
The M
aker’s Guide to the Zombie Apocalypse • simon M

onk

Scavenge, Build, Survive!
Where will you be when the zombie apocalypse hits? Trapping yourself in the
basement? Roasting the family pet? Beheading reanimated neighbors?

No way. You’ll be building fortresses, setting traps, and hoarding supplies, because
you, savvy survivor, have snatched up your copy of The Maker’s Guide to the Zombie
Apocalypse before it’s too late. This indispensable guide to survival after Z-day,
written by hardware hacker and zombie anthropologist Simon Monk, will teach
you how to generate your own electricity, salvage parts, craft essential electronics,
and out-survive the undead.

Take charge of your environment:
•	Monitor	zombie	movement	with	trip	wires	and	motion	sensors
•	Keep	vigilant	watch	over	your	compound	with	Arduino	and	
 Raspberry Pi surveillance systems
•	Power	zombie	defense	devices	with	car	batteries,	bicycle	
 generators, and solar power

Escape imminent danger:
•	Repurpose	old	disposable	cameras	for	zombie-distracting	flashbangs
•	Open	doors	remotely	for	a	successful	sprint	home
•	Forestall	subplot	disasters	with	fire	and	smoke	detectors

Communicate with other survivors:
•	Hail	nearby	humans	using	Morse	code
•	Pass	silent	messages	with	two-way	vibration	walkie-talkies
•	Fervently	scan	the	airwaves	with	a	frequency	hopper

For	anyone	from	the	budding	maker	to	the	keen	hobbyist,	The Maker’s Guide to the
Zombie Apocalypse is an essential survival tool.

About the Author
Simon Monk is a full-time author and maker, mostly writing about elec tronics
for makers. Some of his better-known books include Programming Arduino: Getting
Started with Sketches, Raspberry Pi Cookbook, and Hacking Electronics.	He	is	also	the	
co-author of Practical Electronics for Inventors and wrote Minecraft Mastery with his
son, Matthew Monk.

Shelve in: Hardware/Electronics

Price: $24.95 ($28.95 CDN)

www.nostarch.com
THE FINEST IN

GEEK ENTERTAINMENT™

The Maker’s
Guide to the

Zombie
Apocalypse

The Maker’s
Guide to the

Zombie
Apocalypse

Simon Monk

Defend Your
Base with Simple

Circuits, Arduino, and
Raspberry Pi

No Starch Press
San Francisco

The Maker's Guide To The ZoMbie apocalypse. Copyright © 2016 by Simon Monk.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the

copyright owner and the publisher.

Printed in USA

First printing

19 18 17 16 15 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-667-2

ISBN-13: 978-1-59327-667-6

Publisher: William Pollock

Production Editor: Serena Yang

Cover and Interior Design: Beth Middleworth

Illustrator: Miran Lipovača

Developmental Editor: Jennifer Griffith-Delgado

Copyeditor: Paula L. Fleming

Compositor: Serena Yang

Proofreader: James Fraleigh

Indexer: BIM Indexing & Proofreading Services

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 415.863.9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data
Monk, Simon, author.

 The maker's guide to the zombie apocalypse : defend your base with simple circuits, Arduino, and Raspberry Pi / by Simon

Monk.

 pages cm

 Includes index.

 Summary: "A collection of DIY hardware projects using circuits, Arduino, and Raspberry Pi to store electricity, detect

invading zombies, generate solar power, and create communication and surveillance devices. Projects include alarms,

low-power LED lighting, an FM radio frequency hopper, a periscope, a wind turbine, and flash, movement, and noise makers"--

Provided by publisher.

 ISBN 978-1-59327-667-6 -- ISBN 1-59327-667-2

 1. Electronic apparatus and appliances--Design and construction--Amateurs' manuals. 2. Microcontrollers--Amateurs' manu-

als. 3. Electronic circuits--Amateurs' manuals. 4. Arduino (Programmable controller)--Amateurs' manuals. 5. Raspberry Pi

(Computer)--Amateurs' manuals. I. Title.

 TK9965.M673 2015

 621.381--dc23

 2015023925

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names

mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a

trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention

of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the prepa-

ration of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect to any

loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

http://www.nostarch.com

To Jonathan and Michaela

on your wedding.

May you have a wonderful

and zombie-free life together.

About the Author
Simon Monk is a full-time author and maker, mostly writing about elec-

tronics for makers. Some of his better-known books include Programming

Arduino: Getting Started with Sketches, Raspberry Pi Cookbook, and Hacking

 Electronics. He is also the co-author of Practical Electronics for Inventors and

wrote Minecraft Mastery with his son, Matthew Monk.

 Simon also writes for MagPi magazine and helps out

with Monk Makes (http://www.monkmakes.com/), a company

run by his wife Linda, which makes and sells component

kits and other products related to Simon’s books. You can

follow Simon on Twitter where he is @simonmonk2 and

find out more about his books at http://www.simonmonk.org/.

About the Technical Reviewer
Jeremy Blum is a “Hardware Astronaut” at Google, where he focuses on

electrical design and advanced prototyping for future Google hardware.

Jeremy received both a bachelor’s degree and a master’s degree in electrical

and computer engineering from Cornell University, and was selected by the

American Institute of Electrical and Electronics Engineers as the 2012 New

Face of Engineering.

 Jeremy’s popular Arduino tutorial videos and his book,

Exploring Arduino, have introduced millions of people around

the world to engineering. He offers engineering consult-

ing services through his firm, Blum Idea Labs LLC, and he

frequently teaches engineering courses to young students

and adults across the United States. Jeremy’s passion is

improving people’s lives and our planet through creative

engineering solutions; you can learn more about him and his work at http://

www.jeremyblum.com/.

http://monkmakes.com/
http://simonmonk.org/
http://www.jeremyblum.com/
https://twitter.com/simonmonk2

Brief Contents

Acknowledgments • xv i i

Introduction • 1

Chapter 1: Apocalypse Basics • 5

Chapter 2: Generating Electricity • 19

Chapter 3: Using Electricity • 45

Chapter 4: Zombie Alarms • 63

Chapter 5: Surveillance and Raspberry Pi • 8 1

Chapter 6: Add Remote Access and Detect Open Doors • 103

Chapter 7: Environmental Monitoring • 1 19

Chapter 8: Building a Control Center for Your Base • 139

Chapter 9 : Zombie Distractors • 157

Chapter 10: Communicating with Other Survivors • 18 1

Chapter 1 1: Haptic Communication • 209

Appendix A: Parts • 22 1

Appendix B: Basic Skills • 227

Appendix C: Arduino Primer • 243

Index • 263

C o n t e n t s i n D e ta i l

Acknowledgments .. xvii

introduction .. 1
Key Maker Survival Skills . 1
About the Apocalypse Survival Projects . 2
Resources to Download Before the Zombies Rise . 4

1 • ApocAlypse BAsics .. 5
Zombies . 6

Types of Zombies . 6
Are Zombies Really Dead? . 7

How Long Will the Zombies Be Around? . 8
Postapocalypse Survival 101 . 9

Home . 9
Water . 10
Food and Fuel . 11
Zombie Killing . 11
Dressing to Kill . 12
Staying Healthy . 13

Be Prepared . 14
Other Survivors . 14
Parts for Projects . 15

Cars . 15
Brick-and-Mortar Parts Stores . 16

Project Construction . 17
Soldering . 17
Mechanical Construction . 17
Electronic Modules . 17

2 • generAting electricity .. 19
Power and Energy . 20
Flavors of Electricity . 21

Low-Voltage DC . 22
High-Voltage AC . 23

xii Contents in Detail

Batteries . 24
Single-Use Batteries . 25
Rechargeable Batteries . 25

Battery Charging . 25
Project 1: Solar Recharging . 26

Solar Panels . 26
Charge Controllers . 26
What You Will Need . 27
Construction . 28
Using the Solar Charger . 33

Project 2: Bicycle Generator . 34
What You Will Need . 35
Construction . 35
Using the Pedal Generator . 43

3 • using electricity .. 45
Powering Devices from a Car Battery . 46

Cigarette Lighter Sockets . 46
USB Power . 48
AC Inverters . 49

Project 3: LED Lighting . 49
What You Will Need . 50
Construction . 50
Using the Lighting . 52

Project 4: Battery Monitor . 53
What You Will Need . 54
Construction . 55
Software . 57
Using the Battery Monitor . 61

4 • ZomBie AlArms .. 63
Project 5: Trip Wire Alarm . 64

What You Will Need . 65
Construction . 66
Using the Trip Wire Alarm . 71

Contents in Detail xiii

Project 6: PIR Zombie Detector . 72
What You Will Need . 73
Construction . 74
Software . 76
Using the PIR Zombie Detector . 77
Scavenged PIR Sensors . 77

5 • surveillAnce And rAspBerry pi . 81
The Raspberry Pi . 82

The Raspberry Pi System . 83
What You Will Need . 84
Powering the System . 85
Installing Raspbian . 86

Project 7: Monitor Zombies with a USB Webcam 87
What You Will Need . 88
Construction . 89
Using the Webcam . 95

Project 8: A Wireless Zombie Surveillance System 96
What You Will Need . 97
Construction . 98
Using the Wi-Fi Webcam . 102

6 • Add remote Access And detect open doors 103
Project 9 : Remote Door Lock . 105

What You Will Need . 106
Construction . 106
Going Wireless to Open Doors Ahead of Time 111

Project 10: Door Sensor . 112
What You Will Need . 113
Construction . 114
Software . 115
Using the Door Sensor . 117

7 • environmentAl monitoring .. 119
Project 1 1: Quiet Fire Alarm . 120

What You Will Need . 121
Construction . 122

xiv Contents in Detail

Software . 129
Using the Fire Alarm . 131

Project 12 : Temperature Alarm . 131
What You Will Need . 132
Construction . 132
Software . 135
Using the Temperature Alarm . 137

8 • Building A control center for your BAse 139
Project 13: A Raspberry Pi Control Center . 140

What You Will Need . 141
Construction . 141
Software . 142
Using the Control Center . 148

Project 14: Going Wireless with Bluetooth . 149
What You Will Need . 150
Construction . 150
Software . 154
Using the Bluetooth-Enabled Command Center 156

9 • ZomBie distrActors .. 157
Project 15: Arduino Flash Distractor . 158

What You Will Need . 160
Construction . 161
Software . 166
Using the Flash Distractor . 168

Project 16: Arduino Movement and Sound Distractor 169
What You Will Need . 170
Construction . 171
Software . 177
Using the Sound and Movement Distractor 180

10 • communicAting with other survivors 181
Project 17: A Raspberry Pi Radio Transmitter Beacon 182

What You Will Need . 182
Construction . 184

Contents in Detail xv

Software . 184
Using the FM Transmitter . 185

Project 18: Arduino FM Radio Frequency Hopper 188
What You Will Need . 189
Construction . 189
Software . 194
Using the Radio Scanner . 196

Project 19 : Arduino Morse Code Beacon . 196
What You Will Need . 197
Construction . 198
Software . 201
Using the Morse Beacon . 205

11 • hAptic communicAtion .. 209
Project 20: Silent Haptic Communication with Arduino 209

What You Will Need . 211
Construction . 212
Software . 217
Using the Haptic Communicator . 220

A • pArts .. 221
A Note on Brick-and-mortar Suppliers . 222
Electronics Modules . 222
Raspberry Pi and Related Parts . 223
Leads and Connectors . 223
Tools . 224
Electronic Components . 224
Other Hardware . 225
Resistor Color Codes . 225

B • BAsic skills .. 227
Stripping Wires . 227
Joining Wires by Twisting . 228
Soldering Basics . 230

Joining Wires with Solder . 231
Soldering a PCB . 234

xvi Contents in Detail

Using Heatshrink . 235
Using a Multimeter . 237

Measuring DC Voltage . 238
Measuring DC Current . 239
Measuring Resistance . 240
Continuity Testing . 241
Bells and Whistles . 242

c • Arduino primer .. 243
What Is an Arduino? . 243
Arduino Software . 245

Installing the Arduino IDE . 245
Uploading a Sketch . 247
Installing the Antizombie Sketches . 248

Arduino Programming Basics . 249
Structure of an Arduino Sketch . 249
Creating Variables and Constants . 250
Configuring Digital Outputs . 251
Configuring Digital Inputs . 251
Stabilizing Digital Inputs with Pull-up Resistors 252
Reading Analog Inputs . 253
Writing to Analog Outputs . 254
Repeating Code in Control Loops . 254
Setting Two Conditions with If/Else . 256
Making Logical Comparisons . 256
Grouping Code into Functions . 257

Assembling a Screwshield . 259
Further Resources . 261

index .. .263

A c k n o w l e d g m e n t s

Many thanks to the enthusiastic and dedicated team at No Starch Press,
especially to my thorough and patient editors Jennifer Griffith-Delgado and
Serena Yang, who have guided this project from initial idea to finished book
with skill and imagination.

I would especially like to thank Miran Lipovača for his wonderful illus-
trations that add so much to the book and Jeremy Blum for his technical
review of the material. I am very honored to have two such noteworthy indi-
viduals involved in the project.

Finally I would like to thank Linda (see Figure 5-15) for her patience and
understanding during the writing of this book.

I n t r o d u c t I o n

This is a book for people who like to
make things but also enjoy the premise

of a postapocalypse world where you
 cannot assume a limitless supply of electric-

ity and other resources. As such, book starts with
projects for generating electricity through solar and
pedal-power (using a scavenged car alternator). Once you have power, you’ll
move on to surveillance and monitoring projects that will help you protect
your base. Finally, you’ll build communication projects that allow you to
find other survivors and even send messages to members of your group via
silent haptic communication.

Key Maker Survival Skil l s
Some projects in this book require no more technical skill than being able
to attach a wire to a screw terminal, while others require you to be able to

2 Introduction

solder. The detailed primer in Appendix B will get you started on any tech-
nical skills that may be new to you. A few of the projects also require some
basic wood-working skills and tools, but you won’t need anything more
fancy than a saw, drill, and chisel.

The more technical projects in the book make use of the popular
Raspberry Pi and Arduino as low power easy to use control modules. See
Chapter 5 for some Raspberry Pi basics and Appendix C for a primer on
the Arduino.

About the Apocalypse Survival Projects
Although these projects are all things that are intended to be useful post-
apocalypse, most are also useful even if the zombies don’t take over. Many of
the Arduino projects can actually be grouped together onto a single Arduino,
with a single program integrating their different functions.

Chapter 1: Apocalypse Basics gives an overview of what the world
will be like when the zombie apocalypse strikes so you know what you’re up
against. From there, we dive straight into the projects.

Chapter 2: Generating Electricity has two projects. “Project 1: Solar
Recharging” shows you how to charge a car battery using solar power, and
“Project 2: Bicycle Generator” describes how to use a scavenged car alternator
and pedal cycle to charge a car battery.

Chapter 3: Using Electricity covers two projects to get you acquainted
with using those car batteries and an Arduino. First, “Project 3: LED Lighting”
has you string up some LED lighting to illuminate your base from 12V bat-
teries. Then, you’ll turn an Arduino into “Project 4: Battery Monitor” to
make sure you don’t run out of juice.

Chapter 4: Zombie Alarms includes two builds you can install around
your base to alert you when zombies are about. “Project 5: Trip Wire Alarm”
is a nice low tech alarm that uses a microswitch and car horn, and “Project 6:
PIR Zombie Detector” is a more high-tech zombie detector that uses a motion
sensor.

Chapter 5: Surveillance and Raspberry Pi equips you to monitor
your undead neighbors from a distance. “Project 7: Monitor Zombies with a
USB Webcam” shows you how to set up a webcam and analyze the video for
movement detection in Python. “Project 8: A Wireless Zombie Surveillance
System” helps you make your surveillance system more practical by extend-
ing your observing range with a low-cost Wi-Fi webcam.

Introduction 3

Chapter 6: Add Remote Access and Detect Open Doors helps you
keep the zombies out of your base. “Project 9: Remote Door Lock” shows you
how to set up a door with an electro-mechanical door latch so that you can
unlock it remotely using a wireless option, and “Project 10: Door Sensor” will
notify you when someone (or something) opens your door.

Chapter 7: Environmental Monitoring contains projects to protect
you against other postapocalyptic hazards, because zombies aren’t the only
things you have to worry about when you’re trying to survive. “Project 11:
Quiet Fire Alarm” shows you how to hack a loud smoke detector into a more
discreet alarm that’s integrated with Arduino. Then, you can use “Project 12:
Temperature Alarm” to monitor temperatures and set alarms to avoid burst
pipes or other disasters.

Chapter 8: Building a Control Center for Your Base lets you take
all the sensor feedback, detection systems, and so on from previous projects
and monitor everything on one screen. In “Project 13: A Raspberry Pi Control
Center,” an Arduino monitors for door and zombie movement, temperature
changes, and battery warnings, while the Raspberry Pi displays a status
window. You can also add wireless communication between the Raspberry
Pi and Arduino on the Control Center by following the instructions for
“Project 14: Going Wireless with Bluetooth.” This way, you’ll put more dis-
tance between you and the dangers you’re monitoring.

Chapter 9: Zombie Distractors shows you how to draw zombies’
attention away from you so you can escape. “Project 15: Arduino Flash
Distractor” uses scavenged disposable camera flashes to distract zombies, and
“Project 16: Arduino Movement and Sound Distractor” does the same job
with the sounder from a smoke alarm and a servo motor waving a flag.

Chapter 10: Communicating with Other Survivors shows you how
to find other humans in the zombie-ridden wasteland that used to be your
town. Use “Project 17: A Raspberry Pi Radio Transmitter Beacon” to attract
fellow survivors with an FM transmitter, hack a low-cost FM radio to scan
the air waves for messages from fellow survivors with “Project 18: Arduino
FM Radio Frequency Hopper,” and flash out messages to would-be recruits to
your survivors group (or warn people away) with “Project 19: Arduino Morse
Code Beacon.”

Chapter 11: Haptic Communication is an essential build if you want
to coordinate a group of survivors on a supply run, and it’s probably the
coolest project in the book. “Project 20: Silent Haptic Communication with
Arduino” allow you to press a button on one device and have the other device
vibrate (and vice-versa). The project uses an Arduino, low cost 2.4GHz RF
modules, and a vibration motor.

4 Introduction

Now that you’ve seen an overview of the projects that will save you
from the zombies, you might like to order some parts. Each project includes a
parts list specific to that build, including quantities, and Appendix A provides
details of where you can buy all the parts listed for each project in the book.

Resources to Download Before the Zombies Rise
The book has its own web page at http://www.nostarch.com/zombies/, where you
will find further information about the book including errata and links to the
source code used in the project. That code is all available on GitHub at https://
github.com/simonmonk/zombies/.

Before the apocalypse strikes, be sure to visit both URLs, download
all necessary files for the projects, save them to a flash drive, and keep that
flash drive in your go bag. The Internet will very likely cease to exist dur-
ing the apocalypse, whether because everyone at your ISP becomes a zombie
or because the electrical grid itself collapses, but if you download these files
ahead of time, you’ll be one step closer to outlasting the undead.

With your files loaded and ready, let’s look at what you can expect to
happen during the apocalypse.

http://www.nostarch.com/zombies/
https://github.com/simonmonk/zombies/
https://github.com/simonmonk/zombies/

1
A p o c A ly p s e B A s i c s

Before you start working on the
zombie apocalypse survival projects

in this book, I want to show you exactly
what kind of undead you’ll be dealing with

and share some tips about how to survive in a
zombie-infested world.

Of course, you’ll need parts to make your projects. Fortunately, one of
the few benefits of a postapocalyptic world is that there’s plenty of scrap
material to scavenge! So in this chapter, I also include a guide to finding the
parts you’ll need.

But first, let’s look at the background of zombies.

6 Chapter 1

Zombies
I find that people tend to consider themselves either zombie lovers or zombie-
indifferent. Since you’re reading this book, there is a good chance you’re a
zombie lover like me.

The appeal of zombies lies both with the zombies themselves and in the
postapocalyptic scenario that the survivors face. You could likely defeat a
single, slow zombie quite easily: a baseball bat to the head should do the trick
nicely. But in numbers, zombies become a serious threat.

If you look up “Zombie” in Wikipedia, you’ll find two entries: “Zombie
(fictional)” and, rather worryingly, just “Zombie.” The nonfictional zombie
is, according to Haitian folklore, a corpse that can be raised by magic to do
its master’s bidding. These folklore zombies are never going to be present
in significant numbers to cause the sort of apocalypse portrayed in popular
culture. For a situation where most of the human race has died or been turned
into a zombie, we need some fictional zombies.

Types of Zombies
Fictional zombies have roots in 19th-century fiction, with Mary Shelley’s
Frankenstein, but they became prominent in modern times through movies
such as Night of the Living Dead (Figure 1-1).

Figure 1-1: Zombies from Night of the Living Dead

The zombies depicted in Night of the Living Dead are classic slow zombies.
Slow zombies shuffle around as if in a daze, searching for human flesh to eat.
Interestingly, the zombies in this movie are able to use tools, breaking win-
dows with rocks and bashing doors with hefty sticks. Most zombies lose this
skill in later film and TV depictions. The portrayal of slow zombies may have
reached its cultural zenith with the hit TV show The Walking Dead.

Apocalypse Basics 7

Slow zombies are the most common fictional zombies, and this book
focuses on the threats they pose. There are, however, many other types of
zombies, as different filmmakers have sought to put their own imprint on
the concept. Table 1-1 lists some of the most important modern zombie por-
trayals along with some features of each type of zombie.

Table 1-1: Fictional Zombie Varieties

Fictional
depiction

Fast/
Slow

Eats Alive/Dead Cause of
outbreak

Means of
dispatch

Night of the
Living Dead

Slow Human flesh Dead
(reanimated)

Radiation Head
trauma

Hell of the
Living Dead

Slow Human flesh,
other zombies

Dead
(reanimated)

Chemical
leak

Head
trauma

Return of the
Living Dead

Slow Human flesh,
especially
brains

Dead
(reanimated)

Chemical
leak

Head
trauma

Resident Evil Slow Human flesh Alive Virus Head
trauma

World War Z Fast Human flesh Alive Parasite/
Virus

Head
trauma

28 Days Later Fast Human flesh Alive Virus Normal
means

Shaun of the
Dead

Slow Human flesh Dead
(reanimated)

Unknown Head
trauma

The Walking
Dead

Slow Human flesh Dead
(reanimated)

Unknown Head
trauma

All zombie types have a number of factors in common. Chief among
these is a desire for human flesh. Another, almost universal, truth is that the
only sure way to kill a zombie is severe head trauma. Decapitation is highly
effective.

Are Zombies Really Dead?
One important question is whether a person has to be dead in order to qualify
as a zombie. In some films, such as World War Z, the zombies are not dead
but rather living humans who have been mentally altered by a virus or other
parasite. Some would argue that such creatures are, strictly speaking, not
zombies at all.

The terminology of death is also tricky with zombies. If a zombie is
already dead, how can you kill it again? Although the zombie is a person
who has died, has the process of zombification actually brought the person
back to life? In that case, zombies could certainly be killed for a second time.

8 Chapter 1

However, we often define death as occurring when the heart stops, and zom-
bies’ circulatory systems are clearly not functional, as illustrated by their rela-
tive immunity to being shot anywhere but in the head.

If zombies are still dead, then it seems wrong to speak of killing them,
but until popular culture invents a new word, it’ll have to do. In this book,
I am going to use the phrase killing zombies—while possibly inaccurate, it is
not ambiguous.

How Long Wil l the Zombies Be Around?
Just how long could a zombie apocalypse last before the zombies disappear?
This depends, of course, on the rate at which new zombies are created and
the rate of zombie death. The curves for human and zombie populations can
be plotted along a horizontal axis that shows the passage of time and a verti-
cal axis that shows the population in billions (Figure 1-2).

0 1 2 3 4 5 6 7

Time (years)

0

1

2

3

4

5

6

7

8

Po
pu

la
ti
on

 (
bi

lli
on

s)

Human population
Zombie population

Figure 1-2: Human/zombie population curves over time

As the outbreak starts, the human population will plummet as the zom-
bie population increases rapidly due to zombification. However, since many

Apocalypse Basics 9

humans will be eaten rather than turned, the zombie population will not
reach the preapocalypse human level. How much it rises will depend on the
zombified-to-eaten ratio, as well as death rates for both zombies and humans.

After reaching a peak, the zombie population will then start to decline.
That’s because as the human population declines, the surviving humans will
be those best equipped to survive. (Perhaps they read this book!) The human
population will also become more spread out, making it harder for zombies
to find people. Eventually, the population of humans will stabilize at a low
level.

Zombies, on the other hand, are unlikely to survive well over the long
run. Judging by their hunger for human flesh, they need to eat to survive,
although just how this works without a fully functioning digestive system is
a mystery. In any case, since they don’t photosynthesize, their energy must
come from somewhere, and human flesh is the most likely source. But as
humans learn to survive, the zombie population will struggle to find food.
And since zombies are essentially slow-moving piles of rotting flesh, they’re a
carrion eater’s equivalent of a takeout dinner. If we added population curves
to the graph for crows, foxes, wild dogs, and other such animals, we would
probably find a massive spike in their populations as they cleaned up the mess
in pretty short order. Thus, humans who fight back and plenty of natural
predators will put downward pressure on the zombie population.

It also seems extremely unlikely that zombies will breed (something that
really doesn’t bear thinking about). Therefore, after a while all the zombies
will be gone, and humans, who will breed, will start to rebuild civilization.

So, this is your chance. Being in possession of this book should seriously
increase your chances of surviving and, hence, reproducing!

Postapocalypse Survival 10 1
Aside from the emotional tension of the zombie threat, one of the most inter-
esting ideas explored in many zombie films is how the human survivors of a
zombie apocalypse will cope.

When the zombie apocalypse comes, you’ll need to be prepared. This
book will serve as your survival guide.

Home
Where you live will be critical to your chances of survival. Most suburban
homes will not survive an attack from a determined group of zombies intent
on chowing down. If you’re in such a location, you should probably find a
new base pretty early on.

10 Chapter 1

Make sure your new home is easy to defend. Many consider a boat the
best place to live (zombies are really bad at swimming!), but this isn’t practi-
cal if you live a long way from open water. Also, living on a boat presents
its own difficulties, including storms and a constant need for fuel unless it’s
under sail. You will also have to venture onto land to stock up on supplies,
but supply runs will be necessary no matter where you live.

A boat is advantageous because it opens up the possibility of finding a
zombie-free island where a community could be established. This is definitely
an option to work toward. In fact, assuming you survive the first few days,
working your way toward the coast or the shore of a large lake in a series of
hops is probably a wise strategy. A long drive could, in theory, take you from
anywhere in the country to the coast, but in all likelihood, the roads will
be jammed with abandoned cars following desperate attempts to avoid the
contagion. So, travel is likely to be slow and dangerous, menaced by the ever-
present zombies and possibly other survivors.

If you live somewhere where it gets cold in winter, then you might
want to consider getting somewhere warmer. Cold weather means that
you’ll need to consume more calories and find some shelter with heating
that isn’t too drafty. The only likely way to heat your abode is by burning
wood, which you’ll have to go out and gather. On the other hand, an ax is
an effective weapon for decapitating zombies.

If you know how to fly a light aircraft, then this is a great way to avoid
both zombies and ground obstacles. You may find that your destination air-
strip is not clear, and many fields will revert to scrubland without human
cultivation, so take some exploratory trips before you commit yourself to
soaring past the point of no return.

Water
The survival expert Cody Lundin has something called the Rule of Threes.
This can be paraphrased as follows:

•	 You can live 3 minutes without air.

•	 You can live 3 hours without shelter (in extreme temperatures).

•	 You can live 3 days without water.

•	 You can live 3 weeks without food.

Air shouldn’t be a problem and, assuming that the apocalypse takes
place during a clement patch of weather, neither should shelter. So apart from
avoiding being eaten, your main priority has to be finding potable water and

Apocalypse Basics 11

other things to drink. The public water supply is unlikely to keep going if
the pumps that pressurize it lose power. Therefore, if possible, find a location
with its own well or other freshwater reservoir. Bottled and canned drinks
should also be in great supply, as there won’t be many people putting their
change into vending machines.

Food and Fuel
Farming can take years to become well established enough to feed a small
group of people, so growing your own organic veggies is a goal for the future,
when it’s time to rebuild society. With fewer people around, however, there
will be plenty of canned food to find—enough to last almost indefinitely.
Scavenge cans of food and other nonperishable edibles from homes and
supermarkets.

The projects in this book concentrate on electricity. Not just any electricity
but electricity stored in batteries. This is fine for lighting, alarms, and com-
munications, but when it comes to heating and cooking, it is not feasible to use
electricity without a serious solar panel array and some heavy-duty equipment.
When you’re in the mood for hot food then, gas-powered heaters and camp
stoves are much more realistic alternatives. Be sure to use them safely!

A barbecue grill is another option for cooking your food and will happily
burn charcoal or wood.

Zombie Killing
By far the best strategy when dealing with zombies is to avoid attracting
their attention whenever possible. Try to be quiet and move stealthily as you
scout new places, and avoid going anywhere where you might get trapped,
including buildings or rooms with only one door as well as blind alleys.

Eventually, you will have to fight a zombie, so make sure that you are
always armed. Guns are not necessarily the best option. They make a lot
of noise, and they have to be reloaded. Also, to take down a zombie with a
bullet, you need to shoot it in the head, and they won’t normally stand still
while you take aim.

An ax, baseball bat, or sword can be more effective. This was demon-
strated in the “Zombie Special” episode of Mythbusters, where it was scien-
tifically proven, to a high standard, that you can kill far more zombies per
minute with an ax than with a gun. The relative merits of various weapons
are listed in Table 1-2.

12 Chapter 1

Table 1-2: Weapon Pros and Cons

Weapon Pros Cons

Ax Excellent for decapitation,
inflicting head trauma

May get stuck in thick
skulls

Baseball bat/
club

Effective for head crushing,
with no danger of getting
stuck

May require repeated
bashing of skull; wooden
bats are liable to break

Handgun Good at close quarters Noisy, requires reloading

Hunting knife Good at very close quarters Requires close contact
with zombie, increasing
risk of infection

Iron bar Effective for head crushing;
no danger of getting stuck

Heavy

Rifle Great for long-range
protection

Slow at close range

Samurai sword Very cool! Excellent for
decapitation

Potential sticking prob-
lems, similar to ax

In fact, different weapons will come into their own in different situa-
tions, and ultimately your zombie-killing instrument comes down to per-
sonal choice. I favor the often neglected iron bar as my weapon of choice.
Half-Life players will be well aware of the effectiveness of this weapon.

Regardless of what you pack, fighting zombies is extremely risky. Setting
traps to kill zombies from a distance is much better than taking them on at
close range. A pit with bait hung over the opening will often be sufficient to
induce zombie after zombie to fall down the hole. A mine shaft is ideal for
this, as any hole you dig is unlikely to be deep enough to keep the zombies
from climbing back out over each other as it fills up.

Thinning out the zombie population in your area will help to reduce the
chance of zombies attacking in unmanageable numbers, and it’s the socially
responsible thing to do for any other survivors that might be in the area. It’s
the postapocalyptic equivalent of cleaning up after your dog.

When your zombie situation gets more hectic, have a supply of Molotov
cocktails (homemade incendiary bombs using bottles and often gasoline) on
hand to hurl at zombies from a safe distance. Other projectiles, such as gre-
nades, can also be effective if you can get your hands on them.

Dressing to Kill
Whether fighting zombies or trying to escape them, it’s important to dress
well. That is, no long hair or loose clothing. Once a zombie gets hold of you,
it will drag you inexorably toward its mouth until you get into biting range.
In other words, wear the kind of clothes you would around machines in a
workshop: no long hair to grab and definitely no neckties.

Apocalypse Basics 13

Armor can be improvised. Something as simple as thick cord around your
forearms can prevent a bite from penetrating the skin. But don’t forget to bal-
ance mobility with protection. A medieval suit of armor might provide good
protection for a time, but it will slow you down significantly (Figure 1-3). It’s
hard to put up much of a fight when you can’t get away!

Figure 1-3: A heavy suit of armor can decrease your mobility.

You should also think carefully about the dangers of becoming infected
from blood spatter when killing zombies. Try to breathe through your nose
while fighting or even wear a face mask.

Staying Healthy
Healthcare in a postapocalyptic world is a pretty do-it-yourself affair.
You’ll be lucky to find a medic in your group, as medical staff will have been
very much in the thick of it during the initial outbreak and therefore quite
unlikely to have survived.

This means that you need to keep yourself healthy. Getting enough exer-
cise is not going to be a problem. Just staying alive, without all the modern
conveniences that we take for granted, takes quite a lot of effort. However,
you need to stay well to survive, and that includes paying special attention to

14 Chapter 1

any minor injuries. All cuts and open wounds must immediately be dressed
with antiseptic and covered with a bandage or dressing. You should also keep
a stock of antibiotics. If you can’t get your physician to prescribe them now,
then raiding a hospital or pharmacy will be a priority once the zombie apoca-
lypse starts.

Boil any drinking water not from a sealed bottle, and don’t eat anything
likely to give you food poisoning.

If you are nearsighted, then a spare pair of glasses is an essential item.
Not being able to see well could easily be fatal in this new world.

Be Prepared
Boy Scouts and Girl Scouts probably already have a special badge for zombie
fighting; if not, they will after the apocalypse! In any case, their motto is a
good one: be prepared. Always think ahead, adopting the astronaut mentality
of anticipating the next thing that could kill you as well as the thing after
that (if you have time). Rehearse scenarios in your head continually to mini-
mize the chances of disaster when something takes you by surprise.

Keep a go bag. This small backpack should be kept close at all times so
that you can grab it and run at a moment’s notice. It should contain just
enough to keep you alive for a few days. A backpack leaves your hands free
for fighting. A good contents list for the backpack might look like this:

•	 Bottled water

•	 High-energy food such as chocolate and cookies

•	 Multipurpose pocket knife

•	 Thermal blanket

•	 Flashlight

•	 Spare weapon

Wherever you are, always make sure that there is more than one way to
get away. You need a front door and a back door. No matter how impenetra-
ble you think your base is, there is always the possibility that the worst will
happen, so have an escape route.

Other Survivors
Teaming up with other survivors can be a mixed blessing. On the one hand,
the more people, the more food and drink you need. On the other hand, if
you can run faster than the others in your group, then you can get away
while the zombies are eating them.

Apocalypse Basics 15

There are, of course, other advantages to teaming up. For one thing,
there’s the comfort of being with other humans. Also, you can keep watch
in shifts, and if your team has diverse sets of skills, you can benefit from the
expertise of others. Sadly for the old and weak, there is little advantage to
their presence over and above being a culinary diversion for zombies, unless
they can provide practical skills, wisdom, or leadership.

There is also the possibility that others will be so concerned about their
own survival that they will take things from you that they covet. Taking
and betraying happen in the best of times, let alone during a zombie apoca-
lypse, so choose your friends wisely. As long as there is mutual advantage in
staying together, the group will hold. Generally, the longer you stay together,
the more group loyalty will develop as friendships strengthen.

Parts for Projects
This is a project book, so you are going to need parts. Fortunately, a lot of
useful material will be littering the streets and roads.

Cars
Car batteries are particularly useful. In fact, cars are full of useful things that
can be repurposed (Figure 1-4).

•	 Horns that can be used as alarms or zombie distractors (see Chapters 4
and 9)

•	 Alternators for making generators (see Chapter 2)

•	 12V light bulbs for illumination and to serve as indicators

•	 Assorted switches

•	 Relays for automated switching

•	 Miles and miles of copper wire

Top T ips
Here are some top tips for survival:

•	 Don’t split up. The group should stay together.

•	 Don’t hesitate to kill a person who is turning into a zombie.

•	 Never walk backward while looking forward, especially if
 staccato string music is playing.

•	 Never launch into a long monologue.

•	 Don’t be the obnoxious one who is obviously going to get eaten.

16 Chapter 1

Figure 1-4: Cars are full of useful stuff!

Of course, removing the parts from a car out in the open is risky. Have
all the tools you need with you and work quickly. If you break into a car, the
alarm may sound. It’s much better to use a car whose doors are already open.

An alternative to taking things off a car is to just visit an auto parts store
or auto mechanic. In fact, if you are trying out some of these projects pre-
apocalypse, then visiting a junkyard or auto shop is your best option.

Brick-and-Mortar Parts Stores
Your hometown probably has a Fry’s or some other store from which it is
possible to buy (or postapocalypse, take) electronics components. In the UK,
Maplin fills a similar niche. While you won’t build much from scratch in
this book—instead, you’ll learn to reuse everyday household items whenever
possible—you can get a few really useful things at such stores:

•	 Walkie-talkies

•	 Batteries

•	 Solar panels

•	 Tools

•	 Prototyping platforms, such as Arduino and Raspberry Pi controllers
(See “Electronic Modules” on page 17.)

Apocalypse Basics 17

Of course, preapocalypse, you could also just order most materials on the
Internet. (Then, you’ll even be prepared with a stockpile; imagine the barter-
ing possibilities!) See Appendix A for a detailed breakdown of the electronic
parts you’ll need for this book and where to buy them.

Project Construction
The projects in this book are mostly concerned with the use of electronics in
some way. They’re all described step-by-step, and no electronics expertise is
required. You’ll find detailed lists of the supplies you need to make a project
within the project itself, and you’ll need just a few basic tools, including a
soldering iron.

Soldering
You use a soldering iron to melt solder, which is used to join wires together
or attach components to a circuit board. The basic principal is that you touch
the hot tip of the iron to the solder, without burning yourself. During the
apocalypse, burn medication will be hard to come by, so take care.

There is, of course, the problem that we might not have a supply of
electricity to power the soldering iron. Fortunately, several types of cordless
soldering irons are available. There are butane gas–powered irons, as well
as irons that are battery powered. You can even repurpose a hot plate or a
toaster oven to solder components to circuit boards.

In Appendix B, you will find a beginner’s guide to soldering. Trust me:
if you can use a knife and fork, you can solder.

Mechanical Construction
You’ll want to put the contraptions you make in this book into boxes or affix
them to walls, so it will be helpful to get hold of a drill as well as screws, nuts,
bolts, and metal brackets. General construction tools such as a hacksaw, files,
and a vise will come in very handy for fashioning supports and fixings from
scrap metal or lumber. The more tools you can lay your hands on, the better.
They can always double as weapons.

Electronic Modules
Wherever possible, the projects in this book use ready-made modules to
simplify the build. Two such modules are the Arduino (Figure 1-5) and
Raspberry Pi (Figure 1-6). You will find a guide to the Raspberry Pi in
Chapter 5 and an Arduino primer in Appendix C.

18 Chapter 1

Figure 1-5: An Arduino microcontroller board

Figure 1-6: A Raspberry Pi single-board computer

The Arduino is a microcontroller board widely used by makers and art-
ists. It’s simple to use and can be programmed to read sensors and control
outputs. For example, in Chapter 2, you will use it to make a battery moni-
tor, and in Chapter 9, you’ll use it to control an LED flashlight to make an
automatic Morse code beacon.

The Raspberry Pi is a much more sophisticated device. It is a low-power
computer running the Linux operating system. You can connect a keyboard,
mouse, and a TV to it and turn it into a control center for your base. Being
low power, it is much more suitable to run on batteries than a laptop com-
puter would be.

If you are new to programming, don’t worry: all the program code for
the projects that use Raspberry Pi and Arduino is available for download
from http://nostarch.com/zombies/. You may want to download the code to a
pen drive now, just in case.

In the next chapter, I will start with the basics of sorting out the electri-
cal power that you will need for most projects. Having electricity available
will make life easier in other ways, too, such as by providing lighting, so let’s
get started!

http://nostarch.com/zombies/

2
G e n e r at i n G e l e c t r i c i t y

In the aftermath of a zombie
apocalypse, the national power grid

is likely to continue working for only a
day or two at most. The system of power

generation and distribution is finely balanced and
fantastically complex, and the people who run it
are likely to be busy either being eaten by zombies
or being zombies (Figure 2-1), so you won’t be able
to rely on them.

Let’s face it, though: you’re not going to need to have a whole lot to
power, anyway. There won’t be any TV to watch, and you won’t have the
Internet, either. You’ll only need a fairly small amount of electricity, and
fortunately, you can generate that much yourself, either by using the sun’s
energy or by converting movement into electricity.

20 Chapter 2

Figure 2-1: Zombie workers

Power and Energy
The words energy and power are often used interchangeably, but they’re
actually different. Power is the amount of energy used per unit time, usually
per second. Energy is measured in units called joules (after James Joule, the
English scientist and brewer). You could represent power in units of joules
per second, but power is more commonly measured in watts (named for
James Watt, the Scottish inventor). One watt is actually exactly one joule
per second.

Think of a battery as holding a certain number of joules of energy.
How fast the battery empties depends on how much power you draw from
it. If you attach a very low-power device, the battery will take a long time
to go dead, but if you attach something high power, the battery won’t last
long at all.

Generating Electricity 21

Table 2-1 lists some electrical appliances and indicates just how much
power they use.

Table 2-1: Power Consumption of Everyday Items

Appliance Power
(W)

Would drain a
car battery in:

Portable FM radio 2 300 hours

LED light bulb 5 120 hours

Soldering iron 30 20 hours

Laptop 50 12 hours

Monitor (27 inch) 80 7.5 hours

Hair dryer 1,500 24 minutes

Electric room heater 3,000 12 minutes

Electric shower (the type
that both pumps and heats
the water)

10,000 3.6 minutes

Cooking and heating require a lot of power. In fact, if you want hot
water or hot food, you should look at burning fuel rather than using
electricity.

Flavors of Electricity
Although Table 2-1 lists a portable
radio and an electric shower, these
things need different types of electric-
ity. Fortunately, that doesn’t have to
be a problem! With some constraints,
it is possible to convert between these
types. Note that zombies will be unable
to manage this task (Figure 2-2).

Devices that use electricity fall into
two categories: those that require high-
voltage alternating current (AC) and
those that require low-voltage direct
current (DC). DC devices are often bat-
tery powered.

Figure 2-2: Flavors of electricity

22 Chapter 2

Low-Voltage DC
Low-voltage DC is much safer and easier to generate, use, and store than
AC. Low-voltage generally means 12V (volts) or less. I find it helps to think
of water flowing through pipes when trying to understand how electricity
flows through wires. This image is particularly useful for understanding the
difference between voltage and current.

Voltage is like the pressure in a water pipe. A high voltage can supply much
more power than a lower voltage can, just as a high-pressure pipe could fill
a container with water much faster than a lower-pressure pipe could. But
thinking of voltage as just pressure creates an incomplete picture; it’s more
accurate to think of voltage as a height difference.

In the schematic (Figure 2-3), the point where the water enters the pipe
is above the point where the water leaves the pipe. The higher the entrance is
above the exit, the greater the rate of flow. This rate of flow is called the cur-
rent, and in electronics, the current is the amount of charge passing a point
per second. The unit of measurement for current is the ampere, which is
abbreviated to just A. It is also common to see current measured in mA (milli-
amps). One mA is 1/1,000 of an A.

10V

3V

Less current

More current

Figure 2-3: Voltage and current

Generating Electricity 23

Interestingly, you can work out the amount of power that something
uses by multiplying the power in voltage (V) by the current in amperes (A).

When supplying some low-voltage equipment (let’s say an FM radio
receiver) with power, it’s important to get the voltage correct. Too much
voltage will cause too much current to flow through the radio and may kill
it. The last thing you need is a zombie radio! Similarly, if there’s too little
voltage, not enough current will flow to make the thing work properly. The
range of acceptable voltage can be quite wide, depending on the device. For
example, a radio indicated as requiring 6V to operate may work perfectly
well at anything between 4V and 8V.

WARNING When using a low-voltage DC device, make sure you put the bat-
teries in the right way around. Batteries have a positive and a
negative connection. If you connect them incorrectly, the cur-
rent will try to flow the wrong way through the device. If the
device does not have internal protection against this (note that
most do), the device may be rendered nonfunctional.

High-Voltage AC
High voltage is used to distribute electricity to people’s homes because higher
voltage makes power transmission more efficient. High-voltage AC is very
different from low-voltage DC. For one thing, the voltage is either 120V (in
the United States) or 220V (in most of the rest of the world). Also, AC volt-
age is alternating: unlike a battery, which has one positive connection and
one negative, an alternating current switches the polarity of its two leads
between positive and negative at a rate of 60 times a second (in the United
States) or 50 times per second (in most of the rest of the world). The unit for
frequency, which is the number of times that the electricity switches polarity
per second, is hertz (Hz).

How the voltage changes over time with an AC power source can be
graphed, as in Figure 2-4. Notice that the voltage doesn’t suddenly switch
direction but rather swings gently one way and then the other, gradually
increasing to a peak of over 150V and then down to below –150V. Clearly,
this is more than 120V on either side of zero. The maximum and minimum
are described as 120V because this amount of AC power provides the equiva-
lent amount of power as 120V DC. This way of measuring AC voltage is
called root mean square (RMS). For more information on this topic, take a
look at http://www.electronics-tutorials.ws/accircuits/rms-voltage.html.

http://www.electronics-tutorials.ws/accircuits/rms-voltage.html

24 Chapter 2

8 16 24 32
0

50

100

150

200

−200

−150

−100

−50Vo
lt
ag

e
(V

)

Time (milliseconds)

Figure 2-4: Alternating current (AC)

Low-voltage DC devices are often run on AC by using an adapter, like
the one your laptop uses or the “wall wart” that you plug your phone into,
which converts the AC into DC and drops the voltage at the same time. In
our postapocalypse world, unless you have an AC generator, you’re likely to
be both making and using low-voltage DC directly. Although you can con-
vert DC to AC with a device called an inverter, converting in either direction
is inefficient, wasting some energy, and is best avoided.

If you decide to use an inverter, remember that even though you are
powering it from a battery, it is generating high and therefore dangerous
 voltages. Therefore, exercise the same common sense as you do when plug-
ging devices into an AC wall outlet.

Batteries
Batteries, used to store electrical energy, come in lots of different types. Some
are small and single-use, like AA cells. Others, such as lithium laptop bat-
teries and lead-acid car batteries, can be recharged. Note that batteries only
supply DC.

Both single-use and rechargeable batteries are essential to your survival
during a zombie apocalypse, so scavenge as many as you can during your
supply runs. As you’ll see in Chapters 9, 10, and 11 of this book, you can use
batteries to power zombie-distracting devices and communications devices.
Of course, both types of batteries have different merits. Let’s explore those
now so you can decide which deserves a spot in your go bag.

Generating Electricity 25

Single-Use Batteries
AA batteries have a long shelf life, and to operate many small appliances,
it makes sense to scavenge a good supply of these. They also run out of
power slowly. For example, if your flashlight begins to dim, you’ll still get a
few valuable minutes of light before the battery completely dies. Note that
rechargeable AA batteries usually give out much more quickly than single-
use batteries—and with less warning.

Rechargeable Batteries
Lithium polymer (LiPo) batteries have transformed mobile devices because
they’re lightweight and can store a lot of energy. Since a cellphone is so easy
to carry around, you might think LiPo batteries are a good rechargeable choice
for any portable postapocalyptic device. But be warned: they have a few
quirks:

•	 They are prone to catching fire if overcharged, punctured, or cut.

•	 They require special charging circuits.

•	 They don’t work well at extremes of temperature.

In short, for storing energy that you generate, it’s better to use the lead-
acid batteries that you find in cars. For a start, there should be a plentiful
supply of these. They also have the advantage of working at low tempera-
tures, and they are much more forgiving of overcharging or continuing to be
discharged after they are empty than other types of rechargeable batteries.
The only real downside to lead-acid batteries is that they are really heavy, so
when you need to scavenge car batteries, don’t be tempted to load your pack
with much else. Otherwise, you’ll quickly find yourself too overburdened to
escape a pursuing zombie.

Battery Charging
Under normal circumstances, the easiest way to charge a battery is to use
an AC-powered battery charger. Since you won’t have access to AC (unless
you’ve hit the jackpot and found a working generator), you need to consider
ways you can generate electricity to charge batteries.

In the project that follows, you’ll learn how to generate electricity and
charge batteries using solar power, in many ways the easiest solution to post-
apocalyptic power problems. You’ll then discover how a stationary bicycle
and a car alternator can be adapted to charge batteries. The principles you
learn here also govern using water wheels and wind turbines. In fact, any-
thing that can turn the shaft of a car alternator at a reasonable speed and

26 Chapter 2

with reasonable force can be used to generate power. A drive belt is a good
way to link whatever is turning to the alternator and provide some gearing
so that the alternator moves fast enough.

Project 1 : Solar Recharging
This project will show you how to make a simple setup that charges a 12V
car battery using solar power.

Solar Panels
Photovoltaic (PV) solar panels are silent, require minimal maintenance, and
will just sit there happily generating electricity. They generate a lot more elec-
tricity when the sun is out, but they still make useable amounts of electricity
on an overcast day. Obviously, they’re useless at night, which is why you’ll
use them to charge batteries, not power a device directly. They also need to
be situated with a clear view of the sky and out of zombie climbing height, as
an undead entity partially obscuring a solar panel will drastically reduce its
efficiency.

You may find solar panels to scavenge on the roofs of houses or even in
arrays on the ground. Your electricity needs are likely to be relatively modest,
so one or two panels will be plenty. After all, we’re talking about survival
here; the hot tub can wait.

As you might expect, the generating capability of solar panels is mea-
sured in watts. But make no mistake: a solar panel labeled “100W” may gen-
erate just about 100W at noon on a cloudless day on the equator, but most of
the time, it will generate a lot less than that.

Solar panels incorporate different types of technology, the most common
types being monocrystalline silicon and polycrystalline silicon. The mono panels are
more efficient and produce more power per square foot, but the poly panels
still make perfectly good electricity. They just need to be a little larger to
make as much. It does not matter what type you take; all you really need
to be aware of is the number of watts. If you turn the solar panel over, you
should find a label that gives you all the key data about the panel.

Charge Controllers
Domestic solar installations don’t charge batteries. Instead, a complex piece
of equipment converts the low-voltage DC produced by the solar panels into
high-voltage AC. The converted power is first used to meet the demands
of the house’s AC wall sockets and lighting. Then anything left over goes
into the power company’s AC lines, and the power company pays for the

Generating Electricity 27

contribution of excess electricity. Well, that’s what happens if you’re reading
this before the apocalypse. Otherwise, it’s likely everyone at the power com-
pany has become a zombie, and money has become meaningless.

Instead of giving your excess electricity away to a power company that
doesn’t care and won’t pay for it, store it in batteries for later use. This proj-
ect works just like the way you’d manage electricity for a motor home or boat
that uses PV cells to charge its batteries when the vehicle is not in use.

Rather than build an electronic circuit to control the charging, it’s much
easier and more reliable to use a ready-made charge controller. If you’re buying
preapocalypse, then pick one up on eBay, at another online retailer, or at a
physical store, like Fry’s. If you’re buying postapocalypse, then they’re avail-
able free of charge from physical stores.

What You Will Need
To make this project, you’ll need the following items.

Item NOTES Source

 Charge controller 7A (or more) 12V eBay, Fry’s (4980091),
abandoned RVs and boats

 PV solar panel 20W-100W eBay, Scavenge

 Car battery 12V Auto parts store, Scavenge

 2x heavy-duty
 alligator clip

7A or more Auto parts store

 Electrical cable 7A Scavenge

 Terminal block 10A Home Depot, Lowe’s, Menards

 Multimeter Simple multimeter Auto parts store, eBay, Fry’s

Solar panel specifications have become pretty standardized. Look for
a solar panel that generates between 20W and 100W and is labeled as 12V.
That means the panel is suitable for charging 12V batteries. Nominally, 12V
solar panels will actually produce upwards of 18V.

The power cable needs to be long enough to connect the solar panel to
the charge controller. This cable could be an AC outlet extension with the
connectors cut off each end. Thin, low-current cable has a higher resistance
to the flow of current than higher-current cable, which will waste precious
power. For example, a 10A AC outlet extension cable that’s 30 feet (10 m) long
will waste about 0.5W of power for a 20W solar panel charging at about
12W. For this reason, use a thick cable and keep its length short if you can.

Since you will be making your multimeter a permanent part of this project
and you will also be chopping up the test leads, I urge you to use the cheap-
est possible multimeter. You will probably also find it useful to have another
multimeter to use for testing.

28 Chapter 2

In addition to the components listed above, you will need the following
general construction tools:

•	 Drill

•	 Screws (assorted sizes)

•	 Screwdriver

You’re going to use multimeters a lot in this chapter, too. Take a look at
“Using a Multimeter” on page 237 to find out more about how to use this
useful little tool.

Construction
The most difficult part of this project is likely to be fixing the solar panel
somewhere reliable, where the zombies and wind cannot displace it. A roof
is probably a good idea, but it’s up to you to figure out the best place for the
panel in your compound. Remember, you’re going to need to run a cable from
the solar panel to the area where you plan to keep the battery and charge
controller.

The diagram shows the wiring for the project (Figure 2-5).

12V Car Battery

+-

Multimeter

1.2A

Com
10A

Charge Controller

Solar Panel

+

-

Figure 2-5: Solar panel wiring diagram

Generating Electricity 29

Charge controllers are all a little different from each other, but most
will have six terminals, each in pairs of + and–. One pair will connect to
the solar panel, another will connect to the battery, and the third pair (not
shown in Figure 2-5) will connect to whatever you want to power with the
battery. For now, let’s just worry about charging the battery; I’ll show you
how to use that stored energy later.

The charge controller will monitor the battery voltage and the voltage
coming from the solar panel to ensure that the battery doesn’t overcharge
or deplete so far that it stops accepting charge. More advanced models may
have a display to show you what’s going on, but I used a very basic model,
so I also used a multimeter to show how much current is flowing into the
battery. If your charging controller does this for you, then you can probably
do without the multimeter. In that case, the charge controller’s positive con-
nection goes straight to the positive battery connection, without the meter in
between.

Step 1 : F ix the Solar Panel
It should go without saying that the solar panel should go somewhere sunny
and far out of a zombie’s reach, but near a window inside your base won’t
be good enough. Ideally, it needs to be on a south-facing roof. The angle
depends on your latitude. For optimal performance, the further from the
equator you are, the closer to the vertical the panel should be tilted. If your
base has a slanted roof, you can probably just attach the panel to the natural
slope of the roof, as roofs tend to have steeper angles further from the equa-
tor to allow snow and rain to run off more easily.

You may have to improvise with wooden batons to attach the panels.
The photograph shows my solar panel mounted on a roof (Figure 2-6).

Figure 2-6: Solar panel ready to make power

30 Chapter 2

Step 2 : at tach a lead to the Solar Panel
The solar panel may have screw terminals, or, as mine does, it may have
a short length of wire soldered to its terminals. The lead attached to the
solar panel needs to be long enough to reach inside your base, where you
can ensure it stays dry. Attach a lead that can be fed through a hole on the
wall or in the roof and attached to the screw terminals. Just like zombies,
water is likely to find its way through any gap, so seal up holes after you
have threaded the cable through. Silicone sealant works well for this.

Once the cable is inside, you can use the terminal block to extend it to
the length you need, though a single length of cable without joins will be
most reliable. A terminal block can be used to join the lead from the solar
panel to a longer lead, which will be connected to the charge controller
(Figure 2-7).

Figure 2-7: Connecting the solar panel

Step 3 : W ire Up the Bat tery and charge controller
Wire up the battery, multimeter, and charge controller as shown in
Figure 2-5. The red probe lead from the multimeter can fit in the screw
 terminal of the charge controller, but the black probe needs to connect to
the battery somehow. The best way is to attach one end of the black probe
to one of the heavy-duty alligator clips.

Generating Electricity 31

This means we need to make three leads, using the alligator clips and
probe leads. For the first of these leads (labeled u in Figure 2-5 and shown in
Figure 2-8, I just used half of the multimeter’s black lead, with the probe cut
off. However, you can use any black wire you like.

Figure 2-8: Negative battery lead

This lead will connect the battery to the negative (–) terminal of the
charge controller. To make the lead, strip about half an inch (10 mm) of the
insulation from each end of the wire. Connect one of those ends to the alliga-
tor clip by wrapping the wire clockwise around the loosened bolt on the clip.
Then tighten the bolt so the clip grips the bare wire.

N OTE The wire should be wrapped clockwise around the bolt so that
when you turn the bolt, it pulls the wire around with it rather
than pushes it away. The connection just works better that way.

Use a pair of pliers to wrap the supporting tabs at the end of the clip
around the wire. These will prevent the wire from pulling off the clip if the
wire is accidentally pulled on.

The second of the three leads (labeled v in Figure 2-5 and shown in
Figure 2-9) will go from the positive high-current terminal of the multi-
meter to the positive battery output of the charge controller. This lead is
just the positive meter lead with the probe cut off and the insulation stripped
off the last half inch (10 mm).

Figure 2-9: Positive charging lead

32 Chapter 2

You’ll connect the final of the three leads (labeled w in Figure 2-5 and
shown in Figure 2-10) from the negative (COM) connection of the multi-
meter to the alligator clip that will be connected to the positive terminal of
the battery.

Figure 2-10: Positive battery lead

Strip about half an inch (10 mm) of insulation from the remainder of the
black probe lead of the multimeter and attach it to the alligator clip in the
same way you did for the lead v. This new lead is going to be connected to
the positive terminal of the battery.

This lead is black, however, and since the convention is that black means
negative, the color could be confusing. To make the purpose of this lead more
intuitive, wrap some red electrical tape around it to make red stripes and add
some red tape to the “finger end” of the alligator clip.

Now use the three leads to connect everything together, ready for use
(Figure 2-11). Note that most multimeters have a special positive socket just
for high currents. This may be labeled 10A or 5A. Plug the red lead into that
socket. Be sure to set meter to the correct range, which is DC current at the
meter’s maximum available current reading.

Step 4: test ing
To test the solar panel, use the highest DC amps setting of the multimeter
to monitor how much current flows into the battery from the panel via the
charge controller. If the battery needs charging, the charge controller should
attempt to charge the battery as much as possible until it is full, and the
meter should show a positive reading. After the battery is full, most charge
controllers will switch to a trickle-charge mode that just keeps the battery
topped up.

Generating Electricity 33

Figure 2-11: The charge controller, multimeter, and battery are connected.

In Figure 2-11, 0.84A of current is flowing into the battery. If your cur-
rent reading is negative, then current is flowing out of the battery. This
means something is wrong, so check over your wiring. You should also see
the current drop considerably if you cover part of the solar panel or if the
sun goes away.

If the battery doesn’t need charging, then the meter should read zero,
which doesn’t tell you much. You’ll have to wait until Chapter 3, when we
attach some lighting to the battery, to see the charging process in action.

Using the Solar Charger
To ensure a continuous supply of electricity, it’s a good idea to duplicate this
entire design so that if one solar panel or set of wiring should fail, you have
a spare. Since swapping batteries just means unclipping the alligator clips,
you can even keep a stack of batteries in rotation and set a few fully charged
batteries aside for emergencies. Stockpile batteries for your own base, or start

34 Chapter 2

a new career as a postapocalyptic battery shop owner. Money might be use-
less, but I’m sure you could barter electricity for food, supplies, or assistance
with your next scavenging trip.

On a sunny day, if lots of current is flowing from the solar panels, you
may find that the alligator clips get hot. Wrapping some tape around them
will reduce the chance that you’ll burn your fingers when you swap in a new
battery.

Project 2 : Bicycle Generator
In this project, you’ll generate power with an adapted bicycle, which doubles
as a great way to stay in shape so you can outrun the undead. The design
uses a car alternator to charge the car battery. The alternator is just doing
what it would naturally in a car, but without an engine. The alternator
includes all that is needed to charge the car battery, so in this project, there
is no need for the charge controller that you used in the solar project.

N OTE You could also adapt this project to use other forms of rotary
movement. For example, you could connect it to a wind turbine,
a water wheel, or zombies on a treadmill (Figure 2-12).

Figure 2-12: Zombie power

Generating Electricity 35

What You Will Need
To make this project, you will need the following items.

Item Notes Source

 Bike Large wheels Scavenge

 Car alternator Almost any will work eBay, Scavenge

 Car battery 12V Auto parts store, Scavenge

 Drive belt V belt, size A100 Auto parts store, eBay,
hardware store, scavenge

 2x heavy-duty
alligator clip

7A or more Auto parts store

 Butt terminals
for alternator
+ and -

To suit your
alternator terminals

Auto parts store

 Spade terminal
for F terminal
of alternator

To suit your
alternator terminals

Auto parts store

 Electrical cable 7A Scavenge

 Multimeter Simple multimeter Auto parts store, eBay, Fry’s

 Lamp and holder 12V 5W lamp Auto parts store

 Fuse 10A fuse and holder Auto parts store

 G-clamp Hardware store

 2 x 4 lumber 5 feet (1.5 m) Hardware store

This is another project that uses a multimeter as a fixture, and I would
again suggest you use the cheapest possible multimeter. You will probably
also find it useful to have a spare multimeter to use for testing.

Construction
The trick to building this project is to keep the cycle’s back wheel away from
the ground. There are two ways to do this. One is to make (or scavenge) a
stand designed to allow a regular bike to be used as an exercise bike. This
needs to be strong enough to support you when you sit on the bike, so a
maintenance stand probably won’t be strong enough.

The other approach is to turn the bike upside down. Then you can use
the pedals with either your hands or your feet while you sit in a chair near
where the handlebars used to be. I used the upside-down bike approach.

36 Chapter 2

Step 1 : Modify the Bicycle
First, strip off every piece of the bike that you don’t need. You can take away
the front wheel, both mudguards, and the brakes. The gears can stay.

Remove the rear wheel and remove its tire and inner tube. Then place
the drive belt over the wheel and fix the wheel back onto the bike.

alternatorS
If you know a little about electronics, you may be aware that most
DC motors can be used to generate current. Moving a coil of wire in a
magnetic field (usually supplied by a regular magnet) will cause a
current to be generated in that wire.

Alternators, like all generators, operate on this basic prin-
ciple, but instead of a normal magnet, the magnetic field that the
generating coil turns in is created by an electromagnet. The electro-
magnet is powered by the alternator itself once it gets going. To
get going, the alternator must be connected to the battery; other-
wise, there will no magnetic field for the generation to start. It’s
a chicken-and-egg situation: the alternator needs to be generating
current in order to generate current.

Figure 2-13 shows a simplified schematic of a car alternator.

Regulator

Rotor

Stator
Earth

+12V
AC DC

Field Coil (F)

Rectifier

Figure 2-13: The schematic diagram for an automotive alternator

In actual fact, the alternator will normally have three stator
coils producing three-phase AC to be turned into DC (unlike ordi-
nary domestic two-phase AC). If you want to find chapter and verse
on alternators, then take a look at the description at http://www
.allaboutcircuits.com/vol_6/chpt_4/8.html .

http://www.allaboutcircuits.com/vol_6/chpt_4/8.html
http://www.allaboutcircuits.com/vol_6/chpt_4/8.html

Generating Electricity 37

Step 2 : F ix the alternator and Bike to the 2×4
Alternators don’t have standard positions for their fixing lugs, so you may
have to improvise a little here. The drive wheel of the alternator needs to line
up with the cycle’s wheel, but the alignment doesn’t need to be exact, espe-
cially if you use a long belt like the one in my final arrangement (Figure 2-14).

Figure 2-14: The mechanical arrangement of bike and alternator

Use a G-clamp to fix the bike to the 2×4 using the saddle. Adjust the
saddle first so that it is flat. Alternatively, you could also remove the saddle
completely and make a hole of the same diameter as the saddle stem partway
through the 2×4.

Where you place the alternator on the 2×4 depends on the geometry of
the alternator, the bike, and the drive belt, so I can’t give you exact measure-
ments. Fix the alternator in place once the bike is attached to the 2×4 and the
drive belt is around the cycle wheel. The alternator I used had a convenient
hole that allowed it to be fixed to the side of the 2×4 (Figure 2-15). The drive
belt doesn’t need to be under a lot of tension, but you can create a simple
tensioner with a spring or elastic strap; you can even cut the latter from the
discarded bike inner tube.

38 Chapter 2

Figure 2-15: Attaching the alternator to the 2×4

Turn the cycle very gently to make sure everything is working mechani-
cally and then move on to the next step.

WARNING Don’t be tempted to try whizzing the alternator around at high
speed without attaching the rest of the circuit, because gen-
erating high voltage in the coils with no load can damage the
built-in electronics of the alternator.

Step 3 : identify the alternator terminals
Now that the mechanical part of the generator is built, we can start looking
at the electrical side. First identify the connections on the alternator. Although
they have slight differences, automotive alternators are remarkably standard,
especially those from older cars. Plus, alternators are often easy to remove
from older vehicles.

I used a reconditioned alternator that I bought on eBay for just a few dol-
lars (Figure 2-16). Postapocalypse, however, there should be no shortage of
abandoned old cars.

Generating Electricity 39

Negative Charging
Terminal

Positive Charging
Terminal

Field
Connection

Figure 2-16: Delco LRA443 alternator (from the 1980s)

You are looking to identify three connections from the alternator:

Negative charging terminal (–) This will normally be connected
electrically to the metal case of the alternator, but there should also be
a bolt specifically for attaching a spade terminal. It may be marked –,
GROUND, or GND.

Positive charging terminal (+) Although it may not look like it,
this will be electrically isolated from the metal body of the alternator.
This terminal is usually marked with a +, but it may be marked BATT
or BATT +. It’s quite common for alternators to have two + terminals
that are connected together inside the alternator. If this is the case, you
can use either terminal.

Field connection (D+) On my alternator, this is labeled D+, although
it is just as common for it to be labeled F.

Step 4: W iring
Now that you know which terminal of the alternator is which, you need to
make some leads to connect everything together. The wiring diagram shows
how to do this (Figure 2-17).

40 Chapter 2

12V Car Battery

+-

Multimeter

1.2A

Com
10A

Fuse 10A

Alternator

F
+

-

Lamp 12V 5W

Figure 2-17: Wiring diagram for the cycle charger

The light bulb serves two purposes. It limits the current to the field coil
so you don’t have to pedal too hard to kick-start the alternator into generat-
ing. The bulb also serves as a useful indicator: when the alternator starts gen-
erating, the light will go out.

There are a few leads to make. Let’s start with the lead from the negative
terminal of the alternator to the battery negative terminal (u in Figure 2-17).
This needs a large alligator clip on the battery end and a butt connector on
the other, as shown (Figure 2-18).

Figure 2-18: The negative battery lead

You could use any black wire for this lead, but I used two-thirds of a
black multimeter lead, from the probe end of the multimeter, and cut off the
probe itself. Strip about half an inch (10 mm) of the insulation off each end

Generating Electricity 41

of the wire. The butt terminal can be crimped (squeezed with pliers) onto
the lead. Attach the alligator lead by wrapping the stripped wire clockwise
around the bolt before tightening up the bolt.

This charging circuit doesn’t include a charge controller to protect it, so
you’ll need a fuse. Fuses are short lengths of metal designed to melt and so
break a connection when too much current flows through them. A car bat-
tery can store quite a lot of energy—enough to start a fire—so it’s worth
using a fuse. If something should accidentally short out, the fuse will blow,
breaking the connection before too much damage is done.

The most convenient type of fuse holder has trailing wires at each end.
You can use these trailing wires to make the lead between the positive termi-
nal of the battery and the multimeter (v in Figure 2-17). Attach an alligator
clip lead to one fuse wire and attach the remaining third of the black multi-
meter lead to the other fuse wire. Wrap the connection between the fuse and
multimeter leads with electrical tape, and you should have the completed
lead (Figure 2-19).

Figure 2-19: The fuse lead

The final of the three leads (Figure 2-20 and w in Figure 2-17) combines
both the lamp and the positive charging connector from the alternator to the
multimeter.

Figure 2-20: The positive charging and light bulb lead

42 Chapter 2

As with the fuse holder, I used a light bulb holder with trailing leads.
Crimp a ring terminal of the correct size for the F connection of the alterna-
tor. It’s best to use an insulated spade terminal to minimize the chances of
a short circuit.

Chop off the probe from the red multimeter lead, strip half an inch
(10 mm) of insulation off the lead, and twist the bare wires together with
the other lead of the light bulb holder. Crimp the combined wires together
into the butt terminal for the positive charging connection of the alternator.

Step 5 : F inal assembly
With all the leads prepared, it’s time to connect everything according to the
diagram in Figure 2-17.

The photograph shows the alternator, battery, and multimeter all wired
up (Figure 2-21). Before you connect the battery and alligator clip, make sure
the multimeter is set to its maximum current range and that the correct
sockets for maximum DC current are being used.

Figure 2-21: The completed wiring

Generating Electricity 43

Using the Pedal Generator
Before you start pedaling, the bulb should be on, and the multimeter should
indicate a current of about –0.3A. The value is negative because this current
is being used by the lamp.

Crank the pedals quite fast, and you should see the lamp start to dim
and then extinguish. At this point, you’ll probably feel a lot more resistance
from the pedals. This is good news: you’re generating electricity! The current
should now show a positive value. With furious pedaling, this might increase
to 2A or 3A.

If your battery is fully charged, then the bulb should go out while the cur-
rent remains at zero. This is because the alternator includes a voltage regulator
circuit that stops charging the battery when it’s up to its maximum voltage.
If you need to discharge the battery a little to test that it charges, then you
might want to move on to the next project—where we start using some of
the energy that we’ve stored in the battery—and return to test this project
later.

You should only connect the charging circuit when you are ready to start
using it, as the light bulb will eventually drain the battery completely.

Once you’ve successfully built one pedal-powered generator, you can
repeat these instructions to build a charging station for each person in your
base. By generating electricity as a team, you’ll stockpile plenty of batteries,
and everyone will be able to contribute to your group’s continued survival!

We’ve thoroughly explored a few ways of generating electricity and, in
particular, charging up car batteries. In the next chapter, you will learn how
to start using this electricity and monitor the state of your batteries so that
you don’t suddenly get plunged into darkness.

GeneratorS
A noisier way to generate electricity is to use a gasoline genera-
tor. One of these can be found fairly readily and will generate high-
voltage AC to directly power normal AC devices. The problem with
generators is that they require a constant supply of fuel, make
considerable noise, and generate exhaust fumes that must be vented
outside.

They’re also quite heavy, so if you’re determined to bring one
home, have enough people in your scavenging team to carry the gen-
erator, keep any lone zombies distracted, and clear a path when you
inevitably encounter a mob of zombies right outside your base.

3
U s i n g E l E c t r i c i t y

Now that you have a neat row of car
batteries all charged up and ready to

use, it’s time to use them to improve
your standard of living (see Figure 3-1).

First, you’ll learn how to connect those batteries to
something useful, and then in this chapter’s first
project, you’ll build a simple lighting circuit.

The second project in this chapter will show you how to use an Arduino
microcontroller board and a few extra components to make a simple battery
monitor. You wouldn’t want to lose your brains just because your defenses’
batteries died!

46 Chapter 3

Figure 3-1: car batteries have a variety of uses in the postapocalyptic world.

Powering Devices from a Car Battery
Let’s look at how you can use all that energy to make your life more comfort-
able while you keep those pesky zombies at bay. Of course, you first have to
get the electricity from the battery to your device. There are two common
connectors you’ll want to have on hand.

Cigarette Lighter Sockets
As DC voltages go, 12V is pretty useful. It’s the same voltage you find in the
cigarette lighter socket of a car, and there are lots of 12V appliances that you
can just connect straight to the battery. This includes various types of lighting,
fans, drink warmers, air compressors, DVD players, mini fridges, and more.

In fact, there are so many 12V appliances with a cigarette lighter plug on
the end that it’s worth making an adapter lead that will allow you to plug
them right in, without having to modify them.

You can buy a cigarette lighter socket adapter, like the one on the left in
Figure 3-2, at your local auto parts store. Having acquired it, you can strip the
leads and attach alligator clips so you can hook the adapter up to the battery.
For info about how to join the wires/attach the alligator clip, see Project 1,
“Step 3: Wire Up the Battery and Charge Controller” on page 30.

Using Electricity 47

Fuse

Figure 3-2: Making a cigarette lighter socket adapter

Warning Never assume that a car battery is harmless just because it’s
only 12V! While you can’t get an electric shock from 12V, you
can most certainly receive nasty burns from it. If a wrench or
screwdriver accidentally shorts across the terminals of a car
battery, hundreds of amps will flow through it, turning the tool
into flying molten metal that can easily burn or even blind you.
Just remember: Car batteries store a lot of energy, which can
easily be released by such an accident.

Now that you’re starting to connect things to your battery, you need to
make sure the battery is protected from accidental damage. Some adapters
may already incorporate a fuse, but if yours doesn’t have a fuse, you should
include a fuse holder in the circuit. A 10A fuse, like the one used in “Project
2: Bicycle Generator” on page 34, will work just fine. Always remember
to keep spare fuses around. It’s not so easy to nip out to the shops if the
neighborhood is overrun with zombies. Notice that I’ve included a fuse in
the design in Figure 3-2; the fuse will prevent any problems of a fiery nature,
should an accidental short circuit occur.

An alternative (or supplementary) way to protect your battery is to posi-
tion the solar charge controller from “Project 1: Solar Recharging” on page 26
between the battery and the load, or anything you want to power from that
battery (Figure 3-3).

When set up this way, the charge controller monitors the battery voltage
and will automatically disconnect the load when the battery voltage drops
below a certain threshold. This is advantageous because if the battery is dis-
charged too much beyond this point, then it can be so damaged that it will
no longer accept charge, and then good luck recharging it.

48 Chapter 3

12V Car Battery

+-
Charge

Controller

Solar Panel

Lamp or
Other Load

-

+

Figure 3-3: Use a charge controller to protect your battery.
The solar panel is optional.

In “Project 4: Battery Monitor” on page 53, you will learn how to
build a battery monitor that will alert you when your battery runs low.

USB Power
Largely due to the influence of the USB charger lead, 5V has become the most
common operating voltage for small DC devices. Jumping from 12V to 5V is
much easier than from 120V AC to 5V DC. At the auto parts store, you will
find 12V cigarette lighter to 5V USB power adapters.

The adapter in Figure 3-4 has the benefit of combining both 12V sockets
and 5V USB sockets. Another type of adapter just has a 12V cigarette lighter–
shaped plug with one or two USB sockets built into the end of the plug. You
could either plug the type of adapter shown in Figure 3-4 into the adapter of
Figure 3-2. Alternatively, you could chop off the plug from the adapter of Fig-
ure 3-4 and add alligator clips to it, just as you did to the adapter in Figure 3-2.

Using Electricity 49

Figure 3-4: 12V to USB adapter

You could, of course, use this adapter to charge your cell phone. But the
cellular network will probably be one of the first services to collapse during
the zombie apocalypse, first suffering overload from callers flooding the net-
work, trying to get in touch with loved ones, and then succumbing to system
failures due to power outages and lack of maintenance.

AC Inverters
It’s possible to convert the 12V DC of a battery into 120V (or 220V) AC using
an inverter. This device has terminals that connect to a 12V battery and an
AC outlet, which you can plug regular AC appliances into.

You cannot, however, plug in very high-powered AC devices. A wattage
rating printed on the inverter will specify the maximum power load it can
handle. Small models intended for powering laptops may only be 50W, but
200W or 400W inverters are neither hard to find nor particularly expensive.

Where possible, using DC devices is much better, as inverters aren’t very
efficient. They generate high-voltage AC and waste quite a lot of energy as
heat; just look at the large heat sinks on the sides of most inverters. They also
often use significant amounts of current even when nothing is plugged into
them, so you have to remember to turn them off when not in use.

In the next section, you’ll learn how to make a low-voltage lighting setup
that can provide lighting intensity similar to that of AC lighting but by using
12V DC lamps powered directly by a car battery.

Project 3 : LED L ight ing
LEDs offer the most light per watt of any type of illumination and are a
 natural choice for postapocalyptic lighting. This project uses three 12V,
MR16 LED light bulbs. These bulbs are available in powers from 2W to
10W or more, and any of these wattages are suitable for this project.

50 Chapter 3

You can string together more than three of these bulbs if you like. Just
use a longer lead and more bulbs. You may, for example, have a long corridor
that you wish to defend, and good illumination is essential for effective zom-
bie fighting.

In fact, almost any 12V light source could be used, including high-power
halogen light bulbs of 50W or more. However, the higher the wattage, the
faster the battery will drain.

What You Will Need
To make this project, you’ll need the following items.

item notes Source

 Car Battery 12V Auto parts store,
scavenge

 2x heavy-duty
alligator clip

7A or more Auto parts store

 LED lamps MR16 12V 2W-10W Hardware store

 MR16 lamp sockets Sockets with trailing leads Hardware store

 Switch Inline switch (5A) Hardware store

 Electrical cable 7A Scavenge

 Fuse 10A fuse and holder Auto parts store

Construction
The LED lights for this project are wired in parallel (Figure 3-5). In this
arrangement, each of the lights gets the full 12V from the battery, and if
one of the lights fails for any reason, the other lights will keep working.

Fuse 10A

Switch

12V 5W
Lamps

12V Car Battery

+-

Figure 3-5: 12V lighting system

Using Electricity 51

step 1 : Prepare the Electrical cable
If you’re using a fairly small number of low-power LED light bulbs (up to
five, at up to 5W each), then double-core bell wire will be just fine. Cable
designed for speakers is also a good choice. In my design (Figure 3-5), I used
three bulbs, so I cut three lengths of cable, stripping half an inch (15 mm) of
the insulation off the ends.

The first of these leads (labeled u in Figure 3-5) will go from the bat-
tery’s positive terminal to the switch and then to the first lamp. The second
length will continue on to the second lamp (v), and the final lead (w) will go
to the last lamp.

Where the wires join, there needs to be a three-way twisting of each
wire of the cable with both the next length of cable and the lamp holder
(Figure 3-6).

Figure 3-6: Connecting the lamp holder

For a more permanent connection, solder the twisted connection.
Whether you solder them or not, wrap the connections in electrical tape.
For a guide on how to make this kind of twisted-wire connection, see
“Joining Wires by Twisting” on page 229.

step 2 : W ire Up the Fuse and switch
Complete the wiring by attaching the fuse and alligator clip to the start of
the wiring. Note that these MR16 light bulbs include a circuit to automati-
cally switch the polarity of the LED. This means you can connect them
either way around. If you use a different type of 12V LED, check whether
it has separate positive and negative connections. If so, make sure that you
connect the positive side to the switch lead and the negative side to the lead
you’ll attach to the negative terminal on the battery.

52 Chapter 3

The alligator clip attaches to the fuse lead, which is attached to the switch
(Figure 3-7). Once again, these leads can be twisted together, and for a more
reliable finish, you can solder the twisted joint. The in-line switch uses screw
terminals to attach the wires. One side is just a metal connector that passes
straight through, and the other side has spring contacts, which connect with
each other when the switch is in the on position.

Figure 3-7: Connecting the fuse and alligator clip for a lighting system

step 3 : instal l the l amps
Now that everything is wired up, attach the alligator clips to the battery and
make sure that the bulbs light when the switch is flicked. Once you know
the lights turn on, just affix them to the ceiling, the wall, or wherever you
want them.

Using the Lighting
Murphy’s law dictates that batteries will run out of juice and shut off the
lights just as the zombies attack. To anticipate and avoid this situation, it’s
good to know roughly how many hours of light you’re going to get from your
battery before you need to do some more pedaling or otherwise put some
juice into it.

That number of hours depends on the size and quality of your bat-
tery. Looking back at Table 2-1 on page 21, you can see that a 5W LED is
expected to last 120 hours. Therefore, a string of six 5W LEDs should be good
for about 20 hours. If you go all out and put up a string of three 60W 12V halo-
gen lamps, you’ll only get about 4 hours of light before needing another charge.

Using Electricity 53

Whatever your lighting setup, it would be great to have advance notice
that the battery is getting low—and this is the goal of the next project.

Project 4: Bat tery Monitor
I recommend keeping a good stock of car batteries charged up and ready to
go at all times. That way, if zombies damage your solar panels, or you fall ill
and can’t pedal your generator, you won’t be plunged into darkness and left
powerless (in both senses of the word). It is therefore of paramount impor-
tance that you have an early warning system that will monitor the battery,
telling you when it starts to get low so you can swap in a new one.

This project uses an Arduino, a useful little board that’s great for putting
together electronic projects that require a bit of logic. In this case, the logic is
simply to measure the battery voltage, display it, and sound a buzzer when it
falls below a certain critical level.

The Arduino will be powered from the same car battery that it’s moni-
toring. The Arduino uses less than 1W to operate, so it’s okay to leave the
board connected to the battery continuously.

In the battery monitor setup (Figure 3-8), alligator clips connect the bat-
tery monitor to the battery. If the battery has large alligator clips attached to
it, then these smaller clips can be attached to the handles of the big clips.

Figure 3-8: Battery monitor

54 Chapter 3

The left lead of the left resistor (Figure 3-8) is connected to the positive
battery terminal, and the right lead of the right resistor is connected to the
negative battery terminal.

What You Will Need
To make this project, you’ll need the following items.

item notes Source

 Arduino Arduino Uno R3 Adafruit, Fry’s
(7224833), Sparkfun

 Arduino screwshield Screwshield Adafruit (196)

 LCD shield LCD 16x2 display shield eBay, Sparkfun
(DEV-11851)

 Buzzer Small piezo buzzer Adafruit (1740), eBay

 270Ω resistor Mouser (293-270-RC)

 470Ω resistor Mouser (293-470-RC)

 Small alligator
clip leads

Auto parts store

One great thing about using an Arduino is that there are many different
ready-made modules, called shields, that fit on top of the Arduino and add
extra features to it without any complex electronic construction. This project
uses two such shields that are stacked on top of each other.

The first shield that fits on top of the Arduino is a screwshield, sometimes
called a wing shield. This shield allows you to attach wires to the Arduino
using screw terminals and a screw driver. The second and topmost shield
that you’ll attach to the Arduino is an LCD display shield. This shield will
tell you the battery level as a measurement of voltage and as a bar graph
display of the state of charge (SOC) of the battery. The project also has an
option to mute the buzzer to avoid attracting zombies, if you suspect they
are shuffling about nearby.

The only other electronic components in this project are a pair of resis-
tors and a buzzer. The resistors are needed because although the Arduino has
inputs to measure voltage, it can only measure voltages up to 5V. Any more
than that would damage the Arduino. You’ll use the pair of resistors in an
arrangement called a voltage divider. The resistors I’ve chosen for my divider
reduce the voltage to the Arduino by a factor of 2.74 so that the 12V or 13V
that we might find at the battery will be reduced to 4.7V or less.

Using Electricity 55

Construction
Remarkably, no soldering at all is needed to make this project. The only tool
you need is a screwdriver.

step 1 : Program the Arduino
Arduino programs, which are called sketches, can change whether a connec-
tion, or pin, on the Arduino is an input or an output. The Arduino remembers
whether each pin was set to input or output, even after you disconnect it from
the rest of the circuit. Thus, if one of your Arduino pins was an output the
last time you used it, connecting the Arduino to new hardware that expects

VoltAgE D iViDErs
Using two resistors as a voltage divider (Figure 3-9) is a great way
to reduce the voltage you are trying to measure to a level where it
can be directly measured by, say, an Arduino.

R1

R2

Vin

Vout

Figure 3-9: Voltage divider

The formula to calculate Vout if you know Vin, R1, and R2 is

Vout = Vin ×
R2

R1 + R2

For example, if R1 is 470 Ω, R2 is 270 Ω, and the maximum volt-
age of Vin is 13V, then

Vout = 13V × = = 4.74V
470Ω

470Ω + 270Ω
3510
740

In other words, even if your battery is fully charged and man-
aging to provide 13V, only a maximum of 4.74V (below the critical 5V
level) will find its way to the Arduino. If the input voltage is lower
than this, then Vout will scale proportionally. For example, if the
battery voltage is 6.5V (which would indicate a bit of a problem, by
the way), Vout would be 2.37V.

56 Chapter 3

the pin to be an input could damage the Arduino or the circuit you’re con-
necting it to. By uploading the program to the Arduino before doing anything
else, you’ll ensure that each pin functions the way your circuit expects it to.

You’ll find detailed instructions on getting started with the Arduino,
connecting it to your computer, and uploading a sketch to it in Appendix B.
In this case, the sketch is called Project_04_Battery_monitor and can be found
with all the other program files used in this book at http://nostarch.com/zombies/.

step 2 : Build the Arduino sandwich
When used with the two shields, the Arduino Uno is on the bottom, the
screwshield is plugged into that, and, finally, the LCD display shield goes on
top of the screwshield (Figure 3-10). The LCD shield has to be at the top of
the stack or you won’t be able to see what it says!

Figure 3-10: An Arduino “sandwich”

When pushing the pins of a shield into an Arduino or the screwshield, be
careful to check that all the pins meet the holes correctly so you don’t dam-
age them. It’s quite easy for one of the pins to splay out as you are pushing
the pins in.

step 3 : At tach the resistors and Buzzer
You’ll attach the resistors and buzzer to the screw terminals of the screw-
shield (Figure 3-11).

http://nostarch.com/zombies/

Using Electricity 57

GND D11

Vin A3 GND

470Ω 270Ω

Figure 3-11: Connecting components to the screwshield

The two resistors can be identified either by measuring their resistance
using a multimeter (see “Using a Multimeter” on page 237) or by reading
the colored stripes on the resistor body. The 470 Ω resistor will have stripes
of yellow, purple, and brown; the 270 Ω resistor will have red, purple, and
brown stripes. In “Resistor Color Codes” on page 225, you will find a resis-
tor color code table and instructions on how to identify resistors by their
stripes.

Some buzzers will have a positive red lead and a negative black lead. If
this is the case, connect the black lead to GND (ground) and the red lead to
D11 on the Arduino. Other buzzers will have identical leads; if this is the
case, it doesn’t matter which way around they are connected.

Software
The sketch for this program is mostly concerned with making sure that the
right text is displayed on the LCD at the right time. I’ll walk you through it
in full, though you don’t have to understand or follow how this sketch works
to finish the project. You can just upload it exactly as it is into the Arduino
board, following the steps explained in “Installing the Antizombie Sketches”
on page 248.

58 Chapter 3

If you want to learn more about Arduino programming, see Appendix C
or take a look at my book Programming Arduino: Getting Started with Sketches
(McGraw-Hill, 2012).

The sketch starts by importing the LiquidCrystal library, which is respon-
sible for controlling the LCD shield. Because this library is included as a stan-
dard part of the Arduino software, there is nothing to download and install
for this library.

#include <LiquidCrystal.h>

After the library command, three constants are defined for key battery
voltages.

const float maxV = 12.6;
const float minV = 11.7;
const float warnV = 11.7;

These voltages are, in order, the fully charged battery voltage, the mini-
mum voltage that you want the battery to be allowed to discharge to, and
the voltage at which the buzzer should sound. These last two are both set
to 11.7V. These values are pretty standard for a lead-acid car battery, but if
you use a different type of battery, you can tweak them. Because they hold
decimal values, the variables are of a type called float. You can find out more
about Arduino data types in Appendix C.

The next few lines define constants for the Arduino pins that are used.

const int buzzerPin = 11;
const int voltagePin = A3;
const int backlightPin = 10;
const int switchPin = A0;

The Arduino’s various pins are normally identified simply by a number,
so these constants give them meaningful names. You don’t need to change
these pin designations unless you decide to wire up your battery monitor
differently.

The final section defines constants for the values of the resistors used in
the potential divider.

const float R1 = 470.0;
const float R2 = 270.0;
const float k = (R1 + R2) / R2;

Using Electricity 59

The constant k is the resulting factor the input voltage will be reduced by
in order to fit into the 5V measurement range of the Arduino. The next line
of code initializes the LCD display, specifying which pins are used.

// RS,E,D4,D5,D6,D7
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);
boolean mute = false;

The comment line starting with // just identifies which of the Arduino
pin numbers on the line beneath it correspond to which pins on the LCD
module. The line after that defines a Boolean (a value that can be true or false)
variable, mute, which is used to mute the buzzer.

The setup function that comes next is run just once, when the Arduino
starts. In this case, it begins by setting the backlight pin (D10) to be an input.

void setup()
{
 // Because of a defect in common cheap LCD displays,
 // backlight controlled by transistor D10 high can
 // burn out Arduino pin
 pinMode(backlightPin, INPUT);
 lcd.begin(16, 2);
 lcd.setCursor(0, 0);
 lcd.print("Battery ");
}

The backlight pin is used only on some LCD shields, but a significant
number of LCD shields have a design flaw that can destroy the Arduino they
are connected to if this pin is set to an output and also set high. To be on the
safe side, D10 is set to an input. The rest of the function initializes the LCD
display and writes out the word Battery, which will be a permanent fixture of
the message displayed.

The loop function that follows the setup function is run repeatedly. That
is, as soon as all the commands in the function have been executed, the func-
tion will start again from the top.

void loop()
{
 displayVoltage();
 displayBar();
 if (readVoltage() < warnV && ! mute)
 {
 tone(buzzerPin, 1000);
 }

60 Chapter 3

 if (analogRead(switchPin) < 1000) // any key pressed
 {
 mute = ! mute;
 if (mute) noTone(buzzerPin);
 delay(300);
 }
 delay(100);
}

The display is updated inside the loop function. This is also where
you’ll check that the battery voltage hasn’t dropped below the warning volt-
age and check for key presses to toggle the battery monitor’s mute mode.

This loop function makes use of a number of other functions further
down in the file. The first of these is displayVoltage.

void displayVoltage()
{
 lcd.setCursor(8, 0);

u lcd.print(" ");
 lcd.setCursor(8, 0);

v lcd.print(readVoltage());
 lcd.setCursor(14, 0);
 lcd.print("V");
}

This function starts at column 8 and overwrites the eight character
 positions on the top line by printing eight spaces u. It then moves the cursor
back to column 8 and writes the battery voltage in that gap v before writing
the V character at the end of the line.

The displayVoltage function makes use of the readVoltage function to con-
vert the raw reading from the Arduino’s analog input into a voltage.

float readVoltage()
{
 int raw = analogRead(voltagePin);
 float vout = (float(raw) / 1023.0) * 5.0;
 float vin = (vout * k);
 return vin;
}

Readings from an Arduino analog pin give a result between 0 and 1,023,
where 0 means 0V and 1,023 means 5V. So, the value of vout in readVoltage
is the output voltage of the potential divider—that is, the reduced voltage.
You need to work backward to calculate the original battery voltage vin, then
return this value to be displayed.

The final function in the sketch displays the bar graph showing how
much power is left in the battery and, if the battery monitor is in mute
mode, the MUTE notification.

Using Electricity 61

void displayBar()
{
 float v = readVoltage();
 float range = maxV - minV;
 float fullness = (v - minV) / range;

 int numBars = fullness * 16;
 lcd.setCursor(0, 1);
 for (int i = 0; i < 16; i++)
 {
 if (numBars > i)
 {
 lcd.print("*");
 }
 else
 {
 lcd.print(" ");
 }
 }
 if (mute)
 {
 lcd.setCursor(12, 1);
 lcd.print("MUTE");
 }
}

The displayBar function steps through each of the 16 character positions
of the second row of the display and then displays either a * or a space char-
acter, depending on the measure of fullness of the battery.

Using the Battery Monitor
As soon as you connect the battery monitor to the battery, the LCD should
light up and show a readout of the battery voltage on the top row of the
display. The second row of the display will show a number of * characters to
indicate the juice remaining in the battery. Also, if you press any of the but-
ton switches below the display to disable the buzzer, the message MUTE should
toggle on and off.

If your display appears blank or difficult to read, then you may need to
adjust the contrast. Just use a small, flat-headed screwdriver to turn the small
variable resistor at the top right of the LCD shield (Figure 3-11).

Now that you have the basics of power generation and lighting sorted
out, turn your attention to detecting zombies. You’ll find out how to know
they’re coming in Chapter 4.

4
Z o m b i e A l A r m s

Movies tell us that zombies can’t move
around without groaning. They’re also

clumsy and liable to crash into things.
However, there’s still the possibility that

they will catch you unaware. After all, you have
to sleep sometime. So, one of the first uses of your
newly generated electricity should be to make some
zombie alarms (Figure 4-1).

This chapter has two zombie detector projects: a decidedly low-tech trip
wire alarm and a more sophisticated passive infrared (PIR) proximity alarm.

64 Chapter 4

Figure 4-1: Zombie detection

Project 5 : Trip Wire Alarm
Zombies will keep finding their way into your compound, either because
they’re attracted to the smell and noise or just through aimless wandering.
You need a way to detect them so that you can grab a baseball bat or ax and
head off to do battle at the breach in your defenses.

Alternatively, you may decide to create a “killing field” into which unsus-
pecting zombies (is there another kind?) will wander, ready for swift dis-
patching. Either way, you’ll need to be alerted to their presence, and a trip
wire is a good way to make sure that happens.

Zombies are notorious for dragging their feet. They also frequently
fail to look where they’re going, since they’re mostly guided by the smell
of human flesh. So, even a trip wire that wouldn’t fool the most clumsy
and shortsighted of humans will work just fine on a zombie (Figure 4-2).
This alarm uses parts that are easily scavenged to sound a car horn when
triggered.

Zombie Alarms 65

Figure 4-2: A trip wire alarm

What You Will Need
To make this project, you’ll need the following items. (The microswitch can
also be obtained from the door safety interlock of a microwave.)

Items Notes Source

 String Long enough to stretch across
the gap where you want to
detect zombies

Hardware store

 Nails or screws To fix the trip wire and
microswitch

Hardware store,
Scavenge

 Microswitch Fry’s (2314449),
microwave oven

 Double-core
bell wire or
speaker cable

To connect the microswitch to
the battery and car horn

Hardware store,
Scavenge

 Car horn The louder the better. Even
zombies can look surprised
when a car horn blares a few
feet from their head, and few
things are funnier than a
surprised-looking zombie.

Auto parts store,
Scavenge

 12V battery This can be a car battery, but
a smaller battery will also be
just fine.

Auto parts store,
Scavenge

You could scavenge most of these parts easily, and you probably won’t
have enough electricity to run a microwave, so you may as well strip it down

66 Chapter 4

for the microswitch. Of course, if you’re practicing before the zombies have
completely taken over, it would clearly be a terrible waste to destroy a micro-
wave oven just for a $2 switch; in that case, only use a microwave that is
already dead. It’s dangerous to keep a zombie microwave around, anyway.

The 12V battery I used is a small, sealed lead-acid battery. These are
effectively miniature car batteries. But if you have a car battery all set up
from Chapter 2, then you will probably just want to use that one.

WARNING The following procedure describes how to disassemble a micro-
wave oven. You must only do this with the oven unplugged from
the AC outlet. This procedure will render the oven at best non-
functional and at worst very dangerous, so the microwave must
be scrapped after this. Do not attempt to use the damaged micro-
wave as a radiation weapon against the zombies (but using it
as a blunt object is okay).

Construction
In a postapocalyptic world, low-tech traps, like this one, will usually be
the most reliable. The hardest part of the build is probably extracting the
microswitch from a microwave oven, and that’s where I’ll start. Of course,
if you plan ahead, you can also just buy a switch; skip to “Step 2: Identify
the Microswitch Terminals” on page 68 if you already have your switch
prepared.

As with most of the projects in this book, it is a good idea to get them
working safely on your workbench before deploying them in an active zom-
bie area. It’s very difficult to concentrate on your soldering when a groaning
heap of rotting flesh is bearing down on you.

step 1 : obtain a microswitch
All microwave ovens are slightly different, so you’ll need to adapt these
instructions to your particular microwave. The basic principle is to keep
taking out screws and removing parts of the microwave until you get to the
door switch. Most microwave ovens have a U-shaped outer case that, once
removed, gives you a clear view of the oven’s inner workings (Figure 4-3).
The microswitch next to the door latch is then easily accessible.

In Figure 4-3, the microwave door is to the right, the back of the area
with all the control buttons and knobs is at the top right, and the inside of
the door latch is close to the circled area.

Zombie Alarms 67

Figure 4-3: Inside the microwave oven

The microswitch you are trying to find will have clips attached to its
terminals (Figure 4-4). You can pull those clips off, or you can simply cut the
wires down to the clip to make the microswitch easier to remove.

N OTE If you can’t see the microswitch at first, then just disassemble
the oven a bit more until its location is obvious. Some ovens have
more than one microswitch.

After you remove the microswitch, if the attached wires are long enough,
you can just leave them in place and cut them. Otherwise, desolder the wires
and attach new wires of the correct length. The microwave also contains a
lot of other useful lengths of wire, particularly those with spade terminals
attached.

Unfortunately, not much more of the oven is going to be of use in this
project, though the remainder of the microwave oven makes an extremely
effective zombie head crusher if dropped from a height into the groaning host
of undead. Just attach a rope to it first so you can reel it back and use it mul-
tiple times. There’s an apocalypse on, so it’s even more important to recycle.

68 Chapter 4

step 2 : identify the microswitch Terminals
The microswitch will have three connections (Figure 4-4). If you look closely,
you’ll see that they are marked COM (common), NC (normally closed), and
NO (normally open). When pushed toward the left, the long lever pushes in
the little button on the side of the switch.

Figure 4-4: A microswitch

You’ll always use the common connection when you add one of these
switches to a circuit. The other terminal you connect to will depend on
whether you want the switch to cause something to happen when it’s acti-
vated or when it’s released. The normally open terminal of the switch is left
open when the switch is not activated, meaning it has no connection to the
common terminal until the button is pressed. The normally closed terminal
works the other way around. You want your alarm to go off when a zombie
hits the trip wire, thus activating the switch, so this project uses the NO
connection.

step 3 : Preview the electronic C ircuit
Now let’s have a look at how that little switch will become a key part of
your advance zombie-warning system.

The schematic of the trip wire alarm (Figure 4-5) shows an electronic cir-
cuit that is about as simple as one can get. If one of the car horn’s terminals
is explicitly marked positive, you’ll connect it to the positive terminal of the
battery; otherwise, it doesn’t matter which side of the horn you attach there.
The battery’s negative terminal is connected to the microswitch’s COM ter-
minal, and the microswitch’s NO connection completes the circuit back to
the car horn.

Zombie Alarms 69

Car
Horn

COM

NO
NC

Bell/Speaker Cable

12V
Car

Battery

+-

+-

Figure 4-5: Schematic for the trip wire alarm

N OTE Car horns normally require a full 12V before they’ll make much
noise. Naturally, a car battery is well suited for this project. See
Chapter 2 for more information on using batteries.

One big advantage of this alarm is that it doesn’t draw any current at all
from the battery until the alarm is triggered. This means that your battery
will provide effective zombie protection for a long while.

step 4: Prepare the Wires
You’re going to need two lengths of cable: a longer length of double-core cable
leading to the switch and a short single length (perhaps 6 inches, or 15 cm) of
wire to connect the positive terminals of the battery and horn.

Strip and trim the ends of all the wires. If you need help doing this, see
“Stripping Wires” on page 227.

step 5 : Connect the bat tery and Horn
If you’re using a small 12V battery with solder tabs, solder the short single
length of wire between the positive terminal of the battery and the positive
terminal of the horn (Figure 4-6). If, on the other hand, you’re using a car
battery, then don’t try to solder directly to the terminal. Instead, use an alli-
gator clip, as you did with many of the leads in Chapter 2 (see, for example,
Figure 2-10 on page 32).

70 Chapter 4

Figure 4-6: Connecting the horn and battery

Again, if the horn doesn’t have a terminal marked with a +, then it
doesn’t matter which terminal of the horn you connect the battery to.

step 6 : Connect the switch
Solder the two wires of one end of the long length of double-core cable to the
COM and NO terminals of the switch (Figure 4-7). It doesn’t matter which
wire goes to which switch terminal, as long as you use COM and NO. In
fact, sometimes there won’t be an NC terminal on the microswitch at all.

Figure 4-7: Soldering wires to the switch

Zombie Alarms 71

Now connect the other ends of the double-core cable to the unused ter-
minal of the horn and the negative terminal of the battery (Figure 4-8).

Figure 4-8: The finished wiring

With all the wiring complete, you’ll find that when you activate the
switch by moving the lever, the horn will sound. Car horns are really loud,
so it’s best not to test this out in an enclosed space—and warn your fellow
survivors before you try it!

Using the Trip Wire Alarm
Clearly, you need to choose your moment to deploy this project so that you
don’t become a zombie yourself before you finish setting it up. When you’ve
identified the opening that you want to protect, fix a screw or nail (or find
some other way of securing one end of the string) about 6 inches (15 cm) off
the ground. This will allow the switch to be triggered both by foot-dragging
zombies and more athletic zombies that may simply tread on the string.

Fix the microswitch on the opposite side of the passageway you’re
protecting and at the same height as the anchor for the string. Most micro-
switches have holes that make them easy to affix with small screws. If not,
you can glue the switch in place with epoxy-based glue or a hot glue gun.

Position the switch so that the lever is on the other side from the space
being protected. Tie the string around the top end of the lever (Figure 4-9).

72 Chapter 4

Figure 4-9: The switch fixed in place

Don’t make your string too taut. After all, you want it to detach without
pulling the microswitch off the wall when a zombie walks through it. Tying
a bow at one end or the other is a good idea.

Although I used a car horn, you could use anything that makes a noise
and operates from 12V. Or, if you’d prefer a silent alarm, you could use a 12V
car light bulb in place of the car horn.

Neither approach is very sophisticated, however, so in the next project,
you’ll level up your zombie alarm with something a little more high-tech.

Project 6 : P IR Zombie Detector
The second zombie detector project in this book uses a passive infrared (PIR)
detector. These detectors are the same type used in intruder alarms—they
sense movement of heat—and I guess few things are more intrusive than a
group of zombies intent on eating you.

Zombie Alarms 73

You can of course just buy (or scavenge) an intruder alarm that uses PIR
sensors, rather than make this project from scratch, but I thought it would
be more fun to make something that uses an Arduino. In fact, if you just
add the extra components needed for the PIR alarm to “Project 4: Battery
Monitor” on page 53, the same Arduino can both monitor your battery
and alert you to a zombie attack, using the same buzzer and display.

When a zombie triggers the PIR sensor, the LCD display will show the
message ZOMBIES!! (Figure 4-10). Since the last thing you want to do while
fending off a zombie is attract more zombies, this project also allows you to
silence the alarm by pressing any button on the LCD shield.

Figure 4-10: PIR zombie detector

What You Will Need
To make this PIR alarm, you’ll need the following parts. If you’ve already
made the battery monitor of “Project 4: Battery Monitor” on page 53,
you’ll already have the Arduino, screwshield, and alligator clips.

Items Notes Source

 Arduino Arduino Uno R3 Adafruit, Fry’s (7224833),
Sparkfun

 Arduino screwshield Screwshield Adafruit (196)

 PIR module Adafruit (189), Fry’s
(6726705), security store

 Small alligator
clip leads

Auto parts store

 3-core cable wire Long enough to
reach the PIR sensor

Scavenge

 Terminal block 3-way, 2A terminal
strip

Auto parts store,
electrical store

74 Chapter 4

Construction
This is another project that can be assembled without any soldering, and my
instructions assume that you’re building on top of Project 4. If you haven’t
already built Project 4, then you’ll need to build a slightly modified version
of that project first, as the hardware for the PIR zombie detector is mostly
the same.

step 1 : build the screwshield
Flip to Project 4, “Construction” on page 55 and follow Steps 1 to 3. In
Step 1, download the sketch (Arduino’s word for program) Project_06_PIR
_Alarm from http://www.nostarch.com/zombies/ and use that in place of the
sketch for Project 4. Also, when it comes to Step 3, you don’t need to include
the two resistors unless you also want to monitor the battery voltage.

step 2 : make a lead for the P ir sensor
There’s little point in making a zombie detector that detects zombies only
after they’re already in the same room as you. Chances are you’ll have
already thoroughly detected them if they get that far. Therefore, you need
to attach a long lead to the PIR detector so that it can monitor the corridor,
porch, or other area outside your living space.

The PIR detector has three leads: two that supply power and one out-
put that indicates that motion has been detected. This means you’ll need a
three-wire lead. You could find some wire from an intruder alarm, or you
could use three of the wires in a telephone extension lead. Pretty much any
lead with three or more wires in it will be just fine.

You could either solder the ends of this lead to the lead that comes with
the PIR sensor or use a terminal block, as I have (Figure 4-11).

Zombies And P ir deTeCTors
One important thing that we haven’t discussed is whether zombies
can even trigger a PIR detector, which relies on detecting heat.

While zombies are generally considered to be dead, and by impli-
cation cold, it isn’t possible to move muscles without also generat-
ing a small amount of heat. Also, if the cold zombie walks between
a source of heat and the PIR sensor, the sensor will register the
movement. So, while zombies are generally cooler than humans, you
can expect attacking zombies to register on a PIR sensor.

http://www.zombieprojectbook.com/

Zombie Alarms 75

Figure 4-11: PIR lead and terminal block

I harvested my three-lead cable from a telephone extension lead. The cable
contained four solid-core insulated wires. These wires were color coded, so I
used blue for GND (ground), orange for 5V, and stripy white for the output;
I left the final wire unused. The lead was about 30 feet (9 m) long, which
worked fine for the sensor. You can probably use longer leads, but try it out
first before you lay all the cabling.

step 3 : Connect the P ir to the screwshield
Now that you’ve extended your sensor wires to a useful length, attach the
wires to the Arduino screwshield (Figure 4-12; note that the two resistors
from Project 4 are shown at the bottom left).

Figure 4-12: Connecting the PIR lead to the Arduino screwshield

76 Chapter 4

If you look at the back of the PIR sensor, you’ll see that the three pins
are labeled GND, OUT, and +5V. Connect GND on the PIR sensor to one of
the GND connections on the screwshield; it doesn’t matter which one. Then,
connect +5V on the PIR sensor to the 5V connection on the screwshield.
Finally, connect OUT on the PIR sensor to D2 on the screwshield.

Software
If you just want to make this project on its own, without any of the earlier
Arduino-based projects, then use the sketch Project_06_PIR_Alarm. On the
other hand, if you’ve made one or more of the other Arduino projects and
wish to include them, then use the sketch All_Sensors and change the con-
stants at the top to select the projects that you have made.

The first few lines of the All_Sensors sketch are shown below:

/*
Any projects that you want to exclude from this program should have a
value of "false". That way, you will not get any false alarms because
of missing hardware.
*/
const boolean project4 = true; // Battery Monitor
const boolean project6 = true; // PIR Alarm
const boolean project10 = false; // Door Monitor
const boolean project11 = false; // Fire Alarm
const boolean project12 = false; // Temperature Monitor

In this case, only the battery monitor (Project 4) and PIR alarm
(Project 6) are enabled. If you’ve made more of the projects, then change
the value next to those projects from false to true. If you are working your
way through this book in order, then the program should look as shown.

All the source code for this book is available from http://www.nostarch.com/
zombies/. See Appendix C for instructions on installing the programs.

The PIR detector code follows the same pattern as Project 4, so for more
information on how the program as a whole works, please refer to “Software”
on page 57. Here, I’ll just describe the code specific to this project.

The first change to the earlier code is the addition of a new constant for
the PIR’s OUT pin. I added the pirPIN constant on the line after the switchPin
constant.

const int pirPin = 2;

http://www.nostarch.com/zombies/
http://www.nostarch.com/zombies/

Zombie Alarms 77

I set pirPin to 2 because the output of the PIR sensor will be connected
to pin 2 on the Arduino. The next addition to the sketch occurs in the setup
function, where that same pin 2 is set to be an input.

pinMode(pirPin, INPUT);

Although pins on an Arduino default to inputs unless specified as out-
puts, declaring the pin to be an input makes the code easier to follow.

The loop function now needs to check the sensor, so I added a call to the
function checkPIR.

checkPIR();

This new function, checkPIR, will, as the name suggests, check the PIR
sensor and take the appropriate action if the sensor is triggered. The function
is defined right at the end of the sketch.

void checkPIR()
{
 if (digitalRead(pirPin))
 {
 alarm("ZOMBIES!!");
 }
}

The checkPIR function makes a digitalRead of the pirPin to decide whether
the output from the PIR detector is HIGH or LOW. If movement has been
detected, then the alarm function is used to display an appropriate message.
For more information on using the inputs and outputs of an Arduino, see
Appendix C.

Using the PIR Zombie Detector
The project works well in combination with the battery monitor, as you
can just run both off the same battery. But whether you combine the two
projects or not, be mindful of your wires when you deploy the PIR detector
around your base of operations. If you’re using cable that contains solid-core
wires, then affix the cable to the wall at regular intervals along the cable
length. Solid-core wires don’t take kindly to being repeatedly flexed.

Scavenged PIR Sensors
The Adafruit PIR module used in this project is designed to work with micro-
controller modules like the Arduino. But following an apocalypse, you may

78 Chapter 4

find it easier to obtain the type of regular PIR sensor intended for use with a
security system, such as the unbranded unit obtained from eBay for a couple
of dollars, shown opened up in Figure 4-13.

Figure 4-13: A PIR module intended for intruder alarms

This sensor won’t operate at 5V but rather requires a power supply of 12V.
The sensor has a logic level output that will rise to 3.6V, which is enough to
register as HIGH, just like the Adafruit module. The only difference in wiring is
to connect this sensor’s red wire to the Arduino’s Vin rather than to 5V.

Be aware that other sensors may look like this one but have a different
output voltage. Some (with an open collector output) require a pull-up resis-
tor (of, say, 1 kΩ) between the output and 5V on the Arduino. If the output
of the sensor does not give a useful voltage when you wave your hand in
front of it, then it almost certainly needs a pull-up resistor.

Other types of PIR sensors, especially those intended to control light-
ing, have a relay output. This output works just like a switch, closing when
movement is detected. The schematics show how to connect three types of
PIR modules to the Arduino (Figure 4-14).

Wherever possible, choose a device that you have documentation for so
you don’t have to guess how its output works and how to wire it up.

Zombie Alarms 79

PIR

Arduino

Logic Level Output
(3 to 5V),
12V supply

+V

Vin

GND

GND

OUT

D2

PIR

Open Collector Output,
12V Supply

+V

Vin

GND

GND

OUT

D2

5V

1 k
Ω

Arduino

Relay Output,
12V Supply

PIR

+V

Vin

GND

GND

NO

D2 5V

Arduino

NO

Figure 4-14: Connecting different types of PIR module to the Arduino

The next chapter advances from automatic zombie detection to walk
through a number of surveillance projects that will allow you to see what is
going on before it trips over your doorstep. You’ll be able to spot the zombies
remotely using webcams.

5
S u r v e i l l a n c e a n d

r a S p b e r r y p i

Now that you can detect zombies,
it’s also a good idea to monitor their

movements. But don’t risk joining the
undead ranks by following them around!

Watch them safely from inside your base, and
you’ll keep your brain intact. This chapter shows
you how to make a surveillance camera setup with USB and wireless web-
cams, using a Raspberry Pi single-board computer to minimize your energy
usage (see Figure 5-1).

Both projects in this chapter require you to download software, so you’d
be well advised to think ahead and get your system set up before disaster
strikes.

82 Chapter 5

Figure 5-1: Zombie smiling and waving at a webcam

The Raspberry P i
You could get these projects working with a regular laptop or desktop com-
puter, but those devices take a fair bit of power. A laptop typically consumes
20W to 60W, and a desktop draws even more. Also, you’d need an AC inverter.
Laptop power supplies provide low-voltage DC, but generally that voltage is
still higher than 12V, so powering directly from a 12V battery wouldn’t be
an option.

Besides, if you have to shift bases because the zombie population density
has gotten too high, do you really want to risk being weighed down by a
giant desktop tower?

The Raspberry Pi, on the other hand, is a tiny Linux computer on a
single board about the size of a credit card, and it uses less than 3W of power.
A Raspberry Pi Model B+ is used in this project and throughout this book
(Figure 5-2). If you happen to have an older Raspberry Pi Model B or a newer
Raspberry Pi 2, they should also work just fine. In fact, the extra power of

Surveillance and Raspberry Pi 83

the Pi 2 should make the webcam browser page perform noticeably quicker.
Models A and A+ are not ideal, as they are less powerful and have less mem-
ory than the other models.

Figure 5-2: A Raspberry Pi Model B+

The Raspberry Pi can run simple Python scripts, and you can link it to
external hardware, too. For example, in “Project 7: Monitor Zombies with a
USB Webcam” on page 87, when the webcam detects movement, an LED
will turn from green to red using the Raspberry Pi’s GPIO (general purpose
input and output) connector. The GPIO connector is the double row of pins
down one side of the board (Figure 5-2).

The Raspberry Pi System
A complete Raspberry Pi system includes a USB keyboard, a mouse, and a
small HDMI (High-Definition Multimedia Interface) monitor (Figure 5-3).

The keyboard and mouse are standard items that you can buy anywhere.
For a constant visual on your zombie foes, you’ll need something to watch
the video feed on, and you could just connect a normal TV or monitor to the
Raspberry Pi. However, to save even more power, this project uses a 12V DC
monitor with a 7-inch (180 mm) display. At worst, this might double the
power consumption to a peak of 6W.

84 Chapter 5

Figure 5-3: A Raspberry Pi system

What You Will Need
To use this Raspberry Pi system with a 12V battery as this book describes,
you’ll need the following items.

Item Notes Source

 Raspberry Pi Model B+ or Pi 2 with
NOOBS micro SD card

Adafruit (2358),
Fry’s (8258726)

 Small HDMI
monitor

12V HDMI monitor.
Suggested device has
800×480 pixel resolution.

Adafruit (1934), eBay

 Keyboard and
mouse

Standard USB key board
and mouse

Computer store, online

 HDMI cable As short as possible Computer store, online

 12V to USB adapter Minimum current of 1 A Auto parts store,
Computer store

 Vehicle to 2.1 mm
jack adapter

Auto parts store

 Powered USB hub Needed only if you have
a Raspberry Pi Model B

Computer store, online

If you’re using a Model B Raspberry Pi that has only two USB sockets,
then you’ll need a powered USB hub or a wireless keyboard and mouse
combo that uses a single USB adapter. Otherwise, the keyboard and mouse
will occupy both of the Model B’s USB ports, and you won’t be able to plug
in the webcam needed in the next project.

Surveillance and Raspberry Pi 85

Powering the System
The Raspberry Pi is powered from a micro USB socket, so you can use a
12V-to-USB power adapter when powering it from a 12V battery. The moni-
tor I suggest has a separate driver board that powers the display and connects
it to the Raspberry Pi; that’s the printed circuit board (PCB) in the middle of
Figure 5-3. This driver board has a 2.1 mm DC power socket.

A combined cigarette lighter and USB socket adapter (such as in Fig-
ure 5-4) is a great way to power this whole system from batteries. If you
haven’t already done so, you’ll need to replace the cigarette plug with a pair
of alligator clips to attach the adapter to the battery. Refer to Chapter 3 for
instructions on how to connect your 12V battery to low-voltage devices.

Figure 5-4: Combined USB and 12V DC power adapter

With the power adapter setup of Figure 5-4, you can power your
Raspberry Pi from a normal micro USB lead and, in “Project 8: A Wireless
Zombie Surveillance System” on page 96, power the Wi-Fi webcam and
router with a DC jack-to-cigarette lighter adapter. Check the voltages used
by your router and Wi-Fi webcam, but they’re quite likely 12V DC, which is
very handy if you’ve stockpiled car batteries for the apocalypse already.

WARNING Be careful when handling the display, especially if the display
has a metal back. The exposed underside of the driver board can
easily short against the metal, damaging the board.

To connect the driver board to a car battery from your stockpile, just
make a lead with a 2.1 mm jack on one end and alligator clips on the other.
However, if your battery is overloaded with alligator clips, you may want
to attach a multiple cigarette lighter socket adapter to it instead. Then you
can plug various appliances into the adapter with cigarette lighter plugs, as
described in “Cigarette Lighter Sockets” on page 46.

86 Chapter 5

Installing Raspbian
The Raspberry Pi computer doesn’t have a hard disk. Instead, the Raspberry
Pi 2 and Model B+ stores its operating system, programs, and data on a
micro SD card. Older Raspberry Pi models store that information on a regu-
lar SD card. There won’t be an Internet after the zombie apocalypse, so get
a micro SD card preloaded with an operating system (OS)—you won’t be
able to download it. In fact, a Raspberry Pi with a preloaded SD card usually
doesn’t cost much more than the Raspberry Pi on its own, so I recommend
just buying the preloaded card with your Raspberry Pi. If you do want to
add an OS to a blank SD card yourself, visit http://www.raspberrypi.org/help/
noobs-setup/ and follow the directions there before the Internet ceases to exist.

Whether you buy a preloaded micro SD card or add the software your-
self, this book assumes you’re using a micro SD card with the Raspberry Pi
Foundation’s NOOBS (New Out Of the Box Software) installer. Once you
have one, fit the micro SD card into the Raspberry Pi; plug in the keyboard,
mouse, and monitor; and power everything up.

N OTE The monitor I suggest for this project should detect the
Raspberry Pi through the HDMI cable, and the Pi should auto
matically detect the screen resolution. If the Pi doesn’t detect
the screen resolution, then visit the Raspberry Pi’s documenta
tion page (http://www.raspberrypi.org/documentation/), go to
the Configuration section, and read config.txt to learn how to
configure your Raspberry Pi. Print the instructions and keep
them with this book so you’re ready when the apocalypse ends
the Internet as we know it.

When you boot the Raspberry Pi with NOOBS, you’ll be offered your
choice of operating system. This book uses Raspbian, so select the checkbox
next to Raspbian and then click Install. The installation will take a while,
so watch your PIR zombie detector or double-check your battery stockpile
while you wait. Once the installer finishes, you’re ready to move on.

The Raspbian distribution comes with a pretty comprehensive set of
software, but at the time of writing, one thing it lacks is a decent browser
that will work with a webcam. I favor Chromium, a derivative of Google
Chrome that works well without hogging so many of the Raspberry Pi’s
resources that the Pi becomes too zombie-like for comfort. As with most
free software, you’ll need to download Chromium from the Internet.

I apologize if it’s too late, but if it’s not, then connect the Raspberry Pi to
your preapocalyptic home modem or router with an Ethernet cable. Then, to

http://www.raspberrypi.org/help/noobs-setup/
http://www.raspberrypi.org/help/noobs-setup/

Surveillance and Raspberry Pi 87

install Chromium, click the LX Terminal icon on the Raspberry Pi desktop.
A terminal window should open, and at first, you should just see a flashing
cursor and a command prompt like this:

$

Anytime you need to enter commands for a project in this book, I’ll also
show the dollar command prompt on the left, which you don’t need to type.
Now, enter the following commands:

$ sudo apt-get update
$ sudo apt-get install chromium

The sudo (short for substitute user do) command allows you to execute
administrative commands. Prepend it to commands that need administrative
access, such as commands that install new software as we’re doing now.

The apt-get package management software on Debian-based Linux distri-
butions such as Raspbian is used to manage and install software. The update
command used with apt-get tells your system to update its cached list of
available software from Internet software repositories. The apt-get install
command tells apt-get to search for and install the latest version of the pack-
age supplied as the final argument, which in this case is Chromium.

With Chromium in place, you are ready to build your surveillance sys-
tem. Now let’s monitor some zombies!

Project 7: Monitor Zombies with a USB Webcam
This project uses a low-cost USB webcam with a long lead attached to the
Raspberry Pi. The maximum usable length of a USB 2 lead is 96 feet (30 m),
so that’s the farthest away from the Raspberry Pi that your camera can be.

You can see most of the setup in Figure 5-5, though the webcam is just
out of view on the left; I’ve shown it in the inset photo. One of the benefits
of building a surveillance system for yourself rather than simply using an off-
the-shelf closed-circuit television (CCTV) system is that because the software
is completely under your control, you can customize it however you want.

The webcam is controlled by a short Python program that monitors
the images being captured for changes. When movement is detected on the
screen, the program uses the Raspberry Pi’s GPIO pins to turn an RGB (red-
green-blue) LED from green to red. You can cancel the alarm by pressing the
spacebar on the keyboard, which will turn the LED green again.

88 Chapter 5

Figure 5-5: Zombie webcam and movement alarm

The advantage of this project over “Project 6: PIR Zombie Detector” on
page 72, which uses a PIR sensor, is that now, if the alarm is triggered, you
can take a good look at the zombies that are about to attack you.

What You Will Need
To set up this USB webcam, you’ll need the Raspberry Pi setup described in
“The Raspberry Pi” on page 82 and the additional items described here.

Item Notes Source

 USB webcam See http://elinux.org/
RPi_USB_Webcams/ for
compatible webcams.

Computer store

 USB extension lead Length to suit your
compound (less than
100 feet [30 m])

Computer store

 Raspberry Squid Contains the RGB LED Amazon, http://www.
monkmakes.com/

http://elinux.org/RPi_USB_Webcams/
http://elinux.org/RPi_USB_Webcams/
http://www.monkmakes.com/
http://www.monkmakes.com/

Surveillance and Raspberry Pi 89

Not every USB webcam is compatible with the Raspberry Pi, so check
http://elinux.org/RPi_USB_Webcams for a list of cameras known to work with
the Raspberry Pi. I used an HP 2300 Webcam.

N OTE The Raspberry Pi camera module is a highresolution camera that
plugs directly into a special connector on the Raspberry Pi. The
module is great if you’re making a Raspberry Pi camera, but it’s
not much use in a situation like this, where you want the cam
era to be some distance from the Raspberry Pi.

The Raspberry Squid is a handy little accessory built just for the
Raspberry Pi. It has an RGB LED with built-in current-limiting resistors
that allow you to connect it directly to the Raspberry Pi’s GPIO pins. Its
design is open source, and you can find details of how to build your own
here: https://github.com/simonmonk/squid/. You can also buy a ready-made
Squid; see http://www.monkmakes.com/ for details.

Construction
After completing the setup in “The Raspberry Pi System” on page 83, to
build this project you just need to attach the Raspberry Squid to the GPIO
connector of the Raspberry Pi, plug in the USB webcam, supply 12V to the
monitor, and supply 5V to the Raspberry Pi (see Figure 5-6).

Raspberry Pi

12V
Battery

+-
Cigarette and
5V USB Adapter

USB Webcam

USB Lead

USB Lead

Monitor

HDMI Lead

12V Cigarette to
2.1 mm Adapter

12V Power

Raspberry Squid

Figure 5-6: Schematic for the surveillance system

http://elinux.org/RPi_USB_Webcams
https://github.com/simonmonk/squid/
http://www.monkmakes.com/

90 Chapter 5

Step 1 : at tach the raspberry Squid
By controlling the three outputs of the Raspberry Squid, you can make the
LED display any color. However, this project won’t use the accessory’s full
potential since this surveillance setup needs to display only red and green.

To help identify the GPIO pins, you can use a GPIO pin identification
template. There are many of these available from suppliers like Adafruit,
including the Raspberry Leaf, which is included if you buy a ready-made
Raspberry Squid. Place this template over the GPIO connectors so that you
can tell which pin is which. Then connect the Raspberry Squid to the GPIO
connector (Figure 5-7).

Figure 5-7: Connecting the Raspberry Squid to the GPIO connector

The black lead of the Raspberry Squid goes to one of the GND pins on
the Raspberry Pi. In the orientation shown (Figure 5-7), this is the third pin
down on the right. The red lead of the Raspberry Squid goes to pin 18 on the
Raspberry Pi, and the green lead of the Squid goes to pin 23 of the Pi. Since
you won’t need the blue color, you can leave the blue lead of the Raspberry
Squid unattached, but if you prefer to keep the leads tidy, just attach the blue
lead to any one of the other GND pins of the GPIO header.

Step 2 : instal l the uSb Webcam
If you already have a USB webcam, then see if it works with the Raspberry
Pi before you get another one. First, check whether the Raspberry Pi can

Surveillance and Raspberry Pi 91

detect your webcam as a USB device by entering the command lsusb in
LXTerminal both before and after plugging the webcam into the Pi, without
the USB extension lead.

$ lsusb
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 03f0:e207 Hewlett-Packard
Bus 001 Device 006: ID 04d9:1603 Holtek Semiconductor, Inc. Keyboard
Bus 001 Device 005: ID 1c4f:0034 SiGma Micro

If an extra entry appears after you run the command with the webcam
plugged in, then that entry should be your webcam. In the list I’ve shown,
my Hewlett-Packard webcam is the fourth entry from the top.

If your webcam does not appear in the list, then try unplugging it, plug-
ging it back in, and running the lsusb command again. If that doesn’t work,
try a reboot of the Raspberry Pi.

Unfortunately, being recognized as a USB device is still no guarantee
that a webcam will work with the Raspberry Pi. You’ll find out for certain
when you run the program. You may also find that your webcam works only
if it’s plugged into a powered hub. If you have an older model of Raspberry Pi,
you may find instead that the whole board resets when you plug the webcam
into the USB port. If this is the case for your board, then plug the webcam in
while the Raspberry Pi is powered off.

Step 3 : instal l the Software
Connect the Raspberry Pi to your network with an Ethernet cable, make sure
the Internet is up and running, and download the Raspberry Pi programs
for the projects in this book. From your browser on the Pi, you can head to
http://www.nostarch.com/zombies/, click the link to GitHub, and download the
Raspberry Pi directory. For this project, you’ll use the code in the usb_webcam
directory. But the easiest way to get the software onto your Raspberry Pi is
to clone the GitHub repository directly onto your Raspberry Pi, as I describe
in “Fetching Source Code from GitHub” on page 92.

The Python program monitor.py is pretty brief, considering what it does,
and I’ll walk you through it here. I won’t, however, cover Python itself beyond
the context of the projects that use it. If you are new to Python, you might
take a look another of my books, Programming the Raspberry Pi: Getting Started
with Python (McGraw-Hill, 2013).

92 Chapter 5

The program begins by importing the various Python modules that it
needs. These libraries of existing code are all included in the Raspbian distri-
bution, so you shouldn’t need to install them separately.

import sys
import time
import pygame
import pygame.camera
import RPi.GPIO as GPIO

The sys and time modules have general utilities for accessing the operat-
ing system and the ability to tell the program to sleep as a way of delaying
its activity for a period of time. The pygame module contains the Pygame
graphical games library, which includes a camera interface. To control the
LED, the program needs access to the GPIO system, and this is provided by
the RPi.GPIO library.

Next, the program defines some constants that it will use. You could
change these if you wanted to use the camera at a different resolution or
make the default size of the window larger.

camera_res = (320, 240)
window_size = (640, 480)
red_pin = 18
green_pin = 23

Fetching Source code From github
You can get all the Raspberry Pi programs used in this book onto
your Raspberry Pi in one go by cloning the book’s GitHub repository.
Just enter the following commands from a terminal window on the
Raspberry Pi.

$ cd /home/pi
$ git clone https://github.com/simonmonk/zombies.git

These commands will fetch all of code for the book, including
the Arduino code used in other projects (which you can ignore in
this chapter). Even though you’re not using a browser, you’ll still
need an Internet connection for the commands to work, so definitely
get this code before the apocalypse.

Surveillance and Raspberry Pi 93

The parameters in parentheses after the camera_res and window_res con-
stants are the width and height respectively (in pixels). After the constants,
the Pygame system (used to display the camera images) and the camera
itself are initialized, along with the GPIO ports that you’ll use to control
the Raspberry Squid:

 pygame.init()
pygame.camera.init()

initialize GPIO
 GPIO.setmode(GPIO.BCM)

GPIO.setup(red_pin, GPIO.OUT)
GPIO.setup(green_pin, GPIO.OUT)

 screen = pygame.display.set_mode(window_size, 0)

#Find, open, and start the low-res camera.
 cam_list = pygame.camera.list_cameras()

webcam = pygame.camera.Camera(cam_list[0], camera_res)
webcam.start()

 old_image = False

The first two lines of initialization code handle Pygame and the cam-
era, while the next three lines initialize those GPIO ports. The screen is
then initialized to the size of the window specified in window_size. The
final cluster of lines first finds all the cameras connected to the Raspberry
Pi and then creates a link to the first one (webcam). It then starts running the
webcam. The final line defines a variable called old_image, which is used to
detect movement by spotting changes in successive frames from the webcam.

After initialization, the first function this program defines is called
check_for_movement.

def check_for_movement(old_image, new_image):
 global c
 diff_image = pygame.PixelArray(new_image)
 .compare(pygame.PixelArray(old_image), distance=0.5,
 weights=(0.299, 0.587, 0.114))

 ys = range(0, camera_res[1] / 20)
 for x in range(0, camera_res[0] / 20):
 for y in ys:
 if diff_image[x*20, y*20] > 0:
 return True
 return False

As the name suggests, check_for_movement takes two images, the previous
frame (old_image) and the latest frame (new_image), and compares them. The
distance parameter to compare is the “distance” between the color of the pixel

94 Chapter 5

in one image and the color of that same pixel in the other image. The weights
parameter is not explained in the pygame documentation, and the values used
here are taken in faith from an example in the pygame documentation for
PixelArray (http://www.pygame.org/docs/ref/pixelarray.html).

The comparison results in a new image called diff_image that only has
white pixels where a difference was found between the pixels in the two
images.

To decide whether movement has occurred, the program should really go
through every pixel in the diff_image. But any largish movement will result in
lots of pixels changing, and zombies are big, so the code speeds things up by
only sampling 1 pixel in 20.

The next two functions set the LED of the Raspberry Squid to red or
green.

def led_red():
 GPIO.output(red_pin, True)
 GPIO.output(green_pin, False)

def led_green():
 GPIO.output(red_pin, False)
 GPIO.output(green_pin, True)

The Raspberry Squid is just an RGB LED, and as with most RGB LEDs,
you can select the color it glows by outputting certain combinations of high
(True) and low (False) on the GPIO pins the LED is connected to. In this case,
you want red and green, so the code just sets the appropriate pin to True and
the other to False. The blue takes no part in this project, so you don’t have to
deal with it in the code.

Finally, we come to the main loop of the program, where the new image
is fetched and scaled so it’s ready to display in the window.

count = 0
led_green()
while True:
 count = count + 1
 new_image = webcam.get_image()
 # Set old_image the first time around the loop.
 if not old_image:
 old_image = new_image
 scaled_image = pygame.transform.scale(new_image, window_size)
 # Only check one frame in 10.
 if count == 10 :
 if check_for_movement(old_image, new_image):
 led_red()
 count = 0

http://www.pygame.org/docs/ref/pixelarray.html

Surveillance and Raspberry Pi 95

 old_image = new_image
 screen.blit(scaled_image, (0, 0))
 pygame.display.update()

The count variable keeps track of how many times the loop has run.
When count gets to 10, the last two images are compared. Sampling only
one-tenth of the time also speeds up the program, which would otherwise
be too slow. If there was movement, meaning check_for_movement returns True,
the LED turns red.

The last part of the main loop checks for the close window event (which
stops the program).

 # Check for events.
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 webcam.stop()
 pygame.quit()
 sys.exit()
 if event.type == pygame.KEYDOWN:
 print(event.key)
 if event.key == 32: # Space
 led_green()

The event checking also catches any key press event (KEYDOWN), and if the
spacebar is pressed, the program sets the LED back to green.

Using the Webcam
To get the webcam started, run monitor.py by entering the following com-
mands in a terminal window on your Raspberry Pi. A window should open
showing a view from the webcam (Figure 5-8).

$ cd "/home/pi/zombies/Raspberry Pi/usb_webcam"
$ sudo python monitor.py

At this point, the Raspberry Squid LED should be green. To test the move-
ment detection, wave your hand in front of the webcam. The LED should go
red and stay red until you press the spacebar on the Raspberry Pi’s keyboard.

When everything is working with the webcam connected directly to the
Raspberry Pi, you can use the USB extension lead to place the camera further
away. Place the camera somewhere overlooking your base’s entrance, and
then you’ll know when the coast is clear to go outside.

There will be a limit on how far you can move the webcam before the
signal degrades and you start getting errors, so keep the lead under 30 m.

96 Chapter 5

Figure 5-8: The USB webcam in operation

Project 8 : A Wireless Zombie Surveil l ance System
There may be no Internet after the apocalypse,
but that doesn’t mean you can’t set up your own
wireless network and attach a Wi-Fi webcam to
it. You can use a low-cost webcam for this proj-
ect (Figure 5-9). With a wireless webcam, you
can put even more distance between you and the
zombies you’re monitoring, making you safer
than ever.

Once you set up the camera and a local
network, you can view the camera video from
the browser on your Raspberry Pi (Figure 5-10)
or even a Wi-Fi-equipped tablet or smartphone.
What’s more, if you buy the right sort of web-
cam, you’ll be able to use software to change
the direction the webcam is pointing.

Figure 5-9: A low-cost
Wi-Fi webcam

Surveillance and Raspberry Pi 97

Figure 5-10: Using a Wi-Fi webcam with the Raspberry Pi

All this comes at a cost, of course: Wi-Fi uses quite a lot of power. The
wireless router and Wi-Fi webcam are likely to both use between 5W and
10W of power each. You want to turn them on only when needed.

Note that the Raspberry Pi in Figure 5-8 still has the Raspberry Squid
attached, even though this project doesn’t use the Squid. Leave Project 7’s
hardware connected, and you can monitor zombies from both cameras!

What You Will Need
To setup this Wi-Fi webcam, you’ll need the Raspberry Pi setup described in
“The Raspberry Pi System” on page 83 and these additional items.

Item Notes Source

 WiFi webcam Preferably a unit that
can rotate ($50)

Computer store,
eBay

 WiFi router Lowend unit ($20)
operating from 12V DC
supply

Computer store,
eBay

 2x Ethernet cable Any length will do.

 2x 12V adapter lead 2.1 mm jack plugto
cigarette lighter adapter

Auto parts store

98 Chapter 5

Wi-Fi webcams are available at a wide range of costs. The device I chose
is at the low-cost end and while the image isn’t fantastic, it’s plenty good
enough to spot zombies.

The Wi-Fi router is just a normal household router; most homes with
Internet access probably have several, and I’ll bet you have a spare lying
around, too. These devices serve two purposes: first, to connect your devices
to the Internet (not going to happen with zombies all over the place) and,
second, to make a local area network (LAN) to which you can attach wired
and wireless devices. We’ll use the second function of the Wi-Fi router here.

Construction
This project uses ready-made components, so you don’t really have any elec-
tronics construction to do. You’ll just be connecting components (Figure 5-11).

Wi-Fi Modem/Router

Wi-Fi

Raspberry Pi

Ethernet Cable

12V
Battery

+-
Cigarette and
5V USB Adapter

Wi-Fi Camera

12V Cigarette to
2.1 mm Adapter

12V Cigarette to
2.1 mm Adapter

USB Lead

Smartphone/
tablet

Figure 5-11: Schematic for the Wi-Fi camera system

Connecting a tablet or smartphone to the Wi-Fi network (Figure 5-11) is
by no means essential, but it would allow you to monitor the webcam from a
mobile device as well as the screen of your Raspberry Pi.

Surveillance and Raspberry Pi 99

Step 1 : Set up a local area network (lan)
Since this network will not connect to the Internet, you only need a router.
That means even if you have a modem-router combination, you don’t need to
connect it to a phone line or cable connection.

The router allows devices to connect to it in two ways: using an Ether net
cable or using Wi-Fi. We’ll connect the Raspberry Pi using an Ethernet cable
because a wired connection is more reliable and uses less power than Wi-Fi.

Once you plug the Raspberry Pi into the router, the Pi should automati-
cally join the network using DHCP (Dynamic Host Configuration Protocol),
so you shouldn’t need to set it up. At this point, though, you may want to
set up the Wi-Fi details of the router. This will involve connecting to the
configuration page for your router. The IP address for this page is usually
192.168.1.1, but in my case, it was 192.168.1.254. In other words, check your
router documentation. When you know the address of your router’s admin
page, open the Chromium browser and type that URL into the browser’s
address bar.

The router admin page should have a wireless, WLAN, or Wi-Fi settings
page somewhere. Find this page and set the wireless network name (also
called the ESSID) and password (Figure 5-12).

Figure 5-12: Setting up a wireless network

Set the network name to something like Apocalypse Survivors so tech-
savvy survivors can find you easily. Your group of survivors can always bene-
fit from more geeks—especially if it looks like you can run faster than them.

100 Chapter 5

Step 2 : Set up the Wi-F i camera
The Wi-Fi camera can’t connect itself to your wireless network without
knowing your password and network name. To give it this information,
you’ll need to connect to it from a browser, but first it must be connected to
the network. This is a bit of a problem. Fortunately, it’s a problem that can
be resolved by connecting the Wi-Fi camera to the router using an Ethernet
cable. Making a wired connection doesn’t require a password, and the camera
should connect to the network using DHCP just like the Raspberry Pi. After
you finish the setup, you can disconnect the Ethernet cable, and the Wi-Fi
camera will be free!

Connect the Wi-Fi camera to the router and go back to the same router
admin page you used to set up the wireless network. You can use it again to
find the IP address of the camera so you can configure it. This time, you’re
looking for a page called either DHCP table or ARP (Address Resolution
Protocol) table. Figure 5-13 shows the ARP table for my router.

Figure 5-13: Finding the IP address of the camera

The connection to the camera is wired, so the IP address of the camera is
either 192.168.1.102 or 192.168.1.100. One of those IP addresses belongs to the
Raspberry Pi. Find out which is which by entering the ifconfig command in
LXTerminal. You should see one of the two addresses above in the response
to the command, and that’s the Raspberry Pi’s address.

My Raspberry Pi had an IP address of 192.168.1.102, so by process of
elimination, my camera’s IP address was 192.168.1.100. Start a new tab on
the browser and connect to that IP address, adding :99 after the last num-
ber in the address. (I pointed my browser to 192.168.1.100:99.) This extra

Surveillance and Raspberry Pi 101

number specifies the network port to use for the webcam. In most cases, this
is 99, but if you’re using a different camera, then check your documentation
because its port may be different.

N OTE Any IP address can have a port number after it like this.
Different types of network traffic use different ports. For
example, most web traffic uses port 80, which is the default.
The webcam happens to use port 99, so this has to be specified
in the URL.

The browser should immediately start displaying video from the cam-
era as well as the controls to pan and tilt the camera. Somewhere on the
page, you should see a settings link. Click on this and look for Wireless LAN
Settings. Click Wireless LAN Settings, and you should see an option to
scan for Wireless Networks (Figure 5-14).

Figure 5-14: Connecting the camera to the wireless network

Select the Apocalypse Survivors network, enter the password (also called
the share key), and click Submit. The camera should reboot, and then you
can unplug the Ethernet because from now on, the camera will use its Wi-Fi
connection.

Once the camera has switched over to using Wi-Fi, it will also have a
different IP address, so return to the router admin page (Figure 5-13). This
time, there should be an entry in the wireless section of the list representing
the camera. Try browsing to the camera using that IP address with :99 on the
end. Once again, the video should appear in the browser window along with
the camera controls (Figure 5-15).

102 Chapter 5

One problem with using DHCP to allocate an address to the webcam is
that the router may allocate a different IP address if it is restarted. To avoid
this problem, look for the option in your router’s DHCP settings that sets
the lease time and set this to its maximum. That way, once the IP address
is allocated, it shouldn’t change until sometime after civilization has been
reestablished.

Figure 5-15: A view from the Wi-Fi camera

Using the Wi-Fi Webcam
Once everything is set up, you can view the image from the webcam by
going to the URL for your camera in the browser. The software for most
webcams will also allow you to set up multiple cameras and split the screen
two or four ways so that you can monitor all the images at once. Then, you
can keep tabs on your entrance, supply cache, any zombie traps you’ve built,
and the survivors across the street simultaneously!

You could also access the camera from a mobile browser on a smartphone
or tablet computer. There may also be an app for the camera that works bet-
ter than a browser. This would allow you to work in one area of your com-
pound while keeping an eye on another area using your mobile device. The
app provided with the camera I used includes a function to send alerts when
movement is detected.

In the next chapter, you’ll learn how to control an electric door latch.
After completing that project, you’ll be able to unlock doors remotely and get
inside faster. You’ll also be able to detect when the door opens, just in case
the undead begin to overrun your base.

6
A d d R e m o t e A c c e s s A n d

d e t e c t o p e n d o o R s

Controlling access to your base is key in
the postapocalyptic world. Let’s say

you’re being pursued by a herd of brain-
hungry zombies. You finally reach your base,

and all you have to do to survive another day is get
inside to safety. Don’t fumble with keys and get
eaten before you can unlock the door. Unlock it before you get there! To
help you out, this chapter includes projects that allow you to unlock (or
lock) doors without touching them. Just don’t press any door-opening but-
tons with without checking your surveillance system first; no matter how
politely someone knocks (Figure 6-1), you never know if they’re alive or
undead.

104 Chapter 6

The first project in this chapter will allow you to open a door by sim-
ply pushing a button or even by remote control with a wireless extension.
The other project uses a reed switch to detect when a door has been opened
and then alerts you using the same Arduino that you used in “Project 4:
Battery Monitor” on page 53 and “Project 6: PIR Zombie Detector” on
page 72 to monitor the battery voltage and detect zombies with a PIR sen-
sor, respectively.

Figure 6-1: postapocalyptic Access control

Add Remote Access and Detect Open Doors 105

Project 9 : Remote Door Lock
First, let’s make reaching the safety of your base a
little easier. With an electro mechanical door latch,
you can press a button to open the door and avoid
making jingling key sounds that would attract nearby
zombies. This project uses a 12V latch. This door latch
will work with the existing door lock, and you can fit
one to an existing door by replacing the socket that the
lock normally engages with, as shown in Figure 6-2.
Note the latch part in the middle that is released by
the electromagnet.

The first part of this project builds a simple electri-
cally controlled lock. Press a button to unlock the door
(Figure 6-3), and the door will stay unlocked as long as
you hold down the button. If you have fellow survi-
vors living with you, this would probably be inside your
base, ready for you to let others in. However, if you are
on your own, you may want to position it on the out-
side of your base, right by the door, but high up where
it can’t be accidentally activated by zombies.

An optional second part of this project lets you use a radio frequency
(RF) remote module to unlock the door (see Figure 6-4). A remote-controlled
door could save your life, allowing you to run toward your locked door, unlock
it just before you get to it, and slam it in the face of that pursuing horde of
zombies.

Figure 6-3: the door
 control button

Figure 6-4: The wireless remote control

Figure 6-2: the
electro mechanical
door latch

106 Chapter 6

What You Will Need
To make this project, you are going to need the following parts and tools:

Item Notes Source

 An electric drill
and wood bits

You will need larger bit sizes,
perhaps up to half inch depending
on the width of the door latch.

Hardware store

 Hammer Doubles as a handy weapon Hardware store

 Chisel Hardware store

 Electrical
door latch

12V DC Farnell, Fry’s,
security store

 Fuse 10A fuse and holder Auto parts store

 Push button Adafruit (1439)

 Box for
push button

Closets, Fry’s,
garages

 Terminal
blocks

One three-way block and one
two-way block, both 2A

Home Depot,
Lowe’s, Menards

 Double-core
wire

Bell wire or speaker cable Hardware store,
scavenge

 RF remote
switch
(optional)

Single-channel RF-controlled
12V relay and remote control

eBay

This is one project that requires some woodworking tools. You’ll use the
drill and set of wood bits, the hammer, and the chisel to make a recess to fit
the new door latch, which is generally bigger than normal door latches.

To find a door latch after the apocalypse, you will need to find a specialist
security store to scavenge from. Maybe the paper version of the Yellow Pages
still has a use! Find your closest security retailer, make your way there care-
fully, find the latch, and get back to your base. After all, you won’t remember
what to do with the latch if you become a zombie before you get home.

Almost any double-core wire will work fine, so bell wire or speaker cable
is ideal.

Construction
Figure 6-5 shows the schematic for the project. The door latch used in this
project remains locked until power is applied to its terminals, and then an
electromagnet (electrically powered magnet) releases the latch so the door
can open.

This system is great for excluding zombies, but in the event of a fire or
other damage to the circuit, this could be very bad: your door would be per-
manently locked!

Add Remote Access and Detect Open Doors 107

Push
Button

12V Door
Latch

Fuse 10ATerminal
Block

+-

12V
Battery

Terminal
Block

Figure 6-5: Schematic for the electrical door latch

For this reason, any door that you fit this kind of latch to should also
retain its original latch; that way you can open it from the inside by twist-
ing the latch. While there won’t be anyone around to enforce the fire code,
it’s not a bad thing to make sure you can get out easily. After all, whatever
postapocalypse heating and cooking appliances you cobble together may not
be exactly up to code either, making unexpected fires a real possibility.

step 1 : making a switch Box
Whether the button is on the inside or outside of your base, you might need
to press the door unlock button in a hurry, and letting the button hang about
somewhere in a tangle of wires is no good. You need it to be easy to use, so
just put it in a box on the wall.

N ote If you plan to add the wireless control to the door latch, then
pick a box that is big enough to contain the remote relay
receiver; try placing all of your hardware inside the box to
test its size.

Unless you’re lucky and manage to scavenge a switch already enclosed in
a box, you’ll also need to fit the push button into the box. Make sure it has a
hole in the lid big enough to mount the switch, as well as holes for the latch
and battery lead wires to enter and exit the box. Either find a box with holes
large enough or drill the holes out yourself. While you’re at it, drill a couple
of holes in the bottom of the box to make it easier to fix it to the wall with
screws, too. Figure 6-6 shows the switch in a box.

108 Chapter 6

Figure 6-6: Making a switch box. Note the two holes on the small
side facing the camera, which are for the battery and latch wires.

Run the switch leads through the hole in your box lid and wire the two
terminals of the switch to the terminal block, which will make the overall
wiring up of the system easier. The two leads from the switch go to the mid-
dle and top positions of the terminal to match the schematic of Figure 6-5.

step 2 : making the Bat tery Lead
To provide power to the project, you need a lead to connect it to your car
battery. The lead and fuse shown in Figure 6-7 are just the same as used in
“Project 3: LED Lighting” on page 49, so if you need more details on how
to make this, have a look at that project.

Figure 6-7: Making a battery lead

Add Remote Access and Detect Open Doors 109

step 3 : F it t ing the door Latch
The electric door latch used in this project is designed to fit into a wooden
door frame. If you have a different type of door, search for other 12V door
lock mechanisms. Just remember: 12V latches that rely on an electromagnet
to keep hold of a metal plate won’t keep your base safe. That kind of lock
needs to be powered continuously to stay locked, meaning if the battery is
empty, your door unlocks and lets all the zombies inside.

To fit the electric door latch, replace the old door latch plate with the
electric latch plate. The electric version requires a considerably bigger hole in
the door frame to contain the body of the latch, so drill and chisel this hole
out; one possible result is shown in Figure 6-8.

A B
Figure 6-8: The latch hole (A) and the fitted door latch (B)

Figure 6-8a shows the latch hole, with a hole drilled at the side to allow
the two wires from the lock to be led through to the inside of the door.
Figure 6-8b shows the latch fitted back into place. The right edge of the latch
releases when power is applied to the latch.

110 Chapter 6

step 4: W iring
Push the ends of the battery lead you made in Step 2 through one of the holes
you added to the side of your enclosure in Step 1. Next, wire the positive
battery connection to middle position of the three-way terminal block and
wire the negative connection to the bottom position.

Unless you’re mounting your button right by the door, extend the two
wires from the door latch to a reasonable length by joining the short wires
of the latch to the longer wire with a two-way terminal block. Then, thread
the door latch’s long wire through the hole in the back of the switch box and
connect it to the top and bottom positions of the screw terminal, as shown
in Figure 6-5. When the wiring inside the box is complete, it should look
something like Figure 6-9.

Figure 6-9: Wiring up the switch box

The light-colored wires on the right are for the door latch, and the
dark wires are the battery leads. Before you close it all up, just check that
pressing the button releases the lock and tidy up the wiring in the box.
Finally, affix the door lock’s lead to the wall so that it isn’t a trip hazard,
and you’re done!

Of course, your safe haven would be even more accessible if you could
unlock the door from a distance, so let’s add a remote control.

Add Remote Access and Detect Open Doors 111

Going Wireless to Open Doors Ahead of Time
You could stop after installing a button, but one day, that button won’t be
fast enough. When you’re fresh off a scavenging trip, loaded down with pre-
cious supplies and running for your life because a mob of zombies decided to
follow you home, you’ll wish you could open the door before you reach it.
Plan ahead and make the door remote controlled.

To make control of the lock wireless, you can use an RF remote control
relay. The relay will be wired in parallel with the push button so if the but-
ton is pressed or the remote is activated, the door will unlock.

Figure 6-10 shows the wiring diagram for the project, this time including
the wireless remote.

+-

Push
Button

Fuse 10ATerminal
Block

IN-
IN+NO

Com

RF Remote Relay

12V
Battery

12V Door
Latch

Terminal
Block

Figure 6-10: Schematic for the electrical door latch with a wireless remote

The push button is connected to the same screw terminals wired to the
NO (normally open) and COM (common) connections on the relay. The RF
relay module requires a 12V power supply taken from the terminal block’s
connections to the battery negative and the fuse. Figure 6-11 shows how the
relay fits into the same box used for the first part of the project.

112 Chapter 6

Figure 6-11: Wiring the wireless relay to the electrical door latch

Wire in the relay according to the diagram in Figure 6-10, and then you’ll
just need to remember to take your wireless remote with you when you head
out to forage or thin out the zombie population. And always bring along a
spare remote, or at least a spare battery! As a final backup, you should always
keep the real key with you too.

Project 10 : Door Sensor
While the first project in this chapter helps you and your loved ones get to
safety, the second project alerts you to uninvited guests. Whether a stray
zombie or another survivor manages to open the door to your stronghold,
with this door sensor, you’ll know about perimeter breaches in time to hide.

This project uses a reed switch (if you’ve never used one, check out
“Reed Switches” on page 113 for a detailed description) to detect when a door
has been opened, triggering a message on your Arduino. This project uses the
same Arduino that monitors your battery and watches for zombies using the
PIR detector.

Add Remote Access and Detect Open Doors 113

What You Will Need
To make this project, you’re going to need the Arduino and screwshield that
you used in “Project 4: Battery Monitor” on page 53, plus a few other parts.

ItemS Notes Source

 Reed switch and
magnet pair

After the apocalypse,
you can scavenge these
from any house that has
an intruder alarm.

Adafruit (375),
Fry’s (1908354),
security store

 Double-core wire Speaker cable works well. Hardware store,
scavenge

 Terminal block 2-way 2A terminal block Home Depot, Lowe’s,
Menards

 Arduino Arduino Uno R3 Adafruit, Fry’s
(7224833), SparkFun

 Arduino screwShield Screwshield Adafruit (196)

Reed sWitches
The sensor used in this project is called a reed switch . This switch
is made from a pair of thin steel contacts enclosed within a sealed
glass envelope. This envelope is often further protected by a plastic
box with screw holes for fastening it to a door or window frame.

As shown in Figure 6-12, with no magnet present, the contacts
are slightly apart, but when a magnet is brought close, the two
contacts are pulled together, and an electrical connection is made.

Magnet

Figure 6-12: A reed switch

Because reed switches are sealed, they are very reliable. For
this reason, they’re often used in security applications where the
magnet is attached to, say, the door itself and the reed switch to
the door frame. When the door is opened, the magnet moves out of
range of the reed relay, and the circuit is broken.

114 Chapter 6

The reed switch will be further from the Arduino than the short leads
that it comes with would allow, so you’ll need to extend those leads. Using
the double-core wire, either connect the wires together with solder (see
“Joining Wires with Solder” on page 231) or connect them to a two-way
 terminal block.

Construction
Figure 6-13 shows the wiring diagram for connecting the reed switch to the
screwshield. You will need the buzzer from “Project 4: Battery Monitor” on
page 53, but the resistors are only needed if you also want to monitor the
battery voltage.

Reed Switch

Buzzer

Figure 6-13: Wiring diagram for the door sensor

Connect the reed switch to the D12 and GND terminals of the screw-
shield (it doesn’t matter which side goes where), connect the buzzer’s positive
lead to D11, and connect the buzzer’s negative lead to GND. Note that both
the negative connection of the buzzer and one connection of the reed switch
go to the same GND screw terminal. Figure 6-14 shows the completed project,
combined with the resistors used in Project 4.

Add Remote Access and Detect Open Doors 115

Figure 6-14: The completed door sensor

The alligator clips at the bottom of Figure 6-14 lead off to the battery,
as described in Project 4. With the reed switch hooked up, let’s move on to
the sketch.

Software
All the source code for this book is available online at http://www.nostarch
.com/zombies/. (See “Installing the Antizombie Sketches” on page 248 for
instructions on installing the programs.) If you just want to make this proj-
ect on its own, without any of the earlier Arduino-based projects, then use
the sketch Project_10_Door_Sensor. If, on the other hand, you have made one
or more of the earlier Arduino projects, then use the sketch All_Sensors and
change the constants at the top to select the projects that you have made.
See the comments section in the All_Sensors sketch for instructions on what
changes to make.

The code follows the same pattern as Project 4, so for more informa-
tion on how the program as a whole works, please refer to “Software” on
page 57. Here, I will describe just the code specific to this project.

First, a new constant is defined for the Arduino pin that will act as an
input for the reed switch.

http://www.nostarch.com/zombies/
http://www.nostarch.com/zombies/

116 Chapter 6

const int doorPin = 12;

There is a new line of code in the setup function to initialize that newly
defined doorPin (pin 12 on the Arduino) to be an input.

pinMode(doorPin, INPUT_PULLUP);

The type of input is specified as INPUT_PULLUP so that the input pin will
be HIGH by default and only go LOW when the reed switch is closed by being
near the magnet. The loop function now also calls a function named checkDoor,
which contains the rest of the code for checking for the door being opened.

void checkDoor()
{
 if (digitalRead(doorPin))
 {
 warn("DOOR");
 }
}

The checkDoor function first reads the door pin. If the result of this read
is HIGH, then the magnet is not close enough to the reed switch to hold the
switch closed, and the input is in its default state of HIGH. Since the magnet
isn’t next to the reed switch, the door must be open.

If you only need to know that the door has opened, you don’t need a
continuous alarm, so checkDoor calls the function warn (passing it "DOOR")
rather than alert, which you used for the battery monitor.

void warn(char message[])
{
 lcd.setCursor(0, 1);
 lcd.print(message);
 delay(100);
 lcd.setCursor(0, 1);
 lcd.print(" ");
 if (!mute)
 {
 tone(buzzerPin, 1000);

u delay(100);
 noTone(buzzerPin);
 }
 delay(100);
}

The warn function is like alert: warn takes a message as an argument, prints
that message to the LCD, and makes a sound. The difference is that the buzzer
tone is cancelled with noTone after just a tenth of a second delay u, to give only
a short beep when the door is opened.

Add Remote Access and Detect Open Doors 117

Using the Door Sensor
It is always worth testing out a project on your workbench before you install it
for real, especially when your life depends on the device working. If this door
sensor fails, you could be zombified in your sleep! So first, load your sketch
onto the Arduino and line up the reed switch and magnet close together. Then
when you move them apart, the buzzer should go off.

Once you’re sure everything works as it should, affix the reed switch
to the door frame and the magnet to the door. The magnet and reed switch
should be opposite each other but not touching. It is best to have the magnet
on the door rather than the frame, because the frame doesn’t move and will
not flex the wires, which would shorten their life. Figure 6-15 shows the reed
switch and magnet installed on a door.

Figure 6-15: Reed switch and magnet on a door

Note that both the reed switch and magnet are often supplied with adhe-
sive pads on the back to stick them to the door as well as mounting holes,
so you can attach them to the wall nonpermanently, as I’ve done. However,
if you are still worried about home decor after the zombie apocalypse, be
warned that the adhesive may damage the paint when you remove the reed
switch and magnet.

With your new monitor installed, you are ready to take the next step in
making your base secure. In Chapter 7, you’ll connect smoke and temperature
alarms to your hard-working Arduino to protect yourself from more natural
disasters that might occur—as if zombies aren’t enough!

7
E n v i r o n m E n ta l m o n i t o r i n g

Zombies are pretty frightening, but
they’re not the only threat in a post

apocalyptic world. More mundane risks
like fire are especially serious if you can’t

safely leave your compound (see Figure 71). In this
chapter, I’ll show you how to build a fire alarm and
a temperature alarm that alert you to environmen
tal hazards—without alerting the zombies.

120 Chapter 7

Figure 7-1: No smoking!

Project 1 1 : Quiet F ire Alarm
Normally, you want a fire alarm to be as close to you as possible and as noisy
as possible. But there’s one problem with loud alarms: zombies can hear. The
last thing you want when escaping a burning building is to attract unwanted
attention from passing zombies!

This project modifies a regular battery-operated smoke detector so
that it registers an alarm on the Arduino display and sounds a much quieter
buzzer, using the basic setup from “Project 4: Battery Monitor” on page 53.
Figure 72 shows the smoke detector connected directly to the screwshield.

Environmental Monitoring 121

Figure 7-2: Testing the finished fire alarm. In your base,
the detector will be connected to the Arduino by a long lead.

What You Will Need
To make this project, you’ll need the Arduino and screwshield that you used
in “Project 4: Battery Monitor” on page 53 as well as the following parts:

Items Notes Source

 Smoke detector Battery operated Hardware store,
Supermarket

 Cable Double core and long enough
to reach from the smoke
detector to the Arduino

Scavenged speaker or
bell cable is good for
this.

 D1 1N4001 diode Adafruit (755)

 R1 1 kΩ resistor Mouser (293-1k-RC)

 LED1 Blue or white LED Adafruit (301)

 C1 100 µF capacitor Adafruit (753)

 Solid-core wire 2 inches (5 cm) long Abandoned electronics,
Adafruit (1311)

Be sure to use the LED colors I recommend, as I don’t suggest blue or white
LEDs just because they look cool. For this project’s circuit to work, the LED
needs to have a forward voltage of more than about 2V. Red and green LEDs
often have a forward voltage of about 1.7V, but blue and white LEDs have a
much higher forward voltage of around 3V, which is perfect.

122 Chapter 7

Construction
To adapt the smoke detector to communicate silently with the Arduino, you’ll
disconnect the detector’s buzzer from its circuit board and then change the
signal that would go to the buzzer into a signal the Arduino can use. You’ll
condition the buzzer signal by sending it through the circuit (Figure 73).

GND

D3

Buzzer B

Buzzer A D1

LED1
Blue

R1
1 kΩ

C1
100 µF

Smoke Detector

Arduino

Conditioned
Buzzer Signal

Figure 7-3: Schematic for the fire alarm

A typical smoke alarm is really loud because its buzzer is driven with the
highest possible voltage the circuit can wring out of a little 9V battery. This
means that for most alarms, the signal on the buzzer looks something like
the chart on the left of Figure 74.

Time (ms)

Volts
+9V

-9V

Time (ms)

Volts
+3V

0V0V
0.8 1.6 2.4

A
(Signal from Smoke Alarm)

B
(Signal at Arduino D3)

0.8 1.6 2.4

Figure 7-4: Taming the buzzer signal for Arduino is much easier than
taming a zombie!

Environmental Monitoring 123

The buzzer is driven by an alternating current (AC) square wave, with a
voltage that swings from +9V to –9V at roughly 600 times per second. This
causes a piezo element to alternately expand and contract, generating the buzz
ing sound. But this voltage swing is too wild for the Arduino, which can be
damaged by inputs greater than 5V or less than 0V.

The circuit to convert the buzzer signal begins with the diode D1, which
completely prevents the negative voltages from reaching the rest of the circuit
(diodes only allow current to flow in one direction). The resistor limits the
current flowing to the LED, which limits the voltage across the LED to about
3V. The capacitor gets rid of any voltage spikes and smoothes out the signal
to something like the chart on the right in Figure 74.

Step 1 : D isconnect the Buzzer
First, disassemble the smoke detector. When you remove the lid, you should
see a PCB and some wires (Figure 75).

Figure 7-5: Inside the smoke detector

In this smoke detector, the three leads going from the circuit board to
the lid are the buzzer leads. Chop off the leads to the buzzer now, but don’t
cut too close to the buzzer itself. Resources are scarce during an apocalypse,
and you might want to repurpose that buzzer later.

124 Chapter 7

N OTE You can use the buzzer from your smoke detector to build
“Project 16: Arduino Movement and Sound Distractor” on page 169.
If you’ve ever been close to one of these smoke alarms when
they sound, you’ll know just how distracting they are!

Your buzzer may have two leads or three leads. If it has three, follow
Step 2 to determine which lead is which. If it has just two, these are the
leads that you will connect to, and you can skip Step 2.

Step 2 : identify the leads
If your buzzer has three connections, then your smoke alarm uses a type of
piezo buzzer called a self-drive piezo. The third connection is called the feed-
back connection and is used to make the piezo sound as loud as possible.

For this project, you just want the two drive connections on the smoke
detector. Sometimes the wires are color coded; if so, the drive connections
will probably be red and black, and the feedback connection might be white
(see Figure 76) or some other color. But if you have a multimeter, then
you can just check which wires are the drive wires and avoid guesswork.
Figure 76 shows this process in action.

DangEr: raDiation!
As you start this project, keep two warnings in mind. First, if you
take apart your smoke detector before the zombie outbreak, do not
use it as a smoke detector again. Smoke detectors save thousands
of lives a year, so don’t rely on one you’ve messed with; just buy a
new one.

Second, although removing the smoke detector’s plastic case
is safe, if your smoke detector has a round metal box inside (see
Figure 7-5), do not open that box, as it contains a radiation source
that ionizes air in a small chamber. Smoke particles will absorb
the ions, and the resulting reduction in current through the ionized
air triggers the alarm. This type of smoke detector is gradually
being replaced by designs that detect smoke optically instead, so
hopefully, yours won’t have that box at all.

Environmental Monitoring 125

Figure 7-6: Identifying the smoke alarm buzzer wires

Strip the ends of all three wires and set your multimeter to its 200V
AC range if it’s available on your meter, or at least the 10V AC range. (Yes,
I mean AC, not the usual DC.) Connect the multimeter leads to any two
of the three wires and measure the voltage as you hold down the contacts of
the smoke alarm’s “test” switch. If the meter indicates about 9V, or anything
above 4V or 5V, then these are the wires you are looking for; otherwise, try
different pairs until you find the correct wires. Note that the project relies on
the battery or batteries still being present in the smoke alarm.

Step 3 : Solder Components to the ScrewShield
This circuit has too many components to attach all of them to the screw ter
minals, so use the prototyping area on the screwshield to solder the compo
nents into place. Figure 77 shows the wiring diagram for the screwshield; the
letters marked will be used later to describe just how to solder this together.

N OTE For the sake of clarity, Figure 7-7 doesn’t include components
from earlier Arduino-based projects that might be hanging off
the screwshield.

126 Chapter 7

LE
D

+

D1
C1

Smoke
Detector

A

B

C

D

E

R1

Figure 7-7: Wiring diagram for the screwshield

Holding your screwshield so that it looks like Figure 77, push the compo
nent legs through from the top of the board. Note that the diode (labeled D1)
and LED are polarized, meaning they only work when oriented a certain way.
Point the diode’s stripe toward the top of the board. Then place the LED’s
longer lead (the positive lead) toward the bottom of the board (Figure 77).

When you’ve pushed all the component leads through, flip the board
over and solder the leads where they emerge from the hole. (If you are new
to soldering, take a look at Appendix B, especially “Soldering a PCB” on
page 234.) It may help to bend the leads slightly so that the components
don’t fall out when the board is upside down. When all the components are
soldered, the underside of the board should look like Figure 78.

Environmental Monitoring 127

Figure 7-8: Fixing the components in place

Now that the components are fixed, bend the leads and arrange them to
make the connections, using Figure 79 and the steps below as a guide. (The
connections described below are indicated in Figures 77, 79, and 710 with
letters.)

1. Bend the top (negative) lead of the LED over so that it lies next to the top
lead of C1 and the GND power line on the screwshield (A). Solder the
LED lead where it crosses C1 and then where it meets the GND line. Cut
off the excess LED lead and the remainder of the top lead of C2.

2. Bend the other LED lead over to run next to the top lead of R1 and the
bottom lead of C1 (B). Solder the bottom LED lead at the junctions where
it crosses R1 and C1 and cut off the remainders of both the C1 lead and
the R1 lead you just soldered to. If there is any remaining LED lead after
connecting to R1 and C1, cut that off too.

3. Cut a length of solidcore wire that is long enough to reach all the way
from the end of the positive LED that you soldered in Step 2 as far as
D3 on the top Arduino connector (C). Strip the ends of the wire (see
“Stripping Wires” on page 227). Flip over to the top side of the board
and push one stripped end of the wire into a hole next to where the
positive LED lead connects to C1 and solder the wire to that junction.
Solder the other end of the wire to the solder pad next to Arduino pin
3. Push the stripped end through the hole from the top and solder on
the underside.

128 Chapter 7

A

B
C

D

E

Figure 7-9: The underside of the screwshield, after soldering.
The dashed lines indicate wires running on the top of the shield.

4. Bend the bottom lead of R1 over so that it crosses the top lead of D1 (D).
Solder these leads together and cut off the excess wire.

5. Use another short length of solidcore wire (or if they are long enough,
one of the leads you trimmed off R1) to connect the solder pad labeled X
to the bottom GND power line on the screwshield (E).

When this is done, the underside of the board should look like Figure 79.
The dotted lines represent the wires on the other side of the board.

Next, flip the board over and add a wire to link pin D3 (just marked 3 on
the screwshield) of the Arduino to the junction of the capacitor, diode, and
resistor. Solder that wire in place. When this is done, the top of the screw
shield should look like Figure 710.

Now that the board is complete, reassemble the electronics by fitting the
display shield back on top of the screw shield and the screw shield onto the
Arduino.

Environmental Monitoring 129

A

B
C

D

E

Figure 7-10: The finished screwshield

Step 4: Connect the Smoke Detector to the arduino
Finally, strip the buzzer wires if you haven’t done so already, and solder
longer leads to them. To make the soldered connections stronger, you could
use heatshrink as described in “Using Heatshrink” on page 235. Connect
the smoke detector to pins W and X on the screwshield. The wire connect
ing the smoke detector to the Arduino can be any doublecore cable, such as
bell wire, but if you plan to use this alarm in your base, just use wires long
enough to reach the mounting position. I found that the project worked just
fine with 30 feet (10 m) of telephone extension cable.

Software
If you want to make this project without any of the other Arduinobased
projects in this book, then load the sketch Project_11_Smoke_Alarm from
this book’s source files onto the Arduino now. If on the other hand, you’ve
built one or more of this book’s earlier Arduino projects, then use the sketch
All_Sensors and change the constants at the top to select the projects that
you’ve made. See the comments section in that sketch for instructions on the
correct changes to make.

130 Chapter 7

N OTE You’ll find a link to the source code for this book at
http://nostarch.com/zombies/. See Appendix C in this book
for instructions on loading the programs.

This code builds on the code from Project 4, so for more information on
how the program as a whole works, please refer to “Software” on page 57.
Here I will just describe the code specific to the fire alarm.

First, we define a new constant for pin D3 on the Arduino:

const int smokePin = 3;

This pin will act as an input for the signal from the smoke detector.
After adding the smokePin constant, we add a new line of code to the setup
function to initialize this pin as an input:

pinMode(smokePin, INPUT);

Next, we add a call to a new function called checkSmoke to the loop func
tion. The checkSmoke function is defined as follows:

void checkSmoke()
{
 if (digitalRead(smokePin))
 {
 alarm("FIRE!!");
 }
}

The checkSmoke function contains the rest of the code for checking for a
signal from the smoke detector and displaying the message and/or turning on
the buzzer. To change the display and control the buzzer, call the alarm func
tion, which you first met in “Project 6: PIR Zombie Detector” on page 72:

void alarm(char message[])
{
 lcd.setCursor(0, 1);
 lcd.print(" ");
 delay(100);
 lcd.setCursor(0, 1);
 lcd.print(message);
 if (!mute)
 {
 tone(buzzerPin, 1000);
 }
 delay(100);
}

http://www.nostarch.com/zombies/

Environmental Monitoring 131

Unless you press a button to mute (a holdover from Project 4), this
function prints your message ("FIRE!!") to the LCD in lieu of that loud,
zombieattracting buzzer.

Using the Fire Alarm
Testing the smoke detector is simple: just hold down the contacts of the
test button with a screwdriver (see Figure 76). This will cause the buzzer to
sound and a message to appear on the LCD screen.

When you know the alarm works, place the sensor somewhere close
enough to a potential fire that you’ll receive enough advance warning to put
out the flames, or at least flee in an orderly manner. Creating a quiet smoke
alarm won’t be worth much if you exit in a noisy panic and attract all the
zombies on the block!

Project 12 : Temperature Alarm
Since your compound is zombieproofed, you (hopefully) won’t have to
change lodgings often, and over time, you’re sure to acquire some valuable
climatesensitive items. Depending on what you have cached away, you
might want to make sure that a generator isn’t getting too hot or that your
wine cellar isn’t too cold. To protect these assets that ensure your survival
and are good to trade with other survivors, you need a temperature alarm
that can notify you of extremes of heat or cold.

This is the final project that uses your now heavily laden Arduino, and
Figure 711 shows the LCD screen reporting a high temperature in Celsius.

Figure 7-11: A fully laden Arduino, complete with temperature sensor
(circled), movement detector, smoke alarm, and battery monitor

132 Chapter 7

A threepin temperature sensor is on the left of Figure 711, over the
remains of the smoke alarm from Project 11. That sensor will send the
Arduino temperature data, which the Arduino will then display as human
readable text.

What You Will Need
To make this project, you’ll need the Arduino and screwshield that you used
in “Project 4: Battery Monitor” on page 53 and the following parts:

Items Notes Source

 TMP36 Temperature sensor Adafruit (165)

 Three-core wire To connect the sensor chip to
the Arduino screwshield

Scavenged telephone
cable or other three-
core wire.

 Heatshrink 3 lengths of about an inch
(25 mm)

Auto parts store

You could use electrical tape instead of heatshrink for this project, but I
recommend heatshrink because it’s a lot tougher and not prone to unraveling.

Construction
Figure 712 shows the wiring dia
gram for the project. The LCD
should be attached from an earlier
project, so the only new part you’ll
add is the TMP36 temperature
sensor.

5V GND A2

Figure 7-12: The wiring diagram for
the temperature alarm

Environmental Monitoring 133

tmP36 tEmPEraturE SEnSor
The TMP36 is a handy little temperature sensor chip. It has three
pins, and in this project, they’re connected to 5V, GND, and A2 on the
Arduino. Figure 7-13 shows the pinout of this chip. These chips are
only accurate to about 2 degrees Celsius. If you want greater accu-
racy, then you could consider changing this project’s design and
software to use a digital temperature sensor like the DS18B20.

V+ Out GND

Figure 7-13: The TMP36 pinout

The positive supply voltage to pin V+ on the TMP36 can be any-
thing between 2.7V and 5.5V. On its middle pin, the chip produces an
analog output voltage proportional to the temperature. The tem-
perature of the chip (in degrees Celsius) can be calculated from
the voltage at the Out pin by this formula:

Temperature = 100 × volts - 50

So, if the voltage were 0.6V, the temperature would be
100 × 0.6 - 50 = 10 degrees Celsius. If you prefer your tem-
peratures in degrees Fahrenheit, then just make one further
calculation:

oF = oC × 9/5 + 32

The TMP36 can measure temperatures in the range -40 to +125
degrees Celsius, but the measured temperature is accurate only to
within 2 degrees Celsius of the actual temperature.

134 Chapter 7

Step 1 : make a longer lead for the tmP36
To extend the lead of the TMP36, you could just solder a threecore wire to
it. However, to make it a bit more durable, you can use heatshrink tubing on
top of the soldered connections. Figure 714 shows the process.

A B

C D

Figure 7-14: Using heatshrink on the TMP36 lead

First, strip the wires of each lead and slip the cut lengths of heatshrink
over the individual wires (Figure 714a). Next solder the wires to the leads
of the TMP36 (Figure 714b). Slide the heatshrink up over the solder joint
(Figure 7-14c) and finally apply a hair dryer or hot air gun to the heatshrink
until it, well, shrinks (Figure 714d). If you have wide diameter heatshrink,
then you could place this around the whole sensor and individual leads to
make this build more durable.

N OTE For more information on using heatshrink, see the “Using
Heatshrink” on page 235.

Step 2 : at tach the temperature Sensor lead
to the ScrewShield
Attach the wires from the temperature sensor to the screwshield (Figure 711).
You don’t have to use the GND connection shown; any of the GND termi
nals on the screwshield will do.

Environmental Monitoring 135

Software
If you want to make this project on its own, without any of the earlier
Arduinobased projects, then open the sketch Project_12_Temperature from
this book’s source files and load it on to your Arduino now. If, on the other
hand, you built one or more of the earlier Arduino projects, then use the
sketch All_Sensors and change the constants at the top to select the projects
that you have made. See the comments section in this sketch for instructions
on this.

N OTE All the source code for this book is available from http://www
.nostarch.com/zombies/. See “Installing the Antizombie Sketches”
on page 248 for instructions on installing the programs.

This code follows the same pattern as Project 4, so for more informa
tion on how the program as a whole works, please refer to “Software” on
page 57. Here, I’ll just describe the code specific to this project.

First, a new constant is defined for the Arduino pin that will act as an
analog input for the TMP36:

const int tempPin = A2;

Two more constants are defined to set the maximum and minimum tem
peratures allowed before an alarm is triggered. These are floats rather than
ints because they represent decimal numbers rather than whole numbers.

// Project 12 constants
// these can be in C or F
const float maxTemp = 45.0;
const float minTemp = -10.0;

As the comments above the constants state, these temperature values
can be in either Celsius or Fahrenheit. The units that the temperature is mea
sured in are decided by a new function you’ll define.

The main loop function now includes a call to checkTemp, too. This func
tion is defined as follows:

void checkTemp()
{
 float t = readTemp();
 if (t > maxTemp)
 {
 alarm("HOT", t);
 }
 else if (t < minTemp)
 {
 alarm("COLD", t);

http://www.nostarch.com/zombies/
http://www.nostarch.com/zombies/

136 Chapter 7

 }
}

The checkTemp function first calls readTemp to measure the temperature
and then compares that with the maximum and minimum temperatures. If
the temperature is too high or too low, then the alarm function is called. Note
that this version of the alarm function has an additional parameter that is used
to display the temperature on the LCD screen.

The readTemp function is where the raw analog input reading from the
TMP36 is converted into a temperature.

float readTemp()
{
 int raw = analogRead(tempPin);
 float volts = raw / 205.0;
 float tempC = 100.0 * volts - 50;
 float tempF = tempC * 9.0 / 5.0 + 32.0;
 // One of the following two lines must be uncommented
 // Either return the temperature in C or F
 return tempC;
 // return tempF;
}

The raw value returned by analogRead is a number between 0 and 1023,
where 0 indicates 0V at the analog input pin and 1023 indicates 5V. This
voltage is calculated by dividing the raw value by 205 (205 is roughly 1023/5).

The temperature in degrees Celsius is then calculated using the formula
described in “TMP36 Temperature Sensor” on page 133, as the voltage mul
tiplied by 100 with 50 subtracted from the result. The temperature in degrees
Fahrenheit is also calculated.

Finally, one of these two values has to be returned. In this version of
readTemp, the line to return tempF is commented out, so the temperature in
Celsius will be returned. If you want to flip this, then comment out the line
return tempC and uncomment return tempF so that the last three lines of the
function look like this:

 // return tempC;
 return tempF;
}

To test the sensor, try changing the value of the maxTemp constant to just
above the room’s temperature, load the updated sketch onto the Arduino, and
then squeeze the temperature sensor between your fingers to warm it up.
Watch the LCD, and the readout should change.

Environmental Monitoring 137

Using the Temperature Alarm
There’s a limit to how much distance you can put between your temperature
sensor and your Arduino. You could make the lead you attach to the TMP36
as long as 20 feet (7 m), but the sensor will become less and less accurate as the
lead gets longer due to electrical noise on the line and the resistance of the wire.

Leave the sensor near the item you want to stay at a certain temperature
and watch the LCD. If that wine cellar just won’t stay cool enough, try set
ting up the sensor in different rooms in your base until you find one with the
right climate. If there isn’t a good room for the wine, just put the sensor back
on your generator, invite the other survivors in your area over for a drink,
and have an antizombie strategy meeting.

Now that you have a bunch of sensors to warn you of dangers in
your base, in the next chapter, you’ll combine the Arduino projects with a
Raspberry Pi to make a control center.

8
B u i l d i n g a C o n t r o l C e n t e r

f o r Y o u r B a s e

In this chapter, you’ll learn how to
make an integrated control center using

a Raspberry Pi computer interfaced with
earlier projects from this book. The control

center will allow you to monitor all of your alarm
and surveillance devices on one screen so you’ll
know instantly if a zombie has breached your
compound (Figure 8-1). As an extra feature, you’ll
learn how to add wireless connectivity to your
control center.

140 Chapter 8

Figure 8-1: A quiet night at the security desk

Project 13 : A Raspberry P i Control Center
In this project, you’ll connect the Raspberry Pi system of Chapter 5 with
the following Arduino monitoring devices developed earlier in the book:

yy “Project 4: Battery Monitor” on page 53

yy “Project 6: PIR Zombie Detector” on page 72

yy “Project 10: Door Sensor” on page 112

yy “Project 11: Quiet Fire Alarm” on page 120

yy “Project 12: Temperature Alarm” on page 131

We’ll link the two boards with USB cables, which we can later replace in
Project 14 with a wireless Bluetooth link. The Arduino will still be able to
work without the Raspberry Pi after this wireless modification, but linking
it to the Raspberry Pi will allow you to show the status of your sensors and
alarms in a window on the Raspberry Pi. Figure 8-2 shows the setup; you
can see the sensor status window in the center of the screen.

Building a Control Center for Your Base 141

Monitor

Motion
Sensor

Arduino

Raspberry Pi

Temperature
Sensor

Alarm
Buzzer

Figure 8-2: Raspberry Pi and Arduino working together

What You Will Need
This project brings together the Raspberry Pi system of Chapter 5 and most
of the Arduino projects described in the book thus far. As such, all you will
need is the following:

y� One or more of the previous Arduino projects

y� The Raspberry Pi system from Chapter 5

y� A USB lead/cable (of the same type used to program your
Arduino project)

Construction
Assuming that you have been slowly adding projects to your Arduino, the
Arduino now has five projects attached to it. If you’re really prepared, you
probably built these ages ago and have them stashed in your go bag, ready for
the apocalypse. Either way, you should at least have the sensors you are inter-
ested in using.

If your Arduino projects and Raspberry Pi are already set up, you won’t
need to do much construction to link them. You connect an Arduino project

142 Chapter 8

to the Raspberry Pi by plugging one end of the USB lead into the Pi and the
other end into the Arduino. If your Raspberry Pi does not have any free USB
ports, then you will need to add a USB hub to provide more ports.

Now that you have linked your Arduino and your Raspberry Pi, you’ll
need to program them. It’s best to program the Arduino from your regu-
lar computer before swapping the USB cable over to the Raspberry Pi, as
programming the Arduino from the Raspberry Pi’s small screen can be
frustrating.

Figure 8-3 shows the arrangement of the various system components.

Arduino Raspberry Pi

Screen

Keyboard Mouse

Temperature
Alarm

(Project 12)

Quiet
Fire Alarm
(Project 11)

Door Sensor
(Project 10)

Battery
Monitor

(Project 4)
PIR Zombie
Detector

(Project 6)

Buzzer

USB

USB

HDMI

USB

Figure 8-3: A schematic of the control center

This arrangement plays to the strengths of both the Arduino and
Raspberry Pi. The Raspberry Pi cannot directly use many of the sensors that
are connected to the Arduino, while the Arduino can. At the same time, the
Arduino does not have a screen, while the Raspberry Pi does.

Software
There are two parts to the software for this project: a modified version of the
All_Sensors Arduino sketch and a Python program run on the Raspberry Pi to
allow it to communicate with the Arduino.

Before the apocalypse, make sure you’ve downloaded the source code for
this book; go to http://www.nostarch.com/zombies/ to get started.

http://www.nostarch.com/zombies

Building a Control Center for Your Base 143

arduino software
The Arduino sketch you will use for this project, Project_13_Control_Center_
USB, is based on the All_Sensors sketch that runs all of the other Arduino
projects in this book. Project_13_Control_Center_USB just adds code to allow
your Arduino to communicate with other devices over a serial connection
(in this case, USB).

N OTE For instructions on loading sketches onto your Arduino, see
Appendix C.

It’s best to test each part of this fairly complex system in isolation
on your regular desktop or laptop computer before connecting it to the
Raspberry Pi. You can power the Arduino from the USB connection to your
laptop while testing, so you don’t need to use your postapocalyptic car
battery power supply for preapocalyptic testing.

To begin testing, load the Project_13_Control_Center_USB sketch onto the
Arduino and click the magnifying glass in the Arduino IDE to open the serial
monitor (Figure 8-4).

Figure 8-4: The serial monitor

Make sure that “9600 baud” is selected in the drop-down list at the
bottom right of the serial monitor. This is the baud rate, the speed at which
data is sent (measured in bits per second), and it must match the speed set in
the sketch.

In the text entry area at the top of the serial monitor, enter the ? com-
mand and click Send. The Arduino should display a line of numbers like the
4.27 26.10 1 0 0 shown in Figure 8-4 (your numbers will not match these,
exactly). These numbers are the battery voltage, temperature, door status,
PIR status, and smoke alarm status, respectively. For the three status values,

144 Chapter 8

0 means everything is okay and 1 indicates an alarm. These are the values
that will later be displayed on the control center. By simulating how the
Raspberry Pi will fetch the values, you are testing that the Arduino part of
the project is working.

If you’re currently holding any zombies captive for research, try putting
the temperature sensor up against a zombie’s skin and enter the ? command
again. If you’re lacking in test subjects (or feeling less adventurous), just hold
the sensor between your fingers. Either way, you should see the temperature
part of the message change.

If the responses in the serial monitor indicate that the Arduino side of
your control center is working properly, you can unplug the Arduino from
the regular computer and attach it to a USB port of the Raspberry Pi.

If the numbers do not appear, then check that the sketch uploaded
properly onto the Arduino. If the numbers reported are not what you would
expect for one of the projects, then check the wiring for that particular
project.

Look at the Arduino code in Project_13_Control_Center_USB, and you will
see that unlike in All_Sensors, the setup function includes the following line
at the end:

 Serial.begin(9600);

This line tells the Arduino to open a serial connection, via its USB-serial
interface, at a baud rate of 9600. The value passed to begin must match the
value you set in the serial monitor’s baud rate drop-down list.

This sketch also has a change at the top of the loop function:

 if (Serial.available() && Serial.read() == '?')
 {
 reportStatus();
 }

These lines check whether any serial communication over USB is waiting
to be processed. If so, when you send the ? message, the reportStatus function
is called:

void reportStatus()
{
 Serial.print(readVoltage());
 Serial.print(" ");
 Serial.print(readTemp());
 Serial.print(" ");
 Serial.print(digitalRead(doorPin));
 Serial.print(" ");

Building a Control Center for Your Base 145

 Serial.print(digitalRead(pirPin));
 Serial.print(" ");
 Serial.println(digitalRead(smokePin));
}

The reportStatus function formats the response from earlier, separating
the parts of the message with a space character. The final println command
adds a newline character to the end of the response.

raspberry P i software
The program for this project can be found in the Raspberry Pi/control_center_usb
folder. To download all the Raspberry Pi programs used in this book in one
go, you could also use the following commands from a terminal window on
the Raspberry Pi:

$ cd /home/pi
$ git clone https://github.com/simonmonk/zombies.git

These commands should fetch all of the code for the book, including the
Arduino code used in other projects.

N OTE For these commands to work, you will need to have the Pi
connected to your network with an Ethernet cable, and your
Internet connection needs to be up and running. Therefore,
this is definitely something to do when you sense the apocalypse
looming. Don’t wait until afterward!

To start the control center, you need to run the Python program control.py.
Enter the following commands in a terminal window on your Raspberry Pi:

$ cd "zombies/Raspberry Pi/control_center_usb"
$ python control.py

When the program has started up, the window in Figure 8-5 should
appear.

The program displays the readings from the Arduino
in a human-readable way, and any readings that require
your immediate attention will be highlighted in red.
When there is no cause for alarm, the readings will be
green. In this example, my door is open, which means
zombies may be breaking into my compound as I write!
While I go check on that, you can open the control_center_
usb.py file in a text editor and take a look.

Figure 8-5: The
control center

146 Chapter 8

N OTE This is the first time we have looked at Python code since
Chapter 5, so the syntax may look unfamiliar after so much
Arduino code. If you get confused about which is which, just
keep in mind the main differences: in Python code, there aren’t
any semicolons at the end of lines, and indentation is used to
group code into blocks instead of curly braces as in Arduino code.

I haven’t listed the full code for the control center here as it is almost 100
lines, but in the following paragraphs, I’ll highlight a few key features. It is
useful to know how the code works in case you decide you’d like to modify
it. You might, for instance, want to improve the display window so it has an
extra column for the units used in the measurements. You could even have it
display more explicit warnings about fires, detected zombies, and so on to tell
you when you need to get out of your base in a hurry. Visit http://effbot.org/
tkinterbook/tkinter-index.htm to find out more about making fancy user inter-
faces in Tkinter.

threshold Values
At the top of the file are three constants that may need to be changed:

MIN_VOLTS = 11.0
TEMP_MIN = -10.0
TEMP_MAX = 45.0

These constants specify the value limits that determine when the results
turn red in the control window. In this example, if the voltage drops under
11V, that row will turn from green to red. The same happens if the tempera-
ture drops below –10 or rises above 45 degrees Celsius. The units of tem-
perature used in TEMP_MAX and TEMP_MIN come from the units you used in the
Arduino sketch. For details on how to switch between degrees Celsius and
Fahrenheit, refer to “Project 12: Temperature Alarm” on page 131.

Set your thresholds to appropriate values for your base, taking into
account how much advance warning you want if your battery level gets
low or the temperature rises.

status labels
The following code shows how the labels and results in the user interface
are coded, using battery voltage as an example. The code is contained within
a class named App, and the user interface is defined in the __init__ initialize
method of this App class.

http://effbot.org/tkinterbook/tkinter-index.htm
http://effbot.org/tkinterbook/tkinter-index.htm

Building a Control Center for Your Base 147

Label(self.frame, text='Volts').grid(row=0, column=0, sticky=E)
self.volts_var = StringVar()
self.volts_label = Label(self.frame, textvariable=self.volts_var)
self.volts_label.grid(row=0, column=1)

The first line creates the label Volts and positions it using a grid layout at
row 0, column 0. The sticky attribute indicates that the field should “stick” to
the “east” wall of the layout cell—in other words, be right justified.

The second line defines a special type of variable (StringVar) used by the
Tk graphics library that provides the user interface for the program. This
variable is assigned to a member variable called volts_var, which is then refer-
enced in the third line when the label for the voltage value is defined. When
the value of the volts_var variable changes, the label field will automatically
display the new value of volts_var.

Grid layouts divide the window up rather like table cells and allow you
to specify the positions of user interface items without having to provide
exact coordinates. The grid is arranged as rows numbered from top to bot-
tom, with the topmost row being 0, and as columns numbered from left to
right, with the leftmost column being 0. The last line of code for the volts
display positions the label on the grid layout at row 0 and column 1 to put it
alongside the label Volts.

The code for the other fields displayed in the window is defined in the
same way.

Of course, you may want to use more—or less—descriptive labels, so
change them to anything you like. For more information on formatting with
the Tk graphics library, see http://tkinter.unpythonic.net/wiki/.

Communicat ing with the arduino
At the end of the __init__ method you will find these two lines:

self.ser = serial.Serial(PORT, BAUD, timeout=1)
time.sleep(2)

The first of these lines opens serial communication with the Arduino.
The second pauses for two seconds to allow the Arduino time to start up
before any messages are sent to it.

Keep ing Your Control Center updated
If the displayed values don’t automatically update, your control center is
pretty useless. Updating is accomplished with the read_arduino method.

http://tkinter.unpythonic.net/wiki/

148 Chapter 8

Here is the first part:

 def read_arduino(self):
 self.ser.write('?')
 volts, temp, door, pir, fire = self.ser.readline().split()
 self.volts_var.set(volts)
 self.temp_var.set(temp)
 self.door_var.set(door)
 self.pir_var.set(pir)
 self.fire_var.set(fire)

The read_arduino method first sends the ? command to the Arduino, which
responds with a line of values separated by spaces, as you saw when trying
out the Arduino code in the serial monitor. The returned string of values is
then split up, using the spaces as a delimiter (this is the default delimiter for
the .split() function). StringVars associated with each field in the window
are then updated in the display.

After the values are updated, the remainder of the read_arduino method
sets the color of the fields to red or green as appropriate.

To ensure that the read_arduino method is called at regular intervals, it is
necessary to schedule a call to it from the Tk user interface object:

def update():
 app.read_arduino()
 root.after(500, update)

root.after(100, update)

This code ensures that after 100 milliseconds (1/10 second), the function
update will be called. The function update first calls read_arduino and then
schedules itself to run again in 500 milliseconds (half a second), meaning that
our control center checks all of our sensors every half second. If you’re in dan-
ger, whether from zombies or environmental hazards, you’ll know quickly!

You can run this program at the same time as you run the USB webcam
of “Project 7: Monitor Zombies with a USB Webcam” on page 87 by opening
two LXTerminal windows and running one program in each terminal win-
dow. That way, you can see instantly what might have triggered your alarms.

Using the Control Center
Now, you have a screen that will give you continuous updates on all of the
safeguards of your stronghold. Place your control center somewhere you can
easily see it, and if you’ve included all of the components from Figure 8-3,
you’ll know instantly if your supplies are in danger, if your power supply is
running low, and if zombies have breached your perimeter.

Building a Control Center for Your Base 149

If you find that the user interface values do not update, then go back
to “Arduino Software” on page 143 and again test the Arduino using the
serial monitor by sending the ? command to look for a status response in
the serial monitor.

Project 14: Going Wireless with Bluetooth
The control center of Project 13 is bogged down in wires right now, and you
have to keep the Arduino and the Raspberry Pi together. That also means
that you’ll probably only know that, say, your base has caught on fire once
the flames have reached you—and then it will be too late. You can make your
control center much more effective by connecting the Raspberry Pi and the
Arduino wirelessly over Bluetooth, as we’ll do in this project, so your sensors
can detect danger before it reaches you and your monitor.

The Raspberry Pi does not have Bluetooth built in, but it will accept a
wide range of Bluetooth USB dongles. We’ll add Bluetooth to the Arduino
using a Bluetooth serial module, shown sticking out at the right in Figure 8-6.

Bluetooth
Serial Module

Figure 8-6: Adding Bluetooth to an Arduino

To make this project, first complete “Project 13: A Raspberry Pi Control
Center” on page 140 and make sure that everything else is working properly.
Then you’ll be ready to add the wireless link.

150 Chapter 8

What You Will Need
To make this project, you are going to need everything from Project 13 plus
the following parts:

Items Notes Source

� USB Bluetooth
dongle

Compatible with
Raspberry Pi

Computer store, eBay

� Bluetooth module HC-06 Bluetooth serial
module

eBay

� 270 Ω resistor Mouser (293-270-RC)

� 470 Ω resistor Mouser (293-470-RC)

� Connecting wire

� Header pins 4-way Adafruit (392), eBay

� Screwshield Adafruit (196)

� Multistranded or
solid-core hookup
wire

For making connections
on the prototyping area
of the screwshield

Adafruit (1311),
scavenge

� Female-female
jumper wires (×4)

(Optional) Would replace
header pins

Adafruit (266)

The hardware for this project can be built onto the screwshield that you
have used while building up the various sensor projects (4, 6, 10, 11, and 12)
that use a screwshield. The Bluetooth module I used is a Cambridge Silicon
Radio (CSR) device. For a list of Bluetooth dongles compatible with the
Raspberry Pi, visit http://elinux.org/RPi_USB_Bluetooth_adapters/. If you are
worried about soldering the Bluetooth module directly to the header pins,
then you may prefer to use four female-to-female jumper wires to link the
header pins to the Bluetooth module.

N OTE You can save yourself some tricky soldering by looking for a
module and adapter pair that already has the module soldered
into place.

A lot of the Bluetooth HC-06 modules have six rather than four pins.
The pins you will be using are +5V, GND, TXD, and RXD, so you can
ignore the other two. These are usually the outside pins, but do check the
pinout names as occasionally some designs swap the pin positions around.

Construction
To enable Bluetooth connectivity for your Raspberry Pi, you only need to
attach a USB dongle to your system.

The Arduino requires the aforementioned Bluetooth module and a pair of
resistors to divide the 5V signal level of the Arduino to the 3V level expected

http://elinux.org/RPi_USB_Bluetooth_adapters/

Building a Control Center for Your Base 151

by the Bluetooth module. Mount the module and resistors to the side of the
screwshield’s prototyping area not already being used by the fire alarm inter-
face from Project 11.

Figure 8-7 shows the wiring layout for the project. To avoid confusion,
Figure 8-7 shows the Bluetooth module attached to a screwshield without
any other projects built on it.

470Ω
27

0Ω

Figure 8-7: Wiring layout for adding Bluetooth to an Arduino

The Bluetooth module needs to lie flat to keep it out of the way of the
LCD shield. For this, you need to solder a row of four 0.1-inch header pins
and then solder the Bluetooth module perpendicular to the pins, lying flat
over the screwshield. If you prefer, you may also use female-to-female
jumper wires to connect the Bluetooth module to the header pins.

step 1 : solder the Header P ins
Solder the strip of header pins into place. You can see in Figure 8-8 that the
+5V and GND pin connections neatly line up with the two power rows at
the top of the screwshield.

152 Chapter 8

Figure 8-8: The header pins soldered in place

Note that the wire shown leading to pin 3 of the Arduino is part of the
fire alarm from Project 11, not this project.

step 2 : soldering the resistors and l inking Wire
Solder the resistors and linking wire to the screwshield in the positions shown
in Figure 8-9: the 470 Ω resistor goes from GND at Arduino column 7 to the
bottom header at column 4; the 270 Ω resistor goes from the bottom pin of the
header at row 3 to Arduino pin 1. The connecting wire runs from Arduino
pin 0 to the third header pin down.

Figure 8-9: Soldering the resistors and connecting wire

Building a Control Center for Your Base 153

When you’ve soldered the resistors and connecting wire in place, flip the
screwshield over to solder the underside of the board.

Figure 8-10 shows a close-up of the underside of the screwshield. To make
it easier to identify what is connected to what, the resistors and linking wire
are shown as if they were visible through the board.

470
Ω

27
0Ω

Figure 8-10: Connecting the underside of the screwshield

First, bend the bottom lead of the 270 Ω resistor over toward the bottom
pin header . Solder this to the bottom pin header’s pad and snip off the
remaining lead. Bend the remaining lead from the bottom end of the 470 Ω
resistor to meet the pad one position to its left . Solder the lead to that pad
and snip off the excess lead. You have now made a continuous connection
from the bottom of the header pins to the bottoms of the 270 Ω resistor and
the 470 Ω resistor.

The final connection on the underside uses the spare wire from solder-
ing the lead from the jumper wire to the header pin to its immediate left.

step 3 : soldering the Bluetooth Module
The final step is to solder the Bluetooth module to the header pins. Solder one
pad on the module to one of the header pins, and while keeping the solder
molten, position the Bluetooth module so that it is resting against the 1 kΩ
resistor that came attached to the screwshield. Then attach the first prong of
the module to the first pin. You can see this resistor on the bottom right of
Figure 8-9. Once the first prong is soldered, all the other prongs should be

154 Chapter 8

lined up and easy to solder. If you prefer, you could use female-to-female
jumper wires to link the screwshield to the Bluetooth module. Figure 8-11
shows the Bluetooth module in position.

Figure 8-11: The Bluetooth module soldered in position

Software
Since your sensors aren’t changing, you’ll use the same Arduino software as
in “Arduino Software” on page 143. The Bluetooth module replaces the USB
interface.

Note that this hardware communicates with the Bluetooth module using
the serial port, which on an Arduino Uno is shared with the USB interface.
This means that you need to unplug the shield (or just the Bluetooth module
if you used jumper wires) before you program the Arduino.

The Raspberry Pi software, however, does need a couple of minor changes,
and getting the Raspberry Pi to use Bluetooth does require you to install a
whole load of software. Remember: You’ll need to install this software before
the Internet fails!

Plug the Bluetooth USB adapter into a free USB slot on your Raspberry Pi
and then run the following commands in an LXTerminal window:

$ sudo apt-get update
$ sudo apt-get install bluetooth
$ sudo apt-get install bluez-utils
$ sudo apt-get install blueman

Building a Control Center for Your Base 155

Installing the software will take a considerable amount of time, so you
might want to practice your martial arts skills on any willing humans or
unwilling zombies available.

When the software is installed and you’ve worked up a good sweat,
reboot the Raspberry Pi with this command:

$ sudo reboot

Once the Raspberry Pi has rebooted, open a terminal and run the follow-
ing command to ascertain the ID of the BT interface:

$ hciconfig
 hci0: Type: BR/EDR Bus: USB

 BD Address: 00:15:83:0C:BF:EB ACL MTU: 339:8 SCO MTU: 128:2
 UP RUNNING PSCAN
 RX bytes:419213 acl:19939 sco:0 events:7407 errors:0
 TX bytes:95875 acl:7321 sco:0 commands:57 errors:0

The information we want here is the name of the interface, which in
this case is hci0 at . When you run this, if the number after hci above is not
0, then make a note of the number; you will need it later.

Every Bluetooth device has a unique ID called a MAC address. We need to
find the MAC address for our new Arduino Bluetooth module to pair it with
the Raspberry Pi. When you power up the Arduino, you should see an LED
blinking on the Bluetooth module. The LED is blinking because it has not
yet been paired up with the Raspberry Pi; once it has been paired, the LED
will go on and stay on. Run the following command to find the ID of the
Bluetooth module:

$ hcitool scan

The output from the hcitool command should look like this:

Scanning ...
 00:11:04:08:04:76 linvor

The ID is the six-part number. Copy this into the copy-and-paste
buffer (Copy and Paste are on the right-click menu). Then enter the follow-
ing command to link the Raspberry Pi and the Bluetooth module (remember
to change the Bluetooth ID to match your Bluetooth module’s ID):

$ sudo hcitool cc 00:11:04:08:04:76

156 Chapter 8

If you have not already done so, follow the instructions in “Raspberry
Pi Software” on page 145 for downloading the Raspberry Pi software. You
will find the Bluetooth version of control.py in the folder Raspberry Pi/
control_center_bt.

When you have the program, run the following sudo command, again
replacing the Bluetooth ID with your own:

$ sudo rfcomm connect 0 00:11:04:08:04:76 1 &
[1] 2625
$ Connected /dev/rfcomm0 to 00:11:04:08:04:76 on channel 1
Press CTRL-C for hangup
$

You’ll need to run this command before you run the program each time
your Raspberry Pi reboots. The & on the end of the command runs it in the
background so that you can use the terminal window to run the program
itself. Hit enter to get the $ command prompt back.

If your Bluetooth interface name did not have a 0 after hci when you ran
the hciconfig command earlier, change the first 0 after connect to match the
number on the end of hci. Remember when I asked you to make a note of
this number?

Finally, move to the project directory and run the program:

$ cd ~/zombies/control_center_bt/
$ python control.py

If you look at the control.py files from this project and Project 13, you can
see that the only difference is the port. In this version of control.py, we set the
port to /dev/rfcomm0 rather than /dev/ttyACM0 so that it uses the Bluetooth
connection rather than the USB connection.

Using the Bluetooth-Enabled Command Center
The project works in exactly the same way as the USB version in Project 13,
with the window displaying the same information, only now it’s a little
more portable as long as your webcam is wireless. If zombies get into your
compound, just grab the Raspberry Pi, monitor, and power source and bar-
ricade yourself inside a closet until they lose interest.

In the next chapter, we’ll work on ways to distract zombies in a pinch,
because the undead are usually much easier to run from than they are to
actually kill.

9
Z o m b i e D i s t r a c t o r s

It doesn’t take much to fool a zombie
so you can make a quick escape (see

Figure 9-1). They are rather lacking in
brains, after all. The projects in this chapter

are designed to draw zombies’ attention away from
you using flashes of light, loud sounds, and decoy
movements. Imagine you have a herd of zombies lurching around the garage
door but you need to get to your last remaining car battery. These distrac-
tors will allow you to draw the zombies away from the door or even lure
them into a fatal zombie trap, perhaps involving fire and a big hole in the
ground.

The first project uses flash units from disposable cameras to produce a
disorienting series of flashes to confuse the zombies. The second project uses
sound and movement to attract the zombies’ attention. Build these projects
and affix them to key locations in your base so you can direct zombies away
from you.

158 Chapter 9

Figure 9-1: Smile please!

Project 15 : Arduino Fl ash D istractor
This flash distractor combines an Arduino and old disposable cameras to
produce a timed series of flashes that will confound your brain-hungry foes.
Proprietors of old-fashioned photo developer stores are often happy for you
to take armfuls of used disposable film cameras off their hands. This is espe-
cially true if the proprietors are the animated deceased. They might appear
to grumble at you, but I assure you, whatever groaning noises they make are
entirely coincidental.

Figure 9-2 shows the completed zombie flash distractor with three sal-
vaged single-use flash cameras, modified to allow the flashes to be triggered
by an Arduino. The three cameras are taped together as a block with all the
flashes pointing outward.

Zombie Distractors 159

Relay Shield

Flash
Button

Figure 9-2: The completed zombie flash distractor

The three flash modules are arranged so that each one points at a right
angle to every other, giving 270 degrees of coverage. You will need a separate
Arduino for this project as you will not want to position this right next to
your control center.

WARNING If you have a pacemaker or heart problems, or if flashing lights
give you seizures, do not build this project.

Warning: HigH Voltages anD brigHt FlasHes
Flashguns in disposable cameras operate at up to 400V DC. If you
want to avoid an unpleasant shock, exercise extreme caution when
taking the cameras apart and handling the flash modules. Many
parts of the module will be at high voltage and can remain so for
hours or even days. Before using the modules, make sure to follow
the instructions in “Step 3: Make the Camera Safe!” on page 163 to
safely discharge the capacitor.

160 Chapter 9

What You Will Need
To make this project, you will need the following parts:

Items Notes Source

 Arduino Uno Arduino Uno R3 Adafruit, Fry’s
(7224833), Sparkfun

 Relay shield 4-channel relay shield eBay, http://www
.sainsmart.com/

 Disposable cameras 3 used disposable
flash cameras

Photo store

 9V battery PP3 type 9V battery, or
larger 9V or 12V battery
pack

Hardware store

 9V Arduino battery
lead

DC power jack to 9V
battery clip adapter

Adafruit (80), eBay

 Double-core wire Three 6-inch (15 cm)
lengths of bell wire or
other double-core wire

Hardware store,
scavenge

 Gaffer or
electrical tape

Auto parts store

 100 Ω resistor For discharging the
camera’s flash capacitor

Mouser (293-100-RC)

There are few uses for spent disposable cameras and a store’s only alter-
native is to pay for someone to take them away, so if you ask store owners
nicely, they may give you a stack for free.

Along with a perfectly fine flash module, each camera will generally
have an almost unused AA or AAA battery. Try to get a set of cameras that
are similar to each other, ideally cameras of the same make. (In the bag of
cameras I took away, the most common brand was Fuji, so I based the project
on that design. However, the instructions should be sufficiently general to
work with any disposable camera.) Also, find cameras that have a switch that
turns the flash on for multiple photos, not the sort that make you press the
flash button between each shot. For example, look at the camera at the front
of Figure 9-2. It has a kind of lever that keeps the flash turned on (bottom
center of the figure).

The relay shield was bought on eBay, and when you attach it to the
Arduino, it connects a relay to Arduino pins 4, 5, 6, and 7. If you end up with
a slightly different relay shield, just check which digital Arduino pins it uses
and make the necessary changes in the Arduino sketch (see “Software” on
page 166).

The 100 Ω resistor is used to discharge the large, high-voltage capacitor
used in the flash module to avoid the risk of electric shocks. It plays no other
part in the build.

http://www.sainsmart.com/
http://www.sainsmart.com/

Zombie Distractors 161

Construction
Figure 9-3 shows the wiring involved in this project.

Figure 9-3: The flash distractor, spread out

Each of the disposable cameras has a short length of double-core wire
leaving one side of its case. These wires connect to the switch contact inside
the camera that is used to trigger the flash. I’ll describe how to create this
setup for one camera in construction Steps 2 to 5, and you’ll need to repeat
those steps for all three cameras.

Each pair of leads connects to one pair of relay contacts on the shield so
that the Arduino can trigger each flash independently.

Each camera also has its own AA or AAA battery that powers the flash,
while the Arduino and relay shield are powered from a 9V battery connected
to the DC barrel jack of the Arduino. This makes the project completely por-
table, so you can place it wherever needed to create a distraction that lets you
escape.

step 1 : sort the cameras
First, sort your bag of cameras by type. To make this project simpler to build,
try to pick out three identical cameras. The modules I used were all Fujifilm,
though the branding on the cardboard covers differed.

WARNING Do not try out the flash of the camera at this stage! It will
charge the camera’s capacitor, and you’ll get shocked later when
you lever the camera body apart with your fingers. Seriously,
this really hurts!

162 Chapter 9

step 2 : remove the top casing from a camera
Used cameras may have already been partly disassembled when the photo
processor removed the 35mm film canister. The processors do this quickly
rather than tidily, so there’ll probably be cardboard and bits of plastic hang-
ing off. Figure 9-4 shows the steps involved in taking a camera case apart.

A

B

C

Figure 9-4: Disassembling a camera

You are at risk of shock during this step, so take care not to touch the
circuit board or any contacts or wires within the camera.

First, remove the cardboard from the camera body (Figure 9-4a). Next,
use a flathead screwdriver with a plastic handle (to provide insulation from
shock) to lever apart the plastic catches holding the two halves of the camera
body together. Remove the front half of the camera case, exposing the PCB
and lens (Figure 9-4b). Now remove the lens assembly. Break it off if you have
to; it’s not needed anymore. This will expose the two contacts shown circled
in Figure 9-4c, which fire the flash when they are touched together.

Zombie Distractors 163

step 3 : make the camera safe!
Before you have rendered the camera module safe, treat it the same way
you would a small but vicious rodent. Don’t handle it directly. If you need
to move it around or flip it over, poke it with something like a plastic pen.
Otherwise, you might injure yourself, and you need to be in top condition to
stay ahead of the zombies.

Identify the flash module’s capacitor. The capacitor will be a large metallic
cylinder with two leads connecting it to the PCB. The capacitor stores all the
energy that is rapidly discharged into the flash to set it off. In Figure 9-5, the
entire flash module has been removed from the camera body to make it easier
to see the capacitor, but follow the capacitor discharge steps below without
removing the whole PCB if you can.

Figure 9-5: Discharging the capacitor

To discharge the flash module’s capacitor, bend the legs of your 100 Ω
resistor so they are roughly as far apart as the legs of the capacitor. Gently
grip the body of the resistor with pliers (with insulated handles) and touch
the resistor leads across the capacitor leads. If the capacitor is charged, there
will probably be a very small spark. Hold the resistor in place for a second or
so to make sure the capacitor actually discharges.

Now, check whether the capacitor is empty by measuring the voltage
with your voltmeter set to its maximum DC voltage range. (The voltage
range needs to be 500V or more.) It doesn’t matter if there are a few volts left
in the capacitor, but if you see more than 10V, then discharge it a bit longer
with the resistor. Once the voltage is below 10V, it is safe for you to handle
the PCB without fear of electrical shock.

164 Chapter 9

step 4: at tach leads to the trigger contacts
Solder about 6 inches (15 cm) of double-core wire to the flash contacts, as
shown in Figure 9-6. In the camera I used, there was a handy plastic peg that
allowed the two contacts to be kept well apart. If this is not the case for your
camera, then you may need to wrap the soldered contacts in electrical insu-
lating tape or put heatshrink over the contacts to keep them apart.

Figure 9-6: Leads soldered to the trigger contacts

step 5 : reassemble and test the modif ied Fl ash module
Fit the front cover of the camera back on, allowing the double-core wire to
escape through one side of the camera. If you need more space to snake the
wires out, use a pair of diagonal cutters to cut a hole in the plastic cover.

Test this flash before repeating the procedure for the other two cameras.
The trigger contacts of these cameras are sometimes at 400V, so for safety,
use a screwdriver with an insulated handle.

Turn on the flash switch for the camera. You should see a charging light
or LED come on. The camera will probably make a whining noise as the flash
charges. This sound is created by the capacitor filling up. When you think the
charging is complete (or after, say, 10 seconds), use the screwdriver to connect
the two trigger leads, as shown in Figure 9-7.

The camera should flash when you connect the leads with the screwdriver.
Hurray! That’s one camera ready for action. Before moving on to Step 6, repeat
Steps 2 through 5 for the other two cameras.

Zombie Distractors 165

Figure 9-7: Testing the modified camera

step 6 : connect the cameras to the relay shield
Fit the relay shield onto your Arduino, making sure that all the pins of the
shield engage properly with the sockets on the Arduino.

Figure 9-8 shows how the cameras are wired up to the relay shield.

N
O

COM
N
O

NO

COM

COM

Figure 9-8: Attaching leads from the cameras to the relay shield’s trigger
contacts

166 Chapter 9

Each relay on the relay shield has three screw terminals: NO, COM, and
NC. When the relay is not activated, the terminals NC and COM are con-
nected, but when the relay is activated, COM becomes connected to NO.
This means that the leads to each camera need to go into the COM and NO
connections of each relay. It does not matter which way around the leads go.

When your cameras are connected to their relays, attach the battery
clip–to–barrel jack adapter to the Arduino, as shown in Figure 9-9.

Figure 9-9: Attaching the battery lead to the Arduino

Before attaching the battery itself, however, you need to upload the soft-
ware for the project, so you may as well power the Arduino from the USB
lead while you program it.

Software
All the source code for this book is available at http://www.nostarch.com/zombies/.
Visit the link provided there and download the code now, if you’ve not done
so already. See Appendix C for instructions on how to install the Arduino
sketch.

The Arduino sketch for this project is called Project_15_Flasher, and it’s
in the source file directory of the same name. I’ll walk you through this
sketch now.

To begin, we define a constant integer array, flashPins:

const int flashPins[] = {7, 6, 5};

http://www.nostarch.com/zombies/

Zombie Distractors 167

The flashPins array defines the Arduino pins used to trigger each of the
flash modules. Change these pin numbers if your relay shield uses different
pins to control the relays.

Next, we define two more constants, which you can alter to adjust the
zombie distractor:

const long overallDelay = 20; // seconds
const long delayBetweenFlashes = 1; // seconds

The overallDelay constant determines how many seconds elapse between
each flashing cycle. This value is set to 20 seconds by default. Note, this delay
needs to be long enough to enable the capacitor inside the camera to recharge.

The delayBetweenFlashes value sets the gap between each of the flashes
being triggered in a cycle. This is set to one second by default. Note that
both constants are long rather than int. That’s because int constants have
a maximum value of +/–32,767, which would give a maximum delay of
32.767 seconds; that might not be long enough to keep a zombie distracted
while you escape. Fortunately, the long data type has a maximum value of
over +/–2,000,000. You can run a long way in 2,000 seconds!

Now we add a setup function:

void setup()
{
 pinMode(flashPins[0], OUTPUT);
 pinMode(flashPins[1], OUTPUT);
 pinMode(flashPins[2], OUTPUT);
}

The setup function sets all the relay pins to be digital outputs.
With the pinMode functions in place, we add a short loop function:

void loop()
{
 flashCircle();
 delay(overallDelay * 1000);
}

This loop function calls the flashCircle function and waits for
overallDelay seconds before starting the whole process again.

Let’s look at the flashCircle function definition now:

void flashCircle()
{
 for (int i = 0; i < 3; i++)
 {
 digitalWrite(flashPins[i], HIGH);
 delay(200);

168 Chapter 9

 digitalWrite(flashPins[i], LOW);
 delay(delayBetweenFlashes * 1000);
 }

This function loops over the flash pins and gives each a HIGH pulse
for 200 milliseconds, setting off the flash. There is then a pause before the
next flash, set by delayBetweenFlashes. The value of delayBetweenFlashes is
multiplied by 1,000 because in Arduino, the delay function’s parameter is in
milliseconds.

Using the Flash Distractor
Before you tape together all the parts of the flash distractor, test it with the
parts laid out as shown in Figure 9-3. Turn on the flash switches of each
camera and attach the 9V battery to the battery clip. The flash units should
flash in turn, before pausing for 20 seconds and then repeating the cycle.

When you know your Arduino can activate the flashes, tape everything
together, or if you prefer, stick the cameras together with a hot glue gun.
Make sure to leave yourself access to the cameras’ battery compartments so
you can change the batteries.

The small 9V battery that powers the Arduino will probably last
about four or five hours. If you need to power the distractor for longer,
then Figure 9-10 shows some other options.

Figure 9-10: Options for powering the Arduino

Zombie Distractors 169

A 6 × AA battery holder will last around 10 times as long as the PP3 9V
battery, but for the ultimate battery duration, you can use one of your car
batteries with the cigarette lighter–to–barrel jack adapter shown on the left
of Figure 9-10. However, the AA batteries in the cameras won’t last more
than a few hundred flashes before they need replacing, so if you plan to reuse
your distractors—as you might if you’re in a zombie-rich neighborhood—
keep an extra set of batteries on you.

I suggest you stockpile a few flash distractors and always keep one com-
plete unit in your bag when you venture out for supplies or reconnaissance.
Then, if there’s a mob of zombies between you and that grocery store you
want to scavenge from, just set up the distractor, wait out of sight as it draws
the zombies, and when the coast is clear, make a stealthy dash for the doors.

You might want to use the flash distractor in combination with the next
project to maximize your ability to distract the undead.

N OTE This project has no on/off switch, so when you are not using it,
unplug the 9V battery and turn off the flash switches on the
cameras. You could also use an in-line power switch like this:
https://www.adafruit.com/products/1125/.

Project 16 : Arduino Movement and Sound Distractor
Remember the smoke alarm that
we used to make “Project 11:
Quiet Fire Alarm” on page 120?
In this project, we’ll use the piezo
buzzer we removed from that
smoke alarm, along with a wav-
ing flag powered by a servo motor,
to make a lot of distracting noise
and movement.

Figure 9-11 shows the project
in action. Next to the project, I’ve
shown a coiled cigarette lighter
adapter, which you can use as an
alternative to the AA battery pack
if you want to power the setup
from a car battery for long-term
usage.

Figure 9-11: Sound and movement in
disharmony

https://www.adafruit.com/products/1125/

170 Chapter 9

What You Will Need
To make this project, you will need the following parts:

Items Notes Source

 Arduino Uno Arduino Uno R3 Adafruit, Fry’s
(7224833), Sparkfun

 6 × AA battery
holder

9V battery pack Adafruit (248)

 9V Arduino
battery lead

DC power jack-to-9V
battery clip adapter

Adafruit (80), eBay

 Jumper wires 3 long male-to-male
jumper wires

Adafruit (760)

 100 Ω Resistor 2W or 1/4W Mouser
(594-5083NW100R0J or
293-100-RC)

 Pin header 2-way pin header Adafruit (392), eBay

 Servo motor Small or standard Adafruit (155 or 196),
eBay, hobby store

 Buzzer Discarded from the smoke
detector of Project 11
or another high-volume
buzzer

Security store,
smoke alarm

 Wooden upright
(a post or rod)

Hardware store

 Base Wood or plastic, for
attachment of the
upright

Hardware store

 Wooden food
skewer and paper

To make a flag Household items

The power for this project is supplied through the Arduino barrel jack.
The same power options as used in “Project 15: Arduino Flash Distractor” on
page 158 also apply to this project.

If you just want to wave a small, lightweight flag like the one shown in
Figure 9-11, a small servo motor will work just fine, but for something bigger,
use a standard servo. Just be aware that if you use a bigger servo, you may
find that your Arduino resets because of voltage drops caused by the load
of the bigger motor. In this case, you can power the servo from a separate
6V battery pack as described at http://communityofrobots.com/tutorial/kawal/
how-connect-servo-arduino/.

Also note that while this project is intended to use the buzzer removed
from the smoke detector of “Project 11: Quiet Fire Alarm” on page 120, you
can also just use a new buzzer.

http://communityofrobots.com/tutorial/kawal/how-connect-servo-arduino/
http://communityofrobots.com/tutorial/kawal/how-connect-servo-arduino/

Zombie Distractors 171

Construction
Figure 9-12 shows the wiring diagram for the project.

Buzzer

9V Battery
Pack

(6 x AA)

Servo

+
(red)

-
(brown)

Control
(orange)

10
0Ω

Figure 9-12: Wiring diagram for the distractor

The male-to-male jumper wires in the supply list will link the servo
motor, which terminates in a three-way socket, to the Arduino. You’ll con-
nect the resistor and one buzzer lead to a pair of header pins so that you can
plug the buzzer into the Arduino, too.

step 1 : remove the P iezo buzzer from the
smoke alarm cover
The smoke alarm’s buzzer may be integrated into the smoke alarm cover.
In that case, don’t try to remove the buzzer; you can use it while it’s still
attached to the cover, or you can just scavenge a different buzzer. If the
buzzer looks like it will come away, then remove it as shown in Figure 9-13
to make the project a little more compact.

172 Chapter 9

Figure 9-13: Removing the buzzer from the smoke alarm cover

step 2 : solder the Header P ins , buzzer, and resistor
Check your buzzer: you only need two buzzer leads, so if it has three, see
“Project 11: Quiet Fire Alarm” on page 120 to work out which two of the
three leads you need.

Once you have that cleared up, solder the 100 Ω resistor to one buzzer
lead—it doesn’t matter which one. Solder the other end of the resistor to one
of the header pins and the other buzzer lead to the other header pin. You may
wish to strengthen these soldered connections using heatshrink (see “Using
Heatshrink” on page 235) or electrical tape. These connections are shown
in Figure 9-14.

Figure 9-14: Soldering the buzzer, resistor, and header pins

Zombie Distractors 173

step 3 : test the P iezo sounder
Before we go further, we’ll test the buzzer using the USB connection to power
the Arduino. This step will help us find the optimum frequency of the buzzer
to make it as loud as possible.

Plug the header pins into the Arduino pins 8 and 9. It does not matter
which way around the pins are (Figure 9-15).

Figure 9-15: Connecting the buzzer to the Arduino

If you haven’t downloaded all of this book’s programs yet, go to https://
www.nostarch.com/zombies/ and download the Project_16_Sounder_Test Arduino
sketch. Load this sketch onto your Arduino and then open the serial monitor
(Figure 9-16). This is not the final sketch for the project; it’s just a test sketch
that will let us find the best frequency value to use in the main sketch.

Figure 9-16: Setting the frequency using the
serial monitor

In the input field, enter 4000 and click Send—this number is the frequency
of the sound your buzzer will emit. You should hear a very loud sound at that
frequency for a second. Try entering different frequency values to find the
one that gives the highest volume; it will probably be around 4000.

https://www.nostarch.com/zombies/
https://www.nostarch.com/zombies/

174 Chapter 9

To reduce the strain on your ears, you can turn the buzzer over or cover
the hole where the sound emerges to muffle the volume. When you have
found the optimum frequency, make a note of the value.

N OTE This is definitely something to do when there are no zombies
around.

PieZo buZZers
Piezo buzzers (also called sounders) contain crystals that change
shape when a current is passed through them. The current changes
hundreds of times per second, and as the crystals change shape,
sound waves are produced. Although you can drive a piezo buzzer
by connecting one lead to GND and supplying a signal to the other
lead, you get a higher volume by using two Arduino outputs to
completely reverse the polarity of the buzzer with each cycle.
Figure 9-17 shows how this works.

5V

0V Time

5V

0V Time

5V

0V Time

-5V

Pin A

Pin B

Buzzer

Buzzer

Pin A

Pin B

Figure 9-17: Generating an alternating voltage on the piezo buzzer
with an Arduino. Pins A and B are outputs on the Arduino.

When one Arduino output is high, the other is low and vice versa.
This complete reversal of the polarity across the piezo buzzer effec-
tively allows a 10V peak swing of voltage across the buzzer rather
than the 5V obtainable from just switching one pin.

Your distractor will not be as loud as the original smoke detec-
tor, which typically uses the same trick but with 9V rather than
5V. However, it should be pretty loud.

Zombie Distractors 175

step 4: make a Fl ag
My distractor waves a flag, but yours doesn’t have to. Once you have the servo
moving, you can attach pretty much anything that will attract the attention
of zombies. Try a scrap of rotting meat to get a good zombie-attracting scent
going, or if your servo is powerful enough, you might salvage a severed hand
for a more realistic human distraction.

Assuming that you just want to wave a flag, the simple arrangement from
Figure 9-11 uses a piece of paper folded and glued to a wooden kebab skewer.

step 5 : at tach the Fl ag to the servo motor
Servo motors generally come with a range of arms and a retaining screw to
fix the arm in place on the motor. In this project, I chose the wheel fixture
and glued the skewer to it with strong epoxy glue (Figure 9-18).

Figure 9-18: Attaching the flag to the servo

Don’t fit the servo motor’s retaining screw just yet, as you will need to
adjust the position of the servo arm to accommodate the range of movement
(around 160 degrees) once the whole project is up and running.

step 6 : at tach the servo motor to a base
For an upright to attach to the servo motor, I’ve used a length of wood.
To attach the servo, cut a little notch in the wood to fit the servo using a
wood saw or small electric hobby cutter. Then use the servo mounting
holes and some small screws to fix the servo in place.

176 Chapter 9

As an exercise in ingenuity, I’ll leave it up to you to find the best way to
attach your servo to your upright. Here, I used a small piece of scrap aluminum
to hold the servo in the notch. Epoxy glue would also work.

Now, attach the upright to a base. I drilled a hole in the underside of
a flat piece of acrylic and attached the wooden upright with a screw. You
may prefer to fix the upright directly to some existing structure, rather
than using a freestanding arrangement. (Again, I’ll leave the details to your
discretion.)

I used the Arduino mounting holes and two more screws to fix the
Arduino to the upright as well, but this is entirely optional. Similarly, I
stuck the buzzer onto the upright with some glue (Figure 9-19).

Figure 9-19: Attaching the Arduino and buzzer to the upright

step 7: connecting the servo
Servo motors have leads with three connections that terminate in a single
three-hole socket: the black or brown lead is the ground connection, the red
lead is the positive power supply, and the third orange or yellow lead is the
control signal.

To begin wiring, plug the three male-to-male header leads into the servo’s
three-hole socket. Run the orange (or yellow) control lead of the servo to
pin 10 of the Arduino. Run the black (or brown) ground lead to one of the
GND terminals on the Arduino. Finally, connect the red positive supply of

Zombie Distractors 177

the servo to the 5V Arduino pin. Remember: if you are using a large servo,
you will probably need an external 6V battery pack, as discussed in “What
You Will Need” on page 170.

Software
All the source code for this book is available from http://www.nostarch.com/
zombies/, and the Arduino sketch for this project is called Project_16_sound_
movement. Download it now and load it onto your Arduino. If you need a
refresher on how, follow the directions in Appendix C.

Servos are often used with Arduinos, so there is a built-in library that
makes them easy to use together. We import this library at the top of the
sketch.

#include <Servo.h>

Three constants define the behavior of the servo, and tweaking the values
of these constants will alter the servo’s actions:

const int minServoAngle = 10;
const int maxServoAngle = 170;
const int stepPause = 5;

Servos have a range of movement of 180 degrees. The constants
 minServoAngle and maxServoAngle restrict this range between 10 and 170 degrees
rather than the full 0 to 180 degrees, because most servos struggle to cover the
full 180 degrees.

The constant stepPause sets the delay in milliseconds between each
movement of the servo. If you really want to grab a zombie’s attention,
reduce this number to make the servo move more quickly.

In the next section of code, we define constants for each Arduino pin used.

const int sounderPinA = 8;
const int sounderPinB = 9;
const int servoPin = 10;

A final constant called f specifies the buzzer frequency:

const long f = 3800; // Find f using Project_16_sounder_test

Set f to your buzzer’s loudest frequency, which you should have noted in
“Step 3: Test the Piezo Sounder” on page 173.

Next, to use the servo library, we define a Servo object called arm:

Servo arm;

http://www.nostarch.com/zombies/
http://www.nostarch.com/zombies/

178 Chapter 9

With all the constants and global variables defined, we add a setup func-
tion to initialize the servo and define the two pins used for the buzzer:

void setup()
{
 arm.attach(servoPin);
 pinMode(sounderPinA, OUTPUT);
 pinMode(sounderPinB, OUTPUT);
}

The loop function that follows calls two functions to wave the flag and
to sound the buzzer:

void loop()
{
 wave();
 wave();
 makeNoise();
}

The wave function is called twice to waggle the flag back and forth. In case
a bit of movement isn’t enough to catch a zombie’s attention, makeNoise is
also called to sound the buzzer. With any luck, the zombies will mistake the
noises and movement for something with a brain and will head straight for
the distraction!

At the end of the sketch, define the functions that cause the distractions:

void wave()
{
 // Wave vigorously from left to right
 for (int angle = minServoAngle; angle < maxServoAngle; angle++)
 {
 arm.write(angle);
 delay(stepPause);
 }
 for (int angle = maxServoAngle; angle > minServoAngle; angle--)
 {
 arm.write(angle);
 delay(stepPause);
 }
}

The wave function contains two loops: one loop moves the servo from
its minimum to its maximum angle at the preselected speed, and the second
loop does the reverse.

Zombie Distractors 179

Now, let’s look at makeNoise:

void makeNoise()
{
 for (int i = 0; i < 5; i++)
 {
 beep(500);
 delay(1000);
 }
}

This function contains a loop that calls the beep function five times for
five beeps of the buzzer. The parameter to beep is the duration of the sound
in milliseconds (in this case, 500). Between each beep there is a delay of one
second (1000 milliseconds).

N OTE If using the same values all the time causes local zombies to
become immune to your distractor’s effects, try tweaking the
numbers you pass to beep and delay. You could even randomize the
values, using Arduino’s random() function.

The beep function itself generates the AC signal on the two buzzer pins:

void beep(long duration)
{

 long sounderPeriodMicros = 500000l / f;
v long cycles = (duration * 1000) / sounderPeriodMicros / 2;

 for (int i = 0; i < cycles; i++)
 {
 digitalWrite(sounderPinA, HIGH);
 digitalWrite(sounderPinB, LOW);
 delayMicroseconds(sounderPeriodMicros);
 digitalWrite(sounderPinA, LOW);
 digitalWrite(sounderPinB, HIGH);
 delayMicroseconds(sounderPeriodMicros);
 }
}

First, we calculate the period of each oscillation using the frequency f.
The resulting value must be further divided by 2 v, because what we really
want is the duration of delay between swapping the polarity of the pins, and
we need two such delays for a complete oscillation.

Using that divided period, the beep function calculates the total number
of cycles needed to produce a beep of the correct duration. The for loop that
follows uses this information to generate the pulses that are needed.

180 Chapter 9

Using the Sound and Movement Distractor
Both of the projects in this chapter need to be kept dry. To weatherproof the
sound and movement distractor, you might craft some kind of housing or
protective roof shelter. If your build is freestanding, a large plastic bin with a
lid could do the trick. I’m sure you can scavenge one from the nearest aban-
doned discount retail store.

Just cut off one side of the bin so the zombies can see and hear the
distractor, affix the project itself to the lid, and snap the bin on top, upside
down. Attach this box to a lever and pulley system, and you could even
lower it to the ground from the safety of your base, creating a new sport:
zombie fishing. Who says you can’t have fun during an apocalypse?

Of course, the sound and movement distractor has many practical
postapocalyptic uses, too:

•	 Place it opposite the most vulnerable point in your stronghold to draw
away attacking zombie hordes and give you time to reinforce your bunker.

•	 Plant it by your zombie pit to draw them into the trap.

•	 Sneak it into your neighbor’s yard to thin out the competition for survivor
salvage.

In case you want to find other survivors (whether to join forces or
avoid them), in the next chapter, we’ll look at using wireless technology to
communicate.

10
C o m m u n i C at i n g w i t h

o t h e r S u r v i v o r S

In Chapter 1, we discussed the pros
and cons of teaming up with other

humans when zombies walk the Earth.
Associating with other people can certainly

be worthwhile: you can protect each other, share
knowledge, pool resources, and so on. Of course,
they can also take your stuff and put you between themselves and the
oncoming zombies. If you decide to take the risk and reach out to your fel-
low life forms, then build the projects in this chapter.

First, we’ll build a beacon to broadcast a voice signal that can be heard
on an FM radio, so any survivors scanning the airwaves can hear your mes-
sage, whether that’s “Stay away!” or “Help, I’m trapped on the roof of a shop-
ping mall!” After that, you’ll also build a Morse code flasher that will blink
out any message you care to translate into dots and dashes.

182 Chapter 10

Of course, if you want to be the one scanning frequency bands, this
chapter also explains how to hack a radio receiver to search for a signal.
Then, you can lurk silently while you decide whether what’s out there is
worth broadcasting to (see Figure 10-1).

Figure 10-1: Zombies like the radio too.

Project 17: A Raspberry P i Radio Transmit ter Beacon
The Raspberry Pi is a versatile device that can, given the right software, act
as an FM radio transmitter. The only extra hardware you’ll need is a length
of wire to act as an antenna.

What You Will Need
This is another Raspberry Pi project, so you will need to have a working
Raspberry Pi system complete with keyboard, mouse, and screen as described
in Chapter 5. Once the program that transmits the radio signal is up and run-
ning, you can turn off the screen to save power if you wish.

Communicating with Other Survivors 183

To build this radio transmitter, you’ll need the following parts:

Items Notes Source

 Raspberry Pi Raspberry Pi 2, Model B or B+ Adafruit (2358),
Fry’s (8258726)

 Jumper wire Female-to-female jumper wire Adafruit (826)

 Wire for the
antenna

About 3 feet (1 m) of wire

Any wire will do for the transmitter; just check your box of scavenged
hookup wire for something that will fit into the end of the female-to-female
jumper wire.

You could add the radio transmitter to your existing Raspberry Pi setup.
However, for maximum transmission range, you’ll want to put the transmit-
ter somewhere high up, so I recommend getting a second Pi.

The length of the jumper wire doesn’t matter; it just allows an easy con-
nection between the Raspberry Pi GPIO pin and the antenna wire. The wire
to use for the rest of the antenna should be the right size to poke into one
end of the female-to-female jumper wire and stay there. You might need to
put a kink in the antenna wire so that it stays in place.

radio tranSmitter LegaL ity
If you’re reading this after the zombie apocalypse, there will be
no legal problems with building a transmitter because there won’t
be any government to enforce the regulations. If, however, you are
building in preparation, then the legality of the transmitter in this
project is covered by the same legislation as FM transmitters
designed to be connected to an MP3 player for car audio.

These transmitters are legal in the United States if the effec-
tive range is 200 feet (60 m) or less. If you use a full-length
antenna, this transmitter will have a longer range than that, so
to stay within the law, use a small antenna of about 3 or 4 inches
(7 to 10 cm).

Regulation of the airwaves is necessary so the frequencies used
by emergency services stay clear, but this transmitter uses only
the public broadcast FM wave band. The worst that can happen is one
of your neighbors receives your broadcast instead of their favorite
radio station.

184 Chapter 10

Construction
To build your transmitter, all you need to do is plug one end of the jumper
wire onto GPIO pin 4 of the Raspberry Pi (Figure 10-2), then plug the
antenna wire into the other end of the jumper wire and fix the other end
of the antenna to a high spot so that the antenna is pulled up vertically.

A B
Figure 10-2: Attaching the antenna

You will get the longest transmission range if you place the whole
Raspberry Pi up high. If you have a watchtower, this would be ideal.

It does not matter if the antenna wire is not very straight. You may find
that some electrical tape wrapped around the junction of the antenna wire
and the jumper wire will prevent the antenna from becoming detached.
Once you’ve strengthened the antenna, you’ve built your radio transmitter
beacon!

Software
I wish I could claim credit for the wonderful piece of software you’ll use
in this project, but as it was developed by those clever folk at the Imperial
College Robotics Society, I can’t. You can find out all about their project at
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an
_FM_Transmitter.

http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter

Communicating with Other Survivors 185

The software uses a sound file to oscillate GPIO pin 4 in just the right
way to generate an FM carrier wave and signal (see the box on frequency
modulation).

To install the software, start an LXTerminal session on your Raspberry
Pi and type the following commands:

$ mkdir pifm
$ cd pifm
$ wget http://www.icrobotics.co.uk/wiki/images/c/c3/Pifm.tar.gz
$ tar -xzf Pifm.tar.gz

These commands create a directory ready to install the software, down-
load the software using the wget utility, and then uncompress the down-
loaded file into the newly created directory.

Using the FM Transmitter
To test out the FM transmitter, you need an FM receiver (see “Project 18:
Arduino FM Radio Frequency Hopper” on page 188). You also need to find
an unused frequency, or at least a frequency with only a faint signal. Of
course, this won’t be a problem following the apocalypse, but it’s more of a
challenge with the crowded preapocalypse airwaves. Use your FM receiver
to find a quiet part of the spectrum and make a note of the frequency.

The software you installed includes a sound sample of the Star Wars theme
for testing the transmitter before you record your own, more appropriate
message—although the music is not completely inappropriate to accompany
humanity’s great battle to save itself.

In the LXTerminal, issue the following command to play the tune over
your transmitter:

$ sudo ./pifm sound.wav 103.0

In place of 103.0, substitute the frequency that your radio receiver is
tuned to.

recording a message
To record a message, you’ll need a laptop and some sound-recording or editing
software. I recommend Audacity, which is available free for Windows, OS X,
and Linux from http://audacityteam.org/.

Fiction and history both tell us that when law and order disintegrate,
bad behavior often follows. So think long and hard about what you want to
say in your message. Who knows what gun-toting, supply-stealing outlaws

http://audacityteam.org/

186 Chapter 10

are lurking around the corner? You’ll probably want to direct new arrivals
somewhere you can observe them before lowering your defenses, so bear this
in mind when recording your broadcast.

The pifm software requires you to record your message with the sample
rate set at 16 bit 44.1kHz and then export the message as a WAV file. In
the software, change sound.wav to the name of your new sound file, say
my_message.wav.

FrequenCy moduLation
Frequency modulation, or FM as it is nearly always called, is a
way of encoding a signal (in this case a low-frequency sound sig-
nal) on a much higher carrier frequency. The sound signal nudges
the carrier frequency higher or lower than the carrier frequency,
depending on the level of your message signal’s waveform.

Figure 10-3 shows two cycles of the message signal (solid line)
superimposed on the much higher frequency carrier to create the
broadcast signal (dotted line), whose frequency changes as your
message signal changes.

Broadcast Signal
Your Message Signal

Time

Si
gn

al

1.5

1

0.5

0

-0.5

-1

Figure 10-3: Frequency modulation

When the signal is at its maximum, the peaks of the dotted
broadcast signal are closest together. That means the frequency is
higher than average. At the bottom of the waveform, when the sig-
nal has its minimum value, the broadcast signal peaks are farthest
apart (the frequency is lower than average).

In this way, the low-frequency sound wave is encoded onto the
high-frequency carrier wave. When this signal gets to an FM radio
receiver, the circuitry in the receiver extracts the original low-
frequency audio from the carrier signal.

Communicating with Other Survivors 187

running the transmit ter automatical ly
To maximize the chance of other survivors discovering your message,
repeat this broadcast around the clock. You can configure the Raspberry Pi
to do this for you automatically using a Linux tool called crontab. The crontab
utility lets you schedule programs to run at certain times of day.

Enter the following command into the LXTerminal:

$ sudo crontab -e

This will open a configuration file with the nano editor, as shown in
Figure 10-4.

Figure 10-4: scheduling your broadcasts

Scroll down to the end of the file and add the following line:

*/3 * * * * /home/pi/pifm/pifm /home/pi/pifm/sound.wav 101.0

The first part of the line (*/3) schedules the transmission to run every
3 minutes, 24 hours a day, 7 days a week. If you use a different sound file or
frequency, you need to replace sound.wav with your filename and enter your
chosen frequency. If your message is longer than 3 minutes, change */3 to the
number of minutes you need it to be.

You only need to do this configuration once; the settings will stick even
if the Pi is rebooted.

188 Chapter 10

Project 18 : Arduino FM Radio Frequency Hopper
After the zombie apocalypse strikes, your chances of survival will be increased
by group living—that is, assuming no bite victims come inside and turn into
zombies. Always be sure that everyone gets checked for zombie-infected
wounds before you grant entry!

You’ll inevitably need to sleep or go on supply runs, and without someone
to watch your back you’ll be vulnerable. (Not to mention the slow descent into
insanity you’ll suffer from lack of human contact—and you thought zombies
were crazy.) Therefore, you’ll likely benefit from having a few companions
around. Other groups of survivors may already be trying to make contact
by broadcasting their own radio messages, as we now are. In fact, another
group might have bought or salvaged this book and made the FM transmit-
ter of Project 17. To find them, you just need to be able to pick up their
transmission.

This project (Figure 10-5) takes a cheap FM receiver and hacks it so
that it automatically scans the FM band for the next station. If someone
has started transmitting on FM, creating a station instead of the hiss of
empty airwaves, you will hear their broadcast. An Arduino simulates the
pressing of the tune button on the radio receiver.

Figure 10-5: FM radio frequency hopper

Communicating with Other Survivors 189

What You Will Need
To make this project, you will need the following parts:

Items Notes Source

 Arduino Arduino Uno R3 Adafruit, Fry’s
(7224833), Sparkfun

 FM radio Simple low-cost FM
headphone radio

Dollar Store (or
equivalently named
establishment in your
country’s currency)

 Powered speaker Electronics store

 Audio lead
(aux lead)

To connect the radio to
the powered speaker

 Red LEDs 2 red LEDs Adafruit (297)

 Barrel jack plug DC power jack with flying
leads, 12V cigarette lighter
adapter, or 5V USB adaptor
and lead

Adafruit (80), eBay

 Right-angle
header pins

12-way right-angle
header pins

eBay

We are using right-angle pins rather than straight header pins as right-
angle pins make it a little easier to solder wires and component leads to this
project.

Look for an FM radio that has a Tune button that moves from one sta-
tion to the next and a Reset button that starts from the beginning of the FM
wave band. The radio I used cost less than $2, including in-ear headphones.

The Arduino and speakers both require power. Although I have suggested
using the barrel jack, you could just as easily use the USB port to power the
Arduino. By now, you should be used to figuring out the most convenient
way to power low-voltage devices from a 12V battery.

Construction
This project assumes the radio uses an SC1088 integrated circuit. This
extremely low-cost chip is used in most very cheap radios, which seem to
use the reference design specified in the datasheet for the chip. (Just search
for “SC1088 datasheet” online; you should turn up a PDF in the first few
results.) The wiring diagram is shown in Figure 10-6. It shows the Arduino
being powered from the DC jack, but it could equally well be powered by
the USB port.

190 Chapter 10

12V Car
Battery

+-

LED

+

LED

+
Powered USB

Speakers

Audio Lead

USB Lead

Arduino

3V

DC In

A0

A1

GND

5V USB
Adapter

SC1088
Radio

Battery +

Battery -

15

16

Figure 10-6: Radio scanner wiring diagram. The numbers 15 and
16 on the SC1088 radio indicate pin numbers of the chip.

The “tune” and “reset” pins of the SC1088 IC are designed to be con-
nected to momentary pushbuttons that short these pins to the chip’s 3V sup-
ply rail. You can see this configuration in the datasheet’s reference schematic.
When pushbuttons are not shorting the input pins to the supply rail, they are
pulled down to ground by variable resistances that are set inside the chip. We
can emulate the functionality of the pushbutton by connecting these pins to
~3V when we want to simulate a button push, and by leaving the pin float-
ing (not being driven high or low) when we want to simulate a button wait-
ing to be pressed. To make the pin float, we can set the Arduino pin that is
driving it to an input. When acting as an input, an I/O pin is said to be high
impedance, meaning that the pin looks like an open circuit to anything that
is attached to it.

To convert the 5V of the Arduino output pins to 3V, we place red LEDs
between the Arduino pin and the SC1088. These drop the 5V to about 3.3V,
the same level as supplied to the chip. The LEDs will also glow very slightly
when activated, letting you know when the project is in operation.

Communicating with Other Survivors 191

Step 1 : d isassemble the radio
First, take the radio apart. How to do this will depend on how your radio
is put together. For mine, I just undid two screws and the whole thing came
apart. Figure 10-7a shows the radio in its original state and 10-7b after
removal of the case.

A

B

Figure 10-7: taking the radio apart

Take the button cell battery out because we are going to use the Arduino
to supply power to the radio.

Step 2 : identify the Connection Points
Now we need to identify the points where we need to attach wires and LED
leads. Figure 10-8 shows the underside of the radio’s circuit board.

Start by identifying the location of the Scan and Reset switches. The pins
for these will form a rectangle. The pins are connected in pairs, so both of
the solder points labeled A are actually connected, as are the pair of points
labeled B.

192 Chapter 10

Negative Battery
Connection (C)

Positive Battery
Connection (D)

Scan Pins
(B)

Reset Pins
(A)

Figure 10-8: The radio PCB

The A connections are for the Reset button. If you follow the track on
the PCB, you will see that one of the A pins connects to pin 16 of the SC1088
(IC pins are numbered 1 to 16 counterclockwise, with a little dot on the IC
package next to pin 1).

Following the track from B, you can see that one pin connects to pin 15
of the SC1088. This is the connection that we will use to scan for the next
station.

If you’re finding it hard to see where the tracks run, use your multimeter
set to continuity mode to identify the pins. Press one probe to the IC pin you
want to find a connection for (15 or 16) and then try the different likely con-
nections on the switches with the other probe until the buzzer on the multi-
meter sounds.

Next, find the two connections needed to power the radio from the
Arduino, which correspond to the battery holder connections on the PCB.
The 3V batteries the radio takes have a negative central connection (C) and
positive connections to the outside frame of the battery holder (D).

Communicating with Other Survivors 193

Step 3 : at tach the header Strip
I have suggested a right-angle header strip here, because it’s easier to sol-
der the wires to, but regular header pins work almost as well. Break off a
length of 12 pins and attach them to the Arduino pins 3.3V through to A5
(Figure 10-9). One pin will sit between the two header sockets, uncon-
nected to anything.

Figure 10-9: The Arduino header pins

Step 4: L ink the radio to the arduino
Figure 10-10 shows the radio connected to the Arduino. Use short wires to
connect the 3.3V Arduino pin to the positive battery connection, point D,
that you identified earlier. Connect an Arduino GND connection (it doesn’t
matter which one) to point C, the negative battery connection. Connect the
positive (longer) lead of one LED to Arduino pin A0 and the negative lead of
that same LED to point B. Do the same with another LED to Arduino pin A1
and point A on the radio PCB.

194 Chapter 10

+3V Supply

GND
Scan

Reset

Figure 10-10: The Arduino connected to the radio

Step 5 : Connect everything together
Finally, plug the powered speakers into the radio’s audio jack. You can test
this using the headphones first. The radio uses headphones or an audio lead
as an antenna, so you may get better results with a longer lead of a few feet
than with a very short lead.

Software
All the source code for this book is available from http://www.nostarch.com/
zombies/. See Appendix C for instructions on installing the Arduino sketch.

The Arduino sketch for this project is called Project_18_Scanner, and I’ll
walk you through it now.

The sketch starts by defining several constants:

const int scanPin = A0;
const int resetPin = A1;const int pulseLength = 1000;
const int period = 5000;
const int numStations = 5;

http://www.nostarch.com/zombies/
http://www.nostarch.com/zombies/

Communicating with Other Survivors 195

The scanPin and resetPin constants define the two Arduino pins we’ll
use, and pulseLength defines the length of the simulated button press. The
scan buttons needs to be pressed for a full 1,000 milliseconds (1 second) for
the radio to scan for the next station rather than simply move the frequency
up a step, though this can vary depending on your radio.

The constant period tells the Arduino an amount of time, in milliseconds,
to pause so you have time to register whether you are hearing a transmission
or just white noise.

Next, we define a single global variable:

int count = 0;

This variable, called count, is used to keep track of the number of scans to
make before resetting to the start of the FM band again.

The setup function initializes both pins as inputs (although as we shall
see, this sketch is unusual in that it changes the pin mode of the pins after
their first initialization).

void setup()
{
 pinMode(scanPin, INPUT);
 pinMode(resetPin, INPUT);
}

The loop function is where we actually scan for frequencies:

void loop()
{
 delay(period);
 pinMode(scanPin, OUTPUT);
 digitalWrite(scanPin, HIGH);
 delay(pulseLength);
 pinMode(scanPin, INPUT);
 count ++;
 if (count == numStations)
 {
 count = 0;
 pinMode(resetPin, OUTPUT);
 digitalWrite(resetPin, HIGH);
 delay(pulseLength);
 pinMode(resetPin, INPUT);
 }
}

First of all, the loop delays by the time specified in period. The function
then sends a pulse to the scan pin to begin scanning. When the pulse has
finished, the pin is set back as an input.

196 Chapter 10

The count variable then increments, and when it has reached the maxi-
mum specified in numStations, a pulse is sent to the reset pin to start scanning
from the beginning of the FM band again. During testing, setting numStations
to 5 will allow you to check whether the project is working and finding dif-
ferent stations. However, after a zombie apocalypse, the airwaves should be
pretty empty, so you may want to reduce this number to just 1, as any signal
you happen across is bound to be transmitted by survivors (or perhaps smart
zombies). If you discover any automated transmissions you want to ignore,
like a distress beacon from your former boss or the murmurings of zombies
inexplicably learning the rudiments of human language, change numStations
to a value of one more than the number of stations you want to ignore.

Using the Radio Scanner
When you first turn everything on, you should hear static. After five seconds
or so, the scan LED will glow very dimly, and the radio will scan for its first
station. After five more seconds, it will move on to the next station, and so
on, until you identify a human friend. Remember: safety in numbers—not
hordes.

Project 19 : Arduino Morse Code Beacon
Morse code is a 19th-century invention that allows you to send messages using
a series of long or short pulses of light or sound. Each letter of the alphabet
is made up of dots and dashes, where a dot is a short pulse and a dash is a
long pulse (three times longer than a dot). For example, the letter z is repre-
sented as this:

z

 --..
And the word zombie would be this:

zombie

 --.. --- -- -… .. .
Morse code uses shorter sequences of dashes and dots for the more com-

monly used letters, so e, as the most common letter used in the English
language, is just a single dot. If you are interested, you can search online for
the complete Morse code, though the software in this project will translate
your message into Morse code for you. Take a look at the code for a table of
Morse codes.

Communicating with Other Survivors 197

This Arduino-based project uses 12V LED lamps, like those you used
back in “Project 3: LED Lighting” on page 49, to flash a message to any
other survivors in visual range. It’s especially effective at night. Figure 10-11
shows the finished project.

Figure 10-11: A Morse code beacon

What You Will Need
To make this project, you will need the following parts:

Items Notes Source

 Arduino Arduino Uno R3 Adafruit, Fry’s
(7224833), Sparkfun

 Screwshield Adafruit (196)

 1 kΩ resistor Mouser (293-1k-RC)

 MOSFET FQP33N10 MOSFET Adafruit (355)

 MR16 LED lamps 12V 3W Hardware store

 MR16 lamp
sockets

Sockets with trailing leads Hardware store

 Terminal block 2-way terminal block Home Depot, Lowe’s,
Menards

 9V Arduino
battery lead

DC power jack with flying leads
or 12V cigarette lighter adapter

DC power supply

 Wire Bell cable (or other cable)

198 Chapter 10

It is best to use a fresh Arduino and screwshield for this project, both
because it will be situated away from your main setup and because your
screwshield from previous projects is probably pretty full by now. This
project will be powered by its own solar power supply and battery (refer to
“Project 1: Solar Recharging” on page 26).

I used three LED lights, but if you want more lamps, just add more in par-
allel. The transistor used to switch the lights is capable of switching up to 20W
of lighting but only with a heatsink, so your combined wattage should be kept
below 10W. If you made “Project 3: LED Lighting” on page 49, I would just
use the same LEDs.

Construction
The layout for the screwshield and wiring schematic are shown in
Figure 10-12.

1k
Ω

12V 5W Lamps

Figure 10-12: Screwshield layout and wiring schematic
for the Morse code beacon

Communicating with Other Survivors 199

Step 1 : assemble the Screwshield
Assemble the screwshield following the instructions in “Assembling a
Screwshield” on page 259.

Step 2 : Solder the Components onto the Screwshield
You only need to solder two components for this project: a resistor and metal
oxide semiconductor field effect transistor (MOSFET). MOSFETs are great for
switching fairly high-power loads quickly.

Solder the resistor and transistor in place according to the circuit sche-
matic. When soldering the transistor, make sure you place it so that the
metal tab faces to the right (Figure 10-12). When the components are soldered
into place, the assembly should like Figure 10-13.

Figure 10-13: The top of the screwshield

Step 3 : w ire the underside of the Screwshield
Once the components are secured in place, use their excess leads to make the
connections on the underside (Figure 10-14). Before soldering the resistor lead
that connects to pin 13 on the Arduino, add some insulation to avoid causing
short circuits with the 5V and GND tracks it crosses over.

200 Chapter 10

Resistor leads

Transistor leads

Figure 10-14: the underside of the screwshield

Step 4: Connect the Lamps
If you want to keep this simple, you can just use a single LED lamp. For a
wider range of visibility, however, connect a few LED lamps and point them
in different directions (Figure 10-15).

Figure 10-15: The lamp assembly

Communicating with Other Survivors 201

In Figure 10-15, I’ve fixed three lamp sockets to a bit of wood and con-
nected all three 12V LED lamps to the terminal block. Lamps of this type
usually include a circuit that allows the wires to be connected any way
around, but if your modules have a polarity marked on them with a + and –,
you need to make sure all the + connections are connected to one terminal
of the terminal block and the – connections go to the other. The lamp holders
will have holes allowing them to be attached to the wood with screws.

Step 5 : F inal wiring
Use some bell cable or other wire to connect the lamp assembly to the X
and Vin terminals on the screwshield. Stranded wire is best, as it’s less liable
to break. Make this wire as long as you need it (but above 50 ft, or 15 m,
there might be some reduction in brightness): you may want to site the lamp
assembly high up outside, to make it easier for people to see your message,
while leaving the Arduino in the safety of your bunker. Remember to water-
proof the lamp assembly—sealing it in a transparent plastic bag will do the
trick.

To connect power to the Arduino, use either a cigarette lighter adapter or
a custom lead using alligator clips and a barrel jack plug with flying leads to
connect the Arduino to a 12V solar power supply or battery. Note that this
project requires 12V for the lamps, so you cannot use a 5V USB lead to power
the Arduino.

Software
All the source code for this book is available via http://www.nostarch.com/
zombies/. See Appendix C for instructions on installing the Arduino sketch.
The Arduino sketch for this project is called Project_19_Morse_Beacon.

The sketch uses the Ardiuno’s built-in EEPROM library. The Morse code
message is stored in EEPROM memory every time a change is made, meaning
that the beacon can remember the message even if power to the Arduino is
interrupted. The sketch also makes use of a library from the Arduino com-
munity called EEPROMAnything, which makes saving to and reading from
EEPROM easier. The code for EEPROMAnything is included in the down-
load for this project, so there is nothing to download separately.

First, we load both the official Arduino EEPROM library and
EEPROMAnything:

#include <EEPROM.h>
#include "EEPROMAnything.h"

http://www.nostarch.com/�zombies/
http://www.nostarch.com/�zombies/

202 Chapter 10

A number of constants are used to control the project:

const int ledPin = 13;
const int dotDelay = 100; // milliseconds
const int gapBetweenRepeats = 10; // seconds
const int maxMessageLen = 255;

The pin that controls the LEDs is specified in ledPin. The constant dotDelay
defines in milliseconds the duration of a dot flash. Dashes are always three
times the duration of a dot.

The constant gapBetweenRepeats specifies in seconds the time that will
elapse between each repetition of the message, and maxMessageLen specifies
the maximum length, in letters rather than dots and dashes, of the message.
A maximum size is specified because in Arduino code, you have to declare
the size of arrays.

Two global variables are used:

char message[maxMessageLen];
long lastFlashTime = 0;

The message variable will contain the text of the message to be flashed,
and lastFlashTime keeps track of when the message was last flashed, to allow
a break between the repeats.

Two global char arrays are used to contain the dot and dash sequences
for Morse code. The program will only flash characters that it knows how to
send, that is letters, digits, or a space character. All other characters in the mes-
sage are ignored.

char* letters[] = {
 ".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", // A-I
 ".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", // J-R
 "...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.." // S-Z
};

char* numbers[] = {"-----", ".----", "..---", "...--", "....-", ".....",
"-....", "--...", "---..", "----."};

The setup function sets the ledPin as an output and then starts serial
communication at Serial.begin:

void setup()
{
 pinMode(ledPin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Ready");
 EEPROM_readAnything(0, message);

Communicating with Other Survivors 203

 if (! isalnum(message[0]))
 {
 strcpy(message, "SOS");
 }
 flashMessage();
}

Serial communication is used to set a new message, either using the serial
monitor of the Arduino IDE or, as you will see in “Using the Morse Beacon” on
page 205, a terminal program running on a Raspberry Pi.

Every time the message is changed, it is saved in EEPROM, so during
the setup process, the sketch reads any stored message from EEPROM. If no
message has been set, the if statement in setup sets the default message to
“SOS.” Finally, at flashmessage, the setup function flashes the message for the
first time.

The loop function first checks whether a new message has been sent over
the serial connection:

void loop()
{
 if (Serial.available()) // Is there anything to be read from USB?
 {
 int n = Serial.readBytesUntil('\n', message, maxMessageLen-1);
 message[n] = '\0';
 EEPROM_writeAnything(0, message);
 Serial.println(message);
 flashMessage();
 }
 if (millis() > lastFlashTime + gapBetweenRepeats * 1000L)
 {
 flashMessage();
 }
}

Any new message is read into the message character array until the new-
line character (\n) is read. The null character '\0' is added to the end of
the message. This is the Arduino’s way of indicating the end of a string of
characters. Once the whole message has been read through, it is saved into
EEPROM (EEPROM_writeAnything), and then the new message begins flashing
immediately.

The remainder of the loop function checks whether enough time has
passed before it can repeat the message. This could be done more simply
using delay, but we would be unable to interrupt the loop if a new message
arrived during the delay.

204 Chapter 10

The flashMessage function is the most complex function in the sketch.

void flashMessage()
{
 Serial.print("Sending: ");
 Serial.println(message);
 int i = 0;
 while (message[i] != '\0' && i < maxMessageLen)
 {
 if (Serial.available()) return; // new message
 char ch = message[i];
 i++;
 if (ch >= 'a' && ch <= 'z')
 {
 flashSequence(letters[ch - 'a']);
 }
 else if (ch >= 'A' && ch <= 'Z')
 {
 flashSequence(letters[ch - 'A']);
 }
 else if (ch >= '0' && ch <= '9')
 {
 flashSequence(numbers[ch - '0']);
 }
 else if (ch == ' ')
 {
 delay(dotDelay * 4); // gap between words
 }
 }
 lastFlashTime = millis();
}

The flashMessage function starts by echoing the message it is about to
send to reassure you that it is sending what you want it to. It then loops over
every character in the message. Before each character, it uses Serial.available
to check for a new message. If a new message has come in, the function stops
sending its message in order to receive the new message from your computer
or Raspberry Pi; then it begins sending the new message instead.

The flashMessage function determines whether the character is an upper-
case letter, a lowercase letter, a number, or the space character and then takes
the appropriate action.

If the character is a lowercase letter, the index position of the sequence
of dots and dashes held in the letters array is provided as a parameter to the
flashSequence function, which then flashes those dots and dashes. The other
options are handled in the same way.

Finally, when the whole message has been sent, the lastFlashTime variable
is set to the current time so the loop function can work out when it is time
to start flashing the message again.

Communicating with Other Survivors 205

The work of flashing the sequence of dots and dashes for a particular
character is handled by the flashSequence function:

void flashSequence(char* sequence)
{
 int i = 0;
 while (sequence[i] != NULL)
 {
 flashDotOrDash(sequence[i]);
 i++;
 }
 delay(dotDelay * 3); // gap between letters
}

This loops over each dot or dash, calling flashDotOrDash:

void flashDotOrDash(char dotOrDash)
{
 digitalWrite(ledPin, HIGH);
 if (dotOrDash == '.')
 {
 delay(dotDelay);
 }
 else // must be a -
 {
 delay(dotDelay * 3);
 }
 digitalWrite(ledPin, LOW);
 delay(dotDelay); // gap between flashes
}

The flashDotOrDash function uses the appropriate delay period to flash a
dot or dash.

Using the Morse Beacon
Upload the sketch to your Arduino and power up the project. The default mes-
sage should start to flash. If it doesn’t, go back and check over all your wiring.
To change the message, attach your Arduino to your computer, open the serial
monitor on the Arduino IDE, and type in a new message (Figure 10-16).

Figure 10-16: Changing the message using the
serial monitor

206 Chapter 10

Here, the current message, “There are survivors here,” should change to
“Watch out zombies about” when the Send button is pressed.

If you prefer to use your Raspberry Pi to change the message, install
the terminal program screen (your Raspberry Pi will need an Internet
connection):

$ sudo apt-get install screen

Once screen is installed, connect the USB lead between your Raspberry Pi
and the Arduino and then enter the following command on your Raspberry Pi:

$ screen /dev/ttyACM0 9600

At this point, anything you type should be sent to the Arduino, and any
messages coming from the Arduino should be displayed. Figure 10-17 shows
the message being changed using screen. Note that the message will not appear
on the screen as you type it but only after you press enter.

Figure 10-17: Changing the message using the screen command

Once the message has been changed, the Arduino will remember it, so
you can unplug the Arduino to get ready for installation. Unplugging the
Arduino will quit the screen command by closing the serial connection to the
Raspberry Pi.

Now just attach your project to your desired location, preferably one
with 360-degree visibility, and start blinking your message. Figure 10-18
shows the project fixed to my zombie-proof shed.

Communicating with Other Survivors 207

Figure 10-18: Installing the Morse beacon

If you want to conserve power, only use your beacon at night, when it is
most likely to be spotted. But beware: popular culture gives us mixed messages
on whether zombies are attracted to flashing lights. You may want to reinforce
your stronghold before sending out messages, just in case.

In Chapter 11, we will continue with the theme of communication.
For the final project of this book, we’ll build a pair of haptic communication
devices that will allow you and a fellow survivor to communicate silently,
without alerting zombies to your presence.

11
H a p t i c c o m m u n i c at i o n

If you’re out on a supply run, then
you’ll definitely want this silent com

munication device, which uses trembling
buzzer motors and radio modules to send

twoway messages. With this final project, you
can communicate without attracting unwanted
attention.

Project 20: Silent Haptic Communication with Arduino
The problem with walkietalkies is that, as the name suggests, they require
talking. Zombies have very acute hearing for human speech and will easily
home in on any desperate request for backup that you shriek into a walkie
talkie. This is where a silent twoway haptic communication device comes
into its own (see Figure 111).

210 Chapter 11

Figure 11-1: “When the sign said ‘press for attention,’ this wasn’t what I
thought it meant!”

Haptic is just a fancy way of saying “relating to touch,” and instead of
making noise, the devices you’ll build in this project will vibrate like a cell
phone. You will make a pair of these haptic devices, one of which is shown
in Figure 112.

Each device has a pushbutton switch and a small buzzer motor of the
sort you find in cell phones. When you press the button on one handset, it
causes the buzzer on the other handset to vibrate, and vice versa. The whole
thing is powered by a 9V battery.

Then when you are out and about, you can get in touch with your
 partner using a set of prearranged signals: one short buzz means, “I’m OK”;
one long buzz means. “Come quickly, I’m about to be eaten!” In your free
time (which has probably increased now that your old school or office is
full of zombies), you could even memorize the Morse code you used in
“Project 19: Arduino Morse Code Beacon” on page 196 and send more
detailed messages.

Haptic Communication 211

RF Module

Push Switch

Vibration
Motor

Figure 11-2: A haptic communicator

What You Will Need
To make this pair of haptic communicators, you’ll need the following parts:

Items Notes Source

 Arduinos 2 x Arduino Uno R3 Adafruit, Fry’s
(7224833), SparkFun

 Protoshields 2 x Arduino Protoshield PCB eBay (Arduino
code: A000077)

 Header pins Header pins 64 way in total
(for 2 handsets)

Adafruit (392),
eBay

 9V battery
leads

2 x Arduino 9V battery leads Adafruit (80), eBay

 9V batteries 2 x PP3 batteries Hardware store

 R1 2 x 1 kΩ resistor Mouser (293-1k-RC)

 Transistors 2 x 2N3904 NPN bipolar transistor Adafruit (756)

 Vibration
motors

2 x 5V or 3V vibration motor eBay

 Tactile switch 2 x tactile push switch Adafruit (504)

 RF modules 2 x NRF24 RF modules eBay

 Assorted
hookup wire

Stranded wire

 Wire Insulated solid-core wire for
making PCB connections

212 Chapter 11

You might also want to enclose your communicators in plastic boxes to
protect them from the elements. If you choose to do so, then you will need
to find something big enough to contain the Arduino, protoshield, and battery.
It will also need a hole so that you can press the button and add an on/off
switch.

Electronically, this is probably the most complicated project so far.
You might struggle to find all the parts after a zombie apocalypse, as some,
like the vibration motors and the RF modules, are best bought off eBay
or Amazon. So make this project now, before the postal service undies.
Vibration motors can also be scavenged from cellphones.

Construction
These instructions will tell you how to make one haptic module, and
Figure 113 shows the schematic for one communicator. Of course, to
 communicate with someone else, you will need to make two devices.

Arduino

T1

1 kΩ

R1

2N3904

GND

5V

D5

Vibration
Motor

S1
D2

GND

NRF24
Module

3.3V

GND

2

1

3
D8

D7
4

D13 5
D11

6
D12 7

Figure 11-3: The schematic for one haptic communicator

Haptic Communication 213

Pin 2 of the Arduino will be set up as a digital input with internal
pullup resistor enabled, connected to the push button S1. When the button
is pressed, the Arduino will control the NRF24 radio module to send a mes
sage to the other handset, activating its vibration motor.

The vibration motor is controlled from pin D5 of the Arduino. We use a
transistor (T1) because the motor uses more current than the Arduino output
can cope with by itself, and the 5V supply is used because the 3V supply
cannot provide enough current. Pin D5 is controlled as an analog output to
manage the level of vibration with the software, keeping the device as quiet
as possible; this also prevents the motor from burning out, as most vibration
motors are 3V rather than the 5V the Arduino usually uses.

Note that strictly speaking, the motor should be accompanied by a diode
to protect the Arduino from current spikes from the motor, but a little test
ing with one of these tiny motors showed that a very minimal amount of
noise was added to the Arduino supply rails. So for the sake of keeping things
simple the normal diode was omitted.

This project uses a protoshield rather than the screwshields used in most
of the projects in this book. A protoshield is like a screwshield but without
its screw terminals and hence is a bit cheaper and smaller.

Step 1 : assemble the protoshield
Protoshields sometimes come with a full set of extra components, such as
reset switches and header pins, but for this project you don’t want glowing
power LEDs that might attract unwanted attention. Therefore, it’s better
(and cheaper) to buy the bare Protoshield PCB and some headers.

Solder the header pins to the outermost rows of holes on each side of
the PCB. A good way to keep the header pins straight is to put them into
an Arduino and then put the Protoshield PCB on top of the headers. When all
the pins are attached, the protoshield should look something like Figure 114.

Figure 11-4: A protoshield with header pins attached

214 Chapter 11

Step 2 : F ix the components in posit ion
Use Figure 115 as a reference for the location of the components. All the con
nections to the NRF24 module are to the 2×4 header on the right of the mod
ule’s PCB. Don’t solder the vibration motor just yet; it will need to be glued
in place first as the leads are a bit delicate.

1R

S1

Motor

T1

Figure 11-5: The protoshield layout, where R1 is
the resistor, S1 is the switch, T1 is the tran-
sistor, and the dark rectangle at the top left
is the NRF24

Apart from the two wires coming from the motor, the dark lines going
to various solder pads in Figure 115 represent connections you’ll make on the
underside of the board. The header pins of the NRF24 module fit through the
holes in the protoshield, so place that now and solder it to the pads beneath.
Do not clip the excess pin lengths off but instead gently splay them out after
soldering; this will make it easier to connect them up later. Note that one pin
on the NRF24 module is not used.

The transistor has one curved side. It is important that this goes onto the
protoshield the right way around, with the curved side pointing left toward
the NRF24 (use Figure 114 as a guide). Leave about 1/3 inches (about 7.5 mm)
of the transistor lead on the top side of the screwshield and fold it down
(Figure 115) to solder.

The switch has contacts that are on a rectangular grid, four holes long
one way and three holes the other. Make sure the switch goes the right way
around (Figure 114) so that it is longer vertically.

Do not clip off any wires yet, as these can be used to link up the com
ponents on the underside of the board. When all the components have been
fixed in place, the board should look something like Figure 116.

Haptic Communication 215

Figure 11-6: The components attached to the protoshield

Step 3 : W ire the underside of the Board
This step is the fiddliest, so take care with it. All the components need to be
connected on the underside of the board (Figure 115). Of course, when the
board is flipped over, everything is reversed. In Figure 117, I’ve transposed
Figure 115 to show the underside of the board for you to work from.

R1

S1

T1

Figure 11-7: Wiring diagram from the underside
of the protoshield

Figure 117 marks the positions of the components so that you can orient
yourself, but remember that this is the underside of the board, so the compo
nents are actually on the other side of the protoshield.

216 Chapter 11

Many of the connecting wires cross over each other, so use insulated
solidcore wire. When everything is connected, the underside of the board
should look like Figure 118.

Figure 11-8: The underside of the protoshield

Doublecheck everything very carefully to make sure there are no acci
dental solder connections and that every wire makes the correct connection.

Step 4: at tach the Vibrat ion motor
Glue the motor to the top of the protoshield, being careful not to get glue
on the rotating bit at the front of the motor. The leads are quite fine, so it’s
better to solder them to the top of the board rather than through a hole.
Figure 119 shows the motor glued in place and the leads soldered to the
protoshield.

Figure 11-9: Attaching the vibration motor

Haptic Communication 217

Step 5 : Repeat for the other Handset
Having built one handset, do the whole lot again for its partner.

Step 6 : pl acing it into an Enclosure
You may want to scavenge for some small plastic boxes to contain the hand
sets. Alternatively, you might prefer to go postapocalypse chic and just tape
the battery to the Arduino and protoshield, leaving the battery clip accessible
as a rudimentary switch.

Software
All the source code for this book is available from http://www.nostarch.com/
zombies/. See Appendix C for instructions on installing the Arduino sketch for
this project, which is called Project_20_Haptic_Communicator.

This project uses a communitymaintained Arduino library called Mirf.
This library provides an easytouse wrapper around the Serial Peripheral
Interface (SPI) serial interface to the NRF24 radio module, allowing the
Arduino to communicate with the module. The Mirf library must be down
loaded from the Internet, which is another good reason to make this project
before the outbreak spreads too far. Download the ZIP file for the library
from http://playground.arduino.cc/InterfacingWithHardware/Nrf24L01.

Extract the ZIP file and copy the whole Mirf folder into My Documents\
Arduino\Libraries if you’re using Windows or Documents/Arduino/libraries if
you’re using a Mac or Linux. Note that if the libraries folder doesn’t exist
within the Arduino directory, you’ll need to create it before copying.

The Arduino IDE won’t recognize the new library until you restart it,
so after copying the library folder, save anything you’re working on, quit the
IDE, and restart. Next, open the sketch file for this project and upload it to
both Arduinos, one after the other. The sketch starts by importing three
libraries:

#include <SPI.h>
#include <Mirf.h>
#include <MirfHardwareSpiDriver.h>

The SPI library is part of the Arduino IDE distribution and simplifies
communication with devices using SPI. The MirfHardwareSpiDriver library
is also used in the sketch.

Next, three constants are defined:

const int numberOfSends = 3;
const int buzzerPin = 5;
const int switchPin = 2;

http://www.nostarch.com/zombies/
http://www.nostarch.com/zombies/
http://playground.arduino.cc/InterfacingWithHardware/Nrf24L01

218 Chapter 11

The range of wireless communication can be extended by sending the
“button pressed” message several times, so that at the edge of the range,
only one of the messages has to get through. The constant numberOfSends
defines how many times each message should be sent. This is followed by
pin definitions for the buzzer and switch pins.

The next constant (buzzerVolume) specifies the analogWrite value for the
vibration motor:

const int buzzerVolume = 100; // Keep less than 153 for 3V!
const int buzzMinDuration = 20;

If you are using a 3V motor, it is important that the analogWrite value
does not exceed 153; a value of 153 will deliver power equivalent to a 3V
supply to the motor, and more power would overload it. Reducing this value
will make your buzzer quieter. The buzzMinDuration constant specifies the
minimum duration for a buzz in milliseconds. This is important because too
short a buzz may not be noticed.

The global byte data array contains a 4byte message to be sent whenever
the button is pressed:

byte data[] = {0x54, 0x12, 0x01, 0x00};

The first three values in this array are chosen as being unique for the pair
of haptic communicators. When a message is received, they are checked to
see whether they match. This ensures that the communicator has received a
real message and not just noise. It also means that you could set up a second
pair of devices using different values, and the new pair would not interfere
with this pair. Depending on the group dynamics in your band of survivors,
you might want to communicate with one person in some situations (“Come
save me!”) and another person in other situations (“If you show up now, I bet
the zombie will eat your brains and not mine”).

The fourth byte is not used in this project, but it’s there in case you would
like the buttonpress messages to send a parameter. You could, for example, add
a second button to the communicator for emergencies that sends a different
value in this byte, which could then be read at the receiving end.

Next is the setup function:

void setup()
{
 analogWrite(buzzerPin, 0);
 pinMode(switchPin, INPUT_PULLUP);
 Mirf.spi = &MirfHardwareSpi;
 Mirf.init();

Haptic Communication 219

 listenMode();
 Mirf.payload = 4;
 Mirf.config();
}

This function starts by making sure the buzzer is off at analogWrite.
Then it sets the mode of the switchPin to an input with the internal pullup
resistor enabled (see “Stabilizing Digital Inputs with Pullup Resistors” on
page 252 for more information on pullup resistors). The radio module is
then initialized and put into listen mode, waiting to receive a message.

Next comes the loop function:

void loop()
{
 if (!Mirf.isSending() && Mirf.dataReady())
 {
 Mirf.getData(data);
 checkForBuzz();
 }
 if (digitalRead(switchPin) == LOW)
 {
 sendBuzz();
 }
}

This starts with an if statement that first checks whether the module
is itself sending a message. It then checks whether there is data ready to be
read, and it reads the message over the radio. Once the message is read, the
function checkForBuzz is called to check that the message is legitimate before
buzzing the vibration motor.

The loop function finally checks for a button press on this end and
responds to a button press by calling the sendBuzz function.

Now, let’s look at the other functions defined in this sketch, starting
with listenMode and sendMode:

void listenMode()
{
 Mirf.setRADDR((byte *)"serv1");
}
void sendMode()
{
 Mirf.setRADDR((byte *)"clie1");
}

The listenMode function puts the radio module into listening mode by
setting its receive address to "serv1". The sendMode function puts the radio

220 Chapter 11

module into sending mode by setting its receive address to "clie1". We call
both the listenMode function and the sendMode function inside sendBuzz, which
gets called in the loop function’s last if statement.

Finally, we have the checkForBuzz function:

void checkForBuzz()
{
 if (data[0]==0x54 && data[1]==0x12 && data[2]==0x01)
 {
 analogWrite(buzzerPin, buzzerVolume);
 delay(buzzMinDuration);
 analogWrite(buzzerPin, 0);
 }
}

This function checks the first 3 bytes of the message sent from the other
module, and if they match, it turns on the vibration motor for the duration
specified in milliseconds by buzzMinDuration.

Using the Haptic Communicator
This project is a lot of fun to use. I’m pretty sure casinos are wise to this kind
of contraption, though, so to avoid trouble, don’t use it to cheat at the gaming
tables. Money will have little use after the apocalypse in any case.

If you’re prepared to learn Morse code, the handsets can be used with
Morse, although they are a little slow. Alternatively, you could come up with a
simplified vocabulary along the following lines:

•	 One short buzz: All is well

•	 One long buzz: Zombies sighted

•	 Three long buzzes: Zombies close

•	 Three short buzzes: Run!!

This is the final project in the book, and I hope you have had fun as
you’ve equipped yourself for the apocalypse. Whether you’re building these
projects in anticipation of the coming zombie hordes or you’re already in
hiding, I also hope they help you to survive!

A
Pa r t s

In this appendix, you will find more
information about the parts used to

make the projects in this book. Unlike
the individual project supply lists, the

tables in this appendix list two types of sources:
preapocalypse and postapocalypse. If you’re
looking to buy parts and stockpile them in your secret underground
 bunker before the dead rise, look to the suppliers in the preapocalypse
 column. Buy your materials in bulk online now, and you can even order
extras so you’ll be prepared to replace any components that break.

If you’re reading this guide after zombies have already taken up residence
in your neighborhood, you want the postapocalypse column. Your options
will be limited without the Internet, but if you’re lucky, you’ll find the odd
brick-and-mortar hobby shop to loot, and there should be plenty of cars,
microwaves, and other electronics that you can harvest components from.
Good luck!

222 Appendix A

A Note on Brick-and-mortar Suppl iers
When it comes to brick-and-mortar stores for electronic components, since
the demise of Radio Shack, your choice in the United States has been reduced
pretty much to Fry’s Electronics in California, Texas, and a handful of other
states (http://www.frys.com/) and a few independent stores around the coun-
try. If you live in the UK, then Maplin Electronics (http://www.maplin.co.uk/)
is your best bet. Both Fry’s and Maplin offer online ordering as well.

Electronics Modules
This section describes items that could loosely be termed modules, or pre-
assembled parts, rather than basic electronic components.

Item Preapocalypse
Source

Postapocalypse
Source

7A (or more) 12V charge
controller

eBay, Fry’s (4980091) Abandoned RVs and
boats

Arduino Uno R3 Adafruit, Fry’s
(7224833), SparkFun

Fry’s

Screwshield Adafruit (196)

LCD shield eBay, SparkFun
(DEV-11851)

PIR module Adafruit (189),
Fry’s (6726705)

Fry’s, security store

Door latch Farnell Fry’s, security store

RF remote single-
channel relay, 12V

eBay

Reed switch and
magnet pair

Adafruit (375),
Fry’s (1908354)

Fry’s, security store

4-channel relay shield eBay, http://www
.sainsmart.com/

USB Bluetooth adapter eBay Computer store

HC-06 Bluetooth
serial module

eBay

Servo motor (small, 9 g) Adafruit (196), eBay Hobby store

Servo motor (standard) Adafruit (155), eBay Hobby store

NRF24 radio module eBay

Protoshield eBay (Arduino code:
A000077)

http://www.frys.com/
http://www.maplin.co.uk/
http://www.sainsmart.com/
http://www.sainsmart.com/

Parts 223

Raspberry P i and Related Parts
This list includes all Raspberry Pi–specific parts you’ll need, including the Pi
itself.

Item Preapocalypse
Source

Postapocalypse
Source

Raspberry Pi Adafruit (2358), Fry’s
(8258726)

Small HDMI monitor Adafruit (1934), eBay

Raspberry Squid Amazon, http://www
.monkmakes.com/

Leads and Connectors
In this list, you’ll find all the wires, leads, jacks, and other bits you’ll need to
connect your circuits.

Item Preapocalypse
Source

Postapocalypse
Source

Heavy-duty alligator-
clip leads (7A or more)

Auto parts store Auto parts store

Terminal block (10A) Home Depot, Lowe’s,
Menards

Home Depot, Lowe’s,
Menards

Small alligator clip leads Auto parts store

Terminal block (2A) Home Depot, Lowe’s,
Menards

Home Depot, Lowe’s,
Menards

Female-to-female
jumper wire

Adafruit (266)

0.1 inch header pins Adafruit (392), eBay

Female-to-male jumper
wire

Adafruit (826)

2.1 mm jack plug-
to-cigarette lighter
adapter

Auto parts store Auto parts store

2.1 mm barrel jack with
flying leads

Broken DC power
supply

DC power supply

Long male-to-male
jumper wires (20 cm)

Adafruit (760)

0.1 inch right-angle
header pins

eBay

9V Arduino battery lead Adafruit (80), eBay

Solid-core wire for
proto-screwshield PCB
links

Adafruit (1311) Abandoned electronics

http://www.monkmakes.com/
http://www.monkmakes.com/

224 Appendix A

Tools
No self-respecting zombie apocalypse survivor should be without the follow-
ing general household tools:

•	 A drill

•	 Screwdrivers

•	 Pliers

•	 Snips

•	 A wood saw

•	 Scissors

You should be able to find these at any hardware store. To complete the
projects in this book, you will also need a few electronics construction tools,
listed below.

Item Preapocalypse Source Postapocalypse
Source

Multimeter Auto parts store, eBay,
Fry’s

Auto parts store, Fry’s

Soldering iron Auto parts store, Fry’s Auto parts store, Fry’s

Electronic Components
A lot of the components here can be found in electronics starter kits for
hobby ists. Kits like Adafruit’s ARDX Experimenters Kit for Arduino (prod-
uct ID 170) or the SparkFun Beginners Parts Kit (KIT-10003) will give you
a good start with the basic resistors, diodes, and transistors.

Item Preapocalypse
Source

Postapocalypse
Source

Piezo buzzer Adafruit (1740), eBay

270 Ω resistor Mouser (293-270-RC)

470 Ω resistor Mouser (293-470-RC)

Push button Adafruit (1439)

1 kΩ resistor Mouser (293-1k-RC)

1N4001 diode Adafruit (755)

Blue or white LED Adafruit (301)

100 µF ceramic capacitor Adafruit (753)

TMP36 Adafruit (165)

Microswitch Fry’s (2314449) Microwave oven

Parts 225

Item Preapocalypse
Source

Postapocalypse
Source

Small sealed lead acid
battery

Fry’s (6607854),
security store

FQP33N10 or FQP30N06
MOSFET

Adafruit (355)

Resistor (100 Ω 2W) Mouser
(594-5083NW100R0J)

Resistor (100 Ω 1/4W) Mouser (293-100-RC)

High-volume buzzer Security store Security store,
smoke alarm

2N3904 NPN bipolar
transistor

Adafruit (756)

5V or 3V vibration motor eBay

Tactile push switch Adafruit (504)

Red LED Adafruit (297)

Other Hardware
Finally, you’ll need just a few other odds and ends to be able to power and
construct the mechanics of your projects, as listed here.

Item Preapocalypse
Source

Postapocalypse
Source

A100 V drive belt Auto parts store,
eBay

Auto parts store,
hardware store,
scavenge

Project box Fry’s Closets, garages

4 × AA battery box Adafruit (830)

6 × AA battery box Adafruit (248)

Resistor Color Codes
Resistors have stripes on them that tell you their value, and an essential piece
of geekiness is to know your resistor color codes.

Color Value Color Value

Black 0 Blue 6

Brown 1 Violet 7

Red 2 Gray 8

Orange 3 White 9

Yellow 4 Gold 1/10

Green 5 Silver 1/100

226 Appendix A

There will generally be three of these bands together starting at one end
of the resistor, a gap, and then a single band at the other end of the resistor.
The single band indicates the accuracy of the resistor value. While gold and
silver represent the fractions 1/10 and 1/100, they’re also used to indicate
how accurate the resistor is; gold is ±5 percent and silver is ±10 percent.

Figure A-1 shows the arrangement of the colored bands. The resistor
value uses just the three bands. The first band is the first digit, the second
the second digit, and the third “multiplier” band is how many zeros to put
after the first two digits.

Digit 1
Digit 2

Multiplier Tolerance

Figure A-1: Resistor color codes

Let’s say the digit-1 band is red, the digit-2 band is violet, and the multi-
plier band is brown. That makes this a 270 Ω resistor, or 27×101. Similarly, a
10 kΩ resistor will have bands of brown, black, orange (1, 0, 1,000).

B
B a s i c s k i l l s

If you’re going to be a postapocalyptic
maker and survive the land of the

walking dead, then you’ll need a few key
electronics skills. This appendix is a quick

guide to the basics, such as joining wires together,
soldering, and using a multimeter. Flip here anytime
you need a refresher. It may save your life!

Stripp ing Wires
For an apocalypse survivor, stripping the insulation off wires is a skill that
belongs near the top of the list. The devices in this book will help you stay
alive, and to build them, you’ll often need to join insulated wires together or
fit them into a screw terminal. The first step in that process is exposing the
bare wire.

228 Appendix B

To strip a wire, use a blunt pair of pliers to grip the wire and pull off
the insulation with a sharp pair of wire cutters (also called snips). Figure B-1
shows the process.

A

B

Figure B-1: Stripping wires

Grip the wire with pliers (Figure B-1a). If your wire is long, you could
wrap it around your fingers instead. Either way, the idea is to stop the wire
from moving. Next, gently pinch the wire with the cutters at the position
where you want to remove the insulation. Apply just enough pressure to
almost cut through the insulation without cutting into the wire inside, then
pull the insulation away (Figure B-1b). If the snips start to slip as you pull,
just squeeze them a bit tighter.

Mastering this skill can take a while, so practice on some old wire before
you try it on something important. If you cut the last good wire in your cache
too short, you could find yourself unable to complete your latest antizombie
invention until the next supply run—when it might be too late.

Basic Skills 229

Joining Wires by Twist ing
Knowing how to twist wires together is a useful skill, too, especially if you
haven’t come across any solder in your scavenging trips. If done properly (as
illustrated in Figure B-2), just twisting the wires together can make pretty
good electrical connections.

C

B

A

Figure B-2: Joining wires by twisting

230 Appendix B

First, strip about half an inch (15 mm) of insulation off each wire (see
“Stripping Wires” on page 227). Then, if your wire is stranded rather than
solid, use your thumb and forefinger to twist each wire on its own and keep
all the strands together (Figure B-2a). Next, place the two wires side by side,
lining up the ends of the insulation, and twist the wires around each other
(Figure B-2b). Try to make sure that the wires actually go around each other,
rather than leaving one wire straight while the other wraps around it. This
can be difficult if the wires are of different thicknesses.

Finally, coil the intertwined wires into a tight ball (Figure B-2c) and wrap
the whole thing in electrical tape or heatshrink tubing (see “Using Heatshrink”
on page 235). You can also use pliers to really tighten up the joint.

If you have soldering equipment, then you can make the connection
mechanically stronger and more electrically reliable by heating the little knot
with a soldering iron and feeding solder into it, as I describe in the next
section.

If you want to know how NASA does it, take a look at this link: http://
makezine.com/2012/02/28/how-to-splice-wire-to-nasa-standards/.

Soldering Basics
Soldering is much easier than it looks, and you don’t need to spend a lot of
money on a fancy soldering station. During an apocalypse, your options will
be limited, but a basic starter kit (see Figure B-3) will work just fine.

You can find basic soldering kits at an auto parts store or even at some
hardware stores. If you are buying in advance of the apocalypse, then Adafruit
sells a great starter kit (product 136) that also includes a multimeter, hookup
wire, and various other useful bits and bobs.

Figure B-3: A basic soldering kit

http://makezine.com/2012/02/28/how-to-splice-wire-to-nasa-standards/
http://makezine.com/2012/02/28/how-to-splice-wire-to-nasa-standards/

Basic Skills 231

There are lots of accessories and tools that can make soldering quicker,
but these are by no means essential. Here’s all you really need:

A soldering iron Look for an iron with a power rating of 30W or
more, with a fine tip (say 1/25 inch, or 1 mm). Before the zombie apoca-
lypse, just buy one that’s AC powered. To prepare, you could also buy
a soldering iron that runs on 12V DC and keep it with your emergency
supplies; that way, you’ll have an iron you can power from a car battery.
These soldering irons, intended for working on the electrical components
of cars, are quite common.

Solder If you buy a soldering kit, it will probably come with a coil of
solder. Solder comes in two flavors: leaded and lead-free. Leaded solder
melts at a lower temperature and is generally easier to use than lead-free
solder. But please don’t eat either, no matter how desperate your food
situation becomes.

Snips You’ll need a good pair of wire cutters to cut wires close to the
surface of a PCB and for stripping wire.

A damp sponge or cloth Any old sponge will do. You’ll use it to wipe
the tip of the iron when there’s excess solder.

WARNING Soldering irons get hot. In fact, they get really hot, much hotter
than the maximum temperature of your kitchen oven. So it goes
without saying that if you touch the hot end of a soldering iron,
you’ll get a serious burn. This is not an activity for unsupervised
children. Similarly, lead is a toxic element that is not at all good
for you, so you may prefer to use lead-free solder, despite it
being a little harder to work with.

Joining Wires with Solder
To join together two wires with solder, start by following the instructions
in “Joining Wires by Twisting” on page 229. Then, you can solder the joint.
The trick with soldering is to always make the solder flow into the thing
you’re soldering; Figure B-4 shows solder flowing into the ball of wires from
Figure B-2c.

Many beginners make the mistake of creating a blob of solder on the tip
of the iron and then blobbing it onto the wire. This usually results in poor
quality dry joints that may look okay but will fail quickly and, before they fall
apart, may not make good contact with the wire. Therefore, you’ll want to
heat the wire you want to solder before you touch the solder to it.

232 Appendix B

Figure B-4: Running solder into the joined wires

With that in mind, you can join your twisted wires as follows:

1. Turn your iron on and leave it to heat up. If your kit didn’t come with a
stand for the soldering iron, make sure that you prop it somewhere safe
so that the hot end is not touching anything.

2. Touch the end of the solder to the tip of the iron to see if it is hot. If it
immediately melts and flows over the tip of the iron, then the iron is
ready.

3. If the tip of the iron is not shiny and bright after this, then wipe it on a
wet sponge. This makes a great sizzling noise! Repeat the previous step
to tin the tip of the iron with solder. Tinning just means coating a wire
or the tip of your iron with solder by heating it up and then pushing the
solder onto it.

4. Press the tip of the soldering iron against the little knot of wires and
leave it there for perhaps three or four seconds. Then, with the soldering
iron still pressed to the knot, push the end of the solder onto the knot.
The solder should flow into the knot. If your solder isn’t flowing well, it
sometimes helps to feed a bit more solder to the joint, as solder contains
cores of rosin flux, which helps the solder to liquefy.

5. Keep feeding the solder in until the whole knot of wires is coated in
solder.

6. Remove the tip of your solder thread from the joint and replace the iron
on its stand. Make sure that the wires don’t move while you give them
10 or 20 seconds to cool down.

You can also insulate your soldered connection with electrical tape or
with heatshrink, as described in “Using Heatshrink” on page 235. If you
plan to do this, then you can make a neater joint by soldering the wires side
to side, without twisting them together (Figure B-5a–e).

After stripping the ends of the wires (Figure B-5a), tin them with solder
(Figure B-5b). If the wire is stranded, the solder should flow between the
strands that make up the wire.

Basic Skills 233

C

B

A

E

D

Figure B-5: Soldering wires together without twisting
them first

Now, lay the wires next to each other (Figure B-5c), heat the wires, and
run solder into the valley they make (Figure B-5d). The end result should be a
nice, even joined pair of wires (Figure B-5e).

234 Appendix B

Soldering a PCB
Wires are easier to scavenge than complete circuits, but being able to solder
to a printed circuit board (PCB) will certainly serve you well during an apoca-
lypse. For example, quite a few of the projects in this book use a screwshield
that requires a bit of soldering to put together. Fortunately, the screwshield
is a PCB with lots of convenient metal pads that are made for soldering. If you
successfully followed the steps described in “Joining Wires with Solder” on
page 231, then you shouldn’t have any problems soldering a PCB.

When attaching components to a PCB, the basic idea is that you push a
component’s legs through from the top, flip the PCB over, solder the leads to
their solder pads, and snip off the excess wire. Figure B-6 shows a component
lead being soldered onto a screwshield.

Figure B-6: Soldering a component leg to a PCB

As with all soldering, the trick is to apply the solder to the thing being
heated up rather than to the soldering iron, so heat the component leg and
touch solder to it. You’ll often get the best results by giving the soldering iron
a second or two to heat the component lead and solder pad before you apply
the solder to the junction of the soldering iron tip and the component lead.
Figure B-7 shows examples of two solder joints, one bad and one good.

The solder joint on the left is best described as “blobby,” and it’s a result
of allowing a glob of solder to form on the tip of the iron and then “blobbing”
it onto the PCB. The solder joint on the right is close to perfect. See how the
whole pad is covered in solder, flowing all the way around the component
lead and forming a very gentle little hill of a meniscus.

Basic Skills 235

Figure B-7: Bad (left) and good (right)
solder joints

Using Heatshrink
When you’re confident in your wire-connecting skills, try using heatshrink
to insulate the wires. Heatshrink is a great way to finish a pair of wires that
have been joined by twisting or soldering, and it’s a lot more durable than
electrical tape. Wrapping the wires in electrical tape is fine at first, but even-
tually the tape starts to lose its stickiness and unravel. Heatshrink is also just
more fun to use, and you’ll need all the fun you can get when zombies are
the only ones knocking on your door.

Heatshrink comes as a tube that you can cut to the length you need.
When heated with a hair dryer, hot air gun, or even a cigarette lighter, it
shrinks to about half its diameter as if by magic. If your heatshrink starts
out with a fairly snug fit over the wires, then it will grip the wires tightly
after you heat it.

Here’s how to make a good connection and strengthen it with heatshrink:

1. Choose a heatshrink tube slightly wider than the joint you want to cover.
Cut a sleeve long enough to cover the exposed wire and overhang onto
the wire’s insulation a little bit.

2. If you’re connecting two wires that already have parts attached to their
other ends, slide your heatshrink sleeve onto one wire before you solder
them together, pushing the heatshrink as far away from the solder
point as possible. I’ve lost count of the number of times I have soldered
something together only to remember too late that the heatshrink then
couldn’t be slid on. Every time that happens, I have to unsolder the wires
again.

3. Join the wires using the end-to-end method described in “Joining Wires
with Solder” on page 231. You’ll end up with something like Figure B-8a.

236 Appendix B

C

B

A

D

Figure B-8: Applying clear heatshrink tubing over joined wires

4. If you haven’t already done so, slide the heatshrink sleeve over the joint
(Figure B-8b). The heatshrink I show is clear so you can see that the
solder joint is good. Heatshrink is also commonly available in black and
other colors.

5. Heat up the heatshrink with a hair dryer or even a match held under-
neath it (Figure B-8c). You don’t need to make it super hot. Just keep
heating until you have a nice tight fit, as in Figure B-8d. But try not to
scorch it!

Basic Skills 237

Heatshrink comes in a huge range of diameters. If you plan to use it, I
suggest buying a selection box that has short lengths of various diameters of
heatshrink tubing. You can find these at auto parts stores, as heatshrink is
often used when modifying or repairing car wiring.

Using a Mult imeter
An electric current is a flow of electrons. But electrons are small—very small,
in fact. So when it comes to working out what’s going on electrically, we need
something that will allow us to measure what those pesky electrons are up to.

Where a doctor has a stethoscope to check the various pulse points in
your body, an electronics enthusiast will use a multimeter (Figure B-9) to
check specific points on a circuit.

Figure B-9: A multimeter

The multimeter shown in Figure B-9 cost about $5 but is still more
accurate and has a wider range of features than an expensive multimeter
from 20 years ago. Something like it should be perfectly good for any cur-
rent, voltage, or resistance you need to measure to get ready for the zombie
apocalypse.

A multimeter consists of a display at the top, a big rotary switch in the
middle to select different measurement ranges, and some sockets at the bot-
tom for attaching test leads. A multimeter should include test leads when

238 Appendix B

you buy it. These are usually of the sort shown in Figure B-10a, but it can
be very useful to also get some test leads that have alligator clips on the end
(Figure B-10b).

A B

Figure B-10: Test leads

Most auto parts stores will have multimeters, and many places where
you can buy tools might well have a multimeter or two. Amazon and eBay
also have a huge array of low-cost multimeters for you to choose from, if you
want to stock a couple in your apocalypse preparedness kit.

Measuring DC Voltage
Multimeters are most commonly used to measure DC voltage. This is what
we would do to, say, check the voltage of a battery (Figure B-11).

Figure B-11: Measuring DC voltage with a multimeter

Basic Skills 239

If the battery says on the case that it’s a 9V battery, but when you mea-
sure the voltage across its terminals you get a reading of 4V, then there is
something wrong with the battery. The 9V battery in Figure B-11 measures
8.53V, which is perfectly normal. If it’s under 8V, you should probably toss it.

To measure the voltage of a battery, follow these steps:

1. Set the range knob of the multimeter to DC volts and pick a range that is
higher than the highest voltage you are expecting. For a 9V battery, for
example, the 20V range is a good choice. (Multimeters also have an AC
voltage range. The AC ranges have a wavy line next to them, and the
DC ranges have one horizontal line above another.)

2. Make sure that the test leads are in the sockets for voltage measurement
and not for current measurement. The black lead should be plugged into
the COM socket, and the red lead should be plugged into the socket
marked with a V. This is important because when measuring current,
the multimeter leads are almost a short circuit and using a current-
configured meter to measure voltage would cause a short circuit across
the battery. This is likely to blow a fuse in the multimeter.

3. Connect the black COM lead to the negative end of the battery and the
red positive lead to the positive terminal of the battery. The multimeter’s
display will tell you the voltage.

In addition to measuring the voltage of a battery to find out whether
it’s good, you may want to measure the voltage across a component, say an
LED or resistor. In that case, just touch the probe leads to either side of the
component.

Measuring DC Current
When you need to maximize the life of your battery, which will be impor-
tant when the apocalypse is on, it’s often useful to see how much current
a device is using. As an example, we could test how much current will be
drawn by an Arduino.

Figure B-12 shows a multimeter set up to test the current consumption
of an Arduino powered from a 9V PP3 battery. A barrel jack lead is used to con-
nect the 9V battery. The multimeter sits in the circuit, measuring the current
flowing through it (in this case 32.6 mA). The positive terminal of the battery
is connected to the positive lead of the multimeter, and the rest of the circuit
(or in this case the Arduino) receives its power through the negative lead of
the multimeter.

240 Appendix B

Figure B-12: Measuring DC current with a multimeter

Follow these steps to measure current:

1. Set the range knob of the multimeter to a DC Amps range. On its own,
an Arduino only uses about 30mA of current, so select the 200mA range.
If in doubt, start with the maximum range (often 10A) and work down
if you need more precision.

2. Make sure that the positive test lead is in the correct current measuring
socket on the multimeter. For low currents (about 200mA or less), this is
often the same connection that’s used to measure volts. The multimeter
shown here has a separate socket for currents up to 10A, but since we
shouldn’t see more than 30mA, the voltage socket is being used.

3. Connect the positive test lead of the meter to the positive side of the
battery and the negative test lead to the positive voltage connection of
the lead to the Arduino.

As shown, the multimeter is effectively intercepting the current flowing
through the test leads in order to measure the current.

Measuring Resistance
“Resistor Color Codes” on page 225 includes a guide to identifying the
 values of resistors from their color stripes. Another way to find the value

Basic Skills 241

of a resistor is to measure it using a multimeter. Just set the meter to one of
its resistance ranges and then touch the two test leads to either side of the
resistor (Figure B-13).

Figure B-13: Measuring resistance with a multimeter

In this case, the resistor is measured as 118.2 Ω. The resistor’s nominal
value, according to the stripes, is 120 Ω. This slight discrepancy is perfectly
normal. Neither the multimeter nor the resistor itself will be completely
accurate.

N OTE Some meters also have one or more capacitance ranges, which you
can use to measure the value of capacitors in the same way.

Continuity Testing
Most multimeters have a Continuity or Buzzer mode, selectable from the range
knob. When the multimeter is set to continuity, a buzzer on the multimeter
sounds if the two test leads are touched together. The buzzer should also
sound when the leads are connected by something with low resistance, like
a wire, PCB track, or dubious solder joint.

This function may not sound very useful, but it is actually invaluable. It
allows you to test fuses as well as suspect wires that look okay but may have
a break beneath the insulation. It is also good for testing switches. Just touch
the leads the switch contacts, and if the multimeter buzzes when you flip the
switch, then all is well. Similarly, to test a fuse, first touch the test leads

242 Appendix B

together to hear the beep and make sure the multimeter is working and then
touch the leads to either end of the fuse. If the meter doesn’t work, then the
fuse has blown.

Bells and Whistles
The multimeter features I’ve already described will cover pretty much any
test you might need to perform on a circuit in this book. However, even a
cheap multimeter, like the one shown here, has some other useful settings:

AC voltage and current A separate set of ranges are needed for AC
because it swings both positive and negative, making its average value
zero, so the meter will convert the AC to DC internally before giving a
reading if one of these ranges is selected.

HFE This range will measure the gain (current amplification factor) of
a transistor plugged into the special transistor socket. This is also a quick
way to see whether a transistor is dead.

If you buy a more expensive multimeter, you will find it has even more
bells and whistles:

Frequency measurement Measures the frequency of a signal. You
could, for example, use this to find the frequency of the buzzer on the
smoke alarm in “Project 11: Quiet Fire Alarm” on page 120.

Temperature This function requires a special thermocouple probe. It’s
useful as a general thermometer and is especially valuable as a way to see
if components are getting dangerously hot.

Capacitance This setting is useful for comparing the capacitance
 written on the side of a capacitor with its actual capacitance. Electrolytic
capacitors are notoriously unreliable as they get older. They often degrade
into a zombie-like state, causing problems in many kinds of electronic
equipment.

Backlight Lights the screen on your multimeter, which is useful if you
are trying to use the multimeter to work out why the lights in your base
have gone out!

Auto power off Very handy if, like me, you tend to forget to switch
things off. You never know when you’ll find more batteries, after all.

Your multimeter will be one of your most useful tools, so get familiar
with it. That way, should you have to use it under pressure as the zombies
close in, you won’t have to waste valuable time consulting the manual.

C
A r d u i n o P r i m e r

Arduino microcontroller boards are
perfectly suited to a postapocalyptic

world. They’re robust, they’re reliable,
and they use very little power. If you’re new

to Arduino, this appendix will get you started
with this great little board so you can begin to
make your end-of-the-world preparations now
and greatly enhance your chances of survival.

What Is an Arduino?
There are various types of Arduino board, but by far the most common is the
Arduino Uno, and this is the one used for all the projects in this book (see
Figure C-1).

244 Appendix C

Reset Switch

USB
Socket

DC Power
Socket

Power Connectors Analog Inputs

ICSP
Header

ATMega328

Digital IO Pins
L LED

Power LED

Figure C-1: An Arduino Uno R3

The Arduino Uno shown in Figure C-1 is a revision 3 (R3) board, which
is the latest at the time of writing. We’ll have a look at each of the compo-
nents and their uses.

Let’s start our tour with the USB socket. This serves several purposes:
it can be used to provide power to the Arduino or to connect the Arduino
to your computer for programming. It can also serve as a communications
link to other computers, as in “Project 13: A Raspberry Pi Control Center” on
page 140 where it sends data from the Arduino to a Raspberry Pi. The little
red button on the Arduino is the Reset button. Pressing it will cause the pro-
gram that is installed on the Arduino to restart.

The connection sockets along both the top and bottom edges of the
Arduino are where you attach electronics. On the top side of Figure C-1 are
digital input and output pins, numbered 0 to 13 and configurable as either
inputs or outputs. Inputs read messages coming in; for example, if you con-
nect a switch to a digital input, the input will detect whether the switch is
pressed. Outputs send information or power out; if you connect an LED to a
digital output, you can turn it on by switching the output from low to high.
In fact, one LED, called the L LED, is built onto the board and connected to
digital pin 13.

On the right, the power LED indicates whether the board is powered.
The ICSP (In-Circuit Serial Programming) header is only for advanced pro-
gramming of the Arduino, and most casual users of Arduino will never use it.

Arduino Primer 245

The ATMega328 is a microcontroller integrated circuit (IC) and the
brains of the Arduino. The chip contains 32KB of flash memory, where you
store the program you want the Arduino to run.

On the bottom right of Figure C-1 is a row of analog input pins labeled
A0 to A5. Digital inputs can only tell whether something is on or off, but
analog inputs can actually measure the voltage at the pin, as long as the volt-
age is between 0V and 5V. Analog input pins could be used, for example, to
measure voltage from a temperature sensor like the one used in “Project 12:
Temperature Alarm” on page 131.

The final row of sockets provides miscellaneous power connections.
In “Project 4: Battery Monitor” on page 53, we use Vin (volts in) to provide
power to the Arduino; 5V and GND (or ground), which means 0V, are
also power connections that you will need when connecting external
electronics.

At the bottom left, we have a DC power jack, which is another power
connection. This can accept anything between 7V and 12V DC. The Arduino
will automatically accept power from the USB socket and power from the
DC connector or Vin socket, too.

Arduino Software
The Arduino might not be what you would expect from a computer. It has
no operating system and no keyboard, monitor, or mouse. This is, of course,
good news for the survivor who needs to travel light. And while you can
reprogram an Arduino as many times as you like, it also only ever runs a
single program (called a sketch) at a time. To program the Arduino, you must
have the Arduino IDE software installed on your normal computer, so we’ll
first cover installation and then talk about writing programs.

Installing the Arduino IDE
The Arduino IDE is easy to use, making it one major reason for the Arduino’s
great popularity. It is available for Windows, Mac, and Linux computers, and
it programs the Arduino over a USB connection without any need for special
programming hardware.

N OTE You will need an Internet connection to download the Arduino IDE,
so do this before you start hearing about zombies on the news!

To install the Arduino IDE for your platform, download the software
from the Arduino site at http://www.arduino.cc/ (click Download at the top
and install the version that’s appropriate for your system). Then follow the

http://www.arduino.cc/

246 Appendix C

instructions from the Getting Started link. Windows and Mac users will
need to install USB drivers for the Arduino IDE to be able to communicate
with the Arduino.

Once you have everything installed, run the Arduino IDE. Figure C-2
shows the Arduino IDE window with some code in it.

Verify
Upload Serial Monitor

Program
Area

Status

Log

Figure C-2: The Arduino IDE window

The Upload button, as the name suggests, uploads the current sketch to
the Arduino board. Before uploading, however, it converts the textual pro-
gramming code into executable code for the Arduino and displays any errors
in the Log area. The Verify button checks the code for errors without upload-
ing the program to the board.

Arduino Primer 247

The serial monitor button opens the serial monitor window, which is
used for two-way communication between the Arduino and another com-
puter, as in “Project 13: A Raspberry Pi Control Center” on page 140. You
can type in text messages to send to the Arduino, and you should see any
responses that come back in the same window. The Status area at the bot-
tom of the screen gives information on the type of Arduino you’re using and
the corresponding serial port that will be programmed when the Upload but-
ton is pressed. The Status area in Figure C-2 also shows the type of port you
would expect to see when using a Mac or Linux computer (something like
/dev/cu.usbmodem411). If you’re using a Windows computer, this will display
COM followed by a number.

The large, white area of the IDE is the Program Area, where you type the
program code you want uploaded to the Arduino.

The File menu allows you to Open and Save sketches as you would in a
word processor, and it has an Examples submenu from which you can load
example sketches.

Uploading a Sketch
To test out your Arduino board and make sure the Arduino IDE is properly
installed, click File4Examples401. Basics to open the example sketch
called Blink (shown in Figure C-2).

Use a USB cable to attach your Arduino to your computer. The power
LED of the Arduino should light up as it’s plugged in, and a few other LEDs
should flicker as well.

Now that the Arduino is connected, you need to tell the IDE the type of
board being programmed and the serial port it’s connected to. Set the board
using the menu Tools4Board and then select Arduino Uno from the list of
boards.

Set the serial port using the menu Tools4Port. If you’re using a
Windows computer, you probably won’t have many options there; you may
find only the option COM4. On a Mac or Linux computer, there are generally
more serial connections listed, many of which are internal devices, and it can
be difficult to work out which one refers to your Arduino board.

Usually, the correct port is one that starts dev/ttyusbmodemNNNN, where
NNNN is a number. In Figure C-3, the Arduino attached to my Mac has been
selected.

248 Appendix C

Figure C-3: Selecting the Arduino serial port

If your Arduino doesn’t show up in the list, this usually means you
have a problem with the USB drivers, so try reinstalling them. If you’re a
Windows user, try rebooting.

You should now be ready to upload the sketch to the Arduino, so press
the Upload button. Messages should appear in Log area, and then the TX
and RX LEDs on the Arduino should flicker as the program is uploaded onto
the board.

When the upload is complete, you should see a message like the one
shown in Figure C-4.

Figure C-4: A successful upload

The Done uploading message tells you that the sketch has uploaded, and
the last line in the console tells you that you’ve used 1,084 bytes of the 32,256
bytes available on your Arduino.

Once the sketch is uploaded, the built-in L LED on the Arduino should
blink slowly on and off, which is just what the Blink program is expected to do.

Installing the Antizombie Sketches
All the sketches for the book are available via the book’s website (http://www
.nostarch.com/zombies/). Click on the Download Code link to download a ZIP
file called zombies-master.zip. Make sure to do this before the apocalypse begins,

http://www.nostarch.com/zombies/
http://www.nostarch.com/zombies/

Arduino Primer 249

because your broadband is likely to be a low priority once the infection has
begun to spread. This folder will contain all the Arduino and Raspberry Pi
programs for the projects in this book.

Install the Arduino sketches so that you can use them directly from
your Arduino IDE by copying the subfolders from the Arduino folder into
Documents/Arduino folder for Mac and Linux users and My Documents\Arduino
for Windows users. Exit and reopen the Arduino IDE. Now when you view
File4Sketchbook, you should find all the book’s sketches listed.

Arduino Programming Basics
This section contains an overview of the main Arduino programming com-
mands to help you understand the sketches used to do with zombies. If you’re
interested in learning the Arduino C programming language, consider get-
ting a copy of my book Programming Arduino: Getting Started with Sketches
(Tab Books, 2012). The technical reviewer for the book you’re reading now
(Jeremy Blum) has also written a very good book on Arduino and has pro-
duced a superb series of video tutorials. You can find links to all this from his
website (http://www.jeremyblum.com/).

Structure of an Arduino Sketch
All Arduino sketches must have two basic functions (units of program code
that perform a task): setup and loop. To see how they work, let’s dissect the
Blink example that we looked at earlier.

int led = 13;

// the setup routine runs once when you press reset
void setup() {

 // initialize the digital pin as an output
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Your Blink sketch might be slightly different if you have a newer version
of the Arduino IDE, so for the purposes of this discussion, refer to the sketch
printed here rather than the one loaded in your IDE.

http://www.jeremyblum.com/

250 Appendix C

The text preceded by a double slash (//) is called a comment. It’s not
executable program code but rather a description of what’s happening at that
point in the sketch.

Just after the words setup() and loop(), we have a { symbol. (Sometimes
this is put on the same line as the preceding word and sometimes on the next
line. Where it goes is just a matter of personal preference and has no effect
on the running of the code.) The { symbol marks the start of a block of code,
which ends with a corresponding } symbol. You’ll use curly brackets to group
together all lines of code that belong to a particular function or other control
structure.

The lines of code inside the setup function run just once, when power
is applied to the Arduino or the Reset button is pressed. You use setup to
perform all the tasks that need doing just once when the program starts. In
Blink, the code inside the setup function just sets the LED pin as an output.

The commands inside the loop function will be run over and over again;
in other words, when the last line inside loop has run, the first line will start
again.

Now, let’s parse this sketch, starting from the top line.

Creating Variables and Constants
Variables are a way of giving names to values; for example, the first line of
Blink labels pin 13 led:

int led = 13;

This defines an int variable called led and gives it an initial value of 13,
because 13 is the number of the Arduino pin that the L LED is connected to.
The word int is short for integer and means that this variable returns a whole
number without decimals.

In some of the book’s other sketches, variables like this, that define a spe-
cific pin to be used, are preceded by a const keyword:

const int led = 13;

The const keyword tells the Arduino IDE that the value of led is never
going to change from 13, making it a constant. Assigning values this way
results in slightly smaller and quicker sketches and is generally considered
a good habit.

Arduino Primer 251

Configuring Digital Outputs
The Blink sketch also shows a good example of a setting a pin up to be a
digital output. Pin 13, having been defined as led, is configured as an output in
the setup function by this line:

 pinMode(led, OUTPUT);

As this only needs to be done once, it is placed inside the setup function.
Once the pin is set as an output, it will stay an output until we tell it to be
something else.

For it to blink, the LED needs to turn on and off repeatedly, so the code
for this goes inside loop:

 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second

The command digitalWrite takes two parameters (pieces of data that the
function needs to run), which are passed to the function inside parentheses
and separated by a comma. The first parameter defines which Arduino pin to
write to (in this case, pin 13, as specified by led), and the second parameter
gives the value to be written to the pin. A value of HIGH sets the output to 5V,
turning the LED on, and a value of LOW sets the pin to 0V, turning the LED off.

The delay function holds the parameter that defines how long the
Arduino should continue with its current function. In this case, a value of
1000 delays the program for one second before changing the state of the LED.

Configuring Digital Inputs
Digital pins can also be set as input pins using the pinMode command. The
Blink sketch doesn’t do this, so here’s an example:

pinMode(7, INPUT)

This pinMode function sets pin 7 as an input. Just as with an output,
you’ll rarely need to change the mode of a pin, so define input pins in the
setup function.

252 Appendix C

Having set the pin as an input, you can then read the voltage at that pin,
as in this example loop function:

loop()
{
 if (digitalRead(7) == HIGH)
 {
 digitalWrite(led, LOW)
 }
}

Here, the LED will be turned off if the input at pin 7 is read as HIGH at the
time it is tested. The Arduino decides whether to turn the LED on with an
if statement, which starts with the if command. Immediately after the word
if is a condition. In this case, the condition is (digitalRead(7) == HIGH). The
double equal sign (==) tells the machine to compare the two values on either
side. In this case, if pin 7 is HIGH, then the block of code surrounded by { and
} after the if will run; otherwise it won’t. We have already met the code to
be run if the condition is true. This is the digitalWrite command to turn the
LED on.

N OTE Lining up the { and } makes it easier to see which } belongs to
which {.

Stabilizing Digital Inputs with Pull-up Resistors
The preceding example code in assumes that the digital input is definitely
either high or low. A switch connected to a digital input can only close a con-
nection. You’ll typically connect switches in such a way that when flipped,
the digital input is connected to GND (0V). While the switch’s connection is
open, the digital input is said to be floating. That means the input isn’t electri-
cally connected to anything, but a floating input can still pick up electrical
noise from the circuitry around it, causing the voltage on the pin to oscillate
between high and low.

This behavior is undesirable because the code could be activated unex-
pectedly. To prevent input pins from floating, just add a pull-up resistor
(Figure C-5). We use just such a resistor in “Project 6: PIR Zombie Detector”
on page 72.

When the switch is open (as shown in Figure C-5), the resistor connects
the input pin to a voltage source, pulling up the voltage at the input pin to
5V and holding it there. Pressing the button to close the switch overrides the
weak pulling up of the input, connecting the digital input to GND instead.

Arduino Primer 253

Switch

Arduino

Pull-up
Resistor

5V

GND

Digital Input

Figure C-5: Schematic for using a pull-up
resistor with a digital input

Arduino inputs have built-in pull-up resistors of about 40 kΩ that you
can enable as follows:

pinMode(switchPin, INPUT_PULLUP);

This example shows how you would set the pin mode of a digital input
to be used with a switch using the Arduino pull-up resistor: just set the pin
mode to INPUT_PULLUP rather than INPUT.

Reading Analog Inputs
Analog inputs allow you to measure a voltage between 0V and 5V on any of
the A0 to A5 analog input pins on the Arduino. Unlike with digital inputs
and outputs, you don’t need to include the pinMode command in setup when
using an analog input.

You use analogRead to read the value of an analog input, and you sup-
ply the name of the pin you want to read as a parameter. Unlike digitalRead,
analogRead returns a number rather than just true or false values. The returned
number will be between 0 (0V) and 1,023 (5V). To convert the number into
an applicable voltage, multiply the value by 5 and then divide it by 1,023,
which amounts to dividing it by 204.6.

Here’s how you’d read an analog value and convert it in Arduino code:

int raw = analogRead(A0);
float volts = raw / 204.6;

254 Appendix C

The variable raw is an int (whole number) because the reading from an
analog input is always a whole number. To scale the raw reading as a decimal
number, the variable needs to be a float (floating point) type of variable.

Writing to Analog Outputs
Digital outputs only allow you to turn a component (like an LED) on and
off, but analog outputs allow you to control the level of power supplied to a
component incrementally. This control allows you to, for example, control
the brightness of an LED or the speed of a motor. This is used in “Project 20:
Silent Haptic Communication with Arduino” on page 209 to reduce the
power to the motor so that it doesn’t attract zombies by making too much
noise.

Only the pins D3, D5, D6, D9, D10, or D11 are capable of being used as
analog outputs. These pins are marked with a little tilde (~) beside the pin
number on the Arduino.

To control an analog output, use the command analogWrite with a num-
ber between 0 and 255 as the parameter, as in the following line:

analogWrite(3, 127);

A value of 0 is 0V and fully off, while a value of 255 is 5V and fully on.
In this example, we set the output of pin D3 to 127, which would be half
power.

Repeating Code in Control Loops
Control loops (not to be confused with the loop function) allow you to repeat
an action a set number of times or until some condition changes. There are
two commands you can use for looping: for and while. You would use the
for command for repeating something a fixed number of times and while for
repeating something until a condition changes.

The following code makes an LED blink 10 times and then stops:

void setup() {
 pinMode(led, OUTPUT);
 for (int i = 0; i < 10; i++)
 {
 digitalWrite(led, HIGH);
 delay(1000);
 digitalWrite(led, LOW);
 delay(1000);
 }
void loop() {
}

Arduino Primer 255

How AnAlog outPuts generAte VoltAges
It is tempting to think of an analog output as being capable of a
voltage between 0V and 5V, and if you attach a voltmeter between
an analog output pin and GND, the voltage will indeed seem to
take on values between 0V and 5V as you change the parameter
to analogWrite. In fact, things are a little more complex than
that. This kind of output is using pulse width modulation (PWM) .
Figure C-6 shows what is really going on.

90%

50%

5%

0V

0V

0V

5V

5V

5V

490 pulses per second

Figure C-6: Analog output’s pulse width modulation

An analog output pin generates 490 pulses per second with varied
pulse widths. The larger the proportion of the time that the pulse
stays high, the greater the power delivered to the output, and hence
the brighter the LED or faster the motor.

A voltmeter reports this as a change in voltage because the
voltmeter cannot respond fast enough and therefore does a kind of
averaging (integration).

256 Appendix C

In this example, we place the blinking code in setup rather than loop,
because loop would repeat the blink cycle immediately so the LED would not
stop after 10 times.

If you wanted to keep an LED blinking as long as a button connected to
a digital input was pressed, you would use a while command:

u while (digitalRead(9) == LOW)
{
 digitalWrite(led, HIGH);
 delay(1000);
 digitalWrite(led, LOW);
 delay(1000);
}

This code says that while pin 9 detects that a button is being pressed u,
the LED should be lit.

Setting Two Conditions with If/Else
In “Configuring Digital Outputs” on page 251, we used an if command to
tell the Arduino IDE to do something if a certain condition was met. You
can also use if in conjunction with the else command to instruct the IDE
to perform one set of code if the condition is true and a different set of com-
mands if it is false. Here’s an example:

if (analogRead(A0) > 500)
{
 digitalWrite(led, HIGH);
}
else
{
 digitalWrite(led, LOW);
}

This if statement turns the led pin on if an analog reading is greater
than 500 or off if the reading is less than or equal to 500.

Making Logical Comparisons
So far we have used two types of comparison: == (equal to) and > (greater
than). Here are some more comparisons you can make:

<= less than or equal to

>= greater than or equal to

!= not equal to

Arduino Primer 257

You can also make more complicated comparisons using logical opera-
tors like && (and) and || (or). For example, to turn an LED on if a reading is
between 300 and 400, you could write the following:

int reading = analogRead(A0);
if ((reading >= 300) && (reading <= 400))
{
 digitalWrite(led, HIGH);
}
{
 digitalWrite(led, LOW);
}

In English, this code might read, “If the reading is greater than or equal
to 300 and the reading is less than or equal to 400, then turn the LED on.”
Since we’re using the && operator to specify that both conditions must be
true, if either condition is not met, the LED remains dark.

Grouping Code into Functions
Functions can be confusing if you’re new to programming. Functions are best
thought of as ways to group together lines of code and give them a name so
that the block of code is easy to use over and over again.

Built-in functions such as digitalWrite are more complicated than they
first seem. Here is the code for the digitalWrite function:

void digitalWrite(uint8_t pin, uint8_t val)
{
 uint8_t timer = digitalPinToTimer(pin);
 uint8_t bit = digitalPinToBitMask(pin);
 uint8_t port = digitalPinToPort(pin);
 volatile uint8_t *out;

 if (port == NOT_A_PIN) return;

 // If the pin that support PWM output, we need to turn it off
 // before doing a digital write.
 if (timer != NOT_ON_TIMER) turnOffPWM(timer);

 out = portOutputRegister(port);

 uint8_t oldSREG = SREG;
 cli();

 if (val == LOW) {
 *out &= ~bit;
 } else {
 *out |= bit;
 }

258 Appendix C

 SREG = oldSREG;
}

Since someone already wrote the digitalWrite function, we don’t have to
worry about what all this code does; we can just be glad that we don’t have
to type it all out every time we want to change pin from high to low. By giv-
ing that big chunk of code a name, we can just call the name to use this code.

You can create your own functions to use as shortcuts for more compli-
cated chunks of code. For example, to create a function that makes an LED
blink the number of times you specify as a parameter, with the LED pin also
specified as a parameter, you could use the sketch below. This function is
named blink, and you can call it during startup so that the Arduino L LED
blinks five times after a reset.

u const int ledPin = 13;

v void setup()
{
 pinMode(ledPin, OUTPUT);

w blink(ledPin, 5);
}

void loop() {}

x void blink(int pin, int n)
{

y for (int i = 0; i < n; i++)
 {
 digitalWrite(ledPin, HIGH);
 delay(500);
 digitalWrite(ledPin, LOW);
 delay(500);
 }
}

At u, we define the pin being used. The setup function at v sets ledPin as
an output and then calls the function blink w, passing it the relevant pin and
the number of times to blink (5). The loop function is empty and does noth-
ing, but the Arduino IDE insists that we include it even if it serves no purpose.
If you don’t include it, you will get an error message when you install the
program.

The blink function itself begins at x with void. void indicates that the
function does not return any value, so you cannot assign the result of call-
ing that function to a variable, as you might want to do if the function
performed some kind of calculation. Then follows the name of the function
(blink) and the parameters the function takes, enclosed within parentheses
and separated by commas. When you define a function, you must specify the

Arduino Primer 259

type of each of the parameters (for example, whether they are int or float).
In this case, both the pin (pin) and the number of times to blink (n) are int
values. Lastly, at y, we have a for loop that repeats the digitalWrite and delay
commands inside it n times.

That’s it for the software crash course. If you want to learn more about
programming for Arduinos, visit http://www.arduino.cc/ before everyone at
your Internet service provider becomes a zombie.

Assembl ing a Screwshield
Many of the projects in this book use a screwshield that fits over the
Arduino sockets and allows you to connect wires to Arduino pins using
screw terminals. Not all wires will fit into the normal Arduino sockets, but
almost any thickness of wire will fit securely in a screw terminal and won’t
come loose. There are various screwshields on the market, all with slightly
different layouts. In this book, I use the popular model from Adafruit (the
proto-screwshield, part number 196), which is provided as a kit that you have
to solder together. There are lots of connections to make, but none of them
are difficult. The component parts of the proto-screwshield are shown in
Figure C-7.

LEDs x2

Pass-through Headers

Resistors x2

Screw Terminals

Push Button
Switch

Screwshield

Figure C-7: The parts of Adafruit’s Proto-Screwshield

The screw terminals line the edge of the board and Arduino pass-through
headers. The screwshield pass-through headers slot through the shield into
the PCB. You can plug wires into these as you would in the Arduino Uno, and
they have sockets on the top side so you can plug still another shield on top.

http://www.arduino.cc/

260 Appendix C

Of the two LEDs, one is a power LED that indicates when the board is
powered up, and the other is for you to use in your build. You don’t have to
solder either LED in place if you don’t need them. The push button is a reset
switch, which can be useful as it’s hard to get at the Arduino’s reset button
when the screwshield is in place. Again, it is by no means essential.

Figure C-8 shows the board being assembled.

A

B

C

Figure C-8: Assembling the screwshield

Arduino Primer 261

To assemble the screwshield, follow these steps:

1. Solder the LEDs, resistors, and switch (assuming you want them) in
place (Figure C-8a).

2. Put all the screw terminals in place along the outermost edges of the
screwshield (Figure C-8b) and flip the board over to solder them on the
underside of the PCB. Make sure they are the right way around so that
the openings where the wires enter are facing outward, away from the
board.

3. Push the pass-through headers through from the top of the board
(Figure C-8c) and solder them. Notice that there are two rows of holes
on each side of the board where they are able to go; place them in the
outer sets of holes. The inner sets are used to wire things up to the pins
on the central prototyping area of the board.

If you need a refresher on how to solder to a PCB, review “Soldering
Basics” on page 230. With your components in place, make sure your solder
joints look sound (also described in “Soldering Basics”). You should be ready
to deploy this handy shield in all of your antizombie base defense endeavors
and conserve precious solder for devices you intend to last a long time.

Further Resources
There are many great online resources and books that will tell you more
about how to use the Arduino in your projects. Here are a few links to get
you started:

•	 I have written a number of books on Arduino, including Programming
Arduino: Getting Started with Sketches (Tab Books, 2012) and various
Arduino project books. You can find a full list of my books at http://
www.simonmonk.org/.

•	 Jeremy Blum, the technical editor of this book, has made a great series
of introductory videos on the Arduino, which you can find here: https://
www.youtube.com/playlist?list=PLA567CE235D39FA84.

•	 Jeremy also has written a great book on Arduino, called Exploring Arduino
(Wiley, 2013).

•	 I have written a series of online Arduino lessons, the Adafruit “Learn
Arduino” series, which you can find here: https://learn.adafruit.com/series/
learn-arduino/.

http://www.simonmonk.org/
http://www.simonmonk.org/
https://www.youtube.com/playlist?list=PLA567CE235D39FA84
https://www.youtube.com/playlist?list=PLA567CE235D39FA84
https://learn.adafruit.com/series/learn-arduino/
https://learn.adafruit.com/series/learn-arduino/

Symbols and Numbers
&& (and) operator, 257
* characters, 61
{ }, 250
== (double equal sign), 252
// (double slash), 250
|| (or) operator, 257
? command, 143, 144, 148
~ (tilde), 254
+5V pin, 150, 151
28 Days Later (film), 7

A
A (amperes), 23
AA batteries, 25
AC (alternating current), 23–24

adapters for converting to DC, 24
battery chargers powered by, 25
inverters for converting DC to, 24,

49–50
voltage range, on multimeters, 242

Adafruit “Learn Arduino” series, 261
Adafruit PIR module, 77
Adafruit’s ARDX Experimenters Kit for

Arduino, 224
adapters

for converting AC to DC, 24
USB, 48–49

Address Resolution Protocol (ARP), 100
aircraft, 10
alarm function, 77, 130, 136
alarms. See PIR (passive infrared)

detector; quiet fire alarm;
temperature alarm; trip wire
alarm

All_Sensors sketch, 76–77, 115, 129, 135,
142, 143, 144

alternating current. See AC (alternating
current)

alternators, 25–26. See also bicycle
generator

amperes (A), 23
analog inputs, on Arduino

reading, 253–254
writing to, 254

analog outputs, on Arduino, 255
analogRead command, 253
analogWrite command, 253
and (&&) operator, 257
antibiotics, 14
antiseptic, 14
App class, 146
apt-get package management

software, 87
Arduino flash distractor, 158–169

constructing, 161–166
materials for, 160
software for, 166–168
using, 168–169

Arduino FM radio frequency hopper,
188–196

constructing, 189–194
materials for, 189
software for, 194–196
using, 196

Arduino IDE. See also Arduino
programming

installing, 245–247
installing sketches, 248–249
serial monitor window, 247
setting serial port, 247–248
specifying type of board, 247
uploading sketches, 247–248

Arduino microcontroller board, 18
Arduino Uno, 243–244
assembling screwshield, 259–261
ATMega328 microcontroller

integrated circuit (IC), 245

I n d e x

264 Index

Arduino microcontroller board, continued
connection sockets, 244
DC power jack, 245
ICSP (In Circuit Serial

Programming) header, 244
input and output pins, 244, 245
LEDs of, 244, 247, 260
measuring DC current drawn by,

239–240
overview, 243–245
projects using. See Arduino flash

distractor; Arduino FM
radio frequency hopper;
Arduino Morse code beacon;
Arduino movement and
sound distractor; battery
monitor; Bluetooth, wireless
Raspberry Pi control center
using; door sensor; haptic
communicator; PIR (passive
infrared) detector; quiet fire
alarm; Raspberry Pi control
center; temperature alarm

resources for learning more
about, 261

restarting, 244
Arduino Morse code beacon, 196–207

constructing, 198–201
materials for, 197–198
software for, 201–205
using, 205–207

Arduino movement and sound
distractor, 169–180

constructing, 171–177
materials for, 170
software for, 177–179
using, 180

Arduino programming, 249–259.
See also Arduino IDE

configuring digital inputs, 251–252
configuring digital outputs, 251
creating variables and constants, 250
grouping code into functions,

257–259
making logical comparisons,

256–257
reading analog inputs, 253–254

repeating code in control loops,
254–256

setting two conditions with
if/else, 256

stabilizing digital inputs with
pull-up resistors, 252–253

structure of sketches, 249–250
writing to analog outputs, 254

ARDX Experimenters Kit for
Arduino, 224

armor, 13
ARP (Address Resolution Protocol), 100
ATMega328 microcontroller integrated

circuit (IC), 245
Auto power off, on multimeters, 242
axes, 11, 12

B
backlight, on multimeters, 242
backpacks, 14
barbecue grills, 11
barrel jack adapter, 160, 169
baseball bat, 11, 12
batteries, 24–25. See also battery

monitor; car batteries
charging, 25–26
inserting in devices, 23
life of, 20
rechargeable, 25
single-use, 25

battery monitor, 53–61
constructing, 55–57
materials for, 54–55
software for, 57–61
using, 61

beep function, 179
bicycle generator, 34–43

constructing, 35–43
materials for, 35
using, 43

blink function, 258
Blink sketch

loop function in, 249, 250
setup function in, 249, 250
uploading, 247–248

“blobby” solder joints, 234–235

Index 265

blood, infection from, 13
Bluetooth, wireless Raspberry Pi control

center using, 149–156
constructing, 150–154
materials for, 150
software for, 154–156
using, 156

Bluetooth dongles, 149
Bluetooth HC-06 modules, 149–154
Blum, Jeremy, 249, 261
boats, 10
bombs, 12
Booleans, 59
brick-and-mortar suppliers, 16–17, 222
Buzzer mode, of multimeters, 241
buzzers

in Arduino movement and sound
distractor project, 170

in battery monitor project, 54,
56–57

in quiet fire alarm project, 123–125
buzzerVolume constant, 218
buzzMinDuration constant, 218, 220
byte data array, 218

C
Cambridge Silicon Radio (CSR)

device, 149
camera_res constraint, 92–93
cameras

as flash distractors, 158–169
constructing, 161–166
materials for, 160
software for, 166–168
using, 168–169

for surveillance 87–96
construction, 89–95
materials for, 88–89
using, 95–96

Capacitance setting, on multimeters, 242
capacitor of flash modules,

discharging, 163
car batteries. See also batteries

benefits of, 25
caution using, 47
monitoring, 47–48

powering devices from, 46–49
AC inverters, 49–50
cigarette lighter sockets, 46–48
USB power, 48–49

projects using. See battery monitor;
bicycle generator; LED
lighting; solar recharger; trip
wire alarm

protecting from damage, 47
cars, parts from, 15–16
char arrays, 202
charge controllers. See solar recharger
charging batteries, 25–26
check_for_movement function, 93, 95
checkDoor function, 116
checkForBuzz function, 219, 220
checkPIR function, 77
checkSmoke function, 130
checkTemp function, 135–136
Chromium browser, 86–87
cigarette lighter sockets, 46–48
cigarette lighter–to–barrel jack

adapter, 169
clothing, 12–13
comments, in Arduino sketches, 250
communication. See Arduino FM radio

frequency hopper; Arduino
Morse code beacon; haptic
communicator; Raspberry Pi
radio transmitter beacon

computer monitors. See monitors,
computer

computers, laptop. See laptop computers
connection sockets, Arduino

microcontroller board, 244
connectors, 223
const keyword, 250
constants, creating, 250
construction of projects. See project

construction
Continuity mode, of multimeters, 241
continuity testing, 241–242
control center for base. See Raspberry Pi

control center
control_center_ usb.py file, 145
control loops, repeating code in,

254–256

266 Index

control.py program, 145, 156
cooking, power consumption of, 21
count variable, 95, 195, 196
crontab utility, 187
CSR (Cambridge Silicon Radio)

device, 149
curly brackets ({ }), 250
current. See also AC (alternating

current); DC (direct current)
range of, on multimeters, 242
vs. voltage, 22

D
D+ (field connection), on alternators, 39
DC (direct current), 22–23

adapters for converting AC to, 24
inverters for converting to AC,

24, 49
measuring, 239–240
measuring voltage, 238–239

DC power jack, Arduino microcontroller
board, 245

delay function, 168, 251
DHCP (Dynamic Host Configuration

Protocol), 99, 100, 102
diff_image image, 94
digital inputs

configuring, 251–252
stabilizing using pull-up resistors,

252–253
digital outputs, configuring, 251
digitalWrite function, 251, 257–259
direct current. See DC (direct current)
displayBar function, 61
displayVoltage function, 60
disposable cameras. See Arduino flash

distractor
distance parameter, 93
door lock. See remote door lock
door sensor, 112–117

constructing, 114–115
materials for, 113–114
software for, 115–116
using, 117

double equal sign (==), 252
double slash (//), 250
drive belts, 26. See also bicycle generator

dry joints, 231
Dynamic Host Configuration Protocol

(DHCP), 99, 100, 102

E
EEPROM memory, 201, 203
electricity generation, 19–43. See also

batteries
with bicycle, 34–43

constructing, 35–43
materials for, 35
using, 43

power vs. energy, 20–21
via solar power, 26–34

charge controllers, 26–27
constructing, 28–33
materials for, 27–28
solar panels, 26
using, 32–33

types of electricity, 21–24
electricity use, 45–61

battery monitor, 53–61
constructing, 55–57
materials for, 54–55
software for, 57–61
using, 61

LED lighting, 49–53
constructing, 50–52
materials for, 50
using, 52–53

powering devices from car battery,
46–49

AC inverters, 49–50
cigarette lighter sockets, 46–48
USB power, 48–49

electric room heater, power
consumption of, 21

electric shower, power
consumption of, 21

electromechanical door latch. See
remote door lock

electronic components, 224–225
electronic modules, 17–18, 222
else command, 256
energy, vs. power, 20–21
environmental monitoring. See quiet

fire alarm

Index 267

Exploring Arduino (Blum), 261
explosives, 12

F
f constant, 177
farming, 11
field connection (D+), on alternators, 39
fighting zombies, 11–13
File menu, Arduino IDE, 247
flags, in Arduino movement and sound

distractor, 175
flashCircle function, 167–168
flashDotOrDash function, 205
flashguns. See Arduino flash distractor
flashMessage function, 204
flashPins constant integer array,

166–167
flashSequence function, 204, 205
float constant, 135
floating inputs, 252
floats, 58
FM (frequency modulation), 186
FM radio, power consumption of, 21
food

bartering for, 34
during zombie apocalypse, 11
power consumption of cooking, 21

for command, 254
for loop, 258
frequency measurement, on

multimeters, 242
frequency modulation (FM), 186
Fry’s Electronics, 222
fuel, 11
functions, grouping code into, 257–259
fuses, 41

connecting (in LED lighting
project), 51–52

using with car batteries, 47

G
gapBetweenRepeats constant, 202
general purpose input and output

(GPIO) connector, 83, 90
generators

bicycle generator project, 34–43
gasoline, 43

GitHub, 92
glasses, 14
GND pin, 150, 151
go bags, 14
GPIO (general purpose input and

output) connector, 83, 90
GPIO pin identification template, 90
grenades, 12
grills, 11
group survival, 14–15
grouping code into functions, 257–259
guns, 11, 12

H
hair dryer, power consumption of, 21
handguns, 12
haptic communicator, 209–220

constructing, 212–217
materials for, 211–212
software for, 217–220
using, 220

hci0 interface, 155
health, 13–14
heat detectors. See PIR (passive infrared)

detector
heating, 11, 21
heatshrink, 132, 235–237
Hell of the Living Dead (film), 7
HFE range, on multimeters, 242
high impedance, 190
high-voltage AC, 23–24
home, security level of, 9–10
horn. See trip wire alarm
hospitals, 14
hunting knifes, 12

I
ICSP (In Circuit Serial Programming)

header, 244
if command, 219, 252, 256
ifconfig command, 100
Imperial College Robotics Society, 184
incendiary bombs, 12
In Circuit Serial Programming (ICSP)

header, 244
input and output pins, Arduino micro-

controller board, 244–245

268 Index

installing
Arduino IDE, 245–247
Arduino sketches, 248–249

insulating
soldered connection, 232
wires, using heatshrink, 235–237

int variable, 250
inverters, for converting DC to AC,

24, 49
IP addresses, 100–102
iron bars, 12

J
joining wires

by soldering, 230, 231–233
by twisting, 228–230

Joule, James, 20
joules, 20

K
k constant, 59
killing, of zombies, 11–13
knifes, 12, 14

L
lamps, in Arduino Morse code beacon

project, 200–201
LAN (local area network), 99
laptop computers

advantages of Raspberry Pi over, 82
lithium batteries for, 24, 25
power consumption of, 21, 82

lastFlashTime variable, 204
LCD display shields, 54
lead-acid batteries. See car batteries
lead-free solder, 231
leads, 223
“Learn Arduino” series, 261
LED light bulb, power

consumption of, 21
LED lighting, 49–53

constructing, 50–52
materials for, 50
using, 52–53

led variable, 250
ledPin constant, 202
LEDs, of Arduino microcontroller board,

244, 247, 260
LiPo (lithium polymer) batteries, 24, 25
LiquidCrystal library, 58
listenMode function, 219, 220
lithium polymer (LiPo) batteries, 24, 25
local area network (LAN), 99
locks. See remote door lock
logical comparisons, 256–257
logical operators, 257
loop function, 252, 258

in Arduino flash distractor
project, 167

in Arduino FM radio frequency
hopper project, 195

in Arduino Morse code beacon
project, 203

main discussion, 249, 250
in haptic communicator project, 219

low-voltage DC, 22–23
lsusb command, 91
Lundin, Cody, 10

M
mA (milliamps), 22
MAC address, 155
magnetic field, alternators and, 36
magnets, in door sensor project, 113,

116, 117
makeNoise function, 178, 179
Maplin Electronics, 222
maxMessageLen constant, 202
maxServoAngle constant, 177
maxTemp constant, 136
measuring

DC current, 239–240
DC voltage, 238–239
resistance, 240–241

mechanical construction, 17
message character array, 203
message variable, 202
metal oxide semiconductor field effect

transistors (MOSFETs), 199
micro SD card, for Raspberry Pi, 86

Index 269

microswitches
identifying terminals of, 68
obtaining, 66–67
projects using. See trip wire alarm

microwave, obtaining microswitch
from, 66–67

milliamps (mA), 22
mine shafts, 12
minServoAngle constant, 177
MirfHardwareSpiDriver library, 217
Mirf library, 217
Molotov cocktails, 12
monitor.py program, 91, 95
monitors, computer

power consumption of, 21, 83
used with USB webcam project,

83, 86
monocrystalline silicon solar panels, 26
Morse code, 196–207, 210
MOSFETs (metal oxide semiconductor

fild effect transistors), 199
multimeters, 237–242

bells and whistles, 242
continuity testing, 241–242
measuring DC current, 239–240
measuring DC voltage, 238–239
measuring resistance, 240–241

MUTE notifiation, 60
Mythbusters, “Zombie Special”

episode of, 11

N
NASA’s standards for wire splicing, 230
negative charging terminal (–), on

alternators, 39
Night of the Living Dead (film), 6
NOOBS (New Out Of the Box

Software) installer,
Raspberry Pi, 86

NRF24 radio module, 213, 214
numStations, 196

O
old_image variable, 93
or (||) operator, 257
overallDelay constant, 167

P
parts, 15–17, 221–226

brick-and-mortar suppliers,
16–17, 222

from cars, 15–16
electronic components, 224–225
electronics modules, 222
leads and connectors, 223
other hardware, 225
Raspberry Pi and related parts, 223
resistor color codes, 225–226
tools, 224

passive infrared detector. See PIR
(passive infrared) detector

PCB (printed circuit board), soldering,
234–235

pedal generator. See bicycle generator
period constant, 195
pharmacies, 14
photovoltaic (PV) solar panels, 26. See

also solar recharger
piezo buzzers, 54, 56–57

in Arduino movement and sound
distractor project, 171–174

self-drive, 124
pifm software, 186
pin header, 170
pinMode command, 251, 253
PIR (passive infrared) detector, 72–79

constructing, 74–76
materials for, 73–74
scavenged PIR sensors, 77–79
software for, 76–77
using, 77

pirPIN constant, 76–77
pits, for trapping zombies, 12
PixelArray, 94
plastic boxes, for protecting

communicators, 210
polycrystalline silicon solar panels, 26
portable FM radio, power

consumption of, 21
positive charging terminal (–), on

alternators, 39
postapocalypse survival 101, 9–15

dressing to kill, 12–13
food and fuel, 11

270 Index

postapocalypse survival 101, continued
home, 9–10
preparedness, 14
staying healthy, 13
teaming up, 14–15
water, 10–11
zombie killing, 11–12

power
consumption of from everyday

items, 21
vs. energy, 20–21
required, computing, 23

printed circuit board (PCB), soldering,
234–235

Program Area, Arduino IDE, 247
programming. See Arduino

programming
Programming Arduino: Getting Started

with Sketches (Monk), 58,
249, 261

Programming the Raspberry Pi:
Getting Started with
Python (Monk), 91

project construction, 17–18
electronic modules, 17–18
mechanical construction, 17
soldering, 17

Project_04_ Battery_monitor sketch, 217
Project_06_PIR_Alarm sketch, 76
Project_10_Door_Sensor sketch, 115
Project_11_Smoke_Alarm sketch, 129
Project_12_Temperature sketch, 135
Project_13_Control_Center_USB sketch,

143, 144
Project_15_Flasher sketch, 166
Project_16_Sounder_Test sketch, 173, 177
Project_18_Scanner sketch, 194
Project_19_Morse_Beacon sketch, 201
Project_20_Haptic_Communicator

sketch, 217
projects. See parts; project construction;

specific projects by name
Protoshield PCB, 213–217
pull-up resistors, stabilizing digital

inputs using, 252–253
pulseLength constant, 195
pulse width modulation (PWM), 255

PV (photovoltaic) solar panels, 26.
See also solar recharger

PWM (pulse width modulation), 255
pygame module, 92
Python programming language, 91

Q
quiet fire alarm, 120–131

constructing, 122–129
materials for, 121
software for, 129–131
using, 131

R
radiation danger, 124
radio frequency (RF) remote module,

105, 106, 111–112
radio transmitters. See Raspberry Pi

radio transmitter beacon
Raspberry Pi control center, 140–149

constructing, 141–142
materials for, 141
software for, 142–148

Arduino sketch, 143–145
communicating with

Arduino, 147
keeping updated, 147–148
Raspberry Pi program, 145–146
status labels, 146–147
threshold values, 146

using, 148–149
wireless version, using Bluetooth,

149–156
constructing, 150–154
materials for, 150
software for, 154–156
using, 156

Raspberry Pi radio transmitter beacon,
182–187

constructing, 184
legality of, 183
materials for, 182–183
recording a message, 185–186
running automatically, 187
software for, 184–185
using, 185–187

Index 271

Raspberry Pi single-board computer, 18
downloading all programs used

in book, 145
parts for, 223
projects using. See Raspberry Pi

control center; Raspberry Pi
radio transmitter beacon

using for surveillance. See also
USB webcam; wireless
surveillance system

installing Raspbian, 86–87
materials for, 84
powering system, 85
Raspberry Pi system,

explained, 83
Raspberry Squid accessory, 89–90, 94
Raspbian operating system, 86–87
raw variable, 254
read_arduino method, 147–148
readTemp function, 136
readVoltage function, 60
rechargeable batteries, 25
reed switch, in door sensor project,

112–114, 117
relay output, PIR sensors, 78–79
relay shield, 160
remote door lock, 105–112

constructing, 106–110
materials for, 106
wireless, 111–112

repeating code, in control loops,
254–256

reportStatus function, 144, 145
resetPin constant, 195
Resident Evil (film), 7
resistance, measuring, 240–241
resistors

color codes for, 225–226
identifying, 57
using as voltage divider, 55

resources, for learning Arduino, 261
Return of the Living Dead (film), 6
RF (radio frequency) remote module,

105, 106, 111–112
RGB LEDs, 94
rifles, 12

root mean square (RMS), 23
RPi.GPIO library, 92
RXD pin, 150

S
samurai sword, 12
SC1088 integrated circuit, 189–192
scanPin constant, 195
scenario rehearsal, 14
screen command, 206
screwshields, 54, 56

in Arduino Morse code beacon
project, 199

assembling, 259–261
in door sensor project, 113, 114
in PIR zombie detector project,

75–76
self-drive piezo, 124
sendBuzz function, 219
sendMode function, 219–220
sensors, PIR, 77–79

detecting zombies with, 74
serial monitor window,

Arduino IDE, 247
Serial Peripheral Interface (SPI), 217
serial port, setting in Arduino IDE,

247–248
Servo arm object, 177–178
servo motor, 170, 175–176
setup function, 258

in Arduino flash distractor
project, 167

in Arduino FM radio frequency
hopper project, 195

in Arduino Morse code beacon
project, 202

in Arduino movement and sound
distractor project, 178

main discussion, 249, 250
in silent haptic communication with

Arduino project, 218–219
Shaun of the Dead (film), 7
shields, Arduino, 54
showers, electric, power

consumption of, 21

272 Index

silent communication. See haptic
communicator

single-use batteries, 25
sketches, Arduino, 245

installing, 248–249
opening, 247
saving, 247
structure of, 249–250
uploading, 247–248

skills, 227–242
joining wires by twisting, 228–230
multimeter use, 237–242

bells and whistles, 242
continuity testing, 241–242
measuring DC current, 239–240
measuring DC voltage, 238–239
measuring resistance, 240–241

soldering basics, 230–235
joining wires with solder,

231–233
soldering PCB, 234–235
using heatshrink, 235–237

stripping wires, 227–228
slow zombies, 6–7
smartphones, using with wireless

surveillance system
project, 98

smoke detector. See quiet fire alarm
smokePin constant, 130
snips (wire cutters), 231
SOC (state of charge), 54
solar recharger, 26–34

charge controllers, 26–27
constructing, 28–33
materials for, 27–28
solar panels, 26
using, 32–33

solder, 231
soldering

in Arduino Morse code beacon
project, 199

in Arduino movement and sound
distractor project, 172

basics of, 230–235
“blobby” solder joints, 234–235
insulating soldered connections, 232
joining wires by, 230, 231–233
overview, 17

of PCB, 234–235
in quiet fire alarm, 125–129
in Raspberry Pi control center

project, 151–154
using heatshrink, 235–237

soldering irons
caution using, 231
power consumption of, 21
selecting, 231

source code for this book, 92, 142
SparkFun Beginners Parts Kit, 224
SPI (Serial Peripheral Interface), 217
SPI library, 217
.split() function, 148
sponges, 231
state of charge (SOC), 54
Status area, Arduino IDE, 247
stepPause constant, 177
sticky attribute, 147
stoves, 11
StringVar variable, 147
stripping wires, 227–228
sudo command, 87, 156
suppliers, brick-and-mortar, 16–17, 222
surveillance. See Raspberry Pi single-

board computer, using for
surveillance; USB webcam;
wireless surveillance system

survivors, teaming up with, 14–15
switch box, in remote door lock project,

107–108
swords, 11, 12
sys module, 92

T
tablets, using with wireless surveillance

system project, 98
teaming up with survivors, 14–15
temperature alarm, 131–137

attaching temperature sensor lead to
screwshield, 134

constructing, 132–134
making longer lead for TMP36, 134
materials for, 132
software for, 135–136
using, 137

temperature measurement, on
multimeters, 242

Index 273

TEMP_MAX constant, 146
TEMP_MIN constant, 146
theft, 15
thermocouple probe, 242
thermometer, on multimeters, 242
tilde (~), 254
time module, 92
Tk graphics library, 147
Tkinter, 146
TMP36 temperature sensor, 132–134
tools, 17, 224
traps, 12. See also trip wire alarm
treadmills, 34
trip wire alarm, 64–72

constructing, 66–71
materials for, 65–66
using, 71–72

twisting wires, 228–230
TXD pin, 150

U
United States, voltage in, 23
uploading Arduino sketches, 247–248
USB Bluetooth dongles, 149
USB power, 48–49
USB webcam, 87–96

constructing, 89–95
materials for, 88–89
using, 95–96

V
variables, creating, 250
vibration motors, 211–213, 216
voltage, 22

AC, 23–24
DC, 22–23, 238–239
generated by analog outputs, 255

voltage dividers, 54, 55
volts_var variable, 147

W
The Walking Dead (film), 7
warn function, 116
water, 10–11, 14
water wheels, 34
Watt, James, 20

watts, 20, 26
wave function, 178
weak people, 15
weapons, 11–12
weather conditions, 10
webcam projects. See USB webcam;

wireless surveillance system
weights parameter, 93–94
wget utility, 185
while command, 254, 256
window_res constraint, 92–93
window_size, 93
wind turbines, 34
wing shields, 54
wire cutters (snips), 231
wireless Raspberry Pi control center,

149–156
constructing, 150–154
materials for, 150
software for, 154–156
using, 156

wireless surveillance system, 96–102
constructing, 98–102
materials for, 97–98
using, 102

wires
in Arduino Morse code beacon

project, 199–201
insulating, using heatshrink,

235–237
joining

by soldering, 230, 231–233
by twisting, 228–230

stripping, 227–228
World War Z (film), 7

Z
zombies, 6–8

distracting. See Arduino flash
distractor; Arduino move-
ment and sound distractor

fighting, 11–13
population of, 8–9
types of, 6–7
whether really dead, 7–8

zombies-master.zip file, 248–249
“Zombie Special” episode of

Mythbusters, 11

ReSOURCeS
Visit http://nostarch.com/zombies/ for resources, errata, and more information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

ARDUINO WORKSHOP
A Hand-On Introduction
with 65 Projects
by john boxall

may 2013, 392 pp., $29.95
isbn 978-1-59327-448-1

THE MANGA GUIDE TO
ELECTRICITy
by kazuhiro fujitaki, matsuda,
and trend-pro co., ltd.
march 2009, 224 pp., $19.95
isbn 978-1-59327-197-8

LEARN TO PROGRAM
WITH MINECRAFT
by craig richardson

winter 2015, 304 pp., $29.95
isbn 978-1-59327-670-6

JUNKyARD JAM BAND
DIy Musical Instruments
and Noisemakers
by david erik nelson

october 2015, 408 pp., $24.95
isbn 978-1-59327-611-9

THE SPARKFUN GUIDE
TO PROCESSING
Create Interactive Art with Code
by derek runberg

august 2015, 312 pp., $29.95
isbn 978-1-59327-612-6
full color

THE SPARKFUN GUIDE
TO ARDUINO
by derek runberg and
brian huang

spring 2016, 200 pp., $29.95
isbn 978-1-59327-652-2
full color

More no-nonsense books from NO STARCH PRESS

http://nostarch.com/zombies/
www.nostarch.com

The M
aker’s Guide to the Zombie Apocalypse • simon M

onk

Scavenge, Build, Survive!
Where will you be when the zombie apocalypse hits? Trapping yourself in the
basement? Roasting the family pet? Beheading reanimated neighbors?

No way. You’ll be building fortresses, setting traps, and hoarding supplies, because
you, savvy survivor, have snatched up your copy of The Maker’s Guide to the Zombie
Apocalypse before it’s too late. This indispensable guide to survival after Z-day,
written by hardware hacker and zombie anthropologist Simon Monk, will teach
you how to generate your own electricity, salvage parts, craft essential electronics,
and out-survive the undead.

Take charge of your environment:
•	Monitor	zombie	movement	with	trip	wires	and	motion	sensors
•	Keep	vigilant	watch	over	your	compound	with	Arduino	and	
 Raspberry Pi surveillance systems
•	Power	zombie	defense	devices	with	car	batteries,	bicycle	
 generators, and solar power

Escape imminent danger:
•	Repurpose	old	disposable	cameras	for	zombie-distracting	flashbangs
•	Open	doors	remotely	for	a	successful	sprint	home
•	Forestall	subplot	disasters	with	fire	and	smoke	detectors

Communicate with other survivors:
•	Hail	nearby	humans	using	Morse	code
•	Pass	silent	messages	with	two-way	vibration	walkie-talkies
•	Fervently	scan	the	airwaves	with	a	frequency	hopper

For	anyone	from	the	budding	maker	to	the	keen	hobbyist,	The Maker’s Guide to the
Zombie Apocalypse is an essential survival tool.

About the Author
Simon Monk is a full-time author and maker, mostly writing about elec tronics
for makers. Some of his better-known books include Programming Arduino: Getting
Started with Sketches, Raspberry Pi Cookbook, and Hacking Electronics.	He	is	also	the	
co-author of Practical Electronics for Inventors and wrote Minecraft Mastery with his
son, Matthew Monk.

Shelve in: Hardware/Electronics

Price: $24.95 ($28.95 CDN)

www.nostarch.com
THE FINEST IN

GEEK ENTERTAINMENT™

	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Key Maker Survival Skills
	About the Apocalypse Survival Projects
	Resources to Download Before the Zombies Rise

	Chapter 1: Apocalypse Basics
	Zombies
	Types of Zombies
	Are Zombies Really Dead?

	How Long Will the Zombies Be Around?
	Postapocalypse Survival 101
	Home
	Water
	Food and Fuel
	Zombie Killing
	Dressing to Kill
	Staying Healthy

	Be Prepared
	Other Survivors
	Parts for Projects
	Cars
	Brick-and-Mortar Parts Stores

	Project Construction
	Soldering
	Mechanical Construction
	Electronic Modules

	Chapter 2: Generating Electricity
	Power and Energy
	Flavors of Electricity
	Low-Voltage DC
	High-Voltage AC

	Batteries
	Single-Use Batteries
	Rechargeable Batteries

	Battery Charging
	Project 1: Solar Recharging
	Solar Panels
	Charge Controllers
	What You Will Need
	Construction
	Using the Solar Charger

	Project 2: Bicycle Generator
	What You Will Need
	Construction
	Using the Pedal Generator

	Chapter 3: Using Electricity
	Powering Devices from a Car Battery
	Cigarette Lighter Sockets
	USB Power
	AC Inverters

	Project 3: LED Lighting
	What You Will Need
	Construction
	Using the Lighting

	Project 4: Battery Monitor
	What You Will Need
	Construction
	Software
	Using the Battery Monitor

	Chapter 4: Zombie Alarms
	Project 5: Trip Wire Alarm
	What You Will Need
	Construction
	Using the Trip Wire Alarm

	Project 6: PIR Zombie Detector
	What You Will Need
	Construction
	Software
	Using the PIR Zombie Detector
	Scavenged PIR Sensors

	Chapter 5: Surveillance and Raspberry Pi
	The Raspberry Pi
	The Raspberry Pi System
	What You Will Need
	Powering the System
	Installing Raspbian

	Project 7: Monitor Zombies with a USB Webcam
	What You Will Need
	Construction
	Using the Webcam

	Project 8: A Wireless Zombie Surveillance System
	What You Will Need
	Construction
	Using the Wi-Fi Webcam

	Chapter 6: Add Remote Access and Detect Open Doors
	Project 9: Remote Door Lock
	What You Will Need
	Construction
	Going Wireless to Open Doors Ahead of Time

	Project 10: Door Sensor
	What You Will Need
	Construction
	Software
	Using the Door Sensor

	Chapter 7: Environmental Monitoring
	Project 11: Quiet Fire Alarm
	What You Will Need
	Construction
	Software
	Using the Fire Alarm

	Project 12: Temperature Alarm
	What You Will Need
	Construction
	Software
	Using the Temperature Alarm

	Chapter 8: Building a Control Center for Your Base
	Project 13: Raspberry Pi Control Center
	What You Will Need
	Construction
	Software
	Using the Control Center

	Project 14: Going Wireless with Bluetooth
	What You Will Need
	Construction
	Software
	Using the Bluetooth-Enabled Command Center

	Chapter 9: Zombie Distractors
	Project 15: Arduino Flash Distractor
	What You Will Need
	Construction
	Software
	Using the Flash Distractor

	Project 16: Arduino Movement and Sound Distractor
	What You Will Need
	Construction
	Software
	Using the Sound and Movement Distractor

	Chapter 10: Communicating with Other Survivors
	Project 17: A Raspberry Pi Radio Transmitter Beacon
	What You Will Need
	Construction
	Software
	Using the FM Transmitter

	Project 18: Arduino FM Radio Frequency Hopper
	What You Will Need
	Construction
	Software
	Using the Radio Scanner

	Project 19: Arduino Morse Code Beacon
	What You Will Need
	Construction
	Software
	Using the Morse Beacon

	Chapter 11: Haptic Communication
	Project 20: Silent Haptic Communication with Arduino
	What You Will Need
	Construction
	Software
	Using the Haptic Communicator

	Appendix A: Parts
	A Note on Brick-and-Mortar Suppliers
	Electronics Modules
	Raspberry Pi and Related Parts
	Leads and Connectors
	Tools
	Electronic Components
	Other Hardware
	Resistor Color Codes

	Appendix B: Basic Skills
	Stripping Wires
	Joining Wires by Twisting
	Soldering Basics
	Joining Wires with Solder
	Soldering a PCB

	Using Heatshrink
	Using a Multimeter
	Measuring DC Voltage
	Measuring DC Current
	Measuring Resistance
	Continuity Testing
	Bells and Whistles

	Appendix C: Arduino Primer
	What Is an Arduino?
	Arduino Software
	Installing the Arduino IDE
	Uploading a Sketch
	Installing the Antizombie Sketches

	Arduino Programming Basics
	Structure of an Arduino Sketch
	Creating Variables and Constants
	Configuring Digital Outputs
	Configuring Digital Inputs
	Stabilizing Digital Inputs with Pull-up Resistors
	Reading Analog Inputs
	Writing to Analog Outputs
	Repeating Code in Control Loops
	Setting Two Conditions with If/Else
	Making Logical Comparisons
	Grouping Code into Functions

	Assembling a Screwshield
	Further Resources

	Index
	Resources

