


Python Microservices
Development

Build, test, deploy, and scale microservices in Python

Tarek Ziadé

BIRMINGHAM - MUMBAI



Python Microservices Development
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book. Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

First published: July 2017

Production reference: 1210717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78588-111-4

www.packtpub.com

http://www.packtpub.com




Credits

Author
Tarek Ziadé

Copy Editor
Sonia Mathur

Reviewer
William Kahn-Greene

Project Coordinator
Vaidehi Sawant

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Chaitanya Nair

Indexer
Mariammal Chettiyar

Content Development Editor
Rohit Kumar Singh

Graphics
Jason Monteiro

Technical Editor
Pavan Ramchandani

Production Coordinator
Nilesh Mohite



About the Author
Tarek Ziadé is a Python developer, located in the countryside near Dijon, France. He works
at Mozilla in the services team. He founded a French Python user group called Afpy, and he
has written several books about Python in French and English. When he is not hacking on
his computer or hanging out with his family, he's spending time between his two passions,
running and playing the trumpet.

You can visit his personal blog (Fetchez le Python) and follow him on Twitter
(@tarek_ziade). You can also take a look at one of his books on Amazon, Expert Python
Programming, published by Packt.

I would like to thank the Packt team for their help, and the following hackers who helped
me: Stéfane Fermigier, William Kahn-Greene, Chris Kolosiwsky, Julien Vehent, and Ryan
Kelly.

I would also like to thank Amina, Milo, Suki, and Freya for their love and patience.

I hope you will enjoy this book as much as I’ve enjoyed writing it!



About the Reviewer
William Kahn-Greene has been writing Python and building applications on the web since
the late 90s. He works in the crash-stats group on the crash ingestion pipeline at Mozilla
and also maintains a variety of Python libraries, including bleach. When he’s waiting for CI
to test his code changes, he’s building things with wood, tending to his tomato plant, and
cooking for four.



www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBook.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt


Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1785881116.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116
https://www.amazon.com/dp/1785881116


Table of Contents
Preface 1

Chapter 1: Understanding Microservices 8

Origins of Service-Oriented Architecture 9
The monolithic approach 10
The microservice approach 14
Microservice benefits 16

Separation of concerns 16
Smaller projects 16
Scaling and deployment 17

Microservices pitfalls 18
Illogical splitting 18
More network interactions 19
Data storing and sharing 19
Compatibility issues 20
Testing 20

Implementing microservices with Python 21
The WSGI standard 22
Greenlet and Gevent 23
Twisted and Tornado 25
asyncio 26
Language performances 29

Summary 31

Chapter 2: Discovering Flask 33

Which Python? 35
How Flask handles requests 35

Routing 39
Variables and converters 40
The url_for function 43

Request 44
Response 45

Flask built-in features 47
The session object 47
Globals 48
Signals 49



[ ii ]

Extensions and middlewares 51
Templates 52
Configuration 54
Blueprints 56
Error handling and debugging 57

Custom error handler 58
The debug mode 60

A microservice skeleton 61
Summary 64

Chapter 3: Coding, Testing, and Documenting - the Virtuous Cycle 65

Different kinds of tests 67
Unit tests 68
Functional tests 71
Integration tests 73
Load tests 74
End-to-end tests 77

Using WebTest 79
Using pytest and Tox 80
Developer documentation 83
Continuous Integration 88

Travis-CI 89
ReadTheDocs 90
Coveralls 91

Summary 94

Chapter 4: Designing Runnerly 95

The Runnerly application 96
User stories 96

Monolithic design 98
Model 98
View and Template 99
Background tasks 103

Strava token 106
Authentication and authorization 107
Putting together the monolithic design 111

Splitting the monolith 112
Data Service 114
Using Open API 2.0 115
More splitting 118
Summary 119



[ iii ]

Chapter 5: Interacting with Other Services 121

Synchronous calls 122
Using Session in a Flask app 123
Connection pooling 127
HTTP cache headers 129
Improving data transfer 132

GZIP compression 132
Binary payloads 134

Putting it together 137
Asynchronous calls 137

Task queues 138
Topic queues 139
Publish/subscribe 144
RPC over AMQP 144
Putting it together 145

Testing 145
Mocking synchronous calls 145
Mocking asynchronous calls 147

Mocking Celery 147
Mocking other asynchronous calls 149

Summary 150

Chapter 6: Monitoring Your Services 151

Centralizing logs 152
Setting up Graylog 154
Sending logs to Graylog 157
Adding extra fields 159

Performance metrics 161
System metrics 161
Code metrics 164
Web server metrics 166

Summary 168

Chapter 7: Securing Your Services 169

The OAuth2 protocol 170
Token-based authentication 172

The JWT standard 173
PyJWT 175
X.509 certificate-based authentication 176
The TokenDealer microservice 179

The POST/oauth/token implementation 180



[ iv ]

Using TokenDealer 184
Web application firewall 186

OpenResty - Lua and nginx 188
Rate and concurrency limiting 191
Other OpenResty features 193

Securing your code 194
Asserting incoming data 194
Limiting your application scope 198
Using Bandit linter 199

Summary 202

Chapter 8: Bringing It All Together 204

Building a ReactJS dashboard 205
The JSX syntax 206
React components 207

ReactJS and Flask 210
Using Bower, npm, and Babel 211
Cross-origin resource sharing 215

Authentication and authorization 218
Interacting with Data Service 218
Getting the Strava token 219
JavaScript authentication 221

Summary 223

Chapter 9: Packaging and Running Runnerly 225

The packaging toolchain 226
A few definitions 227
Packaging 228

The setup.py file 228
The requirements.txt file 233
The MANIFEST.in file 235

Versioning 236
Releasing 239
Distributing 241

Running all microservices 244
Process management 246
Summary 250

Chapter 10: Containerized Services 251

What is Docker? 252
Docker 101 254
Running Flask in Docker 256



[ v ]

The full stack - OpenResty, Circus and Flask 258
OpenResty 259
Circus 261

Docker-based deployments 264
Docker Compose 265
Introduction to Clustering and Provisioning 267

Summary 270

Chapter 11: Deploying on AWS 271

AWS overview 272
Routing - Route53, ELB, and AutoScaling 274
Execution - EC2 and Lambda 274
Storage - EBS, S3, RDS, ElasticCache, and CloudFront 276

Messaging - SES, SQS, and SNS 277
Simple Email Service (SES) 277
Simple Queue Service (SQS) 278
Simple Notification Service (SNS) 278

Provisioning and deployment - CloudFormation and ECS 279
Deploying on AWS - the basics 280

Setting up your AWS account 280
Deploying on EC2 with CoreOS 284

Deploying with ECS 288
Route53 294
Summary 296

Chapter 12: What Next? 297

Iterators and generators 298
Coroutines 301
The asyncio library 303
The aiohttp framework 304
Sanic 305
Asynchronous versus synchronous 306
Summary 309

Index 310



Preface
If we try to deploy our web applications into the cloud, it requires our code to interact with
many third-party services. Using microservice architectures, you can build applications that
will allow you to manage these interactions. However, this comes with its own set of
challenges, since each set has its own complexity, and getting their interaction right isn't
easy. This easy-to-follow guide covers techniques to help you overcome these challenges.
You will learn how to best design, write, test, and deploy your microservices. The real-
world examples will help Python developers create their own Python microservices using
the most efficient methods. By the end of this book, you will have acquired the skills to craft
applications that are built as small standard units, using all the proven best practices and
avoiding the usual traps. Also, this is a useful guide for the vast community of Python
developers who are shifting from monolithic design to the new microservice-based
development paradigm.

What this book covers
Chapter 1, Understanding Microservices, defines what microservices are, and their roles in
modern web applications. It also introduces Python and explains why it's great for building
microservices.

Chapter 2, Discovering Flask, introduces Flask and goes through its main features. It
showcases the framework with a sample web application that will be the basis for building
microservices.

Chapter 3, Coding, Testing, and Documenting - the Virtuous Cycle, describes the Test-Driven
Development and Continuous Integration approach, and how to use it in practice to build
and package Flask applications.

Chapter 4, Designing Runnerly, takes you through the app features and user stories,
explains how it could be built as a monolithic app, then decomposes it into microservices
and explains how they interact with the data. It will also introduce the Open API 2.0
specification (ex-Swagger), which can be used to describe HTTP APIs.

Chapter 5, Interacting with Other Services, explains how a service interacts with backend
services, how to deal with network splits and other interaction problems, and how to test
the service in isolation.



Preface

[ 2 ]

Chapter 6, Securing Your Services, explains how to secure your microservices and how to
deal with user authentication, service-to-service authentication, as well as user
management. It will also introduce the reader to fraud and abuse, and how to mitigate it.

Chapter 7, Monitoring Your Services, explains how to add logging and metrics in your code,
and how to make sure you have a clear global understanding of what's going on in your
application to track down issues and understand your services usage.

Chapter 8, Bringing It All Together, describes how to design and build a JavaScript
application that leverages and uses the microservices in an end-user interface.

Chapter 9, Packaging and Running Runnerly, describes how to package, build, and run the
whole Forrest application. As a developer, it's vital to be able to run all the parts that
compose your application into a single dev box.

Chapter 10, Containerized Services, explains what is virtualization, how to use Docker, and
also how to Dockerize your services.

Chapter 11, Deploying on AWS, introduces you to existing cloud service providers and then
to the AWS world, and shows how to instantiate servers and use the major AWS services
that are useful to run a microservices-based application. It also introduces CoreOS, a Linux
distribution specifically created to deploy Docker containers in the cloud.

Chapter 12, What Next?, concludes the book by giving some hints on how your
microservices can be built independently from specific cloud providers and virtualization
technologies, to avoid the trap of putting all your eggs in the same basket. It emphasizes
what you learned in Chapter 9, Packaging and Running Runnerly.

What you need for this book
To execute the commands and applications in this book, you will need Python 3.x,
Virtualenv 1.x, and Docker CE installed on your system. Detailed instructions are given in
the chapters where needed.

Who this book is for
If you are a developer who has basic knowledge of Python, the command line, and HTTP-
based application principles, and who wants to learn how to build, test, scale, and manage
Python 3 microservices, then this book is for you. No prior experience of writing
microservices in Python is assumed.



Preface

[ 3 ]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The only
hint we're using async is the async keyword, which marks the handle function as being a
coroutine."

A block of code is set as follows:

    import time

    def application(environ, start_response):
        headers = [('Content-type', 'application/json')]
        start_response('200 OK', headers)
    return bytes(json.dumps({'time': time.time()}), 'utf8')

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

    from greenlet import greenlet
    def test1(x, y):
        z = gr2.switch(x+y)
        print(z)

Any command-line input or output is written as follows:

docker-compose up

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.



Preface

[ 4 ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support


Preface

[ 5 ]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /P y t h o n - M i c r o s e r v i c e s - D e v e l o p m e n t . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/Python-Microservices-Development
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ 6 ]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.



Introduction
When I started to work at Mozilla 7 years ago, we began to write web services for some
Firefox features. Some of them eventually became microservices. This change did not
happen over time, but gradually. The first driver of this shift was the fact that we moved all
our services to a cloud provider and started to interact with some of their third-party
services. When you host your app in the cloud, a microservice architecture becomes a
natural fit. The other driver was the Firefox Account project. We wanted to offer a single
identity to our users to interact with our services from Firefox. By doing so, all our services
had to interact with the same identity provider, and some server-side pieces started to get
redesigned as microservices to be more efficient in that context.

I think a lot of web developers out there have been through a similar experience or are
going through it right now. I also believe Python is one of the best languages to write small
and efficient microservices; its ecosystem is vibrant and the latest Python 3 features make
Python competitive in that field against Node.js, which has had a stellar growth in the last 5
years.

This is what is this book is all about; I wanted to share my experience of writing
microservices in Python through a simple use case that I have created for this purpose--
Runnerly, which is available on GitHub for you to study. You can interact with me there,
point mistakes if you see any, and we can continue to learn about writing excellent Python
apps together.



1
Understanding Microservices

We're always trying to improve how we build software, and since the punched-card era, we
have improved a lot, to say the least.

The microservices trend is one improvement that has emerged in the last few years,
partially based on companies' willingness to speed up their release cycles. They want to
ship new products and new features to their customers as fast as possible. They want to be
agile by iterating often, and they want to ship, ship, and ship again.

If thousands, or even millions, of customers use your service, pushing in production an
experimental feature, and removing it if it does not work, is considered good practice rather
than baking it for months before you publish it.

Companies such as Netflix are promoting their continuous delivery techniques where small
changes are made very often into production, and tested on a subset of the user base.
They've developed tools such as Spinnaker (h t t p ://w w w . s p i n n a k e r . i o /) to automate as
many steps as possible to update production, and ship their features in the cloud as
independent microservices.

But if you read Hacker News or Reddit, it can be quite hard to detangle what's useful for
you and what's just buzzwords-compliant journalistic-style info.

"Write a paper promising salvation, make it a structured something or a virtual
something, or abstract, distributed or higher-order or applicative and you can almost be
certain of having started a new cult.

- Edsger W. Dijkstra

http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/
http://www.spinnaker.io/


Understanding Microservices

[ 9 ]

This chapter is going to help you understand what are microservices, and will then focus on
the various ways in which you can implement them using Python. It's composed of the
following few sections:

A word on Service-Oriented Architecture
Monolithic approach of building an application
Microservices approach of building applications
Benefits of microservices
Pitfalls in microservices
Implementing microservices with Python

Hopefully, once you've reached the end of the chapter, you will be able to dive into
building microservices with a good understanding of what they are and what they aren't--
and how you can use Python.

Origins of Service-Oriented Architecture
There are many definitions out there, since there is no official standard for microservices.
People often mention Service-Oriented Architecture (SOA) when they are trying to explain
what microservices are.

SOA predates microservices, and its core principle is the idea that you organize
applications into a discrete unit of functionality that can be accessed remotely and acted
upon and updated independently.

- Wikipedia

Each unit in this preceding definition is a self-contained service, which implements one
facet of a business, and provides its feature through some interface.

While SOA clearly states that services should be standalone processes, it does not enforce
what protocols should be used for those processes to interact with each other, and stays
quite vague about how you deploy and organize your application.

If you read the SOA Manifesto (h t t p ://w w w . s o a - m a n i f e s t o . o r g ) that a handful of experts
published on the web circa 2009, they don't even mention if the services interact via the
network.

http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://www.soa-manifesto.org


Understanding Microservices

[ 10 ]

SOA services could communicate via Inter-Process Communication (IPC) using sockets on
the same machine, through shared memory, through indirect message queues, or even with
Remote Procedure Calls (RPC). The options are extensive, and at the end of the day, SOA
can be everything and anything as long as you are not running all your application code
into a single process.

However, it is common to say that microservices are one specialization of SOA, which have
started to emerge over the last few years, because they fulfill some of the SOA goals which
are to build apps with standalone components that interact with each other.

Now if we want to give a complete definition of what are microservices, the best way to do
it is to first look at how most software are architectured.

The monolithic approach
Let's take a very simple example of a traditional monolithic application: a hotel booking
website.

Besides the static HTML content, the website has a booking feature that will let its users
book hotels in any city in the world. Users can search for hotels, then book them with their
credit cards.

When a user performs a search on the hotel website, the application goes through the
following steps:

It runs a couple of SQL queries against its hotels' database.1.
An HTTP request to a partner's service is made to add more hotels to the list.2.
An HTML results page is generated using an HTML template engine.3.

From there, once the user has found the perfect hotel and clicked on it to book it, the
application performs these steps:

The customer gets created in the database if needed, and has to authenticate.1.
Payment is carried out by interacting with the bank web service.2.
The app saves the payment details in the database for legal reasons.3.
A receipt is generated using a PDF generator.4.
A recap email is sent to the user using the email service.5.
A reservation email is forwarded to the third-party hotel using the email service.6.
A database entry is added to keep track of the reservation.7.



Understanding Microservices

[ 11 ]

This process is a simplified model of course, but quite realistic.

The application interacts with a database that contains the hotel's information, the
reservation details, the billing, the user information, and so on. It also interacts with
external services for sending emails, making payments, and getting more hotels from
partners.

In the good old LAMP (Linux-Apache-MySQL-Perl/PHP/Python) architecture, every 
incoming request generates a cascade of SQL queries on the database, and a few network
calls to external services, and then the server generates the HTML response using a
template engine.

The following diagram illustrates this centralized architecture:

This application is a typical monolith, and it has a lot of obvious benefits.

The biggest one is that the whole application is in a single code base, and when the project
coding starts, it makes everything simpler. Building a good test coverage is easy, and you
can organize your code in a clean and structured way inside the code base. Storing all the
data into a single database also simplifies the development of the application. You can
tweak the data model, and how the code will query it.



Understanding Microservices

[ 12 ]

The deployment is also a no brainer: we can tag the code base, build a package, and run it
somewhere. To scale it, we can run several instances of the booking app, and run several
databases with some replication mechanism in place.

If your application stays small, this model works well and is easy to maintain for a single
team.

But projects are usually growing, and they get bigger than what was first intended. And
having the whole application in a single code base brings some nasty issues along the way.
For instance, if you need to make a sweeping change that is large in scope such as changing
your banking service or your database layer, the whole application gets into a very unstable
state. These changes are a big deal in the project's life, and they necessitate a lot of extra
testing to deploy a new version. And changes like this will happen in a project life.

Small changes can also generate collateral damage because different parts of the system
have different uptime and stability requirements. Putting the billing and reservation
processes at risk because the function that creates the PDF crashes the server is a bit of a
problem.

Uncontrolled growth is another issue. The application is bound to get new features, and
with developers leaving and joining the project, the code organization might start to get
messy, the tests a bit slower. This growth usually ends up with a spaghetti code base that's
hard to maintain, with a hairy database that needs complicated migration plans every time
some developer refactors the data model.

Big software projects usually take a couple of years to mature, and then they slowly start to
turn into an incomprehensible mess that's hard to maintain. And it does not happen
because developers are bad. It happens because as the complexity grows, fewer people fully
understand the implications of every small change they make. So they try to work in
isolation in one corner of the code base, and when you take the 10,000-foot view of the
project, you can see the mess.

We've all been there.

It's not fun, and developers who work on such a project dream of building the application
from scratch with the newest framework. And by doing so, they usually fall into the same
issues again--the same story is repeated.

The following points summarize the pros and cons of the monolithic approach:

Starting a project as a monolith is easy, and probably the best approach.
A centralized database simplifies the design and organization of the data.
Deploying one application is simple.



Understanding Microservices

[ 13 ]

Any change in the code can impact unrelated features. When something breaks,
the whole application may break.
Solutions to scale your application are limited: you can deploy several instances,
but if one particular feature inside the app takes all the resources, it impacts
everything.
As the code base grows, it's hard to keep it clean and under control.

There are, of course, some ways to avoid some of the issues described here.

The obvious solution is to split the application into separate pieces, even if the resulting
code is still going to run in a single process. Developers do this by building their apps with
external libraries and frameworks. Those tools can be in-house or from the Open Source
Software (OSS) community.

Building a web app in Python if you use a framework like Flask, lets you focus on the
business logic, and makes it very appealing to externalize some of your code into Flask
extensions and small Python packages. And splitting your code into small packages is often
a good idea to control your application growth.

"Small is beautiful."

- The UNIX Philosophy

For instance, the PDF generator described in the hotel booking app could be a separate
Python package that uses Reportlab and some templates to do the work.

Chances are this package can be reused in some other apps, and maybe, even published to
the Python Package Index (PyPI) for the community.

But you're still building a single application and some problems remain, like the inability to
scale parts differently, or any indirect issue introduced by a buggy dependency.

You'll even get new challenges, because you're now using dependencies. One problem you
can get is dependency hell. If one part of your application uses a library, but the PDF
generator can only use a specific version of that library, there are good chances you will
eventually have to deal with it with some ugly workaround, or even fork the dependency to
have a custom fix there.

Of course, all the problems described in this section do not appear on day 1 when the
project starts, but rather pile up over time.

Let's now look at how the same application would look like if we were to use microservices
to build it.



Understanding Microservices

[ 14 ]

The microservice approach
If we were to build the same application using microservices, we would organize the code
into several separate components that run in separate processes. Instead of having a single
application in charge of everything, we would split it into many different microservices, as
shown in the following diagram:

Don't be afraid of the number of components displayed in this diagram. The internal
interactions of the monolithic application are just being made visible by separate pieces.
We've shifted some of the complexity and ended up with these seven standalone
components:

Booking UI: A frontend service, which generates the web user interface, and1.
interacts with all the other microservices.
PDF reporting service: A very simple service that would create PDFs for the2.
receipts or any other document given a template and some data.
Search: A service that can be queried to get a list of hotels given a city name. This3.
service has its own database.



Understanding Microservices

[ 15 ]

Payments: A service that interacts with the third-party bank service, and4.
manages a billing database. It also sends e-mails on successful payments.
Reservations: Stores reservations, and generates PDFs.5.
Users: Stores the user information, and interacts with users via emails.6.
Authentication: An OAuth 2-based service that returns authentication tokens,7.
which each microservice can use to authenticate when calling others.

Those microservices, along with the few external services like the email service, would
provide a feature set similar to the monolithic application. In this design, each component
communicates using the HTTP protocol, and features are made available through RESTful
web services.

There's no centralized database, as each microservice deals internally with its own data
structures, and the data that gets in and out uses a language-agnostic format like JSON. It
could use XML or YAML as long as it can be produced and consumed by any language, and
travel through HTTP requests and responses.

The Booking UI service is a bit particular in that regard, since it generates the User Interface
(UI). Depending on the frontend framework used to build the UI, the Booking UI output
could be a mix of HTML and JSON, or even plain JSON if the interface uses a static
JavaScript-based client-side tool to generate the interface directly in the browser.

But besides this particular UI case, a web application designed with microservices is a
composition of several microservices, which may interact with each other through HTTP to
provide the whole system.

In that context, microservices are logical units that focus on a very particular task. Here's a
full definition attempt:

A microservice is a lightweight application, which provides a narrowed
list of features with a well-defined contract. It's a component with a single
responsibility, which can be developed and deployed independently.

This definition does not mention HTTP or JSON, because you could consider a small UDP-
based service that exchanges binary data as a microservice for example.

But in our case, and throughout the book, all our microservices are just simple web
applications that use the HTTP protocol, and consume and produce JSON when it's not a
UI.



Understanding Microservices

[ 16 ]

Microservice benefits
While the microservices architecture looks more complicated than its monolithic
counterpart, its advantages are multiple. It offers the following:

Separation of concerns
Smaller projects to deal with
More scaling and deployment options

We will discuss them in more detail in the following sections.

Separation of concerns
First of all, each microservice can be developed independently by a separate team. For
instance, building a reservation service can be a full project on its own. The team in charge
can make it in whatever programming language and database, as long as it has a well-
documented HTTP API.

That also means the evolution of the app is more under control than with monoliths. For
example, if the payment system changes its underlying interactions with the bank, the
impact is localized inside that service, and the rest of the application stays stable and is
probably unaffected.

This loose coupling improves the overall project velocity a lot, as we apply, at the service
level, a philosophy similar to the single responsibility principle.

The single responsibility principle was defined by Robert Martin to explain that a class
should have only one reason to change; in other words, each class should provide a single,
well-defined feature. Applied to microservices, it means that we want to make sure that
each microservice focuses on a single role.

Smaller projects
The second benefit is breaking the complexity of the project. When you add a feature to an
application such as PDF reporting, even if you do it cleanly, you make the base code bigger,
more complicated, and sometimes, slower. Building that feature in a separate application
avoids this problem, and makes it easier to write it with whatever tools you want. You can
refactor it often, shorten your release cycles, and stay on top of things. The growth of the
application remains under your control.



Understanding Microservices

[ 17 ]

Dealing with a smaller project also reduces risks when improving the application: if a team
wants to try out the latest programming language or framework, they can iterate quickly on
a prototype that implements the same microservice API, try it out, and decide whether or
not to stick with it.

One real-life example in mind is the Firefox Sync storage microservice. There are currently
some experiments to switch from the current Python + MySQL implementation to a Go-
based one, which stores users' data in standalone SQLite databases. That prototype is highly
experimental, but since we have isolated the storage feature in a microservice with a well-
defined HTTP API, it's easy enough to give it a try with a small subset of the user base.

Scaling and deployment
Finally, having your application split into components makes it easier to scale depending on
your constraints. Let's say you start getting a lot of customers who book hotels daily, and
the PDF generation starts to heat up the CPUs. You can deploy that specific microservice in
some servers that have bigger CPUs.

Another typical example are RAM-consuming microservices like the ones that interact with
memory databases like Redis or Memcache. You could tweak your deployments,
consequently, by deploying them on servers with less CPU and a lot more RAM.

We can, thus, summarize the benefits of microservices as follows:

A team can develop each microservice independently, and use whatever
technological stack makes sense. They can define a custom release cycle. All they
need to define is a language-agnostic HTTP API.
Developers break the application complexity into logical components. Each
microservice focuses on doing one thing well.
Since microservices are standalone applications, there's a finer control on
deployments, which makes scaling easier.

The microservices architecture is good at solving a lot of the problems that may arise once
your application starts to grow. However, we need to be aware of some of the new issues
they also bring in practice.



Understanding Microservices

[ 18 ]

Microservices pitfalls
As said earlier, building an application with microservices has a lot of benefits, but it's not a
silver bullet by all means.

You need to be aware of these main problems you might have to deal with when coding
microservices:

Illogical splitting
More network interactions
Data storing and sharing
Compatibility issues
Testing

These issues will be covered in detail in the following sections.

Illogical splitting
The first issue of a microservice architecture is how it gets designed. There's no way a team
can come up with the perfect microservice architecture in the first shot. Some microservices
like the PDF generator are an obvious use case. But as soon as you deal with the business
logic, there are good chances that your code will move around before you get a good grasp
of how to split things into the right set of microservices.

The design needs to mature with some try-and-fail cycles. And adding and removing
microservices can be more painful than refactoring a monolithic application.

You can mitigate this problem by avoiding splitting your app in microservices if the split is
not evident.

Premature splitting is the root of all evil.

If there's any doubt that the split makes sense, keeping the code in the same app is the safe
bet. It's always easier to split apart some of the code into a new microservice later than to
merge back to two microservices in the same code base because the decision turned out to
be wrong.

For instance, if you always have to deploy two microservices together, or if one change in a
microservice impacts the data model of another one, the odds are that you did not split the
application correctly, and that those two services should be reunited.



Understanding Microservices

[ 19 ]

More network interactions
The second problem is the amount of network interactions added to build the same
application. In the monolithic version, even if the code gets messy, everything happens in
the same process, and you can send back the result without having to call too many
backend services to build the actual response.

That requires extra attention on how each backend service is called, and raises a lot of
questions like the following:

What happens when the Booking UI cannot reach the PDF reporting service
because of a network split or a laggy service?
Does the Booking UI call the other services synchronously or asynchronously?
How will that impact the response time?

We will need to have a solid strategy to be able to answer all those questions, and we will
address those in Chapter 5, Interacting with Other Services.

Data storing and sharing
Another problem is data storing and sharing. An effective microservice needs to be
independent of other microservices, and ideally, should not share a database. What does
this mean for our hotel booking app?

Again, that raises a lot of questions such as the following:

Do we use the same users' IDs across all databases, or do we have independent
IDs in each service and keep it as a hidden implementation detail?
Once a user is added to the system, do we replicate some of her information in
other services databases via strategies like data pumping, or is that overkill?
How do we deal with data removal?

These are hard questions to answer, and there are many different ways to solve those
problems, as we'll learn throughout the book.

Avoiding data duplication as much as possible while keeping
microservices in isolation is one of the biggest challenges in designing
microservices-based applications.



Understanding Microservices

[ 20 ]

Compatibility issues
Another problem happens when a feature change impacts several microservices. If a change
affects in a backward incompatible way the data that travels between services, you're in for
some trouble.

Can you deploy your new service, and will it work with older versions of other services? Or
do you need to change and deploy several services at once? Does it mean you've just
stumbled on some services that should probably be merged back together?

A good versioning and API design hygiene help to mitigate those issues, as we will
discover in the second part of the book when we'll build our application.

Testing
Last, when you want to do some end-to-end tests and deploy your whole app, you now
have to deal with many bricks. You need to have a robust and agile deployment process to
be efficient. You need to be able to play with your whole application when you develop it.
You can't fully test things out with just one piece of the puzzle.

Hopefully, there are now many tools to facilitate deployments of applications that are built
with several components, as we will learn about throughout this book. And all those tools
probably helped in the success and adoption of microservices and vice versa.

Microservices-style architecture boosts deployment tools innovation, and
deployment tools lower the bar for the approval of microservices-style
architecture.

The pitfalls of using microservices can be summarized as follows:

Premature splitting of an application into microservices can lead to architectural
problems
Network interactions between microservices add weaknesses spots and
additional overhead
Testing and deploying microservices can be complex
And the biggest challenge--data sharing between microservices is hard

You should not worry too much about all the pitfalls described in this section for now.



Understanding Microservices

[ 21 ]

They may seem overwhelming, and the traditional monolithic application may look like a
safer bet, but in the long term, splitting your project into microservices will make many of
your tasks, as a developer or as an Operation person (Ops), easier.

Implementing microservices with Python
Python is an amazingly versatile language.

As you probably already know, it's used to build many different kinds of applications--from
simple system scripts that perform tasks on a server to large object-oriented applications
that run services for millions of users.

According to a study conducted by Philip Guo in 2014, published on the Association for
Computing Machinery (ACM) website, Python has surpassed Java in top U.S. universities,
and is the most popular language to learn computer science.

This trend is also true in the software industry. Python sits now in the top five languages in
the TIOBE index (h t t p ://w w w . t i o b e . c o m /t i o b e - i n d e x /), and it's probably even bigger in
the web development land, since languages like C are rarely used as main languages to
build web applications.

This book makes the assumption that you are already familiar with the
Python programming language. If you are not an experienced Python
developer, you can read the book Expert Python Programming, Second
Edition, where you will learn advanced programming skills in Python.

However, some developers criticize Python for being slow and unfit for building efficient
web services. Python is slow, and this is undeniable. But it still is a language of choice for
building microservices, and many major companies are happily using it.

This section will give you some background on the different ways you can write
microservices using Python, some insights on asynchronous versus synchronous
programming, and conclude with some details on Python performances.

This section is composed of five parts:

The WSGI standard
Greenlet and Gevent
Twisted and Tornado
asyncio
Language performances

http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/


Understanding Microservices

[ 22 ]

The WSGI standard
What strikes most web developers who start with Python is how easy it is to get a web
application up and running.

The Python web community has created a standard (inspired by the Common Gateway
Interface or CGI) called Web Server Gateway Interface (WSGI). It simplifies a lot how you
can write a Python application in order to serve HTTP requests.

When your code uses that standard, your project can be executed by standard web servers
like Apache or nginx, using WSGI extensions like uwsgi or mod_wsgi.

Your application just has to deal with incoming requests and send back JSON responses,
and Python includes all that goodness in its standard library.

You can create a fully functional microservice that returns the server's local time with a
vanilla Python module of fewer than 10 lines. It is given as follows:

    import json
    import time

    def application(environ, start_response):
        headers = [('Content-type', 'application/json')]
        start_response('200 OK', headers)
        return [bytes(json.dumps({'time': time.time()}), 'utf8')]

Since its introduction, the WSGI protocol became an essential standard, and the Python web
community widely adopted it. Developers wrote middlewares, which are functions you can
hook before or after the WSGI application function itself, to do something within the
environment.

Some web frameworks, like Bottle (h t t p ://b o t t l e p y . o r g ), were created specifically
around that standard, and soon enough, every framework out there could be used through
WSGI in one way or another.

The biggest problem with WSGI though is its synchronous nature. The application function
you saw in the preceding code is called exactly once per incoming request, and when the
function returns, it has to send back the response. That means that every time you call the
function, it will block until the response is ready.

And writing microservices means your code will have to wait for responses from various
network resources all the time. In other words, your application will be idle, and just block
the client until everything is ready.

http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org
http://bottlepy.org


Understanding Microservices

[ 23 ]

That's an entirely okay behavior for HTTP APIs. We're not talking about building
bidirectional applications like web socket-based ones. But what happens when you have
several incoming requests that call your application at the same time?

WSGI servers will let you run a pool of threads to serve several requests concurrently. But
you can't run thousands of them, and as soon as the pool is exhausted, the next request will
block the client's access even if your microservice is doing nothing but idling and waiting
for backend services' responses.

That's one of the reasons why non-WSGI frameworks like Twisted and Tornado, and in 
JavaScript land, Node.js, became very successful--it's fully async.

When you're coding a Twisted application, you can use callbacks to pause and resume the
work done to build a response. That means that you can accept new requests and start to
treat them. That model dramatically reduces the idling time in your process. It can serve
thousands of concurrent requests. Of course, that does not mean the application will return
each single response faster. It just means one process can accept more concurrent requests,
and juggle between them as the data is getting ready to be sent back.

There's no simple way with the WSGI standard to introduce something similar, and the
community has debated for years to come up with a consensus--and failed. The odds are
that the community will eventually drop the WSGI standard for something else.

In the meantime, building microservices with synchronous frameworks is still possible and
completely fine if your deployments take into account the one request == one thread limitation
of the WSGI standard.

There's, however, one trick to boost synchronous web applications--Greenlet, which is
explained in the following section.

Greenlet and Gevent
The general principle of asynchronous programming is that the process deals with several
concurrent execution contexts to simulate parallelism.

Asynchronous applications use an event loop that pauses and resumes execution contexts
when an event is triggered--only one context is active, and they take turns. Explicit
instruction in the code will tell the event loop that this is where it can pause the execution.



Understanding Microservices

[ 24 ]

When that occurs, the process will look for some other pending work to resume. Eventually,
the process will come back to your function and continue it where it stopped. Moving from
an execution context to another is called switching.

The Greenlet project (h t t p s ://g i t h u b . c o m /p y t h o n - g r e e n l e t /g r e e n l e t ) is a package 
based on the Stackless project, a particular CPython implementation, and provides
greenlets.

Greenlets are pseudo-threads that are very cheap to instantiate, unlike real threads, and that
can be used to call Python functions. Within those functions, you can switch, and give back
the control to another function. The switching is done with an event loop, and allows you to
write an asynchronous application using a thread-like interface paradigm.

Here's an example from the Greenlet documentation:

    from greenlet import greenlet
    def test1(x, y):
        z = gr2.switch(x+y)
        print(z)

    def test2(u):
        print (u)
        gr1.switch(42)

    gr1 = greenlet(test1)
    gr2 = greenlet(test2)
    gr1.switch("hello", " world")

The two greenlets in the preceding example explicitly switch from one to the other.

For building microservices based on the WSGI standard, if the underlying code uses
greenlets, we could accept several concurrent requests, and just switch from one to another
when we know a call is going to block the request--like I/O requests.

However, switching from one greenlet to another has to be done explicitly, and the
resulting code can quickly become messy and hard to understand. That's where Gevent can
become very useful.

The Gevent project (h t t p ://w w w . g e v e n t . o r g /) is built on top of Greenlet, and offers an
implicit and automatic way of switching between greenlets, among many other things.

https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/
http://www.gevent.org/


Understanding Microservices

[ 25 ]

It provides a cooperative version of the socket module, which uses greenlets to automatically
pause and resume the execution when some data is made available in the socket. There's
even a monkey patch feature, which automatically replaces the standard library socket with
Gevent's version. That makes your standard synchronous code magically asynchronous
every time it uses sockets--with just one extra line:

    from gevent import monkey; monkey.patch_all()

    def application(environ, start_response):
        headers = [('Content-type', 'application/json')]
        start_response('200 OK', headers)
        # ...do something with sockets here...
        return result

This implicit magic comes at a price though. For Gevent to work well, all the underlying
code needs to be compatible with the patching that Gevent does. Some packages from the
community will continue to block or even have unexpected results because of this--in
particular, if they use C extensions, and bypass some of the features of the standard library
Gevent patched.

But it works well for most cases. Projects that play well with Gevent are dubbed green, and
when a library is not functioning well, and the community asks its authors to make it green,
it usually happens.

That's what was used to scale the Firefox Sync service at Mozilla, for instance.

Twisted and Tornado
If you are building microservices where increasing the number of concurrent requests you
can hold is important, it's tempting to drop the WSGI standard, and just use an
asynchronous framework like Tornado (h t t p ://w w w . t o r n a d o w e b . o r g /) or Twisted (h t t p s

://t w i s t e d m a t r i x . c o m /t r a c /).

Twisted has been around for ages. To implement the same microservices, you need to write
a slightly more verbose code like this:

    import time
    import json
    from twisted.web import server, resource
    from twisted.internet import reactor, endpoints

    class Simple(resource.Resource):
        isLeaf = True
        def render_GET(self, request):

http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
http://www.tornadoweb.org/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/


Understanding Microservices

[ 26 ]

            request.responseHeaders.addRawHeader(b"content-type",
                                                 b"application/json")
            return bytes(json.dumps({'time': time.time()}), 'utf8')

        site = server.Site(Simple())
        endpoint = endpoints.TCP4ServerEndpoint(reactor, 8080)
        endpoint.listen(site)
        reactor.run()

While Twisted is an extremely robust and efficient framework, it suffers from a few
problems when building HTTP microservices, which are as follows:

You need to implement each endpoint in your microservice with a class derived
from a Resource class, and that implements each supported method. For a few
simple APIs, it adds a lot of boilerplate code.
Twisted code can be hard to understand and debug due to its asynchronous
nature.
It's easy to fall into callback hell when you chain too many functions that get
triggered successively one after the other--and the code can get messy.
Properly testing your Twisted application is hard, and you have to use a Twisted-
specific unit testing model.

Tornado is based on a similar model, but does a better job in some areas. It has a lighter
routing system, and does everything possible to make the code closer to plain Python.
Tornado also uses a callback model, so debugging can be hard.

But both frameworks are working hard at bridging the gap to rely on the new async
features introduced in Python 3.

asyncio
When Guido van Rossum started to work on adding async features in Python 3, part of the
community pushed for a Gevent-like solution, because it made a lot of sense to write
applications in a synchronous, sequential fashion rather than having to add explicit
callbacks like in Tornado or Twisted.

But Guido picked the explicit technique, and experimented in a project called Tulip
inspired by Twisted. Eventually, the asyncio module was born out of that side project and
added into Python.



Understanding Microservices

[ 27 ]

In hindsight, implementing an explicit event loop mechanism in Python instead of going
the Gevent way makes a lot of sense. The way the Python core developers coded asyncio,
and how they elegantly extended the language with the async and await keywords to
implement coroutines, made asynchronous applications built with vanilla Python 3.5+ code
look very elegant and close to synchronous programming.

Coroutines are functions that can suspend and resume their execution.
Chapter 12, What Next?, explains in detail how they are implemented in
Python and how to use them.

By doing this, Python did a great job at avoiding the callback syntax mess we sometimes see
in Node.js or Twisted (Python 2) applications.

And beyond coroutines, Python 3 has introduced a full set of features and helpers in the
asyncio package to build asynchronous applications, refer to h t t p s ://d o c s . p y t h o n . o r g

/3/l i b r a r y /a s y n c i o . h t m l .

Python is now as expressive as languages like Lua to create coroutine-based applications,
and there are now a few emerging frameworks that have embraced those features, and will
only work with Python 3.5+ to benefit from this.

KeepSafe's aiohttp (h t t p ://a i o h t t p . r e a d t h e d o c s . i o ) is one of them, and building the
same microservice, fully asynchronous, with it would simply need these few elegant lines:

    from aiohttp import web
    import time

    async def handle(request):
        return web.json_response({'time': time.time()})

    if __name__ == '__main__':
        app = web.Application()
        app.router.add_get('/', handle)
        web.run_app(app)

In this small example, we're very close to how we would implement a synchronous app.
The only hint we're using async is the async keyword, which marks the handle function as
being a coroutine.

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io
http://aiohttp.readthedocs.io


Understanding Microservices

[ 28 ]

And that's what's going to be used at every level of an async Python app going forward.
Here's another example using aiopg, a PostgreSQL library for asyncio from the project
documentation:

    import asyncio
    import aiopg

    dsn = 'dbname=aiopg user=aiopg password=passwd host=127.0.0.1'

    async def go():
        pool = await aiopg.create_pool(dsn)
        async with pool.acquire() as conn:
            async with conn.cursor() as cur:
                await cur.execute("SELECT 1")
                ret = []
                async for row in cur:
                    ret.append(row)
                assert ret == [(1,)]

    loop = asyncio.get_event_loop()
    loop.run_until_complete(go())

With a few async and await prefixes, the function that performs an SQL query and sends
back the result looks a lot like a synchronous function.

But asynchronous frameworks and libraries based on Python 3 are still emerging, and if you
are using asyncio or a framework like aiohttp, you will need to stick with particular
asynchronous implementations for each feature you need.

If you need to use a library that is not asynchronous in your code, to use it from your
asynchronous code means that you will need to go through some extra and challenging
work if you want to prevent blocking the event loop.

If your microservices deal with a limited number of resources, it could be manageable. But
it's probably a safer bet at the time of this writing to stick with a synchronous framework
that's been around for a while rather than an asynchronous one. Let's enjoy the existing
ecosystem of mature packages, and wait until the asyncio ecosystem gets more
sophisticated.

And there are many great synchronous frameworks to build microservices with Python,
like Bottle, Pyramid with Cornice, or Flask.



Understanding Microservices

[ 29 ]

There are good chances that the second edition of this book will use an
asynchronous framework. But for this edition, we'll use the Flask
framework throughout the book. It's been around for some time, and is
very robust and mature. However, keep in mind that whatever Python
web framework you use, you should be able to transpose all the examples
in this book. This is because most of the coding involved when building
microservices is very close to plain Python, and the framework is mostly
to route the requests and offer a few helpers.

Language performances
In the previous sections, we've been through the two different ways to write microservices:
asynchronous versus synchronous, and whatever technique you use, the speed of Python
directly impacts the performance of your microservice.

Of course, everyone knows Python is slower than Java or Go, but execution speed is not
always the top priority. A microservice is often a thin layer of code that sits most of its life
waiting for some network responses from other services. Its core speed is usually less
important than how fast your SQL queries will take to return from your Postgres server,
because the latter will represent most of the time spent to build the response.

But wanting an application that's as fast as possible is legitimate.

One controversial topic in the Python community around speeding up the language is how
the Global Interpreter Lock (GIL) mutex can ruin performances, because multi-threaded
applications cannot use several processes.

The GIL has good reasons to exist. It protects non-thread-safe parts of the CPython
interpreter, and exists in other languages like Ruby. And all attempts to remove it so far
have failed to produce a faster CPython implementation.

Larry Hasting is working on a GIL-free CPython project called Gilectomy
(h t t p s ://g i t h u b . c o m /l a r r y h a s t i n g s /g i l e c t o m y ). Its minimal goal is to
come up with a GIL-free implementation, which can run a single-threaded
application as fast as CPython. As of the time of this writing, this
implementation is still slower that CPython. But it's interesting to follow
this work, and see if it reaches speed parity one day. That would make a
GIL-free CPython very appealing.

https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy
https://github.com/larryhastings/gilectomy


Understanding Microservices

[ 30 ]

For microservices, besides preventing the usage of multiple cores in the same process, the
GIL will slightly degrade performances on high load because of the system calls overhead
introduced by the mutex.

However, all the scrutiny around the GIL has been beneficial: work has been done in the
past years to reduce GIL contention in the interpreter, and in some areas, Python’s
performance has improved a lot.

Bear in mind that even if the core team removes the GIL, Python is an interpreted and
garbage collected language and suffers performance penalties for those properties.

Python provides the dis module if you are interested to see how the interpreter
decomposes a function. In the following example, the interpreter will decompose a simple
function that yields incremented values from a sequence in no less than 29 steps:

    >>> def myfunc(data):
    ...     for value in data:
    ...         yield value + 1
    ...
    >>> import dis
    >>> dis.dis(myfunc)
      2           0 SETUP_LOOP              23 (to 26)
                  3 LOAD_FAST                0 (data)
                  6 GET_ITER
            >>    7 FOR_ITER                15 (to 25)
                  10 STORE_FAST              1 (value)

      3         13 LOAD_FAST                 1 (value)
                16 LOAD_CONST                1 (1)
                19 BINARY_ADD
                20 YIELD_VALUE
                21 POP_TOP
                22 JUMP_ABSOLUTE        7
          >>    25 POP_BLOCK
          >>    26 LOAD_CONST                0 (None)
                29 RETURN_VALUE

A similar function written in a statically compiled language will dramatically reduce the
number of operations required to produce the same result. There are ways to speed up
Python execution, though.

One is to write a part of your code into compiled code by building C extensions, or using a
static extension of the language like Cython (h t t p ://c y t h o n . o r g /), but that makes your
code more complicated.

http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/
http://cython.org/


Understanding Microservices

[ 31 ]

Another solution, which is the most promising one, is by simply running your application
using the PyPy interpreter (h t t p ://p y p y . o r g /).

PyPy implements a Just-In-Time (JIT) compiler. This compiler directly replaces, at runtime,
pieces of Python with machine code that can be directly used by the CPU. The whole trick
for the JIT is to detect in real time, ahead of the execution, when and how to do it.

Even if PyPy is always a few Python versions behind CPython, it has reached a point where
you can use it in production, and its performances can be quite amazing. In one of our
projects at Mozilla that needs fast execution, the PyPy version was almost as fast as the Go
version, and we've decided to use Python there instead.

The Pypy Speed Center website is a great place to look at how PyPy
compares to CPython ( h t t p ://s p e e d . p y p y . o r g /).

However, if your program uses C extensions, you will need to recompile them for PyPy,
and that can be a problem. In particular, if other developers maintain some of the
extensions you are using.

But if you build your microservice with a standard set of libraries, chances are that it will
work out of the box with the PyPy interpreter, so that's worth a try.

In any case, for most projects, the benefits of Python and its ecosystem largely surpass the
performance issues described in this section, because the overhead in a microservice is
rarely a problem. And if performance is a problem, the microservice approach allows you to
rewrite performance-critical components without affecting the rest of the system.

Summary
In this chapter, we've compared the monolithic versus microservice approach to building
web applications, and it became apparent that it's not a binary world where you have to
pick one model on day one and stick with it.

You should see microservices as an improvement of an application that started its life as a
monolith. As the project matures, parts of the service logic should migrate into
microservices. It is a useful approach as we've learned in this chapter, but it should be done
carefully to avoid falling into some common traps.

http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/


Understanding Microservices

[ 32 ]

Another important lesson is that Python is considered to be one of the best languages to
write web applications, and therefore, microservices--for the same reasons, it's a language of
choice in other areas, and also because it provides tons of mature frameworks and packages
to do the work.

We've rapidly looked through the chapter at several frameworks, both synchronous and
asynchronous, and for the rest of the book, we'll be using Flask.

The next chapter will introduce this fantastic framework, and if you are not familiar with it,
you will probably love it.

Lastly, Python is a slow language, and that can be a problem in very specific cases. But
knowing what makes it slow, and the different solutions to avoid this issue will usually be
enough to make that problem not relevant.



2
Discovering Flask

Flask was started around 2010, leveraging the Werkzeug WSGI toolkit (h t t p ://w e r k z e u g .

p o c o o . o r g /), which provides the foundations for interacting with HTTP requests via the
WSGI protocol, and various tools such as a routing system.

Werkzeug is equivalent to Paste, which provided similar features. The Pylons project (h t t p

://p y l o n s p r o j e c t . o r g ), which is the umbrella organization for projects like Pyramid --
another web framework-- integrated Paste and its various components at some point.

Together with Bottle (h t t p ://b o t t l e p y . o r g /) and a handful of other projects, they
composed the Python microframeworks ecosystem.

All those projects have a similar goal--they want to offer to the Python community simple
tools to build web applications faster.

However, the term microframework can be a bit misleading. It does not mean you can only
create micro applications. Using those tools, you can build any application--even a large
one. The prefix micro here means that the framework tries to take as few decisions as
possible. It lets you freely organize your application code as you want, and use whatever
libraries you want.

A microframework acts as the glue code that delivers requests to your
system, and sends back responses. It does not enforce any particular
paradigm on your project.

A typical example of this philosophy is when you need to interact with an SQL database. A
framework like Django is batteries-included, and provides everything you need to build your
web app including an Object-Relational Mapper (ORM) to bind objects with database
query results. The rest of the framework tightly integrates with the ORM.

http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://pylonsproject.org
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/
http://bottlepy.org/


Discovering Flask

[ 34 ]

If you want to use an alternative ORM like SQLAlchemy (SA) in Django to benefit from
some of its great features, you'd not be taking the easiest path, because the whole idea of
Django is to provide an entire working system, and let the developer focus on building
original features.

Flask, on the other hand, does not care what library you use to interact with your data. The
framework will only try to make sure it has enough hooks to be extended by external
libraries to provide all kinds of features. In other words, using SQLAlchemy in Flask, and
making sure you're doing the right thing with SQL sessions and transactions, will mostly
consist of adding a package like Flask-SQLAlchemy in your project. And if you don't like
how that particular library integrates SLQAlchemy, you're free to use another one, or to
build your integration.

Of course, that's not a silver bullet. Being completely free in your choices also means it's
easier to make poor decisions, and build an application that relies on defective libraries or
one that's not well designed.

But fear not! This chapter will make sure you know what Flask has to offer, and how to
organize your code for building microservices.

This chapter covers the following topics:

Which Python?
How Flask handles requests
Flask built-in features
A microservice skeleton

The goal of this chapter is to give you all the information needed to build
microservices with Flask. By doing so, it inevitably duplicates some of the
information you can find in Flask's official documentation--but focuses on
providing interesting details and anything relevant when building
microservices. Flask has a good online documentation. Make sure you take
a look at its user guide at h t t p ://f l a s k . p o c o o . o r g /d o c s , which should
be a great complement to this chapter. The code base in GitHub, located at
h t t p s ://g i t h u b . c o m /p a l l e t s /f l a s k , is very well documented as well--
and the source code is always the ultimate source of truth when you need
to understand how something works.

http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
http://flask.pocoo.org/docs
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/pallets/flask


Discovering Flask

[ 35 ]

Which Python?
Before we start digging into Flask, there's one question we should answer. What Python
version should be used at this point with Flask, since it supports both?

We're now in 2017, and as we've seen in the previous chapter, Python 3 has made some
incredible progress. Packages that don't support Python 3 are now less common. Unless
you're building something very specific, you should not have any problem with Python 3.

And building microservices means each app will run in isolation, so it would be entirely
imaginable to run some in Python 2 and some in Python 3 depending on your constraints.
You can even using PyPy.

Despite the initial pushbacks the Flask creator had on some of the Python 3 language
decisions, the documentation explicitly says at this point that new projects should start
using Python 3; refer to h t t p ://f l a s k . p o c o o . o r g /d o c s /l a t e s t /p y t h o n 3/#p y t h o n 3- s u p p o

r t .

Since Flask is not using any new bleeding-edge Python 3 language features, your code will
probably be able to run in Python 2 and 3 anyway. In the worst case, you can use a tool like
Six (h t t p ://p y t h o n h o s t e d . o r g /s i x /) to make your code compatible with both versions if
you need to.

The general advice is to use Python 3 unless you have some constraints that require Python
2. Python 2 will not be supported anymore after 2020; see h t t p s ://p y t h o n c l o c k . o r g /.

This book uses the latest Python 3.5 stable release for all its code examples,
but they are likely to work on the last Python 3.x versions.
At this point, you should make sure you have a working Python 3
environment with Virtualenv (h t t p s ://v i r t u a l e n v . p y p a . i o ) installed.
Every code example in the book runs in a terminal.

How Flask handles requests
The framework entry point is the Flask class in the flask.app module. Running a Flask
application means running one single instance of this class, which will take care of handling
incoming Web Server Gateway Interface (WSGI) requests, dispatch them to the right code,
and then return a response.

http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://flask.pocoo.org/docs/latest/python3/#python3-support
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://pythonhosted.org/six/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://virtualenv.pypa.io


Discovering Flask

[ 36 ]

WSGI is a specification that defines the interface between web servers and
Python applications. The incoming request is described in a single
mapping, and frameworks such as Flask take care of routing the call to the
right callable.

The class offers a route method, which can decorate your functions. When you decorate a
function with it, it becomes a view, and it's registered into Werkzeug's routing system. That
system uses a small rule engine to match views with incoming requests, and will be
described later in this chapter.

Here's a very basic example of a fully functional Flask application:

    from flask import Flask, jsonify

    app = Flask(__name__)

    @app.route('/api')
    def my_microservice():
        return jsonify({'Hello': 'World!'})

    if __name__ == '__main__':
        app.run()

That app returns a JSON mapping when called on /api. Every other endpoint would
return a 404 Error.

The __name__ variable, whose value will be __main__ when you run that single Python
module, is the name of the application package. It's used by Flask to instantiate a new
logger with that name, and to find where the file is located on the disk. Flask will use the
directory as the root for helpers like the config that's associated with your app, and to
determine default locations for the static and templates directories.

If you run that module in a shell, the Flask app will run its web server, and start listen to
incoming connections on the 5000 port:

$ python flask_basic.py
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Calling /api with the curl command will return a valid JSON response with the right
headers, thanks to the jsonify() function, which takes care of converting the Python dict
into a valid JSON response with the proper Content-Type header.



Discovering Flask

[ 37 ]

The curl command is going to be used a lot in this book. If you are under
Linux or macOS, it should be pre-installed; refer to h t t p s ://c u r l . h a x x . s

e /.

$ curl -v http://127.0.0.1:5000/api
*   Trying 127.0.0.1...
...
< HTTP/1.0 200 OK
< Content-Type: application/json
< Content-Length: 24
< Server: Werkzeug/0.11.11 Python/3.5.2
< Date: Thu, 22 Dec 2016 13:54:41 GMT
<
{
  "Hello": "World!"
}

The jsonify() function creates a Response object, and dumps the mapping in its body.

While many web frameworks explicitly pass a request object to your code, Flask provides
an implicit global request variable, which points to the current Request object it built
with the incoming call by parsing the HTTP call into a WSGI environment dictionary.

This design decision makes the simpler views code very concise: like in our example, if you
don't have to look at the request content to reply, there's no need to have it around. As long
as your view returns what the client should get and Flask can serialize it, everything is
pretty much transparent.

For other views, they can just import that variable and use it.

The request variable is global, but unique, to each incoming request and
is thread safe. Flask uses a mechanism called context locals, which we will
explain later.

Let's add some print method calls here and there so that we can see what's happening
under the hood:

    from flask import Flask, jsonify, request

    app = Flask(__name__)

    @app.route('/api')
    def my_microservice():

https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/


Discovering Flask

[ 38 ]

        print(request)
        print(request.environ)
        response = jsonify({'Hello': 'World!'})
        print(response)
        print(response.data)
        return response

    if __name__ == '__main__':
        print(app.url_map)
        app.run()

Running that new version and hitting it with the curl command in another shell, you get a
lot of details, like the following:

$ python flask_details.py
Map([<Rule '/api' (GET, OPTIONS, HEAD) -> my_microservice>,
     <Rule '/static/<filename>' (GET, OPTIONS, HEAD) -> static>])
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

<Request 'http://127.0.0.1:5000/api' [GET]>

{'wsgi.url_scheme': 'http', 'HTTP_ACCEPT': '*/*',
 'wsgi.run_once': False, 'PATH_INFO': '/api', 'SCRIPT_NAME': '',
 'wsgi.version': (1, 0), 'SERVER_SOFTWARE': 'Werkzeug/0.11.11',
 'REMOTE_ADDR': '127.0.0.1',
 'wsgi.input': <_io.BufferedReader name=5>,
 'SERVER_NAME': '127.0.0.1', 'CONTENT_LENGTH': '',
 'werkzeug.request': <Request 'http://127.0.0.1:5000/api' [GET]>,
 'SERVER_PORT': '5000', 'HTTP_USER_AGENT': 'curl/7.51.0',
 'wsgi.multiprocess': False, 'REQUEST_METHOD': 'GET',
 'SERVER_PROTOCOL': 'HTTP/1.1', 'REMOTE_PORT': 22135,
 'wsgi.multithread': False, 'werkzeug.server.shutdown': <function
      WSGIRequestHandler.make_environ.<locals>.shutdown_server at
      0x1034e12f0>,
 'HTTP_HOST': '127.0.0.1:5000', 'QUERY_STRING': '',
 'wsgi.errors': <_io.TextIOWrapper name='<stderr>' mode='w'
     encoding='UTF-8'>, 'CONTENT_TYPE': ''}

 <Response 24 bytes [200 OK]>
 b'{n  "Hello": "World!"n}n'
 127.0.0.1 - - [22/Dec/2016 15:07:01] "GET /api HTTP/1.1" 200



Discovering Flask

[ 39 ]

Let's explore what's happening here on the call:

Routing: Flask creates the Map class
Request: Flask passes a Request object to the view
Response: A Response object is sent back with the response content

Routing
The routing happens in app.url_map, which is an instance of Werkzeug's Map class. That
class uses regular expressions to determine if a function decorated by @app.route matches
the incoming request. The routing only looks at the path you provided in the route call to
see if it matches the client's request.

By default, the mapper will only accept GET, OPTIONS, and HEAD calls on a declared route.
Calling a valid endpoint with an unsupported method will return a 405 Method Not
Allowed response together with the list of supported methods in the Allow header:

$ curl -v -XDELETE localhost:5000/api
* Connected to localhost (127.0.0.1) port 5000 (#0)
> DELETE /api/person/1 HTTP/1.1
> Host: localhost:5000
> User-Agent: curl/7.51.0
> Accept: */*
>
* HTTP 1.0, assume close after body
< HTTP/1.0 405 METHOD NOT ALLOWED
< Content-Type: text/html
< Allow: GET, OPTIONS, HEAD
< Content-Length: 178
< Server: Werkzeug/0.11.11 Python/3.5.2
< Date: Thu, 22 Dec 2016 21:35:01 GMT
<
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>405 Method Not Allowed</title>
<h1>Method Not Allowed</h1>
<p>The method is not allowed for the requested URL.</p> *
   Curl_http_done: called premature == 0
   Closing connection 0



Discovering Flask

[ 40 ]

If you want to support specific methods, you can pass them to the route decorator with the
methods argument as follows:

    @app.route('/api', methods=['POST', 'DELETE', 'GET'])
    def my_microservice():
        return jsonify({'Hello': 'World!'})

Note that the OPTIONS and HEADS methods are implicitly added in all
rules, since it is automatically managed by the request handler. You can
deactivate this behavior by setting a provide_automatic_options
attribute to False to the function. This can be useful when you want to
add custom headers in the response when OPTIONS is called, like when
dealing with CORS where you need to add several Access-Control-
Allow-* headers.

Variables and converters
Another feature provided by the routing system is variables.

You can use variables using the <VARIABLE_NAME> syntax. This notation is pretty standard
(Bottle uses the same), and allows you to describe endpoints with dynamic values.

For example, if you want to create a function that handles all requests to /person/N, with N
being the unique ID of a person, you could use /person/<person_id>.

When Flask calls your function, it converts the value it finds in the URL section as the
person_id argument:

    @app.route('/api/person/<person_id>')
    def person(person_id):
        response = jsonify({'Hello': person_id})
        return response

    $ curl localhost:5000/api/person/3
    {
      "Hello": "3"
    }



Discovering Flask

[ 41 ]

If you have several routes that match the same URL, the mapper uses a
particular set of rules to determine which one it calls. This is the
implementation description taken from Werkzeug's routing module:

Rules without any arguments come first for performance. This is1.
because we expect them to match faster and some common
rules usually don't have any arguments (index pages, and so
on).
The more complex rules come first, so the second argument is2.
the negative length of the number of weights.
Lastly, we order by the actual weights.3.

Werzeug's Rules have, therefore, weights that are used to sort them, and
this is not used or surfaced in Flask. So, it boils down to picking views
with more variables first, then the others --in order of appearance--when
Python imports the different modules. The rule of thumb is to make sure
that every declared route in your app is unique, otherwise, tracking which
one gets picked will give you headaches.

There's also a basic converter that will convert the variable to a particular type. For instance,
if you want an integer, you would use <int:VARIABLE_NAME>. In the person example, that
translates to /person/<int:person_id>.

If a request matches a route, but a converter fails to change a value, Flask will return a 404
Error unless another route matches the same path.

Built-in converters are string (the default, a Unicode string), int, float, path, any, and
uuid.

The path converter is like the default converter, but includes slashes. It's similar to the
[^/].*? regular expression.

The any converter allows you to combine several values. It's a bit too smart, and rarely
used. The uuid converter matches the UUIDs strings.

It's quite easy to create your custom converter. For example, if you want to match users' IDs
with usernames, you could create a converter that looks up a database, and converts the
integer into a username.



Discovering Flask

[ 42 ]

To do this, you need to create a class derived from the BaseConverter class, which
implements two methods: the to_python() method to convert the value to a Python object
for the view, and the to_url() method to go the other way (used by url_for() described
in the next section uses to_url()):

    from flask import Flask, jsonify, request
    from werkzeug.routing import BaseConverter, ValidationError

    _USERS = {'1': 'Tarek', '2': 'Freya'}
    _IDS = {val: id for id, val in _USERS.items()}

    class RegisteredUser(BaseConverter):
        def to_python(self, value):
            if value in _USERS:
                return _USERS[value]
            raise ValidationError()

        def to_url(self, value):
            return _IDS[value]

    app = Flask(__name__)
    app.url_map.converters['registered'] = RegisteredUser

    @app.route('/api/person/<registered:name>')
    def person(name):
        response = jsonify({'Hello hey': name})
        return response

    if __name__ == '__main__':
        app.run()

The ValidationError method is raised in case the conversion fails, and the mapper will
consider that the route simply does not match that request.

Let's try a few calls to see how that works in practice:

$ curl localhost:5000/api/person/1
{
  "Hello hey": "Tarek"
}

$ curl localhost:5000/api/person/2
{
  "Hello hey": "Freya"
}

$ curl localhost:5000/api/person/3



Discovering Flask

[ 43 ]

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>404 Not Found</title>
<h1>Not Found</h1>
<p> The requested URL was not found on the server.  If you entered
    the URL manually please check your spelling and try again.</p>

But beware that this was just an example to demonstrate the power of converters. In real
applications, we would need to be careful not to rely on too many converters, because it
would be painful to change all the routes when the code evolves.

The best practice for routing is to keep it as static and straightforward as
possible, and see it as mere labels you put on your functions.

The url_for function
The last interesting feature of Flask's routing system is the url_for() function. Given any
view, it will return its actual URL.

Here's an example with the previous app:

    >>> from flask_converter import app
    >>> from flask import url_for
    >>> with app.test_request_context():
    ...     print(url_for('person', name='Tarek'))
    ...
    /api/person/1

The previous example uses the Read-Eval-Print Loop (REPL), which you
can get by running the Python executable directly.

This feature is quite useful in templates when you want to display the URLs of some views
depending on the execution context. Instead of hardcoding some links, you can just point
the function name to url_for to get it.



Discovering Flask

[ 44 ]

Request
When a request comes in, Flask calls the view inside a thread-safe block, and uses
Werzeug's local helper (h t t p ://w e r k z e u g . p o c o o . o r g /d o c s /l a t e s t /l o c a l /). This helper
does a job similar to Python's threading.local
(https://docs.python.org/3/library/threading.html#thread-local-data), and makes
sure that each thread has an isolated environment, specific to that request.

In other words, when you access the global request object in your view, you are guaranteed
that it's unique to your thread, and will not leak data to another thread in a multi-threaded
environment.

As we've seen earlier, Flask uses the incoming WSGI environment data to create the request
object. That object is a Request class instance, which merges several mixin classes in
charge of parsing specific headers from the incoming environment.

Check out the WSGI PEP (Python Environment Proposal) to get more
details on what's in a WSGI environment at h t t p s ://w w w . p y t h o n . o r g /d e

v /p e p s /p e p - 0333/#e n v i r o n - v a r i a b l e s .

The bottom line is that a view can introspect the incoming request through the request
object attributes without having to deal with some parsing. The work done by Flask is quite
high level. For instance, the Authorization header is looked at and decomposed
automatically when possible.

In the following example, an HTTP Basic Auth that is sent by the client is always
converted to a base64 form when sent to the server. Flask will detect the Basic prefix, and
will parse it into username and password fields in the request.authorization
attribute:

    from flask import Flask, request

    app = Flask(__name__)

    @app.route("/")
    def auth():
        print("The raw Authorization header")
        print(request.environ["HTTP_AUTHORIZATION"])
        print("Flask's Authorization header")
        print(request.authorization)
        return ""

    if __name__ == "__main__":
        app.run()

http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
http://werkzeug.pocoo.org/docs/latest/local/
https://docs.python.org/3/library/threading.html#thread-local-data
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables
https://www.python.org/dev/peps/pep-0333/#environ-variables


Discovering Flask

[ 45 ]

    $ curl http://localhost:5000/ -u tarek:password

    $ bin/python flask_auth.py
    * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
    The raw Authorization header
    Basic dGFyZWs6cGFzc3dvcmQ=
    Flask's Authorization header
    {'username': 'tarek', 'password': 'password'}
    127.0.0.1 - - [26/Dec/2016 11:33:04] "GET / HTTP/1.1" 200 -

This behavior makes it easy to implement a pluggable authentication system on top of the
request object.

Other common request elements like cookies, files, and so on are all accessible via other
attributes, as we will discover throughout the book.

Response
In the previous examples, we've used the jsonify() function, which creates a Response
object from the mapping returned by the view.

The Response object is, technically, a standard WSGI application you could use directly.
It's wrapped by Flask, and called with the WSGI's environ, and the start_response
function is received from the web server.

When Flask picks a view via its URL mapper, it expects it to return a callable object that can
receive the environ and start_response arguments.

This design may seem a little awkward since the WSGI environ is already
parsed into a Request object by the time the Response object is called
with the WSGI environ again. But, in practice, this is just an
implementation detail. When your code needs to interact with the request,
it can use the global Request object, and ignore what's happening inside
the Response class.



Discovering Flask

[ 46 ]

In case the returned value is not a callable, Flask will try to convert it into a Response object
if it's one of the following cases:

str: The data gets encoded as UTF-8 and used as the HTTP response body.
bytes/bytesarray: Used as the body.
A (response, status, headers) tuple: Where response can be a Response object or
one of the previous types. status is an integer value that overwrites the response
status, and headers is a mapping that extends the response headers.
A (response, status) tuple: Like the previous one, but without specific headers
A (response, headers) tuple: Like the preceding one, but with just extra headers.

Any other case will lead to an exception.

In most cases, when building microservices, we'll use the built-in jsonify() function, but
in case you need your endpoints to produce another content type, creating a function that
will convert the generated data into a Response class is easy enough.

Here's an example with YAML: the yamlify() function will return a (response, status,
headers) tuple, which will be converted by Flask into a proper Response object.

    from flask import Flask
    import yaml      # requires PyYAML

    app = Flask(__name__)

    def yamlify(data, status=200, headers=None):
        _headers = {'Content-Type': 'application/x-yaml'}
        if headers is not None:
            _headers.update(headers)
        return yaml.safe_dump(data), status, _headers

    @app.route('/api')
    def my_microservice():
        return yamlify(['Hello', 'YAML', 'World!'])
    if __name__ == '__main__':
        app.run()

The way Flask handles requests can be summarized as follows:

When the application starts, any function decorated with @app.route() is1.
registered as a view, and stored into the app.url_map.
A call is dispatched to the right view depending on its endpoint and method.2.



Discovering Flask

[ 47 ]

A Request object is created in a thread-safe thread-local execution context.3.
A Response object wraps the content to send back.4.

These four steps are roughly all you need to know to start building apps using Flask. The
next section will summarize the most important built-in features that Flask offers alongside
this request-response mechanism.

Flask built-in features
The previous section gave us a good understanding of how Flask processes a request, and
that's good enough to get you started.

But Flask comes with more helpers, which are quite useful. We'll discover the following
main ones in this section:

The session object: Cookie-based data
Globals: Storing data in the request context
Signals: Sending and intercepting events
Extensions and middlewares: Adding features
Templates: Building text-based content
Configuring: Grouping your running options in a config file
Blueprints: Organizing your code in namespaces
Error handling and debugging: Dealing with errors in your app

The session object
Like the request object, Flask creates a session object, which is unique to the request
context.

It's a dict-like object, which Flask serializes into a cookie on the user side. The data contained
into the session mapping is dumped into a JSON mapping, then compressed using zlib
when that makes it smaller, and finally encoded in base64.

When the session gets serialized, the itsdangerous (h t t p s ://p y t h o n h o s t e d . o r g /i t s d a n g e

r o u s /) library signs the content using the secret_key value defined at the application
level. The signing uses HMAC (h t t p s ://e n . w i k i p e d i a . o r g /w i k i /H a s h - b a s e d _ m e s s a g e _ a

u t h e n t i c a t i o n _ c o d e ) and SHA1.

https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code


Discovering Flask

[ 48 ]

This signature, which is added as a suffix in the data, ensures that the client cannot tamper
with the data that is stored in a cookie unless they know the secret key to sign the data.
Note that the data itself is not encrypted.

Flask will let you customize the signing algorithm to use, but HMAC + SHA1 is good
enough when you need to store data in cookies.

However, when you're building microservices that are not producing HTML, you rarely
rely on cookies since they are specific to web browsers. But the idea of keeping a volatile
key-value storage per user can be extremely useful to speed up some of the server-side
work. For instance, if you need to perform some database look-ups to get some information
about a user every time they connect, caching this information in a session-like object on the
server side makes a lot of sense.

Globals
As discussed earlier in this chapter, Flask provides a mechanism to store global variables
that are unique to a particular thread and request context. That's used for request and
session, but is also available to store any custom object.

The flask.g variable contains all globals, and you can set whatever attributes you want on
it.

In Flask, the @app.before_request decorator can be used to point a function that the app
will call every time a request is made just before it dispatches the request to a view.

It's a typical pattern in Flask to use before_request to set values in the globals. That way,
all the functions that are called within the request context can interact with g and get the
data.

In the following example, we copy the username provided when the client performs an
HTTP basic authentication in the user attribute:

    from flask import Flask, jsonify, g, request

    app = Flask(__name__)

    @app.before_request
    def authenticate():
        if request.authorization:
            g.user = request.authorization['username']
        else:
            g.user = 'Anonymous'



Discovering Flask

[ 49 ]

    @app.route('/api')
    def my_microservice():
        return jsonify({'Hello': g.user})

    if __name__ == '__main__':
        app.run()

When a client requests the /api view, the authenticate function will set g.user depending
on the provided headers:

$ curl http://127.0.0.1:5000/api
{
  "Hello": "Anonymous"
}
$ curl http://127.0.0.1:5000/api --user tarek:pass
{
  "Hello": "tarek"
}

Any data you may think of that's specific to a request context, and could be shared
throughout your code, can be shared via flask.g.

Signals
Flask integrates with Blinker (h t t p s ://p y t h o n h o s t e d . o r g /b l i n k e r /), which is a signal
library that lets you subscribe a function to an event.

Events are instances of the blinker.signal class created with a unique label, and Flask
instantiates ten of them in 0.12. Flask triggers signals at critical moments during the 
processing of a request. Refer to h t t p ://f l a s k . p o c o o . o r g /d o c s /l a t e s t /a p i /#c o r e - s i g n

a l s - l i s t for the full list.

Registering to a particular event is done by calling the signal's connect method. Signals are
triggered when some code calls the signal's send method. The send method accepts extra
arguments to pass data to all the registered functions.

In the following example, we register the finished function to the request_finished
signal. That function will receive the response object:

    from flask import Flask, jsonify, g, request_finished
    from flask.signals import signals_available

    if not signals_available:
        raise RuntimeError("pip install blinker")

https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
https://pythonhosted.org/blinker/
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list
http://flask.pocoo.org/docs/latest/api/%23core-signals-list


Discovering Flask

[ 50 ]

    app = Flask(__name__)

    def finished(sender, response, **extra):
        print('About to send a Response')
        print(response)

    request_finished.connect(finished)

    @app.route('/api')
    def my_microservice():
        return jsonify({'Hello': 'World'})

    if __name__ == '__main__':
        app.run()

Notice that the signal feature will only work if you install Blinker, which is not installed by
default as a dependency when you install Flask.

Some signals implemented in Flask are not useful in microservices, such as the ones
occurring when the framework renders a template. But there are some interesting signals
that Flask triggers throughout the request life, which can be used to log what's going on

For instance, the got_request_exception signal is triggered when an exception occurs
before the framework does something with it. That's how Sentry's (h t t p s ://s e n t r y . i o )
Python client (Raven) hooks itself onto Flask to log exceptions.

It can also be interesting to implement custom signals in your apps when you want to
trigger some of your features with events and decouple the code.

For example, if your microservice produces PDF reports, and you want to have the reports
cryptographically signed, you could trigger a report_ready signal, and have a signer
register to that event.

One important aspect of the Blinker implementation is that all registered functions are
called in no particular order and synchronously on the signal.send calls. So, if your
application starts to use a lot of signals, all the triggering could become an important part of
the time spent processing a request, and create bottlenecks.

If you need to do work that doesn't impact the response, consider using a queue like
RabbitMQ (h t t p s ://w w w . r a b b i t m q . c o m /) to queue up the task and have a separate service
do that work.

https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://sentry.io
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/


Discovering Flask

[ 51 ]

Extensions and middlewares
Flask extensions are simply Python projects that, once installed, provide a package or a
module named flask_something. In previous versions, it was flask.ext.something.

The project has to follow a few guidelines, as described at h t t p ://f l a s k . p o c o o . o r g /d o c s

/l a t e s t /e x t e n s i o n d e v . These guidelines are more or less good practices that could apply
to any Python project. Flask has a curated list of extensions maintained at h t t p ://f l a s k . p o

c o o . o r g /e x t e n s i o n s /, which is a good first stop when you are looking for extra features.
What's provided by the extension is up to the developers, and not much is enforced besides
the guidelines described in Flask documentation.

The other mechanism to extend Flask is to use WSGI middlewares. A WSGI middleware is
a pattern to extend WSGI apps by wrapping the calls made to the WSGI endpoint.

In the example that follows, the middleware fakes a X-Forwarded-For header, so the Flask
application thinks it's behind a proxy like nginx. This is a useful middleware in a testing
environment when you want to make sure your application behaves properly when it tries
to get the remote IP address, since the remote_addr attribute will get the IP of the proxy,
not the real client:

    from flask import Flask, jsonify, request
    import json

    class XFFMiddleware(object):
        def __init__(self, app, real_ip='10.1.1.1'):
            self.app = app
            self.real_ip = real_ip

        def __call__(self, environ, start_response):
            if 'HTTP_X_FORWARDED_FOR' not in environ:
                values = '%s, 10.3.4.5, 127.0.0.1' % self.real_ip
                environ['HTTP_X_FORWARDED_FOR'] = values
            return self.app(environ, start_response)

    app = Flask(__name__)
    app.wsgi_app = XFFMiddleware(app.wsgi_app)

    @app.route('/api')
    def my_microservice():
        if "X-Forwarded-For" in request.headers:
            ips = [ip.strip() for ip in
                   request.headers['X-Forwarded-For'].split(',')]
            ip = ips[0]
        else:
            ip = request.remote_addr

http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/docs/latest/extensiondev
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/
http://flask.pocoo.org/extensions/


Discovering Flask

[ 52 ]

        return jsonify({'Hello': ip})

    if __name__ == '__main__':
        app.run()

Notice that we use app.wsgi_app here to wrap the WSGI app. In Flask,
the app object is not the WSGI application itself as we've seen earlier.

Tampering with the WSGI environ before your application gets it is fine, but if you want
to implement anything that will impact the response, doing it inside a WSGI middleware is
going to make your work very painful.

The WSGI protocol requires that the start_response function gets called with the
response status code, and headers before the app sends back the actual body content.
Unfortunately, a single function call on your application triggers this two-step mechanism.
So, changing the results on the fly from outside the app requires some callback magic to
work.

A good example is when you want to modify the response body. That impacts the
Content-Length header, so your middleware will need to intercept the headers sent by
the app, and rewrite them after the body has been modified.

And this is just one problem of the WSGI protocol design; there are many other issues
around it.

Unless you want your functionality to work for other WSGI frameworks, there are no good
reasons to extend your apps with WSGI middlewares. It's much better to write a Flask
extension that will interact from within the Flask application.

Templates
Sending back JSON or YAML documents is easy enough, since we're just serializing data.
And most microservices produce machine-parseable data. But in some cases, we might need
to create documents with some layout--whether it's an HTML page, or a PDF report, or an
email.

For anything that's text-based, Flask integrates a template engine called Jinja (h t t p ://j i n j

a . p o c o o . o r g ). The main reason Flask incorporates Jinja is to produce HTML documents, so
you will find helpers like render_template, which generate responses by picking a Jinja
template, and provide the output given some data.

http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org


Discovering Flask

[ 53 ]

But Jinja is not unique to HTML or other tag-based documents. It can create any document
as long as it's text-based.

For example, if your microservice sends emails, instead of relying on the standard library's
email package to produce the email content, which can be cumbersome, you could use
Jinja.

The following is an example of an email template:

Date: {{date}}
From: {{from}}
Subject: {{subject}}
To: {{to}}
Content-Type: text/plain

Hello {{name}},

We have received your payment!

Below is the list of items we will deliver for lunch:

{% for item in items %}- {{item['name']}} ({{item['price']}} Euros)
{% endfor %}

Thank you for your business!

--
Tarek's Burger

Jinja uses double brackets for marking variables that will be replaced by a value. Variables
can be anything that's passed to Jinja at execution time.

You can also use Python's if and for blocks directly in your templates with the {% for x
in y % }... {% endfor %} and {% if x %}...{% endif %} notations.

The following is a Python script that uses the email template to produce an entirely valid
RFC 822 message, which you can send via SMTP:

    from datetime import datetime
    from jinja2 import Template
    from email.utils import format_datetime

    def render_email(**data):
        with open('email_template.eml') as f:
            template = Template(f.read())
        return template.render(**data)



Discovering Flask

[ 54 ]

    data = {'date': format_datetime(datetime.now()),
            'to': 'bob@example.com',
            'from': 'tarek@ziade.org',
            'subject': "Your Tarek's Burger order",
            'name': 'Bob',
            'items': [{'name': 'Cheeseburger', 'price': 4.5},
                      {'name': 'Fries', 'price': 2.},
                      {'name': 'Root Beer', 'price': 3.}]}

    print(render_email(**data))

The render_email function uses the Template class to generate the email using the
provided data.

Jinja is quite powerful, and comes with many features we won't describe
here, since it's out of the chapter's scope. But if you need to do some
templating work in your microservices, it's a good choice, and it's present
in Flask. Check out http://jinja.pocoo.org/docs for a full
documentation on Jinja features.

Configuration
When building applications, you will need to expose options to run them, like the
information to connect to a database or any other variable that is specific to a deployment.

Flask uses a mechanism similar to Django in its configuration approach. The Flask object
comes with an object called config, which contains some built-in variables, and which can
be updated when you start your Flask app via your configuration objects.

For example, you can define a Config class in a prod_settings.py file as follows:

    class Config:
        DEBUG = False
        SQLURI = 'postgres://tarek:xxx@localhost/db'

And then, load it from your app object using app.config.from_object :

>>> from flask import Flask
>>> app = Flask(__name__)
>>> app.config.from_object('prod_settings.Config')
>>> print(app.config)
<Config {'SESSION_COOKIE_HTTPONLY': True, 'LOGGER_NAME': '__main__',
         'APPLICATION_ROOT': None, 'MAX_CONTENT_LENGTH': None,
         'PRESERVE_CONTEXT_ON_EXCEPTION': None,
         'LOGGER_HANDLER_POLICY': 'always',

http://jinja.pocoo.org/docs


Discovering Flask

[ 55 ]

         'SESSION_COOKIE_DOMAIN': None, 'SECRET_KEY': None,
         'EXPLAIN_TEMPLATE_LOADING': False,
         'TRAP_BAD_REQUEST_ERRORS': False,
         'SESSION_REFRESH_EACH_REQUEST': True,
         'TEMPLATES_AUTO_RELOAD': None,
         'JSONIFY_PRETTYPRINT_REGULAR': True,
         'SESSION_COOKIE_PATH': None,
         'SQLURI': 'postgres://tarek:xxx@localhost/db',
         'JSON_SORT_KEYS': True, 'PROPAGATE_EXCEPTIONS': None,
         'JSON_AS_ASCII': True, 'PREFERRED_URL_SCHEME': 'http',
         'TESTING': False, 'TRAP_HTTP_EXCEPTIONS': False,
         'SERVER_NAME': None, 'USE_X_SENDFILE': False,
         'SESSION_COOKIE_NAME': 'session', 'DEBUG': False,
         'JSONIFY_MIMETYPE': 'application/json',
         'PERMANENT_SESSION_LIFETIME': datetime.timedelta(31),
         'SESSION_COOKIE_SECURE': False,
         'SEND_FILE_MAX_AGE_DEFAULT': datetime.timedelta(0, 43200)}>

However, there are two significant drawbacks when using Python modules as
configuration files.

First, it can be tempting to add into those configuration modules some code that's more
complex than simple flat classes; and by doing so, it means you will have to treat those
modules like the rest of the application code. That's usually not what happens when
applications are deployed: the configuration files are managed separately from the code.

Secondly, if another team is in charge of managing the configuration file of your
application, they will need to edit the Python code to do so. While this is usually fine, it
makes it easier to introduce some problems. For instance, it's harder to make Puppet
templates out of Python modules rather than flat, static configuration files.

Since Flask exposes its configuration via app.config, it's pretty simple to load additional
options from a YAML file, or any other text-based file.

The INI format is the most-used format in the Python community, because there's an INI
parser included in the standard library, and because it's pretty universal.

Many Flask extensions exist to load the configuration from an INI file, but using the
standard library ConfigParser is trivial. Although, there's one major caveat from using
INI files: variables values are all strings, and your application needs to take care of
converting them to the right type.

The Konfig project (h t t p s ://g i t h u b . c o m /m o z i l l a - s e r v i c e s /k o n f i g ) is a small layer on
top of ConfigParser, which automates the conversion of simple types like integers and
Booleans.

https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig
https://github.com/mozilla-services/konfig


Discovering Flask

[ 56 ]

Using it with Flask is straightforward:

$ more settings.ini
[flask]
DEBUG = 0
SQLURI = postgres://tarek:xxx@localhost/db

$ python
>>> from konfig import Config
>>> from flask import Flask
>>> c = Config('settings.ini')
>>> app = Flask(__name__)
>>> app.config.update(c.get_map('flask'))
>>> app.config['SQLURI']
'postgres://tarek:xxx@localhost/db

Blueprints
When you write microservices that have more than a single endpoint, you will end up with
a handful of decorated functions--maybe, a few per endpoint. The first logical step to
organize your code is to have one module per endpoint, and when you create your app
instance, to make sure they get imported so that Flask registers the views.

For example, if your microservice manages a company employees database, you could have
one endpoint to interact with all employees, and one with teams. You could organize your
application in these three modules:

app.py: To contain the Flask app object, and to run the app
employees.py: To provide all the views related to employees
teams.py: To provide all the views related to teams

From there, employee and teams can be seen as a subset of the app, and might have a few
specific utilities and configuration.

Blueprints take that logic a step further by providing a way to group your views into
namespaces. You can create a Blueprint object which looks like a Flask app object, and
then use it to arrange some views. The initialization process can then register blueprints
with app.register_blueprint. That call will make sure that all the views defined in the
blueprint are part of the app.



Discovering Flask

[ 57 ]

A possible implementation of the employee's blueprint could be as follows:

    from flask import Blueprint, jsonify

    teams = Blueprint('teams', __name__)

    _DEVS = ['Tarek', 'Bob']
    _OPS = ['Bill']
    _TEAMS = {1: _DEVS, 2: _OPS}

    @teams.route('/teams')
    def get_all():
        return jsonify(_TEAMS)

    @teams.route('/teams/<int:team_id>')
    def get_team(team_id):
        return jsonify(_TEAMS[team_id])

The main module (app.py) can then import this file, and register its blueprint with
app.register_blueprint(teams).

This mechanism is also interesting when you want to reuse a generic set of views in another
application, or several times in the same application.

The Flask-Restless (h t t p s ://f l a s k - r e s t l e s s . r e a d t h e d o c s . i o ) extension, for instance,
which is a Create, Read, Update, and Delete (CRUD) tool that automatically exposes a
database through a REST API by introspecting SQLAlchemy models, generates one
blueprint per SQLAlchemy model.

The following is from the Flask-Restless documentation (Person is SQLAlchemy model):

    blueprint = manager.create_api_blueprint(Person, methods=['GET',
    'POST'])
    app.register_blueprint(blueprint)

Error handling and debugging
When something goes wrong in your application, it's important to be able to control what
responses will the clients will receive. In HTML web apps, you usually get specific HTML
pages when you encounter a 404 or a 50x error, and that's how Flask works out of the box.
But when building microservices, you need to have more control on what should be sent
back to the client--that's where custom error handlers come in handy.

https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io
https://flask-restless.readthedocs.io


Discovering Flask

[ 58 ]

The other important feature is the ability to debug what's wrong with your code when an
unexpected error occurs. And Flask comes with a built-in debugger we'll discover in this
section, which can be activated when your app runs in the debug mode.

Custom error handler
When your code does not handle an exception, Flask returns an HTTP 500 response without
providing any specific information, like the traceback. Producing a generic error is a safe
default behavior to avoid leaking any private information to the users in the error body.

The default 500 response is a simple HTML page along with the right status code:

$ curl http://localhost:5000/api
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>500 Internal Server Error</title>
<h1>Internal Server Error</h1>
<p>The server encountered an internal error and was unable to complete your
request.  Either the server is overloaded or there is an error in the
application.</p>

When implementing microservices using JSON, it's a good practice to make sure that every
response sent to the clients, including any exception, is JSON formatted. Consumers of your
microservice will expect every response to be machine-parseable.

Flask lets you customize the app error handling via a couple of functions. The first one is
the @app.errorhandler decorator, which works like @app.route. But instead of
providing an endpoint, the decorator links a function to a specific error code.

In the following example, we use it to connect a function that will return a JSON-formatted
error when Flask returns a 500 server response (any code exception):

    from flask import Flask, jsonify

    app = Flask(__name__)

    @app.errorhandler(500)
    def error_handling(error):
        return jsonify({'Error': str(error)}, 500)

    @app.route('/api')
    def my_microservice():
        raise TypeError("Some Exception")

    if __name__ == '__main__':
        app.run()



Discovering Flask

[ 59 ]

Flask will call this error view no matter what exception the code raises.

However, in case your application issues an HTTP 404 or any other 4xx or 5xx response,
you will be back to the default HTML responses that Flask sends.

To make sure your app sends JSON for every 4xx and 50x, we need to register that function
to each error code.

One place where you can find the list of errors is in the abort.mapping dict. In the
following code snippet, we register the error_handling function to every error using
app.register_error_handler, which is similar to the @app.errorhandler decorator:

    from flask import Flask, jsonify, abort
    from werkzeug.exceptions import HTTPException, default_exceptions

    def JsonApp(app):
        def error_handling(error):
            if isinstance(error, HTTPException):
                result = {'code': error.code, 'description':
                           error.description, 'message': str(error)}
            else:
                description = abort.mapping[500].description
                result = {'code': 500, 'description': description,
                          'message': str(error)}

            resp = jsonify(result)
            resp.status_code = result['code']
            return resp

        for code in default_exceptions.keys():
            app.register_error_handler(code, error_handling)

        return app

    app = JsonApp(Flask(__name__))

    @app.route('/api')
    def my_microservice():
        raise TypeError("Some Exception")

    if __name__ == '__main__':
        app.run()

The JsonApp function wraps a Flask app instance, and sets up the custom JSON error
handler for every 4xx and 50x error that might occur.



Discovering Flask

[ 60 ]

The debug mode
The Flask application run method has a debug option, which, when used, runs it in the
debug mode:

    app.run(debug=True)

The debug mode is a special mode, where the built-in debugger takes precedence on any
error, and allows you to interact with the app from a browser:



Discovering Flask

[ 61 ]

The console in the web-debugger will let you interact with the current app, and inspect
variables or execute any Python code that is in the current execution frame.

Flask will even let you configure a third-party debugger. JetBrains's PyCharm (h t t p s ://w w

w . j e t b r a i n s . c o m /p y c h a r m ), for example, is a commercial IDE for Python, which offers a
powerful visual debugger that can be set up to run with Flask.

Since the debug mode allows remote code execution, it's a security hazard
even though you need to provide a PIN to access the console. In 2015, the
Patreon online service got hacked via the Flask debugger. You need to be
extremely cautious not to run the debug mode in production. The Bandit
security linter (h t t p s ://w i k i . o p e n s t a c k . o r g /w i k i /S e c u r i t y /P r o j e c t s

/B a n d i t ) tracks Flask applications that are executed with a plain debug
flag, and can be used to prevent deploying an application with that flag.

The plain old pdb module is also a good option when you are tracking down a problem by
inserting a pdb.set_trace() call in your code.

A microservice skeleton
So far in this chapter, we've looked at how Flask works, and at most of the built-in features
it provides--and we will be using them throughout this book.

One topic we have not covered yet is how to organize the code in your projects, and how to
instantiate your Flask app. Every example so far used a single Python module and the
app.run() call to run the service.

Having everything in a module is, of course, a terrible idea unless your code is just a few
lines. And since we will want to release and deploy the code, it's better to have it inside a
Python package so that we can use standard packaging tools like Pip and Setuptools.

It's also a good idea to organize views into blueprints, and have one module per blueprint.

Lastly, the run() call can be removed from the code, since Flask provides a generic runner
that looks for an app variable given a module pointed by the FLASK_APP environment
variable. Using that runner offers extra options like the ability to configure the host and port
that will be used to run the app.

https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit


Discovering Flask

[ 62 ]

The microservice project on GitHub (h t t p s ://g i t h u b . c o m /R u n n e r l y /m i c r o s e r v i c e ) was
created for this book, and is a generic Flask project that you can use to start a microservice.
It implements a simple layout, which works well for building microservices.

You can install it and run it, then modify it.

This project uses Flakon (h t t p s ://g i t h u b . c o m /R u n n e r l y /f l a k o n ), which
is a minimalistic helper that takes care of configuring and instantiating a
Flask application with an INI file and a default JSON behavior.
Flakon was also created for this book to let you focus on building
microservices with the minimal amount of boilerplate code.
Flakon is opinionated, so if its decisions do not suit you, you can just
remove it from your project, and build your function that creates an app;
or use one of the existing open source projects that provide this kind of
feature.

The microservice project skeleton contains the following structure:

setup.py: Distutils' setup file, which is used to install and release the project
Makefile: A Makefile that contains a few useful targets to make, build, and run
the project
settings.ini: The application default settings in the INI file
requirements.txt: The project dependencies following the pip format
myservices/: The actual package

__init__.py

app.py: The app module, which contains the app itself
views/: A directory containing the views organized in blueprints

__init__.py

home.py: The home blueprint, which serves the root
endpoint

tests: The directory containing all the tests
__init__.py

test_home.py: Tests for the home blueprint views

https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon
https://github.com/Runnerly/flakon


Discovering Flask

[ 63 ]

In the following code, the app.py file instantiates a Flask app using Flakon's create_app
helper; that takes a few options like a list of blueprints, which get registered:

    import os
    from flakon import create_app
    from myservice.views import blueprints

    _HERE = os.path.dirname(__file__)
    _SETTINGS = os.path.join(_HERE, '..', 'settings.ini')

    app = create_app(blueprints=blueprints, settings=_SETTINGS)

The home.py view uses Flakon's JsonBlueprint class, which implements the error
handling we've seen in the previous section. It also automatically calls jsonify() on the
object returned by the view if its a dictionary, like how the Bottle framework does:

    from flakon import JsonBlueprint

    home = JsonBlueprint('home', __name__)

    @home.route('/')
    def index():
        """Home view.

        This view will return an empty JSON mapping.
        """
        return {}

This example application can run via Flask's built-in command line, using the package
name:

$ FLASK_APP=myservice flask run
 * Serving Flask app "myservice"
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

From there, building JSON views for your microservice consists of adding modules in
microservice/views, and their corresponding tests.



Discovering Flask

[ 64 ]

Summary
This chapter gave us a pretty detailed overview of the Flask framework, and how it can be
used to build microservices.

The main takeaways are as follows:

Flask wraps a simple request-response mechanism around the WSGI protocol,
which lets you write your applications in almost vanilla Python.

Flask is easy to extend, and it works with Python 3.

Flask comes with nice built-in features: blueprints, globals, signals, a template
engine, error handlers, and a debugger.

The microservice project is a Flask skeleton, which will be used to write
microservices throughout this book. It's a simple app that uses an INI file for its
configuration, and makes sure everything produced by the app is JSON.

The next chapter will focus on development methodology: how to continuously code, test,
and, document your microservices.



3
Coding, Testing, and

Documenting - the Virtuous
Cycle

Every software project that's deployed suffers from bugs that are inevitable--and bugs are
time and money consuming.

Using a Test-Driven Development (TDD) approach, where you write tests alongside the
code you are creating, will not always improve the quality of your project, but it will make
your team more agile. This means that the developers who need to fix a bug, or refactor a
part of an application, will be able to do a faster and better job when relying on a battery of
tests. If they break a feature, the tests should warn them about it.



Coding, Testing, and Documenting - the Virtuous Cycle

[ 66 ]

Writing tests is time-consuming at first, but in the long run, it's often the best approach to
make a project grow. Of course, it's always possible to write bad tests and end up with poor
results, or create a test suite that's horrible to maintain and takes too long to run. The best
tools and processes in the world won't prevent a sloppy developer from producing bad
software:

Original image credits: h t t p s ://x k c d . c o m /303/

Software industry has long debated on the virtues of TDD. But in the last decade, most of
the research papers that tried to measure the benefits of TDD concluded that software built
with it costs less money in the long term, and is as good, or better, in terms of quality. This
page links to a few research papers on this topic at h t t p ://b i b l i o . g d i n w i d d i e . c o m /b i b l i

o /S t u d i e s O f T e s t D r i v e n D e v e l o p m e n t .

Writing tests is also a good way to get some perspective on your code. Does the API you've
designed make sense? Do things fit well together? And when the team grows or changes,
tests are the best source of information. Unlike documentation, they should reflect what the
current version of the code does.

But documentation is still an important part of a project even though it's hard and time-
consuming to maintain. It's the first stop for anyone using your software or joining the team
to work on it. How is the application installed and configured? How to run tests or add
features? How is it designed the way it is, and why?

http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment


Coding, Testing, and Documenting - the Virtuous Cycle

[ 67 ]

After a while, it's pretty rare to see a project's documentation fully up-to-date with what the
code has become unless some dedicated people work on it. And it can be an immense
frustration for developers to find out that the code examples in the documentation are
broken after some refactoring. But there are ways to mitigate these issues; for instance, code
extracts in the documentation could be part of the test suite to make sure they work.

In any case, no matter how much energy you spend on tests and documentation, there's one
golden rule: testing, documenting, and coding your projects should be done continuously. In other
words, changes in the code should ideally be reflected in the tests and documentation as
they happen.

After providing a few general tips on how to test in Python, this chapter focuses on what
testing and documentation tools can be used in the context of building microservices with
Flask, and how to set up continuous integration with some popular online services.

It's organized into five parts:

The different kind of tests
Using WebTest against your microservice
Using pytest and Tox
Developer documentation
Continuous integration

Different kinds of tests
There are many different kinds of tests, and it can be confusing sometimes to know what
we're talking about. For instance, when people refer to functional tests, they may refer to
different kinds of tests depending on the project's nature.

In the microservice land, we can classify tests into these five distinct goals:

Unit tests: Make sure a class or a function works as expected in isolation
Functional tests: Verify that the microservice does what it says from the
consumer's point of view, and behaves correctly even on bad requests
Integration tests: Verify how a microservice integrates with all its network
dependencies
Load tests: Measure the microservice performances
End-to-end tests: Verify that the whole system works with an end-to-end test

We will see these in detail in the following sections.



Coding, Testing, and Documenting - the Virtuous Cycle

[ 68 ]

Unit tests
Unit tests are the simplest tests to add to a project, and the standard library comes with
everything needed to write some. In a project based on Flask, there usually are, alongside
the views, some functions and classes, which can be unit-tested in isolation.

However, the concept of separation is quite vague for a Python project, because we don't use
contracts or interfaces like in other languages, where the implementation of the class is
separated from its definition.

Testing in isolation in Python usually means that you instantiate a class or call a function
with specific arguments, and verify that you get the expected result. When the class or
function calls another piece of code that's not built in Python or its standard library, it's not
in isolation anymore.

In some cases, it will be useful to mock those calls to achieve isolation. Mocking means 
replacing a piece of code with a mock version, which takes specified input, yields specified
outputs, and fakes the behavior in between. But mocking is often a dangerous exercise,
because it's easy to implement a different behavior in your mocks and end up with some
code that works with your mocks but not the real thing. That problem often occurs when
you update your project's dependencies, and your mocks are not updated to reflect the new
behaviors, which might have been introduced in some library.

So, limiting the usage of mocks to the three following use cases is good practice:

I/O operations: When the code performs calls to third-party services or a
resource (socket, files, and so on), and you can't run them from within your tests
CPU intensive operations: When the call computes something that would make
the test suite too slow
Specific behaviors to reproduce: When you want to write a test to try out your
code under specific behaviors (for example, a network error or changing the date
or time by mocking the date time and time modules)

Consider the following class, which can be used to query a bug list via the Bugzilla REST
API, using the requests (h t t p ://d o c s . p y t h o n - r e q u e s t s . o r g ) library:

    import requests

    class MyBugzilla:
        def __init__(self, account, server =
                     'https://bugzilla.mozilla.org'):
            self.account = account
            self.server = server
            self.session = requests.Session()

http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org


Coding, Testing, and Documenting - the Virtuous Cycle

[ 69 ]

        def bug_link(self, bug_id):
            return '%s/show_bug.cgi?id=%s' % (self.server, bug_id)

        def get_new_bugs(self):
            call = self.server + '/rest/bug'
            params = {'assigned_to': self.account,
                      'status': 'NEW',
                      'limit': 10}
            try:
                res = self.session.get(call, params=params).json()
            except requests.exceptions.ConnectionError:
                # oh well
                res = {'bugs': []}

            def _add_link(bug):
                bug['link'] = self.bug_link(bug)
                return bug

            for bug in res['bugs']:
                yield _add_link(bug)

This class has a bug_link() method, which we can test in isolation, and one
get_new_bugs() method, which performs calls to the Bugzilla server. It would be too
complicated to run our Bugzilla server when the test is executed, so we can mock the calls
and provide our JSON values for the class to work in isolation.

This technique is used in the following example with request_mock (h t t p ://r e q u e s t s - m o

c k . r e a d t h e d o c s . i o ), which is a handy library to mock request network calls:

    import unittest
    from unittest import mock
    import requests
    from requests.exceptions import ConnectionError
    import requests_mock
    from bugzilla import MyBugzilla

    class TestBugzilla(unittest.TestCase):
        def test_bug_id(self):
            zilla = MyBugzilla('tarek@mozilla.com', server =
                               ='http://example.com')
            link = zilla.bug_link(23)
            self.assertEqual(link, 'http://example.com/show_bug.cgi?id=23')

        @requests_mock.mock()
        def test_get_new_bugs(self, mocker):
            # mocking the requests call and send back two bugs

http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io
http://requests-mock.readthedocs.io


Coding, Testing, and Documenting - the Virtuous Cycle

[ 70 ]

            bugs = [{'id': 1184528}, {'id': 1184524}]
            mocker.get(requests_mock.ANY, json={'bugs': bugs})

            zilla = MyBugzilla('tarek@mozilla.com',
                               server ='http://example.com')
            bugs = list(zilla.get_new_bugs())
            self.assertEqual(bugs[0]['link'],
                             'http://example.com/show_bug.cgi?id=1184528')

        @mock.patch.object(requests.Session, 'get',
                           side_effect=ConnectionError('No network'))
        def test_network_error(self, mocked):
            # faking a connection error in request if the web is down
            zilla = MyBugzilla('tarek@mozilla.com',
                                server='http://example.com')

            bugs = list(zilla.get_new_bugs())
            self.assertEqual(len(bugs), 0)

    if __name__ == '__main__':
        unittest.main()

You should keep an eye on all your mocks as the project grows, and make
sure they are not the only kind of tests that cover a particular feature. For
instance, if the Bugzilla project comes up with a new structure for its REST
API, and the server your project uses is updated, your tests will happily
pass with your broken code until the mocks reflect the new behavior.

The test_network_error() method is a second test which fakes a network error by
triggering requests' connection error, using Python's mock patch decorator. This test ensures
the class behaves as expected when there's no network.

This kind of unit test is usually enough to cover most of your classes' and functions'
behaviors.

This test class will probably cover more cases as the project grows and new situations occur.
For instance, what happens if the server sends back a malformed JSON body?



Coding, Testing, and Documenting - the Virtuous Cycle

[ 71 ]

But there's no need to have tests for all the failures you can come up with on day one. In a
microservice project, unit tests are not a priority, and aiming at 100% test coverage (where
every line of your code is called somewhere in your tests) in your unit tests will add a lot of 
maintenance work for little benefits.

It's better to focus on building a robust set of functional tests.

Functional tests
Functional tests for a microservice project are all the tests that interact with the published
API by sending HTTP requests and asserting the HTTP responses.

This definition is broad enough to include any test that can call the app, from fuzzing tests
(you send gibberish to your app and see what happens) to penetration tests (you try to break
the app security), and so on.

As developers, the two most important kinds of functional tests we should focus on are
these:

Tests that verify that the application does what it was built for
Tests that ensure an abnormal behavior that was fixed is not happening anymore

The way those scenarios are organized in the tests class is up to the developers, but the
general pattern is to create an instance of the application in the test class and then interact
with it.

In that context, the network layer is not used, and the application is called directly by the
tests, but the same request-response cycle happens, so it's realistic enough. However, we
would still mock out any network calls happening within the application.

Flask includes a FlaskClient class to build requests, which can be instantiated directly
from the app object via its test_client() method.

The following is an example of a test against the first app we showed in this chapter, which
sends back a JSON body on /api/:

    import unittest
    import json
    from flask_basic import app as tested_app

    class TestApp(unittest.TestCase):
        def test_help(self):
            # creating a FlaskClient instance to interact with the app



Coding, Testing, and Documenting - the Virtuous Cycle

[ 72 ]

            app = tested_app.test_client()

            # calling /api/ endpoint
            hello = app.get('/api')

            # asserting the body
            body = json.loads(str(hello.data, 'utf8'))
            self.assertEqual(body['Hello'], 'World!')

    if __name__ == '__main__':
        unittest.main()

The FlaskClient class has one method per HTTP verb, and sends back Response objects
that can be used to assert the results. In the preceding example, we used .get().

There's a testing flag in the Flask class, which you can use to propagate exceptions to the
test, but some prefer not to use it by default to get back from the app what a real client
would get--for instance, to make sure the body of 5xx or 4xx errors are converted to JSON
for API consistency.

In the following example, the /api/ call produces an exception, and we're making sure the
client gets a proper 500 with a structured JSON body in test_raise().

The test_proper_404() test method does the same tests on a non-existent path:

    import unittest
    import json
    from flask_error import app as tested_app

    _404 = ('The requested URL was not found on the server.  '
            'If you entered the URL manually please check your '
            'spelling and try again.')

    class TestApp(unittest.TestCase):
        def setUp(self):
            # creating a client to interact with the app
            self.app = tested_app.test_client()

        def test_raise(self):
            # this won't raise a Python exception but return a 500
            hello = self.app.get('/api')
            body = json.loads(str(hello.data, 'utf8'))
            self.assertEqual(body['code'], 500)

        def test_proper_404(self):
            # calling a non existing endpoint
            hello = self.app.get('/dwdwqqwdwqd')



Coding, Testing, and Documenting - the Virtuous Cycle

[ 73 ]

            # yeah it's not there
            self.assertEqual(hello.status_code, 404)

            # but we still get a nice JSON body
            body = json.loads(str(hello.data, 'utf8'))
            self.assertEqual(body['code'], 404)
            self.assertEqual(body['message'], '404: Not Found')
            self.assertEqual(body['description'], _404)

    if __name__ == '__main__':
        unittest.main()

An alternative to the FlaskClient method is WebTest (h t t p ://w e b t e s t .

p y t h o n p a s t e . o r g ), which offers a few more features out of the box. It's
covered later in this chapter.

Integration tests
Unit tests and functional tests focus on testing your service code without calling other
network resources, whether they are other microservices from your application or third-
party services like databases, queues, and so on. For the sake of speed, isolation, and
simplicity, network calls are mocked.

Integration tests are functional tests without any mocking, and should be able to run on a
real deployment of your application. For example, if your service interacts with Redis and
RabbitMQ, they will be called by your service as normal when the integration tests are run.

The benefit is to avoid falling into the problems that were described earlier when mocking
network interactions. You will be sure that your application works in a production
execution context only if you try it for real.

The caveat is that running tests against an actual deployment makes it harder to set up tests
data, or to clean up whatever data was produced from within the service during the test.
Patching the application behavior to reproduce a problem is also a difficult task.

But along with unit and functional tests, integration tests are an excellent complement to
verify your application behavior.

Typically, integration tests are executed on a development or staging deployment of your
service, but if it's easy to do, you can also have a dedicated testing deployment, which will
be used for that sole purpose.

http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org
http://webtest.pythonpaste.org


Coding, Testing, and Documenting - the Virtuous Cycle

[ 74 ]

You can use whatever tool you want to write your integration test. A curl script, for
instance, might sometimes be enough on some microservices.

But it's nicer if integration tests can be written in Python, and can be part of your project's
tests collection. To do this, a Python script that uses requests to call your microservice can
do the trick. Or better, in case you provide a client library for your microservice, it's a good
way to test it.

What differentiates integration tests from functional tests is mostly the fact
that it's a real server that gets called. What if we could write functional
tests that can either be run on a local Flask application or against an actual
deployment? This is possible with WebTest, as we will find out later in
this chapter.

Load tests
The goal of a load test is to understand your service's bottlenecks under stress and to plan
for the future, not to do premature optimizations.

Maybe the first version of your service will be fast enough for what it will be used for, but
understanding its limits will help you determining how you want to deploy it and if its
design is future-proof in case the load increases.

It's a common mistake to spend a lot of time on making each microservice as fast as
possible, and end up with an application that relies on a single point of failure because your
design makes it hard to deploy several instances of one particular microservice.

Writing load tests can help you answer the following questions:

How many users can one instance of my service serve when I deploy it on this
machine?
What's the average response time when there are 10, 100 or 1,000 concurrent
requests? Can I handle that much concurrency?
When my service is under stress, is it running out of RAM or is it mainly CPU-
bound?
Can I add other instances of the same service and scale horizontally?
If my microservice calls other services, can I use pools of connectors, or do I have
to serialize all the interactions through a single connection?
Can my service run for multiple days at a time without degradation?
Is my service working properly after a usage peak?



Coding, Testing, and Documenting - the Virtuous Cycle

[ 75 ]

Depending on the kind of load you want to achieve, there are many tools available, from
simple command-line tools to heavier distributed load systems.

For performing a simple load test that does not require any particular scenario, Boom (h t t p

s ://g i t h u b . c o m /t a r e k z i a d e /b o o m ) is an Apache Bench (AB) equivalent written in
Python, which can be used to hit your endpoints.

In the following example, Boom performs a 10-second load test against a Flask web server
on the /api/ endpoint, using 100 concurrent users--and ends up with 286 requests per
second (RPS):

$ boom http://127.0.0.1:5000/api -c 100 -d 10 -q

-------- Results --------
Successful calls           2866
Total time                 10.0177 s
Average                    0.3327 s
Fastest                    0.2038 s
Slowest                    0.4782 s
Amplitude                  0.2744 s
Standard deviation         0.035476
RPS                        286
BSI                        Pretty good

-------- Status codes --------
Code 200                   2866 times.

-------- Legend --------
RPS: Request Per Second
BSI: Boom Speed Index

These numbers don't mean much, as they will vary a lot depending on the deployment, and
from where you run them. For instance, if your Flask application is served behind nginx
with several workers, it will handle better the stream of incoming connections.

But this small test alone can often catch problems early on, in particular when your code is
opening socket connections itself. If something's wrong in the microservice design, it's quite
easy to detect it with a tool like Boom.

https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom
https://github.com/tarekziade/boom


Coding, Testing, and Documenting - the Virtuous Cycle

[ 76 ]

If you need to write interactive scenarios, another small command-line tool is Molotov (h t t

p s ://g i t h u b . c o m /t a r e k z i a d e /m o l o t o v ), which gives you the ability to write Python 
functions where you can query a microservice and check the responses.

In the following example, each function is a possible scenario that gets picked by Molotov
to run against the server:

    import json
    from molotov import scenario

    @scenario(5)
    async def scenario_one(session):
        res = await session.get('http://localhost:5000/api').json()
        assert res['Hello'] == 'World!'
    @scenario(30)
    async def scenario_two(session):
        somedata = json.dumps({'OK': 1})
        res = await session.post('http://localhost:5000/api',
                                 data=somedata)
        assert res.status_code == 200

Both tools will give you some metrics, but they are not very accurate because of the network
and client CPU variance on the box they are launched from. For instance, the test itself will
stress the machine resources, and that will impact the metrics.

When performing a load test, it's better to add some metrics on the server side. At the Flask
level, you can use a small tool like flask-profiler (h t t p s ://g i t h u b . c o m /m u a t i k /f l a s k - p r o

f i l e r ), which collects how long each request takes, and offers a dashboard that will let you 
browse the collected times--its overhead is minimal.

You can also send detail metrics via StatsD (h t t p s ://g i t h u b . c o m /e t s y /s

t a t s d ), and use a dedicated dashboard application like Graphite (h t t p

://g r a p h i t e . r e a d t h e d o c s . i o ). Metrics are covered in Chapter 6,
Monitoring Your Services.

https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/tarekziade/molotov
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/muatik/flask-profiler
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io


Coding, Testing, and Documenting - the Virtuous Cycle

[ 77 ]

If you need to do a heavier load test, you will need to use a load testing framework, which
can distribute the tests across several agents. One of the possible tools is locust.io (h t t p ://d

o c s . l o c u s t . i o /).

End-to-end tests
An end-to-end test will check that the whole system works as expected from the end-user
point of view. The test needs to behave like a real client, and call the system through the
same User Interface (UI).

http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/
http://docs.locust.io/


Coding, Testing, and Documenting - the Virtuous Cycle

[ 78 ]

Depending on the type of application you are writing, a simple HTTP client might not be
enough to simulate a real user. For instance, if the visible part of the system through which
users are interacting is a web application with HTML pages that gets rendered on a client-
side, you will need to use a tool like Selenium (h t t p ://d o c s . s e l e n i u m h q . o r g /). It will
automate your browser in order to make sure that the client requests every CSS and
JavaScript files and then renders correctly every page.

JavaScript frameworks are now doing a lot of work on the client side to produce pages.
Some of them have completely removed server-side rendering of templates, and just grab
data from the server to generate the HTML page by manipulating the Document Object
Model (DOM) through the browser APIs. Calls to the server, in that case, consist of getting
all the static JavaScript files needed for rendering a given URL, plus the data.

Writing end-to-end tests is outside the scope of this book, but you can
refer to Selenium Testing Tools Cookbook from the same editor to learn how
to write some.

The following points summarize what we've learned in this section:

Functional tests are the most important tests to write, and it's easy to do it in
Flask by instantiating the app in the tests and interacting with it
Unit tests are a good complement, but don't abuse mocks
Integration tests are like functional tests, but against a real deployment
Load tests are useful to learn about your microservice bottlenecks and plan for
the next steps
End-to-end tests require using the same UI that the client would normally use

Knowing when you will need to write integration, load, or end-to-end tests depends on
how your project is managed--but both unit and functional tests should be written every
time you change something. Ideally, each change you make in your code should include a
new test or modify an existing test.

Unit tests can be written using vanilla Python, thanks to the excellent unittest package
included in the standard library--and we will see later how the pytest (h t t p ://d o c s . p y t e s

t . o r g ) library adds awesomeness on the top of it.

For functional tests, we'll look in the next section at WebTest.

http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org
http://docs.pytest.org


Coding, Testing, and Documenting - the Virtuous Cycle

[ 79 ]

Using WebTest
WebTest (h t t p ://w e b t e s t . r e a d t h e d o c s . i o ) has been around for a long time. It was 
written by Ian Bicking back in the days of the Paste project, and is based on the WebOb (h t

t p ://d o c s . w e b o b . o r g ) project, which provides a Request and Response class similar (but
not compatible) to Flask's.

WebTest wraps call to a WSGI application like FlaskTest does, and lets you interact with
it. WebTest is somewhat similar to FlaskTest, with a few extra helpers when dealing with
JSON, and a neat feature to call non-WSGI applications.

To use it with Flask, you can install the flask-webtest package (h t t p s ://f l a s k - w e b t e s t

. r e a d t h e d o c s . i o /), and you will get a similar integration level as Flask's native tool:

    import unittest
    from flask_basic import app as tested_app
    from flask_webtest import TestApp

    class TestMyApp(unittest.TestCase):
        def test_help(self):
            # creating a client to interact with the app
            app = TestApp(tested_app)

            # calling /api/ endpoint
            hello = app.get('/api')

            # asserting the body
            self.assertEqual(hello.json['Hello'], 'World!')

    if __name__ == '__main__':
        unittest.main()

We've said earlier that integration tests were similar to functional tests except that they
called a real server instead of instantiating a local WSGI app.

WebTest leverages the WSGIProxy2 library (h t t p s ://p y p i . p y t h o n . o r g /p y p i /W S G I P r o x y

2), which converts calls that are made to the Python application to HTTP requests made to a
real HTTP application.

The previous script can be slightly modified to become an integration test if you set an
HTTP_SERVER variable in the environ function, as follows:

    import unittest
    import os
    class TestMyApp(unittest.TestCase):

http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://webtest.readthedocs.io
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
http://docs.webob.org
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://flask-webtest.readthedocs.io/
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2
https://pypi.python.org/pypi/WSGIProxy2


Coding, Testing, and Documenting - the Virtuous Cycle

[ 80 ]

        def setUp(self):
            # if HTPP_SERVER is set, we use it as an endpoint
            http_server = os.environ.get('HTTP_SERVER')
            if http_server is not None:
                from webtest import TestApp
                self.app = TestApp(http_server)
            else:
                # fallbacks to the wsgi app
                from flask_basic import app
                from flask_webtest import TestApp
                self.app = TestApp(app)

        def test_help(self):
            # calling /api/ endpoint
            hello = self.app.get('/api')

            # asserting the body
            self.assertEqual(hello.json['Hello'], 'World!')

    if __name__ == '__main__':
        unittest.main()

When this last test is executed with HTTP_SERVER=http://myservice/, it performs all its
calls to that service.

That trick is pretty handy to turn some of your functional tests into integration tests without
having to write two distinct tests. As we said earlier, it has some limitations, since you can't
interact locally with the application instance. But it's extremely useful to validate that a
deployed service works as expected directly from your test suite, just by flipping an option.

Using pytest and Tox
So far, all the tests we have written used unittest.TestCase classes and
unittest.main() to run them. As your project grows, you will have more and more tests
modules around.

To automatically discover and run all the tests in a project, the unittest package has
introduced a Test Discovery feature in Python 3.2, which finds and runs tests given a few
options. This feature has been around for a while in projects like Nose (h t t p s ://n o s e . r e a d

t h e d o c s . i o ) and pytest, and that's what inspired the unittest package in the standard
library.

https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io
https://nose.readthedocs.io


Coding, Testing, and Documenting - the Virtuous Cycle

[ 81 ]

Which runner to use is a matter of taste, and as long as you stick to writing your tests in
TestCase classes, your tests will be compatible with all of them.

That said, the pytest project is very popular in the Python community, and since it offers
extensions, people have started to write useful tools around it. Its runner is also quite
efficient, as it starts to run the tests while they are still discovered in the background,
making it a little faster than the others. Its output in the console is also beautiful and bright.

To use it in your project, you can simply install the pytest package with pip, and use the
provided pytest command line. In the following example, the pytest command runs all
the modules that start with test_:

$ pytest test_*
============= test session starts ================================
platform darwin -- Python 3.5.2, pytest-3.0.5, py-1.4.32, pluggy-0.4.0
rootdir: /Users/tarek/Dev/github.com/microbook/code, inifile:
collected 7 items

test_app.py .
test_app_webtest.py .
test_bugzilla.py ...
test_error.py ..

============= 7 passed in 0.55 seconds =============================

The pytest package comes with a lot of extensions, which are listed at h t t p ://p l u g i n c o m p

a t . h e r o k u a p p . c o m /.

Two useful extensions are pytest-cov and pytest-flake8. The first one uses the coverage tool
(h t t p s ://c o v e r a g e . r e a d t h e d o c s . i o ) to display the test coverage of your project, and the
second one runs the Flake8 (h t t p s ://g i t l a b . c o m /p y c q a /f l a k e 8) linter to make sure that
your code is following the PEP8 style, and has no unused imports.

Here's an invocation example with some style issues left on purpose:

$ pytest --cov=flask_basic --flake8 test_*
============= test session starts ================================
platform darwin -- Python 3.5.2, pytest-3.0.5, py-1.4.32, pluggy-0.4.0
rootdir: /Users/tarek/Dev/github.com/microbook/code, inifile:
plugins: flake8-0.8.1, cov-2.4.0
collected 11 items

test_app.py F.
test_app_webtest.py F.
test_bugzilla.py F...

http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8
https://gitlab.com/pycqa/flake8


Coding, Testing, and Documenting - the Virtuous Cycle

[ 82 ]

---------- coverage: platform darwin, python 3.5.2-final-0 -----------
Name             Stmts   Miss  Cover
------------------------------------
flask_basic.py       6      1    83%
============= FAILURES =====================================
______________ FLAKE8-check ___________________________________
test_app.py:18:1: E305 expected 2 blank lines after class or function
definition, found 1
test_app.py:21:1: W391 blank line at end of file

______________ FLAKE8-check ___________________________________
test_app_webtest.py:29:1: W391 blank line at end of file

______________ FLAKE8-check ___________________________________
test_bugzilla.py:26:80: E501 line too long (80 > 79 characters)
test_bugzilla.py:28:80: E501 line too long (82 > 79 characters)
test_bugzilla.py:40:1: W391 blank line at end of file

============= 3 failed, 7 passed, 0 skipped in 2.19 seconds =============

Another useful tool that can be used in conjunction with pytest is Tox (h t t p ://t o x . r e a d t h

e d o c s . i o ).

If your projects need to run on several version of Python, or if you only want to make sure
that your code can work on the latest Python 2 and Python 3 versions, Tox can automate the
creation of separate environments to run your tests.

Telling Tox to run your project on Python 2.7 and Python 3.5 is done by installing Tox
(using the pip installs tox command), and then creating a tox.ini configuration file
in the root of your project. Tox makes the assumption that your project is a Python package,
and therefore, has a setup.py file in the root directory alongside the tox.ini file, but
that's the only requirement.

The tox.ini file contains the command lines to run the tests along with the Python
versions it should be run against:

    [tox]
    envlist = py27,py35

    [testenv]
    deps = pytest
       pytest-cov
       pytest-flake8

    commands =  pytest --cov=flask_basic --flake8 test_*

http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io
http://tox.readthedocs.io


Coding, Testing, and Documenting - the Virtuous Cycle

[ 83 ]

When Tox is executed by calling the tox command, it will create a separate environment for
each Python version, deploy your package and its dependencies in it, and run the tests in it
using the pytest command.

You can run a single environment with tox -e, which is very handy when you want to run
the tests quickly. For instance, tox -e py35 will just run pytest under Python 3.5.

Even if you support a single Python version, using Tox will ensure that your project can be
installed in a current Python environment, and that you've correctly described all the
dependencies.

Using this tool is highly recommended.

Chapter 9, Packaging Runnerly, covers in detail how to package
microservices, and will use Tox to do so among other instruments.

Developer documentation
So far, we've looked at the different kinds of tests a microservice can have, and we've
mentioned that the documentation should evolve with the code.

We're talking here about developer documentation. This includes everything a developer
should know about your microservices project, things such as:

How it's designed
How to install it
How to run the tests
What are the exposed APIs and what data comes in and out, and so on

The Sphinx tool (h t t p ://w w w . s p h i n x - d o c . o r g /), which was developed by Georg Brandl to
document Python itself, became the standard in the Python community.

Sphinx treats documents like source code by separating the content from the layout. The
usual way to use Sphinx is to have a docs directory in the project that contains the
documentation content, and then call Sphinx's command-line utility to generate the
documentation using an output format like HTML.

http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/


Coding, Testing, and Documenting - the Virtuous Cycle

[ 84 ]

Producing an HTML output with Sphinx makes an excellent static website, which can be
published on the web, as the tool adds index pages, a small JavaScript-based search engine,
and navigation features.

The content of the documentation must be written in reStructuredText (reST) (h t t p ://d o c u

t i l s . s o u r c e f o r g e . n e t /r s t . h t m l ), which is the standard markup language in the Python
community. A reST file is a simple text file with a non-intrusive syntax to mark section
headers, links, text styles, and so on. Sphinx adds a few extensions and summarizes reST
usage in this document, which should be your go-to page for learning how to write docs ( h
t t p ://w w w . s p h i n x - d o c . o r g /e n /l a t e s t /r e s t . h t m l ).

Markdown (h t t p s ://d a r i n g f i r e b a l l . n e t /p r o j e c t s /m a r k d o w n /) is
another popular markup language, which is used in the open source
community. Unfortunately, Sphinx relies on some reST extensions, and
has limited support to Markdown via the recommonmark package. The
good news is that if you are familiar with Markdown, reST is not that
different.

When you start a project with Sphinx using sphinx-quickstart, it generates a source tree
with an index.rst file, which is the landing page of your documentation. From there,
calling sphinx-build on it will create your documentation.

For example, if you want to generate an HTML documentation, you can add a docs
environment in your tox.ini file, and let the tool build the documentation for you, as
follows:

    [tox]
    envlist = py35,docs
    ...

    [testenv:docs]
    basepython=python
    deps =
        -rrequirements.txt
        sphinx
    commands=
        sphinx-build -W -b html docs/source docs/build

Running tox -e docs will generate your documentation.

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
http://www.sphinx-doc.org/en/latest/rest.html
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/


Coding, Testing, and Documenting - the Virtuous Cycle

[ 85 ]

Showing code examples in Sphinx can be done by pasting your code in a literal block
prefixed by a :: marker or a code-block directive. In HTML, Sphinx will render it using
the Pygments (h t t p ://p y g m e n t s . o r g /) syntax highlighter:

Flask Application
=============

Below is the first example of a **Flask** app in the Flask official doc:

.. code-block:: python

    from flask import Flask
    app = Flask(__name__)

    @app.route("/")
    def hello():
        return "Hello World!"
    if __name__ == "__main__":
        app.run()

That snippet is a fully working app!

But adding code snippets in your documentation means that they might get deprecated as
soon as you change your code. To avoid deprecation, one method is to have every code
snippet displayed in your documentation extracted from the code itself.

To do this, you can document your modules, classes, and functions with their docstrings,
and use the Autodoc Sphinx extension (h t t p ://w w w . s p h i n x - d o c . o r g /e n /l a t e s t /e x t /a u t

o d o c . h t m l ), which grabs docstrings to inject them in the documentation.

This is how Python documents its standard library at h t t p s ://d o c s . p y t h o n . o r g /3/l i b r a r

y /i n d e x . h t m l . In the following example, the autofunction directive will catch the
docstring from the index function that's located in the myservice/views/home.py
module:

APIS
====

**myservice** includes one view that's linked to the root path:

.. autofunction :: myservice.views.home.index

http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://pygments.org/
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
http://www.sphinx-doc.org/en/latest/ext/autodoc.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html


Coding, Testing, and Documenting - the Virtuous Cycle

[ 86 ]

When rendered in HTML, the page will look like this:

The other option is to use a literalinclude directive, which will let you point a file and
offer some options to highlight sections of that file. And when the file is a Python module, it
can be included in the test suite to make sure it works.

The following is a full example of a project documentation using Sphinx:

Myservice
=========

**myservice** is a simple JSON Flask application that uses **Flakon**.

The application is created with :func:`flakon.create_app`:
.. literalinclude:: ../../myservice/app.py

The :file:`settings.ini` file which is passed to :func:`create_app`
contains options for running the Flask app, like the DEBUG flag:
.. literalinclude:: ../../myservice/settings.ini
   :language: ini

Blueprint are imported from :mod:`myservice.views` and one
Blueprint and view example was provided in :file:`myservice/views/home.py`:

.. literalinclude:: ../../myservice/views/home.py
   :name: home.py
   :emphasize-lines: 13



Coding, Testing, and Documenting - the Virtuous Cycle

[ 87 ]

Views can return simple mappings (as highlighted in the example above),
in that case, they will be converted into a JSON response.

When rendered in HTML the page will look like this:



Coding, Testing, and Documenting - the Virtuous Cycle

[ 88 ]

Of course, using Autodoc and literalinclude will not fix your narratives or design
documents--maintaining a proper documentation up to date is hard, and requires more
work than what developers want to put in it.

So anything that can be done to automate part of this documentation work is great.

In Chapter 4, Designing Runnerly, we will see how we can document, in
Sphinx, the microservice HTTP APIs by using Swagger and the sphinx-
swagger extension.

The following points summarize this section:

Sphinx is a powerful tool to document your project
Treating your documentation as source code will facilitate its maintenance
Tox can be used to rebuild the documentation when something changes
If your documentation points to your code, it will be easier to maintain

Continuous Integration
Tox can automate every step you are doing when you change something in your project:
running tests on various Python interpreters, verifying coverage and PEP 8 conformance,
building documentation, and so on.

But running all the checks on every change can be time and resource consuming, in
particular, if you support several interpreters.

A Continuous Integration (CI) system solves this issue by taking care of this work every
time something changes in your project.

Pushing your project in a shared repository under a Distributed Version Control System
(DVCS) like Git or Mercurial, on a server will let you trigger a CI every time someone
pushes a change on the server.

If you work on an open source software, and don't want to maintain your code server,
GitHub (h t t p ://g i t h u b . c o m ), GitLab (h t t p ://g i t l a b . c o m ), and Bitbucket (h t t p s ://b i t b

u c k e t . o r g /) are the most popular services. They will host your project for free if it's public,
and offer social features, which will make it very easy for anyone to contribute to your
project. They all provide integration points to run whatever needs to run when some
changes are made in the project.

http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://github.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
http://gitlab.com
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/


Coding, Testing, and Documenting - the Virtuous Cycle

[ 89 ]

For example, on GitHub, if you see a typo in a reST document, you can change it directly
from your browser, preview the result, and send a Pull Request (PR) to the project
maintainer with a few clicks. The project will automatically get rebuilt, and a build status
might even be displayed directly on your PR once it's done.

A lot of open source projects use these services to create a prosperous community of
contributors. Mozilla uses GitHub for its Rust project (h t t p s ://g i t h u b . c o m /r u s t - l a n g ),
and there's no doubt that it helped lower the bar for attracting contributors.

Travis-CI
GitHub integrates directly with some CIs. A very popular one is Travis-CI (h t t p s ://t r a v i

s - c i . o r g /), which runs for free for open source projects. Once you have an account on
Travis-CI, a settings page will let you directly activate it for some of your GitHub projects.

Travis-CI relies on a .travis.yml YAML file, which needs to be located in the root of your
repository, and describes what should be done with your project when something changes.

The YAML file has an env section, which can be used to describe a matrix of builds. A
matrix is a collection of builds, which runs in parallel every time you change something in
your project.

That matrix can be matched with your Tox environments by running each one of them
separately via tox -e. By doing this, you will be able to know when a change breaks a
particular environment:

language: python
python: 3.5
env:
 - TOX_ENV=py27
 - TOX_ENV=py35
 - TOX_ENV=docs
 - TOX_ENV=flake8
install:
 - pip install tox
script:
 - tox -e $TOX_ENV

https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://github.com/rust-lang
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/


Coding, Testing, and Documenting - the Virtuous Cycle

[ 90 ]

Travis-CI includes everything needed to work with Python projects, so here, in the install
section, the pip command can be used to install Tox and get started.

The tox-travis project is an interesting one, which extends Tox to simply
Travis integration. It provides features like an environment detection,
which simplifies the writing of tox.ini files.

In case you have system-level dependencies, you can install them via the YAML file, and
even run bash commands. The default environment runs Linux Debian, and you can type
apt-get commands directly in the YAML file in the before_install section.

Travis also has support for setting up specific services like databases (refer to h t t p s ://d o c s

. t r a v i s - c i . c o m /u s e r /d a t a b a s e - s e t u p /), which can get deployed for your projects via the
services section.

If your microservice uses PosgtreSQL, MySQL, or any other popular open source databases,
the chances are that it's available. If not, you can always compile it and run it on your build.
The Travis documentation (h t t p s ://d o c s . t r a v i s - c i . c o m /) is a good place to start when
you work with Travis-CI.

Travis can trigger builds on Linux agents, and also has some limited
support for macOS X. Unfortunately, there's no support for Windows yet.

ReadTheDocs
In the same vein as Travis, another service that can be hooked from within your GitHub 
repository is ReadTheDocs (RTD) (h t t p s ://d o c s . r e a d t h e d o c s . i o ).

It generates and hosts the project documentation for you. There's nothing concrete to do in
your repository. You just configure RTD, so it creates the documentation out of a Sphinx
HtmlDir, and the service finds the elements automatically.

For non-trivial integration, RTD can be configured via a YAML file. Once the
documentation is ready, it will be accessible at
https://<yourprojectname>.readthedocs.io.

https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.travis-ci.com/
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io
https://docs.readthedocs.io


Coding, Testing, and Documenting - the Virtuous Cycle

[ 91 ]

RTD comes with versions support, which is useful when you release a new version of your
service. That feature scans Git tags, and lets you build and publish your documentation per
each tag, and decide which one is the default.

Like versions, RTD offers internationalization (i18n) support in case you want to write your
documentation in several languages.

Coveralls
Another popular service you can hook in your repository if you use Travis-CI and GitHub
or Bitbucket is Coveralls (h t t p s ://c o v e r a l l s . i o /). This service displays your test code 
coverage in a nice web UI.

Once you've added your repository in your Coveralls account, you can trigger a call to h t t p

://c o v e r a l l s . i o directly from Travis-CI by instructing Tox to ping to h t t p ://c o v e r a l l s .

i o after the tests are run.

The changes in the tox.ini file are done in the [testenv] section in bold.

    [testenv]
    passenv = TRAVIS TRAVIS_JOB_ID TRAVIS_BRANCH
    deps = pytest
       pytest-cov
       coveralls
       -rrequirements.txt

    commands =.
        pytest --cov-config .coveragerc --cov myservice myservice/tests
        - coveralls

The coveralls-python package (called Coveralls in PyPI) is used to send the payload to
coveralls.io via its coveralls command after the pytest call is done.

Notice that the call is prefixed with a hyphen (-). Like in Makefiles, this prefix will ignore
any failure, and will prevent Tox from failing when you run it locally. Running coveralls
locally will always fail unless you set up a special .coveralls.yml file that contains an
authentication token. When coveralls is running from Travis-CI, there's no need to have it,
thanks to the magic of tokens passed from GitHub to the various services.

https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
https://coveralls.io/
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io
http://coveralls.io


Coding, Testing, and Documenting - the Virtuous Cycle

[ 92 ]

For Coveralls to work from Travis, there are a few environment variables that need to be
passed via passenv; everything else should work automatically.

Every time you change your project and Travis-CI triggers a build, it will, in turn, trigger
Coveralls to display an excellent summary of the coverage and how it evolves over time,
like in the preceding screenshot.

Many other services can be hooked on GitHub or Travis-CI, Coveralls being one example.

Once you start to add services to your project, it's good practice to use badges in your
project's README so the community can see in one glance the status for each one of them
with links to the service.



Coding, Testing, and Documenting - the Virtuous Cycle

[ 93 ]

For example, add this README.rst file in your repository:

microservice
==========

This project is a template for building microservices with Flask.

.. image::
https://coveralls.io/repos/github/tarekziade/microservice/badge.svg?branch=
master
   :target:
https://coveralls.io/github/tarekziade/microservice?branch=master

.. image:: https://travis-ci.org/tarekziade/microservice.svg?branch=master
   :target: https://travis-ci.org/tarekziade/microservice

.. image::
https://readthedocs.org/projects/microservice/badge/?version=latest
   :target: https://microservice.readthedocs.io

The preceding file be displayed like this on GitHub on your project's landing page:



Coding, Testing, and Documenting - the Virtuous Cycle

[ 94 ]

Summary
In this chapter, we went through the different tests that can be written for your
microservices projects. Functional tests are the tests you will write more often, and WebTest
is a great tool to write them. To run the tests, pytest combined with Tox will make your
life easier.

Last, but not the least, if you host your project on GitHub, you can set up a whole
continuous integration system for free, thanks to Travis-CI. From there, numerous free
services can be hooked to complement Travis, like Coveralls. You can also automatically
build and publish your documentation on ReadTheDocs.

If you want to look at how everything fits together, the microservice
project published on GitHub at h t t p s ://g i t h u b . c o m /R u n n e r l y /m i c r o s e r

v i c e uses Travis-CI, RTD, and coveralls.io.

Now that we've covered how a Flask project can be continuously developed, tested, and
documented, we can look at how to design a full microservices-based project. The next
chapter will go through the design of such an application.

https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice


4
Designing Runnerly

In Chapter 1, Understanding Microservices, we said that the natural way to build a
microservices-based app is to start with a monolithic version that implements all the
features, and then to split it into microservices where it makes sense. Trying to come up
with a perfect design based on several microservices on day one is a recipe for disaster. It's
very hard to know how the application is going to be organized and how it will evolve
when it matures.

In this chapter, we will go through this process by building a monolithic application where
we're implementing the required features. Then we'll look at where the app can be
decomposed into smaller services. By the end of the chapter, we'll end up with a
microservices-based design.

The chapter is organized into three main sections:

Presentation of our Runnerly application and its user stories
How Runnerly can be built as a monolithic application
How a monolith can evolve into microservices

Of course, in real life, the splitting process happens over time once the monolithic app
design matures for a bit. But for the purpose of this book, we'll make the assumption that
the first version of the application was used for a while and offered us some insights to split
it the right way, thanks to our time machine.



Designing Runnerly

[ 96 ]

The Runnerly application
Runnerly is a toy application for runners that was created for this book. Don't look for it in
the Apple Store or the Play Store, as it's not released or deployed for real users.

However, the application is working for real, and you can find and study its different
components on GitHub in the Runnerly organization at https://github.com/Runnerly.

Runnerly offers a web view where users can see their runs, races, and training plans, all in
one glimpse. The view is responsive so the users can display the app on their phones or
their desktop browser. Runnerly also sends monthly reports about the user activity.

A user who is registered into Runnerly needs to hook his/her account to Strava
(https://www.strava.com), thanks to its standard OAuth2 (https://oauth.net/2/)
mechanism.

The OAuth2 standard is based on the idea of authorizing a third-party
application to call a service with an access token that is unique to the user.
The token is generated by the service and usually has a limited scope in
what calls can be performed on the service. Strava has a full set of APIs
that can be used that way, documented at
https://strava.github.io/api/v3/.

After it has been authorized by the user, Runnerly pulls runs out of Strava to feed its
database. This flow simplifies a lot of the integration work to make the application
compatible with most running devices out there. If your device works with Strava, it will
work with Runnerly.

Once the database starts to get some content from Strava, the dashboard will display the
last 10 runs and will let the users use Runnerly's extra features: races, training plans, and
monthly reports.

Let's dive into Runnerly's features through its user stories.

User stories
The best way to describe an application is through its user stories. User stories are very
simple descriptions of all the interactions a user can have with an application and is the first
high-level document that is usually written when a project starts.

https://github.com/Runnerly
https://www.strava.com
https://oauth.net/2/
https://strava.github.io/api/v3/


Designing Runnerly

[ 97 ]

The level of detail for each interaction is at first very simple, then gets revisited every time a
new particular case appears. User stories are also helpful to detect when it's worth splitting
a feature into its microservice: a story that stands on its own could be a good candidate.

For Runnerly, we can start with this small set:

As a user, I can create an account on Runnerly with my email and activate it
through a confirmation link I receive in my mailbox.
As a user, I can connect to Runnerly and link my profile to my Strava account.
As a connected user, I can see my last 10 runs appear in the dashboard.
As a connected user, I can add a race I want to participate in. Other users can see
the race as well in their dashboard.
As a registered user, I receive a monthly report by email that describes how I am
doing.
As a connected user, I can select a training plan for a race I am planning to do,
and see a training schedule on the dashboard. A training plan is a simple list of
runs that are not done yet.

There are already a few components emerging from this set of user stories. In no particular
order, these are:

The app needs a registration mechanism that will add the user to our database and
make sure they own the email used for registration.
The app will authenticate users with a password.
To pull data out of Strava, a strava user token needs to be stored in the user profile
and used to call the service.
Besides runs, the database needs to store races and training plans.
Training programs are a list of runs to be performed at specific dates to be as
performant as possible for a given race. Creating a good training plan requires
information about the user, such as their age, sex, weight, and fitness level.
Monthly reports are built by querying the database and generating a summary sent by
email.

These descriptions are enough to get us started. The next section describes how the
application can be designed and coded.



Designing Runnerly

[ 98 ]

Monolithic design
This section presents extracts from the source code of the monolithic version of Runnerly.
The whole application can be found at h t t p s ://g i t h u b . c o m /R u n n e r l y /m o n o l i t h , if you
want to study it in detail.

A design pattern that is often referred to when building applications is the Model-View-
Controller (MVC), which separates the code into three parts:

Model: This manages the data
View: This displays the Model for a particular context (web view, PDF view, and
so on)
Controller: This manipulates the Model to change its state

While it's clear that SQLAlchemy can be the Model part, the View and Controller distinction
can be a bit vague when it comes to Flask because what is called a view is a function that
receives a request and sends back a response. And that function can both display and
manipulate the data. So it can act as a View and as a Controller.

The Django project uses the Model-View-Template (MVT) acronym to describe that
pattern, where View is the Python callable, and Template is the template engine, or whatever
is in charge of producing a response in a particular format, given some data.

For instance, in a JSON view, json.dumps() is the Template. When you render an HTML
page with Jinja, the template is the HTML template that's called via render_template().

In any case, the first step of designing our application is to define the Model part.

Model
In a Flask application based on SQLAlchemy, the model is described through classes, which
represent the database schema.

For Runnerly, the database tables are:

User: This contains info about each user, including their credentials
Run: This is a list of runs with all the info extracted from Strava, and runs for a
training plan
Race: This is a list of races added by users, with date, location, and distance
Plan: This is a training plan that is defined by a collection of runs to be done

https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith
https://github.com/Runnerly/monolith


Designing Runnerly

[ 99 ]

Using the Flask-SQLAlchemy (http://flask-sqlalchemy.pocoo.org/) extension, you can 
specify the tables using the Model class as a base class. The following is the definition for
the User table with the SQLAlchemy class:

    from flask_sqlalchemy import SQLAlchemy

    db = SQLAlchemy()

    class User(db.Model):
        __tablename__ = 'user'
        id = db.Column(db.Integer, primary_key=True, autoincrement=True)
        email = db.Column(db.Unicode(128), nullable=False)
        firstname = db.Column(db.Unicode(128))
        lastname = db.Column(db.Unicode(128))
        password = db.Column(db.Unicode(128))
        strava_token = db.Column(db.String(128))
        age = db.Column(db.Integer)
        weight = db.Column(db.Numeric(4, 1))
        max_hr = db.Column(db.Integer)
        rest_hr = db.Column(db.Integer)
        vo2max = db.Column(db.Numeric(4, 2))

When used in a Flask app, Flask-SQLAlchemy will take care of wrapping all the calls to
SQLAlchemy and exposing a session object to your Flask app views to manipulate your
model.

View and Template
When a request is received, and a view is invoked, Flask-SQLAlchemy will set up a
database session object inside an application context. The following is a fully functional
Flask app that uses the schema described earlier in a View that can be queried from /users:

    from flask import Flask, render_template

    app = Flask(__name__)

    @app.route('/users')
    def users():
        users = db.session.query(User)
        return render_template("users.html", users=users)

    if __name__ == '__main__':
        db.init_app(app)
        db.create_all(app=app)
        app.run()

http://flask-sqlalchemy.pocoo.org/


Designing Runnerly

[ 100 ]

When the db.session.query() method is called, it performs a query on the database and
turns every result from the User table into User objects that are passed to the users.html
Jinja template for rendering.

In the previous example, Jinja is called to produce an HTML page, which can display the
user info with a template that could look like this:

    <html>
      <body>
        <h1>User List</h1>
        <ul>
          {% for user in users: %}
          <li>
          {{user.firstname}} {{user.lastname}}
          </li>
          {% endfor %}
        </ul>
      </body>
    </html>

For editing data through the web, WTForms (http://wtforms.readthedocs.io) can be
used to generate forms for each model. WTForms is a library that generates HTML forms
with Python definitions and takes care of extracting data from incoming requests and 
validating them before you update your model.

The Flask-WTF (https://flask-wtf.readthedocs.io/) project wraps WTForms for Flask
and adds some useful integration, such as securing forms with Cross-Site Request Forgery
(CSRF) tokens.

CSRF tokens will ensure that a malicious third-party website can't send
valid forms to your app when you are logged in. Chapter 7, Securing Your
Services, will explain in detail how CSRF works and why it's important for
your app security.

The following module implements a form for the User table, using FlaskForm as its basis:

    from flask_wtf import FlaskForm
    import wtforms as f
    from wtforms.validators import DataRequired

    class UserForm(FlaskForm):
        email = f.StringField('email', validators=[DataRequired()])
        firstname = f.StringField('firstname')
        lastname = f.StringField('lastname')
        password = f.PasswordField('password')
        age = f.IntegerField('age')

http://wtforms.readthedocs.io
https://flask-wtf.readthedocs.io/


Designing Runnerly

[ 101 ]

        weight = f.FloatField('weight')
        max_hr = f.IntegerField('max_hr')
        rest_hr = f.IntegerField('rest_hr')
        vo2max = f.FloatField('vo2max')

        display = ['email', 'firstname', 'lastname', 'password',
                   'age', 'weight', 'max_hr', 'rest_hr', 'vo2max']

The display attribute is just a helper to help the template iterate into a particular ordered list
of fields when rendering the form. Everything else is using WTForms basic fields classes to
create a form for the user table. The WTForm's Fields documentation provides the full list at
http://wtforms.readthedocs.io/en/latest/fields.html.

Once created, UserForm can be used in a view that has two goals. The first one is to display
the form on GET calls, and the second one is to update the database on POST calls when the
user submits the form:

    @app.route('/create_user', methods=['GET', 'POST'])
    def create_user():
        form = UserForm()
        if request.method == 'POST':
            if form.validate_on_submit():
                new_user = User()
                form.populate_obj(new_user)
                db.session.add(new_user)
                db.session.commit()
                return redirect('/users')
        return render_template('create_user.html', form=form)

The UserForm class has a method to validate the incoming POST data, as well as a method
to serialize the values into a User object. When some data is invalid, the form instance will
keep the list of errors in field.errors in case the template wants to display them for the
user.

The create_user.html template iterates through the form field list and WTForm takes
care of rendering the proper HTML tags :

    <html>
     <body>
      <form action="" method="POST">
        {{ form.hidden_tag() }}
        <dl>
         {% for field in form.display %}
         <dt>{{ form[field].label }}</dt>
         <dd>{{ form[field]() }}</dd>
           {% if form[field].errors %}

http://wtforms.readthedocs.io/en/latest/fields.html


Designing Runnerly

[ 102 ]

             {% for e in form[field].errors %} <p>{{ e }}</p> {% endfor %}
           {% endif %}
         {% endfor %}
        </dl>
        <p>
        <input type=submit value="Publish">
      </form>
     </body>
    </html>

The form.hidden_tag() method will render all hidden field, such as the CSRF token.
Once this form is working, it's easy to reuse the same pattern for every form needed in the
app.

For Runnerly, we'll need to reproduce this pattern to create forms for adding training plans
and races. The form part of the template can be reused for all forms and placed in a Jinja
macro since it's generic, and most of the work will consist of writing a form class per
SQLAlchemy model.

There's a project called WTForms-Alchemy (https://wtforms-alchemy.readthedocs.io/)
that can be used to create forms out of SQLAlchemy models automatically. The same
UserForm that we've manually created earlier would be much simpler with WTForms-
Alchemy since the only step required is to point the SQLAlchemy model:

    from wtforms_alchemy import ModelForm

    class UserForm(ModelForm):
        class Meta:
            model = User

But in practice, forms are often tweaked to a point where it's easier to write them explicitly.
But starting with WTForms-Alchemy and seeing how the forms evolve along the way can
be a solution.

Let's summarize what has been done so far to build the app:

We've created the database model using SQLAlchemy (Model)
We've created views and forms that are interacting with the database via the
Model (View and Template)

https://wtforms-alchemy.readthedocs.io/


Designing Runnerly

[ 103 ]

There are two things missing to build our complete monolithic solution. They are:

Background tasks: This involves implementing the code that regularly retrieves
Strava runs and generates monthly reports
Authentication and authorization: This lets our users log in and restrict editing
to just their information

Background tasks
The code that fetches new runs from Strava to add them in the Runnerly database can poll
Strava regularly, like every hour. The monthly report can also be called once per month to
generate a report and send it to the user by email. Both features are part of the Flask
application and use the SQLAlchemy models to do their work.

But unlike user requests, they are background tasks, and they need to run on their own
outside the HTTP request/response cycle.

If not using simple cron jobs, a popular way to run repetitive background tasks in Python
web apps is to use Celery (http://docs.celeryproject.org), a distributed task queue that
can execute some work in a standalone process.

To do this, an intermediate called a message broker is in charge of passing messages back and
forth between the application and Celery. For instance, if the app wants Celery to run
something, it will add a message in the broker. Celery will poll it and do the job.

A message broker can be any service that can store messages and provide a way to retrieve
them. The Celery project works out of the box with Redis (http://redis.io), RabbitMQ
(http://www.rabbitmq.com), and Amazon SQS (https://aws.amazon.com/sqs/) and
provides an abstraction for a Python app to work on both sides of it: to send and run jobs.

The part that runs the job is called a worker, and Celery provides a Celery class to start
one. To use celery from a Flask application, you can create a background.py module that
instantiates a Celery object and marks your background tasks with a @celery.task
decorator.

In the following example, we're using the stravalib (http://pythonhosted.org/stravalib)
library to grab runs from Strava for each user in Runnerly that has a Strava token:

    from celery import Celery
    from stravalib import Client
    from monolith.database import db, User, Run

    BACKEND = BROKER = 'redis://localhost:6379'

http://docs.celeryproject.org
http://redis.io
http://www.rabbitmq.com
https://aws.amazon.com/sqs/
http://pythonhosted.org/stravalib


Designing Runnerly

[ 104 ]

    celery = Celery(__name__, backend=BACKEND, broker=BROKER)
_APP = None

    def activity2run(user, activity):
        “”””Used by fetch_runs to convert a strava run into a DB entry.
        ”””
        run = Run()
        run.runner = user
        run.strava_id = activity.id
        run.name = activity.name
        run.distance = activity.distance
        run.elapsed_time = activity.elapsed_time.total_seconds()
        run.average_speed = activity.average_speed
        run.average_heartrate = activity.average_heartrate
        run.total_elevation_gain = activity.total_elevation_gain
        run.start_date = activity.start_date
        return run

    @celery.task
    def fetch_all_runs():
        global _APP
        # lazy init
        if _APP is None:
            from monolith.app import app
            db.init_app(app)
            _APP = app
        else:
            app = _APP

        runs_fetched = {}

        with app.app_context():
            q = db.session.query(User)
            for user in q:
                if user.strava_token is None:
                    continue
                runs_fetched[user.id] = fetch_runs(user)

        return runs_fetched

    def fetch_runs(user):
        client = Client(access_token=user.strava_token)
        runs = 0
        for activity in client.get_activities(limit=10):
            if activity.type != 'Run':
                continue
            q = db.session.query(Run).filter(Run.strava_id == activity.id)
            run = q.first()



Designing Runnerly

[ 105 ]

            if run is None:
                db.session.add(activity2run(activity)
                runs += 1

        db.session.commit()
        return runs

In this example, the task looks for each user that has a Strava token, then imports their most
recent 10 run activities into Runnerly.

This module is a fully working Celery application that can accept jobs from a Redis broker.
After we've used the pip-install command for celery and redis Python packages, we
can run this module with the celery -A background worker command, assuming a
Redis instance is running on the machine.

This command will run a Celery worker server that will register the fetch_all_runs()
function as being an invokable task and listen for incoming messages in Redis.

From there, in your Flask app, you can import the same background.py module and call
that decorated function directly. You will get a future-like object that will call the Celery
worker via Redis to run the function in a separate process:

    from flask import Flask, jsonify

    app = Flask(__name__)

    @app.route('/fetch')

    def fetch_runs():
        from monolith.background import fetch_all_runs
        res = fetch_all_runs.delay()
        res.wait()
        return jsonify(res.result)

In this example, we're waiting for the task to complete and the call to /fetch just sits there
until the job is done. Of course, in Runnerly, we want to fire-and-forget the task and not call
.wait() because it's going to take several seconds per user.

In a sense, since the Celery service is invoked by the Flask application by passing messages
via Redis, it could be considered as a microservice itself. That's also interesting in terms of
deployment since both the Redis server and the Celery app can be deployed on another
server. But since the code that's executed lives in the same code base, this is still considered
as a monolithic design.



Designing Runnerly

[ 106 ]

Another aspect of running background workers is when you want your jobs to be executed
periodically. Instead of having the Flask app trigger the job every hour, we can use Celery's
Periodic Task feature
(http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html), which
acts as a scheduler.

The Flask app, in that case, would schedule the periodic task the same way it triggered the
single task.

Strava token
The missing part of the puzzle to make those Strava imports work is to get a Strava token
for each user and store it in our user table.

As said earlier, this can be done via an OAuth2 dance where the connected user is
redirected to Strava to authorize Runnerly, then redirected back to Runnerly with an
OAuth2 code that can be converted into a token we can store.

The stravalib library provides some helpers to perform that dance. The first one is the
authorization_url() method, which returns a full URL that can be presented to the
users to initiate the OAuth2 dance:

    app.config['STRAVA_CLIENT_ID'] = 'runnerly-strava-id'
    app.config['STRAVA_CLIENT_SECRET'] = 'runnerly-strava-secret'

    def get_strava_auth_url():
        client = Client()
        client_id = app.config['STRAVA_CLIENT_ID']
        redirect = 'http://127.0.0.1:5000/strava_auth'
        url = client.authorization_url(client_id=client_id,
                                       redirect_uri=redirect)
        return url

In the example, redirect is the URL Strava that will redirect once the application is
granted access. In this example, it's the app running locally. The get_strava_auth_url()
method can be used to present a link to a connected Runnerly user.

Once the user authorizes Runnerly on the Strava site, the /strava_auth view will get a
code that can be exchanged for a token that will stay valid for future Strava requests on
behalf of that user. The stravalib library's Client class has an
exchange_code_for_token() method to do the conversion.

http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html


Designing Runnerly

[ 107 ]

The view then simply copies the token into the user database entry:

    @app.route('/strava_auth')
    @login_required
    def _strava_auth():
        code = request.args.get('code')
        client = Client()
        xc = client.exchange_code_for_token
        access_token = xc(client_id=app.config['STRAVA_CLIENT_ID'],
          client_secret=app.config['STRAVA_CLIENT_SECRET'], code=code)
        current_user.strava_token = access_token
        db.session.add(current_user)
        db.session.commit()
        return redirect('/')

In that view, @login_required and current_user are part of the authentication and
authorization processes presented in the next section.

Authentication and authorization
Our monolithic application is almost ready.

One last thing that we need to add is a way for users to authenticate. Runnerly needs to
know who's connected since the dashboard will display user-specific data. Forms also need
to be secured. For instance, we don't want users to be able to edit other users' information.

For our monolithic solution, we'll implement a very simple basic authentication
(https://en.wikipedia.org/wiki/Basic_access_authentication) scheme where the user
sends its credentials in the Authorization header. From a security point of view, using basic
authentication is fine as long as the server uses SSL. When websites are called through
HTTPS, the entire request is encrypted (including the query part of the URL), so the
transport is secured.

As far as passwords are concerned, the simplest form of protection is to make sure you
don't store them in the clear in the database, but instead store them in a hashed form that
can't be converted back to the original password. That will minimize the risk of leaking
passwords if your server is compromised. For the authentication process, it just means that
when the user logs in, you need to hash the incoming password to compare it to the stored
hash.

https://en.wikipedia.org/wiki/Basic_access_authentication


Designing Runnerly

[ 108 ]

The transport layer is usually not the weak spot for an application
security. What happens to the service once the request is received is what
matters the most. When the authentication process happens, there's a
window during which an attacker can intercept the password (in clear or
hashed form). In Chapter 7, Securing Your Services, we'll talk about ways
to reduce this attack surface.

Werkzeug provides a few helpers to deal with password hashes,
generate_password_hash() and check_password_hash(), which can be integrated
into our User class.

By default, Werkzeug uses PBKDF2 (https://en.wikipedia.org/wiki/PBKDF2) with
SHA-1, which is a secure way to hash a value with salt.

Let's extend our User class with methods to set and verify a password:

    from werkzeug.security import generate_password_hash,
check_password_hash
    class User(db.Model):
        __tablename__ = 'user'
        # ... all the Columns ...

        def __init__(self, *args, **kw):
            super(User, self).__init__(*args, **kw)
            self._authenticated = False

        def set_password(self, password):
            self.password = generate_password_hash(password)

        @property
        def is_authenticated(self):
            return self._authenticated

        def authenticate(self, password):
            checked = check_password_hash(self.password, password)
            self._authenticated = checked
            return self._authenticated

When creating new users in the database, the set_password() method can be used to
hash and store a password in the User model. Any attempt to verify the password can be
made with authenticate(), which will compare hashes.

https://en.wikipedia.org/wiki/PBKDF2


Designing Runnerly

[ 109 ]

Once we have that mechanism in place, the Flask-Login
(https://flask-login.readthedocs.io/) extension provides everything needed to log in
and log out users, and to keep track of who's connected so you can change how your app
works.

Flask-Login provides two functions to set a user in the current Flask session: login_user()
and logout_user(). When the login_user() method is called, the user ID is stored in
the Flask session, and a cookie is set on the client side. The user will be remembered for the
next requests until they log out.

To have this mechanism in place, a LoginManager instance needs to be created on your
application at startup.

Here's the implementation of the login and logout views, along with the LoginManager
creation:

    from flask_login import LoginManager, login_user, logout_user

    @app.route('/login', methods=['GET', 'POST'])
    def login():
        form = LoginForm()
        if form.validate_on_submit():
            email, password = form.data['email'], form.data['password']
            q = db.session.query(User).filter(User.email == email)
            user = q.first()
            if user is not None and user.authenticate(password):
                login_user(user)
                return redirect('/')
        return render_template('login.html', form=form)

    @app.route("/logout")
    def logout():
        logout_user()
        return redirect('/')

    login_manager = LoginManager()
    login_manager.init_app(app)

    @login_manager.user_loader
    def load_user(user_id):
        user = User.query.get(user_id)
        if user is not None:
            user._authenticated = True
        return user

https://flask-login.readthedocs.io/


Designing Runnerly

[ 110 ]

The @login_manager.user_loader decorated function is used every time Flask-Login
needs to convert a stored user ID to an actual user instance.

The authentication part is done in the login view by calling user.authenticate(), and
then set in the session with login_user(user).

The last thing to do is to protect some of our views from unauthorized access. For instance,
the user edition form should not be accessible if you are not logged in. The
@login_required decorator will reject any attempt to access a view if you are not logged
in with a 401 Unauthorized error.

It needs to be placed after the @app.route() call:

    @app.route('/create_user', methods=['GET', 'POST'])
    @login_required
    def create_user():
        # ... code

In the code, @login_required will ensure that you are a valid user and that you've
authenticated.

However, this decorator does not deal with permissions. Permissions handling is out of
scope for the Flask-Login project, and an extension such as Flask-Principal
(https://pythonhosted.org/Flask-Principal/) can be used to handle this on the top of
Flask-Login.

However, for our very simple use case, it might be overkill. One specific role Runnerly
users have is admin. Admins have super powers across the app, while simple users can only
change their info.

If we add an is_admin Boolean flag in the User model, we can create a similar decorator
such as @login_required, which will also check this flag:

    def admin_required(func):
        @functools.wraps(func)
        def _admin_required(*args, **kw):
            admin = current_user.is_authenticated and current_user.is_admin
            if not admin:
                return app.login_manager.unauthorized()
            return func(*args, **kw)
        return _admin_required

https://pythonhosted.org/Flask-Principal/


Designing Runnerly

[ 111 ]

In the same vein, more granular permission verifications can be done by looking at the
current_user variable Flask-Login sets in the application context. For example, you could
use this to allow a user to change their data, but prevent the user from changing other users'
data.

Putting together the monolithic design
This monolithic design is excellent and should be the kind of result you would aim for in
your first development iteration. Everything should be built of course through TDD, as
explained in Chapter 3, Coding, Testing, and Documenting - The Virtuous Cycle.

It's a short and clean implementation on the top of a relational database that can be
deployed with a PostgreSQL or MySQLServer. Thanks to the SQLAlchemy abstractions, a
local version can run with SQLite 3 and facilitate your day-to-day work and your tests.

To build this app, we've used the following extensions and library:

Flask-SQLAlchemy and SQLAlchemy: These are used for the Model
Flask-WTF and WTForms: These are used for all the forms
Celery and Redis: These are used for background processes and periodic tasks
Flask-Login: This is used for managing authentication and authorization

The overall design looks like the following diagram:



Designing Runnerly

[ 112 ]

A typical deployment will group the Flask app with one Redis and one Celery instance on
the same server and serve requests through a web server such as Apache or nginx. The
database can be located on the same server, or on a dedicated server.

The server can spawn several Flask processes and Celery processes to raise the number of
requests and users it can handle.

When this deployment is not sufficient to serve the load, the first change that comes to mind
is to add other application servers and dedicated servers for the database server and the
Redis broker.

The third step, if needed, will be to have more Redis and PostgreSQL instances, and some
thoughts will be required on the best approach because you will need to set up replication
and maybe sharding strategies.

When an application reaches that third step, solutions out of the box, such
as Amazon SQS and Amazon RDS, might be a good fit, as we'll see in
Chapter 11, Deploying on AWS.

Splitting the monolith
Let's project into the world where Runnerly, as implemented previously, starts to be used
by a lot of people. Features are added, bugs are fixed, and the database is steadily growing.

The first problem that we're facing is the background process that creates reports and calls
Strava. Since we're having thousands of users, these tasks take most of the server resources,
and users are experiencing slowdowns on the frontend.

It's getting obvious that we need to have them running on separate servers. With the
monolithic application using Celery and Redis, it's not an issue. We can dedicate a couple of
new servers for the background jobs.

But the biggest concern if we do this is that the Celery worker code needs to import the
Flask application code to operate. So the deployment dedicated to the background workers
needs to include the whole Flask app. That also means that every time something changes
in the app, we'll need to update the Celery workers as well to avoid regression.

That also means we'll have to install on a server where the only role is to pump data out of
Strava, all the dependencies the Flask application has. If we use Bootstrap in our templates,
we'll have to deploy it on the Celery worker server!



Designing Runnerly

[ 113 ]

This dependency issue begs the question: "Why does the Celery worker need to be in the
Flask application in the first place?" That design was excellent when we started to code
Runnerly, but it became obvious that it's fragile.

The interactions Celery has with the application are very specific. The Strava worker needs
to:

Get the Strava tokens
Add new runs

Instead of using the Flask app code, the Celery worker code could be entirely independent
and just interacts with the database directly.

Having the Celery worker acting as a separate microservice is a great first step to split our
monolithic app--let's call it the Strava Service. The worker that's in charge of building
reports can be split the same way to run, on its own, the Reports Service. Each one of these
Celery workers can focus on performing one single task.

The biggest design decision when doing this is whether these new microservices call the
database directly or whether they call it via an HTTP API that acts as an intermediate
between the services and the database.

Direct database calls seem like the simplest solution, but this introduces another problem.
Since the original Flask app, the Strava service and the Reports Service will all share the
same database; every time something changes in it, they all get impacted.

If there's an intermediate layer that exposes to the different services just the info they need
to do their jobs, it reduces the database dependency problem. If well designed, an HTTP
API contract compatibility can be maintained when changes are made in the database
schema.

As far as the Strava and Report microservices are concerned, they are Celery workers, so we
don't have to design any HTTP API for them. They get some work from the Redis broker
and then interact with the service wrapping database calls. Let's call this new intermediate
the Data Service.



Designing Runnerly

[ 114 ]

Data Service
The following diagram describes our new application organization. Both the Reports and
Strava service get some work from Redis and interact with the Data Service, as shown in
the following diagram:

The Data Service is an HTTP API that wraps the database containing all the users and runs
data. The dashboard is the frontend that implements the HTML user interface.

When you have any doubt about whether it's a good idea to split out a
new microservice out of your main app, don't do it.

Some of the information required by the Celery workers can be passed through the Redis
broker, such as the Strava tokens for the Strava service.

For the Reports service, however, it's not practical to send all the info through Redis because
the amount of data can be significant. If a runner is doing 30 runs per month, it's simpler to
let the Reports service pull them directly from the Data Service.



Designing Runnerly

[ 115 ]

The Data service view needs to implement the following APIs:

For the Strava service--a POST endpoint to add runs
For the Reports service
A GET endpoint to retrieve a list of user IDs
A GET endpoint to get a list of runs given a user ID and a month

As you can see, the HTTP API is minimal--we want to expose as few entry points as
possible. Although the structure of a run is going to be shared across all services, we need to
expose as a few number of fields as possible.

For our service implementation, we will rely on the Open API 2.0 standard.

Using Open API 2.0
The Open API 2.0 specification, also known as Swagger (https://www.openapis.org/) is a
simple description language that comes as a JSON or YAML file, that lists all your HTTP
API endpoints, how they are used, and the structure of the data that comes in and out. It
makes the assumption that your service sends and receives JSON documents.

Swagger has the same goal that WSDL
(https://en.wikipedia.org/wiki/Web_Services_Description_Language) had back in the
XML web services era, but it's much lighter and straight to the point.

The following example is a minimal Open API description file which defines one single
/apis/users_ids endpoint and supports the GET method to retrieve the list of user IDs:

swagger: "2.0"
info:
  title: Runnerly Data Service
  description: returns info about Runnerly
  license:
    name: APLv2
    url: https://www.apache.org/licenses/LICENSE-2.0.html
  version: 0.1.0
basePath: /api
paths:
    /user_ids:
      get:
        operationId: getUserIds
        description: Returns a list of ids
        produces:
        - application/json

https://www.openapis.org/
https://en.wikipedia.org/wiki/Web_Services_Description_Language


Designing Runnerly

[ 116 ]

        responses:
          '200':
            description: List of Ids
            schema:
                type: array
                items:
                    type: integer

The full Open API 2.0 specification can be found at http://swagger.io/specification/.
It's very detailed and will let you describe metadata about the API, its endpoints, and the
data types it uses.

The data types described in the schema sections are following the JSON-Schema
specification (http://json-schema.org/latest/json-schema-core.html). Here, we're
describing that the /get_ids endpoint returns an array of integers.

You can provide a lot of details about your API in that spec--things such as what headers
should be present in your requests, or what will be the content-type of some responses, can
be added to it.

Describing your HTTP endpoints with Swagger offers some excellent possibilities:

There are a plethora of Open API 2.0 clients that can consume your description
and do something useful with it, such as building functional tests against your
service or validating data that's sent to it
It provides a standard, language-agnostic documentation for your API
The server can check that the requests and responses follow the spec

Some web frameworks even use the Swagger spec to create all the routing and I/O data
checks for your microservices--for instance, Connexion
(https://github.com/zalando/connexion), does this for Flask.

There are two schools of thought when people are building HTTP APIs with Swagger.

The specification-first one, where you create a Swagger spec file and then create
your app on the top of it, using all the info provided in the spec. That's the
principle behind Connexion.
The specification-extracted one, where it's your code that generates the Swagger
spec file. Some toolkits out there will do this by reading your view docstrings, for
instance.

http://swagger.io/specification/
http://json-schema.org/latest/json-schema-core.html
https://github.com/zalando/connexion


Designing Runnerly

[ 117 ]

The biggest advantage of the first approach is that your Swagger specification is guaranteed
to be up-to-date since it drives the app. The second approach is still valuable, for example,
when you want to introduce Swagger in an existing project.

For implementing a Flask app that uses the first approach, a framework such as Connexion
will give you excellent high-level helpers. All you have to do is pass the spec file and your
functions, and Connexion, will generate a Flask app. Connexion uses the operationId
field to resolve which function will be called for each operation.

A small caveat of this approach is that the Swagger file will include implementation details
(the full path to the Python functions), which is a bit intrusive for a language-agnostic
specification. There's also an automatic resolver, that will look for the Python function given
the path and method of each operation. In that case, the implementation of GET
/api/users_ids will need to be located at api.users_ids.get().

Flakon (presented in Chapter 2, Discovering Flask) has a different approach. The project has
a special Blueprint class called SwaggerBlueprint, which won't require you to add the
Python functions in the spec or try to guess where it should be given the operation.

This custom Blueprint takes a Swagger spec file and provides an @api.operation
decorator that is similar to @api.route. This decorator takes an operationId name instead
of a route--so the Blueprint can link the view to the right route explicitly.

In the following example, we're creating a Swagger Blueprint and implementing the
getUserIds operation:

    from flakon import SwaggerBlueprint

    api = SwaggerBlueprint('swagger', spec='api.yml')

    @api.operation('getUserIds')
    def get_user_ids():
        # .. do the work ..

The Python implementation can be renamed and moved around without having to change
the Swagger spec.

The rest of the Data Service API is implemented as described, and can be found in the
Runnerly repository (h t t p s ://g i t h u b . c o m /R u n n e r l y ).

https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly
https://github.com/Runnerly


Designing Runnerly

[ 118 ]

More splitting
So far, we've split out of our monolith everything related to background tasks, and we've
added a few HTTP API views for the new microservices to interact with the main
application.

Since the new API allows us to add runs, there's another part we can split out of the
monolith--the Training feature.

This feature can run on its own as long as it's able to generate new runs. When a user wants
to start a new training plan, the main app can interact with the Training microservice and
ask it to generate new runs.

Alternatively, the design could be reversed for better data isolation: the Training
microservice publishes an API that returns a list of runs with their specific structure, exactly
like the Strava API that returns activities. The main Flask app can then convert them into
Runnerly runs. The Training plan can work without any specific knowledge about the
Runnerly users: it gets asked to generate a plan given a few params.

But doing this new split should happen for a good reason. "Is the code behind the training
algorithm CPU consuming?", "Is it growing into a full expert system that's being used by
other applications?", "Will the Training feature need other data in the future to work?"

Every time you make the decision to split out a new microservice, there's a
risk of ending up with a bloated app.

In the same vein, the Race feature could probably be a standalone microservice at some
point, since a list of races could be completely independent of the Runnerly database.



Designing Runnerly

[ 119 ]

The following diagram shows the final Runnerly design, featuring four microservices and
the main Flask app. In Chapter 8, Deploying on AWS, we'll see how we can even get rid of
that main application, turn the Data Service as a full microservice, and build a JavaScript
application that integrates everything:

Summary
The Runnerly app is a typical web app that interacts with a database and a few backend
services. And building it as a monolithic application is the way to go for the first few
iterations.

In this chapter, we've demonstrated how the monolith could be gradually split into
microservices, and how tools such as Celery can help in that process. Each background
process that can be split in an independent Celery task is a potential microservice.



Designing Runnerly

[ 120 ]

We've also looked at Swagger, which is a great tool to help define APIs between
microservices.

This splitting process should be conservative and progressive because it’s quite easy to end
up with a system where the overhead for building and maintaining microservices
outweighs the benefits to splitting those things out.

If you like software architecture, the last version of the app is pretty appealing. It offers a lot
of options for deploying and scaling Runnerly.

However, we've moved from a single application to many applications that need to interact
with each other. Every link in the preceding diagram can be a weak point for your
application. What happens, for instance, if Redis goes down? Or if there's a network split
between the Data Service and the Strava Service in the middle of a process?

The same question goes for every new network link that was added in our architecture. We
need to be resilient when something goes wrong. We need to know where we're at and
what to do when a service that was out gets back online.

All of these problems are addressed in the next chapter.



5
Interacting with Other Services

In the previous chapter, the Runnerly monolithic app was split into several microservices,
and more network interactions between the different parts were consequently added.

When a user looks at the main web view, the application needs to fetch the list of runs and
races from the database and the races. The network calls that are triggered by that request
are synchronous because we want to display the results immediately.

On the other hand, the Celery workers are doing their duty in the background, and they
receive their order via a Redis broker asynchronously.

There are also cases where a mix of synchronous and asynchronous calls are useful. For
instance, letting the user pick a new training plan can trigger the creation of a series of new
runs in the background while displaying some info about the plan itself.

In future versions of Runnerly, we could also have more service-to-service interactions,
where an event in a service triggers a series of reactions in other services. Having the ability
to loosely couple different parts of the system via some asynchronous messaging is quite
useful to prevent interdependencies.

In any case, the bottom line is that we need to interact with other services through the
network synchronously and asynchronously. These interactions need to be efficient, and
when something goes wrong, we need to have a plan.

The other problem introduced by adding more network connections is testing: how do we
test in isolation a microservice that needs to call other microservices to function?



Interacting with Other Services

[ 122 ]

In this chapter, we'll explain:

How a service can call another service in a synchronous way, and make these
calls as efficient as possible
How a service can make asynchronous calls and communicate with other services
via events
Some techniques to test services that have network dependencies

Synchronous calls
As we've seen in the previous chapters, synchronous interactions between microservices
can be done via RESTful HTTP APIs using JSON payloads.

That's by far the most used pattern, because both HTTP and JSON are the golden standards.
If your web service implements an HTTP API that accepts JSON, any developer using any
programming language will happily use it.

Following a RESTful scheme, on the other hand, is not a requirement and is prone to
interpretation. Countless blog posts are debating the virtue of using POST versus PUT
response on the internet.

Some projects implement Remote Procedure Call (RPC) APIs over HTTP rather than REST
APIs. In RPC, the focus is on the action, which is part of the endpoint URL. In REST, the
focus is on the resource, and actions are defined by HTTP methods.

Some projects are a mix of both and don't strictly follow a given standard. The most
important thing is that your service behavior should be consistent and well-documented.

This book leans on REST rather than RPC, but is not strict about it, and
does not have a strong opinion about all the PUT versus POST debates.

Sending and receiving JSON payloads is the simplest way for a microservice to interact
with the others, and only requires microservices to know the entry points and parameters to
pass using HTTP requests.

To do this, you just need to use an HTTP client. Python has one built-in in the
http.client module, but the Requests library (h t t p s ://d o c s . p y t h o n - r e q u e s t s . o r g ) has
a better API to work with and offers built-in features that will make your life easier.

https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org
https://docs.python-requests.org


Interacting with Other Services

[ 123 ]

HTTP requests in the requests library are built around the concept of session, and the best
way to use it is to create a Session object that is reused every time you interact with any
service.

A Session object can hold, among other things, authentication information and some
default headers you want to set for all requests your application will make. In the following
example, the Session object will automatically create the right Authorization and
Content-Type headers:

    from requests import Session

    s = Session()
    s.headers['Content-Type'] = 'application/json'
    s.auth = 'tarek', 'password'

    # doing some calls, auth and headers are all set!
    s.get('http://localhost:5000/api').json()
    s.get('http://localhost:5000/api2').json()

Let's see how we can generalize this pattern in a Flask app that needs to interact with other
services.

Using Session in a Flask app
Flask's Application object has an extensions mapping that can be used to store utilities
such as connectors. In our case, we want to store a Session object. We can create a function
that will initialize a placeholder in the app.extensions mapping and add a Session
object in it:

    from requests import Session

    def setup_connector(app, name='default', **options):
        if not hasattr(app, 'extensions'):
            app.extensions = {}

        if 'connectors' not in app.extensions:
            app.extensions['connectors'] = {}
        session = Session()

        if 'auth' in options:
            session.auth = options['auth']
        headers = options.get('headers', {})
        if 'Content-Type' not in headers:
            headers['Content-Type'] = 'application/json'



Interacting with Other Services

[ 124 ]

        session.headers.update(headers)

        app.extensions['connectors'][name] = session
        return session

    def get_connector(app, name='default'):
        return app.extensions['connectors'][name]

In this example, the setup_connector() function will create a Session object and store it
in the app's extensions mapping. The created Session will set the Content-Type header to
application/json by default, so it's suitable for sending data to JSON-based
microservices.

Using the session from a view can then be done with the get_connector() function once
it has been set up on the app. In the following example, a Flask app running on port 5001
will synchronously call a microservice running on 5000 to serve its content:

    from flask import Flask, jsonify

    app = Flask(__name__)
    setup_connector(app)

    @app.route('/api', methods=['GET', 'POST'])
    def my_microservice():
        with get_connector(app) as conn:
            sub_result = conn.get('http://localhost:5000/api').json()
        return jsonify({'result': sub_result, 'Hello': 'World!'})

    if __name__ == '__main__':
        app.run(port=5001)

A call to the service will propagate a call to the other service:

$ curl http://127.0.0.1:5001/api
{
  "Hello": "World!",
  "result": {
    "Hello": "World!",
    "result": "OK"
  }
}

This naive implementation is based on the hypothesis that everything will go smoothly. But
what will happen if the microservice that's called lags and takes 30 seconds to return?



Interacting with Other Services

[ 125 ]

By default, requests will hang indefinitely until the answer is ready, which is not a behavior
we'd want when calling microservices. The timeout option is useful in this case. Used
when making a request, it will raise a ReadTimeout in case the remote server fails to
answer promptly.

In the following example, we drop the call if it's hanging for more than 2 seconds:

    from requests.exceptions import ReadTimeout

    @app.route('/api', methods=['GET', 'POST'])
    def my_microservice():
        with get_connector(app) as conn:
            try:
                result =
conn.get('http://localhost:5000/api',timeout=2.0).json()
        except ReadTimeout:
            result = {}
    return jsonify({'result': result, 'Hello': 'World!'})

Of course, what should be done when a timeout happens depends on your service logic. In
this example, we silently ignore the problem and send back an empty result. But maybe in
other cases, you will need to raise an error. In any case, handling timeouts is mandatory if
you want to build a robust service-to-service link.

The other error that can happen is when the connection completely drops, or the remote
server is not reachable at all. Requests will retry several times and eventually will raise a
ConnectionError you need to catch:

from requests.exceptions import ReadTimeout, ConnectionError

@app.route('/api', methods=['GET', 'POST'])
def my_microservice():
    with get_connector(app) as conn:
        try:
            result = conn.get('http://localhost:5000/api',
                               timeout=2.).json()
            except (ReadTimeout, ConnectionError):
                result = {}
        return jsonify({'result': result, 'Hello': 'World!'})

Since it's good practice to always use the timeout option, a better way would be to set a
default one at the session level, so we don't have to provide it on every request call.



Interacting with Other Services

[ 126 ]

To do this, the requests library has a way to set up custom transport adapters, where you
can define a behavior for a given host the session will call. It can be used to create a general
timeout, but also to offer a retries option in case you want to tweak how many retries
should be done when the service is not responsive.

Back to our setup_connector() function. Using an adapter, we can add timeout and
retries options that will be used by default for all requests:

    from requests.adapters import HTTPAdapter

    class HTTPTimeoutAdapter(HTTPAdapter):
        def __init__(self, *args, **kw):
            self.timeout = kw.pop('timeout', 30.)
            super().__init__(*args, **kw)

        def send(self, request, **kw):
            timeout = kw.get('timeout')
            if timeout is None:
                kw['timeout'] = self.timeout
            return super().send(request, **kw)

    def setup_connector(app, name='default', **options):
        if not hasattr(app, 'extensions'):
            app.extensions = {}

        if 'connectors' not in app.extensions:
            app.extensions['connectors'] = {}
        session = Session()

        if 'auth' in options:
            session.auth = options['auth']

        headers = options.get('headers', {})
        if 'Content-Type' not in headers:
            headers['Content-Type'] = 'application/json'
        session.headers.update(headers)

        retries = options.get('retries', 3)
        timeout = options.get('timeout', 30)
        adapter = HTTPTimeoutAdapter(max_retries=retries, timeout=timeout)
        session.mount('http://', adapter)
        app.extensions['connectors'][name] = session

        return session



Interacting with Other Services

[ 127 ]

The session.mount(host, adapter) call will tell requests to use the
HTTPTimeoutAdapter every time a request for any HTTP service is made. The http://
value for the host is a catch-all in this case.

The beautiful thing about the mount() function is that the session behavior can be tweaked
on a service-per-service basis depending on your app logic. For instance, you can mount
another instance on the adapter for a particular host if you need to set up some custom
timeouts and retries values:

    adapter2 = HTTPTimeoutAdapter(max_retries=1, timeout=1.)
    session.mount('http://myspecial.service', adapter2)

Thanks to this pattern, a single request Session object can be instantiated into your
application to interact with many other HTTP services.

Connection pooling
Requests use urllib3 under the hood, which will create one pool of connectors per host
you are calling and reuse them when the code calls a host.

In other words, if your service calls several other services, you don't need to worry about
recycling connections made to those services; requests should handle it for you.

Flask is a synchronous framework, so if you are running with a single thread, which is the
default behavior, then the requests library's connection pooling doesn't help you much.
Every call will happen one after the other. Requests should only keep one connector open
per remote host.

But if you run your Flask application with several threads and have a lot of concurrent
connections, these pools can play a vital role in making sure you're controlling how many
connections are made to other services. You don't want your app to open an unlimited
number of simultaneous connections to another service. It's a recipe for disaster.

Our HTTPTimeoutAdapter class can be used to control the growth of our pools. The class
inherits from HTTPAdapter, which surfaces urllib3 pool options.

You can pass these options to the constructor:

pool_connections: This helps you figure out how many simultaneous
connections are kept open.



Interacting with Other Services

[ 128 ]

pool_maxsize: This helps you figure out the maximum number of connections
the pool handles.
max_retries: This helps you figure out the maximum number of retries per
connection.
pool_block: This helps you figure out whether the connection pool should block
connections and when the pool_maxsize is reached. If set to False, it will create
new connections even if the pool is full, but not add them in the pool. If set to
True, it will not create new connections when the pool is full and wait. This is
useful to maximize the number of connections open to a host.

For example, our adapter could hold 25 simultaneous connections if the app is executed
with a web server that allows multiple threads:

    adapter = HTTPTimeoutAdapter(max_retries=retries,
                                 timeout=timeout, pool_connections=25)

Allowing multiple threads can be a great way to improve your service performances, but it
comes with most significant risks. With its thread-local mechanism, Flask will ensure that
each thread gets its version of flask.g (the global), flask.request or flask.response,
so you don't have to deal with thread-safety, but your views will be visited concurrently by
several threads, so you need to be careful about what's happening in them.

If you don't share any states outside flask.g and just calling the Request session, it
should work. Request's session is not thread-safe you should have one session per thread.

But if you are changing any shared state and don't do the proper locking work to avoid race
conditions, you will be in trouble. If your views get too complicated to make sure it is
thread-safe, it's best to run with a single thread and spawn multiple processes. In that case,
each process will execute a Request session that has a single connection to the external
service, and that will serialize the calls.

This serialization is a limiting factor synchronous frameworks have, and it forces us to make
deployments that consume more memory to spawn all the processes or use implicit
asynchronous tools such as Gevent.

In any case, if the single-threaded application is fast to respond, it mitigates this limitation a
lot.

One way to speed up your application for calls to other services, is to make sure it uses
HTTP cache headers.



Interacting with Other Services

[ 129 ]

HTTP cache headers
In the HTTP protocol, there are a few cache mechanisms that can be used to indicate to a
client that a page it's trying to fetch has not changed since their last visit. Caching is
something we can do in our microservices on all the read-only API endpoints such as GETs
and HEADs.

The simplest way to implement it is to return along with a result an ETag header in the
response. An ETag value is a string that can be considered as a version for the resource the
client is trying to get. It can be a timestamp, an incremental version, or a hash. It's up to the
server to decide what to put in it. But the idea is that it should be unique to the value of the
response.

Like web browsers, when the client fetches a response that contains such a header, it can
build a local dictionary cache that stores the response bodies and ETags as its values, and
the URLs as its keys.

When making a new request, the client can look up the dictionary and pass along a stored
ETag value in the If-Modified-Since header. If the server sends back a 304 response, it
means that the response has not changed and the client can use the previously stored one.

This mechanism greatly reduces, the response times from the server since it can
immediately return an empty 304 response when the content has not changed. The 304
response is also smaller data for the network, since it has no body.

There's a project called CacheControl (h t t p ://c a c h e c o n t r o l . r e a d t h e d o c s . i o ) that can
be used with the Request session, which implements this behavior for you fairly
transparently.

In our previous example, having the HTTPTimeoutAdapter class derives from
cachecontrol.CacheControlAdapter instead of request.adapters.HTTPAdapter is
the only thing you need to do to activate the cache.

Of course, this means the services that you are calling should implement this caching
behavior by adding the proper ETag support.

It's not possible to implement a generic solution for this because the cache logic depends on
the nature of the data your service is managing.

http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io
http://cachecontrol.readthedocs.io


Interacting with Other Services

[ 130 ]

The rule of thumb is to version each resource and change that version every time the data
changes. In the following example, the Flask app uses the current server time to create ETag
values associated with users' entries. The ETag value is the current time since the epoch in
milliseconds and is stored in the modified field.

The get_user() method returns a user entry from _USERS and sets the ETag value with
response.set_etag. When the view gets some calls, it also looks for the If-None-Match
header to compare it to the user's modified field, and returns a 304 response if it matches:

    import time
    from flask import Flask, jsonify, request, Response, abort

    app = Flask(__name__)

    def _time2etag(stamp=None):
        if stamp is None:
            stamp = time.time()
        return str(int(stamp * 1000))

    _USERS = {'1': {'name': 'Tarek', 'modified': _time2etag()}}

    @app.route('/api/user/<user_id>', methods=['POST'])
    def change_user(user_id):
        user = request.json
        # setting a new timestamp
        user['modified'] = _time2etag()
        _USERS[user_id] = user
        resp = jsonify(user)
        resp.set_etag(user['modified'])
        return resp

    @app.route('/api/user/<user_id>')
    def get_user(user_id):
        if user_id not in _USERS:
            return abort(404)
        user = _USERS[user_id]

        # returning 304 if If-None-Match matches
        if user['modified'] in request.if_none_match:
            return Response(status=304)

        resp = jsonify(user)

        # setting the ETag
        resp.set_etag(user['modified'])
        return resp



Interacting with Other Services

[ 131 ]

    if __name__ == '__main__':
        app.run()

The change_user() view sets a new modified value when the client POST a user. In the
following client session, we're changing the user and making sure we get a 304 response
when providing the new ETag value:

$ curl http://127.0.0.1:5000/api/user/1
{
  "modified": "1486894514360",
  "name": "Tarek"
}

$ curl -H "Content-Type: application/json" -X POST -d
'{"name":"Tarek","age":40}' http://127.0.0.1:5000/api/user/1
{
  "age": 40,
  "modified": "1486894532705",
  "name": "Tarek"
}

$ curl http://127.0.0.1:5000/api/user/1
{
  "age": 40,
  "modified": "1486894532705",
  "name": "Tarek"
}

$ curl -v -H 'If-None-Match: 1486894532705'
http://127.0.0.1:5000/api/user/1
< HTTP/1.0 304 NOT MODIFIED

This demonstration is a toy implementation that might not work well in production because
relying on a server clock to store ETag values means you are sure that the clock is never set
back in time and that if you have several servers, their clocks are all synchronized with a
service such as ntpdate.

There's also the problem of race conditions if two requests change the same entry within the
same millisecond. Depending on your app, maybe it's not an issue, but maybe it's a big one.
A cleaner option is to have the modified field handled by your database system directly and
make sure its changes are done in serialized transactions.



Interacting with Other Services

[ 132 ]

Some developers use hash functions for their ETag value because it's easy to compute in a
distributed architecture and it doesn't introduce any of the problems timestamps have. But
calculating a hash has a CPU cost, and it means you need to pull the whole entry to do it--so
it might be as slow as if you were sending back the actual data. That said, with a dedicated
table in your database for all your hashes, you can probably come up with a solution that
makes your 304 response very fast to return.

As we said earlier, there's no generic solution to implement an efficient HTTP cache logic--
but it's worth performing it if your client is doing a lot of reads on your service.

When you have no choice but to send some data back, there are several ways to make it as
efficient as possible, as we'll see in the next section.

Improving data transfer
JSON is quite verbose. Verbosity is great when you need to interact with your data.
Everything comes as clear text and is as easy to read as plain Python dictionary and lists.

But sending HTTP requests and responses with JSON payloads can add some bandwidth
overhead in the long run. Serializing and deserializing data from Python objects to JSON
structures also adds a bit of CPU overhead.

You can reduce the size of data transfers and speed up processing times using compression
or switching to binary payloads.

GZIP compression
The first simple thing you can do to reduce the bandwidth is to use GZIP compression, so
everything that is sent over the wire gets smaller. Web servers such as Apache or nginx
provide native support to compress responses on the fly, and it's better to avoid
implementing your ad hoc compression at the Python level.

For example, this nginx configuration will enable GZIP compression for any response
produced by the Flask app on port 5000, with an application/json content type:

    http {
        gzip  on;
        gzip_types application/json;
        gzip_proxied      any;
        gzip_vary on;

        server {



Interacting with Other Services

[ 133 ]

            listen       80;
            server_name  localhost;
            location / {
                proxy_pass http://localhost:5000;
            }
        }

From the client-side, making an HTTP request to the nginx server at localhost:8080
proxying for the application at localhost:5000 with an Accept-Encoding: gzip
header will trigger the compression:

$ curl http://localhost:8080/api -H "Accept-Encoding: gzip"
<some binary output>

In Python, request responses will automatically decompress responses that are gzip
encoded, so you don't have to worry about doing it when your service is calling another
service. Unzipping the data adds some processing, but Python's gzip module relies on the
zlib (h t t p ://w w w . z l i b . n e t /), which is very fast (and massively spiffy).

>>> import requests
>>> requests.get('http://localhost:8080/api', headers={'Accept-Encoding':
'gzip'}).json()
{'Hello': 'World!', u'result': 'OK'}

To compress the data you're sending to the server, you can use the gzip module and
specify a Content-Encoding header:

>>> import gzip, json, requests
>>> data = {'Hello': 'World!', 'result': 'OK'}
>>> data = bytes(json.dumps(data), 'utf8')
>>> data = gzip.compress(data)
>>> headers = {'Content-Encoding': 'gzip'}
>>> requests.post('http://localhost:8080/api',
...               headers=headers,
...               data=data)

<Response [200]>

In that case, however, you will get the zipped content in your Flask application, and you
will need to decompress it in your Python code unless you implement something in nginx
with Lua to handle it. Apache, on the other hand, can decompress it for you with the
mode_deflate module and its SetInputFilter option.

http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/
http://www.zlib.net/


Interacting with Other Services

[ 134 ]

To summarize, setting up GZIP compression for all your service responses is a no-brainer
with nginx or Apache, and your Python client can benefit from it by setting the right
header. Handling GZIP compression in HTTP requests is a little trickier because if you don't
use Apache, you need to implement decompression of incoming data in Python code or
somewhere else.

If you want to further reduce the size on HTTP request/response payloads, another option
is to switch to binary payloads rather than JSON payloads compressed with gzip . That
way, you don't have to deal with unzipping the data and will get a speedup. But we'll see
that the compression is not as good.

Binary payloads
While it's usually not relevant, if your microservice deals with a lot of data, using an
alternative format can be an attractive option to increase performances and decrease the
required network bandwidth without having to rely on GZIP.

The two widely used binary formats out there are Protocol Buffers (protobuf) and
MessagePack.

Protocol buffers (h t t p s ://d e v e l o p e r s . g o o g l e . c o m /p r o t o c o l - b u f f e r s ) requires you to 
describe the data that's being exchanged into some schema that will be used to index the
binary content.

It adds quite some work because all data that's transferred will need to be described in a
schema and you will need to learn a new Domain Specific Language (DSL).

The following example is taken from the protobuf documentation:

    package tutorial;

    message Person {
      required string name = 1;
      required int32 id = 2;
      optional string email = 3;

      enum PhoneType {
        MOBILE = 0;
        HOME = 1;
        WORK = 2;
      }

      message PhoneNumber {
        required string number = 1;

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers


Interacting with Other Services

[ 135 ]

        optional PhoneType type = 2 [default = HOME];
      }

      repeated PhoneNumber phones = 4;
    }

    message AddressBook {
      repeated Person people = 1;
    }

Needless to say, it's not very Pythonic and looks more like a database schema. We could
argue that describing the data that gets transferred is good practice, but it could become a
bit redundant with the Swagger definition if the microservice uses that.

MessagePack (h t t p ://m s g p a c k . o r g /), on the other hand, is schemaless and can compress
and uncompress your data by just calling a function.

It's a simple alternative to JSON, and has implementations in most languages. The msgpack
python library (installed using the pip install msgpack-python command) offers the
same level of integration as JSON:

>>> import msgpack
>>> data = {"this": "is", "some": "data", 1: 2}
>>> msgpack.dumps(data)
b'x83x01x02xa4thisxa2isxa4somexa4data'
>>> msgpack.loads(msgpack.dumps(data))
{1: 2, b'this': b'is', b'some': b'data'}

Notice that the strings are converted into binaries when the data is
serialized then deserialized back with the default serializer. This is
something to take into account if you need to keep the original types.

Clearly, using MessagePack is quite simple compared to Protobuf--but which one is the
faster and provides the best compression ratio depends a lot on your data. In some rare
cases, plain JSON might be even quicker to serialize than a binary format.

In terms of compression, you can expect a 10% to 20% compression with MessagePack, but
if your JSON contains a lot of strings--which is often the case in microservices--GZIP will do
a much better job.

http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/
http://msgpack.org/


Interacting with Other Services

[ 136 ]

In the following example, a huge JSON payload of 87k containing a lot of strings, is
converted using MessagePack and then gzipped in both cases:

>>> import json, msgpack
>>> with open('data.json') as f:
...     data = f.read()
...
>>> python_data = json.loads(data)
>>> len(json.dumps(python_data))
88983
>>> len(msgpack.dumps(python_data))
60874
>>> len(gzip.compress(bytes(json.dumps(data), 'utf8')))
5925
>>> len(gzip.compress(msgpack.dumps(data)))
5892

Using MessagePack reduces the size of the payload by quite a lot, but GZIP is crushing it
by making it 15 times smaller with both JSON and MessagePack payloads!

It's clear that whatever format you are using, the best way to reduce the payload sizes is to
use GZIP--and if your web server does not deal with decompression, it's straightforward in
Python thanks to gzip.uncompress().

Now, between using MessagePack and JSON, the binary format is usually faster and is
more Python friendly. For instance, if you pass a Python dictionary with integer keys, JSON
will convert them into strings while MessagePack will do the right thing:

>>> import msgpack, json
>>> json.loads(json.dumps({1: 2}))
{'1': 2}
>>> msgpack.loads(msgpack.dumps({1: 2}))
{1: 2}

But there's also the problem of date representations: DateTime objects are not directly
serializable in JSON and MessagePack, so you need to make sure you convert them.

In any case, in a world of microservices where JSON is the most accepted standard, sticking
with string keys and taking care of dates are minor annoyances to stick with a universally
adopted standard.

Unless all your services are in Python with well-defined structures, and
you need to speed up the serialization steps as much as possible, it's
probably simpler to stick with JSON.



Interacting with Other Services

[ 137 ]

Putting it together
We will quickly recall what we covered in this section about performing synchronous calls:

Requests can be used as the HTTP client to call other services. It offers all the
features necessary to deal with timeouts, errors, and has its pool of connectors.
Going multithread can improve your microservice's performance when it's
calling other services, since Flask is a synchronous framework, but it's dangerous.
Solutions such as Gevent can be investigated.
Implementing HTTP cache headers is a great way to speed up repeated requests
for data.
GZIP compression is an efficient way to lessen the size of requests and responses
and is easy to set up.
Binary protocols are an attractive alternative to plain JSON, but might not be that
useful.

The next section will focus on asynchronous calls; everything your microservice can do that
goes beyond the request-response pattern.

Asynchronous calls
In microservice architectures, asynchronous calls play a fundamental role when a process
that used to be performed in a single application now implicates several microservices.

Asynchronous calls can be as simple as a separate thread or process within a microservice
app, that's getting some work to be done and perform it without interfering with the HTTP
request-responses round trips that are happening at the same time.

But doing everything directly from the same Python process is not very robust. What
happens if the process crashes and gets restarted? How do we scale background tasks if
they are built like that?

It's much more reliable to send a message that gets picked by another program, and let the
microservice focus on its primary goal, which is to serve responses to clients.

In the previous chapter, we looked at how Celery could be used to build a microservice that
gets some work from a message broker like Redis or RabbitMQ. In that design, the Celery
worker blocks until a new message is added to the Redis queue.

But there are other ways to exchange messages between services that are not necessarily a
worker blocking on a queue.



Interacting with Other Services

[ 138 ]

Task queues
The pattern used by Celery workers is a push-pull tasks queue. One service pushes
messages into a specific queue, and some workers pick them up from the other end and 
perform an action on them. Each task goes to a single worker. Consider the following
diagram:

There's no bidirectional communication. The sender just deposits a message in the queue
and leaves. The next available worker gets the next message.

This blind, unidirectional message passing is perfect when you want to perform some
asynchronous parallel tasks, and that makes it easy to scale.

Plus, once the sender has confirmed that the message was added in the broker, we can have
message brokers such as RabbitMQ offer some message persistence. In other words, if all
workers go offline, we don't loose the messages that are in the queue.



Interacting with Other Services

[ 139 ]

Topic queues
A variation of the task queue pattern is the topic pattern. In that case, instead of having
workers blindly picking every message that is added to one or several queues, they subscribe
to specific topics. A topic is just a label on a message, and workers can decide to filter the 
messages they pick from the queue so that they match the topic.

In our microservices, this means we can have specialized workers that all register to the
same messaging broker and get a subset of the messages that are added to it.

Celery is an excellent tool for building tasks queues, however, for more complex messaging,
we need to use another tool:

To implement complex messaging pattern, the good news is that we can use a Rabbit MQ
message broker who still works with Celery and interacts with another library.



Interacting with Other Services

[ 140 ]

To install a RabbitMQ broker, you can look at the download page at h t t p ://w w w . r a b b i t m q

. c o m /d o w n l o a d . h t m l and get started from there. A RabbitMQ broker is a TCP server that 
manages queues internally and dispatches messages from publishers to subscribers via RPC
calls. Using it with Celery is just a small portion of what this system can offer.

RabbitMQ implements the Advanced Message Queuing Protocol (AMQP). This protocol,
described in h t t p ://w w w . a m q p . o r g / is a complete standard that has been developed for
years by majority of the companies in the industry.

AMQP is organized into three concepts: queues, exchanges, and bindings:

A queue is a recipient that holds messages and waits for consumers to pick them
An exchange is an entry point for publishers to add new messages to the system
A binding defines how messages are routed from exchanges to queues

For our topic queue, we need to set one exchange, so RabbitMQ accepts new messages, and
all the queues we want for workers to pick messages. In the middle, we want to route the
messages to the different queues depending on the topics, using a binding.

Let's say we have two workers, one that wants to receive messages about races and another
one about training plans.

Every time a message is about a race, it gets labeled race.id, where race is a fixed prefix,
and id is a unique ID for the race. Similarly, for training plans, it is training.id.

Using the rabbitmqadmin command line that gets installed with RabbitMQ, we can create
all the necessary parts:

$ rabbitmqadmin declare exchange name=incoming type=topic
exchange declared

$ rabbitmqadmin declare queue name=race
queue declared

$ rabbitmqadmin declare queue name=training
queue declared

$ rabbitmqadmin declare binding source="incoming" destination_type="queue"
destination="race" routing_key="race.*"
binding declared

$ rabbitmqadmin declare binding source="incoming" destination_type="queue"
destination="training" routing_key="training.*"
binding declared

http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/
http://www.amqp.org/


Interacting with Other Services

[ 141 ]

In this setup, every message is sent to RabbitMQ, wherein, if the topic starts with race., it
will be pushed into the race queue, and the training. ones will end up in the training
queue.

To interact with RabbitMQ in the code, we can use Pika (h t t p s ://p i k a . r e a d t h e d o c s . i o ) a
Python RPC client that implements all the RPC endpoints a Rabbit service publishes.

Everything we do with Pika can be done on the command line using
rabbitmqadmin. You can directly get the status of all parts of the system,
send and receive messages, and check what's in a queue. It's an excellent
way to experiment with your messaging setup.

The following script shows how to publish two messages in RabbitMQ in the incoming
exchange. One about Race 34 and one about Training 12:

    from pika import BlockingConnection, BasicProperties

    # assuming there’s a working local RabbitMQ server with a working
      guest/guest account
    def message(topic, message):
        connection = BlockingConnection()
        try:
            channel = connection.channel()
            props = BasicProperties(content_type='text/plain',
                                    delivery_mode=1)
            channel.basic_publish('incoming', topic, message, props)
        finally:
            connection.close()
    # sending a message about race 34
    message('race.34', 'We have some results!')

    # training 12
    message('training.12', "It's time to do your long run")

These RPC calls will end up adding one message respectively in the race and training
queues. A Race worker script that waits for news about races would look like this:

    import pika

    def on_message(channel, method_frame, header_frame, body):
        race_id = method_frame.routing_key.split('.')[-1]
        print('Race #%s: %s' % (race_id, body))
        channel.basic_ack(delivery_tag=method_frame.delivery_tag)

    print("Race NEWS!")
    connection = pika.BlockingConnection()
    channel = connection.channel()

https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io
https://pika.readthedocs.io


Interacting with Other Services

[ 142 ]

    channel.basic_consume(on_message, queue='race')
    try:
        channel.start_consuming()
    except KeyboardInterrupt:
        channel.stop_consuming()

    connection.close()

Notice that Pika is sends back an ACK to RabbitMQ about the message, so it can be safely
removed from the queue once the worker has succeeded.

An example of the output is as follows:

$ bin/python pika_worker.py
Race NEWS!
Race #34: b'We have some results!'

AMQP offers many patterns you can investigate to exchange messages. The tutorial page at
h t t p ://w w w . r a b b i t m q . c o m /g e t s t a r t e d . h t m l has many examples, and they are all
implemented using Python and Pika.

To integrate these examples in our microservices, the publisher part is straightforward.
Your Flask application can create a synchronous connection to RabbitMQ using
pika.BlockingConnection and send messages through it. Projects such as pika-pool (h t

t p s ://g i t h u b . c o m /b n i n j a /p i k a - p o o l ) implement simple connection pools so you can
manage RabbitMQ channels without having to connect/disconnect every time you are
sending something through RPC.

The consumers, on the other hand, are trickier to integrate into microservices.

Pika can be embedded into an event loop running in the same process as the Flask
application, and trigger a function when a message is received. That would be okay in an
asynchronous framework, but for a Flask application, you will need to execute the code that
uses the Pika client in a separate thread or process. The reason for this is that the event loop
would be blocked every time a request is received in Flask.

The most reliable way to use a Pika client in order to interact with RabbitMQ is to have a
standalone Python application that consumes messages on behalf of your Flask
microservice and performs synchronous HTTP calls. It adds yet another intermediary, but
with the ability to acknowledge that a message was successfully received, and with all the
Requests tricks we learned earlier in this chapter, we can build a reliable bridge:

    import pika
    import requests
    from requests.exceptions import ReadTimeout, ConnectionError

http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool
https://github.com/bninja/pika-pool


Interacting with Other Services

[ 143 ]

    FLASK_ENDPOINT = 'http://localhost:5000/event'

    def on_message(channel, method_frame, header_frame, body):
        message = {'delivery_tag': method_frame.delivery_tag,
                   'message': body}
        try:
            res = requests.post(FLASK_ENDPOINT, json=message,
                                timeout=1.)
        except (ReadTimeout, ConnectionError):
            print('Failed to connect to %s.' % FLASK_ENDPOINT)
            # need to implement a retry here
            return

        if res.status_code == 200:
            print('Message forwarded to Flask')
            channel.basic_ack(delivery_tag=method_frame.delivery_tag)

    connection = pika.BlockingConnection()
    channel = connection.channel()
    channel.basic_consume(on_message, queue='race')
    try:
        channel.start_consuming()
    except KeyboardInterrupt:
        channel.stop_consuming()

    connection.close()

This script will perform HTTP calls on Flask with the messages delivered in the queue.

There's also a RabbitMQ plugin that does something similar by pushing
messages to HTTP endpoints, but isolating this bridge into our little script
offers more potential if we need to add logic-specific code. From a
robustness and performance point of view, it's also probably better to
avoid integrating HTTP pushes inside RabbitMQ.

In Flask, the /event endpoint can be a classical view:

    from flask import Flask, jsonify, request

    app = Flask(__name__)

    @app.route('/event', methods=['POST'])
    def event_received():
        message = request.json['message']
        # do something...
        return jsonify({'status': 'OK'})



Interacting with Other Services

[ 144 ]

    if __name__ == '__main__':
        app.run()

Publish/subscribe
The previous pattern has workers that handle specific topics of messages, and the messages
consumed by a worker are completely gone from the queue. We even added code to
acknowledge that the message was consumed.

When you want a message to be published to several workers, the Publish/Subscribe
(pubsub) pattern needs to be used.

This pattern is the basis for building a general event system and is implemented exactly like
the previous one where there is one exchange and several queues. The difference is that the
exchange part has a fanout type.

In that setup, every queue that you bind to a fanout exchange will receive the same
message.

With a pubsub in place, you can broadcast messages to all your microservices if you need
to.

RPC over AMQP
AMQP also implements a synchronous request/response pattern, which means that we
could use RabbitMQ instead of the usual HTTP JSON calls to have our microservice directly
interact.

This pattern is a very appealing way to have two microservices communicate directly with
each other. Some frameworks, such as Nameko (h t t p ://n a m e k o . r e a d t h e d o c s . i o ) are 
using it to build microservices.

But the benefits of using RPC over AMQP rather than REST or RPC over HTTP are not that
obvious unless the communication channel you want to set up is specific and maybe not
part of the published API. Sticking with a single API is probably better to keep your
microservices as simple as possible.

http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io
http://nameko.readthedocs.io


Interacting with Other Services

[ 145 ]

Putting it together
In this section, we learned the following about asynchronous section:

Asynchronous calls should be used every time a microservice can execute some
work out of band. There's no good reason to block a request if what you are
doing is not utilized in the response.
Celery is a nice way to do some background processing.
Service-to-service communication is not always limited to task queues.
Sending events around is a good way to prevent services inter-dependencies.
We can build a full event system around a broker such as Rabbit MQ to make our
microservices interact with each other via messages.
Pika can be used to coordinate all the message passing.

Testing
As we learned in Chapter 3, Coding, Testing and Documenting - the Virtuous Cycle, the biggest
challenge when writing functional tests for a service that calls other services is to isolate all
network calls.

In this section, we'll see how we can mock synchronous calls made with Requests, and
asynchronous calls for Celery workers and other asynchronous processes.

Mocking synchronous calls
If you are using Requests to perform all the calls--or you are using a library that is based on
Requests and that does not customize it too much, this isolation work is easier to do, thanks
to the transport adapters we saw earlier in this chapter.

The requests-mock project (h t t p s ://r e q u e s t s - m o c k . r e a d t h e d o c s . i o ) implements an 
adapter that will let you mock network calls in your tests.

Earlier in this chapter, we saw an example of a Flask app that was an HTTP endpoint to
serve some content on its /api endpoint.

That application used a Request session that was created by a setup_connector()
function and retrieved in a view by a get_connector() function.

https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io
https://requests-mock.readthedocs.io


Interacting with Other Services

[ 146 ]

In the following test, we're mounting the requests_mock adapter into that session by
calling session.mount() with a fresh requests_mock.Adapter() instance:

    import json
    import unittest
    from flask_application import app, get_connector
    from flask_webtest import TestApp
    import requests_mock

    class TestAPI(unittest.TestCase):
        def setUp(self):
            self.app = TestApp(app)
            # mocking the request calls
            session = get_connector(app)
            self.adapter = requests_mock.Adapter()
            session.mount('http://', self.adapter)

        def test_api(self):
            mocked_value = json.dumps({'some': 'data'})
            self.adapter.register_uri('GET', 'http://127.0.0.1:5000
                                      /api', text=mocked_value)
            res = self.app.get('/api')
            self.assertEqual(res.json['result']['some'], 'data')

Using this adapter offers the ability to manually register responses through register_uri
for some given endpoints on the remote service (here h t t p ://127. 0. 0. 1:5000/a p i ). The
adapter will intercept the call and immediately return the mocked value.

In the test_api() test, it will let us try out the application view and make sure it uses the
provided JSON data when it calls the external service.

The requests-mock will also let you match requests using regular expressions, so it's a
pretty powerful adapter to use in your tests to avoid a network dependency when they run.

That said, mocking responses from other services is still a fair amount of work and quite
painful to maintain. It also means you need to keep an eye on how the other services are
evolving over time, so your tests are not based on a mock that's not a reflection of the real
API anymore.

Using mocks is encouraged to build good functional tests coverage, but make sure you are
doing integration tests as well, where the service is tested in a deployment where it calls
other services for real.

http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api
http://127.0.0.1:5000/api


Interacting with Other Services

[ 147 ]

Mocking asynchronous calls
If your application sends or receives calls asynchronously, setting up some testing is a little
bit harder than for synchronous calls.

Asynchronous calls mean that the application is sending something somewhere and don't
expect a result immediately--or just forgets about it altogether.

It can also means that the application may react to an event that is sent to it, as in the
different patterns we've looked at based around Pika.

Mocking Celery
If you are building tests for Celery workers, the simplest way to run your tests is to use a
real Redis server. A Redis server is straightforward to run on any platform. Even Travis-CI
will let you run one. So, instead of adding a lot of work to mock all the interactions, your
Flask code will have with Redis to send some jobs to workers, and post them for real.

Using a real broker means that you can run your Celery worker in your test, just to validate
that the app sent the proper job payloads. Celery provides a pytest test fixture that will run
for you in a separate thread and shut it down once the test is over.

This is done by implementing a few fixtures to configure Celery to use Redis and to point
your tests's tasks. The first step is to create a tasks.py file inside your tests directory which
contains your Celery tasks.

The following is an example of such a file. Notice that we don't create a Celery instance--but
use the @shared_tasks decorator to mark functions as being celery tasks:

    from celery import shared_task
    import unittest

    @shared_task(bind=True, name='echo')
    def echo(app, msg):
        return msg



Interacting with Other Services

[ 148 ]

This module implements a Celery task named echo that will echo back a string. To
configure pytest to use it, you need to implement the celery_config and
celery_includes fixtures:

    import pytest

    @pytest.fixture(scope='session')
    def celery_config():
        return {
            'broker_url': 'redis://localhost:6379',
            'result_backend': 'redis://localhost:6379'
        }

    @pytest.fixture(scope='session')
    def celery_includes():
        return ['myproject.tests.tasks']

The celery_config function is used to pass all the options to create a Celery worker, and
celery_includes will just import the list of modules it returns. In our case, it will register
the echo task in the Celery tasks registry.

From there, your tests can use the echo task, and have the worker get called for real:

    from celery.execute import send_task

    class TestCelery(unittest.TestCase):
        @pytest.fixture(autouse=True)
        def init_worker(self, celery_worker):
            self.worker = celery_worker

        def test_api(self):
            async_result = send_task('echo', ['yeah'], {})
            self.assertEqual(async_result.get(), 'yeah')

Notice that, here, we've used send_task() to trigger the execution of the task.

This function can run any task that was registered as a broker by Celery, as long as the task
has a unique name.

It's good practice to name all your tasks and to make sure these names are unique
throughout all your microservices.

The reason is that when a microservice wants to run a task from a worker that is its
microservice, we don't want to have to import that worker code just to get the task function.



Interacting with Other Services

[ 149 ]

In the following example, the echo task is running in a standalone microservice and we can
trigger it via a send_task() call just by knowing the task name--no need to import the
code; every interaction happens through Redis:

>>> import celery
>>> redis = 'redis://localhost:6379'
>>> app = Celery(__name__, backend=redis, broker=redis)
>>> f = app.send_task('echo', ['meh'])
>>> f.get()
'meh'

Back to your testing, if your tests are mocking some Celery workers, make sure the remote
application that implements the tasks has a name for each one of them, and make sure that
the application you are testing uses send_task() throughout its code.

That way, your Celery fixtures will magically mock the workers for your app.

Lastly, the application will probably not wait for the Celery worker to return the result
synchronously--so you will need to inspect what the test worker has done after the API call.

Mocking other asynchronous calls
If you do some messaging with Pika and RabbitMQ, the Pika library directly uses the socket
module to interact with the server, and that makes it painful to mock because we would
need to track what data is sent and received over the wire.

Like for Celery, you could just run a local RabbitMQ server for your tests--Travis-CI also
making it available (h t t p s ://d o c s . t r a v i s - c i . c o m /u s e r /d a t a b a s e - s e t u p /).

Sending messages, in that case, is done as usual, and you can create a script that picks them
in the Rabbit queues to verify them.

When you need to test a process where an event is received from RabbitMQ, if that happens
via an HTTP call, as in our little AMQP-to-HTTP bridge, you can simply manually trigger
the events from the tests.

What's important is to make sure you can run your tests without depending on other
microservices. But dependencies on messaging servers such as Redis or RabbitMQ are not a
problem as long as you can run them in a dedicated testing environment.

https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/


Interacting with Other Services

[ 150 ]

Summary
In this chapter, we've looked at how a service can interact with other services
synchronously, by using a Requests session, and asynchronously, by using Celery workers
or more advanced messaging patterns based on RabbitMQ.

We've also looked at ways to test a service in isolation by mocking other services, but
without mocking the message brokers themselves.

Testing each service in isolation is useful, but when something goes wrong, it's hard to
know what happened, in particular, if the bug happens in a series of asynchronous calls.

In that case, tracking what's going with a centralized logging system helps a lot. The next
chapter will explain how we can tool our microservices to follow their activities.



6
Monitoring Your Services

In the previous chapter, we tested services that are interacting with each other in isolation.
But when something bad happens in a real deployment, we need to have a global overview
of what's going on. For example, when a microservice calls another one which in turn calls a
third one, it can be hard to understand which one failed. We need to be able to track down
all the interactions that a particular user had with the system that led to a problem.

Python applications can emit logs to help you debug issues, but jumping from one server to
another to gather all the information you need to understand the problem can be hard.
Thankfully, we can centralize all the logs to monitor a distributed deployment.

Continuously monitoring services are also important to assert the health of the whole
system and follow how everything behaves. This involves answering questions such as, Is
there a service that's dangerously approaching 100% of RAM usage?, How many requests
per minute is that particular microservice doing? Do we have too many servers deployed
for that API, can we remove a few boxes to reduce the price? Did a change we just deploy
affect performance adversely?

To be able to answer questions like these continuously, every microservice we're deploying
needs to be tooled to report primary metrics to a monitoring system.

This chapter is organized into two main sections:

Centralizing logs
Performance metrics

By the end of the chapter, you will have a full understanding of how to set up your
microservices to monitor them.



Monitoring Your Services

[ 152 ]

Centralizing logs
Python comes with the logging package, which lets you stream logs to a variety of places
including standard out, rotating log files, syslog, or a TCP or UDP socket.

There's even an SMTP backend. In the following example, the email_errors decorator
will send an email every time an exception is happening in the decorated function. Note
that the handler is doing a telnet session with the SMTP server to send the email, so if
there's any issue during that session, you might get a second exception when the
logger.exception() function is called:

    import logging
    from logging.handlers import SMTPHandler

    host = "smtp.example.com", 25
    handler = SMTPHandler(mailhost=host, fromaddr="tarek@ziade.org",
                          toaddrs=["tarek@ziade.org"],
                          subject="Service Exception")

    logger = logging.getLogger('theapp')
    logger.setLevel(logging.INFO)
    logger.addHandler(handler)

    def email_errors(func):
        def _email_errors(*args, **kw):
            try:
                return func(*args, **kw)
            except Exception:
                logger.exception('A problem has occured')
                raise
    return _email_errors

    @email_errors
    def function_that_raises():
        print(i_dont_exist)

    function_that_raises()



Monitoring Your Services

[ 153 ]

If the call works, an email will be received with the full traceback enclosed.

Python has a lot of handlers built-in the logging package; refer to h t t p s
://d o c s . p y t h o n . o r g /3/l i b r a r y /l o g g i n g . h a n d l e r s . h t m l .

Logging to the standard output or a log file is fine when you are developing your service,
but as we said earlier, that won't scale in a distributed system.

Sending emails on errors is an improvement, but with high-traffic microservices, it's
common to get the same exception a thousand times an hour. If you are spamming an email
box with a lot of emails, your server IP will get blacklisted by the SMTP server and your
service will be unresponsive because it will be busy sending out lots of emails.

We need something better for a distributed system. A way to collect logs from all
microservices with the least overhead possible, and some user interface to visualize them.

There are several existing systems to centralize logs generated by Python applications. Most
of them can receive logs in HTTP or UDP payloads, with a preference for the latter because
it reduces the overhead when your app sends them.

Sentry (h t t p s ://s e n t r y . i o /) is a well-known tool in the Python community for
centralizing error logs and provides a nice UI to deal with tracebacks. When a problem
occurs in a service, Sentry can detect and aggregate the errors. The UI has a little resolution
workflow that will let people deal with the problem.

But Sentry is focused on errors and is not well suited for general logging. If you want to get
logs other than errors, you need to use something else.

Another open-source solution is Graylog (h t t p ://g r a y l o g . o r g ), which is a general logging
application that comes with a powerful search engine based on Elasticsearch (h t t p s ://w w w

. e l a s t i c . c o /) where the logs are stored. MongoDB (h t t p s ://w w w . m o n g o d b . c o m /) is also
used to store application data.

Graylog can receive any logs via its custom logging format or alternative formats, such as
plain JSON. It has a built-in collector or can be configured to work with collectors such as
fluentd (h t t p ://w w w . f l u e n t d . o r g /).

https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.handlers.html
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
https://sentry.io/
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
http://graylog.org
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.fluentd.org/


Monitoring Your Services

[ 154 ]

Setting up Graylog
A Graylog server is a Java application that uses MongoDB as its database, and stores all the
logs it receives into Elasticsearch. Needless to say, a Graylog stack has quite a lot of moving
parts that are hard to set up and administrate, and you will need some dedicated people if
you deploy it yourself.

A typical production setup will use a dedicated Elastic Search cluster and several Graylog
nodes with a MondoDB instance on each. You can have a look at Graylog architecture
documentation (h t t p ://d o c s . g r a y l o g . o r g /e n /l a t e s t /p a g e s /a r c h i t e c t u r e . h t m l ) for
more details.

An excellent way to try out Graylog is to use its Docker (h t t p s ://d o c s . d o c k e r . c o m ) image,
as described here in h t t p ://d o c s . g r a y l o g . o r g /e n /l a t e s t /p a g e s /i n s t a l l a t i o n /d o c k e r

. h t m l .

Chapter 10, Containerized Services, explains how to use Docker for
deploying microservices, and gives the basic knowledge you need to build
and run Docker images.

Like Sentry, Graylog is backed by a commercial company, which offers some hosting
solutions. Depending on your project's nature and size, it can be a good solution to avoid
maintaining this infrastructure yourself. For instance, if you run a commercial project that
has a Service-Level Agreement (SLA), operating an Elasticsearch cluster smoothly is not a
small task and will require some attention.

But for projects that don't generate a lot of logs, or if having the log management down for a
bit is not the end of the world, then running your Graylog stack can be a good solution.

For this chapter, we'll just use the Docker image and docker-compose (a tool that can run
and bind several docker images from one call) and a minimal set up to demonstrate how
our microservices can interact with Graylog.

http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
http://docs.graylog.org/en/latest/pages/architecture.html
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html
http://docs.graylog.org/en/latest/pages/installation/docker.html


Monitoring Your Services

[ 155 ]

To run a Graylog service locally, you need to have Docker installed (see Chapter 10,
Dockerizing your service) and use the following Docker compose configuration (taken from
Graylog documentation):

version: '2'
services:
  some-mongo:
    image: "mongo:3"
  some-elasticsearch:
    image: "elasticsearch:2"
    command: "elasticsearch -Des.cluster.name='graylog'"
  graylog:
    image: graylog2/server:2.1.1-1
    environment:
      GRAYLOG_PASSWORD_SECRET: somepasswordpepper
      GRAYLOG_ROOT_PASSWORD_SHA2:
8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918
      GRAYLOG_WEB_ENDPOINT_URI: http://127.0.0.1:9000/api
    links:
      - some-mongo:mongo
      - some-elasticsearch:elasticsearch
    ports:
      - "9000:9000"
      - "12201/udp:12201/udp"

If you save that file in a docker-compose.yml file and run docker-compose up in the
directory containing it, Docker will pull the MongoDB, Elasticsearch and Graylog images
and run them.

Once it's running, you can reach the Graylog dashboard at http://localhost:9000 in
your browser, and access it with admin as the user and password.

The next step is to go to System | Inputs to add a new UDP input so Graylog can receive
our microservices logs.



Monitoring Your Services

[ 156 ]

This is done by launching a new GELF UDP input on port 12012, as shown in the following
screenshot:



Monitoring Your Services

[ 157 ]

Once the new input is in place, Graylog will bind the UDP port 12201 and will be ready to
receive data. The docker-compose.yml file has that port exposed for the Graylog image,
so your Flask applications can send data via the localhost.

If you click on Show Received Messages for the new input, you will get a search result
displaying all the collected logs:

Congratulations! You are now ready to receive logs in a centralized place and watch them
live in the Graylog dashboards.

Sending logs to Graylog
To send logs to Graylog from Python, you can use Graypy (h t t p s ://g i t h u b . c o m /s e v e r b /g

r a y p y ), which converts Python logs to the Graylog Extended Log Format (GELF) (h t t p ://d

o c s . g r a y l o g . o r g /e n /l a t e s t /p a g e s /g e l f . h t m l ).

Graypy will send the logs via UDP by default, but can also send them via AMQP if you
need to be 100% sure that every log makes it to Graylog.

In most cases, UDP is good enough for centralizing logs. But unlike TCP,
some packets may be dropped, and you won't know it. If your logging
strategy needs more guarantee, a RabbitMQ-based transport will be more
reliable.

https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
https://github.com/severb/graypy
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html


Monitoring Your Services

[ 158 ]

Plugging graypy consists of using the provided handler in place of one of the built-in
handlers:

    handler = graypy.GELFHandler('localhost', 12201)
    logger = logging.getLogger('theapp')
    logger.setLevel(logging.INFO)
    logger.addHandler(handler)

The graypy.GELFHandler class will convert the log into a UDP payload and send it to a
GELF UDP Input. In the previous example, the input is listening on localhost, port 12201.

It's unlikely that the code that sends the UDP payload will raise an error, and the overhead
will be minimal since it's sending UDP datagrams without acknowledging that the other
end has read it.

To integrate Graypy into your Flask application, you can add the handler directly on
app.logger. You can also automatically log exceptions in an error handler registered every
time Flask aborts because of an exception (intended or unintended):

    import logging
    import graypy
    import json
    from flask import Flask, jsonify
    from werkzeug.exceptions import HTTPException, default_exceptions

    app = Flask(__name__)

    def error_handling(error):
        if isinstance(error, HTTPException):
            result = {'code': error.code, 'description':
                       error.description}
        else:
            description = default_exceptions[500].description
            result = {'code': 500, 'description': description}

        app.logger.exception(str(error), extra=result)
        result['message'] = str(error)
        resp = jsonify(result)
        resp.status_code = result['code']
        return resp

    for code in default_exceptions.keys():
        app.register_error_handler(code, error_handling)

    @app.route('/api', methods=['GET', 'POST'])
    def my_microservice():



Monitoring Your Services

[ 159 ]

        app.logger.info("Logged into Graylog")
        resp = jsonify({'result': 'OK', 'Hello': 'World!'})
        # this will also be logged
        raise Exception('BAHM')
        return resp

    if __name__ == '__main__':
        handler = graypy.GELFHandler('localhost', 12201)
        app.logger.addHandler(handler)
        app.run()

When calling /api, this application will send a simple log to Graylog, then the exception
with its full traceback. In the following screenshot, we can see the traceback generated by
this example:

The user will get the error as well, in a JSON response.

Adding extra fields
Graypy adds some metadata fields to each log such as the following:

The remote address
The PID, process, and thread names
The name of the function from which the call was made



Monitoring Your Services

[ 160 ]

Graylog itself will add the hostname from which each log is received, as the source field,
and a few other fields.

For a distributed system, we need to add more contextual information to be able to search
efficiently in our logs. For example, knowing the username is useful to search for a
sequence of calls that was made in the stack in the same user session.

This information is usually stored inside app.session in our microservices, and we can
use a logging.Filter class to add it in each logging record sent to Graylog:

    from flask import session
    import logging

    class InfoFilter(logging.Filter):
        def filter(self, record):
            record.username = session.get('username', 'Anonymous')
            return True

    app.logger.addFilter(InfoFilter())

By adding this filter, we will have a username field added in each Graylog entry.

Any contextual information you may think of that can be useful for understanding what's
going on should go there. Although, keep in mind that adding more data in your logs can
have an opposite effect. If the logs have too many details, it might become hard to search
them efficiently, in particular, if a single request generates several log entries.

To conclude this part about log centralization, we've looked at how microservices can send
all its logs to a centralized service with minimal overhead via UDP. Once the logs are
stored, the centralized service should offer efficient search features.

Keeping all the logs is extremely useful to investigate microservices issues, but this should
not happen that often, hopefully.

On the other hand, being able to monitor your applications continuously and server
performances will let you be proactive when one of the servers is on its knees.

Graylog Enterprise is a hosted version of Graylog with extra features, like
archiving older logs — h t t p s ://w w w . g r a y l o g . o r g /e n t e r p r i s e /f e a t u r e
/a r c h i v i n g

https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving
https://www.graylog.org/enterprise/feature/archiving


Monitoring Your Services

[ 161 ]

Performance metrics
When a microservice eats 100% of server memory, bad things will happen. Some Linux
distributions will just kill the greedy process using the infamous out-of-memory killer
(oomkiller).

Using too much RAM can happen for several reasons:

The microservice has a memory leak and steadily grows, sometimes at a very fast
pace. It's very common in Python C extensions to forget to dereference an object
and leak it on every call.
The code uses memory without care. For example, a dictionary that's used as an
ad hoc memory cache can grow indefinitely over the days unless there's an upper
limit by design.
There's simply not enough memory allocated to the service--the server is getting
too many requests or is too weak for the job.

It's important to be able to track memory usage over time to find out about these issues
before it impacts users.

Reaching 100% of the CPU in production is also problematic. While it's desirable to
maximize the CPU usage, if the server is too busy when new requests are coming in, the
service will not be responsive.

Lastly, knowing that the server disk is almost full will prevent a service to crash when it's
out of space.

Hopefully, most of these problems can be discovered with a load test before the project goes
to production. A load test is a good way to determine how much load a server can hold
during the test and over time, and tweak the CPU/RAM resources depending on the
expected load.

To do this, let's tool our service to monitor the system resources continuously.

System metrics
A Linux-based system makes it simple to monitor the CPU, memory, and disk. There are
system files that get continuously updated with this information and numerous tools to
read them. Commands such as top will let you follow all the running processes and sort
them by RAM or CPU usage.



Monitoring Your Services

[ 162 ]

In Python, the psutil (h t t p s ://p y t h o n h o s t e d . o r g /p s u t i l ) project is a cross-platform 
library you can use to get all this info programmatically.

Combined with the graypy package, you can write a small script to send system metrics to
Graylog continuously.

In the following example, an asyncio loop sends the CPU usage in percent every second to
Graylog:

    import psutil
    import asyncio
    import signal
    import graypy
    import logging
    import json

    loop = asyncio.get_event_loop()
    logger = logging.getLogger('sysmetrics')
    def _exit():
        loop.stop()

    def _probe():
        info = {'cpu_percent': psutil.cpu_percent(interval=None)}
        logger.info(json.dumps(info))
        loop.call_later(1., _probe)

    loop.add_signal_handler(signal.SIGINT, _exit)
    loop.add_signal_handler(signal.SIGTERM, _exit)
    handler = graypy.GELFHandler('localhost', 12201)
    logger.addHandler(handler)
    logger.setLevel(logging.INFO)
    loop.call_later(1., _probe)

    try:
        loop.run_forever()
    finally:
        loop.close()

Running this script as a daemon on your server will let you track its CPU usage.

The system-metrics (h t t p s ://g i t h u b . c o m /t a r e k z i a d e /s y s t e m - m e t r i c s /) project is 
roughly the same script but adds info about memory, disks, and network. If you use the
pip install command, a command-line script will be available to probe your system.

https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://pythonhosted.org/psutil
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/
https://github.com/tarekziade/system-metrics/


Monitoring Your Services

[ 163 ]

Once the script runs, you can create a dashboard with a few widgets in the Graylog web
app, as described in h t t p ://d o c s . g r a y l o g . o r g /e n /l a t e s t /p a g e s /d a s h b o a r d s . h t m l and
create an alert that will send you an email on specific conditions. Alerts in Graylog are
configured on Streams, which are processing incoming messages in real-time.

To send an email when the CPU gets over 70%, you can create a stream that will collect the
cpu_percent field sent by our psutil script using a stream rule:

From there, you can manage alerts for the stream and add an email one that will get
triggered when the condition is met for some time.

Like we did for sending logs, we can also add custom performance metrics inside our
microservice code depending on our needs.

http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html
http://docs.graylog.org/en/latest/pages/dashboards.html


Monitoring Your Services

[ 164 ]

Code metrics
For some microservices, it can also be useful to get performance metrics inside the code.

New Relic, for instance, will track Jinja2 and database call performances by wrapping some
calls inside Flask to measure how long it takes to generate a template or perform a database
call.

But adding your instrumentation inside the code needs to be done carefully if that
instrumentation ships in production. Slowing down the service is easy. For instance, it's
unthinkable to use Python built-in profilers because they add a significant overhead.

A simple pattern is to measure the time taken by some of your functions explicitly.

In the following example, the @timeit decorator will collect execution times for the
fast_stuff() and some_slow_stuff() functions and a message will be sent to Graylog
at the end of the request with the duration for each call:

    import functools
    import logging
    import graypy
    import json
    import time
    import random
    from collections import defaultdict, deque
    from flask import Flask, jsonify, g

    app = Flask(__name__)

    class Encoder(json.JSONEncoder):
        def default(self, obj):
            base = super(Encoder, self).default
            # specific encoder for the timed functions
            if isinstance(obj, deque):
                calls = list(obj)
                return {'num_calls': len(calls), 'min': min(calls),
                        'max': max(calls), 'values': calls}
            return base(obj)

    def timeit(func):
        @functools.wraps(func)
        def _timeit(*args, **kw):
            start = time.time()
            try:
                return func(*args, **kw)
            finally:
                if 'timers' not in g:



Monitoring Your Services

[ 165 ]

                    g.timers = defaultdict(functools.partial(deque,
maxlen=5))
                g.timers[func.__name__].append(time.time() - start)
        return _timeit

    @timeit
    def fast_stuff():
        time.sleep(.001)

    @timeit
    def some_slow_stuff():
        time.sleep(random.randint(1, 100) / 100.)

    def set_view_metrics(view_func):
        @functools.wraps(view_func)
        def _set_view_metrics(*args, **kw):
            try:
                return view_func(*args, **kw)
            finally:
                app.logger.info(json.dumps(dict(g.timers), cls=Encoder))
        return _set_view_metrics

    def set_app_metrics(app):
        for endpoint, func in app.view_functions.items():
            app.view_functions[endpoint] = set_view_metrics(func)

    @app.route('/api', methods=['GET', 'POST'])
    def my_microservice():
        some_slow_stuff()
        for i in range(12):
            fast_stuff()
        resp = jsonify({'result': 'OK', 'Hello': 'World!'})
        fast_stuff()
        return resp

    if __name__ == '__main__':
        handler = graypy.GELFHandler('localhost', 12201)
        app.logger.addHandler(handler)
        app.logger.setLevel(logging.INFO)
        set_app_metrics(app)
        app.run()



Monitoring Your Services

[ 166 ]

Using such instrumentation, you will be able to track down each call duration in Graylog:

Web server metrics
The last metrics that we want to have in our centralized logger is everything related to the
HTTP requests and responses performance. We could add those metrics inside the Flask
application alongside our timers, but it's better to do it at the web server level to reduce the
overhead and to make metrics compatible with content that's not generated by Flask.

For instance, if nginx serves static files directly, we still want to track that. Graylog has a
marketplace (h t t p s ://m a r k e t p l a c e . g r a y l o g . o r g ) for extending the system with content
packs, and there's an nginx content pack (h t t p s ://g i t h u b . c o m /G r a y l o g 2/g r a y l o g - c o n t e n

t p a c k - n g i n x ) that will parse nginx's access and error logs to push them in Graylog.

The pack comes with a default dashboard, and its input is using the nginx ability to send
logs through UDP using syslog (h t t p ://n g i n x . o r g /e n /d o c s /s y s l o g . h t m l ).

https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://marketplace.graylog.org
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
https://github.com/Graylog2/graylog-contentpack-nginx
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html
http://nginx.org/en/docs/syslog.html


Monitoring Your Services

[ 167 ]

Using this configuration, you will be able to track valuable information such as:

The average response time
The number of requests per minute
The remote address
The endpoint and verb of the request
The status code and size of the response

Combined with app-specific metrics and system metrics, all these logs will let you build live
dashboards you can use to follow what's going on in your deployments:



Monitoring Your Services

[ 168 ]

Summary
In this chapter, we've seen how to add some instrumentation in our microservices and at
the web server level. We've also learned how to set up Graylog to centralize and use all the
generated logs and performance metrics.

Graylog uses Elasticsearch to store all the data, and that choice offers fantastic search
features that will make your life easier to look for what's going on. The ability to add alerts
is also useful for being notified when something's wrong. But deploying Graylog should be
considered carefully. An Elastic Search cluster is heavy to run and maintain once it has a lot
of data.

For your metrics, time-series based systems such as InfluxDB (open source) from
InfluxData (h t t p s ://w w w . i n f l u x d a t a . c o m /) is a faster and lightweight alternative. But it's
not meant to store raw logs and exceptions.

So if you just care about performance metrics and exceptions, maybe a good solution would
be to use a combination of tools: Sentry for your exceptions and InfluxDB for tracking
performances. In any case, as long as your applications and web servers generate logs and
metrics via UDP, it makes it easier to move from one tool to another.

The next chapter will focus on another important aspect of microservices development: how
to secure your APIs, offer some authentication solutions, and avoid fraud and abuse.

https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/


7
Securing Your Services

So far in this book, all the interactions between services were done without any form of
authentication or authorization. Each HTTP request would happily return a result. This
can't happen in production for two simple reasons: we need to know who is calling the
service (authentication) and we need to make sure that the caller is allowed to perform the
call (authorization). For instance, we probably don't want an anonymous caller to delete
entries in a database.

In a monolithic web application, authentication happens with a login form, and once the
user is identified, a cookie is set and used for all subsequent requests.

In a microservice-based architecture, we can't use that scheme everywhere because services
are not users and won't use web forms to authenticate. We need a way to allow or reject a
call between each service automatically.

The OAuth2 authorization protocol (h t t p s ://o a u t h . n e t /2/) gives us the flexibility to add
authentication and authorization in our microservices, that can be used to authenticate both
users and services. In this chapter, we'll discover some aspects of OAuth2 and how to 
implement an authentication microservice. This service will be used to secure service-to-
service interactions.

Securing services also means we want to avoid any fraud and abuse of the system. For
instance, if a client starts to hammer one of our endpoints, whether it's malicious or an
unintended bug, we need to detect that behavior and try to protect the system. There's not
much we can do in case of a massive Distributed Denial Of Service (DDoS) attack, but
setting up a basic web application firewall is easy to do and a great way to protect the
system from basic attacks.

https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/


Securing Your Services

[ 170 ]

Lastly, a few things can be done at the code level to protect your services, such as
controlling system calls or making sure HTTP redirects are not ending up in hostile web
pages. The last part of the chapter will enumerate some of them and demonstrate how you
can continuously scan your code for potential security issues.

In this chapter, we will cover the following topics:

An overview of the Oauth2 protocol
How token-based authentication works in practice
What is the JWT standard and how to use it in a “token dealer” for securing
microservices
How to implement a web application firewall
Some best practices to secure your microservice code

The OAuth2 protocol
OAuth2 is a widely adopted standard that secures web applications and their interactions
with users and other web applications, and yet it's hard to understand because it's based on
many RFCs that are quite complicated to grasp fully.

The core idea of OAuth2 is that a centralized service is in charge of authenticating a caller,
and can grant some access in the form of codes or tokens; let's call them keys. Those keys
can be used by users or services to access a resource, as long as the service providing that
resource accepts that key.

That's what we've used in Chapter 4, Designing Runnerly, to build the Strava microservice.
The service interacts with the Strava API on behalf of the users after it was granted access
via Strava's authentication service. This grant is called an Authorization Code Grant and is
the most commonly used grant. It's known as three-legged OAuth because it involves the
user, the authentication service, and a third-party application. Strava generates a code that
can be used to call their APIs, and the Strava Celery worker we've created uses it in every
call.



Securing Your Services

[ 171 ]

In the preceding diagram, the typical flow is to have the user interact with an application
that wants to access a service like Strava. When the user calls app (1), they get redirected to
the Strava service to grant access to the Strava API by app (2). Once it's done, Some App
gets an authorization code through an HTTP callback and can use the Strava API on behalf
of user (3).

For a service-to-service authentication that doesn't necessarily involve a particular user,
there's another grant type called Client Credentials Grant (CCG), where service A can
authenticate to the authentication microservice and ask for a token that it can use to call
service B.

For more information you can refer to the CCG scenario described in the
OAuth2 Authorization Framework section 4.4
(https://tools.ietf.org/html/rfc6749#section-4.4).

It works like the authorization code, but the service is not redirected to a web page like a
user. Instead, it's implicitly authorized with a secret key that can be traded for a token.

For a microservices-based architecture, using these two type of grants will let us centralize
every aspect of authentication and authorization of the system. Building a microservice that
implements part of the OAuth2 protocol to authenticate services and keep track of how they
interact with each other is a good solution to reduce security issues; everything is
centralized in a single place.

The CCG flow is by far the most interesting part to look at in this chapter because it allows
us to secure our microservices interactions independently from the users. It also simplifies
permission management since we can issue tokens with different scopes depending on the
context.

https://tools.ietf.org/html/rfc6749#section-4.4


Securing Your Services

[ 172 ]

The three-legged flow is something that can be added if some of our microservices are used
by third-party on behalf of specific users, but we will focus on CCG.

If you don't want to implement and maintain the authentication part of
your application and you can trust a third party to manage this process,
then Auth0 is an excellent commercial solution that provides all the APIs
needed for a microservice-based application (h t t p s ://a u t h 0. c o m /).

Before we go ahead and implement our authentication microservice, let's look at how
token-based authentication works from the ground. If you understand the next section
correctly, everything else in OAuth2 should be easier to grasp.

Token-based authentication
As we said earlier, when a service wants to get access to another service without any user
intervention, we can use a CCG flow.

The idea behind CCG is that a service can authenticate to an authentication service exactly
like a user would do, and ask for a token that it can then use to authenticate against other
services.

A token is a like a password. It's proof that you are allowed to access a particular resource.
Whether you are a user or a microservice, if you own a token that the resource recognizes,
it's your key to access that resource.

Tokens can hold any information that is useful for the authentication and authorization
process. Some of them can be:

The user name or ID, if it's pertinent to the context
The scope, which indicates what the caller is allowed to do (read, write, and so
on)
A timestamp indicating when the token was issued
An expiration timestamp, indicating how long the token is valid

A token is usually built as a self-contained proof that you can use a service. Self-contained
means that the service will be able to validate the token without having to call an external
resource, which is an excellent way to avoid adding dependencies between services.
Depending on the implementation, a token can also be used to access different
microservices.

https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/


Securing Your Services

[ 173 ]

OAuth2 uses the JWT standard for its tokens.

There's nothing in OAuth2 that requires the use of JWT — they just
happen to be a good fit for what OAuth2 wants to do.

The JWT standard
The JSON Web Token (JWT) described in RFC 7519 (h t t p s ://t o o l s . i e t f . o r g /h t m l /r f c

7519) is a standard that is commonly used to represent tokens.

Tokens are, in that case, a long string composed of three dot-separated parts:

Header: This provides info on the token, such as which hashing algorithm is used
Payload: This is the actual data
Signature: This is a signed hash of the token to check that it's legitimate

JWT tokens are base64 encoded so they can be used in query strings.

Here's a JWT token in its encoded form:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9
.
eyJ1c2VyIjoidGFyZWsifQ
.
OeMWz6ahNsf-TKg8LQNdNMnFHNtReb0x3NMs0eY64WA

Each part in the token above is separated by a line break for display
purpose. The original token is a single line.

And if we use Python to decode it:

>>> import base64
>>> def decode(data):
...     # adding extra = for padding if needed
...     pad = len(data) % 4
...     if pad > 0:
...         data += '=' * (4 - pad)
...     return base64.urlsafe_b64decode(data)
...
>>> decode('eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9')

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519


Securing Your Services

[ 174 ]

b'{"alg":"HS256","typ":"JWT"}'
>>> decode('eyJ1c2VyIjoidGFyZWsifQ')
b'{"user":"tarek"}'
>>> decode('OeMWz6ahNsf-TKg8LQNdNMnFHNtReb0x3NMs0eY64WA')
b'9\xe3\x16\xcf\xa6\xa16\xc7\xfeL\xa8<-
\x03]4\xc9\xc5\x1c\xdbQy\xbd1\xdc\xd3,\xd1\xe6:\xe1'

Every part of the JWT token is a JSON mapping except the signature. The header usually
contains just the typ and the alg keys. The typ key says it's a JWT token, and the alg key
indicates which hashing algorithm is used.

In the following header example, we have HS256, which stands for HMAC-SHA256:

{"typ": "JWT",  "alg": "HS256"}

The payload contains whatever you need, and each field is called a JWT Claim in the RFC
7519 jargon.

The RFC has a predefined list of claims that a token may contain, called Registered Claim
Names. Here's a subset of them:

iss: This is the issuer, which is the name of the entity that generated the token.
It's typically the fully-qualified hostname, so the client can use it to discover its
public keys by requesting /.well-known/jwks.json.
exp: This is the Expiration Time, which is a timestamp after which the token is
invalid
nbf: This stands for Not Before Time, which is a timestamp before which the
token is invalid
aud: This is the Audience, which is the recipient for whom the token was issued
iat: This stands for Issued At, which is a timestamp for when the token was
issued

In the following payload example, we're providing the custom user_id value along with
timestamps that make the token valid 24h after it was issued. Once valid, that token can be
used for 24h:

{
  "iss": "https://tokendealer.example.com",
  "aud": "runnerly.io",
  "iat": 1488796717,
  "nbt": 1488883117,
  "exp": 1488969517,
  "user_id": 1234
}



Securing Your Services

[ 175 ]

These headers gives us a lot of flexibility to control how long our tokens will stay valid.

Depending on the nature of the microservice, the token Time-To-Live (TTL) can be very
short or infinite. For instance, a microservice that interacts with other microservices within
your system should probably rely on tokens that are valid for a while to avoid having to
regenerate tokens all the time. On the other hand, if your tokens are distributed in the wild,
it's a good idea to make them short lived.

The last part of a JWT token is the signature. It contains a signed hash of the header and the
payload. There are several algorithms used to sign and hash. Some are based on a secret
key, and some are based on public and private key pair.

Let's see how we can deal with JWT tokens in Python.

PyJWT
In Python, the PyJWT (h t t p s ://p y j w t . r e a d t h e d o c s . i o /) library provides all the tools you
need to generate and read back JWT tokens.

Once you've pip-installed pyjwt (and cryptography), you can use the encode() function
and the decode() functions to create tokens.

In the following example, we're creating a JWT token using HMAC-SHA256 and reading it
back. The signature is verified when the token is read, by providing the secret:

>>> import jwt

>>> def create_token(alg='HS256', secret='secret', **data):
...     return jwt.encode(data, secret, algorithm=alg)
...
>>> def read_token(token, secret='secret', algs=['HS256']):
...     return jwt.decode(token, secret)
...
>>> token = create_token(some='data', inthe='token')
>>> print(token)
b'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpbnRoZSI6InRva2VuIiwic29tZSI6ImRh
dGEifQ.oKmFaNV-C2wHb_WaMAfIGDqBPnOCyOzVf-JWvh-6bRQ'
>>> read = read_token(token)
>>> print(read)
       {'inthe': 'token', 'some': 'data'}

https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/
https://pyjwt.readthedocs.io/


Securing Your Services

[ 176 ]

The create_token() function calls jwt.decode() with the algorithms
argument to make sure the token is verified with the right algorithm. This
is good practice to prevent attacks where a malicious token can trick the
server into using an unexpected algorithm, as noted in

h t t p s ://a u t h 0. c o m /b l o g /c r i t i c a l - v u l n e r a b i l i t i e s - i n - j s o n - w e b - t o
k e n - l i b r a r i e s

When executing this code, the token is displayed in its compressed and uncompressed
form.

If you use one of the registered claims, PyJWT will control them. For instance, if the exp
field is provided and the token is outdated, the library will raise an error.

Using a secret for signing and verifying the signature is great when you have a few services
running, but it can soon become a problem because it means you need to share the secret
among all services that need to verify the signature. And when the secret needs to be
changed, it can be a challenge to change it across your stack securely.

Basing your authentication on a secret that you are sharing around is also a weakness. If a
single service is compromised and the secret is stolen, your whole authentication system is
compromised.

A better technique is to use an asymmetric key composed of a public key and a private key.
The private key is used by the token issuer to sign the tokens, and the public key can be
utilized by anyone to verify that the signature was signed by that issuer.

Of course, if an attacker has access to the private key, or can convince clients that a forged
public key is the legitimate one, you would still be in trouble.

But using a public/private key pair reduces the attack surface of your authentication process
by a lot. And, since the authentication microservice will be the only place that has the
private key, you can focus on adding extra security to it. For instance, such sensible services
are often deployed in a firewalled environment where all accesses are strictly controlled.

Let's see how we can create asymmetric keys in practice.

X.509 certificate-based authentication
The X.509 standard (h t t p s ://e n . w i k i p e d i a . o r g /w i k i /X . 509) is used to secure the Web.
Every website using SSL out there (serving pages on HTTPS), have an X.509 certificate on
their web server and use it to encrypt and decrypt data on-the-fly.

https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509


Securing Your Services

[ 177 ]

These certificates are issued by a Certificate Authority (CA), and when your browser opens
a page that presents a certificate, it has to be published from one of the CAs supported by
the browser.

The reason why CA exists is to limit the risk of compromised certificates by having a
limited number of trusted entities that generates and manages them, independently from
the companies that use them.

Since anyone can create a self-signed certificate in a shell, it would be quite easy to end up
in a world where you don't know if you can trust a certificate. If the certificate is issued by
one of the CAs trusted by the browser, like Let's Encrypt (h t t p s ://l e t s e n c r y p t . o r g /), it 
should be legitimate.

For our microservices, using a self-signed certificate can be good enough if
we own every part of the architecture, and that's what we'll demonstrate
in the section. However, if your microservices are exposed to other third
parties, or vice versa, it's better to rely on a trusted CA. Let's Encrypt is
free and is a pretty good one. This project aims at securing the Web, but by
using extend you can also use it to secure your microservices as long as
you own a domain name.

For now, let's create our self-signed certificate and see how it can be used to sign JWT
tokens.

In a shell, you can use the openssl command to create a certificate and extract a public and
private key pair out of a certificate.

If you are under the latest macOS operating system, you might need to
install openssl from brew since it was removed from macOS.

$ openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days
365
Generating a 4096 bit RSA private key
..........................++
..........................++
writing new private key to 'key.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:
-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields, but you can leave some blank

https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/


Securing Your Services

[ 178 ]

 For some fields, there will be a default value,

 If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:FR
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (e.g., company) [Internet Widgits Pty Ltd]:Runnerly

 Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:Tarek
Email Address []:tarek@ziade.org

$ openssl x509 -pubkey -noout -in cert.pem > pubkey.pem

$ openssl rsa -in key.pem -out privkey.pem
Enter pass phrase for key.pem:
writing RSA key

These three calls generate four files:

The cert.pem file has the certificate
The pubkey.pem file has the public key extracted from the certificate
The key.pem file has the RSA private key, encrypted
The privkey.pem file has the RSA private key, in clear

RSA stands for Rivest, Shamir, and Adleman, the three authors. The RSA
encryption algorithm generates crypto keys that can go up to 4,096 bytes
and are considered secure.

From there, we can use pubkey.pem and privkey.pem in our PyJWT script to sign and
verify the signature of the token, using RSASSA-PKCS1-v1_5 signature algorithm and the
SHA-512 hash algorithm:

    import jwt

    with open('pubkey.pem') as f:
        PUBKEY = f.read()

    with open('privkey.pem') as f:
        PRIVKEY = f.read()

    def create_token(**data):
        return jwt.encode(data, PRIVKEY, algorithm='RS512')



Securing Your Services

[ 179 ]

    def read_token(token):
        return jwt.decode(token, PUBKEY)

    token = create_token(some='data', inthe='token')
    print(token)

    read = read_token(token)
    print(read)

The result is similar to the previous run, except that we get a much bigger token:

b'eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzUxMiJ9.eyJzb21lIjoiZGF0YSIsImludGhlIjoidG9r
ZW4ifQ.VHKP2yO1dCUrS5YAOCZsGXF_mesMJNNYcnBHe4mFiPpBDCbMhrI8h10vr1BaCiN8rVEM
cUXQ4Gc7183w6ga3spyEzONg3-Sv-eId4rPbTqbbmPErrnWPRIH9hQMHsMebVOlI9lOvNmV-
J3DIEmV4riqRluJMIFYuy_A7fB2r8IqeHBfrsEPWmvw2_tIZ3V3dJGU4ZBkn8zdzgfbou_LHc28
_dyC32kR2Ec1nsRV3zRffEjx60cjzmNNFqB9kYZHun0IIzBqdh0IiRxPF4rgYG3oBKJXP3u2uyf
BifNy3Bz4bMPJ8iRRmQleciyFdzDkm7J4SAyz5I0TKHSPOZA-9x6dgacQ9w_JAtmElH7u8_ES_2
TxmvbBLqsXIzghAhG10CL79UeSKeXMTjc8DOQrIbWmaRCIbPy9AdlIJQxqul4UnCoUhUQ6PZwD6
CEuaZTjKdPvql7n_-u1Tjrw7e339WC9QZS5DFCzMe2F0TY-kI52-AaNEoRaO8oSCwW3E7u-
NcSt-
bD019MdX3bxN0FdNvL62BUDqqxind7TFF7YFX3zTxTu15Pex2F64YvnhG1CDk337htROt8B9vH8
CIUWo_2ujkair8zCdd9sfIdssOGFDnawIX2NPGd4vZ1dpw0DwHBaXw0gP8zzcRAsuZ7rfNMZeJT
H6gB-kMc5UKf26nAc'
{'some': 'data', 'inthe': 'token'}

Notice that adding over 700 bytes of data to each request can add up over time, so the
secret-based JWT token technique is an option to keep in mind if you need to reduce the 
network overhead.

Now that we've learned how to deal with JWT tokens, let start to implement our
authentication microservice; we'll call it the TokenDealer.

The TokenDealer microservice
Our first step to building the authentication microservice will be to implement everything
needed to perform a CCG flow. For that flow, the app receives requests from services that
want a token and generates them on-demand. The generated tokens will have a lifespan of
one day.

This service will be the only service to possess the private key that is used to sign the tokens
and will expose the public key for other services that want to verify tokens. This service will
also be the only place where all the client IDs and secret keys are kept.



Securing Your Services

[ 180 ]

We will greatly simplify the implementation by stating that once a service gets a token, it
can access any other service in our ecosystem. When a service is accessed with a token, it
can verify that token locally or call the TokenDealer to perform the verification. The first
option, where checks happen locally, will remove one network roundtrip, but the tradeoff is
that it will add some CPU overhead when working with JWT tokens, which can be
problematic in some context. For example, if your microservice is doing some CPU-
intensive work, adding the work required for checking the token might require to use a
server with bigger CPUs, which might add some extra costs.

That's the reason why it's good to have the two options.

To implement everything we've described, three endpoints will be created in this
microservice:

GET /.well-known/jwks.json: This is the public key published in the JSON
Web Key (JWK) format as described in RFC 7517 (h t t p s ://t o o l s . i e t f . o r g /h t m

l /r f c 7517), when other microservices want to verify tokens on their own.
POST /oauth/token: This returns a token, given some credentials. Adding the
/oauth prefix is a convention widely adopted since it's used in the OAuth RFC.
POST /verify_token: This returns the token payload, given a token. If the
token is not valid, it returns a 400.

Using the microservice skeleton at h t t p s ://g i t h u b . c o m /R u n n e r l y /m i c r o s e r v i c e , we can
create a very simple Flask blueprint that implements these three views.

Let's look at the most important one, POST /oauth/token.

The POST/oauth/token implementation
For the CCG flow, the service that wants a token sends a POST request with an URL-
encoded body that contains the following fields:

client_id: This is a unique string identifying the requester.
client_secret: This is a secret key that authenticates the requester. It should be
a random string generated up-front and registered with the auth service.
grant_type: This is the grant type, must be client_credentials.

https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice
https://github.com/Runnerly/microservice


Securing Your Services

[ 181 ]

We'll make a few assumptions to simplify the implementation:

We're keeping the list of secrets in a Python mapping
client_id is the name of the microservice
The secret is generated with binascii.hexlify(os.urandom(16))

The authentication part will just ensure that the secret is valid, then the service will create a
token and return it:

    import time
    from flask import request, current_app, abort, jsonify
    from werkzeug.exceptions import HTTPException
    from flakon import JsonBlueprint
    from flakon.util import error_handling
    import jwt

    home = JsonBlueprint('home', __name__)

    def _400(desc):
        exc = HTTPException()
        exc.code = 400
        exc.description = desc
        return error_handling(exc)

    _SECRETS = {'strava': 'f0fdeb1f1584fd5431c4250b2e859457'}

    def is_authorized_app(client_id, client_secret):
        return compare_digest(_SECRETS.get(client_id), client_secret)

    @home.route('/oauth/token', methods=['POST'])
    def create_token():
        key = current_app.config['priv_key']
        try:
            data = request.form
            if data.get('grant_type') != 'client_credentials':
                return _400('Wrong grant_type')

            client_id = data.get('client_id')
            client_secret = data.get('client_secret')
            aud = data.get('audience', '')

            if not is_authorized_app(client_id, client_secret):
                return abort(401)

            now = int(time.time())

            token = {'iss': 'https://tokendealer.example.com',



Securing Your Services

[ 182 ]

                     'aud': aud,
                     'iat': now,
                     'exp': now + 3600 * 24}

            token = jwt.encode(token, key, algorithm='RS512')
            return {'access_token': token.decode('utf8')}
        except Exception as e:
            return _400(str(e))

The create_token() view uses the private key found in the application configuration
under the priv_key key.

The hmac.compare_digest() function is used to compare the two
secrets to avoid a timing attack by a client which would try to guess the
client_secret one character at a time. It's equivalent to the "=="
operator.
From the documentation: This function uses an approach designed to prevent
timing analysis by avoiding content-based short circuiting behavior, making it
appropriate for cryptography

This blueprint is all we need with a pair of keys to run a microservice that will take care of
generating self-contained JWT tokens for all our microservices that require authentication.

The whole source code of the TokenDealer microservice can be found at h t

t p s ://g i t h u b . c o m /R u n n e r l y /t o k e n d e a l e r where you can look at how
the two other views are implemented.

The microservice could offer more features around token generation. For instance, the
ability to manage scopes and make sure microservice A is not allowed to generate a token
that can be used in microservice B or managing a whitelist of services that are authorized to
ask for some tokens.

https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer
https://github.com/Runnerly/tokendealer


Securing Your Services

[ 183 ]

But the pattern we've implemented is the basis for an efficient token-based authentication
system in a microservice environment, you can develop on your own, and is good enough
for our Runnerly app.

In the following diagram, training plans, data service, and races can use JWT tokens to
restrict access to their respective endpoints:

JWT access in this diagram means that the service requires a JWT token. Those services may
validate the token by calling the TokenDealer. The Flask app in this diagram needs to obtain
tokens from the TokenDealer on behalf of its users (link not shown in the diagram).

Now that we have a TokenDealer service that implements CCG, let's see in practice how it
can be used by our services the next section.



Securing Your Services

[ 184 ]

Using TokenDealer
In Runnerly, the Data Service | Strava worker link (3) is a good example of a place where
authentication is required. Adding runs via the Data Service needs to be restricted to
authorized services:

Adding authentication for that link is done in four steps:

The TokenDealer keeps a client_id and client_secret pair for the Strava1.
worker and shares it with the Strava worker developers (1).
The Strava worker uses client_id and client_secret to ask a token to the2.
TokenDealer (2).
The Strava worker adds the token in each request against to the Data Service (3).3.
The Data Service verifies the token by calling the TokenDealer, or by performing4.
a local JWT verification (4)



Securing Your Services

[ 185 ]

In a full implementation, the first step is semiautomated. Generating a client secret is
usually done through some web admin panel in the authentication service. That secret is
then provided to the Strava microservice developers.

From there, the service can get a new token every time it needs it (because it's the first time
or because the token is outdated) and add that token in the Authorization header when
calling Data Service.

The following is an example of such a call using the requests library--we have in that
example a TokenDealer running on localhost:5000 and a Data Service running on
localhost:5001.

    import requests

    server = 'http://localhost:5000'
    secret = 'f0fdeb1f1584fd5431c4250b2e859457'

    data = [('client_id', 'strava'),
            ('client_secret', secret),
            ('audience', 'runnerly.io'),
            ('grant_type', 'client_credentials')]

    def get_token():
        headers = {'Content-Type': 'application/x-www-form-urlencoded'}
        url = server + '/oauth/token'
        resp = requests.post(url, data=data, headers=headers)
        return resp.json()['access_token']

Notice that the /oauth/token is accepting form encoded data rather than
a JSON payload, since this is the standard implementation.

The get_token() function retrieves a token, which can then be used in the
Authorization header, when the code calls the Data Service:

    _TOKEN = None

    def get_auth_header(new=False):
        global _TOKEN
        if _TOKEN is None or new:
            _TOKEN = get_token()
        return 'Bearer ' + _TOKEN

    _dataservice = 'http://localhost:5001'



Securing Your Services

[ 186 ]

    def _call_service(endpoint, token):
        # not using session etc, to simplify the reading  :)
        return requests.get(_dataservice + '/' + endpoint,
                            headers={'Authorization': token})
    def call_data_service(endpoint):
        token = get_auth_header()
        resp = _call_service(endpoint, token)
        if resp.status_code == 401:
            # the token might be revoked, let's try with a fresh one
            token = get_auth_header(new=True)
            resp = _call_service(endpoint, token)
        return resp

The call_data_service() function will try to get a new token if the call to the Data
Service leads to a 401 response.

This refresh-token-on-401 pattern can be used in all your microservices to automate token
generation.

This covers service-to-service authentication. You can find the full implementation in the
Runnerly's GitHub repository to play with this JWT-based authentication scheme and use it
as a basis for building your authentication process.

The next section of this chapter looks at another important aspect of securing your web
services, that is, adding a web application firewall.

Web application firewall
When you're exposing HTTP endpoints to others, you are expecting callers to behave as
intended. Each HTTP conversation is supposed to follow a scenario that you have
programmed in the service.

In the real world, that's not always the case. If the caller has a bug or is just not calling your
service correctly, the expected behavior should be to send back a 4xx response and explain
to the client why the request was rejected. That's also the case for malicious requests sent by
attackers. Any unintended behavior should be dismissed.

The Open Web Application Security Project (OWASP) (h t t p s ://w w w . o w a s p . o r g ) is an 
excellent resource to learn about ways to protect your web apps from bad behaviors. They
even provide a set of rules for the ModSecurity (h t t p s ://m o d s e c u r i t y . o r g /c r s /) toolkit's
Web Application Framework (WAF) that can be used to avoid a lot of attacks.

https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/
https://modsecurity.org/crs/


Securing Your Services

[ 187 ]

In microservices-based applications, anything that's published to the web can be attacked,
but, unlike monolithic applications, most of the system is not dealing directly with users via
HTML user interfaces or public APIs, and that narrows down the spectrum of potential
attacks.

We'll see in this section how to provide essential protection for our JSON-based
microservices.

But before we do this, let's look at some of the most common attacks:

SQL Injection: The attacker sends raw SQL statements in the request. If your
server uses some of the request content (typically the arguments) to build SQL
queries, it might perform the attacker's request on the database. In Python,
though, if you use SQLAlchemy and avoid raw SQL statements altogether, you
will be safe. If you use raw SQL, make sure every variable is correctly quoted.
We'll see that later in this chapter.
Cross Site Scripting (XSS): This attack happens only on web pages that display
some HTML. The attacker uses some of the query attributes to try to inject their
piece of HTML on the page to trick the user into performing some actions
thinking they are on the legitimate website.
Cross-Site Request Forgery (XSRF/CSRF): This attack is based on attacking a
service by reusing the user's credentials from another website. The typical CSRF
attack happens with POST requests. For instance, a malicious website displays a
link to a user to trick that user to perform the POST request on your site using
their existing credentials.

Many other attacks are specifically targeting PHP-based systems because it's widespread
and easy to find a PHP app that uses invalidated user input when the server is called.
Things such as Local File Inclusion (LFI), Remote File Inclusion (RFI), or Remote Code
Execution (RCE) are all attacks that trick the server to execute something via client input or
reveal server files. They can happen of course in Python applications, but Python
frameworks are known to have built-in protections to avoid those attacks.

However, bad requests are not always how a client, whether it's malicious or not, can abuse
your system. It can send legitimate requests and just hammer your service with it, leading
to a Denial of Service (DoS) because all the resources are used to handle requests from the
attacker. This problem sometimes happens within distributed systems when clients have
replay features that are automatically recalling the same API. If nothing is done on the client
side to throttle calls, you might end up with a service overloaded by legitimate clients.



Securing Your Services

[ 188 ]

Adding a protection on the server-side to back-off such zealous clients is usually not hard to
do and goes a long way to protect your microservice stack.

In this section, we'll focus on creating a basic WAF that will explicitly reject a client that's
making too many requests on our service.

The intent of this section is not to create a full WAF, but rather to give you
a good understanding of how WAF are implemented and used. That said,
using a fully featured WAF like ModSecurity is probably overkill for
JSON-based microservices.

We could build our WAF in a Flask microservice, but it would add a lot of overhead if all
the traffic has to go through it. A much better solution is to rely directly on the web server.

OpenResty - Lua and nginx
OpenResty (h t t p ://o p e n r e s t y . o r g /e n /) is an nginx distribution that embeds a Lua (h t t p

://w w w . l u a . o r g /) interpreter that can be used to script the web server.

Lua is an excellent, dynamically-typed programming language, which has a lightweight
interpreter, yet, very fast. The language offers a complete set of features and has built-in
async features. You can write coroutines directly in vanilla Lua.

For a Python developer, Lua feels quite Pythonic, and you can start to build scripts with it in
a matter of hours once you know the basic syntax. It has functions, classes, and a standard
library that will make you feel at home.

If you install Lua (refer to h t t p ://w w w . l u a . o r g /s t a r t . h t m l ), you can play with the 
language using the Lua Read Eval Print Loop (REPL) exactly like how you would do with
Python:

$ lua
Lua 5.1.5  Copyright (C) 1994-2012 Lua.org, PUC-Rio
> io.write("Hello world\n")
Hello world
> mytable = {}
> mytable["user"] = "tarek"
> = mytable["user"]
tarek
> = string.upper(mytable["user"])
TAREK

http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://openresty.org/en/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html
http://www.lua.org/start.html


Securing Your Services

[ 189 ]

To discover the Lua language, this is your starting page h t t p ://w w w . l u a .
o r g /d o c s . h t m l .

Lua is often a language of choice to get embedded in compiled apps. Its memory footprint is
ridiculously small, and it allows to add fast dynamic scripting features. That is what is
happening in OpenResty. Instead of building nginx modules that require compiling nginx
with them, you can extend the web server using Lua scripts and deploy them directly with
OpenResty.

When you invoke some Lua code from your nginx configuration, the LuaJIT (h t t p ://l u a j i

t . o r g /) interpreter that's employed by OpenResty will run them in a very efficient way,
and won't be slower than nginx code itself. Some performance benchmarks find that Lua
can be faster than C or C++ in some cases (refer to h t t p ://l u a j i t . o r g /p e r f o r m a n c e . h t m l ).

The functions you can add in nginx that way are coroutines that will run asynchronously in
nginx, so the overhead is minimal even when your server receives a lot of concurrent
requests, which is exactly our need for a WAF.

OpenResty comes as Docker image and a package for some Linux distributions. It can also
be compiled from the ground, refer to http://openresty.org/en/installation.html. On
macOS, you can use Brew and the brew install openresty command.

Once OpenResty is installed, you will get an openresty command, and you can use it
exactly like nginx to serve your apps.

In the following example, the nginx configuration will proxy calls to a Flask application
running on port 5000:

    daemon off;
    worker_processes  1;
    pid openresty.pid;
    error_log /dev/stdout info;
    events {
      worker_connections  1024;
    }
    http {
      include       mime.types;
      default_type  application/octet-stream;
      sendfile        on;
      keepalive_timeout  65;
      access_log /dev/stdout;
      server {
        listen       8888;

http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://luajit.org/performance.html
http://openresty.org/en/installation.html


Securing Your Services

[ 190 ]

        server_name  localhost;
        location / {
          proxy_pass http://localhost:5000;
          proxy_set_header Host $host;
          proxy_set_header X-Real-IP $remote_addr;
          proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        }
      }
    }

This configuration can be used with the openresty command line and will run in the
foreground (daemon off) on port 8888 to proxy pass all requests to the Flask app running
on port 5000.

$ openresty -c resty.conf
2017/07/14 12:10:12 [notice] 49704#524185: using the "kqueue" event method
2017/07/14 12:10:12 [notice] 49704#524185: openresty/1.11.2.3
2017/07/14 12:10:12 [notice] 49704#524185: built by clang 8.0.0
(clang-800.0.38)
2017/07/14 12:10:12 [notice] 49704#524185: OS: Darwin 16.6.0
2017/07/14 12:10:12 [notice] 49704#524185: hw.ncpu: 4
2017/07/14 12:10:12 [notice] 49704#524185: net.inet.tcp.sendspace: 1042560
2017/07/14 12:10:12 [notice] 49704#524185: kern.ipc.somaxconn: 2048
2017/07/14 12:10:12 [notice] 49704#524185: getrlimit(RLIMIT_NOFILE):
7168:9223372036854775807
2017/07/14 12:10:12 [notice] 49704#524185: start worker processes
2017/07/14 12:10:12 [notice] 49704#524185: start worker process 49705

Note that this configuration can also be used in a plain nginx server, since we're not using
any Lua yet. That's what's nice with OpenResty: it's a drop-in replacement for nginx and
can run your existing configuration files.

The code and configuration demonstrated in this section can be found at h
t t p s ://g i t h u b . c o m /R u n n e r l y /w a f .

Lua can be invoked at different moments when a request comes in, the two that are
attractive to this chapter are:

access_by_lua_block: This is called on every incoming request before a
response is built. This is where we can build access rules in our WAF.
content_by_lua_block: This uses Lua to generate a response.

Let's see in the next section how we can rate-limit incoming requests.

https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf
https://github.com/Runnerly/waf


Securing Your Services

[ 191 ]

Rate and concurrency limiting
Rate limiting consists of counting how many requests a server is accepting in a period of
time, and rejecting new ones when a limit is reached.

Concurrency limiting consists of counting how many concurrent requests are being served
by the web server to the same remote user and starting to reject new ones when it reaches a
defined threshold. Since many requests can reach the server simultaneously, a concurrency
limiter needs to have a small allowance in its threshold.

Both are implemented using the same technique. Let's look at how to build a concurrency
limiter.

OpenResty ships with a rate limiting library written in Lua called lua-resty-limit-
traffic (h t t p s ://g i t h u b . c o m /o p e n r e s t y /l u a - r e s t y - l i m i t - t r a f f i c ); you can use it in
a acces_by_lua_block section.

The function uses Lua Shared Dict, which is a memory mapping that is shared by all nginx
workers within the same process. Using a memory dict means that the rate limiting will
work at the process level.

Since we're typically deploying one nginx per service node, the rate
limiting will happen per web server. So, if you are deploying several
nodes for the same microservice and doing some load balancing, you will
have to take this into account when you set the threshold.

In the following example, we're adding a lua_shared_dict definition and a
access_by_lua_block section to activate the rate limiting. Note that this example is a
simplified version of the example from the project's documentation:

    ...
    http {
      ...
      lua_shared_dict my_limit_req_store 100m;

      server {
        access_by_lua_block {
          local limit_req = require "resty.limit.req"
          local lim, err = limit_req.new("my_limit_req_store",200, 100)
          local key = ngx.var.binary_remote_addr
          local delay, err = lim:incoming(key, true)
          if not delay then
            if err == "rejected" then
              return ngx.exit(503)
              end

https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic
https://github.com/openresty/lua-resty-limit-traffic


Securing Your Services

[ 192 ]

            end
          if delay >= 0.001 then
            ngx.sleep(delay)
            end
        }
        proxy_pass ...
      }
    }

The access_by_lua_block section can be considered as a Lua function and can use some
of the variables and function OpenResty exposes. For instance, ngx.var is a table
containing all the nginx variables and ngx.exit() is a function that can be used to
immediately return a response to the user. In our case, a 503 when we need to reject a call
because of rate-limiting.

The library uses the my_limit_req_store dict that is passed to the resty.limit.req
function and every time a request reaches the server, it calls the incoming() function with
the binary_remote_addr value, which is the client address.

The incoming function will use the shared dict to maintain the number of active connections
per remote address and send back a rejected value when that number reaches the threshold,
for example, when there are more than 300 concurrent requests.

If the connection is accepted, the incoming() function sends back a delay value. Lua will
hold the request using that delay and the asynchronous ngx.sleep() function. The delay
will be 0 when the remote client has not reached the threshold of 200, and a small delay
when between 200 and 300, so the server has a chance to unstack all the pending requests.

This elegant design will be quite efficient to avoid a service to get overwhelmed by many
requests. Setting up a ceiling like that is also a good way to avoid reaching a point where
you know your microservice will start to break.

For instance, if some of your benchmarks concluded that your service could not serve more
than 100 simultaneous requests before starting to crash, you can set the rate limiting, so it's
nginx that rejects requests instead of letting your Flask microservice pile up error logs and
heat the CPU just to handle rejections.

The key used to calculate the rate in this example is the remote address
header of the request. If your nginx server is itself behind a proxy, make
sure you are using a header that contains the real remote address.
Otherwise, you will rate limit a single remote client, the proxy server. It's
usually in the X-Forwarded-For header in that case.



Securing Your Services

[ 193 ]

If you want a WAF with more features, the lua-resty-waf (h t t p s ://g i t h u b . c o m /p 0p r 0c

k 5/l u a - r e s t y - w a f ) project works like lua-resty-limit-traffic, but offers a lot of 
other protections. It's also able to read ModSecurity rule files, so you can use the rule files
from the OWASP project without having to use ModSecurity itself.

Other OpenResty features
OpenResty comes with many Lua scripts that can be useful to enhance nginx. Some
developers are even using it to serve their data directly.

If you look at the components page at h t t p ://o p e n r e s t y . o r g /e n /c o m p o n e n t s . h t m l , you
will find some useful tools to have nginx interact with databases, cache servers, and so on.
There's also a website for the community to publish OpenResty components, refer to h t t p s

://o p m . o p e n r e s t y . o r g /.

If you are using OpenResty in front of your Flask microservices, there will probably be
other use cases where you can transfer some code that's in the Flask app to a few lines of
Lua in OpenResty. The goal should not be to move the app's logic to OpenResty, but rather
to leverage the web server to do anything that can be done before or after your Flask app is
called.

For instance, if you are using a Redis or a Memcache server to cache some of your GET
resources, you can directly call them from Lua to add or fetch a cached version for a given
endpoint. The srcache-nginx-module (h t t p s ://g i t h u b . c o m /o p e n r e s t y /s r c a c h e - n g i n x - m

o d u l e ) is an implementation of such a behavior and will reduce the number of GET calls
made to your Flask apps if you can cache them.

To conclude this section about web application firewalls, OpenResty is a powerful nginx
distribution that can be used to create a simple WAF to protect your microservices. It also
offers abilities that go beyond firewalling. In fact, if you adopt OpenResty to run your
microservices, it opens a whole new world of possibilities, thanks to Lua.

The next section that ends this chapter will focus on what can be done at the code level to
protect your microservices.

https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
http://openresty.org/en/components.html
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://opm.openresty.org/
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module
https://github.com/openresty/srcache-nginx-module


Securing Your Services

[ 194 ]

Securing your code
In the previous section, we've looked at how to set up a simple WAF. The rate limiting
feature we've added is useful but protects us from just one possible attack. Without being
paranoid, as soon as you are exposing your app to the world, there are numerous possible
attacks, and your code needs to be designed with that threat in mind.

The idea behind secure code is simple, yet hard to do well in practice. The two fundamental
principles are:

Every request from the outside world should be carefully assessed before it does
something in your application and data
Everything your application is doing on a system should have a well-defined and
limited scope

Let's look at how to implement these principles in practice.

Asserting incoming data
The first principle, assert incoming data, just means that your application should not
blindly execute incoming requests without making sure what will be the impact.

For instance, if you have an API that will let a caller delete a line in a database, you need to
make sure the caller is allowed to do it. This is why we've added authentication and
authorization earlier in this chapter.

But there are other ways to breach in. For example, if you have a Flask view that grabs
JSON data from the incoming request and uses it to push data to a database, you should
verify that the incoming request has the data you are expecting, and not blindly pass it over
to your database backend. That's why it can be interesting to use Swagger to describe your
data as schemas and use them to validate incoming data.

Microservices usually use JSON, but if you happen to use templates, that's yet another place
where you need to be careful in what the template is doing with variables.

Server-Side Template Injection (SSTI) is a possible attack when your templates are blindly
executing some Python statements. In 2016, such an injection vulnerability was found on
Uber's website (h t t p s ://h a c k e r o n e . c o m /r e p o r t s /125980) on a Jinja2 template because a
raw formatting was done before the template was executed.

https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980


Securing Your Services

[ 195 ]

The code was something similar to this small app:

    from flask import Flask, request, render_template_string

    app = Flask(__name__)

    SECRET = 'oh no!'

    _TEMPLATE = """\
    Hello %s

    Welcome to my API!
    """

    class Extra(object):
        def __init__(self, data):
            self.data = data

    @app.route('/')
    def my_microservice():
        user_id = request.args.get('user_id', 'Anynomous')
        tmpl = _TEMPLATE % user_id
        return render_template_string(tmpl, extra=Extra('something'))

By doing this preformatting on the template with a raw %s, the view creates a huge security
hole in the app, since it allows attackers to inject what they want in the Jinja script before it
gets executed.

In the following example, the user_id variable security hole is exploited to read the value
of SECRET global variable from the module:

http://localhost:5000/?user_id={{extra.__class__.__init__.__globals__["SECR
ET"]}}

That's why it's quite important to avoid doing any manual formatting with incoming data
when it's used to display a view.

If you need to evaluate untrusted code in a template, you can use Jinja's sandbox, refer to
http://jinja.pocoo.org/docs/latest/sandbox/. This sandbox will reject any access to 
methods and attributes from the object being evaluated. For instance, if you're passing a
callable in your template, you will be sure that its attributes such as __class__ cannot be
used.

http://jinja.pocoo.org/docs/latest/sandbox/
http://jinja.pocoo.org/docs/latest/sandbox/


Securing Your Services

[ 196 ]

That said, Python sandboxes are tricky to get right, due to the nature of the language. It's
easy to misconfigure a sandbox, or the sandbox itself can be compromised with a new
version of the language. The safest bet is to avoid evaluating untrusted code altogether and
make sure you're not directly relying on incoming data for templates.

Another common place where injection happens is in SQL statements. If some of your SQL
queries are built using raw SQL statements, you are exposing your app to SQL injections
exploits.

In the following example, a simple select query that takes a user ID can be used to inject
extra SQL queries, such as an insert query. From there, an attacker can hack a server in no
time:

    import pymysql

    connection = pymysql.connect(host='localhost', db='book')

    def get_user(user_id):
        query = 'select * from user where id = %s'
        with connection.cursor() as cursor:
            cursor.execute(query % user_id)
            result = cursor.fetchone()
        return result

    extra_query = """\
    insert into user(id, firstname, lastname, password)
    values (999, 'pnwd', 'yup', 'somehashedpassword')
    """

    # this call will get the user, but also add a new user!
    get_user("'1'; %s" % extra_query)

This can be prevented by quoting any value used to build raw SQL queries. In PyMySQL,
you just need to pass the values to the execute argument to avoid this problem:

    def get_user(user_id):
        query = 'select * from user where id = %s'
        with connection.cursor() as cursor:
            cursor.execute(query, (user_id,))
            result = cursor.fetchone()
        return result

Every database library has this feature. So as long as you are correctly using these libraries
when building raw SQL, you should be okay.



Securing Your Services

[ 197 ]

The same precaution goes with redirects. One common mistake is to create a login view that
makes the assumption that the caller will be redirected to an internal page and use a plain
URL for that redirect:

    @app.route('/login')
    def login():
        from_url = request.args.get('from_url', '/')
        # do some authentication
        return redirect(from_url)

This view can redirect the caller to any website, which is a significant threat particularly
during the login process. A good practice is to avoid free strings when calling redirect(),
by using the url_for() function, which will create a link about your app domain.

But if you need to redirect to third parties sometimes, you can't use the url_for() and the
redirect() functions as they can potentially send your clients to unwanted places.

One solution is to create a restricted list of third-party domains your application is allowed
to redirect to and make sure any redirection done by your application or underlying third-
party libraries are checked against that list.

This can be done with the after_request() hook that will be called if the response Flask
is about to send out. In case the application tries to send back a 302, you can check that its 
location is safe, given a list of domains and ports:

    from flask import make_response
    from urllib.parse import urlparse

    # domain:port
    SAFE_DOMAINS = ['github.com:443', 'ziade.org:443']

    @app.after_request
    def check_redirect(response):
        if response.status_code != 302:
            return response
        url = urlparse(response.location)
        netloc = url.netloc
        if url.scheme == 'http' and not netloc.endswith(':80'):
            netloc += ':80'
        if url.scheme == 'https' and not netloc.endswith(':443'):
            netloc += ':443'

        if netloc not in SAFE_DOMAINS:
            # not using abort() here or it'll break the hook
            return make_response('Forbidden', 403)
        return response



Securing Your Services

[ 198 ]

To summarize, you should always treat incoming data as a potential threat to injection of
attacks in your system.

Limiting your application scope
Even if you're doing a good job at protecting your application from bad behaviors induced
by incoming data, you should also make sure the application itself is not able to do some
damage in your microservice ecosystem.

If your microservice is authorized to interact with other microservices, these interactions
should be authenticated, as we've seen earlier in this chapter, but also limited to the strict
minimum allowed. In other words, if a microservice is performing some read calls on
another microservice, it should not be able to do any POST call and restricted to read-only.

That scope limitation can be done with the JWT tokens by defining roles (such as
read/write) and adding that information in the token under a permissions or scope key, for
example. The target microservice will then be able to reject a call on a POST that is made
with a token that is supposed only to read data.

This is what happens when you grant access to an application on your GitHub account, or
on your Android phone. A detailed list of what the app wants to do is displayed, and you
can grant or reject access.

If you are controlling all parts of your microservices ecosystem, you can also use strict
firewalls rules at the system level to whitelist the IPs that are allowed to interact with each
microservice, but that kind of set up depends a lot on where you are deploying your
application. In the Amazon Web Services (AWS) cloud environment, you don't need to
configure a Linux firewall. All you have to do is set simple access rules in the AWS console.

Chapter 11, Deploying on AWS, covers the basics of deploying your microservices on the
Amazon cloud.

Besides network accesses, any other resource your application can access should be limited
whenever possible. Running the application as a root user on Linux is not a good idea
because, in case of a security issue, you are giving full power to the service.

For instance, if your application is calling the system and that call gets hacked by an
injection or another exploit, it's a backdoor for an attacker to own the whole operating
system.



Securing Your Services

[ 199 ]

Root access to a system has become an indirect threat in modern deployments, since most
applications are running in Virtual Machines (VM), but an unrestricted process can still do
a lot of damage even if jailed. If an attacker owns one of your VMs, it's the first step to own
the whole system.

To mitigate the problem, there are two rules you should follow:

A web service process should be run by a non-root user
Be very cautious when executing processes from your web service and avoid it if
you can.

For the first rule, the default behavior for web servers such as NGinx is to run its processes
using the www-data user and group, and that prevents these processes from being able to
execute anything on the system. The same rules apply to your Flask processes. We'll see in
Chapter 9, Packaging Runnerly, the best practices to run a stack in the user space on a Linux
system.

For the second rule, any Python call to os.system(), subprocess, multiprocessing
should be double-checked to avoid making unwanted calls on the system. This is also true
for high-level network modules that send emails or connect to third-party servers via FTP,
via the local system.

There's a way to continuously check your code for potential security issues using the Bandit
linter.

Using Bandit linter
The OpenStack community (h t t p s ://w w w . o p e n s t a c k . o r g /) created a nice little security
linter called Bandit to try to catch insecure code (h t t p s ://w i k i . o p e n s t a c k . o r g /w i k i /S e c u

r i t y /P r o j e c t s /B a n d i t ).

The tool uses the ast module to parse the code such as Flake8 or other linters. Bandit will
scan for some known security issues in your code.

Once you've installed it with the pip install bandit command, you can run it against
your Python module using the bandit command.

https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit
https://wiki.openstack.org/wiki/Security/Projects/Bandit


Securing Your Services

[ 200 ]

The following script is an example of three unsafe functions. The first one will let you load
YAML content that might instantiate arbitrary objects, and the following ones are prone to
injection attacks:

    import subprocess
    from sqlalchemy import create_engine
    from sqlalchemy.orm import sessionmaker
    import yaml

    def read_file(filename):
        with open(filename) as f:
            data = yaml.load(f.read())

    def run_command(cmd):
        return subprocess.check_call(cmd, shell=True)

    db = create_engine('sqlite:///somedatabase')
    Session = sessionmaker(bind=db)

    def get_user(uid):
        session = Session()
        query = "select * from user where id='%s'" % uid
        return session.execute(query)

Running Bandit over that script will detect the three issues and explain the problems in
detail:

$ bandit bandit_example.py
...
Run started:2017-03-20 08:47:06.872002

Test results:
>> Issue: [B404:blacklist] Consider possible security implications
associated with subprocess module.
   Severity: Low   Confidence: High
   Location: bandit_example.py:1
1  import subprocess
2  from sqlalchemy import create_engine
3  from sqlalchemy.orm import sessionmaker

--------------------------------------------------
>> Issue: [B506:yaml_load] Use of unsafe yaml load. Allows instantiation of
arbitrary objects. Consider yaml.safe_load().
   Severity: Medium   Confidence: High
   Location: bandit_example.py:9

 bandit_example.py



Securing Your Services

[ 201 ]

8      with open(filename) as f:
9          data = yaml.load(f.read())
10

--------------------------------------------------
>> Issue: [B602:subprocess_popen_with_shell_equals_true] subprocess call
with shell=True identified, security issue.
   Severity: High   Confidence: High
   Location: bandit_example.py:13
12 def run_command(cmd):
13     return subprocess.check_call(cmd, shell=True)
14

--------------------------------------------------
>> Issue: [B608:hardcoded_sql_expressions] Possible SQL injection vector
through string-based query construction.
   Severity: Medium   Confidence: Low
   Location: bandit_example.py:23
22     session = Session()
23     query = "select * from user where id='%s'" % uid
24     return session.execute(query)

--------------------------------------------------

...
Files skipped (0):

For this book, we are using the version Bandit 1.4.0. It has 64 security checks included, and
is very easy to extend if you want to create your own checks. You can also tweak its
configuration by creating a configuration file in your project.

One security check, for instance, will emit a security warning in case your are running Flask
in debug mode, since this is a security issue in production. Consider the following example:

$ bandit flask_app.py
...
Test results:
>> Issue: [B201:flask_debug_true] A Flask app appears to be run with
debug=True, which exposes the Werkzeug debugger and allows the execution of
arbitrary code.
   Severity: High   Confidence: Medium
   Location: flask_app.py:15
14 if __name__ == '__main__':
15     app.run(debug=True)



Securing Your Services

[ 202 ]

This is a great check when shipping in production, but when developing your application,
you will want to turn this one off. Excluding your test's modules for security scanning is
also a good idea.

The following configuration file, which can be used with the ini option will ignore that
issue and exclude tests/ files:

[bandit]
skips: B201
exclude: tests

Adding a bandit call in your continuous integration pipeline alongside
tools such as coveralls, as described in Chapter 3, Coding, Testing, and
Documenting - The Virtuous Cycle, is a good way to catch potential security
issues in your code.

Summary
In this chapter, we've looked at how to centralize authentication and authorization in a
microservices-based application environment using OAuth2 and JWT tokens. Tokens give
us the ability to limit what and for how long a caller can do on one of the microservices.

When used with public/private keys, it also prevents an attacker that breaks into one service
to break the whole app, as long as it's not the token issuer that's compromised.

Beyond system-level firewall rules, a Web Application Framework is also a good way to
prevent some fraud and abuse on your endpoints and is very easy to do with a tool such as
OpenResty, thanks to the power of the Lua programming language.

OpenResty is also an excellent way to empower and speed up your microservices by doing
a few things at the web server level when it does not need to be done within the Flask
application.



Securing Your Services

[ 203 ]

Lastly, a secure code base is the first step to a secure application. You should follow good
coding practices and make sure your code does not do anything stupid when interacting
with incoming user data and resources. While a tool like Bandit will not magically make
your code safe and secure, it will catch the most obvious potential security issues, so there's
no hesitation to continuously run it on your code base.

One part that we did not cover in this chapter is how an end user is securely interacting
with our microservices. This is covered in the next chapter, where we will wrap up
everything and demonstrate how the Runnerly application can be used through a client-
side JavaScript application.



8
Bringing It All Together

Most of the work done so far has focused on building microservices, and making them
interact with each other. It is time to bring everything together by creating the tip of the
iceberg--the User Interface (UI) through which our end users use the whole system with a
browser.

Modern web applications rely a lot on client-side JavaScript (JS). Some JS frameworks go
all the way to provide a full Model-View-Controller (MVC) system, which runs in the
browser and manipulates the Document Object Model (DOM), which is the structured
representation of the web page that's rendered in your browser.

The web development paradigm has shifted from rendering everything on the server side,
to rendering everything on the client side with data collected from the server on demand.
The reason is that modern web applications change portions of a loaded web page
dynamically instead of calling the server for a full rendering. It is faster, requires less
network bandwidth, and offers a richer user experience. One of the biggest examples of this
shift is the Gmail app, which pioneered the client-side field circa 2004.

Tools like Facebook's ReactJS (h t t p s ://f a c e b o o k . g i t h u b . i o /r e a c t /) provide high-level
APIs to avoid manipulating the DOM directly, and offer a level of abstraction, which makes
client-side web development as comfortable as building Flask applications.

That said, there is a new JS framework every other week, and it is hard to decide which one
should be used. AngularJS (h t t p s ://a n g u l a r j s . o r g /) used to be the coolest toy, and now
it seems many developers have switched to implement most of their application UIs with
plain ReactJS. Moreover, maybe later in 2017, another new player will be popular.

https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/


Bringing It All Together

[ 205 ]

This volatility is not a bad sign at all. It simply means much innovation is happening in the
JavaScript and browsers ecosystem. Features like Service Workers (h t t p s ://d e v e l o p e r . m o

z i l l a . o r g /e n /d o c s /W e b /A P I /S e r v i c e _ W o r k e r _ A P I ), for instance, are game changers in
web development, because they allow developers to run JS code in the background,
natively. A new wave of JS tools will probably emerge from that new feature.

As long as you have a clean separation between your UI and the rest of the system, moving
from one JS framework to the other should not be too hard. That means, you should not
change how your microservices publish data to make them specific to a JS framework.

For Runnerly, we shall use ReactJS to build our little dashboard, and we will wrap it in a
dedicated Flask application, which bridges it to the rest of the system. We will also see how
that app can interact with all our microservices.

This chapter is composed of the following three parts:

Building a ReactJS dashboard--a short introduction to ReactJS with an example
How to embed ReactJS in a Flask app
Authentication and authorization

By the end of this chapter, you should have a good understanding of how to build a web UI
in Flask, and how to make it interact with microservices whether you choose to use ReactJS
or not.

Building a ReactJS dashboard
The ReactJS framework implements its abstraction of the DOM, and makes all the event
machinery fast and efficient. Creating a UI using ReactJS consists of creating some classes
with a few methods, which are called by the engine when the page is created or updated.

This approach means that you do not have to worry about what will happen when the
DOM changes anymore. All you have to do is implement some methods, and let React take
care of the rest.

Implementing classes for React can be done in JavaScript or JSX. We will discuss about it in
the next section.

https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API


Bringing It All Together

[ 206 ]

The JSX syntax
The JSX syntax extension (h t t p s ://f a c e b o o k . g i t h u b . i o /j s x /) adds XML tags to JS, and
can be used by tools like ReactJS when the rendering of the page happens. It is promoted by
the ReactJS community as the best way to write React apps.

In the following example, a <script> section contains a div variable whose value is an
XML tree representing a div. This syntax is valid JSX. From there, the ReactDOM.render()
function can render the div variable in the DOM.

    <!DOCTYPE html>
    <html>
      <head lang="en">
        <meta charset="UTF-8">
      </head>
      <body>
        <div id="content"></div>
        <script src="/static/react/react.min.js"></script>
        <script src="/static/react-dom.min.js"></script>
        <script src="/static/babel/browser.min.js"></script>

        <script type="text/babel">
          var div =
              <div>
                  Hello World
              </div>
         ReactDOM.render(div, document.getElementById('content'));
        </script>
      </body>
    </html>

The two ReactJS scripts are part of the React distribution. The browser.min.js file is part
of the Babel distribution, and needs to be loaded before the browser encounters any JSX
syntax. Babel converts JSX syntax into JS. This conversion is called transpilation.

Babel (h t t p s ://b a b e l j s . i o /) is a transpiler, which can convert JSX to JS
on-the-fly, among other available conversions. To use it, you simply need
to mark a script as being of type text/babel.

The JSX syntax is the only very specific thing to know about React, as everything else is
done with common JavaScript language. From there, building a ReactJS app consists of
creating JS classes--with or without JSX--which is used to render web pages.

Let's now look at the heart of ReactJS, components.

https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://facebook.github.io/jsx/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/


Bringing It All Together

[ 207 ]

React components
ReactJS is based on the idea that the page can be decomposed into basic components, which
are called for rendering parts of the page.

For example, if you want to display a list of runs, you can create a Run class that is in charge
of rendering a single run given its values, and a Runs class that iterates through a list of
runs, and call the Run class to render each item.

Each class is created with the React.createClass() function, which receives a mapping
containing the future class methods. The createClass() function generates a new class,
and sets a props attribute to hold some properties alongside the provided methods.

In the following example, in a new JavaScript file we define a Run class with a render()
function, which returns a <div> tag, and a Runs class:

    var Run = React.createClass( {
      render: function()  {
        return (
          <div>{this.props.title} ({this.props.type})</div>
        );
      }
    } );

    var Runs = React.createClass( {
      render: function()  {
        var runNodes = this.props.data.map(function (run)  {
          return (
            <Run
              title= {run.title}
              type= {run.type}
            />
          );
        } );
        return (
          <div>
            {runNodes}
          </div>
        );
      }
    } );

The Run class returns in a div this value: {this.props.title} ({this.props.type}),
which is rendered by visiting the props attribute in the Run instance.



Bringing It All Together

[ 208 ]

The props array is populated when the Run instance is created, and that is what happens in
the render() method of the Runs class. The runNode variable iterates through the
Runs.props.data list, which contains a list of runs.

That is our last piece of the puzzle. We want to instantiate a Runs class, and put a list of
runs to be rendered by React in its props.data list.

In our Runnerly app, this list can be provided by the microservice that publishes runs, and
we can create another React class, which loads this list asynchronously using an
Asynchronous JavaScript and XML (AJAX) pattern via an HxmlHttpRequest class.

That is what happens in the loadRunsFromServer() method in the following example.
The code calls the server to get the data by making a GET request on the URL set in the
props, and sets the value of props.data by calling the setState() method.

    var RunsBox = React.createClass( {
      loadRunsFromServer: function()  {
        var xhr = new XMLHttpRequest();
        xhr.open('get', this.props.url, true);
        xhr.onload = function()  {
          var data = JSON.parse(xhr.responseText);
          this.setState( { data: data } );
        } .bind(this);
        xhr.send();
      } ,

      getInitialState: function()  {
        return  {data: []} ;
      } ,

      componentDidMount: function()  {
        this.loadRunsFromServer();
      } ,

      render: function()  {
        return (
          <div>
            <h2>Runs</h2>
            <Runs data= {this.state.data}  />
          </div>
        );
      }
    } );

    // this will expose RunsBox globally
    window.RunsBox = RunsBox;



Bringing It All Together

[ 209 ]

When the state changes, it triggers the React class to update the DOM with the new data.
The framework calls the render() method, which displays the <div> containing Runs.
The Runs instance, and then each Run instance, are handed down in a cascade.

To trigger the loadRunsFromServer() method, the class implements the
componentDidMount() method, which gets called once the class instance is created and
mounted in React, ready to be displayed. Last, but not the least, the getInitialState()
method is called on instantiation, and can be used to initialize the instance of the props
attribute with an empty data array.

This whole process of decomposition and chaining may seem complicated, but once in
place, it is quite powerful, because it allows you to focus on rendering each component and
letting React deal with how to do it in the most efficient way in the browser.

Each component has a state, and when something changes, React first updates its own
internal representation of the DOM--the virtual DOM. Once that virtual DOM is changed,
React can apply the required changes efficiently on the actual DOM.

All the JSX code we've seen in this section can be saved in a JSX module, and used in an
HTML page as follows:

    <!DOCTYPE html>
    <html>
      <head lang="en">
        <meta charset="UTF-8">
        <title>Runnerly Dashboard</title>
      </head>
      <body>
        <div class="container">
          <h1>Runnerly Dashboard</h1>
          <br>
          <div id="runs"></div>
        </div>
        <script src="/static/react/react.js"></script>
        <script src="/static/react/react-dom.js"></script>
        <script src="/static/babel/browser.min.js"></script>
        <script src="/static/runs.jsx" type="text/babel"></script>
        <script type="text/babel">
        ReactDOM.render(
          <window.RunsBox url="/api/runs.json" />,
          document.getElementById('runs')
        );
       </script>
      </body>
    </html>



Bringing It All Together

[ 210 ]

The RunsBox class is instantiated with the /api/runs.json URL for this demo, and once
the page is displayed, React calls that URL, and expects to get back a list of runs, which it
passes down to the Runs and Run instances.

Notice that we have used window.RunsBox instead of RunBox, because the Babel transpiler
does not expose the global variables from the runs.jsx file. That is why we had to set the
variable as an attribute of the window variable so it could be shared between the <script>
sections.

Using transpiration directly into the browser is a bad idea. It is much better to transpile
your JSX files beforehand, as we will see in the next section.

This section described a very basic usage of the ReactJS library, and did
not dive into all its possibilities. If you want to get more info on React, you
should try the tutorial at h t t p s ://f a c e b o o k . g i t h u b . i o /r e a c t /t u t o r i a l

/t u t o r i a l . h t m l as your first step. This tutorial shows you how your React
components can interact with the user through events, which is the next
step once you know how to do some basic rendering.

Now that we have the basic layout for building a React-based UI, let's see how we can
embed it in our Flask world.

ReactJS and Flask
People building React apps usually code their server-side parts in Node.js (h t t p s ://n o d e j s

. o r g /e n /), because it is simpler to stick with a single language and use its ecosystem for all
the tools that are used when working with an application.

However, serving React apps with Flask is not a problem at all. The HTML page can be
rendered using Jinja2, and the transpiled JSX files serve as static files like you would do for
JavaScript files. Moreover, as we have seen in the previous section, we can get the React
distribution as JS files, and just add them into our Flask static directory alongside other files.

https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/tutorial/tutorial.html
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/


Bringing It All Together

[ 211 ]

Our Flask app, let's name it dashboard, will start off with a simple structure like this:

setup.py

dashboard/

__init__.py

app.py

templates/

index.html

static/

runs.jsx

Also, the app.py file, a basic Flask application that serves the unique HTML file, will be
like this:

    from flask import Flask, render_template,

    app = Flask(__name__)

    @app.route('/')
    def index():
        return render_template('index.html')

    if __name__ == '__main__':
        app.run()

Thanks to Flask's convention on static assets, all the files contained inside the static/
directory is served under the /static URL.

The index.html template looks like the one described in the previous section, and can
grow into something Flask-specific later on.

That is all we need to serve a ReactJS-based app from Flask. However, dropping ReactJS
distributions into your Flask static repository is not the best way to maintain your project.
We need something better to manage JS dependencies. Moreover, the JavaScript world has
great tools to do it as we will see in the next section.

Using Bower, npm, and Babel
So far, we have used static JavaScript files to build our React UI in a Flask app. However,
like the JS community does, it is much better to handle React and any other Javascript
library as a package we want to update--like how we do with Python packages regularly.



Bringing It All Together

[ 212 ]

To do this, we can install the JavaScript package manager on our system npm (h t t p s ://w w w

. n p m j s . c o m /). The npm package manager is installed via Node.js. On macOS, the brew
install node command does the trick, or you can go to the Node.js home page (h t t p s

://n o d e j s . o r g /e n /), and download it to the system.

Once Node.js and npm are installed, you should be able to call the npm command from the
shell as follows:

$ npm -v
3.5.2

To manage JavaScript dependencies in our Flask project, we will use Bower (h t t p s ://b o w e

r . i o /), a package manager for web applications, which leverages npm to package all JS
dependencies required for a web app--like PIP does for Python packages.

To install Bower, use the npm command like this:

$ npm install -g bower

The -g switch means that Bower is installed globally in your system's npm, and if the
installation worked, you should get a new bower command-line utility.

Once Bower is installed, you can go to the root of your Flask Dashboard app, and run the
interactive init command like this:

$ bower init
? name dashboard
? description A ReactJS based Dashboard for Runnerly
? authors Tarek Ziade <tarek@ziade.org>
...

{
  name: 'dashboard',
  authors: [
    'Tarek Ziade <tarek@ziade.org>'
  ],
  description: 'A ReactJS based Dashboard for Runnerly',
  main: '',
  license: 'MIT',
  homepage: '',
  ignore: [
    '**/.*',
    'node_modules',
    'bower_components',
    'test',
    'tests'

https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/
https://bower.io/


Bringing It All Together

[ 213 ]

  ]
}

? Looks good? Yes

After a few questions, the call creates a bower.json configuration file, which is used by
Bower when grabbing the JavaScript libraries.

Since we want to serve the JavaScript files from our Flask app (and in production from
nginx, for instance), we also tell Bower the location of the static directory by adding a
.bowerrc file with this content:

{"directory": "dashboard/static"}

Now, if we call Bower's install command to install React and jQuery, the static directory is
automatically populated with both libraries.

$ bower install --save jquery react
...
jquery#3.2.1 dashboard/static/jquery
react#15.4.2 dashboard/static/react

The preceding call will also populate the bower.json file with those dependencies. This
mechanism is an excellent way to keep track of dependencies when the project gets
reinstalled. Think of it as a PIP requirements.txt file automatically populated when you
call the pip install command.

We also need to install the Babel transpiler with npm to transpile the JSX files into JS files
and its React preset, as follows:

$ npm init
$ npm install -save-dev babel-cli babel-preset-react

These preceding calls install the packages locally, and create a package.json file, which is
similar to the bower.json one. Moreover, the babel command line is made available in
node_modules/.bin/.

From there, running this command converts all our JSX files into a single, plain JS file called
dashboard.js.

$ node_modules/.bin/babel dashboard/static/*.jsx >
dashboard/static/dashboard.js

Once this Babel command is called, our Flask template can use the JS version of the React
classes by pointing to the JS file instead of the JSX file. In that case, there's no need to do a
client-side transpilation on the fly.



Bringing It All Together

[ 214 ]

It also means that all the global variables we have in our JSX files are now visible
everywhere, so, we do not need to hook them on the window variable.

We can also move the ReactDOM.render() method call, which we had in a dedicated
<script> section, into a dedicated zrender.jsx file, like this:

ReactDOM.render(
  <RunsBox url="/api/runs.json" />,
  document.getElementById('runs')
);

Notice that the file starts with a z to ensure that Babel injects it at the end of the
dashboard.js file when it generates it - since scripts are treated in alphabetical order. This 
ensures that the RunBox class and any other needed variable or JS element are defined
before the render call.

There are other ways to handle inter-module dependencies. Tools like
RequireJS (h t t p ://w w w . r e q u i r e j s . o r g /) offer an interesting approach to
solve this issue. However, for our little dashboard backed by Flask, which
does not have a lot of JS files, what was presented should be good enough.

With all the changes, the final index.html file will look like this:

    <!DOCTYPE html>
    <html>
      <head lang="en">
        <meta charset="UTF-8">
        <title>Runnerly Dashboard</title>
      </head>
      <body>
        <div class="container">
          <h1>Runnerly Dashboard</h1>
          <br>
          <div id="runs"></div>
        </div>
        <script src="/static/react/react.js"></script>
        <script src="/static/react/react-dom.js"></script>
        <script src="/static/dashboard.js"></script>
      </body>
    </html>

Throughout this section, we have worked with the assumption that the JSON data that
React picked was served by the same Flask app at the /api/runs.json endpoint.

http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/
http://www.requirejs.org/


Bringing It All Together

[ 215 ]

Doing AJAX calls on the same domain is not an issue, but in case you need to call a
microservice that belongs to another domain, there are a few changes required on both the
server and the client side.

Let's see how to do cross-domain calls in the next section.

Cross-origin resource sharing
Allowing client-side JavaScript AJAX to perform cross-domains requests is a potential
security risk. If the JS code that's executed in the client page for your domain tries to call
another domain that you don't own, it could potentially run malicious JS code and harm
your users.

That is why all browsers in the market have a Same-Origin Policy when an asynchronous call
is made. They ensure that the request is made on the same domain.

Beyond security, it is also a good way to prevent someone from using your bandwidth for
their web app. For instance, if you provide a few font files on your website, you might not
want another website to use them on their page, and use your bandwidth without any
control.

However, there are legitimate use cases for wanting to share your resources to other
domains, and you can set up rules on your service to allow other domains to reach your
resources.

That is what Cross-Origin Resource Sharing (CORS) is all about. When the browser sends
an AJAX request to your service, an Origin header is added, and you can control that it is
in the list of authorized domains.

If not, the CORS protocol requires that you send back a few headers listing the allowed
domains.

There's also a preflight mechanism, where the browser pokes the endpoint via an OPTIONS
call to know if the request it wants to make is authorized.

On the client side, you do not have to worry about setting up these mechanisms. The
browser makes the decisions for you depending on your requests.



Bringing It All Together

[ 216 ]

However, on the server side, you need to make sure your endpoints answer to the OPTIONS
calls, and you need to decide which domains are allowed to reach your resources. If your
service is public, you can authorize all domains with a wildcard. However, for a
microservice-based application where you control the client side, you should restrict the
domains.

In Flask, you can use Flakon's crossdomain() decorator to add CORS support to an API
endpoint. In the following Flask app, the /api/runs.json endpoint can be used by any
domain:

    from flask import Flask, jsonify
    from flakon import crossdomain

    app = Flask(__name__)

    @app.route('/api/runs.json')
    @crossdomain()
    def _runs():
        run1 = {'title': 'Endurance', 'type': 'training'}
    run2 = {'title': '10K de chalon', 'type': 'race'}
    _data = [run1, run2]
    return jsonify(_data)

    if __name__ == '__main__':
        app.run(port=5002)

When running this app and using cURL to do a GET request, we can see that the Access-
Control-Allow-Origin:* header is added:

$ curl -v http://localhost:5002/api/runs.json
*   Trying localhost...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 5002 (#0)
> GET /api/runs.json HTTP/1.1
> Host: localhost:5002
> User-Agent: curl/7.51.0
> Accept: */*
>
* HTTP 1.0, assume close after body
< HTTP/1.0 200 OK
< Content-Type: application/json
< Access-Control-Allow-Origin: *
< Content-Length: 122
< Server: Werkzeug/0.12.1 Python/3.5.2
< Date: Tue, 04 Apr 2017 07:39:48 GMT
<
[



Bringing It All Together

[ 217 ]

  {
    "title": "Endurance",
    "type": "training"
  },
  {
    "title": "10K de chalon",
    "type": "race"
  }
]
* Curl_http_done: called premature == 0
* Closing connection 0

This is the default permissive behavior of the crossdomain() decorator, but you can set up
fine-grained permissions for each endpoint, and restrict them to specific domains. You can
even whitelist allowed HTTP verbs. Flakon also has CORS features at the blueprint level.

For our use case, allowing a domain is good enough. If your JS app is served by a Flask app
the runs on localhost:5000 for instance, you can restrict calls to that domain with the
following:

    @app.route('/api/runs.json')
    @crossdomain(origins=['http://localhost:5000'])
    def _runs():
        ...

In case a call is made from a browser with origin other than http://localhost:5000, the
data is not returned.

Notice that in the case of rejection on a disallowed domain, the decorator returns a 403
response. The CORS protocol does not define what should be the status code when a
rejection happens, so, that is an implementation choice.

For an in-depth understanding of CORS, the MDN page is a great resource
and can be found at the following link: h t t p s ://d e v e l o p e r . m o z i l l a . o r g
/e n - U S /d o c s /W e b /H T T P /A c c e s s _ c o n t r o l _ C O R S

In this section, we have looked at how to set up CORS headers in our services to allow
cross-domain calls, which are useful in JS apps.

What's still missing to make our JS app fully functional is authentication and authorization.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS


Bringing It All Together

[ 218 ]

Authentication and authorization
The React dashboard needs to be able to authenticate its users, and perform authorized calls
on some microservices. It also needs to let the user grant access to Strava.

We make the assumption that the dashboard only works when you are authenticated, and
that there are two kinds of users: first-time user and returning user.

Following is the user story for first-time users:

As a first-time user, when I visit the dashboard, there's a "login" link. When I click on it,
the dashboard redirects me to Strava to grant access to my resources. Strava then redirects
me back to the dashboard, and I am connected. The dashboard then starts to fill with my
data.

As described, our Flask app performs an OAuth2 dance with Strava to authenticate users.
Connecting to Strava also means we need to store the access token into the Runnerly user
profile so we can use it to fetch runs later on.

Before going further, we need to make a design decision: do we want the dashboard
merged with the DataService, or do we want to have two separate apps?

Interacting with Data Service
We have said in Chapter 4, Designing Runnerly, that a safe approach to designing
microservices is to avoid creating new ones without a good reason.

The database that holds user data is served by the DataService microservice, which is used
by the Celery workers. The first option that comes to mind is to have a single Flask
application, which manages that database, and serves both our end users with its HTML
and JS content and other microservices with its JSON APIs.

The benefit of this approach is that we do not need to worry about implementing yet
another network interaction between the dashboard and DataService. Moreover, besides the
ReactJS app, there's not a lot we need to add on top of DataService to make it usable for
both use cases.

However, by doing this, we are not benefiting from one of the advantages of microservices.
Each microservice focuses on doing a single thing.



Bringing It All Together

[ 219 ]

While it is always safer to start with a conservative approach, let's think for a minute how a
split would impact our design. If the dashboard is on its own, it needs to drive DataService
to create and change users' info in DataService. This means that DataService needs to
expose some HTTP APIs to do this. The biggest risk of exposing a database via HTTP is that
whenever it changes, the API might get impacted.

However, that risk can be limited if the exposed endpoints hide the database structure as
much as possible, the opposite of CRUD-like APIs.

For example, the API to create a user in DataService could be a POST that just asks for the
user's Strava token and e-mail, and returns some user ID. This information should rarely
change, and the dashboard can simply act as a proxy between the users and DataService.

A significant benefit of having the Dashboard app isolated from the DataService is stability.
When building an application like Runnerly, developers often reach a point where the core
of the application is stable, and then they iterate a lot on the User Interface (UI) and User
Experience (UX). In other words, the dashboard is probably going to evolve a lot while the
DataService app should reach a stable point quite fast.

For all those reasons, having two separate apps for the dashboard and DataService sounds
like a low risk.

Now that the design decision is made, let's look at how to perform the OAuth2 dance with
Strava.

Getting the Strava token
Strava provides a typical three-legged OAuth2 implementation, and stravalib (h t t p s ://g i t

h u b . c o m /h o z n /s t r a v a l i b ), all the tools to use it.

Implementing the dance is done by redirecting the user to Strava and exposing an endpoint
the user is redirected to once granted access to Strava.

What we get in return is the user info from its Strava account along with the token access.
We can store all this info in the Flask session, use it as our login mechanism, and pass the e-
mail and token values to DataService so that the Celery strava worker can also use the
token.

https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib
https://github.com/hozn/stravalib


Bringing It All Together

[ 220 ]

Like we did in Chapter 4, Designing Runnerly, let's implement the function that generates
the URL to send the user to, as follows:

    from stravalib.client import Client
    def get_strava_url():
        client = Client()
        cid = app.config['STRAVA_CLIENT_ID']
        redirect = app.config['STRAVA_REDIRECT']
        url = client.authorization_url(client_id=cid,
redirect_uri=redirect)
        return url

That function takes client_id from the Runnerly application (generated in the Strava API
settings panel) and the redirect URL defined for the dashboard, and returns a URL we can
present to the user.

The dashboard view can be changed accordingly to pass that URL to the template.

    from flask import session

    @app.route('/')
    def index():
        strava_url = get_strava_url()
        user = session.get('user')
        return render_template('index.html', strava_url=strava_url,
                                user=user)

We also pass a user variable if there's any stored into the session. The template can then
use the Strava URL to display a login/logout link as follows:

      {% if not user %}
      <a href="{{strava_url}}">Login via Strava</a>
      {% else %}
      Hi {{user}}!
      <a href="/logout">Logout</a>
      {% endif %}

When the user clicks on the login link, she is redirected to Strava and back to our 
application on the endpoint defined by STRAVA_REDIRECT.

The implementation of that view can be like this

    @app.route('/strava_redirect')
    def strava_login():
        code = request.args.get('code')
        client = Client()
        cid = app.config['STRAVA_CLIENT_ID']



Bringing It All Together

[ 221 ]

        csecret = app.config['STRAVA_CLIENT_SECRET']
        access_token = client.exchange_code_for_token(client_id=cid,
client_secret=csecret, code=code)
        athlete = client.get_athlete()
        email = athlete.email
        session['user'] = email
        session['token'] = access_token
        send_user_to_dataservice(email, access_token)
        return redirect('/')

The stravalib library's Client class converts the code with a token we can store in the
session, and lets us grab some info on the user using the get_athlete() method.

Lastly, the send_user_to_dataservice(email, access_token) can interact with the
DataService microservice to make sure the e-mail and access tokens are stored there, using a
JWT-based access.

We are not detailing how Dashboard interacts with the TokenDealer, since we have already
shown it in Chapter 7, Securing Your Services. The process is similar--the Dashboard app
gets a token from TokenDealer, and uses it to access DataService.

The last part of authentication is in the ReactJS code, as we will see in the next section.

JavaScript authentication
When the Dashboard app performs the OAuth2 dance with Strava, it stores user 
information into the session, which is perfect to have the user authenticate the dashboard.

However, when the ReactJS UI calls the DataService microservice to display the user runs,
we need to provide an authentication header.

There are the following two ways to handle this problem:

Proxy all the calls to the microservices via the Dashboard web app using the
existing session information
Generate a JWT token for the end user, which they can store and use against
another microservice

The proxy solution is the simplest one by all means, because it removes the need to generate
one token per user for accessing DataService. It also prevents us from exposing DataService
publicly. Hiding everything behind the dashboard means we have more flexibility to
change the internals while keeping the UI compatible.



Bringing It All Together

[ 222 ]

The problem with that approach, though, is that we are forcing all the traffic through the
Dashboard service even when it is not needed. Ideally, updating the list of displayed runs
should not be something that the Dashboard server should worry about.

The second solution is more elegant with the microservices design. We are dealing tokens,
and the Web UI is just one of the clients for some microservices. However, that also means
the client has to deal with two authentication loops. If the JWT token gets revoked, the
Client app needs to authenticate back even if the Strava token is still valid.

The first solution is probably the best bet for a first version. Proxying calls to microservices
on behalf of the user means that the Dashboard application uses its JWT token to call
DataService to grab the user data.

DataService, as explained in Chapter 4, Designing Runnerly, uses the following API pattern
to return runs: GET /runs/<user_id>/<year>/<month>.

If we make the assumption that the Dashboard keeps track of the (e-mail, user ID) tuples,
the proxy view for that API can be GET /api/runs/<year>/<month>. From there, the
Dashboard code can find back the user ID given the user e-mail currently logged into the
session via Strava.

The proxy code can look like this:

    @app.route('/api/runs/<int:year>/<int:month>')
    def _runs(year, month):
        if 'user' not in session:
            abort(401)
        uid = email_to_uid(session['user'])
        endpoint = '/runs/%d/%d/%d' % (uid, year, month)
        resp = call_data_service(endpoint)
        return jsonify(resp.json())

The call_data_service() function calls the DataService endpoint with a JWT token, and
email_to_uid() converts the e-mail to the corresponding user ID.



Bringing It All Together

[ 223 ]

Last, to make sure this approach works, you need to use the withCredentials option on
every xhr calls so that cookies and authentication headers are sent when AJAX calls are
made.

    var xhr = new XMLHttpRequest();
    xhr.open('get', URL, true);
    xhr.withCredentials = true;
    xhr.onload = function()  {
      var data = JSON.parse(xhr.responseText);
      ...
    } .bind(this);

    xhr.send();

Summary
In this chapter, we looked at how to build a ReactJS UI wrapped into a Flask application
(Dashboard). ReactJS is an excellent way to build a modern interactive UI in the browser--it
introduces a new syntax called JSX, which speeds up JS execution.

We also looked at how to use a toolchain based on npm, Bower, and Babel to manage JS
dependencies, and transpile JSX files.

The Dashboard application uses Strava's three-legged OAuth API to connect users and get
back a token from the Strava service. We made the design decision to separate the
Dashboard application from DataService, so the token is sent to the DataService
microservice for storage. That token can then be used by the Strava Celery worker to fetch
runs on behalf of the user.

Lastly, the calls made to different services to build the dashboard are proxied through the
Dashboard server to simplify the client side--which deals with a single server and a single
authentication and authorization process.



Bringing It All Together

[ 224 ]

The following is a diagram of the new architecture, which includes the Dashboard app:

You can find the full code of the Dashboard in the Runnerly org at h t t p s

://g i t h u b . c o m /r u n n e r l y /d a s h b o a r d .

With now six different Flask apps that compose it, developing an application like Runnerly
can be a challenge when you are a developer.

There's an obvious need to be able to run all microservices in a single dev box without too
much pain.

After a dive into how packaging works in Python, the next chapter explains how to package
our Python microservices, and how to run them in development mode in a single box via a
process manager.

https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard
https://github.com/runnerly/dashboard


9
Packaging and Running

Runnerly
When the Python programming language was first released in the early 1990s, a Python
application was run by pointing the Python scripts to the interpreter. Everything related to
packaging, releasing, and distributing Python projects was done manually. There was no
real standard back then, and each project had a long README on how to install it with all
its dependencies.

Bigger projects used the system packaging tools to release their work--whether it was
Debian packages, RPM packages for Red-Hat Linux distributions, or things like MSI
packages under Windows. Eventually, the Python modules from those projects all ended up
in the site-packages directory of the Python installation, sometimes after a compilation phase,
if you had a C extension.

The Python packaging ecosystem has evolved a lot since then. In 1998, Distutils was added
in the standard library to provide essential support to create installable distributions for
Python projects. Between then and now, a lot of new tools have emerged from the
community to improve how a Python project can be packaged, released, and distributed.

This chapter is going to explain how to use the latest Python packaging tools for your
microservices.

The other hot topic around packaging is how it fits in your day-to-day work. When building
microservices-based software, you need to deal with many moving parts. When you are
working in a particular microservice, you can get away with it most of the time by using the
TDD and mocking approach, which we discussed in Chapter 3, Coding, Testing, and
Documenting - The Virtuous Cycle.



Packaging and Running Runnerly

[ 226 ]

However, if you want to do some realistic testing, where poking around each service is
needed, you have to have the whole stack running in a single box. Moreover, developing in
such a context can be tedious if you need to reinstall new versions of your microservices all
the time.

It begs one question: how can you correctly install the whole stack in your environment and
develop in it?

It also means you have to run all the microservices if you want to play with the app. In the
case of Runnerly, having to open six different shells to run all the microservices is not
something a developer would want to do every time they need to run the app.

In this chapter, we are going to look at how we can leverage the packaging tools to run all
microservices from the same environment, and then how to run them all from a single
command-line interface by using a dedicated process manager.

However, first, let's look at how to package your projects, and which tools should be
utilized.

The packaging toolchain
Python has come a long way in the past ten years on packaging. Numerous Python
Enhancement Proposals (PEPs) were written to improve how to install, release, and
distribute Python projects.

Distutils had some flaws, which made it a little tedious to release apps. The biggest pain
points were its lack of dependencies management and the way it handled compilation and
binary releases. For everything related to compiling, what worked well in the nineties
started to get old fashioned ten years later. No one in the core team made the library evolve
for lack of interest, and because Distutils was good enough to compile Python and most
projects. People who needed advanced toolchains used other tools, like SCons (h t t p ://s c o

n s . o r g /).

In any case, improving the toolchain was not an easy task because of the existing legacy
system based on Distutils. Starting a new packaging system from scratch was quite hard,
since Distutils was part of the standard library, but introducing backward-compatible
changes was also hard to do properly. The improvements were made in-between. Projects
like Setuptools and Virtualenv were created outside the standard library, and some
changes were made directly into Python.

http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/
http://scons.org/


Packaging and Running Runnerly

[ 227 ]

As of today, you still find the scars from these changes, and it is still quite hard to know
exactly how things should be done. For instance, the pyvenv command was added in
Python and then removed in Python 3.6, but Python still ships with its virtual environment
module, which competes with the Virtualenv project with some respect.

The best bet is to use the tools that are developed and maintained outside the standard
library, because their release cycle is shorter than Python's. In other words, a change in the
standard library takes months to be released, whereas a change in a third-party project can
be made available much faster.

All third-party projects that are considered as being part of the de facto standard packaging
toolchain are now all grouped under the PyPA (h t t p s ://w w w . p y p a . i o ) umbrella project.

Besides developing the tools, PyPA also works on improving the packaging standards
through proposing PEPs for Python and developing its early specifications--refer to h t t p s

://w w w . p y p a . i o /e n /l a t e s t /r o a d m a p /. In 2017, we are still in a confusing state for
packaging, as we have a few competing standards, but things have improved, and the
future should look better.

Before we start to look at the tools that should be used, we need to go through a few
definitions to avoid any confusion.

A few definitions
When we talk about packaging Python projects, a few terms can be confusing, because their
definitions have evolved over time, and also because they can mean slightly different things
outside the Python world.

We need to define, what's a Python package, a Python project, a Python library, and a
Python application. They are defined as follows:

A Python package is a directory tree containing Python modules. You can import
it, and it is part of the module namespace.

A Python project can contain several packages and other resources, and is what
you release. Each microservice you build with Flask is a Python project.

A Python application is a Python project that can be directly used through a user
interface. The user interface can be a command-line script or a web server.

Lastly, a Python library is a specific kind of Python project which provides
features to be used in other Python projects, and has no direct user interface.

https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/
https://www.pypa.io/en/latest/roadmap/


Packaging and Running Runnerly

[ 228 ]

The distinction between an application and a library can be quite vague, since some
libraries sometimes offer some command-line tools to use some of its features, even if the
first use case is to provide Python packages for other projects. Moreover, sometimes, a
project that was a library becomes an application.

To simplify the process, the best option is to make no distinction between applications and
libraries. The only technical difference is that applications ship with more data files and
console scripts.

Now that we have defined Python package, project, application, and library, let's look at
how to package your projects.

Packaging
When you package your Python project, there are three necessary files you need to have
alongside your Python packages:

setup.py: A special module, which drives everything
requirements.txt: A file listing dependencies
MANIFEST.in: A template file to list the files to be included in the releases

Let's look at each one of them in detail.

The setup.py file
The setup.py file is what governs everything when you want to interact with a Python
project. When the setup() method is executed, it generates a static metadata file, which
follows the PEP 314 format. The metadata file holds all the metadata for the project, but you
need to regenerate it via a setup() call to get it to the Python environment you are using.

The reason why you cannot use a static version is that the author of a project might have
platform-specific code in setup.py, which generates a different metadata file depending on
the platform and Python versions.

To rely on running a Python module to extract static information about a project has always
been a problem. You need to make sure that the code in the module can run in the target
Python interpreter. If you are going to make your microservices available to the
community, you need to keep that in mind, as the installation happens in many different
Python environments.



Packaging and Running Runnerly

[ 229 ]

PEP 390 (2009) was the first attempt to get rid of the setup.py file for
metadata. PEP 426, PEP 508, and PEP 518 are new attempts at fixing this
issue with smaller chunks, but in 2017, we still don't have tools that
support static metadata, and it is probably going to take a while before
everyone uses them. So setup.py is going to stick around for years.

A very common mistake when creating the setup.py file is to import your package in it
when you have third-party dependencies. If a tool like PIP tries to read the metadata by
running setup.py, it might raise an import error before it has a chance to list all the
dependencies to install.

The only dependency you can afford to import directly in your setup.py file is Setuptools,
because you can make the assumption that anyone trying to install your project is likely to
have it in their environment.

Another important consideration is the metadata you want to include to describe your
project. Your project can work with just a name, a version, a URL, and an author, but this is 
obviously not enough information to describe your project.

Metadata fields are set through setup() arguments. Some of them match directly with the
name of the metadata, some don't.

The following is the minimal set of arguments you should use for your microservices
projects:

name: The name of the package, should be a short lowercase name
version: The version of the project, as defined in PEP 440
url: A URL for the project; can be its repository or home page
description: One sentence to describe the project
long_description: A reStructuredText document
author, and author_email: The name and email of the author--can be an
organization
license: The license used for the project (MIT, Apache2, GPL, and so on)
classifiers: A list of classifiers picked from a fixed list, as defined in PEP 301
keywords: Tags to describe your project--this is useful if you publish the project
to the Python Package Index (PyPI)
packages: A list of packages that your project includes--Setuptools can populate
that option automatically with the find_packages() method



Packaging and Running Runnerly

[ 230 ]

install_requires: A list of dependencies (this is a Setuptools option)
entry_points: A list of Setuptools hooks, like console scripts (this is a
Setuptools option)
include_package_data: A flag that simplifies the inclusion of non-Python files
zip_safe: This is a flag that prevents Setuptools to install the project as a ZIP
file, which is a standard from the past (executable eggs)

The following is an example of a setup.py file that includes those options:

    from setuptools import setup, find_packages

    with open('README.rst') as f:
        LONG_DESC = f.read()

    setup(name='MyProject',
          version='1.0.0',
          url='http://example.com',
          description='This is a cool microservice based on strava.',
          long_description=LONG_DESC,
          author='Tarek', author_email='tarek@ziade.org',
          license='MIT',
          classifiers=[
             'Development Status :: 3 - Alpha',
             'License :: OSI Approved :: MIT License',
             'Programming Language :: Python :: 2',
             'Programming Language :: Python :: 3'],
          keywords=['flask', 'microservice', 'strava'],
          packages=find_packages(),
          include_package_data=True,
          zip_safe=False,
          entry_points="""
          [console_scripts]
          mycli = mypackage.mymodule:myfunc
          """,
          install_requires=['stravalib'])
    )

The long_description option is usually pulled from a README.rst file, so you do not 
have to deal with including a large piece of reStructuredText string in your function.

The restructured text-lint project (h t t p s ://g i t h u b . c o m /t w o l f s o n /r e s t r u

c t u r e d t e x t - l i n t ) is a linter that you can use to verify a reST file syntax.

https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint
https://github.com/twolfson/restructuredtext-lint


Packaging and Running Runnerly

[ 231 ]

The other benefit of separating the description is that it's automatically recognized, parsed,
and displayed by most editors. For instance, GitHub uses it as your project landing page in
your repository, and also offers an inline reStructuredText editor to change it directly
from the browser. PyPI does the same to display the front page of the project.

The license field is free-form, as long as people can recognize the license being used. If
you use the Apache Public Licence Version 2 (APL v2),it works. In any case, you should
add, alongside your setup.py file, a LICENCE file with the official text of that license.

The classifiers option is probably the most painful one to write. You need to use strings
from h t t p s ://p y p i . p y t h o n . o r g /p y p i ?%3A a c t i o n =l i s t _ c l a s s i f i e r s , which classify your
project. The three most common classifiers that developers use are the list of supported
Python versions, the license (which duplicates and should match the license option), and
the development status, which is a hint about the maturity of the project.

Keywords are a good way to make your project visible if you publish it to the Python
Package Index. For instance, if you are creating a Flask microservice, you should use flask
and microservice as keywords.

The Trove classifier is a machine-parseable metadata that can be used, for
instance, by tools interacting with PyPI. For example, the zc.buildout tool
looks for packages with the Framework :: Buildout :: Recipe
classifier.

The entry_points section is an INI-like string that defines Setuptools entry points, which
are callables that can be used as plugins once the project is installed in Python. The most
common entry point type is the console script. When you add functions in that section, a
command-line script will be installed alongside the Python interpreter, and the function
hooked to it via the entry point. This is a good way to create a Command-Line Interface
(CLI) for your project. In the example, mycli should be directly reachable in the shell when
the project is installed. Python's Distutils has a similar feature, but the one in Setuptools
does a better job, because it allows you to point to a specific function.

Lastly, install_requires lists all the dependencies. This list of Python projects the
project uses, and can be used by projects like PIP when the installation occurs. The tool will
grab them if they are published in the PyPI, and install them.

Once this setup.py file is created, a good way to try it is by creating a local virtual
environment.

https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers
https://pypi.python.org/pypi?%253Aaction=list_classifiers


Packaging and Running Runnerly

[ 232 ]

Assuming you have virtualenv installed, if you run these commands in the directory
containing the setup.py file, it will create a few directories including a bin directory
containing a local Python interpreter, and drop you into a local shell.

$ virtualenv .
$ source bin/activate
(thedir) $

From there, running the pip install -e command will install the project in editable mode.
This command installs the project by reading its setup file, but unlike install, the installation
occurs in-place. Installing in-place means that you will be able to work directly on the
Python modules in the project, and they will be linked to the local Python installation via its
site-packages directory.

Using a vanilla install call would have created copies of the files into the local site-
packages directory, and changing the source code would have had no impact on the installed
version.

The PIP call also generates a MyProject.egg-info directory, which contains the metadata.
PIP generates version 1.1 of the metadata spec, under the PKG-INFO name.

$ more MyProject.egg-info/PKG-INFO
Metadata-Version: 1.1
Name: MyProject
Version: 1.0.0
Summary: This is a cool project.
Home-page: http://example.com
Author: Tarek
Author-email: tarek@ziade.org
License: MIT
Description: MyProject
        ---------

        I am the **long** description.

Keywords: flask,microservice,strava
Platform: UNKNOWN
Classifier: Development Status :: 3 - Alpha
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3

This metadata file is what describes your project and is what is used to register it to the
PyPI via other commands, as we will see later in the chapter.



Packaging and Running Runnerly

[ 233 ]

The PIP call also pulls all the project dependencies by looking from them in the PyPI on h t t

p s ://p y p i . p y t h o n . o r g /p y p i and installs them in the local site-packages. Running this 
command is a good way to make sure everything works as expected.

One thing that we need to discuss further is the install_requires option. It competes
with another way of listing the project dependencies, the requirements.txt file, which is 
explained in the next section.

The requirements.txt file
One standard that emerged from the PIP community is to use a requirements.txt
file,which lists all the project dependencies, but also proposes an extended syntax to install 
editable dependencies. Refer to h t t p s ://p i p . r e a d t h e d o c s . i o /e n /s t a b l e /r e f e r e n c e /p i p

_ i n s t a l l /#r e q u i r e m e n t s - f i l e - f o r m a t .

The following is an example of such a file:

arrow
python-dateutil
pytz
requests
six
stravalib
units

Using this file has been widely adopted by the community, because it makes it easier to
document your dependencies. You can create as many requirements files as you want in a
project, and have your users call the pip install -r thefile.txt command to install
the packages described in them.

For instance, you could have a dev-requirements.txt file, which contains extra tools for
development, and a prod-requirements.txt, which has production-specific things. The
format allows inheritance to help you manage requirements files' collections.

But using requirements files adds a new problem. It duplicates some of the information
contained in thesetup.py file's install_requires section.

To solve this new issue, some developers make a distinction between dependencies defined
for their Python libraries and the one defined for their Python applications.

https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format
https://pip.readthedocs.io/en/stable/reference/pip_install/%23requirements-file-format


Packaging and Running Runnerly

[ 234 ]

They use install_requires in their library's setup.py file, and the PIP requirement file
in their application deployments. In other words, a Python application won't have a
setup.py file's install_requires option filled with its dependencies.

But that means the application installation will require a specific installation process, where
the dependencies are first installed via the requirements file. It also means that we'd lose the
benefits of having requirements files for libraries .

And we've said earlier in the chapter, we do not want to make our life complicated by
having two different ways to describe Python projects dependencies, since the distinction
between an application and a library can be quite vague.

To avoid duplicating the information in both places, there are some tools in the community,
which offer some syncing automation between setup.py and requirements files.

The pip-tools (h t t p s ://g i t h u b . c o m /j a z z b a n d /p i p - t o o l s ) tool is one of them, and it 
generates a requirements.txt file (or any other filename) via a pip-compile CLI, as
follows:

$ pip install pip-tools
...
$ pip-compile
#
# This file is autogenerated by pip-compile
# To update, run:
#
#    pip-compile --output-file requirements.txt setup.py
#
arrow==0.10.0             # via stravalib
python-dateutil==2.6.0    # via arrow
pytz==2017.2              # via stravalib
requests==2.13.0          # via stravalib
six==1.10.0               # via python-dateutil, stravalib
stravalib==0.6.6
units==0.7                # via stravalib

Notice that the generated file contains versions for each package. This is called version
pinning and is done by looking at the versions locally installed.

When declaring dependencies, it's good practice to pin all the dependencies before you
release your project. That will ensure that you document the versions that were used and
tested for the release.

https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools


Packaging and Running Runnerly

[ 235 ]

If you don't use pip-tools, PIP has a built-in command called freeze, which you can use to
generate a list of all the current versions that are installed in your Python. This is done as
follows:

$ pip freeze

cffi==1.9.1
click==6.6
cryptography==1.7.2
dominate==2.3.1
flake8==3.2.1
Flask==0.11.1
...

The only problem when you pin your dependencies is when another project has the same
dependencies, but is pinned with other versions. PIP will complain and fail to meet both the
requirements sets and you won't be able to install everything.

The simplest way to fix this issue is to leave the dependencies unpinned in the setup.py
file and pinned in the requirements.txt file. That way, PIP can install the latest version
for each package, and when you deploy, specifically in stage or production, you can refresh
the versions by running the pip install -r requirements.txt command. PIP will
then upgrade/downgrade all the dependencies to match the versions, and in case you need
to, you can tweak them in the requirements file.

To summarize, defining dependencies should be done in each project's setup.py file, and
requirements files can be provided with pinned dependencies as long as you have a
reproducible process to generate them from the setup.py file to avoid duplication.

The last mandatory file your projects should have is the MANIFEST.in file.

The MANIFEST.in file
When creating a source or binary release, Setuptools will include all the packages modules
and data files, the setup.py file, and a few other files automatically in the tarball. But files
like the PIP requirements will not be included for you.

In order to add them to your distribution, you need to add a MANIFEST.in file, which
contains the list of files to include.



Packaging and Running Runnerly

[ 236 ]

The file follows a simple glob-like syntax, described at h t t p s ://d o c s . p y t h o n . o r g /3/d i s t u

t i l s /c o m m a n d r e f . h t m l #c r e a t i n g - a - s o u r c e - d i s t r i b u t i o n - t h e - s d i s t - c o m m a n d , where
you point a file or a directory (including glob patterns) and say if you want to include or
prune the matches.

Here's an example from Runnerly:

    include requirements.txt
    include README.rst
    include LICENSE
    recursive-include myservice *.ini
    recursive-include docs *.rst *.png *.svg *.css *.html conf.py
    prune docs/build/*

The docs/directory containing the Sphinx doc will be integrated in the source distribution,
but any artifact generated locally in docs/build/ when the doc is built will be pruned.

Once you have the MANIFEST.in file in place, all the files should be added in your
distribution when you'll release your project. Notice that you can use the check-manifest
distutils command to check the syntax of the file and its effect.

A typical microservice project, as described in this book, will have the following list of files:

setup.py: The setup file
README.rst: The content of the long_description option
MANIFEST.in: The MANIFEST template
requirements.txt: PIP requirement files generated from install_requires
docs/: The Sphinx documentation
package/: The package containing the microservice code

From there, releasing your project consists of creating a source distribution, which is
basically an archive of this structure. If you have some C extensions, you can also create a
binary distribution.

Before we learn how to create those releases, let's look at how to pick version numbers for
your microservices.

Versioning
Python packaging tools do not enforce a specific versioning pattern. The version field can
be any string. This freedom became a problem, because projects followed their own
versioning schemes and, sometimes, they were not compatible with installers and tools.

https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command
https://docs.python.org/3/distutils/commandref.html%23creating-a-source-distribution-the-sdist-command


Packaging and Running Runnerly

[ 237 ]

To understand a versioning scheme, an installer needs to know how to sort and compare
versions. The installer needs to be able to parse the string, and know if a version is older
than another one.

Early software used schemes based on the date of release, like 20170101 if your software is
released on 1st January 2017. But that scheme won't work anymore if you do branch
releases. For instance, if your software has a version 2, which is backward incompatible,
you might start to release updates for version 1 in parallel of releases for version 2. In that
case, using dates will make some of your version 1 releases appear as if they were more
recent than some version 2 release.

Some software combine incremental versions and dates for that reason, but it became
obvious that using dates was not the best way to handle branches.

And then, there's the problem of beta, alpha, release candidates, and dev versions.
Developers want to have the ability to mark releases as being pre-releases.

For instance, when Python is about to ship a new version, it will ship release candidates using
a rcX marker so that the community can try it before the final release is shipped. For
example 3.6.0rc1, 3.6.0rc2, and so on.

For a microservice that you are not releasing to the community, using such markers is often
an overkill--but when you start to have people from outside your organization using your
software, it may become useful.

Release candidates can be useful, for example, if you are about to ship a backward
incompatible version of a project. It's always a good idea to have your users try it out before
it's published. For the usual release though, using candidate releases is probably an overkill,
as publishing a new release when a problem is found is cheap.

PIP does a fairly good job at figuring out most patterns, ultimately falling
back to some alphanumeric sorting, but the world would be a better place
if all projects were using the same versioning scheme.

PEP 386, and then 440, were written to try to come up with a versioning scheme for the
Python community. It's derived from the standard MAJOR.MINOR[.PATCH] scheme,
which's widely adopted among developers, with some specific rules for pre- and post-
versions.

The Semantic Versioning (SemVer) (h t t p ://s e m v e r . o r g /) scheme is another standard
that emerged in the community, which is used in many places outside Python. If you use
SemVer, you will be compatible with PEP 440 and the PIP installer as long as you don't use
pre-release markers. For instance, 3.6.0rc2 translates to 3.6.0-rc2 in SemVer.

http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/


Packaging and Running Runnerly

[ 238 ]

Unlike PEP 440, SemVer asks that you always provide the three version numbers. For
instance, 1.0 should be 1.0.0.

Adopting SemVer is a good idea as long as you remove the dash it uses to separate the
version from a marker.

Here's an example of a sorted list of versions for a project that will work in Python, and
which will be close to SemVer:

9.0
0.0a1
0.0a2
0.0b1
0.0rc1
0.0
1.0

For your microservice project, or any Python project for that matter, you should start with
the 0.1.0 version, make it clear that it's still an unstable project, and that backward
compatibility is not guaranteed. From there, you can increment the MINOR number at will
until you feel the software is mature enough.

Once maturity has been reached, a common pattern is to release 1.0.0, and then start to
following these rules:

MAJOR is incremented when you introduce a backward incompatible change for
the existing API
MINOR is incremented when you add new features that don't break the existing
API
PATCH is incremented just for bug fixes

Being strict about this scheme with the 0.x.x series when the software is in its early phase
does not make much sense, because you will do a lot of backward incompatible changes,
and your MAJOR version would reach a high number in no time.

The 1.0.0 release is often emotionally charged for developers.
They want it to be the first stable release they'll give to the world--that's
why it's frequent to use the 0.x.x versions and bump to 1.0.0 when the
software is deemed stable.

For a library, what we call the API are all the public and documented functions and classes
one may import and use.



Packaging and Running Runnerly

[ 239 ]

For a microservice, there's a distinction between the code API and the HTTP API. You may
completely change the whole implementation in a microservice project and still implement
the exact same HTTP API. You need to treat those two versions distinctly.

Both versions can follow the pattern described here, but one version will be on your
setup.py (the code) and one may be published in your Swagger specification file, or 
wherever you document your HTTP API. The two versions will have a different release
cycle.

Now that we know how to deal with version number, let's do some releasing.

Releasing
To release your project, a simple command called sdist is provided in Python's Distutils.

Distutils has a series of commands that can be invoked with the python setup.py
<COMMAND> command. Running the python setup.py sdist command in the root of
your project will generate an archive containing the source code of your project.

In the following example, sdist is called in Runnerly's tokendealer project:

$ python setup.py sdist
running sdist
[...]
creating runnerly-tokendealer-0.1.0
creating runnerly-tokendealer-0.1.0/runnerly_tokendealer.egg-info
creating runnerly-tokendealer-0.1.0/tokendealer
creating runnerly-tokendealer-0.1.0/tokendealer/tests
creating runnerly-tokendealer-0.1.0/tokendealer/views
copying files to runnerly-tokendealer-0.1.0...
copying README.rst -> runnerly-tokendealer-0.1.0
[...]
copying tokendealer/tests/__init__.py -> runnerly-
tokendealer-0.1.0/tokendealer/tests
copying tokendealer/tests/test_home.py -> runnerly-
tokendealer-0.1.0/tokendealer/tests
copying tokendealer/views/__init__.py -> runnerly-
tokendealer-0.1.0/tokendealer/views
copying tokendealer/views/home.py -> runnerly-
tokendealer-0.1.0/tokendealer/views
Writing runnerly-tokendealer-0.1.0/setup.cfg
creating dist
Creating tar archive
removing 'runnerly-tokendealer-0.1.0' (and everything under it)



Packaging and Running Runnerly

[ 240 ]

The sdist command reads the info from setup.py and MANIFEST.in, and grabs all the
files to put them in an archive. The result is created in the dist directory.

$ ls dist/
runnerly-tokendealer-0.1.0.tar.gz

Notice that the name of the archive is composed of the name of the project and its version.
This archive can be used directly with PIP to install the project as follows:

$ pip install dist/runnerly-tokendealer-0.1.0.tar.gz
Processing ./dist/runnerly-tokendealer-0.1.0.tar.gz
  Requirement already satisfied (use --upgrade to upgrade): runnerly-
tokendealer==0.1.0   [...]
Successfully built runnerly-tokendealer

Source releases are good enough when you don't have any extension that needs to be
compiled. If you do, the target system will need to compile them again when the
installation happens. That means the target system needs to have a compiler, which is not
always the case.

Another option is to precompile and create binary distributions for each target system.
Distutils has several bdist_xxx commands to do it, but they are not really maintained
anymore. The new format to use is the Wheel format as defined in PEP 427. The Wheel
format is a ZIP file containing all the files that will be deployed on the target system,
without having to rerun commands at install time.

If your project has no C extension, it's still interesting to ship Wheel distributions, because
the installation process will be faster than with sdist; PIP is just going to move files around
without running any command.

To build a Wheel archive, you need to install the wheel project, then to call the
bdist_wheel command--that will create a new archive in dist.

$ pip install wheel
$ python setup.py bdist_wheel --universal
$ ls dist/
runnerly-tokendealer-0.1.0.tar.gz
runnerly_tokendealer-0.1.0-py2.py3-none-any.whl

Notice that we've used the -universal flag when bdist_wheel was called in this
example.



Packaging and Running Runnerly

[ 241 ]

This flag tells the command to generate a source release that can be installed on both Python
2 and 3 if your code is compatible with both, with no extra steps (like a 2 to 3 conversion).
Without the flag, a runnerly_tokendealer-0.1.0-py3-none-any.whl file would have
been created, indicating that the release works only for Python 3.

In case you have some C extensions, bdist_wheel will detect it and create a platform-
specific distribution with the compiled extension. In that case, none in the filename is
replaced by the platform.

Creating platform-specific releases is fine if your C extensions are not linking to specific
system libraries. If they do, there are good chances your binary release will not work
everywhere, in particular, if the target system has a different version of that library.
Shipping a proper binary release that will work in all circumstances is really hard. Some
projects ship statically linked extensions together will all the libraries the extension is using.
In general, you rarely need to ship a C extension when you write a microservice, so a source
distribution is good enough.

Shipping a sdist and a Wheel distribution is the best practice. Installers like PIP will pick
the wheel, and the project will get installed faster than with sdist. The sdist release on
the other hand can be used by older installers or for manual installations.

Once you have your archive ready, you can distribute them, let's see how.

Distributing
If you are developing in an open source project, it's good practice to publish your project to
the PyPI at h t t p s ://p y p i . p y t h o n . o r g /p y p i .

Like most modern language ecosystem, this index can be browsed by installers that are
looking for releases to download.

When you call the pip install <project> command, PIP will browse the PyPI index to
see if that project exists, and if there are some suitable releases for your platform.

The public name is the name you use in your setup.py file and you need to register it at
PyPI in order to be able to publish some releases. The index uses the first-come, first-serve
principle, so if the name you've picked is taken, you will have to choose another one.

When creating microservices for an application or an organization, you can use a common
prefix for all your projects' names. For Runnerly, runnerly- is used.

At the package level, a prefix can also sometimes be useful to avoid conflicts.

https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi


Packaging and Running Runnerly

[ 242 ]

Python has a namespace package feature, which allows you to create a top-level package
name (like runnerly), and then have packages in separate Python projects, which will end
up being installed under the top-level runnerly package.

The effect is that every package gets a common runnerly namespace when you import
them, which is quite an elegant way to group your code under the same banner. The feature
is available through the pkgutil module from the standard library.

To do this, you just need to create the same top-level directory in every project, with the
__init__.py file containing and prefixing all absolute imports with the top-level name.

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

For example, in Runnerly, if we decide to release everything under the same namespace,
each project can have the same top-level package name. For example, in the token dealer, it 
could be as follows:

runnerly

__init__.py: Contains the extend_path call
tokendealer/

.. the actual code...

And then in the dataservice one, like this:

runnerly

__init__.py: Contains the extend_path call
dataservice/

.. the actual code...

Both will ship a runnerly top-level package, and when PIP installs them, the
tokendealer and dataservice packages will both end up in the same directory, site-
packages/runnerly.

This feature is not that useful in production, where each microservice is deployed in a
separate installation, but it does not hurt and is good to have, as it can be useful if you start
to create a lot of libraries that are used across projects.

For now, we'll make the assumption that each project is independent, and each name is
available at PyPI.



Packaging and Running Runnerly

[ 243 ]

To publish the releases at PyPI, you first need to register a new user using the form at h t t p s

://p y p i . p y t h o n . o r g /p y p i ?%3A a c t i o n =r e g i s t e r _ f o r m , shown as follows:

Once you have a username and a password, you should create, in your home directory, a
.pypirc file containing your credentials, like this:

[pypi]
username = <username>
password = <password>

This file will be used every time you interact with the PyPI index to create a Basic
Authentication header.

Python Distutils has a register and upload command to register a new project at PyPI, but it
is better to use Twine (h t t p s ://g i t h u b . c o m /p y p a /t w i n e ), which comes with a slightly
better user interface.

Once you've installed Twine (using the pip install twine command), the next step is to
register your package with this command:

$ twine register dist/runnerly-tokendealer-0.1.0.tar.gz

The preceding command will create a new entry in the index using your package metadata.

Once it's done, you can go ahead and upload the releases as follows:

$ twine upload dist/*

From there, your package should appear in the index, with an HTML home page at
https://pypi.python.org/pypi/<project>. And the pip install <project>
command should work!

https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://pypi.python.org/pypi?%253Aaction=register_form
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine
https://github.com/pypa/twine


Packaging and Running Runnerly

[ 244 ]

Now that we know how to package each microservice, let's see how to run them all in the
same box for development purposes.

Running all microservices
Running a microservice can be done by using the built-in Flask web server. Running the
Flask apps via this script requires to set up an environment variable, which points to the
module that contains the flask application.

In the following example, the application for Runnerly, the dataservice microservice is
located in the app module in runnerly.dataservice and can be launched from the root
directory with this command:

$ FLASK_APP=runnerly/dataservice/app.py bin/flask run
 * Serving Flask app "runnerly.dataservice.app"
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
127.0.0.1 - - [01/May/2017 10:18:37] "GET / HTTP/1.1" 200 -

Running apps using Flask's command line is fine, but it restricts us to use its interface
options. If we want to pass a few arguments to run our microservice, we would need to
start to add environment variables.

Another option is to create our own launcher using the argparse module (h t t p s ://d o c s . p y

t h o n . o r g /3/l i b r a r y /a r g p a r s e . h t m l ), so that we can add for each microservice any option
we want.

The following example is a full working launcher, which will run a Flask application via an
argparse-based command-line script. It takes a single option, -config-file, which is the
configuration file that contains everything needed by the microservice to run.

    import argparse
    import sys
    import signal
    from .app import create_app

    def _quit(signal, frame):
        print("Bye!")
        # add any cleanup code here
        sys.exit(0)

    def main(args=sys.argv[1:]):
        parser = argparse.ArgumentParser(description='Runnerly
                                         Dataservice')
        parser.add_argument('--config-file', help='Config file',

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html


Packaging and Running Runnerly

[ 245 ]

                            type=str, default=None)
        args = parser.parse_args(args=args)

        app = create_app(args.config_file)
        host = app.config.get('host', '0.0.0.0')
        port = app.config.get('port', 5000)
        debug = app.config.get('DEBUG', False)
        signal.signal(signal.SIGINT, _quit)
        signal.signal(signal.SIGTERM, _quit)
        app.run(debug=debug, host=host, port=port)

    if __name__ == "__main__":
        main()

This approach offers a lot of flexibility. In order to make that script a console script, you
need to pass it to your setup class's function via the entry_points option as follows:

    from setuptools import setup, find_packages
    from runnerly.dataservice import __version__

    setup(name='runnerly-data',
          version=__version__,
          packages=find_packages(),
          include_package_data=True,
          zip_safe=False,
          entry_points="""
          [console_scripts]
          runnerly-dataservice = runnerly.dataservice.run:main
          """)

With this option, a runnerly-dataservice console script will be created and linked to the
main() function we've seen earlier.

$ runnerly-dataservice --help
usage: runnerly-dataservice [-h] [--config-file CONFIG_FILE]

Runnerly Dataservice

optional arguments:
  -h, --help            show this help message and exit
  --config-file CONFIG_FILE
                        Config file

$ runnerly-dataservice
 * Running on http://127.0.0.1:5001/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger pin code: 216-834-670



Packaging and Running Runnerly

[ 246 ]

We have used the -e option earlier in PIP to run a project in develop mode. If we use the
same option for all our microservices from within the same Python, we will be able to run
all of them in the same box using their respective launchers.

You can create a new virtualenv, and simply link each development directory using -e in
a requirements.txt file that lists all your microservices.

PIP can also recognize Git URLs, and clone the repositories in your environment for you,
which makes it convenient to create a root directory with all the code inside it.

For example, the following requirements.txt file points to two GitHub repositories:

-e git+https://github.com/Runnerly/tokendealer.git#egg=runnerly-tokendealer
-e git+https://github.com/Runnerly/data-service.git#egg=runnerly-data

From there, running the pip install -r requirements.txt command will clone the
two projects in a src directory and install them in develop mode, meaning that you can 
change and commit the code directly from src/<project>.

Lastly, assuming you have created console scripts everywhere you needed to run your
microservices, they will be added in the virtualenv bin directory.

The last piece of the puzzle is to avoid having to run each console script in a separate bash
window. We want to manage those processes with a single script. Let's see in the next
section how we can do this with a process manager.

Process management
We've seen in Chapter 2, Discovering Flask, that Flask-based applications, in general, run in
a single-threaded environment.

To add concurrency, the most common pattern is to use a prefork model. Serving several
clients concurrently is done by forking several processes (called workers), which accept
incoming connections from the same inherited socket. The socket can be a TCP Socket or a
Unix Socket. Unix sockets can be used when both the clients and the server are running on
the same machine. They are based on exchanging data via a file and are slightly faster than
TCP sockets, since they don't have to deal with the network protocol overhead. Using Unix
Sockets to run Flask apps is common when the application is proxied via a front server like
NGinx.



Packaging and Running Runnerly

[ 247 ]

In any case, Unix or TCP, every time a request reaches the socket, the first available process
accepts the request and handles it. Which process gets which request is done at the system
level by the system socket API with a lock mechanism. This round-robin mechanism load
balances requests among all processes and is pretty efficient.

To use this model for your Flask app, you can use uWSGI (h t t p ://u w s g i - d o c s . r e a d t h e d o

c s . i o ), for instance, which will prefork several processes with its processes option, and
serve the Flask app from there.

The uWSGI tool is pretty amazing with a lot of options, and even has its own binary
protocol to communicate through TCP. Running uWSGI with its binary protocol behind an
nginx HTTP server is a great solution for serving Flask apps. uWSGI takes care of managing
its processes, and interacts with nginx, with whatever HTTP proxy you use. Or directly
with the end user.

The uWSGI tool, however, specializes in running web apps. If you want to deploy for a
development environment, a few other processes, like a Redis instance, which need to run
alongside your microservices on the same box, you will need to use another process
manager.

A good alternative is a tool like Circus (h t t p ://c i r c u s . r e a d t h e d o c s . i o ), which can run
any kind of process even if they are not a WSGI application, it also has the ability to bind
sockets, and make them available for the managed processes. In other words, Circus can
run a Flask app with several processes, and can also manage some other processes if
needed.

Circus is a Python application, so, to use it, you can simply run the pip install circus
command. Once Circus is installed, you will get a few new commands. The two principal
commands are: circusd, which is the process manager, and circusctl, which lets you
drive the process manager from the command line.

Circus uses an INI-like configuration file, where you can list the commands to run in
dedicated sections, and for each one of them, the number of processes you want to use.

Circus can also bind sockets, and let the forked process use them via their file descriptors.
When a socket is created on your system, it uses a file descriptor (FD), which is a system
handle a program can use to reach a file or an I/O resource like sockets. A process that is
forked from another one inherits all its file descriptors. That is, through this mechanism, all
the processes launched by Circus can share the same sockets.

http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://uwsgi-docs.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io
http://circus.readthedocs.io


Packaging and Running Runnerly

[ 248 ]

In the following example, two commands are being run. One will run five processes for the
Flask application located in the server.py module, and one will run one Redis server
process.

[watcher:web]
cmd = chaussette --fd $(circus.sockets.web) server.application
use_sockets = True
numprocesses = 5

[watcher:redis]
cmd = /usr/local/bin/redis-server
use_sockets = False
numprocesses = 1

[socket:web]
host = 0.0.0.0
port = 8000

The socket:web section describes what host and port to use to bind the TCP socket, and
the watcher:web section uses it via the $(circus.sockets.web) variable. When Circus
runs, it replaces that variable with the FD value for the socket.

To run this script, you can use the circusd command line.

$ circusd myconfig.ini

There are a few WSGI web servers out there that provide an option to run against a file
descriptor, but most of them don't expose that option, and bind a new socket themselves
given a host and a port.

The Chaussette (h t t p ://c h a u s s e t t e . r e a d t h e d o c s . i o /) project was created to let you run 
most existing WSGI web servers out there via an FD. Once you've run the pip install
chaussette command, you can run the Flask app with a variety of backend listed at h t t p

://c h a u s s e t t e . r e a d t h e d o c s . i o /e n /l a t e s t /#b a c k e n d s .

For our microservices, using Circus means we can simply create a watcher and a socket
section per service and start them all using the circusd command.

The only difference is that, if we use our own launcher instead of the Chaussette console, it
needs to be adapted in order to be able to run with file descriptors.

http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends
http://chaussette.readthedocs.io/en/latest/%23backends


Packaging and Running Runnerly

[ 249 ]

The main() function from the microservice can use the make_server() function from
Chaussette and use it in case an -fd option is passed when launched.

    from chaussette.server import make_server

    def main(args=sys.argv[1:]):
        parser = argparse.ArgumentParser(description='Runnerly
                                         Dataservice')
        parser.add_argument('--fd', type=int, default=None)
        parser.add_argument('--config-file', help='Config file',
                            type=str, default=None)
        args = parser.parse_args(args=args)
        app = create_app(args.config_file)
        host = app.config.get('host', '0.0.0.0')
        port = app.config.get('port', 5000)
        debug = app.config.get('DEBUG', False)
        signal.signal(signal.SIGINT, _quit)
        signal.signal(signal.SIGTERM, _quit)

        def runner():
            if args.fd is not None:
                # use chaussette
                httpd = make_server(app, host='fd://%d' % args.fd)
                httpd.serve_forever()
            else:
                app.run(debug=debug, host=host, port=port)

        if not debug:
            runner()
        else:
            from werkzeug.serving import run_with_reloader
            run_with_reloader(runner)

And then, in the circus.ini file:

[watcher:web]
cmd = runnerly-dataservice --fd $(circus.sockets.web)
use_sockets = True
numprocesses = 5

[socket:web]
host = 0.0.0.0
port = 8000

From there, if you need to debug a specific microservice, a common pattern is to add a
pdb.set_trace() call inside the Flask view you are going to call.



Packaging and Running Runnerly

[ 250 ]

Once the call is added in the code, you can stop the microservice via circusctl in order to
run it manually in another shell, so you can get access to the debug prompt.

Circus also offers options to redirect the stdout and stderr streams to
log files to facilitate the debugging and numerous other features you can
find at h t t p s ://c i r c u s . r e a d t h e d o c s . i o /e n /l a t e s t /f o r - o p s /c o n f i g u r

a t i o n /.

Summary
In this chapter, we've looked at how to package, release, and distribute each microservice.
The current state of the art in Python packaging still requires some knowledge about the
legacy tools, and this will be the case for some years until all the ongoing work in Python
and PyPA become mainstream.

But as long as you have a standard, reproducible, and documented way to package and
install your microservices, you should be fine.

Having numerous projects to run a single application adds a lot of complexity when you
are developing it, and it's important to be able to run all pieces from within the same box.

Tools like PIP's development mode and Circus are useful for this, as it allows you to
simplify how you run the whole stack--but they still require that you install things on your
system even if it's inside a Virtualenv.

The other issue with running everything from your box is that you might not use an
operating system that will be used to run your services in production, or have some
libraries installed for other purposes, which might interfere.

The best way to prevent this problem is to run your stack in full isolation inside a virtual
box. This is what the next chapter will cover, for example, how to run your services inside
Docker.

https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/
https://circus.readthedocs.io/en/latest/for-ops/configuration/


10
Containerized Services

In the previous chapter, we ran our different microservices directly in the host operating
system--so, all the dependencies and data that your application uses were installed directly
on the system.

Most of the time, it is fine to do so, because running a Python application in a virtual
environment downloads and installs dependencies inside a single directory. However, if
the application requires a database system, you need that database to run on your system,
unless it is just an SQLite file. For some Python libraries, you might also need some system
headers to compile extensions.

In no time, your system is going to have various software running, which were installed
along the way when developing your microservices. It is not a problem for your
development environment as long as you don’t need to work with different versions of a
service you are working on. However, if some potential contributors try to install your
applications locally, and are forced to install much of the software at the system level, it
could be a dealbreaker.

That is where VMs are a great solution to run your applications. In the past ten years, many
software projects that required an elaborate setup to run started to provide ready-to-run
VMs, using tools such as VMWare or VirtualBox. Those VMs included the whole stack, like
prefilled databases. Demos became easily runnable on most platforms with a single
command. That was progress.

However, some of those tools were not fully open source, and they were very slow to run,
and greedy in memory and CPU and terrible with disk I/O. It was unthinkable to run them
in production, and they were mostly used for demos.

The big revolution came with Docker, an open source virtualization tool, which was first
released in 2013, and became hugely popular. Moreover, unlike VMWare or VirtualBox,
Docker can run your applications in production at native speed.



Containerized Services

[ 252 ]

In other words, creating images for your application is not only for demonstration and
development purposes anymore. It can be used for real deployments.

In this chapter, we present Docker, and explain how to run Flask-based microservices with
it. Then, we look at some of the tools in the Docker ecosystem. We conclude the chapter by
an introduction to clusters.

What is Docker?
The Docker (h t t p s ://w w w . d o c k e r . c o m /) project is a container platform, which lets you run
your applications in isolated environments. Docker leverages existing Linux technologies
like cgroups (h t t p s ://e n . w i k i p e d i a . o r g /w i k i /C g r o u p s ) to provide a set of high-level
tools to drive a collection of running processes. On Windows and macOS, Docker interacts 
with a Linux Virtual Machine, since a Linux kernel is required.

As a Docker user, you just need to point which image you want to run, and Docker does all
the heavy lifting by interacting with the Linux kernel. An image in that context is the sum of
all the instructions required to create a set of running processes on the top of a Linux kernel
to run one container. An image includes all the resources necessary to run a Linux
distribution. For instance, you can run whatever version of Ubuntu you want in a Docker
container even if the host OS is a different distribution.

While it is possible to use Windows, Flask microservices should always be
deployed under a Linux or BSD-based system--the rest of this chapter
makes the assumption that everything is installed under a Linux
distribution such as Debian.

If you have already installed Docker in Chapter 6, Monitoring Your Services, to set up a
Graylog instance, you can jump directly to the next section of this chapter, Docker 101.

If not, you can visit the Get Docker section of the page at h t t p s ://w w w . d o c k e r . c o m /g e t - d o c

k e r to install it. The community edition is good enough for building, running, and installing
containers. Installing Docker on Linux is a no-brainer-- you can probably find a package for
your Linux distribution.

For macOS, Docker uses a VM to run a Linux Kernel. The latest versions are based on
HyperKit (h t t p s ://g i t h u b . c o m /m o b y /h y p e r k i t ), which leverages bhyve, a BSD
Hypervisor. Running Docker via a VM adds a bit of overhead, but it is quite lightweight,
and works well with modern hardware. Hypervisors are becoming a commodity in all
major operating systems.

https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit
https://github.com/moby/hyperkit


Containerized Services

[ 253 ]

Under Windows, Docker uses the Windows built-in Hyper-V, which might need to be
enabled. The feature can usually be enabled via a command-line shell with a DSIM call, as
follows:

$ DISM /Online /Enable-Feature /All /FeatureName:Microsoft-Hyper-V

If the installation was successful, you should be able to run the docker command in your
shell. Try the version command to verify your installation like this:

$ docker version
Client:
 Version:      17.03.1-ce
 API version:  1.27
 Go version:   go1.7.5
 Git commit:   c6d412e
 Built:        Tue Mar 28 00:40:02 2017
 OS/Arch:      darwin/amd64

Server:
 Version:      17.03.1-ce
 API version:  1.27 (minimum version 1.12)
 Go version:   go1.7.5
 Git commit:   c6d412e
 Built:        Fri Mar 24 00:00:50 2017
 OS/Arch:      linux/amd64
 Experimental: true

A Docker installation is composed of a Docker server (the engine that's being executed by a
daemon) and a Docker client (the shell commands like docker).

The server provides an HTTP API, which can be reached locally through a UNIX socket
(usually, /var/run/docker.sock) or through the network.

In other words, the Docker client can interact with Docker daemons running on other boxes.

For managing Docker manually, the Docker command line is great.
However, in case you need to script some of your Docker manipulation, a
Python library like docker-py (h t t p s ://g i t h u b . c o m /d o c k e r /d o c k e r - p y )
lets you do everything from Python. It uses requests to perform HTTP
calls against the Docker daemon.

Now that Docker is installed on your system, let's discover how it works.

https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/docker/docker-py


Containerized Services

[ 254 ]

Docker 101
Running a container in Docker is done by executing a series of commands which starts a
group of processes, which the tool isolates from the rest of the system.

Docker can be used to run a single process, but in practice we want to run a full Linux
distribution. Not to worry, everything needed to run a full Linux inside Docker is already
available.

Every existing Linux distribution out there provides a base image, which lets you run the
distribution in Docker. The typical way you use images is by creating a Dockerfile (h t t p s

://d o c s . d o c k e r . c o m /e n g i n e /r e f e r e n c e /b u i l d e r /), where you point the base image you
want to use, and add some extra commands to be run to create the container.

The following is a basic example of a Docker file:

FROM ubuntu
RUN apt-get update && apt-get install -y python
CMD ["bash"]

A Dockerfile is a text file with a set of instructions. Each line starts with the instruction in
uppercase, followed by its arguments.

In our example, there are these three instructions:

FROM: Points the base image to use
RUN: Runs the commands in the container once the base image is installed
CMD: The command to run when the container is executed by Docker

To create that image and then run it, you can use the docker build and run commands
from within the directory where the Dockerfile file is located. Notice the full stop (.) at
the end.

$ docker build -t runnerly/python .
Sending build context to Docker daemon 6.656 kB
Step 1/3 : FROM ubuntu
 ---> 0ef2e08ed3fa
Step 2/3 : RUN apt-get update && apt-get install -y python
 ---> Using cache
 ---> 48a5a722c81c
Step 3/3 : CMD bash
 ---> Using cache
 ---> 78e9a6fd9295
Successfully built 78e9a6fd9295
$ docker run -it --rm runnerly/python

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/


Containerized Services

[ 255 ]

root@ebdbb644edb1:/# python
Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

The -t option in the preceding code snippet adds a label to the image. In our example, the
image is tagged runnerly/python. One convention is to prefix the label with the project or
organization name so that you can group your images under the same namespace.

When Docker creates images, it creates a cache which has every instruction from the
Dockerfile. If you run the build command a second time, without changing the file, it
should be done within seconds. Permuting or changing instructions rebuilds the image
starting at the first change. For this reason, a good strategy when writing these files is to
sort instructions so that the most stable ones (the ones you rarely change) are at the top.

One great feature that Docker offers is the ability to share, publish, and reuse images with
other developers. The Docker Hub (h t t p s ://h u b . d o c k e r . c o m ) is to Docker containers
what PyPI is to Python packages.

In the previous example, the ubuntu base image was pulled from the Hub by Docker, and
there are numerous pre-existing images you can use.

For instance, if you want to launch a Linux distribution that is tweaked for Python, you can
look at the Python page on the official Docker Hub and pick one (h t t p s ://h u b . d o c k e r . c o m

/_ /p y t h o n /).

The python:version images are Debian-based, and are an excellent starting point for any
Python project.

The Python images based on Alpine Linux (refer to h t t p ://g l i d e r l a b s . v i e w d o c s . i o /d o c

k e r - a l p i n e /) are also quite popular, because they produce the smallest images to run
Python. They are more than ten times smaller than other ones, which means they are way
faster to download and set up for people wanting to run your project in Docker.

To use Python 3.6 in Alpine, you can create a Dockerfile like this:

FROM python:3.6-alpine
CMD ["python3.6"]

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
https://hub.docker.com/_/python/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/
http://gliderlabs.viewdocs.io/docker-alpine/


Containerized Services

[ 256 ]

Building and running this Dockerfile drops you in a Python 3.6 shell. The Alpine set is
great if you run a Python application that does not require a lot of system-level
dependencies or any compilation. Alpine has a very specific set of compilation tools, which
are sometimes incompatible with some projects.

For a Flask-based microservice project, the Debian-based one is probably a simpler choice
because of its standard compilation environment and stability. Moreover, once the base
image is downloaded, it is cached and reused, so you do not need to download everything
again.

Notice that it's important to use images from trusted people and
organizations on Docker Hub since anyone can upload an image. Beyond
the risk of running malicious code, there's also the problem of using a
Linux image that is not up-to-date with the latest security patches.

Running Flask in Docker
To run a Flask application in Docker, we can use the base Python image.

From there, installing the app and its dependencies can be done via PIP, which is already
installed in the Python image.

Assuming your project has a requirements.txt file for its pinned dependencies, and a
setup.py file that installs the project, creating an image for your project can be done by
instructing Docker how to use the pip command.

In the following example, we add two new instructions--the COPY command recursively
copies a directory structure inside the Docker image, and the RUN command runs PIP via
shell commands:

FROM python:3.6
COPY . /app
RUN pip install -r /app/requirements.txt
RUN pip install /app/

EXPOSE 5000
CMD runnerly-tokendealer

The 3.6 tag here will get the latest Python 3.6 image that was uploaded to the Hub.



Containerized Services

[ 257 ]

The COPY command automatically creates the top-level app directory in the container, and
copies everything from "." in it. One important detail to remember with the COPY command
is that any change to the local directory (".") invalidates the Docker cache, and builds from
that step.

To tweak this mechanism, you can create a .dockerignore file where you can list files and
directories that should be ignored by Docker.

Let's try to build that Dockerfile as follows:

$ docker build -t runnerly/tokendealer .
Sending build context to Docker daemon 148.5 MB
Step 1/6 : FROM python:3.6
 ---> 21289e3715bd
Step 2/6 : COPY . /app
 ---> 01cebcda7d1c
Removing intermediate container 36f0d93f5d78
Step 3/6 : RUN pip install -r /app/requirements.txt
 ---> Running in 90200690f834
Collecting pyjwt (from -r /app/requirements.txt (line 1))
[...]
Successfully built d2444a66978d

Once PIP has installed the dependencies, it installs the project with the second call by
pointing to the app directory. When the pip command is pointed to a directory, it looks for
a setup.py file, and runs it.

In the Token Dealer project, a runnerly-tokendealer console script is added to the
system when installed. We are not using Virtualenv here--it would be an overkill, since we
are already in a container. So, the runnerly-tokendealer script is installed directly
alongside the Python executable so that they are both reachable directly in the shell.

That is why the CMD instruction that points which command should be run when the
container is executed points directly to runnerly-tokendealer.

Lastly, an EXPOSE instruction was added to let the container listen for connections to the
inbound TCP port 5000--the one where the Flask app runs.

Notice that, once the port is exposed, you still need to bridge it to the host system by
mapping a local port with the exposed port at runtime.

Bridging the port is done with the -p option. In the following example, the container
bridges its 5000 port with the local 5555 port:

$ docker run -p 5555:5000 -t runnerly/tokendealer



Containerized Services

[ 258 ]

The last thing we need to do for a fully functional image is to run a web server in front of
the Flask application.

Let's see in the next section how we can do that.

The full stack - OpenResty, Circus and Flask
When you release microservices as Docker images, there are two strategies for including a
web server.

The first one consists of ignoring it and exposing the Flask application directly. A web
server like OpenResty could then run in its docker container, proxying calls to your Flask
container.

However, if you are using some power features in nginx, like a Lua-based application
firewall as we have seen in Chapter 7, Securing Your Services, it can be better to include
everything within the same container, together with a dedicated process manager.

In the diagram that follows, the docker container implements the second strategy, and runs
both the web server and the Flask service. Circus is used to launch and watch one nginx
process and a few Flask processes:



Containerized Services

[ 259 ]

In this section, we will implement this container by adding in our Dockerfile the
following steps:

Download, compile, and install OpenResty.1.
Add an nginx configuration file.2.
Download and install Circus and Chaussette.3.
Add a Circus configuration file to run nginx and the Flask app.4.

OpenResty
The base Python image uses Debian's apt package manager, and OpenResty (the nginx
distribution that includes Lua and other good extensions) is not available directly in the
stable Debian repository. However, it is quite simple to compile and install OpenResty from
its source release.

In the Dockerfile, we first want to make sure the Debian environment has all the required
packages to compile OpenResty.

The following instructions first update the packages list, then install everything needed:

RUN apt-get -y update && \
    apt-get -y install libreadline-dev libncurses5-dev && \
    apt-get -y install libpcre3-dev libssl-dev perl make

Notice that the three commands in the preceding code are merged as a single RUN
instruction to limit the number of instructions the Dockerfile has. By doing so, you can
limit the final image size.

The next step is to download the OpenResty source code, and perform the compilation step.
cURL is already available in the Python base image and you can pipe it with the tar
module to decompress the OpenResty release tarball directly from its URL.



Containerized Services

[ 260 ]

The following configure and make calls are straight from OpenResty's documentation,
and compile and install everything:

 RUN curl -sSL https://openresty.org/download/openresty-1.11.2.3.tar.gz \
    | tar -xz && \
    cd openresty-1.11.2.3 && \
    ./configure -j2 && \
    make -j2 && \
    make install

Once the compilation is over, OpenResty is installed in /usr/local/openresty and you
can add an ENV instruction to make sure that the nginx executable is available directly in the
container's PATH variable:

ENV PATH "/usr/local/openresty/bin:/usr/local/openresty/nginx/sbin:$PATH"

The last thing we need to do for OpenResty is to include an nginx configuration file to start
the web server.

In the following minimal example, nginx proxies all calls made to the 8080 port, to the
container 5000 port--as shown in the previous diagram:

    worker_processes  4;
    error_log /logs/nginx-error.log;
    daemon off;

    events {
        worker_connections 1024;
    }

    http {
        server {
            listen 8080;

            location / {
                proxy_pass http://localhost:5000;
                proxy_set_header Host $host;
                proxy_set_header X-Real-IP $remote_addr;
            }
        }
    }

Notice that the error_log path uses the /logs/ directory. It's the root directory within the
container for our logs.



Containerized Services

[ 261 ]

That directory needs to be created via a RUN instruction, and a mount point can be added
thanks to the VOLUME instruction:

RUN mkdir /logs
VOLUME /logs

By doing this, you will be able to mount the /logs directory on a local directory on the host
at runtime, and keep the log files even if the container is killed.

A Docker container filesystem should always be considered as a volatile
volume, which can be lost at any moment.
If the processes in a container produce anything precious, the resulting
data should be copied to a directory that is mounted as a volume outside
the container's filesystem.

This configuration file is a full nginx configuration and can be used directly with nginx's -c
option with this call:

$ nginx -c nginx.conf

Once nginx runs, it makes the assumption that Circus listens to incoming TCP connections
on port 5000 and nginx listens itself on port 8080.

Let's now configure Circus so that it binds a socket on that port and spawns a few Flask
processes.

Circus
If we reuse the Circus and Chaussette setup from Chapter 9, Packaging Runnerly, Circus can
bind a socket on port 5000, and fork a few Flask processes, which will accept connection on
that socket. Circus can also watch the single nginx process we want to run in our container.

The first step to using Circus as a process manager in our container is to install it, together
with Chaussette, as follows:

RUN pip install circus chaussette

From there, the following Circus configuration is similar to what we had in the previous
chapter, except that we have one extra section for nginx:

[watcher:web]
cmd = runnerly-tokendealer --fd $(circus.sockets.web)
use_sockets = True
numprocesses = 5



Containerized Services

[ 262 ]

copy_env = True

[socket:web]
host = 0.0.0.0
port = 5000

[watcher:nginx]cmd =  nginx -c /app/nginx.confnumprocesses = 1copy_env =
True

The copy_env flag is used, so both Circus and the spawned processes have access to the
container environment variables. That is why the configuration calls nginx directly without
indicating its path since the PATH variable was set in our Dockerfile.

Once this INI file is created, it can be launched with the circusd command.

With all the previous changes, the finalized Dockerfile for our container looks like the
following:

FROM python:3.6

# OpenResty installation
RUN apt-get -y update && \
    apt-get -y install libreadline-dev libncurses5-dev && \
    apt-get -y install libpcre3-dev libssl-dev perl make
RUN curl -sSL https://openresty.org/download/openresty-1.11.2.3.tar.gz \
    | tar -xz && \
    cd openresty-1.11.2.3 && \
    ./configure -j2 && \
    make -j2 && \
    make install
ENV PATH "/usr/local/openresty/bin:/usr/local/openresty/nginx/sbin:$PATH"

# config files
COPY docker/circus.ini /app/circus.ini
COPY docker/nginx.conf /app/nginx.conf
COPY docker/settings.ini /app/settings.ini
COPY docker/pubkey.pem /app/pubkey.pem
COPY docker/privkey.pem /app/privkey.pem

# copying the whole app directory
COPY . /app

# pip installs
RUN pip install circus chaussette
RUN pip install -r /app/requirements.txt
RUN pip install /app/



Containerized Services

[ 263 ]

# logs directory
RUN mkdir /logs
VOLUME /logs

# exposing Nginx's socket
EXPOSE 8080

# command that runs when the container is executed

CMD circusd /app/circus.ini

In the Dockerfile example above, the SSH key are directly available in the
repository to simplify the example for the book. In a real project, the
production keys should be made available from outside the image
through a mount point.

Assuming this Docker file is located in a /docker subdirectory in the microservice project,
it can be built and then run with the following calls:

$ docker build -t runnerly/tokendealer -f docker/Dockerfile .
$ docker run --rm --v /tmp/logs:/logs -p 8080:8080 --name tokendealer -it
runnerly/tokendealer

The /logs mount point is mounted to a local /tmp/logs in this example, and the logs files
are written in it.

The -i option makes sure that stopping the run with a Ctrl + C forwards the termination
signal to Circus so that it shuts down everything properly. This option is useful when you
run a Docker container in a console. If you do not use -i, and kill the run with Ctrl + C, the
Docker image will still run, and you will need to terminate it manually via a docker
terminate call.

The --rm option deletes the container when stopped, and the --name option gives a unique
name to the container in the Docker environment.

Numerous tweaks can be added in this Dockerfile example. For instance, the sockets
used by the Circus UIs (both web and command line) to control the Circus daemon could be
exposed if you want to interact with it from outside the container.

You can also expose some of the running options, like the number of Flask processes you
want to start--like environment variables--and pass them at run time via Docker with -e.



Containerized Services

[ 264 ]

The fully working Dockerfile can be found at h t t p s ://g i t h u b . c o m /R u n
n e r l y /t o k e n d e a l e r /t r e e /m a s t e r /d o c k e r .

In the next section, we will look at how containers can interact with each other.

Docker-based deployments
Once you have microservices running inside containers, you need them to interact with
each other. Since we are bridging the container sockets with some local sockets on the host,
it is pretty transparent from an external client. Each host can have a public DNS or IP, and
programs can simply use it to connect to the various services. In other words, a service
deployed inside a container on host A can talk to a service deployed inside a container on
host B as long as host A and B have a public address and expose the local sockets that are
bridged with the containers sockets.

However, when two containers need to run on the same host, using the public DNS to make
them interact with each other is less than optimal, particularly, if one of the containers is
private to the host. For example, if you run a container in Docker for internal needs, like a
caching service, its access should be restricted to the localhost.

To make this use case easier to implement, Docker provides a user-defined network feature,
which lets you create local virtual networks. Containers can be added to them, and if they
run with a --name option, Docker acts as a DNS resolver, and makes them available in
those networks via their names.

Let's create a new runnerly network with the network command as follows:

$ docker network create -driver=bridge runnerly
4a08e29d305b17f875a7d98053b77ea95503f620df580df03d83c6cd1011fb67

Once this network is created, we can run containers in it, using the --net option. Let's run
one container with the tokendealer name, like this:

$ docker run --rm --net=runnerly --name=tokendealer -v /tmp/logs:/logs -p
5555:8080 -it runnerly/tokendealer
2017-05-18 19:42:46 circus[5] [INFO] Starting master on pid 5
2017-05-18 19:42:46 circus[5] [INFO] sockets started
2017-05-18 19:42:46 circus[5] [INFO] Arbiter now waiting for commands
2017-05-18 19:42:46 circus[5] [INFO] nginx started
2017-05-18 19:42:46 circus[5] [INFO] web started

https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker
https://github.com/Runnerly/tokendealer/tree/master/docker


Containerized Services

[ 265 ]

If we run a second container with the same image and a different name on the same
network, it can ping the first container directly with its tokendealer name:

$ docker run --rm --net=runnerly --name=tokendealer2 -v /tmp/logs:/logs -p
8082:8080 -it runnerly/tokendealer ping tokendealer
PING tokendealer (172.20.0.2): 56 data bytes
64 bytes from 172.20.0.2: icmp_seq=0 ttl=64 time=0.474 ms
64 bytes from 172.20.0.2: icmp_seq=1 ttl=64 time=0.177 ms
64 bytes from 172.20.0.2: icmp_seq=2 ttl=64 time=0.218 ms
^C

Using dedicated Docker networks for your microservices container when you deploy them
is good practice even if you have a single container running. You can always attach new 
containers within the same network, or tweak the network permissions from the shell.

Docker has other network strategies you can look at in h t t p s ://d o c s . d o c
k e r . c o m /e n g i n e /u s e r g u i d e /n e t w o r k i n g /.

Having to deploy several containers to run one microservice requires you to make sure that
both containers are properly configured when launched.

To make that configuration easier, Docker has a high-level tool called Docker Compose,
presented in the next section.

Docker Compose
The command-lines required to run several containers on the same host can be quite long
once you need to add names and networks and bind several sockets.

Docker Compose (h t t p s ://d o c s . d o c k e r . c o m /c o m p o s e /) simplifies the task by letting you 
define multiple containers' configuration in a single configuration file.

This utility is pre-installed on macOS and Windows when you install Docker. For Linux
distributions, you need to get the script and add it to your system. It is a single script, which
you can download or even install with PIP (refer to h t t p s ://d o c s . d o c k e r . c o m /c o m p o s e /i

n s t a l l /).

Once the script is installed on your system, you need to create a YAML file named docker-
compose.yml, which contains a services section to enumerate your Docker containers.

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/


Containerized Services

[ 266 ]

The Compose's configuration file has many options that let you define
every aspect of the deployment of several containers.
It replaces all the commands one usually puts in a Makefile to set and run
containers. This URL lists all options: h t t p s ://d o c s . d o c k e r . c o m /c o m p o s e

/c o m p o s e - f i l e /.

In the following example, the file is placed in one of the Runnerly microservice and defines
two services--microservice, which picks the local Dockerfile, and redis, which uses
the Redis's image from the Docker Hub:

version: '2'
networks:
  runnerly:
services:
  microservice:
    networks:
     - runnerly
    build:
        context: .
        dockerfile: docker/Dockerfile
    ports:
     - "8080:8080"
    volumes:
     - /tmp/logs:/logs
  redis:
    image: "redis:alpine"
    networks:.
     - runnerly

The Compose file also creates networks with its networks sections, so you do not have to
create it manually on your host before you deploy your containers.

To build and run those two containers, you can use the up command as follows:

$ docker-compose up
Starting tokendealer_microservice_1
Starting tokendealer_redis_1
Attaching to tokendealer_microservice_1, tokendealer_redis_1
[...]
redis_1         | 1:M 19 May 20:04:07.842 * DB loaded from disk: 0.000
seconds
redis_1         | 1:M 19 May 20:04:07.842 * The server is now ready to
accept connections on port 6379
microservice_1  | 2017-05-19 20:04:08 circus[5] [INFO] Starting master on
pid 5
microservice_1  | 2017-05-19 20:04:08 circus[5] [INFO] sockets started
microservice_1  | 2017-05-19 20:04:08 circus[5] [INFO] Arbiter now waiting

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/


Containerized Services

[ 267 ]

for commands
microservice_1  | 2017-05-19 20:04:08 circus[5] [INFO] nginx started
microservice_1  | 2017-05-19 20:04:08 circus[5] [INFO] web started

The first time that command is executed, the microservice image is created.

Using Docker Compose is great when you want to provide a full working stack for your
microservices, which includes every piece of software needed to run it.

For instance, if you are using a Postgres database, you can use the Postgres image (h t t p s

://h u b . d o c k e r . c o m /_ /p o s t g r e s /), and link it to your service in a Docker Compose file.

Containerizing everything, even the databases, is great to showcase your software or for
development purposes. However, as we stated earlier, a Docker container should be seen as
a volatile filesystem. So if you use a container for your database, make sure that the
directory where the data is written is mounted on the host file system.

However, in most cases, the database service is usually its dedicated server on a production
deployment. Using a container does not make much sense and adds a little bit of overhead
and risks.

So far in this chapter, we have looked at how to run apps in Docker containers, and how to
deploy several containers per host and have them interact with each other.

When you deploy a microservice that needs scaling, it is often required to run several
instances of the same service to be able to support the load.

The next section discusses various options to run several instances of the same container in
parallel.

Introduction to Clustering and Provisioning
Deploying a microservice at scale can be done by running several containers spread across
one or several hosts.

Once your Docker image is created, every host that runs a Docker daemon can be used to
run as many containers as you want within the limits of the physical resources. Of course, if
you run several instances of the same container on the same host, you need to use a
different name and socket ports for each instance to differentiate them.

https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/


Containerized Services

[ 268 ]

The collection of containers running the same image is called a cluster, and there are a
few tools available to manage clusters.

Docker has a built-in cluster functionality called swarm mode (h t t p s ://d o c s . d o c k e r . c o m

/e n g i n e /s w a r m /). This mode has an impressive list of features, which lets you manage all
your clusters from a single utility.

Once you have deployed a cluster, you need to set up a load balancer so that all the
instances of your cluster are sharing the workload. The load balancer can be nginx or
HAProxy, for instance, and is the entry point to distribute the incoming requests on
clusters.

While Docker tries to provide all the tools to deal with clusters of containers, managing
them can become quite complex. When done properly, it requires to share some
configuration across hosts, and to make sure that bringing containers up and down is
partially automated. A service discovery feature is needed to ensure that the addition and
removal of new containers is detected by the load balancer, for instance.

Service discovery and sharing configuration can be done by tools like Consul (h t t p s ://w w w

. c o n s u l . i o /) or Etcd (h t t p s ://c o r e o s . c o m /e t c d /) and Docker's swarm mode can be
configured to interact with those tools.

The other aspect of setting up clusters is provisioning. This term describes the process of
creating new hosts, and therefore, clusters, given the description of the stack you are
deploying in some declarative form.

For instance, a poor mans provisioning tool can be a custom Python script that follows these
steps:

Read a configuration file that describes the instances needed via a few Docker1.
Compose files.
Start a few VMs on the cloud provider.2.
Wait for all VMs to be up and running.3.
Make sure everything needed to run services on the VM is set.4.
Interact with the Docker daemon on each VM to start some containers.5.
Ping whatever service needs to be pinged to make sure the new instances are all6.
interlinked.

Once the task of deploying containers is automated, it can be used to spin off new VMs if
some of them crash, for example.

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://www.consul.io/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/


Containerized Services

[ 269 ]

However, doing all this work in a Python script has its limits and there are dedicated tools
to handle this, like Ansible (h t t p s ://w w w . a n s i b l e . c o m /) or Salt (h t t p s ://d o c s . s a l t s t a c

k . c o m ). Those tools provide a DevOps-friendly environment to deploy and manage hosts.

Kubernetes (h t t p s ://k u b e r n e t e s . i o /) is yet another tool, that can be used to deploy
clusters containers on hosts. Unlike Ansible or Salt, Kubernetes specializes in deploying
containers and tries to provide a generic solution that works anywhere.

For example, Kubernetes can interact with major cloud providers through their API,
meaning that once an application deployment is defined, it can be deployed on AWS,
Digital Ocean, OpenStack, and the like. However, that begs the question of whether this
ability is useful for your project.

Usually, if you pick a cloud provider for an application, and decide, for some reason, to
move to another cloud provider, it is rarely as simple as pushing a new stack. There are
many subtle details that make the transition more complex, and the deployment is rarely
similar. For instance, some cloud providers offer data storage solutions that are cheaper to
use than running your own PostgreSQL or MySQL deployment, while others make their
caching solution much more expensive than running your Redis instances.

Some teams deploy their services across several cloud providers, but in general, they do not
deploy the same microservice on several providers. That would make the cluster
management too complex.

Moreover, each major cloud provider offers a full range of built-in tools to manage the
applications they host, including features like load balancing, discoverability, and auto-
scaling. They are often the simplest option to deploy clusters of microservices.

In the next chapter, we will look at how to deploy applications using AWS.

Overall, the toolset to use to deploy microservices is dependent on where you are deploying.
If you manage your servers, Kubernetes can be an excellent solution to automate many
steps, and can be installed directly on a Linux distribution like Ubuntu. That tool can use
your Docker images as its basis for deploying your application.

If you opt for a hosted solution, looking at what tools are already offered by the provider is
the first step before you invest in your toolset.

https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://docs.saltstack.com
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/


Containerized Services

[ 270 ]

Summary
In this chapter, we looked at how microservices can be containerized with Docker, and how
you can create a deployment entirely based on Docker images.

Docker is still a young technology, but it is mature enough to be used in production. The
most important thing to keep in mind is that a containerized application can be trashed at
any time, and any data that's not externalized via a mount point is lost.

For provisioning and clustering your services, there's no generic solution, and tons of tools,
which can be combined to create a good solution. There is much innovation right now in
that field, and the best choice depends on where you deploy your services, and how your
teams work.

The best way to tackle this problem is to take baby steps by first deploying everything
manually, then automating much where it makes sense. Automation is great, but can
rapidly become a nightmare if you use a toolset you do not fully grasp.

In that vein, to make their services easier to use and more appealing, cloud providers have
built-in features to handle deployments. One of the biggest players is Amazon Web
Services (AWS) and the next chapter demonstrates how microservices can be deployed on
their platform. Of course, the goal here is not to tell you to use AWS; there are many good
solutions out there. However, it gives you a sense of what it is like to deploy your services
on a hosted solution.



11
Deploying on AWS

Unless you are Google or Amazon, and need to run thousands of servers, managing your
hardware in some data center does not provide many benefits in 2017.

Cloud providers offer to host a solution that is often cheaper than deploying and
maintaining your infrastructure. Amazon Web Services (AWS) and others have numerous
services that let you manage virtual machines from a web console, and they add new
features every year.

One of the latest AWS additions, for example, is Amazon Lambda. Lambda lets you trigger
a Python script when something happens in your deployments. With Lambda, you do not
have to worry about setting up a server and a cron job, or some form of messaging. AWS
takes care of executing your script in a VM automatically, and you only pay for execution
time.

Combined with what Docker has to offer, this kind of feature really changes how
applications can be deployed in the cloud, and provide a fair amount of flexibility. For
instance, you do not have to spend too much money to set up a service that might see a
peak in activity and then slow down. You can deploy a world-class infrastructure that can
hold an enormous amount of requests, and it stays, in most cases, cheaper than running
your hardware.



Deploying on AWS

[ 272 ]

Moving to your own datacenter might save you money in some cases, but it adds a
maintenance burden, and it is a challenge to make your deployments as reliable as if they
were running at a cloud provider.

While they make much noise in the press, Amazon or Google outages are
rare events (a few hours a year at most), and their reliability is very high.
The Service Level Agreement (SLA) for EC2, for example, guarantees an
uptime of 99.95% per region or you get some money back. In reality, it is
often closer to five nines (99.999%).
You can track cloud providers' uptime values with online tools like
https://cloudharmony.com/status-1year-for-aws, but their results
should be taken with a pinch of salt because some partial outages are not
counted sometimes.

In this chapter, we are going to do two things:

Discover some of the features AWS offers
Deploy a Flask application on it

The goal of this chapter is not to deploy a complete stack, as it is too long, but to give you a
good overview of how microservices can be implemented there.

Let's start with an overview of what AWS has to offer.

AWS overview
Amazon Web Service began in 2006 with Amazon Elastic Compute Cloud (Amazon EC2),
and has extended its services since then. At present (2017), there are countless services. We
will not go through all of them in this chapter, but just focus on the ones you usually deal
with when you start to deploy microservices:

https://cloudharmony.com/status-1year-for-aws


Deploying on AWS

[ 273 ]

The AWS services we are interested in can be organized into four five main groups as seen
in the diagram:

Routing: Services that redirect requests to the right place, such as DNS services
and load balancers
Execution: Services that execute your code, such as EC2 or Lambda
Storage: Services that store data-storage volumes, caching, regular databases,
long-term storage, or CDN
Messaging: Services that send notifications, emails, and so on

One extra group of service that is not displayed in the diagram is everything related to
provisioning and deployment.

Let's have a look at each group.

If you want to read the official documentation for an Amazon Service, the
usual link to reach the root page of each service is
https://aws.amazon.com/<service name>.



Deploying on AWS

[ 274 ]

Routing - Route53, ELB, and AutoScaling
Route53 (https://aws.amazon.com/route53/) refers to the TCP port 53 that's used for DNS
servers, and is Amazon's DNS service. Similar to what you would do with BIND
(http://www.isc.org/downloads/bind/), you can define DNS entries in Route53, and set
up the service to automatically route the requests to specific AWS services that host
applications or files.

DNS is a critical part of a deployment. It needs to be highly available, and to route each
incoming request as fast as possible. If you are deploying your services on AWS, it is highly
recommended to use Route53 or to use the DNS provider of the company where you
bought the domain, and not deal with DNS yourself.

Route53 can work in close cooperation with Elastic Load Balancing (ELB)
(https://aws.amazon.com/elasticloadbalancing/), which is a load balancer that can be 
configured to distribute incoming requests to several backends. Typically, if you are
deploying several VMs for the same microservice to create a cluster, ELB can be used to
distribute the load among them. ELB monitors all instances through health checks and
unhealthy nodes can automatically get taken out of rotation.

The last interesting service for routing is AutoScaling
(https://aws.amazon.com/autoscaling/). This service can add instances automatically
depending on some events. For instance, if one node is unresponsive or has crashed, it is
detected by an ELB Health Check event that can be picked up by AutoScaling. From there,
the incriminated VM can be automatically terminated and a new one started.

With these three services, you can set up a robust routing system for your microservices. In
the next section, let's see what services are used to run the actual code.

Execution - EC2 and Lambda
The core of AWS is EC2 (https://aws.amazon.com/ec2/), which lets you create Virtual
Machines. Amazon uses the Xen hypervisor (https://www.xenproject.org/) to run Virtual
Machines, and Amazon Machine Images (AMIs) to install them.

AWS has a huge list of AMIs you can choose from; you can also create your own AMIs by
tweaking an existing AMI. Working with AMIs is quite similar to working with Docker
images. Once you have picked an AMI from the Amazon console, you can launch an
instance, and, after it has booted, you can use SSH into it and start working.

https://aws.amazon.com/route53/
http://www.isc.org/downloads/bind/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/ec2/
https://www.xenproject.org/


Deploying on AWS

[ 275 ]

At any moment, you can snapshot the VM and create an AMI that saves the instance state.
This feature is quite useful if you want to manually set up a server, then use it as a basis for
deploying clusters.

An EC2 instance comes in different series (https://aws.amazon.com/ec2/instance-
types/). The T2, M3, and M4 series are for a general purpose. The T series uses a bursting
technology, which boosts the baseline performance of the instance when there's a workload
peak.

The C3 and C4 series are for CPU-intensive applications (up to 32 Xeon CPUs), and the X1
and R4 ones have a lot of RAM (up to 1,952 GiB).

Of course, the more RAM or CPU, the more expensive the instance is. For Python
microservices, assuming you are not hosting any database on the application instance, a
t2.xxx or an m3.xx can be a good choice. You need to avoid the t2.nano or t2.micro
though, which are fine for running some testing, but too limited for running anything in
production. The size you need to choose depends on the resources taken by the operating
system and your application.

However, since we are deploying our microservices as Docker images, we do not need to
run a fancy Linux distribution. The only feature that matters is to choose an AMI that's
tweaked to run Docker containers.

In AWS, the built-in way to perform Docker deployments is to use the EC2 Container
Service (ECS) (https://aws.amazon.com/ecs). ECS offers features that are similar to
Kubernetes, and integrates well with other services. ECS uses its own Linux AMI to run
Docker containers, but you can configure the service to run another AMI. For instance,
CoreOS (https://coreos.com/) is a Linux distribution whose sole purpose is to run Docker
containers. If you use CoreOS, that is one part which won't be a locked-in AWS.

Lastly, Lambda (https://aws.amazon.com/lambda/) is a service you can use to trigger the
execution of a Lambda Function. A Lambda Function is a piece of code that you can write in
Node.js, Java, C#, or Python 2.7 or 3.6, and that is deployed as a deployment package, which is
a ZIP file containing your script and all its dependencies. If you use Python, the ZIP file is
usually a Virtualenv with all the dependencies needed to run the function.

Lambda functions can replace Celery workers, since they can be triggered asynchronously
via some AWS events. The benefit of running a Lambda function is that you do not have to
deploy a Celery microservice that needs to run 24/7 to pick messages from a queue.
Depending on the message frequency, using Lambda can reduce costs. However, again,
using Lambda means you are locked in AWS services.

Let's now look at the storage solutions.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ecs
https://coreos.com/
https://aws.amazon.com/lambda/


Deploying on AWS

[ 276 ]

Storage - EBS, S3, RDS, ElasticCache, and
CloudFront
When you create an EC2 instance, it works with one or several Elastic Block Stores (EBS)
(https://aws.amazon.com/ebs/). An EBS is a replicated storage volume EC2 instances can
mount to use as their filesystem. When you create a new EC2 instance, you can create a new
EBS, and decide if it runs on an SSD or an HDD disk, the initial size, and some other
options. Depending on your choices, the volume is more or less expensive.

Simple Storage Service (S3) (https://aws.amazon.com/s3/) is a storage service that 
organizes data into buckets. Buckets are, roughly, namespaces that you can use to organize
your data. A bucket can be seen as a key-value storage, where a value is data you want to
store. There is no upper limit for the size of the data, and S3 provides everything needed to
stream big files in and out of its buckets. S3 is often used to distribute files, since each entry
in a bucket can be exposed as a unique, public URL. CloudFront can be configured to use S3
as a backend.

One interesting feature is that S3 provides different storage backend depending on how
often the files are written or accessed. For instance, Glacier
(https://aws.amazon.com/glacier/) can be used as a backend when you want to store big
files that are rarely accessed. One use case can be backups. It is quite easy to interact with S3
from your Python applications, and pretty common to see S3 as a data backend in
microservices.

ElasticCache (https://aws.amazon.com/elasticache/) is a cache service that has two
backends--Redis and Memcached. ElasticCache leverages Redis' shard and replication
features, and lets you deploy a cluster of Redis nodes. If you host a lot of data in Redis and
might go over the RAM capacity, Redis shards can spread the data across several nodes and
raise Redis' capacity.

Relational Database Service (RDS) (https://aws.amazon.com/rds/) is a database service
that has many database backends available; in particular, MySQL and PostgreSQL.

AWS has an online calculator you can use to estimate the cost of your
deployments; see http://calculator.s3.amazonaws.com/index.html.

https://aws.amazon.com/ebs/
https://aws.amazon.com/s3/
https://aws.amazon.com/glacier/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/rds/
http://calculator.s3.amazonaws.com/index.html


Deploying on AWS

[ 277 ]

The big advantage of using RDS over your database deployment is that AWS takes care of
managing clusters of nodes, and offers high availability and reliability for your database
without having to worry about doing any maintenance work yourself. The recent addition
of PostgreSQL in RDS backends made this service very popular, and is often one of the
reasons people host their application on AWS.

Another recently added backend is the proprietary, locked-in Amazon Aurora
(https://aws.amazon.com/rds/aurora/details/), which implements MySQL 5.x, but is
supposed to run much faster (5x faster, according to Amazon).

Lastly, CloudFront (https://aws.amazon.com/cloudfront/) is Amazon's Content Delivery
Network (CDN). If you have static files you want to serve, this is the best way to do it when
your users are spread all over the world. Amazon caches the files, and makes them
available with the minimum latency possible by routing the client's requests to the closest
server. A CDN is what you need to use to serve video, CSS, and JS files--one thing to look
at, though, is the cost. If you have a few assets to serve for your microservice, it might be
simpler to serve them directly from your EC2 instance.

Messaging - SES, SQS, and SNS
For all messaging needs, AWS provides these three major services:

Simple Email Service (SES): An email service
Simple Queue Service (SQS): A queue system like RabbitMQ
Simple Notification Service (SNS): A pub/sub and push notification system that
works with SNS

Simple Email Service (SES)
If you build services that send out emails to users, it is hard to make sure they all end up in
their inbox. If you use the local SMTP service from the application's server that sends the
email out, it takes much work to configure the system properly so that the emails are not
flagged as spam by the target mail servers.

Moreover, even if you do a good job, if the server's IP is part of an IP block that was
blacklisted because a spammer used an IP close to yours to send out spam, there's not much
you can do besides trying to remove your IP from the blacklisting services. The worst case
scenario is when you get an IP that was used by spammers before you got it.

https://aws.amazon.com/rds/aurora/details/
https://aws.amazon.com/cloudfront/


Deploying on AWS

[ 278 ]

Making sure your emails end up where they are supposed to is hard, and that is why it is
often a good idea to use a third-party service that's specializes in sending emails--even if
you do not host your microservices in the cloud.

There are many of them on the market, and AWS has Simple Email Service (SES)
(https://aws.amazon.com/ses/ ). Sending emails with SES simply requires you to uses
SES's SMTP endpoint. They also provide an API, but sticking with SMTP is a good idea so
that your services can use a local SMTP when you are doing some development or testing.

Simple Queue Service (SQS)
SQS (https://aws.amazon.com/sqs/) is a subset of what you get with RabbitMQ, but it is
often good enough for most use cases.

You can create two types of queue. A First-In-First-Out (FIFO) stores messages in the order
they are received, and ensures that a message that's retrieved from the queue is read just
once. They are useful when you want to store a stream of messages that need to be picked
up by workers, like what you would do with Celery and Redis. They have a limit of 20,000
in-flight messages.

The second type (standard) is similar, except that the ordering is not entirely guaranteed.
That makes it much faster than the FIFOs, and has a higher limit (120,000).

The messages stored in SQS are replicated in several AZs in the AWS cloud, making them
reliable.

AWS is organized into Regions and in each Region, Availability Zones.

Regions are isolated one from each other to ensure fault tolerance and
stability. AZ are also isolated but they are attached with low-latency links.
Instances spread across different AZ in the same region can be used
behind the same load balancer in AWS.

Since the maximum size of a message is 256 KB, the volume you can store in a FIFO queue
is 5 GB, and it is 30 GB for the standard one. In other words, there are no real limitations
besides the price.

Simple Notification Service (SNS)
The last service in the messaging tools is SNS (https://aws.amazon.com/sns/), which 
offers two messaging APIs.

https://aws.amazon.com/ses/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/


Deploying on AWS

[ 279 ]

The first one is a pub/sub API, which can be used to trigger actions in your stack. The
publisher can be one of the Amazon service or your application, and the subscriber can be
an SQS queue, a Lambda Function, or any HTTP endpoint such as one of your
microservices.

The second one is a push API, which can be used to send messages to mobile devices. SNS
interacts, in that case, with third-party APIs such as Google Cloud Messaging (GCM) to
reach phones or simple text messages via SMS.

The SQS and SNS services can be an interesting combo to replace a custom deployment of
your messaging system like RabbitMQ. However, you need to check that their features are
good enough for your needs.

In the next section, we are going to look at the AWS services you can use to provision and
deploy services.

Provisioning and deployment - CloudFormation
and ECS
As described in Chapter 10, Containerized Services, there are many different ways to
provision and deploy your Docker containers in the cloud, and tools like Kubernetes can be
used on AWS to manage all your running instances.

AWS also offers its service to deploy clusters of containerized applications; it is called EC2
Container Service-ECS (https://aws.amazon.com/ecs) and leverages another service
called CloudFormation (https://aws.amazon.com/cloudformation/).

CloudFormation lets you describe the different instances you want to run on Amazon via
JSON files, and drives everything automatically on AWS, from deploying instances to
autoscaling.

ECS is, basically, a set of dashboards to visualize and operate clusters deployed via
CloudFormation using predefined templates. The AMI used for running the Docker
daemon is tweaked for that purpose, such as CoreOS.

https://aws.amazon.com/ecs
https://aws.amazon.com/cloudformation/


Deploying on AWS

[ 280 ]

What's convenient with ECS is that you can create and run a cluster for a given Docker
image in a matter of minutes by simply filling a couple of forms. The ECS console provides
some basic metrics for the cluster, and offers features like scheduling new deployments
depending on the CPU or memory usage.

Beyond the initial form-based setup, clusters deployed via ECS are driven by Task
Definitions that define the whole lifecycle for your instances. Those definitions describe the
Docker containers to run, and the behavior for some events.

Deploying on AWS - the basics
Now that we have looked at the major AWS services, let's see how to deploy a microservice
on them in practice.

To understand how AWS works, it is good to know how to manually deploy an EC2
instance, and run a microservice on it. This section describes how to deploy a CoreOS
instance, and run a Docker container in it. Then, we will look at automated clusters'
deployments using ECS. Lastly, we will see how Route53 can be used to publish your
clusters of services under a domain name.

First of all, let's create an AWS account.

Setting up your AWS account
The first step in deploying on Amazon is to create an account at https://aws.amazon.com.
You have to enter your credit card information to register, but you can use some of the
services with a basic plan for free for a while under some conditions.

The services that are offered for free are good enough to evaluate AWS.

Once you have registered, you are redirected to the AWS console. The first thing you need
do is pick the US East (N. Virginia) region from the top-right corner menu that's under your
login name. North Virginia is the region to use to set up specific billing alerts.

https://aws.amazon.com


Deploying on AWS

[ 281 ]

The second thing you should do is to configure the alarm in the Billing Console by visiting
https://console.aws.amazon.com/billing/home#/ (or navigating to it from the menu),
and in the preferences, check the Receive Billing Alerts checkbox:

https://console.aws.amazon.com/billing/home


Deploying on AWS

[ 282 ]

Once the option is set, you need to go to the CloudWatch panel at h t t p s ://c o n s o l e . a w s . a

m a z o n . c o m /c l o u d w a t c h /h o m e , and select Alarms | Billing in the left panel to create a new
alert. A new popup window opens, and we can set a notification in case one of the services
we use starts to cost money. Setting up $0.01 as the maximum charge does the trick. This
notification prevents you from spending money if you are just doing some testing:

At any time, you can reach any service by clicking on the Services menu in the top-left
corner. It opens a panel with all the services.

https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home


Deploying on AWS

[ 283 ]

If you click on EC2, you are redirected to the EC2 console at
https://console.aws.amazon.com/ec2/v2/home, where you can create new instances:

https://console.aws.amazon.com/ec2/v2/home


Deploying on AWS

[ 284 ]

Deploying on EC2 with CoreOS
Let's click on the Launch Instance blue button, and pick an AMI to run a new VM:

Under Community AMIs, you can search for an instance of CoreOS to list all the available
CoreOS AMIs.

There are two types of AMI: Paravirtual (PV) or Hardware Virtual Machine (HVM). These
are the two different levels of virtualization in the Xen hypervisor. PV is full virtualization,
whereas HVM is partial virtualization. Depending on the Linux distribution, you might not
be able to run all types of VMs under PV.

If you just want to play around, select the first PV AMI in the list. Then, in the next screen,
pick a t1.micro, and go on directly with the Review And Launch option. Lastly, hit the
Launch button.



Deploying on AWS

[ 285 ]

Just before it creates the VM, the console asks you to create a new SSH key pair, which is a
crucial step if you want to be able to access the VM. You should generate a new key pair per
VM, give the key pair a unique name, and download the file. You get a .pem file, which you
can add to your ~/.ssh.

Do not lose this file, AWS does not store it for you for security reasons.

Once you have launched your instance, it is listed in the EC2 console-you can see it if you
click on the Instances menu on the left-hand side.



Deploying on AWS

[ 286 ]

You can see the status of the VM in the status checks column. It takes a few minutes for
AWS to deploy the VM. Once everything is ready, you should be able to SSH into the box
by using the .pem file as a key and the public DNS of the VM.

The default user for CoreOS is core, and, once you're connected, everything needed to run
Docker containers is available, but will need an update. While CoreOS self-updates
continuously, you can force an update of the system with update_engine_client, and
reboot the VM with the sudo reboot command, as follows:

$ ssh -i ~/.ssh/runnerly.pem
core@ec2-34-224-101-250.compute-1.amazonaws.com
CoreOS (alpha)
core@ip-172-31-24-180 ~ $
core@ip-172-31-24-180 ~ $ update_engine_client -update
[0530/083245:INFO:update_engine_client.cc(245)] Initiating update check and
install.
[0530/083245:INFO:update_engine_client.cc(250)] Waiting for update to
complete.
LAST_CHECKED_TIME=1496132682
PROGRESS=0.000000
CURRENT_OP=UPDATE_STATUS_UPDATED_NEED_REBOOT
NEW_VERSION=0.0.0.0
NEW_SIZE=282041956
core@ip-172-31-24-180 ~ $ sudo reboot
Connection to ec2-34-224-101-250.compute-1.amazonaws.com closed by remote
host.
Connection to ec2-34-224-101-250.compute-1.amazonaws.com closed.

Once the VM is back, you should have a recent version of Docker, and you can try it by
echoing hello from a busybox Docker container, shown as follows:

$ ssh -i ~/.ssh/runnerly.pem
core@ec2-34-224-101-250.compute-1.amazonaws.com
Last login: Tue May 30 08:24:26 UTC 2017 from 91.161.42.131 on pts/0
Container Linux by CoreOS alpha (1423.0.0)
core@ip-172-31-24-180 ~ $
docker -v Docker version 17.05.0-ce, build 89658be
core@ip-172-31-24-180 ~ $ docker run busybox /bin/echo hello
Unable to find image 'busybox:latest' locally
latest: Pulling from library/busybox
1cae461a1479: Pull complete
Digest:
sha256:c79345819a6882c31b41bc771d9a94fc52872fa651b36771fbe0c8461d7ee558
Status: Downloaded newer image for busybox:latest hello
core@ip-172-31-24-180 ~ $



Deploying on AWS

[ 287 ]

If the previous call was successful, you now have a fully working Docker environment.
Let's try to run a web app in it now using the docker-flask image from the Docker Hub:

core@ip-172-31-24-180 ~ $
docker run -d -p 80:80 p0bailey/docker-flask
Unable to find image 'p0bailey/docker-flask:latest' locally
latest:
Pulling from p0bailey/docker-flask
bf5d46315322: Pull complete
9f13e0ac480c: Pull complete
e8988b5b3097: Pull complete
40af181810e7: Pull complete
e6f7c7e5c03e: Pull complete
ef4a9c1b628c: Pull complete
d4792c0323df: Pull complete
6ed446a13dca: Pull complete
886152aa6422: Pull complete
b0613c27c0ab: Pull complete
Digest:
sha256:1daed864d5814b602092b44958d7ee6aa9f915c6ce5f4d662d7305e46846353b
Status: Downloaded newer image for p0bailey/docker-flask:latest
345632b94f02527c972672ad42147443f8d905d5f9cd735c48c35effd978e971

By default, AWS opens only port 22 for SSH access. To reach port 80, you need to go to the
Instances list in the EC2 console and click on the Security Group that was created for the
instance (usually named launch-wizard-xx).



Deploying on AWS

[ 288 ]

Clicking on it brings up the Security Group page, where you can edit the Inbound Rules to
add HTTP. This immediately opens port 80, and you should be able to visit your Flask app
using the public DNS in your browser.

This is what it takes to run a Docker image on AWS, and it is the basis for any deployment.
From there, you can deploy clusters by creating groups of instances managed by the
AutoScaling and ELB services.

The higher-level tool, CloudFormation, can take care of all these steps automatically using
template definitions. However, ECS is the ultimate level of deployment automation on
AWS when you are using Docker-let's see how to use it in the next section.

Deploying with ECS
As described earlier in this chapter, ECS takes care of deploying Docker images
automatically, and sets up all the services needed around the instances.

You do not need, in this case, to create EC2 instances yourself. ECS uses its own AMI, which
is tweaked to run Docker containers on EC2. It is pretty similar to CoreOS, as it comes with
a Docker daemon, but it is integrated with the AWS infrastructure for sharing configuration
and triggering events.

An ECS cluster deployment is composed of many elements:

An Elastic Load Balancer (in EC2) to distribute the requests among the instance
A Task Definition, which is used to determine which Docker image needs to be
deployed, and what ports should be bound between the host and the container
A Service, which uses the Task Definition to drive the creation of EC2 instances,
and run the Docker container in them
A Cluster, which groups Services, Task Definitions, and an ELB



Deploying on AWS

[ 289 ]

Deploying a cluster on ECS when you are not used to it is complex, because it requires
creating elements in a specific order. For instance, the ELB needs to be set up before
everything else.

Fortunately, everything can be created for you in the right ordering via the first run wizard.
This wizard is displayed when you go to the ECS service on the console for the first time,
and will bootstrap everything for you. Once you are on the landing page, Click on the Get
Started button to launch the wizard.

You can check the Deploy a sample application onto Amazon ECS Cluster option, and get
going:



Deploying on AWS

[ 290 ]

This action brings up a task definition creation dialog, where you can define a name for the
task and the container to be used for that task:



Deploying on AWS

[ 291 ]

In the preceding example, we deployed the same Flask application that we deployed earlier
on EC2, so we provide that image name on the container form for the task definition. The
Docker image needs to be present on Docker Hub or AWS's own Docker images repository.

In that form, you can also set up all the port mapping between the Docker container and the
host system. That option is used by ECS when the image is run. Here, we bind port 80,
which is where the Flask docker image that we are using exposes the app.

The next step in the wizard is the Service configuration:



Deploying on AWS

[ 292 ]

We add three tasks into that service, as we want to run three instances in our cluster with
one Docker container running on each one of them. In the Application Load Balancer
section, we use the container name and the port defined earlier. Lastly, we need to
configure a cluster, where we set up an instance type, some instances, and the SSH key pair
to use:



Deploying on AWS

[ 293 ]

Once you validate that last step, the ECS wizard works for a little while to create all parts,
and once it is ready, you end up with a view service button, which is enabled once all the
parts are created. The Service page summarizes all the parts of the deployment, and has
several tabs to check every service in detail. The deployment done by the ECS wizard can be
summarized as follows:

A task definition was created to run the Docker container
A cluster of three EC2 instances was added, and in that cluster
A Service was added to the cluster, and Task Definition was used to deploy
Docker containers in the EC2 instance
The deployment was load-balanced by the ELB created earlier

If you go back to the EC2 console, and visit the Load Balancing | Load Balancers menu on
the left, you will find the newly created ECS-first-run-alb ELB that is used to serve
your ECS cluster.



Deploying on AWS

[ 294 ]

This ELB has a public DNS name, which you can use in your browser to visit your Flask
app. The URL is in the form of http://<ELB name>.<region>.elb.amazonaws.com.

The next section explains how to link this ELB URL to a clean domain name.

Route53
Route53 can be used to create an alias with your domain name. If you visit the service
console at https://console.aws.amazon.com/route53, and click on the hosted zones
menu, you can add a new hosted zone for your domain name, which is an alias to the ELB
previously set.

Assuming that you already own the domain name from a registrar, you can simply redirect
the domain to AWS's DNS. Click on Create Hosted Zone, and add your domain.

Once it is created, you can go to Create a Record Set, and select a type A record. The record
has to be an Alias, and in the target input, a dropdown appears with the list of available
targets:

https://console.aws.amazon.com/route53


Deploying on AWS

[ 295 ]

The ELB load balancer that was previously created by the wizard should appear in that list,
and selecting it links your domain name to that ELB:



Deploying on AWS

[ 296 ]

This step is all it takes to link a domain name to your deployed ECS cluster; and you can
add more entries with a subdomain, for instance, for each one of your deployed
microservice.

Route53 has DNS servers all over the world, and other interesting features like a health
check that you can use to ping your ELB and underlying services regularly. In case there's a
failure, Route53 can send an alarm to CloudWatch, and automatically, even fail over all the
traffic to another healthy ELB if you have several ones set.

Summary
Containerized applications are becoming the norm for deploying microservices, and cloud
vendors are all following that trend.

Google, Amazon, and all the other big players are now able to deploy and manage clusters
of Docker containers. So, if your application is dockerized, you should be able to deploy it
easily. In this chapter, we have looked at how to do it in AWS, which has its service (ECS) to
manage Docker images that is tightly integrated with all the other main AWS services.

Once you are familiar with all the AWS services, it is a pretty powerful platform that can be
tweaked to publish not only large-scale microservices-based applications, but also smaller
applications for a fraction of the price you would pay if you were running your own data
center.

In the next chapter, we conclude this book by giving a few leads for going further into the
art of building microservices.



12
What Next?

Five years ago, choosing a Python version was driven by these two factors:

The operating system used to deploy your applications
The availability of the libraries your application used

One extreme example of how the operating system influences this decision is when CentOS
is used. CentOS is really close to Red Hat Enterprise Linux (RHEL) minus the commercial
support, and many companies that started off with RHEL and grew internal teams, ended
up moving to CentOS. There are a lot of good reasons to use CentOS. This Linux
distribution is popular and based on a robust set of management tools.

However, using CentOS means you cannot use the latest Python version for your projects
unless you install a custom Python instance on the system. Moreover, that is often
considered to be bad practice from an Ops point of view because you go out of the
supported versions. For that reason, some developers were forced to use 2.6 for a very long
time, and that prevented them from using the newest Python syntax and features.

The other reason people stayed on Python 2 was that a few essential libraries were still not
ported to Python 3. However, this is not the case anymore--if you start a new microservice
project in 2017, everything is available for Python 3.

Those two reasons to stick with older Python versions are gone nowadays; you can pick the
latest Python 3, and ship your app on whatever Linux distribution is inside a Docker
container.



What Next?

[ 298 ]

As we've seen in Chapter 10, Containerized services, Docker seems to be the new standard
for containerizing applications. But, maybe, other players will become serious alternatives,
like CoreOs's rkt (h t t p s ://c o r e o s . c o m /r k t /). In any case, the maturity of the containers
technology will be reached the day all containers engines are based on a universal standard
to describe images--and that is the goal of organizations such as Open Container Initiative
(OCI) (h t t p s ://w w w . o p e n c o n t a i n e r s . o r g /), which is driven by all the big containers and
cloud players.

For all these reasons, using the latest Python 3 and Docker for your microservices is a safe
bet. Your Dockerfile syntax is probably going to be very close to whatever syntax an
initiative like OCI will build.

So, if Python 3.6 or the next versions have great features, nothing will prevent you from
moving forward and using them for your next microservice--and as we've said throughout
the book, it's fine to use different stacks or Python versions for each microservice.

In this book, Flask was picked, because that framework is excellent to build microservices,
and has a vast and mature ecosystem. But since Python 3.5, web frameworks based on the
asyncio library (h t t p s ://d o c s . p y t h o n . o r g /3/l i b r a r y /a s y n c i o . h t m l ) along with the
async and await new language keywords are starting to become serious alternatives.

There are good chances that in a couple of years, one of them will replace Flask as the most
popular framework, because the benefits regarding the performances of I/O bound
microservices are huge, and developers are starting to adopt asynchronous programming.

In this last chapter, we are going to look at how asynchronous programming works in
Python 3.5+, and discover two web frameworks that can be used to build microservices
asynchronously.

Iterators and generators
To understand how asynchronous programming works in Python, it is important to first
understand how iterators and generators work because they are the basis of asynchronous
features in Python.

An iterator in Python is a class that implements the Iterator protocol. The class must
implement the following two methods:

__iter__(): Returns the actual iterator. It often returns self
next(): Returns the next value until StopIteration() is raised

https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html


What Next?

[ 299 ]

In the following example, we'll implement the Fibonacci sequence as an iterator:

    class Fibo:
        def __init__(self, max=10):
            self.a, self.b = 0, 1
            self.max = max
            self.count = 0

        def __iter__(self):
            return self

        def next(self):
            try:
                return self.a
            finally:
                if self.count == self.max:
                    raise StopIteration()
                self.a, self.b = self.b, self.a + self.b
                self.count += 1

Iterators can be used directly in loops, as follows:

>>> for number in Fibo(10):
...     print(number)
...
0
1
1
2
3
5
8
13
21
34

To make iterators more Pythonic, generators were added to Python. They have introduced
the yield keyword. When yield is used by a function instead of return, this function is
converted into a generator. Each time the yield keyword is encountered, the function
returns the yielded value and pauses its execution.

    def fibo(max=10):
        a, b = 0, 1
        cpt = 0
        while cpt < max:
            yield a
            a, b = b, a + b
            cpt += 1



What Next?

[ 300 ]

This behavior makes generators a bit similar to coroutines found in other languages, except
that coroutines are bidirectional. They return a value as yield does, but they can also receive
a value for its next iteration.

Being able to pause the execution of a function and communicate with it both ways is the
basis for asynchronous programming--once you have this ability, you can use an event
loop, and pause and resume functions.

The yield call was extended to support receiving values from the caller via the sender()
method. In the next example, a terminal() function simulates a console, which
implements three instructions, echo, exit, and eval:

    def terminal():
        while True:
            msg = yield    # msg gets the value sent via a send() call
            if msg == 'exit':
                print("Bye!")
                break
            elif msg.startswith('echo'):
                print(msg.split('echo ', 1)[1])
            elif msg.startswith('eval'):
                print(eval(msg.split('eval', 1)[1]))

When instantiated, this generator can receive data via its send() method:

>>> t = terminal()
>>> t.next()    # call to initialise the generator - similar to send(None)

>>> t.send("echo hey")
hey

>>> t.send("eval 1+1")
2

>>> t.send("exit")
Bye!
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

Thanks to this addition, Python generators became similar to coroutines.

Another extension that was added to yield is yield from, which lets you chain-call another
generator.



What Next?

[ 301 ]

Consider the following example, where a generator is uses two other generators to yield
values:

    def gen1():
        for i in [1, 2, 3]:
            yield i

    def gen2():
        for i in 'abc':
            yield i

    def gen():
        for val in gen1():
            yield val
        for val in gen2():
            yield val

The two for loops in the gen() function can be replaced by a single yield from call as
follows:

    def gen():
        yield from gen1()
        yield from gen2()

Here's an example of calling the gen() method until each sub generator gets exhausted:

>>> list(gen())
[1, 2, 3, 'a', 'b', 'c']

Calling several other coroutines and waiting for their completion is a prevalent pattern in
asynchronous programming. It allows developers to split their logic into small functions
and assemble them in sequence. Each yield call is an opportunity for the function to pause
its execution and let another function take over.

With these features, Python got one step closer to supporting asynchronous programming
natively. Iterators and generators were used as building blocks to create native coroutines.

Coroutines
To make asynchronous programming more straightforward, the await and async
keywords were introduced in Python 3.5, along with the coroutine type. The await call is
almost equivalent to yield from, as its goal is to let you call a coroutine from another
coroutine.



What Next?

[ 302 ]

The difference is that you can't use the await call to call a generator (yet).

The async keyword marks a function, a for or a with loop, as being a native coroutine, and
if you try to use that function, you will not retrieve a generator but a coroutine object.

The native coroutine type that was added in Python is like a fully symmetric generator, but
all the back and forth is delegated to an event loop, which is in charge of coordinating the
execution.

In the example that follows, the asyncio library is used to run main(), which, in turn, calls
several coroutines in parallel:

    import asyncio

    async def compute():
        for i in range(5):
            print('compute %d' % i)
            await asyncio.sleep(.1)

    async def compute2():
        for i in range(5):
            print('compute2 %d' % i)
            await asyncio.sleep(.2)

    async def main():
        await asyncio.gather(compute(), compute2())

    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())
    loop.close()

What's compelling about such an application is that, besides the async and await
keywords, it looks like plain sequential Python--making it very readable. And since
coroutines work by ceding control and not by interrupting, it's deterministic and the events
occur in the same way every time it runs unlike programming with threads.

Notice that the asyncio.sleep() function is a coroutine, so it is called with the await
keyword.

If you run this program, you will get the following output:

$ python async.py
compute 0
compute2 0
compute 1
compute2 1
compute 2



What Next?

[ 303 ]

compute 3
compute2 2
compute 4
compute2 3
compute2 4

In the next section, we will take a closer look at the asyncio library.

The asyncio library
The asyncio (h t t p s ://d o c s . p y t h o n . o r g /3/l i b r a r y /a s y n c i o . h t m l ) library, which was 
originally an experiment called Tulip run by Guido, provides all the infrastructure to build
asynchronous programs based on an event loop.

The library predates the introduction of async, await, and native coroutines in the
language.

The asyncio library is inspired by Twisted, and offers classes that mimic Twisted transports
and protocols. Building a network application based on these consists of combining a
transport class (like TCP) and a protocol class (such as HTTP), and using callbacks to
orchestrate the execution of the various parts.

But, with the introduction of native coroutines, callback-style programming is less
appealing, since it's much more readable to orchestrate the execution order via await calls.
You can use coroutine with asyncio protocol and transport classes, but the original design
was not meant for that and requires a bit of extra work.

However, the central feature is the event loop API and all the functions used to schedule
how the coroutines will get executed. An event loop uses the operating system I/O poller
(devpoll, epoll, and kqueue) to register the execution of a function given an I/O event.

For instance, the loop can wait for some data to be available in a socket to trigger a function
that will treat the data. But that pattern can be generalized to any event. For instance, when
coroutine A awaits for coroutine B to be finished, the call to asyncio sets an I/O event, which
is triggered when coroutine B is over and makes coroutine A wait for that event to resume.

The result is that if your program is split into a lot of interdependent coroutines, their
executions are interleaved. The beauty of this pattern is that a single-threaded application
can run thousands of coroutines concurrently without having to be thread-safe and without
all the complexity that it entails.

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html


What Next?

[ 304 ]

To build an asynchronous microservice, the typical pattern is like this:

    async def my_view(request):
        query = await process_request(request)
        data = await some_database.query(query)
        response = await build_response(data)
        return response

An event loop running this coroutine for each incoming request will be able to accept
hundreds of new requests while waiting for each step to finish.

If the same service were built with Flask, and typically run with a single thread, each new
request would have to wait for the completion of the previous one to get the attention of the
Flask app. Hammering the service with several hundred concurrent requests will issue
timeouts in no time.

The execution time for a single request is the same in both cases, but the ability to run many
requests concurrently and interleave their execution is what makes asynchronous
applications better for I/O-bound microservices. Our application can do a lot of things with
the CPU while waiting for a call to a database to return.

And if some of your services have CPU-bound tasks, asyncio provides a function to run
the code in a separate thread or process from within the loop.

In the next two sections, we will present two frameworks based on asyncio, which can be
used to build microservices.

The aiohttp framework
The aiohttp (h t t p ://a i o h t t p . r e a d t h e d o c s . i o /) framework is a popular asynchronous 
framework based on the asyncio library, which has been around since the first days of the
library.

Like Flask, it provides a request object and a router to redirect queries to functions that
handle them.

The asyncio library's event loop is wrapped into an Application object, which handles
most of the orchestration work. As a microservice developer, you can just focus on building
your views as you would do with Flask.

http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/
http://aiohttp.readthedocs.io/


What Next?

[ 305 ]

In the following example, the api() coroutine returns some JSON response when the
application is called on /api:

    from aiohttp import web

    async def api(request):
        return web.json_response({'some': 'data'})
    app = web.Application()
    app.router.add_get('/api', api)
    web.run_app(app)

The aiohttp framework has a built-in web server, which is used to run this script via the
run_app() method, and, overall, if you are used to Flask, the biggest difference is that you
do not use decorators to route requests to your views.

This framework provides helpers like those you find in Flask, plus some original features
such as its Middleware, which will let you register coroutines to perform specific tasks such
as custom error handling.

Sanic
Sanic (h t t p ://s a n i c . r e a d t h e d o c s . i o /) is another interesting project, which specifically
tries to provide a Flask-like experience with coroutines.

Sanic uses uvloop (h t t p s ://g i t h u b . c o m /M a g i c S t a c k /u v l o o p ) for its event loop, which is a
Cython implementation of the asyncio loop protocol using libuv, allegedly making it
faster. The difference might be negligible in most of your microservices, but is good to take
any speed gain when it is just a transparent switch to a specific event loop implementation.

If we write the previous example in Sanic, it's very close to Flask:

    from sanic import Sanic, response

    app = Sanic(__name__)

    @app.route("/api")
    async def api(request):
        return response.json({'some': 'data'})

    app.run()

http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
http://sanic.readthedocs.io/
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/uvloop


What Next?

[ 306 ]

Needless to say, the whole framework is inspired by Flask, and you will find most of the
features that made it a success, such as Blueprints.

Sanic also has its original features, like the ability to write your views in a class
(HTTPMethodView) that represents one endpoint, with one method per verb (GET, POST,
PATCH, and so on).

The framework also provides middleware to change the request or response.

In the next example, if a view returns a dictionary, it will be automatically converted to
JSON:

    from sanic import Sanic
    from sanic.response import json

    app = Sanic(__name__)

    @app.middleware('response')
    async def convert(request, response):
        if isinstance(response, dict):
            return json(response)
        return response

    @app.route("/api")
    async def api(request):
        return {'some': 'data'}

    app.run()

This little middleware function simplifies your views if your microservice produces only
JSON mappings.

Asynchronous versus synchronous
Switching to an asynchronous model means you will need to use asynchronous code all the
way down.

For example, if your microservice uses a Requests library that is not asynchronous, every
call made to query an HTTP endpoint will block the event loop, and you will not benefit
from asynchronicity.



What Next?

[ 307 ]

And making an existing project asynchronous is not an easy task because it changes the
design completely. Most projects that want to support asynchronous calls are redesigning
everything from scratch.

The good news is that there are more and more asynchronous libraries
available, which can be used to build a microservice. On PyPI, you can
search for aio or asyncio.
This wiki page (h t t p s ://g i t h u b . c o m /p y t h o n /a s y n c i o /w i k i /T h i r d P a r t y

) is also a good place to look at.

Here's a short list of those that are relevant to building microservices:

aiohttp.Client: Can replace the requests package
aiopg: PostgreSQL driver on top of Psycopg
aiobotocore: AWS client--might be merged with the official boto3 project at
some point
aioredis: Redis client
aiomysql: MySQL client, built with PyMySQL

In case you cannot find a replacement for one of your libraries, asyncio provides a way to
run blocking code in a separate thread or process via an executor. This function is a
coroutine, and uses a ThreadPoolExecutor or a ProcessPoolExecutor class from the
concurrent module under the hood.

In the example that follows, the requests library is used via a pool of threads:

    import asyncio
    from concurrent.futures import ThreadPoolExecutor
    import requests

    # blocking code
    def fetch(url):
        return requests.get(url).text

    URLS = ['http://ziade.org', 'http://python.org', 'http://mozilla.org']

    # coroutine
    async def example(loop):
        executor = ThreadPoolExecutor(max_workers=3)
        tasks = []
        for url in URLS:
            tasks.append(loop.run_in_executor(executor, fetch, url))

https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty
https://github.com/python/asyncio/wiki/ThirdParty


What Next?

[ 308 ]

        completed, pending = await asyncio.wait(tasks)
        for task in completed:
            print(task.result())

    loop = asyncio.get_event_loop()
    loop.run_until_complete(example(loop))
    loop.close()

Each call to run_in_executor() returns a Future object, which can be used to set some
synchronization points in your asynchronous program. The Future objects keep an eye on
the state of the execution, and provide a method for retrieving the result once it is available.

Python 3 has two Future classes that are slightly different, and that can be
confusing. The asyncio.Future is a class you can use directly with the
event loop, while concurrent.futures.Future is a class that is used in
the ThreadPoolExecutor or ProcessPoolExecutor class.
To avoid any confusion, you should isolate the code that is working with
run_in_executor(), and get back the results as soon as they are
available.
Keeping Future objects around is a recipe for disaster.

The asyncio.wait() function can wait for all the Futures to complete, so the example()
function here will block until all the Futures return. The Wait() function can take a timeout
value, so the function returns a tuple composed of the list of completed Futures and the
ones that are still running. When not using a timeout, it waits indefinitely (unless you have
a general timeout on the socket library).

You can use processes instead of threads, but, in that case, all the data that goes in and out
of your blocking function needs to be pickable. To avoid blocking code altogether is the best
option, particularly, if the code is I/O bound.

That said, if you have a function that is CPU bound, it can be worthwhile to run it in a
separate process to use all the CPU cores available, and speed up your microservice.



What Next?

[ 309 ]

Summary
In this final chapter, we have looked at how we can write microservices using asynchronous
programming in Python. While Flask is a great framework, asynchronous programming
might be the next big revolution in Python for writing microservices that are usually I/O
bound.

There are more and more asynchronous frameworks and libraries based on Python 3.5 and
beyond, which makes this approach appealing.

Switching from Flask to one of these frameworks for one of your microservices can be a
good way to experiment with limited risks.



Index

A
Advanced Message Queuing Protocol (AMQP)
   about  140
   binding  140
   exchange  140
   queue  140
   RPC, using over  144
   URL  140
aiohttp framework
   about  304
   URL  27, 304
Alpine Linux
   about  255
   URL  255
Amazon Aurora
   URL  277
Amazon Elastic Compute Cloud (Amazon EC2) 

272

Amazon Lambda  271
Amazon Machine Images (AMIs)  274
Amazon RDS  112
Amazon SQS
   about  112
   URL  103
Amazon Web Services (AWS)
   about  198, 271
   account, setting up  280
   deployment on  280
   overview  272
   URL  280
AngularJS
   about  204
   URL  204
Ansible
   URL  269
Apache  22

Apache Bench (AB)
   URL  75
Apache Public Licence Version 2 (APL v2)  231
argparse module
   about  244
   URL  244
Association for Computing Machinery (ACM)  21
asynchronous calls
   about  137
   Celery, mocking  147
   mocking  147, 149
   performing  145
   Publish/Subscribe (pubsub) pattern  144
   RPC, over AMQP  144
   task queues  138
   topic queues  139
Asynchronous JavaScript and XML (AJAX)  208
asynchronous libraries
   reference  307
asynchronous
   versus synchronous  306
asyncio library
   about  26, 303
   URL  27, 298, 303
Auth0
   about  172
   URL  172
authenticated users
   first-time user  218
   returning user  218
authentication
   about  218
   Data Service, interacting with  218, 219
   JavaScript authentication  221, 222, 223
   reference  107
   Strava token  219, 220
authorization  218



[ 311 ]

Authorization Code Grant  170
Autodoc Sphinx extension
   URL  85
AutoScaling
   about  274
   URL  274
AWS services
   execution  273
   messaging  273
   routing  273
   storage  273

B
Babel
   about  206
   URL  206
   using  212, 214
Bandit linter
   reference  199
   using  199, 200, 202
Bandit security linter
   about  61
   URL  61
bhyve  252
Billing Console
   URL  281
BIND
   URL  274
Bitbucket
   URL  88
Blinker
   about  49
   URL  49
blueprints  56
Boom
   URL  75
Bottle
   URL  22, 33
Bower
   URL  212
   using  212, 214
built-in features, Flask
   about  47
   blueprints  56
   configuration  54

   debugging  57
   error handling  57
   extensions  51
   globals  48
   middlewares  51
   session object  47
   signals  49
   templates  52

C
CacheControl project
   URL  129
Celery
   mocking  147
   URL  103
CentOS  297
Certificate Authority (CA)  177
cgroups
   about  252
   URL  252
Chaussette
   about  248
   URL  248
check-manifest distutils command  236
Circus
   about  247
   configuring  261
   reference  250
   URL  247
classifiers option
   URL  231
Client Credentials Grant (CCG)
   about  171
   reference  171
CloudFormation
   about  279
   URL  279
CloudFront
   about  276
   URL  277
CloudWatch panel
   URL  282
clustering  267, 268, 269
code metrics  164
code, securing



[ 312 ]

   about  194
   application scope, limiting  198, 199
   Bandit linter, using  199, 200, 202
   incoming data, asserting  194, 195, 196, 197,

198

Command-Line Interface (CLI)  231
Common Gateway Interface (CGI)  22
components, monolithic application
   Authentication  15
   Booking UI  14
   Payments  15
   PDF reporting service  14
   Reservations  15
   Search  14
   Users  15
configuration  54
connection pooling  127
Connexion
   URL  116
Consul
   URL  268
Content Delivery Network (CDN)  277
Continuous Integration (CI)
   about  88
   Coveralls  91, 92
   ReadTheDocs (RTD)  90
   Travis-CI  89, 90
converters  40
CoreOS
   deploying  280
   URL  275
   with EC2, for deployment  284
Cornice  28
coroutines  301
coverage tool
   URL  81
Coveralls
   about  91, 92
   URL  91
Create, Read, Update, and Delete (CRUD) tool  57
create_token() function  176
Cross Site Scripting (XSS)  187
Cross-Origin Resource Sharing (CORS)
   about  215, 217
   reference  217

Cross-Site Request Forgery (XSRF/CSRF)  187
cURL  259
curl command
   about  36
   URL  36
Cython
   URL  30

D
Data Service
   about  113, 114
   interacting with  218, 219
data transfer
   improving  132
   improving, with binary payloads  134
   improving, with GZIP compression  132
debugging
   about  57
   debug mode  60
Denial of Service (DoS)  187
deployment
   on EC2, with CoreOS  284
   with CloudFormation  279
   with EC2 Container Service (ECS)  279, 288,

291, 292, 294
developer documentation  83, 84, 85, 88
Distributed Denial Of Service (DDoS) attack  169
Distributed Version Control System (DVCS)  88
Distutils  225
Docker Compose
   about  265, 266
   URL  265
   URL for installation  265
Docker Hub
   URL  255
Docker-based deployments
   about  264, 265
   clustering  267, 268, 269
   provisioning  267, 268, 269
   with Docker Compose  265, 266, 267
docker-py
   about  253
   URL  253
Docker
   about  252, 253



[ 313 ]

   container, executing  254, 256
   Flask, executing  256, 257, 258
   URL  154, 252
Dockerfile
   about  254
   URL  254, 264
Document Object Model (DOM)  78, 204
Domain Specific Language (DSL)  134

E
EC2 console
   URL  283
EC2 Container Service (ECS)
   about  279
   Cluster  288
   Elastic Load Balancer  288
   Service  288
   Task Definition  288
   URL  275, 279
   used, for deployment  288, 291, 292, 294
EC2 instance
   URL  275
EC2
   about  274
   URL  274
   with CoreOS, for deployment  284
Elastic Block Stores (EBS)
   about  276
   URL  276
Elastic Load Balancing (ELB)
   about  274
   URL  274
ElasticCache
   about  276
   URL  276
Elasticsearch
   about  154
   URL  153
end-to-end tests  67, 77, 78
error handling
   about  57
   custom error handler  58
ETag header  129
Etcd
   URL  268

execution
   via EC2  274
   via Lambda  274
extensions
   about  51
   reference  51

F
file descriptor (FD)  247
First-In-First-Out (FIFO)  278
Flake8
   URL  81
Flakon
   about  62
   URL  62
Flask app
   Session, using  123
Flask-Login
   URL  109
Flask-Principal
   reference  110
flask-profiler
   URL  76
Flask-Restless
   about  57
   URL  57
Flask-SQLAlchemy
   about  34
   URL  99
flask-webtest package
   URL  79
Flask-WTF
   URL  100
Flask
   about  13, 28, 33
   built-in features  47
   Circus, configuring  258, 259, 261
   executing, in Docker  256, 257, 258
   OpenResty, configuring  258, 259, 260, 261
   requests, handling  35, 37, 39, 44
   response, handling  45
   routing  39
   with ReactJS  210, 211
fluentd
   URL  153



[ 314 ]

functional tests
   about  67, 71
   asynchronous calls, mocking  147
   synchronous calls, mocking  145
   writing  145

G
generators  298, 301
getUserIds operation  117
Gevent
   about  23
   URL  24
Gilectomy
   about  29
   URL  29
GitHub
   URL  88
GitLab
   URL  88
Glacier
   about  276
   URL  276
Global Interpreter Lock (GIL)  29
Google Cloud Messaging (GCM)  279
Graphite
   URL  76
Graylog Enterprise
   URL  160
Graylog Extended Log Format (GELF)
   URL  157
Graylog
   logs, sending  157
   setting up  154
   URL  153, 154
Graypy
   URL  157
Greenlet
   about  23
   URL  24

H
Hardware Virtual Machine (HVM)  284
HMAC-SHA256 (HS256)  174
HMAC
   URL  47

HyperKit
   about  252
   URL  252

I
integration tests  67, 73, 74
Inter-Process Communication (IPC)  10
iterators  298, 301
itsdangerous
   about  47
   URL  47

J
JavaScript (JS)  204
JavaScript authentication  221, 222, 223
Jinja's sandbox
   URL  195
Jinja
   about  54
   URL  52, 54
JSON Web Key (JWK) format  180
JSON Web Token (JWT)
   about  173, 175
   header  173
   payload  173
   signature  173
   URL  173
JSON-Schema specification
   URL  116
JSX syntax
   about  206
   URL  206
Just-In-Time (JIT) compiler  31
JWT Claim  174

K
Konfig project
   URL  55
Kubernetes
   about  269, 275
   URL  269

L
Lambda



[ 315 ]

   about  275
   URL  275
LAMP (Linux-Apache-MySQL-Perl/PHP/Python) 

11

Let's Encrypt
   URL  177
libuv  305
load tests  67, 74, 75, 76
Local File Inclusion (LFI)  187
local helper
   URL  44
locust.io
   URL  77
logs
   centralizing  152
   extra fields, adding  159
   Graylog, setting up  154
   sending, to Graylog  157
Lua Shared Dict  191
lua-resty-waf
   URL  193
Lua
   about  27, 188
   URL  188
LuaJIT
   URL  189

M
MANIFEST.in file
   about  235, 236
   URL  236
Markdown
   about  84
   URL  84
Memcache  17
message broker  103
MessagePack
   about  134
   URL  135
messaging
   with Simple Email Service (SES)  277
   with Simple Notification Service (SNS)  277
   with Simple Queue Service (SQS)  277
microservice approach  14, 15
microservice project

   skeleton  61
   URL  62
microservices, benefits
   about  16
   deployment  17
   scaling  17
   separation of concerns  16
   smaller projects  16
microservices, pitfalls
   about  18
   compatibility issues  20
   data storing  19
   data, sharing  19
   illogical splitting  18
   more network interactions  19
   testing  20
microservices
   about  15
   executing  244, 246
   implementing, with Python  21
middlewares  51
mocking  68
mocks
   avoiding  68
Model-View-Controller (MVC)
   about  204
   controller  98
   model  98
   view  98
Model-View-Template (MVT)  98
ModSecurity
   URL  186
Molotov
   about  76
   URL  76
MongoDB
   URL  153
monolithic approach
   about  10, 11
   pros and cons  12
monolithic design
   about  98
   authentication  107
   authorization  107
   background tasks  103, 105



[ 316 ]

   implementing  111
   model  98
   splitting  112, 118
   Strava token, obtaining  106
   template  99, 101, 103
   view  99, 101, 103

N
Nameko
   URL  144
network strategies, Docker
   reference  265
nginx content pack
   URL  166
nginx
   about  22
   function, adding  189
Node.js
   about  23
   URL  210, 212
Nose
   URL  80
npm
   URL  212
   using  212, 214
ntpdate service  131

O
OAuth2
   about  96, 169, 170, 171, 172
   URL  96, 169
Object-Relational Mapper (ORM)  33
Open API 2.0
   using  115
Open Container Initiative (OCI)
   URL  298
Open Source Software (OSS)  13
Open Web Application Security Project (OWASP)
   about  186
   URL  186
OpenResty
   about  188
   concurrency limiting  191
   configuring  259, 260, 261
   features  193

   Lua  188
   nginx  188
   rate limiting  191
   URL  188, 193
OpenStack community
   URL  199
Operation person (Ops)  21
out-of-memory killer (oomkiller)  161

P
packaging toolchain
   about  226, 227
   definitions  227, 228
   project, distributing  241, 242, 243
   project, releasing  239, 240, 241
   Python project, packaging  228
   versioning  236, 237, 238, 239
Paravirtual (PV)  284
Paste project  79
PBKDF2
   reference  108
PEP (Python Environment Proposal)
   URL  44
performance metrics
   about  161
   code metrics  164
   system metrics  161
   web server metrics  166
Periodic Task feature
   reference  106
pika-pool
   URL  142
Pika
   URL  141
Pip  61
pip-tools
   about  234
   URL  234
Postgres image
   URL  267
preflight mechanism  215
process management  246, 247, 248, 249, 250
Protocol Buffers (protobuf)
   about  134
   URL  134



[ 317 ]

provisioning  267, 268, 269
psutil
   URL  162
Psycopg  307
Publish/Subscribe (pubsub) pattern  144
Pull Request (PR)  89
push-pull tasks queue  138
PyCharm
   about  61
   URL  61
Pygments
   URL  85
PyJWT
   about  175, 176
   URL  175
Pylons project
   URL  33
PyMySQL  196
PyPA
   about  227
   URL  227
PyPI
   URL  233, 241
   URL, for registration  243
PyPy interpreter
   URL  31
Pypy Speed Center
   URL  31
Pyramid  28
pytest package
   URL  81
pytest-cov  81
pytest-flake8  81
pytest
   URL  78
   using  80, 82, 83
Python application  227
Python Enhancement Proposals (PEPs)  226
Python library  227
Python package  227
Python Package Index (PyPI)  13, 229
Python project  227
Python project, packaging
   MANIFEST.in file  235, 236
   requirements.txt file  233, 234, 235

   setup.py file  228, 229, 230, 231, 232, 233
Python, for microservice implementation
   asyncio  26
   Gevent  23
   Greenlet  23
   language, performances  29
   Twisted  25
   WSGI standard  22
Python
   microservices, implementing  21
   selecting, for Flask  35

R
RabbitMQ broker
   about  140
   URL  140
RabbitMQ
   URL  50, 103
rabbitmqadmin  141
Raven  50
ReactJS
   about  204
   Babel, using  212, 214
   Bower, using  212, 214
   components  207, 208, 209, 210
   Cross-Origin Resource Sharing (CORS)  215,

217

   dashboard, building  205
   Flask  210, 211
   JSX syntax  206
   npm, using  212, 214
   reference  210
   URL  204
Read-Eval-Print Loop (REPL)  43, 188
ReadTheDocs (RTD)
   about  90
   URL  90
recommonmark package  84
Red Hat Enterprise Linux (RHEL)  297
Redis
   about  17
   URL  103
Registered Claim Names  174
Relational Database Service (RDS)
   about  276



[ 318 ]

   URL  276
Remote Code Execution (RCE)  187
Remote File Inclusion (RFI)  187
Remote Procedure Call (RPC)  122
Remote Procedure Calls (RPC)  10
Reportlab  13
Reports Service  113
request_mock library
   URL  69
requests library
   URL  68
requests per second (RPS)  75
requests-mock project
   URL  145
RequireJS
   about  214
   URL  214
requirements.txt file
   about  233, 234, 235
   URL  233
restructured text-lint project
   URL  230
reStructuredText (reST)
   URL  84
RFC 7517
   URL  180
rkt
   URL  298
Route53
   about  274, 294
   URL  274, 294
routing
   about  39, 274
   AutoScaling  274
   converters  40
   Elastic Load Balancing (ELB)  274
   Route53  274
   url_for function  43
   variables  40
RPC
   using, over AMQP  144
RSA encryption algorithm  178
Runnerly repository
   URL  117
Runnerly

   about  96
   URL  96
   user stories  96
Rust project
   URL  89

S
Salt
   URL  269
Sanic
   about  305
   URL  305
SCons
   URL  226
Selenium
   URL  78
Semantic Versioning (SemVer)
   about  237
   URL  237
Sentry
   about  153
   URL  50, 153
Server-Side Template Injection (SSTI)
   about  194
   reference  194
Service Level Agreement (SLA)  154, 272
Service Workers
   about  205
   URL  205
Service-Oriented Architecture (SOA)
   origins  9
setup.py file  228, 229, 230, 231, 232, 233
Setuptools  61, 226
SHA1  48
Simple Email Service (SES)
   about  277
   URL  278
Simple Notification Service (SNS)
   about  278
   URL  278
Simple Queue Service (SQS)
   about  278
   URL  278
Simple Storage Service (S3)
   about  276



[ 319 ]

   URL  276
Six
   about  35
   URL  35
SOA Manifesto
   URL  9
Sphinx HtmlDir  90
Sphinx tool
   URL  83
Spinnaker
   URL  8
SQL Injection  187
SQLAlchemy (SA)  34
srcache-nginx-module
   about  193
   URL  193
Stackless project  24
StatsD
   URL  76
storage
   CloudFront  277
   Elastic Block Stores (EBS)  276
   ElasticCache  276
   Relational Database Service (RDS)  276
   Simple Storage Service (S3)  276
Strava Service  113
Strava token
   obtaining  219, 220
Strava
   about  96, 112
   token, obtaining  106
   URL  96
stravalib
   URL  103, 219
Swagger specification file  239
Swagger
   URL  115
swarm mode
   about  268
   URL  268
switching  24
synchronous calls
   about  122
   connection, pooling  127
   data transfer, improving  132

   HTTP cache headers  129
   mocking  145
   performing  137
   Session, using in Flask app  123
synchronous
   versus asynchronous  306
syslog
   URL  166
system metrics
   about  161
   URL  162

T
Task Definitions  280
task queues  138
templates  52
Test-Driven Development (TDD)
   about  65
   reference  66
tests
   end-to-end tests  67
   functional tests  67
   integration tests  67
   load tests  67
   unit tests  67
threading.local
   URL  44
three-legged OAuth  170
Time-To-Live (TTL)  175
TIOBE index
   URL  21
token dealer  242
token-based authentication
   about  172
   JSON Web Token (JWT)  173, 175
   PyJWT  175, 176
   TokenDealer microservice  179, 180
   TokenDealer, using  184, 186
   X.509 certificate-based authentication  176, 179
TokenDealer microservice
   about  179, 180
   POST/oauth/token, implementation  180, 182,

183

   using  184, 185
top command  161



topic queues  139
Tornado
   about  23, 25
   URL  25
tox-travis project  90
Tox
   URL  82
   using  80, 82, 83
transpilation  206
Travis-CI
   about  89, 90
   reference  90
   URL  89
Tulip  26, 303
Twine
   installing  243
   URL  243
Twisted
   about  23, 25
   URL  25

U
unit tests  67, 68, 71
url_for function  43
User Interface (UI)  15, 77, 204
uvloop
   about  305
   URL  305
uWSGI
   about  247
   URL  247

V
variables  40
version pinning  234
Virtual Machines (VM)  199
Virtualenv
   about  226

   URL  35

W
web application firewall
   about  186, 187, 188
   OpenResty  188, 189
Web Application Framework (WAF)  186
Web Server Gateway Interface (WSGI)  22, 35
web server metrics
   about  166
WebOb
   URL  79
WebTest
   URL  72, 79
   using  79
Werkzeug WSGI toolkit
   URL  33
WSDL
   URL  115
WSGIProxy2 library
   URL  79
WTForms-Alchemy
   about  102
   URL  102
WTForms
   about  100
   URL  100

X
X.509 certificate-based authentication  176, 179
Xen hypervisor
   URL  274

Z
zlib
   about  47
   URL  133


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Introduction
	Chapter 1: Understanding Microservices
	Origins of Service-Oriented Architecture
	The monolithic approach
	The microservice approach
	Microservice benefits
	Separation of concerns
	Smaller projects
	Scaling and deployment

	Microservices pitfalls
	Illogical splitting
	More network interactions
	Data storing and sharing
	Compatibility issues
	Testing

	Implementing microservices with Python
	The WSGI standard
	Greenlet and Gevent
	Twisted and Tornado
	asyncio
	Language performances

	Summary

	Chapter 2: Discovering Flask
	Which Python?
	How Flask handles requests
	Routing
	Variables and converters
	The url_for function

	Request
	Response

	Flask built-in features
	The session object
	Globals
	Signals
	Extensions and middlewares
	Templates
	Configuration
	Blueprints
	Error handling and debugging
	Custom error handler
	The debug mode


	A microservice skeleton
	Summary

	Chapter 3: Coding, Testing, and Documenting - the Virtuous Cycle
	Different kinds of tests
	Unit tests
	Functional tests
	Integration tests
	Load tests
	End-to-end tests

	Using WebTest
	Using pytest and Tox
	Developer documentation
	Continuous Integration
	Travis-CI
	ReadTheDocs
	Coveralls

	Summary

	Chapter 4: Designing Runnerly
	The Runnerly application
	User stories

	Monolithic design
	Model
	View and Template
	Background tasks
	Strava token

	Authentication and authorization
	Putting together the monolithic design

	Splitting the monolith
	Data Service
	Using Open API 2.0
	More splitting
	Summary

	Chapter 5: Interacting with Other Services
	Synchronous calls
	Using Session in a Flask app
	Connection pooling
	HTTP cache headers
	Improving data transfer
	GZIP compression
	Binary payloads

	Putting it together

	Asynchronous calls
	Task queues
	Topic queues
	Publish/subscribe
	RPC over AMQP
	Putting it together

	Testing
	Mocking synchronous calls
	Mocking asynchronous calls
	Mocking Celery
	Mocking other asynchronous calls


	Summary

	Chapter 6: Monitoring Your Services
	Centralizing logs
	Setting up Graylog
	Sending logs to Graylog
	Adding extra fields

	Performance metrics
	System metrics
	Code metrics
	Web server metrics

	Summary

	Chapter 7: Securing Your Services
	The OAuth2 protocol
	Token-based authentication
	The JWT standard
	PyJWT
	X.509 certificate-based authentication
	The TokenDealer microservice
	The POST/oauth/token implementation

	Using TokenDealer

	Web application firewall
	OpenResty - Lua and nginx
	Rate and concurrency limiting
	Other OpenResty features


	Securing your code
	Asserting incoming data
	Limiting your application scope
	Using Bandit linter

	Summary

	Chapter 8: Bringing It All Together
	Building a ReactJS dashboard
	The JSX syntax
	React components

	ReactJS and Flask
	Using Bower, npm, and Babel
	Cross-origin resource sharing

	Authentication and authorization
	Interacting with Data Service
	Getting the Strava token
	JavaScript authentication

	Summary

	Chapter 9: Packaging and Running Runnerly
	The packaging toolchain
	A few definitions
	Packaging
	The setup.py file
	The requirements.txt file
	The MANIFEST.in file

	Versioning
	Releasing
	Distributing

	Running all microservices
	Process management
	Summary

	Chapter 10: Containerized Services
	What is Docker?
	Docker 101
	Running Flask in Docker
	The full stack - OpenResty, Circus and Flask
	OpenResty
	Circus

	Docker-based deployments
	Docker Compose
	Introduction to Clustering and Provisioning

	Summary

	Chapter 11: Deploying on AWS
	AWS overview
	Routing - Route53, ELB, and AutoScaling
	Execution - EC2 and Lambda
	Storage - EBS, S3, RDS, ElasticCache, and CloudFront
	Messaging - SES, SQS, and SNS
	Simple Email Service (SES)
	Simple Queue Service (SQS)
	Simple Notification Service (SNS)

	Provisioning and deployment - CloudFormation and ECS

	Deploying on AWS - the basics
	Setting up your AWS account
	Deploying on EC2 with CoreOS

	Deploying with ECS
	Route53
	Summary

	Chapter 12: What Next?
	Iterators and generators
	Coroutines
	The asyncio library
	The aiohttp framework
	Sanic
	Asynchronous versus synchronous
	Summary

	Index



