'health', 'hear', 'heard', 'hell', 'help',
'high', 'history', 'hit', 'hockey', 'hold', 'home', 'hope', 'house',
'human', 'ibm', 'idea', 'image', 'important', 'include', 'includes',
'including', 'individual', 'info', 'information', 'instead', 'institute',
'interested', 'interesting', 'international', 'internet', 'israeli',
'issue', 'jew', 'jewish', 'job', 'just', 'key', 'kill', 'killed', 'kind',
'know', 'known', 'la', 'large', 'later', 'law', 'le', 'lead', 'league',
'left', 'let', 'level', 'life', 'light', 'like', 'likely', 'line', 'list',
'little', 'live', 'local', 'long', 'longer', 'look', 'looking', 'lost',
'lot', 'love', 'low', 'machine', 'mail', 'main', 'major', 'make', 'making',
'man', 'manager', 'matter', 'maybe', 'mean', 'medical', 'member', 'memory',
'men', 'message', 'method', 'military', 'million', 'mind', 'mode', 'model',
'money', 'monitor', 'month', 'moral', 'mouse', 'muslim', 'na', 'nasa',
'national', 'near', 'need', 'needed', 'network', 'new', 'news', 'nice',
'north', 'note', 'number', 'offer', 'office', 'old', 'open', 'opinion',
'order', 'original', 'output', 'package', 'particular', 'past', 'pay',
'pc', 'people', 'period', 'person', 'personal', 'phone', 'place', 'play',
'player', 'point', 'police', 'policy', 'political', 'position', 'possible',
'post', 'posted', 'posting', 'power', 'president', 'press', 'pretty',
'previous', 'price', 'private', 'probably', 'problem', 'product',
'program', 'project', 'provide', 'public', 'purpose', 'question', 'quite',



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 49 ]

'radio', 'rate', 'read', 'reading', 'real', 'really', 'reason', 'recently',
'reference', 'religion', 'religious', 'remember', 'reply', 'report',
'research', 'response', 'rest', 'result', 'return', 'right', 'road',
'rule', 'run', 'running', 'russian', 'said', 'sale', 'san', 'save', 'saw',
'say', 'saying', 'school', 'science', 'screen', 'scsi', 'second',
'section', 'security', 'seen', 'sell', 'send', 'sense', 'sent', 'serial',
'server', 'service', 'set', 'shall', 'short', 'shot', 'similar', 'simple',
'simply', 'single', 'site', 'situation', 'size', 'small', 'software',
'sort', 'sound', 'source', 'space', 'special', 'specific', 'speed',
'standard', 'start', 'started', 'state', 'statement', 'stop', 'strong',
'study', 'stuff', 'subject', 'sun', 'support', 'sure', 'taken', 'taking',
'talk', 'talking', 'tape', 'tax', 'team', 'technical', 'technology',
'tell', 'term', 'test', 'texas', 'text', 'thanks', 'thing', 'think',
'thinking', 'thought', 'time', 'tin', 'today', 'told', 'took', 'total',
'tried', 'true', 'truth', 'try', 'trying', 'turkish', 'turn', 'type',
'understand', 'unit', 'united', 'university', 'unix', 'unless', 'usa',
'use', 'used', 'user', 'using', 'usually', 'value', 'various', 'version',
'video', 'view', 'wa', 'want', 'wanted', 'war', 'water', 'way', 'weapon',
'week', 'went', 'western', 'white', 'widget', 'willing', 'win', 'window',
'woman', 'word', 'work', 'working', 'world', 'write', 'written', 'wrong',
'year', 'york', 'young']

This list seems to be much cleaner. We may also decide to only use nouns or another part of
speech as an alternative.

Clustering
Clustering divides a dataset into clusters. This is an unsupervised learning task since we
typically don't have any labels. In the most realistic cases, the complexity is so high that we
are not able to find the best division in clusters; however, we can usually find a decent
approximation. The clustering analysis task requires a distance function, which indicates
how close items are to each other. A common distance is Euclidean distance, which is the
distance as a bird flies. Another common distance is taxicab distance, which measures
distance in city blocks. Clustering was first used in the 1930s by social science researchers
without modern computers.

Clustering can be hard or soft. In hard clustering, an item belongs to only to a cluster, while
in soft clustering, an item can belong to multiple clusters with varying probabilities. In this
book, I have used only the hard clustering method.



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 50 ]

We can also have items that do not belong to any cluster. These items are considered
outliers of anomalies, or just noise. A cluster can also be part of another cluster, which can
also be an item in another higher-level cluster. If we have a cluster hierarchy, we speak of a
hierarchical clustering. There are more than 100 clustering algorithms, the most widely used
of those is the k-means algorithm. k-means clustering assigns data points to k clusters. The
problem of clustering is not solvable directly, but we can apply heuristics, which achieve an
acceptable result. The k-means algorithm attempts to find the best clusters for a dataset,
given a number of clusters. We are supposed to either know this number or find it through
trial and error. In this recipe, I evaluate the clusters through the Within Set Sum of
Squared Error (WSSSE) method, also known as Within Cluster Sum of Squares (WCSS).
This metric calculates the sum of the squared error of the distance between each point and
the centroid of its assigned cluster. The algorithm for k-means iterates between two steps,
not including the (usually random) initialization of k-centroids:

Assign each data point a cluster with the lowest distance.1.
Recalculate the center of the cluster as the mean of the cluster points coordinates.2.

The algorithm stops when the cluster assignments become stable.

We will use the scikit-learn's KMeans class, as described in the following table:

Constructor
parameter

Default Example values Description

n_clusters 8 3, 36 The number of clusters to determine

max_iter 300 200, 37 Maximum number of iterations for a
single run

n_init 10 8, 10 Number of times to rerun the algorithm
with different seeds

tol 1e-4 1e-3, 1e-2 Value regulating stopping conditions



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 51 ]

The average complexity is given by O(k n T), where k is the number of clusters, n is the
number of samples, and T is the number of iterations. The following code applies clustering
and displays a scatter plot of the actual labels and the cluster labels:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> from sklearn.datasets import fetch_20newsgroups
>>> from nltk.corpus import names
>>> from nltk.stem import WordNetLemmatizer
>>> from sklearn.cluster import KMeans
>>> import matplotlib.pyplot as plt

>>> def letters_only(astr):
 return astr.isalpha()

>>> cv = CountVectorizer(stop_words="english", max_features=500)
>>> groups = fetch_20newsgroups()
>>> cleaned = []
>>> all_names = set(names.words())
>>> lemmatizer = WordNetLemmatizer()

>>> for post in groups.data:
        cleaned.append(' '.join([
                             lemmatizer.lemmatize(word.lower())
                             for word in post.split()
                             if letters_only(word)
                             and word not in all_names]))

>>> transformed = cv.fit_transform(cleaned)
>>> km = KMeans(n_clusters=20)
>>> km.fit(transformed)
>>> labels = groups.target
>>> plt.scatter(labels, km.labels_)
>>> plt.xlabel('Newsgroup')
>>> plt.ylabel('Cluster')
>>> plt.show()



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 52 ]

Refer to the following figure for the end result:

Topic modeling
Topics in natural language processing don't exactly match the dictionary definition and
correspond to more of a nebulous statistical concept. We speak of topic models and
probability distributions of words linked to topics, as we know them. When we read a text,
we expect certain words appearing in the title or the body of the text to capture the semantic
context of the document. An article about Python programming will have words such
as class and function, while a story about snakes will have words such as eggs and
afraid. Documents usually have multiple topics, for instance, this recipe is about topic
models and non-negative matrix factorization, which we will discuss shortly. We can,
therefore, define an additive model for topics by assigning different weights to topics.



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 53 ]

One of the topic modeling algorithms is non-negative matrix factorization (NMF). This 
algorithm factorizes a matrix into a product of two smaller matrices in such a way that the
three matrices have no negative values. Usually, we are only able to numerically
approximate the solution of the factorization, and the time complexity is polynomial. The
scikit-learn NMF class implements this algorithm, as shown in the following table:

Constructor parameter Default Example
values

Description

n_components - 5, None Number of components. In this
example, this corresponds to the
number of topics.

max_iter 200 300, 10 Number of iterations.

alpha 0 10, 2.85 Multiplication factor for regularization
terms.

tol 1e-4 1e-3, 1e-2 Value regulating stopping conditions.

NMF can also be applied to document clustering and signal processing, as shown in the
following code:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> from sklearn.datasets import fetch_20newsgroups
>>> from nltk.corpus import names
>>> from nltk.stem import WordNetLemmatizer
>>> from sklearn.decomposition import NMF
>>> def letters_only(astr):
       return astr.isalpha()
>>> cv = CountVectorizer(stop_words="english", max_features=500)
>>> groups = fetch_20newsgroups()
>>> cleaned = []
>>> all_names = set(names.words())
>>> lemmatizer = WordNetLemmatizer()
>>> for post in groups.data:
       cleaned.append(' '.join([
                            lemmatizer.lemmatize(word.lower())
                            for word in post.split()
                            if letters_only(word)
                            and word not in all_names]))
>>> transformed = cv.fit_transform(cleaned)
>> nmf = NMF(n_components=100, random_state=43).fit(transformed)
>>> for topic_idx, topic in enumerate(nmf.components_):
       label = '{}: '.format(topic_idx)
       print(label, " ".join([cv.get_feature_names()[i]
                          for i in topic.argsort()[:-9:-1]]))



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 54 ]

We get the following 100 topics:

0:  wa went came told said started took saw
1:  db bit data stuff place add time line
2:  file change source information ftp section entry server
3:  output line write open entry return read file
4:  disk drive controller hard support card board head
5:  entry program file rule source info number need
6:  hockey league team division game player san final
7:  image software user package include support display color
8:  window manager application using user server work screen
9:  united house control second american national issue period
10:  internet anonymous email address user information mail
  network
11:  use using note similar work usually provide case
12:  turkish jew jewish war did world sent book
13:  space national international technology earth office news
  technical
14:  anonymous posting service server user group message post
15:  science evidence study model computer come method result
16:  widget application value set type return function display
17:  work job young school lot need create private
18:  available version server widget includes support source sun
19:  center research medical institute national test study north
20:  armenian turkish russian muslim world road city today
21:  computer information internet network email issue policy
  communication
22:  ground box need usually power code house current
23:  russian president american support food money important
  private
24:  ibm color week memory hardware standard monitor software
25:  la win san went list radio year near
26:  child case le report area group research national
27:  key message bit security algorithm attack encryption standard
28:  encryption technology access device policy security need
  government
29:  god bible shall man come life hell love
30:  atheist religious religion belief god sort feel idea
31:  drive head single scsi mode set model type
32:  war military world attack russian united force day
33:  section military shall weapon person division application
  mean
34:  water city division similar north list today high
35:  think lot try trying talk agree kind saying
36:  data information available user model set based national
37:  good cover better great pretty player probably best
38:  tape scsi driver drive work need memory following
39:  dod bike member started computer mean live message



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 55 ]

40:  car speed driver change high better buy different
41:  just maybe start thought big probably getting guy
42:  right second free shall security mean left individual
43:  problem work having help using apple error running
44:  greek turkish killed act western muslim word talk
45:  israeli arab jew attack policy true jewish fact
46:  argument form true event evidence truth particular known
47:  president said did group tax press working package
48:  time long having lot order able different better
49:  rate city difference crime control le white study
50:  new york change old lost study early care
51:  power period second san special le play result
52:  wa did thought later left order seen man
53:  state united political national federal local member le
54:  doe mean anybody different actually help common reading
55:  list post offer group information course manager open
56:  ftp available anonymous package general list ibm version
57:  nasa center space cost available contact information faq
58:  ha able called taken given exactly past real
59:  san police information said group league political including
60:  drug group war information study usa reason taken
61:  point line different algorithm exactly better mean issue
62:  image color version free available display better current
63:  got shot play went took goal hit lead
64:  people country live doing tell killed saying lot
65:  run running home start hit version win speed
66:  day come word christian jewish said tell little
67:  want need help let life reason trying copy
68:  used using product function note version single standard
69:  game win sound play left second great lead
70:  know tell need let sure understand come far
71:  believe belief christian truth claim evidence mean different
72:  public private message security issue standard mail user
73:  church christian member group true bible view different
74:  question answer ask asked did reason true claim
75:  like look sound long guy little having pretty
76:  human life person moral kill claim world reason
77:  thing saw got sure trying seen asked kind
78:  health medical national care study user person public
79:  make sure sense little difference end try probably
80:  law federal act specific issue order moral clear
81:  unit disk size serial total got bit national
82:  chip clipper serial algorithm need phone communication
  encryption
83:  going come mean kind working look sure looking
84:  university general thanks department engineering texas world
  computing
85:  way set best love long value actually white



Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms

[ 56 ]

86:  card driver video support mode mouse board memory
87:  gun crime weapon death study control police used
88:  service communication sale small technology current cost site
89:  graphic send mail message server package various computer
90:  team player win play better best bad look
91:  really better lot probably sure little player best
92:  say did mean act word said clear read
93:  program change display lot try using technology application
94:  number serial following large men le million report
95:  book read reference copy speed history original according
96:  year ago old did best hit long couple
97:  woman men muslim religion world man great life
98:  government political federal sure free local country reason
99:  article read world usa post opinion discussion bike

Summary
In this chapter, we acquired the fundamental concepts of NLP as an important subfield in
machine learning, including tokenization, stemming and lemmatization, POS tagging. We
also explored three powerful NLP packages and realized some common tasks using NLTK.
Then we continued with the main project newsgroups topic modeling. We started with
extracting features with tokenization techniques as well as stemming and lemmatization.
We then went through clustering and implementations of k-means clustering and non-
negative matrix factorization for topic modeling. We gained hands-on experience in
working with text data and tackling topic modeling problems in an unsupervised learning
manner. We briefly mentioned the corpora resources available in NLTK. It would be a great
idea to apply what we've learned on some of the corpora. What topics can you extract from
the Shakespeare corpus?



3
Spam Email Detection with

Naive Bayes
In this chapter, we kick off our machine learning classification journey with spam email
detection. It is a great starting point of learning classification with a real-life example-our
email service providers are already doing this for us, and so can we. We will be learning the
fundamental and important concepts of classification, and focusing on solving spam
detection using a simple yet powerful algorithm, naive Bayes.

The outline for this chapter is as follows:

What is classification?
Types of classification
Text classification examples
Naive Bayes classifier
The mechanics of naive Bayes
The naive Bayes implementations
Spam email detection with naive Bayes
Classification performance evaluation
Cross-validation
Tuning a classifier



Spam Email Detection with Naive Bayes

[ 58 ]

Getting started with classification
Spam email detection is basically a machine learning classification problem. We herein get
started with learning important concepts of machine learning classification. Classification is
one of the main instances of supervised learning in machine learning. Given a training set of
data containing observations and their associated categorical outputs, the goal of
classification is to learn a general rule that correctly maps the observations (also called
features) to the targeted categories. In another word, a trained classification model will be
generated by learning from the features and targets of training samples, as shown in the
diagram below. When new or unseen data comes in, it will be able to determine their
desired memberships. Class information will be predicted based on the known input
features using the trained classification model.

Types of classification
Based on the possibility of class output, machine learning classification can be categorized
into binary classification, multiclass classification, and multi-label classification.

Binary classification is the problem of classifying observations into one of the two possible
classes. One frequently mentioned example is email spam filtering, which identifies email
messages (input or observation) as spam or not spam (output or classes). Customer churn
prediction is also a typical use of binary classification, where it takes in customer segment
data and activity data from CRM systems and identifies which customers are likely to
churn. Another application in the marketing and advertising industry is online ads click-
through prediction-whether an ad will be clicked or not, given user's cookie information
and browsing history.



Spam Email Detection with Naive Bayes

[ 59 ]

Lastly, binary classification has also been employed in the biomedical field, to name one
instance, the early cancer diagnosis classifying patients into high or low risk groups based
on MRI images.

Multiclass classification, also called multinomial classification, allows more than two 
possible classes, as opposed to only two classes in binary cases. Handwritten digit
recognition is a common instance and it has a long history of research and development
since the early 1900s. A classification system, for example, learns to read and understand
handwritten zip codes (digits 0 to 9 in most countries) by which envelopes are
automatically sorted. And handwritten digit recognition has become a Hello World in the
journey of learning machine learning, and the scanned document dataset constructed from
the Modified National Institute of Standards and Technology called MNIST (whose samples
are shown as follows) is frequently used to test and evaluate multiclass classification
models.



Spam Email Detection with Naive Bayes

[ 60 ]

MNIST hand-written digits recognition:

Multi-label classification is different from the first two types of classification where target
classes are disjointed. Research attention to this field has been increasingly drawn by the
nature of omnipresence of categories in modern applications. For example, a picture that
captures a sea and sunset can simultaneously belong to both conceptual scenes, whereas it
can only be an image of either a cat or dog in binary cases, or one fruit among orange,
apple, and banana in multiclass cases. Similarly, adventure films are often combined with
other genres, such as fantasy, science fiction, horror, and drama. Another typical application
is protein function classification, as a protein may have more than one function-storage,
antibody, support, transport, and so on. One approach to solve an n label classification
problem is to transform it into a set of n binary classifications problems, which is then
handled by individual binary classifiers respectively as shown in the following diagram:



Spam Email Detection with Naive Bayes

[ 61 ]

Applications of text classification
As we recall, it was discussed in the last chapter how unsupervised learning, including
clustering and topic modeling, is applied in news data. We will continue to see supervised
learning on the other hand applied in this domain, specifically classification, in this chapter.

In fact, classification has been widely used in text analysis and news analytics. For instance,
classification algorithms are used to identify news sentiment, positive, or negative as in
binary cases, or positive, neutral, or negative in multiclass classification. News sentiment
analysis provides a significant signal to trading in stock markets.

Another example we can easily think of is news topic classification, where classes may or
may not be mutually exclusive. In the news group example that we just worked on, classes
are mutually exclusive, such as computer graphics, motorcycles, baseball, hockey, space,
and religion. We will demonstrate how to use machine learning algorithms to solve such
multiclass classification problems in the next chapter. However, it is good to realize that a
news article is occasionally assigned multiple categories, where properly speaking multi-
label classification is more suitable. For example, an article about the Olympic games may
be labeled sports and politics if there is unexpected political involvement.

Finally, perhaps a text classification application that is difficult to realize is named-entity
recognition (NER). Named entities are phrases of definitive categories such as names of
persons, companies, geographic locations, dates and times, quantities, and monetary values.
NER is an important subtask of information extraction to seek and identify such entities.
For example, we can conduct NER on a paragraph taken from Reuters news: The
California[Location]-based company, owned and operated by technology entrepreneur Elon
Musk[Person], has proposed an orbiting digital communications array that would eventually consist
of 4,425[Quantity] satellites, the documents filed on Tuesday[Date] show.

To solve these problems, researchers have developed many power classification algorithms,
among which naive Bayes (NB) and Support Vector Machine (SVM) models are often
used for text classification. In the following sections, we will cover the mechanics of naive
Bayes and its in-depth implementation along with other important concepts including
classifier tuning and classification performance evaluation.



Spam Email Detection with Naive Bayes

[ 62 ]

Exploring naive Bayes
The naive Bayes classifier belongs to the family of probabilistic classifiers that computes the
probabilities of each predictive feature (also called attribute) of the data belonging to each
class in order to make a prediction of probability distribution over all classes, besides the
most likely class that the data sample is associated with. And what makes it special is as its
name indicates:

Bayes: It maps the probabilities of observing input features given belonging
classes, to the probability distribution over classes based on Bayes' theorem. We
will explain Bayes' theorem by examples in the next section.
Naive: It simplifies probability computations by assuming that predictive
features are mutually independent.

Bayes' theorem by examples
It is important to understand Bayes' theorem before diving into the classifier. Let A and B
denote two events. An event can be that it will rain tomorrow, two kings are drawn from a
deck of cards, a person has cancer. In Bayes' theorem, the probability that A occurs
given B is true can be computed by:

Where  is the probability of observing B given A occurs, and ,  the
probability of A occurs and B occurs respectively. Too abstract? Let's look at some
examples:

Example 1: Given two coins, one is unfair with 90% of flips getting a head and 10% getting
a tail, another one is fair. Randomly pick one coin and flip it. What is the probability that
this coin is the unfair one, if we get a head?



Spam Email Detection with Naive Bayes

[ 63 ]

We solve it by first denoting U, the event of picking the unfair coin and H, the event of
getting a head. So the probability that the unfair coin is picked given a head is observed

 can be calculated as follows:

 is 90% as what we observed,  is 0.5 as we randomly pick a coin out of two.
However, deriving the probability of getting a head  is not that straightforward, as two
events can lead to this - the fair coin is picked F and the unfair one is picked U. So it
becomes:

Example 2: Suppose a physician reported the following cancer screening test scenario
among 10,000 people:

Cancer No Cancer Total

Text Positive 80 900 980

Text Negative 20 9000 9020

Total 100 9900 10000

It indicates, for example, 80 out of 100 cancer patients are correctly diagnosed, while the rest
20 are not; cancer is falsely detected in 900 out to 9,900 healthy people. If the result of this
screening test on a person is positive, what is the probability that they actually have cancer?

Let's assign the event of having cancer and positive testing result as C and Pos respectively.
Apply Bayes' theorem to calculate :

Given a positive screening result, the chance that they have cancer is 8.16%, which is

significantly higher than the one under general assumption ( ) without
undergoing the screening.



Spam Email Detection with Naive Bayes

[ 64 ]

Example 3: Three machines A, B, and C in a factory account for 35%, 20%, and 45% of the
bulb production. And the fraction of defective bulbs produced by each machine is 1.5%, 1%,
and 2% respectively. A bulb produced by this factory was identified defective (denoted as
event D). What are the probabilities that this bulb was manufactured by machine A, B, and
C respectively?

Again simply just follow the Bayes' theorem:

Or we do not even need to calculate  since we know:

and 

so , 

After making sense of Bayes' theorem as the bone of naive Bayes, we can easily move
forward with the classifier itself.



Spam Email Detection with Naive Bayes

[ 65 ]

The mechanics of naive Bayes
We start with understanding the magic behind the algorithm-how naive Bayes works.
Given a data sample x with n features x1, x2, ..., xn (x represents a feature vector and x = (x1,
x2, ..., xn)), the goal of naive Bayes is to determine the probabilities that this sample belongs
to each of K possible classes y1, y2, ..., yK, that is  or , where k = 1,
2, ..., K. It looks no different from what we have just dealt with: x or x1, x2, ..., xn is a joint
event that the sample has features with values x1, x2, ..., xn respectively, yk is an event that
the sample belongs to class k. We can apply Bayes' theorem right away:

 portrays how classes are distributed, provided no further knowledge of observation
features. Thus, it is also called prior in Bayesian probability terminology. Prior can be either
predetermined (usually in a uniform manner where each class has an equal chance of
occurrence) or learned from a set of training samples.  on the contrary is the
posterior with extra knowledge of observation.

, or , is the joint distribution of n features given the sample
belongs to class yk, that is how likely the features with such values co-occur. And it is
named "likelihood" in Bayesian terminology. Obviously, it will be difficult to compute as
the number of features increases. In naive Bayes, this is solved thanks to the feature
independence assumption. The joint conditional distribution of n features can be expressed
as the joint product of individual feature conditional distributions:

And it can be efficiently learned from a set of training samples.



Spam Email Detection with Naive Bayes

[ 66 ]

, also called evidence, solely depends on the overall distribution of features that are not
specific to certain classes and are therefore constant. As a result, posterior is proportional to
prior and likelihood:

Let's see how the naive Bayes classifier is applied through an example before we jump to
code implementations. Given four (pseudo) emails as follows, predict how likely a new
email is spam:



Spam Email Detection with Naive Bayes

[ 67 ]

First define S and NS events as an email being spam or not spam respectively. From the
training set, we can easily get:

Or we can also impose an assumption of prior that .

To calculate  where x = (free, setup, meeting, free), the next step is to compute
 based on the training set, that is the ratio of the

occurrence of a term to that of all terms in the S class. However, as the term free was not
seen in the NS class training set,  will become zero, so will  and

. It will be predicted as spam email, falsely. To eliminate such zero multiplication
factors, the unseen term, we usually set each term frequency an initial value 1, that is, start
counting term occurrence from one, which is also called Laplace smoothing. With this
amendment, now we have:

Where 9 is the total number of term occurrences from the S class (3+3+3), 4 is the total term
occurrences from the NS class, and 6 comes from the one additional count per term (click,
win, prize, meeting, setup, free). Similarly, we have:



Spam Email Detection with Naive Bayes

[ 68 ]

Also remember 

And finally, 

There is 47.1% chance that the new email is spam.

The naive Bayes implementations
After a hand-calculating spam email detection example, as promised, we are going to code
it through a genuine dataset, taken from the Enron email dataset
http://www.aueb.gr/users/ion/data/enron-spam/. The specific dataset we are using can
be directly downloaded via
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz. You can
either unzip it using a software or run the command line tar -xvz enron1.tar.gz in the
Terminal. The uncompressed folder includes a folder of ham email text files and a folder of
spam email text files, as well as a summary description of the database:

    enron1/
  ham/
    0001.1999-12-10.farmer.ham.txt
    0002.1999-12-13.farmer.ham.txt
    ......
    ......
    5172.2002-01-11.farmer.ham.txt
  spam/
    0006.2003-12-18.GP.spam.txt
    0008.2003-12-18.GP.spam.txt

http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz


Spam Email Detection with Naive Bayes

[ 69 ]

    ......
    ......
    5171.2005-09-06.GP.spam.txt
  Summary.txt

Given a dataset for a classification problem, it is always good to keep in mind the number of
samples per class and the proportion of samples from each class before applying any
machine learning techniques. As written in the Summary.txt file, there are 3,672 ham
(legitimate) emails and 1,500 spam emails so spam:legitimate ratio is approximately 1:2
here. If such information was not given, we can also get the numbers by running the
following commands:

ls -1 enron1/ham/*.txt | wc -l
3672
ls -1 enron1/spam/*.txt | wc -l
1500

Let's first have a look at a legitimate and a spam email by running the following scripts
from the same path where the unzipped folder is located:

>>> file_path = 'enron1/ham/0007.1999-12-14.farmer.ham.txt'
>>> with open(file_path, 'r') as infile:
...     ham_sample = infile.read()
...
>>> print(ham_sample)
Subject: mcmullen gas for 11 / 99
jackie ,
since the inlet to 3 river plant is shut in on 10 / 19 / 99 ( the
last day of flow ) :
at what meter is the mcmullen gas being diverted to ?
at what meter is hpl buying the residue gas ? ( this is the gas
from teco ,vastar , vintage , tejones , and swift )
i still see active deals at meter 3405 in path manager for teco ,
vastar ,vintage , tejones , and swift
i also see gas scheduled in pops at meter 3404 and 3405 .
please advice . we need to resolve this as soon as possible so
settlement can send out payments .
thanks
>>> file_path = 'enron1/spam/0058.2003-12-21.GP.spam.txt'
>>> with open(file_path, 'r') as infile:
...     spam_sample = infile.read()
...
>>> print(spam_sample)
Subject: stacey automated system generating 8 k per week parallelogram
people are
getting rich using this system ! now it ' s your
turn !



Spam Email Detection with Naive Bayes

[ 70 ]

we ' ve
cracked the code and will show you . . . .
this is the
only system that does everything for you , so you can make
money
. . . . . . . .
because your
success is . . . completely automated !
let me show
you how !
click
here
to opt out click here % random _ text

Next, we read all of the email text files and keep the ham/spam class information in the
label variable where 1 represents spam email and 0 otherwise.

First, import the necessary modules, glob and os, in order to find all the .txt email files,
and initialize variables keeping text data and labels:

>>> import glob
>>> import os
>>> e-mails, labels = [], []
Then to load the spam e-mail files:
>>> file_path = 'enron1/spam/'
>>> for filename in glob.glob(os.path.join(file_path, '*.txt')):
...   with open(filename, 'r', encoding = "ISO-8859-1") as infile:
...     e-mails.append(infile.read())
...       labels.append(1)

And the legitimate email files:

>>> file_path = 'enron1/ham/'
>>> for filename in glob.glob(os.path.join(file_path, '*.txt')):
...   with open(filename, 'r', encoding = "ISO-8859-1") as infile:
...     e-mails.append(infile.read())
...       labels.append(0)
>>> len(e-mails)
5172
>>> len(labels)
5172



Spam Email Detection with Naive Bayes

[ 71 ]

The next step is to preprocess and clean the raw text data. To briefly recap, it includes:

Number and punctuation removal
Human name removal (optional)
Stop words removal
Lemmatization

We herein reuse the codes we developed in the last chapter:

>>> from nltk.corpus import names
>>> from nltk.stem import WordNetLemmatizer
>>> def letters_only(astr):
...   return astr.isalpha()
>>> all_names = set(names.words())
>>> lemmatizer = WordNetLemmatizer()

Put together a function performing text cleaning:

>>> def clean_text(docs):
...   cleaned_docs = []
...     for doc in docs:
...       cleaned_docs.append(
            ' '.join([lemmatizer.lemmatize(word.lower())
...           for word in doc.split()
...             if letters_only(word)
...               and word not in all_names]))
...     return cleaned_docs
>>> cleaned_e-mails = clean_text(e-mails)
>>> cleaned_e-mails[0]
'dobmeos with hgh my energy level ha gone up stukm introducing doctor
formulated hgh human growth hormone also called hgh is referred to in
medical science a the master hormone it is very plentiful when we are young
but near the age of twenty one our body begin to produce le of it by the
time we are forty nearly everyone is deficient in hgh and at eighty our
production ha normally diminished at least advantage of hgh increased
muscle strength loss in body fat increased bone density lower blood
pressure quickens wound healing reduces cellulite improved vision wrinkle
disappearance increased skin thickness texture increased energy level
improved sleep and emotional stability improved memory and mental alertness
increased sexual potency resistance to common illness strengthened heart
muscle controlled cholesterol controlled mood swing new hair growth and
color restore read more at this website unsubscribe'



Spam Email Detection with Naive Bayes

[ 72 ]

This leads to removing stop words, and extracting features, which are the term frequencies
from the cleaned text data:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> cv = CountVectorizer(stop_words="english", max_features=500)

Here the max_features parameter is set to 500, so it only considers the 500 most frequent
terms. We can definitely tweak this parameter later on in order to achieve better accuracy.

The vectorizer turns the document matrix (rows of words) into a term document matrix
where each row is a term frequency sparse vector for a document and an email:

  >>> term_docs = cv.fit_transform(cleaned_e-mails)
  >>> print(term_docs [0])
  (0, 481)  1
  (0, 357)  1
  (0, 69)  1
  (0, 285)  1
  (0, 424)  1
  (0, 250)  1
  (0, 345)  1
  (0, 445)  1
  (0, 231)  1
  (0, 497)  1
  (0, 47)  1
  (0, 178)  2
  (0, 125)  2

The sparse vector is in the form of:

The (row index, feature/term index) value (that is, term frequency).

We can see what the corresponding terms are by using the following:

>>> feature_names = cv.get_feature_names()
>>> feature_names[481]
u'web'
>>> feature_names[357]
u'receive'
>>> feature_names[125]
u'error'



Spam Email Detection with Naive Bayes

[ 73 ]

Or by the vocabulary dictionary with term feature (website) as the key and feature index
(481) as the value:

>>> feature_mapping = cv.vocabulary_

With the feature matrix term_docs just generated, we can now build and train our naive
Bayes model.

Starting with the prior, we first group the data by label:

>>> def get_label_index(labels):
...   from collections import defaultdict
...   label_index = defaultdict(list)
...   for index, label in enumerate(labels):
...     label_index[label].append(index)
...   return label_index
>>> label_index = get_label_index(labels)

The label_index looks like {0: [3000, 3001, 3002, 3003, ...... 6670, 6671], 1: [0, 1, 2, 3, ....,
2998, 2999]} where training sample indices are grouped by class. With this, we calculate the
prior:

>>> def get_prior(label_index):
...     """ Compute prior based on training samples
...     Args:
...         label_index (grouped sample indices by class)
...     Returns:
...         dictionary, with class label as key, corresponding
            prior as the value
...     """
...     prior = {label: len(index) for label, index
                                     in label_index.iteritems()}
...     total_count = sum(prior.values())
...     for label in prior:
...         prior[label] /= float(total_count)
...     return prior
>>> prior = get_prior(label_index)
>>> prior {0: 0.7099767981438515, 1: 0.2900232018561485}

And the likelihood as well:

>>> import numpy as np
>>> def get_likelihood(term_document_matrix, label_index, smoothing=0):
...     """ Compute likelihood based on training samples
...     Args:
...         term_document_matrix (sparse matrix)
...         label_index (grouped sample indices by class)
...         smoothing (integer, additive Laplace smoothing



Spam Email Detection with Naive Bayes

[ 74 ]

                                                   parameter)
...     Returns:
...         dictionary, with class as key, corresponding
            conditional probability P(feature|class) vector as
            value
...     """
...     likelihood = {}
...     for label, index in label_index.iteritems():
...         likelihood[label] =
            term_document_matrix[index, :].sum(axis=0) + smoothing
...         likelihood[label] = np.asarray(likelihood[label])[0]
...         total_count = likelihood[label].sum()
...         likelihood[label] =
                            likelihood[label] / float(total_count)
...     return likelihood

The smoothing parameter is set to 1 here, which can also be 0 for no smoothing and any
other positive value, as long as high classification performance is achieved:

>>> smoothing = 1
>>> likelihood = get_likelihood(term_docs, label_index, smoothing)
>>> len(likelihood[0])
    500

likelihood[0] is the conditional probability P(feature | legitimate) vector of length 500
(500 features) for legitimate classes. For example, the following are the probabilities for the
first five features:

>>> likelihood[0][:5]
array([ 1.01166291e-03,   8.71839582e-04,   9.95213107e-04,
    8.38939975e-04,   9.04739188e-05])

Similarly, here are the first five elements of the conditional probability P(feature | spam)
vector:

>>> likelihood[1][:5]
array([ 0.00112918,  0.00164537,  0.00471029,
  0.00058072,  0.00438766])

We can also check the corresponding terms:

>>> feature_names[:5]
[u'able', u'access', u'account', u'accounting', u'act']



Spam Email Detection with Naive Bayes

[ 75 ]

With prior and likelihood ready, we can now computer the posterior for the testing/new
samples. There is a trick we use: instead of calculating the multiplication of hundreds of
thousands of small value conditional probabilities P(feature | class) (for example,
9.04739188e-05 as we just saw), which may cause overflow error, we calculate the
summation of their natural logarithms then convert it back to its natural exponential value:

>>> def get_posterior(term_document_matrix, prior, likelihood):
...   """ Compute posterior of testing samples, based on prior
        and likelihood
...   Args:
...     term_document_matrix (sparse matrix)
...     prior (dictionary, with class label as key,
        corresponding prior as the value)
...     likelihood (dictionary, with class label as key,
        corresponding conditional probability vector as value)
...   Returns:
...     dictionary, with class label as key, corresponding
        posterior as value
...   """
...   num_docs = term_document_matrix.shape[0]
...   posteriors = []
...   for i in range(num_docs):
...     # posterior is proportional to prior * likelihood
...     # = exp(log(prior * likelihood))
...     # = exp(log(prior) + log(likelihood))



Spam Email Detection with Naive Bayes

[ 76 ]

...     posterior = {key: np.log(prior_label)
          for key, prior_label in prior.iteritems()}
...     for label, likelihood_label in likelihood.iteritems():
...       term_document_vector =
            term_document_matrix.getrow(i)
...       counts = term_document_vector.data
...       indices = term_document_vector.indices
...       for count, index in zip(counts, indices):
...         posterior[label] +=
              np.log(likelihood_label[index]) * count
...     # exp(-1000):exp(-999) will cause zero division error,
...     # however it equates to exp(0):exp(1)
...     min_log_posterior = min(posterior.values())
...     for label in posterior:
...       try:
...         posterior[label] =
              np.exp(posterior[label] - min_log_posterior)
...       except:
...         # if one's log value is excessively large,
              assign it infinity
...         posterior[label] = float('inf')
...     # normalize so that all sums up to 1
...     sum_posterior = sum(posterior.values())
...     for label in posterior:
...       if posterior[label] == float('inf'):
...         posterior[label] = 1.0
...       else:
...         posterior[label] /= sum_posterior
...     posteriors.append(posterior.copy())
...   return posteriors

The prediction function is finished. Let's take one ham and one spam sample from another
Enron email dataset to quickly verify our algorithm:

>>> e-mails_test = [
...   '''Subject: flat screens
...   hello ,
...   please call or contact regarding the other flat screens
...   requested .
...   trisha tlapek - eb 3132 b
...   michael sergeev - eb 3132 a
...   also the sun blocker that was taken away from eb 3131 a .
...   trisha should two monitors also michael .
...   thanks
...   kevin moore''',
...   '''Subject: having problems in bed ? we can help !
...   cialis allows men to enjoy a fully normal sex life without
...   having to plan the sexual act .



Spam Email Detection with Naive Bayes

[ 77 ]

...   if we let things terrify us, life will not be worth living

...   brevity is the soul of lingerie .

...   suspicion always haunts the guilty mind .''',

... ]

Go through the same cleaning and preprocessing steps as in the training stage:

>>> cleaned_test = clean_text(e-mails_test)
>>> term_docs_test = cv.transform(cleaned_test)
>>> posterior = get_posterior(term_docs_test, prior, likelihood)
>>> print(posterior)
[{0: 0.99546887544929274, 1: 0.0045311245507072767},
{0: 0.00036156051848121361, 1: 0.99963843948151876}]

For the first email, 99.5% are legitimate; the second email nearly 100% are spam. Both are
predicted correctly.

Furthermore, to comprehensively evaluate our classifier's performance, we can randomly
split the original dataset into an isolated training and testing set, which simulates learning
data and prediction data, respectively. Generally, the proportion of the original dataset to
include in the testing split can be 25%, 33.3%, or 40%. We use the train_test_split
function from scikit-learn to do the random splitting and to preserve the percentage of
samples for each class:

>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, Y_train, Y_test = train_test_split(cleaned_e-mails,
labels, test_size=0.33, random_state=42)

It is a good practice to assign a fixed random_state (for example, 42)
during experiments and exploration in order to guarantee the same
training and testing sets are generated every time the program runs. This
allows us to make sure the classifier functions and performs well on a
fixed dataset before we incorporate randomness and proceed further.

>>> len(X_train), len(Y_train)
(3465, 3465)
>>> len(X_test), len(Y_test)
(1707, 1707)



Spam Email Detection with Naive Bayes

[ 78 ]

Retrain the term frequency CountVectorizer based on the training set and recompute the
prior and likelihood:

>>> term_docs_train = cv.fit_transform(X_train)
>>> label_index = get_label_index(Y_train)
>>> prior = get_prior(label_index)
>>> likelihood = get_likelihood(term_docs_train, label_index, smoothing)

Then predict the posterior of the testing/new dataset:

>>> term_docs_test = cv.transform(X_test)
>>> posterior = get_posterior(term_docs_test, prior, likelihood)

Finally, evaluate the model's performance via the proportion of correct prediction:

>>> correct = 0.0
>>> for pred, actual in zip(posterior, Y_test):
...   if actual == 1:
...     if pred[1] >= 0.5:
...       correct += 1
...   elif pred[0] > 0.5:
...     correct += 1
>>> print('The accuracy on {0} testing samples is:
      {1:.1f}%'.format(len(Y_test), correct/len(Y_test)*100))
The accuracy on 1707 testing samples is: 92.0%

The naive Bayes classifier we just developed line by line correctly classifies 92% of emails!

Coding from scratch and implementing on your own is the best way to learn a machine
learning model. Of course, we can take a shortcut by directly using the MultinomialNB
class from the scikit-learn API:

>>> from sklearn.naive_bayes import MultinomialNB

We initialize a model with smoothing factor (specified as alpha in scikit-learn) 1 and prior
learned from the training set (specified as fit_prior in scikit-learn):

>>> clf = MultinomialNB(alpha=1.0, fit_prior=True)

To train the classifier with the fit method:

>>> clf.fit(term_docs_train, Y_train)



Spam Email Detection with Naive Bayes

[ 79 ]

And to obtain the prediction results with the predict_proba method:

>>> prediction_prob = clf.predict_proba(term_docs_test)
>>> prediction_prob[0:10]
array([[  1.00000000e+00,   2.12716600e-10], [  1.00000000e+00,  
2.72887131e-75], [  6.34671963e-01,   3.65328037e-01], [  1.00000000e+00,  
1.67181666e-12], [  1.00000000e+00,   4.15341124e-12], [  1.37860327e-04,  
9.99862140e-01], [  0.00000000e+00,   1.00000000e+00], [  1.00000000e+00,  
1.07066506e-18], [  1.00000000e+00,   2.02235745e-13], [  3.03193335e-01,  
6.96806665e-01]]) 

To directly acquire the predicted class values with the predict method (0.5 is the default
threshold: if the predicted probability of class 1 is greater than 0.5, class 1 is assigned,
otherwise 0 is assigned):

>>> prediction = clf.predict(term_docs_test)
>>> prediction[:10]
array([0, 0, 0, 0, 0, 1, 1, 0, 0, 1])

Finally, measure the accuracy performance quickly by calling the score method:

>>> accuracy = clf.score(term_docs_test, Y_test)
>>> print('The accuracy using MultinomialNB is:
{0:.1f}%'.format(accuracy*100))
The accuracy using MultinomialNB is: 92.0%

Classifier performance evaluation
So far, we have covered the first machine learning classifier and evaluated its performance
by prediction accuracy in-depth. Beyond accuracy, there are several measurements that give
us more insights and avoid class imbalance effects.

Confusion matrix summarizes testing instances by their predicted values and true values,
presented as a contingency table:



Spam Email Detection with Naive Bayes

[ 80 ]

To illustrate, we compute the confusion matrix of our naive Bayes classifier. Here the scikit-
learn confusion_matrix function is used, but it is very easy to code it ourselves:

>>> from sklearn.metrics import confusion_matrix
>>> confusion_matrix(Y_test, prediction, labels=[0, 1])
array([[1098,   93],
       [  43,  473]])

Note that we consider 1 the spam class to be positive. From the confusion matrix, for
example, there are 93 false positive cases (where it misinterprets a legitimate email as a
spam one), and 43 false negative cases (where it fails to detect a spam email). And the
classification accuracy is just the proportion of all true cases:

.

Precision measures the fraction of positive calls that are correct, that is , and

 in our case.

Recall, on the other hand, measures the fraction of true positives that are correctly

identified, that is , and  in our case. Recall is also called true positive
rate.

The F1 score comprehensively includes both the precision and the recall, and equates to

their harmonic mean: . We tend to value the f1 score above
precision or recall alone.

Let's compute these three measurements using corresponding functions from scikit-learn:

>>> from sklearn.metrics import precision_score, recall_score, f1_score
>>> precision_score(Y_test, prediction, pos_label=1)
0.83568904593639581
>>> recall_score(Y_test, prediction, pos_label=1)
0.91666666666666663
>>> f1_score(Y_test, prediction, pos_label=1)
0.87430683918669128

0 the legitimate class can also be viewed as positive, depending on context. For example,
assign the 0 class as the pos_label:

>>> f1_score(Y_test, prediction, pos_label=0)
0.94168096054888506



Spam Email Detection with Naive Bayes

[ 81 ]

To obtain the precision, recall, and f1 score for each class, instead of exhausting all
class labels in the three function calls in the preceding example, the quickest way is to call
the classification_report function:

>>> from sklearn.metrics import classification_report
>>> report = classification_report(Y_test, prediction)
>>> print(report)
             precision    recall  f1-score   support

       0       0.96         0.92      0.94      1191
       1       0.84         0.92      0.87       516

avg / total   0.92      0.92      0.92      1707

Where avg is the weighted average according to the proportions of classes.

The measurement report provides a comprehensive view on how the classifier performs on
each class. It is as a result useful in imbalanced classification, where one can easily obtain a
high accuracy by simply classifying every sample as the dominant class, while the
precision, recall, and f1 score measurements for the minority class will be significantly
low.

The precision, recall, and f1 score are also applicable to multiclass classification, where
we can simply treat a class we are interested in as a positive case and any other classes as a
negative case.

During the process of tweaking a binary classifier (trying out different combinations of
parameters, for example, term feature dimension and smoothing addition in our spam
email classifier), it would be perfect if there is a set of parameters with which the highest
averaged and class individual f1 scores achieve at the same time. It is, however, usually not
the case. Sometimes a model has a higher average f1 score than another model, but a
significantly low f1 score for a particular class; sometimes two models have the same
average f1 scores, but one has a higher f1 score for one class while a lower score for
another class. In situations like these, how can we judge which model works better? Area
Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) is a united
measurement frequently used in binary classification.



Spam Email Detection with Naive Bayes

[ 82 ]

ROC curve is a plot of the true positive rate versus the false positive rate at various
probability thresholds ranging from 0 to 1. For a testing sample, if the probability of the
positive class is greater than the threshold, the positive class is assigned, otherwise it is
negative. To recap, the true positive rate is equivalent to recall, and the false positive rate is
the fraction of negatives that are incorrectly identified as positive. Let's code and exhibit the
ROC curve (under the thresholds of 0.0, 0.1, 0.2, ..., 1.0) of our model:

>>> pos_prob = prediction_prob[:, 1]
>>> thresholds = np.arange(0.0, 1.2, 0.1)
>>> true_pos, false_pos = [0]*len(thresholds), [0]*len(thresholds)
>>> for pred, y in zip(pos_prob, Y_test):
...     for i, threshold in enumerate(thresholds):
...         if pred >= threshold:
                # if truth and prediction are both 1
...             if y == 1:
...                 true_pos[i] += 1
# if truth is 0 while prediction is 1
    ...             else:
...                 false_pos[i] += 1
...         else:
...             break

Then calculate the true and false positive rates for all threshold settings (remember there are
516 positive testing samples and 1191 negative ones):

>>> true_pos_rate = [tp / 516.0 for tp in true_pos]
>>> false_pos_rate = [fp / 1191.0 for fp in false_pos]

Now we can plot the ROC curve with matplotlib:

>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> lw = 2
>>> plt.plot(false_pos_rate, true_pos_rate, color='darkorange',
...          lw=lw)
>>> plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
>>> plt.xlim([0.0, 1.0])
>>> plt.ylim([0.0, 1.05])
>>> plt.xlabel('False Positive Rate')
>>> plt.ylabel('True Positive Rate')
>>> plt.title('Receiver Operating Characteristic')
>>> plt.legend(loc="lower right")
>>> plt.show()



Spam Email Detection with Naive Bayes

[ 83 ]

In the graph, the dash line is the baseline representing random guessing where the true
positive rate increases linearly with the false positive rate, and its AUC is 0.5; the orange
line is the ROC plot of our model, and its AUC is somewhat less than 1. In a perfect case, the
true positive samples have a probability 1, so that the ROC starts at the point with 100%
true positive and 0 false positive. The AUC of such a perfect curve is 1. To compute the
exact AUC of our model, we can resort to the scikit-learn roc_auc_score function:

>>> from sklearn.metrics import roc_auc_score
>>> roc_auc_score(Y_test, pos_prob)
0.95828777198497783

Model tuning and cross-validation
Having learned what metrics are used to measure a classification model, we can now study
how to measure it properly. We simply cannot adopt the classification results from one
fixed testing set as we did in experiments previously. Instead, we usually apply the k-
fold cross-validation technique to assess how a model will generally perform in practice.



Spam Email Detection with Naive Bayes

[ 84 ]

In the k-fold cross-validation setting, the original data is first randomly divided into k equal-
sized subsets, in which class proportion is often preserved. Each of these k subsets is then
successively retained as the testing set for evaluating the model. During each trail, the rest k
-1 subsets (excluding the one-fold holdout) form the training set for driving the model.
Finally, the average performance across all k trials is calculated to generate an overall result.

Statistically, the averaged performance over k-fold cross-validation is an accurate estimate
of how a model performs in general. Given different sets of parameters pertaining to a
machine learning model and/or data preprocessing algorithms, or even two or more
different models, the goal of model tuning and/or model selection is to pick a set of
parameters of a classifier so that the best averaged performance is achieved. With these
concepts in mind, we now start to tweak our naive Bayes classifier incorporating with cross-
validation and AUC of ROC measurement.

We can use the split method from the scikit-learn StratifiedKFold class to divide the
data into chunks with preserved class fractions:

>>> from sklearn.model_selection import StratifiedKFold
>>> k = 10
>>> k_fold = StratifiedKFold(n_splits=k)
>>> cleaned_e-mails_np = np.array(cleaned_e-mails)
>>> labels_np = np.array(labels)

After initializing a 10-fold generator, we choose to explore the following values for the
parameters including:

max_features, the n most frequent terms used as feature space
smoothing factor, the initial count for a term



Spam Email Detection with Naive Bayes

[ 85 ]

whether or not to use a prior tailored to the training data:

>>> max_features_option = [2000, 4000, 8000]
>>> smoothing_factor_option = [0.5, 1.0, 1.5, 2.0]
>>> fit_prior_option = [True, False]
>>> auc_record = {}

Then, for each fold generated by the split method of the k_fold object, repeat the process of
term count feature extraction, classifier training, and prediction with one of the
aforementioned combinations of parameters, and record the resulting AUCs:

>>> for train_indices, test_indices in
                k_fold.split(cleaned_e-mails, labels):
...     X_train, X_test = cleaned_e-mails_np[train_indices],
                                  cleaned_e-mails_np[test_indices]
...     Y_train, Y_test = labels_np[train_indices],
                                  labels_np[test_indices]
...     for max_features in max_features_option:
...         if max_features not in auc_record:
...             auc_record[max_features] = {}
...         cv = CountVectorizer(stop_words="english",
                                     max_features=max_features)
...         term_docs_train = cv.fit_transform(X_train)
...         term_docs_test = cv.transform(X_test)
...         for smoothing in smoothing_factor_option:
...             if smoothing_factor not in
                                     auc_record[max_features]:
...                 auc_record[max_features][smoothing] = {}
...             for fit_prior in fit_prior_option:
...                 clf = MultinomialNB(alpha=smoothing,
                                              fit_prior=fit_prior)
...                 clf.fit(term_docs_train, Y_train)
...                 prediction_prob =
                                 clf.predict_proba(term_docs_test)
...                 pos_prob = prediction_prob[:, 1]
...                 auc = roc_auc_score(Y_test, pos_prob)
...                 auc_record[max_features][smoothing][fit_prior]
                       = auc + auc_record[max_features][smoothing]
                                              .get(fit_prior, 0.0)

Finally, present the results:

>>> print('max features  smoothing  fit prior
            auc'.format(max_features, smoothing, fit_prior, auc/k))
>>> for max_features, max_feature_record in
                                   auc_record.iteritems():
...     for smoothing, smoothing_record in
                                   max_feature_record.iteritems():



Spam Email Detection with Naive Bayes

[ 86 ]

...         for fit_prior, auc in smoothing_record.iteritems():

...             print('       {0}      {1}      {2}    {3:.4f}'
                .format(max_features, smoothing, fit_prior, auc/k))
...
max features  smoothing  fit prior  auc
       2000      0.5      False    0.9744
       2000      0.5      True    0.9744
       2000      1.0      False    0.9725
       2000      1.0      True    0.9726
       2000      2.0      False    0.9707
       2000      2.0      True    0.9706
       2000      1.5      False    0.9715
       2000      1.5      True    0.9715
       4000      0.5      False    0.9815
       4000      0.5      True    0.9817
       4000      1.0      False    0.9797
       4000      1.0      True    0.9797
       4000      2.0      False    0.9779
       4000      2.0      True    0.9778
       4000      1.5      False    0.9787
       4000      1.5      True    0.9785
       8000      0.5      False    0.9855
       8000      0.5      True    0.9856
       8000      1.0      False    0.9845
       8000      1.0      True    0.9845
       8000      2.0      False    0.9838
       8000      2.0      True    0.9837
       8000      1.5      False    0.9841
       8000      1.5      True    0.9841

The (8000, 0.5, True) set enables the best AUC 0.9856.

Summary
In this chapter, we acquired the fundamental and important concepts of machine learning
classification, including types of classification, classification performance evaluation, cross-
validation and model tuning, as well as a simple yet power classifier, naive Bayes. We went
through the mechanics and implementations of naive Bayes in-depth with a couple of
examples and a spam email detection project.

Practice makes perfect. Another great project to deepen your understanding could be
sentiment (positive/negative) classification for movie review data (downloaded via h t t p
://w w w . c s . c o r n e l l . e d u /p e o p l e /p a b o /m o v i e - r e v i e w - d a t a /r e v i e w _ p o l a r i t y . t a r . g z

from the page http://www.cs.cornell.edu/people/pabo/movie-review-data/).

http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/


4
News Topic Classification with

Support Vector Machine
This chapter continues our journey of classifying text data, a great starting point of learning
machine learning classification with broad real-life applications. We will be focusing on
topic classification on the news data we used in Chapter 2, Exploring the 20 Newsgroups
Dataset with Text Analysis Algorithms and using another powerful classifier, support vector
machine, to solve such problems.

We will get into details for the topics mentioned:

Term frequency-inverse document frequency
Support vector machine
The mechanics of SVM
The implementations of SVM
Multiclass classification strategies
The nonlinear kernels of SVM
Choosing between linear and Gaussian kernels
Overfitting and reducing overfitting in SVM
News topic classification with SVM
Tuning with grid search and cross-validation



News Topic Classification with Support Vector Machine

[ 88 ]

Recap and inverse document frequency
In the previous chapter, we detected spam emails by applying naive Bayes classifier on the
extracted feature space. The feature space was represented by term frequency (tf), where a
collection of text documents was converted to a matrix of term counts. It reflected how
terms are distributed in each individual document, however, without all documents across
the entire corpus. For example, some words generally occur more often in the language,
while some rarely occur, but convey important messages.

Because of this, it is encouraged to adopt a more comprehensive approach to extract text
features, the term frequency-inverse document frequency (tf-idf): it assigns each term
frequency a weighting factor that is inversely proportional to the document frequency, the
fraction of documents containing this term. In practice, the idf factor of a term t in
documents D is calculated as follows:

Where nD is the total number of documents,  is the number of documents containing t,
and the 1 is added to avoid division by zero.

With the idf factor incorporated, it diminishes the weight of common terms (such as "get",
"make") occurring frequently, and emphasizes terms that rarely occur but are meaningful.

We can test the effectiveness of tf-idf on our existing spam email detection model, by simply
replacing the tf feature extractor, CountVectorizer, with the tf-idf feature extractor,
TfidfVectorizer, from scikit-learn. We will reuse most of the previous codes and only
tune the naive Bayes smoothing term:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> smoothing_factor_option = [1.0, 2.0, 3.0, 4.0, 5.0]
>>> from collections import defaultdict
>>> auc_record = defaultdict(float)
>>> for train_indices, test_indices in k_fold.split(cleaned_emails,
labels):
...     X_train, X_test = cleaned_emails_np[train_indices],
                                   cleaned_emails_np[test_indices]



News Topic Classification with Support Vector Machine

[ 89 ]

...     Y_train, Y_test = labels_np[train_indices],
                                   labels_np[test_indices]
...     tfidf_vectorizer = TfidfVectorizer(sublinear_tf=True,
              max_df=0.5, stop_words='english', max_features=8000)
...     term_docs_train = tfidf_vectorizer.fit_transform(X_train)
...     term_docs_test = tfidf_vectorizer.transform(X_test)
...     for smoothing_factor in smoothing_factor_option:
...         clf = MultinomialNB(alpha=smoothing_factor,
                                              fit_prior=True)
...         clf.fit(term_docs_train, Y_train)
...         prediction_prob = clf.predict_proba(term_docs_test)
...         pos_prob = prediction_prob[:, 1]
...         auc = roc_auc_score(Y_test, pos_prob)
...         auc_record[smoothing_factor] += auc
>>> print('max features  smoothing  fit prior  auc')
>>> for smoothing, smoothing_record in auc_record.iteritems():
...         print('       8000      {0}      true
                               {1:.4f}'.format(smoothing,
smoothing_record/k))
max features  smoothing  fit prior  auc
       8000      1.0      True    0.9920
       8000      2.0      True    0.9930
       8000      3.0      True    0.9936
       8000      4.0      True    0.9940
       8000      5.0      True    0.9943

The best averaged 10-fold AUC 0.9943 is achieved, which outperforms 0.9856 obtained
based on tf features.

Support vector machine
After introducing a powerful alternative for text feature exaction, we will continue with
another great classifier alternative for text data classification, the support vector machine.



News Topic Classification with Support Vector Machine

[ 90 ]

In machine learning classification, SVM finds an optimal hyperplane that best segregates
observations from different classes. A hyperplane is a plane of n-1 dimension that separates
the n dimensional feature space of the observations into two spaces. For example, the 
hyperplane in a two-dimensional feature space is a line, and a surface in a three-
dimensional feature space. The optimal hyperplane is picked so that the distance from its
nearest points in each space to itself is maximized. And these nearest points are the so-
called support vectors.

The mechanics of SVM
Based on the preceding stated definition of SVM, there can be infinite number of feasible
hyperplanes. How can we identify the optimal one? Let's discuss SVM in further detail
through a few scenarios.

Scenario 1 - identifying the separating hyperplane
First we need to understand what qualifies for a separating hyperplane. In the following
example, hyperplane C is the only correct one as it successfully segregates observations by
their labels, while hyperplane A and B fail. We can express this mathematically:



News Topic Classification with Support Vector Machine

[ 91 ]

In a two-dimensional space, a line can be defined by a slope vector w (represented as a two-
dimensional vector) and an intercept b. Similarly, in a space of n dimensions, a hyperplane
can be defined by an n-dimensional vector w and an intercept b. Any data point x on the
hyperplane satisfies . A hyperplane is a separating hyperplane if:

For any data point x from one class, it satisfies 

For any data point x from another class, it satisfies 

There can be countless possible solutions for w and b. So, next we will learn how to identify
the best hyperplane among possible separating hyperplanes.

Scenario 2 - determining the optimal hyperplane
In the following instance, hyperplane C is the optimal one that enables the maximal sum of
the distance between the nearest data point in the positive side to itself and the distance
between the nearest data point in the negative side to itself. The nearest point(s) in the
positive side can constitute a hyperplane parallel to the decision hyperplane, which we call
a positive hyperplane; on the other hand, the nearest point(s) in the negative side compose
the negative hyperplane. The perpendicular distance between the positive and negative 
hyperplanes is called margin, whose value equates to the sum of two distances
aforementioned. A decision hyperplane is optimal if the margin is maximized.



News Topic Classification with Support Vector Machine

[ 92 ]

Maximum-margin (optimal) hyperplane and margins for an SVM model trained with
samples from two classes are illustrated below. Samples on the margin (two from one class,
and one from the other class as shown below) are the so-called support vectors.



News Topic Classification with Support Vector Machine

[ 93 ]

Again, let's interpret it in a mathematical way by first describing the positive and negative
hyperplanes as follows:

Where is a data point on the positive hyperplane and on the negative hyperplane,
respectively.

The distance between a point to the decision hyperplane can be calculated as follows:

Similarly, the distance between a point to the decision hyperplane is:

So the margin becomes . As a result, we need to minimize  in order to maximize the
margin. Importantly, to comply with the fact that the support vectors on the positive and
negative hyperplanes are the nearest data points to the decision hyperplane, we add a
condition that no data point falls between the positive and negative hyperplanes:

Where  is an observation. And this can be further combined into:

To summarize, w and b that determine the SVM decision hyperplane are trained and solved
by the following optimization problem:

Minimizing 

Subject to , for a training set of



News Topic Classification with Support Vector Machine

[ 94 ]

To solve this optimization problem, we need to resort to quadratic programming
techniques, which are beyond the scope of our learning journey. Therefore, we will not
cover the computation methods in detail and will implement the classifier using the SVC
and LinearSVC APIs from scikit-learn, which are realized respectively based on libsvm (h t

t p s ://w w w . c s i e . n t u . e d u . t w /~c j l i n /l i b s v m /) and liblinear (h t t p s ://w w w . c s i e . n t u . e d u

. t w /~c j l i n /l i b l i n e a r /) as two popular open source SVM machine learning libraries. But
it is always encouraging to understand the concepts of computing SVM. Shai Shalev-
Shwartz et al.'s Pegasos: Primal estimated sub-gradient solver for SVM (Mathematical
Programming March 2011, Volume 127, Issue 1, pp 3-30) and Cho-Jui Hsieh et al.'s A Dual
Coordinate Descent Method for Large-scale Linear SVM (Proceedings of the 25th international
conference on Machine learning, pp 408-415) would be great learning materials. They cover
two modern approaches, sub-gradient descent and coordinate descent, correspondingly.

The learned w and b are then used to classify a new sample  as follows:

 can be portrayed as the distance from the data point  to the decision
hyperplane, and also interpreted as the confidence of prediction: the higher the value, the
further away from the decision boundary, the more certainty of the prediction.

Although we cannot wait to implement the SVM algorithm, let's take a step back and look
at a frequent scenario where data points are not perfectly linearly separable.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/


News Topic Classification with Support Vector Machine

[ 95 ]

Scenario 3 - handling outliers
To deal with a set of observations containing outliers that make it unable to linearly
segregate the entire dataset, we allow misclassification of such outliers and try to minimize
the introduced error. The misclassification error  (also called hinge loss) for a sample 
can be expressed as follows:

Together with the ultimate term  to reduce, we then want to minimize as follows:

For a training set of m samples , where
the parameter C controls the trade-off between two terms.

When C of large value is chosen, the penalty for misclassification becomes relatively high,
which makes the thumb rule of data segregation stricter and the model prone to overfitting.
An SVM model with a large C has a low bias, but it might suffer high variance.

Conversely, when the value of C is sufficiently small, the influence of misclassification
becomes relatively low, which allows more misclassified data points and thus makes the
separation less strict. An SVM model with a small C has a low variance, but it might
compromise with high bias.



News Topic Classification with Support Vector Machine

[ 96 ]

A detailed representation is shown below.

The parameter C determines the balance between bias and variance. It can be fine-
tuned with cross-validation, which we will practice shortly.



News Topic Classification with Support Vector Machine

[ 97 ]

The implementations of SVM
We have totally covered the fundamentals of the SVM classifier. Now let's apply it right
away on news topic classification. We start with a binary case classifying two topics,

comp.graphics and sci.space:

First, load the training and testing subset of the computer graphics and science space news
data respectively:

>>> categories = ['comp.graphics', 'sci.space']
>>> data_train = fetch_20newsgroups(subset='train',
                           categories=categories, random_state=42)
>>> data_test = fetch_20newsgroups(subset='test',
                           categories=categories, random_state=42)

Again, don't forget to specify a random state for reproducing experiments.

Clean the text data and retrieve label information:

>>> cleaned_train = clean_text(data_train.data)
>>> label_train = data_train.target
>>> cleaned_test = clean_text(data_test.data)
>>> label_test = data_test.target
>>> len(label_train), len(label_test)
(1177, 783)

As a good practice, check whether the classes are imbalanced:

>>> from collections import Counter
>>> Counter(label_train)
Counter({1: 593, 0: 584})
>>> Counter(label_test)
Counter({1: 394, 0: 389})

Next, extract tf-idf features using the TfidfVectorizer extractor that we just acquired:

>>> tfidf_vectorizer = TfidfVectorizer(sublinear_tf=True,
              max_df=0.5, stop_words='english', max_features=8000)
>>> term_docs_train =
             tfidf_vectorizer.fit_transform(cleaned_train)
>>> term_docs_test = tfidf_vectorizer.transform(cleaned_test)



News Topic Classification with Support Vector Machine

[ 98 ]

Now we can apply our SVM algorithm with features ready. Initialize an SVC model with the
kernel parameter set to linear (we will explain this shortly) and penalty C set to the
default value 1:

>>> from sklearn.svm import SVC
>>> svm = SVC(kernel='linear', C=1.0, random_state=42)

Then fit our model on the training set:

>>> svm.fit(term_docs_train, label_train)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto',
  kernel='linear',max_iter=-1, probability=False, random_state=42,
  shrinking=True, tol=0.001, verbose=False)

And then predict on the testing set with the trained model and obtain the prediction
accuracy directly:

>>> accuracy = svm.score(term_docs_test, label_test)
>>> print('The accuracy on testing set is:
                                  {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 96.4%

Our first SVM model just works so well with 96.4% accuracy achieved. How about more
than two topics? How does SVM handle multiclass classification?

Scenario 4 - dealing with more than two classes
SVM and many other classifiers can be generalized to the multiple class case by two
common approaches, one-vs-rest (also called one-vs-all) and one-vs-one.

In the one-vs-rest setting, for a K-class problem, it constructs K different binary SVM
classifiers. For the  classifier, it treats the  class as the positive case and the rest 
classes as the negative case as a whole; the hyperplane denoted as  is trained to
separate these two cases. To predict the class of a new sample , it compares the resulting
predictions  from K individual classifiers. As we discussed in the last section, the
larger value of  means higher confidence that  belongs to the positive case.
Therefore, it assigns  to the class i where  has the largest value among all
prediction results:



News Topic Classification with Support Vector Machine

[ 99 ]

For instance, if , , , we say  belongs
to the green class; if , , , then 
belongs to the blue class regardless of the sign.

In the one-vs-one strategy, it conducts pairwise comparison by building SVM classifiers

distinguishing data from each pair of classes. This results in  different classifiers.



News Topic Classification with Support Vector Machine

[ 100 ]

For a classifier associated with class i and j, the hyperplane denoted as  is trained
only based on observations from i (can be viewed as positive case) and j (can be viewed as
negative case); it then assigns the class either i or j to a new sample  based on the sign of

. Finally, the class with the most number of assignments is considered the
predicting result of .



News Topic Classification with Support Vector Machine

[ 101 ]

In most cases, SVM classifier with one-vs-rest and with one-vs-one perform comparably in 
terms of accuracy. The choice between these two strategies is largely computational.

Although one-vs-one requires more classifiers ( ) than one-vs-rest ( ), each pairwise
classifier only needs to learn on a small subset of data as opposed to the entire set in the
one-vs-rest setting. As a result, training an SVM model in the one-vs-one setting is generally
more memory efficient and less computationally expensive, and hence more preferable for
practical use, as argued in Chih-Wei Hsu and Chih-Jen Lin's A Comparison of Methods for
Multi-Class Support Vector Machines (IEEE Transactions on Neural Networks, 2002, Volume
13, pp 415-425).

In scikit-learn, classifiers handle multiclass cases internally and we do not need to explicitly
write any additional codes to enable it. We can see how simple it is in the following
example of classifying five topics comp.graphics, sci.space, alt.atheism,
talk.religion.misc, and rec.sport.hockey:

>>> categories = [
...     'alt.atheism',
...     'talk.religion.misc',
...     'comp.graphics',
...     'sci.space',
...     'rec.sport.hockey'
... ]
>>> data_train = fetch_20newsgroups(subset='train',
                           categories=categories, random_state=42)
>>> data_test = fetch_20newsgroups(subset='test',
                           categories=categories, random_state=42)
>>> cleaned_train = clean_text(data_train.data)
>>> label_train = data_train.target
>>> cleaned_test = clean_text(data_test.data)
>>> label_test = data_test.target
>>> term_docs_train =
                  tfidf_vectorizer.fit_transform(cleaned_train)
>>> term_docs_test = tfidf_vectorizer.transform(cleaned_test)



News Topic Classification with Support Vector Machine

[ 102 ]

In SVC, multiclass support is implicitly handled according to the one-vs-one scheme:

>>> svm = SVC(kernel='linear', C=1.0, random_state=42)
>>> svm.fit(term_docs_train, label_train)
>>> accuracy = svm.score(term_docs_test, label_test)
>>> print('The accuracy on testing set is:
                                  {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 88.6%

We check how it performs for individual classes as follows:

>>> from sklearn.metrics import classification_report
>>> prediction = svm.predict(term_docs_test)
>>> report = classification_report(label_test, prediction)
>>> print(report)
             precision    recall  f1-score   support
           0       0.81      0.77      0.79       319
          1       0.91      0.94      0.93       389
          2       0.98      0.96      0.97       399
          3       0.93      0.93      0.93       394
          4       0.73      0.76      0.74       251
 avg / total       0.89      0.89      0.89      1752

Not bad! And we could, as usual, tweak the value of the parameters kernel='linear' and
C=1.0 as specified in our SVC model. We discussed that parameter C controls the strictness
of separation, and it can be tuned to achieve the best trade-off between bias and variance.
How about the kernel? What is it and what are the alternatives to linear kernel? In the next
section, we will see how kernels make SVM so powerful.



News Topic Classification with Support Vector Machine

[ 103 ]

The kernels of SVM

Scenario 5 - solving linearly non-separable problems
The hyperplane we have looked at till now is linear, for example, a line in a two-
dimensional feature space, a surface in a three-dimensional one. However, in frequently
seen scenarios like the following one, we are not able to find any linear hyperplane to
separate two classes.



News Topic Classification with Support Vector Machine

[ 104 ]

Intuitively, we observe that data points from one class are closer to the origin than those
from another class. The distance to the origin provides distinguishable information. So we
add a new feature  and transform the original two-dimensional space into a
three-dimensional one. In the new space, we can find a surface hyperplane separating the
data, or a line in the 2D view. With the additional feature, the dataset becomes linearly
separable in the higher dimensional space .



News Topic Classification with Support Vector Machine

[ 105 ]

Similarly, SVM with kernel solves nonlinear classification problems by converting the
original feature space to a higher dimensional feature space with a transformation
function  such that the transformed dataset  is linearly separable. A linear
hyperplane  is then trained based on observations . For an unknown
sample , it is first transformed into ; the predicted class is determined by .

Besides enabling nonlinear separation, SVM with kernel makes the computation efficient.
There is no need to explicitly perform expensive computation in the transformed high-
dimensional space. This is because:

During the course of solving the SVM quadratic optimization problems, feature vectors
 are only involved in the final form of pairwise dot product ,

although we did not expand this mathematically in previous sections. With kernel, the new
feature vectors are and their pairwise dot products can be
expressed as follows:

Where the low dimensional pairwise dot product can be first implicitly computed
and later mapped to a higher dimensional space by directly applying the transformation 
function. There exists a functions K that satisfies the following:

Where function K is the so-called kernel function. As a result, the nonlinear decision
boundary can be efficiently learned by simply replacing the terms  with

.

The most popular kernel function is the radial basis function (RBF) kernel (also called
Gaussian kernel), which is defined as follows:



News Topic Classification with Support Vector Machine

[ 106 ]

Where . In the Gaussian function, the standard deviation  controls the amount of
variation or dispersion allowed-the higher  (or lower ), the larger width of the bell, the
wider range of values that the data points are allowed to spread out over. Therefore,  as
the kernel coefficient determines how particularly or generally the kernel function fits the
observations. A large  indicates a small variance allowed and a relatively exact fit on the
training samples, which leads to a high bias. On the other hand, a small  implies a high
variance and a generalized fit, which might cause overfitting. To illustrate this, let's apply
RBF kernel with different values to a dataset:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> X = np.c_[# negative class
...           (.3, -.8),
...           (-1.5, -1),
...           (-1.3, -.8),
...           (-1.1, -1.3),
...           (-1.2, -.3),
...           (-1.3, -.5),
...           (-.6, 1.1),
...           (-1.4, 2.2),
...           (1, 1),
...           # positive class
...           (1.3, .8),
...           (1.2, .5),
...           (.2, -2),
...           (.5, -2.4),
...           (.2, -2.3),
...           (0, -2.7),
...           (1.3, 2.1)].T
>>> Y = [-1] * 8 + [1] * 8
>>> gamma_option = [1, 2, 4]

We will visualize the dataset with corresponding decision boundary trained under each of
the preceding three :

>>> import matplotlib.pyplot as plt
>>> plt.figure(1, figsize=(4*len(gamma_option), 4))
>>> for i, gamma in enumerate(gamma_option, 1):
...     svm = SVC(kernel='rbf', gamma=gamma)
...     svm.fit(X, Y)
...     plt.subplot(1, len(gamma_option), i)
...     plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10,
                                          cmap=plt.cm.Paired)
...     plt.axis('tight')
...     XX, YY = np.mgrid[-3:3:200j, -3:3:200j]



News Topic Classification with Support Vector Machine

[ 107 ]

...     Z = svm.decision_function(np.c_[XX.ravel(), YY.ravel()])

...     Z = Z.reshape(XX.shape)

...     plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)

...     plt.contour(XX, YY, Z, colors=['k', 'k', 'k'],
                linestyles=['--', '-', '--'], levels=[-.5, 0, .5])
...     plt.title('gamma = %d' % gamma)
>>> plt.show()

Again,  can be fine-tuned via cross-validation to obtain the best performance.

Some other common kernel functions include the polynomial kernel and sigmoid kernel:

In the absence of expert prior knowledge of the distribution, RBF is usually preferable in
practical use, as there are more parameters (the polynomial degree d) to tweak for the
Polynomial kernel and the empirically sigmoid kernel can perform approximately on par
with RBF only under certain parameters. Hence it is mainly a debate between the linear and
RBF kernel.

Choosing between the linear and RBF kernel
The rule of thumb, of course, is linear separability. However, this is most of the time very
difficult to identify, unless you have sufficient prior knowledge or the features are of low
dimension (1 to 3).



News Topic Classification with Support Vector Machine

[ 108 ]

Prior knowledge, including text data, is often linearly separable, data from the XOR function
is not, and we will look at the following three scenarios where the linear kernel is favored
over RBF:

Case 1: both the numbers of features and instances are large (more than 104 or 105). As the
dimension of the feature space is high enough, additional features as a result of RBF
transformation will not provide any performance improvement, but will increase
computational expense. Some examples from the UCI Machine Learning Repository are of
this type:

URL Reputation Data Set: h t t p s ://a r c h i v e . i c s . u c i . e d u /m l /d a t a s e t s /U R L +R

e p u t a t i o n   (number of instances: 2396130, number of features: 3231961) for
malicious URL detection based on their lexical and host information
YouTube Multiview Video Games Data Set: h t t p s ://a r c h i v e . i c s . u c i . e d u /m

l /d a t a s e t s /Y o u T u b e +M u l t i v i e w +V i d e o +G a m e s +D a t a s e t   (number of instances:
120000, number of features: 1000000) for topic classification

Case 2: the number of features is noticeably large compared to the number of training
samples. Apart from the reasons stated in Scenario 1, the RBF kernel is significantly more
prone to overfitting. Such a scenario occurs in, for example:

Dorothea Data Set: h t t p s ://a r c h i v e . i c s . u c i . e d u /m l /d a t a s e t s /D o r o t h e a

(number of instances: 1950, number of features: 100000) for drug discovery that
classifies chemical compounds as active or inactive by structural molecular
features
Arcene Data Set: h t t p s ://a r c h i v e . i c s . u c i . e d u /m l /d a t a s e t s /A r c e n e  
(number of instances: 900, number of features: 10000) a mass-spectrometry
dataset for cancer detection

Case 3: the number of instances is significantly large compared to the number of features.
For a dataset of low dimension, the RBF kernel will, in general, boost the performance by
mapping it to a higher dimensional space. However, due to the training complexity, it
usually becomes no longer efficient on a training set with more than 106 or 107 samples.
Some exemplar datasets include:

Heterogeneity Activity Recognition Data Set: h t t p s ://a r c h i v e . i c s . u c i . e d u /m

l /d a t a s e t s /H e t e r o g e n e i t y +A c t i v i t y +R e c o g n i t i o n  (number of instances:
43930257, number of features: 16) for human activity recognition
HIGGS Data Set: h t t p s ://a r c h i v e . i c s . u c i . e d u /m l /d a t a s e t s /H I G G S  
(number of instances: 11000000, number of features: 28) for distinguishing
between a signal process producing Higgs bosons or a background process

https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS


News Topic Classification with Support Vector Machine

[ 109 ]

Other than these three preceding cases, RBF is practically the first choice.

Rules of choosing between the linear and RBF kernel can be summarized as follows:

Case Linear RBF

Expert prior knowledge If linearly separable If nonlinearly separable

Visualizable data of 1 to 3 dimension If linearly separable If nonlinearly separable

Both numbers of features and instances are
large

First choice

Features  Instances First choice

Instances  Features First choice

Others First choice

News topic classification with support
vector machine
It is finally time to build our state-of-the-art, SVM-based news topic classifier with all we
just learned.

Load and clean the news dataset with the whole 20 groups:

>>> categories = None
>>> data_train = fetch_20newsgroups(subset='train',
                           categories=categories, random_state=42)
>>> data_test = fetch_20newsgroups(subset='test',
                           categories=categories, random_state=42)
>>> cleaned_train = clean_text(data_train.data)
>>> label_train = data_train.target
>>> cleaned_test = clean_text(data_test.data)
>>> label_test = data_test.target
>>> term_docs_train =
                  tfidf_vectorizer.fit_transform(cleaned_train)
>>> term_docs_test = tfidf_vectorizer.transform(cleaned_test)



News Topic Classification with Support Vector Machine

[ 110 ]

Recall that the linear kernel is good at classifying text data; we continue setting linear as
the value of the kernel parameter in the SVC model and we only need to tune the penalty
C via cross-validation:

>>> svc_libsvm = SVC(kernel='linear')

The way we have conducted cross-validation so far is to explicitly split the data into folds
and repetitively write a for loop to consecutively examine each parameter. We will
introduce a more graceful approach utilizing the GridSearchCV tool from scikit-learn.
GridSearchCV handles the entire process implicitly, including data splitting, folds
generation, cross training and validation, and finally exhaustive search over the best set of
parameters. What is left for us is just to specify the parameter(s) to tune and values to
explore for each individual parameter:

>>> parameters = {'C': (0.1, 1, 10, 100)}
>>> from sklearn.model_selection import GridSearchCV
>>> grid_search = GridSearchCV(svc_libsvm, parameters,
                                             n_jobs=-1, cv=3)

The GridSearchCV model we just initialized will conduct 3-fold cross validation (cv=3)
and will run in parallel on all available cores (n_jobs=-1). We then perform hyper-
parameter tuning by simply applying the fit method, and record the running time:

>>> import timeit
>>> start_time = timeit.default_timer()
>>> grid_search.fit(term_docs_train, label_train)
>>> print("--- %0.3fs seconds ---" % (
                             timeit.default_timer() - start_time))
--- 189.506s seconds ---

We can obtain the optimal set of parameters (the optimal C in this case) using the following:

>>> grid_search.best_params_
{'C': 10}

And the best 3-fold averaged performance under the optimal set of parameters:

>>> grid_search.best_score_
0.8665370337634789



News Topic Classification with Support Vector Machine

[ 111 ]

We then retrieve the SVM model with the optimal parameter and apply it to the unknown
testing set:

>>> svc_libsvm_best = grid_search.best_estimator_
>>> accuracy = svc_libsvm_best.score(term_docs_test, label_test)
>>> print('The accuracy on testing set is:
                                  {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 76.2%

It is to be noted that we tune the model based on the original training set, which is divided
into folds for cross training and validation, and that we adopt the optimal model to the
original testing set. We examine the classification performance in this manner in order to
measure how well generalized the model is to make correct predictions on a completely
new dataset. An accuracy of 76.2% is achieved with our first SVC model. How will another
SVM classifier, LinearSVC, from scikit-learn perform? The LinearSVC is similar to the SVC
with the linear kernel, but it is implemented based on the liblinear library instead of
libsvm. We repeat the same preceding process for LinearSVC:

>>> from sklearn.svm import LinearSVC
>>> svc_linear = LinearSVC()
>>> grid_search = GridSearchCV(svc_linear, parameters,
                                                n_jobs=-1, cv=3))
>>> start_time = timeit.default_timer()
>>> grid_search.fit(term_docs_train, label_train)
>>> print("--- %0.3fs seconds ---" %
                            (timeit.default_timer() - start_time))
--- 16.743s seconds ---
>>> grid_search.best_params_
{'C': 1}
>>> grid_search.best_score_
0.8707795651405339
>>> svc_linear_best = grid_search.best_estimator_
>>> accuracy = svc_linear_best.score(term_docs_test, label_test)
>>> print('The accuracy on testing set is:
                                    {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 77.9%

The LinearSVC model outperforms the SVC and especially trains more than 10 times faster.
It is because the liblinear library with high scalability is designed for large datasets while
the libsvm library with more than quadratic computation complexity is not able to scale
well with more than 105 training instances.



News Topic Classification with Support Vector Machine

[ 112 ]

We can also tweak the feature extractor, the TfidfVectorizer model, to further improve
the performance. Feature extraction and classification as two consecutive steps should be
cross-validated collectively. We utilize the pipeline API from scikit-learn to facilitate this.

The tfidf feature extractor and linear SVM classifier are first assembled in the pipeline:

>>> from sklearn.pipeline import Pipeline
>>> pipeline = Pipeline([
...     ('tfidf', TfidfVectorizer(stop_words='english')),
...     ('svc', LinearSVC()),
... ])

Parameters of both steps to be tuned are defined as follows, with a pipeline step name
joined with a parameter name by a __ as the key, and a tuple of corresponding options as
the value:

>>> parameters_pipeline = {
...     'tfidf__max_df': (0.25, 0.5),
...     'tfidf__max_features': (40000, 50000),
...     'tfidf__sublinear_tf': (True, False),
...     'tfidf__smooth_idf': (True, False),
...     'svc__C': (0.1, 1, 10, 100),
... }

Besides the penalty C for the SVM classifier, we tune the tfidf feature extractor in terms of:

max_df: The maximal document frequency of a term to be allowed, in order to
avoid common terms generally occurring in documents
max_features: Number of top features to consider; we have only used 8000 till
now for experiment purposes
sublinear_tf: Scaling term frequency with the logarithm function or not
smooth_idf: Adding an initial 1 to the document frequency or not, similar to
the smoothing for the term frequency
The grid search model searches for the optimal set of parameters throughout the
entire pipeline:

>>> grid_search = GridSearchCV(pipeline, parameters_pipeline,
                                              n_jobs=-1, cv=3)
>>> start_time = timeit.default_timer()
>>> grid_search.fit(cleaned_train, label_train)
>>> print("--- %0.3fs seconds ---" %
                        (timeit.default_timer() - start_time))
--- 278.461s seconds ---
>>> grid_search.best_params_
{'tfidf__max_df': 0.5, 'tfidf__smooth_idf': False,



News Topic Classification with Support Vector Machine

[ 113 ]

 'tfidf__max_features': 40000, 'svc__C': 1,
 'tfidf__sublinear_tf': True}
>>> grid_search.best_score_
0.88836839314124094
>>> pipeline_best = grid_search.best_estimator_

And finally is applied to the testing set:

>>> accuracy = pipeline_best.score(cleaned_test, label_test)
>>> print('The accuracy on testing set is: {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 80.6%

The {max_df: 0.5, smooth_idf: False, max_features: 40000, sublinear_tf:
True, C: 1} set enables the best classification accuracy, 80.6% on the entire 20 groups of
news data.

More examples - fetal state classification on
cardiotocography with SVM
After a successful application of SVM with the linear kernel, we will look at one more
example where SVM with the RBF kernel is suitable for it.

We are going to build a classifier that helps obstetricians categorize cardiotocograms
(CTGs) into one of the three fetal states (normal, suspect, and pathologic). The
cardiotocography dataset we use is from h t t p s ://a r c h i v e . i c s . u c i . e d u /m l /d a t a s e t s /C a

r d i o t o c o g r a p h y   under the UCI Machine Learning Repository and it can be directly
downloaded via h t t p s ://a r c h i v e . i c s . u c i . e d u /m l /m a c h i n e - l e a r n i n g - d a t a b a s e s

/00193/C T G . x l s   as an .xls Excel file. The dataset consists of measurements of fetal heart
rate and uterine contraction as features and fetal state class code (1=normal, 2=suspect,
3=pathologic) as label. There are, in total, 2126 samples with 23 features. Based on the
numbers of instances and features (2126 is not far more than 23), the RBF kernel is the first
choice.

We herein work with the .xls Excel file using pandas (h t t p ://p a n d a s . p y d a t a . o r g /),
which is a powerful data analysis library. It can be easily installed via the command line
pip install pandas in the Terminal. It might request an additional installation of the
xlrd package, which the pandas Excel module is based on.

https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/


News Topic Classification with Support Vector Machine

[ 114 ]

We first read the data located in the sheet named Raw Data:

>>> import pandas as pd
>>> df = pd.read_excel('CTG.xls', "Raw Data")

And then take these 2126 data samples, assign the feature set (from column D to AL in the
spreadsheet), and label set (column AN) respectively:

>>> X = df.ix[1:2126, 3:-2].values
>>> Y = df.ix[1:2126, -1].values

Don't forget to check class proportions:

>>> Counter(Y)
Counter({1.0: 1655, 2.0: 295, 3.0: 176})

We set aside 20% of the original data for final testing:

>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
                                   test_size=0.2, random_state=42)

Now we tune the RBF-based SVM model in terms of the penalty C and the kernel coefficient
:

>>> svc = SVC(kernel='rbf')
>>> parameters = {'C': (100, 1e3, 1e4, 1e5),
...               'gamma': (1e-08, 1e-7, 1e-6, 1e-5)}
>>> grid_search = GridSearchCV(svc, parameters, n_jobs=-1, cv=3)
>>> start_time = timeit.default_timer()
>>> grid_search.fit(X_train, Y_train)
>>> print("--- %0.3fs seconds ---" %
                      (timeit.default_timer() - start_time))
--- 6.044s seconds ---
>>> grid_search.best_params_
{'C': 100000.0, 'gamma': 1e-07}
>>> grid_search.best_score_
0.942352941176
>>> svc_best = grid_search.best_estimator_

And finally employ the optimal model to the testing set:

>>> accuracy = svc_best.score(X_test, Y_test)
>>> print('The accuracy on testing set is:
                               {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 96.5%



News Topic Classification with Support Vector Machine

[ 115 ]

Also check the performance for individual classes since the data is not quite balanced:

>>> prediction = svc_best.predict(X_test)
>>> report = classification_report(Y_test, prediction)
>>> print(report)
             precision    recall  f1-score   support
         1.0       0.98      0.98      0.98       333
         2.0       0.89      0.91      0.90        64
         3.0       0.96      0.93      0.95        29
 avg / total       0.96      0.96      0.96       426

Summary
In this chapter, we first expanded our knowledge of text feature exaction by introducing an
advanced technique termed frequency-inverse document frequency. We then continued our
journey of classifying news data with the support vector machine classifier, where we
acquired the mechanics of SVM, kernel techniques and implementations of SVM, and other
important concepts of machine learning classification, including multiclass classification
strategies and grid search, as well as useful tips for using SVM (for example, choosing
between kernels and tuning parameters). We finally adopted what we have learned in two
practical cases, news topic classification and fetal state classification.

We have learned and applied two classification algorithms so far, naive Bayes and SVM.
naive Bayes is a simple algorithm. For a dataset with independent features, naive Bayes will
usually perform well. SVM is versatile to adapt to the linear separability of data. In
generally, very high accuracy can be achieved by SVM with the right kernel and
parameters. However, this might be at the expense of intense computation and high
memory consumption. When it comes to text classification, as text data is in generate
linearly separable, SVM with linear kernel and naive Bayes often end up with comparable
performance. In practice, we can simply try both and select the better one with optimal
parameters.



5
Click-Through Prediction with

Tree-Based Algorithms
In this chapter and the next, we will be solving one of the most important machine learning
problems in digital online advertising, click-through prediction—given a user and the page
they are visiting, how likely they will click on a given ad. We will be herein focusing on
learning tree-based algorithms, decision tree and random forest, and utilizing them to
tackle the billion dollar problem.

We will get into details for the topics mentioned:

Introduction to online advertising click-through
Two types of features, numerical and categorical
Decision tree classifier
The mechanics of decision tree
The construction of decision tree
The implementations of decision tree
Click-through prediction with decision tree
Random forest
The mechanics of random forest
Click-through prediction with random forest
Tuning a random forest model



Click-Through Prediction with Tree-Based Algorithms

[ 117 ]

Brief overview of advertising click-through
prediction
Online display advertising is a multibillion-dollar industry. It comes in different formats
including banner ads composed of text, images, flash, and rich media such as audio and
video. Advertisers or their agencies place advertisements on a variety of websites, even
mobile apps across the Internet, to reach potential customers and deliver an advertising
message.

Display online advertising has served as one of the greatest examples for machine learning
utilization. Obviously, advertisers as well as consumers ourselves, are keenly interested in
well-targeted ads. The industry has heavily relied on the ability of machine learning models
to predict the ad targeting effectiveness: how likely the audience in a certain age group will
be interested in this product, customers with certain household income will purchase this
product after seeing its ad, frequent sport sites visitors will spend more time in reading this
ad, and so on. The most common measurement of effectiveness is the click-through rate
(CTR), which is the ratio of clicks on a specific ad to its total number of views. The higher
CTR in general, the better targeted an ad is, the more successful an online advertising
campaign is.

Click-through prediction holds both promise of and challenges for machine learning. It
mainly involves binary classification of whether a given ad on a given page (or app) will be
clicked by a given user, with predictive features from these three aspects, including:

Ad content and information (category, position, text, format, and so on)
Page content and publisher information (category, context, domain, and so on)
User information (age, gender, location, income, interests, search history,
browsing history, device, and so on)

Suppose we, as an agency, are operating ads on behalf of several advertisers and our job is
to display the right ads to the right audience. With an existing dataset in hand (the
following small chunk as an example, whose number of predictive features can easily go up
to thousands in reality) taken from millions of records of campaigns running last month, we
need to develop a classification model to learn and predict the future ad placement
outcome.



Click-Through Prediction with Tree-Based Algorithms

[ 118 ]

Getting started with two types of data,
numerical and categorical
At first glance, the features in the preceding dataset are categorical, for example, male or
female, one of four age groups, one of the predefined site categories, whether or not being
interested in sports. Such types of data are different from the numerical type of feature data
that we have worked with until now.



Click-Through Prediction with Tree-Based Algorithms

[ 119 ]

Categorical (also called qualitative) features represent characteristics, distinct groups, and a
countable number of options. Categorical features may or may not have logical order. For
example, household income from low, median to high, is an ordinal feature, while the
category of an ad is not ordinal. Numerical (also called quantitative) features, on the other
hand, have mathematical meaning as a measurement and of course are ordered. For
instance, term frequency and the tf-idf variant are respectively discreet and continuous
numerical features; the cardiotocography dataset contains both discreet (such as number of
accelerations per second, number of fetal movements per second) and continuous (such as
mean value of long term variability) numerical features.

Categorical features can also take on numerical values. For example, 1 to 12 represents
months of the year, 1 and 0 indicates male and female. Still, these values do not contain
mathematical implication.

Among the two classification algorithms, naive Bayes and SVM, which we learned about
previously, the naive Bayes classifier works for both numerical and categorical features as
likelihoods  or  are calculated in the same way, while SVM
requires features to be numerical in order to compute margins.

Now if we think of predicting click or not click with naive Bayes, and try to explain the
model to our advertiser clients, our clients will find it hard to understand the prior
likelihood of individual attributes and their multiplication. Is there a classifier that is easy to
interpret, explain to clients, and also able to handle categorical data?

Decision tree!

Decision tree classifier
A decision tree is a tree-like graph, a sequential diagram illustrating all of the possible
decision alternatives and the corresponding outcomes. Starting from the root of a tree, every
internal node represents what a decision is made based on; each branch of a node
represents how a choice may lead to the next nodes; and finally, each terminal node, the
leaf, represents an outcome yielded.



Click-Through Prediction with Tree-Based Algorithms

[ 120 ]

For example, we have just made a couple of decisions that brought us to the action of
learning decision tree to solve our advertising problem:

The decision tree classifier operates in the form of a decision tree. It maps observations to
class assignments (symbolized as leaf nodes), through a series of tests (represented as
internal nodes) based on feature values and corresponding conditions (represented as
branches). In each node, a question regarding the values and characteristics of a feature is
asked; based on the answer to the question, observations are split into subsets. Sequential
tests are conducted until a conclusion about the observations' target label is reached. The
paths from root to end leaves represent the decision making process, the classification rules.



Click-Through Prediction with Tree-Based Algorithms

[ 121 ]

The following figure shows a much simplified scenario where we want to predict click or
no click on a self-driven car ad, we manually construct a decision tree classifier that works
for an available dataset. For example, if a user is interested in technology and they have a
car, they will tend to click the ad; for a person outside of this subset, if the person is a high-
income female, then she is unlikely to click the ad. We then use the learned tree to predict
two new inputs, whose results are click and no click, respectively.

After a decision tree has been constructed, classifying a new sample is straightforward as
we just saw: starting from the root, apply the test condition and follow the branch
accordingly until a leaf node is reached and the class label associated will be assigned to the
new sample.

So how can we build an appropriate decision tree?



Click-Through Prediction with Tree-Based Algorithms

[ 122 ]

The construction of a decision tree
A decision tree is constructed by partitioning the training samples into successive subsets.
The partitioning process is repeated in a recursive fashion on each subset. For each
partitioning at a node, a condition test is conducted based on a value of a feature of the
subset. When the subset shares the same class label, or no further splitting can improve the
class purity of this subset, recursive partitioning on this node is finished.

Theoretically, for a partitioning on a feature (numerical or categorical) with n different
values, there are n different ways of binary splitting (yes or no to the condition test), not to
mention other ways of splitting. Without considering the order of features partitioning
takes place on, there are already  possible trees for an m-dimensional dataset.

Many algorithms have been developed to efficiently construct an accurate decision tree.
Popular ones include:

ID3 (Iterative Dichotomiser 3): which uses a greedy search in a top-down
manner by selecting the best attribute to split the dataset on each iteration
backtracking
C4.5: an improved version on ID3 by introducing backtracking where it traverses
the constructed tree and replaces branches with leaf nodes if purity is improved
this way.



Click-Through Prediction with Tree-Based Algorithms

[ 123 ]

CART (Classification and Regression Tree): which we will discuss in detail
CHAID (Chi-squared Automatic Interaction Detector): which is often used in 
direct marketing in practice. It involves complicated statistical concepts, but 
basically determines the optimal way of merging predictive variables in order to
best explain the outcome.

The basic idea of these algorithms is to grow the tree greedily by making a series of local
optimizations on choosing the most significant feature to use for partitioning the data. The
dataset is then split based on the optimal value of that feature. We will discuss the
measurement of significant features and optimal splitting value of a feature in the next
section.

We will now study in detail and implement the CART algorithm as the most notable
decision tree algorithm in general. It constructs the tree by binary splitting and growing
each node into left and right children. In each partition, it greedily searches for the most
significant combination of features and their values, where all different possible
combinations are tried and tested using a measurement function. With the selected feature
and value as a splitting point, it then divides the data in a way that:

Samples with the feature of this value (for a categorical feature) or greater value
(for a numerical feature) becomes the right child
The remainder becomes the left child

The preceding partitioning process repeats and recursively divides up the input samples
into two subgroups. When the dataset becomes unmixed, a splitting process stops at a
subgroup where any of the following two criteria meet:

Minimum number of samples for a new node: When the number of samples is
not greater than the minimum number of samples required for a further split, a
partitioning stops in order to prevent the tree from excessively tailoring to the
training set and as a result overfitting.
Maximum depth of the tree: A node stops growing when its depth, which is
defined as the number of partitioning taking place top-down starting from the
root node, is not less than the maximum tree depth. Deeper trees are more
specific to the training set and lead to overfitting.



Click-Through Prediction with Tree-Based Algorithms

[ 124 ]

A node with no branch out becomes a leaf and the dominant class of samples at this node is
served as the prediction. Once all splitting processes finish, the tree is constructed and is
portrayed with the information of assigned labels at terminal nodes and splitting points
(feature + value) at all preceding internal nodes.

We will implement the CART decision tree algorithm from scratch after studying the
metrics of selecting the optimal splitting features and values as promised.

The metrics to measure a split
When selecting the best combination of features and values as the splitting point, two
criteria, Gini impurity and information gain, can be used to measure the quality of
separation.

Gini impurity as its name implies, measures the class impurity rate, the class mixture rate.
For a dataset with K classes, suppose data from class k ( ) takes up a fraction  (

) of the entire dataset, the Gini impurity of such a dataset is written as follows:

Lower Gini impurity indicates a purer dataset. For example, when the dataset contains only
one class, say the fraction of this class is 1 and that of others is 0, its Gini impurity becomes
1 - (12 + 02) = 0. In another example, a dataset records a large number of coin flips where
heads and tails take up half of the samples, the Gini impurity is . In
binary cases, Gini impurity under different values of the positive class's fraction can be
visualized by the following code:

>>> import matplotlib.pyplot as plt
>>> import numpy as np

A fraction of the positive class varies from 0 to 1:

>>> pos_fraction = np.linspace(0.00, 1.00, 1000)



Click-Through Prediction with Tree-Based Algorithms

[ 125 ]

Gini impurity is calculated accordingly, followed by the plot of Gini impurity versus
positive proportion:

>>> gini = 1 - pos_fraction**2 - (1-pos_fraction)**2
>>> plt.plot(pos_fraction, gini)
>>> plt.ylim(0, 1)
>>> plt.xlabel('Positive fraction')
>>> plt.ylabel('Gini Impurity')
>>> plt.show()

Given labels of a dataset, we can implement the Gini impurity calculation function as
follows:

>>> def gini_impurity(labels):
...     # When the set is empty, it is also pure
...     if not labels:
...         return 0
...     # Count the occurrences of each label
...     counts = np.unique(labels, return_counts=True)[1]
...     fractions = counts / float(len(labels))
...     return 1 - np.sum(fractions ** 2)



Click-Through Prediction with Tree-Based Algorithms

[ 126 ]

Test it out with some examples:

>>> print('{0:.4f}'.format(gini_impurity([1, 1, 0, 1, 0])))
0.4800
>>> print('{0:.4f}'.format(gini_impurity([1, 1, 0, 1, 0, 0])))
0.5000
>>> print('{0:.4f}'.format(gini_impurity([1, 1, 1, 1])))
0.0000

In order to evaluate the quality of a split, we simply add up the Gini impurity of all
resulting subgroups combining the proportions of each subgroup as corresponding weight
factors. And again, the smaller weighted sum of Gini impurity, the better the split.

Take a look at the following self-driving car ad example where we split the data based on
user gender and interest in technology respectively:

The weighted Gini impurity of the first split can be calculated as follows:

The second split can be calculated as follows:

Thus splitting based on user's interest in technology is a better strategy than gender.

Another metric, information gain, measures the improvement of purity after splitting, in
other words, the reduction of uncertainty due to a split. Higher information gain implies a
better splitting. We obtain the information gain of a split by comparing the entropy before
and after the split.



Click-Through Prediction with Tree-Based Algorithms

[ 127 ]

Entropy is the probabilistic measure of uncertainty. Given a K-class dataset, and  (
) denoted as the fraction of data from class k ( ), the entropy of the

dataset is defined as follows:

A lower entropy implies a purer dataset with less ambiguity. In a perfect case where the
dataset contains only one class, the entropy is . When it comes to the
coin flip example, the entropy becomes .

Similarly, we can visualize how entropy changes under different values of a positive class's
fraction in binary cases via the following code:

>>> pos_fraction = np.linspace(0.00, 1.00, 1000)
>>> ent = - (pos_fraction * np.log2(pos_fraction) +
             (1 - pos_fraction) * np.log2(1 - pos_fraction))
>>> plt.plot(pos_fraction, ent)
>>> plt.xlabel('Positive fraction')
>>> plt.ylabel('Entropy')
>>> plt.ylim(0, 1)
>>> plt.show()



Click-Through Prediction with Tree-Based Algorithms

[ 128 ]

Given labels of a dataset, the entropy calculation function can be implemented as follows:

>>> def entropy(labels):
...     if not labels:
...         return 0
...     counts = np.unique(labels, return_counts=True)[1]
...     fractions = counts / float(len(labels))
...     return - np.sum(fractions * np.log2(fractions))

Now that we have fully understood entropy, we can now look into information
gain measuring how much uncertainty is reduced after splitting, which is defined as the
difference of entropy before a split (parent) and after the split (children):

Entropy after a split is calculated as the weighted sum of entropy of each child, similarly to
the weighted Gini impurity.

During the process of constructing a node at a tree, our goal is to search for a splitting point
where the maximal information gain is obtained. As the entropy of the parent node is
unchanged, we just need to measure the entropy of resulting children due to a split. The
better split is the one with a less entropy of resulting children.

To understand it better, we will look at the self-driving car ad example again:

For the first option, the entropy after split can be calculated as follows:

The second split can be calculated as follows:

For exploration, we can also calculate their information gain as follows:



Click-Through Prediction with Tree-Based Algorithms

[ 129 ]

According to the information gain/entropy-based evaluation, the second split is preferable,
which is also concluded based on the Gini impurity criterion.

In general, the choice of two metrics, Gini impurity and information gain, has little effect on
the performance of the trained decision tree. They both measure the weighted impurity of
children after a split. We can combine them into one function calculating the weighted
impurity:

>>> criterion_function = {'gini': gini_impurity,
                          'entropy': entropy}
>>> def weighted_impurity(groups, criterion='gini'):
...     """ Calculate weighted impurity of children after a split
...     Args:
...         groups (list of children, and a child consists a list
                                                 of class labels)
...         criterion (metric to measure the quality of a split,
                     'gini' for Gini Impurity or 'entropy' for
                      Information Gain)
...     Returns:
...         float, weighted impurity
...     """
...     total = sum(len(group) for group in groups)
...     weighted_sum = 0.0
...     for group in groups:
...         weighted_sum += len(group) / float(total)
                            * criterion_function[criterion](group)
...     return weighted_sum

Test it with the example we just hand calculated:

>>> children_1 = [[1, 0, 1], [0, 1]]
>>> children_2 = [[1, 1], [0, 0, 1]]
>>> print('Entropy of #1 split:
         {0:.4f}'.format(weighted_impurity(children_1, 'entropy')))
Entropy of #1 split: 0.9510
>>> print('Entropy of #2 split:
         {0:.4f}'.format(weighted_impurity(children_2, 'entropy')))
Entropy of #2 split: 0.5510



Click-Through Prediction with Tree-Based Algorithms

[ 130 ]

The implementations of decision tree
With a solid understanding of partitioning evaluation metrics, let's practice the CART tree
algorithm by hand on a simulated dataset:

To begin, we decide on the first splitting point, the root, by trying out all possible values for
each of two features. We utilize the weighted_impurity function we just defined to
calculate the weighted Gini impurity for each possible combination:

Gini(interest, Tech) = weighted_impurity([[1, 1, 0], [0, 0, 0, 1]]) = 0.405

Gini(interest, Fashion) = weighted_impurity([[0, 0], [1, 0, 1, 0, 1]]) = 0.343

Gini(interest, Sports) = weighted_impurity([[0, 1], [1, 0, 0, 1, 0]]) = 0.486

Gini(occupation, Professional) = weighted_impurity([[0, 0, 1, 0], [1, 0, 1]]) = 0.405

Gini(occupation, Student) = weighted_impurity([[0, 0, 1, 0], [1, 0, 1]]) = 0.405

Gini(occupation, Retired) = weighted_impurity([[1, 0, 0, 0, 1, 1], [1]]) = 0.429



Click-Through Prediction with Tree-Based Algorithms

[ 131 ]

The root goes to the user interest feature with the fashion value. We can now build the first
level of the tree:

If we are satisfied with a one level deep tree, we can stop here by assigning the right branch
label 0 and the left branch label 1 as the majority class. Alternatively, we can go further
down the road constructing the second level from the left branch (the right branch cannot
be further split):

Gini(interest, Tech) = weighted_impurity([[0, 1], [1, 1, 0]]) = 0.467

Gini(interest, Sports) = weighted_impurity([[1, 1, 0], [0, 1]]) = 0.467

Gini(occupation, Professional) = weighted_impurity([[0, 1, 0], [1, 1]]) = 0.267

Gini(occupation, Student) = weighted_impurity([[1, 0, 1], [0, 1]]) = 0.467

Gini(occupation, Retired) = weighted_impurity([[1, 0, 1, 1], [0]]) = 0.300



Click-Through Prediction with Tree-Based Algorithms

[ 132 ]

With the second splitting point specified by (occupation, professional) with the least Gini
impurity, our tree will now look as follows:

We can repeat the splitting process as long as the tree does not exceed the maximal depth
and the node contains enough samples.

It is now time for coding after the process of tree construction is clear.

We start with the criterion of best splitting point: the calculation of weighted impurity of
two potential children is as what we defined previously, while that of two metrics is slightly
different where the inputs now become numpy arrays for computational efficiency:

>>> def gini_impurity(labels):
...     # When the set is empty, it is also pure
...     if labels.size == 0:
...         return 0
...     # Count the occurrences of each label
...     counts = np.unique(labels, return_counts=True)[1]



Click-Through Prediction with Tree-Based Algorithms

[ 133 ]

...     fractions = counts / float(len(labels))

...     return 1 - np.sum(fractions ** 2)
>>> def entropy(labels):
...     # When the set is empty, it is also pure
...     if labels.size == 0:
...         return 0
...     counts = np.unique(labels, return_counts=True)[1]
...     fractions = counts / float(len(labels))
...     return - np.sum(fractions * np.log2(fractions))

Next, we define a utility function to split a node into left and right child based on a feature
and a value:

>>> def split_node(X, y, index, value):
...     """ Split data set X, y based on a feature and a value
...     Args:
...         X, y (numpy.ndarray, data set)
...         index (int, index of the feature used for splitting)
...         value (value of the feature used for splitting)
...     Returns:
...         list, list: left and right child, a child is in the
                        format of [X, y]
...     """
...     x_index = X[:, index]
...     # if this feature is numerical
...     if X[0, index].dtype.kind in ['i', 'f']:
...         mask = x_index >= value
...     # if this feature is categorical
...     else:
...         mask = x_index == value
...     # split into left and right child
...     left = [X[~mask, :], y[~mask]]
...     right = [X[mask, :], y[mask]]
...     return left, right

Note, that we check whether the feature is numerical or categorical and split the data
accordingly.

With the splitting measurement and generation functions available, we now define the
greedy search function trying out all possible splits and returning the best one given a
selection criterion, along with the resulting children:

>>> def get_best_split(X, y, criterion):
...     """ Obtain the best splitting point and resulting children
            for the data set X, y
...     Args:
...         X, y (numpy.ndarray, data set)
...         criterion (gini or entropy)



Click-Through Prediction with Tree-Based Algorithms

[ 134 ]

...     Returns:

...         dict {index: index of the feature, value: feature
                  value, children: left and right children}
...     """
...     best_index, best_value, best_score, children =
                                            None, None, 1, None
...     for index in range(len(X[0])):
...         for value in np.sort(np.unique(X[:, index])):
...             groups = split_node(X, y, index, value)
...             impurity = weighted_impurity(
                          [groups[0][1], groups[1][1]], criterion)
...             if impurity < best_score:
...                 best_index, best_value, best_score, children =
                                    index, value, impurity, groups
...     return {'index': best_index, 'value': best_value,
                'children': children}

The preceding selection and splitting process occurs in a recursive manner on each of the
subsequent children. When a stopping criterion meets, a process at a node stops and the
major label will be assigned to this leaf node:

>>> def get_leaf(labels):
...     # Obtain the leaf as the majority of the labels
...     return np.bincount(labels).argmax()

And finally the recursive function that links all these together by:

Assigning a leaf node if one of two children nodes is empty
Assigning a leaf node if the current branch depth exceeds the maximal depth
allowed
Assigning a leaf node if it does not contain sufficient samples required for a
further split
Otherwise, proceeding with further splits with the optimal splitting point

>>> def split(node, max_depth, min_size, depth, criterion):
...     """ Split children of a node to construct new nodes or
            assign them terminals
...     Args:
...         node (dict, with children info)
...         max_depth (int, maximal depth of the tree)
...         min_size (int, minimal samples required to further
                      split a child)
...         depth (int, current depth of the node)
...         criterion (gini or entropy)
...     """
...     left, right = node['children']



Click-Through Prediction with Tree-Based Algorithms

[ 135 ]

...     del (node['children'])

...     if left[1].size == 0:

...         node['right'] = get_leaf(right[1])

...         return

...     if right[1].size == 0:

...         node['left'] = get_leaf(left[1])

...         return

...     # Check if the current depth exceeds the maximal depth

...     if depth >= max_depth:

...         node['left'], node['right'] =
                             get_leaf(left[1]), get_leaf(right[1])
...         return
...     # Check if the left child has enough samples
...     if left[1].size <= min_size:
...         node['left'] = get_leaf(left[1])
...     else:
...         # It has enough samples, we further split it
...         result = get_best_split(left[0], left[1], criterion)
...         result_left, result_right = result['children']
...         if result_left[1].size == 0:
...             node['left'] = get_leaf(result_right[1])
...         elif result_right[1].size == 0:
...             node['left'] = get_leaf(result_left[1])
...         else:
...             node['left'] = result
...             split(node['left'], max_depth, min_size,
                                           depth + 1, criterion)
...     # Check if the right child has enough samples
...     if right[1].size <= min_size:
...         node['right'] = get_leaf(right[1])
...     else:
...         # It has enough samples, we further split it
...         result = get_best_split(right[0], right[1], criterion)
...         result_left, result_right = result['children']
...         if result_left[1].size == 0:
...             node['right'] = get_leaf(result_right[1])
...         elif result_right[1].size == 0:
...             node['right'] = get_leaf(result_left[1])
...         else:
...             node['right'] = result
...             split(node['right'], max_depth, min_size,
                                             depth + 1, criterion)

Plus, the entry point of the tree construction:

>>> def train_tree(X_train, y_train, max_depth, min_size,
                   criterion='gini'):
...     """ Construction of a tree starts here



Click-Through Prediction with Tree-Based Algorithms

[ 136 ]

...     Args:

...         X_train,  y_train (list, list, training data)

...         max_depth (int, maximal depth of the tree)

...         min_size (int, minimal samples required to further
                      split a child)
...         criterion (gini or entropy)
...     """
...     X = np.array(X_train)
...     y = np.array(y_train)
...     root = get_best_split(X, y, criterion)
...     split(root, max_depth, min_size, 1, criterion)
   ... return root

Now let's test it with the preceding hand-calculated example:

>>> X_train = [['tech', 'professional'],
...            ['fashion', 'student'],
...            ['fashion', 'professional'],
...            ['sports', 'student'],
...            ['tech', 'student'],
...            ['tech', 'retired'],
...            ['sports', 'professional']]
>>> y_train = [1, 0, 0, 0, 1, 0, 1]
>>> tree = train_tree(X_train, y_train, 2, 2)

To verify that the trained tree is identical to what we constructed by hand, we will write a
function displaying the tree:

>>> CONDITION = {'numerical': {'yes': '>=', 'no': '<'},
...              'categorical': {'yes': 'is', 'no': 'is not'}}
>>> def visualize_tree(node, depth=0):
...     if isinstance(node, dict):
...         if node['value'].dtype.kind in ['i', 'f']:
...             condition = CONDITION['numerical']
...         else:
...             condition = CONDITION['categorical']
...         print('{}|- X{} {} {}'.format(depth * '  ',
                node['index'] + 1, condition['no'], node['value']))
...         if 'left' in node:
...             visualize_tree(node['left'], depth + 1)
...         print('{}|- X{} {} {}'.format(depth * '  ',
               node['index'] + 1, condition['yes'], node['value']))
...         if 'right' in node:
...             visualize_tree(node['right'], depth + 1)
...     else:
...         print('{}[{}]'.format(depth * '  ', node))
>>> visualize_tree(tree)
|- X1 is not fashion



Click-Through Prediction with Tree-Based Algorithms

[ 137 ]

  |- X2 is not professional
    [0]
  |- X2 is professional
    [1]
|- X1 is fashion
  [0]

We can test it with a numerical example:

>>> X_train_n = [[6, 7],
...             [2, 4],
...             [7, 2],
...             [3, 6],
...             [4, 7],
...             [5, 2],
...             [1, 6],
...             [2, 0],
...             [6, 3],
...             [4, 1]]
>>> y_train_n = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
>>> tree = train_tree(X_train_n, y_train_n, 2, 2)
>>> visualize_tree(tree)
|- X2 < 4
  |- X1 < 7
    [1]
  |- X1 >= 7
    [0]
|- X2 >= 4
  |- X1 < 2
    [1]
  |- X1 >= 2
    [0]

Now that we have a more solid understanding of decision tree by realizing it from scratch,
we can try the decision tree package from scikit-learn, which is already well developed:

>>> from sklearn.tree import DecisionTreeClassifier
>>> tree_sk = DecisionTreeClassifier(criterion='gini',
                                 max_depth=2, min_samples_split=2)
>>> tree_sk.fit(X_train_n, y_train_n)

To visualize the tree we just built, we utilize the built-in function, export_graphviz, as
follows:

>>> export_graphviz(tree_sk, out_file='tree.dot',
        feature_names=['X1', 'X2'], impurity=False, filled=True,
        class_names=['0', '1'])



Click-Through Prediction with Tree-Based Algorithms

[ 138 ]

This will generate a tree.dot file, which can be converted to a PNG image file using 
GraphViz software (installation instructions can be found in h t t p ://w w w . g r a p h v i z . o r g /)

by running the command dot -Tpng tree.dot -o tree.png in the Terminal.

The tree generated is essentially the same as the one we had before.

Click-through prediction with decision tree
After several examples, it is now time to predict ad click-through with the decision tree
algorithm we just thoroughly learned and practiced. We will use the dataset from a Kaggle
machine learning competition Click-Through Rate Prediction (h t t p s ://w w w . k a g g l e . c o m /c /a

v a z u - c t r - p r e d i c t i o n ).

For now, we only take the first 100,000 samples from the train file (unzipped from the
train.gz file from h t t p s ://w w w . k a g g l e . c o m /c /a v a z u - c t r - p r e d i c t i o n /d a t a ) for
training the decision tree and the first 100,000 samples from the test file (unzipped from the
test.gz file from the same page) for prediction purposes.

http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
http://www.graphviz.org/)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)
https://www.kaggle.com/c/avazu-ctr-prediction/data)


Click-Through Prediction with Tree-Based Algorithms

[ 139 ]

The data fields are described as follows:

id: ad identifier, such as 1000009418151094273, 10000169349117863715
click: 0 for non-click, 1 for click
hour: in the format of YYMMDDHH, for example, 14102100
C1: anonymized categorical variable, such as 1005, 1002
banner_pos: where a banner is located, 1 and 0
site_id: site identifier, such as 1fbe01fe, fe8cc448, d6137915
site_domain: hashed site domain, such as 'bb1ef334', 'f3845767
site_category: hashed site category, such as 28905ebd, 28905ebd
app_id: mobile app identifier
app_domain

app_category

device_id: mobile device identifier
device_ip: IP address
device_model: such as iPhone 6, Samsung, hashed by the way
device_type: such as tablet, smartphone, hashed
device_conn_type: Wi-Fi or 3G for example, again hashed in the data
C14-C21: anonymized categorical variables

We take a glance at the data by running the command head train | sed 's/,,/,
,/g;s/,,/, ,/g' | column -s, -t:

id app_domain app_category device_id device_ip device_model device_type
device_conn_type C14 C15 C16 C17 C18 C19 C20  C21
1000009418151094273 0  14102100 1005 0   1fbe01fe f3845767  28905ebd
ecad2386 7801e8d9 07d7df22  a99f214a ddd2926e 44956a24  1   2     15706 320
50 1722 0 35 -1  79
10000169349117863715 0  14102100 1005 0   1fbe01fe f3845767  28905ebd
ecad2386 7801e8d9 07d7df22  a99f214a 96809ac8 711ee120  1   0     15704 320
50 1722 0 35 100084 79
10000371904215119486 0  14102100 1005 0   1fbe01fe f3845767  28905ebd
ecad2386 7801e8d9 07d7df22  a99f214a b3cf8def 8a4875bd  1   0     15704 320
50 1722 0 35 100084 79
10000640724480838376 0  14102100 1005 0   1fbe01fe f3845767  28905ebd
ecad2386 7801e8d9 07d7df22  a99f214a e8275b8f 6332421a  1   0     15706 320
50 1722 0 35 100084 79
10000679056417042096 0  14102100 1005 1   fe8cc448 9166c161  0569f928
ecad2386 7801e8d9 07d7df22  a99f214a 9644d0bf 779d90c2  1   0     18993 320
50 2161 0 35 -1  157
10000720757801103869 0  14102100 1005 0   d6137915 bb1ef334  f028772b



Click-Through Prediction with Tree-Based Algorithms

[ 140 ]

ecad2386 7801e8d9 07d7df22  a99f214a 05241af0 8a4875bd  1   0     16920 320
50 1899 0 431 100077 117
10000724729988544911 0  14102100 1005 0   8fda644b 25d4cfcd  f028772b
ecad2386 7801e8d9 07d7df22  a99f214a b264c159 be6db1d7  1   0     20362 320
50 2333 0 39 -1  157
10000918755742328737 0  14102100 1005 1   e151e245 7e091613  f028772b
ecad2386 7801e8d9 07d7df22  a99f214a e6f67278 be74e6fe  1   0     20632 320
50 2374 3 39 -1  23
10000949271186029916 1  14102100 1005 0   1fbe01fe f3845767  28905ebd
ecad2386 7801e8d9 07d7df22  a99f214a 37e8da74 5db079b5  1   2     15707 320
50 1722 0 35 -1  79

Don't be scared by the anonymized and hashed values. They are categorical features and
each possible value of them corresponds to a real and meaningful value, but it is presented
this way due to the privacy policy. Maybe C1 means user gender, and 1005 and 1002
represent male and female respectively.

Now let's get started with reading the dataset:

>>> import csv
>>> def read_ad_click_data(n, offset=0):
...     X_dict, y = [], []
...     with open('train', 'r') as csvfile:
...         reader = csv.DictReader(csvfile)
...         for i in range(offset):
...             reader.next()
...         i = 0
...         for row in reader:
...             i += 1
...             y.append(int(row['click']))
...             del row['click'], row['id'], row['hour'],
                    row['device_id'], row['device_ip']
...             X_dict.append(row)
...             if i >= n:
...                 break
...     return X_dict, y

Note, that we at this moment exclude the id, hour, and device_id, device_ip from
features:

>>> n_max = 100000
>>> X_dict_train, y_train = read_ad_click_data('train', n_max)
>>> print(X_dict_train[0])
{'C21': '79', 'site_id': '1fbe01fe', 'app_id': 'ecad2386', 'C19':
'35', 'C18': '0', 'device_type': '1', 'C17': '1722', 'C15': '320',
'C14': '15706', 'C16': '50', 'device_conn_type': '2', 'C1':
'1005', 'app_category': '07d7df22', 'site_category': '28905ebd',
'app_domain': '7801e8d9', 'site_domain': 'f3845767', 'banner_pos':



Click-Through Prediction with Tree-Based Algorithms

[ 141 ]

'0', 'C20': '-1', 'device_model': '44956a24'}
>>> print(X_dict_train[1])
{'C21': '79', 'site_id': '1fbe01fe', 'app_id': 'ecad2386', 'C19':
'35', 'C18': '0', 'device_type': '1', 'C17': '1722', 'C15': '320',
'C14': '15704', 'C16': '50', 'device_conn_type': '0', 'C1':
'1005', 'app_category': '07d7df22', 'site_category': '28905ebd',
'app_domain': '7801e8d9', 'site_domain': 'f3845767', 'banner_pos':
'0', 'C20': '100084', 'device_model': '711ee120'}

Next, we transform these dictionary objects (feature: value) into one-hot encoded vectors
using DictVectorizer. We will talk about one-hot encoding in the next chapter. It
basically converts a categorical feature with k possible values into k binary features. For
example, the site category feature with three possible values, news, education, and sports,
will be encoded into three binary features, is_news, is_education, and is_sports. The
reason we do such transformation is because the tree-based algorithms in scikit-learn
(current version 0.18.1) only allow numerical feature input:

>>> from sklearn.feature_extraction import DictVectorizer
>>> dict_one_hot_encoder = DictVectorizer(sparse=False)
>>> X_train = dict_one_hot_encoder.fit_transform(X_dict_train)
>>> print(len(X_train[0]))
5725

We transformed the original 19-dimension categorical features into 5725-dimension binary
features.

Similarly, we construct the testing dataset:

>>> X_dict_test, y_test = read_ad_click_data(n, n)
>>> X_test = dict_one_hot_encoder.transform(X_dict_test)
>>> print(len(X_test[0]))
5725

Next, we train a decision tree model using the grid search techniques we learned in the last
chapter. For demonstration, we will only tweak the max_depth parameter, but other
parameters, for example min_samples_split and class_weight are recommended. Note
that the classification metric should be AUC of ROC, as it is an imbalanced binary case
(only 17490 out of 100000 training samples are clicks):

>>> from sklearn.tree import DecisionTreeClassifier
>>> parameters = {'max_depth': [3, 10, None]}
>>> decision_tree = DecisionTreeClassifier(criterion='gini',
                                           min_samples_split=30)
>>> from sklearn.model_selection import GridSearchCV
>>> grid_search = GridSearchCV(decision_tree, parameters,
                               n_jobs=-1, cv=3, scoring='roc_auc')



Click-Through Prediction with Tree-Based Algorithms

[ 142 ]

>>> grid_search.fit(X_train, y_train)
>>> print(grid_search.best_params_)
{'max_depth': 10}

Use the model with the optimal parameter to predict unseen cases:

>>> decision_tree_best = grid_search.best_estimator_
>>> pos_prob = decision_tree_best.predict_proba(X_test)[:, 1]
>>> from sklearn.metrics import roc_auc_score
>>> print('The ROC AUC on testing set is:
                  {0:.3f}'.format(roc_auc_score(y_test, pos_prob)))
The ROC AUC on testing set is: 0.692

The AUC we can achieve with the optimal decision tree model is 0.69. It does not seem
perfect, but click-through involves many intricate human factors and its prediction is a very
difficult problem.

Looking back, a decision tree is a sequence of greedy searches for the best splitting point at
each step based on the training dataset. However, this tends to cause overfitting as it is
likely that the optimal points only work for the training samples. Fortunately, random
forest is the technique to correct this, and it provides a better-performing tree model.

Random forest - feature bagging of decision
tree
The ensemble technique, bagging (which stands for bootstrap aggregating), which we
briefly mentioned in the first chapter, can effectively overcome overfitting. To recap,
different sets of training samples are randomly drawn with replacement from the original
training data; each set is used to train an individual classification model. Results of these
separate models are then combined together via majority vote to make the final decision.

Tree bagging, as previously described, reduces the high variance that a decision tree model
suffers from and hence in general performs better than a single tree. However, in some
cases where one or more features are strong indicators, individual trees are constructed
largely based on these features and as a result become highly correlated. Aggregating
multiple correlated trees will not make much difference. To force each tree to be
uncorrelated, random forest only considers a random subset of the features when searching
for the best splitting point at each node. Individual trees are now trained based on different
sequential sets of features, which guarantees more diversity and better performance.
Random forest is a variant tree bagging model with additional feature-based bagging.



Click-Through Prediction with Tree-Based Algorithms

[ 143 ]

To deploy random forest to our click-through prediction project, we will use the package
from scikit-learn. Similar to the way we previously implemented decision tree, we only
tweak the max_depth parameter:

>>> from sklearn.ensemble import RandomForestClassifier
>>> random_forest = RandomForestClassifier(n_estimators=100,
                criterion='gini', min_samples_split=30, n_jobs=-1)
>>> grid_search = GridSearchCV(random_forest, parameters,
                               n_jobs=-1, cv=3, scoring='roc_auc')
>>> grid_search.fit(X_train, y_train)
>>> print(grid_search.best_params_)
{'max_depth': None}

Use the model with the optimal parameter None for max_depth (nodes are expanded until
other stopping criteria are met) to predict unseen cases:

>>> random_forest_best = grid_search.best_estimator_
>>> pos_prob = random_forest_best.predict_proba(X_test)[:, 1]
>>> print('The ROC AUC on testing set is:
    {0:.3f}'.format(roc_auc_score(y_test, pos_prob)))
The ROC AUC on testing set is: 0.724

It turns out that the random forest model gives a lift in the performance.

Although for demonstration, we only played with the max_depth parameter, there are
another three important parameters that we can tune to improve the performance of a
random forest model:

max_features: The number of features to consider at each best splitting point
search. Typically, for an m-dimensional dataset,  (rounded) is a recommended
value for max_features. This can be specified as max_features="sqrt" in
scikit-learn. Other options include "log2", 20% of the original features to 50%.
n_estimators: The number of trees considered for majority voting. Generally
speaking, the more the number trees, the better is the performance, but it takes
more computation time. It is usually set as 100, 200, 500, and so on.
min_samples_split: The minimal number of samples required for further split
at a node. Too small a value tends to cause overfitting, while a large one is likely
to introduce under fitting. 10, 30, and 50 might be good options to start with.



Click-Through Prediction with Tree-Based Algorithms

[ 144 ]

Summary
In this chapter, we started with an introduction to a typical machine learning problem,
online advertising click-through prediction and the challenges including categorical
features. We then resorted to tree-based algorithms that can take in both numerical and
categorical features. We then had an in-depth discussion on the decision tree algorithm: the
mechanics, different types, how to construct a tree, and two metrics, Gini impurity and
entropy, to measure the effectiveness of a split at a tree node. After constructing a tree in an
example by hand, we implemented the algorithm from scratch. We also learned how to use
the decision tree package from scikit-learn and applied it to predict click-through. We
continued to improve the performance by adopting the feature-based bagging algorithm
random forest. The chapter then ended with tips to tune a random forest model.

More practice is always good for honing skills. Another great project in the same area is the
Display Advertising Challenge from CriteoLabs (h t t p s ://w w w . k a g g l e . c o m /c /c r i t e o - d i s p l a

y - a d - c h a l l e n g e ). Access to the data and descriptions can be found on the page h t t p s ://w

w w . k a g g l e . c o m /c /c r i t e o - d i s p l a y - a d - c h a l l e n g e /d a t a . What is the best AUC you can
achieve on the second 100000 samples with a decision tree or random forest model that you
train and fine tune based on the first 100000 samples?

https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/avazu-ctr-prediction)
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data


6
Click-Through Prediction with

Logistic Regression
In this chapter, we will be continuing our journey of tackling the billion dollar problem,
advertising click-through prediction. We will be focusing on learning a preprocessing
technique, one-hot encoding, logistic regression algorithm, regularization methods for
logistic regression, and its variant that is applicable to very large datasets. Besides the
application in classification, we will also be discussing how logistic regression is used in
picking significant features.

In this chapter, we will cover the following topics:

One-hot feature encoding
Logistic function
The mechanics of logistic regression
Gradient descent and stochastic gradient descent
The training of logistic regression classifier
The implementations of logistic regression
Click-through prediction with logistic regression
Logistic regression with L1 and L2 regularization
Logistic regression for feature selection
Online learning
Another way to select features: random forest



Click-Through Prediction with Logistic Regression

[ 146 ]

One-hot encoding - converting categorical
features to numerical
In the last chapter, we briefly mentioned one-hot encoding, which transforms categorical
features to numerical features in order to be used in the tree-based algorithms in scikit-
learn. It will not limit our choice to tree-based algorithms if we can adopt this technique to
other algorithms that only take in numerical features.

The simplest solution we can think of to transform a categorical feature with k possible
values is to map it to a numerical feature with values from 1 to k. For example, [Tech,
Fashion, Fashion, Sports, Tech, Tech, Sports] becomes [1, 2, 2, 3, 1, 1,
3]. However, this will impose an ordinal characteristic, such as Sports is greater than Tech,
and a distance property, such as Sports, is closer to Fashion than to Tech.

Instead, one-hot encoding converts the categorical feature to k binary features. Each binary
feature indicates presence or not of a corresponding possible value. So the preceding
example becomes as follows:

We have seen that DictVectorizer from scikit-learn provides an efficient solution in the
last chapter. It transforms dictionary objects (categorical feature: value) into one-hot
encoded vectors. For example:

>>> from sklearn.feature_extraction import DictVectorizer
>>> X_dict = [{'interest': 'tech', 'occupation': 'professional'},
...           {'interest': 'fashion', 'occupation': 'student'},
...           {'interest': 'fashion','occupation':'professional'},
...           {'interest': 'sports', 'occupation': 'student'},
...           {'interest': 'tech', 'occupation': 'student'},
...           {'interest': 'tech', 'occupation': 'retired'},



Click-Through Prediction with Logistic Regression

[ 147 ]

...           {'interest': 'sports','occupation': 'professional'}]
>>> dict_one_hot_encoder = DictVectorizer(sparse=False)
>>> X_encoded = dict_one_hot_encoder.fit_transform(X_dict)
>>> print(X_encoded
[[ 0.  0.  1.  1.  0.  0.]
 [ 1.  0.  0.  0.  0.  1.]
 [ 1.  0.  0.  1.  0.  0.]
 [ 0.  1.  0.  0.  0.  1.]
 [ 0.  0.  1.  0.  0.  1.]
 [ 0.  0.  1.  0.  1.  0.]
 [ 0.  1.  0.  1.  0.  0.]]

We can also see the mapping by using the following:

>>> print(dict_one_hot_encoder.vocabulary_)
{'interest=fashion': 0, 'interest=sports': 1,
'occupation=professional': 3, 'interest=tech': 2,
'occupation=retired': 4, 'occupation=student': 5}

When it comes to new data, we can transform it by using the following code:

>>> new_dict = [{'interest': 'sports', 'occupation': 'retired'}]
>>> new_encoded = dict_one_hot_encoder.transform(new_dict)
>>> print(new_encoded)
[[ 0.  1.  0.  0.  1.  0.]]

And we can inversely transform the encoded features back to the original features as
follows:

>>> print(dict_one_hot_encoder.inverse_transform(new_encoded))
[{'interest=sports': 1.0, 'occupation=retired': 1.0}]

As for features in the format of string objects, we can use LabelEncoder from scikit-learn
to convert a categorical feature to an integer feature with values from 1 to k first, and then
convert the integer feature to k binary encoded features. Use the same sample:

>>> import numpy as np
>>> X_str = np.array([['tech', 'professional'],
...                   ['fashion', 'student'],
...                   ['fashion', 'professional'],
...                   ['sports', 'student'],
...                   ['tech', 'student'],
...                   ['tech', 'retired'],
...                   ['sports', 'professional']])
>>> from sklearn.preprocessing import LabelEncoder, OneHotEncoder
>>> label_encoder = LabelEncoder()
>>> X_int =
  label_encoder.fit_transform(X_str.ravel()).reshape(*X_str.shape)



Click-Through Prediction with Logistic Regression

[ 148 ]

>>> print(X_int)
[[5 1]
 [0 4]
 [0 1]
 [3 4]
 [5 4]
 [5 2]
 [3 1]]
>>> one_hot_encoder = OneHotEncoder()
>>> X_encoded = one_hot_encoder.fit_transform(X_int).toarray()
>>> print(X_encoded)
[[ 0.  0.  1.  1.  0.  0.]
 [ 1.  0.  0.  0.  0.  1.]
 [ 1.  0.  0.  1.  0.  0.]
 [ 0.  1.  0.  0.  0.  1.]
 [ 0.  0.  1.  0.  0.  1.]
 [ 0.  0.  1.  0.  1.  0.]
 [ 0.  1.  0.  1.  0.  0.]]

One last thing to note is that if a new (not seen in training data) category is encountered in
new data, it should be ignored. DictVectorizer handles this silently:

>>> new_dict = [{'interest': 'unknown_interest',
                'occupation': 'retired'},
...             {'interest': 'tech', 'occupation':
                'unseen_occupation'}]
>>> new_encoded = dict_one_hot_encoder.transform(new_dict)
>>> print(new_encoded)
[[ 0.  0.  0.  0.  1.  0.]
 [ 0.  0.  1.  0.  0.  0.]]

Unlike DictVectorizer, however, LabelEncoder does not handle unseen category
implicitly. The easiest way to work around this is to convert string data into a dictionary
object so as to apply DictVectorizer. We first define the transformation function:

>>> def string_to_dict(columns, data_str):
...     columns = ['interest', 'occupation']
...     data_dict = []
...     for sample_str in data_str:
...         data_dict.append({column: value
                   for column, value in zip(columns, sample_str)})
...     return data_dict



Click-Through Prediction with Logistic Regression

[ 149 ]

Convert the new data and employ DictVectorizer:

>>> new_str = np.array([['unknown_interest', 'retired'],
...                   ['tech', 'unseen_occupation'],
...                   ['unknown_interest', 'unseen_occupation']])
>>> columns = ['interest', 'occupation']
>>> new_encoded = dict_one_hot_encoder.transform(
                                 string_to_dict(columns, new_str))
>>> print(new_encoded)
[[ 0.  0.  0.  0.  1.  0.]
 [ 0.  0.  1.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.]]

Logistic regression classifier
Recall in the last chapter, we trained the tree-based models only based on the first 100,000
samples out of 40 million. We did so because training a tree on a large dataset is extremely
computationally expensive and time consuming. Since we are now not limited to
algorithms directly taking in categorical features thanks to one-hot encoding, we should
turn to a new algorithm with high scalability to large datasets. Logistic regression is one of
the most scalable classification algorithms.

Getting started with the logistic function
Let's start with introducing the logistic function (which is more commonly called sigmoid
function) as the algorithm core before we dive into the algorithm itself. It basically maps an
input to an output of values between 0 and 1. And it is defined as follows:

We can visualize it as follows:

First define the logistic function:

>>> import numpy as np
>>> def sigmoid(input):
...     return 1.0 / (1 + np.exp(-input))



Click-Through Prediction with Logistic Regression

[ 150 ]

Input variables from -8 to 8, and the output correspondingly:

>>> z = np.linspace(-8, 8, 1000)
>>> y = sigmoid(z)
>>> import matplotlib.pyplot as plt
>>> plt.plot(z, y)
>>> plt.axhline(y=0, ls='dotted', color='k')
>>> plt.axhline(y=0.5, ls='dotted', color='k')
>>> plt.axhline(y=1, ls='dotted', color='k')
>>> plt.yticks([0.0, 0.25, 0.5, 0.75, 1.0])
>>> plt.xlabel('z')
>>> plt.ylabel('y(z)')
>>> plt.show()

The plot of the logistic function is generated as follows:

In the S-shaped curve, all inputs are transformed into the range from 0 to 1. For positive
inputs, a greater value results in an output closer to 1; for negative inputs, a smaller value
generates an output closer to 0; when the input is 0, the output is the midpoint 0.5.



Click-Through Prediction with Logistic Regression

[ 151 ]

The mechanics of logistic regression
Now that we have knowledge of the logistic function, it is easy to map it to the algorithm
that stems from it. In logistic regression, the function input z becomes the weighted sum of
features. Given a data sample x with n features x1, x2, ..., xn (x represents a feature vector and
x= (x1, x2, ..., xn)), and weights (also called coefficients) of the model w (w represents a
vector (w1, w2, ..., wn)), z and is expressed as follows:

Or sometimes, the model comes with an intercept (also called bias) w0, the preceding linear
relationship becomes as follows:

As for the output y(z) in the range of 0 to 1, in the algorithm, it becomes the probability of
the target being "1" or the positive class:

Thus logistic regression is a probabilistic classifier, similar to the naive Bayes classifier.

A logistic regression model, or specifically, its weight vector w is learned from the training
data, with the goal of predicting a positive sample as close to 1 as possible and predicting a
negative sample as close to 0 as possible. In mathematical language, the weights are trained
so as to minimize the cost defined as mean squared error (MSE), which measures the
average of squares of difference between the truth and prediction. Give m training samples,

, where  is either 1 (positive class) or
0 (negative class), the cost function J(w) regarding the weights to be optimized is expressed
as follows:

However, the preceding cost function is non-convex,which means when searching for the
optimal w, many local (suboptimal) optimums are found and the function does not
converge to a global optimum.



Click-Through Prediction with Logistic Regression

[ 152 ]

Examples of convex and non-convex function are plotted respectively below:

To overcome this, the cost function in practice is defined as follows:

We can take a closer look at the cost of a single training sample:

If , when it predicts correctly (positive class in 100% probability), the sample cost j is
0; the cost keeps increasing when it is less likely to be the positive class; when it incorrectly
predicts that there is no chance to be the positive class, the cost is infinitely high:

>>> y_hat = np.linspace(0, 1, 1000)
>>> cost = -np.log(y_hat)
>>> plt.plot(y_hat, cost)
>>> plt.xlabel('Prediction')
>>> plt.ylabel('Cost')
>>> plt.xlim(0, 1)
>>> plt.ylim(0, 7)
>>> plt.show()



Click-Through Prediction with Logistic Regression

[ 153 ]

On the contrary, if , when it predicts correctly (positive class in 0 probability, or
negative class in 100% probability), the sample cost j is 0; the cost keeps increasing when it
is more likely to be the positive class; when it wrongly predicts that there is no chance to be
the negative class, the cost goes infinitely high:

>>> y_hat = np.linspace(0, 1, 1000)
>>> cost = -np.log(1 - y_hat)
>>> plt.plot(y_hat, cost)
>>> plt.xlabel('Prediction')
>>> plt.ylabel('Cost')
>>> plt.xlim(0, 1)
>>> plt.ylim(0, 7)
>>> plt.show()



Click-Through Prediction with Logistic Regression

[ 154 ]

Minimizing this alternative cost function is actually equivalent to minimizing the MSE-
based cost function. And the advantages of choosing it over the other one include:

Obviously being convex so that the optimal model weights can be found

summation of the logarithms of prediction  or  simplifies the
calculation of its derivative with respect to the weights, which we will talk about
later

Due to the logarithmic function, the cost function

 is also called logarithmic
loss, or simply log loss.



Click-Through Prediction with Logistic Regression

[ 155 ]

Training a logistic regression model via gradient
descent
Now the question is how we can obtain the optimal w such that

 is minimized. We do so via
gradient descent.

Gradient descent (also called steepest descent) is a procedure of minimizing an objective 
function by first-order iterative optimization. In each iteration, it moves a step that is
proportional to the negative derivative of the objective function at the current point. This
means the to-be-optimal point iteratively moves downhill towards the minimal value of the
objective function. The proportion we just mentioned is called learning rate, or step size. It
can be summarized in a mathematical equation:

Where the left w is the weight vector after a learning step, and the right w is the one before
moving,  is the learning rate and is the first-order derivative, the gradient.

In our case, let's start with the derivative of the cost function  with respect to w. It
might require some knowledge of calculus, but no worries; we will walk through it step by
step.

We first calculate the derivative of  with respect to w. We herein take the j-th weight wj

as an example (note , and we omit the (i) for simplicity):



Click-Through Prediction with Logistic Regression

[ 156 ]

Then the derivative of the sample cost J(w):

And finally the entire cost over m samples:

Generalize it to :

Combined with the preceding derivations, the weights can be updated as follows:

w gets updated in each iteration. After a substantial number of iterations, the learned w and
b are then used to classify a new sample  as follows:



Click-Through Prediction with Logistic Regression

[ 157 ]

The decision threshold is 0.5 by default, but it definitely can be other values. In a case where
the false negative is by all means supposed to be avoided, for example predicting fire
occurrence (positive class) for alert, the decision threshold can be lower than 0.5, such as 0.3,
depending on how paranoid we are and how proactively we want to prevent the positive
event from happening. On the other hand, when the false positive class is the one that
should be evaded, for instance predicting product success (positive class) rate for quality
assurance, the decision threshold can be greater than 0.5, such as 0.7, based on how high the
standard we set is.

With a thorough understanding of the gradient descent-based training and predicting
process, we now implement the logistic regression algorithm from scratch.

We start with defining the function computing the prediction  with current weights:

>>> def compute_prediction(X, weights):
...     """ Compute the prediction y_hat based on current weights
...     Args:
...         X (numpy.ndarray)
...         weights (numpy.ndarray)
...     Returns:
...         numpy.ndarray, y_hat of X under weights
...     """
...     z = np.dot(X, weights)
...     predictions = sigmoid(z)
...     return predictions

With this, we are able to continue with the function updating the weights

 by one step in a gradient descent manner:

>>> def update_weights_gd(X_train, y_train, weights,
                                            learning_rate):
...     """ Update weights by one step
...     Args:
...         X_train, y_train (numpy.ndarray, training data set)
...         weights (numpy.ndarray)
...         learning_rate (float)
...     Returns:
...         numpy.ndarray, updated weights
...     """
...     predictions = compute_prediction(X_train, weights)
...     weights_delta = np.dot(X_train.T, y_train - predictions)
...     m = y_train.shape[0]
...     weights += learning_rate / float(m) * weights_delta
...     return weights



Click-Through Prediction with Logistic Regression

[ 158 ]

And the function calculating the cost J(w) as well:

>>> def compute_cost(X, y, weights):
...     """ Compute the cost J(w)
...     Args:
...         X, y (numpy.ndarray, data set)
...         weights (numpy.ndarray)
...     Returns:
...         float
...     """
...     predictions = compute_prediction(X, weights)
...     cost = np.mean(-y * np.log(predictions)
                       - (1 - y) * np.log(1 - predictions))
...     return cost

Now we connect all these functions together with the model training function by:

Updating the weights vector in each iteration
Printing out the current cost for every 100 (can be other values) iterations to
ensure that cost is decreasing and things are on the right track

>>> def train_logistic_regression(X_train, y_train, max_iter,
                           learning_rate, fit_intercept=False):
...     """ Train a logistic regression model
...     Args:
...         X_train, y_train (numpy.ndarray, training data set)
...         max_iter (int, number of iterations)
...         learning_rate (float)
...         fit_intercept (bool, with an intercept w0 or not)
...     Returns:
...         numpy.ndarray, learned weights
...     """
...     if fit_intercept:
...         intercept = np.ones((X_train.shape[0], 1))
...         X_train = np.hstack((intercept, X_train))
...     weights = np.zeros(X_train.shape[1])
...     for iteration in range(max_iter):
...         weights = update_weights_gd(X_train, y_train,
                                        weights, learning_rate)
...         # Check the cost for every 100 (for example)
              iterations
...         if iteration % 100 == 0:
...             print(compute_cost(X_train, y_train, weights))
...     return weights



Click-Through Prediction with Logistic Regression

[ 159 ]

And finally, predict the results of new inputs using the trained model:

>>> def predict(X, weights):
...     if X.shape[1] == weights.shape[0] - 1:
...         intercept = np.ones((X.shape[0], 1))
...         X = np.hstack((intercept, X))
...     return compute_prediction(X, weights)

Implementing logistic regression is very simple as we just saw. Let's examine it with a small
example:

>>> X_train = np.array([[6, 7],
...                     [2, 4],
...                     [3, 6],
...                     [4, 7],
...                     [1, 6],
...                     [5, 2],
...                     [2, 0],
...                     [6, 3],
...                     [4, 1],
...                     [7, 2]])
>>> y_train = np.array([0,
...                     0,
...                     0,
...                     0,
...                     0,
...                     1,
...                     1,
...                     1,
...                     1,
...                     1])

Train a logistic regression model by 1000 iterations, at learning rate 0.1 based on intercept-
included weights:

>>> weights = train_logistic_regression(X_train, y_train,
             max_iter=1000, learning_rate=0.1, fit_intercept=True)
0.574404237166
0.0344602233925
0.0182655727085
0.012493458388
0.00951532913855
0.00769338806065
0.00646209433351
0.00557351184683
0.00490163225453
0.00437556774067



Click-Through Prediction with Logistic Regression

[ 160 ]

The decreasing cost means the model is being optimized. We can check the model's
performance on new samples:

>>> X_test = np.array([[6, 1],
...                    [1, 3],
...                    [3, 1],
...                    [4, 5]])
>>> predictions = predict(X_test, weights)
>>> predictions
array([ 0.9999478 ,  0.00743991,  0.9808652 ,  0.02080847])

To visualize it, use the following:

>>> plt.scatter(X_train[:,0], X_train[:,1], c=['b']*5+['k']*5,
                                                      marker='o')

Use 0.5 as the classification decision threshold:

>>> colours = ['k' if prediction >= 0.5 else 'b'
                                  for prediction in predictions]
>>> plt.scatter(X_test[:,0], X_test[:,1], marker='*', c=colours)
>>> plt.xlabel('x1')
>>> plt.ylabel('x2')
>>> plt.show()

The model we trained correctly predicts new samples (the preceding stars).



Click-Through Prediction with Logistic Regression

[ 161 ]

Click-through prediction with logistic
regression by gradient descent
After a small example, we will now deploy the algorithm that we just developed and test it
in our click-through prediction project.

Again, the first 10,000 samples are for training and the next 10,000 are for testing:

>>> n = 10000
>>> X_dict_train, y_train = read_ad_click_data(n)
>>> dict_one_hot_encoder = DictVectorizer(sparse=False)
>>> X_train = dict_one_hot_encoder.fit_transform(X_dict_train)
>>> X_dict_test, y_test = read_ad_click_data(n, n)
>>> X_test = dict_one_hot_encoder.transform(X_dict_test)
>>> X_train_10k = X_train
>>> y_train_10k = np.array(y_train)

Train a logistic regression model by 10000 iterations, at learning rate 0.01 based on
intercept-included weights, and print out current costs at every 1000 iterations:

>>> import timeit
>>> start_time = timeit.default_timer()
>>> weights = train_logistic_regression(X_train, y_train,
           max_iter=10000, learning_rate=0.01, fit_intercept=True)
0.682001945674
0.43170915857
0.425685277505
0.422843135343
0.420960348782
0.419499856125
0.418277700999
0.417213474173
0.416265039542
0.415407033145
>>> print("--- %0.3fs seconds ---" %
                        (timeit.default_timer() - start_time))
--- 208.981s seconds ---



Click-Through Prediction with Logistic Regression

[ 162 ]

It takes 209 seconds to train and the cost is decreasing. And the trained model performs on
the testing set as follows:

>>> X_test_10k = X_test
>>> predictions = predict(X_test_10k, weights)
>>> from sklearn.metrics import roc_auc_score
>>> prin( 'The ROC AUC on testing set is:
               {0:.3f}'.format(roc_auc_score(y_test, predictions)))
The ROC AUC on testing set is: 0.711

The result is comparable to the one we obtained with random forest in the last chapter.

As we mentioned at the beginning of the chapter, the logistic regression classifier can be
good at training on large datasets, while tree-based models are generally not. We test this
out ourselves by training a model based on the first 100 thousand samples (only 10 times
larger than what we did). We repeat the process, except this time n = 100000:

>>> start_time = timeit.default_timer()
>>> weights = train_logistic_regression(X_train_100k,
              y_train_100k, max_iter=10000, learning_rate=0.01,
              fit_intercept=True)
0.682286670386
0.436252745484
0.430163621042
0.42756004451
0.425981638653
0.424832471514
0.423913850459
0.423142334978
0.422475789968
0.421889510225
>>> print("--- %0.3fs seconds ---" %
                            (timeit.default_timer() - start_time))
--- 4594.663s seconds ---

It takes more than an hour to train the model based on 100 thousand samples! How could
we efficiently handle a large training dataset, not just 100 thousand, but millions (for
example, those 40 million samples in the training file)?



Click-Through Prediction with Logistic Regression

[ 163 ]

Training a logistic regression model via
stochastic gradient descent
In gradient descent-based logistic regression models, all training samples are used to 
update the weights for each single iteration. Hence, if the number of training samples is
large, the whole training process becomes very time-consuming and computation
expensive, as we just witnessed in our last example.

Fortunately, a small tweak will make logistic regression suitable for large-size data. For
each weight update, only one training sample is consumed, instead of the complete training
set. The model moves a step based on the error calculated by a single training sample. Once
all samples are used, one iteration finishes. This advanced version of gradient descent is
called stochastic gradient descent(SGD). Expressed in a formula, for each iteration, we do
the following:

for i in 1 to m:

SGD generally converges in several iterations (usually less than 10), much faster than
gradient descent where a large number of iterations is usually needed.

To implement SGD-based logistic regression, we just need to slightly modify the
update_weights_gd function:

>>> def update_weights_sgd(X_train, y_train, weights,
                                           learning_rate):
...     """ One weight update iteration: moving weights by one
            step based on each individual sample
...     Args:
...         X_train, y_train (numpy.ndarray, training data set)
...         weights (numpy.ndarray)
...         learning_rate (float)
...     Returns:
...         numpy.ndarray, updated weights
...     """
...     for X_each, y_each in zip(X_train, y_train):
...         prediction = compute_prediction(X_each, weights)
...         weights_delta = X_each.T * (y_each - prediction)
...         weights += learning_rate * weights_delta
...     return weights



Click-Through Prediction with Logistic Regression

[ 164 ]

And in the train_logistic_regression function, just change the following line:

weights = update_weights_gd(X_train, y_train, weights, learning_rate)

Into the following:

weights = update_weights_sgd(X_train, y_train, weights, learning_rate)

Now let's see how powerful such a small change is. First we work with 10 thousand
training samples, where we choose 5 as the number of iterations, 0.01 as the learning rate,
and print out current costs every other iteration:

>>> start_time = timeit.default_timer()
>>> weights = train_logistic_regression(X_train_10k, y_train_10k,
              max_iter=5, learning_rate=0.01, fit_intercept=True)
0.414965479133
0.406007112829
0.401049374518
>>> print("--- %0.3fs seconds ---" %
                            (timeit.default_timer() - start_time))
--- 1.007s seconds ---

The training process finishes in just a second! And it also performs better than previous
models on the testing set:

>>> predictions = predict(X_test_10k, weights)
>>> print('The ROC AUC on testing set is:
             {0:.3f}'.format(roc_auc_score(y_test, predictions)))
The ROC AUC on testing set is: 0.720

How about a larger training set of 100 thousand samples? Let's do that with the following:

>>> start_time = timeit.default_timer()
>>> weights = train_logistic_regression(X_train_100k,
              y_train_100k, max_iter=5, learning_rate=0.01,
              fit_intercept=True)
0.412786485963
0.407850459722
0.405457331149
>>> print("--- %0.3fs seconds ---" %
         (timeit.default_timer() - start_time))
--- 24.566s seconds ---



Click-Through Prediction with Logistic Regression

[ 165 ]

And examine the classification performance on the next 10 thousand samples:

>>> X_dict_test, y_test_next10k =
                              read_ad_click_data(10000, 100000)
>>> X_test_next10k = dict_one_hot_encoder.transform(X_dict_test)
>>> predictions = predict(X_test_next10k, weights)
>>> prin( 'The ROC AUC on testing set is:
       {0:.3f}'.format(roc_auc_score(y_test_next10k, predictions)))
The ROC AUC on testing set is: 0.736

Obviously, SGD-based models are amazingly more efficient than gradient descent-based
models.

As usual, after successfully implementing the SGD-based logistic regression algorithm from
scratch, we implement it using scikit-learn's SGDClassifier package:

>>> from sklearn.linear_model import SGDClassifier
>>> sgd_lr = SGDClassifier(loss='log', penalty=None,
             fit_intercept=True, n_iter=5,
             learning_rate='constant', eta0=0.01)

Where 'log' for the loss parameter indicates the cost function is log loss, penalty is the
regularization term to reduce overfitting, which we will discuss further in the next section,
n_iter is the number of iterations, and the remaining two parameters mean that the
learning rate is 0.01 and unchanged during the course of training. It is noted that the default
learning_rate is 'optimal', where the learning rate slightly decreases as more and
more updates are taken. This can be beneficial for finding the optimal solution on large
datasets.

Now train the model and test it:

>>> sgd_lr.fit(X_train_100k, y_train_100k)
>>> predictions = sgd_lr.predict_proba(X_test_next10k)[:, 1]
>>> print('The ROC AUC on testing set is:
    {0:.3f}'.format(roc_auc_score(y_test_next10k, predictions)))
The ROC AUC on testing set is: 0.735

Quick and easy!



Click-Through Prediction with Logistic Regression

[ 166 ]

Training a logistic regression model with
regularization
As we briefly mentioned in the last section, the penalty parameter in the logistic
regression SGDClassifier is related to model regularization. There are two basic forms of
regularization, L1 and L2. In either way, the regularization is an additional term on top of
the original cost function:

Where  is the constant that multiplies the regularization term, and q is either 1 or 2
representing L1 or L2 regularization where:

Training a logistic regression model is a process of reducing the cost as a function of
weights w. If it gets to a point where some weights such as wi, wj, wk are considerably large,
the whole cost will be determined by these large weights. In this case, the learned model
may just memorize the training set and fail to generalize to unseen data. The regularization
term herein is introduced in order to penalize large weights as the weights now become
part of the cost to minimize. Regularization as a result eliminates overfitting. Finally,
parameter  provides a tradeoff between log loss and generalization. If  is too small, it is
not able to compromise large weights and the model may suffer from high variance or
overfitting; on the other hand, if  is too large, the model becomes over generalized and
performs poorly in terms of fitting the dataset, which is the syndrome of underfitting.  is
an important parameter to tune in order to obtain the best logistic regression model with
regularization.

As for choosing between the L1 and L2 form, the rule of thumb is whether feature selection
is expected. In machine learning classification, feature selection is the process of picking a
subset of significant features for use in better model construction. In practice, not every
feature in a dataset carries information useful for discriminating samples; some features are
either redundant or irrelevant, and hence can be discarded with little loss.



Click-Through Prediction with Logistic Regression

[ 167 ]

In the logistic regression classifier, feature selection can be achieved only with L1
regularization. To understand this, we consider two weight vectors  and

 and suppose they produce the same amount of log loss, the L1 and L2
regularization terms of each weight vector are:

The L1 term of both vectors is equivalent, while the L2 term of w2 is less than that of w1. This
indicates that L2 regularization penalizes more on weights composed of significantly large
and small weights than L1 regularization does. In other words, L2 regularization favors
relatively small values for all weights, avoids significantly large and small values for any
weight, while L1 regularization allows some weights with significantly small values and
some with significantly large values. Only with L1 regularization, some weights can be
compressed to close to or exactly 0, which enables feature selection.

In scikit-learn, the regularization type can be specified by the penalty parameter with
options none (without regularization), "l1", "l2", and "elasticnet" (mixture of L1 and
L2), and the multiplier  by the alpha parameter.

We herein examine L1 regularization for feature selection as follows:

Initialize an SGD logistic regression model with L1 regularization, and train the model
based on 10 thousand samples:

>>> l1_feature_selector = SGDClassifier(loss='log', penalty='l1',
                          alpha=0.0001, fit_intercept=True,
                          n_iter=5, learning_rate='constant',
                          eta0=0.01)
>>> l1_feature_selector.fit(X_train_10k, y_train_10k)

With the trained model, now select the important features using the transform method:

>>> X_train_10k_selected = l1_feature_selector.transform(X_train_10k)

The generated dataset contains the 574 most important features only:

>>> print(X_train_10k_selected.shape)
(10000, 574)



Click-Through Prediction with Logistic Regression

[ 168 ]

As opposed to 2820 features in the original dataset:

>>> print(X_train_10k.shape)
(10000, 2820)

Take a closer look at the weights of the trained model:

>>> l1_feature_selector.coef_
array([[ 0.17832874,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ]])

Its bottom 10 weights and the corresponding 10 least important features:

>>> print(np.sort(l1_feature_selector.coef_)[0][:10])
[-0.59326128 -0.43930402 -0.43054312 -0.42387413 -0.41166026
 -0.41166026 -0.31539391 -0.30743371 -0.28278958 -0.26746869]
>>> print(np.argsort(l1_feature_selector.coef_)[0][:10])
[ 559 1540 2172   34 2370 2566  579 2116  278 2221]

And its top 10 weights and the corresponding 10 most important features:

>>> print(np.sort(l1_feature_selector.coef_)[0][-10:])
[ 0.27764331  0.29581609  0.30518966  0.3083551   0.31949471
  0.3464423   0.35382674  0.3711177   0.38212495  0.40790229]
>>> print(np.argsort(l1_feature_selector.coef_)[0][-10:])
[2110 2769  546  547 2275 2149 2580 1503 1519 2761]

We can also learn what the actual feature is as follows:

>>> dict_one_hot_encoder.feature_names_[2761]
'site_id=d9750ee7'
>>> dict_one_hot_encoder.feature_names_[1519]
'device_model=84ebbcd4'

Training on large-scale datasets with online
learning
So far we have trained our model based on 100 thousand samples and did not go beyond it.
Otherwise, memory will be overloaded as it holds data that is too heavy, and the program
will crash. In this section, we will be presenting how to train on a large-scale dataset with
online learning.



Click-Through Prediction with Logistic Regression

[ 169 ]

Stochastic gradient descent grows from gradient descent by sequentially updating the
model with individual training samples at a time, instead of the complete training set at
once. We can further scale up stochastic gradient descent with online learning techniques.
In online learning, new data for training is available in a sequential order or in real time, as
opposed to all at once in an offline learning environment. A relatively small chunk of data is
loaded and preprocessed for training at a time, which releases the memory used to hold the
entire large dataset. Besides better computational feasibility, online learning is also used
because of its adaptability to cases where new data is generated in real time and needed in
modernizing the model. For instance, stock price prediction models are updated in an
online learning manner with timely market data; click-through prediction models need to
include the most recent data reflecting users' latest behaviors and tastes; spam email
detectors have to be reactive to the ever-changing spammers by considering new features
dynamically generated. The existing model trained by previous datasets is now updated
based on the latest available dataset only, instead of rebuilding from scratch based on
previous and recent datasets together as in offline learning.



Click-Through Prediction with Logistic Regression

[ 170 ]

The SGDClassifier in scikit-learn implements online learning with the partial_fit
method (while with the fit method in offline learning as we have seen). We train a model
with the first ten 100 thousand (that is 1 million) samples with online learning:

>>> sgd_lr = SGDClassifier(loss='log', penalty=None,
             fit_intercept=True, n_iter=1,
             learning_rate='constant', eta0=0.01)
>>> start_time = timeit.default_timer()
>>> for i in range(10):
...     X_dict_train, y_train_every_100k =
                           read_ad_click_data(100000, i * 100000)
...     X_train_every_100k =
                      dict_one_hot_encoder.transform(X_dict_train)
...     sgd_lr.partial_fit(X_train_every_100k, y_train_every_100k,
                                                   classes=[0, 1])

Then the next 10 thousand samples for testing:

>>> X_dict_test, y_test_next10k =
                       read_ad_click_data(10000, (i + 1) * 100000)
>>> X_test_next10k = dict_one_hot_encoder.transform(X_dict_test)
>>> predictions = sgd_lr.predict_proba(X_test_next10k)[:, 1]
>>> print('The ROC AUC on testing set is:
       {0:.3f}'.format(roc_auc_score(y_test_next10k, predictions)))
The ROC AUC on testing set is: 0.756
>>> print("--- %0.3fs seconds ---" %
                          (timeit.default_timer() - start_time))
--- 107.030s seconds ---

With online learning, training based on, in total, 1 million samples becomes
computationally effective.

Handling multiclass classification
One last thing worth noting is how logistic regression algorithms deal with multiclass
classification. Although we interact with scikit-learn classifiers in multiclass cases the same
way as in binary cases, it is encouraging to understand how logistic regression works in
multiclass classification.



Click-Through Prediction with Logistic Regression

[ 171 ]

Logistic regression for more than two classes is also called multinomial logistic regression,
or better known as softmax regression recently. Recall in binary case, the model is 
represented by one weight vector w, the probability of the target being "1" or the positive

class is written as . In a K-class case, the model is represented
by K weight vectors w1,w2,...,wK, and the probability of the target being class k is written as
follows:

Note that the term  normalizes probabilities  (k from 1 to K) so that they
sum to 1. The cost function in binary case is expressed as

. Similarly, the cost function
now becomes as follows:

Where function  is 1 only if  is true, otherwise it is 0.

With the cost function defined, we obtain the step for the j weight vector in the same
way we derived the step in binary case:

In a similar manner, all K weight vectors get updated in each iteration. After sufficient
iterations, the learned weight vectors are then used to classify a new sample

 as follows:



Click-Through Prediction with Logistic Regression

[ 172 ]

To have a better understanding of this, we will experiment with the news topic dataset that
we worked on in Chapter 4, News Topic Classification with Support Vector Machine:

(note that we will herein reuse functions already defined in Chapter 4, News Topic
Classification with Support Vector Machine)

>>> data_train = fetch_20newsgroups(subset='train',
                                 categories=None, random_state=42)
>>> data_test = fetch_20newsgroups(subset='test', categories=None,
                                                  random_state=42)
>>> cleaned_train = clean_text(data_train.data)
>>> label_train = data_train.target
>>> cleaned_test = clean_text(data_test.data)
>>> label_test = data_test.target
>>> tfidf_vectorizer = TfidfVectorizer(sublinear_tf=True,
             max_df=0.5, stop_words='english', max_features=40000)
>>> term_docs_train =
                  tfidf_vectorizer.fit_transform(cleaned_train)
>>> term_docs_test = tfidf_vectorizer.transform(cleaned_test)

We will now combine grid search to find the optimal multiclass logistic regression model:

>>> from sklearn.model_selection import GridSearchCV
>>> parameters = {'penalty': ['l2', None],
...               'alpha': [1e-07, 1e-06, 1e-05, 1e-04],
...               'eta0': [0.01, 0.1, 1, 10]}
>>> sgd_lr = SGDClassifier(loss='log', learning_rate='constant',
                         eta0=0.01, fit_intercept=True, n_iter=10)
>>> grid_search = GridSearchCV(sgd_lr, parameters,
                               n_jobs=-1, cv=3)
>>> grid_search.fit(term_docs_train, label_train)
>>> print(grid_search.best_params_)
{'penalty': 'l2', 'alpha': 1e-07, 'eta0': 10}

To predict using the optimal model, use the following code:

>>> sgd_lr_best = grid_search.best_estimator_
>>> accuracy = sgd_lr_best.score(term_docs_test, label_test)
>>> print('The accuracy on testing set is:
                              {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 79.7%



Click-Through Prediction with Logistic Regression

[ 173 ]

Feature selection via random forest
We have seen how feature selection works with L1-regularized logistic regression in a
previous section, where 574 out of 2820 more important ad click features were chosen. This
is because with L1 regularization, less important weights are compressed to close to or
exactly 0. Besides L1-regularized logistic regression, random forest is another frequently
used feature selection technique.

To recap, random forest is bagging over a set of individual decision trees. Each tree
considers a random subset of the features when searching for the best splitting point at each
node. And as an essence of the decision tree algorithm, only those significant features
(along with their splitting values) are used to constitute tree nodes. Consider the whole
forest, the more frequently a feature is used in a tree node, the more important it is. In other
words, we can rank the importance of features based on their occurrences in nodes among
all trees, and select the top most important ones.

A trained RandomForestClassifier in scikit-learn comes with a
feature_importances_ attribute, indicating the importance of features, which are
calculated as the proportions of occurrences in tree nodes. Again we will examine feature
selection with random forest on the dataset with 10 thousand ad click samples:

>>> from sklearn.ensemble import RandomForestClassifier
>>> random_forest = RandomForestClassifier(n_estimators=100,
                criterion='gini', min_samples_split=30, n_jobs=-1)
>>> random_forest.fit(X_train_10k, y_train_10k)

After fitting the random forest model, we will now take a look at the bottom 10 features and
the corresponding 10 least important features:

>>> print(np.sort(random_forest.feature_importances_)[:10])
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
>>> print(np.argsort(random_forest.feature_importances_)[:10])
[1359 2198 2475 2378 1980  516 2369 1380  157 2625]

As well as the top 10 features and the corresponding 10 most important features:

>>> print(np.sort(random_forest.feature_importances_)[-10:])
 [ 0.0072243   0.00757724  0.00811834  0.00847693  0.00856942
  0.00889287  0.00930343  0.01081189  0.013195    0.01567019]
>>> print(np.argsort(random_forest.feature_importances_)[-10:])
[ 549 1284 2265 1540 1085 1923 1503 2761  554  393]



Click-Through Prediction with Logistic Regression

[ 174 ]

The 2761 feature ('site_id=d9750ee7') is in the top 10 list both selected by L1-
regularized logistic regression and random forest. The most important feature at this time
becomes:

>>> dict_one_hot_encoder.feature_names_[393]
'C18=2'

Furthermore, we can select the top 500 features as follows:

>>> top500_feature = np.argsort(random_forest.feature_importances_)[-500:]
>>> X_train_10k_selected = X_train_10k[:, top500_feature]
>>> print(X_train_10k_selected.shape)
(10000, 500)

Summary
In this chapter, we continued working on the online advertising click-through prediction
project. This time, we overcame the categorical feature challenge with the one-hot encoding
technique. We then resorted to a new classification algorithm logistic regression for its high
scalability to large datasets. The in-depth discussion of the logistic regression algorithm
started with the introduction of the logistic function, which led to the mechanics of the
algorithm itself. It followed with how to train a logistic regression via gradient descent.
After implementing a logistic regression classifier by hand and testing it on our click-
through dataset, we learned how to train the logistic regression model via a more advanced
manner, stochastic gradient descent, and adjusted our algorithm accordingly. We also
practiced how to use the SGD-based logistic regression classifier from scikit-learn and
applied it to our project. We continued to tackle problems that we might face in using
logistic regression, including L1 and L2 regularization for eliminating overfitting, the online
learning technique for training on large-scale datasets, as well as handling multiclass
scenarios. Finally, the chapter ended with applying random forest models in feature
selection, as an alternative to L1-regularized logistic regression.

In the summary section of the last chapter, we mentioned another click-through prediction
project, the Display Advertising Challenge from CriteoLabs (h t t p s ://w w w . k a g g l e . c o m /c /c r i

t e o - d i s p l a y - a d - c h a l l e n g e ). It is definitely worth tackling such large click datasets with
what we have just learned in this chapter, the highly-scalable logistic regression classifier.

https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction


7
Stock Price Prediction with

Regression Algorithms
In this chapter, we will be solving a problem that absolutely interests everyone—predicting
stock price. Gaining wealth by smart investment, who doesn't! In fact, stock market
movements and stock price prediction has been actively researched by a large number of
financial and trading, and even technology, corporations. A variety of methods have been
developed to predict stock price using machine learning techniques. We herein will be
focusing on learning several popular regression algorithms including linear regression,
regression tree and regression forest, as well as support vector regression, and utilizing
them to tackle this billion (or trillion) dollar problem.

We will cover the following topics in this chapter:

Introduction to the stock market and stock price
What is regression?
Feature engineering
Acquiring stock data and generating predictive features
What is linear regression?
The mechanics of linear regression
The implementations of linear regression
What is decision tree regression?
The mechanics of regression tree



Stock Price Prediction with Regression Algorithms

[ 176 ]

The implementations of regression tree
From regression tree to regression forest
What is support vector regression?
The mechanics of support vector regression
The implementations of support vector regression
Regression performance evaluation
Predicting stock price with regression algorithms

Brief overview of the stock market and stock
price
A stock of a corporation signifies ownership in the corporation. A single share of the stock
represents a claim on fractional assets and earnings of the corporation in proportion to the
total number of shares. For example, if an investor owns 50 shares of stock of a company
that has in total 1000 outstanding shares, the investor (or shareholder) would own it and
have claim on 5% of the company's assets and earnings.

Stocks of a company can be traded between shareholders and other parties via stock
exchanges and organizations. Major stock exchanges include the New York Stock Exchange,
NASDAQ, London Stock Exchange Group, Shanghai Stock Exchange, and Hong Kong
Stock Exchange. The prices which a stock is traded at fluctuate, essentially, due to the law of
supply and demand. At any one moment, the supply is the number of shares that are in the
hands of public investors, and the demand is the number of shares investors want to buy.
And the price of the stock moves up and down in order to attain and maintain equilibrium.

In general, investors want to buy low and sell high. This sounds simple enough, but it is
very challenging to implement as it is monumentally difficult to say whether a stock will go
up or down. There are two main streams of studies attempting to understand factors and
conditions that lead the price changes, or even forecast future stock price, fundamental
analysis and technical analysis:

Fundamental analysis focuses on underlying factors that influence a company's
value and business, including overall economy and industry conditions from
macro perspectives, company's financial conditions, management, and
competitors from micro perspectives.



Stock Price Prediction with Regression Algorithms

[ 177 ]

Technical analysis, on the other hand, predicts future price movements through
statistical study of past trading activity, including price movement, volume, and
market data. Predicting prices via machine learning techniques is an important
topic in technical analysis nowadays. Many quant trading firms have been using
machine learning to empower automated and algorithmic trading. In this
chapter, we will be working as a quantitative analyst/researcher, exploring how
to predict stock price with several typical machine learning regression
algorithms.

What is regression?
Regression is another main instance of supervised learning in machine learning. Given a
training set of data containing observations and their associated continuous outputs, the
goal of regression is to explore the relationships between the observations (also called
features) and the targets, and to output a continuous value based on the input features of an
unknown sample.

The major difference between regression and classification is that the outputs in regression
are continuous while discrete in classification. This leads to different application areas for
these two supervised learning methods. Classification is basically used in determining
desired memberships or characteristics, as we have seen in previous chapters, such as email
being spam or not, news topics, and ad being clicked-through or not. Regression mainly
involves estimating an outcome or forecasting a response.



Stock Price Prediction with Regression Algorithms

[ 178 ]

Examples of machine learning regression include:

Predicting house prices based on location, square footage, and number of
bedrooms and bathrooms
Estimating power consumption based on information of a system's processes and
memory
Retail inventory forecasting
And of course, stock price prediction

Predicting stock price with regression
algorithms
In theory, we can apply regression techniques in predicting prices of a particular stock.
However, it is difficult to ensure that the stock we pick is suitable enough for learning
purposes—its price should follow some learnable patterns and it should not be affected by
unprecedented instances or irregular events. Hence, we herein will be focusing on one of
the most popular stock indexes to better illustrate and generalize our price regression
approach.

Let's first cover what an index is. A stock index is a statistical measure of the value of a
portion of the overall stock market. An index includes several stocks that are diverse
enough to represent a section of the whole market. And the price of an index is typically
computed as the weighted average of the prices of selected stocks.

The Dow Jones Industrial Average (DJIA) is one of the longest established and most 
commonly watched indexes in the world. It consists of 30 of the most significant stocks in
the U.S., such as Microsoft, Apple, General Electric, and The Walt Disney Company, and it
represents around a quarter of the value of the entire U.S. market. We can view its daily
prices and performance at Yahoo
Finance: https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI:

https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI


Stock Price Prediction with Regression Algorithms

[ 179 ]

During each trading day, the price of a stock changes and is recorded in real time. Five
values illustrating movements in the price over one unit of time (usually one day, can also
be one week, or one month) are key trading indicators. They are as follows:

Open: The starting price for a given trading day
Close: The final price on that day
High: The highest prices at which the stock traded on that day
Low: The lowest prices at which the stock traded on that day
Volume: The total number of shares traded before the market is closed on that
day



Stock Price Prediction with Regression Algorithms

[ 180 ]

Other major indexes besides DJIA include:

Standard & Poor's 500 (short for S&P 500) is made up of 500 of the most
commonly traded stocks in the U.S., representing 80% of the value of the entire
U.S. market (https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC)
Nasdaq Composite is composed of all stocks traded on Nasdaq
(https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC)
Russell 2000 is a collection of the last 2000 out of 3000 largest publicly-traded
companies in the U.S.
(https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT)
London FTSE-100 is composed of the top 100 companies in market capitalization
listed on the London Stock Exchange

We will be focusing on DJIA and using its historical prices and performance to predict
future prices. In the following sections, we will be exploring how to develop price
prediction models, specifically regression models, and what can be used as
indicators/features.

Feature engineering
When it comes to a machine learning algorithm, the first question to ask is usually what 
features are available, or what the predictive variables are. The driving factors used to
predict future prices of DJIA, the Close prices herein, obviously include historical and
current Open prices and historical performance (High, Low, and Volume). Note that
current or same-day performance (High, Low, and Volume) should not be included as we
simply cannot foresee the highest and lowest prices at which the stock traded or the total
number of shares traded before the market is closed on that day.

Predicting close price with only these four indicators does not seem promising, and might
lead to underfitting. So we need to think of ways to add more features and predictive
power. In machine learning, feature engineering is the process of creating domain-specific
features based on existing features in order to improve the performance of a machine
learning algorithm. Feature engineering requires sufficient domain knowledge and it can be
very difficult and time-consuming. In reality, features used to solve a machine learning
problem are usually not directly available and need to be particularly designed and
constructed, for example, term frequency or tf-idf features in spam email detection and
news classification. Hence, feature engineering is essential in machine learning, and it is
usually what we spend most effort on in solving a practical problem.

https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT


Stock Price Prediction with Regression Algorithms

[ 181 ]

When making an investment decision, investors usually look at historical prices over a
period of time, not just the price the day before. Therefore, in our stock price prediction
case, we can compute the average close price over the past week (five days), over the past
month, and over the past year as three new features. We can also customize the time
window to the size we want, such as the past quarter, the past six months. On top of these
three averaged price features, we can generate new features associated with the price trend
by computing the ratios between each pair of average price in three different time frames.
For instance, the ratio between the average price over the past week and that over the past
year. Besides prices, volume is another important factor that investors analyze. Similarly,
we can generate new volume-based features by computing the average volumes in several
different time frames and ratios between each pair of averaged values.

Besides historical averaged values in a time window, investors also greatly consider stock
volatility. Volatility describes the degree of variation of prices for a given stock or index
over time. In statistical terms, it is basically the standard deviation of the close prices. We
can easily generate new sets of features by computing the standard deviation of close prices
in a particular time frame, as well as the standard deviation of volumes traded. In a similar
manner, ratios between each pair of standard deviation values can be included in our
engineered feature pool.

Last but not least, return is a significant financial metric that investors closely watch for.
Return is the percentage of gain or loss of close price for a stock/index in a particular period.
For example, daily return and annual return are the financial terms that we frequently hear.
They are calculated as follows:

Where  is the price on the ith day and  is the price on the day before. Weekly
and monthly return can be computed in a similar way. Based on daily returns, we can
produce a moving average over a particular number of days. For instance, given daily
returns of the past week , , , , ,
we can calculate the moving average over that week as follows:



Stock Price Prediction with Regression Algorithms

[ 182 ]

In summary, we can generate the following predictive variables by applying feature
engineering techniques:

The average close price over the past five days 
The average close price over the past month 
The average close price over the past year 
The ratio between the average price over the past week and that over the past

month 
The ratio between the average price over the past week and that over the past

year 
The ratio between the average price over the past month and that over the past

year 
The average volume over the past five days 
The average volume over the past month 
The average volume over the past year 
The ratio between the average volume over the past week and that over the past

month 
The ratio between the average volume over the past week and that over the past

year 
The ratio between the average volume over the past month and that over the past

year 
The standard deviation of the close prices over the past five days 
The standard deviation of the close prices over the past month 
The standard deviation of the close prices over the past year 
The ratio between the standard deviation of the prices over the past week and

that over the past month 
The ratio between the standard deviation of the prices over the past week and

that over the past year 



Stock Price Prediction with Regression Algorithms

[ 183 ]

The ratio between the standard deviation of the prices over the past month and

that over the past year 
The standard deviation of the volumes over the past five days 
The standard deviation of the volumes over the past month 
The standard deviation of the volumes over the past year 
The ratio between the standard deviation of the volumes over the past week and

that over the past month 
The ratio between the standard deviation of the volumes over the past week and

that over the past year 
The ratio between the standard deviation of the volumes over the past month and

that over the past year 
Daily return of the past day 
Weekly return of the past week 
Monthly return of the past month 
Yearly return of the past year 

Moving average of the daily returns over the past week 

Moving average of the daily returns over the past month 

Moving average of the daily returns over the past year 

Eventually we are able to generate in total 31 sets of features, along with six original
features:

Open price 
Open price on the past day 
Close price on the past day 
Highest price on the past day 
Lowest price on the past day 
Volume on the past day 



Stock Price Prediction with Regression Algorithms

[ 184 ]

Data acquisition and feature generation
For easier reference, we implement the codes for generating features herein rather than in
later sections. We start with obtaining the dataset we need for our project.

Throughout the entire project, we acquire stock index price and performance data via the 
Quandl Python API (https://www.quandl.com/tools/python). Quandl (www.quandl.com)
provides some free of charge financial, economic, and stock market data. The Python
package is free and can be downloaded and installed via the command line pip install
quandl in a terminal or shell, and it can be imported as follows:

>>> import quandl

We can load a particular stock's price and performance via the get method with the
stock/index symbol (also called ticker) and the specified start and end date, for example:

>>> mydata = quandl.get("YAHOO/INDEX_DJI", start_date="2005-12-01",
end_date="2005-12-05")
>>> mydata
                    Open          High           Low         Close
Date
2005-12-01  10806.030273  10934.900391  10806.030273  10912.570312
2005-12-02  10912.009766  10921.370117  10861.660156  10877.509766
2005-12-05  10876.950195  10876.950195  10810.669922  10835.009766
2005-12-06  10835.410156  10936.200195  10835.410156  10856.860352
2005-12-07  10856.860352  10868.059570  10764.009766  10810.910156
2005-12-08  10808.429688  10847.250000  10729.669922  10755.120117
2005-12-09  10751.759766  10805.950195  10729.910156  10778.580078

                 Volume    Adjusted Close
Date
2005-12-01  256980000.0    10912.570312
2005-12-02  214900000.0    10877.509766
2005-12-05  237340000.0    10835.009766
2005-12-06  264630000.0    10856.860352
2005-12-07  243490000.0    10810.910156
2005-12-08  253290000.0    10755.120117
2005-12-09  238930000.0    10778.580078

Note that the output is a pandas data frame object. The Date column is the index column,
and the rest of the columns are the corresponding financial variables. pandas
(http://pandas.pydata.org/) is a powerful Python package designed to simplify data
analysis on relational or table-like data. pandas can be installed via the command line pip
install pandas.

https://www.quandl.com/tools/python
http://www.quandl.com
http://pandas.pydata.org/


Stock Price Prediction with Regression Algorithms

[ 185 ]

There is one more thing to note before we jump to feature generation: it is recommended to
register a free Quandl account and include our own authentication token (the token can be
found under the account) in data query. Otherwise, no more than 50 data calls can be made
in a day. Put all these together in a function that acquires data from Quandl:

(Remember to replace the authtoken):

>>> authtoken = 'XXX'
>>> def get_data_quandl(symbol, start_date, end_date):
...     data = quandl.get(symbol, start_date=start_date,
                          end_date=end_date, authtoken=authtoken)
...     return data

Next, we implement the function for feature generation:

>>> def generate_features(df):
...     """ Generate features for a stock/index based on
            historical price and performance
...     Args:
...         df (dataframe with columns "Open", "Close", "High",
                "Low", "Volume", "Adjusted Close")
...     Returns:
...         dataframe, data set with new features
...     """
...     df_new = pd.DataFrame()
...     # 6 original features
...     df_new['open'] = df['Open']
...     df_new['open_1'] = df['Open'].shift(1)
...     # Shift index by 1, in order to take the value of previous
          day. For example, [1, 3, 4, 2] -> [N/A, 1, 3, 4]

...     df_new['close_1'] = df['Close'].shift(1)

...     df_new['high_1'] = df['High'].shift(1)

...     df_new['low_1'] = df['Low'].shift(1)

...     df_new['volume_1'] = df['Volume'].shift(1)

...     # 31 original features

...     # average price

...     df_new['avg_price_5'] = pd.rolling_mean(df['Close'],
                                             window=5).shift(1)
        # rolling_mean calculates the moving average given a
          window. For example, [1, 2, 1, 4, 3, 2, 1, 4]
          -> [N/A, N/A, N/A, N/A, 2.2, 2.4, 2.2, 2.8]
...     df_new['avg_price_30'] = pd.rolling_mean(df['Close'],
                                             window=21).shift(1)
...     df_new['avg_price_365'] = pd.rolling_mean(df['Close'],
                                             window=252).shift(1)
...     df_new['ratio_avg_price_5_30'] =
                   df_new['avg_price_5'] / df_new['avg_price_30']



Stock Price Prediction with Regression Algorithms

[ 186 ]

...     df_new['ratio_avg_price_5_365'] =
                   df_new['avg_price_5'] / df_new['avg_price_365']
...     df_new['ratio_avg_price_30_365'] =
                  df_new['avg_price_30'] / df_new['avg_price_365']
...     # average volume
...     df_new['avg_volume_5'] =
                  pd.rolling_mean(df['Volume'], window=5).shift(1)
...     df_new['avg_volume_30'] =
                 pd.rolling_mean(df['Volume'], window=21).shift(1)
...     df_new['avg_volume_365'] =
                pd.rolling_mean(df['Volume'], window=252).shift(1)
...     df_new['ratio_avg_volume_5_30'] =
                  df_new['avg_volume_5'] / df_new['avg_volume_30']
...     df_new['ratio_avg_volume_5_365'] =
                 df_new['avg_volume_5'] / df_new['avg_volume_365']
...     df_new['ratio_avg_volume_30_365'] =
                df_new['avg_volume_30'] / df_new['avg_volume_365']
...     # standard deviation of prices
...     df_new['std_price_5'] =
                    pd.rolling_std(df['Close'], window=5).shift(1)
        # rolling_mean calculates the moving standard deviation
          given a window
...     df_new['std_price_30'] =
                   pd.rolling_std(df['Close'], window=21).shift(1)
...     df_new['std_price_365'] =
                  pd.rolling_std(df['Close'], window=252).shift(1)
...     df_new['ratio_std_price_5_30'] =
                  df_new['std_price_5'] / df_new['std_price_30']
...     df_new['ratio_std_price_5_365'] =
                  df_new['std_price_5'] / df_new['std_price_365']
...     df_new['ratio_std_price_30_365'] =
                  df_new['std_price_30'] / df_new['std_price_365']
...     # standard deviation of volumes
...     df_new['std_volume_5'] =
                  pd.rolling_std(df['Volume'], window=5).shift(1)
...     df_new['std_volume_30'] =
                  pd.rolling_std(df['Volume'], window=21).shift(1)
...     df_new['std_volume_365'] =
                 pd.rolling_std(df['Volume'], window=252).shift(1)
...     df_new['ratio_std_volume_5_30'] =
                 df_new['std_volume_5'] / df_new['std_volume_30']
...     df_new['ratio_std_volume_5_365'] =
                 df_new['std_volume_5'] / df_new['std_volume_365']
...     df_new['ratio_std_volume_30_365'] =
                df_new['std_volume_30'] / df_new['std_volume_365']
...     # return
...     df_new['return_1'] = ((df['Close'] - df['Close'].shift(1))
                                  / df['Close'].shift(1)).shift(1)



Stock Price Prediction with Regression Algorithms

[ 187 ]

...     df_new['return_5'] = ((df['Close'] - df['Close'].shift(5))
                                  / df['Close'].shift(5)).shift(1)
...     df_new['return_30'] = ((df['Close'] -
          df['Close'].shift(21)) / df['Close'].shift(21)).shift(1)
...     df_new['return_365'] = ((df['Close'] -
        df['Close'].shift(252)) / df['Close'].shift(252)).shift(1)
...     df_new['moving_avg_5'] =
                     pd.rolling_mean(df_new['return_1'], window=5)
...     df_new['moving_avg_30'] =
                    pd.rolling_mean(df_new['return_1'], window=21)
...     df_new['moving_avg_365'] =
                   pd.rolling_mean(df_new['return_1'], window=252)
...     # the target
...     df_new['close'] = df['Close']
...     df_new = df_new.dropna(axis=0)
        # This will drop rows with any N/A value, which is by-
        product of moving average/std.
...     return df_new

It is noted that the window sizes herein are 5, 21 and 252, instead of 7, 30, 365 representing
weekly, monthly and yearly window. This is because there are 252 (rounded) trading days
in a year, 21 trading days in a month and 5 in a week.

We can apply this feature engineering strategy on the DJIA data queried from 2001 to 2014:

>>> symbol = 'YAHOO/INDEX_DJI'
>>> start = '2001-01-01'
>>> end = '2014-12-31'
>>> data_raw = get_data_quandl(symbol, start, end)
>>> data = generate_features(data_raw)

Take a look at what the data with the new features looks like:

>>> data.round(decimals=3).head(3)
               open   open_1  close_1   high_1    low_1     volume_1  \
Date
2002-01-09  10153.18  10195.76  10150.55  10211.23  10121.35  193640000.0
2002-01-10  10092.50  10153.18  10094.09  10270.88  10069.45  247850000.0
2002-01-11  10069.52  10092.50  10067.86  10101.77  10032.23  199300000.0
            avg_price_5  avg_price_30  avg_price_365 ratio_avg_price_5_30
Date
2002-01-09    10170.576     10027.585      10206.367         1.014
2002-01-10    10174.714     10029.710      10202.987         1.014
2002-01-11    10153.858     10036.682      10199.636         1.012
             ...     ratio_std_volume_5_365  ratio_std_volume_30_365  \
Date         ...
2002-01-09   ...                      0.471                    0.968
2002-01-10   ...                      0.446                    0.988



Stock Price Prediction with Regression Algorithms

[ 188 ]

2002-01-11   ...                      0.361                    0.995
            return_1  return_5  return_30  return_365  moving_avg_5  \
Date
2002-01-09    -0.005     0.013      0.005      -0.047         0.003
2002-01-10    -0.006     0.002      0.004      -0.078         0.000
2002-01-11    -0.003    -0.010      0.015      -0.077        -0.002
            moving_avg_30  moving_avg_365    close
Date
2002-01-09          0.000            -0.0  10094.09
2002-01-10          0.000            -0.0  10067.86
2002-01-11          0.001            -0.0   9987.53
[3 rows x 38 columns]

Linear regression
Since all features and driving factors are available, we should now focus on regression
algorithms that estimate the continuous target variables from these predictive features.

The first thing we think of is linear regression. It explores the linear relationship between
observations and targets and the relationship is represented in a linear equation or 
weighted sum function. Given a data sample x with n features x1, x2, ..., xn(x represents a 
feature vector and x = (x1, x2, ..., xn)), and weights (also called coefficients) of the linear
regression model w (w represents a vector (w1, w2, ..., wn)), the target y is expressed as
follows:

Or sometimes, the linear regression model comes with an intercept (also called bias) w0, the
preceding linear relationship becomes as follows:

Doesn't it look familiar? The logistic regression algorithm that we learned in Chapter 6,
Click-Through Prediction with Logistic Regression is just an addition of logistic transformation
on top of the linear regression, which maps the continuous weighted sum to 0 (negative) or
1 (positive) class.



Stock Price Prediction with Regression Algorithms

[ 189 ]

Similarly, a linear regression model, or specifically, its weight vector w is learned from the
training data, with the goal of minimizing the estimation error defined as mean squared
error (MSE), which measures the average of squares of difference between the truth and
prediction. Give m training samples, ,
the cost function J(w) regarding the weights to be optimized is expressed as follows:

where .

Again, we can obtain the optimal w such that J(w) is minimized via gradient descent. The
first-order derivative, the gradient  is derived as follows:

Combined with the gradient and learning rate , the weight vector w can be updated in
each step as follows:

After a substantial number of iterations, the learned w is then used to predict a new sample 
 as follows:

With a thorough understanding of the gradient descent based linear regression, we now
implement it from scratch.

We start with defining the function computing the prediction  with current weights:

>>> def compute_prediction(X, weights):
...     """ Compute the prediction y_hat based on current weights
...     Args:
...         X (numpy.ndarray)
...         weights (numpy.ndarray)
...     Returns:
...         numpy.ndarray, y_hat of X under weights
...     """
...     predictions = np.dot(X, weights)
...     return predictions



Stock Price Prediction with Regression Algorithms

[ 190 ]

Continue with the function updating the weight w by one step in a gradient descent
manner:

>>> def update_weights_gd(X_train, y_train, weights,
                                         learning_rate):
...     """ Update weights by one step
...     Args:
...         X_train, y_train (numpy.ndarray, training data set)
...         weights (numpy.ndarray)
...         learning_rate (float)
...     Returns:
...         numpy.ndarray, updated weights
...     """
...     predictions = compute_prediction(X_train, weights)
...     weights_delta = np.dot(X_train.T, y_train - predictions)
...     m = y_train.shape[0]
...     weights += learning_rate / float(m) * weights_delta
...     return weights

We do the same for the function calculating the cost J(w):

>>> def compute_cost(X, y, weights):
...     """ Compute the cost J(w)
...     Args:
...         X, y (numpy.ndarray, data set)
...         weights (numpy.ndarray)
...     Returns:
...         float
...     """
...     predictions = compute_prediction(X, weights)
...     cost = np.mean((predictions - y) ** 2 / 2.0)
...     return cost

Now connect all functions together with the model training function. We update the weight
vector in each iteration. Printing out the current cost for every 100 (can be any) iterations to
ensure cost is decreasing and things are on the right track:

>>> def train_linear_regression(X_train, y_train, max_iter,
                              learning_rate, fit_intercept=False):
...     """ Train a linear regression model with gradient descent
...     Args:
...         X_train, y_train (numpy.ndarray, training data set)
...         max_iter (int, number of iterations)
...         learning_rate (float)
...         fit_intercept (bool, with an intercept w0 or not)
...     Returns:
...         numpy.ndarray, learned weights



Stock Price Prediction with Regression Algorithms

[ 191 ]

...     """

...     if fit_intercept:

...         intercept = np.ones((X_train.shape[0], 1))

...         X_train = np.hstack((intercept, X_train))

...     weights = np.zeros(X_train.shape[1])

...     for iteration in range(max_iter):

...         weights = update_weights_gd(X_train, y_train,
                                        weights, learning_rate)
...         # Check the cost for every 100 (for example)
              iterations
...         if iteration % 100 == 0:
...             print(compute_cost(X_train, y_train, weights))
...     return weights

Finally predict the results of new inputs using the trained model:

>>> def predict(X, weights):
...     if X.shape[1] == weights.shape[0] - 1:
...         intercept = np.ones((X.shape[0], 1))
...         X = np.hstack((intercept, X))
...     return compute_prediction(X, weights)

Implementing linear regression is very similar to logistic regression as we just saw. Let's
examine it with a small example:

>>> X_train = np.array([[6], [2], [3], [4], [1],
                        [5], [2], [6], [4], [7]])
>>> y_train = np.array([5.5, 1.6, 2.2, 3.7, 0.8,
                        5.2, 1.5, 5.3, 4.4, 6.8])

Train a linear regression model by 100 iterations, at a learning rate of 0.01 based on
intercept-included weights:

>>> weights = train_linear_regression(X_train, y_train,
             max_iter=100, learning_rate=0.01, fit_intercept=True)

Check the model's performance on new samples:

>>> X_test = np.array([[1.3], [3.5], [5.2], [2.8]])
>>> predictions = predict(X_test, weights)
>>> import matplotlib.pyplot as plt
>>> plt.scatter(X_train[:, 0], y_train, marker='o', c='b')
>>> plt.scatter(X_test[:, 0], predictions, marker='*', c='k')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.show()



Stock Price Prediction with Regression Algorithms

[ 192 ]

It generates the following plot:

The model we trained correctly predicts new samples (the preceding stars).

We will now try another dataset, the diabetes dataset from scikit-learn:

>>> from sklearn import datasets
>>> diabetes = datasets.load_diabetes()
>>> print(diabetes.data.shape)
(442, 10)
>>> num_test = 30    # the last 30 samples as testing set
>>> X_train = diabetes.data[:-num_test, :]
>>> y_train = diabetes.target[:-num_test]

Train a linear regression model by 5000 iterations, at learning rate 1 based on intercept-
included weights (cost is displayed every 500 iterations):

>>> weights = train_linear_regression(X_train, y_train,
              max_iter=5000, learning_rate=1, fit_intercept=True)
2960.1229915
1539.55080927
1487.02495658
1480.27644342



Stock Price Prediction with Regression Algorithms

[ 193 ]

1479.01567047
1478.57496091
1478.29639883
1478.06282572
1477.84756968
1477.64304737
>>> X_test = diabetes.data[-num_test:, :]
>>> y_test = diabetes.target[-num_test:]
>>> predictions = predict(X_test, weights)
>>> print(predictions)
[ 232.22305668  123.87481969  166.12805033  170.23901231
  228.12868839  154.95746522  101.09058779   87.33631249
  143.68332296  190.29353122  198.00676871  149.63039042
  169.56066651  109.01983998  161.98477191  133.00870377
  260.1831988   101.52551082  115.76677836  120.7338523
  219.62602446  62.21227353  136.29989073  122.27908721
  55.14492975   191.50339388  105.685612    126.25915035
  208.99755875   47.66517424]
>>> print(y_test)
[ 261.  113.  131.  174.  257.   55.   84.   42.  146.  212.  233.
  91.   111.  152.  120.   67.  310.   94.  183.   66.  173.   72.
  49.   64.   48.   178.  104.  132.  220.   57.]

The estimate is pretty close to the ground truth.

So far we have been using gradient descent in weight optimization, but as with logistic
regression, linear regression is also open to stochastic gradient descent. We can simply
replace the update_weights_gd function with the update_weights_sgd that we created
in Chapter 6, Click-Through Prediction with Logistic Regression.

We can also directly use the SGD-based regression algorithm SGDRegressor from scikit-
learn:

>>> from sklearn.linear_model import SGDRegressor
>>> regressor = SGDRegressor(loss='squared_loss', penalty='l2',
   alpha=0.0001, learning_rate='constant', eta0=0.01, n_iter=1000)



Stock Price Prediction with Regression Algorithms

[ 194 ]

Where 'squared_loss' for the loss parameter indicates that the cost function is squared
error, penalty is the regularization term and it can be none, L1, and L2 similar to the
SGDClassifier in Chapter 6, Click-Through Prediction with Logistic Regression. in order to
reduce overfitting, n_iter is the number of iterations, and the remaining two parameters
means the learning rate is 0.01 and unchanged during the course of training. Train the
model and output prediction on the testing set:

>>> regressor.fit(X_train, y_train)
>>> predictions = regressor.predict(X_test)
>>> print(predictions)
[ 231.03333725  124.94418254  168.20510142  170.7056729
  226.52019503  154.85011364  103.82492496   89.376184
  145.69862538  190.89270871  197.0996725   151.46200981
  170.12673917  108.50103463  164.35815989  134.10002755
  259.29203744  103.09764563  117.6254098   122.24330421
  219.0996765    65.40121381  137.46448687  123.25363156
  57.34965405    191.0600674  109.21594994  128.29546226
  207.09606669   51.10475455]

Decision tree regression
After linear regression, the next regression algorithm we will be learning is decision tree
regression, which is also called regression tree.

In classification, the decision tree is constructed by recursive binary splitting and growing
each node into left and right children. In each partition, it greedily searches for the most
significant combination of features and its value as the optimal splitting point. The quality
of separation is measured by the weighted purity of labels of two resulting children,
specifically via metric Gini impurity or information gain. In regression, the tree construction
process is almost identical to the classification one, with only two differences due to the fact
that the target becomes continuous:

The quality of the splitting point is now measured by the weighted mean squared
error (MSE) of two children; the MSE of a child is equivalent to the variance of all
target values and the smaller the weighted MSE, the better split.
The average value of targets in a terminal node becomes the leaf value, instead of
the majority of labels in a classification tree.



Stock Price Prediction with Regression Algorithms

[ 195 ]

To make sure we understand regression trees, let's work on a small example of house price
estimation:

We first define the MSE and weighted MSE computation functions as they will be used in
our calculation:

>>> def mse(targets):
...  # When the set is empty
...  if targets.size == 0:
...   return 0
...  return np.var(targets)
>>> def weighted_mse(groups)
...  """ Calculate weighted MSE of children after a split
...  Args:
...   groups (list of children, and a child consists a list of targets)
...  Returns:
...   float, weighted impurity
...  """
...  total = sum(len(group) for group in groups)
...  weighted_sum = 0.0
...  for group in groups:
...   weighted_sum += len(group) / float(total) * mse(group)
...  return weighted_sum
We then test things out:
>>> print('{0:.4f}'.format(mse(np.array([1, 2, 3]))) )
0.6667
>>> print('{0:.4f}'.format(weighted_mse([np.array([1, 2, 3]), )
          np.array([1, 2])]))
0.5000



Stock Price Prediction with Regression Algorithms

[ 196 ]

To build the house price regression tree, we first exhaust all possible pairs of features and
values and compute the corresponding MSE:

MSE(type, semi) = weighted_mse([[600, 400, 700], [700, 800]]) = 10333
MSE(bedroom, 2) = weighted_mse([[700, 400], [600, 800, 700]]) = 13000
MSE(bedroom, 3) = weighted_mse([[600, 800], [700, 400, 700]]) = 16000
MSE(bedroom, 4) = weighted_mse([[700], [600, 700, 800, 400]]) = 17500

The lowest MSE is achieved with the type-semi pair, the root node is then formed by
the splitting point:

If we are satisfied with a one level deep regression tree, we can stop here by assigning both
branches as leaf nodes with the value as the average of targets of samples included.
Alternatively, we can go further down the road constructing the second level from the right
branch (the left branch cannot be further split):

MSE(bedroom, 2) = weighted_mse([[], [600, 400, 700]]) = 15556
MSE(bedroom, 3) = weighted_mse([[400], [600, 700]]) = 1667
MSE(bedroom, 4) = weighted_mse([[400, 600], [700]]) = 6667



Stock Price Prediction with Regression Algorithms

[ 197 ]

With the second splitting point specified by bedroom, 3 pair with the least MSE, our tree
becomes as follows:

We can finish up the tree by assigning a leaf node value to both branches. It is time for
coding now we are clear about the regression tree construction process. The node splitting
utility function we define as follows is identical to what we had in Chapter 5, Click-Through
Prediction with Tree-Based Algorithms, which separates samples in a node into left and right
branches based on a pair of features and values:

>>> def split_node(X, y, index, value):
...  """ Split data set X, y based on a feature and a value
...  Args:
...   X, y (numpy.ndarray, data set)
...   index (int, index of the feature used for splitting)
...   value (value of the feature used for splitting)
...  Returns:
...   list, list: left and right child, a child is in the
     format of [X, y]
...  """
...  x_index = X[:, index]
...  # if this feature is numerical
...  if type(X[0, index]) in [int, float]:
...   mask = x_index >= value
...  # if this feature is categorical
...  else:
...   mask = x_index == value
...  # split into left and right child



Stock Price Prediction with Regression Algorithms

[ 198 ]

...  left = [X[~mask, :], y[~mask]]

...  right = [X[mask, :], y[mask]]

...  return left, right

Next, we define the greedy search function trying out all possible splits and returning the
one with the least weighted MSE:

>>> def get_best_split(X, y):
...  """ Obtain the best splitting point and resulting children
  for the data set X, y
...  Args:
...   X, y (numpy.ndarray, data set)
...   criterion (gini or entropy)
...  Returns:
...   dict {index: index of the feature, value: feature
    value, children: left and right children}
...  """
...  best_index, best_value, best_score, children =
         None, None, 1e10, None
...  for index in range(len(X[0])):
...   for value in np.sort(np.unique(X[:, index])):
...    groups = split_node(X, y, index, value)
...    impurity = weighted_mse([groups[0][1],
          groups[1][1]])
...    if impurity < best_score:
...     best_index, best_value, best_score, children =
        index, value, impurity, groups
...  return {'index': best_index, 'value': best_value,'children': children}

The preceding selection and splitting process occurs in a recursive manner on each of the
subsequent children. When a stopping criterion is met, the process at a node stops and the
mean value of the sample targets will be assigned to this terminal node:

>>> def get_leaf(targets):
...  # Obtain the leaf as the mean of the targets
...  return np.mean(targets)

Finally, the recursive split function that links all these together by checking whether any
stopping criteria is met and assigning the leaf node if so, or proceeding with further
separation otherwise:

>>> def split(node, max_depth, min_size, depth):
...     """ Split children of a node to construct new nodes or assign them
terminals
...     Args:
...         node (dict, with children info)
...         max_depth (int, maximal depth of the tree)
...         min_size (int, minimal samples required to further



Stock Price Prediction with Regression Algorithms

[ 199 ]

                      split a child)
...         depth (int, current depth of the node)
...     """
...     left, right = node['children']
...     del (node['children'])
...     if left[1].size == 0:
...         node['right'] = get_leaf(right[1])
...         return
...     if right[1].size == 0:
...         node['left'] = get_leaf(left[1])
...         return
...     # Check if the current depth exceeds the maximal depth
...     if depth >= max_depth:
...         node['left'], node['right'] =
                          get_leaf(left[1]), get_leaf(right[1])
...         return
...     # Check if the left child has enough samples
...     if left[1].size <= min_size:
...         node['left'] = get_leaf(left[1])
...     else:
...         # It has enough samples, we further split it
...         result = get_best_split(left[0], left[1])
...         result_left, result_right = result['children']
...         if result_left[1].size == 0:
...             node['left'] = get_leaf(result_right[1])
...         elif result_right[1].size == 0:
...             node['left'] = get_leaf(result_left[1])
...         else:
...             node['left'] = result
...             split(node['left'], max_depth, min_size,
                                                  depth + 1)
...     # Check if the right child has enough samples
...     if right[1].size <= min_size:
...         node['right'] = get_leaf(right[1])
...     else:
...         # It has enough samples, we further split it
...         result = get_best_split(right[0], right[1])
...         result_left, result_right = result['children']
...         if result_left[1].size == 0:
...             node['right'] = get_leaf(result_right[1])
...         elif result_right[1].size == 0:
...             node['right'] = get_leaf(result_left[1])
...         else:
...             node['right'] = result
...             split(node['right'], max_depth, min_size,
                                                   depth + 1)



Stock Price Prediction with Regression Algorithms

[ 200 ]

Plus, the entry point of the regression tree construction:

>>> def train_tree(X_train, y_train, max_depth, min_size):
...     """ Construction of a tree starts here
...     Args:
...         X_train,  y_train (list, list, training data)
...         max_depth (int, maximal depth of the tree)
...         min_size (int, minimal samples required to further
                      split a child)
...     """
...     root = get_best_split(X_train, y_train)
...     split(root, max_depth, min_size, 1)
...     return root

Now let's test it with the preceding hand-calculated example:

>>> X_train = np.array([['semi', 3],
...                     ['detached', 2],
...                     ['detached', 3],
...                     ['semi', 2],
...                     ['semi', 4]], dtype=object)
>>> y_train = np.array([600, 700, 800, 400, 700])
>>> tree = train_tree(X_train, y_train, 2, 2)

To verify that the trained tree is identical to what we constructed by hand, we write a
function displaying the tree:

>>> CONDITION = {'numerical': {'yes': '>=', 'no': '<'},
...              'categorical': {'yes': 'is', 'no': 'is not'}}
>>> def visualize_tree(node, depth=0):
...     if isinstance(node, dict):
...         if type(node['value']) in [int, float]:
...             condition = CONDITION['numerical']
...         else:
...             condition = CONDITION['categorical']
...         print('{}|- X{} {} {}'.format(depth * '  ',
                node['index'] + 1, condition['no'], node['value']))
...         if 'left' in node:
...             visualize_tree(node['left'], depth + 1)
...         print('{}|- X{} {} {}'.format(depth * '  ',
               node['index'] + 1, condition['yes'], node['value']))
...         if 'right' in node:
...             visualize_tree(node['right'], depth + 1)
...     else:
...         print('{}[{}]'.format(depth * '  ', node))
>>> visualize_tree(tree)
|- X1 is not detached
  |- X2 < 3



Stock Price Prediction with Regression Algorithms

[ 201 ]

    [400.0]
  |- X2 >= 3
    [650.0]
|- X1 is detached
  [750.0]

Now that we have a better understanding of the regression tree by realizing it from scratch,
we can directly use the DecisionTreeRegressor package from scikit-learn. Apply it on an
example of predicting Boston house prices:

>>> boston = datasets.load_boston()
>>> num_test = 10    # the last 10 samples as testing set
>>> X_train = boston.data[:-num_test, :]
>>> y_train = boston.target[:-num_test]
>>> X_test = boston.data[-num_test:, :]
>>> y_test = boston.target[-num_test:]
>>> from sklearn.tree import DecisionTreeRegressor
>>> regressor = DecisionTreeRegressor(max_depth=10, min_samples_split=3)
>>> regressor.fit(X_train, y_train)
>>> predictions = regressor.predict(X_test)
>>> print(predictions)
[ 18.92727273  20.9         20.9         18.92727273  20.9
  26.6    20.73076923  24.3         28.2         20.73076923]

Compare predictions with ground truth:

>>> print(y_test)
[ 19.7  18.3  21.2  17.5  16.8  22.4  20.6  23.9  22.   11.9]

In Chapter 5, Click-Through Prediction with Tree-Based Algorithms, we introduced random
forest as an ensemble learning method by combining multiple decision trees that are
separately trained and randomly subsampling training features in each node of a tree. In
classification, a random forest makes a final decision via a majority vote of every trees'
decision. Applied to regression, a random forest regression model (also called regression
forest) assigns the average of regression results from all decision trees to the final decision.

We herein use the regression forest package, RandomForestRegressor, from scikit-learn
and deploy it to our Boston house price prediction example:

>>> from sklearn.ensemble import RandomForestRegressor
>>> regressor = RandomForestRegressor(n_estimators=100, max_depth=10,
min_samples_split=3)
>>> regressor.fit(X_train, y_train)
>>> predictions = regressor.predict(X_test)
>>> print(predictions)
[ 19.34404351  20.93928947  21.66535354  19.99581433  20.873871
  25.52030056  21.33196685  28.34961905  27.54088571  21.32508585]



Stock Price Prediction with Regression Algorithms

[ 202 ]

Support vector regression
The third regression algorithm that we want to explore is support vector regression (SVR).
As the name implies, SVR is part of the support vector family, and it is a sibling of the
support vector classification (SVC) that we learned about in Chapter 4, News Topic
Classification with Support Vector Machine.

To review, SVC seeks an optimal hyperplane that best segregates observations from
different classes. Suppose a hyperplane is determined by a slope vector w and intercept b,

the optimal hyperplane is picked so that the distance (can be expressed as ) from its
nearest points in each of the segregated spaces to the hyperplane itself is maximized. Such
optimal w and b can be learned and solved by the following optimization problem:

Minimizing 

Subject to  and , given a
training set of 

In SVR, our goal is to find a hyperplane (defined by a slope vector w and intercept b) such
that two hyperplanes  and  that are  distance away from itself
covers most training data. In other words, most of the data points are bounded in the 
bands of the optimal hyperplane. And at the same time, the optimal hyperplane is as flat as
possible, which means  is as small as possible.



Stock Price Prediction with Regression Algorithms

[ 203 ]

This translates to deriving the optimal w and b by solving the following optimization
problem:

Minimizing 

Subject to , given a training set of

Again, to solve the preceding optimization problem, we need to resort to quadratic
programming techniques, which are beyond the scope of our learning journey. Therefore,
we will not cover the computation methods in detail and will implement the regression
algorithm using the SVR package from scikit-learn.

Important techniques of SVC, such as penalty as a trade off between bias and variance,
kernel (RBF, for example) handling linear non-separation, are transferable to SVR. The SVR
package from scikit-learn also supports these techniques.

Let's solve the previous house price prediction problem with SVR this time:

>>> from sklearn.svm import SVR
>>> regressor = SVR(C=0.1, epsilon=0.02, kernel='linear')
>>> regressor.fit(X_train, y_train)
>>> predictions = regressor.predict(X_test)
>>> print(predictions)
[ 14.59908201  19.32323741  21.16739294  18.53822876  20.1960847
  23.74076575  22.65713954  26.98366295  25.75795682  22.69805145]

Regression performance evaluation
So far, we have covered several popular regression algorithms in-depth and implemented
them from scratch by using existing libraries. Instead of judging how well a model works
on testing sets by printing out the prediction, we need to evaluate its performance by the
following metrics that give us more insight:

MSE as we mentioned, measures the squared loss corresponding to the expected value.
Sometimes the square root is taken on top of MSE in order to convert the value back to the
original scale of the target variable being estimated. This yields the root mean squared error
(RMSE).



Stock Price Prediction with Regression Algorithms

[ 204 ]

Mean absolute error (MAE) on the other hand measures the absolute loss. It uses the same 
scale as the target variable and gives an idea of how close predictions are to the actual
values.

For both MSE and MAE, the smaller the value, the better the regression model.

 (pronounced as r squared) indicates the goodness of fit of a regression model. It ranges
from 0 to 1, meaning from no fit to perfect prediction.

Let's compute these three measurements on a linear regression model using corresponding
functions from scikit-learn. We rework on the diabetes dataset and fine tune the parameters
of the linear regression model via the grid search technique:

>>> diabetes = datasets.load_diabetes()
>>> num_test = 30    # the last 30 samples as testing set
>>> X_train = diabetes.data[:-num_test, :]
>>> y_train = diabetes.target[:-num_test]
>>> X_test = diabetes.data[-num_test:, :]
>>> y_test = diabetes.target[-num_test:]
>>> param_grid = {
...     "alpha": [1e-07, 1e-06, 1e-05],
...     "penalty": [None, "l2"],
...     "eta0": [0.001, 0.005, 0.01],
...     "n_iter": [300, 1000, 3000]
... }
>>> from sklearn.model_selection import GridSearchCV
>>> regressor = SGDRegressor(loss='squared_loss',
                             learning_rate='constant')
>>> grid_search = GridSearchCV(regressor, param_grid, cv=3)

We then obtain the optimal set of parameters:

>>> grid_search.fit(X_train, y_train)
>>> print(grid_search.best_params_)
{'penalty': None, 'alpha': 1e-05, 'eta0': 0.01, 'n_iter': 300}
>>> regressor_best = grid_search.best_estimator_

We then predict the testing set with the optimal model:

>>> predictions = regressor_best.predict(X_test)



Stock Price Prediction with Regression Algorithms

[ 205 ]

Now evaluate the performance on testing sets based on metrics MSE, MAE, and :

>>> from sklearn.metrics import mean_squared_error,
    mean_absolute_error, r2_score
>>> mean_squared_error(y_test, predictions)
1862.0518552093429
>>> mean_absolute_error(y_test, predictions)
34.605923224169558
>>> r2_score(y_test, predictions)
0.63859162277753756

Stock price prediction with regression algorithms
Now that we have learned three (or four if you would say) commonly used and powerful
regression algorithms and performance evaluation metrics, why don't we utilize all of these
in solving our stock price prediction problem?

We have generated the features that we need earlier, and now we will continue with
constructing the training set based on data from 1988 to 2014:

>>> import datetime
>>> start_train = datetime.datetime(1988, 1, 1, 0, 0)
>>> end_train = datetime.datetime(2014, 12, 31, 0, 0)
>>> data_train = data.ix[start_train:end_train]

All fields in the dataframe data (defined in the code from the beginning section) except
'close' are feature columns, and 'close' is the target column:

>>> X_columns = list(data.drop(['close'], axis=1).columns)
>>> y_column = 'close'
>>> X_train = data_train[X_columns]
>>> y_train = data_train[y_column]

We have 6553 training samples and each sample is 37 dimensional:

>>> X_train.shape
(6553, 37)
>>> y_train.shape
(6553,)



Stock Price Prediction with Regression Algorithms

[ 206 ]

Similarly, we assign samples in 2015 as the testing set:

>>> start_test = datetime.datetime(2015, 1, 1, 0, 0)
>>> end_test = datetime.datetime(2015, 12, 31, 0, 0)
>>> data_test = data.ix[start_test:end_test]
>>> X_test = data_test[X_columns]
>>> y_test = data_test[y_column]

We have 252 testing samples:

>>> X_test.shape
(252, 37)

We first experiment with SGD-based linear regression. Before we train the model, we
should realize that SGD-based algorithms are sensitive to data with features at largely
different scales, for example in our case, the average value of the 'open' feature is around
8856, while that of the 'moving_avg_365' feature is 0.00037 or so. Hence we need to
standardize features into the same or comparable scale. We do so by removing the mean
and rescaling to unit (1) variance:

Where  is an original feature of a sample ,  is the mean value of this feature from all
samples,  is the standard deviation of this feature from all samples, and  is the
rescaled feature of sample . We herein implement feature standardization using the
StandardScaler package from scikit-learn:

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()

Fit scaler only based on the training dataset:

>>> scaler.fit(X_train)

Rescale both sets using the trained scaler:

>>> X_scaled_train = scaler.transform(X_train)
>>> X_scaled_test = scaler.transform(X_test)



Stock Price Prediction with Regression Algorithms

[ 207 ]

Now we can search for the SGD-based linear regression with the optimal set of parameters.
We specify L2 regularization and 1000 iterations and tune the regularization term multiplier
alpha and initial learning rate eta0:

>>> param_grid = {
...     "alpha": [3e-06, 1e-5, 3e-5],
...     "eta0": [0.01, 0.03, 0.1],
... }
>>> lr = SGDRegressor(penalty='l2', n_iter=1000)
>>> grid_search = GridSearchCV(lr, param_grid, cv=5,
                             scoring='neg_mean_absolute_error')
>>> grid_search.fit(X_scaled_train, y_train)

Select the best linear regression model and make a prediction of testing samples:

>>> print(grid_search.best_params_)
{'alpha': 3e-05, 'eta0': 0.03}
>>> lr_best = grid_search.best_estimator_
>>> predictions = lr_best.predict(X_scaled_test)

Measure the prediction performance via MSE, MAE, and :

>>> print('MSE: {0:.3f}'.format(
                          mean_squared_error(y_test, predictions)))
MSE: 28600.696
>>> print('MAE: {0:.3f}'.format(
                         mean_absolute_error(y_test, predictions)))
MAE: 125.777
>>> print('R^2: {0:.3f}'.format(r2_score(y_test, predictions)))
R^2: 0.907

Similarly, we experiment with random forest where we specify 1000 trees to ensemble and
tune the maximum depth of the max_depth tree and the minimum number of samples
required to further split a min_samples_split node:

>>> param_grid = {
...     "max_depth": [30, 50],
...     "min_samples_split": [3, 5, 10],
... }
>>> rf = RandomForestRegressor(n_estimators=1000)
>>> grid_search = GridSearchCV(rf, param_grid, cv=5,
                              scoring='neg_mean_absolute_error')
>>> grid_search.fit(X_train, y_train)



Stock Price Prediction with Regression Algorithms

[ 208 ]

Select the best regression forest model and make a prediction of the testing samples:

>>> print(grid_search.best_params_)
{'min_samples_split': 10, 'max_depth': 50}
>>> rf_best = grid_search.best_estimator_
>>> predictions = rf_best.predict(X_test)

Measure the prediction performance:

>>> print('MSE: {0:.3f}'.format(mean_squared_error(y_test, predictions)))
MSE: 36437.311
>>> print('MAE: {0:.3f}'.format(mean_absolute_error(y_test, predictions)))
MAE: 147.052
>>> print('R^2: {0:.3f}'.format(r2_score(y_test, predictions)))
R^2: 0.881

And finally we work with SVR with the linear kernel and leave the penalty parameter C and
 for fine tuning. Similar to SGD-based algorithms, SVR does not work well on data with

feature scale disparity. Again to work around this, we use the rescaled data to train the SVR
model:

>>> param_grid = {
...               "C": [1000, 3000, 10000],
...               "epsilon": [0.00001, 0.00003, 0.0001],
...               }
>>> svr = SVR(kernel='linear')
>>> grid_search = GridSearchCV(svr, param_grid, cv=5,
                               scoring='neg_mean_absolute_error')
>>> grid_search.fit(X_scaled_train, y_train)
>>> print(grid_search.best_params_)
{'epsilon': 0.0001, 'C': 10000}
>>> svr_best = grid_search.best_estimator_
>>> predictions = svr_best.predict(X_scaled_test)
>>> print('MSE: {0:.3f}'.format(mean_squared_error(y_test, predictions)))
MSE: 27099.227
>>> print('MAE: {0:.3f}'.format(mean_absolute_error(y_test, predictions)))
MAE: 123.781
>>> print('R^2: {0:.3f}'.format(r2_score(y_test, predictions)))
R^2: 0.912



Stock Price Prediction with Regression Algorithms

[ 209 ]

With SVR, we are able to achieve  0.912 on the testing set. We can also plot the prediction
generated by each of the three algorithms, along with the ground truth:

Summary
In this chapter, we worked on the last project of the book, predicting stock (specifically
stock index) prices using machine learning regression techniques. We started with a short
introduction to the stock market and factors that influence trading prices. To tackle the
billion dollar problem, we investigated machine learning regression, which estimates a
continuous target variable, as opposed to a discreet output in classification. It followed with
in-depth discussion of three popular regression algorithms, linear regression, regression
tree and regression forest, as well as support vector regression. It covered the definition,
mechanics, and implementation from scratch and with existing modules, along with
applications in examples. We also learned how to evaluate the performance of a regression
model. Finally, we applied what we have learned in this chapter in solving our stock price
prediction problem.



Stock Price Prediction with Regression Algorithms

[ 210 ]

At last, recall that we briefly mentioned several major stock indexes besides DJIA. Is it
possible to better the DJIA price prediction model we just developed by considering
historical prices and performance of these major indexes? This is highly likely! The idea
behind this is that no stock or index is isolated and that there is weak or strong influence
between stocks and different financial markets. This should be intriguing to explore.



8
Best Practices

After working on multiple projects covering important machine learning concepts,
techniques, and widely used algorithms, we have gathered a broad picture of the machine
learning ecosystem, and solid experience in tackling practical problems using machine
learning algorithms and Python. However, there will be issues once we start working on
projects from scratch in the real world. This chapter aims to get us ready for it with best
practices to follow throughout the entire machine learning solution workflow.

We will cover the following topics in this chapter:

Machine learning solution workflow
Tasks in the data preparation stage
Tasks in the training sets generation stage
Tasks in the algorithm training, evaluation, and selection stage
Tasks in the system deployment and monitoring stage
Best practices in the data preparation stage
Best practices in the training sets generation stage
Best practices in the algorithm training, evaluation, and selection stage
Best practices in the system deployment and monitoring stage

Machine learning workflow
In general, tasks in solving a machine learning problem can be summarized into four areas:

Data preparation
Training sets generation



Best Practices

[ 212 ]

Algorithm training, evaluation, and selection
Deployment and monitoring

Starting from data sources to the final machine learning system, a machine learning solution
basically follows the following paradigm:

In the following sections, we will be learning about the typical tasks, common challenges,
and best practices for each of these four stages.

Best practices in the data preparation stage
Apparently, no machine learning system can be built without data. Data collection should
be our first focus.



Best Practices

[ 213 ]

Best practice 1 - completely understand the
project goal
Before starting to collect data, we should make sure that the goal of the project, the business
problem, is completely understood. As it will guide us to what data sources to look into,
and where sufficient domain knowledge and expertise is also required. For example, in the
previous chapter, our goal was to predict future prices of the DJIA index, so we collected
data of its past performance, instead of past performance of a European stock; in Chapter 5,
Click-Through Prediction with Tree-Based Algorithms and Chapter 6, Click-Through Prediction
with Logistic Regression, the business problem was to optimize advertising targeting
efficiency measured in a click-though rate, so we collected click stream data of who clicked
or did not click on what ad in what page, instead of merely what ads were displayed on
what page.

Best practice 2 - collect all fields that are relevant
With a goal to achieve in mind, we have narrowed down potential data sources to
investigate. Now the question becomes: Is it necessary to collect data of all fields available
in a data source, or is a subset of attributes enough? It would be perfect if we could know in
advance which attributes are key indicators or key predictive factors. However, it is very
difficult to ensure that the attributes hand-picked by a domain expert will yield the best
prediction results. Hence, for each data source, it is recommended to collect all fields that
are related to the project, especially in cases where recollecting the data is time consuming,
or even impossible. For example, in the stock price prediction example, we collected data of
all fields including Open, High, Low, and Volume even though initially we were uncertain
of how useful High and Low are. Retrieving the stock data is quick and easy with the API
though.

In another example, if we ever want to collect data ourselves by scraping online articles for
news topic classification, we should store as much information as possible. Otherwise, if a
piece of information is not collected but is later found to provide value, such as hyperlinks
in an article, the article might be already removed from the web page; if it still exists,
rescraping those pages can be costly. After collecting the datasets that we think are useful,
we need to assure the data quality by inspecting its consistency and completeness.



Best Practices

[ 214 ]

Best practice 3 - maintain consistency of field
values
In a dataset that exists or we collect from scratch, often we see values representing the same
meaning. For example, there are "American", "US", and "U.S.A" in the Country field, and
"male" and "M" in the "Gender" field. It is necessary to unify values in a field. For
example, we can only keep "M" and "F" in the "Gender" field and replace other
alternatives. Otherwise, it will mess up the algorithms in later stages as different feature
values will be treated differently even if they have the same meaning. It is also a great
practice to keep track of what values are mapped to the default value of a field.

In addition, the format of values in the same field should also be consistent. For instance, in
the "Age" field, there are true age values such as 21, 35, and mistaken year values such as
1990, 1978; the "Rating" field, both cardinal numbers and English numerals are found,
such as 1, 2, 3, and "one", "two", "three". Transformation and reformatting should be
conducted in order to ensure data consistency.

Best practice 4 - deal with missing data
Due to various reasons, datasets in the real world are rarely completely clean and often
contain missing or corrupt values. They are usually presented as blanks, "Null", "-1",
"999999", "unknown", or any placeholder. Samples with missing data not only provide
incomplete predictive information, but also might confuse the machine learning model as it
cannot tell whether -1 or "unknown" holds a meaning. It is significant to pinpoint and deal
with missing data in order to avoid jeopardizing the performance of models in later stages.

Here are three basic strategies that we can use to tackle the missing data issue:

Discarding samples containing any missing value
Discarding fields containing missing values in any sample

These two strategies are simple to implement, however, at the expense of lost data,
especially when the original dataset is not large enough. The third strategy does not
abandon any data, but tries to fill in the blanks:

Inferring the missing values based on the known part from the attribute. The
process is called missing data imputation. Typical imputation methods include
replacing missing values with the mean or the median value of the field across all
samples, or the most frequent value for categorical data.



Best Practices

[ 215 ]

Let's look at how each strategy is applied in an example where we have a dataset (age,
income) consisting of six samples (30, 100), (20, 50), (35, unknown), (25,
80), (30, 70), and (40, 60). If we process this dataset using the first strategy, it
becomes (30, 100), (20, 50), (25, 80), (30, 70), and (40, 60). If we employ
the second strategy, the dataset becomes (30), (20), (35), (25), (30), and (40)
where only the first field remains. If we decide to complete the unknown value instead of
skipping it, the sample (35, unknown) can be transformed into (35, 72) with the mean
of the rest values in the second field, or (35, 70) with the median value in the second
field.

In scikit-learn, the Imputer class provides a nicely written imputation transformer. We will
herein use it for the preceding small example:

>>> import numpy as np
>>> from sklearn.preprocessing import Imputer
>>> # Represent the unknown value by np.nan in numpy
>>> data_origin = [[30, 100],
...                [20, 50],
...                [35, np.nan],
...                [25, 80],
...                [30, 70],
...                [40, 60]]

Initialize the imputation transformer with the mean value and obtain such information from
the original data:

>>> # Imputation with the mean value
>>> imp_mean = Imputer(missing_values='NaN', strategy='mean')
>>> imp_mean.fit(data_origin)

Complete the missing value:

>>> data_mean_imp = imp_mean.transform(data_origin)
>>> print(data_mean_imp)
[[  30.  100.]
 [  20.   50.]
 [  35.   72.]
 [  25.   80.]
 [  30.   70.]
 [  40.   60.]]



Best Practices

[ 216 ]

Similarly, initialize the imputation transformer with the median value:

>>> # Imputation with the median value
>>> imp_median = Imputer(missing_values='NaN', strategy='median')
>>> imp_median.fit(data_origin)
>>> data_median_imp = imp_median.transform(data_origin)
>>> print(data_median_imp)
[[  30.  100.]
 [  20.   50.]
 [  35.   70.]
 [  25.   80.]
 [  30.   70.]
 [  40.   60.]]

When new samples come in, missing values (in any attribute) can be imputed using the
trained transformer, for example, with the mean value:

>>> new = [[20, np.nan],
...        [30, np.nan],
...        [np.nan, 70],
...        [np.nan, np.nan]]
>>> new_mean_imp = imp_mean.transform(new)
>>> print(new_mean_imp)
[[ 20.  72.]
 [ 30.  72.]
 [ 30.  70.]
 [ 30.  72.]]

Note that 30 in the age field is the mean of those six age values in the original dataset. Now
that we have seen how imputation works and its implementation, let's see how the strategy
of imputing missing values and discarding missing data affects the prediction results
through the following example. First, we load the diabetes dataset and simulate a corrupted
dataset with missing values:

>>> from sklearn import datasets
>>> dataset = datasets.load_diabetes()
>>> X_full, y = dataset.data, dataset.target
>>> # Simulate a corrupted data set by adding 25% missing values
>>> m, n = X_full.shape
>>> m_missing = int(m * 0.25)
>>> print(m, m_missing)
442 110
>>> # Randomly select m_missing samples
>>> np.random.seed(42)
>>> missing_samples = np.array([True] * m_missing +
                               [False] * (m - m_missing))
>>> np.random.shuffle(missing_samples)



Best Practices

[ 217 ]

>>> # For each missing sample, randomly select 1 out of n features
>>> missing_features = np.random.randint(low=0, high=n,
                                         size=m_missing)
>>> # Represent missing values by nan
>>> X_missing = X_full.copy()
>>> X_missing[np.where(missing_samples)[0], missing_features] = np.nan

Then we deal with this corrupted dataset by discarding samples containing a missing value:

>>> X_rm_missing = X_missing[~missing_samples, :]
>>> y_rm_missing = y[~missing_samples]

We then measure the effects of using this strategy by estimating the averaged regression
score, the  with a regression forest model in a cross-validation manner:

>>> # Estimate R^2 on the data set with missing samples removed
>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.model_selection import cross_val_score
>>> regressor = RandomForestRegressor(random_state=42, max_depth=10,
n_estimators=100)
>>> score_rm_missing = cross_val_score(regressor, X_rm_missing,
                                             y_rm_missing).mean()
>>> print('Score with the data set with missing samples removed:
                                 {0:.2f}'.format(score_rm_missing))
Score with the data set with missing samples removed: 0.39

Now we approach the corrupted dataset differently by imputing missing values with the
mean:

>>> imp_mean = Imputer(missing_values='NaN', strategy='mean')
>>> X_mean_imp = imp_mean.fit_transform(X_missing)

And similarly we measure the effects of using this strategy by estimating the averaged :

>>> # Estimate R^2 on the data set with missing samples removed
>>> regressor = RandomForestRegressor(random_state=42,
                                 max_depth=10, n_estimators=100)
>>> score_mean_imp = cross_val_score(regressor, X_mean_imp, y).mean()
>>> print('Score with the data set with missing values replaced by
                             mean: {0:.2f}'.format(score_mean_imp))
Score with the data set with missing values replaced by mean: 0.42



Best Practices

[ 218 ]

Imputation strategy works better than discarding in this case. So how far is the imputed
dataset from the original full one? We can check it again by estimating the averaged
regression score on the original dataset:

>>> # Estimate R^2 on the full data set
>>> regressor = RandomForestRegressor(random_state=42,
                                  max_depth=10, n_estimators=500)
>>> score_full = cross_val_score(regressor, X_full, y).mean()
>>> print('Score with the full data set:
                                  {0:.2f}'.format(score_full))
Score with the full data set: 0.44

It turns out that little information is comprised in the completed dataset. However, there is
no guarantee that the imputation strategy always works better and sometimes dropping
samples with missing values can be more effective. Hence, it is a great practice to compare
the performances of different strategies via cross-validation as we have practiced
previously.

Best practices in the training sets generation
stage
With well-prepared data, it is safe to move on with the training sets generation stage.
Typical tasks in this stage can be summarized into two major categories, data preprocessing
and feature engineering.

Data preprocessing usually involves categorical feature encoding, feature scaling, feature
selection, and dimensionality reduction.

Best practice 5 - determine categorical features
with numerical values
In general, categorical features are easy to spot, as they convey qualitative information, such
as risk level, occupation, and interests. However, it gets tricky if the feature takes on a
discreet and countable (limited) number of numerical values, for instance, 1 to 12
representing months of the year, and 1 and 0 indicating true and false. The key to
identifying whether such a feature is categorical or numerical is whether it provides
mathematical implication: if so, it is a numerical feature, such as product rating from 1 to 5;
otherwise, categorical, such as the month or day of the week.



Best Practices

[ 219 ]

Best practice 6 - decide on whether or not to
encode categorical features
If a feature is considered categorical, we need to decide on whether or not to encode it. It
depends on what prediction algorithm(s) we will use in a later stage. Naive Bayes and tree-
based algorithms can directly work with categorical features, while other algorithms in
general cannot, in which case encoding is essential.

As the output of the feature generation stage is the input of the algorithm training stage,
steps taken in the feature generation stage should be compatible with the prediction
algorithm. Therefore, we should look at two stages, feature generation and prediction
algorithm training as a whole, instead of two isolated components. The next two practical
tips also suggest this point.

Best practice 7 - decide on whether or not to
select features and if so, how
In Chapter 6, Click-Through Prediction with Logistic Regression, we saw how feature selection
was performed using L1-based regularized logistic regression and random forest. Benefits
of feature selection include:

Reducing training time of prediction models, as redundant or irrelevant features
are eliminated
Reducing overfitting for the previous reason
Likely improving performance as prediction models will learn from data with
more significant features

Note that, we used the word likely because there is no absolute certainty that feature
selection will increase prediction accuracy. It is therefore good practice to compare the
performances of conducting feature selection and not doing so via cross-validation. As an
example, in the following snippet we measure the effects of feature selection by estimating
the averaged classification accuracy with an SVC model in a cross-validation manner:



Best Practices

[ 220 ]

First we load the handwritten digits dataset from scikit-learn:

>>> from sklearn.datasets import load_digits
>>> dataset = load_digits()
>>> X, y = dataset.data, dataset.target
>>> print(X.shape)
(1797, 64)

Next, estimate the accuracy on the original dataset, which is 64 dimensional:

>>> from sklearn.svm import SVC
>>> from sklearn.model_selection import cross_val_score
>>> classifier = SVC(gamma=0.005)
>>> score = cross_val_score(classifier, X, y).mean()
>>> print('Score with the original data set: {0:.2f}'.format(score))
Score with the original data set: 0.88

Then, conduct feature selection based on random forest and sort features based on their
importancy scores:

>>> from sklearn.ensemble import RandomForestClassifier
>>> random_forest = RandomForestClassifier(n_estimators=100,
criterion='gini', n_jobs=-1)
>>> random_forest.fit(X, y)
>>> feature_sorted = np.argsort(random_forest.feature_importances_)

Now, select a different number of top features to construct a new dataset, and estimate the
accuracy on each dataset:

>>> K = [10, 15, 25, 35, 45]
>>> for k in K:
...     top_K_features = feature_sorted[-k:]
...     X_k_selected = X[:, top_K_features]
...     # Estimate accuracy on the data set with k selected
          features
...     classifier = SVC(gamma=0.005)
...     score_k_features =
               cross_val_score(classifier, X_k_selected, y).mean()
...     print('Score with the data set of top {0} features:
                              {1:.2f}'.format(k, score_k_features))
...
Score with the data set of top 10 features: 0.88
Score with the data set of top 15 features: 0.93
Score with the data set of top 25 features: 0.94
Score with the data set of top 35 features: 0.92
Score with the data set of top 45 features: 0.88



Best Practices

[ 221 ]

Best practice 8 - decide on whether or not to
reduce dimensionality and if so how
Dimensionality reduction has advantages similar to feature selection:

Reducing training time of prediction models, as redundant or correlated features
are merged into new ones
Reducing overfitting for the same reason
Likely improving performance as prediction models will learn from data with
less redundant or correlated features

Again, it is not certain that dimensionality reduction will yield better prediction results. In
order to examine its effects integrating dimensionality reduction in the model training stage
is recommended. Reusing the preceding handwritten digits example, we measure the
effects of PCA-based dimensionality reduction, where we keep a different number of top
components to construct a new dataset, and estimate the accuracy on each dataset:

>>> from sklearn.decomposition import PCA
>>> # Keep different number of top components
>>> N = [10, 15, 25, 35, 45]
>>> for n in N:
...     pca = PCA(n_components=n)
...     X_n_kept = pca.fit_transform(X)
...     # Estimate accuracy on the data set with top n components
...     classifier = SVC(gamma=0.005)
...     score_n_components =
                   cross_val_score(classifier, X_n_kept, y).mean()
...     print('Score with the data set of top {0} components:
                            {1:.2f}'.format(n, score_n_components))
Score with the data set of top 10 components: 0.95
Score with the data set of top 15 components: 0.95
Score with the data set of top 25 components: 0.91
Score with the data set of top 35 components: 0.89
Score with the data set of top 45 components: 0.88

Best practice 9 - decide on whether or not to
scale features
Recall that in Chapter 9, Stock Prices Prediction with Regression Algorithms, SGD-based linear
regression and SVR models require features to be standardized by removing the mean and
rescaling to unit variance. So when is feature scaling needed and when is it not?



Best Practices

[ 222 ]

In general, naive Bayes and tree-based algorithms are not sensitive to features at different
scales, as they look at each feature independently. Logistic or linear regression normally is
not affected by the scales of input features, with one exception, when the weights are
optimized with stochastic gradient descent.

In most cases, an algorithm that involves any form of distance (separation in spaces) of
samples in learning factors requires scaled/standardized input features, such as SVC and
SVR. Feature scaling is also a must for any algorithm using SGD for optimization. We have
so far covered tips regarding data preprocessing and we will now discuss best practices of
feature engineering as another major aspect of training sets generation. We will do so from
two perspectives:

Best practice 10 - perform feature engineering
with domain expertise
Luckily enough, if we possess sufficient domain knowledge, we can apply it in creating
domain-specific features; we utilize our business experience and insights to identify what in
the data and formulate what correlates to the prediction target from the data. For example,
in Chapter 9, Stock Prices Prediction with Regression Algorithms, we designed and constructed
feature sets for stock prices prediction based on factors investors usually look at when
making investment decisions.

While particular domain knowledge is required, sometimes we can still apply some general
tips in this category. For example, in fields related to customer analytics, such as market and
advertising, time of the day, day of the week, month are usually important signals. Given a
data point with the value 2017/02/05 in the date column and 14:34:21 in the
time column, we can create new features including afternoon, Sunday, and February. In
retail, information over a period of time is usually aggregated to provide better insights.
The number of times a customer visits a store for the past three months, average number of
products purchased weekly for the previous year, for instance, can be good predictive
indicators for customer behavior prediction.



Best Practices

[ 223 ]

Best practice 11 - perform feature engineering
without domain expertise
If unfortunately, we have very little domain knowledge, how can we generate features?
Don't panic. There are several generic approaches:

Binarization: a process of converting a numerical feature to a binary one with a
preset threshold. For example, in spam email detection, for the feature (or term)
prize, we can generate a new feature whether prize occurs: any term
frequency value greater than 1 becomes 1, otherwise 0. Feature number of
visits per week can be used to produce a new feature is frequent
visitor by judging whether the value is greater than or equal to 3. We
implement such binarization as follows using scikit-learn:

        >>> from sklearn.preprocessing import Binarizer
        >>> X = [[4], [1], [3], [0]]
        >>> binarizer = Binarizer(threshold=2.9)
        >>> X_new = binarizer.fit_transform(X)
        >>> print(X_new)
        [[1]
        [0]
        [1]
        [0]]

Discretization: a process of converting a numerical feature to a categorical
feature with limited possible values. Binarization can be viewed as a special case
of discretization. For example, we can generate an age group feature from age:
18-24 for age from 18 to 24, 25-34 for age from 25 to 34, 34-54 and 55+.
Interaction: includes sum, multiplication, or any operations of two numerical
features, joint condition check of two categorical features. For example, number
of visits per week and number of products purchased per week can
be used to generate number of products purchased per visit feature;
interest and occupation, such as sports and engineer, can form
occupation and interest, such as engineer interested in sports.



Best Practices

[ 224 ]

Polynomial transformation: a process of generating polynomial and interaction
features. For two features  and , the two degree of polynomial features
generated are ,  and . In scikit-learn, we can use the
PolynomialFeatures class to perform polynomial transformation:

        >>> from sklearn.preprocessing import PolynomialFeatures
        >>> X = [[2, 4],
        ... [1, 3],
        ... [3, 2],
        ... [0, 3]]
        >>> poly = PolynomialFeatures(degree=2)
        >>> X_new = poly.fit_transform(X)
        >>> print(X_new)
        [[ 1. 2. 4. 4. 8. 16.]
        [ 1. 1. 3. 1. 3. 9.]
        [ 1. 3. 2. 9. 6. 4.]
        [ 1. 0. 3. 0. 0. 9.]]

Note that the resulting new features consist of 1 (bias, intercept), , , ,  and .

Best practice 12 - document how each feature is
generated
We've covered rules of feature engineering with domain knowledge and in general, there is
one more thing worth noting: document how each feature is generated. It sounds trivial, but
often we just forget how a feature is obtained or created. We usually need to go back to this
stage after some fail trials in the model training stage and attempt to create more features
with the hope of performance improvement. We have to be clear of what and how features
are generated, in order to remove those that do not quite work out and to add new ones
with potential.

Best practices in the model training,
evaluation, and selection stage
Given a machine learning problem, the first question many people ask is usually: what is
the best classification/regression algorithm to solve it? However, there is no one-size-fits-all
solution or free lunch. No one could know which algorithm will work the best before trying
multiple methods and fine-tuning the optimal one. We will be looking into best practices
around this in the following sections.



Best Practices

[ 225 ]

Best practice 13 - choose the right algorithm(s) to
start with
Due to the fact that there are several parameters to tune for an algorithm, exhausting all
algorithms and fine-tuning each one can be extremely time-consuming and computationally
expensive. We should instead short-list one to three algorithms to start with following the
general guidelines in the following list (note we herein focus on classification, but the
theory transcends in regression and there is usually a counterpart algorithm in regression).

There are several things that we need to be clear about before short-listing potential
algorithms:

Size of the training dataset
Dimensionality of the dataset
Whether the data is linearly separable
Whether features are independent
Tolerance and tradeoff of bias and variance
Whether online learning is required

Naive Bayes
It is a very simple algorithm. For a relatively small training dataset, if features are
independent, naive Bayes will usually perform well. For a large dataset, naive Bayes will
still work well as feature independence can be assumed in this case regardless of the truth.
Training of naive Bayes is usually faster than any other algorithms due to its computational
simplicity. However, this may lead to high bias (low variance though).

Logistic regression
It is probably the most widely used classification algorithm, and the first algorithm a
machine learning practitioner usually tries given a classification problem. It performs well
when data is linearly separable or approximately linearly separable. Even if it is not linearly
separable, we can if possible, convert the linearly non-separable features into separable ones
and apply logistic regression afterwards (see the following example). Also logistic
regression is extremely scalable to large datasets with SGD optimization, which makes it
efficient in solving big data problems. Plus, it makes online learning feasible.



Best Practices

[ 226 ]

Although logistic regression is a low bias, high variance algorithm, we overcome the
potential overfitting by adding L1, L2, or a mix of two regularizations.

SVM
It is versatile to adapt to the linear separability of data. For a separable dataset, SVM with
linear kernel performs comparably to logistic regression. Beyond this, SVM also works well
for a non-separable one, if equipped with a non-linear kernel, such as RBF. For a high-
dimensional dataset, the performance of logistic regression is usually compromised, while
SVM still performs well. A good example could be news classification where the feature
dimension is tens of thousands. In general, very high accuracy can be achieved by SVM
with the right kernel and parameters. However, this might be at the expense of intense
computation and high memory consumption.

Random forest (or decision tree)
Linear separability of data does not matter to the algorithm. And it works directly with 
categorical features without encoding, which provides great ease of use. Also, the trained
model is very easy to interpret and explain to non-machine learning practitioners, which
cannot be achieved with most other algorithms. Additionally, random forest boosts decision
tree, which might lead to overfitting by assembling a collection of separate trees. Its
performance is comparable to SVM, while fine-tuning a random forest model is less difficult
compared to SVM and neural networks.



Best Practices

[ 227 ]

Neural networks
It is extremely powerful, especially with the development of deep learning. However,
finding the right topology (layers, nodes, activation functions, and so on) is not easy, not to
mention the time-consuming model training and tuning. Hence, it is not recommended as
an algorithm to start with.

Best practice 14 - reduce overfitting
We've touched on ways to avoid overfitting when discussing the pros and cons of
algorithms in the last practice. We will now formally summarize them:

Cross-validation, a good habit we have built on throughout the chapters in this
book.
Regularization.
Simplification if possible. The more complex the mode is, the higher the chance of
overfitting is. Complex models include a tree or forest with excessive depth, a
linear regression with high degree polynomial transformation, and SVM with a
complicated kernel.
Ensemble learning, combining a collection of weak models to form a stronger
one.

Best practice 15 - diagnose overfitting and
underfitting
So how can we tell whether a model suffers from overfitting, or the other extreme,
underfitting? Learning curve is usually used to evaluate bias and variance of a model.
Learning curve is a graph that compares the cross-validated training and testing scores over
a variety of training samples.

For a model that fits well on the training samples, the performance of training samples
should be above what is desired. Ideally, as the number of training samples increases, the
model performance on testing samples improves; eventually the performance on testing
samples becomes close to that on training samples.



Best Practices

[ 228 ]

When the performance on testing samples converges at a value far from the performance on
training samples, overfitting can be concluded. In this case, the model fails to generalize to
instances that are not seen. For a model that does not even fit well on the training samples,
underfitting is easily spotted: both performances on training and testing samples are below
what is desired in the learning curve.

Learning curve in an ideal case:

Learning curve for an overfitted model:



Best Practices

[ 229 ]

Learning curve for an underfitted model:

To generate the learning curve, we can utilize the learning_curve package from scikit-
learn and the plot_learning_curve function defined in h t t p ://s c i k i t - l e a r n . o r g /s t a b

l e /a u t o _ e x a m p l e s /m o d e l _ s e l e c t i o n /p l o t _ l e a r n i n g _ c u r v e . h t m l .

Best practices in the deployment and
monitoring stage
After all the processes in the former three stages, we now have a well established data
preprocessing pipeline and a correctly trained prediction model. The last stage of a machine
learning system involves saving those resulting models from previous stages and deploying
them on new data, as well as monitoring the performance, updating the prediction models
regularly.

http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html


Best Practices

[ 230 ]

Best practice 16 - save, load, and reuse models
When the machine learning is deployed, new data should go through the same data
preprocessing procedures (scaling, feature engineering, feature selection, dimensionality
reduction, and so on) as in previous stages. The preprocessed data is then fed in the trained
model. We simply cannot rerun the entire process and retrain the model every time new
data comes in. Instead, we should save the established preprocessing models and trained
prediction models after the corresponding stages complete. In deployment mode, these
models are loaded in advance, and they are used to produce prediction results of the new
data.

We illustrate it via the diabetes example where we standardize the data and employ an SVR
model:

>>> dataset = datasets.load_diabetes()
>>> X, y = dataset.data, dataset.target
>>> num_new = 30 # the last 30 samples as new data set
>>> X_train = X[:-num_new, :]
>>> y_train = y[:-num_new]
>>> X_new = X[-num_new:, :]
>>> y_new = y[-num_new:]

Preprocessing the training data with scaling:

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()
>>> scaler.fit(X_train)

Now save the established standardize, the scaler object with pickle:

>>> import pickle
>>> pickle.dump(scaler, open("scaler.p", "wb" ))

This generates the scaler.p file. Move on with training a SVR model on the scaled data:

>>> X_scaled_train = scaler.transform(X_train)
>>> from sklearn.svm import SVR
>>> regressor = SVR(C=20)
>>> regressor.fit(X_scaled_train, y_train)

Save the trained regressor, the regressor object with pickle:

>>> pickle.dump(regressor, open("regressor.p", "wb"))



Best Practices

[ 231 ]

This generates the regressor.p file. In the deployment stage, we first load in the saved
standardizer and regressor from the two preceding files:

>>> my_scaler = pickle.load(open("scaler.p", "rb" ))
>>> my_regressor = pickle.load(open("regressor.p", "rb"))

Then preprocess the new data using the standardizer and make a prediction with the
regressor just loaded:

>>> X_scaled_new = my_scaler.transform(X_new)
>>> predictions = my_regressor.predict(X_scaled_new)

Best practice 17 - monitor model performance
The machine learning system is now up and running. To make sure everything is on the
right track, we need to conduct a performance check on a regular basis. To do so, besides
making a prediction in real time, we should record the ground truth at the same time.

Continue the diabetes example with a performance check:

>>> from sklearn.metrics import r2_score
>>> print('Health check on the model, R^2:
    {0:.3f}'.format(r2_score(y_new, predictions)))
Health check on the model, R^2: 0.613

We should log the performance and set an alert for a decayed performance.

Best practice 18 - update models regularly
If the performance is getting worse, chances are the pattern of data has changed. We can
work around this by updating the model. Depending on whether online learning is feasible
or not with the model, the model can be modernized with the new set of data (online
updating) or retrained completely with the most recent data.



Best Practices

[ 232 ]

Summary
The purpose of the last chapter of this book is to prepare ourselves for real-world machine
learning problems. We started with the general workflow that a machine learning solution
follows: data preparation, training sets generation, algorithm training, evaluation and
selection, and finally system deployment and monitoring. We then went through the typical
tasks, common challenges, and best practices for each of these four stages in depth .

Practice makes perfect. The most important best practice is practice itself. Get started with a
real-world project to deepen your understanding and apply what we have learned
throughout the entire book.



Index

A
advertising click-through prediction
   overview  117
algorithms, for constructing decision tree
   C4.5  122
   CART (Classification and Regression Tree)  122
   CHAID (Chi-squared Automatic Interaction

Detector)  123
   ID3 (Iterative Dichotomiser 3)  122
Anaconda
   installation link  28
Arcene Data Set
   reference  108
Area Under Curve (AUC)  81
artificial neural networks (ANN)  11
averaging  27

B
bag of words model  42
bagging  26, 142
Bayes theorem
   examples  62, 63, 64
bias  188
binarization  223
binary classification  58
binning  25
blending  27
boosting  26
Bootstrap aggregating  26

C
C4.5  122
CART (Classification and Regression Tree)  123
categorical features
   about  119
   converting, to numerical  146, 147, 148

CHAID (Chi-squared Automatic Interaction
Detector)  123

class  10
classification
   about  10, 58
   binary classification  59
   multi-label classification  60
   multiclass classification  59
   text classification  61
   versus regression  177
classifier performance evaluation  79, 81
click-through prediction
   with decision tree  138, 140, 141, 142
click-through rate (CTR)  117
Click-Through Rate Prediction
   reference  138
clustering  49
coefficients  188
confusion matrix
   about  79
   computing, of naive Bayes classifier  80
conversational agents  32
cost function  10
cross industry standard process for data mining

(CRISP DM)
   about  21
   business understanding phase  21
   data preparation phase  21
   data understanding phase  21
   deployment phase  21
   evaluation phase  21
   modeling phase  21
cross-validation  83

D
data mining  21
data preparation stages



[ 234 ]

   about  212
   best practices  213, 214, 215, 216, 218
data preprocessing  47, 218
Data Technology (DT)  8
data
   generalizing with  13
   obtaining  38
decision tree classifier  119, 120
decision tree regression  194
decision tree
   constructing  122, 123
   implementations  130, 131, 132, 133, 134, 135,

136, 138
deep learning  12
deployment and monitoring stage
   best practices  229, 230, 231
dimensions  20
discretization  223
display online advertising  117
Dorothea Data Set
   reference  108
Dow Jones Industrial Average (DJIA)  178

E
entropy  127, 128
exploration  21

F
feature engineering  22, 180, 218
feature selection
   via random forest  173
feature-based bagging  142
features  20, 40, 58
fetal state classification on cardiotocography
   with SVM  113, 115
fundamental analysis  176

G
Gaussian kernel  105
Genetic algorithms (GA)  11
Gini impurity  124, 125, 126
gradient descent
   about  155
   click-through prediction, with logistic regression 

161, 162

   logistic regression model, training via  155, 156,
157, 158, 159, 160

graphical processing units (GPU)  12
GraphViz
   reference  138

H
handwritten digit recognition  59
Heterogeneity Activity Recognition Data Set
   reference  3, 108
HIGGS Data Set
   reference  108
high variance  14
hyperplane  90

I
ID3 (Iterative Dichotomiser 3)  122
imputing  22
indexes, DJIA
   London FTSE-100  180
   Nasdaq Composite  180
   Russell 2000  180
   Standard & Poor's 500  180
Information Technology (IT)  8
integer-label encoding  23
interaction  24, 223
intercept  188
Internet of Things (IoT)  8

K
k-fold cross-validation  84
k-means clustering  50
kernel coefficient  106
kernel function  105

L
label encoding  23
labeled data  10
learning_curve package
   reference  229
lemmatization  47
liblinear
   reference  94
libsvm



[ 235 ]

   reference  94
linear kernel
   versus RBF kernel  108
linear regression  188
logic-based learning  11
logistic function  149, 150
logistic regression classifier  149
logistic regression model
   training, via gradient descent  155, 156, 157,

158, 159, 160
   training, via stochastic gradient descent (SGD) 

163, 165
   training, with regularization  166, 167
logistic regression
   about  225, 226
   mechanics  151, 152, 153, 154
London FTSE-100
   reference  180
loss function  10
low bias  14

M
machine learning algorithms
   history of development  11
machine learning classification  58
machine learning regression
   examples  178
machine learning workflow  211, 212
machine learning
   about  7
   applications  8
   high level overview  9
   need for  7
margin  91
matplotlib  28
Mean absolute error (MAE)  204
mean squared error (MSE)  151, 189
Miniconda  28
missing data imputation  214
missing values  22
MNIST hand-written digits recognition  60
model training, evaluation, and selection stage
   best practices  224, 225, 227, 228, 229
model tuning  83
models

   combining  25
Moore's law  12
multi-label classification  60
multiclass classification
   about  59
   handling  170, 172
multinomial classification  59
multinomial logistic regression  171

N
naive Bayes (NB)
   about  61
   exploring  62
   implementations  68, 69, 70, 72, 73, 74, 75, 76,

77, 79
   mechanics  65, 67
Naive Bayes algorithm  225
named-entity recognition (NER)  61
Nasdaq Composite
   reference  180
National Institute of Standards and Technology

(NIST)  59
natural language processing (NLP)  31
neural networks  227
news topic classification
   about  61
   with Support Vector Machine  109, 111, 112
newsgroup data
   about  37
   reference  37
non-negative matrix factorization (NMF)  53
numerical feature
   categorical, converting to  146, 147, 148
numerical type  118
NumPy mailing list
   reference  29
NumPy
   installation instruction link  28

O
one-hot encoding  23, 146
one-hot encoding feature  146, 147, 148, 149
one-of-K encoding  23
one-vs-one approach  98
one-vs-rest approach  98



[ 236 ]

online learning
   used, for training on large-scale datasets  169,

170

ontology  32
ordinal feature  119
overfitting  14

P
pandas
   installation documentation link  29
   reference  184
part of speech (POS)  32
plot_learning_curve function
   reference  229
polynomial features  24
polynomial kernel  107
polynomial transformation  224
power transforms  25
Python NLP libraries  33

Q
Quandl Python API
   reference  184
Quandl
   reference  184

R
radial basis function (RBF)  105
random forest regression model  201
random forest
   about  226
   deploying  143
RBF kernel
   versus linear kernel  108
Receiver Operating Characteristic (ROC)  81
regression algorithms
   stock price, predicting with  178, 180
regression forest  201
regression tree  194
regression
   about  10, 177
   versus classification  177
regularization
   logistic regression model, training with  166, 167
reinforcement learning  11

ROC curve  82

S
scaling  24
scikit-learn
   installing  28
   reference  28, 29
   setting up  28
Scipy mailing list
   reference  29
semi-supervised learning  11
sigmoid function  149
sigmoid kernel  107
softmax regression  171
spam e-mail detection  58
sparse matrix  24
stacking  27
Standard & Poor's 500
   reference  180
standardization  24
statistical learning  11
steepest descent  155
stemming  47
stochastic gradient descent (SGD)
   logistic regression model, training via  163, 165
stock index  178
stock market
   overview  176
stock price prediction, with regression algorithms
   about  178
   data acquisition  184, 185
   decision tree regression  194, 195, 196, 197,

200

   examples  205, 206, 207, 208, 209
   feature engineering  180, 181, 182, 183
   feature generation  184, 185
   linear regression  188, 189, 192, 194
   regression performance evaluation  203, 204,

205

   support vector regression (SVR)  202, 203
stock price
   overview  176
   predicting, with regression algorithms  180
stop words  42
supervised learning  10



support vector classification (SVC)  202
Support Vector Machine (SVM)
   about  61, 90
   dealing, with multiple classes  98, 99, 101
   fetal state classification, on cardiotocography 

113, 115
   implementations  97
   kernels  103
   linearly non-separable problems, solving  103,

104, 105, 106, 107
   mechanics  90
   news topic classification  109, 111, 112
   optimal hyperplane, determining  91, 92, 93, 94
   outliers, handling  95, 96
   separating hyperplane, identifying  90, 91
support vector regression (SVR)  202
support vectors  90
SVM  226

T
technical analysis  176, 177
term frequency (tf)  88
term frequency-inverse document frequency (tf-idf) 

88

testing samples  13
testing sets  13
text classification
   applications  61
topic modeling  52

training samples  13
training sets  13
training sets generation stage
   best practices  218, 219, 220, 221, 223, 224
tree-bagging  142

U
underfitting  14
unlabeled data  10
unsupervised learning
   about  10
URL Reputation Data Set
   reference  108

V
validation samples  13
validation sets  13
visualization  43
voting  27

W
weights  188
Within Cluster Sum of Squares (WCSS)  50
Within Set Sum of Squared Error (WSSSE)  50

Y
YouTube Multiview Video Games Data Set
   reference  108


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Python and Machine Learning
	What is machine learning and why do we need it?
	A very high level overview of machine learning
	A brief history of the development of machine learning algorithms
	Generalizing with data
	Overfitting, underfitting and the bias-variance tradeoff
	Avoid overfitting with cross-validation
	Avoid overfitting with regularization

	Avoid overfitting with feature selection and dimensionality reduction
	Preprocessing, exploration, and feature engineering
	Missing values
	Label encoding
	One-hot-encoding
	Scaling
	Polynomial features
	Power transformations
	Binning

	Combining models
	Bagging
	Boosting
	Stacking
	Blending
	Voting and averaging

	Installing software and setting up
	Troubleshooting and asking for help
	Summary

	Chapter 2: Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms
	What is NLP?
	Touring powerful NLP libraries in Python
	The newsgroups data
	Getting the data
	Thinking about features
	Visualization
	Data preprocessing
	Clustering
	Topic modeling
	Summary

	Chapter 3: Spam Email Detection with Naive Bayes
	Getting started with classification
	Types of classification
	Applications of text classification
	Exploring naive Bayes
	Bayes' theorem by examples
	The mechanics of naive Bayes
	The naive Bayes implementations
	Classifier performance evaluation
	Model tuning and cross-validation
	Summary

	Chapter 4: News Topic Classification with Support Vector Machine
	Recap and inverse document frequency
	Support vector machine
	The mechanics of SVM
	Scenario 1 - identifying the separating hyperplane
	Scenario 2 - determining the optimal hyperplane
	Scenario 3 - handling outliers

	The implementations of SVM
	Scenario 4 - dealing with more than two classes

	The kernels of SVM
	Scenario 5 - solving linearly non-separable problems

	Choosing between the linear and RBF kernel

	News topic classification with support vector machine
	More examples - fetal state classification on cardiotocography with SVM
	Summary

	Chapter 5: Click-Through Prediction with Tree-Based Algorithms
	Brief overview of advertising click-through prediction
	Getting started with two types of data, numerical and categorical
	Decision tree classifier
	The construction of a decision tree
	The metrics to measure a split
	The implementations of decision tree

	Click-through prediction with decision tree
	Random forest - feature bagging of decision tree
	Summary

	Chapter 6: Click-Through Prediction with Logistic Regression
	One-hot encoding - converting categorical features to numerical
	Logistic regression classifier
	Getting started with the logistic function
	The mechanics of logistic regression
	Training a logistic regression model via gradient descent

	Click-through prediction with logistic regression by gradient descent
	Training a logistic regression model via stochastic gradient descent
	Training a logistic regression model with regularization
	Training on large-scale datasets with online learning
	Handling multiclass classification

	Feature selection via random forest
	Summary

	Chapter 7: Stock Price Prediction with Regression Algorithms
	Brief overview of the stock market and stock price
	What is regression?
	Predicting stock price with regression algorithms
	Feature engineering
	Data acquisition and feature generation
	Linear regression
	Decision tree regression
	Support vector regression
	Regression performance evaluation
	Stock price prediction with regression algorithms

	Summary

	Chapter 8: Best Practices
	Machine learning workflow
	Best practices in the data preparation stage
	Best practice 1 - completely understand the project goal
	Best practice 2 - collect all fields that are relevant
	Best practice 3 - maintain consistency of field values
	Best practice 4 - deal with missing data

	Best practices in the training sets generation stage
	Best practice 5 - determine categorical features with numerical values
	Best practice 6 - decide on whether or not to encode categorical features
	Best practice 7 - decide on whether or not to select features and if so, how
	Best practice 8 - decide on whether or not to reduce dimensionality and if so how
	Best practice 9 - decide on whether or not to scale features
	Best practice 10 - perform feature engineering with domain expertise
	Best practice 11 - perform feature engineering without domain expertise
	Best practice 12 - document how each feature is generated

	Best practices in the model training, evaluation, and selection stage
	Best practice 13 - choose the right algorithm(s) to start with
	Naive Bayes
	Logistic regression
	SVM
	Random forest (or decision tree)
	Neural networks

	Best practice 14 - reduce overfitting
	Best practice 15 - diagnose overfitting and underfitting

	Best practices in the deployment and monitoring stage
	Best practice 16 - save, load, and reuse models
	Best practice 17 - monitor model performance
	Best practice 18 - update models regularly

	Summary

	Index

