OpenCV 3
Computer Vision
with Python

COOKbooK

rage th pw fOp CVS nd Python to build

mp uter n applicatio

LI

OpenCV 3 Computer Vision
with Python Cookbook

Leverage the power of OpenCV 3 and Python to build
computer vision applications

Alexey Spizhevoy
Aleksandr Rybnikov

BIRMINGHAM - MUMBAI

OpenCV 3 Computer Vision with Python
Cookbook

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri

Content Development Editor: Rohit Kumar Singh
Technical Editor: Ketan Kamble

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Jason Monteiro

Production Coordinator: Aparna Bhagat

First published: March 2018
Production reference: 1200318

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-444-3

www . packtpub.com

http://www.packtpub.com

OFF ANY PACKT

Python Deep Python
Leamin: Flask Web o}
9 Davaloprant Automation

S

and use this code in the checkout:

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

¢ Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors

Alexey Spizhevoy has over 7 years of experience in computer vision R&D. He has worked
for 5 years at Itseez, the main OpenCV contributor, before it was acquired by Intel. He has
contributed to video stabilization and photo stitching modules into OpenCV library. He has
successfully participated in numerous Computer Vision projects in such areas as 3D
reconstruction, video conferencing, object detection and tracking, semantic segmentation,
driving assistance, and others. He holds a master's degree in computer science, and he is
currently pursuing PhD.

Aleksandr Rybnikov has over 5 years of experience in C++ programming, including 3 years
in the Computer Vision (CV) domain. He worked at Itseez, a company that supported and
developed OpenCV, and then at Intel. He enriched OpenCV's dnn module by adding
support of another two Deep Learning (DL) frameworks and many features, along with
improving the existing functionality. As an engineer, he participated in CV and DL projects
such as iris recognition, object detection, semantic segmentation, 6-DOF pose estimation,
and digital hologram reconstruction. He has a master's degree in physics.

Without the great teachers I had, this book wouldn’t have been possible. So I want to
express gratitude to my colleagues who guided and advised me on my path in Computer
Vision. Writing a book, especially when you want to make it useful and practical, isn't
simple in any way and takes a lot of time. Many thanks and love to my wife, Daria
Tikhonova, who has supported me while working on the book.

About the reviewer

Joseph Howse lives in a Canadian fishing village with four cats; the cats like fish, but they
prefer chicken.

Joseph provides computer vision expertise through his company, Nummist Media. He is a
Packt author whose books include OpenCV for Secret Agents, OpenCV 3 Blueprints, Android
Application Programming with OpenCV 3, iOS Application Development with OpenCV 3,
Learning OpenCV 3 Computer Vision with Python, and Python Game Programming by Example.

I wish to congratulate this book’s authors, who have contributed so much code and wisdom
to the OpenCV community. I am also thankful to the whole team at Packt for our
continued collaboration. As always, I dedicate my work to Sam, Jan, Bob, Bunny, and the
cats.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

—_

Chapter 1: /0 and GUI 7
Introduction 7
Reading images from files 8

Getting ready 8
How to do it... 8
How it works... 9
Simple image transformations—resizing and flipping 9
Getting ready 10
How to do it... 10
How it works... 11
Saving images using lossy and lossless compression 11
Getting ready 11
How to do it... 12
How it works... 12
Showing images in an OpenCV window 13
Getting ready 13
How to do it... 13
How it works... 13
Working with Ul elements, such as buttons and trackbars, in an
OpenCV window 14
Getting ready 15
How to do it... 15
How it works... 16
Drawing 2D primitives—markers, lines, ellipses, rectangles, and
text 17
Getting ready 17
How to do it... 17
How it works... 18
Handling user input from a keyboard 20

Getting ready 20

Table of Contents

How to do it...
How it works...

Making your app interactive through handling user input from a
mouse

Getting ready
How to do it...
How it works...
Capturing and showing frames from a camera
Getting ready
How to do it...
How it works...
Playing frame stream from video
Getting ready
How to do it...
How it works...
Obtaining a frame stream properties
Getting ready
How to do it...
How it works...
Writing a frame stream into video
Getting ready
How to do it...
How it works...
Jumping between frames in video files
Getting ready
How to do it...
How it works...

Chapter 2: Matrices, Colors, and Filters
Introduction

Manipulating matrices-creating, filling, accessing elements, and
ROIs

Getting ready
How to do it...
How it works...
Converting between different data types and scaling values

20
21

22
22
22
23
25
25
25
26
26
26
26
27
28
29
29
29
30
30
30
31
31
32
32
33

34
35

35
35
35
37
38

[ii]

Table of Contents

Getting ready
How to do it...
How it works...
Non-image data persistence using NumPy
Getting ready
How to do it...
How it works...
Manipulating image channels
Getting ready
How to do it...
How it works...
Converting images from one color space to another
Getting ready
How to do it...
How it works...
Gamma correction and per-element math
Getting ready
How to do it...
How it works...
Mean/variance image normalization
Getting ready
How to do it...
How it works...
Computing image histograms
Getting ready
How to do it...
How it works...
Equalizing image histograms
Getting ready
How to do it...
How it works...
Removing noise using Gaussian, median, and bilateral filters
Getting ready
How to do it...
How it works...

38
38
39
40
40
40
41
41
41
41
42
43
43
43
44
45
45
45
45
46
46
47
47
47
47
48
48
49
49
50
51
52
52
52
53

[iii]

Table of Contents

Computing gradients using Sobel operator
Getting ready
How to do it...
How it works...

Creating and applying your own filter
Getting ready
How to do it...
How it works...

Processing images with real-valued Gabor filters
Getting ready
How to do it...
How it works...

Going from the spatial domain to the frequency domain (and back)
using the discrete Fourier transform

Getting ready
How to do it...
How it works...
Manipulating image frequencies for image filtration
Getting ready
How to do it...
How it works...
Processing images with different thresholds
Getting ready
How to do it...
How it works...
Morphological operators
Getting ready
How to do it...
How it works...
Image masks and binary operations
Getting ready
How to do it...
How it works...

Chapter 3: Contours and Segmentation

Introduction

54
54
54
55
55
55
56
57
57
57
58
59

59
59
60
60
61
61
62
63
64
64
64
65
66
66
66
68
68
68
69
70

71
71

[iv]

Table of Contents

Binarization of grayscale images using the Otsu algorithm 72
Getting ready 72
How to do it... 72
How it works... 73

Finding external and internal contours in a binary image 73
Getting ready 74
How to do it... 74
How it works... 75

Extracting connected components from a binary image 76
Getting ready 76
How to do it... 77
How it works... 78

Fitting lines and circles into two-dimensional point sets 79
Getting ready 79
How to do it... 79
How it works... 81

Calculating image moments 82
Getting ready 82
How to do it... 82
How it works... 83

Working with curves - approximation, length, and area 84
Getting ready 84
How to do it... 84
How it works... 86

Checking whether a point is within a contour 88
Getting ready 88
How to do it... 88
How it works... 89

Computing distance maps 90
Getting ready 90
How to do it... 90
How it works... 91

Image segmentation using the k-means algorithm 92
Getting ready 92
How to do it... 92

[v]

Table of Contents

How it works...

Image segmentation using segment seeds - the watershed
algorithm

Getting ready
How to do it...
How it works...

Chapter 4: Object Detection and Machine Learning
Introduction
Obtaining an object mask using the GrabCut algorithm
Getting ready
How to do it...
How it works...
Finding edges using the Canny algorithm
Getting ready
How to do it...
How it works...
Detecting lines and circles using the Hough transform
Getting ready
How to do it...
How it works...
Finding objects via template matching
Getting ready
How to do it...
How it works...
The medial flow tracker
Getting ready
How to do it...
How it works...
Tracking objects using different algorithms via the tracking API
Getting ready
How to do it...
How it works...
Computing the dense optical flow between two frames
Getting ready
How to do it...

93

94
95
95
97

98

99

99

99

99
102
103
103
104
104
105
105
106
107
108
108
108
110
112
112
112
113
114
114
115
116
117
117
117

[vi]

Table of Contents

How it works... 119
Detecting chessboard and circle grid patterns 121
Getting ready 121
How to do it... 121
How it works... 123
A simple pedestrian detector using the SVM model 124
Getting ready 124
How to do it... 124
How it works... 125
Optical character recognition using different machine learning
models 126
Getting ready 126
How to do it... 126
How it works... 128
Detecting faces using Haar/LBP cascades 129
Getting ready 130
How to do it... 130
How it works... 131
Detecting AruCo patterns for AR applications 133
Getting ready 133
How to do it... 133
How it works... 134
Detecting text in natural scenes 135
Getting ready 135
How to do it... 136
How it works... 136
QR code detector 137
Getting ready 138
How to do it... 138
How it works... 141
Chapter 5: Deep Learning 143
Introduction 143
Representing images as tensors/blobs 144
Getting ready 144
How to do it... 144

[vii]

Table of Contents

How it works...

Loading deep learning models from Caffe, Torch, and TensorFlow
formats

Getting ready
How to do it...
How it works...
Getting input and output tensors' shapes for all layers
Getting ready
How to do it...
How it works...
Preprocessing images and inference in convolutional networks
Getting ready
How to do it...
How it works...
Measuring inference time and contributions to it from each layer
Getting ready
How to do it...
How it works...
Classifying images with GoogleNet/Inception and ResNet models
Getting ready
How to do it...
How it works...
Detecting objects with the Single Shot Detection (SSD) model
Getting ready
How to do it...
How it works...

Segmenting a scene using the Fully Convolutional Network (FCN)
model

Getting ready
How to do it...
How it works...

Face detection using Single Shot Detection (SSD) and the ResNet
model

Getting ready
How to do it...
How it works...

145

146
146
146
147
147
147
148
149
149
150
150
151
152
152
153
153
155
155
155
157
159
159
159
160

161
161
162
163

163
163
164
165

[viii]

Table of Contents

Age and gender prediction 165
Getting ready 165
How to do it... 165
How it works... 167

Chapter 6: Linear Algebra 168

Introduction 168

The orthogonal Procrustes problem 169
Getting ready 169
How to do it... 169
How it works... 171

Rank-constrained matrix approximation 172
Getting ready 172
How to do it... 173
How it works... 173

Principal component analysis 174
Getting ready 174
How to do it... 174
How it works... 176

Solving systems of linear equations (including under- and over-

determined) 177
Getting ready 177
How to do it... 177
How it works... 179

Solving polynomial equations 179
Getting ready 179
How to do it... 180
How it works... 180

Linear programming with the simplex method 181
Getting ready 181
How to do it... 181
How it works... 182

Chapter 7: Detectors and Descriptors 183

Introduction 183

Finding corners in an image - Harris and FAST 184
Getting ready 184

[ix]

Table of Contents

How to do it... 184
How it works... 185
Selecting good corners in an image for tracking 187
Getting ready 187
How to do it... 188
How it works... 188
Drawing keypoints, descriptors, and matches 189
Getting ready 189
How to do it... 190
How it works... 191
Detecting scale invariant keypoints 193
Getting ready 193
How to do it... 193
How it works... 194
Computing descriptors for image keypoints - SURF, BRIEF, ORB 195
Getting ready 195
How to do it... 195
How it works... 196
Matching techniques for finding correspondences between
descriptors 198
Getting ready 198
How to do it... 198
How it works... 200
Finding reliable matches - cross-check and ratio test 201
Getting ready 201
How to do it... 201
How it works... 203
Model-based filtering of matches - RANSAC 203
Getting ready 204
How to do it... 204
How it works... 205
BoW model for constructing global image descriptors 206
Getting ready 206
How to do it... 206
How it works... 207

[x]

Table of Contents

Chapter 8: Image and Video Processing 209
Introduction 209
Warping an image using affine and perspective transformations 210

Getting ready 210
How to do it 210
How it works 212
Remapping an image using arbitrary transformation 214
Getting ready 214
How to do it 214
How it works 215
Tracking keypoints between frames using the Lucas-Kanade
algorithm 216
Getting ready 216
How to do it 216
How it works 218
Background subtraction 218
Getting ready 219
How to do it 219
How it works 221
Stitching many images into panorama 222
Getting ready 222
How to do it 223
How it works 223
Denoising a photo using non-local means algorithms 224
Getting ready 225
How to do it 225
How it works 226
Constructing an HDR image 226
Getting ready 227
How to do it 227
How it works 228
Removing defects from a photo with image inpainting 229
Getting ready 230
How to do it 230
How it works 231

[xil]

Table of Contents

Chapter 9: Multiple View Geometry

Introduction

Pinhole camera model calibration
Getting ready
How to do it
How it works

Fisheye camera model calibration
Getting ready
How to do it
How it works

Stereo rig calibration - estimation of extrinsics
Getting ready
How to do it
How it works

Distorting and undistorting points
Getting ready
How to do it
How it works

Removing lens distortion effects from an image
Getting ready
How to do it
How it works

Restoring a 3D point from two observations through triangulation
Getting ready
How to do it
How it works

Finding a relative camera-object pose through the PnP algorithm
Getting ready
How to do it
How it works

Aligning two views through stereo rectification
Getting ready
How to do it
How it works

233
233
234
234
234
235
238
238
238
240
240
241
241
242
243
244
244
245
247
247
247
248
250
250
250
251
252
252
252
253
254
255
255
256

[xii]

Table of Contents

Epipolar geometry - computing fundamental and essential

matrices 257
Getting ready 257
How to do it 258
How it works 259

Essential matrix decomposition into rotation and translation 259
Getting ready 259
How to do it 260
How it works 260

Estimating disparity maps for stereo images 261
Getting ready 261
How to do it 261
How it works 262

Special case 2-view geometry - estimating homography

transformation 263
Getting ready 264
How to do it 264
How it works 265

Planar scene - decomposing homography into rotation and

translation 266
Getting ready 266
How to do it 267
How it works 268

Rotational camera case - estimating camera rotation from

homography 268
Getting ready 268
How to do it 268
How it works 269

Other Books You May Enjoy 270
Index 273

[xiii]

Preface

Computer Vision is a broad topic comprising a lot of different areas. If you want to start
using Computer Vision algorithms in your projects, it may be ambiguous where the entry
point is. Even if you're an experienced Computer Vision engineer, undoubtedly there are
some technologies that you would want to explore in depth or get familiar with. In both
cases, a practical approach works best. Only through applying methods to real problems,
tuning existing methods to meet your requirements, and playing with samples can you
fully understand the possibilities and limitations of any Computer Vision algorithm. This
book is specifically designed to get your hands dirty with solving real computer vision
tasks. Recipes in this book use OpenCV—the most popular, functionally rich, and widely
used open source Computer Vision library. This book progresses from the simplest samples
to the most complicated ones, so you will be able to find some useful and information
which is easy to understand.

Who this book is for

This book is for developers who have basic knowledge of Python. If you are aware of the
basics of OpenCV and are ready to build computer vision systems that are smarter, faster,
more complex, and more practical than the competition, then this book is for you.

What this book covers

Chapter 1, I/O and GUI, teaches the basic operations with images and video: loading,
saving and displaying.

Chapter 2, Matrices, Colors, and Filters, covers operations to manipulate with matrices:
accessing regions of an image, channels, and pixels. Conversions between various color
spaces and usage of filters are also described.

Chapter 3, Contours and Segmentation, shows how to create image masks, find contours, and
segment images.

Preface

Chapter 4, Object Detection and Machine Learning, describes ways of detecting and tracking
different types of objects, from specially constructed (QR codes and ArUCo markers) to
ones that can be met in natural scenes.

Chapter 5, Deep Learning, outlines new functionality in OpenCV connected with Deep
Neural Nets. It provides examples of loading Deep Learning models and applying them to
Computer Vision tasks.

Chapter 6, Linear Algebra, dives into useful mathematical methods for solving linear algebra
problems and provides examples of applying these methods in Computer Vision.

Chapter 7, Detectors and Descriptors, contains information about how to work with image
feature descriptors: how to compute them with different methods, how to display them,
and how to match them for object detection and tracking purposes.

Chapter 8, Image and Video Processing, shows readers how to work with image sequences
and get results based on correlations among the sequence.

Chapter 9, Multiple View Geometry, describes how to use cameras to retrieve information
about 3D geometry of the scene.

To get the most out of this book

All the required information to get started with the respective recipes is mentioned in the
recipes.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L

[2]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub

at https://github.com/PacktPublishing/OpenCV-3-Computer-Vision-with-Python-Cook
book. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "The cv2.flip function is used for mirroring images."

A block of code is set as follows:

import argparse

import cv2

parser = argparse.ArgumentParser ()

parser.add_argument ('--path', default='../data/Lena.png', help='Image
path.")

params = parser.parse_args()

img = cv2.imread (params.path)

[31]

https://github.com/PacktPublishing/OpenCV-3-Computer-Vision-with-Python-Cookbook
https://github.com/PacktPublishing/OpenCV-3-Computer-Vision-with-Python-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionwithPythonCookbook_ColorImages.pdf

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import argparse
import cv2

parser = argparse.ArgumentParser ()

parser.add_argument ('--path', default='../data/Lena.png', help='Image
path.")

params = parser.parse_args ()

img = cv2.imread (params.path)

Any command-line input or output is written as follows:

read .
shape:
dtype:

read .
shape:
dtype:

./data/Lena.png

(512, 512, 3)
uint8

./data/Lena.png as grayscale

(512, 512)
uint8

Bold: Indicates a new term, an important word, or words that you see onscreen.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

[4]

Preface

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

[5]

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[6]

https://www.packtpub.com/

/0O and GUI

In this chapter, we will cover the following recipes:

Reading images from file

Simple image transformations—resizing and flipping

Saving images using lossy and lossless compression

Showing images in an OpenCV window

Working with UI elements, such as buttons and trackbars, in an OpenCV window
Drawing 2D primitives—markers, lines, ellipses, rectangles, and text
Handling user input from a keyboard

Making your app interactive through handling user input from a mouse
Capturing and showing frames from a camera

Playing frame stream from video

Obtaining a frame stream properties

Writing a frame stream into video

Jumping between frames in video files

Introduction

Computer vision algorithms consume and produce data—they usually take images as an
input and generate features of the input, such as contours, points or regions of interest,
bounding boxes for objects, or another images. So dealing with the input and output of
graphical information is an essential part of any computer vision algorithm. This means not
only reading and saving images, but also displaying them with additional information
about their features.

I/0 and GUI Chapter 1

In this chapter, we will cover basic OpenCV functionality related to I/O functions. From the
recipes, you will learn how to obtain images from different sources (either filesystem or
camera), display them, and save images and videos. Also, the chapter covers the topic of
working with the OpenCV Ul system; for instance, in creating windows and trackbars.

Reading images from files

In this recipe, we will learn how to read images from files. OpenCV supports reading
images in different formats, such as PNG, JPEG, and TIFF. Let's write a program that takes
the path to an image as its first parameter, reads the image, and prints its shape and size.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

For this recipe, you need to perform the following steps:

1. You can easily read an image with the cv2 . imread function, which takes path to
image and optional flags:

import argparse

import cv2

parser = argparse.ArgumentParser ()

parser.add_argument ('--path', default='../data/Lena.png',
help='Image path.'")

params = parser.parse_args ()

img = cv2.imread (params.path)

2. Sometimes it's useful to check whether the image was successfully loaded or not:

assert img is not None # check if the image was successfully

loaded

print ('read {}'.format (params.path))
print ('shape:', img.shape)

print ('dtype:', img.dtype)

[81]

I/0 and GUI Chapter 1

3. Load the image and convert it to grayscale, even if it had many color channels
originally:

img = cv2.imread(params.path, cv2.IMREAD_GRAYSCALE)
assert img is not None

print ('read {} as grayscale'.format (params.path))
print ('shape:', img.shape)

print ('dtype:', img.dtype)

How it works...

The loaded image is represented as a NumPy array. The same representation is used in
OpenCV for matrices. NumPy arrays have such properties as shape, which is an image's
size and number of color channels, and dtype, which is the underlying data type (for
example, uint8 or £loat32). Note that OpenCV loads images in BGR, not RGB, format.

The shape tuple in this case should be interpreted as follows: image height, image width,
color channels count.

The cv.imread function also supports optional flags, where users can specify whether
conversion to uint 8 type should be performed, and whether the image is grayscale or
color.

Having run the code with the default parameters, you should see the following output:

read ../data/Lena.png
shape: (512, 512, 3)
dtype: uint8

read ../data/Lena.png as grayscale
shape: (512, 512)
dtype: uint8

Simple image transformations—resizing and
flipping

Now we're able to load an image, it's time to do some simple image processing. The

operations we're going to review—resize and flip—are basic and usually used as
preliminary steps of complex computer vision algorithms.

[91]

I/0 and GUI Chapter 1

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

For this recipe, we need the following steps to be executed:
1. Load an image and print its original size:

img = cv2.imread('../data/Lena.png')
print ('original image shape:', img.shape)

2. OpenCV offers several ways of using the cv2.resize function. We can set the
target size (width, height) in pixels as the second parameter:

width, height = 128, 256
resized_img = cv2.resize(img, (width, height))
print ('resized to 128x256 image shape:', resized_img.shape)

3. Resize by setting multipliers of the image's original width and height:
w_mult, h_mult = 0.25, 0.5
resized_img = cv2.resize(img, (0, 0), resized_img, w_mult, h_mult)
print ('image shape:', resized_img.shape)

4. Resize using nearest-neighbor interpolation instead of the default one:
w_mult, h_mult = 2, 4
resized_img = cv2.resize(img, (0, 0), resized_img, w_mult, h_mult,
cv2.INTER_NEAREST)

print ('half sized image shape:', resized_img.shape)

5. Reflect the image along its horizontal x-axis. To do this, we should pass 0 as the
last argument of the cv2. £1ip function:

img_flip_along_x = cv2.flip(img, 0)

[10]

I/0 and GUI Chapter 1

6. Of course, it's possible to flip the image along its vertical y-axis—just pass any
value greater than 0:

img_flip_along_y = cv2.flip(img, 1)
7. We can flip both x and y simultaneously by passing any negative value to the

function:

img_flipped xy = cv2.flip(img, -1)

How it works...

We can play with interpolation mode in cv2 . resize—it defines how values between

pixels are computed. There are quite a few types of interpolation, each with a different
outcome. This argument can be passed as the last one and doesn't influence the result's
size—only the quality and smoothness of the output.

By default, bilinear interpolation (cv2 . INTER_LINEAR) is used. But in some situations, it
may be necessary to apply other, more complicated options.

The cv2.flip function is used for mirroring images. It doesn't change the size of an
image, but rather swaps the pixels.

Saving images using lossy and lossless
compression

This recipe will teach you how to save images. Sometimes you want to get feedback from
your computer vision algorithm. One way to do so is to store results on a disk. The
feedback could be final images, pictures with additional information such as contours,
metrics, values and so on, or results of individual steps from a complicated pipeline.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

[11]

I/0 and GUI Chapter 1

How to do it...

Here are the steps for this recipe:
1. First, read the image:
img = cv2.imread('../data/Lena.png"')

2. Save the image in PNG format without losing quality, then read it again to check
whether all the information has been preserved during writing onto the disk:

save image with lower compression—bigger file size but faster
decoding

cv2.imwrite ('../data/Lena_compressed.png', img,
[cv2.IMWRITE_PNG_COMPRESSION, 01])

check that image saved and loaded again image is the same as
original one

saved_img = cv2.imread (params.out_png)

assert saved_img.all() == img.all()

3. Save the image in the JPEG format:

save image with lower quality—smaller file size
cv2.imwrite ('../data/Lena_compressed.jpg', img,
[cv2.IMWRITE_JPEG_QUALITY, 0])

How it works...

To save an image, you should use the cv2. imwrite function. The file's format is
determined by this function, as can be seen in the filename (JPEG, PNG, and some others
are supported). There are two main options for saving images: whether to lose some
information while saving, or not.

The cv2.imwrite function takes three arguments: the path of output file, the image itself,
and the parameters of saving. When saving an image to PNG format, we can specify the
compression level. The value of IMWRITE_PNG_COMPRESSION must be in the (0, 9)
interval—the bigger the number, the smaller the file on the disk, but the slower the
decoding process.

[12]

I/0 and GUI Chapter 1

When saving to JPEG format, we can manage the compression process by setting the value
of IMWRITE_JPEG_QUALITY. We can set this as any value from 0 to 100. But here, we have a
situation where bigger is better. Larger values lead to higher result quality and a lower
amount of JPEG artifacts.

Showing images in an OpenCV window

One of the many brilliant features of OpenCV is that you can visualize images with very
little effort. Here we will learn all about showing images in OpenCV.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

The steps are as follows:
1. Load an image to have something to work with and get its size:

orig = cv2.imread('../data/Lena.png")
orig_size = orig.shape[0:2]

2. Now let's display our image. To do so, we need to call the cv2.imshow and
cv2.waitKey functions:

cv2.imshow ("Original image", orig)
cv2.waitKey (2000)

How it works...

Now, let's shed some light on the functions. The cv2. imshow function is needed to show
the image—its first parameter is the name of the window (see the header of the window in
the following screenshot), the second parameter is the image we want to display.

The cv2.waitKey function is necessary for controlling the display time of the window.

[13]

I/0 and GUI Chapter 1

Note that the display time must be explicitly controlled, otherwise you won't see any
windows. The function takes the duration of the window display time in milliseconds. But
if you press any key on the keyboard, the window will disappear earlier than the specified
time. We will review this functionality in one of the following recipes.

The code above results in the following:

Original image

Working with Ul elements, such as buttons
and trackbars, in an OpenCV window

In this recipe, we will learn how to add UI elements, such as buttons and trackbars, into
OpenCV windows and work with them. Trackbars are useful UI elements that:

e Show the value of an integer variable, assuming the value is within a predefined
range

¢ Allow us to change the value interactively through changing the trackbar
position

[14]

I/0 and GUI Chapter 1

Let's create a program that allows users to specify the fill color for an image by interactively
changing each Red, Green, Blue (RGB) channel value.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

To complete this recipe, the steps are as follows:
1. First create an OpenCV window named window:
import cv2, numpy as np
cv2.namedWindow ('window")

2. Create a variable that will contain the fill color value for the image. The variable
is a NumPy array with three values that will be interpreted as blue, green, and
red color components (in that order) from the [0, 255] range:

fill val = np.array([255, 255, 255], np.uint8)

3. Add an auxiliary function to call from each t rackbar_callback function. The
function takes the color component index and new value as settings:

def trackbar_callback (idx, value):
fill_val[idx] = wvalue

4. Add three trackbars into window and bind each trackbar callback to a specific
color component using the Python 1ambda function:

cv2.createTrackbar ('R', 'window', 255, 255, lambda v:
trackbar_callback (2, v))
cv2.createTrackbar ('G', 'window', 255, 255, lambda v:
trackbar_callback (1, v))
cv2.createTrackbar ('B', 'window', 255, 255, lambda v:

trackbar_callback (0, v))

[15]

I/O and GUI Chapter 1

5. In a loop, show the image in a window with three trackbars and process
keyboard input as well:

while True:
image = np.full((500, 500, 3), fill _wval)
cv2.imshow ('window', image)
key = cv2.waitKey (3)
if key == 27:
break
cv2.destroyAllWindows ()

How it works...

A window like the one following is expected to be shown, though it might vary slightly
depending on the version of OpenCV and how it was built:

118

[16]

I/O and GUI

Chapter 1

Drawing 2D primitives—markers, lines,

ellipses, rectangles, and text

Just after you implement your first computer vision algorithm, you will want to see its
results. OpenCV has a considerable number of drawing functions to let you highlight any

feature in an image.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

1. Open an image and get its width and height. Also, define a simple function that

returns a random point inside our image:

import cv2, random
image = cv2.imread('../data/Lena.png')
w, h = image.shape([l], image.shape[0]

def rand_pt (mult=1.):
return (random.randrange (int (w*mult)),
random.randrange (int (h*mult)))

2. Let's draw something! Let's go for circles:

cv2.circle (image, rand_pt(), 40, (255, 0, 0))

cv2.circle (image, rand_pt(), 5, (255, 0, 0), cv2.FILLED)

cv2.circle(image, rand_pt(), 40, (255, 85, 85), 2)

cv2.circle (image, rand_pt (), 40, (255, 170, 170), 2, cv2.LINE_AA)
3. Now let's try to draw lines:

cv2.line (image, rand_pt(), rand_pt(), (0, 255, 0))

cv2.line (image, rand_pt(), rand_pt(), (85, 255, 85), 3)

cv2.line(image, rand_pt(), rand_pt(), (170, 255, 170), 3,

cv2.LINE_AA)

[17]

I/0 and GUI Chapter 1

4. If you want to draw an arrow, use the arrowedLine () function:

cv2.arrowedLine (image, rand_pt (), rand_pt(), (0, 0, 255), 3,
cv2.LINE_AA)

5. To draw rectangles, OpenCV has the rectangle () function:
cv2.rectangle (image, rand_pt (), rand_pt(), (255, 255, 0), 3)
6. Also, OpenCV includes a function to draw ellipses. Let's draw them:

cv2.ellipse(image, rand_pt (), rand_pt(0.3), random.randrange (360),
0, 360, (255, 255, 255), 3)

7. Our final drawing-related function is for placing text on the image:

cv2.putText (image, 'OpenCV', rand_pt (), cv2.FONT_HERSHEY_SIMPLEX,
1, (0, 0, 0), 3)

How it works...

First, cv2.circle gives the thinnest and darkest blue primitive. The second invocation
draws a dark blue point. The third call produces a lighter blue circle with sharp edges. The
last call, cv2.circle, reveals the lightest blue circle with smooth borders.

The cv2.circle function takes the image as first parameter, and the position of center in
(x, y) format, radius of the circle, and the color as mandatory arguments. Also you can
specify line thickness (the FILLED value gives a filled circle) and line type (LINE_AA gives
aliasing-free borders).

The cv2.1line function takes an image, start and end points, and color of the image (as in
first call). Optionally you can pass line thickness and line type (again, to suppress aliasing).

[18]

I/O and GUI Chapter 1

We will get something like this (positions may vary due to randomness):

The parameters of the cv2.arrowedLine function are the same as those for cv2.1line.

The parameters that cv2.rectangle takes are the image that is to be drawn upon, the
upper-left corner, bottom-right corner, and the color. Also, it's possible to specify thickness
(or make the rectangle filled with the FILLED value).

cv2.ellipse takes the image, the position of the center in (x, y) format, half axis lengths in
(a, b) format, the rotation angle, the start angle of drawing, the end angle of drawing, and
color and thickness of line (you can also draw a filled ellipse) as parameters.

Arguments of the cv2.putText function are the image, the text being placed, the position
of the bottom-left corner of the text, the name of the font face, the scale of symbols, and
color and thickness.

[19]

I/0 and GUI Chapter 1

Handling user input from a keyboard

OpenCV has simple and clear way to handle input from a keyboard. This functionality is
organically built into the cv2.waitKey function. Let's see how we can use it.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

You will need to perform the following steps for this recipe:

1. As done previously, open an image and get its width and height. Also, make a
copy of the original image and define a simple function that returns a random

point with coordinates inside our image:
import cv2, numpy as np, random

image = cv2.imread('../data/Lena.png')
w, h = image.shape[l], image.shapel[0]
image_to_show = np.copy (image)

def rand_pt/():
return (random.randrange (w),
random.randrange (h))

2. Now when the user presses P, L, R, E, or T draw points, lines, rectangles, ellipses,
or text, respectively. Also, we will clear an image when the user hits C and closes
the application when the Esc key is pushed:

finish = False

while not finish:
cv2.imshow ("result", image_to_show)
key = cv2.waitKey (0)

if key == ord('p'"):
for pt in [rand_pt () for _ in range(10)]:
cv2.circle (image_to_show, pt, 3, (255, 0, 0), -1)
elif key == ord('1l"):
cv2.line (image_to_show, rand_pt(), rand_pt(), (0, 255, 0),
3)
elif key == ord('r'):

[20]

I/O and GUI Chapter 1

cv2.rectangle (image_to_show, rand_pt(), rand_pt(), (0, O,
255), 3)
elif key == ord('e'):
cv2.ellipse(image_to_show, rand_pt(), rand_pt(),
random.randrange (360), 0, 360, (255, 255, 0), 3)

elif key == ord('t'):
cv2.putText (image_to_show, 'OpenCV', rand_pt (),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
elif key == ord('c'):
image_to_show = np.copy (image)
elif key == 27:
finish = True

How it works...

As you can see, we just analyze the waitKey () return value. If we set a duration and no
key is pressed, waitKey () would return -1.

After launching the code and pressing the P, L, R, E, and T keys a few times, you will get an
image close to the following;:

[21]

I/0 and GUI Chapter 1

Making your app interactive through
handling user input from a mouse

In this recipe, we will learn how to enable the handling of mouse input in your OpenCV
application. An instance that gets events from a mouse is the window, so we need to use
cv2.imshow. But we also need to add our handlers for mouse events. Let's see, in detail,
how to do it by implementing crop functionality through selecting image regions by mouse.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

The steps for this recipe are as follows:
1. First, load an image and make its copy:
import cv2, numpy as np

image = cv2.imread('../data/Lena.png')
image_to_show = np.copy (image)

2. Now, define some variables to store the mouse state:

mouse_pressed = False
S_.Xx = s_y =e.x =-e.y=-1

3. Let's implement a handler for mouse events. This should be a function that takes
four arguments, as follows:

def mouse_callback (event, x, vy, flags, param):
global image_to_show, s_x, s_y, e_x, e_y, mouse_pressed

if event == cv2.EVENT_LBUTTONDOWN:
mouse_pressed = True
S_X, S_Y = X, ¥
image_to_show = np.copy (image)

elif event == cv2.EVENT_MOUSEMOVE:
if mouse_pressed:

[22]

I/0 and GUI Chapter 1

image_to_show = np.copy (image)
cv2.rectangle (image_to_show, (s_x, s_vy),
(%, y), (0, 255, 0), 1)

elif event == cv2.EVENT_LBUTTONUP:
mouse_pressed = False
e X, ey = X, Y

4. Let's create the window instance that will be capturing mouse events and
translating them into the handler function we defined earlier:

cv2.namedWindow ('image"')
cv2.setMouseCallback ('image', mouse_callback)

5. Now, let's implement the remaining part of our application, which should be
reacting to buttons pushes and cropping the original image:

while True:
cv2.imshow ('image', image_to_show)
k = cv2.waitKey (1)

if k == ord('c'):
if s_y > e_y:

S_Y, €.y = e_y, S_Y
if s.x > e_x:
S_X, e_X = e_X, S_X

if e,y - s_y > 1 and e_x - s_x > 0:
image = image[s_y:e_y, s_x:e_x]
image_to_show = np.copy (image)

elif k == 27:
break

cv2.destroyAllWindows ()

How it works...

In cv2.setMouseCallback , we assigned our mouse events handler, mouse_callback, to
the window named image.

[23]

I/0 and GUI Chapter 1

After launching, we will be able to select a region by pushing the left mouse button
somewhere in the image, dragging the mouse to the end point, and releasing the mouse
button to confirm that our selection is finished. We can repeat the process by clicking in a
new place—the previous selection disappears:

By hitting the C button on the keyboard, we can cut an area inside the selected region, as
follows:

[24]

I/0 and GUI Chapter 1

Capturing and showing frames from a
camera

In this recipe, you will learn how to connect to a USB camera and capture frames from it
live using OpenCV.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

For this recipe, the steps are as follows:
1. Create a VideoCapture object:
import cv2
capture = cv2.VideoCapture (0)

2. Read the frames from the camera using the capture. read method, which
returns a pair: a read success flag and the frame itself:

while True:
has_frame, frame = capture.read()
if not has_frame:
print ('Can\'t get frame')

break
cv2.imshow ('frame', frame)
key = cv2.waitKey (3)
if key == 27:
print ('Pressed Esc')
break

[25]

I/0 and GUI Chapter 1

3. It's generally recommended that you release the video device (a camera, in our
case) and destroy all the windows created:

capture.release ()
cv2.destroyAllWindows ()

How it works...

Working with cameras in OpenCV is done through the cv2.videoCapture class. In fact it
provides support when working with both cameras and video files. To instantiate an object
representing a frame stream coming from a camera, you should just specify its number
(zero-based device index). If OpenCV doesn't support your camera out of the box, you can
try recompiling OpenCV, turning on optional support of other industrial camera types.

Playing frame stream from video

In this recipe, you will learn how to open an existing video file using OpenCV. You will also
learn how to replay frames from the opened video.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

The following are the steps for this recipe:
1. Create a VideoCapture object for video file:
import cv2

capture = cv2.VideoCapture('../data/drop.avi')

[26]

I/0 and GUI Chapter 1

2. Replay all the frames in the video:

while True:
has_frame, frame = capture.read()
if not has_frame:
print ('Reached the end of the video')

break
cv2.imshow ('frame', frame)
key = cv2.waitKey (50)
if key == 27:
print ('Pressed Esc')
break

cv2.destroyAllWindows ()

How it works...

Working with video files is virtually the same as working with cameras—it's done through
the same cv2.VideoCapture class. This time, however, instead of the camera device index,
you should specify the path to the video file you want to open. Depending on the OS and
video codecs available, OpenCV might not support some of the video formats.

After the video file is opened in a infinite while loop, we acquire frames using

the capture.read method. The function returns a pair: a Boolean frame read success flag,
and the frame itself. Note that frames are read at the maximum possible rate, meaning if
you want to replay video at a certain FPS, you should implement it on your own. In the
preceding code, after we call the cv2. imshow function, we wait for 50 milliseconds in

the cv2.waitKey function. Assuming the time spent on showing the image and decoding
the video is negligible, the video will be replayed at a rate no greater than 20 FPS.

[27]

I/O and GUI Chapter 1

The following frames are expected to be seen:

Obtaining a frame stream properties

In this recipe, you will learn how to get such VideoCapture properties as frame height and
width, frame count for video files, and camera frame rate.

[28]

I/0 and GUI Chapter 1

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

Execute the following steps:

1. Let's create an auxiliary function that will take the VideoCapture ID (either what
the camera device is or the path to the video), create a VideoCapture object, and
request the frame height and width, count, and rate:

import numpy
import cv2

def print_capture_properties (*args) :
capture = cv2.VideoCapture (*args)
print ('Created capture:', ' '.join(map(str, args)))
print ('Frame count:',
int (capture.get (cv2.CAP_PROP_FRAME_COUNT)))
print ('Frame width:',
int (capture.get (cv2.CAP_PROP_FRAME_WIDTH)))
print ('Frame height:',
int (capture.get (cv2.CAP_PROP_FRAME_HEIGHT)))
print ('Frame rate:', capture.get (cv2.CAP_PROP_FPS3))

2. Let's call this function for a video file:
print_capture_properties('../data/drop.avi')
3. Now let's request properties for the camera capture object:

print_capture_properties (0)

How it works...

As in the earlier recipes, working with cameras and video frame streams is done through
the cv2.videoCapture class. You can get properties using the capture.get function,
which takes the property ID and returns its value as a floating-point value.

Note that, depending on the OS and video backend used, not all of the properties being
requested can be accessed.

[29]

I/0 and GUI Chapter 1

The following output is expected (it might vary depending on the OS and the video
backend that OpenCV was compiled with):

Created capture: ../data/drop.avi
Frame count: 182

Frame width: 256

Frame height: 240

Frame rate: 30.0

Created capture: 0
Frame count: -1
Frame width: 640
Frame height: 480
Frame rate: 30.0

Writing a frame stream into video

In this recipe, you will learn how to capture frames from a USB camera live and
simultaneously write frames into a video file using a specified video codec.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

Here are the steps we need to execute in order to complete this recipe:

1. First, we create a camera capture object, as in the previous recipes, and get the
frame height and width:

import cv2

capture = cv2.VideoCapture (0)

frame_width = int (capture.get (cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int (capture.get (cv2.CAP_PROP_FRAME_HEIGHT))
print ('Frame width:', frame_width)

print ('Frame height:', frame_height)

[30]

I/0 and GUI Chapter 1

2. Create a video writer:

video = cv2.VideoWriter ('../data/captured_video.avi',
cv2.VideoWriter_fourcc (*'X264"),
25, (frame_width, frame_height))

3. Then, in an infinite while loop, capture frames and write them using
the video.write method:

while True:

has_frame, frame = capture.read()

if not has_frame:
print ('Can\'t get frame')
break

video.write (frame)

cv2.imshow ('frame', frame)

key = cv2.waitKey (3)

if key == 27:
print ('Pressed Esc')
break

4. Release all created VideoCapture and VideoWriter objects, and destroy the
windows:

capture.release ()
writer.release ()
cv2.destroyAllWindows ()

How it works...

Writing video is performed using the cv2.videoWriter class. The constructor takes the
output video path, four characted code (FOURCC) specifying video code, desired frame
rate and frame size. Examples of codec codes include P, I, M, and 1 for MPEG-1; M, J, P, and
G for motion-JPEG; X, v, I, and D for XVID MPEG-4; and H, 2, 6, and 4 for H.264.

Jumping between frames in video files

In this recipe, you will learn how to position VideoCapture objects at different frame
positions.

[31]

I/0 and GUI Chapter 1

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

The steps for this recipe are:

1. First, let's create a VideoCapture object and obtain the total number of frames:

import cv2

capture = cv2.VideoCapture('../data/drop.avi')
frame_count = int (capture.get (cv2.CAP_PROP_FRAME_COUNT))
print ('Frame count:', frame_count)

2. Get the total number of frames:

print ('Position:', int (capture.get (cv2.CAP_PROP_POS_FRAMES)))
_, frame = capture.read()
cv2.imshow ('frameO', frame)

3. Note that the capture.read method advances the current video position one
frame forward. Get the next frame:

print ('Position:', capture.get (cv2.CAP_PROP_POS_FRAMES))
_, frame = capture.read()
cv2.imshow ('framel', frame)

4. Let's jump to frame position 100:

capture.set (cv2.CAP_PROP_POS_FRAMES, 100)

print ('Position:', int (capture.get (cv2.CAP_PROP_POS_FRAMES)))
_, frame = capture.read()

cv2.imshow ('framel00', frame)

cv2.waitKey ()
cv2.destroyAllWindows ()

[32]

I/O and GUI Chapter 1

How it works...

Obtaining the video position and setting it is done using
the cv2.CAP_PROP_POS_FRAMES property. Depending on the way a video is encoded,
setting the property might not result in setting the exact frame index requested. The value

to set must be within a valid range.

You should see the following output after running the program:
Frame count: 182
Position: 0

Position: 1
Position: 100

The following frames should be displayed:

frame0 frame1

frame100

[33]

Matrices, Colors, and Filters

In this chapter, we will cover the following recipes:

e Manipulating matrices-creating, filling, accessing elements, and ROIs
¢ Converting between different data types and scaling values
¢ Non-image data persistence using NumPy

¢ Manipulating image channels

¢ Converting images from one color space to another

e Gamma correction and per-element math

¢ Mean/variance image normalization

e Computing image histograms

¢ Equalizing image histograms

¢ Removing noise using Gaussian, median, and bilateral filters
e Computing gradient images using Sobel filters

¢ Creating and applying your own filter

¢ Processing images with real-valued Gabor filters

¢ Going from the spatial to the frequency domain (and back) using discrete Fourier
transform

¢ Manipulating image frequencies for image filtration
¢ Processing images with different thresholds

¢ Morphological operators

¢ Binary images-image masks and binary operations

Matrices, Colors, and Filters Chapter 2

Introduction

In this chapter, we will see how to work with matrices. We will learn what we can do with a
matrix on a pixel level and what operations and image-processing procedures we can apply
to the whole matrix. You will know how to get access to any pixel, how to change data
types and color spaces of matrices, how to apply built-in OpenCV filters, and how to create
and use your own linear filter.

Manipulating matrices-creating, filling,
accessing elements, and ROls

This recipe covers the creation and initialization of matrices, access to its elements, pixels,
and also how we can work with part of a matrix.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

To get the result, it's necessary to go through a few steps:
1. Import all necessary modules:
import cv2, numpy as np

2. Create a matrix of a certain shape and fill it with 255 as a value, which should
display the following;:

image = np.full((480, 640, 3), 255, np.uint8)
cv2.imshow ('white', image)

cv2.waitKey ()

cv2.destroyAllWindows ()

[35]

Matrices, Colors, and Filters Chapter 2

3. Create a matrix and set individual values for the colors of each pixel to color our
matrix red:

image = np.full ((480, 640, 3), (0, 0, 255), np.uint8)
cv2.imshow ('red', image)

cv2.waitKey ()

cv2.destroyAllWindows ()

4. Fill our matrix with zeros to make it black:

image.£i11(0)
cv2.imshow('black', image)
cv2.waitKey ()
cv2.destroyAllWindows ()

5. Next, set some individual pixels' values to white:

image[240, 160] = image[240, 320] = image[240, 480] = (255, 255,
255)

cv2.imshow ('black with white pixels', image)

cv2.waitKey ()

cv2.destroyAllWindows ()

6. Now, let's set the first channel of all pixels to 255 to make black ones blue:

image([:, :, 0] = 255

cv2.imshow ('blue with white pixels', image)
cv2.waitKey ()

cv2.destroyAllWindows ()

7. Now, set pixels on a vertical line in the middle of the image to white:

image([:, 320, :] = 255

cv2.imshow ('blue with white line', image)
cv2.waitKey ()

cv2.destroyAllWindows ()

8. Finally, set the second channel of all pixels inside a certain region to 255:

image[100:600, 100:200, 2] = 255
cv2.imshow ('image', image)
cv2.waitKey ()
cv2.destroyAllWindows ()

[36]

Matrices, Colors, and Filters Chapter 2

How it works...

Matrices in OpenCV's Python interface are presented with NumPy arrays. NumPy provides
powerful yet clear tools to deal with multi-dimensional matrices, which are also

called tensors. And, of course, NumPy supports plain 2-dimensional matrices. That's why
we need to import its module. And this is the reason why we're using a lot of np's functions
in this recipe.

Here it's necessary to say a few words about matrix dimensions and types. Matrices have
two independent characteristics—shape type and element type. Firstly, let's talk about
shape. Shape describes all dimensions of the matrix. A matrix usually has three spatial
dimensions: width (also called number of columns), height (also called number of rows),
and number of channels. Usually it's subscribed in height, width, channels format. OpenCV
works with full color or grayscale matrices. This means that only 3-channels or 1-channels
may be handled by OpenCV routines. Grayscale matrices may be imagined as planar tables
of numbers, where each element (pixel) stores only one value. Full color ones may be
considered as tables where each element stores not one but three values in a row. An
example of a full color matrix is one with red, green, and blue channels, respectively—this
means each element stores values for red, green, and blue components. But for

historical reasons, OpenCV stores color values for RGB representation in BGR format—so
be careful.

Another feature of a matrix is its element type. The element type defines which data type is
used to represent element values. For example, each pixel can store values in the [0-255]
range—in this case, it is np.uint8. Or, it can store float (np. £1oat32) or double
(np.float64) values.

np.full is used to create matrices. It takes the following parameters: shape of the matrix in
(height, width, channels) format, initial value for each pixel (or each component of the
pixel), and the type of pixel value. It's possible to pass a single number as a second
parameter—in this case, all pixel values are initialized with this number. Also, we can pass
initial numbers for each pixel element.

np.£i11 helps you to assign the same values for all pixels—just pass a value to assign as a
parameter. The difference here between np.£fi11 and np. full is that the first one doesn't
create a matrix but just assigns values to existing elements.

[37]

Matrices, Colors, and Filters Chapter 2

To get access to individual pixels, you can use the [] operator and specify indexes of the
desired element; for example, image [240, 160] gives you access to the pixel at height 240
and width 160. The order of the indexes corresponds with the order of dimensions in the
matrix shape—the first index is along the first dimension, the second index is along the
second dimension, and so on. If you specify indexes only for some dimensions, you'll get a
slice (a tensor with a low dimension number). It's possible to address all the pixels along a
dimension by using a colon (:) instead of index. For example, image[:, 320, :] actually
means—agive all pixels along height and channels that have index 320 along the width dimension.

The : symbol also helps to specify certain regions inside the matrix—we just need to add
start the index before : and end the index after : (the end of an index isn't included in the
range). For instance, image[100:600, 100:200, 2] gives us all pixels with height
indexes in the range of [100, 600], width indexes in the range of [100, 200], and
channel index 2.

Converting between different data types and
scaling values

This recipe tells you how to change the data type of matrix elements from uint8 to
float32 and perform arithmetic operations without worrying about clamping values (and
then convert everything back to uint8).

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

The following steps are required for this recipe:

1. Import all necessary modules, open an image, print its shape and data type, and
display it on the screen:

import cv2, numpy as np

image = cv2.imread('../data/Lena.png')
print ('Shape:', image.shape)
print ('Data type:', image.dtype)

[38]

Matrices, Colors, and Filters Chapter 2

cv2.imshow ('image', image)
cv2.waitKey ()
cv2.destroyAllWindows ()

2. Convert our image to one with floating data type elements:

image = image.astype (np.float32) / 255
print ('Shape:', image.shape)

print ('Data type:', image.dtype)

3. Scale the elements of our image by 2 and clip the values to keep them in the [0,
1] range:

cv2.imshow ('image', np.clip(image*2, 0, 1))

cv2.waitKey ()
cv2.destroyAllWindows ()

4. Scale the elements of our image back to the [0, 255] range, and convert the
element type to 8-bit unsigned int:

image = (image * 255) .astype (np.uint8)
print ('Shape:', image.shape)

print ('Data type:', image.dtype)
cv2.imshow ('image', image)

cv2.waitKey ()
cv2.destroyAllWindows ()

How it works...

To convert the data type of the matrix, it's necessary to use the astype function of NumPy
Array. The function takes desired type as input and returns converted array.

To scale the values of the matrix, you can use an algebraic operation with the matrix itself:
for example, just divide the matrix by some value (255, in the preceding code) to divide
each element of the matrix by the specified value. The result of scaling the values of the
input images should appear as follows (the left image is the original, the right image is the
scaled version):

[39]

Matrices, Colors, and Filters Chapter 2

Non-image data persistence using NumPy

Previously, we've saved and loaded only images with OpenCV's cv2 . imwrite and
cv2.imread functions, respectively. But it's possible to save any matrix (not only with

image content) of any type and shape with NumPy's data persistence. In this recipe, we will
review how to do it.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

Perform the following steps:
1. Import all necessary modules:
import cv2, numpy as np
2. Create a matrix with random values initialization and print its attributes:
mat = np.random.rand (100, 100).astype(np.float32)

print ('Shape:', mat.shape)
print ('Data type:', mat.dtype)

[40]

Matrices, Colors, and Filters Chapter 2

3. Save our random matrix to the file with the np . savetxt function:

np.savetxt ('mat.csv', mat)
4. Now, load it from the file we've just written and print its shape and type:
mat = np.loadtxt ('mat.csv').astype(np.float32)

print ('Shape:', mat.shape)
print ('Data type:', mat.dtype)

How it works...

NumPy's savetxt and loadtxt functions let you store and load any matrices. They use
text format, so you can view the content of the file in a text editor.

Manipulating image channels

This recipe is about dealing with matrix channels. Getting access to individual channels,
swapping them, and performing algebraic operations are all covered here.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

Perform the following steps:

1. Import all necessary modules, open the image, and output its shape:
import c¢cv2, numpy as np
image = cv2.imread('../data/Lena.png') .astype (np.float32) / 255
print ('Shape:', image.shape)

2. Swap the red and blue channels and display the result:

imagel[:, :, [0, 2]] = image[:, :, [2, 0]]
cv2.imshow ('blue_and_red_swapped', image)

[41]

Matrices, Colors, and Filters Chapter 2

cv2.waitKey ()
cv2.destroyAllWindows ()

3. Swap the channels back and scale them differently to change the colorization of

the image:
image([:, :, [0, 2]] = imagel:, :, [2, 0]]
image([:, :, 0] = (image[:, :, 0] * 0.9).clip(0, 1)
image([:, :, 1] = (image[:, :, 1] * 1.1).clip(0, 1)
cv2.imshow ('image', image)

cv2.waitKey ()
cv2.destroyAllWindows ()

How it works...

The last dimension of the matrix is responsible for channels. That's why we're manipulating
it in the code.

To swap channels, we should get access to the corresponding slices of our matrix. But slices
aren't copies of the original matrix, they're just different views of the same data. This means
we can't perform swaps through temporary variables as we do with plain types. We need
something more complicated here, and NumPy allows us to get not only a single slice, but a
bunch of slices as new views of the data. To do so, we should enumerate indexes for all
needed slices in the desired order, instead of just a single index.

When we use a single index, we get an access to the corresponding channel, and we can
perform some algebraic operations on the slice.

The results should appear as follows:

[42]

Matrices, Colors, and Filters Chapter 2

Converting images from one color space to
another

This recipe tells you about color space conversion. By default, full color images in OpenCV
are presented in RGB color space. But for some cases it's necessary to move to other color
representations; for example, to have a separate channel for intensity. Here we consider
ways to change the color space of an image.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

Use following steps:
1. Import all necessary modules:

import cv2
import numpy as np

2. Load an image and print its shape and type:

image = cv2.imread('../data/Lena.png') .astype(np.float32) / 255
print ('Shape:', image.shape)
print ('Data type:', image.dtype)

3. Convert the image to grayscale:

gray = cv2.cvtColor (image, cv2.COLOR_BGR2GRAY)
print ('Converted to grayscale')

print ('Shape:', gray.shape)

print ('Data type:', gray.dtype)

cv2.imshow ('gray', gray)
cv2.waitKey ()
cv2.destroyAllWindows ()

[43]

Matrices, Colors, and Filters Chapter 2

4. Convert the image to HSV color space:

hsv = cv2.cvtColor (image, cv2.COLOR_BGR2HSV)
print ('Converted to HSV')

print ('Shape:', hsv.shape)

print ('Data type:', hsv.dtype)

cv2.imshow ('hsv', hsv)

cv2.waitKey ()

cv2.destroyAllWindows ()

5. Increase the brightness of the image by multiplying the V channel by some value.
Then convert the image to the RGB color space:

hsv[:, :, 2] *= 2

from_hsv = cv2.cvtColor (hsv, cv2.COLOR_HSV2BGR)
print ('Converted back to BGR from HSV')

print ('Shape:', from_hsv.shape)

print ('Data type:', from_hsv.dtype)

cv2.imshow ('from_hsv', from_hsv)

cv2.waitKey ()

cv2.destroyAllWindows ()

How it works...

To change the color space of an image with OpenCV, you should use the

cvtColor function. It takes the source image and the special value, which encodes the
source and targets the color spaces. The return value of the function is the converted image.
OpenCV supports over 200 conversion types. The results of the code execution should be as
follows:

Matrices, Colors, and Filters Chapter 2

Gamma correction and per-element math

Gamma correction is used to skew pixels, value distribution in a non-linear manner. With
gamma correction, it's possible to adjust the luminescence of the image to make it easier to
see. In this recipe, you will learn how to apply gamma correction to images.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

The steps for this recipe are as follows:

1. Load the image as grayscale and convert every pixel value to the np. float32
data type in the [0, 1] range:

import cv2
import numpy as np

image = cv2.imread('../data/Lena.png', 0).astype(np.float32) / 255

2. Apply per-element exponentiation using the specified exponent value, gamma:

gamma = 0.5
corrected_image = np.power (image, gamma)

3. Display the source and result images:

cv2.imshow ('image', image)

cv2.imshow ('corrected_image', corrected_image)
cv2.waitKey ()

cv2.destroyAllWindows ()

How it works...

Gamma correction is a non-linear operation that adjusts image pixel intensities. The
operation is represented through the power-law relationship between input and output

Lzutizzlfw

pixel values: in. The values with an exponent coefficient higher than 1 make the
image darker, while the values less than 1 make the image brighter.

[45]

Matrices, Colors, and Filters Chapter 2

The following output is expected for the preceding code:

corrected_image

Mean/variance image normalization

Sometimes it's necessary to set certain values to the statistical moments of pixel values.
When we set 0 for mean value of values and 1 for variance, the operation is called
normalization. This can be useful in computer vision algorithms for dealing with values
with a certain range and with certain statistics. Here we're going to check out image

normalization.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

[46]

Matrices, Colors, and Filters Chapter 2

How to do it...

Perform the following steps:
1. Import all necessary modules:

import cv2
import numpy as np

2. Load an image and convert it to one with floating-point elements in range [0, 1]:
image = cv2.imread('../data/Lena.png') .astype (np.float32) / 255

3. Subtract the mean value from each image pixel to get a zero-mean matrix. Then,
divide each pixel value by its standard deviation to have a unit-variance matrix:

image —-= image.mean ()
image /= image.std()

How it works...

Matrices are presented with NumPy array classes. These arrays have methods to compute
mean values and standard deviations. To normalize a matrix—that is, to get a zero-mean
and unit-variance matrix—we need to subtract the mean value, which we can get by calling
mean and dividing the matrix by its standard deviation. You can also use

the cv2.meanStdDev function, which computes both mean and standard deviation
simultaneously.

Computing image histograms

Histograms show the levels distribution in a set of values; for example, in an image. In this
recipe, we understand how to compute histograms.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

[47]

Matrices, Colors, and Filters Chapter 2

How to do it...

Follow these steps:
1. Import all necessary modules:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Load an image and display it:

grey = cv2.imread('../data/Lena.png', 0)
cv2.imshow ('original grey', grey)
cv2.waitKey ()

cv2.destroyAllWindows ()

3. Compute a histogram function:
hist, bins = np.histogram(grey, 256, [0, 255])
4. Plot histogram and display it:

plt.£fill (hist)
plt.xlabel ('pixel value')
plt.show ()

How it works...

OpenCV has its own generic function for computing histograms, cv2.calcHist. However,
in this recipe, we will use NumPy since, in this particular case, it makes code more concise.
NumPy has a special function to compute histograms, np . histogram. Arguments of the
routine are the input image, number of bins, and range of bins. It returns an array with
histogram values and edge values for bins.

[48]

Matrices, Colors, and Filters Chapter 2

To plot the histogram as a figure, we need to use functionality from the matplotlib module.
The output figure should appear as follows:

2500 ~

2000 ~

1500 A

1000 A

500 4

0 50 100 150 200 250
pixel value

Equalizing image histograms

Image histograms are used to reflect intensity distribution. Properties of histograms depend
on image properties. For example, low-contrast images have histograms where bins are
clustered near a value: most of the pixels have their values within a narrow range. Low-
contrast images are harder to work with because small details are poorly expressed. There
is a technique that is able to address this issue. It's called histogram equalization. This recipe
covers usage of the approach in OpenCV. We study how to perform histogram equalization
for both grayscale and full color images.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

[49]

Matrices, Colors, and Filters Chapter 2

How to do it...
Use the following steps:

1. Import all necessary modules:
import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Load the image as grayscale and display it:
grey = cv2.imread('../data/Lena.png', 0)
cv2.imshow ('original grey', grey)
cv2.waitKey ()
cv2.destroyAllWindows ()

3. Equalize the histogram of the grayscale image:
grey_eq = cv2.equalizeHist (grey)

4. Compute the histogram for the equalized image and show it:
hist, bins = np.histogram(grey_eq, 256, [0, 255])
plt.fill_between (range (256), hist, 0)
plt.xlabel ('pixel value')
plt.show ()

5. Show the equalized image:
cv2.imshow ('equalized grey', grey_eq)
cv2.waitKey ()
cv2.destroyAllWindows ()

6. Load the image as BGR and convert it to the HSV color space:

color = cv2.imread('../data/Lena.png')
hsv = cv2.cvtColor (color, cv2.COLOR_BGR2HSV)

7. Equalize the V channel of the HSV image and convert it back to the RGB color
space:

hsv[..., 2] = cv2.equalizeHist (hsv[..., 2])
color_eq = cv2.cvtColor (hsv, cv2.COLOR_HSV2BGR)
cv2.imshow ('original color', color)

[50]

Matrices, Colors, and Filters Chapter 2

8. Show the equalized full color image:

cv2.imshow ('equalized color', color_eq)
cv2.waitKey ()
cv2.destroyAllWindows ()

How it works...

To equalize histograms, a special function from OpenCV can be applied. It's called
equalizeHist, and it takes an image whose contrast we need to be enhanced. Note that it
takes only single-channel images, so we can use this function directly only for grayscale
images. The return value of the routine is a single-channel, equalized image.

To apply this function for full color images, we need to transform them in such way as to
have intensity information in one channel and color information in the other channels. The
HSV color space perfectly fits this requirement, because the last V channel encodes
brightness. By transforming an input image to HSV color space, applying equalizeHist to
the V channel, and converting the result back to RGB, we can equalize histogram for full
color images.

After following the steps from this recipe, the result should appear as follows:

2500 1

2000 1

1500 A

1000 A

500 -

0 50 100 150 200 250
pixel value

[51]

Matrices, Colors, and Filters Chapter 2

Removing noise using Gaussian, median,
and bilateral filters

All real images are noisy. Noise not only spoils the appearance of the image but also it
makes harder for your algorithms to handle them as input. In this recipe, we consider how
to get rid of noise or dramatically decrease it.

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

How to do it...
Perform the following steps:
1. Import the packages:
import cv2
import numpy as np

import matplotlib.pyplot as plt

2. Load an image, convert it to floating-point, and scale it down to the [0, 1]
range:

image = cv2.imread('../data/Lena.png') .astype (np.float32) / 255

3. Create noise in the image by adding random values to each pixel, and display it:

noised = (image + 0.2 *

np.random.rand (*image.shape) .astype (np.float32))
noised = noised.clip (0, 1)

plt.imshow (noised[:,:,[2,1,011)

plt.show ()

4. Apply GaussianBlur to the noisy image and show the result:

gauss_blur = cv2.GaussianBlur (noised, (7, 7), 0)
plt.imshow (gauss_blurf[:, :, [2, 1, 011)
plt.show ()

[52]

Matrices, Colors, and Filters Chapter 2

5. Apply median filtering:

median_blur = cv2.medianBlur ((noised * 255).astype (np.uint8), 7)
plt.imshow (median_blurf(:, :, [2, 1, 0]1)
plt.show ()

6. Perform median filtration to our image with noise:

bilat = cv2.bilateralFilter (noised, -1, 0.3, 10)
plt.imshow (bilat[:, :, [2, 1, 0]])
plt.show ()

How it works...

cv2.GaussianBlur is used to apply a Gaussian filter to the image. This function takes an
input image, kernel size in (kernel width, kernel height) format, and standard deviations
along width and height. The kernel size should be a positive, odd number.

If the standard deviation along height isn't specified or is set to zero, the value of X
standard deviation is used for both directions. Also standard deviations can be computed
from kernel sizes if we change X standard deviation to zero.

To apply median blurring, you need to use the cv2.medianBlur function. It accepts an
input image as the first argument, and a kernel size as the second. Kernel size must be a
positive, odd number.

Bilateral filtering is presented with the cv2.bilateralFilter function. It takes an input
image, window size and color, and spatial sigma values. If the window size is negative, it's
computed from spatial sigma values.

The various outputs of the preceding codes should appear as follows:

Noisy input Gaussian blur Median blur Bilateral filter

U

-

[53]

Matrices, Colors, and Filters Chapter 2

Computing gradients using Sobel operator

In this recipe, you will learn how to compute the approximation of an image's gradient
using Sobel filters.

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

How to do it...

Perform the following steps:
1. Import the packages:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Read the image as grayscale:
image = cv2.imread('../data/Lena.png', 0)
3. Compute the gradient approximations using the Sobel operator:

dx = cv2.Sobel (image, cv2.CV_32F, 1, 0)
dy = cv2.Sobel (image, cv2.CV_32F, 0, 1)

4. Visualize the results:

plt.figure(figsize=(8,3))
plt.subplot (131)
plt.axis('off'")
plt.title('image"')

plt.imshow (image, cmap='gray')
plt.subplot (132)
plt.axis('off'")
plt.imshow (dx, cmap='gray')
plt.title(r'S$S\frac{dI}{dx}s$")
plt.subplot (133)
plt.axis('off'")
plt.title(r'S$S\frac{dI}{dy}s")
plt.imshow (dy, cmap='gray')

[54]

Matrices, Colors, and Filters Chapter 2

plt.tight_layout ()
plt.show ()

How it works...

OpenCV's cv2 . sobel function computes image gradient approximation using a linear
filter of a specified size. Through function parameters, you can specify exactly what
derivative needs to be computed, what kernel should be used, and the datatype for the

output image.

The following output is expected for the preceding code:

image g—i

Creating and applying your own filter

In this recipe, you will learn how to create your own linear filter and apply it to images.

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

[55]

Matrices, Colors, and Filters

Chapter 2

How to do it...

Perform the following steps:
1. Import the packages:

import math
import cv2

import numpy as np
import matplotlib.pyplot as plt

2. Read the test image:

image = cv2.imread('../data/Lena.png')

3. Create an 11x11 sharpening kernel:

KSIZE
ALPHA

11
2

kernel = cv2.getGaussianKernel (KSIZE, 0)
kernel = —-ALPHA * kernel @ kernel.T

kernel [KSIZE//2,

KSIZE//2]

+= 1 + ALPHA

4. Filter the image using the kernel we just created:

filtered = cv2.filter2D(image, -1, kernel)

5. Visualize the results:

plt.figure(figsize=(8,4))

plt.subplot (121)
plt.axis('off")

plt.title('image')

plt.imshow (image[:, :, [2,

plt.subplot (122)
plt.axis('off")

plt.title('filtered")
plt.imshow (filtered[:, :,
plt.tight_layout (True)

plt.show ()

[56]

Matrices, Colors, and Filters Chapter 2

How it works...

OpenCV's cv2. filter2d function takes an input image, output result datatype, OpenCV
ID (-1, if you want to keep the input image datatype), and filter kernel; then, image is
filtered linearly.

In this recipe, we constructed a sharpening kernel that should emphasize high frequencies
in the source image. The following output is expected:

filtered

image

Processing images with real-valued Gabor
filters

In this recipe, you will learn how to construct a Gabor filter kernel (useful for detecting
edges in images) and apply it to an image.

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

[57]

Matrices, Colors, and Filters Chapter 2

How to do it...

Perform the following steps:
1. Import the packages:

import math

import cv2

import numpy as np

import matplotlib.pyplot as plt

2. Read the test image as grayscale and convert it to np. float32:
image = cv2.imread('../data/Lena.png', 0).astype (np.float32) / 255

3. Construct the real-valued Gabor filter kernel. Normalize the kernel in such a

way that it has an L2 unit norm:
kernel = cv2.getGaborKernel((21, 21), 5, 1, 10, 1, 0, cv2.CV_32F)
kernel /= math.sqrt ((kernel * kernel).sum())

4. Filter the image:
filtered = cv2.filter2D(image, -1, kernel)
5. Visualize the results:

plt.figure (figsize=(8,3))
plt.subplot (131)
plt.axis('off")
plt.title('image')

plt.imshow (image, cmap='gray')
plt.subplot (132)
plt.title('kernel')

plt.imshow (kernel, cmap='gray')
plt.subplot (133)
plt.axis('off")
plt.title('filtered")
plt.imshow (filtered, cmap='gray')
plt.tight_layout ()

plt.show ()

[58]

Matrices, Colors, and Filters Chapter 2

How it works...

The Gabor filter is a linear filter whose kernel is a 2D Gaussian modulated with a cosine
wave. The kernel can be obtained using the cv2.getGaborKernel function, which takes
such parameters as kernel size, Gaussian standard deviation, wave orientation, wave
length, spatial ratio, and phase. One of the areas where Gabor filters are useful is detecting

edges of known orientation.

The following output is expected:

image kernel filtered

Going from the spatial domain to the
frequency domain (and back) using the
discrete Fourier transform

In this recipe, you will learn how to convert a grayscale image from spatial representation
to frequency representation, and back again, using the discrete Fourier transform.

Getting ready

Install the OpenCV 3.x Python package and the matplotlib package.

[59]

Matrices, Colors, and Filters Chapter 2

How to do it...

The following steps must be performed:
1. Import the required packages:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Read the image as grayscale and convert it to np. f1oat 32 datatype:

image = cv2.imread('../data/Lena.png', 0).astype (np.float32) / 255
3. Apply the discrete Fourier transform:

fft = cv2.dft (image, flags=cv2.DFT_COMPLEX_OUTPUT)
4. Visualize image spectrum:

shifted = np.fft.fftshift (fft, axes=[0, 1])
magnitude = cv2.magnitude (shifted[:, :, 0], shifted[:, :, 11])
magnitude = np.log(magnitude)

plt.axis('off'")

plt.imshow (magnitude, cmap='gray')
plt.tight_layout ()

plt.show ()

5. Convert the image from the frequency spectrum back to spatial representation:

restored = cv2.idft (fft, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OQOUTPUT)

How it works...

OpenCV uses a fast Fourier transform algorithm (it's implemented by the cv2.dft
function) for computing the discrete Fourier transform, and uses the same for its inverse
version (the cv2.idft function). The functions support optional flags specifying whether
output should be real or complex (flags cv2.DFT_REAL_OUTPUT and
cv2.DFT_COMPLEX_OUTPUT, respectively), and whether output values should be scaled
(using the cv2.DFT_SCALE flag). The np. fft . fftshift function shifts the frequency
spectrum in such a way that the amplitude corresponding to zero frequency becomes
located at the center of the array, and it's easier to interpret and work with further.

[60]

Matrices, Colors, and Filters Chapter 2

The following output is expected:

Manipulating image frequencies for image
filtration

In this recipe, you will learn how to manipulate images in the frequency domain.

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

[61]

Matrices, Colors, and Filters Chapter 2

How to do it...
Perform the following steps:
1. Import the packages:
import cv2
import numpy as np
import matplotlib.pyplot as plt
2. Read the image as grayscale and convert it to the np. f1oat 32 datatype:

image = cv2.imread('../data/Lena.png', 0).astype (np.float32) / 255

3. Convert the image from the spatial domain to the frequency domain using the
discrete Fourier transform:

fft = cv2.dft (image, flags=cv2.DFT_COMPLEX_ OUTPUT)

4. Shift the FFT results in such a way that low frequencies are located at the center
of the array:

fft_shift = np.fft.fftshift (fft, axes=[0, 11])
5. Set the amplitudes for high frequencies to zero, leaving the others untouched:
sz = 25
mask = np.zeros (fft_shift.shape, np.uint8)
mask [mask.shape[0]//2-sz:mask.shape[0]//2+sz,
mask.shape[1]//2-sz:mask.shape[1]//2+sz, :] =1
fft_shift *= mask
6. Shift the DFT results back:

fft = np.fft.ifftshift (fft_shift, axes=[0, 11])

7. Convert the filtered image from the frequency domain back to the spatial domain
using the inverse discrete Fourier transform:

filtered = cv2.idft (fft, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)

[62]

Matrices, Colors, and Filters

Chapter 2

8. Visualize the original and filtered images:

plt.figure ()
plt.subplot (121)
plt.axis('off")

plt.title('original')
cmap="gray"')

plt.imshow (image,
plt.subplot (122)
plt.axis('off")

plt.title('no high frequencies')
plt.imshow (filtered, cmap='gray')

plt.tight_layout ()
plt.show ()

How it works...

Using fast Fourier transform, we convert the image from the spatial domain to the

frequency domain. Then, we create a mask with zeros everywhere except a rectangle at the
center. Using that mask, we set amplitudes for high frequencies to zero and convert the

image back to spatial representation.

The following output is expected:

original

no high frequencies

For readers interested in more applications of the frequency domain
filtering technique, we refer you to Chapter 6, Seeing a Heartbeat with a
Motion Amplifying Camera of the book OpenCV for Secret Agents (https://

www.packtpub.com/application—development/opencv—secret—agents)

https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents
https://www.packtpub.com/application-development/opencv-secret-agents

Matrices, Colors, and Filters Chapter 2

Processing images with different thresholds

In this recipe, you will learn how to convert a grayscale image into a binary image using
different thresholding approaches.

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

How to do it...

Perform the following steps:
1. Import the packages:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Read the test image:
image = cv2.imread('../data/Lena.png', 0)
3. Apply a simple binary threshold:

thr, mask = cv2.threshold(image, 200, 1, cv2.THRESH_BINARY)
print ('Threshold used:', thr)

4. Apply adaptive thresholding;:

adapt_mask = cv2.adaptiveThreshold(image, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY_INV, 11, 10)

5. Visualize the results:

plt.figure (figsize=(10,3))
plt.subplot (131)
plt.axis('off'")
plt.title('original')
plt.imshow (image, cmap='gray')
plt.subplot (132)
plt.axis('off'")

[64]

Matrices, Colors, and Filters Chapter 2

plt.title('binary threshold')
plt.imshow (mask, cmap='gray')
plt.subplot (133)

plt.axis('off'")

plt.title('adaptive threshold')
plt.imshow (adapt_mask, cmap='gray')
plt.tight_layout ()

plt.show ()

How it works...

OpenCV has many different types of thresholds and thresholding methods. You can divide
all the methods into two groups—global, where the same threshold value is used for all
pixels, and adaptive, where the value of the threshold is pixel-dependent.

The approaches from the first group can be used through the cv2.threshold function,
which, among other parameters, takes the threshold type (such as cv2 . THRESH_BINARY
and cv.THRESH_BINARY_INV).

Adaptive thresholding methods are available through the cv2.adaptiveThreshold
function. In adaptive approaches, each pixel has its own threshold, which depends on the
surrounding pixel values. In the preceding code, we used the
cv2.ADAPTIVE_THRESH_MEAN_C approach for threshold value estimation, which computes
the mean value of the surrounding pixels and uses that value minus a user-specified bias
(10, in our case) as a pixel-wise threshold.

The various outputs for the preceding code should appear as follows:

original binary threshold adaptive threshold

R

[65]

Matrices, Colors, and Filters Chapter 2

Morphological operators

In this recipe, you will learn how to apply basic morphological operations to binary images.

Getting ready

Install the OpenCV Python API package and the matplotlib package.

How to do it...

Follow these steps:
1. Import the packages:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Read the test image and build a binary image using Otsu's method:

image = cv2.imread('../data/Lena.png', 0)
_, binary = cv2.threshold(image, -1, 1, cv2.THRESH_BINARY |
cv2.THRESH_OTSU)

3. Apply erosion and dilatation 10 times using a 3x3 rectangle mask:

eroded = cv2.morphologyEx (binary, cv2.MORPH_ERODE, (3, 3),

iterations=10)
dilated = cv2.morphologyEx (binary, cv2.MORPH_DILATE, (3, 3),

iterations=10)

4. Apply morphological open and close operations using an ellipse-like 5x5
structuring element 5 times:

opened = cv2.morphologyEx (binary, cv2.MORPH_OPEN,

cv2.getStructuringElement (cv2.MORPH_ELLIPSE, (5, 5)),
iterations=5)

closed = cv2.morphologyEx (binary, cv2.MORPH_CLOSE,

cv2.getStructuringElement (cv2.MORPH_ELLIPSE, (5, 5)),
iterations=5)

[66]

Matrices, Colors, and Filters Chapter 2

5. Compute the morphological gradient:

grad = cv2.morphologyEx (binary, cv2.MORPH_GRADIENT,
cv2.getStructuringElement (cv2.MORPH_ELLIPSE, (5, 5)))

6. Visualize the results:

plt.figure(figsize=(10,10))
plt.subplot (231)
plt.axis('off")
plt.title('binary"')

plt.imshow (binary, cmap='gray')
plt.subplot (232)
plt.axis('off")
plt.title('erode 10 times')
plt.imshow (eroded, cmap='gray')
plt.subplot (233)
plt.axis('off")
plt.title('dilate 10 times"')
plt.imshow(dilated, cmap='gray')
plt.subplot (234)
plt.axis('off")

plt.title('open 5 times')
plt.imshow (opened, cmap='gray')
plt.subplot (235)
plt.axis('off")
plt.title('close 5 times')
plt.imshow(closed, cmap='gray')
plt.subplot (236)
plt.axis('off")
plt.title('gradient')
plt.imshow(grad, cmap='gray')
plt.tight_layout ()

plt.show ()

[67]

Matrices, Colors, and Filters

Chapter 2

How it works...

The following output is expected:

binary

open 5 times

k

erode 10 times

4

dilate 10 times

1

Image masks and binary operations

In this recipe, you will learn how to work with binary images, including how to apply

binary element-wise operations.

Getting ready

You need to have OpenCV 3.x installed with Python API support and, additionally, the

matplotlib package.

[68]

Matrices, Colors, and Filters Chapter 2

How to do it...

The steps for this recipe are as follows:
1. Import all the packages:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Create a binary image with a circle mask:

circle_image = np.zeros((500, 500), np.uint8)
cv2.circle(circle_image, (250, 250), 100, 255, -1)

3. Create a binary image with a rectangle mask:

rect_image = np.zeros((500, 500), np.uint8)
cv2.rectangle (rect_image, (100, 100), (400, 250), 255, -1)

4. Combine the circle and rectangle masks using a bitwise AND operator:
circle_and_rect_image = circle_image & rect_image

5. Combine the circle and rectangle masks using a bitwise OR operator:
circle_or_rect_image = circle_image | rect_image

6. Visualize the results:

plt.figure (figsize=(10,10))

plt.subplot (221)

plt.axis('off'")

plt.title('circle')

plt.imshow(circle_image, cmap='gray')
plt.subplot (222)

plt.axis('off")

plt.title ('rectangle')

plt.imshow (rect_image, cmap='gray')
plt.subplot (223)

plt.axis('off'")

plt.title('circle & rectangle')

plt.imshow (circle_and_rect_image, cmap='gray')
plt.subplot (224)

plt.axis('off")

plt.title('circle | rectangle')

plt.imshow (circle_or_rect_image, cmap='gray')

[69]

Matrices, Colors, and Filters Chapter 2

plt.tight_layout ()
plt.show ()

How it works...

It's convenient to represent binary images—images containing only black and white
pixels—using np.uint8 arrays with only 0 and 255 values correspondingly. Both OpenCV
and NumPy support all usual binary operators: NOT, AND, OR, and XOR. They are available
through aliases, such as ~, &, |, *, as well as through functions such as
cv2.bitwise_not/np.bitwise_not and cv2.bitwise_and/np.bitwise_and.

After running the preceding code, the following output is expected:

rectangle

circle

circle | rectangle

circle & rectangle

[70]

Contours and Segmentation

In this chapter, we will cover the following recipes:

e Binarization of grayscale images using the Otsu algorithm

¢ Finding external and internal contours in a binary image

¢ Extracting connected components from a binary image

e Fitting lines and circles into two-dimensional point sets

¢ Calculating image moments

e Working with curves - approximation, length, and area

¢ Checking whether a point is within a contour

¢ Computing the distance to a two-dimensional point set from every pixel
¢ Image segmentation using the k-means algorithm

¢ Image segmentation using segment seeds, the watershed algorithm

Introduction

Pixels store values. Values themselves are good features of an image—they can tell you
about image statistics, but almost nothing more. Values group together according to image
content—dark to light transitions form borders, and borders divide scenes into different
objects. Borders connect together and reveal contours. Contours play an important role in
many computer vision algorithms. They help to find objects, to separate one instance of
something from another, and finally, to understand the whole scene.

This chapter sheds light on everything relevant to the contours in OpenCV. We will discuss
methods for finding, using, and displaying them, as well as consider basic segmentation
methods.

Contours and Segmentation Chapter 3

Binarization of grayscale images using the
Otsu algorithm

Converting grayscale images to binary images using Otsu's method is useful when you
have only two classes in an input image and want to extract them without any manual
threshold adjusting. In this recipe, you will learn how to do it.

Getting ready

Before you proceed with this recipe, you will need to install the OpenCV 3.x Python API
package and the matplot1lib package.

How to do it...

To complete this recipe, we need to perform the following steps:
1. Import the modules:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Read the test image:
image = cv2.imread('../data/Lena.png', 0)
3. Estimate the threshold using Otsu's method:

otsu_thr, otsu_mask = cv2.threshold(image, -1, 1, cv2.THRESH_BINARY
| cv2.THRESH_OTSU)
print ('Estimated threshold (Otsu):', otsu_thr)

4. Visualize the results:

plt.figure()

plt.subplot (121)
plt.axis('off")
plt.title('original')
plt.imshow (image, cmap='gray')
plt.subplot (122)
plt.axis('off")

[72]

Contours and Segmentation Chapter 3

plt.title ('Otsu threshold')
plt.imshow (otsu_mask, cmap='gray')
plt.tight_layout ()

plt.show ()

How it works...

Otsu's method estimates the threshold for grayscale images in such a way that after
binarization and converting the original image to a binary mask, the total intra-class
variance for two classes is minimal. Otsu's method can be used with the help of

the cv2.threshold function, having specified the flag cv2 . THRESH_OTSU.

The following output is expected from the preceding code:

Estimated threshold (Otsu): 116.0

original Otsu threshold

Finding external and internal contours in a
binary image

Having contours extracted from a binary image gives you an alternative image

representation and allows you to apply contour-specific image analysis methods. In this
recipe, you will learn how to find contours in a binary image.

[73]

Contours and Segmentation Chapter 3

Getting ready

For this recipe, ensure that you have installed the OpenCV 3.x Python API package and the
matplotlib package.

How to do it...

1. Import the modules:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Load the test binary image:
image = cv2.imread('../data/BnW.png', 0)

3. Find the external and internal contours. Organize them into a two-level
hierarchy:

_, contours, hierarchy = cv2.findContours (image, cv2.RETR_CCOMP,
cv2.CHAIN_APPROX_SIMPLE)

4. Prepare the external contour binary mask:

image_external = np.zeros (image.shape, image.dtype)
for i in range (len(contours)):
if hierarchy[0][i][3] == -1:
cv2.drawContours (image_external, contours, i,
255, -1)

5. Prepare the internal contour binary mask:

image_internal = np.zeros (image.shape, image.dtype)
for i in range(len (contours)) :
if hierarchy[0][i][3] !'= -1:
cv2.drawContours (image_internal, contours, i,
255, -1)

[74]

Contours and Segmentation Chapter 3

6. Visualize the results:

plt.figure(figsize=(10,3))

plt.subplot (131)

plt.axis('off")

plt.title('original')

plt.imshow (image, cmap='gray')
plt.subplot (132)

plt.axis('off")

plt.title('external')

plt.imshow (image_external, cmap='gray')
plt.subplot (133)

plt.axis('off")

plt.title('internal')

plt.imshow (image_internal, cmap='gray')
plt.tight_layout ()

plt.show ()

How it works...

Contours are extracted using the OpenCV function cv2. findContours. It supports
different contour extraction modes:

e cv2.RETR_EXTERNAL: For extracting only external contours

e cv2.RETR_CCOMP: For extracting both internal and external contours, and
organizing them into a two-level hierarchy

e cv2.RETR_TREE: For extracting both internal and external contours, and
organizing them into a tree graph

e cv2.RETR_LIST: For extracting all contours without establishing any
relationships

Also, you can specify whether contour compression is required (use
cv2.CHAIN_APPROX_SIMPLE for collapsing vertical and horizontal parts of contours into
their respective end points) or not (cv2.CHAIN_APPROX_NONE).

The function returns a tuple of three elements, modified image, list of contours, and list of
contour hierarchy attributes. The hierarchy attributes describe the image contour topology,
each list element is a four-element tuple containing zero-based indices of the next and
previous contours at the same hierarchy level, then the first child and the first parent
contours, respectively. If there's no contour, the corresponding index is -1.

[75]

Contours and Segmentation Chapter 3

The following output is expected:

external internal

original

Extracting connected components from a
binary image

Connected components in binary images are areas of non-zero values. Each element of each
connected component is surrounded by at least one other element from the same
component. And different components don't touch each other, there are zeros around each
one.

Connected component analysis can be an important part of image processing. Typically
(and in OpenCV, it's a fact), finding connected components in an image is much faster than
finding all contours. So, it's possible to quickly exclude all irrelevant parts of the image
according to connected component features (such as area, centroid location, and so on), to
continue working with, remaining areas.

This recipe shows you how to find connected components on binary images with OpenCV.

Getting ready

You need to have OpenCV 3.x installed, with Python API support.

[76]

Contours and Segmentation Chapter 3

How to do it...

In order to execute this recipe, we will perform the following steps:
1. First, we import all of the modules we need:

import cv2
import numpy as np

2. Open an image and find the connected components in it:

img = cv2.imread('../data/BnW.png', cv2.IMREAD_GRAYSCALE)
connectivity = 8

num_labels, labelmap = cv2.connectedComponents (img, connectivity,
cv2.CV_328)

3. Show the original image with the scaled image with labels:

img = np.hstack((img, labelmap.astype (np.float32)/ (num_labels -
1)))

cv2.imshow ('Connected components', img)

cv2.waitKey ()

cv2.destroyAllWindows ()

4. Open another image, find its Otsu mask, and get the connected components with
their statistics:

img = cv2.imread('../data/Lena.png', cv2.IMREAD_GRAYSCALE)
otsu_thr, otsu_mask = cv2.threshold(img, -1, 1, cv2.THRESH_BINARY |
cv2.THRESH_OTSU)

output = cv2.connectedComponentsWithStats (otsu_mask, connectivity,
cv2.CV_328)

5. Filter out the components with small areas and create a color image, upon which
to draw the remaining components with individual colors, as well as the center of
each component. Then, display the result:

num_labels, labelmap, stats, centers = output
colored = np.full((img.shape[0], img.shape[l], 3), 0, np.uint8)
for 1 in range(l, num_labels):

if stats[1][4] > 200:
colored[labelmap == 1] = (0, 255*1/num_labels,

[77]

Contours and Segmentation Chapter 3

255*num_labels/1)
cv2.circle(colored,
(int (centers[1][0]), int (centers[1][1])), 5,
(255, 0, 0), cv2.FILLED)
img = cv2.cvtColor (otsu_mask*255, cv2.COLOR_GRAY2BGR)

cv2.imshow ('Connected components', np.hstack((img, colored)))
cv2.waitKey ()
cv2.destroyAllWindows ()

How it works...

There are two functions in OpenCV that can be used to find connected components:
cv2.connectedComponents and cv2.connectedComponentsWithStats. Both take the
same arguments: the binary image whose components are to be found, the connectivity
type, and the depth of the output image, with labels for components. Return values will
vary.

cv2.connectedComponents is simpler, and returns a tuple of component numbers and an
image with labels for components (1abelmap). In addition to the previous function's
outputs, cv2.connectedComponentsWithStats also returns statistics about each
component and the components' centroid locations.

The labelmap has the same size as the input image, and each of its pixels has a value in the
range [0, components number], according to which component the pixel belongs to.
Statistics are represented by a Numpy array of the shape (components number, 5). The five
elements correspond to the (x0, y0, width, height, area) structure. The first four elements are
parameters of the bounding box for the component elements, and the last parameter is the
area of the corresponding connected component. The centroids' locations are also Numpy
arrays, but with the shape (components number, 2) where each row represents the (x, v)
coordinates of the component's center.

[78]

Contours and Segmentation Chapter 3

After executing the code, you will get an image similar to the following:

Fitting lines and circles into two-dimensional
point sets

Many computer vision algorithms deal with points. They may be contour points, or key
points, or something else. And, in some cases, we know that all of these points should lie on
the same curve, with a known mathematical shape. The process of finding the parameters of
the curve (in the case of noisy data) is called approximation. Here, we're going to review
two functions from OpenCV which find approximations for the ellipse and line for a set of
points.

Getting ready

You need to have OpenCV 3.x installed, with Python API support.

How to do it...

1. First, import all of the modules:

import cv2
import numpy as np
import random

[79]

Contours and Segmentation Chapter 3

2. Create an image where we're going to draw and randomly generate parameters
of the ellipse, such as half axes lengths and rotation angle:

img = np.full((512, 512, 3), 255, np.uint8)

axes = (int (256*random.uniform(0, 1)), int (256*random.uniform(0,
1)))

angle = int (180*random.uniform(0, 1))

center = (256, 256)

3. Generate points for the ellipse with found parameters, and add random noise to
them:

pts = cv2.ellipse2Poly (center, axes, angle, 0, 360, 1)
pts += np.random.uniform(-10, 10, pts.shape).astype(np.int32)

4. Draw out the ellipse and generated points on the image, and display the image:
cv2.ellipse(img, center, axes, angle, 0, 360, (0, 255, 0), 3)

for pt in pts:
cv2.circle(img, (int(pt[0]), int(pt([11)), 3, (0, 0, 255))

cv2.imshow ('Fit ellipse', img)
cv2.waitKey ()
cv2.destroyAllWindows ()

5. Find the parameters of the ellipse which best fits our noisy points, draw the
resulting ellipse on the image, and display it:

ellipse = cv2.fitEllipse (pts)
cv2.ellipse(img, ellipse, (0, 0, 0), 3)

cv2.imshow ('Fit ellipse', img)
cv2.waitKey ()
cv2.destroyAllWindows ()

6. Create a clear image, generate points for the y=x function, and add random noise
to them:

img np.full ((512, 512, 3), 255, np.uint8)

pts = np.arange(512) .reshape (-1, 1)

pts = np.hstack ((pts, pts))

pts += np.random.uniform(-10, 10, pts.shape).astype(np.int32)

[80]

Contours and Segmentation Chapter 3

7. Draw the y=x function and generated points; then, display the image:
cv2.line(img, (0,0), (512, 512), (0, 255, 0), 3)

for pt in pts:
cv2.circle(img, (int(pt[0]), int(pt(1]1)), 3, (0, 0, 255))

cv2.imshow ('Fit line', img)
cv2.waitKey ()
cv2.destroyAllWindows ()

8. Find the parameters of the line for the noised points, draw the result, and display
the image:

vVX,Vy,X,y = cv2.fitlLine(pts, cv2.DIST_L2, 0, 0.01, 0.01)
y0 = int (y - x*vy/vx)

vyl = int ((512 - x)*vy/vx + y)

cv2.line(img, (0, yO), (512, y1), (0, O, 0), 3)

cv2.imshow ('Fit line', img)
cv2.waitKey ()
cv2.destroyAllWindows ()

How it works...

In OpenCV, different functions are aimed at finding approximations for different types of
curves: cv2.fitEllipse for ellipses and cv2. fitLine for lines. Both perform similar
actions, minimize distances between points from the set we're fitting to the resulting curve,
and require some minimal number of points to fit (five for cv2. fitEllipse and two for
cv2.fitLine).

cv2.fitEllipse only accepts the argument of a set of two-dimensional points, for which
we need to find curve parameters, and it returns the found ones, center point, half axes
lengths, and rotation angle. These parameters can be directly passed to the

cv2.ellipse drawing function when we want to display the result.

[81]

Contours and Segmentation Chapter 3

Another function, cv2.1line, has more parameters. As previously, it takes a points set as its
first argument, and also the type of distance function to minimize, the value to control
distance functions, and the acceptable accuracy for the (x0, y0) point and the (vx, vy) line
coefficients. (x0, y0) determines the point through which our line passes. The function
returns (x0, y0, vx, vy) values for the line parameters which best fit the points set. It's
important to mention that cv2. line is able to work not only with two-dimensional points,
but with three-dimensional ones too, and the algorithm itself is robust to outliers in set-
points, which are the result of huge noises or mistakes. Both facts make the routine very
handy for practical usage. If we're passing three-dimensional points to cv2.1ine, we of
course get the parameters of a three-dimensional line.

Calculating image moments

Image moments are statistical values computed from an image. They allow us to analyze
the image as a whole. Note that it's often useful to extract contours first, and only then
compute and work with each component moment, independently. In this recipe, you will
learn how to compute moments for binary/grayscale images.

Getting ready

You need to have OpenCV 3.x installed, with Python API support.

How to do it...

1. Import the modules:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Draw a test image—a white ellipse with the center at point (320, 240), on a black
background:

image = np.zeros((480, 640), np.uint8)
cv2.ellipse(image, (320, 240), (200, 100), O, 0, 360, 255, -1)

[82]

Contours and Segmentation Chapter 3

3. Compute the moments and print their values:

m = cv2.moments (image)
for name, val in m.items () :
print (name, '\t', wval)

4. Perform a simple test to check whether the computed moments make sense,
compute the center of the mass of the image using its first moments. It must be
close to the center of the ellipse we specified above:

[v
[v

print ('Center X estimated:', m['ml10']

/ m['mO
print ('Center Y estimated:', m['m01'] / m['mO

How it works...

For binary or grayscale images, image moments are computed using the OpenCV function
cv2.moments. It returns a dict of the calculated moments, with their respective names.

The following output is expected for the moments:

null -2.809466679966455e-13
mul?2 -422443285.20703125
mu2l -420182048.71875

mll 1237939564800.0

mu20 161575917357.31616

ml10 5158101240.0

nu03 1.013174855849065e-10
nul2 -4.049505150683136e-10
nu2l -4.0278291313762605e-10
mu03 105694127.71875

nu30 1.618061841335058e-09
m30 683285449618080.0

nu02 0.00015660970937729079
m20 1812142855350.0

m00 16119315.0

mu02 40692263506.42969

nu20 0.0006218468887998859
m02 969157708320.0

m21 434912202354750.0

m01 3868620810.0

m03 252129278267070.0

mull -72.9990234375

mu30 1687957749.125

ml2 310125260718570.0

[83]

Contours and Segmentation Chapter 3

The estimated center of mass is as follows:

Center X estimated: 319.9950643063927
Center Y estimated: 239.999082467214

The definitions of different image moment types can be found at
https://en.wikipedia.org/wiki/Image_moment.

Working with curves - approximation, length,
and area

This recipe covers OpenCV functionality related to, features of curves. We will review the
routines for computing a curve's length and area, getting the convex hull, and checking
whether a curve is convex or not. Also, we will study how to approximate the contour with
a smaller number of points. All of these things can be useful when you're developing an
algorithm based on contour handling. By finding different features of the contour, you can
build heuristics to filter out false contours. So, let's get started.

Getting ready

You need to have OpenCV 3.x installed, with Python API support.

How to do it...

1. Import all of the necessary modules, open an image, and display it on the screen:
import cv2, random
import numpy as np
img = cv2.imread('bw.png', cv2.IMREAD_GRAYSCALE)

2. Find the contours of the loaded image, draw them, and show the result:

im2, contours, hierarchy = cv2.findContours (img, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)

color = cv2.cvtColor (img, cv2.COLOR_GRAY2BGR)
cv2.drawContours (color, contours, -1, (0,255,0), 3)

[84]

https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment

Contours and Segmentation Chapter 3

cv2.imshow ('contours', color)
cv2.waitKey ()
cv2.destroyAllWindows ()

3. Take the first contour, find its area in various cases, and output the resulting
numbers:

contour = contours[0]

o)

print ('Area of contour is %.2f' % cv2.contourArea (contour))
print ('Signed area of contour is %.2f' % cv2.contourArea(contour,

True))
print ('Signed area of contour is %.2f' %
cv2.contourArea (contour[::-1], True))

4. Find the length of the contour, and print it:

print ('Length of closed contour is %.2f' % cv2.arcLength(contour,
True))

print ('Length of open contour is %.2f' % cv2.arcLength(contour,
False))

5. Find the convex hull for the contour, draw it on the image, and display it:

hull = cv2.convexHull (contour)
cv2.drawContours (color, [hull], -1, (0,0,255), 3)

cv2.imshow ('contours', color)
cv2.waitKey ()
cv2.destroyAllWindows ()

6. Check the convexity of the contour and its hull:

print ('Convex status of contour is %s' %
cv2.isContourConvex (contour))

print ('Convex status of its hull is %s' %
cv2.isContourConvex (hull))

7. Create a window with a trackbar to control the quality of contour approximation,
find the approximation of the contour, and show the result:

cv2.namedWindow ('contours')
img = np.copy(color)

def trackbar_callback (value) :
global img

[85]

Contours and Segmentation Chapter 3

epsilon = value*cv2.arclLength (contour, True)*0.1/255
approx = cv2.approxPolyDP (contour, epsilon, True)
img = np.copy(color)

cv2.drawContours (img, [approx], -1, (255,0,255), 3)

cv2.createTrackbar ('Epsilon', 'contours', 1, 255, lambda v:
trackbar_callback (v))
while True:
cv2.imshow ('contours', img)
key = cv2.waitKey (3)
if key == 27:
break

cv2.destroyAllWindows ()

How it works...

cv2.contourArea computes the area of a contour, as implied by its name. It takes a point
set which represents a contour as its first argument, and a Boolean flag as its second one.
The routine returns the float-point area of the contour. The flag allows us to compute either
the signed (when True) or unsigned (when False) area, where the sign stands for a
clockwise or counter-clockwise order of points in the contour. An important note

about cv2.contourArea is that it's not guaranteed that the area is correct for contours with
self-intersection.

The function to get the length of a curve is cv2.arcLength. It accepts two parameters, a
contour as a first argument, and a flag as a second. The flag controls the closedness of the
contour, True means that the first and last points in the contour should be considered as
connected, and therefore, the contour is closed. Otherwise, the distance between the first
and last points doesn't account for the resulting contour perimeter.

cv2.convexHull helps you to find the convex hull of the contour. It takes the contour as
an argument and returns its convex hull (which is also the contour). Also, you can check the
convexity of a contour by using the cv2.isContourConvex function, just pass a contour as
its argument, and the returned value will be True when the passed contour is convex.

[86]

Contours and Segmentation Chapter 3

To get a contour approximation, you should use the cv2.approxPolyDP function. This
function implements the Ramer—Douglas—Peucker algorithm of finding a contour with fewer
points, and some tolerance. It takes a contour (which should be approximated), tolerance
(which is the maximum distance between the original contour and its approximation), and a
Boolean flag (which tells the function whether to consider the approximated contour as
closed). The larger the tolerance, the coarser the approximation, but the fewer points remain
in the resulting contour. The function returns the approximation of the input contour for
specified parameters.

You will see an image close to the one that follows as a result of the code execution:

© © contours

i 9
Epsilon —

[87]

Contours and Segmentation Chapter 3

Checking whether a point is within a contour

In this recipe, we will discover a way of checking whether a point is inside of a contour, or if
it belongs to the contour's border.

Getting ready

You need to have OpenCV 3.x installed, with Python API support.

How to do it...

1. Import all of the necessary modules, open an image, and display it on the screen:

import cv2, random
import numpy as np
img = cv2.imread('bw.png', cv2.IMREAD_GRAYSCALE)

2. Find the contours of the image and display them:

im2, contours, hierarchy = cv2.findContours (img, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)

color = cv2.cvtColor (img, cv2.COLOR_GRAY2BGR)
cv2.drawContours (color, contours, -1, (0,255,0), 3)

cv2.imshow ('contours', color)
cv2.waitKey ()
cv2.destroyAllWindows ()

3. Define a callback function to handle a user click on the image. This function
draws a small circle where the click has happened, and the color of the circle is
determined by whether the click was inside or outside of the contour:

contour = contours[0]
image_to_show = np.copy(color)
measure = True

def mouse_callback (event, x, y, flags, param):
global contour, image_to_show
if event == cv2.EVENT_LBUTTONUP:
distance = cv2.pointPolygonTest (contour, (x,y), measure)
image_to_show = np.copy(color)

[88]

Contours and Segmentation Chapter 3

if distance > O0:

pt_color = (0, 255, 0)
elif distance < O0:
pt_color = (0, 0, 255)
else:
pt_color = (128, 0, 128)
cv2.circle (image_to_show, (x,v), 5, pt_color, -1)
cv2.putText (image_to_show, '%.2f' % distance, (O,
image_to_show.shape[l] - 5),

cv2.FONT_HERSHEY SIMPLEX, 1, (255, 255, 255))

4. Show the image with our mouse click handler. Also, let's track M button presses
to switch the mode of what we get as a result of
the cv2.pointPolygonTest function:

cv2.namedWindow ('contours')
cv2.setMouseCallback ('contours', mouse_callback)

while (True) :
cv2.imshow ('contours', image_to_show)
k = cv2.waitKey (1)

if k == ord('m"):

measure = not measure
elif k == 27:

break

cv2.destroyAllWindows ()

How it works...

There is a special function in OpenCV to measure the smallest distance from a point to a
contour. It's called cv2.pointPolygonTest. It takes three arguments, and returns the
measured distance. The arguments are a contour, a point, and a Boolean flag, whose
purpose we will discuss a little later. The resulting distance can be positive, negative, or
equal to zero, which corresponds to inside the contour, outside the contour, or on a contour
point position. The last Boolean argument determines whether our function returns the
exact distance or only an indicator with a value (+1; 0; -1). The sign of the indicator has the
same meaning as the mode that computes the exact distance.

[89]

Contours and Segmentation Chapter 3

As a result of the code, you will get something similar to this image:

Computing distance maps

In this recipe, you will learn how to compute the distance to the closest non-zero pixels
from each image pixel. This functionality can be used to perform image processing in an
adaptive way, for instance, for blurring an image with different strengths, depending on the
distance to the closest edge.

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

How to do it...

1. Import the modules:
import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Draw a test image—a black circle (without filling) on a white background:

image = np.full ((480, 640), 255, np.uint8)
cv2.circle (image, (320, 240), 100, 0)

[90]

Contours and Segmentation Chapter 3

3. Compute the distance from every point to the circle:

distmap = cv2.distanceTransform(image, cv2.DIST_L2,
cv2.DIST_MASK_PRECISE)

4. Visualize the results:

plt.figure()
plt.imshow (distmap, cmap='gray')
plt.show ()

How it works...

Distance maps can be calculated using the OpenCV cv2.distanceTransform function. It
calculates the specified type of distance (cv2.DIST_L1, cv2.DIST_LZ2, or cv2.DIST_C) to
the closest zero pixel. You can also vary the mask size that's used for computing the
approximate distance (the available options are cv2.DIST_MASK_3 and
cv2.DIST_MASK_5). You can also use the cv2.DIST_MASK_PRECISE flag, which leads to
computing not approximate, but precise distances.

The following output is expected:

100

200 4

300 A

400 A

0 100 200 300 400 500 600

[91]

Contours and Segmentation Chapter 3

Image segmentation using the k-means
algorithm

Sometimes, the color of pixels in an image can help determine where semantically close
areas are. For example, road surfaces, in some circumstances, may have almost the same
color. By color, we can find all road pixels. But what if we don't know the color of the road?
Here, the k-means clustering algorithm comes into play. This algorithm only needs to know
how many clusters are in an image, or, in other words, how many clusters we want an
image to have. With this information, it can automatically find the best clusters. In this
recipe, we will consider how k-means image segmentation can be applied using OpenCV.

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

How to do it...

1. Import the necessary modules:
import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Open an image and convert it to Lab color space:

image = cv2.imread('../data/Lena.png') .astype (np.float32) / 255.
image_lab = cv2.cvtColor (image, cv2.COLOR_BGR2Lab)

3. Reshape the image into a vector:
data = image_lab.reshape((-1, 3))

4. Define the number of clusters and the criteria to finish the segmentation process.
Then, perform k-means clusterization:

num_classes = 4

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX ITER, 50,
0.1)

_, labels, centers = cv2.kmeans (data, num_classes, None, criteria,

10, cv2.KMEANS_RANDOM_CENTERS)

[92]

Contours and Segmentation Chapter 3

5. Apply the colors of centroids to all pixels that are relevant to these centroids.
Afterwards, reshape the segmented image back to its original shape. Then,
convert it to RGB color space:

segmented_lab = centers[labels.flatten()].reshape (image.shape)
segmented = cv2.cvtColor (segmented_lab, cv2.COLOR_Lab2RGB)

6. Display the original and segmented images together:

plt.subplot (121)

plt.axis('off")
plt.title('original')

plt.imshow (image[:, :, [2, 1, 0]])
plt.subplot (122)

plt.axis('off")
plt.title('segmented')

plt.imshow (segmented)

plt.show ()

How it works...

To perform k-means clusterization, we should use the cv2 . kmeans function. It takes the
following arguments, respectively, input data, the number of clusters, an input/output array
with labels (can be set to None), stop process criteria, the number of attempts, and flags to
control the process of clusterization.

Let's discuss each argument. The input data must be a vector of points with float values, in
our case, we have three-dimensional points. The number of clusters determines how many
of them we will get in the result, the greater the value, the greater the number of clusters,
but the higher the influence of noise. The input/output array with labels can be used both to
determine the initial positions of the clusters and to get the resulting clusters; if we don't
want to specify cluster center initialization, we should set this argument to None. The stop
process criteria determines how long the process of segmentation works when trying to find
the best cluster positions. The number of attempts defines how many times the
clusterization process will be launched from different cluster initializations, to later choose
the best attempt. And the flags determine the type of cluster initialization; it can be

cv2 .KMEANS_RANDOM_CENTERS for random initialization, cv2 . KMEANS_PP_CENTERS for
more sophisticated initialization, (kmeans++ algorithm) and
cv2.KMEANS_USE_INITIAL_LABELS to pass user specified cluster centers (in this case, the
third argument can't be None).

[93]

Contours and Segmentation Chapter 3

The function returns a double value for the compactness for each cluster, a vector with
labels, and values for each label. The compactness of a cluster is the sum of the squared
distance from each cluster point to the corresponding center. The vector with labels has the
same length as the input data vector, and each of its elements represents an output cluster
which has been set to the corresponding position in the input data. The values for each label
are values for centers of clusters.

In this recipe, Lab color space was used, due to its property of separating color information
and brightness information. In RGB space, color and brightness are mixed together across
all channels, but this can negatively influence the segmentation process.

Note that when working with uint 8 images, OpenCV applies linear
processing to Lab color space values. So, one must be careful when
converting between color spaces. In the case of f1oat 32 images, pixel
values must be left unchanged. See https://docs.opencv.org/master/

de/d25/imgproc_color_conversions.html.

After launching the code, you will get images similar to the following;:

original segmented

Image segmentation using segment seeds -
the watershed algorithm

The watershed algorithm of image segmentation is used when we have initial segmented
points and want to automatically fill surrounding areas with the same segmentation class.
These initial segmented points are called seeds, and they should be set manually, but in
some cases, it's possible to automatically assign them. This recipe shows how to implement
the watershed segmentation algorithm in OpenCV.

[94]

https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html

Contours and Segmentation Chapter 3

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

How to do it...

1. Import the necessary modules and functions:

import cv2, random
import numpy as np
from random import randint

2. Load an image to segment and create its copy and other images to store seeds
and the segmentation result:

img = cv2.imread('../data/Lena.png')
show_img = np.copy (img)

seeds = np.full (img.shape[0:2], 0, np.int32)
segmentation = np.full (img.shape, 0, np.uint8)

3. Define the number of seed types, the color for each seed type, and some variables
to work with mouse events:

n_seeds = 9

colors = []
for m in range (n_seeds):

colors.append((255 * m / n_seeds, randint (0, 255), randint (O,
255)))

mouse_pressed = False
current_seed = 1
seeds_updated = False

4. Implement the mouse callback function to handle events from the mouse; let's
draw seeds on the image by dragging the mouse with a pressed button:

def mouse_callback (event, x, vy, flags, param):
global mouse_pressed, seeds_updated

if event == cv2.EVENT_LBUTTONDOWN:
mouse_pressed = True
cv2.circle(seeds, (x, y), 5, (current_seed), cv2.FILLED)

[95]

Contours and Segmentation Chapter 3

cv2.circle(show_img, (x, y), 5, colors[current_seed - 1],
cv2.FILLED)
seeds_updated = True

elif event == cv2.EVENT_MOUSEMOVE:
if mouse_pressed:
cv2.circle(seeds, (x, y), 5, (current_seed),

cv2.FILLED)
cv2.circle(show_img, (x, y), 5, colors[current_seed -
1], cv2.FILLED)
seeds_updated = True

elif event == cv2.EVENT_LBUTTONUP:
mouse_pressed = False

5. Create all of the necessary windows, set the callbacks, display the images, and
track the keyboard buttons pressed in the loop. Let's change the current seed to
draw by pressing numbers. And, when the seed changing process is finished,
segment the image with the watershed algorithm:

cv2.namedWindow ('image"')
cv2.setMouseCallback ('image', mouse_callback)

while True:
cv2.imshow ('segmentation', segmentation)
cv2.imshow ('image', show_img)
k = cv2.waitKey (1)

if k == 27:
break
elif k == ord('c'"):
show_img = np.copy (img)
seeds = np.full(img.shape[0:2], 0, np.int32)
segmentation = np.full (img.shape, 0, np.uint8)
elif k > 0 and chr(k).isdigit () :
n = int (chr (k))
if 1 <= n <= n_seeds and not mouse_pressed:
current_seed = n
if seeds_updated and not mouse_pressed:
seeds_copy = np.copy (seeds)
cv2.watershed (img, seeds_copy)
segmentation = np.full (img.shape, 0, np.uint8)
for m in range (n_seeds) :
segmentation[seeds_copy == (m + 1)] = colors[m]
seeds_updated = False
cv2.destroyAllWindows ()

[96]

Contours and Segmentation Chapter 3

How it works...

The cv2.watershed function implements the algorithm and takes two arguments, the
image to segment and the initial seeds. The segmented image should be color and 8-bit.
Seeds should be stored in the image, with the same spatial size as the segmented image, but
with only one channel and a different depth, int 32. Different seeds should be represented
in the second argument, with different numbers, and other pixels should be set to zero. The
routine fills zero values in the seed image with relevant neighbor seeds.

After launching the code from this recipe, you will see an image similar to the following;:

[97]

Object Detection and Machine
Learning

In this chapter, we will cover the following recipes:

¢ Obtaining an object mask using the GrabCut algorithm

¢ Finding edges using the Canny algorithm

e Detecting lines and circles using the Hough transform

¢ Finding objects via template matching

¢ The real-time median-flow object tracker

¢ Tracking objects using different algorithms via the tracking API
e Computing the dense optical flow between two frames

¢ Detecting chessboard and circle grid patterns

¢ A simple pedestrian detector using the SVM model

¢ Optical character recognition using different machine learning models
e Detecting faces using Haar/LBP cascades

¢ Detecting AruCo patterns for AR applications

¢ Detecting text in natural scenes

¢ The QR code detector and recognizer

Object Detection and Machine Learning Chapter 4

Introduction

Our world contains a lot of objects. Each type of object has its own features that distinguish
it from some types and, at the same time, make it similar to others. Understanding the scene
through the objects in it is a key task in computer vision. Being able to find and track
various objects, detect basic patterns and complex structures, and recognize text are
challenging and useful skills, and this chapter addresses questions on how to implement
and use them with OpenCV functionality.

We will review the detection of geometric primitives, such as lines, circles, and chessboards,
and more complex objects, such as pedestrians, faces, AruCo, and QR code patterns. We
will also perform object tracking tasks.

Obtaining an object mask using the GrabCut
algorithm

There are cases where we want to separate an object from other parts of a scene; in other
words, where we want to create masks for the foreground and background. This job is
tackled by the GrabCut algorithm. It can build object masks in semi-automatic mode. All
that it needs are initial assumptions about object location. Based on these assumptions, the
algorithm performs a multi-step iterative procedure to model statistical distributions of
foreground and background pixels and find the best division according to the distributions.
This sounds complicated, but the usage is very simple. Let's find out how easily we can
apply this sophisticated algorithm in OpenCV.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package.

How to do it...

1. Import the modules:

import cv2
import numpy as np

[99]

Object Detection and Machine Learning Chapter 4

2. Open an image and define the mouse callback function to draw a rectangle on the
image:

img = cv2.imread('../data/Lena.png', cv2.IMREAD_COLOR)
show_img = np.copy (img)

mouse_pressed = False
y=x=w=h=20

def mouse_callback (event, _x, _y, flags, param):
global show_img, x, y, w, h, mouse_pressed

if event == cv2.EVENT_LBUTTONDOWN:
mouse_pressed = True
Xy, ¥V 5 X, Y

show_img = np.copy (img)

elif event == cv2.EVENT_MOUSEMOVE:
if mouse_pressed:
show_img = np.copy (img)
cv2.rectangle (show_img, (x, V),

(_x, _y), (0, 255, 0), 3)
elif event == cv2.EVENT_LBUTTONUP:
mouse_pressed = False
w, h=_x-x, _y -y

3. Display the image, and, after the rectangle has been completed and the A button
on the keyboard has been pressed, close the window with the following code:

cv2.namedWindow ('image')
cv2.setMouseCallback ('image', mouse_callback)

while True:
cv2.imshow ('image', show_img)
k = cv2.waitKey (1)

if k == ord('a') and not mouse_pressed:
if w*h > 0:

break

cv2.destroyAllWindows ()

[100]

Object Detection and Machine Learning Chapter 4

4. Call cv2.grabCut to create an object mask based on the rectangle that was
drawn. Then, create the object mask and define it as:

labels = np.zeros(img.shape[:2],np.uint8)

labels, bgdModel, fgdModel = cv2.grabCut (img, labels, (x, vy, w, h),
None, None, 5, cv2.GC_INIT_WITH_RECT)

show_img = np.copy (img)
show_img|[(labels == cv2.GC_PR_BGD) | (labels == cv2.GC_BGD)] //= 3

cv2.imshow ('image', show_img)
cv2.waitKey ()
cv2.destroyAllWindows ()

5. Define the mouse callback to draw the mask on the image. It's necessary to repair
mistakes in the previous cv2.grabcCut call:

label = cv2.GC_BGD
1bl_clrs = {cv2.GC_BGD: (0,0,0), cv2.GC_FGD: (255,255,255)}

def mouse_callback (event, x, y, flags, param):
global mouse_pressed

if event == cv2.EVENT_LBUTTONDOWN:
mouse_pressed = True
cv2.circle(labels, (x, vy), 5, label, cv2.FILLED)
cv2.circle(show_img, (x, y), 5, 1lbl_clrs[label],
cv2.FILLED)

elif event == cv2.EVENT_MOUSEMOVE:
if mouse_pressed:
cv2.circle(labels, (x, vy), 5, label, cv2.FILLED)
cv2.circle(show_img, (x, y), 5, 1lbl_clrs[label],
cv2.FILLED)

elif event == cv2.EVENT_LBUTTONUP:
mouse_pressed = False

6. Show the image with the mask; use white to draw where the object pixels have
been labeled as a background, and use black to draw where the background areas
have been marked as belonging to the object. Then, call cv2.grabcCut again to
get the fixed mask. Finally, update the mask on the image, and show it:

cv2.namedWindow ('image"')
cv2.setMouseCallback ('image', mouse_callback)

[101]

Object Detection and Machine Learning Chapter 4

while True:
cv2.imshow ('image', show_img)
k = cv2.waitKey (1)

if k == ord('a') and not mouse_pressed:
break

elif k == ord('1l"):
label = cv2.GC_FGD - label

cv2.destroyAllWindows ()

labels, bgdModel, fgdModel = cv2.grabCut (img, labels, None,
bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_MASK)

show_img = np.copy (img)
show_img|[(labels == cv2.GC_PR_BGD) | (labels == cv2.GC_BGD)] //= 3

cv2.imshow ('image', show_img)
cv2.waitKey ()
cv2.destroyAllWindows ()

How it works...

OpenCV's cv2.grabCut implements the GrabCut algorithm. This function is able to work
in several modes, and takes the following arguments: input 3-channel image, a matrix with
initial labels for pixels, a rectangle in (x, y, w, h) format to define label initialization, two
matrices to store the process state, a number of iterations, and the mode in which we want
the function to launch.

The function returns labels matrix and two matrices with the state of the process. The labels
matrix is single-channel, and it stores one of these values in each pixel: cv2.GC_BGD (this
means that the pixel definitely belongs to the background), cv2.GC_PR_BGD (this means
that the pixel is probably in the background), cv2.GC_PR_FGD (for pixels which are
possibly foreground), cv2.GC_FGD (for pixels which are definitely foreground). The two
state matrices are necessary if we want to continue the process for a few iterations.

There are three possible modes for the function: cv2.GC_INIT_WITH_RECT,
cv2.GC_INIT_WITH_MASK and cv2.GC_EVAL. The first one is used when we want to
define labels initialization by the rectangle in the third argument. In this case, pixels outside
of the rectangle are set to the cv2.GC_BGD value, and ones inside the rectangle are set to the
cv2.GC_PR_FGD value.

[102]

Object Detection and Machine Learning Chapter 4

The second mode of the function, cv2.GC_INIT_WITH_MASK, is used when we want to use
the values of the second argument matrix as initialization for labels. In this case, the values
should be set to one of four values: cv2.GC_BGD, cv2.GC_PR_BGD, cv2.GC_PR_FGD,

or cv2.GC_FGD.

The third mode, cv2.GC_EVAL, is for calling the function for another number of iterations,
with the same state.

In the code, we darken the background to visualize the object mask. It works well when the
object we want to segment has similar brightness to other parts of the image. But, in the case
of a dark object on a bright scene, it won't work. So, you may need to apply another
visualization technique in your own project.

As a result of launching the code, you will get pictures similar to the following;:

Finding edges using the Canny algorithm

Edges are a useful image feature that can be used in many computer vision applications. In
this recipe, you will learn how to detect edges in images using the Canny algorithm.

Getting ready

Install the OpenCV 3.x Python API package and the matplotlib package.

[103]

Object Detection and Machine Learning Chapter 4

How to do it...

Here are the steps needed to complete this recipe:
1. Import the modules:

import cv2
import matplotlib.pyplot as plt

2. Load the test image:
image = cv2.imread('../data/Lena.png')
3. Detect the edges using the Canny algorithm:
edges = cv2.Canny (image, 200, 100)
4. Visualize the results:

plt.figure(figsize=(8,5))
plt.subplot (121)
plt.axis('off'")
plt.title('original')
plt.imshow (image[:, :, [2,1,0]1])
plt.subplot (122)
plt.axis('off'")
plt.title('edges')

plt.imshow (edges, cmap='gray')
plt.tight_layout ()

plt.show ()

How it works...

Canny edge detection is a very powerful and popular tool in computer vision. It's named
after John F. Canny, who proposed the algorithm in 1986. OpenCV implements the
algorithm in the function cv2.Canny. You must specify two thresholds for gradient
magnitude in this function: the first one is used for detecting strong edges, and the second
one is used for the hysteresis procedure, where the strong edges are being grown.

[104]

Object Detection and Machine Learning Chapter 4

The following output is expected:

original edges

Detecting lines and circles using the Hough
transform

In this recipe, you will learn how to apply the Hough transform for the detection of lines
and circles. This is a helpful technique when you need to perform basic image analysis and
find primitives in images.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package and the matplotlib package.

[105]

Object Detection and Machine Learning Chapter 4

How to do it...

1. Import the modules:

import cv2
import numpy as np

2. Draw a test image:

img = np.zeros((500, 500), np.uint8)
cv2.circle(img, (200, 200), 50, 255, 3)
cv2.line(img, (100, 400), (400, 350), 255, 3)

3. Detect lines using the probabilistic Hough transform:
lines = cv2.HoughLinesP (img, 1, np.pi/180, 100, 100, 10) [0]
4. Detect circles using the Hough transform:

circles = cv2.HoughCircles (img, cv2.HOUGH_GRADIENT, 1, 15,
paraml=200, param2=30) [0]

5. Draw the detected lines and circles:

dbg_img = np.zeros((img.shape[0], img.shapell], 3), np.uint8)

for x1, yl1, x2, y2 in lines:
print ('Detected line: ({} {}) ({} {})'.format (x1, vi, x2, vy2))
cv2.line (dbg_img, (x1, vy1), (x2, y2), (0, 255, 0), 2)

for ¢ in circles:

print ('Detected circle: center=({} {}), radius={}'.format (c[0],
c[1l], cl2]))

cv2.circle(dbg_img, (c[0], c[1]1), cl[2], (0, 255, 0), 2)

6. Visualize the results:

plt.figure(figsize=(8,4))
plt.subplot (121)
plt.title('original')
plt.axis('off")

plt.imshow (img, cmap='gray')
plt.subplot (122)
plt.title('detected primitives')
plt.axis('off")

plt.imshow (dbg_img)

plt.show ()

[106]

Object Detection and Machine Learning Chapter 4

How it works...

The Hough transform is a technique for the detection of any shapes parametrized and
represented in a convenient mathematical form. Basically, for every pixel in a source image,
the Hough transform finds a set of model parameters that satisfy the observation and stores
them in table. Each pixel votes for a subset of possible models. Output detections are
obtained via a voting procedure.

The detection of lines is implemented in the function cv2.HoughLineP. In fact, it does not
implement the original Hough transform, but its optimized, probabilistic version. The
function takes parameters such as the source image, voting space spatial resolution, voting
space angular resolution, minimum votes threshold, minimum line length, and maximum
allowed gap between points on the same line to link them, and returns a list of detected
lines represented in a start_point, end_point form.

The detection of circles is implemented in the function cv2.HoughCircles. It takes the
input source image, detection method (only cv2.HOUGH_GRADIENT is supported, for now),
inverse voting space resolution, minimum distance between the centers of detected circles,
and two optional parameters: the first is the higher threshold for the Canny edge detection
procedure, and the second is the votes count threshold.

The following output is expected for the preceding code:

Detected line: (99 401) (372 353)
Detected circle: center=(201.5 198.5), radius=50.400001525878906

The output looks as follows:

original detected primitives

O O

/ /

[107]

Object Detection and Machine Learning Chapter 4

Finding objects via template matching

Finding an object in the image isn't a simple task, due to various representations the same
instance may look dramatically different, and at first sight, some complicated computer
vision algorithms are required. But, if we limit the issue, the task may be successfully solved
by relatively simple methods. In this recipe, we consider the methods for finding objects on
the image which correspond to some of the template.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package.

How to do it...

Perform the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Load image and define mouse callback function for selecting image ROIL. What is
inside of the rectangle that is drawn will be our template for matching:

img = cv2.imread('../data/Lena.png', cv2.IMREAD_COLOR)
show_img = np.copy (img)

mouse_pressed = False
y=x=w=h=20

def mouse_callback (event, _x, _y, flags, param):
global show_img, x, y, w, h, mouse_pressed

if event == cv2.EVENT_LBUTTONDOWN:
mouse_pressed = True
Xy, ¥V = X, Y

show_img = np.copy (img)

elif event == cv2.EVENT_MOUSEMOVE:
if mouse_pressed:
show_img = np.copy (img)

[108]

Object Detection and Machine Learning Chapter 4

cv2.rectangle (show_img, (x, V),

(%, _y), (0, 255, 0), 2)
elif event == cv2.EVENT_LBUTTONUP:
mouse_pressed = False
w, h=_x-%x, .y -y

3. Display the image, select an object to find with the mouse, and press the A button
to finish the process and get the template:

cv2.namedWindow ('image"')
cv2.setMouseCallback ('image', mouse_callback)

while True:
cv2.imshow ('image', show_img)
k = cv2.waitKey (1)

if k == ord('a') and not mouse_pressed:
if w*h > 0:
break

cv2.destroyAllWindows ()
template = np.copy(imgly:y+h, x:x+w])

4. Show the image and handle button press events. Digits from 0 to 5 determine the
method we use to find areas on the image which are similar to the template. The
matching is performed with the cv2.matchTemplate function. When the
matching is finished, we find the points with the highest (or the lowest) similarity
metric and draw detection results:

methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF',
'cv2.TM_SQDIFF_NORMED']

show_img = np.copy (img)
while True:

cv2.imshow ('image', show_img)
k = cv2.waitKey ()

if k == 27:
break

elif k > 0 and chr (k) .isdigit():
index = int (chr (k))

if 0 <= index < len (methods):
method = methods[index]

[109]

Object Detection and Machine Learning Chapter 4

res = cv2.matchTemplate (img, template, eval (method))
res = cv2.normalize(res, None, 0, 1, cv2.NORM_MINMAX)
if index >= methods.index ('cv2.TM_SQDIFF') :
loc = np.where(res < 0.01)
else:
loc = np.where(res > 0.99)
show_img = np.copy (img)
for pt in zip(*loc[::-1]):
cv2.rectangle (show_img, pt, (pt[0] + w, pt[l] + h),
(0, 0, 255), 2)
res = cv2.resize(res, show_img.shape[:2])*255
res = cv2.cvtColor (res,
cv2.COLOR_GRAY2BGR) .astype (np.uint8)
cv2.putText (res, method, (0, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1, (0, 0, 255), 3)
show_img = np.hstack ((show_img, res))

cv2.destroyAllWindows ()

How it works...

cv2.matchTemplate is used to find image regions that are similar to the template. The
similarity can be determined with different methods (different mathematical operations to
get the difference between the template and a patch on the image). But, none of these
methods are able to find templates with different scales or orientations.

This function takes source image, search template, and the method of patch and template
comparison. The methods are determined by these values: cv2.TM_CCOEFF,
cv2.TM_CCOEFF_NORMED, cv2.TM_CCORR, cv2.TM_CCORR_NORMED, cv2.TM_SQDIFF or
cv2.TM_SQDIFF_NORMED. The methods with CCOEFF in the name use correlation coefficient
computation, like the similarity measure—the bigger the value, the more similar the regions
are. The methods with CCORR use cross-correlation computation to compare patches, and
the methods with SODIFF find the square difference between the regions to compare them.

[110]

Object Detection and Machine Learning Chapter 4

The function returns the distribution of the selected similarity metric across the input
image. The returned image is a single-channel floating point, with a spatial size (W-w+1, H~-
h+1), where capital letters stand for input image dimensions and small letters are for
template dimensions. The content of the returned image depends on the method we use, for
approaches with correlation computation, a bigger value means better matching. And, as
the name implies, the methods with square difference usage have the smallest values as
perfect matches.

Methods which use correlation coefficient computation give the fewest mismatches, but
require more computation. Square difference methods take less computation, but also give
less reliable results. This can be application for small and/or featureless patches, as shown
on the second image that follows.

After code execution, you will get something similar to the following images (depending on
the template and the method you've selected):

Object Detection and Machine Learning Chapter 4

The medial flow tracker

In this recipe, we're going to apply the Median Flow object tracker to track objects in a
video. This tracker works in real time (even faster on modern hardware) and does its job
accurately and steadily. Also, this tracker has a nice feature, it can determine the tracking
failure. Let's see how we can use it in our applications.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package with the OpenCV Contrib modules.

How to do it...

The steps for this recipe are:
1. Import all of the necessary modules:

import cv2
import numpy as np

2. Open a video file, read its frame, and select an object to track:
cap = cv2.VideoCapture ("../data/traffic.mpd")
_, frame = cap.read()
bbox = cv2.selectROI (frame, False, True)
cv2.destroyAllWindows ()

3. Create the Median Flow tracker and initialize it with the first frame from the
video and the bounding box we've selected. Then, read the remaining frames
one-by-one, feed them into the tracker, and get a new bounding box for each
frame. Display the bounding box, as well as the number of frames that the
Median Flow algorithm is able to process each second:

tracker = cv2.TrackerMedianFlow_create ()
status_tracker = tracker.init (frame, bbox)
fps = 0

while True:

[112]

Object Detection and Machine Learning Chapter 4

status_cap, frame = cap.read()
if not status_cap:
break

if status_tracker:
timer = cv2.getTickCount ()
status_tracker, bbox = tracker.update (frame)
if status_tracker:
X, y, w, h = [int(i) for i in bbox]
cv2.rectangle (frame, (x, y), (x + w, y + h), (0, 255, 0),
15)
fps = cv2.getTickFrequency () / (cv2.getTickCount () -
timer);
cv2.putText (frame, "FPS: %.0f" % fps, (0, 80),
cv2.FONT_HERSHEY_SIMPLEX, 3.5, (0, 0, 0), 8);
else:
cv2.putText (frame, "Tracking failure detected", (0, 80),
cv2.FONT_HERSHEY_ SIMPLEX, 3.5, (0,0,255), 8)
cv2.imshow ("MedianFlow tracker", frame)

k = cv2.waitKey (1)
if k == 27:
break
cv2.destroyAllWindows ()

How it works...

To create the Median Flow tracker, we need to use cv2.TrackerMedianFlow_create.
This function returns an instance of our tracker. Next, the tracker should be initialized with
the object to follow. This can be done with the init function call. This function should be
invoked for the tracker instance with the following arguments: the frame with the object to
track and the bounding box of the object in an (x, y, width, height) format. The function
returns True if initialization has been completed successfully.

When we have a new frame, we want to get a new bounding box for the object. To do this,
we need to call the tracker instance's update function, with the new frame as an argument.
The values returned from this routine are the tracker status and the new bounding box, still
in an (x, y, width, height) format. The status of the tracker is a Boolean variable, which
shows if the tracker continues to track the object or if the tracking process has failed.

[113]

Object Detection and Machine Learning Chapter 4

It is worthwhile to mention the cv2.selectROI function. It helps you to easily choose
regions on the image with the mouse and keyboard. It accepts image where we want to
select ROJ, flag indicating if we want to grid, flag specifying ROI selection mode, either
from the top-left corner or from the center. After calling this function, the image will appear
on the screen, and you will be able to click and drag your mouse to draw a rectangle. When
the process of selection is completed, just hit the whitespace key on the keyboard, and you
will get the parameters of the selected rectangle as a returned value.

After launching the preceding code and selecting an object, you will see how the object is
being tracked in the video. The following shows a few frames, with tracking results:

racking failuretde

As you can see, this tracker successfully handles changes in object scale and reports when a
tracked object is lost.

Tracking objects using different algorithms
via the tracking API

In this recipe, you will learn how to use the different tracking algorithms implemented in
the OpenCV tracking contrib module. Different tracking algorithms have different
properties in terms of accuracy, reliability, and speed. Using the tracking API, you can try to
find the one that best suits your needs.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package and the matplotlib package. OpenCV must be built with contrib modules, because
the tracking APl isn't a part of the main OpenCV repo.

[114]

Object Detection and Machine Learning Chapter 4

How to do it...

To complete this recipe, perform the following steps:
1. Import the module:
import cv2
2. Create the main window and loop over the different trackers:
cv2.namedWindow (' frame')
for name, tracker in (('KCF', cv2.TrackerKCF_create),
("MIL', cv2.TrackerMIL_create),
("TLD', cv2.TrackerTLD_create)):
tracker = tracker ()
initialized = False

3. Open the test video file and select an object:

video = cv2.VideoCapture ('../data/traffic.mp4"')
bbox = (878, 266, 1153-878, 475-266)

4. Track until the video ends or ESC is pressed, and visualize the current tracked

object:
while True:
t0 = time.time ()
ok, frame = video.read()
if not ok:
break
if initialized:
tracked, bbox = tracker.update (frame)
else:
cv2.imwrite ('/tmp/frame.png', frame)
tracked = tracker.init (frame, bbox)
initialized = True
fps = 1 / (time.time () - tO0)
cv2.putText (frame, 'tracker: {}, fps: {:.1f}'.format (name,
fps),
(10, 50), cv2.FONT_HERSHEY SIMPLEX, 1, (255, O,
0), 2)

if tracked:
bbox = tuple (map(int, bbox))
cv2.rectangle (frame, (bbox[0], bbox[1]),

[115]

Object Detection and Machine Learning Chapter 4

(bbox[0]+bbox[2], bbox[1]+bbox[3]),
(0, 255, 0), 3)
cv2.imshow ('frame', frame)
if cv2.waitKey (3) == 27:
break

5. Close the windows:

cv2.destroyAllWindows ()

How it works...

The OpenCV tracking API provides access to many different tracking algorithms, such as
Median Flow, Kernelized correlation filters (KCF), Tracking-Learning-Detection (TLD),
and some others. A tracker can be instantiated via the cv2.TrackerKCF_create method
(instead of KCF, you can specify any other supported tracking algorithm name). The
tracking model must be initialized for the first frame, with the initial object position
specified via the method tracker.init. After that, each frame must be processed with the
method tracker.update, which returns the tracking status and current position of the

tracked object.

The following output is expected after a few steps (the frame rate figures are, obviously,
hardware dependent):

tracker: KCF, fpsit 2 tracker: MIL, fpsiiOs8 tracker: TLD, fpsifde

[116]

Object Detection and Machine Learning Chapter 4

Computing the dense optical flow between
two frames

The optical flow is a family of algorithms which addresses the issue of finding the
movement of points between two images (usually subsequent frames in a video). Dense
optical flow algorithms find movements of all pixels in a frame. The dense optical flow can
be used to find objects moving in a sequence of frames, or to detect camera movements. In
this recipe, we will find out how to compute and display the dense optical flow in several
ways, using OpenCV functionality.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package.

How to do it...

You need to perform the following steps:
1. Import the modules we're going to use:

import cv2
import numpy as np

2. Define the function to display the optical flow:

def display_flow(img, flow, stride=40):

for index in np.ndindex(flow[::stride, ::stride].shape[:2]):
ptl = tuple(i*stride for i in index)
delta = flow([ptl].astype(np.int32) [::-1]

pt2 = tuple(ptl + 10*delta)
if 2 <= cv2.norm(delta) <= 10:
cv2.arrowedLine (img, ptl([::-1], pt2[::-1]1, (0,0,255),
5, cv2.LINE_AA, 0, 0.4)
norm_opt_flow = np.linalg.norm(flow, axis=2)
norm_opt_flow = cv2.normalize (norm_opt_flow, None, 0, 1,
cv2 .NORM_MINMAX)
cv2.imshow ('optical flow', 1img)
cv2.imshow ('optical flow magnitude', norm_opt_flow)
k = cv2.waitKey (1)
if k == 27:

[117]

Object Detection and Machine Learning

Chapter 4

return 1
else:
return 0

3. Open the video and grab its first frame. Next, read the frames one-by-one and
compute the dense optical flow using Gunnar Farneback's algorithm. Then,

display the results:
cap = cv2.VideoCapture ("../data/traffic.mpd")
_, prev_frame = cap.read()

prev_frame = cv2.cvtColor (prev_frame, cv2.COLOR_BGR2GRAY)

prev_frame = cv2.resize (prev_frame, (0,0), None, 0.5,

init_flow = True

while True:

status_cap, frame = cap.read()
frame = cv2.resize (frame, (0,0), None, 0.5, 0.5)
if not status_cap:

break

gray = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
if init_flow:

opt_flow = cv2.calcOpticalFlowFarneback (prev_

None,
0.5,
1.1,
cv2.0PTFLOW_FARNEBACK_GAUSSIAN)
init_flow = False
else:

opt_flow = cv2.calcOpticalFlowFarneback (prev_

opt_flow,
0.5,

1.1,
cv2.0PTFLOW_USE_INITIAL_FLOW)

prev_frame = np.copy (gray)

if display_flow(frame, opt_flow):

break;

cv2.destroyAllWindows ()

0.5)

frame,

5, 13,

frame,

5, 13,

gray,

10, 5,

gray,

10, 5,

4. Set the position of the video capture to the beginning, and read the first frame.
Create an instance of a class which computes the Dual TV L1 optical flow. Then,
read the frames one-by-one and get the optical flow for each subsequent pair of

frames; display the results:

cap.set (cv2.CAP_PROP_POS_FRAMES, 0)
_, prev_frame = cap.read()

[118]

Object Detection and Machine Learning Chapter 4

prev_frame = cv2.cvtColor (prev_frame, cv2.COLOR_BGR2GRAY)
prev_frame = cv2.resize(prev_frame, (0,0), None, 0.5, 0.5)

flow_DualTVL1l = cv2.createOptFlow_DualTVL1 ()

while True:

status_cap, frame = cap.read()
frame = cv2.resize(frame, (0,0), None, 0.5, 0.5)
if not status_cap:

break

gray = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
if not flow_DualTVLl.getUseInitialFlow() :
opt_flow = flow_DualTVLl.calc (prev_frame, gray, None)
flow_DualTVL1l.setUselInitialFlow (True)
else:
opt_flow = flow_DualTVLl.calc (prev_frame, gray, opt_flow)
prev_frame = np.copy(gray)
if display_flow(frame, opt_flow):
break;
cv2.destroyAllWindows ()

How it works...

To compute the optical flow, you need two images (which are usually consecutive frames
from a video). Both methods that we've used in the code accept 8-bit grayscale images as
frames.

First, let's discuss the usage of the cv2.calcOpticalFlowFarneback function. It takes the
following parameters, the previous frame, current frame, initialization for optical flow, scale
between the pyramid's layers, number of layers in the pyramid, size of the window for the
smoothing step, number of iterations, number of neighborhood pixels to find the polynom's
parameters, standard deviation of Gaussian (which is used to smooth the polynom's
derivatives), and finally, flags.

The last parameter manages the optical flow process,

if cv2.OPTFLOW_FARNEBACK_GAUSSIAN is used, then input images are blurred with a
Gaussian filter and the size of the window equals the value of the sixth argument;

if cv2.OPTFLOW_USE_INITIAL_FLOW is used, then the algorithm considers the third
argument as an initialization of optical flow—which is used, then, we handle frames till a
video and have the optical flow computed beforehand. Flags can be combined using a
logical OR operation.

[119]

Object Detection and Machine Learning Chapter 4

Referring to the remaining arguments, the values used in the code are considered good for
the algorithm, so it's possible to use them as-is; in most of the cases, they work well.

Applying the Dual TV L1 optical flow algorithm is different. We need to create an instance
of the cv2.DualTVL10pticalFlow class by calling

the cv2.createOptFlow_DualTVL1 function. Then, we can get the optical flow by calling
the calc function of the created instance. This function takes the previous frame, current
frame, and optical flow initialization as arguments.

To get or set the values of algorithm parameters, you need to use class functions. As seen
previously, most of the parameters are initialized with values that work well in many cases.
The one that you need to change is the parameter of optical flow initialization. It can be
done with the setUseInitialFlow function.

Both functions return the optical flow as a result of computation. It is presented as a 2-
channel matrix of floating-point values, and has the same spatial size as the input frames.
The first channel consists of the X (horizontal) projection of the movement vector for each
frame pixel; the second channel is for the Y (vertical) projection of the movement vector. So,
we are able to know the direction of the movement for each pixel, as well as the magnitude.

You will get the following images as a result of the preceding code. The first image is
for Farneback's algorithm:

[120]

Object Detection and Machine Learning Chapter 4

The second image is for Dual TV L1:

As you can see, Dual TV L1 gives the optical flow without holes, compared to Farneback's
algorithm. But it costs computing time, the Dual TV L1 algorimth is much slower.

Detecting chessboard and circle grid
patterns

In this recipe, you will learn how to detect chessboard and circle grid patterns. These
patterns are very useful in computer vision, and are often used for estimating camera
parameters.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package and the matplotlib package.

How to do it...

1. Import the modules:

import cv2
import matplotlib.pyplot as plt

[121]

Object Detection and Machine Learning Chapter 4

2. Load the test image with a chessboard:
image_chess = cv2.imread('../data/chessboard.png')
3. Detect the chessboard pattern:

found, corners = cv2.findChessboardCorners (image_chess, (6, 9))
assert found == True, "can't find chessboard pattern"

4. Draw the detected pattern:

dbg_image_chess = image_chess.copy ()
cv2.drawChessboardCorners (dbg_image_chess, (6, 9), corners, found);

5. Load the test image with a circle grid pattern:
image_circles = cv2.imread('../data/circlesgrid.png’)

6. Detect the circle grid pattern:

found, corners = cv2.findCirclesGrid(image_circles, (6, 6),
cv2.CALIB_CB_SYMMETRIC_GRID)
assert found == True, "can't find circles grid pattern"

7. Draw the detected pattern:

dbg_image_circles = image_circles.copy ()
cv2.drawChessboardCorners (dbg_image_circles, (6, 6), corners,
found) ;

8. Visualize the results:

plt.figure (figsize=(8,8))
plt.subplot (221)
plt.title('original')
plt.axis('off'")

plt.imshow (image_chess)
plt.subplot (222)
plt.title('detected pattern')
plt.axis('off'")

plt.imshow (dbg_image_chess)
plt.show ()

plt.subplot (223)
plt.title('original')
plt.axis('off'")

plt.imshow (image_circles)
plt.subplot (224)

[122]

Object Detection and Machine Learning Chapter 4

plt.title('detected pattern')
plt.axis('off'")

plt.imshow (dbg_image_circles)
plt.tight_layout ()

plt.show ()

How it works...

Calibration pattern detection is implemented with two OpenCV functions:
cv2.findChessboardCorners and cv2.findCirclesGrid. Both functions return
Boolean flags indicating whether the pattern is found or not, and the corner points, if
found.

The following output is expected:

original detected pattern

[123]

Object Detection and Machine Learning Chapter 4

A simple pedestrian detector using the SVM
model

In this recipe, you will learn how to detect pedestrians using a pre-trained SVM model with
HOG features. Pedestrian detection is an important component of many Advanced Driver
Assistance Solutions (ADAS). Pedestrian detection is also used in video surveillance
systems, and many other computer vision applications.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package and the matplotlib package.

How to do it...

1. Import the modules:

import cv2
import matplotlib.pyplot as plt

2. Load the test image:
image = cv2.imread('../data/people.jpg")
3. Create the HOG feature computer and detector:

hog = cv2.HOGDescriptor ()
hog.setSVMDetector (cv2.HOGDescriptor_getDefaultPeopleDetector())

4. Detect the people in the image:

locations, weights = hog.detectMultiScale (image)
5. Draw the detected people bounding boxes:

dbg_image = image.copy ()

for loc in locations:

cv2.rectangle (dbg_image, (loc[0], loc[l1]),
(loc[0O]+1loc[2], loc[l]+loc[3]), (0, 255, 0), 2)

[124]

Object Detection and Machine Learning Chapter 4

6. Visualize the results:

plt.figure(figsize=(12,6))
plt.subplot (121)
plt.title('original')
plt.axis('off")

plt.imshow (image[:,:, [2,1,0]1])
plt.subplot (122)
plt.title('detections')
plt.axis('off")

plt.imshow (dbg_imagel[:,:, [2,1,0]])
plt.tight_layout ()
plt.show ()

How it works...

OpenCV implements the Histogram-of-Oriented-Gradients (HOG) descriptor
computation functionality in the class cv2.HOGDescriptor. The same class can be used for
object detection using a linear SVM model. In fact, it already has a pre-trained pedestrian
detector model with weights. The model can be obtained through the

method cv2.HOGDescriptor.getDefaultPeopleDetector. Objects are detected using
the sliding window approach at multiple scales, using the method
hog.detectMultiScale. The function returns a list of locations of detected people, and
each detection score. To know more visit https://en.wikipedia.org/wiki/Histogram_of_

oriented_gradients

The following output is expected:

[125]

https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients

Object Detection and Machine Learning Chapter 4

Optical character recognition using different
machine learning models

In this recipe, you will learn how to train KNN- and SVM-based digit recognition models.
It's a simple Optical Character Recognition (OCR) system that can be extended for other
characters as well. OCR is a powerful instrument used in many practical applications for
recognizing text documents, automatically reading traffic sign messages, and so on.

Getting ready

Before you proceed with this recipe, you will need to install the OpenCV 3.x Python API
package and the matplotlib package.

How to do it...

1. Import the modules:

import cv2
import numpy as np

2. Specify a few constants:
CELL_SIZE = 20 # Digit image size.
NCLASSES = 10 # Number of digits.

TRAIN_RATIO = 0.8 # Part of all samples used for training.

3. Read the digits image and prepare the labels:

digits_img = cv2.imread('../data/digits.png', O0)
digits = [np.hsplit(r, digits_img.shape[l] // CELL_SIZE)

for r in np.vsplit (digits_img, digits_img.shape[0] //
CELL_SIZE)]

digits = np.array(digits) .reshape (-1, CELL_SIZE, CELL_SIZE)
nsamples = digits.shape[0]
labels = np.repeat (np.arange (NCLASSES), nsamples // NCLASSES)

[126]

Object Detection and Machine Learning Chapter 4

4. Perform geometric normalization, compute image moments, and align each
sample:

for i in range (nsamples) :

m = cv2.moments (digits[i])
if m['mu02'] > le-3:
s = m['mull'] / m['mu02']
M = np.float32([[1, -s, 0.5*CELL_SIZE*s],
[0, 1, 011)
digits[i] = cv2.warpAffine(digits[i], M, (CELL_SIZE,
CELL_SIZE))

5. Shuffle the samples:
perm = np.random.permutation (nsamples)
digits = digits[perm]
labels = labels[perm]

6. Define a function for computing HOG descriptors:

def calc_hog(digits):

win_size = (20, 20)
block_size = (10, 10)
block_stride = (10, 10)
cell_size = (10, 10)
nbins = 9

hog = cv2.HOGDescriptor (win_size, block_size, block_stride,
cell_size, nbins)

samples = []

for d in digits: samples.append(hog.compute (d))

return np.array (samples, np.float32)

7. Prepare the train and test data (features and labels):

ntrain = int (TRAIN_RATIO * nsamples)

fea_hog_train = calc_hog(digits[:ntrain])
fea_hog_test = calc_hog(digits[ntrain:])
labels_train, labels_test = labels[:ntrain], labels[ntrain:]

8. Create a KNN model:

K =3
knn_model = cv2.ml.KNearest_create()
knn_model.train(fea_hog_train, cv2.ml.ROW_SAMPLE, labels_train)

[127]

Object Detection and Machine Learning

Chapter 4

9. Create an SVM model:

svm_model = cv2.ml.SVM_create ()
svm_model.setGamma (2)
svm_model.setC (1)
svm_model.setKernel (cv2.ml.SVM_RBF)
svm_model.setType (cv2.ml.SVM_C_SVC)

svm_model .train (fea_hog_train, cv2.ml.ROW_SAMPLE, labels_train)

10. Define a function for evaluating the models:

def eval_model (fea, labels, fpred):
pred = fpred(fea).astype (np.int32)
acc = (pred.T == labels).mean()*100

conf_mat = np.zeros ((NCLASSES, NCLASSES), np.int32)

for c_gt, c_pred in zip(labels, pred):
conf_mat[c_gt, c_pred] += 1
return acc, conf_mat

11. Evaluate the KNN and SVM models:

knn_acc, knn_conf_mat = eval_model (fea_hog_test, labels_test,

lambda fea: knn_model.findNearest (fea, K)[1])
print ('KNN accuracy (%):', knn_acc)

print ('KNN confusion matrix:'")

print (knn_conf_mat)

svm_acc, svm_conf_mat = eval_model (fea_hog_test, labels_test,

lambda fea: svm_model.predict (fea) [1])
print ('SVM accuracy (%):', svm_acc)
print ('SVM confusion matrix:')

print (svm_conf_mat)

How it works...

In this recipe, we apply a lot of different OpenCV functions to build an application for
recognizing digits. We use cv2.moment for estimating image skew, and then normalize it

with cv2.warpAffine. KNN and SVM models are created with

the cv2.ml.KNearest_create and cv2.ml.SVM_create methods. We randomly shuffle
all of the available data, and then split it into train/test subsets. The function eval_model
computes the overall model accuracy and the confusion matrix. In the results, we can see

that the SVM-based model gives slightly better results than the KNN one.

[128]

Object Detection and Machine Learning Chapter 4

The following output is expected:

KNN accuracy (%): 91.1
KNN confusion matrix:

[[101 0 0 0 0 0 1 0 0 2]
[0 112 3 0 0 0 0 0 0 0]
[0 1 93 1 0 0 0 0 2 0]
[1 0 3 100 0 3 0 0 1 1]
[1 0 2 8 78 3 4 0 1 5]
[0 0 0 5 0 82 1 0 4 1]
[0 0 0 0 1 0 92 0 0 0]
[0 0 3 6 2 1 0 76 1 21]
[0 0 0 1 0 2 0 1 80 21]
[2 1 1 1 0 0 0 4 4 97711

SVM accuracy (%): 93.5

SVM confusion matrix:

[[100 0 1 0 0 0 1 0 0 2]
[0 112 2 0 0 0 0 1 0 0]
[0 0 93 0 1 0 0 1 2 0]
[1 0 2 100 0 2 0 1 2 1]
[1 0 1 2 93 2 0 1 0 2]
[0 0 0 3 1 85 1 1 2 0]
[0 0 0 0 1 0 92 0 0 0]
[0 0 1 3 3 2 0 82 0 0]
[2 0 0 1 0 2 0 0 79 2]
[1 1 1 1 1 1 0 4 1 9971

Confusion matrices show how many, and what kind of mistakes a model makes. Each row

corresponds to a ground truth class label, and each column corresponds to a predicted class
label. All of the off-diagonal elements are classification errors, while each diagonal element
is the number of proper classifications.

Detecting faces using Haar/LBP cascades

How often have you been impressed with your phone or digital camera when faces on the
photo have been detected? There's no doubt you want to implement something similar on
your own, or incorporate a face detection feature in your algorithms. This recipe shows how
you can easily repeat this using OpenCV. Let's get started.

[129]

Object Detection and Machine Learning Chapter 4

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package.

How to do it...

The steps for this recipe are:
1. Import the modules we need:

import cv2
import numpy as np

2. Define the function that opens a video file, invokes a detector to find all of the
faces in the image, and displays the results:

def detect_faces(video_file, detector, win_title):
cap = cv2.VideoCapture (video_file)

while True:
status_cap, frame = cap.read()
if not status_cap:
break

gray = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
faces = detector.detectMultiScale(gray, 1.3, 5)

for x, y, w, h in faces:
cv2.rectangle (frame, (x, vy), (x + w, y + h), (0, 255,

0), 3)

text_size, _ = cv2.getTextSize('Face',
cv2.FONT_HERSHEY_SIMPLEX, 1, 2)

cv2.rectangle (frame, (x, y - text_size[l]), (x +
text_size[0], vy), (255, 255, 255), cv2.FILLED)

cv2.putText (frame, 'Face', (x, V),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)

cv2.imshow (win_title, frame)

if cv2.waitKey (1) == 27:
break

cv2.destroyAllWindows ()

[130]

Object Detection and Machine Learning Chapter 4

3. Load the pre-trained Haar cascade from OpenCV, and call our detect function:

haar_face_cascade =
cv2.CascadeClassifier('../data/haarcascade_frontalface_default.xml'

)

detect_faces('../data/faces.mp4', haar_face_cascade, 'Haar cascade
face detector')

4. Load the pre-trained LBP cascade in a slightly different manner, and invoke the
function again to find and display faces:

1lbp_face_cascade = cv2.CascadeClassifier()
lbp_face_cascade.load('../data/lbpcascade_frontalface.xml')

detect_faces (0, lbp_face_cascade, 'LBP cascade face detector')

How it works...

The object detector is an algorithm that is able to find objects in the image, it computes the
parameters of the bounding box inside of which there is an object, and also determines to
which category (or class) the object belongs. In this recipe, we're working with detectors for
only one category, upright frontal face.

Detectors can be based on various technologies, and usually involve machine learning. This
recipe tells you how to use cascade-based detectors. One of the main advantages of this type
of detector is its working time, it handles images even faster than real time on modern
hardware, and that's why it's still popular.

OpenCV contains a lot of pre-trained detectors for different purposes, you can find
bounding boxes for cats, eyes, license plates, bodies, and of course, faces. All of these
detectors are available in the main OpenCV repository, in the /data subdirectory (https:/
/github.com/opencv/opencv/tree/master/data). All detectors are represented with . xml
files, which contain all of the parameters of the detectors.

To create the detector, you need to use the cv2.CascadeClassifier class constructor.
You can pass path to XML file with cascade parameters to the constructor—it load detected
from the file then. Also, you can load the parameters later by using the 1oad function, as
shown in the preceding code.

[131]

https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data
https://github.com/opencv/opencv/tree/master/data

Object Detection and Machine Learning Chapter 4

To use the loaded classifier, you need to call the detectMultiscale function of its
instance. It accepts these arguments: the 8-bit grayscale image where you can find the
objects, the scale factor, the neighbors number, flags, and the minimal and maximal object
sizes. The scale factor determines how we scale an image to find objects at different sizes;
bigger values lead to faster computation, but also to a higher probability of rejecting faces of
intermediate sizes. The neighbors number calls to increase the robustness of the algorithm,
this number determines how many overlapped detections there should be for the current
object to count it as a true object. Flags are used for previously created classifiers, and are
necessary for backward compatibility. Minimal and maximal sizes are obviously
determined boundaries for the object sizes we want to detect. detectMultiScale returns a
list of bounding boxes for objects in the input image; each box is in an (x, y, width, height)
format.

As a result of launching the code, you will see an image like the following:

If you're interested in training your own cascade classifier, OpenCV has a
good tutorial on this topic. The tutorial can be found at https://docs.
opencv.org/3.3.0/dc/d88/tutorial_traincascade.html.

[132]

https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.3.0/dc/d88/tutorial_traincascade.html

Object Detection and Machine Learning Chapter 4

Detecting AruCo patterns for AR
applications

Understanding a camera's position in a surrounding 3D space is a very challenging and
hard-to-solve task. Specifically designed patterns, named AruCo markers, are called up to
solve this issue. Each marker has enough information to determine the camera position, and
also contains information about itself; so it's possible to distinguish between different
markers, and, through that, understand the scene. In this recipe, we will review how to
create and detect AruCo markers with OpenCV.

Getting ready

Before you proceed with this recipe, you will need to install the OpenCV 3.x Python API
package with the OpenCV contrib modules.

How to do it...

1. Import the modules:

import cv2
import cv2.aruco as aruco
import numpy as np

2. Create an image with different AruCo markers, blur it, and then display it:
aruco_dict = aruco.getPredefinedDictionary (aruco.DICT_6X6_250)
img = np.full((700, 700), 255, np.uint8)

img[100:300, 100:300

[aruco_dict, 2, 200)
img[100:300, 400:600

[

[

aruco_dict, 76, 200)
aruco_dict, 42, 200)
aruco_dict, 123, 200)

= aruco.drawMarker
= aruco.drawMarker
= aruco.drawMarker
= aruco.drawMarker

img[400:600, 100:300
img[400:600, 400:600

img = cv2.GaussianBlur (img, (11, 11), O0)

cv2.imshow ('Created AruCo markers', img)
cv2.waitKey (0)
cv2.destroyAllWindows ()

[133]

Object Detection and Machine Learning Chapter 4

3. Detect the markers on the blurred image. Draw the detected markers and display
the results:

aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_6X6_250)
corners, ids, _ = aruco.detectMarkers(img, aruco_dict)

img_color = cv2.cvtColor (img, cv2.COLOR_GRAY2BGR)
aruco.drawDetectedMarkers (img_color, corners, ids)

cv2.imshow ('Detected AruCo markers', img_color)
cv2.waitKey (0)
cv2.destroyAllWindows ()

How it works...

As has been mentioned, AruCo markers have special designs and encode an identifier in
black and white squares inside. So, to create the proper marker, it's necessary to follow the
rules, and to also set parameters, such as the marker size and identifier. All of this can be
done with the cv2.aruco.drawMarker function. It accepts a dictionary of the markers, an
identifier of the marker, and image size. The dictionary determines the correspondence
between the marker's appearance and the marker's ID, and returns the image with a drawn
marker. OpenCV includes predefined dictionaries, which can be retrieved with

the cv2.aruco.getPredefinedbDictionary function (which takes the dictionary name as
an argument). In the preceding code, cv2.aruco.DICT_6X6_250 is used, and this
dictionary's name means that the dictionary consists of 6x6 markers (the size of the inside
grid of black and white squares), and includes identifiers from 0 to 249.

To detect AruCo markers in the image, you need to use

the cv2.aruco.detectMarkers routine. This function takes an input image and a
dictionary from which it is necessary to find markers. The result of this function's work is a
list with four corners for all of the found markers, a list of markers IDs (the order
corresponds to the list of the corners), and list of rejected corners, which can be useful for
debug purposes.

To easily and quickly draw the results of the detection, it's reasonable to use
cv2.aruco.drawDetectedMarkers. It accepts an image to draw a list of detected corners
and a list of identifiers on.

[134]

Object Detection and Machine Learning Chapter 4

As a result of the code launch, you will get an image like the following:

Detecting text in natural scenes

In this recipe, you will learn how to detect text in natural images using a pre-trained
convolutional neural network model. Detecting text in natural environments is important in
applications like reading traffic sign messages, understanding ad messages, and reading
banners.

Getting ready

Before you proceed with this recipe, you will need to install the OpenCV 3.x Python API
package and the matplotlib package. OpenCV must be built with contrib modules, because
the advanced text recognition functionality isn't a part of the main OpenCV repository.

The modified .prototxt file with the model description for this recipe

can be found at
opencv_contrib/modules/text/samples/textbox.prototxt.

The model weights can be downloaded from https://www.dropbox.com/
s/g8pjzv2de9gty8g/TextBoxes_icdarl3.caffemodel?dl=0.

[135]

https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0
https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0

Object Detection and Machine Learning Chapter 4

How to do it...
In order to complete this recipe, you need to perform the following steps:
1. Import the module:
import cv2
2. Load the text image:
img = cv2.imread('../data/scenetext01.jpg")
3. Load the pre-trained convolutional neural network and detect the text messages:
det = cv2.text.TextDetectorCNN_create (
"../data/textbox.prototxt",
"../data/TextBoxes_icdarl3.caffemodel")

rects, probs = det.detect (img)

4. Draw the detected text bounding boxes with confidences higher than the
threshold:

THR = 0.3
for i, r in enumerate (rects):
if probs[i] > THR:
cv2.rectangle(img, (r[0], r[l]), (xr[O]+r[2], r[l]1+r[3]),
(0, 255, 0), 2)

5. Visualize the results:

plt.figure (figsize=(10,8))
plt.axis('off'")

plt.imshow (img[:,:, [2,1,011)
plt.tight_layout ()
plt.show ()

How it works...

There are many different text detection methods implemented in OpenCV. In this recipe,
you learned how to use a state-of-the-art deep learning approach for detecting text
bounding boxes. The OpenCV class cv2.TextDetectorCNN_create creates a CNN
(convolutional neural network) model, and loads its pre-trained weights from a specified
file. After that, you only need to call the det . detect method, which returns a list of
rectangles with the associated probabilities of rectangles containing text.

[136]

Object Detection and Machine Learning Chapter 4

The following output is expected:

QR code detector

QR codes, like AruCo markers, are another type of specifically designed object, used to
store information and describe 3D space. You can find QR codes almost everywhere, from
food packages to museums and robotized factories.

In this recipe, we will understand how to detect QR codes and remove perspective
distortions to get a canonical view of the codes. This task may sound easy to complete, but it
requires a lot of OpenCV functionality. Let's find out how to do it.

[137]

Object Detection and Machine Learning Chapter 4

Getting ready

Before you proceed with this recipe, you will need to install the OpenCV 3.x Python API
package.

How to do it...

1. Import the modules we need:

import cv2
import numpy as np

2. Implement a function which finds the intersection point of two lines:

def intersect (11, 12):

delta = np.array([11[1] - 11[0], 12[1] -
12[0]11]) .astype (np.float32)

delta = 1 / delta

deltal:, 0] *= -1

b = np.matmul (delta, np.array([11[0], 12[0]]).transpose())
b = np.diagonal (b) .astype (np.float32)
res = cv2.solve (delta, b)

return res[0], tuple(res[l].astype(np.int32) .reshape((2)))

3. Define a function which un-warps the perspective distortions by calculating the
correspondence between four pairs of distorted and un-distorted points:

def rectify(image, corners, out_size):

rect = np.zeros((4, 2), dtype = "float32")
rect[0] = corners[0]
rect[1l] = corners([1]
rect[2] = corners[2]
rect [3] = corners[3]
dst = np.array ([
[0, 01,
[out_size[1] - 1, 01,
[out_size[1l] - 1, out_size[0] - 17,
[0, out_size[0] - 1]], dtype = "float32")

M = cv2.getPerspectiveTransform(rect, dst)
rectified = cv2.warpPerspective (image, M, out_size)
return rectified

[138]

Object Detection and Machine Learning Chapter 4

4. Create a function which finds the outer corners of the QR code:

def gr_code_outer_corners (image) :

outer_corners_found = False

outer_corners = []

gray = cv2.cvtColor (image, cv2.COLOR_BGR2GRAY)

_, th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY +
cv2.THRESH_OTSU)

_, contours, hierarchy = \

cv2.findContours (th, cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

cnts = []

centers = []

hierarchy = hierarchy.reshape((-1, 4))

for i in range (hierarchy.shape[0]):

i_next, i_prev, i_child, i_par = hierarchy[i]

if all(v == -1 for v in hierarchy[i][:3]):
if all(v == -1 for v in hierarchy[i_par][:2]):
ids = [i, i_par, hierarchyl[i_par][3]]

corner_cnts = []
for id_ in ids:
cnt = contours[id_]
apprx = \
cv2.approxPolyDP (cnt, cv2.arcLength(cnt,
True) * 0.02, True)

if len(apprx) == 4:
corner_cnts.append (apprx.reshape ((4, -1)))
if len(corner_cnts) == 3:
cnts.append(corner_cnts)
all_pts = np.array(corner_cnts) .reshape (-1, 2)
centers.append (np.mean(all_pts, 0))
if len(centers) == 3:
distances_between_pts = np.linalg.norm(np.roll (centers, 1,
0) - centers, axis=1)

max_dist_id = np.argmax(distances_between_pts)
index_diag_pt_1 = max_dist_id

index_diag pt_2 = (max_dist_id - 1) % len(centers)
index_corner_pt = (len(centers) - 1)*len(centers) // 2 -

index_diag_pt_1 - index_diag_pt_2
middle_pt = 0.5 * (centers[index_diag pt_1] +
centers[index_diag_pt_2])

i_ul_pt =
np.argmax (np.linalg.norm(cnts[index_corner_pt] [-1] - middle_pt,
axis=1))
ul_pt = cnts[index_corner_pt][-1][i_ul_pt]
for i in [index_diag_pt_1, index_diag_pt_2]:
corner_cnts = cnts[i]

[139]

Object Detection and Machine Learning

Chapter 4

outer_cnt

distances_to_mp

axis=1)

max_dist_id
vec_from_mid_to_diag

middle_pt

vec_from_mid_to_corner
cross_prod

vec_from_mid_to_diag)
diff_idx

corner_cnts[-1]
np.linalg.norm(outer_cnt - middle_pt,

np.argmax (distances_to_mp)
outer_cnt [max_dist_id]

ul_pt - middle_pt
np.cross (vec_from_mid_to_corner,

0

if cross_prod > 0:

ur_pt = outer_cnt[max_dist_id]
ur_pt_2 = outer_cnt[(max_dist_id + 1) %
len (outer_cnt)]
else:
bl_pt = outer_cnt[max_dist_id]
bl _pt_2 = outer_cnt[(max_dist_id - 1) %
len (outer_cnt)]
ret, br_pt = intersect ((bl_pt, bl_pt_2), (ur_pt, ur_pt_2))
if ret == True:
outer_corners_found = True
outer_corners = [ul_pt, ur_pt, br_pt, bl_pt]

return outer_corners_found,

outer_corners

5. Open a video with a QR code, find the QR code on each frame, and, if successful,
show the code corners and un-warp the code to get a canonical view:

cap

while True:
ret, frame
if ret

break

result, corners
gr_code_size
if result:

cap.
False:

300

cv2.VideoCapture ('../data/gr.mp4")

read ()

gr_code_outer_corners (frame)

if all((0, 0) < tuple(c) < (frame.shape[l], frame.shape[0])

for ¢ in corners):

rectified = rectify(frame, corners, (qr_code_size,
gr_code_size))

cv2.circle (frame, tuple(corners(0]), 15, (0, 255, 0),
2)

cv2.circle (frame, tuple(corners(l]), 15, (0, 0, 255),
2)

cv2.circle (frame, tuple(corners(2]), 15, (255, 0, 0),
2)

cv2.circle (frame, tuple(corners[3]), 15, (255, 255, 0),

[140]

Object Detection and Machine Learning Chapter 4

2)
frame[0:gr_code_size, 0O:gr_code_size] = rectified
cv2.imshow ('QR code detection', frame)
k = cv2.waitKey (100)
if k == 27:
break

cap.release|()
cv2.destroyAllWindows ()

How it works...

If you look at any QR code, you'll see that it has special markers on each of its corners.
These markers are just white and black squares inside of each other. So, to detect and
localize the QR code, we need to detect these three special markers. We can do that with
cv2.findContours. We need to exploit the information inside of the central black square;
there are no other objects, and consequently, no other contours. The next white square
contains only one contour. And again, the next black square contains only two contours.
You may remember that cv2. findContours can return a hierarchy of contours on the
image. We just need to find the described structure of the nested contours. Also, our
markers have square shapes, and we can use this information to further exclude false
positives. We can approximate our contours with a fewer number of points with

the cv2.approxPolyDP function. Our contours can be approximated with a four vertex
polygon with high accuracy.

After we've found the markers and their contours, we should decide their mutual location.
In other words, we should find out whether there are bottom-left and upper-right markers,
and whether there is an upper-left one. Bottom-left and upper-right markers lie on the
diagonal, so they have the largest distance between them. Using this fact, we can choose the
diagonal markers and the upper-left one. Then, we need to figure out which of our diagonal
markers is bottom-left. To do this, we find the middle point of the QR code, and see what
rotation (clockwise or counter-clockwise) we should perform to match a vector from the
middle point to the upper-left corner and a vector from the middle point to one of the
diagonal markers. This can be done by finding a sign of a Z projection of the cross product
of the vectors.

[141]

Object Detection and Machine Learning Chapter 4

Now we know all about the three marked corners, and we need to find the last corner of the
QR code. To do it, we find an intersection between the lines formed by the sides of the outer
squares of diagonal markers. These facts give us two linear equations, with two variables,
the x and y coordinates of the intersection point. cv2. solve can tackle this issue and find
the solution of our linear system.

At this point, we have all four outer corners of the QR code, and we need to
eliminate perspective transformations and get a canonical view of the code. This can be
done by applying cv2.warpPerspective.

After launching the code, you will get something similar to the following image:

[142]

Deep Learning

This chapter contains recipes for:

¢ Representing images as tensors/blobs

¢ Loading Deep Learning models from Caffe, Torch, and TensorFlow formats
¢ Getting input and output tensors' shapes for all layers

¢ Preprocessing images and inference in convolutional networks

¢ Measuring inference time and contributions to it from each layer

e Classifying images with GoogleNet/Inception and ResNet models

e Detecting objects with the Single Shot Detection (SS5D) model

¢ Segmenting a scene using the Fully Convolutional Network (FCN) model

e Face detection using Single Shot Detection (55D) and the ResNet model

e Prediction age and gender

Introduction

Everything is better with Deep Learning. Or is it? It seems that time will tell. But one
undoubtable fact is that more and more issues can be solved with deep learning models.
Deep Learning now plays an important role in many sciences, and computer vision isn't an
exception. OpenCV has recently acquired the ability of loading and inferencing trained
models from three popular frameworks: Caffe, Torch, and Tensorflow. This chapter tells
you how to work with this functionality of OpenCV. This chapter also contains several
useful practical applications of different existing models of classification, semantic
segmentation, object detection, and other problems.

Deep Learning Chapter 5

Representing images as tensors/blobs

Deep Learning models for computer vision usually get images as an input. However, they
do not operate with images, but with tensors. A tensor is more general than an image; it's
not limited by two-spatial and one-channel dimensions. In this recipe, we will learn how to
convert an image to a multidimensional tensor.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.3 (or greater) Python
API package.

How to do it...

You need to complete the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Open an input image and print its shape:

image_bgr = cv2.imread('../data/Lena.png', cv2.IMREAD_COLOR)
print (image_bgr.shape)

3. Transform the image to a four-dimensional floating point tensor:
image_bgr_float = image_bgr.astype (np.float32)
image_rgb = image_bgr_float[..., ::-1]
tensor_chw = np.transpose (image_rgb, (2, 0, 1))

tensor_nchw = tensor_chw[np.newaxis, ...]

print (tensor_nchw.shape)

[144]

Deep Learning Chapter 5

How it works...

As you know, matrices and images in the OpenCV Python package are presented with
NumPy arrays. For example, cv2.imread in the previous code gives a colorful image,
which is a three-dimensional array, where all three dimensions correspond to height, width,
and channels, respectively. It can be imagined as a two-dimensional matrix with height by
width elements, and each element stores three values for each red, green, and blue channel.
This order of dimensions can be encoded as the letters height, width, and channels (HWC),
and data along the channels dimension is stored in the order blue, green, red.

Tensors are multidimensional matrices. Many Deep Learning models accept four-
dimensional floating point tensors three for height, width, and channels; and an extra one.
Usually the models process not one image but many in a single pass. This bunch of images
is called a batch and the fourth dimension addresses individual images in the batch.

The OpenCV Deep Learning functionality operates four-dimensional floating-point tensors
with an NCHW order of dimensions: N for the number of images in the batch, C for
the number of channels, and H and W are for the height and width, respectively.

So, to turn an image into a tensor, we need to perform the following steps:

1. Convert the image to a floating-point

2. Change the BGR order of channels to RGB if necessary

3. Turn the HWC image to a CHW tensor

4. Add a new dimension into the CHW tensor to make it an NCHW one

As you can see, it's easy. But each step is very important and omitting only one can result in
many hours of debugging, where you're trying to understand and locate a mistake. For
example, why and when do we need to reorder BGR images? The answer is connected with
the order of channels which has been used during the model training. If the model is used
to handle RGB images, it is highly likely it will perform poorly on BGR images. This small
missed detail may cost you a lot of your time.

[145]

Deep Learning Chapter 5

Loading deep learning models from Caffe,
Torch, and TensorFlow formats

One of the great features of OpenCV's dnn module is being able to load trained models
from three very popular frameworks: Caf fe, Torch, and TensorFlow. Not only does it
makes the dnn module very useful, but also it opens up the possibility of combining models
from different frameworks into a single pipeline. In this recipe, we will learn how to work
with networks from these three frameworks.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.3.1 (or higher)
Python API package.

How to do it...

Go through the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Load a caffe model:
net_caffe =
cv2.dnn.readNetFromCaffe ('../data/bvlc_googlenet.prototxt',
'../data/bvlc_googlenet.caffemodel"')

3. Load a model from Torch:

net_torch =
cv2.dnn.readNetFromTorch ('../data/torch_enet_model.net')

4. Read and parse a TensorF1low trained model:
net_tensorflow =

cv2.dnn.readNetFromTensorflow ('../data/tensorflow_inception_graph.p
b")

[146]

Deep Learning Chapter 5

How it works...

To load pre-trained models from the frameworks, you need to use the readNetFromCaffe,
readNetFromTorch, or readNetFromTensorflow functions for the Caffe, Torch, and
TensorFlow networks respectively. All these functions return the cv2.dnn_Net object,
which is the parsed version of the graph from the model's file.

It's worth mentioning that you may face issues while loading models with complicated
architectures or models not having widely spread layers (for example, models with new
types of layers, recently added or developed and implemented by you). OpenCV's dnn
module is still developing and may not include the latest features from Deep Learning
frameworks. But despite that fact, the dnn module has a lot of supported layer types to load
the models that address complicated tasks, and that's what we'll try in further recipes in this
chapter.

Where to find pre-trained deep learning models? There are special
webpages where you can find the pre-trained model itself, and also useful

information about the process of training. For historical reasons these lists
0 of models are called Model Zoo. There is such a list for models created in

a Caffe framework: https://github.com/BVLC/caffe/wiki/Model-

zoo; Tensorflow models can be found here: https://github.com/

tensorflow/models.

Getting input and output tensors' shapes for
all layers

Sometimes it's necessary to get information about what's going on with the data shape
during a forward pass in deep neural networks. For example, some models allow the usage
of various input spatial size and, in that case, you may want to know the output tensors'
shapes. OpenCV has an option to get all shapes for all tensors (including intermediate
tensors) without inference. This recipe reviews ways of using such functionality along with
other useful routines relevant to neural nets.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.3.1 (or higher)
Python API package.

[147]

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models

Deep Learning Chapter 5

How to do it...

You need to complete the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Load a model from caf fe and print the information about the types of layers
used in the model:

net = cv2.dnn.readNetFromCaffe ('../data/bvlc_googlenet.prototxt',
'../data/bvlc_googlenet.caffemodel")

if not net.empty () :
print ('Net loaded successfully\n')
print ('Net contains:')
for t in net.getLayerTypes|() :
print ('\t%d layers of type %s' % (net.getLayersCount (t), t))

3. Get the tensor shapes for the loaded model and specified input shape. Then print
all of the information:

layers_ids, in_shapes, out_shapes = net.getlLayersShapes([1, 3, 224,
22417)

layers_names = net.getlLayerNames ()

print ('Net layers shapes:')
for 1 in range(len(layers_names)) :
in_num, out_num = len(in_shapes[l]), len(out_shapes[1l])
print ('Layer "%s" has %d input(s) and %d output (s)'
% (layers_names([1l], in_num, out_num))
for i in range (in_num) :
print ('"\tinput #%d has shape' % i,
in_shapes[l] [i].flatten())
for i in range (out_num) :
print ('\toutput #%d has shape' % i,
out_shapes[1l] [i].flatten())

[148]

Deep Learning Chapter 5

How it works...

The getLayersShapes function of the Net class from the cv2.dnn module computes all
tensor shapes. It accepts shape as input, a list of four integers. The elements in the list are
the number of examples, number of channels, width, and height of the input tensor. The
function returns a tuple of three elements: a list of layer identifiers in the model, a list of
input tensor shapes for each layer, and a list of output tensor shapes also for each layer. The
list of layer identifiers is necessary when we want to get some additional information about
the layers, because some functions of cv2.dnn_Net accept identifiers from this list.
Returned lists for the input and output shapes contain all the shapes for all of the outputs of
the layers. Since each layer can have several inputs and outputs, these returned lists contain
lists of NumPy integer arrays of length 4.

Also, we've used some other functions in the previous code. Let's discuss them too.
The empty function of cv2.dnn_Net returns True if the network doesn't contain any
layers; it can be used to check whether the model was loaded or not.

The getLayerTypes function returns all layer types that are used in the model. This
information can help you to get a basic idea about the model. The

getLayersCount function gets the layer type and returns a number of layers with specified
type. The get LayerNames function gives you all of the names for the layers in the model.
Basically, neural net models contain names for the layers and they are preserved during
loading and parsing. These names are returned by the get LayerNames function.

Preprocessing images and inference in
convolutional networks

We train artificial neural networks for application in our tasks. Here, some conditions arise.
Firstly, we need to prepare input data in the format and range that our network can handle.
Secondly, we need to pass our data to the network properly. OpenCV helps us to perform
both steps, and in this recipe we examine how to use OpenCV's dnn module to easily
convert an image to a tensor and perform an inference.

[149]

Deep Learning Chapter 5

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.3.1 (or higher)
Python API package.

How to do it...

For this recipe, you need to complete the following steps:
1. Import the modules we're going to use:

import cv2
import numpy as np

2. Open an input image, preprocess it, and convert it to a tensor:
image = cv2.imread('../data/Lena.png', cv2.IMREAD_COLOR)
tensor = cv2.dnn.blobFromImage (image, 1.0, (224, 224),
(104, 117, 123), False, False);

3. Convert two images to tensors with preliminary preprocessing:

tensor = cv2.dnn.blobFromImages ([image, image], 1.0, (224, 224),
(104, 117, 123), False, True);

4. Load a trained neural network model:

net = cv2.dnn.readNetFromCaffe ('../data/bvlc_googlenet.prototxt',
'../data/bvlc_googlenet.caffemodel')

5. Set an input for the loaded model and perform an inference:

net.setInput (tensor);
prob = net.forward();

6. Repeat setting the input and performing the inference with the names of layers
specified:

net.setInput (tensor, 'data');
prob = net.forward('prob');

[150]

Deep Learning Chapter 5

How it works...

The OpenCV dnn module contains a convenient function to convert an image to a tensor
with preprocessing, blobFromImage. The arguments of this function are the input image
(with one or three channels), scale values factor, output spatial size in (width, height)
format, mean value to subtract, Boolean flag for whether to swap red and blue channels,
and Boolean flag for whether to crop an image from the center before resizing to save the
aspect ratio of the object in the image or just resize without preserving the object's
proportions. The blobFromImage function goes through the following steps while
converting an image to a tensor:

1. The function resizes the image. If the crop flag is True, the input image is resized
while preserving the aspect ratio. One dimension (width or height) of the image
is set to a desirable value and the other is set equal or greater than the
corresponding value in the size argument. Then, the resulting image from the
center is cropped to the necessary size. If the crop flag is False, the function just
resizes to the target spatial size.

2. The function converts the values of the resized image to a floating-point type, if
necessary.

3. The function swaps the first and last channels if the corresponding argument is
True. This is necessary because OpenCV gives images in the BGR channel order
after loading, but some Deep Learning models may be trained for images with
the RGB channel order.

4. The function then subtracts the mean value from each pixel of the image. The
corresponding argument may be either a three-value tuple or just a one-value
tuple. If it is a three-value tuple, each value is subtracted from the corresponding
channel after the channels are swapped. If it's a single value, it is subtracted from
each channel.

5. Multiply the resulting image by the scale factor (2nd argument).

6. Convert the three-dimensional image to a four-dimensional tensor with an
NCHW order of dimensions.

The blobFromImage function returns a four-dimensional floating-point tensor with all of
the preprocessing performed.

It's important to say that the preprocessing must be the same as it was while training the
model. Otherwise, the model may work poorly or even not work at all. If you've trained the
model yourself, you know all the parameters. But if you've found the model on the internet,
you need to examine the description of the model or training scripts to get the necessary
information.

[151]

Deep Learning Chapter 5

If you want to create a tensor from several images, you need to use the
blobFromImages routine. It has the same arguments as the previous function except the
first one, the first argument should be a list of images from which you want to create
tensors. The images are converted into tensors in the same order as they are listed in the
first argument.

To make an inference, you have to set a tensor as an input of the model with
cv2.dnn_Net.setInput and then call cv2.dnn_Net. forward to get the network's
output. set Input accepts a tensor that you want to be set, and optionally the name of the
input. When the model has several inputs, the name of the input determines which one we
want to set.

The forward function performs all computations from input to output, layer by layer, and
returns the resulting tensor. Also, you can specify the output of which layer you need to be
returned by passing a name of the layer as an argument.

One question arises, how to interpret the output of the model? The interpretation depends
on the model itself. It maybe probabilities of classes for input image, segmentation maps or
some more complicated structures. The only way to know exactly is to check out the
information about the model's architecture and training procedure.

Measuring inference time and contributions
to it from each layer

In this recipe, you will learn how to compute the total number of floating point operations
in a network performed in forward pass, as well as the amount of memory consumed. This
is useful when you want to understand the limitations of your model and reveal where
exactly the bottlenecks are so that you can optimize it.

Getting ready

Before you proceed with this recipe, you need to install OpenCV 3.x with Python API
support.

[152]

Deep Learning Chapter 5

How to do it...

You need to perform the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Import the Caf fe model:

model = cv2.dnn.readNetFromCaffe('../data/bvlc_googlenet.prototxt',
'../data/bvlc_googlenet.caffemodel"')

3. Compute the number of FLOPs performed in the inference stage:
print ('gflops:', model.getFLOPS((1,3,224,224))*1e-9)

4. Report the amount of memory consumed for storing weights and intermediate
tensors:

w,b = model.getMemoryConsumption ((1,3,224,224))
print ('weights (mb):', w*le-6, ', blobs (mb):', b*le-6)

5. Perform a forward pass for a mock input:

blob = cv2.dnn.blobFromImage (np.zeros ((224,224,3), np.uint8), 1,
(224,224))

model.setInput (blob)

model. forward ()

6. Report the total time:

total,timings = model.getPerfProfile()
tick2ms = le3/cv2.getTickFrequency ()
print ('inference (ms): {:2f}'.format (total*tick2ms))

7. Report the per layer inference time:

layer_names = model.getLayerNames ()
print ('{: <30} {}'.format ('LAYER', 'TIME (ms)'))
for (i,t) in enumerate (timings) :
print ('{: <30} {:.2f}'.format (layer_names[i], t[0]*tick2ms))

[153]

Deep Learning Chapter 5

How it works...

You can obtain the model FLOPs count and the amount of memory consumed using the
model.getFLOPs and model . getMemoryConsumpt ion methods. Both methods take as
input the specified blob shape. Per-layer inference time statistics are available after the
forward pass is performed and can be obtained via the model.getPerfProfile method,
which returns total inference time and per-layer timings, all in ticks.

The following output is expected:

gflops: 3.1904431360000003
weights (mb): 27.994208 , blobs (mb): 45.92096
inference (ms): 83.478832
LAYER TIME (ms)
convl/7x7_s2 4.57
convl/relu_7x7 0.00
pooll/3x3_s2 0.74
pooll/norml 1.49
conv2/3x3_reduce 0.57
conv2/relu_3x3_reduce 0.00
conv2/3x3 11.53
conv2/relu_3x3 0.00
conv2/norm2 3.35
pool2/3x3_s2 0.90
inception_3a/1x1 0.55

inception_5b/relu_pool_proj 0.00
inception_5b/output 0.00
pool5/7x7_s1 0.07
pool5/drop_7x7_s1 0.00
loss3/classifier 0.30

prob 0.02

[154]

Deep Learning Chapter 5

Classifying images with GoogleNet/Inception
and ResNet models

In computer vision, a classification task is the estimation of the probability that an input
image belongs to a particular category. In other words, the algorithm must determine the
category for the image and the main goal is to create a classifier with the lowest number of
errors. Classification tasks first gave deep learning algorithms an edge over other
algorithms. Since then, Deep Learning has gained huge interest from many scientists and
engineers. In this recipe, we will apply three models with different architectures to the
classification task.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.3.1 Python API
package.

How to do it...

You need to follow these steps:
1. Import the modules:

import cv2
import numpy as np

2. Define a classify function, which gets frames from the video, transforms them
into tensors, feeds them to the neural network, and selects five categories with the
highest probability:

def classify(video_src, net, in_layer, out_layer,
mean_val, category_names, swap_channels=False):

cap = cv2.VideoCapture (video_src)
t =0
while True:
status_cap, frame = cap.read()
if not status_cap:
break

if isinstance (mean_val, np.ndarray) :
tensor = cv2.dnn.blobFromImage (frame, 1.0, (224, 224),

[155]

Deep Learning Chapter 5

1.0, False);
tensor —-= mean_val
else:
tensor = cv2.dnn.blobFromImage (frame, 1.0, (224, 224),
mean_val, swap_channels);
net.setInput (tensor, in_layer);
prob = net.forward(out_layer);

prob = prob.flatten()

r =1
for i in np.argsort (prob) [-5:]:
txt = '"%s"; probability: %$.2f' % (category_names([i],
prob[i])
cv2.putText (frame, txt, (0, frame.shape[0] - r*40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0),
2)!
r += 1

cv2.imshow ('classification', frame)
if cv2.waitKey (1) == 27:
break
cv2.destroyAllWindows ()
cap.release|()

3. Open a file with names for the categories:

with open('../data/synset_words.txt') as f:
class_names = [' '.Jjoin(l.split ("' ') [1:]).rstrip() for 1 in
f.readlines ()]

4. Load a GoogleNet model from Caffe and invoke our classify function,
defined earlier in Step 2:

googlenet_caffe =
cv2.dnn.readNetFromCaffe ('../data/bvlc_googlenet.prototxt',
'../data/bvlc_googlenet.caffemodel"')

classify('../data/shuttle.mp4', googlenet_caffe, 'data', 'prob',
(104, 117, 123), class_names)

[156]

Deep Learning Chapter 5

5. Open a ResNet-50 model again from caffe, load a tensor with mean values, and
again call classify:

resnet_caffe =

cv2.dnn.readNetFromCaffe ('../data/resnet_50.prototxt',
'../data/resnet_50.caffemodel"')

mean = np.load('../data/resnet_50_mean.npy')
classify('../data/shuttle.mp4', resnet_caffe, 'data', 'prob', mean,

class_names)

6. Load the category names with which a GoogleNet model from TensorFlow has
been trained, load this model from TensorFlow, and classify the frames from the
video:

with open('../data/imagenet_comp_graph_label_strings.txt') as f:
class_names = [l.rstrip() for 1 in f.readlines()]

googlenet_tf =

cv2.dnn.readNetFromTensorflow('../data/tensorflow_inception_graph.p
b'")
classify('../data/shuttle.mp4', googlenet_tf,

'input', 'softmax2', 117, class_names, True)

How it works...

Neural network models for classification usually accept three-channel images and produce
a vector with probabilities across categories. To use a trained model, you need to know a
few things:

e What preprocessing of input images has been used in training
e Which layers are inputs and which are outputs

¢ How data is organized in the output tensor

¢ What meaning the values in the output tensor have

In our case, each model requires its own preprocessing. Also, models need different orders
of channels. Without these two things, models won't work as well (sometimes slightly,
sometimes dramatically). Also, models have different names for input and output layers.

[157]

Deep Learning Chapter 5

Output vectors in classification contain probabilities for all categories. Indexes for maximal
values in the outputs are indexes for categories. To convert such indexes to names, you
need to parse a special file with matches between categories indexes and their names. These
files may be (and in our case are) different for different models.

After executing the code, you will get images similar to the following:

[158]

Deep Learning Chapter 5

Detecting objects with the Single Shot
Detection (SSD) model

In this recipe, you will learn how to detect objects using the Single Shot Detection (SSD)
approach with the pretrained MobileNet network. The model supports 20 classes and can
be used in many computer vision applications where finding objects in a scene is required,
such as vehicle-collision warning. To know more visit https://arxiv.org/abs/1512.02325.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package.

How to do it...

You need to complete these steps:
1. Import the modules:

import cv2
import numpy as np

2. Import the Caf fe model:

model =
cv2.dnn.readNetFromCaffe ('../data/MobileNetSSD_deploy.prototxt',
'../data/MobileNetSSD_deploy.caffemodel')

3. Set a confidence threshold and specify the classes supported by the model:

CONF_THR = 0.3

LABELS = {1: 'aeroplane', 2: 'bicycle', 3: 'bird', 4: 'boat',
5: 'bottle', 6: 'bus', 7: 'car', 8: 'cat', 9: 'chair',
10: 'cow', 11: 'diningtable', 12: 'dog', 13: 'horse',
14: 'motorbike', 15: 'person', 16: 'pottedplant',
17: 'sheep', 18: 'sofa', 19: 'train', 20: 'tvmonitor'}

[159]

https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325

Deep Learning Chapter 5

4. Open the video with road traffic:

video = cv2.VideoCapture ('../data/traffic.mp4"')
while True:

ret, frame = video.read()

if not ret: break

5. Detect the objects:
h, w = frame.shape[0:2]

blob cv2.dnn.blobFromImage (frame, 1/127.5, (300*w//h,300),
(127.5,127.5,127.5), False)

model.setInput (blob)
output = model.forward()

6. Draw the detected objects:

for i in range (output.shape[2]):
conf = output[0,0,1,2]
if conf > CONF_THR:
label = output[0,0,1,1]

x0,y0,x1,yl = (output([0,0,1i,3:7] *
[w,h,w,h]) .astype (int)
cv2.rectangle (frame, (x0,y0), (x1,y1l), (0,255,0), 2)
cv2.putText (frame, '{}: {:.2f}'.format (LABELS[label],
conf),
(x0,y0), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0,255,0), 2)

cv2.imshow ('frame', frame)

key = cv2.waitKey (3)

if key == 27: break
cv2.destroyAllWindows ()

How it works...

In this recipe, we used the SSD approach for vehicle detection, which uses MobileNet as a
backbone network. The model was pretrained by the MS COCO dataset and supports a lot
of generic classes, such as person, car, and bird.

In the code, we specified the minimal level of confidence required to consider detection
successful (CONF_THR=0. 3).

[160]

Deep Learning Chapter 5

The following output is expected:

5
B
:

y -
“‘t

.
i

Segmenting a scene using the Fully
Convolutional Network (FCN) model

In this recipe, you will learn how to perform semantic segmentation of an arbitrary image
into 21 classes, such as person, car, and bird. This piece of functionality is useful when an

understanding of a scene is required; for example, in augmented reality applications and for
driver assistance. To know more visit https://arxiv.org/abs/1605.06211.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package.

Download model weights from http://dl.caffe.berkeleyvision.org/fcn8s—heavy-
pascal.caffemodel and save the file into the data folder.

[161]

https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1605.06211
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel

Deep Learning Chapter 5

How to do it...

You need to complete these steps:
1. Import the modules:

import cv2
import numpy as np

2. Import the Caf fe model:

model = cv2.dnn.readNetFromCaffe ('../data/fcn8s-heavy-
pascal.prototxt’',

'../data/fcn8s-heavy-
pascal.caffemodel')

3. Load the image and perform inference:

frame = cv2.imread('../data/scenetext01.jpg")
blob = cv2.dnn.blobFromImage (frame, 1,
(frame.shape[l], frame.shape([0]))
model.setInput (blob)

output = model.forward()

4. Compute the image with per-pixel class labels:
labels = output[0].argmax (0)
5. Visualize the results:

plt.figure(figsize=(14,10))
plt.subplot (121)
plt.axis('off")
plt.title('original')
plt.imshow (frame[:,:,[2,1,011)
plt.subplot (122)
plt.axis('off")
plt.title('segmentation')
plt.imshow (labels)
plt.tight_layout ()
plt.show ()

[162]

Deep Learning Chapter 5

How it works...

We use the VGG-based Fully Convolution Network approach for per-pixel scene
segmentation. The model supports 21 classes. The model is quite time consuming and
inference might take up a significant amount of CPU time, so be patient.

The following result is expected:

Face detection using Single Shot Detection
(SSD) and the ResNet model

In this recipe, you will learn how to detect faces using a convolution neural network model.
The ability to accurately detect faces in different conditions is used in various computer
vision applications, such as face enhancement.

Getting ready
Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package.

[163]

Deep Learning Chapter 5

How to do it...

You need to complete these steps:
1. Import the modules:

import cv2
import numpy as np

2. Load the model and set the confidence threshold:

model =

cv2.dnn.readNetFromCaffe ('../data/face_detector/deploy.prototxt"',
'../data/face_detector/resl10_300x300_ssd_iter_140000.caffemodel’)
CONF_THR = 0.5

3. Open the video:

video = cv2.VideoCapture('../data/faces.mp4d"')
while True:

ret, frame = video.read()

if not ret: break

4. Detect the faces in the current frame:

h, w = frame.shape[0:2]

blob = cv2.dnn.blobFromImage (frame, 1, (300*w//h,300),
(104,177,123), False)

model.setInput (blob)

output = model.forward()

5. Visualize the results:

for i in range (output.shape([2]):
conf = output[0,0,1i,2]
if conf > CONF_THR:
label = output[0,0,1i,1]
x0,v0,x1,yl = (output([0,0,i,3:7] *
[w,h,w,h]) .astype (int)
cv2.rectangle (frame, (x0,y0), (x1,y1), (0,255,0), 2)
cv2.putText (frame, 'conf: {:.2f}'.format (conf),
(x0,y0),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
cv2.imshow ('frame', frame)
key = cv2.waitKey (3)
if key == 27: break
cv2.destroyAllWindows ()

[164]

Deep Learning Chapter 5

How it works...

We use the Single Shot Detection approach with the ResNet-10 model. Pay attention to
specifying mean color when feeding the input frame.

The following output is expected:

Age and gender prediction

In this recipe, you will learn how to predict a person's age and gender by an image. One of
the possible applications is collecting statistical information about people viewing content
in digital signage displays for example.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.x Python API
package.

How to do it...
You need to complete the following steps:
1. Import the modules:
import cv2

import numpy as np
import matplotlib.pyplot as plt

[165]

Deep Learning Chapter 5

2. Load the models:

age_model =

cv2.dnn.readNetFromCaffe ('../data/age_gender/age_net_deploy.prototx
t'l

'../data/age_gender/age_net.caffemodel"')

gender_model =

cv2.dnn.readNetFromCaffe ('../data/age_gender/gender_net_deploy.prot
otxt"',

'../data/age_gender/gender_net.caffemodel"')

3. Load and crop the source image:

orig_frame = cv2.imread('../data/face.jpeg'")
dx = (orig_frame.shape[l]-orig_frame.shape[0]) // 2
orig_frame = orig_frame[:,dx:dx+orig_frame.shape[0]]

4. Visualize the image:

plt.figure(figsize=(6,6))
plt.title('original')
plt.axis('off'")

plt.imshow (orig_framefl:,:,[2,1,0]])
plt.show ()

5. Load the image with mean pixel values and subtract them from the source image:

mean_blob = np.load('../data/age_gender/mean.npy')
frame = cv2.resize(orig_frame, (256,256)) .astype(np.float32)
frame -= np.transpose (mean_blob[0], (1,2,0))

6. Set age and gender lists:

AGE_LIST = ['(0, 2)',' (4, 6)',"'(8, 12)','(15, 20)"',
'(25, 32)"','(38, 43)"',' (48, 53)','(60, 100)"]
GENDER_LIST = ['male', '"female']

7. Classify gender:

blob = cv2.dnn.blobFromImage (frame, 1, (256,256))
gender_model.setInput (blob)

gender_prob = gender_model.forward()

gender_id = np.argmax (gender_prob)

print ('Gender: {} with prob: {}'.format (GENDER_LIST [gender_id],
gender_prob [0, gender_id]))

[166]

Deep Learning Chapter 5

8. Classify age group:

age_model.setInput (blob)

age_prob = age_model.forward()

age_id = np.argmax (age_prob)

print ('Age group: {} with prob: {}'.format (AGE_LIST[age_id],
age_prob [0, age_id]))

How it works...

In this recipe, we used two different models: one for gender classification and one for age
group classification. Note that in this recipe, in contrast with the others, we subtract per-
pixel mean values from the source image, not per-channel values. You can actually visualize
the mean values and see the average human face.

Here's the input image:

original

The following output is expected:

Gender: female with prob: 0.9362890720367432
Age group: (25, 32) with prob: 0.9811384081840515

[167]

Linear Algebra

This chapter contains recipes for:

The orthogonal Procrustes problem

Rank-constrained matrix approximation

Principal component analysis

Solving systems of linear equations (including under- and over-determined)

Solving polynomial equations
¢ Linear programming with the simplex method

Introduction

Linear dependence between variables is the simplest of all possible options. It can be found
in many applications, from approximation and geometry tasks, to data compression,
camera calibration, and machine learning. But despite its simplicity, things get complicated
when real-world influences come into play. All data gathered from sensors includes a
portion of noise, which can lead systems of linear equations to have unstable solutions.
computer vision problems often require solving systems of linear equations. Even in many
OpenCV functions, these linear equations are hidden; it's certain that you will face them in
your computer vision applications. The recipes in this chapter will acquaint you with
approaches from linear algebra that can be useful and actually are used in computer Vision.

Linear Algebra Chapter 6

The orthogonal Procrustes problem

Originally, this problem questioned ways of finding orthogonal transformation between
two matrices. Maybe that doesn't sound relevant to real computer vision applications, but
that feeling may change when you consider the fact that a set of points is indeed a matrix.
Camera calibration, rigid body transformations, photogrammetry issues, and many other
tasks require solving of the orthogonal Procrustes problem. In this recipe, we find a solution
to the simple task of estimation point set rotation and examine how our solution is
influenced by noisy input data.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.0 (or greater) Python
API package.

How to do it...

You need to complete the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Generate an initial points set. Then create a set of rotated points by applying a
rotation matrix to the initial points. Also, add a portion of noise to our rotated

points:
pts = np.random.multivariate_normal ([150, 300], [[1024, 512], [512,
102411, 50)

rmat = cv2.getRotationMatrix2D ((0, 0), 30, 1)[:, :2]

rpts = np.matmul (pts, rmat.transpose())
rpts_noise = rpts + np.random.multivariate_normal ([0, 0], [[200,
01, [0, 200]], len(pts))

[169]

Linear Algebra Chapter 6

3. Solve the orthogonal Procrustes problem using Singular Value Decomposition
(SVD) and get an estimate of the rotation matrix:

M = np.matmul (pts.transpose (), rpts_noise)
sigma, u, v_t = cv2.SVDecomp (M)
rmat_est = np.matmul (v_t, u).transpose()

4. Now we can use the estimated rotation matrix to find out how good our
estimation is. To do so, compute the inverted rotation matrix and multiply our
previously rotated points by this matrix. Then, calculate the Euclidean distances
(L2) between rotated points with and without noise, between rotated back points
and initial ones, and also between the original rotation matrix and its estimate:

res, rmat_inv = cv2.invert (rmat_est)

assert res != 0

pts_est = np.matmul (rpts, rmat_inv.transpose())
rpts_err = cv2.norm(rpts, rpts_noise, cv2.NORM_L2)
pts_err = cv2.norm(pts_est, pts, cv2.NORM_L2)
rmat_err = cv2.norm(rmat, rmat_est, cv2.NORM_L2)

5. Display our data, showing initial points as green-filled circles, rotated points as
yellow-filled circles, rotated back points as thin white circles, and rotated points
with noise as thin red circles. Then, print the information about L2 differences
between the points and matrices and show the resulting image:

def draw_pts (image, points, color, thickness=cv2.FILLED) :
for pt in points:
cv2.circle(img, tuple([int (x) for x in pt]), 10, color,
thickness)

img = np.zeros([512, 512, 3])

draw_pts (img, pts, (0, 255, 0))

draw_pts (img, pts_est, (255, 255, 255), 2)
draw_pts (img, rpts, (0, 255, 255))
draw_pts (img, rpts_noise, (0, 0, 255), 2)

cv2.putText (img, 'R_points L2 diff: %.4f' % rpts_err, (5, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)

cv2.putText (img, 'Points L2 diff: %.4f' % pts_err, (5, 60),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)

cv2.putText (img, 'R_matrices L2 diff: %.4f' % rmat_err, (5, 90),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)

[170]

Linear Algebra Chapter 6

cv2.imshow ('Points', img)
cv2.waitKey ()

cv2.destroyAllWindows ()

How it works...

To find a solution to the orthogonal Procrustes problem, we applied SVD to the
multiplication product of two matrices: the matrix composed of initial points and another
one composed of points after rotation. The rows in each matrix are (x, y) coordinates of
corresponding points. The SVD approach is well-known and gives stability to noise
outcomes. cv2 . SVDecomp is a function that implements SVD in OpenCV. It accepts a
matrix (MxN) to decompose and returns three matrices. The first returned matrix is a
rectangular diagonal matrix of size MxN, with positive numbers on the diagonal called
singular values. The second and third matrices are a left-singular vector matrix and a
conjugated transpose of a right-singular vector matrix, respectively.

SVD is an extremely handy tool in linear algebra. It is used a lot in many different tasks
because it's able to produce robust solutions. We're not digging deep into the theory of
SVD, because it's a separate and indeed vast topic. However, we'll understand this
procedure later in other recipes of this chapter.

Let's also review another of OpenCV's functions from the preceding code.

The cv2.getRotationMatrix2D function hasn't been mentioned previously in this book.
It computes a matrix of affine transformation for a given center and angle of rotation and
scale. The arguments follow in this order: center of rotation (in (x,y) format), angle of
rotation (in degrees), scale. The returned value is a 2x3 matrix of affine transformation.

cv2.invert finds a pseudo-inverse matrix for a given one matrix. This function accepts a
matrix to invert, and optionally a matrix to save the result and inversion method flag. By
default, the flag is set to cv2.DECOMP_LU, which applies the LU decomposition to find the
result. Also, cv2.DECOMP_SVD and cv2.DECOMP_CHOLESKY are available as options; the
first uses SVD to find a pseudo-inverse matrix (yes, another application of SVD), and the
second one applies Cholesky decomposition for the same purpose. The function returns two
objects, a float value and the resulting inverted matrix. If the first returned value is 0, the
input matrix is singular. In this case, cv2.DECOMP_LU and cv2.DECOMP_CHOLESKY can't
produce the result, but cv2.DECOMP_SVD computes the pseudo-inverse matrix.

[171]

Linear Algebra Chapter 6

As a result of launching the code from the current recipe, you will get a result similar to the
following;:

R_points L2 diff: 129.1340
Points L2 diff: 1.0820
R_matrices L2 diff: 0.0006

As you can see, despite the fact that the difference between points before and after adding
noise is relatively large, the difference between the initial and estimated points and the
rotation matrices is slight.

place to start: https://en.wikipedia.org/wiki/Singular-value_
decomposition.

0 If you're interested in the theory of the SVD, this Wikipedia page is a good

Rank-constrained matrix approximation

In this recipe, you will learn how to compute a rank-considerant matrix approximation. The
problem is formulated as an optimization problem. Given an input matrix, the aim is to find
its approximation where the fit is measured using the Frobenius norm and the rank of the
output matrix should not be greater than the given value. This functionality, among other
fields, is used in data compression and machine learning.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.0 (or greater) Python
API package.

[172]

https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition

Linear Algebra Chapter 6

How to do it...

You need to complete the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Generate a random matrix:
A = np.random.randn (10, 10)
3. Compute the SVD:
w, u, v_t = cv2.SVDecomp (A)
4. Compute the rank-constrained matrix approximation:
RANK = 5
w[RANK:, 0] = 0

B =1u @ np.diag(w[:,0]) @ v_t

5. Check the results:

print ('Rank before:', np.linalg.matrix_rank (A))
print ('Rank after:', np.linalg.matrix_rank (B))
print ('Norm before:', cv2.norm(A))

print ('Norm after:', cv2.norm(B))

How it works...

The Eckart-Young-Mirsky theorem states that the problem can be solved through
computing the SVD (using the cv2 . svDecomp function) and constructing an approximation
where the smallest singular values are set to zeros, so the approximation rank is not greater
than the required value.

Here's what the output should look like:

Rank before: 10

Rank after: 5

Norm before: 9.923378133354824
Norm after: 9.511025831320431

[173]

Linear Algebra Chapter 6

Principal component analysis

Principal component analysis (PCA) aims to determine the importance of dimensions in
data and build up a new basis. In this new basis, directions are selected to have the most
independence from others. Because of maximal independence, we can understand

which data dimensions carry more information and which carry less. PCA is used in many
applications, primarily in data analysis and data compression, but also it can be used in
computer vision; for example, to determine and track the orientation of an object. This
recipe will show you how to do it in OpenCV.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.0 (or greater) Python
API package.

How to do it...

You need to complete the following steps:
1. Import the modules we need:

import cv2
import numpy as np

2. Define a function that applies PCA to contour points and determines the new
basis:

def contours_pca (contours) :
join all contours points into the single matrix and remove
unit dimensions

cnt_pts = np.vstack (contours) .squeeze () .astype (np.float32)
mean, eigvec = cv2.PCACompute (cnt_pts, None)

center = mean.squeeze () .astype(np.int32)

delta = (150*eigvec) .astype(np.int32)

return center, delta

[174]

Linear Algebra

Chapter 6

3. Define a function that displays the results of applying PCA to points of contours:

def draw_pca_results(image, contours, center, delta):
cv2.drawContours (image, contours, -1, (255, 255, 0))
cv2.line (image, tuple((center + deltal0])),
tuple ((center - delta(0])),
(0, 255, 0), 2)
cv2.line (image, tuple((center + deltall])),
tuple ((center - deltalll]l)),
(0, 0, 255), 2)
cv2.circle (image, tuple(center), 20, (0, 255, 255), 2)

4. Open a video and analyze it frame by frame. For each frame, find contours and

apply PCA to the found contours. Then, display the results:

cap = cv2.VideoCapture ("../data/opencv_logo.mp4")
while True:
status_cap, frame =
if not status_cap:

cap.read()

break
frame = cv2.resize(frame, (0, 0), frame, 0.5,
edges = cv2.Canny (frame, 250, 150)

_, contours, = cv2.findContours (edges,
cv2.CHAIN_APPROX_SIMPLE)
if len(contours):
center, delta = contours_pca (contours)
draw_pca_results (frame, contours, center,
cv2.imshow ('PCA', frame)
if cv2.waitKey (100) 27:
break

cv2.destroyAllWindows ()

0.5)

cv2.RETR_LIST,

delta)

[175]

Linear Algebra Chapter 6

How it works...

The main idea of tracking object orientation using PCA is that the object doesn't change
during rotation. Because it's the same object in different orientations, it has its own basis
and this basis rotates together with the object. So, we need to determine this basis in each
moment to find an object's orientation. PCA is able to find such basis if we have the right
data to analyze. Let's use the points of an object's contours. Of course, they change their
absolute position during rotation, but they rotate together with the object. At each
orientation, there are directions along which the points of the contours vary the most. And
because rotation doesn't skew or distort the contours, these directions are revolved with the
object.

cv2.PCACompute implements PCA, as the name suggests. It finds eigenvectors and
eigenvalues of the data covariance matrix. There are two overloads of this function. The first
option, which we use in the preceding code, accepts a matrix of data to analyze, a
precomputed mean value, a matrix to write computed eigenvectors, and a number of
vectors to return. The last two arguments are optional, and can be omitted (in this case, all
vectors are returned). Also, if there is no precomputed mean value, the second parameter
can be set to None. In this case, the function computes the mean value as well. The data
matrix is usually a set of samples. Each sample has a number of dimensions, D, and there
are N samples overall. In this case, the data matrix has to be NxD, and so has N rows, and
each row is an individual sample.

As said before, there is a second overload of cv2.PCACompute. As previously, it accepts a
matrix of data to analyze and a precomputed mean value as the first two arguments. The
third and fourth parameters are the ratio of retained variance and the object to store the
computed vectors. The ratio determines the number of vectors to return by their variance,
the more unbalanced the ratio, the greater the number of retained vectors. This parameter
allows you to not fix the number of vectors, but to preserve only the ones with the highest
variance.

As a result of the code execution, you will get images similar to the following:

[176]

Linear Algebra Chapter 6

Solving systems of linear equations
(including under- and over-determined)

In this recipe, you will learn how to solve systems of linear equations using OpenCV. This
functionality is a key building block of many computer vision and machine learning
algorithms.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.3 (or greater) Python
API package.

How to do it...

You need to complete the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Generate a system of linear equations:

N = 10

A = np.random.randn (N,N)

while np.linalg.matrix_rank (A) < N:
A = np.random.randn (N,N)
np.random.randn (N, 1)

A @ x

b

b
3. Solve the system of linear equations:
ok, x_est = cv2.solve (A, Db)

print ('Solved:', ok)

if ok:
print ('Residual:', cv2.norm(b - A @ x_est))
print ('Relative error:', cv2.norm(x_est — x) / cv2.norm(x))

[177]

Linear Algebra Chapter 6

4. Construct an over-determined system of linear equations:

N = 10

A = np.random.randn (N*2,N)

while np.linalg.matrix_rank (A) < N:
A = np.random.randn (N*2,N)

x = np.random.randn (N, 1)

b A @ x

5. Solve the over-determined system of linear equations:
ok, x_est = cv2.solve(A, b, flags=cv2.DECOMP_NORMAL)

print ('\nSolved overdetermined system:', ok)

if ok:
print ('Residual:', cv2.norm(b - A @ x_est))
print ('Relative error:', cv2.norm(x_est - x) / cv2.norm(x))

6. Construct an under-determined system of linear equations that have more than
one solution:

= 10
np.random.randn (N, N*2)
= np.random.randn (N*2, 1)
= A Q@ x

(ORI
It

7. Solve the under-determined system of linear equations. Find the solution with
minimal norm:

w, u, v_t = cv2.SVDecomp (A, flags=cv2.SVD_FULL_UV)
mask = w > le-6

w[mask] = 1 / w[mask]
w_pinv = np.zeros((A.shape[l], A.shape[0]))
w_pinv[:N, :N] = np.diag(w[:,0])

A_pinv = v_t.T @ w_pinv @ u.T
x_est = A_pinv @ b

print ('\nSolved underdetermined system')
print ('Residual:', cv2.norm(b - A @ x_est))
print ('Relative error:', cv2.norm(x_est - x) / cv2.norm(x))

[178]

Linear Algebra Chapter 6

How it works...

Systems of linear equations can be solved using OpenCV's cv2.solve function. It accepts a
coefficients matrix, the right-hand side of the system, and optional flags, then returns a
solution (the success indicator and solution vector, to be exact). As you can see in the first
example, it can be used to solve systems with unique solutions.

You can specify the cv2.DECOMP_NORMAL flag, in which case an internally normalized
system of linear equations will be constructed. This can be used to solve over-determined
systems with one or no solutions, in the latter case, the least squares problem's solution is
returned.

An under-determined system of linear equations has either no or multiple solutions. In the
preceding code, we constructed a system that has multiple solutions. The solution with
minimal norm can be found using the Moore-Penrose inverse (A_pinv in the code). As
there are multiple solutions, the one we find might have more errors, relative to the solution
we used to generate the right-hand side of the system.

Here's an example of the expected output:

Solved: True
Residual: 2.7194799110210367e-15
Relative error: 1.1308382847616332e-15

Solved overdetermined system: True
Residual: 4.418021593470969e-15
Relative error: 5.810798787243048e-16

Solved underdetermined system
Residual: 9.296750665059115e-15
Relative error: 0.7288729621745673

Solving polynomial equations

In this recipe, you will learn how to solve polynomial equations using OpenCV. Such
problems can arise in such areas as machine learning, computational algebra, and signal
processing.

[179]

Linear Algebra Chapter 6

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.3 (or greater) Python
API package.

How to do it...

You need to complete the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Generate a fourth degree polynomial equation:

N =4
coeffs = np.random.randn (N+1,1)

3. Find all the roots in the complex domain:

retval, roots = cv2.solvePoly (coeffs)

4. Check the roots:

for i in range (N):
print ('Root', roots[i], 'residual:"',
np.abs (np.polyval (coeffs[::-1],
roots[1] [0] [0O]+1j*roots[i][0][1])))

How it works...

Polynomial equations of degree n always have 1 roots in the complex domain (some of
them can be repeated, however). All of the solutions can be found using the
cv2.solvePoly function. It takes equation coefficients and returns all of the roots.

[180]

Linear Algebra Chapter 6

Here's an example of the expected output:

Root [[0.0494519 1.12199842]] residual: [1.50920942e-16]
Root [[-0.17045556 O. 1] residual: [0.]

Root [[0.0494519 -1.12199842]] residual: [1.50920942e-16]
Root [[-8.1939051 O.]] residual: [1.80133686e-14]

Linear programming with the simplex
method

In this recipe, we consider a special case of optimization problems, problems with linear
constraints. These tasks imply that you need to optimize (maximize or minimize) a linear
combination of positive variables, taking into account a set of linear constraints. Linear
programming doesn't have well-known and direct applications in computer vision, but you
may encounter it somewhere down the road. So, let's see how you can deal with linear
programming problems using OpenCV.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV 3.0 (or greater) Python
API package.

How to do it...

You need to complete the following steps:
1. Import the modules:

import cv2
import numpy as np

2. Create a linear constraint matrix and weights for the function, which we're going
to optimize:

m = 10

n = 10

constraints_mat = np.random.randn(m, n+1)
weights = np.random.randn(l, n)

[181]

Linear Algebra Chapter 6

3. Apply the simplex method to the task by invoking cv2.solveLP. Then, parse the
result:

solution = np.array((n, 1), np.float32)

res = cv2.solvelP (weights, constrains_mat, solution)
if res == cv2.SOLVELP_SINGLE:

print ('The problem has the one solution')
elif res == cv2.SOLVELP_MULTI:

print ('The problem has the multiple solutions')
elif res == cv2.SOLVELP_UNBOUNDED:

print ('The solution is unbounded')
elif res == cv2.SOLVELP_UNFEASIBLE:

print ('The problem doesnt\'t have any solutions')

How it works...

cv2.solveLP accepts three arguments: a function's weights, a linear constraints matrix,
and a NumPy array object to save results. Weights are represented with an (N,1) or (1,N)
vector of float values. The length of this vector also means the number of optimized
parameters. The linear constraints matrix is an (M, N+1) NumPy array, where the last
column contains constant terms for each constraint and each row, except the last element,
which contains coefficients for the corresponding parameters. The last argument is intended
to store the solution if it exists.

In general, there are four possible outcomes for linear programming problems, they may
have a single solution, many solutions (in some range), or no determined solutions at all. In
this latter case, the problem may be unbounded or unfeasible. For all four of these

results, cv2.solveLP returns a corresponding value: cv2.SOLVELP_SINGLE,
cv2.SOLVELP_MULTI, cv2.SOLVELP_UNBOUNDED, Oor v2.SOLVELP_UNFEASIBLE.

[182]

Detectors and Descriptors

This chapter contains recipes for:

e Finding corners in an image - Harris and FAST

e Selecting good corners in an image for tracking

¢ Drawing keypoints, descriptors, and matches

¢ Detecting scale invariant keypoints

¢ Computing descriptors for image keypoints - SURF, BRIEF, and ORB
¢ Matching techniques for finding correspondences between descriptors
e Finding reliable matches - cross-check and ratio test

¢ Model-based filtering of matches - RANSAC

e BoW model for constructing global image descriptors

Introduction

Detection and tracking tasks can be formulated in terms of comparing areas in images. If
we're able to find special points in the images and build up descriptors for these points, we
can just compare the descriptors and arrive at a conclusion about the similarity of the
objects in the images. In Computer Vision, these special points are called keypoints, but
several questions arise around this concept: how do you find truly special locations in the
images? How do you compute the robust and unique descriptors? And how do you
compare these descriptors rapidly and accurately? This chapter addresses all these queries
and leads you through all the steps from finding the keypoints to comparing them using
OpenCV.

Detectors and Descriptors Chapter 7

Finding corners in an image - Harris and
FAST

A corner can be thought as an intersection of two edges. The mathematical definition of the
corners in an image is different, but reflects the same idea; the corner is a point with the
following property: moving this point in any direction leads to changes in the small
neighborhood of the point. For example, if we take a point on the homogeneous area of an
image, moving such a point doesn't change anything in the local window nearby. A point
on the edge doesn't belong to a plain region, and once again has directions, movements
which don't influence a point's local area: these are movements along the edge. Only
corners are movement-sensitive for all directions, and as a consequence, they are good
candidates for objects to track or compare. In this recipe, we'll learn how to find corners on
an image using two methods from OpenCV.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.0 (or greater)
Python API package.

How to do it...

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load an image and find its corners with cv2.cornerHarris:

img = cv2.imread('../data/scenetext01.jpg', cv2.IMREAD_COLOR)
corners = cv2.cornerHarris (cv2.cvtColor (img, cv2.COLOR_BGR2GRAY),
2, 3, 0.04)

3. Process and display the result:
corners = cv2.dilate(corners, None)

show_img = np.copy (img)
show_img[corners>0.01*corners.max()]1=[0,0,255]

[184]

Detectors and Descriptors Chapter 7

corners = cv2.normalize (corners, None, 0, 255,
cv2.NORM_MINMAX) .astype (np.uint8)

show_img = np.hstack ((show_img, cv2.cvtColor (corners,
cv2.COLOR_GRAY2BGR)))

cv2.imshow ('Harris corner detector', show_img)
if cv2.waitKey (0) == 27:
cv2.destroyAllWindows ()

4. Create a FAST detector and apply it to the image:

fast = cv2.FastFeatureDetector_create (30, True,
cv2.FAST_FEATURE_DETECTOR_TYPE_9_ 16)
kp = fast.detect (img)

5. Draw the results and show the image:

show_img = np.copy (img)
for p in cv2.KeyPoint.convert (kp) :
cv2.circle(show_img, tuple(p), 2, (0, 255, 0), cv2.FILLED)

cv2.imshow ('FAST corner detector', show_img)
if cv2.waitKey (0) == 27:
cv2.destroyAllWindows ()

6. Disable the non-maximum suppression, retrieve the corners, and display the
results:

fast.setNonmaxSuppression (False)
kp = fast.detect (img)

for p in cv2.KeyPoint.convert (kp) :

cv2.circle(show_img, tuple(p), 2, (0, 255, 0), cv2.FILLED)
cv2.imshow ('FAST corner detector', show_img)
if cv2.waitKey (0) == 27:

cv2.destroyAllWindows ()

How it works...

cv2.cornerHarris is OpenCV's function which implements, as follows from the name,
the Harris corners detector. It takes six arguments: the first four arguments are mandatory
and last two arguments have default values. The arguments are as follows:

e Single-channel 8-bit or floating-point image, on which corners are to be detected
e Size of the neighborhood window: it should be set to a small value larger than 1

[185]

Detectors and Descriptors Chapter 7

e Size of the window to compute derivatives: it should be set to an odd number
e Sensitivity coefficient for the corners detector: it's usually set to 0.04

¢ An object where you can store the results

¢ The borders extrapolation method

The borders extrapolation method determines the manner of image extending. It can be set
to a bunch of values (cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, and so on), and
by default, cv2.BORDER_REFLECT_101 is used. The result of the cv2.cornerHarris call is
a map of the Harris measure. Points with higher values are more likely to be good corners.
As a result of launching the code related to the Harris corner detector, you will get an
image similar to the following (the left part of the image is corners visualization, and the
right part is the Harris measure map):

Another method we've applied in this recipe is the Features from Accelerated Segment
Test (FAST) detector. It also finds corners on an image, but in another way. It considers a
circle around each point and computes some statistics on that circle. Let's find out how to
use FAST.

First, we need to create a detector using cv2.FastFeatureDetector_create. This
function accepts an integer threshold, a flag to enable non-maximum suppression, and a
mode that determines both the size of the neighbor area and the number of points
threshold. All of these parameters can be modified later using corresponding methods of
the cv2.FastFeatureDetector class (setNonmaxSuppression, in the previous code).

[186]

Detectors and Descriptors Chapter 7

To use the detector after the initialization, we need to call the
cv2.FastFeatureDetector.detect function. It takes a single-channel image and returns
a list of cv2.KeyPoint objects. This list can be converted to a numpy array

by cv2.KeyPoint.convert. Each element in the resulting array is a point of the corner.

Execution of the code related to the FAST detector brings up the following images (the left
image for non-maximum suppression enabled, the right image for non-maximum
suppression being disabled):

Selecting good corners in an image for
tracking

In this recipe, you will learn how to detect keypoints in an image and apply simple post-
processing heuristics for improving the overall quality of detected keypoints such as getting
rid of keypoint clusters and removing relatively weak keypoints. This functionality is useful
in such computer vision tasks as object tracking and video stabilization, since improving the
quality of detected keypoints affects the final quality of the corresponding algorithms.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.0 (or greater)
Python API package.

[187]

Detectors and Descriptors Chapter 7

How to do it...

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import matplotlib.pyplot as plt

2. Load the test image:

img = cv2.imread('../data/Lena.png', cv2.IMREAD_GRAYSCALE)
3. Find good keypoints:

corners = cv2.goodFeaturesToTrack (img, 100, 0.05, 10)
4. Visualize the results:

for ¢ in corners:

x, y = c[0]

cv2.circle(img, (x, vy), 5, 255, -1)
plt.figure(figsize=(10, 10))
plt.imshow (img, cmap='gray')
plt.tight_layout ()
plt.show ()

How it works...

In this sample, we used the OpenCV function cv2.goodFeaturesToTrack. This function
detects keypoints and implements a list of heurisitics intended to improve the overall
quality of keypoints for such computer vision tasks as object tracking through selecting a
subset of good keypoints. This function ensures that the keypoints are not located too close
to each other, the minimal distance is regulated with the minDistance parameter. The
qualityLevel parameter regulates which keypoints are considered weak with respect to
the strongest keypoint, and are removed from the originally detected ones. The function
also has the parameter maxCorners, which is the maximal number of detected keypoints.

[188]

Detectors and Descriptors Chapter 7

The following output is expected:

Drawing keypoints, descriptors, and
matches

After you've found the keypoints, you undoubtedly want to see where these keypoints are
in the original image. OpenCV serves as a convenient way to display the keypoints and
other related information. Moreover, you can easily draw a correspondence between
keypoints from different images. This recipe tells you about how you can visualize
keypoints as well as matching results.

[189]

Detectors and Descriptors Chapter 7

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it...

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np
import random

2. Load an image, find the FAST keypoints in it, and fill in the size and orientation
of each keypoint with random values:

img = cv2.imread('../data/scenetext01.jpg', cv2.IMREAD_COLOR)

fast = cv2.FastFeatureDetector_create (160, True,
cv2.FAST_FEATURE_DETECTOR_TYPE_9_16)
keyPoints = fast.detect (img)

for kp in keyPoints:
kp.size = 100*random.random ()
kp.angle = 360*random.random ()

matches = []
for i in range(len (keyPoints)):
matches.append(cv2.DMatch (i, 1, 1))

3. Draw the keypoints:
show_img = cv2.drawKeypoints (img, keyPoints, None, (255, 0, 255))
cv2.imshow ('Keypoints', show_img)

cv2.waitKey ()
cv2.destroyAllWindows ()

[190]

Detectors and Descriptors Chapter 7

4. Visualize the size and orientation information about the keypoints:

show_img = cv2.drawKeypoints (img, keyPoints, None, (0, 255, 0),
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow ('Keypoints', show_img)
cv2.waitKey ()
cv2.destroyAllWindows ()

5. Show the keypoint's matching results:

show_img = cv2.drawMatches (img, keyPoints, img, keyPoints, matches,
None,
flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow ('Matches', show_img)
cv2.waitKey ()
cv2.destroyAllWindows ()

How it works...

To visualize keypoints, you need to use cv2.drawKeypoints. This function takes a source
image, a list of keypoints, a destination image, a color, and flags as arguments. In the
simplest case, you only need to pass the first three. The source image is used as a
background, but it isn't changed by this function, and the result will be placed in the
destination image. The list of keypoints is an object, which is returned by the keypoints
detector, so you can pass this list directly to the cv2.drawKeypoints function without any
processing. The color is simply the drawing color. The last parameter, flags, allows you to
control the drawing mode—by default, it has the cv2 .DRAW_MATCHES_FLAGS_DEFAULT
value, and in this case, the keypoints are displayed as plain circles of the same diameter.
The second option for this flag is cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS. In
this case, the points will be drawn as circles with different diameters, and the orientation
will also be displayed with a line from the center of the circle. The drawn diameter of the
keypoint shows the neighborhood, which was used to compute the keypoint; orientation
shows specific direction for the keypoint, if the keypoint has such

one. cv2.drawKeypoints returns the resulting image with drawn keypoints.

[191]

Detectors and Descriptors Chapter 7

cv2.drawMatches helps you show the correspondences you have between points after the
keypoints matching process. The arguments of this function are: the first image and the list
of keypoints for it, the second image and its keypoints, a list of match results for the
keypoints, a destination image, a color for drawing correspondences, a color for drawing
keyponts without matches, a mask for drawing matches, and a flag. Usually, you have
values for the first five parameters after keypoints detection and matching. Colors for
matched and unmatched (single) points are generated randomly by default, but you can set
them with any values. A mask for matches is a list of values where a non-zero value means
the corresponding match (with the same index) should be displayed. By default, the mask is
empty and all matches are drawn. The last argument controls the mode of keypoints being
displayed. It can be set to cv2 .DRAW_MATCHES_FLAGS_DEFAULT Or

cv2 .DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS and optionally conjugated with the
cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS value.

The first two values have the same meaning as the cv2.drawKeypoints function. The final
value, cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS, allows you to not show
the keypoints without matches.

You will get an image similar to the following as a result of the code execution:

Detectors and Descriptors Chapter 7

Detecting scale invariant keypoints

Objects in the real world are moving, making it harder to accurately compare them with
their previous appearances. When they approach the camera, the objects get bigger. To deal
with this situation, we should be able to detect keypoints that are insensitive to an object's
size differences. Scale Invariant Feature Transform (SIFT) descriptors have been designed
especially to handle different object scales and find the same features for the objects, no
matter what their size is. This recipe shows you how to use SIFT implementation from
OpenCV.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.0 (or greater)
Python API package with contrib modules.

How to do it...

You need to complete the following steps:
1. Import the necessary modules and load images:

import cv2
import numpy as np

img0 = cv2.imread('../data/Lena.png', cv2.IMREAD_COLOR)

imgl = cv2.imread('../data/Lena_rotated.png', cv2.IMREAD_COLOR)
imgl = cv2.resize(imgl, None, £fx=0.75, fy=0.75)

imgl = np.pad(imgl, ((64,)*2, (64,)*2, (0,)*2), 'constant',
constant_values=0)

imgs_1list = [img0, imgl]

2. Create a SIFT keypoints detector:
detector = cv2.xfeatures2d.SIFT_create (50)

3. Detect the keypoints in each image, visualize the keypoints and display the
result:

for i in range(len(imgs_list)):
keypoints, descriptors =
detector.detectAndCompute (imgs_list[i], None)
imgs_list[i] = cv2.drawKeypoints(imgs_list[i], keypoints, None,

[193]

Detectors and Descriptors Chapter 7

(0, 255, 0),
flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imshow ('SIFT keypoints', np.hstack(imgs_1list))
cv2.waitKey ()

cv2.destroyAllWindows ()

How it works...

To create an instance of the SIFT keypoints detector, you need to use the
cv2.xfeatures2d.SIFT_create function. All its arguments have default values, and the
arguments themselves are: the number of keypoints to find and return, the number of levels
in the scale pyramid to use, the two thresholds to tune the sensitivity of the algorithm, and
the sigma variance for presmoothing the image. All of the arguments are important, but the
ones you probably need to tunr in the first place are the number of keypoints and the
sigma. The last one controls the maximal size of the objects you don't care about and can be
useful to remove the noise and extra small details from the image.

As a result of completing the code from the recipe, you will get an image similar to the
following;:

As you can see, the same configurations of the keypoints are found in the images despite
the fact that the right image is tilted a bit and has smaller size than the right one. This is the
key feature of SIFT descriptors.

[194]

Detectors and Descriptors Chapter 7

Computing descriptors for image keypoints -
SURF, BRIEF, ORB

In the previous recipes, we've examined several ways of finding keypoints in the image.
Basically, keypoints are just locations of extraordinary areas. But how do we distinguish
between these locations? This question arises in many situations, especially in video
processing, when we want to track an object in a sequence of frames. This recipe covers
some effective approaches of characterizing keypoint neighborhoods, in other words,
computing keypoint descriptors.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.0 (or greater)
Python API package with contrib modules.

How to do it...

You need to complete the steps:
1. Import the modules we need and load an image:

import cv2
import numpy as np

img = cv2.imread('../data/scenetext01.jpg', cv2.IMREAD_COLOR)

2. Create a SURF feature detector and tune some of its parameters. Then, apply it to
the loaded image and display the result:

surf = cv2.xfeatures2d.SURF_create (10000)
surf.setExtended (True)
surf.setNOctaves (3)
surf.setNOctavelayers (10)

surf.setUpright (False)

keyPoints, descriptors = surf.detectAndCompute (img, None)

show_img = cv2.drawKeypoints (img, keyPoints, None, (255, 0, 0),
cv2 .DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow ('SURF descriptors', show_img)

[195]

Detectors and Descriptors Chapter 7

cv2.waitKey ()
cv2.destroyAllWindows ()

3. Create a BRIEF keypoint descriptor and apply it to the SURF keypoints. After
this, display the resulting keypoints:

brief = cv2.xfeatures2d.BriefDescriptorExtractor_create (32, True)
keyPoints, descriptors = brief.compute (img, keyPoints)

show_img = cv2.drawKeypoints (img, keyPoints, None, (0, 255, 0),
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow ('BRIEF descriptors', show_img)
cv2.waitKey ()
cv2.destroyAllWindows ()

4. Initialize an ORB features detector. After this, detect the keypoints and compute
the descriptors for the image. Then, draw the keypoints in the image:

orb = cv2.0RB_create ()
orb.setMaxFeatures (200)

keyPoints = orb.detect (img, None)
keyPoints, descriptors = orb.compute (img, keyPoints)

show_img = cv2.drawKeypoints (img, keyPoints, None, (0, 0, 255),
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow ('ORB descriptors', show_img)
cv2.waitKey ()
cv2.destroyAllWindows ()

How it works...

All of the previously used keypoint descriptors implement the cv2.Feature2D interface
and have the same fashion of use. All of them require the creation of the descriptor object as
a first step. Then, there is a possibility to set or tune some parameters of the created
descriptor. It's worth mentioning that the descriptors have default values for the parameters
of algorithms, and these chosen default values work well in many cases. When the
descriptor is ready to be used, the detect, compute, and detectAndCompute methods
should be used to retrieve keypoints and/or descriptors for the specified image.

[196]

Detectors and Descriptors Chapter 7

To create SURF descriptors, you need to call the

cv2.xfeatures2d.SURF_create function. It takes a considerable number of arguments,
but fortunately all of them have default values. This function returns the initialized SURF
descriptor object. To apply it to the image, you can find both keypoints and their descriptors
by invoking the detectAndCompute function. You need to pass an input image to this
function, an input image mask (can be set to None if there is no mask provided), an object to
store the computed descriptors, and a flag for whether you should use precomputed
keypoints or not. The function returns a list of keypoints and a list of descriptors for each
returned keypoint.

To create a BRIEF descriptor, you need to use the
cv2.BriefDescriptorExtractor_create function. This function takes the algorithm's
parameters as arguments and returns an initialized descriptor object. The BRIEF descriptor
can't detect keypoints and therefore implements only the compute method, which returns
descriptors for input images and previously detected keypoints.

The ORB keypoints detector can be created with the cv2.0RB_create function. Again, this
function takes a bunch of specifics to this algorithm's arguments and returns a constructed
and ready-to-use object.

The code from the recipe results in the following image:

[197]

Detectors and Descriptors Chapter 7

Matching techniques for finding
correspondences between descriptors

We want to find a correspondence between keypoints in detection and tracking tasks, but
we can't compare the points themselves; instead, we should deal with keypoints
descriptors. Keypoints descriptors were especially developed to make it possible to
compare them. This recipe shows you OpenCV's approaches to comparing the descriptors
and building up the correspondence between them using various matching techniques.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it...

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Define a function which handles a video file. This function takes each frame,
match the keypoints for this frame and the one 40 frames before:

def video_keypoints (matcher,
cap=cv2.VideoCapture ("../data/traffic.mpd"),
detector=cv2.0RB_create (40)) :
cap.set (cv2.CAP_PROP_POS_FRAMES, 0)
while True:
status_cap, frame = cap.read()
frame = cv2.resize (frame, (0, 0), £fx=0.5, fy=0.5)
if not status_cap:

break
if (cap.get(cv2.CAP_PROP_POS_FRAMES) - 1) % 40 == 0:
key_frame = np.copy (frame)

key_points_1, descriptors_1
detector.detectAndCompute (frame, None)
else:
key_points_2, descriptors_2

[198]

Detectors and Descriptors Chapter 7

detector.detectAndCompute (frame, None)
matches = matcher.match (descriptors_2, descriptors_1)
frame = cv2.drawMatches (frame, key_points_2, key_frame,
key_points_1,
matches, None,
flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS |
cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)
cv2.imshow ('Keypoints matching', frame)
if cv2.waitKey (300) == 27:
break

cv2.destroyAllWindows ()
3. Compare the frames with brute-force matching:

bf_matcher = cv2.BFMatcher_create (cv2.NORM_HAMMINGZ2, True)
video_keypoints (bf_matcher)

4. Apply KD-tree indexing to the SURF descriptors:

flann_kd_matcher = cv2.FlannBasedMatcher ()
video_keypoints (flann_kd_matcher,
detector=cv2.xfeatures2d.SURF_create (20000))

5. Use Local-Sensitive Hash (LSH) for binary ORB features:

FLANN_INDEX_LSH = 6

index_params = dict (algorithm=FLANN_INDEX_LSH, table_number=20,
key_size=15, multi_probe_level=2)

search_params = dict (checks=10)

flann_kd_matcher = cv2.FlannBasedMatcher (index_params,
search_params)
video_keypoints (flann_kd_matcher)

6. Rerun the process with the composite KD-tree plus k-means indexing algorithm:

FLANN_INDEX_COMPOSITE = 3
index_params = dict (algorithm=FLANN_INDEX_COMPOSITE, trees=16)
search_params = dict (checks=10)

flann_kd_matcher = cv2.FlannBasedMatcher (index_params,
search_params)

video_keypoints (flann_kd_matcher,
detector=cv2.xfeatures2d.SURF_create (20000))

[1991]

Detectors and Descriptors Chapter 7

How it works...

OpenCV supports a lot of different matching types. All of them are implemented using the
cv2.DescriptorMatcher interface, so any type of matcher supports the same methods
and the same scenarios of use. There are two types of matcher usage: detecting mode and
tracking mode. Technically, there is not a big difference between these two modes because
in both cases, we need to have two sets of descriptors to match them. The question is
whether we upload the first set once and compare it with another one, or each time pass
two descriptor sets to the match function. To upload the descriptor set, you need to use the
cv2.DescriptorMatcher.add function, which just accepts a list of your descriptors. After
you've finished adding the descriptors, in some cases, you need to call the
cv2.DescriptorMatcher.train method to tell the matcher handle about the descriptors
and prepare them for the matching process.

cv2.DescriptorMatcher has several methods to perform matching, and all of these
methods have overloads for detecting and tracking modes.
cv2.DescriptorMatcher.match is used to get the single best correspondence between
descriptors. cv2.DescriptorMatcher.knnMatch and cv2.DescriptorMatcher.radiu
sMatch return several of the best correspondences between descriptors.

The simplest and most obvious approach to find the best descriptor matches is to just
compare all possible pairs and choose the best. Needless to say, this method is extremely
slow. But if you decide to use it (for example, as a reference), you need to call the
cv2.BFMatcher_create function. It takes a type of distance metric for descriptor
comparison and enables the cross-checking flag.

To create smarter and faster matchers, you need to call cv2.FlannBasedMatcher. By
default, it creates KD-tree indexing with default parameters. To create other types of
matchers and set up their parameters, you need to pass two dictionaries for

the cv2.FlannBasedMatcher function. First, the dictionary describes the algorithm for
indexing descriptors and its parameters. The second argument describes the process of
searching for the best match.

[200]

Detectors and Descriptors Chapter 7

After you launch the code, you will get an image similar to the following:

Finding reliable matches - cross-check and
ratio test

In this recipe, you will learn how filter keypoint matches using cross-check and ratio tests.
These techniques are useful for filtering bad matches and improving the overall quality of
established correspondences.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it...

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import matplotlib.pyplot as plt

2. Load the test images:

cv2.imread('../data/Lena.png', cv2.IMREAD_GRAYSCALE)
cv2.imread('../data/Lena_rotated.png', cv2.IMREAD_GRAYSCALE)

img0
imgl

[201]

Detectors and Descriptors Chapter 7

3. Create the detector, detect keypoints, and computer descriptors:

detector = cv2.0RB_create (100)
kps0, feal = detector.detectAndCompute (img0, None)
kpsl, feal detector.detectAndCompute (imgl, None)

4. Create the k-nearest neighbor descriptor matcher with k=2, and find matches from
left to right and vice versa:

matcher = cv2.BFMatcher_create (cv2.NORM_HAMMING, False)
matches0l = matcher.knnMatch (feal, feal, k=2)
matchesl1l0 = matcher.knnMatch (feal, feal, k=2)

5. Create a function for filter matching using the ratio test, and filter all the matches:

def ratio_test (matches, ratio_thr):
good_matches = []
for m in matches:
ratio = m[0].distance / m[1l].distance
if ratio < ratio_thr:
good_matches.append (m[0])
return good_matches

RATIO_THR = 0.7 # Lower values mean more aggressive filtering.
good_matches0l1 = ratio_test (matches0l, RATIO_THR)
good_matchesl0 = ratio_test (matchesl10, RATIO_THR)

6. Do the cross-check matches test—only leave the ones that are present in both left-
to-right and right-to-left lists:

good_matchesl0_ = {(m.trainIdx, m.queryIdx) for m in
good_matchesl10}
final_matches = [m for m in good_matches01 if (m.queryldx,

m.trainIdx)
in good_matches10_]

7. Visualize the results:

dbg_img = cv2.drawMatches (img0, kpsO, imgl, kpsl, final_matches,
None)

plt.figure()

plt.imshow (dbg_img[:,:,[2,1,011)

plt.tight_layout ()

plt.show ()

[202]

Detectors and Descriptors Chapter 7

How it works...

In this recipe, we implement two heuristics for filtering bad matches. The first one is the
ratio test. It checks whether thebest matche is significantly better than the second best one.
The check is performed through comparing matching scores. Two best matches for each
keypoint are found using the knnMat ch method of the cv2.BFMatcher class.

The second heuristic is the cross-check test. For two images, A and B, it checks whether the
matches found in B for keypoints in A are the same as the ones found in A for keypoints in
B. The correspondences that were found in both directions are retained, and the other ones
are removed.

The following is the expected output:

o] 200 400 600 800 1000

Model-based filtering of matches - RANSAC

In this recipe, you will learn how to robustly filter matches between keypoints in two
images using the Random Sample Consensus (RANSAC) algorithm under the assumption
that there's a homography transformation between the two images. This technique helps
filter out bad matches and only leaves the ones that satisfy the motion model between two
images.

[203]

Detectors and Descriptors Chapter 7

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it...

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Load the test images:

img0 = cv2.imread('../data/Lena.png', cv2.IMREAD_GRAYSCALE)
imgl = cv2.imread('../data/Lena_rotated.png', cv2.IMREAD_GRAYSCALE)

3. Detect the keypoints and computer descriptors:

detector = cv2.0RB_create (100)

kps0, feal = detector.detectAndCompute (img0, None)
kpsl, feal = detector.detectAndCompute (imgl, None)
matcher = cv2.BFMatcher_create (cv2.NORM_HAMMING, False)
matches = matcher.match (feal, feal)

4. Fit the homography model into the found keypoint correspondences robustly and
get a mask of inlier matches:

ptsO0 = np.float32 ([kpsO[m.queryIdx].pt for m in

matches]) .reshape (-1, 2)

ptsl = np.float32 ([kpsl[m.trainIdx].pt for m in

matches]) .reshape (-1, 2)

H, mask = cv2.findHomography (pts0, ptsl, cv2.RANSAC, 3.0)

5. Visualize the results:

plt.figure ()

plt.subplot (211)

plt.axis('off")

plt.title('all matches')

dbg_img = cv2.drawMatches (img0, kpsO, imgl, kpsl, matches, None)
plt.imshow (dbg_img[:,:,[2,1,011])

[204]

Detectors and Descriptors Chapter 7

plt.subplot (212)

plt.axis('off'")

plt.title('filtered matches')

dbg_img = cv2.drawMatches (img0, kpsO, imgl, kpsl, [m for i,m in

enumerate (matches) if mask[i]], None)
plt.imshow (dbg_img[:,:,[2,1,011)
plt.tight_layout ()

plt.show ()

How it works...

In this recipe, we estimate homography model parameters between two images using the
robust RANSAC algorithm. It's done through the cv2. findHomography function with the
cv2.RANSAC parameter. The function returns a homography transformation estimated by
point correspondences as well as the inliers mask. The inlier mask deals with
correspondences that satisfy the estimated motion model with a low enough error. In our
case, the error is computed as a Euclidean distance between the matched point and the
corresponding point transformed according to the motion model.

The following is the expected output:

all matches

[205]

Detectors and Descriptors Chapter 7

BoW model for constructing global image
descriptors

In this recipe, you will learn how to apply the Bag-of-Words (BoW) model for computing
global image descriptors. This technique can be used for building a machine learning model

to solve image classification problems.

Getting ready
Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it...

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Load the two train images:

img0 = cv2.imread('../data/people.jpg', cv2.IMREAD_GRAYSCALE)
imgl = cv2.imread('../data/face.jpeg', cv2.IMREAD_GRAYSCALE)

3. Detect the keypoints and computer descriptors for each training image:

detector = cv2.0RB_create (500)

_, feal = detector.detectAndCompute (img0, None)
_, feal = detector.detectAndCompute (imgl, None)
descr_type = feal.dtype

4. Construct the BoW vocabulary:

bow_trainer = cv2.BOWKMeansTrainer (50)
bow_trainer.add(np.float32 (feal))
bow_trainer.add(np.float32 (feal))

vocab = bow_trainer.cluster () .astype (descr_type))

[206]

Detectors and Descriptors Chapter 7

5. Create an object for computing global image BoW descriptors:

bow_descr = cv2.BOWImgDescriptorExtractor (detector,
cv2.BFMatcher (cv2.NORM_HAMMING))
bow_descr.setVocabulary (vocab)

6. Load the test image, find the keypoints, and the compute global image descriptor:

img = cv2.imread('../data/Lena.png', cv2.IMREAD_GRAYSCALE)
kps = detector.detect (img, None)
descr = bow_descr.compute (img, kps)

7. Visualize the descriptor:

plt.figure (figsize=(10,8))
plt.title('image BoW descriptor')

plt.bar (np.arange (len(descr[0])), descr[0])
plt.xlabel ('vocabulary element')

plt.ylabel ('frequency')

plt.tight_layout ()

plt.show ()

How it works...

The Bag-of-Words model works in two phases. In the training phase, one collects local
image descriptors for training images (img0 and img1, in our case) and clusters them into
vocabulary. In the second phase, local descriptors found in the input image are compared
with all vocabulary words, alongside a list of how often each word appeared (for example,
was selected as the closest one) within the image, for example, the frequencies vector, which
forms the global image descriptor.

[207]

Detectors and Descriptors Chapter 7

The following is the expected output:

image BoW descriptor
0.05
0.04 1
. 0.03]
(o]
c
7]
=
o
g
*0.02
0.011
0.00-
0 10 20 30 40 50
vocabulary element

[208]

Image and Video Processing

This chapter contains recipes for:

e Warping an image using affine and perspective transformations

e Remapping an image using arbitrary transformation

e Tracking keypoints between frames using the Lucas-Kanade algorithm
¢ Background subtraction

e Stitching many images into panorama

¢ Denoising a photo using non-local means algorithms

e Constructing an HDR image

e Removing defects from a photo with image inpainting

Introduction

By working with a group of images as a whole set instead of as a bunch of separate and
independent images, Computer Vision algorithms can achieve way more fabulous results. If
correlations between images are known (it may be a sequence of frames in a video file of
some object shot from different perspectives), we can exploit them. This chapter uses
algorithms that take into account relations between frames. The algorithms are background
subtraction, images stitching, video stabilization, superrelosution, and

constructing HDR images.

Image and Video Processing Chapter 8

Warping an image using affine and
perspective transformations

In this recipe, we will review two main ways to geometrically transform images: affine and
perspective warps. The first one is used to remove simple geometrical transformations such
as rotations, scales, translations, and their combinations, but it can't turn converging lines
into parallel ones. Here, perspective transformation comes into play. It aims to eliminate
perspective distortions when two parallel lines converge in perspective views. Let's find out
how to use all these transformations in OpenCV.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules, open an input image, and copy it:

import cv2
import numpy as np

img = cv2.imread('../data/circlesgrid.png', cv2.IMREAD_COLOR)
show_img = np.copy (img)

2. Define two functions to implement the process of points selection :
selected_pts = []

def mouse_callback (event, x, vy, flags, param):
global selected_pts, show_img

if event == cv2.EVENT_LBUTTONUP:
selected_pts.append([x, Vv])
cv2.circle(show_img, (x, vy), 10, (0, 255, 0), 3)

def select_points(image, points_num) :
global selected_pts
selected_pts = []

[210]

Image and Video Processing Chapter 8

cv2.namedWindow ('image"')
cv2.setMouseCallback ('image', mouse_callback)

while True:
cv2.imshow ('image', image)

k = cv2.waitKey (1)

if k == 27 or len(selected_pts) == points_num:
break

cv2.destroyAllWindows ()
return np.array (selected_pts, dtype=np.float32)

3. Select three points in the image, compute the affine transformation with
cv2.getAffineTransform, and apply it with cv2.warpAffine. Then, show
the resulting images:

show_img = np.copy (img)

src_pts = select_points (show_img, 3)

dst_pts = np.array([[0, 240], [0, O], [240, 0]], dtype=np.float32)
affine_m = cv2.getAffineTransform(src_pts, dst_pts)

unwarped_img = cv2.warpAffine(img, affine_m, (240, 240))

cv2.imshow ('result', np.hstack ((show_img, unwarped_img)))
k = cv2.waitKey ()

cv2.destroyAllWindows ()
4. Find an inverse affine transformation, apply it, and display the results:

inv_affine = cv2.invertAffineTransform(affine_m)
warped_img = cv2.warpAffine (unwarped_img, inv_affine, (320, 240))

cv2.imshow ('result', np.hstack((show_img, unwarped_img,
warped_img)))

k = cv2.waitKey ()

cv2.destroyAllWindows ()

[211]

Image and Video Processing Chapter 8

5. Create a rotation-scale affine warp with cv2.getRotationMatrix2D and apply
it to the image:

rotation_mat = cv2.getRotationMatrix2D (tuple (src_pts([0]), 6, 1)
rotated_img = cv2.warpAffine (img, rotation_mat, (240, 240))

cv2.imshow ('result', np.hstack((show_img, rotated_img)))
k = cv2.waitKey ()

cv2.destroyAllWindows ()

6. Select four points in the image, create a matrix for perspective warp with
cv2.getPerspectiveTransform, and then apply it to the image and display
the results:

show_img = np.copy (img)

src_pts = select_points (show_img, 4)

dst_pts = np.array([[0, 240], [0, O], [240, 0], [240, 24011,
dtype=np.float32)

perspective_m = cv2.getPerspectiveTransform(src_pts, dst_pts)
unwarped_img = cv2.warpPerspective (img, perspective_m, (240, 240))

cv2.imshow ('result', np.hstack ((show_img, unwarped_img)))
k = cv2.waitKey ()

cv2.destroyAllWindows ()

How it works

Both affine and perspective transformations are essentially matrix multiplication
operations, where positions of elements are remapped with some warp matrix. So, to apply
a transformation we need to compute such a warp matrix. For affine transformation, this
can be done with the cv2.getAffineTransform function. It takes two set of points as
arguments: the first one contains three points before transformation, and the second one
contains three corresponding points after warp. The order of points in the sets does matter,
and it should be the same for both arrays. To create the transformation matrix in the case of
perspective warp, cv2.getPerspectiveTransform can be applied.

[212]

Image and Video Processing Chapter 8

Again, it accepts two sets of points before and after warp, but the length of points sets
should be 4. Both functions return the transformation matrix, but they are different shapes:
cv2.getAffineTransformcomputes a 2x3 matrix and
cv2.getPerspectiveTransform computes a 3x3 matrix.

To apply the computed transformations, we need to invoke the corresponding OpenCV
functions. To perform affine warp, cv2.warpAffine is used. It takes a input image, a 2x3
transformation matrix, an output image size, pixels interpolation mode, border
extrapolation mode, and a border extrapolation value. cv2.warpPerspective is used to
apply perspective transformation. Its arguments have the same meaning

as cv2.warpAffine. The only difference is that the transformation matrix (second
argument) must be 3x3. Both functions return a warped image.

There are two useful functions related to affine transformation:
cv2.invertAffineTransformand cv2.getRotationMatrix2D. The firstis used when
you have some affine transformation and need to get an inverse one (also affine). It takes
this existing affine transformation and returns the inverted one.
cv2.getRotationMatrix2D is less general but is often used in the case of affine
transformation - rotation with scale. This function takes the following arguments: the center
point of rotation in (x, y) format, the angle of rotation, and the scale factor, and returns a 2x3
affine transformation matrix. This matrix can be used as a corresponding argument in
cv2.warpAffine.

After launching the code you will get images similar to the following:

Image and Video Processing Chapter 8

The first row in the figure is an input image with three selected points and its
corresponding affine transformation; the second row is the result of an inverse
transformation and a rotation with scale transformation; the third row contains the input
image with four selected points and is the result of perspective transformation.

Remapping an image using arbitrary
transformation

In this recipe, you will learn how to transform images using per-pixel mappings. This is a
piece of functionality that is very generic and is used in many computer vision applications,
such as image stitching, camera frames undistortion, and many others.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:
import math
import cv2
import numpy as np

2. Load the test images:

img = cv2.imread('../data/Lena.png')

[214]

Image and Video Processing Chapter 8

3. Prepare the per-pixel transformation maps:

xmap = np.zeros((img.shape([l], img.shape[0]), np.float32)
ymap = np.zeros((img.shape[l], img.shape[0]), np.float32)
for y in range (img.shape([0]) :
for x in range (img.shape[1l]):
xmap[y,x] = x + 30 * math.cos (20 * x / img.shape[0])
ymap([y,x] =y + 30 * math.sin(20 * y / img.shape[1])

4. Remap the source image:

remapped_img = cv2.remap (img, xmap, ymap, cv2.INTER_LINEAR, None,
cv2.BORDER_REPLICATE)

5. Visualize the results:

plt.figure (0)

plt.axis('off'")

plt.imshow (remapped_img[:,:,[2,1,0]11])
plt.show ()

How it works

Generic per-pixel transformation is implemented by the cv2. remap function. It accepts a
source image and two maps (which can be passed as one map with two channels), and
returns a transformed image. The function also accepts parameters specifying how pixel
value interpolation and extrapolation must be performed. In our case, we specify bilinear
interpolation, and out-of-range values are replaced with the closest (spatially) in-range pixel
values. The function is very generic and often used as a building block of many computer
vision applications.

[215]

Image and Video Processing Chapter 8

The following is the expected outcome:

Tracking keypoints between frames using
the Lucas-Kanade algorithm

In this recipe, you will learn how to track keypoints between frames in videos using the
sparse Lucas-Kanade optical flow algorithm. This functionality is useful in many computer
vision applications, such as object tracking and video stabilization.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2

[216]

Image and Video Processing Chapter 8

2. Open a test video and initialize the auxiliary variables:

video = cv2.VideoCapture ('../data/traffic.mp4"')
prev_pts = None

prev_gray_frame = None

tracks = None

3. Start reading the frames from the video, converting each image into grayscale:

while True:
retval, frame = video.read()
if not retval: break
gray_frame = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)

4. Track the keypoints from a previous frame using the sparse Lucas-Kanade optical
flow algorithm or, if you've just started or pressed C, detect the keypoints so that
we have something to track in the next frame:

if prev_pts is not None:
pts, status, errors = cv2.calcOpticalFlowPyrLK(
prev_gray_frame, gray_frame, prev_pts, None,
winSize=(15,15), maxLevel=5,
criteria=(cv2.TERM_CRITERIA_EPS |
cv2.TERM_CRITERIA_COUNT, 10, 0.03))
good_pts = pts[status == 1]

if tracks is None: tracks good_pts
else: tracks = np.vstack((tracks, good_pts))
for p in tracks:
cv2.circle (frame, (p(0], pI[1]1), 3, (0, 255, 0), -1)
else:

pts = cv2.goodFeaturesToTrack (gray_frame, 500, 0.05, 10)
pts pts.reshape (-1, 1, 2)

5. Remember the current points and current frame. Now visualize the results and
handle the keyboard input:

prev_pts = pts
prev_gray_frame = gray_frame
cv2.imshow ('frame', frame)
key = cv2.waitKey () & Oxff
if key == 27: break
if key == ord('c'"):

tracks = None

prev_pts = None

[217]

Image and Video Processing Chapter 8

6. Close all windows:

cv2.destroyAllWindows ()

How it works

In this recipe, we open a video, detect the initial keypoints using the
cv2.goodFeaturesToTrack function that we used earlier, and start tracking points using
the sparse Lucas-Kanade optical flow algorithm, which has been implemented in OpenCV
with the cv2.calcOpticalFlowPyrLK function. OpenCV implements a pyramidal version
of the algorithm, meaning that the optical flow is first calculated in an image of a smaller
size, and then refined in a bigger image. The pyramid size is controlled with

the maxLevel parameter. The function also takes parameters of the Lucas-Kanade
algorithm, such as window size (winSize) and termination criteria. The other parameters
are previous and current frames, and keypoints from the previous frame. The functions
return tracked points in the current frame, an array of success flags, and tracking errors.

The following image is an example of a points tracking result:

Background subtraction

If you have a video of a steady scene with some objects moving around, it's possible to
separate a still background from a changing foreground. Here, we will show you how to do
it in OpenCV.

[218]

Image and Video Processing Chapter 8

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package with contrib modules.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Define a function that opens a video file and applies a few background
subtraction algorithms to each frame:

def split_image_fgbg (subtractor, open_sz=(0,0), close_sz=(0,0),
show_bg=False, show_shdw=False):
kernel_open = kernel_close = None
if all(i > 0 for i in open_sz):
kernel_open = cv2.getStructuringElement (cv2.MORPH_ELLIPSE,
open_sz)
if all(i > 0 for i in close_sz):
kernel_close = cv2.getStructuringElement (cv2.MORPH_ELLIPSE,

close_sz)

cap = cv2.VideoCapture('../data/traffic.mpd")

while True:
status_cap, frame = cap.read()
if not status_cap:

break

frame = cv2.resize(frame, None, fx=0.5, fy=0.5)
fgmask = subtractor.apply (frame)
objects_mask = (fgmask == 255).astype(np.uint8)
shadows_mask = (fgmask == 127) .astype (np.uint8)

if kernel_open is not None:
objects_mask = cv2.morphologyEx (objects_mask,

cv2.MORPH_OPEN, kernel_open)

if kernel_close is not None:
objects_mask = cv2.morphologyEx (objects_mask,

cv2.MORPH_CLOSE, kernel_close)

if kernel_open is not None:
shadows_mask = cv2.morphologyEx (shadows_mask,

[219]

Image and Video Processing Chapter 8

cv2.MORPH_CLOSE, kernel_open)

foreground = frame
foreground[objects_mask == 0] = 0
if show_shdw:

foreground[shadows_mask > 0] = (0, 255, 0)
cv2.imshow ('foreground', foreground)
if show_bg:

background = fgbg.getBackgroundImage ()

if background is not None:

cv2.imshow ('background', background)

if cv2.waitKey (30) == 27:
break

cap.release|()
cv2.destroyAllWindows ()

3. Apply the Gaussian Mixture-based Background/Foreground Segmentation
Algorithm created by KadewTraKuPong and Bowden to the video:

fgbg = cv2.bgsegm.createBackgroundSubtractorMOG ()
split_image_fgbg(fgbg, (2, 2), (40, 40))

4. Create an instance of an improved version of the Gaussian Mixture segmentation
algorithm developed by Zoran Zivkovic:

fgbg = cv2.createBackgroundSubtractorMOG2 ()
split_image_fgbg(fgbg, (3, 3), (30, 30), True)

5. Use the background subtraction algorithm of Godbehere, Matsukawa, and
Goldberg to create background masks:

fgbg = cv2.bgsegm.createBackgroundSubtractorGMG ()
split_image_fgbg (fgbg, (5, 5), (25, 25))

6. Apply the background subtraction algorithm based on counting, as suggested by
Sagi Zeevi:

fgbg = cv2.bgsegm.createBackgroundSubtractorCNT ()

split_image_fgbg(fgbg, (5, 5), (15, 15), True)

[220]

Image and Video Processing Chapter 8

7. Employ the background segmentation technique based on the Nearest Neighbors
method:

fgbg = cv2.createBackgroundSubtractorKNN ()

split_image_fgbg(fgbg, (5, 5), (25, 25), True)

How it works

All background subtractors implement the cv2.BackgroundSubtractor interface,
therefore all of them have a certain set of methods:

e cv2.BackgroundSubtractor.apply: to get the segmentation mask

e cv2.BackgroundSubtractor.getBackgroundImage: to retrieve a background
image

The apply method accepts a colorful image as an argument and returns a background
mask. This mask generally consists of three values: 0 for background pixels, 255 for
foreground pixels, and 127 for shadow pixels. Shadow pixels are pixels in the background
with lower intensity. It's worth mentioning that not all subtractors support analysis of
shadow pixels.

getBackgroundImage returns a background image as it should be if there are no moving
objects. Again, only a few subtractors are able to compute such an image.

Not surprisingly, all of the subtraction algorithms have internal parameters. Fortunately,
many of these parameters work well with default values. One of the parameters, which can
be tuned first, is history. Basically, it's a number of frames the subtractor needs to analyse
before it starts to produce a segmentation mask. So, usually you get full background masks
for first frames.

As you've noticed, we apply morphology operations to the moving objects masks. We need
this step for to several reasons. First, some parts of the moving objects may have poor
textures. This makes it harder to detect motion because all neighbor pixels are very similar.
The second reason is our background segmentation detector isn't as accurate as we want. It
makes mistakes by wrongly marking parts of moving objects as a background. Applying
morphology helps us use prior information which can't be still parts inside moving objects.

[221]

Image and Video Processing Chapter 8

The preceding code produces images similar to the following figure:

Stitching many images into panorama

OpenCV has a lot of Computer Vision algorithms. Some of them are low-level, while others
are used in special cases. But there is functionality, which joins many algorithms together
using everyday applications. One of these pipelines is panorama stitching. This

rather complicated procedure can be done easily in OpenCV and gives decent results. This
recipe shows you how to use OpenCV tools to create your own panorama.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

[222]

Image and Video Processing Chapter 8

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the images we're going to combine into a panorama:

images = []
images.append(cv2.imread('../data/panorama/0.jpg"',
cv2.IMREAD_COLOR))
images.append(cv2.imread('../data/panorama/1l.jpg"',

cv2.IMREAD_COLOR))

3. Create a panorama stitcher, pass your images to it, and parse the result:

stitcher = cv2.createStitcher ()
ret, pano = stitcher.stitch (images)
if ret == cv2.STITCHER_OK:

cv2.imshow ('panorama', pano)
cv2.waitKey ()

cv2.destroyAllWindows ()
else:
print ('Error during stiching')

How it works

cv2.createStitcher builds an instance of the panorama stitching algorithm. To apply it
to the panorama creation, you need to call its st it ch method. This method accepts an array
of images to combine, and returns a stitching result status as well as a panorama image. The
status may have one of the following values:

e cv2.STITCHER_OK

® cv2.STITCHER_ERR_NEED_MORE_IMGS

® cv2.STITCHER_ERR_HOMOGRAPHY_EST_FAIL

e cv2.STITCHER_ERR_CAMERA_PARAMS_ADJUST_FAIL

[223]

Image and Video Processing Chapter 8

The first value means the panorama was successfully created. The other values tell you that
the panorama wasn't composed and gives you some hints about possible reasons.

The success of the stitching depends on the input images. They should have overlapping
regions. The more overlapping areas there are, the easier it is for the algorithm to match the
frames and correctly map them to the final panorama. Also, it's better to have photos from a
camera that rotates. Small movements of the camera are fine, but undesirable.

You will see images similar to the following figure after executing the code:

As you can see in the figure, reflections didn't spoil the final result: the algorithm
successfully handled this situation. This result was achieved because the images have large
overlapping areas and many regions with rich texture. In case of textureless objects, the
reflections may hinder.

Denoising a photo using non-local means
algorithms

In this recipe, you will learn how to remove noise from images using non-local means
algorithms. This functionality is useful when photos suffer from excessive noise and it's
necessary to remove it to get a better looking image.

[224]

Image and Video Processing Chapter 8

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Load the test image:
img = cv2.imread('../data/Lena.png')
3. Generate a random Gaussian noise:

noise = 30 * np.random.randn (*img.shape)
img = np.uint8 (np.clip(img + noise, 0, 255))

4. Perform denoising using the non-local means algorithm:
denoised_nlm = cv2.fastNlMeansDenoisingColored (img, None, 10)
5. Visualize the results:

plt.figure (0, figsize=(10,6))
plt.subplot (121)

plt.axis('off'")

plt.title('original')

plt.imshow (img[:,:, [2,1,011)
plt.subplot (122)

plt.axis('off'")

plt.title('denoised')

plt.imshow (denoised_nlmf[:,:,[2,1,0]1])
plt.show ()

[225]

Image and Video Processing Chapter 8

How it works

The non-local means algorithm is implemented in OpenCV by a family of functions:
cv2.fastNlMeansDenoising, cv2.fastN1lMeansDenoisingColored,
cv2.fastNlMeansMulti, and cv2.fastNlMeansDenoisingColoredMulti. These
functions take either one image or multiple images, gray-scale or color. In this recipe, we
used the cv2. fastN1MeansDenoisingColored function, which takes a single BGR image
and returns a denoised one. The function takes a few parameters, among them the
parameter /1, which stands for denoising strength; higher values leads to less noise, but a
more smoothed image. The other parameters specify non-local means algorithms
parameters such as template pattern size and search window space (named
correspondingly).

The following image shows the expected results:

original denoised

Constructing an HDR image

Almost all modern cameras and even phones have a magical HDR mode, and it produces a
truly miraculous result—photos don't contain under- or overexposed areas. HDR (High
Dynamic Range), and you can reproduce such a result in OpenCV! This recipe tells you
about HDR imaging functions and how to use them properly.

[226]

Image and Video Processing Chapter 8

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the images and exposure times:
imgs_names = ['33', '100', '179', '892', '1560', '2933']

exp_times = []
images = []

for name in imgs_names:
exp_times.append(1/float (name))
images.append(cv2.imread('../data/hdr/%s.Jjpg"' % name,

cv2.IMREAD_COLOR))

exp_times = np.array(exp_times) .astype(np.float32)

3. Recover the CRF:

calibrate = cv2.createCalibrateDebevec()
response = calibrate.process (images, exp_times)

4. Compute an HDR image:

merge_debevec = cv2.createMergeDebevec ()
hdr = merge_debevec.process (images, exp_times, response)

[227]

Image and Video Processing Chapter 8

5. Turn the HDR image into a Low Dynamic Range (LDR) image to be able to
display it:

tonemap = cv2.createTonemapDurand(2.4)
ldr = tonemap.process (hdr)

ldr = cv2.normalize (ldr, None, 0, 1, cv2.NORM_MINMAX)

cv2.imshow ('ldr', 1dr)
cv2.waitKey ()
cv2.destroyAllWindows ()

6. Apply this technique to merge images with various exposures:

merge_mertens = cv2.createMergeMertens ()
fusion = merge_mertens.process (images)

fusion = cv2.normalize (fusion, None, 0, 1, cv2.NORM_MINMAX)

cv2.imshow ('fusion', fusion)
cv2.waitKey ()
cv2.destroyAllWindows ()

How it works

First, you need to have a set of images with different known exposure times. Modern
cameras store a lot of information including exposure time in image files, so it's worth
checking the image's properties.

Computing an HDR image starts with recovering CRF (Camera Response Function), which
is a mapping between real intensity and the pixel's intensity (which is in the [0,

255] range) for each color channel. Usually it's non-linear, and makes it impossible to
simply combine images with different exposures. It can be done by creating an instance of
the calibrate algorithm with cv2.createCalibrateDebevec. When the calibration
instance is created, you need to invoke its process method and pass an array of images
and an array of exposure times. The process method returns CRF of our camera.

The next step is creating an HDR image. To do this, we should get an instance of the photos
merging algorithm by calling cv2.createMergeDebevec. When the object is constructed,
we need to call its process method and pass images, exposure times, and CRF as
arguments. As a result, we get an HDR image, which can't be displayed with imshow, but
can be saved in the . hdr format with imwrite and viewed in special tools.

[228]

Image and Video Processing Chapter 8

Now we need to display our HDR image. To do this, we need to correctly squeeze its
dynamic range to 8 bits. This process is called tonemapping. To perform this process, you
need to build a tonemapping object with cv2.createTonemapDurand and call its process
function. This function accepts an HDR image and a returns floating point image.

There's also an alternative way to merge photos with different exposures. You need to
create another algorithm instance with the cv2.createMergeMertens function. The
resulting object has the process method, which merges our images—just pass them as an
argument. The result of the function work is a merged image.

After launching the code from this recipe, you see images similar to the ones shown in the
following figure:

In the top row of the figure are the two original images with different exposures: the left
one with a long exposure time, and the right one with a short exposure time. As a result, we
can see both the desk lamp labels near the bulb and the QR code. The bottom row contains
the results for two approaches from the recipe's code—in both cases, we can see all the
details.

Removing defects from a photo with image
inpainting

Sometimes, photo images have defects. This is especially the case for old photos that have
been scanned: they may have scratches, spots, and stains. All these imperfections hinder
enjoyment of the photo. The procedure of reconstructing parts of an image based on their

surroundings is called inpainting, and OpenCV has an implementation of this algorithm.
Here, we'll review ways of exploiting this OpenCV functionality.

[229]

Image and Video Processing

Chapter 8

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)

Python API package.

How to do it

You need to complete the following steps:

1. Import the necessary modules:

import cv2
import numpy as np

2. Define a class that encapsulates mask creation:

class MaskCreator:

def __init__ (self, image, mask):
self.prev_pt = None
self.image = image
self.mask = mask
self.dirty = False
self.show ()

def

def

cv2.setMouseCallback ('mask', self.mouse_callback)

show (self) :
cv2.imshow ('mask', self.image)

mouse_callback (self, event, flags, param):

pt = (%, y)

if event == cv2.EVENT_LBUTTONDOWN:
self.prev_pt = pt

elif event == cv2.EVENT_LBUTTONUP:
self.prev_pt = None

Xy Yr

if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON:

cv2.line(self.image, self.prev_pt, pt, (127,)*3, 5)
cv2.line(self.mask, self.prev_pt, pt, 255, 5)
self.dirty = True

self.prev_pt = pt

self.show ()

[230]

Image and Video Processing Chapter 8

3. Load an image, create its defect version and a mask, apply inpaint agorithms, and
display the results:

img = cv2.imread('../data/Lena.png"')

defect_img = img.copy ()
mask = np.zeros (img.shapel[:2], np.uint8)
m_creator = MaskCreator (defect_img, mask)

while True:
k = cv2.waitKey ()
if k == 27:
break
if k == ord('a'):
res_telea = cv2.inpaint (defect_img, mask, 3,
cv2.INPAINT_TELEA)
res_ns = cv2.inpaint (defect_img, mask, 3, cv2.INPAINT_NS)

cv2.imshow ('TELEA vs NS', np.hstack((res_telea, res_ns)))
if k == ord('c'):

defect_img[:] = img

mask[:] = 0

m_creator.show ()
cv2.destroyAllWindows ()

How it works

To inpaint images in OpenCV, you need to use the cv2.inpaint function. It accepts four
arguments:

¢ Image with defects: It has to be an 8-bit colorful or grayscale one

e Mask for defects: It has to be an 8-bit single channel one and be the same size as
the image in the first argument

e Neighborhood radius: The size of the area around a damaged pixel, which should
be used in computing its color

e Inpainting mode: Type of the algorithm of inpainting

[231]

Image and Video Processing Chapter 8

Mask for defects should contain non-zero values for pixels on the original image, which
need to be recovered. Neighborhood radius is a range of pixels around the algorithm that it
considers during inpainting; it should have a small value to prevent dramatic blurring
effects. Inpainting mode has to be one of the following values: cv2.INPAINT_TELEA Or
cv2.INPAINT_NS. Depending on the circumstances, one algorithm may work slightly
better than the other and vise versa, so it's better to compare the results of both algorithms
and choose the best. cv2. inpaint returns the resulting repaired image.

As a result of launching the code, you will see similar images:

As you can see in the preceding figure, the easiest defects to recover are small or almost
textureless areas, which is no surprise. Inpainting algorithms don't implement any magic,
so there are visible yet colored imperfections in the complicated parts of the images.

[232]

Multiple View Geometry

This chapter covers the following recipes:

e Pinhole camera model calibration

e Fisheye camera model calibration

e Stereo rig calibration - estimation of extrinsics

¢ Distorting and undistorting points

¢ Removing lens distortion effects from an image

¢ Restoring a 3D point from two observations through triangulation

e Finding a relative camera-object pose through the PnP algorithm

¢ Aligning two views through stereo rectification

e Epipolar geometry - computing fundamental and essential matrices

¢ Essential matrix decomposition into rotation and translation

¢ Estimating disparity maps for stereo images

¢ Special case 2-view geometry - estimating homography transformation
e Planar scene - decomposing homography into rotation and translation
¢ Rotational camera cas - estimating camera rotation from homography

Introduction

Projection of a 3D scene onto a 2D image, in other words using a camera, eliminates
information about how far scene objects are from the photographer. But in some cases, 3D
information can be restored. This requires not only knowing information about objects or
camera configuration, but also having a camera's intrinsic parameters. This chapter sheds
light on all the necessary steps for getting 3D information for 2D images, from camera
calibration to 3D object position reconstruction and depth map retrieval.

Multiple View Geometry Chapter 9

Pinhole camera model calibration

The pinhole camera model is the simplest mathematical model as well as others, yet it can
be applied to a lot of real photography devices. This recipe tells you how to calibrate your
camera, for example, finding its intrinsic parameters and distortion coefficients.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV (version 3.3 or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Capture frames from the camera, detect a chessboard pattern on each frame, and
accumulate the frames and corners until we have a big enough number of
samples:

cap = cv2.VideoCapture (0)
pattern_size = (10, 7)
samples = []

while True:

ret, frame = cap.read()
if not ret:
break
res, corners = cv2.findChessboardCorners (frame, pattern_size)

img_show = np.copy (frame)
cv2.drawChessboardCorners (img_show, pattern_size, corners, res)
cv2.putText (img_show, 'Samples captured: %d' % len(samples),

40),
cv2 .FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2)

cv2.imshow ('chessboard', img_show)

[234]

Multiple View Geometry Chapter 9

wait_time = 0 if res else 30

k = cv2.waitKey(wait_time)

if k == ord('s') and res:
samples.append((cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY),
corners))

elif k == 27:
break

cap.release|()
cv2.destroyAllWindows ()

3. Refine all the detected corner points using cv2.cornerSubPix:

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM CRITERIA MAX_ ITER, 30,
le-3)

for i in range(len(samples)):

img, corners = samples|[i]
corners = cv2.cornerSubPix(img, corners, (10, 10), (-1,-1),
criteria)

4. Find the camera's intrinsic parameters by passing all refined corner points to
cv2.calibrateCamera:

pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
pattern_points[:, :2] = np.indices(pattern_size).T.reshape (-1, 2)
images, corners = zip(*samples)

pattern_points = [pattern_points]*len(corners)

rms, camera_matrix, dist_coefs, rvecs, tvecs = \

cv2.calibrateCamera (pattern_points, corners, images[0].shape,
None, None)

np.save ('camera_mat.npy', camera_matrix)
np.save ('dist_coefs.npy', dist_coefs)

How it works

Camera calibration aims to find two sets of intrinsic parameters: the camera matrix and
distortion coefficients. The camera matrix determines how coordinates of 3D points are
mapped onto dimensionless pixels coordinates in the image, but actual image lenses also
distort an image so straight lines are transformed into curves. Distortion coefficients allow
you to eliminate such warps.

[235]

Multiple View Geometry Chapter 9

The whole camera calibration process can be divided into three stages:

¢ Gathering a decent amount of data such as, images and detected chessboard
patterns

¢ Refining chessboard corners coordinates

¢ Optimizing camera parameters to match them with observed distortions and
projections

To gather data for camera calibration, you need to detect a chessboard pattern of a certain
size and accumulate pairs of images and coordinates of the found corners. As you know
from the Detecting chessboard and circles grid patterns recipe from chapter 4, Object Detection
and Machine Learning, cv2 . findChessboardCorners implements chessboard corner
detection. For more information, see Chapter 4, Object Detection and Machine Learning. It's
worth mentioning that corners on the chessboard are the ones formed by two black squares,
and the pattern size you pass in cv2. findChessboardCorners should be the same as you
have in the real chessboard pattern. The number of samples and their distribution along the
field of view is also very important. In practical cases, 50 to 100 samples is enough.

The next step is refining the corner's coordinates. This stage is necessary due to the fact

that cv2. findChessboardCorners does not give a very accurate result, so we need to find
the actual corner positions. cv2.cornerSubPix gives precision to corner coordinates with
sub-pixel accuracy. It accepts the following arguments:

e Grayscale images
e Coarse coordinates of detected corners

Size of the refine region to find a more accurate corner position

Size of the zone in the center of the refine region to ignore

Criteria to stop the refining process

Coarse coordinates of corners are the ones returned by cv2. findChessboardCorners.
The refine region should be small, but it should include the actual position of the corner;
otherwise, the coarse corner is returned. The size of the zone to ignore should be smaller
than the refine region and can be disabled by passing (-1, -1) as its value. The stop criteria
can be one of the following

types, cv2.TERM_CRITERIA_EPS or cv2.TERM_CRITERIA_MAX_ITER, or a combinationof
the two. cv2 . TERM_CRITERIA_EPS determines the difference in previous and next corner
positions. If the actual difference is less than the one defined, the process will be

stopped. cv2.TERM_CRITERIA_MAX_ITER determines the maximum number of
iterations. cv2.cornerSubPix returns the same number of corners with refined
coordinates.

[236]

Multiple View Geometry Chapter 9

Once we have refined the corner's positions, it's time to find the camera's parameters.
cv2.calibrateCamera solves this problem. You need to pass a few parameters to this
function, and these are listed as follows:

¢ Object points coordinates for all samples
e Corners points coordinates for all samples

Shape of the images in (width, height) format
e Two arrays to save translation and rotation vectors (can be set to None)
Flags and stop criteria (both have default values)

Object points are 3D coordinates of chessboard corners in a chessboard coordinate system.
Because we use the same pattern for each frame, the 3D coordinates of the corners are the
same and, because we use equidistantly distributed corners, 3D coordinates are

also equidistantly distributed on the plane (z=0 for all points). The actual distance between
corners doesn't matter because the camera eliminates the z coordinate (how far objects are
from the camera), so it can be a smaller but closer pattern, or a bigger but farther one—the
image is the same. cv2.calibrateCamera returns five values: the mean reprojection error
for all samples, the camera matrix, distortion coefficients, rotation, and translation vectors
for all samples. The reprojection error is the difference between a corner in the image and
the projection of a 3D point of the corner. Ideally, the projection of the corner and its
original position in the image should be the same, but there is a difference due to the noise.
This difference is measured in pixels. The smaller this difference is, the better the calibration
is done. The camera matrix has a shape of 3x3. The number of distortion coefficients
depends on the flags and it equals 5 by default.

As a result of executing this code you will see the following image:

Samples captured: 14

[237]

Multiple View Geometry Chapter 9

Fisheye camera model calibration

If your camera has a wide view angle and, as a consequence, strong distortions, you need to
use the fisheye camera model. OpenCV provides functions to work with the fisheye camera
model. Let's review how to calibrate such a camera type in OpenCV.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Capture frames from the camera, detect a chessboard pattern on each frame, and
accumulate the frames and corners until we have a big enough number of
samples:

cap = cv2.VideoCapture (0)
pattern_size = (10, 7)
samples = []

while True:

ret, frame = cap.read()
if not ret:
break
res, corners = cv2.findChessboardCorners (frame, pattern_size)

img_show = np.copy (frame)
cv2.drawChessboardCorners (img_show, pattern_size, corners, res)
cv2.putText (img_show, 'Samples captured: %d' % len(samples),
(0, 40),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2)
cv2.imshow ('chessboard', img_show)

wailt_time = 0 1f res else 30

[238]

Multiple View Geometry Chapter 9

k = cv2.waitKey(wait_time)
if k == ord('s') and res:
samples.append((cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY),
corners))
elif k == 27:
break

cap.release|()
cv2.destroyAllWindows ()

3. Refine all the detected corner points using cv2.cornerSubPix:

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM CRITERIA_MAX_ ITER, 30,
le-3)

for i in range(len(samples)):

img, corners = samples|[i]
corners = cv2.cornerSubPix(img, corners, (10, 10), (-1,-1),
criteria)

4. Import the necessary modules, open an input image, and copy it:

pattern_points = np.zeros((l, np.prod(pattern_size), 3),

np.float32)

pattern_points[0, :, :2] = np.indices(pattern_size) .T.reshape (-1,
2)

images, corners = zip(*samples)

pattern_points = [pattern_points]*len (corners)

print (len (pattern_points), pattern_points[0].shape,
pattern_points[0].dtype)
print (len(corners), corners|[0].shape, corners[0].dtype)

rms, camera_matrix, dis t_coefs, rvecs, tvecs = \
cv2.fisheye.calibrate (pattern_points, corners, images|[0].shape,
None, None)

np.save ('camera_mat.npy', camera_matrix)
np.save ('dist_coefs.npy', dist_coefs)

[239]

Multiple View Geometry Chapter 9

How it works

The camera calibration procedures for both fisheye and pinhole cameras are basically the
same, so it's strongly recommended to go through the Pinhole camera model calibration recipe,
because all the main steps and recommendations from the pinhole camera case are
applicable for the fisheye camera too.

Let's review the key difference. To calibrate the fisheye model camera, you need to use the
cv2.fisheye.calibrate function. It accepts the same arguments as
cv2.calibrateCamera, but this function supports only its own values for flags.
Fortunately, this argument has a default value.

As a result of executing this code, you will see an image similar to the following;:

Stereo rig calibration - estimation of
extrinsics

In this recipe, you will learn how to calibrate a stereo pair, that is, an estimate relative
rotation and translation between two cameras using the photos of a calibration pattern. This
functionality is used when you're dealing with stereo cameras—you need to know the rig
parameters to be able to reconstruct 3D information about the scene.

[240]

Multiple View Geometry Chapter 9

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:
import cv2
import glob

import numpy as np

2. Set the pattern size and prepare lists with images:

PATTERN_SIZE = (9, 6)

left_imgs =

list (sorted(glob.glob('../data/stereo/casel/left*.png')))
right_imgs =

list (sorted(glob.glob('../data/stereo/casel/right*.png')))
assert len(left_imgs) == len(right_imgs)

3. Find the chessboard points:

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30,
le-3)

left_pts, right_pts = [], []

img_size = None

for left_img_path, right_img_path in zip(left_imgs, right_imgs) :
left_img = cv2.imread(left_img_path, cv2.IMREAD_GRAYSCALE)
right_img = cv2.imread(right_img_path, cv2.IMREAD_GRAYSCALE)
if img_size is None:

img_size = (left_img.shape[l], left_img.shape[0])

res_left, corners_left = cv2.findChessboardCorners (left_img,
PATTERN_SIZE)

res_right, corners_right = cv2.findChessboardCorners (right_img,
PATTERN_SIZE)

corners_left = cv2.cornerSubPix(left_img, corners_left, (10,
10), (=1,-1),

criteria)

corners_right = cv2.cornerSubPix (right_img, corners_right, (10,

10), (=1,-1),

[241]

Multiple View Geometry Chapter 9

criteria)
left_pts.append(corners_left)
right_pts.append (corners_right)

4. Prepare the calibration pattern points:
pattern_points = np.zeros ((np.prod(PATTERN_SIZE), 3), np.float32)
pattern_points[:, :2] = np.indices (PATTERN_SIZE) .T.reshape (-1, 2)
pattern_points = [pattern_points] * len(left_imgs)
5. Estimate the stereo pair parameters:
err, K1, D1, Kr, Dr, R, T, E, F = cv2.stereoCalibrate(
pattern_points, left_pts, right_pts, None, None, None, None,

img_size, flags=0)

6. Report the calibration's results:

print ('Left camera:')

print (K1)

print ('Left camera distortion:')
print (D1)

print ('Right camera:')

print (Kr)

print ('Right camera distortion:')
print (Dr)

print ('Rotation matrix:'")

print (R)

print ('Translation:"')

print (T)

How it works

To calibrate a stereo pair using OpenCV, one must capture a few photos of a calibration
pattern simultaneously from both cameras. In our case, we used a 9x6 chessboard. We used
the cv2.findChessboardCorners function to find corners of the board which we will use
for rig parameters estimation. We also need calibration pattern points in its local coordinate
system. Since we know the size of the pattern and its shape, we can explicitly construct the
list of points—pattern_points. Note that the units used here will be used for the
translation vector between two cameras.

[242]

Multiple View Geometry Chapter 9

The calibration itself is performed in the cv2.stereoCalibrate function. As input, it
takes a list of image points and a list of pattern points. You can also specify initial guesses
for calibration parameters, and specify which parameters you want to refine and which
ones you want to keep unchanged. The function returns a calibration error in pixels, first
camera parameters, first camera distortion coefficients, second camera parameters, second
camera distortion coefficients, rotation and translation between cameras, and essential and
fundamental matrices.

The following is the expected output:

Left camera:

[[534.36681752 0. 341.45684657]
[0. 534.29616718 235.72519106]
[0. 0. 1. 1]

Left camera distortion:

[[-2.79470900e-01 4.71876981e-02 1.39511507e-03 -1.64158448e-04
7.01729203e-02]]

Right camera:

[[537.88729748 0. 327.29925115]
[0. 537.43063947 250.10021993]
[0. 0. 1. 1]

Right camera distortion:

[[-0.28990693 0.12537789 -0.00040656 0.00053461 -0.03844589]]
Rotation matrix:
[[0.99998995 0.00355598 0.00273003]
[-0.00354058 0.99997791 -0.00562461]
[-0.00274997 0.00561489 0.99998046]]
Translation:
[[-3.33161159]
[0.03706722]
[-0.004208147]]

Distorting and undistorting points

Camera lenses produce distortions of an image. The calibration process aims to find
parameters of these distortions, as well as the parameters of 3D points projection onto an
image plane. This recipe tells you how to apply a camera matrix and distortion coefficients
to get undistorted image points and distort them back.

[243]

Multiple View Geometry Chapter 9

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the camera matrix and distortion coefficients for our camera:

camera_matrix = np.load('../data/pinhole_calib/camera_mat.npy")
dist_coefs = np.load('../data/pinhole_calib/dist_coefs.npy')

3. Open a photo of a chessboard taken by the camera, and find and refine the

corners:
img = cv2.imread('../data/pinhole_calib/img_00.png")
pattern_size = (10, 7)
res, corners = cv2.findChessboardCorners (img, pattern_size)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30,
le-3)
corners = cv2.cornerSubPix (cv2.cvtColor (img, cv2.COLOR_BGR2GRAY),

corners, (10, 10), (-1,-1), criteria)

4. Undistort the corner's coordinates and turn them into 3D points:

h_corners = cv2.undistortPoints (corners, camera_matrix, dist_coefs)
h_corners = np.c_[h_corners.squeeze (), np.ones (len(h_corners))]

5. Project the 3D coordinates of the corners to the image without applying
distortion:

img_pts, = cv2.projectPoints (h_corners, (0, 0, 0), (0, 0, 0),

camera_matrix, None)

for ¢ in corners:
cv2.circle(img, tuple(c(O0]), 10, (0, 255, 0), 2)

for ¢ in img_pts.squeeze () .astype(np.float32):

[244]

Multiple View Geometry Chapter 9

cv2.circle(img, tuple(c), 5, (0, 0, 255), 2)

cv2.imshow ('undistorted corners', img)
cv2.waitKey ()
cv2.destroyAllWindows ()

6. Project the 3D coordinates of the corners to the image and apply lenses distortion:

img_pts, _ = cv2.projectPoints (h_corners, (0, 0, 0), (0, 0, 0),
camera_matrix, dist_coefs)

for ¢ in img_pts.squeeze () .astype(np.float32):
cv2.circle (img, tuple(c), 2, (255, 255, 0), 2)

cv2.imshow ('reprojected corners', img)
cv2.waitKey ()
cv2.destroyAllWindows ()

How it works

cv2.undistortPoints finds homogeneous coordinates for points in the image. This
function removes lens distortion and unprojects the points so that they are in dimensionless
coordinates. This function accepts the following arguments: an array of 2D points in the
image, a 3x3 camera matrix, a set of distortion coefficients, an object to store the result, and
rectification and projection matrices, which are used in the stereo vision and aren't relevant
now. The last three arguments are optional. cv2.undistortPoints returns the set of
undistorted and unprojected points.

The points returned by cv2.undistortPoints are ideal—their coordinates are
dimensionless and aren't distorted by lenses. If we need to project them back, we need to
turn them into 3D points. To do so, we just need to add the third Z coordinate to each point.
Because the coordinates of the points are homogeneous, Z is equal to 1.

When we have 3D points and want to project them onto the image,

cv2.projectPoints comes into play. In a general case, this function takes 3D coordinates
of points in some coordinate system, rotates and translates them to get the coordinates in
the camera coordinate system, and then applies the camera matrix and distortion
coefficients to find projections of the points onto the image plane.

[245]

Multiple View Geometry Chapter 9

The arguments for cv2.>projectPoints are: an array of 3D points in some local
coordinate system, rotation and translation vectors of a transition from the local coordinate
system to the camera coordinate system, a 3x3 camera matrix, an array of distortion
coefficients, an object to store the resulting points, an object to store Jacobian values, and the
value of the aspect ratio. Again, the last three parameters are optional and can be omitted.
This function returns the projected and distorted coordinates of the 3D points and Jacobian
values. If you want to get the positions of points without lenses distortion, you can pass
None as the value of the distortion coefficients array.

As a result of executing this code, you will see an image similar to the following;:

Green circles in the figure are the original locations of chessboard corners; the red ones are
the projected coordinates of corners, but without lens distortion; light blue points are
projected coordinates after distortion—they're exactly at the center of the green circles. Also,
as you may notice, green and light blue circles aren't laid on the straight lines, but red ones
are. This is the effect of lense distortion. You may also be able to notice that, for corners far
from the image's center, the difference between red and light blue circle coordinates is
noticeable, though circles near the image center are almost identical. This happens due to
the degree of lens distortion, and this depends on how far the point is from the lens center.

[246]

Multiple View Geometry Chapter 9

Removing lens distortion effects from an
image

If you need to remove lens distortion effects from a whole image, you need to use dense
remapping. Essentially, the undistortion algorithm warps and compresses the image in a
way to compensate for lens effects, but compression leads to blank regions appearing. This
recipe tells you how to undistort images and remove empty regions from the undistorted
image.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the camera matrix and distortion coefficients for our camera, and a photo,
that was taken by the same camera:

camera_matrix = np.load('../data/pinhole_calib/camera_mat.npy")
dist_coefs = np.load('../data/pinhole_calib/dist_coefs.npy')
img = cv2.imread('../data/pinhole_calib/img_00.png")

3. Undistort the image with cv2.undistort—the empty regions will appear in the
image:

ud_img = cv2.undistort (img, camera_matrix, dist_coefs)

cv2.imshow ('undistorted image', ud_img)
cv2.waitKey (0)

cv2.destroyAllWindows ()

[247]

Multiple View Geometry Chapter 9

4. Eliminate the empty regions by computing the optimal camera matrix and
applying it to get the undistorted image without black regions:

opt_cam_mat, wvalid_roi =
cv2.getOptimalNewCameraMatrix (camera_matrix, dist_coefs,
img.shape[:2][::-1], 0)

ud_img = cv2.undistort (img, camera_matrix, dist_coefs, None,
opt_cam_mat)

cv2.imshow ('undistorted image', ud_img)
cv2.waitKey (0)

cv2.destroyAllWindows ()

How it works

cv2.undistort removes lenses distortion from the image. It takes the following
arguments: the image to undistort, the camera matrix, the distortion coefficients array, an
object to store the undistorted image, and an optimal camera matrix. The last two
arguments are optional. The function returns the undistorted image. If you missed the last
parameter of cv2.undistort, the resulting image will contain empty (of black color)
regions. The optimal camera matrix argument allows you to get the image without these
artifacts, but we need a way to compute this optimal camera matrix, and OpenCV serves it.

cv2.getOptimalNewCameraMatrix creates an optimal camera matrix to get rid of black
regions on the undistorted image. It takes the camera matrix, distortion coefficients, the
original image size in (width, height) format, the alpha factor, the resulting image size
(again in (width, height) format), and a Boolean flag to set the principal camera point of the
camera in the center of the output image. The last two arguments are optional. The alpha
factor is a double value in range [0, 1] and it shows the degree of removing empty regions: 0
means complete removal and, as a consequence, loss of some portion of image pixels, while
1 means preserving all the image pixels along with the empty regions. If you don't set the
output image size, it is set to the same as the input image's dimensions.

[248]

Multiple View Geometry Chapter 9

After launching the code from the recipe, you will see images similar to the following:

As you can see, the upper image has black regions near the border and the lower one
doesn't.

[249]

Multiple View Geometry Chapter 9

Restoring a 3D point from two observations
through triangulation

In this recipe, you will learn how to reconstruct 3D point coordinates given observations in
two views. This is a building block for many higher level 3D reconstruction algorithms and

SLAM systems.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules.

import cv2
import numpy as np

2. Generate the test camera's projection matrices:
Pl = np.eye(3, 4, dtype=np.float32)
P2 = np.eye (3, 4, dtype=np.float32)
pP2[(0, 3] = -1

3. Generate the test points:

N =5

points3d = np.empty((4, N), np.float32)
points3d[:3, :] = np.random.randn (3, N)
points3d([3, :] =1

4. Project the 3D points into two views and add noise:
pointsl = P1 @ points3d
pointsl = pointsl[:2, :] / pointsl[2, :]

pointsl[:2, :] += np.random.randn (2, N) * le-2

points2 = P2 @ points3d

[250]

Multiple View Geometry Chapter 9

points2 = points2[:2, :] / points2[2, :]
points2[:2, :] += np.random.randn (2, N) * le-2

5. Reconstruct the points from noisy observations:

points3d_reconstr = cv2.triangulatePoints (P1, P2, pointsl, points2)
points3d_reconstr /= points3d_reconstr[3, :]

6. Print the results:

print ('Original points')

print (points3d[:3].T)

print ('Reconstructed points')
print (points3d_reconstr[:3].T)

How it works

We generate random points in the 3D space and project them into two test views. Then, we
add noise to those observations and reconstruct points back in 3D using the OpenCV
function cv2.triangulatePoints. As input, the function takes observations from two
cameras and camera projection matrices (projective mapping from the world coordinate
frame to a view coordinate frame) for each view. It returns the reconstructed points in the
world coordinate frame.

The following are the possible results:

Original points

[[0.48245686 —-2.05779004 1.3458606]
[-0.18333936 -1.00662899 —-0.46047512]
[-0.51193094 -0.54561883 0.20674749]
[1.05258393 -1.55241323 0.60368073]
[1.80103588 -0.83367926 —-0.59293056]

Reconstructed points

[[0.47777811 -2.05873108 1.3407315]
0.17389734 -0.99433696 -0.45361272]

-0.51100874 -0.54552656 0.20692034]
1]
1]

]

.05780101 -1.54776227 0.60341281

.81407869 -0.83914387 -0.59897166]]

[251]

Multiple View Geometry Chapter 9

Finding a relative camera-object pose
through the PnP algorithm

The camera removes information regarding how far away the object that is being
photographed is. It may be a small but close object, or a big but far away one—the images
may be the same—but by knowing the geometrical size of the object, we can compute the
distance from it to the camera. In general, our knowledge about an object's geometry is the
positions of some set of 3D points in an object's local coordinate system. And usually, we
want to know not only the distance between the camera and the object's local coordinate
system, but also how the object is oriented. This task can be successfully done

with OpenCV. This recipe will show you how to find a 6-DOF (degrees of freedom) position
of an object if we know the configuration of its 3D points and their corresponding 2D
projections on the image.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the camera matrix, distortion coefficients, and a photo of the object taken by

the camera:
camera_matrix = np.load('../data/pinhole_calib/camera_mat.npy")
dist_coefs = np.load('../data/pinhole_calib/dist_coefs.npy')
img = cv2.imread('../data/pinhole_calib/img_00.png")

3. Detect the object points in the image, in our case, chessboard corners:

pattern_size = (10, 7)
res, corners = cv2.findChessboardCorners(img, pattern_size)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30,

[252]

Multiple View Geometry Chapter 9

le-3)
corners = cv2.cornerSubPix (cv2.cvtColor (img, cv2.COLOR_BGR2GRAY),
corners, (10, 10), (-1,-1), criteria)

4. Create the configuration of 3D object points:

pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
pattern_points[:, :2] = np.indices(pattern_size).T.reshape (-1, 2)

5. Find the object's position and orientation by using cv2.solvePnP:

ret, rvec, tvec = cv2.solvePnP (pattern_points, corners,
camera_matrix, dist_coefs,

None, None, False,
cv2.SOLVEPNP_ITERATIVE)

6. Project the object's points back to the image by applying the found rotation and
translation. Draw the projected points:

img_points, _ = cv2.projectPoints (pattern_points, rvec, tvec,
camera_matrix, dist_coefs)

for ¢ in img_points.squeeze () :
cv2.circle(img, tuple(c), 10, (0, 255, 0), 2)

cv2.imshow ('points', img)
cv2.waitKey ()

cv2.destroyAllWindows ()

How it works

cv2.solvePnP is able to find the translation and rotation of the object by its 3D points in a
local coordinate system and their 2D projections onto the image. It accepts a set of 3D
points, a set of 2D points, a 3x3 camera matrix, distortion coefficients, the initial rotation
and translation vectors (optional), a flag of whether to use the initial position and
orientation, and the type of problem solver. The first two arguments should contain the
same number of points. The type of solver may be one of
Inany:cv2.SOLVEPNP_ITERATIVE,CVZ.SOLVEPNP_EPNP,CVZ.SOLVEPNP_DLS,andSO(ML

[253]

Multiple View Geometry Chapter 9

By default, cv2.SOLVEPNP_ITERATIVE is used and it gets decent results in many

cases. cv2.solvePnP returns three values: a success flag, a rotation vector, and a
translation vector. The success flag indicates that the problem has been solved correctly. The
translation vector has the same units as the object's 3D local points. The rotation vector is
returned in Rodrigues form: the direction of the vector means the axis around which the
object is revolved, and the norm of the vector means the angle of rotation.

After launching the code from the recipe, it displays an image similar to the following:

Aligning two views through stereo
rectification

In this recipe, you will learn how to rectify two images captured using a stereo camera with
known parameters in such a way that, for the point (x, y,) in the left image, the
corresponding epipolar line in the right image is y,=y, and vice versa. This greatly simplifies
feature matching and dense stereo estimation algorithms.

[254]

Multiple View Geometry Chapter 9

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np
import matplotlib.pyplot as plt

2. Load the stereo rig calibration parameters:

data = np.load('../data/stereo/casel/stereo.npy') .item()
K1, D1, Kr, Dr, R, T, img_size = data['Kl'], datal['D1l'],
data['Kr'], data['Dr'], \

data['R'], datal['T'],
data['img_size']

3. Load the left and right test images:

left_img = cv2.imread('../data/stereo/casel/leftld.png')
right_img = cv2.imread('../data/stereo/casel/rightl4.png')

4. Estimate the stereo rectification parameters:

R1, R2, P1, P2, Q, validRoil, validRoi2 = cv2.stereoRectify (K1, D1,
Kr, Dr,
img_size, R, T)

5. Prepare the stereo rectification transformation maps:

xmapl, ymapl = cv2.initUndistortRectifyMap (K1, D1, R1, K1,
img_size, cv2.CV_32FC1)
xmap2, ymap2 = cv2.initUndistortRectifyMap (Kr, Dr, R2, Kr,
img_size, cv2.CV_32FC1)

[255]

Multiple View Geometry Chapter 9

6. Rectify the images:

left_img_rectified = cv2.remap(left_img, xmapl, ymapl,
cv2.INTER_LINEAR)

right_img_rectified = cv2.remap (right_img, xmap2, ymap2,
cv2.INTER_LINEAR)

7. Visualize the results:

plt.figure (0, figsize=(12,10))

plt.subplot (221)

plt.title('left original')

plt.imshow (left_img, cmap='gray')
plt.subplot (222)

plt.title('right original')

plt.imshow (right_img, cmap='gray')
plt.subplot (223)

plt.title('left rectified')

plt.imshow (left_img_rectified, cmap='gray')
plt.subplot (224)

plt.title('right rectified')

plt.imshow (right_img_rectified, cmap='gray')
plt.tight_layout ()

plt.show ()

How it works

We load stereo rig parameters estimated earlier from file. The rectification procedure itself
estimates such camera transformations so that two separate image planes become the same
plane afterwards. This greatly simplifies the epipolar geometry constraints and makes the
job for all other stereo-related algorithms much easier.

The rectification transformation parameters are estimated using

the cv2.stereoRectify function—it takes the stereo rig parameters and returns the
rectification parameters: the first camera rotation, second camera rotation, first camera
projection matrix, second camera projection matrix, disparity-to-depth mapping matrix, the
first camera ROI where all the pixels are valid, and the second camera ROI where all the
pixels are valid.

We only use the first two parameters; the first and second camera rotations are used to
construct rectification transformation per-pixel maps using

the cv2.initUndistortRectifyMap function. When the map has been computed once, it
can then be used for any images captured using the stereo rig.

[256]

Multiple View Geometry Chapter 9

The expected results are shown as follows:

left original

Epipolar geometry - computing fundamental
and essential matrices

In this recipe, you will learn how to compute fundamental and essential matrices—the
matrices comprising the epipolar geometry constraints in them. These matrices are useful
for reconstructing stereo rig extrinsic parameters as well as other two-view vision
algorithms.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

[257]

Multiple View Geometry Chapter 9

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the left/right image point correspondences and the individual camera
calibration parameters:

data = np.load('../data/stereo/casel/stereo.npy') .item()
K1, Kr, D1, Dr, left_pts, right_pts, E_from_stereo, F_from_ stereo =
\

data['Kl'], data['Kr'], data['Dl'], data['Dr'], \
data['left_pts'], data['right_pts'], datal['E'], datal['F']

3. Stack the left and right point lists into arrays:

left_pts = np.vstack(left_pts)
right_pts = np.vstack (right_pts)

4. Get rid of lens distortions:

left_pts = cv2.undistortPoints (left_pts, K1, D1, P=Kl)
right_pts = cv2.undistortPoints (right_pts, Kr, Dr, P=Kr)

5. Estimate the fundamental matrix:

F, mask = cv2.findFundamentalMat (left_pts, right_pts, cv2.FM_LMEDS)
6. Estimate the essential matrix:

E =Kr.T @ F @ K1
7. Print the results:

print ('Fundamental matrix:'")

print (F)

(
(
print ('Essential matrix:'")
print (E)

[258]

Multiple View Geometry Chapter 9

How it works

We used the cv2. findFundamentalMat function to estimate the fundamental matrix from
left-right image point correspondences. This function supports a few different algorithms
for fundamental matrix parameters estimation, such as cv2.FM_7POINT (7-point
algorithm), cv2.FM_8POINT (8-point algorithm), cv2.FM_LMEDS (least-median approach),
and cv2.FM_RANSAC (RANSAC-based approach). Two optional parameters specify the
error threshold for RANSAC-based estimation algorithms and confidence levels for the
least-median and RANSAC-based approaches.

The following are the expected results:

Fundamental matrix:

[[1.60938825e-08 -2.23906409e-06 -2.53850603e-04]
[2.97226703e-06 —-2.38236386e-07 -7.70276666e-02]
[=2.55190056e-04 7.69760820e-02 1.00000000e+0071]

Essential matrix:

[[4.62585055e-03 -6.43487140e-01 -4.17486092e-01]
[8.53590806e-01 -6.84088948e-02 -4.08817705e+01]
[2.63679084e-01 4.07046349e+01 -2.20825664e-01]]

Essential matrix decomposition into rotation
and translation

In this recipe, you will learn how to decompose essential matrices into two hypotheses
about the relative rotation and translation vectors between two cameras in a stereo rig. This
functionality is used when estimating stereo rig parameters.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

[259]

Multiple View Geometry Chapter 9

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the precomputed essential matrix:

data = np.load('../data/stereo/casel/stereo.npy').item()
E = data['E']

3. Decompose the essential matrix into two possible rotations and translations:
R1, R2, T = cv2.decomposeEssentialMat (E)

4. Print the results:

'Rotation 1:"'")

R1)
'Rotation 2:"'")

print
print
print
print (R2)

print ('Translation:"')

(
(
(
(
(
print (T)

How it works

We use the OpenCV cv2.decomposeEssentialMat function, which takes an essential
matrix as input and returns two candidates for rotation between cameras and one
translation vector candidate. Note that since the translation vector can only be recovered up
to a scale, it's returned in normalized form—unit length.

The following are the expected results:

Rotation 1:

[[0.99981105 -0.01867927 0.00538031]
[-0.01870903 -0.99980965 0.00553437]
[0.00527591 -0.00563399 -0.999970211]]

Rotation 2:

[[0.99998995 0.00355598 0.00273003]
[-0.00354058 0.99997791 -0.00562461]
[-0.00274997 0.00561489 0.99998046]]

Translation:

[260]

Multiple View Geometry Chapter 9

[[0.99993732]
[-0.01112522]
[0.00126302]]

Estimating disparity maps for stereo images

In this recipe, you will learn how to compute a disparity map from two rectified images.
This functionality is useful in many computer vision applications where you need to
recover information about depth in a scene, for example, collision avoidance in advanced
driver assistance applications.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the left and right rectified images:

left_img = cv2.imread('../data/stereo/left.png')
right_img = cv2.imread('../data/stereo/right.png’)

3. Compute the disparity map using the stereo block matching algorithm:

stereo_bm = cv2.StereoBM_create (32)
dispmap_bm = stereo_bm.compute (cv2.cvtColor (left_img,
cv2.COLOR_BGR2GRAY) ,

cv2.cvtColor (right_img,

cv2.COLOR_BGR2GRAY))

[261]

Multiple View Geometry Chapter 9

4. Compute the disparity map using the stereo semi-global block matching
algorithm:

stereo_sgbm = cv2.StereoSGBM_create (0, 32)
dispmap_sgbm = stereo_sgbm.compute (left_img, right_img)

5. Visualize the results:

plt.figure(figsize=(12,10))
plt.subplot (221)

plt.title('left"')

plt.imshow (left_img([:,:,[2,1,0]])
plt.subplot (222)

plt.title('right')

plt.imshow (right_img[:,:,[2,1,0]])
plt.subplot (223)

plt.title('BM')

plt.imshow (dispmap_bm, cmap='gray')
plt.subplot (224)

plt.title ('SGBM')

plt.imshow (dispmap_sgbm, cmap='gray')
plt.show ()

How it works

We use two different algorithms for disparity maps calculation—block matching and semi-
global block matching. After the map estimation object is instantiated using either
cv2.StereoBM_create Or cv2.StereoSGBM_create (where we specify maximum
possible disparity), we call the compute method, which takes two images and returns a
disparity map.

Note that it's necessary to pass rectified images as input to the compute method. The
returned disparity map will contain per-pixel disparity values, for example, a horizontal
offset in pixels between the left and right image points corresponding to the same point in
the scene. That offset then can be used to restore an actual point in 3D.

[262]

Multiple View Geometry Chapter 9

When creating a disparity estimator, you can specify a number of

parameters specific to the algorithm used. For a more detailed description,

you can refer to OpenCV's documentation on this: https://docs.opencv.
0 org/master/d9/d0c/group__calib3d.html.

There's also a module called cudastereo available in OpenCV that was

built with CUDA support, which provides more optimized stereo

algorithms. You can also check out the stereo module in the OpenCV
contrib repository, which also contains a few additional algorithms.

The expected results are shown as follows:

left

Special case 2-view geometry - estimating
homography transformation

In case you need to project points from one plane to another, it's possible to do by applying
a homography matrix. This matrix allows you to project a point from one plane to another if
you know the corresponding transformation for the planes. OpenCV has a functionality to
find the homography matrix, and this recipe shows you how to use and apply it.

[263]

https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://docs.opencv.org/master/d9/d0c/group__calib3d.html

Multiple View Geometry Chapter 9

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the camera matrix, the distortion coefficients, and two frames taken by the

camera:
camera_matrix = np.load('../data/pinhole_calib/camera_mat.npy")
dist_coefs = np.load('../data/pinhole_calib/dist_coefs.npy')
img_0 = cv2.imread('../data/pinhole_calib/img_00.png")
img_1 = cv2.imread('../data/pinhole_calib/img_10.png")

3. Undistort the frames:

cv2.undistort (img_0, camera_matrix, dist_coefs)
cv2.undistort (img_1, camera_matrix, dist_coefs)

img_0
img_1

4. Find the chessboard corners on both images:

pattern_size = (10, 7)
res_0, corners_0 = cv2.findChessboardCorners (img_0, pattern_size)
res_1, corners_1 = cv2.findChessboardCorners (img_1, pattern_size)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30,
le-3)
corners_0 = cv2.cornerSubPix (cv2.cvtColor (img_0,
cv2.COLOR_BGR2GRAY) ,

corners_0O, (10, 10), (-1,-1), criteria)
corners_1 = cv2.cornerSubPix (cv2.cvtColor (img_1,
cv2.COLOR_BGR2GRAY) ,

corners_1, (10, 10), (-1,-1), criteria)

[264]

Multiple View Geometry Chapter 9

5. Find the homography between the points on both images:
H, mask = cv2.findHomography (corners_0, corners_1)

6. Apply the found homography matrix to project a point from the first image to the

second one:
center_0 = np.mean(corners_0.squeeze (), 0)
center_0 = np.r_[center_0, 1]
center_1 = H @ center_0
center_1 = (center_1 / center_1[2]).astype(np.float32)
img_0 = cv2.circle(img_0, tuple(center_0[:2]) 10, (0, 255, 0) 3)

img_1 = cv2.circle(img_1, tuple(center_1[:21), 10, (0, 0, 255), 3)

7. Transform the first image with the found homography matrix and display the
result:

img_0_warped = cv2.warpPerspective (img_0, H, img_0O.shape[:2][::-1])

cv2.imshow ('homography', np.hstack((img_0, img_1, img_O_warped)))
cv2.waitKey ()
cv2.destroyAllWindows ()

How it works

To be able to project a point from one plane to another, first you need to compute the
homography matrix. It can be performed with cv2. findHomography. This function accepts
the following arguments:

A set of points from the source (first) plane

A set of points from the destination (second) plane
A method to find homography

A threshold to filter outliers

An output mask for outliers

The maximum number of iterations

Confidence

[265]

Multiple View Geometry Chapter 9

All arguments except the first two use the default values. The method argument describes
which algorithm should be used to compute the homography. By default, all points are
used, but if your data tends to contain a considerable number of outliers (points with a high
portion of noise or mischosen ones), it's better to use one of these methods: cv2.RANSAC,
cv2.LMEDS, or cv2.RHO. These methods correctly filter out outliers. The threshold to filter
outliers is the distance in pixels, which determines the type of the point: inlier or outlier.
The mask is an object to store the values for inlier/outlier classes for each points. The
maximum number of iterations and confidence determine the correctness of the solution.
cv2.findHomography returns the found homography matrix and mask values for the
points. It's also worth mentioning that you need to check that the resulting matrix is not an
empty object, because a solution cannot be found for all sets of points.

After you find the homography matrix, you can apply it to the image projections by passing
it to cv2.warpPerspective. It's also possible to project the points by multiplying them by
the homography matrix (see the code).

Finally, you will see images similar to the following after executing the code:

Planar scene - decomposing homography
into rotation and translation

The homography matrix can be decomposed into relative translation and rotation vectors
between two plane object views. This recipe shows you how to do it in OpenCV.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

[266]

Multiple View Geometry Chapter 9

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the camera matrix, distortion coefficients, and two photos of the same
planar object (chessboard pattern). Then, undistort the photos:

camera_matrix = np.load('../data/pinhole_calib/camera_mat.npy"')
dist_coefs = np.load('../data/pinhole_calib/dist_coefs.npy')
img_0 = cv2.imread('../data/pinhole_calib/img_00.png')

img_0 = cv2.undistort (img_0, camera_matrix, dist_coefs)

img_1 = cv2.imread('../data/pinhole_calib/img_10.png')

img_1 = cv2.undistort (img_1, camera_matrix, dist_coefs)

3. Find the corners of the pattern in both images:

pattern_size = (10, 7)
res_0, corners_0 = cv2.findChessboardCorners (img_0, pattern_size)
res_1, corners_1 = cv2.findChessboardCorners (img_1, pattern_size)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX ITER, 30,
le-3)
corners_0 = cv2.cornerSubPix (cv2.cvtColor (img_0,
cv2.COLOR_BGR2GRAY) ,

corners_0O, (10, 10), (-1,-1), criteria)
corners_1 = cv2.cornerSubPix (cv2.cvtColor (img_1,
cv2.COLOR_BGR2GRAY) ,

corners_1, (10, 10), (-1,-1), criteria)

4. Find the homography matrix of transformation from the first frame to the second:
H, mask = cv2.findHomography (corners_0, corners_1)
5. Find the possible translations and rotations for our estimated homography

matrix:

ret, rmats, tvecs, normals = cv2.decomposeHomographyMat (H,
camera_matrix)

[267]

Multiple View Geometry Chapter 9

How it works

cv2.decomposeHomographyMat decomposes the homography matrix into rotations and
translations. Because the solution isn't unique, the function returns up to four possible sets
of translation, rotation, and normal vectors. cv2.decomposeHomographyMat accepts the
3x3 homography matrix and 3x3 camera matrix as arguments. The return values are: the
number of found solutions, a list of 3x3 rotation matrices, a list of translation vectors, and
a list of normal vectors. Each returned list contains as many elements as the number of
solutions that have been found.

Rotational camera case - estimating camera
rotation from homography

In this recipe, you will learn how to extract rotation from a homography transformation
between two views captured by a camera undergoing only rotation motion with respect to
its optical center. This is useful if, for example, you need to estimate the rotation between
two views, assuming that the translation is negligible compared to distances to scene points.
That's often the case in landscape photo stitching.

Getting ready

Before you proceed with this recipe, you need to install the OpenCV version 3.3 (or greater)
Python API package.

How to do it

You need to complete the following steps:
1. Import the necessary modules:

import cv2
import numpy as np

2. Load the precomputed homography and camera parameters:

data = np.load('../data/rotational_homography.npy') .item()
H, K data['H'], data['K']

[268]

Multiple View Geometry Chapter 9

3. Factor out the camera parameters from the homography transformation:
H_ = np.linalg.inv(K) @ H @ K
4. Compute the approximate rotation matrix:

w, u, vt = cv2.SVDecomp (H_)

R =1u @ vt

if cv2.determinant (R) < O:
R *= 1

5. Convert the rotation matrix to the rotation vector:
rvec = cv2.Rodrigues (R) [0]
6. Print the results:

print ('Rotation vector:')
print (rvec)

How it works

In case the camera undergoes rotation only around its optical center, the homography
transformation has a really simple form—it's basically a rotation matrix, but is multiplied
by camera matrix parameters since homography works in image pixel space. As a first step,
we factor out camera parameters from the homography matrix. After that, it must be a
rotation matrix (up to scale). Since there might be noise in the homography parameters, the
resulting matrix might not be a proper rotation matrix, for example, an orthogonal matrix
with a determinant equal to one. That's why we construct the closest (in the Frobenius
norm) rotation matrix using a singular value decomposition.

The following shows the expected results:

Rotation vector:
[[0.12439561]

[0.22688715]

[0.32641321]]

[269]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Amin Ahmadi Tazehkandi

Computer Vision
with OpenCV 3

and Qt5

Computer Vision with OpenCV 3 and Qt5
Amin Ahmadi Tazehkandi

ISBN: 978-1-78847-239-5

e Get an introduction to Qt IDE and SDK

¢ Be introduced to OpenCV and see how to communicate between OpenCV and Qt
¢ Understand how to create UI using Qt Widgets

e Know to develop cross-platform applications using OpenCV 3 and Qt 5

¢ Explore the multithreaded application development features of Qt5

e Improve OpenCV 3 application development using Qt5

e Build, test, and deploy Qt and OpenCV apps, either dynamically or statically

e See Computer Vision technologies such as filtering and transformation of images,
detecting and matching objects, template matching, object tracking, video and
motion analysis, and much more

¢ Be introduced to QML and Qt Quick for iOS and Android application
development

https://www.packtpub.com/application-development/computer-vision-opencv-3-and-qt5

Other Books You May Enjoy

Gabriel Garrido, Prateek Joshi

OpencCV 3.x with
Python By Example

OpenCV 3.x with Python By Example - Second Edition
Gabriel Garrido, Prateek Joshi

ISBN: 978-1-78839-690-5

Detect shapes and edges from images and videos

How to apply filters on images and videos

Use different techniques to manipulate and improve images
Extract and manipulate particular parts of images and videos
Track objects or colors from videos

Recognize specific object or faces from images and videos
How to create Augmented Reality applications

Apply artificial neural networks and machine learning to improve object
recognition

[271]

https://www.packtpub.com/application-development/opencv-3x-python-example-second-edition

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[272]

2

2D primitives
drawing 17, 18, 19

A

Advanced Driver Assistance Solutions (ADAS) 124
affine transformation
image, warping 210, 213
age prediction 165
app
interactive, making 22, 24
arbitrary transformation
used, for remapping image 214, 215
AruCo patterns
detecting, for AR applications 133, 134, 135

B

background subtraction 218, 220, 221
Bag-of-Words (BoW) model
for global image descriptors 206, 207
binary images
connected components, extracting from 76, 77
external contours, finding in 73, 74, 75
grayscale images, converting to 72
internal contours, finding in 73, 74, 75
working with 68, 69
blobs
images, representing as 144, 145
BRIEF keypoints descriptor 196
buttons
working with 14, 15

C

Camera Response Function (CRF) 228
camera rotation

Index

estimating, from homography 268
Canny algorithm

used, for finding edges 103, 104
chessboard patterns

detecting 121, 122
circle grid patterns

detecting 121, 122
circles

detecting, Hough transform used 105, 106, 107

fitting, into two-dimensional point sets 79, 80, 81
color space conversion 43, 44
connected components

extracting, from binary image 76, 77
contributions

measuring 152
convolutional networks

images, preprocessing 149

inference, preprocessing 149
corners

finding, in image 184, 185, 186

selecting, in image 187, 188
cudastereo module 262
curves

working with 84, 85, 87

D

data types
converting 38
deep learning models
loading, from Caffe 146
loading, from TensorFlow 146
loading, from Torch 146
dense optical flow
computing, between frames 117, 120, 121
descriptors
computing, for image keypoints 195, 196

drawing 192
discrete Fourier transform

using 59, 60
disparity maps

estimating, for stereo images 261, 262
distance

computing, to two-dimensional point set from

pixel 90, 91

E

Eckart-Young-Mirsky theorem 173
edges

finding, Canny algorithm used 103, 104
epipolar geometry 257, 259
essential matrix

computing 257

decomposing, into rotation 259

decomposing, into translation 259
external contours

finding, in binary image 73, 74, 75

F

face detection
with Haar/LBP cascades 129, 130, 131, 132
with ResNet model 163
with Single Shot Detection (SSD) 163
Features from Accelerated Segment Test (FAST)
detector 186
files
images, reading from 8, 9
filter
applying, to image 57
creating 55, 56
fisheye camera model calibration 238, 239, 240
frame stream properties
obtaining 28, 29, 30
frame stream
playing, from video 26, 27
writing, into video 30, 31
frames
capturing 25, 26
dense optical flow, computing between 117,
120,121
displaying 25, 26

[274]

Fully Convolutional Network (FCN) model
scene, segmenting 161

fundamental matrices
computing 257

G

gamma correction 45
gender prediction 165
GoogleNet

images, classifying with 155
GrabCut algorithm

used, for obtaining object mask 99, 100, 101,

103

gradient images

computing, Sobel filters used 54
grayscale images

converting, to binary images 72

H

Haar cascade

used, for detecting faces 129, 131, 132
Harris corner detection 184
HDR image

constructing 226, 228
height, width, and channels (HWC) 145
Histogram-of-Oriented-Gradients (HOG) 125
homography matrix

decomposing, into rotation 266
homography transformation

decomposing, into translation 266

estimating 263, 266
homography

camera rotation, estimating from 268
Hough transform

used, for detecting circles 105, 106, 107

used, for detecting lines 105, 106, 107

image channels

manipulating 41, 42
image frequencies

manipulating, for image filtration 61, 62, 63
image histograms

computing 47, 48, 49

equalizing 49, 50, 51
image inpainting
defects, removing from photo 229, 231
image keypoints
descriptors, computing for 195, 197
image moment types
reference 84
image moments
calculating 82, 83, 84
image segmentation
with k-means algorithm 92, 93, 94
with segment seeds 94, 95, 97
image transformations 9, 10
images
classifying, with GoogleNet/Inception 155
classifying, with ResNet models 155
corners, finding in 184, 185, 186
corners, selectingin 187, 188
displaying, in OpenCV window 13, 14
flipping 10, 11
lens distortion effects, removing from 247, 248
preprocessing, in convolutional networks 149
processing, with real-valued Gabor filters 57, 58,
59
processing, with thresholds 64
reading, from files 8, 9
remapping, arbitrary transformation used 214,
215
representing, as blobs 144, 145
representing, as tensors 144, 145
resizing 10, 11
saving, lossy used 11, 12
stitching, into panorama 222, 224
warping, affine transformation used 210, 213
warping, perspective transformation used 210,
213
Inception
images, classifying with 155
inference time
measuring 152
inference
preprocessing, in convolutional networks 149
input tensors' shapes
obtaining, for layers 147
internal contours

[275]

finding, in binary image 73, 74, 75

K

k-means algorithm

image segmentation 92, 93, 94
Kernelized correlation filters (KCF) 116
keyboard

user input, handling from 20
keypoint matches

filtering, cross-check used 201
keypoints

drawing 189

visualizing 191

L

LBP cascade
used, for detecting faces 129, 131, 132
lens distortion effects
removing, from image 247, 248
linear programming
with simplex method 181, 182
lines
detecting, Hough transform used 105, 106, 107
fitting, into two-dimensional point sets 79, 80, 81
Local-Sensitive Hash (LSH) 199
lossless compression 11, 12
lossy
used, for saving images 11, 12
Lucas-Kanade algorithm
keypoints, tracking between frames 216, 218

matches
drawing 192
matching techniques
correspondences, finding between descriptors
198,199,200
matrices
manipulating 35, 36, 37, 38
mean image normalization 46
Median Flow object tracker
applying 112,114
Model Zoo
reference 147

morphological operators
applying 66, 67, 68

N

natural scenes
text, detecting in 135, 136
noise
removing 52, 53
non-image data persistence
with NumPy 40, 41
non-local means algorithms
used, for denoising photo 224, 226
normalization 46
NumPy
non-image data persistence 40, 41

O

object mask
obtaining, GrabCut algorithm used 99, 100, 101,
102,103
objects
detecting, with Single Shot Detection (SSD)
model 159
finding, via template matching 108, 111
tracking, algorithms used 114, 115
OpenCV window
images, saving in 13, 14
Optical Character Recognition (OCR)
with machine learning models 126, 127, 128,
129
ORB features detector 196
orthogonal Procrustes problem 169, 170, 171,
172
Otsu algorithm
grayscale images, converting to binary images
72
output tensors' shapes
obtaining, for layers 147

P

panorama
images, stitching into 222, 224
pedestrian detector
with SVM model 124

[276]

per-element math 45
perspective transformation
image, warping 210, 213
photo
denoising, non-local means algorithms used 224,
226
pinhole camera model calibration 234, 235, 236,
237
PnP algorithm
relative camera-object pose, finding through 252,
253
points
distorting 243, 245, 246
inside of contour, verifying 88
undistorting 243, 245, 246
polynomial equations
solving 179, 180
Principal component analysis (PCA) 174, 175,
176

QR code detector 137, 138, 139, 141, 142

R

rank-considerant matrix approximation
computing 172, 173
real-valued Gabor filters
images, processing with 57, 58, 59
Red, Green, Blue (RGB) 15
relative camera-object pose
finding, through PnP algorithm 252, 253
ResNet models
face detection 163
images, classifying with 155

S

Scale Invariant Feature Transform (SIFT) 193
scale invariant keypoints
detecting 193, 194
scaling values
converting 38
scene
segmenting, with Fully Convolutional Network
(FCN) model 161
segment seeds

using, in image segmentation 94, 95, 97
Single Shot Detection (SSD)

about 159

face detection 163

objects, detecting 159
Singular Value Decomposition (SVD)

about 170

reference 172
Sobel filters

used, for computing gradient images 54
stereo images

disparity maps, estimating for 261, 262
stereo module 262
stereo rectification

views, aligning through 254, 256
stereo rig calibration 241, 242, 243
SUREF feature detector 195
SVM model

pedestrians, detecting 124
systems of linear equations

solving 177,178,179

T

template matching

objects, finding via 108, 111
tensors

images, representing as 144, 145
text

detecting, in natural scenes 135, 136
thresholds

images, processing with 64

trackbars
working with 14, 15, 16
tracking API
objects, tracking with different algorithms 114,
115
Tracking-Learning-Detection (TLD) 116
triangulation
3D point, restoring from two observations 250,
251
two-dimensional point sets
circles, fitting into 79, 80, 81
lines, fitting into 79, 80, 81

U

Ul elements
working with 14, 15
user input
handling, from keyboard 20

\"

variance image normalization 46, 47
video
frame stream, playing from 26, 27
frame stream, writing into 30, 31
VideoCapture objects
positioning, at different frame positions 31, 32,
33
views
aligning, through stereo rectification 254, 256

w

watershed algorithm 94

	Cover
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: I/O and GUI
	Introduction
	Reading images from files
	Getting ready
	How to do it...
	How it works...

	Simple image transformations—resizing and flipping
	Getting ready
	How to do it...
	How it works...

	Saving images using lossy and lossless compression
	Getting ready
	How to do it...
	How it works...

	Showing images in an OpenCV window
	Getting ready
	How to do it...
	How it works...

	Working with UI elements, such as buttons and trackbars, in an OpenCV window
	Getting ready
	How to do it...
	How it works...

	Drawing 2D primitives—markers, lines, ellipses, rectangles, and text
	Getting ready
	How to do it...
	How it works...

	Handling user input from a keyboard
	Getting ready
	How to do it...
	How it works...

	Making your app interactive through handling user input from a mouse
	Getting ready
	How to do it...
	How it works...

	Capturing and showing frames from a camera
	Getting ready
	How to do it...
	How it works...

	Playing frame stream from video
	Getting ready
	How to do it...
	How it works...

	Obtaining a frame stream properties
	Getting ready
	How to do it...
	How it works...

	Writing a frame stream into video
	Getting ready
	How to do it...
	How it works...

	Jumping between frames in video files
	Getting ready
	How to do it...
	How it works...

	Chapter 2: Matrices, Colors, and Filters
	Introduction
	Manipulating matrices-creating, filling, accessing elements, and ROIs
	Getting ready
	How to do it...
	How it works...

	Converting between different data types and scaling values
	Getting ready
	How to do it...
	How it works...

	Non-image data persistence using NumPy
	Getting ready
	How to do it...
	How it works...

	Manipulating image channels
	Getting ready
	How to do it...
	How it works...

	Converting images from one color space to another
	Getting ready
	How to do it...
	How it works...

	Gamma correction and per-element math
	Getting ready
	How to do it...
	How it works...

	Mean/variance image normalization
	Getting ready
	How to do it...
	How it works...

	Computing image histograms
	Getting ready
	How to do it...
	How it works...

	Equalizing image histograms
	Getting ready
	How to do it...
	How it works...

	Removing noise using Gaussian, median, and bilateral filters
	Getting ready
	How to do it...
	How it works...

	Computing gradients using Sobel operator
	Getting ready
	How to do it...
	How it works...

	Creating and applying your own filter
	Getting ready
	How to do it...
	How it works...

	Processing images with real-valued Gabor filters
	Getting ready
	How to do it...
	How it works...

	Going from the spatial domain to the frequency domain (and back) using the discrete Fourier transform
	Getting ready
	How to do it...
	How it works...

	Manipulating image frequencies for image filtration
	Getting ready
	How to do it...
	How it works...

	Processing images with different thresholds
	Getting ready
	How to do it...
	How it works...

	Morphological operators
	Getting ready
	How to do it...
	How it works...

	Image masks and binary operations
	Getting ready
	How to do it...
	How it works...

	Chapter 3: Contours and Segmentation
	Introduction
	Binarization of grayscale images using the Otsu algorithm
	Getting ready
	How to do it...
	How it works...

	Finding external and internal contours in a binary image
	Getting ready
	How to do it...
	How it works...

	Extracting connected components from a binary image
	Getting ready
	How to do it...
	How it works...

	Fitting lines and circles into two-dimensional point sets
	Getting ready
	How to do it...
	How it works...

	Calculating image moments
	Getting ready
	How to do it...
	How it works...

	Working with curves - approximation, length, and area
	Getting ready
	How to do it...
	How it works...

	Checking whether a point is within a contour
	Getting ready
	How to do it...
	How it works...

	Computing distance maps
	Getting ready
	How to do it...
	How it works...

	Image segmentation using the k-means algorithm
	Getting ready
	How to do it...
	How it works...

	Image segmentation using segment seeds - the watershed algorithm
	Getting ready
	How to do it...
	How it works...

	Chapter 4: Object Detection and Machine Learning
	Introduction
	Obtaining an object mask using the GrabCut algorithm
	Getting ready
	How to do it...
	How it works...

	Finding edges using the Canny algorithm
	Getting ready
	How to do it...
	How it works...

	Detecting lines and circles using the Hough transform
	Getting ready
	How to do it...
	How it works...

	Finding objects via template matching
	Getting ready
	How to do it...
	How it works...

	The medial flow tracker
	Getting ready
	How to do it...
	How it works...

	Tracking objects using different algorithms via the tracking API
	Getting ready
	How to do it...
	How it works...

	Computing the dense optical flow between two frames
	Getting ready
	How to do it...
	How it works...

	Detecting chessboard and circle grid patterns
	Getting ready
	How to do it...
	How it works...

	A simple pedestrian detector using the SVM model
	Getting ready
	How to do it...
	How it works...

	Optical character recognition using different machine learning models
	Getting ready
	How to do it...
	How it works...

	Detecting faces using Haar/LBP cascades
	Getting ready
	How to do it...
	How it works...

	Detecting AruCo patterns for AR applications
	Getting ready
	How to do it...
	How it works...

	Detecting text in natural scenes
	Getting ready
	How to do it...
	How it works...

	QR code detector
	Getting ready
	How to do it...
	How it works...

	Chapter 5: Deep Learning
	Introduction
	Representing images as tensors/blobs
	Getting ready
	How to do it...
	How it works...

	Loading deep learning models from Caffe, Torch, and TensorFlow formats
	Getting ready
	How to do it...
	How it works...

	Getting input and output tensors' shapes for all layers
	Getting ready
	How to do it...
	How it works...

	Preprocessing images and inference in convolutional networks
	Getting ready
	How to do it...
	How it works...

	Measuring inference time and contributions to it from each layer
	Getting ready
	How to do it...
	How it works...

	Classifying images with GoogleNet/Inception and ResNet models
	Getting ready
	How to do it...
	How it works...

	Detecting objects with the Single Shot Detection (SSD) model
	Getting ready
	How to do it...
	How it works...

	Segmenting a scene using the Fully Convolutional Network (FCN) model
	Getting ready
	How to do it...
	How it works...

	Face detection using Single Shot Detection (SSD) and the ResNet model
	Getting ready
	How to do it...
	How it works...

	Age and gender prediction
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Linear Algebra
	Introduction
	The orthogonal Procrustes problem
	Getting ready
	How to do it...
	How it works...

	Rank-constrained matrix approximation
	Getting ready
	How to do it...
	How it works...

	Principal component analysis
	Getting ready
	How to do it...
	How it works...

	Solving systems of linear equations (including under- and over-determined)
	Getting ready
	How to do it...
	How it works...

	Solving polynomial equations
	Getting ready
	How to do it...
	How it works...

	Linear programming with the simplex method
	Getting ready
	How to do it...
	How it works...

	Chapter 7: Detectors and Descriptors
	Introduction
	Finding corners in an image - Harris and FAST
	Getting ready
	How to do it...
	How it works...

	Selecting good corners in an image for tracking
	Getting ready
	How to do it...
	How it works...

	Drawing keypoints, descriptors, and matches
	Getting ready
	How to do it...
	How it works...

	Detecting scale invariant keypoints
	Getting ready
	How to do it...
	How it works...

	Computing descriptors for image keypoints - SURF, BRIEF, ORB
	Getting ready
	How to do it...
	How it works...

	Matching techniques for finding correspondences between descriptors
	Getting ready
	How to do it...
	How it works...

	Finding reliable matches - cross-check and ratio test
	Getting ready
	How to do it...
	How it works...

	Model-based filtering of matches - RANSAC
	Getting ready
	How to do it...
	How it works...

	BoW model for constructing global image descriptors
	Getting ready
	How to do it...
	How it works...

	Chapter 8: Image and Video Processing
	Introduction
	Warping an image using affine and perspective transformations
	Getting ready
	How to do it
	How it works

	Remapping an image using arbitrary transformation
	Getting ready
	How to do it
	How it works

	Tracking keypoints between frames using the Lucas-Kanade algorithm
	Getting ready
	How to do it
	How it works

	Background subtraction
	Getting ready
	How to do it
	How it works

	Stitching many images into panorama
	Getting ready
	How to do it
	How it works

	Denoising a photo using non-local means algorithms
	Getting ready
	How to do it
	How it works

	Constructing an HDR image
	Getting ready
	How to do it
	How it works

	Removing defects from a photo with image inpainting
	Getting ready
	How to do it
	How it works

	Chapter 9: Multiple View Geometry
	Introduction
	Pinhole camera model calibration
	Getting ready
	How to do it
	How it works

	Fisheye camera model calibration
	Getting ready
	How to do it
	How it works

	Stereo rig calibration - estimation of extrinsics
	Getting ready
	How to do it
	How it works

	Distorting and undistorting points
	Getting ready
	How to do it
	How it works

	Removing lens distortion effects from an image
	Getting ready
	How to do it
	How it works

	Restoring a 3D point from two observations through triangulation
	Getting ready
	How to do it
	How it works

	Finding a relative camera-object pose through the PnP algorithm
	Getting ready
	How to do it
	How it works

	Aligning two views through stereo rectification
	Getting ready
	How to do it
	How it works

	Epipolar geometry - computing fundamental and essential matrices
	Getting ready
	How to do it
	How it works

	Essential matrix decomposition into rotation and translation
	Getting ready
	How to do it
	How it works

	Estimating disparity maps for stereo images
	Getting ready
	How to do it
	How it works

	Special case 2-view geometry - estimating homography transformation
	Getting ready
	How to do it
	How it works

	Planar scene - decomposing homography into rotation and translation
	Getting ready
	How to do it
	How it works

	Rotational camera case - estimating camera rotation from homography
	Getting ready
	How to do it
	How it works

	Other Books You May Enjoy
	Index

