

Raspberry Pi 3 Cookbook for
Python Programmers
Third Edition

Unleash the potential of Raspberry Pi 3 with over 100 recipes

Tim Cox
Dr. Steven Lawrence Fernandes

BIRMINGHAM - MUMBAI

Raspberry Pi 3 Cookbook for Python
Programmers
Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Namrata Patil
Content Development Editor: Amrita Noronha
Technical Editor: Nilesh Sawakhande
Copy Editors: Safis Editing, Vikrant Phadkay
Project Coordinator: Shweta H Birwatkar
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Shantanu Zagade

First published: October 2016
Second edition: October 2017
Third edition: April 2018

Production reference: 1270418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-987-4

www.packtpub.com

http://www.packtpub.com

Dedicated to my loving LORD Jesus Christ for enlightening me with his word
"I will tell you great and hidden things which you have not known"

- Jeremiah 33:3.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Tim Cox lives in England with his wife and two young daughters and works as a software
engineer. His passion for programming stems from a Sinclair Spectrum that sparked his
interest in computers and electronics. At university, he earned a BEng in Electronics and
Electrical Engineering, and into a career in developing embedded software for a range of
industries.

Supporting the vision behind the Raspberry Pi, to encourage a new generation of engineers,
Tim co-founded the MagPi magazine (the official magazine for the Raspberry Pi) and
produces electronic kits through his site PiHardware.com.

The Raspberry Pi community consists of an awesome group of helpful people from all over
the world who were invaluable in researching this book.
Thanks to my family, particularly my wife, Kirsty, who has supported me at every step of
the way and suffered daily due to my obsession with the Raspberry Pi. The excitement that
my daughters, Phoebe and Amelia, have as they discover new things inspires me to share
and teach as much as I can.

Dr. Steven Lawrence Fernandes has Postdoctoral Research experience working in the area
of Deep Learning at The University of Alabama at Birmingham, USA. He has received the
prestigious US award from Society for Design and Process Science for his outstanding
service contributions in 2017 and Young Scientist Award by Vision Group on Science and
Technology in 2014. He has also received Research Grant from The Institution of Engineers.

He has completed his B.E (Electronics and Communication Engineering) and M.Tech
(Microelectronics) and Ph.D. (Computer Vision and Machine Learning). His Ph.D work
Match Composite Sketch with Drone Images has received patent notification (Patent
Application Number: 2983/CHE/2015).

I express my in-depth gratitude to Dr. Murat M. Tanik, Dr. Leon Jololian and Dr. Frank
Skidmore from University of Alabama, Birmingham, for providing me with valuable
guidance. I give a deep thanks to Dr. Manjunath Bhandary, Chairman, Sahyadri College of
Engineering & Management; Dr. Rajinikanth Venkatesan; Mr. Manjunath Hebbar K; and
Ms. Amrita Noronha for providing me with their constant support.

About the reviewers
Ashwin Pajankar is a science popularizer, programmer, author, and YouTuber. He
graduated from IIIT Hyderabad with MTech in computer science engineering. He has been
programming for more than 15 years. He has an interest in promoting science, technology,
engineering, mathematics education, and public understanding of science. He has written
more than a dozen technical books published by Packt, Apress, BPB, and Leanpub. He has
also reviewed four other books for Packt.

Dr. Hong Lin received his PhD in computer science in 1997 from University of Science and
Technology of China. Before joining the University of Houston-Downtown (UHD), he was a
postdoctoral research associate at Purdue University; assistant research officer at National
Research Council, Canada; and engineer at Nokia. He is currently a professor at UHD and
assistant chair of Department of Computer Science and Engineering Technology. He has
edited two books, Empirical Studies of Contemplative Practices and Architectural Design of
Multi-Agent Systems: Technologies and Techniques.

Thanks to Shweta Birwatkar for coordinating the review process of this book.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with a Raspberry Pi 3 Computer 7
Introduction 7

Introducing Raspberry Pi 8
What's with the name? 9
Why Python? 9

Python 2 and Python 3 10
Which version of Python should you use? 10
The Raspberry Pi family – a brief history of Pi 11
Which Pi to choose? 12

Connecting to Raspberry Pi 13
Getting ready 13
How to do it... 14
There's more... 18

Secondary hardware connections 18
Using NOOBS to set up your Raspberry Pi SD card 19

Getting ready 19
How to do it... 21
How it works... 22
There's more... 24

Changing the default user password 24
Ensuring that you shut down safely 25
Preparing an SD card manually 25
Expanding the system to fit in your SD card 28
Accessing the RECOVERY/BOOT partition 29
Using the tools to back up your SD card in case of failure 32

Networking and connecting your Raspberry Pi to the internet via an
Ethernet port, using a CAT6 Ethernet cable 33

Getting ready 33
How to do it... 33
There's more... 34

Using built-in Wi-Fi and Bluetooth on Raspberry Pi 35
Getting ready 36
How to do it... 36

Connecting to your Wi-Fi network 36
Connecting to Bluetooth devices 38

Configuring your network manually 39
Getting ready 39
How to do it... 41

Table of Contents

[ii]

There's more... 42
Networking directly to a laptop or computer 42

Getting ready 43
How to do it... 48
How it works... 52
There's more... 52

Direct network link 53
See also 53

Networking and connecting your Raspberry Pi to the internet via a
USB Wi-Fi dongle 54

Getting ready 54
How to do it... 55
There's more... 59

Using USB wired network adapters 60
Connecting to the internet through a proxy server 60

Getting ready 60
How to do it... 61
How it works... 62
There's more... 63

Connecting remotely to Raspberry Pi over the network using VNC 63
Getting ready 64
How to do it... 64
There's more... 65

Connecting remotely to Raspberry Pi over the network using SSH
(and X11 forwarding) 66

Getting ready 66
How to do it... 67
How it works... 69
There's more... 70

Running multiple programs with X11 forwarding 70
Running as a desktop with X11 forwarding 70
Running Pygame and Tkinter with X11 forwarding 71

Sharing the home folder of Raspberry Pi with SMB 71
Getting ready 71
How to do it... 71

Keeping Raspberry Pi up to date 73
Getting ready 73
How to do it... 74
There's more... 75

Chapter 2: Dividing Text Data and Building Text Classifiers 77
Introduction 77
Building a text classifier 78

How to do it... 78
How it works... 79

Table of Contents

[iii]

See also 80
Pre-processing data using tokenization 80

How to do it... 80
Stemming text data 81

How to do it... 82
Dividing text using chunking 83

How to do it... 83
Building a bag-of-words model 85

How to do it... 85
Applications of text classifiers 88

Chapter 3: Using Python for Automation and Productivity 89
Introduction 89
Using Tkinter to create graphical user interfaces 90

Getting ready 90
How to do it... 92
How it works... 93

Creating a graphical application – Start menu 96
Getting ready 96
How to do it... 96
How it works... 98
There's more... 99

Displaying photo information in an application 101
Getting ready 101
How to do it... 102
How it works... 104
There's more... 107

Organizing your photos automatically 110
Getting ready 111
How to do it... 111
How it works... 113

Chapter 4: Predicting Sentiments in Words 116
Building a Naive Bayes classifier 116

How to do it... 116
See also 118

Logistic regression classifier 118
How to do it... 119

Splitting the dataset for training and testing 120
How to do it... 120

Evaluating the accuracy using cross-validation 122
How to do it... 122

Analyzing the sentiment of a sentence 123
How to do it... 124

Identifying patterns in text using topic modeling 126

Table of Contents

[iv]

How to do it... 126
Applications of sentiment analysis 128

Chapter 5: Creating Games and Graphics 129
Introduction 129
Using IDLE3 to debug your programs 130

How to do it... 130
How it works... 131

Drawing lines using a mouse on Tkinter Canvas 134
Getting ready 135
How to do it... 135
How it works... 136

Creating a bat and ball game 136
Getting ready 137
How to do it... 137
How it works... 140

Creating an overhead scrolling game 144
Getting ready 145
How to do it... 146
How it works... 151

Chapter 6: Detecting Edges and Contours in Images 155
Introduction 155
Loading, displaying, and saving images 156

How to do it... 156
Image flipping 157

How to do it... 157
Image scaling 162

How to do it... 163
Erosion and dilation 167

How to do it... 167
Image segmentation 172

How to do it... 172
Blurring and sharpening images 175

How to do it... 176
Detecting edges in images 180

How to do it... 181
How it works... 184
See also 184

Histogram equalization 185
How to do it… 185

Detecting corners in images 188
How to do it... 189

Chapter 7: Creating 3D Graphics 192

Table of Contents

[v]

Introduction 192
Getting started with 3D coordinates and vertices 194

Getting ready 194
How to do it... 196
How it works... 199
There's more... 201

Camera 201
Shaders 201
Lights 202
Textures 203

Creating and importing 3D models 203
Getting ready 204
How to do it... 204
How it works... 206
There's more... 206

Creating or loading your own objects 207
Changing the object's textures and .mtl files 208
Taking screenshots 209

Creating a 3D world to explore 209
Getting ready 210
How to do it... 210
How it works... 212

Building 3D maps and mazes 214
Getting ready 215
How to do it... 216
How it works... 220
There's more... 222

The Building module 222
Using SolidObjects to detect collisions 226

Chapter 8: Building Face Detector and Face Recognition Applications 227
Introduction 227
Building a face detector application 227

How to do it... 228
Building a face recognition application 230

How to do it... 230
How it works... 233
See also 234

Applications of a face recognition system 234

Chapter 9: Using Python to Drive Hardware 235
Introduction 235
Controlling an LED 240

Getting ready 240
How to do it... 242
How it works... 243

Table of Contents

[vi]

There's more... 244
Controlling the GPIO current 245

Responding to a button 247
Getting ready 247

Trying a speaker or headphone with Raspberry Pi 248
How to do it... 249
How it works... 250
There's more... 251

Safe voltages 251
Pull-up and pull-down resistor circuits 251
Protection resistors 253

A controlled shutdown button 253
Getting ready 253
How to do it... 254
How it works... 256
There's more... 257

Resetting and rebooting Raspberry Pi 257
Adding extra functions 259

The GPIO keypad input 261
Getting ready 261
How to do it... 264
How it works... 266
There's more... 266

Generating other key combinations 267
Emulating mouse events 267

Multiplexed color LEDs 268
Getting ready 268
How to do it... 270
How it works... 272
There's more... 273

Hardware multiplexing 274
Displaying random patterns 274
Mixing multiple colors 275

Writing messages using persistence of vision 278
Getting ready 278
How to do it... 280
How it works... 285

Chapter 10: Sensing and Displaying Real-World Data 287
Introduction 287
Using devices with the I2C bus 288

Getting ready 288
How to do it... 291
How it works... 293
There's more... 294

Using multiple I2C devices 294

Table of Contents

[vii]

I2C bus and level shifting 295
Using just the PCF8591 chip or adding alternative sensors 296

Reading analog data using an analog-to-digital converter 298
Getting ready 299
How to do it... 300
How it works... 301
There's more... 302

Gathering analog data without hardware 302
Logging and plotting data 305

Getting ready 305
How to do it... 307
How it works... 309
There's more... 311

Plotting live data 311
Scaling and calibrating data 313

Extending the Raspberry Pi GPIO with an I/O expander 315
Getting ready 316
How to do it... 316
How it works... 318
There's more... 319

I/O expander voltages and limits 320
Using your own I/O expander module 321
Directly controlling an LCD alphanumeric display 322

Capturing data in an SQLite database 323
Getting ready 324
How to do it... 324
How it works... 327
There's more... 329

The CREATE TABLE command 330
The INSERT command 330
The SELECT command 330
The WHERE command 330
The UPDATE command 331
The DELETE command 331
The DROP command 331

Viewing data from your own webserver 331
Getting ready 332
How to do it... 335
How it works... 337
There's more... 339

Security 339
Using MySQL instead 340

Sensing and sending data to online services 341
Getting ready 342
How to do it... 345
How it works... 346

Table of Contents

[viii]

See also 347

Chapter 11: Building Neural Network Modules for Optical Character
Recognition 348

Introduction 348
Visualizing optical characters 348

How to do it... 349
Building an optical character recognizer using neural networks 350

How to do it... 350
How it works... 353
See also 354

Applications of an OCR system 354

Chapter 12: Building Robots 355
Introduction 355
Building a Rover-Pi robot with forward driving motors 356

Getting ready 356
How to do it... 360
How it works... 365
There's more... 367

Darlington array circuits 367
Transistor and relay circuits 369
Tethered or untethered robots 370
Rover kits 371

Using advanced motor control 373
Getting ready 375
How to do it... 375
How it works... 377
There's more... 378

Motor speed control using PWM control 379
Using I/O expanders 380

Building a six-legged Pi-Bug robot 381
Getting ready 382
How to do it... 382
How it works... 386

Controlling the servos 387
The servo class 388
Learning to walk 389
The Pi-Bug code for walking 392

Controlling servos directly with ServoBlaster 392
Getting ready 393
How to do it... 396
How it works... 398

Using an infrared remote control with your Raspberry Pi 400
Getting ready 400
How to do it... 402

Table of Contents

[ix]

There's more... 406
Avoiding objects and obstacles 408

Getting ready 408
How to do it... 409
How it works... 411
There's more... 412

Ultrasonic reversing sensors 412
Getting a sense of direction 415

Getting ready 416
How to do it... 417
How it works... 418
There's more... 419

Calibrating the compass 420
Calculating the compass bearing 421
Saving the calibration 423
Driving the robot using the compass 424

Chapter 13: Interfacing with Technology 427
Introduction 427
Automating your home with remotely controlled electrical sockets 428

Getting ready 428
How to do it... 432
How it works... 436
There's more... 436

Sending RF control signals directly 437
Extending the range of the RF transmitter 440
Determining the structure of the remote control codes 440

Using SPI to control an LED matrix 441
Getting ready 444
How to do it... 447
How it works... 452
There's more... 454

Daisy-chain SPI configuration 454
Communicating using a serial interface 455

Getting ready 456
How to do it... 458
How it works... 464
There's more... 465

Configuring a USB-to-RS232 device for Raspberry Pi 465
RS232 signals and connections 465
Using the GPIO built-in serial pins 466
The RS232 loopback 468

Controlling Raspberry Pi using Bluetooth 470
Getting ready 471
How to do it... 472
How it works... 475

Table of Contents

[x]

There's more... 475
Configuring Bluetooth module settings 475

Controlling USB devices 476
Getting ready 477
How to do it... 478
How it works... 482
There's more... 483

Controlling similar missile-type devices 483
Robot arm 485
Taking USB control further 486

Chapter 14: Can I Recommend a Movie for You? 487
Introduction 487
Computing the Euclidean distance score 487

Getting ready 488
How to do it... 488
How it works... 490
There's more... 490
See also 490

Computing a Pearson correlation score 490
How to do it... 490
How it works... 493
There's more... 493
See also 493

Finding similar users in the dataset 493
How to do it... 494
See also 495

Developing a movie recommendation module 495
How to do it... 495
See also 498

Applications of recommender systems 498

Appendix A: Hardware and Software List 499
Introduction 499
General component sources 500

General electronic component retailers 500
Makers, hobbyists, and Raspberry Pi specialists 500

The hardware list 501
Chapter 1 501
Chapters 2 – Chapter 7 501
Chapter 8 501
Chapter 9 501
Chapter 10 503
Chapter 11 503
Chapter 12 504

Table of Contents

[xi]

Chapter 13 505
Chapter 14 505

The software list 506
PC software utilities 506
Raspberry Pi packages 506

Chapter 1 506
Chapter 2 507
Chapter 3 507
Chapter 4 508
Chapter 5 508
Chapter 6 508
Chapter 7 509
Chapter 8 509
Chapter 9 509
Chapter 10 510
Chapter 11 510
Chapter 12 511
Chapter 13 511
Chapter 14 512

There's more... 512
APT commands 512
Pip Python package manager commands 513

Other Books You May Enjoy 514

Index 517

Preface
This book is intended for anyone who wants to build software applications or hardware
projects using the Raspberry Pi. The book gradually introduces text classification, creating
games, 3D graphics, and sentiment analysis. We also move towards more advanced topics,
such as building computer vision applications, robots, and neural network applications. It
would be ideal to have basic understanding of Python; however, all programming concepts
are explained in detail. All the examples are written using Python 3, with clear and detailed
explanations of how everything works so that you can adapt and use all the information in
your own projects. By the end of the book, you will have the skills you need to build
innovative software applications and hardware projects using the Raspberry Pi.

Who this book is for
This book is for anyone who wants to master the skills of Python programming using
Raspberry Pi 3. Prior knowledge of Python will be an added advantage.

What this book covers
Chapter 1, Getting Started with a Raspberry Pi Computer, introduces the Raspberry Pi and
explores the various ways in which it can be set up and used.

Chapter 2, Dividing Text Data and Building a Text Classifier, guides us to build a text
classifier; it can classify text using the bag-of-words model.

Chapter 3, Using Python for Automation and Productivity, explains how to use graphical user
interfaces to create your own applications and utilities.

Chapter 4, Predicting Sentiments in Words, explains how Naive Bayes classifiers and logistic
regression classifiers are constructed to analyze the sentiment in words.

Chapter 5, Creating Games and Graphics, explains how to create a drawing application and
graphical games using the Tkinter canvas.

Chapter 6, Detecting Edges and Contours in Images, describes in detail how images are
loaded, displayed, and saved. It provides detailed implementations of erosion and dilation,
image segmentation, histogram equalization, edge detection, detecting corners in images,
and more.

Preface

[2]

Chapter 7, Creating 3D Graphics, discusses how we can use the hidden power of the
Raspberry Pi's graphical processing unit to learn about 3D graphics and landscapes, and
produce our very own 3D maze for exploration.

Chapter 8, Building Face Detector and Face Recognition Applications, explains how human
faces can be detected from webcams and recognized using images stored in a database.

Chapter 9, Using Python to Drive Hardware, establishes the fact that to experience the
Raspberry Pi at its best, we really have to use it with our own electronics. This chapter
discusses how to create circuits with LEDs and switches, and how to use them to indicate
the status of a system and provide control. Finally, it shows us how to create our own game
controller, light display, and a persistence-of-vision text display.

Chapter 10, Sensing and Displaying Real-World Data, explains how to use an analog-to-
digital converter to provide sensor readings to the Raspberry Pi. We discover how to store
and graph the data in real time, as well as display it on an LCD text display. Next, we
record the data in a SQL database and display it in our own web server. Finally, we transfer
the data to the internet, which will allow us to view and share the captured data anywhere
in the world.

Chapter 11, Building a Neural Network Module for Optical Character Recognition, introduces
neural network implementation on Raspberry Pi 3. Optical characters are detected,
displayed, and recognized using neural networks.

Chapter 12, Building Robots, takes you through building two different types of robot (a
Rover-Pi and a Pi-Bug), plus driving a servo-based robot arm. We look at motor and servo
control methods, using sensors, and adding a compass sensor for navigation.

Chapter 13, Interfacing with Technology, teaches us how to use the Raspberry Pi to trigger
remote mains sockets, with which we can control household appliances. We learn how to
communicate with the Raspberry Pi over a serial interface and use a smartphone to control
everything using Bluetooth. Finally, we look at creating our own applications to control
USB devices.

Chapter 14, Can I Recommend a Movie for You?, explains how movie recommender systems
are built. It elaborates how Euclidean distance and Pearson correlation scores are computed.
It also explains how similar users are found in the dataset and the movie recommender
module is built.

Appendix, Hardware and Software List, explains the detailed hardware software list used
inside the book.

Preface

[3]

To get the most out of this book
Readers are expected to know the basics of Python programming.

It would be beneficial for readers to have a basic understanding of machine learning,
computer vision, and neural networks.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Raspberry- ​Pi- ​3- ​Cookbook- ​for- ​Python- ​Programmers- ​Third- ​Edition. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http:/​/​www.​packtpub. ​com/ ​sites/ ​default/ ​files/ ​downloads/
RaspberryPi3CookbookforPythonProgrammersThirdEdition_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example:

"We use the bind function here, which will bind a specific event that occurs on this widget
(the_canvas) to a specific action or key press."

A block of code is set as follows:

#!/usr/bin/python3
bouncingball.py
import tkinter as TK
import time

VERT,HOREZ=0,1
xTOP,yTOP = 0,1
xBTM,yBTM = 2,3
MAX_WIDTH,MAX_HEIGHT = 640,480
xSTART,ySTART = 100,200
BALL_SIZE=20
RUNNING=True

Any command-line input or output is written as follows:

sudo nano /boot/config.txt

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on the Pair button to begin the pairing process and enter the device's PIN."

http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/RaspberryPi3CookbookforPythonProgrammersThirdEdition_ColorImages.pdf

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

Preface

[6]

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Getting Started with a

Raspberry Pi 3 Computer
In this chapter, we will cover the following recipes:

Connecting peripherals to Raspberry Pi
Using NOOBS to set up your Raspberry Pi SD card
Networking and connecting your Raspberry Pi to the internet via the LAN
connector
Using built-in Wi-Fi and Bluetooth on Raspberry Pi
Configuring your network manually
Networking directly to a laptop or computer
Networking and connecting your Raspberry Pi to the internet via a USB Wi-Fi
dongle
Connecting to the internet through a proxy server
Connecting remotely to Raspberry Pi over the network using VNC
Connecting remotely to Raspberry Pi over the network using SSH (and X11
forwarding)
Sharing the home folder of Raspberry Pi with SMB
Keeping Raspberry Pi up to date

Introduction
This chapter introduces Raspberry Pi and the process of setting it up for the first time. We
will connect Raspberry Pi to a suitable display, power, and peripherals. We will install an
operating system on an SD card. This is required for the system to boot. Next, we will
ensure that we can connect successfully to the internet through a local network.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[8]

Finally, we will make use of the network to provide ways to remotely connect to and/or
control Raspberry Pi from other computers and devices, as well as to ensure that the system
is kept up to date.

Once you have completed the steps within this chapter, your Raspberry Pi will be ready
for you to use for programming. If you already have your Raspberry Pi set up and running,
ensure that you take a look through the following sections, as there are many helpful tips.

Introducing Raspberry Pi
The Raspberry Pi is a single-board computer created by the Raspberry Pi Foundation, a
charity formed with the primary purpose of re-introducing low-level computer skills to
children in the UK. The aim was to rekindle the microcomputer revolution of the 1980s,
which produced a whole generation of skilled programmers.

Even before the computer was released at the end of February 2012, it was clear that
Raspberry Pi had gained a huge following worldwide and, at the time of writing this book,
has sold over 10 million units. The following image shows several different Raspberry Pi
models:

The Raspberry Pi Model 3B, Model A+, and Pi Zero

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[9]

What's with the name?
The name, Raspberry Pi, was a combination of the desire to create an alternative computer
with a fruit-based name (such as Apple, BlackBerry, and Apricot) and a nod to the original
concept of a simple computer that could be programmed using Python (shortened to Pi).

In this book, we will take this little computer, find out how to set it up, and then explore its
capabilities chapter by chapter, using the Python programming language.

Why Python?
It is often asked, "Why has Python been selected as the language to use on Raspberry Pi?"
The fact is that Python is just one of the many programming languages that can be used on
Raspberry Pi.

There are many programming languages that you can choose, from high-level graphical
block programming, such as Scratch, to traditional C, right down to BASIC, and even the
raw machine code assembler. A good programmer often has to be code multilingual to be
able to play to the strengths and weaknesses of each language to best meet the needs of
their desired application. It is useful to understand how different languages (and
programming techniques) try to overcome the challenge of converting what you want into
what you get, as this is what you are trying to do as well while you program.

Python has been selected as a good place to start when learning about programming, as it
provides a rich set of coding tools while still allowing simple programs to be written
without fuss. This allows beginners to gradually be introduced to the concepts and methods
on which modern programming languages are based without requiring them to know it all
from the start. It is very modular with lots of additional libraries that can be imported to
quickly extend the functionality. You will find that, over time, this encourages you to do the
same, and you will want to create your own modules that you can plug into your own
programs, thus taking your first steps into structured programming.

Python addresses formatting and presentation concerns. As indentation will add better
readability, indents matter a lot in Python. They define how blocks of code are grouped
together. Generally, Python is slow; since it is interpreted, it takes time to create a module
while it is running the program. This can be a problem if you need to respond to time-
critical events. However, you can precompile Python or use modules written in other
languages to overcome this.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[10]

It hides the details; this is both an advantage and a disadvantage. It is excellent for
beginners but can be difficult when you have to second-guess aspects such as datatypes.
However, this in turn forces you to consider all the possibilities, which can be a good thing.

Python 2 and Python 3
A massive source of confusion for beginners is that there are two versions of Python on
Raspberry Pi (Version 2.7 and Version 3.6), which are not compatible with each other, so
code written for Python 2.7 may not run with Python 3.6 (and vice versa).

The Python Software Foundation is continuously working to improve and move forward
with the language, which sometimes means they have to sacrifice backward compatibility
to embrace new improvements (and, importantly, remove redundant and legacy ways of
doing things).

Supporting Python 2 and Python 3

There are many tools that will ease the transition from Python 2 to Python
3, including converters such as 2to3, which will parse and update your
code to use Python 3 methods. This process is not perfect, and in some
cases you'll need to manually rewrite sections and fully retest everything.
You can write the code and libraries that will support both. The import
__future__ statement allows you to import the friendly methods of
Python 3 and run them using Python 2.7.

Which version of Python should you use?
Essentially, the selection of which version to use will depend on what you intend to do. For
instance, you may require Python 2.7 libraries, which are not yet available for Python 3.6.
Python 3 has been available since 2008, so these tend to be older or larger libraries that have
not been translated. In many cases, there are new alternatives to legacy libraries; however,
their support can vary.

In this book, we have used Python 3.6, which is also compatible with Python 3.5 and 3.3.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[11]

The Raspberry Pi family – a brief history of Pi
Since its release, Raspberry Pi has come in various iterations, featuring both small and large
updates and improvements to the original Raspberry Pi Model B unit. Although it can be
confusing at first, there are three basic types of Raspberry Pi available (and one special
model).

The main flagship model is called Model B. This has all the connections and features, as
well as the maximum RAM and the latest processor. Over the years, there have been several
versions, most notably Model B (which had 256 MB and then 512 MB RAM) and then
Model B+ (which increased the 26-pin GPIO to 40 pins, switched to using a microSD card
slot, and had four USB ports instead of two). These original models all used the Broadcom
BCM2835 system on chip (SOC), consisting of a single core 700 MHz ARM11 and
VideoCore IV graphical processing unit (GPU).

The release of Raspberry Pi 2 Model B (also referred to as 2B) in 2015 introduced a new
Broadcom BCM2836 SOC, providing a quad-core 32-bit ARM Cortex A7 1.2 GHz processor
and GPU, with 1 GB of RAM. The improved SOC added support for Ubuntu and Windows
10 IoT. Finally, we had the latest Raspberry Pi 3 Model B, using another new Broadcom
BCM2837 SOC, which provides a quad-core 64-bit ARM Cortex-A53 and GPU, alongside
on-board Wi-Fi and Bluetooth.

Model A has always been targeted as a cut-down version. While having the same SOC as
Model B, there are limited connections consisting of a single USB port and no wired
network (LAN). Model A+ again added more GPIO pins and a microSD slot. However, the
RAM was later upgraded to 512 MB of RAM and again there was only a single USB port/no
LAN. The Broadcom BCM2835 SOC on Model A has not been updated so far (so is still a
single core ARM11); however, a Model 3A (most likely using the BCM2837).

The Pi Zero is an ultra-compact version of Raspberry Pi intended for embedded
applications where cost and space are a premium. It has the same 40-pin GPIO and microSD
card slot as the other models, but lacks the on-board display (CSI and DSI) connection. It
does still have HDMI (via a mini-HDMI) and a single micro USB on-the-go (OTG)
connection. Although not present in the first revision of the Pi Zero, the most recent model
also includes a CSI connection for the on-board camera.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[12]

Pi Zero was famously released in 2015 and was given away with
Raspberry Pi foundation's magazine The MagPi, giving the magazine the
benefit of being the first magazine to give away a computer on its cover!
This did make me rather proud since (as you may have read in my
biography at the start of this book) I was one of the founders of the
magazine.

The special model is known as the compute module. This takes the form of a 200-pin
SODIMM card. It is intended for industrial use or within commercial products, where all
the external interfaces would be provided by a host/motherboard, into which the module
would be inserted. Example products include the Slice Media Player (http:/ ​/​fiveninjas.
com) and the OTTO camera. The current module uses the BCM2835, although an updated
compute module (CM3).

The Raspberry Pi Wikipedia page provides a full list of the all different variants and their
specifications:
https:/​/​en.​wikipedia. ​org/ ​wiki/ ​Raspberry_ ​Pi#Specifications

Also, the Raspberry Pi product page gives you the details about the models available and
the accessories' specifications:
https://www.raspberrypi.org/products/

Which Pi to choose?
All sections of this book are compatible will all current versions of Raspberry Pi, but Model
3B is recommended as the best model to start with. This offers the best performance
(particularly useful for the GPU examples in Chapter 7, Creating 3D Graphics, and the
OpenCV examples used in Chapter 6, Detecting Edges and Contours in Images), lots of
connections, and built-in Wi-Fi, which can be very convenient.

http://fiveninjas.com
http://fiveninjas.com
http://fiveninjas.com
http://fiveninjas.com
http://fiveninjas.com
http://fiveninjas.com
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications%20
https://www.raspberrypi.org/products/

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[13]

Pi Zero is recommended for projects where you want low power usage or reduced
weight/size but do not need the full processing power of Model 3B. However, due to its
ultra-low cost, Pi Zero is ideal for deploying a completed project after you have developed
it.

Connecting to Raspberry Pi
There are many ways to wire up Raspberry Pi and use the various interfaces to view and
control content. For typical use, most users will require power, display (with audio), and a
method of input such as a keyboard and mouse. To access the internet, refer to the
Networking and connecting your Raspberry Pi to the internet via the LAN connector or Using built-
in Wi-Fi and Bluetooth on Raspberry Pi recipes.

Getting ready
Before you can use your Raspberry Pi, you will need an SD card with an operating system
installed or with the New Out Of Box System (NOOBS) on it, as discussed in the Using
NOOBS to set up your Raspberry Pi SD card recipe.

The following section will detail the types of devices you can connect to Raspberry Pi and,
importantly, how and where to plug them in.

As you will discover later, once you have your Raspberry Pi set up, you may decide to
connect remotely and use it through a network link, in which case you only need power
and a network connection. Refer to the following sections: Connecting remotely to Raspberry
Pi over the Network using VNC and Connecting Remotely to Raspberry Pi over the Network using
SSH (and X11 Forwarding).

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[14]

How to do it...
The layout of Raspberry Pi is shown in the following diagram:

The Raspberry Pi connection layout (Model 3 B, Model A+, and Pi Zero)

More information about the preceding figure is listed as follows:

Display: The Raspberry Pi supports the following three main display
connections; if both HDMI and composite video are connected, it will default to
HDMI only:

HDMI: For best results, use a TV or monitor that has an HDMI
connection, thus allowing the best resolution display (1080p) and
also digital audio output. If your display has a DVI connection, you
may be able to use an adapter to connect through the HDMI. There
are several types of DVI connection; some support analogue (DVI-
A), some digital (DVI-D), and some both (DVI-I). Raspberry Pi is
only able to provide a digital signal through the HDMI, so an
HDMI-to-DVI-D adapter is recommended (shown with a tick mark
in the following screenshot). This lacks the four extra analogue pins
(shown with a cross mark in the following screenshot), thus
allowing it to fit into both DVI-D and DVI-I type sockets:

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[15]

HDMI-to-DVI connection (DVI-D adaptor)

If you wish to use an older monitor (with a VGA connection), an
additional HDMI-to-VGA converter is required. Raspberry Pi also
supports a rudimentary VGA adaptor (VGA Gert666 Adaptor), which is
driven directly off of the GPIO pins. However, this does use up all but
four pins of the 40-pin header (older 26-pin models will not support the
VGA output):

HDMI-to-VGA adapter

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[16]

Analogue: An alternative display method is to use the analogue
composite video connection (via the phono socket); this can also be
attached to an S-Video or European SCART adapter. However, the
analogue video output has a maximum resolution of 640 x 480
pixels, so it is not ideal for general use:

3.5 mm phono analogue connections

When using the RCA connection or a DVI input, audio has to be
provided separately by the analogue audio connection. To simplify the
manufacturing process (by avoiding through-hole components), the Pi
Zero does not have analogue audio or an RCA socket for analogue video
(although they can be added with some modifications):

Direct Display DSI: A touch display produced by Raspberry Pi
Foundation will connect directly into the DSI socket. This can be
connected and used at the same time as the HDMI or analogue
video output to create a dual display setup.

Stereo analogue audio (all except Pi Zero): This provides an analogue audio
output for headphones or amplified speakers. The audio can be switched via
Raspberry Pi configuration tool on the desktop between analog (stereo socket)
and digital (HDMI), or via the command line using amixer or alsamixer.

To find out more information about a particular command in the
Terminal, you can use the following man command before the terminal
reads the manual (most commands should have one):

 man amixer

Some commands also support the --help option for more concise help,
shown as follows:

 amixer --help

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[17]

Network (excluding models A and Pi Zero): The network connection is
discussed in the Networking and connecting your Raspberry Pi to the internet via the
LAN connector recipe later in this chapter. If we use the Model A Raspberry Pi, it
is possible to add a USB network adapter to add wired or even wireless
networking (refer to the Networking and connecting your Raspberry Pi to the internet
via a USB Wi-Fi dongle recipe).
Onboard Wi-Fi and Bluetooth (Model 3 B only): The Model 3 B has built-in
802.11n Wi-Fi and Bluetooth 4.1; see the Using the built-in Wi-Fi and Bluetooth on
Raspberry Pi recipe.
USB (1x Model A/Zero, 2x Model 1 B, 4x Model 2 B and 3 B): Using a keyboard
and mouse:

Raspberry Pi should work with most USB keyboards and mice.
You can also use wireless mice and keyboards, which use RF
dongles. However, additional configuration is required for items
that use the Bluetooth dongles.
If there is a lack of power supplied by your power supply or the
devices are drawing too much current, you may experience the
keyboard keys appearing to stick, and, in severe cases, corruption
of the SD card.

USB power can be more of an issue with the early Model B revision 1
boards that were available prior to October 2012. They included additional
Polyfuses on the USB output and tripped if an excess of 140 mA was
drawn. The Polyfuses can take several hours or days to recover
completely, thus causing unpredictable behavior to remain even when the
power is improved.

You can identify a revision 1 board, as it lacks the four mounting holes
that are present in the later models.

Debian Linux (upon which Raspbian is based) supports many
common USB devices, such as flash storage drives, hard-disk
drives (external power may be required), cameras, printers,
Bluetooth, and Wi-Fi adapters. Some devices will be detected
automatically, while others will require drivers to be installed.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[18]

Micro USB power: The Raspberry Pi requires a 5V power supply that can
comfortably supply at least 1,000 mA (1,500 mA or more is recommended,
particularly with the more power-hungry Model 2 and Model 3) with a micro
USB connection. It is possible to power the unit using portable battery packs,
such as the ones suitable for powering or recharging tablets. Again, ensure that
they can supply 5V at 1,000 mA or over.

You should aim to make all other connections to Raspberry Pi before connecting the power.
However, USB devices, audio, and networks may be connected and removed while it is
running, without problems.

There's more...
In addition to the standard primary connections you would expect to see on a computer,
Raspberry Pi also has a number of other connections.

Secondary hardware connections
Each of the following connections provides additional interfaces for Raspberry Pi:

20 x 2 GPIO pin header (Model A+, B+, 2 B, 3 B, and Pi Zero): This is the main
40-pin GPIO header of Raspberry Pi used for interfacing directly with hardware
components. We use this connection in Chapters 6, Detecting Edges and Contours
in Images, Chapter 7, Creating 3D Graphics, Chapter 9, Using Python to Drive
Hardware, and Chapter 10, Sensing and Displaying Real-world Data. The recipes in
this book are also compatible with older models of Raspberry Pi that have a 13 x 2
GPIO pin header.
P5 8 x 2 GPIO pin header (Model 1 B revision 2.0 only): We do not use this in
the book.
Reset connection: This is present on later models (no pins fitted). A reset is
triggered when Pin 1 (reset) and Pin 2 (GND) are connected together. We use this
in the A controlled shutdown button recipe in Chapter 9, Using Python to Drive
Hardware.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[19]

GPU/LAN JTAG: The Joint Test Action Group (JTAG) is a programming and
debugging interface used to configure and test processors. These are present on
newer models as surface pads. A specialist JTAG device is required to use this
interface. We do not use this in the book.
Direct camera CSI: This connection supports Raspberry Pi Camera Module. Note
that the Pi Zero has a smaller CSI connector than the other models, so it requires a
different ribbon connector.
Direct Display DSI: This connection supports a directly connected display, such
as a 7-inch 800 x 600 capacitive touch screen.

Using NOOBS to set up your Raspberry Pi
SD card
The Raspberry Pi requires the operating system to be loaded onto an SD card before it starts
up. The easiest way to set up the SD card is to use NOOBS; you may find that you can buy
an SD card with NOOBS already loaded on it.

NOOBS provides an initial start menu that provides options to install several of the
available operating systems on to your SD card.

Getting ready
Since NOOBS creates a RECOVERY partition to keep the original installation images, an 8
GB SD card or larger is recommended. You will also need an SD card reader (experience has
shown that some built-in card readers can cause issues, so an external USB type reader is
recommended).

If you are using an SD card that you have used previously, you may need to reformat it to
remove any previous partitions and data. NOOBS expects the SD card to consist of a single
FAT32 partition.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[20]

If using Windows or macOS X, you can use the SD Association's formatter, as shown in the
following screenshot (available at https://www.sdcard.org/downloads/formatter_4/):

Getting rid of any partitions on the SD card, using SD formatter

From the Option Setting dialog box, set FORMAT SIZE ADJUSTMENT. This will remove
all the SD card partitions that were created previously.

If using Linux, you can use gparted to clear any previous partitions and reformat it as a
FAT32 partition.

The full NOOBS package (typically just over 1 GB) contains Raspbian, the most popular
Raspberry Pi operating system image built in. A lite version of NOOBS is also available that
has no preloaded operating systems (although a smaller initial download of 20 MB and a
network connection on Raspberry Pi are required to directly download the operating
system you intend to use).

NOOBS is available at http://www.raspberrypi.org/downloads, with the documentation
available at https://github.com/raspberrypi/noobs.

https://www.sdcard.org/downloads/formatter_4/
http://www.raspberrypi.org/downloads
https://github.com/raspberrypi/noobs

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[21]

How to do it...
By performing the following steps, we will prepare the SD card to run NOOBS. This will
then allow us to select and install the operating system we want to use:

Get your SD card ready.1.
On a freshly formatted or new SD card, copy the contents of the NOOBS_vX.zip2.
file. When it has finished copying, you should end up with something like the
following screenshot of the SD card:

NOOBS files extracted onto the SD card

The files may vary slightly with different versions of NOOBS, and the
icons displayed may be different on your computer.

You can now put the card into your Raspberry Pi, connect it to a keyboard and3.
display, and turn the power on. Refer to the Connecting to Raspberry Pi recipe for
details on what you need, and how to do this.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[22]

By default, NOOBS will display via the HDMI connection. If you have another type of
screen (or you don't see anything), you will need to manually select the output type by
pressing 1, 2, 3, or 4, according to the following functions:

Key 1 stands for the Standard HDMI mode (the default mode)
Key 2 stands for the Safe HDMI mode (alternative HDMI settings if the output
has not been detected)
Key 3 stands for Composite PAL (for connections made via the RCA analogue
video connection)
Key 4 stands for Composite NTSC (again, for connections via the RCA
connector)

This display setting will also be set for the installed operating system.

After a short while, you will see the NOOBS selection screen that lists the available
distributions (the offline version only includes Raspbian). There are many more
distributions that are available, but only the selected ones are available directly through the
NOOBS system. Click on Raspbian, as this is the operating system being used in this book.

Press Enter or click on Install OS, and confirm that you wish to overwrite all the data on
the card. This will overwrite any distributions previously installed using NOOBS but will
not remove the NOOBS system; you can return to it at any time by pressing Shift when you
turn the power on.

It will take around 20 to 40 minutes to write the data to the card depending on its speed.
When it completes and the Image Applied Successfully message appears, click on OK, and
Raspberry Pi will start to boot into Raspberry Pi Desktop.

How it works...
The purpose of writing the image file to the SD card in this manner is to ensure that the SD
card is formatted with the expected filesystem partitions and files required to correctly boot
the operating system.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[23]

When Raspberry Pi powers up, it loads some special code contained within the GPU's
internal memory (commonly referred to as binary blob by Raspberry Pi Foundation). The
binary blob provides the instructions required to read the BOOT partition on the SD card,
which (in the case of a NOOBS install) will load NOOBS from the RECOVERY partition. If at
this point Shift is pressed, NOOBS will load the recovery and installation menu. Otherwise,
NOOBS will begin loading the OS as specified by the preferences stored in the SETTINGS
partition.

When loading the operating system, it will boot via the BOOT partition, using the settings
defined in config.txt and options in cmdline.txt to finally load to the desktop on the
root partition. Refer to the following diagram:

NOOBS creates several partitions on the SD card to allow the installation of multiple
operating systems and to provide recovery

NOOBS allows the user to optionally install multiple operating systems on the same card
and provides a boot menu to choose between them (with an option to set a default value in
the event of a time-out period).

If you later add, remove, or re-install an operating system, ensure first that you make a copy
of any files, including system settings you wish to keep, as NOOBS may overwrite
everything on the SD card.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[24]

There's more...
When you power up Raspberry Pi for the first time directly, the desktop will be loaded. You
can configure the system settings using the Raspberry Pi Configuration menu (under the
Preferences menu on the Desktop or via the sudo raspi-config command). With this
menu, you can make changes to your SD card or set up your general preferences:

Changing the default user password
Ensure that you change the default password for the pi user account once you have logged
in, as the default password is well known. This is particularly important if you connect to
public networks. You can do this with the passwd command, as shown in the following
screenshot:

Setting a new password for the Pi user

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[25]

This provides greater confidence because if you later connect to another network, only you
will be able to access your files and take control of your Raspberry Pi.

Ensuring that you shut down safely
To avoid any data corruption, you must ensure that you correctly shut down Raspberry Pi
by issuing a shutdown command, as follows:

sudo shutdown -h now

Or, use this one:

sudo halt

You must wait until this command completes before you remove power from Raspberry Pi
(wait for at least 10 seconds after the SD card access light has stopped flashing).

You can also restart the system with the reboot command, as follows:

sudo reboot

Preparing an SD card manually
An alternative to using NOOBS is to manually write the operating system image to the SD
card. While this was originally the only way to install the operating system, some users still
prefer it. It allows the SD cards to be prepared before they are used in Raspberry Pi. It can
also provide easier access to startup and configuration files, and it leaves more space
available for the user (unlike NOOBS, a RECOVERY partition isn't included).

The default Raspbian image actually consists of two partitions, BOOT and SYSTEM, which
will fit into a 2 GB SD card (4 GB or more is recommended).

You need a computer running Windows/Mac OS X/Linux (although it is possible to use
another Raspberry Pi to write your card; be prepared for a very long wait).

Download the latest version of the operating system you wish to use. For the purpose of
this book, it is assumed you are using the latest version of Raspbian available at
http://www.raspberrypi.org/downloads.

Perform the following steps depending on the type of computer you plan to use to write to
the SD card (the .img file you need is sometimes compressed, so before you start, you will
need to extract the file).

http://www.raspberrypi.org/downloads

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[26]

The following steps are for Windows:

Ensure that you have downloaded the Raspbian image, as previously detailed,1.
and extracted it to a convenient folder to obtain an .img file.
Obtain the Win32DiskImager.exe file available at2.
http://www.sourceforge.net/projects/win32diskimager.
Run Win32DiskImager.exe from your downloaded location.3.
Click on the folder icon and navigate to the location of the .img file and click on4.
Save.
If you haven't already done so, insert your SD card into your card reader and5.
plug it into your computer.
Select the Device drive letter that corresponds to your SD card from the small6.
drop-down box. Double-check that this is the correct device (as the program will
overwrite whatever is on the device when you write the image).

The drive letter may not be listed until you select a source image file.

Finally, click on the Write button and wait for the program to write the image to7.
the SD card, as shown in the following screenshot:

Manually writing operating system images to the SD card, using Disk Imager

Once completed, you can exit the program. Your SD card is ready.8.

http://www.sourceforge.net/projects/win32diskimager

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[27]

The following steps should work for the most common Linux distributions, such as Ubuntu
and Debian:

Using your preferred web browser, download the Raspbian image and save it in1.
a suitable place.
Extract the file from the file manager or locate the folder in the terminal and2.
unzip the .img file with the following command:

unzip filename.zip

If you haven't already done so, insert your SD card into your card reader and3.
plug it into your computer.
Use the df -h command and identify the sdX identifier for the SD card. Each4.
partition will be displayed as sdX1, sdX2, and so on, where X will be a, b, c, d,
and so on for the device ID.
Ensure that all the partitions on the SD card are unmounted using the5.
umount /dev/sdXn command for each partition, where sdXn is the partition
being unmounted.
Write the image file to the SD card, with the following command:6.

sudo dd if=filename.img of=/dev/sdX bs=4M

The process will take some time to write to the SD card, returning to the Terminal7.
prompt when complete.
Unmount the SD card before removing it from the computer, using the following8.
command:

umount /dev/sdX1

The following steps should work for most of the versions of OS X:

Using your preferred web browser, download the Raspbian image and save it1.
somewhere suitable.
Extract the file from the file manager or locate the folder in the terminal and2.
unzip the .img file, with the following command:

unzip filename.zip

If you haven't already done so, insert your SD card into your card reader and3.
plug it into your computer.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[28]

Use the diskutil list command and identify the disk# identifier for the SD4.
card. Each partition will be displayed as disk#s1, disk#s2, and so on, where # will
be 1, 2, 3, 4, and so on, for the device ID.

If rdisk# is listed, use this for faster writing (this uses a raw path and skips
data buffering).

Ensure that the SD card is unmounted using the unmountdisk /dev/diskX5.
command, where diskX is the device being unmounted.
Write the image file to the SD card, with the following command:6.

sudo dd if=filename.img of=/dev/diskX bs=1M

The process will take some time to write to the SD card, returning to the Terminal7.
prompt when complete.
Unmount the SD card before removing it from the computer, using the8.
following command:

unmountdisk /dev/diskX

Refer to the following diagram:

The boot process of a manually installed OS image

Expanding the system to fit in your SD card
A manually written image will be of a fixed size (usually made to fit the smallest-sized SD
card possible). To make full use of the SD card, you will need to expand the system
partition to fill the remainder of the SD card. This can be achieved using the Raspberry Pi
Configuration tool.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[29]

Select Expand Filesystem, as shown in the following screenshot:

Raspberry Pi Configuration tool

Accessing the RECOVERY/BOOT partition
Windows and macOS X do not support the ext4 format, so when you read the SD card,
only the File Allocation Table (FAT) partitions will be accessible. In addition, Windows
only supports the first partition on an SD card, so if you've installed NOOBS, only the
RECOVERY partition will be visible. If you've written your card manually, you will be able to
access the BOOT partition.

The data partition (if you installed one via NOOBS) and the root partition are in ext4
format and won't usually be visible on non-Linux systems.

If you do need to read files from the SD card using Windows, a freeware
program, Linux Reader (available at
www.diskinternals.com/linux-reader) can provide read-only access to
all of the partitions on the SD card.

https://www.diskinternals.com/linux-reader

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[30]

Access the partitions from Raspberry Pi. To view the currently mounted partitions, use df,
as shown in the following screenshot:

The result of the df command

To access the BOOT partition from within Raspbian, use the following command:

cd /boot/

To access the RECOVERY or data partition, we have to mount it by performing the
following steps:

Determine the name of the partition as the system refers to it by listing all the1.
partitions, even the unmounted ones. The sudo fdisk -l command lists the
partitions, as shown in the following screenshot:

NOOBS installation and data partition

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[31]

The following table shows the names of partitions and their meanings

Partition name Meaning

mmcblk0p1 (VFAT) RECOVERY

mmcblk0p2 (Extended partition) contains (root, data, BOOT)

mmcblk0p5 (ext4) root

mmcblk0p6 (VFAT) BOOT

mmcblk0p7 (ext4) SETTINGS

If you have installed additional operating systems on the same card, the partition
identifiers shown in the preceding table will be different.

Create a folder and set it as the mount point for the partition; for the RECOVERY2.
partition, use the following command:

mkdir ~/recovery
sudo mount -t vfat /dev/mmcblk0p1 ~/recovery

To ensure that they are mounted each time the system is started, perform the following
steps:

Add the sudo mount commands to /etc/rc.local before exit 0. If you have1.
a different username, you will need to change pi to match:

sudo nano /etc/rc.local
sudo mount -t vfat /dev/mmcblk0p1 /home/pi/recovery

Save and exit by pressing Ctrl + X, Y, and Enter.2.

Commands added to /etc/rc.local will be run for any user who logs
on to Raspberry Pi. If you only want the drive to be mounted for the
current user, the commands can be added to .bash_profile instead.

If you have to install additional operating systems on the same card, the partition identifiers
shown here will be different.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[32]

Using the tools to back up your SD card in case of
failure
You can use Win32 Disk Imager to make a full backup image of your SD card by inserting
your SD card into your reader, starting the program, and creating a filename to store the
image in. Simply click on the Read button instead to read the image from the SD card and
write it to a new image file.

To make a backup of your system, or to clone to another SD card using Raspberry Pi, use
the SD Card Copier (available from the desktop menu via the Accessories | SD Card
Copier).

Insert an SD card into a card reader into a spare USB port of Raspberry Pi and select the
new storage device, as shown in the following screenshot:

SD Card Copier program

Before continuing, the SD Card Copier will confirm that you wish to format and overwrite
the target device and, if there is sufficient space, make a clone of your system.

The dd command can similarly be used to back up the card, as follows:

For Linux, replacing sdX with your device ID, use this command:

sudo dd if=/dev/sdX of=image.img.gz bs=1M

For OS X, replacing diskX with your device ID, use the following command:

sudo dd if=/dev/diskX of=image.img.gz bs=1M

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[33]

You can also use gzip and split to compress the contents of the card and split
them into multiple files, if required, for easy archiving, as follows:

sudo dd if=/dev/sdX bs=1M | gzip -c | split -d -b 2000m -
image.img.gz

To restore the split image, use the following command:

sudo cat image.img.gz* | gzip -dc | dd of=/dev/sdX bs=1M

Networking and connecting your Raspberry
Pi to the internet via an Ethernet port, using
a CAT6 Ethernet cable
The simplest way to connect Raspberry Pi to the internet is by using the built-in LAN
connection on the Model B. If you are using a Model A Raspberry Pi, a USB-to-LAN adapter
can be used (refer to the There's more... section of the Networking and connecting your
Raspberry Pi to the internet via a USB Wi-Fi dongle recipe for details of how to configure this).

Getting ready
You will need access to a suitable wired network, which will be connected to the internet,
and a standard network cable (with an RJ45 type connector for connecting to Raspberry Pi).

How to do it...
Many networks connect and configure themselves automatically using the Dynamic Host
Configuration Protocol (DHCP), which is controlled by the router or switch. If this is the
case, simply plug the network cable into a spare network port on your router or network
switch (or wall network socket if applicable).

Alternatively, if a DHCP server is not available, you shall have to configure the settings
manually (refer to the There's more... section for details).

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[34]

You can confirm this is functioning successfully with the following steps:

Ensure that the two LEDs on either side of Raspberry Pi light up (the left orange1.
LED indicates a connection and the green LED on the right shows activity by
flashing). This will indicate that there is a physical connection to the router and
that the equipment is powered and functioning.
Test the link to your local network using the ping command. First, find out the IP2.
address of another computer on the network (or the address of your router,
perhaps, often 192.168.0.1 or 192.168.1.254). Now, on the Raspberry Pi
Terminal, use the ping command (the -c 4 parameter is used to send just four
messages; otherwise, press Ctrl + C to stop) to ping the IP address, as follows:

sudo ping 192.168.1.254 -c 4

Test the link to the internet (this will fail if you usually connect to the internet3.
through a proxy server) as follows:

sudo ping www.raspberrypi.org -c 4

Finally, you can test the link back to Raspberry Pi by discovering the4.
IP address using hostname -I on Raspberry Pi. You can then use the ping
command on another computer on the network to ensure it is accessible (using
Raspberry Pi's IP address in place of www.raspberrypi.org). The Windows
version of the ping command will perform five pings and stop automatically,
and will not need the -c 4 option.

If the aforementioned tests fail, you will need to check your connections and then confirm
the correct configuration for your network.

There's more...
If you find yourself using your Raspberry Pi regularly on the network, you won't want to
have to look up the IP address each time you want to connect to it.

https://www.raspberrypi.org/

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[35]

On some networks, you may be able to use Raspberry Pi's hostname instead of its IP
address (the default is raspberrypi). To assist with this, you may need some additional
software, such as Bonjour, to ensure hostnames on the network are correctly registered. If
you have macOS X, you will have Bonjour running already.

On Windows, you can either install iTunes (if you haven't got it), which also includes the
service, or you can install it separately (via the Apple Bonjour Installer available from
https:/​/​support. ​apple. ​com/ ​kb/ ​DL999). Then you can use the hostname, raspberrypi or
raspberrypi.local, to connect to Raspberry Pi over the network. If you need to change
the hostname, then you can do so with the Raspberry Pi configuration tool, shown
previously.

Alternatively, you may find it helpful to fix the IP address to a known value by manually
setting the IP address. However, remember to switch it back to use DHCP when connecting
to another network.

Some routers will also have an option to set a Static IP DHCP address, so the same address
is always given to Raspberry Pi (how this is set will vary depending on the router itself).

Knowing your Raspberry Pi's IP address or using the hostname is particularly useful if you
intend to use one of the remote access solutions described later on, which avoids the need
for a display.

Using built-in Wi-Fi and Bluetooth on
Raspberry Pi
Many home networks provide a wireless network over Wi-Fi; if you have Raspberry Pi 3,
then you can make use of the on-board Broadcom Wi-Fi to connect to it. Raspberry Pi 3 also
supports Bluetooth, so you can connect most standard Bluetooth devices and use them like
you would on any other computer.

This method should also work for any supported USB Wi-Fi and Bluetooth devices; see the
Networking and connecting your Raspberry Pi to the internet via a USB Wi-Fi dongle recipe for
extra help on identifying devices and installing firmware (if required).

https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[36]

Getting ready
The latest version of Raspbian includes helpful utilities to quickly and easily configure your
Wi-Fi and Bluetooth through the graphical interface.

Note: If you need to configure the Wi-Fi via the command line, then see
the Networking and connecting your Raspberry Pi to the internet via a USB Wi-
Fi dongle recipe for details.

Wi-Fi and Bluetooth configuration applications

You can use the built-in Bluetooth to connect a wireless keyboard, a mouse, or even wireless
speakers. This can be exceptionally helpful for projects where additional cables and wires
are an issue, such as robotic projects, or when Raspberry Pi is installed in hard-to-reach
locations (acting as a server or security camera).

How to do it...
Here are the various methods.

Connecting to your Wi-Fi network
To configure your Wi-Fi connection, click on the networking symbol to list the local
available Wi-Fi networks:

Wi-Fi listing of the available access points in the area

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[37]

Select the required network (for example, Demo) and, if required, enter your password (also
known as a Pre Shared Key):

Providing the password for the access point

After a short while, you should see that you have connected to the network and the icon
will change to a Wi-Fi symbol. If you encounter problems, ensure you have the correct
password/key:

Successful connection to an access point

That is it; it's as easy as that!

You can now test your connection and ensure it is working by using the web browser to
navigate to a website or by using the following command in the terminal:

sudo ping www.raspberrypi.com

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[38]

Connecting to Bluetooth devices
To start, we need to put the Bluetooth device into discoverable mode by clicking on the
Bluetooth icon and selecting Make Discoverable. You will also need to make the device
you want to connect to discoverable and ready to pair; this may vary from device to device
(such as pressing a pairing button):

Setting the Bluetooth up as discoverable

Next, select Add Device... and select the target device and Pair:

Selecting and pairing the required device

The pairing process will then start; for example, the BTKB-71DB keyboard will need the
pairing code 467572 to be entered onto the keyboard for the pairing to complete. Other
devices may use default pairing codes, often set to 0000, 1111, 1234, or similar:

Following the instructions to pair the device with the required pairing code

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[39]

Once the process has completed, the device will be listed and will connect automatically
each time the devices are present and booted.

Configuring your network manually
If your network does not include a DHCP server or it is disabled (typically, these are built
into most modern ADSL/cable modems or routers), you may need to configure your
network settings manually.

Getting ready
Before you start, you will need to determine the network settings for your network.

You will need to find out the following information from your router's settings or another
computer connected to the network:

IPv4 address: This address will need to be selected to be similar to other
computers on the network (typically, the first three numbers should match, that
is, 192.168.1.X if netmask is 255.255.255.0), but it should not already be
used by another computer. However, avoid x.x.x.255 as the last address, since
this is reserved as a broadcast address.
Subnet mask: This number determines the range of addresses the computer will
respond to (for a home network, it is typically 255.255.255.0, which allows up
to 254 addresses). This is also sometimes referred to as the netmask.
Default gateway address: This address is usually your router's IP address,
through which the computers connect to the internet.
DNS servers: The Domain Name Service (DNS) server converts names into IP
addresses by looking them up. Usually, they will already be configured on your
router, in which case you can use your router's address. Alternatively, your
Internet Service Provider (ISP) may provide some addresses, or you can use
Google's public DNS servers at the addresses 8.8.8.8 and 8.8.4.4. These are
also called nameservers in some systems.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[40]

For Windows, you can obtain this information by connecting to the internet and running
the following command:

ipconfig /all

Locate the active connection (usually called Local Area Connection 1 or similar if you
are using a wired connection, or if you are using Wi-Fi, it is called a wireless network
connection) and find the information required, as follows:

The ipconfig/all command shows useful information about your network settings

For Linux and macOS X, you can obtain the required information with the following
command (note that it is ifconfig rather than ipconfig):

ifconfig

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[41]

The DNS servers are called nameservers and are usually listed in the resolv.conf file.
You can use the less command as follows to view its contents (press Q to quit when you
have finished viewing it):

less /etc/resolv.conf

How to do it...
To set the network interface settings, edit /etc/network/interfaces using the
following code:

sudo nano /etc/network/interfaces

Now perform the following steps:

We can add the details for our particular network, the IP address number we1.
want to allocate to it, the netmask address of the network, and the gateway
address, as follows:

iface eth0 inet static
 address 192.168.1.10
 netmask 255.255.255.0
 gateway 192.168.1.254

Save and exit by pressing Ctrl + X, Y, and Enter.2.
To set the name servers for DNS, edit /etc/resolv.conf using the following3.
code:

sudo nano /etc/resolv.conf

Add the addresses for your DNS servers as follows:4.

nameserver 8.8.8.8
nameserver 8.8.4.4

Save and exit by pressing Ctrl + X, Y, and Enter.5.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[42]

There's more...
You can configure the network settings by editing cmdline.txt in the BOOT partition and
adding settings to the startup command line with ip.

The ip option takes the following form:

ip=client-ip:nfsserver-ip:gw-ip:netmask:hostname:device:autoconf

The client-ip option is the IP address you want to allocate to Raspberry Pi
The gw-ip option will set the gateway server address if you need to set it
manually
The netmask option will directly set the netmask of the network
The hostname option will allow you to change the default raspberrypi
hostname
The device option allows you to specify a default network device if more than
one network device is present
The autoconf option allows the automatic configuration to be switched on or off

Networking directly to a laptop or computer
It is possible to connect Raspberry Pi LAN port directly to a laptop or computer using a
single network cable. This will create a local network link between the computers, allowing
all the things you can do if connected to a normal network without the need for a hub or a
router, including connection to the internet, if Internet Connection Sharing (ICS) is used,
as follows:

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[43]

Make use of Raspberry Pi, with just a network cable, a standard imaged
SD card, and power.

ICS allows Raspberry Pi to connect to the internet through another computer. However,
some additional configuration is required for the computers to communicate across the link,
as Raspberry Pi does not automatically allocate its own IP address.

We will use the ICS to share a connection from another network link, such as a built-in Wi-
Fi on a laptop. Alternatively, we can use a direct network link (refer to the Direct network
link section under the There's more... section) if the internet is not required or if the computer
has only a single network adapter.

Although this setup should work for most computers, some setups are
more difficult than the others. For additional information, see
www.pihardware.com/guides/direct-network-connection.

Getting ready
You will need Raspberry Pi with power and a standard network cable.

Raspberry Pi Model B LAN chip includes Auto-MDIX (Automatic
Medium-Dependent Interface Crossover). Removing the need to use a
special crossover cable (a special network cable wired so that the transmit
lines connect to receive lines for direct network links), the chip will decide
and change the setup as required automatically.

It may also be helpful to have a keyboard and monitor available to perform additional
testing, particularly if this is the first time you have tried this.

To ensure that you can restore your network settings to their original values, you should
check whether it has a fixed IP address or the network is configured automatically.

http://www.pihardware.com/guides/direct-network-connection

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[44]

To check the network settings on Windows 10, perform these steps:

Open Settings from the start menu, then select Network and Internet, then1.
Ethernet, and click on Change adapter options from the list of Related Settings.

To check the network settings on Windows 7 and Vista, perform the following steps:

Open Network and Sharing Center from the Control Panel and click on Change1.
adapter settings on the left-hand side.
To check the network settings on Windows XP, open Network Connections from2.
the Control Panel.
Find the item that relates to your wired network adapter (by default, this is3.
usually called Ethernet or Local Area Connection, as shown in the following
screenshot):

Locating your wired network connection

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[45]

Right-click on its icon and click on Properties. A dialog box will appear, as shown4.
in this screenshot:

Selecting the TCP/IP properties and checking the settings

Select the item called Internet Protocol (TCP/IP) or Internet Protocol Version 45.
(TCP/IPv4) if there are two versions (the other is Version 6), and click on the
Properties button.
You can confirm that your network is set by using automatic settings or a specific6.
IP address (if so, take note of this address and the remaining details as you may
want to revert the settings at a later point).

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[46]

To check the network settings on Linux, perform the following steps:

Open the Network Settings dialog box and select Configure Interface. Refer to1.
the following screenshot:

Linux Network Settings dialog box

If any settings are manually set, ensure you take note of them so that you can2.
restore them later if you want.

To check the network settings on macOS X, perform the following steps:

Open System Preferences and click on Networks. You can then confirm whether1.
the IP address is allocated automatically (using DHCP) or not.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[47]

Ensure that if any settings are manually set you take note of them so you can2.
restore them later if you want to. Refer to the following screenshot:

OS X Network Settings dialog box

If you just need to access or control Raspberry Pi without an internet connection, refer to the
Direct network link section in the There's more...section.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[48]

How to do it...
First, we need to enable ICS on our network devices. In this case, we will be sharing the
internet, which is available on Wireless Network Connection through the Ethernet
connection to Raspberry Pi.

For Windows, perform these steps:

Return to the list of network adapters, right-click on the connection that links1.
to the internet (in this case, the WiFi or Wireless Network Connection device),
and click on Properties:

Locating your wired network connection

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[49]

At the top of the window, select the second tab (in Windows XP, it is called2.
Advanced; in Windows 7 and Windows 10, it is called Sharing), as shown in the
following screenshot:

Selecting the TCP/IP properties and noting the allocated IP address

In the Internet Connection Sharing section, check the box for Allow other3.
network users to connect through this computer's Internet connection (if
present, use the drop-down box to select the Home networking connection:
option as Ethernet or Local Area Connection). Click on OK and confirm whether
you previously had a fixed IP address set for Local Area Connection.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[50]

For macOS X, to enable the ICS, perform the following steps:

Click on System Preferences and then click on Sharing.1.
Click on Internet Sharing and select the connection from which we want to share2.
the internet (in this case, it will be the Wi-Fi AirPort). Then select the connection
that we will connect Raspberry Pi to (in this case, Ethernet).

For Linux to enable the ICS, perform the following steps:

From the System menu, click on Preferences and then on Network Connections.1.
Select the connection you want to share (in this case, Wireless) and click on Edit
or Configure. In the IPv4 Settings tab, change the Method option to Shared to
other computers.

The IP address of the network adapter will be the Gateway IP address to be used on
Raspberry Pi, and will be assigned an IP address within the same range (it will all match,
except the last number). For instance, if the computer's wired connection now has
192.168.137.1, the Gateway IP of Raspberry Pi will be 192.168.137.1 and its own IP
address might be set to 192.168.137.10.

Fortunately, thanks to updates in the operating system, Raspbian will now automatically
allocate a suitable IP address to join the network and set the gateway appropriately.
However, unless we have a screen attached to Raspberry Pi or scan for devices on our
network, we do not know what IP address Raspberry PI has given itself.

Fortunately (as mentioned in the Networking and connecting your Raspberry Pi to the internet
via the LAN connector recipe in the There's more... section), Apple's Bonjour software will
automatically ensure hostnames on the network are correctly registered. As stated
previously, if you have a Mac OS X, you will have Bonjour running already. On Windows,
you can either install iTunes, or you can install it separately (available from https:/ ​/
support.​apple.​com/ ​kb/ ​DL999). By default, the hostname raspberrypi can be used.

We are now ready to test the new connection, as follows:

Connect the network cable to Raspberry Pi and the computer's network port, and1.
then power up Raspberry Pi, ensuring that you have re-inserted the SD card if
you previously removed it. To reboot Raspberry Pi, if you edited the file there,
use sudo reboot to restart it.
Allow a minute or two for Raspberry Pi to fully power up. We can now test the2.
connection.

https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999
https://support.apple.com/kb/DL999

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[51]

From the connected laptop or computer, test the connection by pinging with the3.
hostname of Raspberry Pi, as shown in the following command (on Linux or OS
X, add -c 4 to limit to four messages or press Ctrl + C to exit):

ping raspberrypi

Hopefully, you will find you have a working connection and receive replies from the
Raspberry Pi.

If you have a keyboard and a screen connected to Raspberry Pi, you can perform the
following steps:

You can ping the computer in return (for example, 192.168.137.1) from1.
Raspberry Pi Terminal as follows:

sudo ping 192.168.137.1 -c 4

You can test the link to the internet by using ping to connect to a well-known2.
website as follows, assuming you do not access the internet through a proxy
server:

sudo ping www.raspberrypi.org -c 4

If all goes well, you will have full internet available through your computer to Raspberry Pi,
allowing you to browse the web as well as update and install new software.

If the connection fails, perform the following steps:

Repeat the process, ensuring that the first three sets of numbers match with1.
Raspberry Pi and the network adapter IP addresses.
You can also check that when Raspberry Pi powers up, the correct IP address is2.
being set using the following command:

hostname -I

Check your firewall settings to ensure your firewall is not blocking internal3.
network connections.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[52]

How it works...
When we enable ICS on the primary computer, the operating system will automatically
allocate a new IP address to the computer. Once connected and powered up, Raspberry Pi
will set itself to a compatible IP address and use the primary computer IP address as an
Internet Gateway.

By using Apple Bonjour, we are able to use raspberrypi hostname to connect to
Raspberry Pi from the connected computer.

Finally, we check whether the computer can communicate over the direct network link to
Raspberry Pi, back the other way, and also through to the internet.

There's more...
If you do not require the internet on Raspberry Pi, or your computer has only a single
network adapter, you can still connect the computers together through a direct network
link. Refer to the following diagram:

Connecting and using Raspberry Pi with just a network cable, a standard imaged SD card, and power

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[53]

Direct network link
For a network link to work between two computers, they need to be using the same address
range. The allowable address range is determined by the subnet mask (for example,
255.255.0.0 or 255.255.255.0 would mean all IP addresses should be the same except
for the last two, or just the last number in the IP address; otherwise, they will be filtered).

To use a direct link without enabling ICS, check the IP settings of the adapter you are
going to connect to and determine whether it is automatically allocated or fixed to a
specific IP address.

Most PCs connected directly to another computer will allocate an IP address in the range
169.254.X.X (with a subnet mask of 255.255.0.0). However, we must ensure that the
network adaptor is set to Obtain an IP address automatically.

For Raspberry Pi to be able to communicate through the direct link, it needs to have an IP
address in the same address range, 169.254.X.X. As mentioned before, Raspberry Pi will
automatically give itself a suitable IP address and connect to the network.

Therefore, assuming we have Apple Bonjour (mentioned previously), we only need to
know the hostname given to Raspberry Pi (raspberrypi).

See also
If you don't have a keyboard or screen connected to Raspberry Pi, you can use this network
link to remotely access Raspberry Pi just as you would on a normal network (just use the
new IP address you have set for the connection). Refer to the Connecting remotely to
Raspberry Pi over the network using VNC and Connecting remotely to Raspberry Pi over the
network using SSH (and X11 Forwarding) recipes.

There is lots of additional information available on my website, https:/ ​/​pihw. ​wordpress.
com/​guides/​direct- ​network- ​connection, including additional troubleshooting tips and
several other ways to connect to your Raspberry Pi without needing a dedicated screen and
keyboard.

https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection
https://pihw.wordpress.com/guides/direct-network-connection

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[54]

Networking and connecting your Raspberry
Pi to the internet via a USB Wi-Fi dongle
By adding a USB Wi-Fi dongle to Raspberry Pi's USB port, even models without built-in
Wi-Fi can connect to and use the Wi-Fi network.

Getting ready
You will need to obtain a suitable USB Wi-Fi dongle, and, in some cases, you may require a
powered USB hub (this will depend on the hardware version of Raspberry Pi you have and
the quality of your power supply). General suitability of USB Wi-Fi dongles will vary
depending on the chipset that is used inside and the level of Linux support available. You
may find that some USB Wi-Fi dongles will work without installing additional drivers (in
which case you can jump to configuring it for the wireless network).

A list of supported Wi-Fi adapters is available at http:/ ​/​elinux. ​org/ ​RPi_​USB_ ​Wi- ​Fi_
Adapters.

You will need to ensure that your Wi-Fi adapter is also compatible with your intended
network; for example, it supports the same types of signals 802.11bgn and the encryptions
WEP, WPA, and WPA2 (although most networks are backward compatible).

You will also need the following details of your network:

Service set identifier (SSID): This is the name of your Wi-Fi network and should
be visible if you use the following command:

sudo iwlist scan | grep SSID

Encryption type and key: This value will be None, WEP, WPA, or WPA2, and
the key will be the code you normally enter when you connect your phone or
laptop to the wireless network (sometimes, it is printed on the router).

http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[55]

You will require a working internet connection (that is, wired Ethernet) to download the
required drivers. Otherwise, you may be able to locate the required firmware files (they will
be the .deb files) and copy them to Raspberry Pi (that is, via a USB flash drive; the drive
should be automatically mounted if you are running in desktop mode). Copy the file to a
suitable location and install it, using the following command:

sudo apt-get install firmware_file.deb

How to do it...
This task has two stages: first, we identify and install firmware for the Wi-Fi adapter, and
then we need to configure it for the wireless network.

We will try to identify the chipset of your Wi-Fi adapter (the part that handles the
connection); this may not match the actual manufacturer of the device.

An approximate list of supported firmware can be found with this command:

sudo apt-cache search wireless firmware

This will produce results similar to the following output (disregarding any results without
firmware in the package title):

atmel-firmware - Firmware for Atmel at76c50x wireless networking chips.
firmware-atheros - Binary firmware for Atheros wireless cards
firmware-brcm80211 - Binary firmware for Broadcom 802.11 wireless cards
firmware-ipw2x00 - Binary firmware for Intel Pro Wireless 2100, 2200 and
2915
firmware-iwlwifi - Binary firmware for Intel PRO/Wireless 3945 and 802.11n
cards
firmware-libertas - Binary firmware for Marvell Libertas 8xxx wireless
cards
firmware-ralink - Binary firmware for Ralink wireless cards
firmware-realtek - Binary firmware for Realtek wired and wireless network
adapters
libertas-firmware - Firmware for Marvell's libertas wireless chip series
(dummy package)
zd1211-firmware - Firmware images for the zd1211rw wireless driver

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[56]

To find out the chipset of your wireless adapter, plug the Wi-Fi-adapter into Raspberry Pi,
and from the terminal, run the following command:

dmesg | grep 'Product:|Manufacturer:'

This command stitches together two commands into one. First, dmesg
displays the message buffer of the kernel (this is an internal record of
system events that have occurred since power on, such as detected USB
devices). You can try the command on its own to observe the complete
output.

The | (pipe) sends the output to the grep command; grep
'Product:|Manufacturer' checks it and only returns lines that contain
Product or Manufacturer (so we should get a summary of any items
that are listed as Product and Manufacturer). If you don't find anything
or want to see all your USB devices, try the grep 'usb' command
instead.

This should return something similar to the following output—in this case, I've got a ZyXEL
device, which has a ZyDAS chipset (a quick Google search reveals that zd1211-firmware is
for ZyDAS devices):

[1.893367] usb usb1: Product: DWC OTG Controller
[1.900217] usb usb1: Manufacturer: Linux 3.6.11+ dwc_otg_hcd
[3.348259] usb 1-1.2: Product: ZyXEL G-202
[3.355062] usb 1-1.2: Manufacturer: ZyDAS

Once you have identified your device and the correct firmware, you can install it as you
would any other package available through apt-get (where zd1211-firmware can be
replaced with your required firmware). This is shown in the following command:

sudo apt-get install zd1211-firmware

Remove and reinsert the USB Wi-Fi dongle to allow it to be detected and the drivers loaded.
We can now test whether the new adapter is correctly installed with ifconfig. The output
is shown as follows:

wlan0 IEEE 802.11bg ESSID:off/any
 Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm
 Retry long limit:7 RTS thr:off Fragment thr:off
 Power Management:off

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[57]

The command will show the network adapters present on the system. For Wi-Fi, this is
usually wlan0 or wlan1 and so on if you have installed more than one. If not, double-check
the selected firmware and perhaps try an alternative or check on the site for troubleshooting
tips.

Once we have the firmware installed for the Wi-Fi adapter, we will need to configure it for
the network we wish to connect to. We can use the GUI as shown in the previous recipe, or
we can manually configure it through the Terminal, as shown in the following steps:

We will need to add the wireless adapter to the list of network interfaces, which1.
is set in /etc/network/interfaces, as follows:

sudo nano -c /etc/network/interfaces

Using the previous wlan# value in place of wlan0 if required, add the following
command:

allow-hotplug wlan0
iface wlan0 inet manual
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

When the changes have been made, save and exit by pressing Ctrl + X, Y, and
Enter.

We will now store the Wi-Fi network settings of our network in the2.
wpa_supplicant.conf file (don't worry if your network doesn't use the wpa
encryption; it is just the default name for the file):

sudo nano -c /etc/wpa_supplicant/wpa_supplicant.conf

It should include the following:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=GB

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[58]

The network settings can be written within this file as follows (that is, if the SSID
is set as theSSID):

If no encryption is used, use this code:

network={
 ssid="theSSID"
 key_mgmt=NONE
}

With the WEP encryption (that is, if the WEP key is set as
theWEPkey), use the following code:

network={
 ssid="theSSID"
 key_mgmt=NONE
 wep_key0="theWEPkey"
}

For the WPA or WPA2 encryption (that is, if the WPA key is set as
theWPAkey), use the following code:

network={
 ssid="theSSID"
 key_mgmt=WPA-PSK
 psk="theWPAkey"
}

You can enable the adapter with the following command (again, replace wlan0 if3.
required):

sudo ifup wlan0

Use the following command to list the wireless network connections:

iwconfig

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[59]

You should see your wireless network connected with your SSID listed, as
follows:

wlan0 IEEE 802.11bg ESSID:"theSSID"
 Mode:Managed Frequency:2.442 GHz Access Point:
 00:24:BB:FF:FF:FF
 Bit Rate=48 Mb/s Tx-Power=20 dBm
 Retry long limit:7 RTS thr:off Fragment thr:off
 Power Management:off
 Link Quality=32/100 Signal level=32/100
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:15 Missed beacon:0

If not, adjust your settings and use sudo ifdown wlan0 to switch off the
network interface, and then sudo ifup wlan0 to switch it back on. This will
confirm that you have successfully connected to your Wi-Fi network.

Finally, we will need to check whether we have access to the internet. Here, we4.
have assumed that the network is automatically configured with DHCP and no
proxy server is used. If not, refer to the Connecting to the internet through a proxy
server recipe.

Unplug the wired network cable, if still connected, and see whether you can ping
the Raspberry Pi website, as follows:

sudo ping www.raspberrypi.org

If you want to quickly know the IP address currently in use by Raspberry
Pi, you can use hostname -I, or to find out which adapter is connected to
which IP address, use ifconfig.

There's more...
The Model A version of Raspberry Pi does not have a built-in network port, so to get a
network connection, a USB network adapter will have to be added (either a Wi-Fi dongle, as
explained in the preceding section, or a LAN-to-USB adapter, as described in the following
section).

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[60]

Using USB wired network adapters
Just like USB Wi-Fi, the adapter support will depend on the chipset used and the drivers
available. Unless the device comes with Linux drivers, you may have to search the internet
to obtain the suitable Debian Linux drivers.

If you find a suitable .deb file, you can install it with the following command:

sudo apt-get install firmware_file.deb

Also, check using ifconfig, as some devices will be supported automatically, appear as
eth1 (or eth0 on Model A), and be ready for use immediately.

Connecting to the internet through a proxy
server
Some networks, such as ones within workplaces or schools, often require you to connect to
the internet through a proxy server.

Getting ready
You will need the address of the proxy server you are trying to connect to, including the
username and password, if one is required.

You should confirm that Raspberry Pi is already connected to the network and that you can
access the proxy server.

Use the ping command to check this, as follows:

ping proxy.address.com -c 4

If this fails (you get no responses), you will need to ensure your network settings are correct
before continuing.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[61]

How to do it...
Create a new file using nano as follows (if there is already some content in the1.
file, you can add the code at the end):

sudo nano -c ~/.bash_profile

To allow basic web browsing through programs such as Midori while using a2.
proxy server, you can use the following script:

function proxyenable {
Define proxy settings
PROXY_ADDR="proxy.address.com:port"
Login name (leave blank if not required):
LOGIN_USER="login_name"
Login Password (leave blank to prompt):
LOGIN_PWD=
#If login specified - check for password
if [[-z $LOGIN_USER]]; then
 #No login for proxy
 PROXY_FULL=$PROXY_ADDR
else
 #Login needed for proxy Prompt for password -s option hides input
 if [[-z $LOGIN_PWD]]; then
 read -s -p "Provide proxy password (then Enter):" LOGIN_PWD
 echo
 fi
 PROXY_FULL=$LOGIN_USER:$LOGIN_PWD@$PROXY_ADDR
fi
#Web Proxy Enable: http_proxy or HTTP_PROXY environment variables
export http_proxy="http://$PROXY_FULL/"
export HTTP_PROXY=$http_proxy
export https_proxy="https://$PROXY_FULL/"
export HTTPS_PROXY=$https_proxy
export ftp_proxy="ftp://$PROXY_FULL/"
export FTP_PROXY=$ftp_proxy
#Set proxy for apt-get
sudo cat <<EOF | sudo tee /etc/apt/apt.conf.d/80proxy > /dev/null
Acquire::http::proxy "http://$PROXY_FULL/";
Acquire::ftp::proxy "ftp://$PROXY_FULL/";
Acquire::https::proxy "https://$PROXY_FULL/";
EOF
#Remove info no longer needed from environment
unset LOGIN_USER LOGIN_PWD PROXY_ADDR PROXY_FULL
echo Proxy Enabled
}

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[62]

function proxydisable {
#Disable proxy values, apt-get and git settings
unset http_proxy HTTP_PROXY https_proxy HTTPS_PROXY
unset ftp_proxy FTP_PROXY
sudo rm /etc/apt/apt.conf.d/80proxy
echo Proxy Disabled
}

Once done, save and exit by pressing Ctrl + X, Y, and Enter.3.

The script is added to the user's own .bash_profile file, which is run
when that particular user logs in. This will ensure that the proxy settings
are kept separately for each user. If you want all users to use the same
settings, you can add the code to /etc/rc.local instead (this file must
have exit 0 at the end).

How it works...
Many programs that make use of the internet will check for the http_proxy or
HTTP_PROXY environment variables before connecting. If they are present, they will use the
proxy settings to connect through. Some programs may also use the HTTPS and FTP
protocols, so we can set the proxy setting for them here too.

If a username is required for the proxy server, a password will be
prompted for. It is generally not recommended to store your passwords
inside scripts unless you are confident that no one else will have access to
your device (either physically or through the internet).

The last part allows any programs that execute using the sudo command to use the proxy
environment variables while acting as the super user (most programs will try accessing
the network using normal privileges first, even if running as a super user, so it isn't
always needed).

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[63]

There's more...
We also need to allow the proxy settings to be used by some programs, which use
superuser permissions while accessing the network (this will depend on the program; most
don't need this). We need to add the commands into a file stored in /etc/sudoers.d/ by
performing the following steps:

Use the following command to open a new sudoer file:1.

sudo visudo -f /etc/sudoers.d/proxy

Enter the following text in the file (on a single line):2.

Defaults env_keep += "http_proxy HTTP_PROXY https_proxy HTTPS_PROXY
ftp_proxy FTP_PROXY"

Once done, save and exit by pressing Ctrl + X, Y, and Enter; don't change the3.
proxy.tmp filename (this is normal for visudo; it will change it to proxy when
finished).
If prompted What now?, there is an error in the command. Press X to exit4.
without saving and retype the command.
After a reboot (using sudo reboot), you will be able to use the following5.
commands to enable and disable the proxy respectively:

proxyenable
proxydisable

It is important to use visudo here, as it ensures the permissions of the file
are created correctly for the sudoers directory (read only by the root
user).

Connecting remotely to Raspberry Pi over
the network using VNC
Often, it is preferable to remotely connect to and control Raspberry Pi across the network,
for instance, using a laptop or desktop computer as a screen and keyboard, or while
Raspberry Pi is connected elsewhere, perhaps even connected to some hardware it needs to
be close to.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[64]

VNC is just one way in which you can remotely connect to Raspberry Pi. It will create a new
desktop session that will be controlled and accessed remotely. The VNC session here is
separate from the one that may be active on Raspberry Pi's display.

Getting ready
Ensure that your Raspberry Pi is powered up and connected to the internet. We will use the
internet connection to install a program using apt-get. This is a program that allows us to
find and install applications directly from the official repositories.

How to do it...
First, we need to install the TightVNC server on Raspberry Pi with the following1.
commands. It is advisable to run an update command first to get the latest
version of the package you want to install, as follows:

sudo apt-get update
sudo apt-get install tightvncserver

Accept the prompt to install and wait until it completes. To start a session, use the2.
following command:

vncserver :1

The first time you run this, it will ask you to enter a password (of no more than3.
eight characters) to access the desktop (you will use this when you connect from
your computer).

The following message should confirm that a new desktop session has been
started:

New 'X' desktop is raspberrypi:1

If you do not already know the IP address of Raspberry Pi, use hostname -I and take note
of it.

Next, we need to run a VNC client. VNC Viewer is suitable program, which is available at
http://www.realvnc.com/ and should work on Windows, Linux, and OS X.

http://www.realvnc.com/

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[65]

When you run VNC Viewer, you will be prompted for the Server address and Encryption
type. Use the IP address of your Raspberry Pi with :1. That is, for the IP address
192.168.1.69, use the 192.168.1.69:1 address.

You can leave the Encryption type as Off or Automatic.

Depending on your network, you may be able to use the hostname; the default is
raspberrypi, that is raspberrypi:1.

You may have a warning about not having connected to the computer before or having no
encryption. You should enable encryption if you are using a public network or if you are
performing connections over the internet (to stop others from being able to intercept your
data).

There's more...
You can add options to the command line to specify the resolution and also the color depth
of the display. The higher the resolution and color depth (can be adjusted to use 8-bits to 32-
bits per pixel to provide low or high color detail), the more data has to be transferred
through the network link. If you find the refresh rate a little slow, try reducing these
numbers as follows:

vncserver :1 -geometry 1280x780 -depth 24

To allow the VNC server to start automatically when you switch on, you can add the
vncserver command to .bash_profile (this is executed each time Raspberry Pi starts).

Use the nano editor as follows (the -c option allows the line numbers to be displayed):

sudo nano -c ~/.bash_profile

Add the following line to the end of the file:

vncserver :1

The next time you power up, you should be able to remotely connect using VNC from
another computer.

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[66]

Connecting remotely to Raspberry Pi over
the network using SSH (and X11 forwarding)
An Secure Shell (SSH) is often the preferred method for making remote connections, as it
allows only the Terminal connections and typically requires fewer resources.

An extra feature of SSH is the ability to transfer the X11 data to an X Windows server
running on your machine. This allows you to start programs that would normally run on
Raspberry Pi desktop, and they will appear in their own Windows on the local computer, as
follows:

X11 forwarding on a local display

X11 forwarding can be used to display applications which are running on Raspberry Pi on a
Windows computer.

Getting ready
If you are running the latest version of Raspbian, SSH, and X11 forwarding will be enabled
by default (otherwise, double-check the settings explained in the How it works... section).

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[67]

How to do it...
Linux and OS X have built-in support for X11 forwarding, but if you are using Windows,
you will need to install and run the X Windows server on your computer.

Download and run xming from the Xming site
(http://sourceforge.net/projects/xming/).

Install xming, following the installation steps, including the installation of PuTTY if you
don't have it already. You can also download PuTTY separately from
http://www.putty.org/.

Next, we need to ensure that the SSH program we use has X11 enabled when we connect.

For Windows, we shall use PuTTY to connect to Raspberry Pi.

In the PuTTY Configuration dialog box, navigate to Connection | SSH | X11 and tick the
checkbox for Enable X11 forwarding. If you leave the X display location option blank, it
will assume the default Server 0:0 as follows (you can confirm the server number by
moving your mouse over the Xming icon in the system tray when it is running):

Enabling X11 forwarding within the PuTTY configuration

http://sourceforge.net/projects/xming/
http://www.putty.org/

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[68]

Enter the IP address of Raspberry Pi in the Session settings (you may also find that you can
use Raspberry Pi's hostname here instead; the default hostname is raspberrypi).

Save the setting using a suitable name, RaspberryPi, and click on Open to connect to your
Raspberry Pi.

You are likely to see a warning message pop up stating you haven't connected to the
computer before (this allows you to check whether you have everything right before
continuing):

Opening an SSH connection to Raspberry Pi using PuTTY

For OS X or Linux, click on Terminal to open a connection to Raspberry Pi.

To connect with the default pi username, with an IP address of 192.168.1.69, use the
following command; the -X option enables X11 forwarding:

ssh -X pi@192.168.1.69

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[69]

All being well, you should be greeted with a prompt for your password (remember the
default value for the pi user is raspberry).

Ensure that you have Xming running by starting the Xming program from your computer's
Start menu. Then, in the Terminal window, type a program that normally runs within
Raspberry Pi desktop, such as leafpad or scratch. Wait a little while and the program
should appear on your computer's desktop (if you get an error, you have probably
forgotten to start Xming, so run it and try again).

How it works...
X Windows and X11 is what provides the method by which Raspberry Pi (and many other
Linux-based computers) can display and control graphical Windows as part of a desktop.

For X11 forwarding to work over a network connection, we need both SSH and X11
forwarding enabled on Raspberry Pi. Perform the following steps:

To switch on (or off) SSH, you can access Raspberry Pi Configuration1.
program under the Preferences menu on the Desktop and click on SSH within
the Interfaces tab, as shown in the following screenshot (SSH is often enabled by
default for most distributions to help allow remote connections without needing
a monitor to configure it):

The advanced settings menu in the raspi-config tool

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[70]

Ensure that X11 forwarding is enabled on Raspberry Pi (again, most distributions2.
now have this enabled by default).
Use nano with the following command:3.

sudo nano /etc/ssh/sshd_config

Look for a line in the /etc/ssh/sshd_config file that controls X11 forwarding4.
and ensure that it says yes (with no # sign before it), as follows:

X11Forwarding yes

Save if required by pressing Ctrl + X, Y, and Enter and reboot (if you need to5.
change it) as follows:

sudo reboot

There's more...
SSH and X11 forwarding is a convenient way to control Raspberry Pi remotely; we will
explore some additional tips on how to use it effectively in the following sections.

Running multiple programs with X11 forwarding
If you want to run an X program, but still be able to use the same Terminal console for other
stuff, you can run the command in the background with & as follows:

leafpad &

Just remember that the more programs you run, the slower everything will get. You can
switch to the background program by typing fg and check for background tasks with bg.

Running as a desktop with X11 forwarding
You can even run a complete desktop session through X11, although it isn't particularly
user friendly and VNC will produce better results. To achieve this, you have to use
lxsession instead of startx (in the way you would normally start the desktop from the
Terminal).

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[71]

An alternative is to use lxpanel, which provides the program menu bar from which you
can start and run programs from the menu as you would on the desktop.

Running Pygame and Tkinter with X11 forwarding
You can get the following error (or similar) when running the Pygame or Tkinter scripts:

_tkinter.TclError: couldn't connect to display "localhost:10.0"

In this case, use the following command to fix the error:

sudo cp ~/.Xauthority ~root/

Sharing the home folder of Raspberry Pi
with SMB
When you have Raspberry Pi connected to your network, you can access the home folder by
setting up file sharing; this makes it much easier to transfer files and provides a quick and
easy way to back up your data. Server Message Block (SMB) is a protocol that is
compatible with Windows file sharing, OS X, and Linux.

Getting ready
Ensure that you have Raspberry Pi powered and running with a working connection to the
internet.

You will also need another computer on the same local network to test the new share.

How to do it...
First, we need to install samba, a piece of software that handles folder sharing in a format
that is compatible with Windows sharing methods:

Ensure that you use update as follows to obtain the latest list of available1.
packages:

sudo apt-get update
sudo apt-get install samba

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[72]

The install will require around 20 MB of space and take a few minutes.

Once the installation has completed, we can make a copy of the configuration file2.
as follows to allow us to restore defaults if needed:

sudo cp /etc/samba/smb.conf /etc/samba/smb.conf.backup
sudo nano /etc/samba/smb.conf

Scroll down and find the section named Authentication; change the #
security = user line to security = user.

As described in the file, this setting ensures that you have to enter your username
and password for Raspberry Pi in order to access the files (this is important for
shared networks).

Find the section called Share Definitions and [homes], and change the read
only = yes line to read only = no.

This will allow us to view and also write files to the shared home folder. Once
done, save and exit by pressing Ctrl + X, Y, and Enter.

If you have changed the default user from pi to something else, substitute
it in the following instructions.

Now, we can add pi (the default user) to use samba:3.

sudo pdbedit -a -u pi

Now, enter a password (you can use the same password as your login or select a4.
different one, but avoid using the default Raspberry password, which would be
very easy for someone to guess). Restart samba to use the new configuration file,
as follows:

sudo /etc/init.d/samba restart
[ok] Stopping Samba daemons: nmbd smbd.
[ok] Starting Samba daemons: nmbd smbd.

To test, you will need to know either Raspberry Pi's hostname (the default5.
hostname is raspberrypi) or its IP address. You can find both of these with the
following command:

hostname

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[73]

For the IP address, add -I:6.

hostname -I

On another computer on the network, enter the \raspberrypipi address in the
explorer path.

Depending on your network, the computer should locate Raspberry Pi on the
network and prompt for a username and password. If it can't find the share using
the hostname, you can use the IP address directly, where 192.168.1.69 should
be changed to match the IP address \192.168.1.69pi.

Keeping Raspberry Pi up to date
The Linux image used by Raspberry Pi is often updated to include enhancements, fixes, and
improvements to the system, as well as adding support for new hardware or changes made
to the latest board. Many of the packages that you install can be updated too.

This is particularly important if you plan on using the same system image on another
Raspberry Pi board (particularly a newer one), as older images will lack support for any
wiring changes or alternative RAM chips. New firmware should work on older Raspberry
Pi boards, but older firmware may not be compatible with the latest hardware.

Fortunately, you need not reflash your SD card every time there is a new release, since you
can update it instead.

Getting ready
You will need to be connected to the internet to update your system. It is always advisable
to make a backup of your image first (and at a minimum, make a copy of your important
files).

You can check your current version of firmware with the uname -a command, as follows:

Linux raspberrypi 4.4.9-v7+ #884 SMP Fri May 6 17:28:59 BST 2016 armv7l
GNU/Linux

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[74]

The GPU firmware can be checked using the /opt/vc/bin/vcgencmd version
command, as follows:

 May 6 2016 13:53:23
Copyright (c) 2012 Broadcom
version 0cc642d53eab041e67c8c373d989fef5847448f8 (clean) (release)

This is important if you are using an older version of firmware (pre-November 2012) on a
newer board, since the original Model B board was only 254 MB RAM. Upgrading allows
the firmware to make use of the extra memory if available.

The free -h command will detail the RAM available to the main processor (the total RAM
is split between the GPU and ARM cores) and will give the following output:

 total used free shared buffers
cached
 Mem: 925M 224M 701M 7.1M 14M
123M
 -/+ buffers/cache: 86M 839M
 Swap: 99M 0B 99M

You can then recheck the preceding output following a reboot to confirm that they have
been updated (although they may have already been the latest).

How to do it...
Before running any upgrades or installing any packages, it is worth ensuring you1.
have the latest list of packages in the repository. The update command gets the
latest list of available software and versions:

sudo apt-get update

If you just want to obtain an upgrade of your current packages, upgrade will2.
bring them all up to date:

sudo apt-get upgrade

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[75]

To ensure that you are running the latest release of Raspbian, you can run dist-3.
upgrade (be warned: this can take an hour or so depending on the amount that
needs to be upgraded). This will perform all the updates that upgrade will
perform but will also remove redundant packages and clean up:

sudo apt-get dist-upgrade

Both methods will upgrade the software, including the firmware used at boot and
startup (bootcode.bin and start.elf).

To update the firmware, the following command can be used:4.

sudo rpi-update

There's more...
You will often find that you will want to perform a clean installation of your setup,
however, this will mean you will have to install everything from scratch. To avoid this, I
developed the Pi-Kitchen project (https:/ ​/​github. ​com/ ​PiHw/ ​Pi-​Kitchen), based on the
groundwork of Kevin Hill. This aims to provide a flexible platform for creating customized
setups that can be automatically deployed to an SD card:

Pi Kitchen allows Raspberry Pi to be configured before powering up

https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen
https://github.com/PiHw/Pi-Kitchen

Getting Started with a Raspberry Pi 3 Computer Chapter 1

[76]

The Pi-Kitchen allows a range of flavors to be configured, which can be selected from the
NOOBS menu. Each flavor consists of a list of recipes, each providing a specific function or
feature to the final operating system. Recipes can range from setting up custom drivers for
Wi-Fi devices, to mapping shared drives on your network, to providing a fully functional
web server out of the box, all combining to make your required setup.

This project is in beta, developed as a proof of concept, but once you have everything
configured, it can be incredibly useful to deploy fully working setups directly onto an SD
card. Ultimately, the project could be combined with Kevin Hill's advanced version of
NOOBS, called PINN Is Not NOOBS (PINN), which aims to allow extra features for
advanced users, such as allowing operating systems and configurations to be stored on
your network or on an external USB memory stick.

2
Dividing Text Data and Building

Text Classifiers
This chapter presents the following recipes:

Building a text classifier
Preprocessing data using tokenization
Stemming text data
Dividing text using chunking
Building a bag-of-words model
Applications of text classifiers

Introduction
This chapter presents recipes to build text classifiers. This includes extracting vital features
from the database, training, testing, and validating the text classifier. Initially, a text
classifier is trained using commonly used words. Later, the trained text classifier is used for
prediction. Building a text classifier includes preprocessing the data using tokenization,
stemming text data, dividing text using chunking, and building a bag-of-words model.

Dividing Text Data and Building Text Classifiers Chapter 2

[78]

Building a text classifier
Classifier units are normally considered to separate a database into various classes. The
Naive Bayes classifier scheme is widely considered in literature to segregate the texts based
on the trained model. This section of the chapter initially considers a text database with
keywords; feature extraction extracts the key phrases from the text and trains the classifier
system. Then, term frequency-inverse document frequency (tf-idf) transformation is
implemented to specify the importance of the word. Finally, the output is predicted and
printed using the classifier system.

How to do it...
Include the following lines in a new Python file to add datasets:1.

from sklearn.datasets import fetch_20newsgroups
category_mapping = {'misc.forsale': 'Sellings', 'rec.motorcycles':
'Motorbikes',
 'rec.sport.baseball': 'Baseball', 'sci.crypt':
'Cryptography',
 'sci.space': 'OuterSpace'}

training_content = fetch_20newsgroups(subset='train',
categories=category_mapping.keys(), shuffle=True, random_state=7)

Perform feature extraction to extract the main words from the text:2.

from sklearn.feature_extraction.text import CountVectorizer

vectorizing = CountVectorizer()
train_counts = vectorizing.fit_transform(training_content.data)
print "nDimensions of training data:", train_counts.shape

Train the classifier:3.

from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfTransformer

input_content = [
 "The curveballs of right handed pitchers tend to curve to the
left",
 "Caesar cipher is an ancient form of encryption",
 "This two-wheeler is really good on slippery roads"
]

Dividing Text Data and Building Text Classifiers Chapter 2

[79]

tfidf_transformer = TfidfTransformer()
train_tfidf = tfidf_transformer.fit_transform(train_counts)

Implement the Multinomial Naive Bayes classifier:4.

classifier = MultinomialNB().fit(train_tfidf,
training_content.target)
input_counts = vectorizing.transform(input_content)
input_tfidf = tfidf_transformer.transform(input_counts)

Predict the output categories:5.

categories_prediction = classifier.predict(input_tfidf)

Print the output:6.

for sentence, category in zip(input_content,
categories_prediction):
 print 'nInput:', sentence, 'nPredicted category:',
category_mapping[training_content.target_names[category]]

The following screenshot provides examples of predicting the object based on the
input from the database:

How it works...
The previous section of this chapter provided insight regarding the implemented classifier
section and some sample results. The classifier section works based on a comparison
between the previous text in the trained Naive Bayes with the key test in the test sequence.

Dividing Text Data and Building Text Classifiers Chapter 2

[80]

See also
Please refer to the following articles:

Sentiment analysis algorithms and applications: A survey at https:/ ​/​www.
sciencedirect. ​com/ ​science/ ​article/ ​pii/ ​S2090447914000550.

Sentiment classification of online reviews: using sentence-based language model to learn
how sentiment prediction works at https:/ ​/​www. ​tandfonline. ​com/ ​doi/ ​abs/ ​10.
1080/​0952813X. ​2013. ​782352? ​src=​recsys ​journalCode= ​teta20.

Sentiment analysis using product review data and Sentence-level sentiment analysis in
the presence of modalities to learn more about various metrics used in
recommendation systems at https:/ ​/​journalofbigdata. ​springeropen. ​com/
articles/ ​10. ​1186/ ​s40537- ​015- ​0015- ​2 and ;https:/ ​/ ​link. ​springer. ​com/
chapter/ ​10. ​1007/ ​978- ​3- ​642- ​54903- ​8_​1.

Pre-processing data using tokenization
The pre-processing of data involves converting the existing text into acceptable information
for the learning algorithm.

Tokenization is the process of dividing text into a set of meaningful pieces. These pieces are
called tokens.

How to do it...
Introduce sentence tokenization:1.

from nltk.tokenize import sent_tokenize

https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://www.tandfonline.com/doi/abs/10.1080/0952813X.2013.782352?src=recsys&journalCode=teta20
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0015-2
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1
https://link.springer.com/chapter/10.1007/978-3-642-54903-8_1

Dividing Text Data and Building Text Classifiers Chapter 2

[81]

Form a new text tokenizer:2.

tokenize_list_sent = sent_tokenize(text)
print "nSentence tokenizer:"
print tokenize_list_sent

Form a new word tokenizer:3.

from nltk.tokenize import word_tokenize
print "nWord tokenizer:"
print word_tokenize(text)

Introduce a new WordPunct tokenizer:4.

from nltk.tokenize import WordPunctTokenizer
word_punct_tokenizer = WordPunctTokenizer()
print "nWord punct tokenizer:"
print word_punct_tokenizer.tokenize(text)

The result obtained by the tokenizer is shown here. It divides a sentence into word groups:

Stemming text data
The stemming procedure involves creating a suitable word with reduced letters for the
words of the tokenizer.

Dividing Text Data and Building Text Classifiers Chapter 2

[82]

How to do it...
Initialize the stemming process with a new Python file:1.

from nltk.stem.porter import PorterStemmer
from nltk.stem.lancaster import LancasterStemmer
from nltk.stem.snowball import SnowballStemmer

Let's describe some words to consider, as follows:2.

words = ['ability', 'baby', 'college', 'playing', 'is', 'dream',
'election', 'beaches', 'image', 'group', 'happy']

Identify a group of stemmers to be used:3.

stemmers = ['PORTER', 'LANCASTER', 'SNOWBALL']

Initialize the necessary tasks for the chosen stemmers:4.

stem_porter = PorterStemmer()
stem_lancaster = LancasterStemmer()
stem_snowball = SnowballStemmer('english')

Format a table to print the results:5.

formatted_row = '{:>16}' * (len(stemmers) + 1)
print 'n', formatted_row.format('WORD', *stemmers), 'n'

Repeatedly check the list of words and arrange them using chosen stemmers:6.

for word in words:
 stem_words = [stem_porter.stem(word),
 stem_lancaster.stem(word),
 stem_snowball.stem(word)]
 print formatted_row.format(word, *stem_words)

Dividing Text Data and Building Text Classifiers Chapter 2

[83]

The result obtained from the stemming process is shown in the following screenshot:

Dividing text using chunking
The chunking procedure can be used to divide the large text into small, meaningful words.

How to do it...
Develop and import the following packages using Python:1.

import numpy as np
from nltk.corpus import brown

Describe a function that divides text into chunks:2.

Split a text into chunks
def splitter(content, num_of_words):
 words = content.split(' ')
 result = []

Initialize the following programming lines to get the assigned variables:3.

 current_count = 0
 current_words = []

Dividing Text Data and Building Text Classifiers Chapter 2

[84]

Start the iteration using words:4.

 for word in words:
 current_words.append(word)
 current_count += 1

After getting the essential amount of words, reorganize the variables:5.

 if current_count == num_of_words:
 result.append(' '.join(current_words))
 current_words = []
 current_count = 0

Attach the chunks to the output variable:6.

 result.append(' '.join(current_words))
 return result

Import the data of Brown corpus and consider the first 10000 words:7.

if __name__=='__main__':
 # Read the data from the Brown corpus
 content = ' '.join(brown.words()[:10000])

Describe the word size in every chunk:8.

 # Number of words in each chunk
 num_of_words = 1600

Initiate a pair of significant variables:9.

 chunks = []
 counter = 0

Print the result by calling the splitter function:10.

 num_text_chunks = splitter(content, num_of_words)
 print "Number of text chunks =", len(num_text_chunks)

The result obtained after chunking is shown in the following screenshot:11.

Dividing Text Data and Building Text Classifiers Chapter 2

[85]

Building a bag-of-words model
When working with text documents that include large words, we need to switch them to
several types of arithmetic depictions. We need to formulate them to be suitable for
machine learning algorithms. These algorithms require arithmetical information so that
they can examine the data and provide significant details. The bag-of-words procedure
helps us to achieve this. Bag-of-words creates a text model that discovers vocabulary using
all the words in the document. Later, it creates the models for every text by constructing a
histogram of all the words in the text.

How to do it...
Initialize a new Python file by importing the following file:1.

import numpy as np
from nltk.corpus import brown
from chunking import splitter

Define the main function and read the input data from Brown corpus:2.

if __name__=='__main__':
 content = ' '.join(brown.words()[:10000])

Split the text content into chunks:3.

 num_of_words = 2000
 num_chunks = []
 count = 0
 texts_chunk = splitter(content, num_of_words)

Build a vocabulary based on these text chunks:4.

 for text in texts_chunk:
 num_chunk = {'index': count, 'text': text}
 num_chunks.append(num_chunk)
 count += 1

Dividing Text Data and Building Text Classifiers Chapter 2

[86]

Extract a document word matrix, which effectively counts the amount of5.
incidences of each word in the document:

 from sklearn.feature_extraction.text
 import CountVectorizer

Extract the document term matrix:6.

from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer(min_df=5, max_df=.95)
matrix = vectorizer.fit_transform([num_chunk['text'] for num_chunk
in num_chunks])

Extract the vocabulary and print it:7.

vocabulary = np.array(vectorizer.get_feature_names())
print "nVocabulary:"
print vocabulary

Print the document term matrix:8.

print "nDocument term matrix:"
chunks_name = ['Chunk-0', 'Chunk-1', 'Chunk-2', 'Chunk-3',
'Chunk-4']
formatted_row = '{:>12}' * (len(chunks_name) + 1)
print 'n', formatted_row.format('Word', *chunks_name), 'n'

Iterate throughout the words, and print the reappearance of every word in9.
various chunks:

for word, item in zip(vocabulary, matrix.T):
'item' is a 'csr_matrix' data structure
 result = [str(x) for x in item.data]
 print formatted_row.format(word, *result)

Dividing Text Data and Building Text Classifiers Chapter 2

[87]

The result obtained after executing the bag-of-words model is shown as follows:10.

Dividing Text Data and Building Text Classifiers Chapter 2

[88]

In order to understand how it works on a given sentence, refer to the following:

Introduction to Sentiment Analysis, explained here: https:/ ​/​blog. ​algorithmia.
com/​introduction- ​sentiment- ​analysis/ ​

Applications of text classifiers
Text classifiers are used to analyze customer sentiments, in product reviews, when
searching queries on the internet, in social tags, to predict the novelty of research articles,
and so on.

https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/
https://blog.algorithmia.com/introduction-sentiment-analysis/

3
Using Python for Automation

and Productivity
In this chapter, we will cover the following topics:

Using Tkinter to create graphical user interfaces
Creating a graphical Start menu application
Displaying photo information in an application
Organizing your photos automatically

Introduction
Until now, we have focused purely on command-line applications; however, there is much
more to Raspberry Pi than just the command line. By using graphical user interfaces
(GUIs), it is often easier to obtain input from a user and provide feedback in a simpler way.
After all, we continuously process multiple inputs and outputs all the time, so why limit
ourselves to the procedural format of the command line when we don't have to?

Using Python for Automation and Productivity Chapter 3

[90]

Fortunately, Python can support this. Much like other programming languages, such as
Visual Basic and C/C++/C#, this can be achieved using prebuilt objects that provide
standard controls. We will use a module called Tkinter which provides a good range of
controls (also referred to as widgets) and tools for creating graphical applications.

First, we will take an example, encryptdecrypt.py, and demonstrate how useful modules
can be written and reused in a variety of ways. This is an example of good coding practice.
We should aim to write code that can be tested thoroughly and then reused in many places.

Next, we will extend our previous examples by creating a small graphical Start menu
application to run our favorite applications from.

Then, we will explore using classes within our applications to display and then to
organize photos.

Using Tkinter to create graphical user
interfaces
We will create a basic GUI to allow the user to enter information, and the program can then
be used to encrypt and decrypt it.

Getting ready
You must ensure that this file is placed in the same directory.

Using Python for Automation and Productivity Chapter 3

[91]

Since we are using Tkinter (one of many available add-ons for Python), we
need to ensure that it is installed. It should be installed by default on the
standard Raspbian image. We can confirm it is installed by importing it
from the Python prompt, as follows:

 Python3
 >>> import tkinter

If it is not installed, an ImportError exception will be raised, in which
case you can install it using the following command (use Ctrl + Z to exit
the Python prompt):

 sudo apt-get install python3-tk

If the module did load, you can use the following command to read more
about the module (use Q to quit when you are done reading):

 >>>help(tkinter)

You can also get information about all the classes, functions, and methods
within the module using the following command:

 >>>help(tkinter.Button)

The following dir command will list any valid commands or variables
that are in the scope of the module:

 >>>dir(tkinter.Button)

You will see that our own modules will have the information about the functions marked
by triple quotes; this will show up if we use the help command.

The command line will not be able to display the graphical displays created in this chapter,
so you will have to start Raspberry Pi desktop (using the command startx), or if you are
using it remotely.

Make sure you have X11 forwarding enabled and an X server running (see
Chapter 1, Getting Started with a Raspberry Pi 3 Computer).

Using Python for Automation and Productivity Chapter 3

[92]

How to do it...
We will use the tkinter module to produce a GUI for the encryptdecrypt.py script.

To generate the GUI we will create the following tkencryptdecrypt.py script:

#!/usr/bin/python3
#tkencryptdecrypt.py
import encryptdecrypt as ENC
import tkinter as TK

def encryptButton():
 encryptvalue.set(ENC.encryptText(encryptvalue.get(),
 keyvalue.get()))

def decryptButton():
 encryptvalue.set(ENC.encryptText(encryptvalue.get(),
 -keyvalue.get()))
#Define Tkinter application
root=TK.Tk()
root.title("Encrypt/Decrypt GUI")
#Set control & test value
encryptvalue = TK.StringVar()
encryptvalue.set("My Message")
keyvalue = TK.IntVar()
keyvalue.set(20)
prompt="Enter message to encrypt:"
key="Key:"

label1=TK.Label(root,text=prompt,width=len(prompt),bg='green')
textEnter=TK.Entry(root,textvariable=encryptvalue,
 width=len(prompt))
encryptButton=TK.Button(root,text="Encrypt",command=encryptButton)
decryptButton=TK.Button(root,text="Decrypt",command=decryptButton)
label2=TK.Label(root,text=key,width=len(key))
keyEnter=TK.Entry(root,textvariable=keyvalue,width=8)
#Set layout
label1.grid(row=0,columnspan=2,sticky=TK.E+TK.W)
textEnter.grid(row=1,columnspan=2,sticky=TK.E+TK.W)
encryptButton.grid(row=2,column=0,sticky=TK.E)
decryptButton.grid(row=2,column=1,sticky=TK.W)
label2.grid(row=3,column=0,sticky=TK.E)
keyEnter.grid(row=3,column=1,sticky=TK.W)

TK.mainloop()
#End

Using Python for Automation and Productivity Chapter 3

[93]

Run the script using the following command:

python3 tkencryptdecrypt

How it works...
We start by importing two modules; the first is our own encryptdecrypt module and the
second is the tkinter module. To make it easier to see which items have come from where,
we use ENC/TK. If you want to avoid the extra reference, you can use from <module_name>
import * to refer to the module items directly.

The encryptButton() and decryptButton() functions will be called when we click on
the Encrypt and Decrypt buttons; they are explained in the following sections.

The main Tkinter window is created using the Tk() command, which returns the main
window where all the widgets/controls can be placed.

We will define six controls as follows:

Label: This displays the prompt Enter message to encrypt:
Entry: This provides a textbox to receive the user's message to be encrypted
Button: This is an Encrypt button to trigger the message to be encrypted
Button: This is a Decrypt button to reverse the encryption
Label: This displays the Key: field to prompt the user for an encryption key
value
Entry: This provides a second textbox to receive values for the encryption keys

These controls will produce a GUI similar to the one shown in the following screenshot:

The GUI to encrypt/decrypt messages

Using Python for Automation and Productivity Chapter 3

[94]

Let's take a look at the first label1 definition:

label1=TK.Label(root,text=prompt,width=len(prompt),bg='green')

All controls must be linked to the application window; hence, we have to specify our
Tkinter window root. The text used for the label is set by text; in this case, we have set it
to a string named prompt, which has been defined previously with the text we require. We
also set the width to match the number of characters of the message (while not essential, it
provides a neater result if we add more text to our labels later), and finally, we set the
background color using bg='green'.

Next, we define the text Entry box for our message:

textEnter=TK.Entry(root,textvariable=encryptvalue,
 width=len(prompt))

We will define textvariable—a useful way to link a variable to the contents of the box
which is a special string variable. We could access the text directly using
textEnter.get(), but we shall use a Tkinter StringVar() object instead to access it
indirectly. If required, this will allow us to separate the data we are processing from the
code that handles the GUI layout. The enycrptvalue variable automatically updates the
Entry widget it is linked to whenever the .set() command is used (and the .get()
command obtains the latest value from the Entry widget).

Next, we have our two Button widgets, Encrypt and Decrypt, as follows:

encryptButton=TK.Button(root,text="Encrypt",command=encryptButton)
decryptButton=TK.Button(root,text="Decrypt",command=decryptButton)

In this case, we can set a function to be called when the Button widget is clicked by setting
the command attribute. We can define the two functions that will be called when each button
is clicked. In the following code snippet, we have the encryptButton() function, which
will set the encryptvalue StringVar that controls the contents of the first Entry box.
This string is set to the result we get by calling ENC.encryptText() with the message we
want to encrypt (the current value of encryptvalue) and the keyvalue variable. The
decrypt() function is exactly the same, except we make the keyvalue variable negative to
decrypt the message:

def encryptButton():
 encryptvalue.set(ENC.encryptText(encryptvalue.get(),
 keyvalue.get()))

Using Python for Automation and Productivity Chapter 3

[95]

We then set the final Label and Entry widgets in a similar way. Note that textvariable
can also be an integer (numerical value) if required, but there is no built-in check to ensure
that only numbers can be entered. You will encounter a ValueError exception when the
.get() command is used.

After we have defined all the widgets to be used in the Tkinter window, we have to set the
layout. There are three ways to define the layout in Tkinter: place, pack, and grid.

The place layout allows us to specify the positions and sizes using exact pixel positions. The
pack layout places the items in the window in the order that they have been added in. The
grid layout allows us to place the items in a specific layout. It is recommended that you
avoid the place layout wherever possible since any small change to one item can have a
knock-on effect on the positions and sizes of all the other items; the other layouts account
for this by determining their positions relative to the other items in the window.

We will place the items as laid out in the following screenshot:

Grid layout for the Encrypt/Decrypt GUI

The positions of first two items in the GUI are set using the following code:

label1.grid(row=0,columnspan=2,sticky= TK.E+TK.W)
textEnter.grid(row=1,columnspan=2,sticky= TK.E+TK.W)

Using Python for Automation and Productivity Chapter 3

[96]

We can specify that the first Label and Entry box will span both columns
(columnspan=2), and we can set the sticky values to ensure they span right to the edges.
This is achieved by setting both the TK.E for the east and TK.W for the west sides. We'd use
TK.N for the north and TK.S for the south sides if we needed to do the same vertically. If
the column value is not specified, the grid function defaults to column=0. The other items
are similarly defined.

The last step is to call TK.mainloop(), which allows Tkinter to run; this allows the buttons
to be monitored for clicks and Tkinter to call the functions linked to them.

Creating a graphical application – Start
menu
The example in this recipe shows how we can define our own variations of Tkinter objects
to generate custom controls and dynamically construct a menu with them. We will also take
a quick look at using threads to allow other tasks to continue to function while a particular
task is being executed.

Getting ready
To view the GUI display, you will need a monitor displaying the Raspberry Pi desktop, or
you need to be connected to another computer running the X server.

How to do it...
To create a graphical Start menu application, create the following1.
graphicmenu.py script:

#!/usr/bin/python3
graphicmenu.py
import tkinter as tk
from subprocess import call
import threading

#Define applications ["Display name","command"]
leafpad = ["Leafpad","leafpad"]
scratch = ["Scratch","scratch"]
pistore = ["Pi Store","pistore"]

Using Python for Automation and Productivity Chapter 3

[97]

app_list = [leafpad,scratch,pistore]
APP_NAME = 0
APP_CMD = 1

class runApplictionThread(threading.Thread):
 def __init__(self,app_cmd):
 threading.Thread.__init__(self)
 self.cmd = app_cmd
 def run(self):
 #Run the command, if valid
 try:
 call(self.cmd)
 except:
 print ("Unable to run: %s" % self.cmd)

class appButtons:
 def __init__(self,gui,app_index):
 #Add the buttons to window
 btn = tk.Button(gui, text=app_list[app_index][APP_NAME],
 width=30, command=self.startApp)
 btn.pack()
 self.app_cmd=app_list[app_index][APP_CMD]
 def startApp(self):
 print ("APP_CMD: %s" % self.app_cmd)
 runApplictionThread(self.app_cmd).start()

root = tk.Tk()
root.title("App Menu")
prompt = ' Select an application '
label1 = tk.Label(root, text=prompt, width=len(prompt), bg='green')
label1.pack()
#Create menu buttons from app_list
for index, app in enumerate(app_list):
 appButtons(root,index)
#Run the tk window
root.mainloop()
#End

Using Python for Automation and Productivity Chapter 3

[98]

The previous code produces the following application:2.

The App Menu GUI

How it works...
We create the Tkinter window as we did before; however, instead of defining all the items
separately, we create a special class for the application buttons.

The class we create acts as a blueprint or specification of what we want the appButtons
items to include. Each item will consist of a string value for app_cmd, a function called
startApp(), and an __init__() function. The __init__() function is a special function
(called a constructor) that is called when we create an appButtons item; it will allow us to
create any setup that is required.

In this case, the __init__() function allows us to create a new Tkinter button with the text
to be set to an item in app_list and the command to be called in the startApp() function
when the button is clicked. The self keyword is used so that the command called will be
the one that is part of the item; this means that each button will call a locally defined
function that has access to the local data of the item.

We set the value of self.app_cmd to the command from app_list and make it ready for
use via the startApp() function. We now create the startApp() function. If we run the
application command here directly, the Tkinter window will freeze until the application we
have opened is closed again. To avoid this, we can use the Python threading module, which
allows us to perform multiple actions at the same time.

Using Python for Automation and Productivity Chapter 3

[99]

The runApplicationThread() class is created using the threading.Thread class as a
template—this inherits all the features of the threading.Thread class in a new class. Just
like our previous class, we provide an __init__() function for this as well. We first call
the __init__() function of the inherited class to ensure it is set up correctly, and then we
store the app_cmd value in self.cmd. After the runApplicationThread() function has
been created and initialized, the start() function is called. This function is part of
threading.Thread, which our class can use. When the start() function is called, it will
create a separate application thread (that is, simulate running two things at the same time),
allowing Tkinter to continue monitoring button clicks while executing the run() function
within the class.

Therefore, we can place the code in the run() function to run the required application
(using call(self.cmd)).

There's more...
One aspect that makes Python particularly powerful is that it supports the programming
techniques used in Object-Orientated Design (OOD). This is commonly used by modern
programming languages to help translate the tasks we want our program to perform into
meaningful constructs and structures in code. The principle of OOD lies in the fact that we
think of most problems as consisting of several objects (a GUI window, a button, and so on)
that interact with each other to produce a desired result.

In the previous section, we found that we could use classes to create unique objects that
could be reused multiple times. We created an appButton class, which generated an object
with all the features of the class, including its own personal version of app_cmd that will be
used by the startApp() function. Another object of the appButton type will have its own
unrelated [app_cmd] data that its startApp() function will use.

You can see that classes are useful to keep together a collection of related variables and
functions in a single object, and the class will hold its own data in one place. Having
multiple objects of the same type (class), each with their own functions and data inside
them, results in better program structure. The traditional approach would be to keep all the
information in one place and send each item back and forth for various functions to process;
however, this may become cumbersome in large systems.

Using Python for Automation and Productivity Chapter 3

[100]

The following diagram shows the organization of related functions and data:

Data and functions

So far, we have used Python modules to separate parts of our programs into different
files; this allows us to conceptually separate different parts of the program (an interface,
encoder/decoder, or library of classes, such as Tkinter). Modules can provide code to control
a particular bit of hardware, define an interface for the internet, or provide a library of
common functionality; however, its most important function is to control the interface (the
collection of functions, variables, and classes that are available when the item is imported).
A well-implemented module should have a clear interface that is centered around how it is
used, rather than how it is implemented. This allows you to create multiple modules that
can be swapped and changed easily since they share the same interface. In our previous
example, imagine how easy it would be to change the encryptdecrypt module for
another one just by supporting encryptText(input_text,key). Complex functionality
can be split into smaller, manageable blocks that can be reused in multiple applications.

Python makes use of classes and modules all the time. Each time you import a library, such
as sys or Tkinter or convert a value using value.str() and iterate through a list using
for...in, you can use them without worrying about the details. You don't have to use
classes or modules in every bit of code you write, but they are useful tools to keep in your
programmer's toolbox for times when they fit what you are doing.

We will understand how classes and modules allow us to produce well-structured code that
is easier to test and maintain by using them in the examples of this book.

Using Python for Automation and Productivity Chapter 3

[101]

Displaying photo information in an
application
In this example, we shall create a utility class to handle photos that can be used by other
applications (as modules) to access photo metadata and display preview images easily.

Getting ready
The following script makes use of Python Image Library (PIL); a compatible version for
Python 3 is Pillow.

Pillow has not been included in the Raspbian repository (used by apt-get); therefore, we
will need to install Pillow using a Python Package Manager called PIP.

To install packages for Python 3, we will use the Python 3 version of PIP (this requires 50
MB of available space).

The following commands can be used to install PIP:

sudo apt-get update
sudo apt-get install python3-pip

Before you use PIP, ensure that you have installed libjpeg-dev to allow Pillow to handle
JPEG files. You can do this using the following command:

sudo apt-get install libjpeg-dev

Now you can install Pillow using the following PIP command:

sudo pip-3.2 install pillow

PIP also makes it easy to uninstall packages using uninstall instead of install.

Finally, you can confirm that it has installed successfully by running python3:

>>>import PIL
>>>help(PIL)

You should not get any errors and see lots of information about PIL and its uses (press Q to
finish). Check the version installed as follows:

>>PIL.PILLOW_VERSION

Using Python for Automation and Productivity Chapter 3

[102]

You should see 2.7.0 (or similar).

PIP can also be used with Python 2 by installing pip-2.x using the
following command:

 sudo apt-get install python-pip

Any packages installed using sudo pip install will be installed just for
Python 2.

How to do it...
To display photo information in an application, create the following photohandler.py
script:

##!/usr/bin/python3
#photohandler.py
from PIL import Image
from PIL import ExifTags
import datetime
import os

#set module values
previewsize=240,240
defaultimagepreview="./preview.ppm"
filedate_to_use="Exif DateTime"
#Define expected inputs
ARG_IMAGEFILE=1
ARG_LENGTH=2
class Photo:
 def __init__(self,filename):
 """Class constructor"""
 self.filename=filename
 self.filevalid=False
 self.exifvalid=False
 img=self.initImage()
 if self.filevalid==True:
 self.initExif(img)
 self.initDates()
 def initImage(self):
 """opens the image and confirms if valid, returns Image"""
 try:
 img=Image.open(self.filename)
 self.filevalid=True
 except IOError:

Using Python for Automation and Productivity Chapter 3

[103]

 print ("Target image not found/valid %s" %
 (self.filename))
 img=None
 self.filevalid=False
 return img
 def initExif(self,image):
 """gets any Exif data from the photo"""
 try:
 self.exif_info={
 ExifTags.TAGS[x]:y
 for x,y in image._getexif().items()
 if x in ExifTags.TAGS
 }
 self.exifvalid=True
 except AttributeError:
 print ("Image has no Exif Tags")
 self.exifvalid=False

 def initDates(self):
 """determines the date the photo was taken"""
 #Gather all the times available into YYYY-MM-DD format
 self.filedates={}
 if self.exifvalid:
 #Get the date info from Exif info
 exif_ids=["DateTime","DateTimeOriginal",
 "DateTimeDigitized"]
 for id in exif_ids:
 dateraw=self.exif_info[id]
 self.filedates["Exif "+id]=
 dateraw[:10].replace(":","-")
 modtimeraw = os.path.getmtime(self.filename)
 self.filedates["File ModTime"]="%s" %
 datetime.datetime.fromtimestamp(modtimeraw).date()
 createtimeraw = os.path.getctime(self.filename)
 self.filedates["File CreateTime"]="%s" %
 datetime.datetime.fromtimestamp(createtimeraw).date()

 def getDate(self):
 """returns the date the image was taken"""
 try:
 date = self.filedates[filedate_to_use]
 except KeyError:
 print ("Exif Date not found")
 date = self.filedates["File ModTime"]
 return date
 def previewPhoto(self):
 """creates a thumbnail image suitable for tk to display"""
 imageview=self.initImage()

Using Python for Automation and Productivity Chapter 3

[104]

 imageview=imageview.convert('RGB')
 imageview.thumbnail(previewsize,Image.ANTIALIAS)
 imageview.save(defaultimagepreview,format='ppm')
 return defaultimagepreview

The previous code defines our Photo class; it is of no use to us until we run it in the There's
more... section and in the next example.

How it works...
We define a general class called Photo; it contains details about itself and provides
functions to access Exchangeable Image File Format (EXIF) information and generate
a preview image.

In the __init__() function, we set values for our class variables and call
self.initImage(), which will open the image using the Image() function from the PIL.
We then call self.initExif() and self.initDates() and set a flag to indicate whether
the file was valid or not. If not valid, the Image() function would raise an IOError
exception.

The initExif() function uses PIL to read the EXIF data from the img object, as shown in
the following code snippet:

self.exif_info={
 ExifTags.TAGS[id]:y
 for id,y in image._getexif().items()
 if id in ExifTags.TAGS
 }

The previous code is a series of compound statements that results in self.exif_info
being populated with a dictionary of tag names and their related values.

ExifTag.TAGS is a dictionary that contains a list of possible tag names linked with their
IDs, as shown in the following code snippet:

ExifTag.TAGS={
4096: 'RelatedImageFileFormat',
513: 'JpegIFOffset',
514: 'JpegIFByteCount',
40963: 'ExifImageHeight',
...etc...}

Using Python for Automation and Productivity Chapter 3

[105]

The image._getexif() function returns a dictionary that contains all the values set by the
camera of the image, each linked to their relevant IDs, as shown in the following code
snippet:

Image._getexif()={
256: 3264,
257: 2448,
37378: (281, 100),
36867: '2016:09:28 22:38:08',
...etc...}

The for loop will go through each item in the image's EXIF value dictionary and check for
its occurrence in the ExifTags.TAGS dictionary; the result will get stored in
self.exif_info. The code for this is as follows:

self.exif_info={
'YResolution': (72, 1),
 'ResolutionUnit': 2,
 'ExposureMode': 0,
'Flash': 24,
...etc...}

Again, if there are no exceptions, we set a flag to indicate that the EXIF data is valid, or if
there is no EXIF data, we raise an AttributeError exception.

The initDates() function allows us to gather all the possible file dates and dates from the
EXIF data so that we can select one of them as the date we wish to use for the file. For
example, it allows us to rename all the images to a filename in the standard date format. We
create a self.filedates dictionary that we populate with three dates extracted from the
EXIF information. We then add the filesystem dates (created and modified) just in case no
EXIF data is available. The os module allows us to use os.path.getctime() and
os.path.getmtime() to obtain an epoch value of the file creation. It can also be the date
and time when the file was moved – and the file modification – when it was last written to
(for example, it often refers to the date when the picture was taken). The epoch value is the
number of seconds since January 1, 1970, but we can use
datetime.datetime.fromtimestamp() to convert it into years, months, days, hours, and
seconds. Adding date() simply limits it to years, months, and days.

Using Python for Automation and Productivity Chapter 3

[106]

Now, if the Photo class was to be used by another module, and we wished to know the
date of the image that was taken, we could look at the self.dates dictionary and pick out
a suitable date. However, this would require the programmer to know how the
self.dates values are arranged, and if we later changed how they are stored, it would
break their program. For this reason, it is recommended that we access data in a class
through access functions so the implementation is independent of the interfaces (this
process is known as encapsulation). We provide a function that returns a date when called;
the programmer does not need to know that it could be one of the five available dates or
even that they are stored as epoch values. Using a function, we can ensure that the interface
will remain the same no matter how the data is stored or collected.

Finally, the last function we want the Photo class to provide is previewPhoto(). This
function provides a method to generate a small thumbnail image and saves it as a Portable
Pixmap Format (PPM) file. As we will discover in a moment, Tkinter allows us to place
images on its Canvas widget, but unfortunately, it does not support JPEGs directly and
only supports GIF or PPM. Therefore, we simply save a small copy of the image we want to
display in the PPM format – with the added warning that the image pallet must be
converted to RGB too – and then get Tkinter to load it onto the Canvas when required.

To summarize, the Photo class we have created is as follows:

Operations Description

__init__(self,filename) This is the object initializer.

initImage(self) This returns img, a PIL-type image object.

initExif(self,image) This extracts all the EXIF information, if any is present.

initDates(self)
This creates a dictionary of all the dates available from the
file and photo information.

getDate(self)
This returns a string of the date when the photo was
taken/created.

previewPhoto(self)
This returns a string of the filename of the previewed
thumbnail.

Using Python for Automation and Productivity Chapter 3

[107]

The properties and their respective descriptions are as follows:

Properties Description

self.filename The filename of the photo.

self.filevalid This is set to True if the file is opened successfully.

self.exifvalid This is set to True if the photo contains EXIF information.

self.exif_info This contains the EXIF information from the photo.

self.filedates
This contains a dictionary of the available dates from the file and
photo information.

To test the new class, we will create some test code to confirm that everything is working as
we expect; see the following section.

There's more...
We previously created the Photo class. Now we can add some test code to our module to
ensure that it functions as we expect. We can use the __name__ ="__main__" attribute
as before to detect whether the module has been run directly or not.

We can add the subsequent section of code at the end of the photohandler.py script to
produce the following test application, which looks as follows:

The Photo View Demo application

Using Python for Automation and Productivity Chapter 3

[108]

Add the following code at the end of photohandler.py:

#Module test code
def dispPreview(aPhoto):
 """Create a test GUI"""
 import tkinter as TK

 #Define the app window
 app = TK.Tk()
 app.title("Photo View Demo")
 #Define TK objects
 # create an empty canvas object the same size as the image
 canvas = TK.Canvas(app, width=previewsize[0],
 height=previewsize[1])
 canvas.grid(row=0,rowspan=2)
 # Add list box to display the photo data
 #(including xyscroll bars)
 photoInfo=TK.Variable()
 lbPhotoInfo=TK.Listbox(app,listvariable=photoInfo,
 height=18,width=45,
 font=("monospace",10))
 yscroll=TK.Scrollbar(command=lbPhotoInfo.yview,
 orient=TK.VERTICAL)
 xscroll=TK.Scrollbar(command=lbPhotoInfo.xview,
 orient=TK.HORIZONTAL)
 lbPhotoInfo.configure(xscrollcommand=xscroll.set,
 yscrollcommand=yscroll.set)
 lbPhotoInfo.grid(row=0,column=1,sticky=TK.N+TK.S)
 yscroll.grid(row=0,column=2,sticky=TK.N+TK.S)
 xscroll.grid(row=1,column=1,sticky=TK.N+TK.E+TK.W)
 # Generate the preview image
 preview_filename = aPhoto.previewPhoto()
 photoImg = TK.PhotoImage(file=preview_filename)
 # anchor image to NW corner
 canvas.create_image(0,0, anchor=TK.NW, image=photoImg)
 # Populate infoList with dates and exif data
 infoList=[]
 for key,value in aPhoto.filedates.items():
 infoList.append(key.ljust(25) + value)
 if aPhoto.exifvalid:
 for key,value in aPhoto.exif_info.items():
 infoList.append(key.ljust(25) + str(value))
 # Set listvariable with the infoList
 photoInfo.set(tuple(infoList))

 app.mainloop()

Using Python for Automation and Productivity Chapter 3

[109]

def main():
 """called only when run directly, allowing module testing"""
 import sys
 #Check the arguments
 if len(sys.argv) == ARG_LENGTH:
 print ("Command: %s" %(sys.argv))
 #Create an instance of the Photo class
 viewPhoto = Photo(sys.argv[ARG_IMAGEFILE])
 #Test the module by running a GUI
 if viewPhoto.filevalid==True:
 dispPreview(viewPhoto)
 else:
 print ("Usage: photohandler.py imagefile")

if __name__=='__main__':
 main()
#End

The previous test code will run the main() function, which takes the filename of a photo to
use and creates a new Photo object called viewPhoto. If viewPhoto is opened successfully,
we will call dispPreview() to display the image and its details.

The dispPreview() function creates four Tkinter widgets to be displayed: a Canvas to
load the thumbnail image, a Listbox widget to display the photo information, and two
scroll bars to control the Listbox. First, we create a Canvas widget the size of the
thumbnail image (previewsize).

Next, we create photoInfo, which will be our listvariable parameter linked to the
Listbox widget. Since Tkinter doesn't provide a ListVar() function to create a suitable
item, we use the generic type TK.Variable() and then ensure we convert it to a tuple type
before setting the value. The Listbox widget gets added; we need to make sure that the
listvariable parameter is set to photoInfo and also set the font to monospace. This will
allow us to line up our data values using spaces, as monospace is a fixed width font, so
each character takes up the same width as any other.

Using Python for Automation and Productivity Chapter 3

[110]

We define the two scroll bars, linking them to the Listbox widget, by setting the
Scrollbar command parameters for vertical and horizontal scroll bars to
lbPhotoInfo.yview and lbPhotoInfo.xview. Then, we adjust the parameters of the
Listbox using the following command:

lbPhotoInfo.configure(xscrollcommand=xscroll.set,
 yscrollcommand=yscroll.set)

The configure command allows us to add or change the widget's parameters after it has
been created, in this case linking the two scroll bars so the Listbox widget can also control
them if the user scrolls within the list.

As before, we make use of the grid layout to ensure that the Listbox widget has the two
scroll bars placed correctly next to it and the Canvas widget is to the left of the Listbox
widget.

We now use the Photo object to create the preview.ppm thumbnail file (using the
aPhoto.previewPhoto() function) and create a TK.PhotoImage object that can then be
added to the Canvas widget with the following command:

canvas.create_image(0,0, anchor=TK.NW, image=photoImg)

Finally, we use the date information that the Photo class gathers and the EXIF information
(ensuring it is valid first) to populate the Listbox widget. We do this by converting each
item into a list of strings that are spaced out using .ljust(25)—it adds left justification to
the name and pads it out to make the string 25 characters wide. Once we have the list, we
convert it to a tuple type and set the listvariable (photoInfo) parameter.

As always, we call app.mainloop() to start monitoring for events to respond to.

Organizing your photos automatically
Now that we have a class that allows us to gather information about photos, we can apply
this information to perform useful tasks. In this case, we will use the file information to
automatically organize a folder full of photos into a subset of folders based on the dates
the photos were taken on. The following screenshot shows the output of the script:

Using Python for Automation and Productivity Chapter 3

[111]

Script output to organize photos in folder

Getting ready
You will need a selection of photos placed in a folder on Raspberry Pi. Alternatively, you
can insert a USB memory stick or a card reader with photos on it—they will be located in
/mnt/. However, please make sure you test the scripts with a copy of your photos first, just
in case there are any problems.

How to do it...
Create the following script in filehandler.py to automatically organize your photos:

#!/usr/bin/python3
#filehandler.py
import os
import shutil
import photohandler as PH
from operator import itemgetter

FOLDERSONLY=True

Using Python for Automation and Productivity Chapter 3

[112]

DEBUG=True
defaultpath=""
NAME=0
DATE=1

class FileList:
 def __init__(self,folder):
 """Class constructor"""
 self.folder=folder
 self.listFileDates()

 def getPhotoNamedates(self):
 """returns the list of filenames and dates"""
 return self.photo_namedates

 def listFileDates(self):
 """Generate list of filenames and dates"""
 self.photo_namedates = list()
 if os.path.isdir(self.folder):
 for filename in os.listdir(self.folder):
 if filename.lower().endswith(".jpg"):
 aPhoto = PH.Photo(os.path.join(self.folder,filename))
 if aPhoto.filevalid:
 if (DEBUG):print("NameDate: %s %s"%
 (filename,aPhoto.getDate()))
 self.photo_namedates.append((filename,
 aPhoto.getDate()))
 self.photo_namedates = sorted(self.photo_namedates,
 key=lambda date: date[DATE])

 def genFolders(self):
 """function to generate folders"""
 for i,namedate in enumerate(self.getPhotoNamedates()):
 #Remove the - from the date format
 new_folder=namedate[DATE].replace("-","")
 newpath = os.path.join(self.folder,new_folder)
 #If path does not exist create folder
 if not os.path.exists(newpath):
 if (DEBUG):print ("New Path: %s" % newpath)
 os.makedirs(newpath)
 if (DEBUG):print ("Found file: %s move to %s" %
 (namedate[NAME],newpath))
 src_file = os.path.join(self.folder,namedate[NAME])
 dst_file = os.path.join(newpath,namedate[NAME])
 try:
 if (DEBUG):print ("File moved %s to %s" %
 (src_file, dst_file))
 if (FOLDERSONLY==False):shutil.move(src_file, dst_file)

Using Python for Automation and Productivity Chapter 3

[113]

 except IOError:
 print ("Skipped: File not found")

def main():
 """called only when run directly, allowing module testing"""
 import tkinter as TK
 from tkinter import filedialog
 app = TK.Tk()
 app.withdraw()
 dirname = TK.filedialog.askdirectory(parent=app,
 initialdir=defaultpath,
 title='Select your pictures folder')
 if dirname != "":
 ourFileList=FileList(dirname)
 ourFileList.genFolders()

if __name__=="__main__":
 main()
#End

How it works...
We shall make a class called FileList; it will make use of the Photo class to manage
the photos within a specific folder. There are two main steps for this: we first need to find
all the images within the folder, and then generate a list containing both the filename and
the photo date. We will use this information to generate new subfolders and move the
photos into these folders.

When we create the FileList object, we will create the list using listFileDates(). We
will then confirm that the folder provided is valid and use os.listdir to obtain the full
list of files within the directory. We will check that each file is a JPEG file and obtain each
photo's date (using the function defined in the Photo class). Next, we will add the filename
and date as a tuple to the self.photo_namedates list.

Finally, we will use the built-in sorted function to place all the files in order of their date.
While we don't need to do this here, this function would make it easier to remove duplicate
dates if we were to use this module elsewhere.

Using Python for Automation and Productivity Chapter 3

[114]

The sorted function requires the list to be sorted, and, in this case, we
want to sort it by the date values:

 sorted(self.photo_namedates,key=lambda date:
date[DATE])

We will substitute date[DATE] with lambda date: as the value to sort
by.

Once the FileList object has been initialized, we can use it by calling genFolders().
First, we convert the date text into a suitable format for our folders (YYYYMMDD),
allowing our folders to be easily sorted in order of their date. Next, it will create the folders
within the current directory if they don't already exist. Finally, it will move each of the files
into the required subfolder.

We end up with our FileList class that is ready to be tested:

Operations Description

__init__(self,folder) This is the object initializer.

getPhotoNamedates(self)
This returns a list of the filenames of the dates of the
photos.

listFileDates(self)
This creates a list of the filenames and dates of the photos
in the folder.

genFolders(self)
This creates new folders based on a photo's date and
moves the files into them.

The properties are listed as follows:

Properties Description

self.folder The folder we are working with.

self.photo_namedates This contains a list of the filenames and dates.

Using Python for Automation and Productivity Chapter 3

[115]

The FileList class encapsulates all the functions and the relevant data together, keeping
everything in one logical place:

Tkinter filediaglog.askdirectory() is used to select the photo directory

To test this, we use the Tkinter filedialog.askdirectory() widget to allow us to select
a target directory of pictures. We use app.withdrawn() to hide the main Tkinter window
since it isn't required this time. We just need to create a new FileList object and then call
genFolders() to move all our photos to new locations!

Two additional flags have been defined in this script that provide extra
control for testing. DEBUG allows us to enable or disable extra debugging
messages by setting them to either True or False. Furthermore,
FOLDERSONLY, when set to True, only generates the folders and doesn't
move the files (this is helpful for testing whether the new subfolders are
correct).

Once you have run the script, you can check if all the folders have been created correctly.
Finally, change FOLDERSONLY to True, and your program will automatically move and
organize your photos according to their dates the next time. It is recommended that you
only run this on a copy of your photos, just in case you get an error.

4
Predicting Sentiments in Words

This chapter presents the following recipes:

Building a Naive Bayes classifier
Logistic regression classifier
Splitting the dataset for training and testing
Evaluating the accuracy using cross-validation
Analyzing the sentiment of a sentence
Identifying patterns in text using topic modeling
Application of sentiment analyses

Building a Naive Bayes classifier
A Naive Bayes classifier employs Bayes' theorem to construct a supervised model.

How to do it...
Import the following packages:1.

from sklearn.naive_bayes import GaussianNB
import numpy as np
import matplotlib.pyplot as plt

Predicting Sentiments in Words Chapter 4

[117]

Use the following data file, which includes comma-separated arithmetical data:2.

in_file = 'data_multivar.txt'
a = []
b = []
with open(in_file, 'r') as f:
 for line in f.readlines():
 data = [float(x) for x in line.split(',')]
 a.append(data[:-1])
 b.append(data[-1])
a = np.array(a)
b = np.array(b)

Construct a Naive Bayes classifier:3.

classification_gaussiannb = GaussianNB()
classification_gaussiannb.fit(a, b)
b_pred = classification_gaussiannb.predict(a)

Calculate the accuracy of Naive Bayes:4.

correctness = 100.0 * (b == b_pred).sum() / a.shape[0]
print "correctness of the classification =", round(correctness, 2),
"%"

Plot the classifier result:5.

def plot_classification(classification_gaussiannb, a , b):
 a_min, a_max = min(a[:, 0]) - 1.0, max(a[:, 0]) + 1.0
 b_min, b_max = min(a[:, 1]) - 1.0, max(a[:, 1]) + 1.0
 step_size = 0.01
 a_values, b_values = np.meshgrid(np.arange(a_min, a_max,
step_size), np.arange(b_min, b_max, step_size))
 mesh_output1 =
classification_gaussiannb.predict(np.c_[a_values.ravel(),
b_values.ravel()])
 mesh_output2 = mesh_output1.reshape(a_values.shape)
 plt.figure()
 plt.pcolormesh(a_values, b_values, mesh_output2,
cmap=plt.cm.gray)
 plt.scatter(a[:, 0], a[:, 1], c=b , s=80, edgecolors='black',
linewidth=1,cmap=plt.cm.Paired)

Specify the boundaries of the figure:6.

plt.xlim(a_values.min(), a_values.max())
plt.ylim(b_values.min(), b_values.max())
specify the ticks on the X and Y axes

Predicting Sentiments in Words Chapter 4

[118]

plt.xticks((np.arange(int(min(a[:, 0])-1), int(max(a[:, 0])+1),
1.0)))
plt.yticks((np.arange(int(min(a[:, 1])-1), int(max(a[:, 1])+1),
1.0)))
plt.show()
plot_classification(classification_gaussiannb, a, b)

The accuracy obtained after executing a Naive Bayes classifier is shown in the following
screenshot:

See also
Please refer to the following articles:

To get to know how the classifier works with an example refer to the following
link:

https:/​/ ​en. ​wikipedia. ​org/ ​wiki/ ​Naive_ ​Bayes_ ​classifier

To learn more about text classification with the proposed classifier, refer to the
following link:

http:/​/​sebastianraschka. ​com/ ​Articles/ ​2014_ ​naive_ ​bayes_ ​1.​html

To learn more about the Naive Bayes Classification Algorithm, refer to the
following link:

http:/​/​software. ​ucv. ​ro/ ​~cmihaescu/ ​ro/ ​teaching/ ​AIR/ ​docs/ ​Lab4-
NaiveBayes. ​pdf

Logistic regression classifier
This approach can be chosen where the output can take only two values, 0 or 1, pass/fail,
win/lose, alive/dead, or healthy/sick, and so on. In cases where the dependent variable has
more than two outcome categories, it may be analyzed using multinomial logistic
regression.

https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf
http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf

Predicting Sentiments in Words Chapter 4

[119]

How to do it...
After installing the essential packages, let's construct some training labels:1.

import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt
a = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3,
2]])
b = np.array([1, 1, 1, 2, 2, 2])

Initiate the classifier:2.

classification =
linear_model.LogisticRegression(solver='liblinear', C=100)
classification.fit(a, b)

Sketch datapoints and margins:3.

def plot_classification(classification, a , b):
 a_min, a_max = min(a[:, 0]) - 1.0, max(a[:, 0]) + 1.0
 b_min, b_max = min(a[:, 1]) - 1.0, max(a[:, 1]) + 1.0 step_size =
0.01
 a_values, b_values = np.meshgrid(np.arange(a_min, a_max,
step_size), np.arange(b_min, b_max, step_size))
 mesh_output1 = classification.predict(np.c_[a_values.ravel(),
b_values.ravel()])
 mesh_output2 = mesh_output1.reshape(a_values.shape)
 plt.figure()
 plt.pcolormesh(a_values, b_values, mesh_output2,
cmap=plt.cm.gray)
 plt.scatter(a[:, 0], a[:, 1], c=b , s=80,
edgecolors='black',linewidth=1,cmap=plt.cm.Paired)

 # specify the boundaries of the figure
 plt.xlim(a_values.min(), a_values.max())
 plt.ylim(b_values.min(), b_values.max())

 # specify the ticks on the X and Y axes
 plt.xticks((np.arange(int(min(a[:, 0])-1), int(max(a[:, 0])+1),
1.0)))
 plt.yticks((np.arange(int(min(a[:, 1])-1), int(max(a[:, 1])+1),
1.0)))
 plt.show()
 plot_classification(classification, a, b)

Predicting Sentiments in Words Chapter 4

[120]

The command to execute logistic regression is shown in the following screenshot:

Splitting the dataset for training and testing
Splitting helps to partition the dataset into training and testing sequences.

How to do it...
Add the following code fragment into the same Python file:1.

from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
import numpy as np
import matplotlib.pyplot as plt
in_file = 'data_multivar.txt'
a = []
b = []
with open(in_file, 'r') as f:
 for line in f.readlines():
 data = [float(x) for x in line.split(',')]
 a.append(data[:-1])
 b.append(data[-1])
a = np.array(a)
b = np.array(b)

Allocate 75% of data for training and 25% of data for testing:2.

a_training, a_testing, b_training, b_testing =
cross_validation.train_test_split(a, b, test_size=0.25,
random_state=5)
classification_gaussiannb_new = GaussianNB()
classification_gaussiannb_new.fit(a_training, b_training)

Evaluate the classifier performance on test data:3.

b_test_pred = classification_gaussiannb_new.predict(a_testing)

Predicting Sentiments in Words Chapter 4

[121]

Compute the accuracy of the classifier system:4.

correctness = 100.0 * (b_testing == b_test_pred).sum() /
a_testing.shape[0]
print "correctness of the classification =", round(correctness, 2),
"%"

Plot the datapoints and the boundaries for test data:5.

def plot_classification(classification_gaussiannb_new, a_testing ,
b_testing):
 a_min, a_max = min(a_testing[:, 0]) - 1.0, max(a_testing[:, 0]) +
1.0
 b_min, b_max = min(a_testing[:, 1]) - 1.0, max(a_testing[:, 1]) +
1.0
 step_size = 0.01
 a_values, b_values = np.meshgrid(np.arange(a_min, a_max,
step_size), np.arange(b_min, b_max, step_size))
 mesh_output =
classification_gaussiannb_new.predict(np.c_[a_values.ravel(),
b_values.ravel()])
 mesh_output = mesh_output.reshape(a_values.shape)
 plt.figure()
 plt.pcolormesh(a_values, b_values, mesh_output, cmap=plt.cm.gray)
 plt.scatter(a_testing[:, 0], a_testing[:, 1], c=b_testing , s=80,
edgecolors='black', linewidth=1,cmap=plt.cm.Paired)
 # specify the boundaries of the figure
 plt.xlim(a_values.min(), a_values.max())
 plt.ylim(b_values.min(), b_values.max())
 # specify the ticks on the X and Y axes
 plt.xticks((np.arange(int(min(a_testing[:, 0])-1),
int(max(a_testing[:, 0])+1), 1.0)))
 plt.yticks((np.arange(int(min(a_testing[:, 1])-1),
int(max(a_testing[:, 1])+1), 1.0)))
 plt.show()
plot_classification(classification_gaussiannb_new, a_testing,
b_testing)

Predicting Sentiments in Words Chapter 4

[122]

The accuracy obtained while splitting the dataset is shown in the following screenshot:

Evaluating the accuracy using cross-
validation
Cross-validation is essential in machine learning. Initially, we split the datasets into a train
set and a test set. Next, in order to construct a robust classifier, we repeat this procedure,
but we need to avoid overfitting the model. Overfitting indicates that we get excellent
prediction results for the train set, but very poor results for the test set. Overfitting causes
poor generalization of the model.

How to do it...
Import the packages:1.

from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
import numpy as np
in_file = 'cross_validation_multivar.txt'
a = []
b = []
with open(in_file, 'r') as f:
 for line in f.readlines():
 data = [float(x) for x in line.split(',')]
 a.append(data[:-1])
 b.append(data[-1])
a = np.array(a)
b = np.array(b)
classification_gaussiannb = GaussianNB()

Predicting Sentiments in Words Chapter 4

[123]

Compute the accuracy of the classifier:2.

num_of_validations = 5
accuracy =
cross_validation.cross_val_score(classification_gaussiannb, a, b,
scoring='accuracy', cv=num_of_validations)
print "Accuracy: " + str(round(100* accuracy.mean(), 2)) + "%"
f1 = cross_validation.cross_val_score(classification_gaussiannb, a,
b, scoring='f1_weighted', cv=num_of_validations)
print "f1: " + str(round(100*f1.mean(), 2)) + "%"
precision =
cross_validation.cross_val_score(classification_gaussiannb,a, b,
scoring='precision_weighted', cv=num_of_validations)
print "Precision: " + str(round(100*precision.mean(), 2)) + "%"
recall =
cross_validation.cross_val_score(classification_gaussiannb, a, b,
scoring='recall_weighted', cv=num_of_validations)
print "Recall: " + str(round(100*recall.mean(), 2)) + "%"

The result obtained after executing cross-validation is shown as follows:3.

In order to know how it works on a given sentence dataset, refer to the following:

Introduction to logistic regression:

https:/​/ ​machinelearningmastery. ​com/ ​logistic- ​regression- ​for- ​machine-
learning/ ​

Analyzing the sentiment of a sentence
Sentiment analysis refers to procedures of finding whether a specified part of text is
positive, negative, or neutral. This technique is frequently considered to find out how
people think about a particular situation. It evaluates the sentiments of consumers in
different forms, such as advertising campaigns, social media, and e-commerce customers.

https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/

Predicting Sentiments in Words Chapter 4

[124]

How to do it...
Create a new file and import the chosen packages:1.

import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews

Describe a function to extract features:2.

def collect_features(word_list):
 word = []
 return dict ([(word, True) for word in word_list])

Adopt movie reviews in NLTK as training data:3.

if __name__=='__main__':
 plus_filenum = movie_reviews.fileids('pos')
 minus_filenum = movie_reviews.fileids('neg')

Divide the data into positive and negative reviews:4.

 feature_pluspts =
[(collect_features(movie_reviews.words(fileids=[f])),
'Positive') for f in plus_filenum]
 feature_minuspts =
[(collect_features(movie_reviews.words(fileids=[f])),
'Negative') for f in minus_filenum]

Segregate the data into training and testing datasets:5.

 threshold_fact = 0.8
 threshold_pluspts = int(threshold_fact * len(feature_pluspts))
 threshold_minuspts = int(threshold_fact * len(feature_minuspts))

Extract the features:6.

 feature_training = feature_pluspts[:threshold_pluspts] +
feature_minuspts[:threshold_minuspts]
 feature_testing = feature_pluspts[threshold_pluspts:] +
feature_minuspts[threshold_minuspts:]
 print "nNumber of training datapoints:", len(feature_training)
 print "Number of test datapoints:", len(feature_testing)

Predicting Sentiments in Words Chapter 4

[125]

Consider the Naive Bayes classifier and train it with an assigned objective:7.

 # Train a Naive Bayes classifiers
 classifiers = NaiveBayesClassifier.train(feature_training)
 print "nAccuracy of the
classifiers:",nltk.classify.util.accuracy(classifiers,feature_testi
ng)
 print "nTop 10 most informative words:"
 for item in classifiers.most_informative_features()[:10]:print
item[0]
 # Sample input reviews
 in_reviews = [
 "The Movie was amazing",
 "the movie was dull. I would never recommend it to anyone.",
 "The cinematography is pretty great in the movie",
 "The direction was horrible and the story was all over the place"
]
 print "nPredictions:"
 for review in in_reviews:
 print "nReview:", review
 probdist =
classifiers.prob_classify(collect_features(review.split()))
 predict_sentiment = probdist.max()
 print "Predicted sentiment:", predict_sentiment
 print "Probability:", round(probdist.prob(predict_sentiment), 2)

The result obtained for sentiment analysis is shown as follows:8.

Predicting Sentiments in Words Chapter 4

[126]

Identifying patterns in text using topic
modeling
The theme modeling refers to the procedure of recognizing hidden patterns in manuscript
information. The objective is to expose some hidden thematic configuration in a collection
of documents.

How to do it...
Import the following packages:1.

from nltk.tokenize import RegexpTokenizer
from nltk.stem.snowball import SnowballStemmer
from gensim import models, corpora
from nltk.corpus import stopwords

Load the input data:2.

def load_words(in_file):
 element = []
 with open(in_file, 'r') as f:
 for line in f.readlines():
 element.append(line[:-1])
 return element

Class to pre-process text:3.

classPreprocedure(object):
 def __init__(self):
 # Create a regular expression tokenizer
 self.tokenizer = RegexpTokenizer(r'w+')

Obtain a list of stop words to terminate the program execution:4.

 self.english_stop_words= stopwords.words('english')

Create a Snowball stemmer:5.

 self.snowball_stemmer = SnowballStemmer('english')

Predicting Sentiments in Words Chapter 4

[127]

Define a function to perform tokenizing, stop word removal, and stemming:6.

 def procedure(self, in_data):
Tokenize the string
 token = self.tokenizer.tokenize(in_data.lower())

Eliminate stop words from the text:7.

 tokenized_stopwords = [x for x in token if not x in
self.english_stop_words]

Implement stemming on the tokens:8.

 token_stemming = [self.snowball_stemmer.stem(x) for x in
tokenized_stopwords]

Return the processed tokens:9.

 return token_stemming

Load the input data from the main function:10.

if __name__=='__main__':
 # File containing input data
 in_file = 'data_topic_modeling.txt'
 # Load words
 element = load_words(in_file)

Create an object:11.

 preprocedure = Preprocedure()

Process the file and extract the tokens:12.

 processed_tokens = [preprocedure.procedure(x) for x in element]

Create a dictionary based on the tokenized documents:13.

 dict_tokens = corpora.Dictionary(processed_tokens)
 corpus = [dict_tokens.doc2bow(text) for text in processed_tokens]

Predicting Sentiments in Words Chapter 4

[128]

Develop an LDA model, define required parameters, and initialize the LDA14.
objective:

 num_of_topics = 2
 num_of_words = 4
 ldamodel =
models.ldamodel.LdaModel(corpus,num_topics=num_of_topics,
id2word=dict_tokens, passes=25)
 print "Most contributing words to the topics:"
 for item in ldamodel.print_topics(num_topics=num_of_topics,
num_words=num_of_words):
 print "nTopic", item[0], "==>", item[1]

The result obtained when topic_modelling.py is executed is shown in the15.
following screenshot:

Applications of sentiment analysis
Sentiment analysis is used in social media such as Facebook and Twitter, to find the
sentiments (positive/negative) of the general public over an issue. They are also used to
establish the sentiments of people regarding advertisements and how people feel about
your product, brand, or service.

5
Creating Games and Graphics

In this chapter, we will cover the following topics:

Using IDLE3 to debug your programs
Drawing lines using a mouse on a Tkinter Canvas
Creating a bat and ball game
Creating an overhead scrolling game

Introduction
Games are often a great way to explore and extend your programming skills, as they
present an inherent motivating force to modify and improve your creation, add new
features, and create new challenges. They are also great for sharing your ideas with others,
even if they aren't interested in programming.

This chapter focuses on using the Tkinter Canvas widget to create and display objects on a
screen for the user to interact with. Using these techniques, a wide variety of games and
applications can be created, limited only by your own creativity.

We will also take a quick look at using the debugger built into IDLE3, a valuable tool for
testing and developing your programs without the need to write extensive test code.

The first example demonstrates how we can monitor and make use of the mouse to create
objects and draw directly on the Canvas widget. Then, we create a bat and ball game, which
shows how the positions of objects can be controlled and how interactions between them
can be detected and responded to. Finally, we take things a little further and use Tkinter to
place our own graphics onto the Canvas widget to create an overhead view treasure hunt
game.

Creating Games and Graphics Chapter 5

[130]

Using IDLE3 to debug your programs
A key aspect of programming is being able to test and debug your code, and a useful tool to
achieve this is a debugger. The IDLE editor (make sure you use IDLE3 to support the
Python 3 code we use in this book) includes a basic debugger. It allows you to step through
your code, observe the values of local and global variables, and set breakpoints.

How to do it...
To enable the debugger, start IDLE3 and select Debugger from the Debug menu;1.
it will open up the following window (if you are currently running some code,
you will need to stop it first):

The IDLE3 debugger window

Open up the code you want to test (via File | Open...) and try running it (F5).2.
You will find that the code will not start since the debugger has automatically
stopped at the first line. The following screenshot shows that the debugger has
stopped on the first line of code in filehandler.py, which is line 3: import
os:

Creating Games and Graphics Chapter 5

[131]

The IDLE3 debugger at the start of the code

How it works...
The control buttons shown in the following screenshot allow you to run and/or jump
through the code:

Debugger controls

The functions of the control buttons are as follows:

Go: This button will execute the code as normal.
Step: This button will execute the block of code one line at a time, and then stop
again. If a function is called, it will enter that function and allow you to step
through that, too.

Creating Games and Graphics Chapter 5

[132]

Over: This button is like the Step command, but if there is a function call, it will
execute the whole function and stop at the following line.
Out: This button will keep executing the code until it has completed the function
it is currently in, continuing until you come out of the function.
Quit: This button ends the program immediately.

In addition to the previously mentioned controls, you can Set Breakpoint and Clear
Breakpoint directly within the code. A breakpoint is a marker that you can insert in the
code (by right-clicking on the editor window), which the debugger will always break on
(stop at) when reached, as shown in the following screenshot:

Set and clear breakpoints directly in your code

The checkboxes (on the right-hand side of the control buttons) allow you to choose what
information to display when you step through the code or when the debugger stops
somewhere due to a breakpoint. Stack is shown in the main window, which is similar to
what you would see if the program hit an unhandled exception. The Stack option shows all
of the function calls made to get to the current position in the code, right up to the line it has
stopped at. The Source option highlights the line of code currently being executed and, in
some cases, the code inside the imported modules, too (if they are non-compiled libraries).

You can also select whether to display Locals and/or Globals. By default, the Source and
Globals options are usually disabled, as they can make the process quite slow if there is a
lot of data to display.

Creating Games and Graphics Chapter 5

[133]

Python uses the concept of local and global variables to define the scope
(where and when the variables are visible and valid). Global variables are
defined at the top level of the file and are visible from any point in the
code, after it has been defined. However, in order to alter its value from
anywhere other than the top level, Python requires you to use the global
keyword first. Without the global keyword, you will create a local copy
with the same name (the value of which will be lost when you exit the
block). Local variables are defined when you create a variable within a
function; once outside of the function, the variable is destroyed and is not
visible anymore.

Following Stack data are the Locals – in this case, aPhoto, filename, and self. Then (if
enabled), we have all of the global values that are currently valid, providing useful details
about the status of the program (DATE = 1, DEBUG = True, FOLDERSONLY = True, and so
on):

The Stack, Locals, and Globals options within the debugger

Creating Games and Graphics Chapter 5

[134]

The debugger isn't particularly advanced, as it does not allow you to expand complex
objects, such as the photohandler.Photo object, to see what data it contains. However, if
required, you can adjust your code and assign the data you want to observe to some
temporary variables during testing.

It is worth learning how to use the debugger, as it is a much easier way to track down
particular problems and check whether or not things are functioning as you expect them to.

Drawing lines using a mouse on Tkinter
Canvas
The Tkinter Canvas widget provides an area to create and draw objects on. The following
script demonstrates how to use mouse events to interact with Tkinter. By detecting the
mouse clicks, we can use Tkinter to draw a line that follows the movement of the mouse:

A simple drawing application using Tkinter

Creating Games and Graphics Chapter 5

[135]

Getting ready
As before, we need to have Tkinter installed, and either the Raspbian desktop running
(startx from the command line) or an SSH session with X11 forwarding and an X server
running (see Chapter 1, Getting Started with a Raspberry Pi 3 Computer). We will also need a
mouse connected.

How to do it...
Create the following script, painting.py:

#!/usr/bin/python3
#painting.py
import tkinter as TK

#Set defaults
btn1pressed = False
newline = True

def main():
 root = TK.Tk()
 the_canvas = TK.Canvas(root)
 the_canvas.pack()
 the_canvas.bind("<Motion>", mousemove)
 the_canvas.bind("<ButtonPress-1>", mouse1press)
 the_canvas.bind("<ButtonRelease-1>", mouse1release)
 root.mainloop()

def mouse1press(event):
 global btn1pressed
 btn1pressed = True

def mouse1release(event):
 global btn1pressed, newline
 btn1pressed = False
 newline = True

def mousemove(event):
 if btn1pressed == True:
 global xorig, yorig, newline
 if newline == False:
 event.widget.create_line(xorig,yorig,event.x,event.y,
 smooth=TK.TRUE)
 newline = False
 xorig = event.x

Creating Games and Graphics Chapter 5

[136]

 yorig = event.y

if __name__ == "__main__":
 main()
#End

How it works...
The Python code creates a Tkinter window that contains a Canvas object called
the_canvas. We use the bind function here, which will bind a specific event that occurs on
this widget (the_canvas) to a specific action or key press. In this case, we bind the
<Motion> function of the mouse, plus the click and release of the first mouse button
(<ButtonPress-1> and <ButtonRelease-1>). Each of these events are then used to call
the mouse1press(), mouse1release(), and mousemove() functions.

The logic here is to track the status of the mouse button using the mouse1press() and
mouse1release() functions.

If the mouse button has been clicked, the mousemove() function will check to see whether
we are drawing a new line (we set new coordinates for this) or continuing an old one (we
draw a line from the previous coordinates to the coordinates of the current event that has
triggered mousemove()). We just need to ensure that we reset to the newline command
whenever the mouse button is released to reset the start position of the line.

Creating a bat and ball game
A classic bat and ball game can be created using the drawing tools of canvas and detecting
the collisions of the objects. The user will be able to control the green paddle, using the left
and right cursor keys to aim the ball at the bricks and hit them until they have all been
destroyed:

Creating Games and Graphics Chapter 5

[137]

A game in progress

Getting ready
This example requires graphical output, so you must have a screen and keyboard attached
to the Raspberry Pi, or use X11 forwarding and X server if connected remotely from another
computer.

How to do it...
Create the following script, bouncingball.py:

First, import the tkinter and time modules, and define constants for the1.
game graphics:

#!/usr/bin/python3
bouncingball.py
import tkinter as TK
import time

Creating Games and Graphics Chapter 5

[138]

VERT,HOREZ=0,1
xTOP,yTOP = 0,1
xBTM,yBTM = 2,3
MAX_WIDTH,MAX_HEIGHT = 640,480
xSTART,ySTART = 100,200
BALL_SIZE=20
RUNNING=True

Next, create functions for closing the program, moving the paddle right and left,2.
and for calculating the direction of the ball:

def close():
 global RUNNING
 RUNNING=False
 root.destroy()

def move_right(event):
 if canv.coords(paddle)[xBTM]<(MAX_WIDTH-7):
 canv.move(paddle, 7, 0)

def move_left(event):
 if canv.coords(paddle)[xTOP]>7:
 canv.move(paddle, -7, 0)

def determineDir(ball,obj):
 global delta_x,delta_y
 if (ball[xTOP] == obj[xBTM]) or (ball[xBTM] ==
 obj[xTOP]):
 delta_x = -delta_x
 elif (ball[yTOP] == obj[yBTM]) or (ball[yBTM] ==
 obj[yTOP]):
 delta_y = -delta_y

Set up the tkinter window and define the canvas:3.

root = TK.Tk()
root.title("Bouncing Ball")
root.geometry('%sx%s+%s+%s' %(MAX_WIDTH, MAX_HEIGHT, 100, 100))
root.bind('<Right>', move_right)
root.bind('<Left>', move_left)
root.protocol('WM_DELETE_WINDOW', close)

canv = TK.Canvas(root, highlightthickness=0)
canv.pack(fill='both', expand=True)

Creating Games and Graphics Chapter 5

[139]

Add the borders, ball, and paddle objects to the canvas:4.

top = canv.create_line(0, 0, MAX_WIDTH, 0, fill='blue',
 tags=('top'))
left = canv.create_line(0, 0, 0, MAX_HEIGHT, fill='blue',
 tags=('left'))
right = canv.create_line(MAX_WIDTH, 0, MAX_WIDTH, MAX_HEIGHT,
 fill='blue', tags=('right'))
bottom = canv.create_line(0, MAX_HEIGHT, MAX_WIDTH, MAX_HEIGHT,
 fill='blue', tags=('bottom'))

ball = canv.create_rectangle(0, 0, BALL_SIZE, BALL_SIZE,
 outline='black', fill='black',
 tags=('ball'))
paddle = canv.create_rectangle(100, MAX_HEIGHT - 30, 150, 470,
 outline='black',
 fill='green', tags=('rect'))

Draw all of the bricks and set up the ball and paddle positions:5.

brick=list()
for i in range(0,16):
 for row in range(0,4):
 brick.append(canv.create_rectangle(i*40, row*20,
 ((i+1)*40)-2, ((row+1)*20)-2,
 outline='black', fill='red',
 tags=('rect')))

delta_x = delta_y = 1
xold,yold = xSTART,ySTART
canv.move(ball, xold, yold)

Create the main loop for the game to check for collisions and handle the6.
movement of the paddle and ball:

while RUNNING:
 objects = canv.find_overlapping(canv.coords(ball)[0],
 canv.coords(ball)[1],
 canv.coords(ball)[2],
 canv.coords(ball)[3])

 #Only change the direction once (so will bounce off 1st
 # block even if 2 are hit)
 dir_changed=False
 for obj in objects:
 if (obj != ball):
 if dir_changed==False:

Creating Games and Graphics Chapter 5

[140]

 determineDir(canv.coords(ball),canv.coords(obj))
 dir_changed=True
 if (obj >= brick[0]) and (obj <= brick[len(brick)-1]):
 canv.delete(obj)
 if (obj == bottom):
 text = canv.create_text(300,100,text="YOU HAVE MISSED!")
 canv.coords(ball, (xSTART,ySTART,
 xSTART+BALL_SIZE,ySTART+BALL_SIZE))
 delta_x = delta_y = 1
 canv.update()
 time.sleep(3)
 canv.delete(text)
 new_x, new_y = delta_x, delta_y
 canv.move(ball, new_x, new_y)

 canv.update()
 time.sleep(0.005)
#End

How it works...
We create a Tkinter application that is 640 x 480 pixels and bind the <Right> and <Left>
cursor keys to the move_right() and move_left() functions. We use
root.protocol('WM_DELETE_WINDOW', close) to detect when the window is closed, so
that we can cleanly exit the program (via close(), which sets RUNNING to False).

We then add a Canvas widget that will hold all our objects to the application. We create the
following objects: top, left, right, and bottom. These make up our bounding sides for
our game area. The canvas coordinates are 0,0 in the top-left corner and 640,480 in the
bottom-right corner, so the start and end coordinates can be determined for each side (using
canv.create_line(xStart, yStart, xEnd, yEnd)):

The coordinates of the Canvas widget

Creating Games and Graphics Chapter 5

[141]

You can also add multiple tags to the objects; tags are often useful for defining specific
actions or behaviors of objects. For instance, they allow for different types of events to occur
when specific objects or bricks are hit. We will see more uses of tags in the next example.

Next, we define the ball and paddle objects, which are added using
canv.create_rectangle(). This requires two sets of coordinates that define the opposite
corners of the image (in this case, the top-left and bottom-right corners).

A Tkinter rectangle is defined by the coordinates of the two corners:

Example of Tkinter rectangle

Finally, we can create the bricks!

We want our bricks to be 40 x 20 pixels wide so that we can fit 16 bricks across our game
area of 640 pixels (in four rows). We can create a list of brick objects with their positions
defined automatically, as shown in the following code:

brick=list()
for i in range(0,16):
 for row in range(0,4):
 brick.append(canv.create_rectangle(i*40, row*20,
 ((i+1)*40)-2, ((row+1)*20)-2, outline='black',
 fill='red', tags=('rect')))

A brick-like effect is provided by making the bricks slightly smaller (-2) to create a small
gap:

4 x 16 block of rows

Creating Games and Graphics Chapter 5

[142]

We will now set the default settings before starting the main control loop. The movement of
the ball will be governed by delta_x and delta_y, which are added to or subtracted from
the ball's previous position in each cycle.

Next, we set the starting position of the ball and use the canv.move() function to move the
ball by that amount. The move() function will add 100 to the x and y coordinates of the ball
object, which was originally created at position 0,0.

Now that everything is set up, the main loop can run; this will check that the ball has not hit
anything (using the canv.find_overlapping() function), make any adjustments to the
delta_x or delta_y values, and then apply them to move the ball to the next location.

The sign of delta_x and delta_y determines the direction of the ball. Positive values will
make the ball travel diagonally downwards and towards the right, while -delta_x will
make it travel towards the left – either downwards or upwards, depending on whether
delta_y is positive or negative.

After the ball has been moved, we use canv.update() to redraw any changes made to the
display, and time.sleep() allows a small delay before checking and moving the ball
again.

Object collisions are detected using the canv.find_overlapping() function. This returns
a list of canvas objects that are found to be overlapping the bounds of a rectangle defined
by the supplied coordinates. For example, in the case of the square ball, are any of the
coordinates of the canvas objects within the space the ball is occupying? See the following:

The objects are checked to detect if they overlap each other

Creating Games and Graphics Chapter 5

[143]

If the ball is found to be overlapping another object, such as the walls, the paddle, or one or
more of the bricks, we need to determine which direction the ball should travel in next.
Since we are using the coordinates of the ball as the area within which to check, the ball will
always be listed, so that we ignore them when we check the list of objects.

We use the dir_changed flag to ensure that if we hit two bricks at the same time, we do
not change direction twice before we move the ball. Otherwise, it would cause the ball to
continue moving in the same direction, even though it has collided with the bricks.

So, if the ball is overlapping something else, we can call determineDir() with the
coordinates of the ball and the object to work out what the new direction should be.

When the ball collides with something, we want the ball to bounce off of it; fortunately, this
is easy to simulate, as we just need to change the sign of either delta_x or delta_y,
depending on whether we have hit something on the sides or the top/bottom. If the ball hits
the bottom of another object, it means that we were traveling upwards and should now
travel downwards. However, we will continue to travel in the same direction on the x axis
(be it left or right, or just up). This can be seen from the following code:

if (ball[xTOP] == obj[xBTM]) or (ball[xBTM] == obj[xTOP]):
 delta_x = -delta_x

The determineDir() function looks at the coordinates of the ball and the object, and looks
for a match between either the left and right x coordinates or the top and bottom y
coordinates. This is enough to say whether the collision is on the sides or top/bottom, and
we can set the delta_x or delta_y signs accordingly, as can be seen in the following code:

if (obj >= brick[0]) and (obj <= brick[-1]):
 canv.delete(obj)

Next, we can determine whether we have hit a brick by checking whether the overlapping
object ID is between the first and last ID bricks. If it was a brick, we can remove it using
canv.delete().

Python allows the index values to wrap around, rather than access, the
invalid memory, so an index value of -1 will provide us with the last item
in the list. We use this to reference the last brick as brick [-1].

Creating Games and Graphics Chapter 5

[144]

We also check to see whether the object being overlapped is the bottom line (in which case,
the player has missed the ball with the paddle), so a short message is briefly displayed. We
reset the position of the ball and delta_x/delta_y values. The canv.update() function
ensures that the display is refreshed with the message before it is deleted (three seconds
later).

Finally, the ball is moved by the delta_x/delta_y distance, and the display is updated. A
small delay is added here to reduce the rate of updates and the CPU time used. Otherwise,
you will find that your Raspberry Pi will become unresponsive if it is spending 100 percent
of its effort running the program.

When the user presses the cursor keys, the move_right() and move_left() functions are
called. They check the position of the paddle object, and if the paddle is not at the edge, the
paddle will be moved accordingly. If the ball hits the paddle, the collision detection will
ensure that the ball bounces off, just as if it has hit one of the bricks.

You can extend this game further by adding a score for each block destroyed, allowing the
player a finite number of lives that are lost when they miss the ball, and even writing some
code to read in new brick layouts.

Creating an overhead scrolling game
By using objects and images in our programs, we can create many types of 2D graphical
games.

In this recipe, we will create a treasure hunt game where the player is trying to find buried
treasure (by pressing Enter to dig for it). Each time the treasure has not been found, the
player is given a clue to how far away the treasure is; the player can then use the cursor
keys to move around and search until they find it:

Creating Games and Graphics Chapter 5

[145]

Dig for treasure in your own overhead scrolling game

Although this is a basic concept for a game, it could easily be extended to include multiple
layouts, traps, and enemies to avoid, and perhaps even additional tools or puzzles to solve.
With a few adjustments to the graphics, the character could be exploring a dungeon, a
spaceship, or hopping through the clouds, collecting rainbows!

Getting ready
The following example uses a number of images; these are available as part of the book's
resources. You will need to place the nine images in the same directory as the Python script.

The required image files can be seen in the code bundle of this chapter.

Creating Games and Graphics Chapter 5

[146]

How to do it...
Create the following script, scroller.py:

Begin by importing the required libraries and parameters:1.

#!/usr/bin/python3
scroller.py
import tkinter as TK
import time
import math
from random import randint

STEP=7
xVAL,yVAL=0,1
MAX_WIDTH,MAX_HEIGHT=640,480
SPACE_WIDTH=MAX_WIDTH*2
SPACE_HEIGHT=MAX_HEIGHT*2
LEFT,UP,RIGHT,DOWN=0,1,2,3
SPACE_LIMITS=[0,0,SPACE_WIDTH-MAX_WIDTH,
 SPACE_HEIGHT-MAX_HEIGHT]
DIS_LIMITS=[STEP,STEP,MAX_WIDTH-STEP,MAX_HEIGHT-STEP]
BGN_IMG="bg.gif"
PLAYER_IMG=["playerL.gif","playerU.gif",
 "playerR.gif","playerD.gif"]
WALL_IMG=["wallH.gif","wallV.gif"]
GOLD_IMG="gold.gif"
MARK_IMG="mark.gif"
newGame=False
checks=list()

Provide functions to handle the movements of the player:2.

def move_right(event):
 movePlayer(RIGHT,STEP)
def move_left(event):
 movePlayer(LEFT,-STEP)
def move_up(event):
 movePlayer(UP,-STEP)
def move_down(event):
 movePlayer(DOWN,STEP)

def foundWall(facing,move):
 hitWall=False
 olCoords=[canv.coords(player)[xVAL],
 canv.coords(player)[yVAL],
 canv.coords(player)[xVAL]+PLAYER_SIZE[xVAL],

Creating Games and Graphics Chapter 5

[147]

 canv.coords(player)[yVAL]+PLAYER_SIZE[yVAL]]
 olCoords[facing]+=move
 objects = canv.find_overlapping(olCoords[0],olCoords[1],
 olCoords[2],olCoords[3])
 for obj in objects:
 objTags = canv.gettags(obj)
 for tag in objTags:
 if tag == "wall":
 hitWall=True
 return hitWall

def moveBackgnd(movement):
 global bg_offset
 bg_offset[xVAL]+=movement[xVAL]
 bg_offset[yVAL]+=movement[yVAL]
 for obj in canv.find_withtag("bg"):
 canv.move(obj, -movement[xVAL], -movement[yVAL])

def makeMove(facing,move):
 if facing == RIGHT or facing == LEFT:
 movement=[move,0] #RIGHT/LEFT
 bgOffset=bg_offset[xVAL]
 playerPos=canv.coords(player)[xVAL]
 else:
 movement=[0,move] #UP/DOWN
 bgOffset=bg_offset[yVAL]
 playerPos=canv.coords(player)[yVAL]
 #Check Bottom/Right Corner
 if facing == RIGHT or facing == DOWN:
 if (playerPos+PLAYER_SIZE[xVAL]) < DIS_LIMITS[facing]:
 canv.move(player, movement[xVAL], movement[yVAL])
 elif bgOffset < SPACE_LIMITS[facing]:
 moveBackgnd(movement)
 else:
 #Check Top/Left Corner
 if (playerPos) > DIS_LIMITS[facing]:
 canv.move(player, movement[xVAL], movement[yVAL])
 elif bgOffset > SPACE_LIMITS[facing]:
 moveBackgnd(movement)

def movePlayer(facing,move):
 hitWall=foundWall(facing,move)
 if hitWall==False:
 makeMove(facing,move)
 canv.itemconfig(player,image=playImg[facing])

Creating Games and Graphics Chapter 5

[148]

Add functions to check how far the player is from the hidden gold:3.

def check(event):
 global checks,newGame,text
 if newGame:
 for chk in checks:
 canv.delete(chk)
 del checks[:]
 canv.delete(gold,text)
 newGame=False
 hideGold()
 else:
 checks.append(
 canv.create_image(canv.coords(player)[xVAL],
 canv.coords(player)[yVAL],
 anchor=TK.NW, image=checkImg,
 tags=('check','bg')))
 distance=measureTo(checks[-1],gold)
 if(distance<=0):
 canv.itemconfig(gold,state='normal')
 canv.itemconfig(check,state='hidden')
 text = canv.create_text(300,100,fill="white",
 text=("You have found the gold in"+
 " %d tries!"%len(checks)))
 newGame=True
 else:
 text = canv.create_text(300,100,fill="white",
 text=("You are %d steps
away!"%distance))
 canv.update()
 time.sleep(1)
 canv.delete(text)

def measureTo(objectA,objectB):
 deltaX=canv.coords(objectA)[xVAL]-
 canv.coords(objectB)[xVAL]
 deltaY=canv.coords(objectA)[yVAL]-
 canv.coords(objectB)[yVAL]
 w_sq=abs(deltaX)**2
 h_sq=abs(deltaY)**2
 hypot=math.sqrt(w_sq+h_sq)
 return round((hypot/5)-20,-1)

Creating Games and Graphics Chapter 5

[149]

Add functions to help find a location to hide the gold in:4.

def hideGold():
 global gold
 goldPos=findLocationForGold()
 gold=canv.create_image(goldPos[xVAL], goldPos[yVAL],
 anchor=TK.NW, image=goldImg,
 tags=('gold','bg'),
 state='hidden')

def findLocationForGold():
 placeGold=False
 while(placeGold==False):
 goldPos=[randint(0-bg_offset[xVAL],
 SPACE_WIDTH-GOLD_SIZE[xVAL]-bg_offset[xVAL]),
 randint(0-bg_offset[yVAL],
 SPACE_HEIGHT-GOLD_SIZE[yVAL]-bg_offset[yVAL])]
 objects = canv.find_overlapping(goldPos[xVAL],
 goldPos[yVAL],
 goldPos[xVAL]+GOLD_SIZE[xVAL],
 goldPos[yVAL]+GOLD_SIZE[yVAL])
 findNewPlace=False
 for obj in objects:
 objTags = canv.gettags(obj)
 for tag in objTags:
 if (tag == "wall") or (tag == "player"):
 findNewPlace=True
 if findNewPlace == False:
 placeGold=True
 return goldPos

Create the Tkinter application window and bind the keyboard events:5.

root = TK.Tk()
root.title("Overhead Game")
root.geometry('%sx%s+%s+%s' %(MAX_WIDTH,
 MAX_HEIGHT,
 100, 100))
root.resizable(width=TK.FALSE, height=TK.FALSE)
root.bind('<Right>', move_right)
root.bind('<Left>', move_left)
root.bind('<Up>', move_up)
root.bind('<Down>', move_down)
root.bind('<Return>', check)

canv = TK.Canvas(root, highlightthickness=0)
canv.place(x=0,y=0,width=SPACE_WIDTH,height=SPACE_HEIGHT)

Creating Games and Graphics Chapter 5

[150]

Initialize all of the game objects (the background tiles, the player, the walls, and6.
the gold):

#Create background tiles
bgnImg = TK.PhotoImage(file=BGN_IMG)
BGN_SIZE = bgnImg.width(),bgnImg.height()
background=list()
COLS=int(SPACE_WIDTH/BGN_SIZE[xVAL])+1
ROWS=int(SPACE_HEIGHT/BGN_SIZE[yVAL])+1
for col in range(0,COLS):
 for row in range(0,ROWS):
 background.append(canv.create_image(col*BGN_SIZE[xVAL],
 row*BGN_SIZE[yVAL], anchor=TK.NW,
 image=bgnImg,
 tags=('background','bg')))
bg_offset=[0,0]

#Create player
playImg=list()
for img in PLAYER_IMG:
 playImg.append(TK.PhotoImage(file=img))
#Assume images are all same size/shape
PLAYER_SIZE=playImg[RIGHT].width(),playImg[RIGHT].height()
player = canv.create_image(100,100, anchor=TK.NW,
 image=playImg[RIGHT],
 tags=('player'))

#Create walls
wallImg=[TK.PhotoImage(file=WALL_IMG[0]),
 TK.PhotoImage(file=WALL_IMG[1])]
WALL_SIZE=[wallImg[0].width(),wallImg[0].height()]
wallPosH=[(0,WALL_SIZE[xVAL]*1.5),
 (WALL_SIZE[xVAL],WALL_SIZE[xVAL]*1.5),
 (SPACE_WIDTH-WALL_SIZE[xVAL],WALL_SIZE[xVAL]*1.5),
 (WALL_SIZE[xVAL],SPACE_HEIGHT-WALL_SIZE[yVAL])]
wallPosV=[(WALL_SIZE[xVAL],0),(WALL_SIZE[xVAL]*3,0)]
wallPos=[wallPosH,wallPosV]
wall=list()
for i,img in enumerate(WALL_IMG):
 for item in wallPos[i]:
 wall.append(canv.create_image(item[xVAL],item[yVAL],
 anchor=TK.NW, image=wallImg[i],
 tags=('wall','bg')))

#Place gold
goldImg = TK.PhotoImage(file=GOLD_IMG)
GOLD_SIZE=[goldImg.width(),goldImg.height()]

Creating Games and Graphics Chapter 5

[151]

hideGold()
#Check mark
checkImg = TK.PhotoImage(file=MARK_IMG)

Finally, start the mainloop() command to allow Tkinter to monitor for events:7.

#Wait for actions from user
root.mainloop()
#End

How it works...
As before, we create a new Tkinter application that contains a Canvas widget, so that we
can add all of the game objects. We ensure that we bind the right, left, up, down and Enter
keys, which will be our controls in the game.

First, we place our background image (bg.gif) onto the Canvas widget. We calculate the
number of images we can fit along the length and width to tile the whole canvas space, and
locate them using suitable coordinates.

Next, we create the player image (by creating playImg, a list of Tkinter image objects for
each direction the player can turn in) and place it on the canvas.

We now create the walls, the positions of which are defined by the wallPosH and
wallPosV lists. These could be defined using the exact coordinates, and perhaps even read
from a file to provide an easy method to load different layouts for levels, if required. By
iterating through the lists, the horizontal and vertical wall images are put in position on the
canvas.

To complete the layout, we just need to hide the gold somewhere. Using the hideGold()
function, we can randomly determine a suitable place to locate the gold. Within
findLocationForGold(), we use randint(0,value) to create a pseudo-random
number (it is not totally random, but good enough for this use) between 0 and value. In
our case, the value we want is between 0 and the edge of our canvas space, minus the size
of the gold image and any bg_offset that has been applied to the canvas. This ensures that
it is not beyond the edge of the screen. We then check the potential location, using the
find_overlapping() function to see whether any objects with wall or player tags are in
the way. If so, we pick a new location. Otherwise, we place the gold on the canvas, but with
the state="hidden" value, which will hide it from view.

Creating Games and Graphics Chapter 5

[152]

We then create checkImg (a Tkinter image), and use it while checking for gold to mark the
area we have checked. Finally, we just wait for the user to press one of the keys.

The character will move around the screen whenever one of the cursor keys is pressed. The
player's movement is determined by the movePlayer() function; it will first check whether
the player is trying to move into a wall, then determine (within the makeMove() function) if
the player is at the edge of the display or canvas space.

Every time a cursor key is pressed, we use the logic shown in the diagram to determine
what to do:

Cursor key press action logic

The foundWall() function works out whether the player will hit a wall by checking for
any objects with wall tags within the area being covered by the player image, plus a little
extra for the area that the player will be moving to next. The following diagram shows how
the olCoords coordinates are determined:

Creating Games and Graphics Chapter 5

[153]

olCoords coordinate determination

The makeMove() function checks if the player will be moving to the edge of the display (as
defined by DIS_LIMITS) and whether they are at the edge of the canvas space (as defined
by SPACE_LIMITS). Within the display, the player can be moved in the direction of the
cursor, or all of the objects tagged with bg within the canvas space are moved in the
opposite direction, simulating scrolling behind the player. This is done with the
moveBackground() function.

When the player presses Enter, we'll want to check for gold in the current location. Using
the measureTo() function, the position of the player and the gold are compared (the
distance between the x and y coordinates of each is calculated, as shown in the following
figure):

Player and gold distance calculation

Creating Games and Graphics Chapter 5

[154]

The result is scaled to provide a rough indication of how far away the player is from the
gold. If the distance is greater than zero, we display how far away the player is from the
gold and leave a cross to show where we have checked. If the player has found the gold, we
display a message saying so and set newGame to True. The next time the player presses
Enter, the places marked with a cross are removed, and the gold is relocated to somewhere
new.

With the gold hidden again, the player is ready to start over!

6
Detecting Edges and Contours

in Images
This chapter presents the following recipes:

Loading, displaying, and saving images
Image flipping and scaling
Erosion and dilation
Image segmentation
Blurring and sharpening images
Detecting edges in images
Histogram equalization
Detecting corners in images

Introduction
Image processing plays a vital role in almost all engineering and medical applications to
extract and evaluate the region of interest from gray/color images. Image processing
methods include pre-processing, feature extraction, and classification. Pre-processing is
used to enhance the quality of the image; this includes adaptive thresholding, contrast
enhancement, histogram equalization, and edge detection. Feature extraction techniques are
used to extract prominent features from images that can later be used for classification.

The procedures to build an image pre-processing scheme are presented in the recipes.

Detecting Edges and Contours in Images Chapter 6

[156]

Loading, displaying, and saving images
This section presents how to work on images by means of OpenCV-Python. Furthermore,
we discuss how to load, display, and save images.

How to do it...
Import the Computer Vision package - cv2:1.

import cv2

Read the image using the built-in imread function:2.

image = cv2.imread('image_1.jpg')

Display the original image using the built-in imshow function:3.

cv2.imshow("Original", image)

Wait until any key is pressed:4.

cv2.waitKey(0)

Save the image using the built-in imwrite function:5.

cv2.imwrite("Saved Image.jpg", image)

The command used to execute the Python program Load_Display_Save.py is6.
shown here:

The result obtained after executing Load_Display_Save.py is shown here:7.

Detecting Edges and Contours in Images Chapter 6

[157]

Image flipping
In the image flipping operation, we can flip the input images horizontally, vertically,
horizontal, and vertically.

How to do it...
Import the Computer Vision package - cv2:1.

import cv2

Read the image using the built-in imread function:2.

image = cv2.imread('image_2.jpg')

Detecting Edges and Contours in Images Chapter 6

[158]

Display the original image using the built-in imshow function:3.

cv2.imshow("Original", image)

Wait until any key is pressed:4.

cv2.waitKey(0)

Perform the required operation on the test image:5.

cv2.flip is used to flip images
Horizontal flipping of images using value '1'
flipping = cv2.flip(image, 1)

Display the horizontally flipped image:6.

Display horizontally flipped image
cv2.imshow("Horizontal Flipping", flipping)

Wait until any key is pressed:7.

cv2.waitKey(0)

Perform vertical flipping of input image:8.

Vertical flipping of images using value '0'
flipping = cv2.flip(image, 0)

Display the vertically flipped image:9.

cv2.imshow("Vertical Flipping", flipping)

Wait until any key is pressed:10.

cv2.waitKey(0)

Display the processed image:11.

Horizontal & Vertical flipping of images using value '-1'
flipping = cv2.flip(image, -1)
Display horizontally & vertically flipped image
cv2.imshow("Horizontal & Vertical Flipping", flipping)
Wait until any key is pressed
cv2.waitKey(0)

Detecting Edges and Contours in Images Chapter 6

[159]

Stop the execution and display the result:12.

Close all windows
cv2.destroyAllWindows()

The command used to execute the Flipping.py Python program is shown here:13.

The original and horizontally flipped images obtained after executing14.
Flipping.py are shown here:

Detecting Edges and Contours in Images Chapter 6

[160]

Following is the horizontally flipped picture:

Detecting Edges and Contours in Images Chapter 6

[161]

Vertically, and horizontally and vertically, flipped images obtained after15.
executing Flipping.py are shown here:

Detecting Edges and Contours in Images Chapter 6

[162]

Following horizontally and vertically flipped picture:

Image scaling
Image scaling is used to modify the dimensions of the input image based on requirements.
Three types of scaling operators are commonly used in OpenCV, and they are cubic, area,
and linear interpolations.

Detecting Edges and Contours in Images Chapter 6

[163]

How to do it...
Create a new Python file and import the following packages:1.

Scaling (Resizing) Images - Cubic, Area, Linear Interpolations
Interpolation is a method of estimating values between known data
points
Import Computer Vision package - cv2
import cv2
Import Numerical Python package - numpy as np
import numpy as np

Read the image using the built-in imread function:2.

image = cv2.imread('image_3.jpg')

Display the original image using the built-in imshow function:3.

cv2.imshow("Original", image)

Wait until any key is pressed:4.

cv2.waitKey()

Adjust the image size based on the operator's command:5.

cv2.resize(image, output image size, x scale, y scale,
interpolation)

Adjust the image size using cubic interpolation:6.

Scaling using cubic interpolation
scaling_cubic = cv2.resize(image, None, fx=.75, fy=.75,
interpolation = cv2.INTER_CUBIC)

Show the output image:7.

Display cubic interpolated image
cv2.imshow('Cubic Interpolated', scaling_cubic)

Wait until any key is pressed:8.

cv2.waitKey()

Detecting Edges and Contours in Images Chapter 6

[164]

Adjust the image size using area interpolation:9.

Scaling using area interpolation
scaling_skewed = cv2.resize(image, (600, 300), interpolation =
cv2.INTER_AREA)

Show the output image:10.

Display area interpolated image
cv2.imshow('Area Interpolated', scaling_skewed)

Wait for the instruction from the operator:11.

Wait until any key is pressed
cv2.waitKey()

Adjust the image size using linear interpolation:12.

Scaling using linear interpolation
scaling_linear = cv2.resize(image, None, fx=0.5, fy=0.5,
interpolation = cv2.INTER_LINEAR)

Show the output image:13.

Display linear interpolated image
cv2.imshow('Linear Interpolated', scaling_linear)

Wait until any key is pressed:14.

cv2.waitKey()

After completing the image scaling task, terminate the program execution:15.

Close all windows
cv2.destroyAllWindows()

The command used to execute the Scaling.py Python program is shown here:16.

Detecting Edges and Contours in Images Chapter 6

[165]

The original image used for scaling is shown here:17.

Linear interpolated output obtained after executing the Scaling.py file is shown18.
here:

Detecting Edges and Contours in Images Chapter 6

[166]

The area-interpolated output obtained after executing the Scaling.py file is19.
shown here:

The cubic-interpolated output obtained after executing the Scaling.py file is20.
shown here:

Detecting Edges and Contours in Images Chapter 6

[167]

Erosion and dilation
Erosion and dilation are morphological operations. Erosion removes pixels at the
boundaries of objects in an image and dilation adds pixels to the boundaries of objects in an
image.

How to do it...
Import the Computer Vision package – cv2:1.

import cv2

Import the numerical Python package – numpy as np:2.

import numpy as np

Read the image using the built-in imread function:3.

image = cv2.imread('image_4.jpg')

Detecting Edges and Contours in Images Chapter 6

[168]

Display the original image using the built-in imshow function:4.

cv2.imshow("Original", image)

Wait until any key is pressed:5.

cv2.waitKey(0)

Given shape and type, fill it with ones:6.

np.ones(shape, dtype)
5 x 5 is the dimension of the kernel, uint8: is an unsigned
integer (0 to 255)
kernel = np.ones((5,5), dtype = "uint8")

cv2.erode is the built-in function used for erosion:7.

cv2.erode(image, kernel, iterations)
erosion = cv2.erode(image, kernel, iterations = 1)

Display the image after erosion using the built-in imshow function:8.

cv2.imshow("Erosion", erosion)

Wait until any key is pressed:9.

cv2.waitKey(0)

cv2.dilate is the built-in function used for dilation:10.

cv2.dilate(image, kernel, iterations)
dilation = cv2.dilate(image, kernel, iterations = 1)

Display the image after dilation using the built-in imshow function:11.

cv2.imshow("Dilation", dilation)

Wait until any key is pressed:12.

cv2.waitKey(0)

Close all windows:13.

cv2.destroyAllWindows()

Detecting Edges and Contours in Images Chapter 6

[169]

The command used to execute the Erosion_Dilation.py file is shown here:14.

The input image used to execute the Erosion_Dilation.py file is shown here:15.

Detecting Edges and Contours in Images Chapter 6

[170]

The eroded image obtained after executing the Erosion_Dilation.py file is16.
shown here:

Detecting Edges and Contours in Images Chapter 6

[171]

The dilated image obtained after executing the Erosion_Dilation.py file is17.
shown here:

Detecting Edges and Contours in Images Chapter 6

[172]

Image segmentation
Segmentation is a process of partitioning images into different regions. Contours are lines or
curves around the boundary of an object. Image segmentation using contours is discussed
in this section.

How to do it...
Import the Computer Vision package - cv2:1.

import cv2
Import Numerical Python package - numpy as np
import numpy as np

Read the image using the built-in imread function:2.

image = cv2.imread('image_5.jpg')

Display the original image using the built-in imshow function:3.

cv2.imshow("Original", image)

Wait until any key is pressed:4.

cv2.waitKey(0)

Execute the Canny edge detection system:5.

cv2.Canny is the built-in function used to detect edges
cv2.Canny(image, threshold_1, threshold_2)
canny = cv2.Canny(image, 50, 200)

Display the edge detected output image using the built-in imshow function:6.

cv2.imshow("Canny Edge Detection", canny)

Wait until any key is pressed:7.

cv2.waitKey(0)

Detecting Edges and Contours in Images Chapter 6

[173]

Execute the contour detection system:8.

cv2.findContours is the built-in function to find contours
cv2.findContours(canny, contour retrieval mode, contour
approximation mode)
contour retrieval mode: cv2.RETR_LIST (retrieves all contours)
contour approximation mode: cv2.CHAIN_APPROX_NONE (stores all
boundary points)
contours, hierarchy = cv2.findContours(canny, cv2.RETR_LIST,
cv2.CHAIN_APPROX_NONE)

Sketch the contour on the image:9.

cv2.drawContours is the built-in function to draw contours
cv2.drawContours(image, contours, index of contours, color,
thickness)
cv2.drawContours(image, contours, -1, (255,0,0), 10)
index of contours = -1 will draw all the contours

Show the sketched contour of the image:10.

Display contours using imshow built-in function
cv2.imshow("Contours", image)

Wait until any key is pressed:11.

cv2.waitKey()

Terminate the program and display the result:12.

Close all windows
cv2.destroyAllWindows()

Detecting Edges and Contours in Images Chapter 6

[174]

The result obtained after executing the Image_Segmentation.py file is shown13.
here:

Detecting Edges and Contours in Images Chapter 6

[175]

Following is the edge detection output:

Blurring and sharpening images
Blurring and sharpening are image processing operations used to enhance the input images.

Detecting Edges and Contours in Images Chapter 6

[176]

How to do it...
Import the Computer Vision package - cv2:1.

import cv2
Import Numerical Python package - numpy as np
import numpy as np

Read the image using the built-in imread function:2.

image = cv2.imread('image_6.jpg')

Display the original image using the built-in imshow function:3.

cv2.imshow("Original", image)

Wait until any key is pressed:4.

cv2.waitKey(0)

Execute the pixel level action with the blurring operation:5.

Blurring images: Averaging, cv2.blur built-in function
Averaging: Convolving image with normalized box filter
Convolution: Mathematical operation on 2 functions which produces
third function.
Normalized box filter having size 3 x 3 would be:
(1/9) [[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]
blur = cv2.blur(image,(9,9)) # (9 x 9) filter is used

Display the blurred image:6.

cv2.imshow('Blurred', blur)

Wait until any key is pressed:7.

cv2.waitKey(0)

Detecting Edges and Contours in Images Chapter 6

[177]

Execute the pixel level action with the sharpening operation:8.

Sharpening images: Emphasizes edges in an image
kernel = np.array([[-1,-1,-1],
 [-1,9,-1],
 [-1,-1,-1]])
If we don't normalize to 1, image would be brighter or darker
respectively
cv2.filter2D is the built-in function used for sharpening images
cv2.filter2D(image, ddepth, kernel)
ddepth = -1, sharpened images will have same depth as original
image
sharpened = cv2.filter2D(image, -1, kernel)

Display the sharpened image:9.

cv2.imshow('Sharpened', sharpened)

Wait until any key is pressed:10.

cv2.waitKey(0)

Terminate the program execution:11.

Close all windows
cv2.destroyAllWindows()

The command used to execute the Blurring_Sharpening.py Python program12.
file is shown here:

Detecting Edges and Contours in Images Chapter 6

[178]

The input image used to execute the Blurring_Sharpening.py file is shown13.
here:

Detecting Edges and Contours in Images Chapter 6

[179]

The blurred image obtained after executing the Blurring_Sharpening.py file14.
is shown here:

Detecting Edges and Contours in Images Chapter 6

[180]

The sharpened image obtained after executing the Blurring_Sharpening.py15.
file is shown here:

Detecting edges in images
Edge detection is used to detect the borders in images. It provides the details regarding the
shape and the region properties. This includes perimeter, major axis size, and minor axis
size.

Detecting Edges and Contours in Images Chapter 6

[181]

How to do it...
Import the necessary packages:1.

import sys
import cv2
import numpy as np

Read the input image:2.

in_file = sys.argv[1]
image = cv2.imread(in_file, cv2.IMREAD_GRAYSCALE)

Implement the Sobel edge detection scheme:3.

horizontal_sobel = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)
vertical_sobel = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)
laplacian_img = cv2.Laplacian(image, cv2.CV_64F)
canny_img = cv2.Canny(image, 30, 200)

Display the input image and its corresponding output:4.

cv2.imshow('Original', image)
cv2.imshow('horizontal Sobel', horizontal_sobel)
cv2.imshow('vertical Sobel', vertical_sobel)
cv2.imshow('Laplacian image', laplacian_img)
cv2.imshow('Canny image', canny_img)

Wait for the instruction from the operator:5.

cv2.waitKey()

Display the input image and the corresponding results:6.

cv2.imshow('Original', image)
cv2.imshow('horizontal Sobel', horizontal_sobel)
cv2.imshow('vertical Sobel', vertical_sobel)
cv2.imshow('Laplacian image', laplacian_img)
cv2.imshow('Canny image', canny_img)

Wait for the instruction from the operator:7.

cv2.waitKey()

Detecting Edges and Contours in Images Chapter 6

[182]

The command used to execute the Detecting_edges.py Python program file,8.
along with the input image (baby.jpg), is shown here:

The input image and the horizontal Sobel filter output obtained after executing9.
the Detecting_edges.py file is shown here:

Detecting Edges and Contours in Images Chapter 6

[183]

The vertical Sobel filter output and the Laplacian image output obtained after10.
executing the Detecting_edges.py file is shown here:

Following is the Laplacian image output:

Detecting Edges and Contours in Images Chapter 6

[184]

The Canny edge detection output obtained after executing11.
the Detecting_edges.py file is shown here:

How it works...
Readers can refer to the following document to learn what edge detection is and its impact
on test pictures:

http:/​/​citeseerx. ​ist. ​psu. ​edu/ ​viewdoc/ ​summary? ​doi= ​10. ​1.​1.​301. ​927

See also
Please refer to the following document:

https:/​/ ​www. ​tutorialspoint. ​com/​dip/ ​concept_ ​of_​edge_ ​detection. ​htm

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.927
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm
https://www.tutorialspoint.com/dip/concept_of_edge_detection.htm

Detecting Edges and Contours in Images Chapter 6

[185]

Histogram equalization
Histogram equalization is used to enhance the visibility and the contrast of images. It is
performed by varying the image intensities. These procedures are clearly described here.

How to do it…
Import the necessary packages:1.

import sys
import cv2
import numpy as np

Load the input image:2.

in_file = sys.argv[1]
image = cv2.imread(in_file)

Convert the RGB image into grayscale:3.

image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow('Input grayscale image', image_gray)

Regulate the histogram of the grayscale image:4.

image_gray_histoeq = cv2.equalizeHist(image_gray)
cv2.imshow('Histogram equalized - grayscale image',
image_gray_histoeq)

Regulate the histogram of the RGB image:5.

image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
image_yuv[:,:,0] = cv2.equalizeHist(image_yuv[:,:,0])
image_histoeq = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)

Display the output image:6.

cv2.imshow('Input image', image)
cv2.imshow('Histogram equalized - color image', image_histoeq)
cv2.waitKey()

Detecting Edges and Contours in Images Chapter 6

[186]

The command used to execute the histogram.py Python program file, along7.
with the input image (finger.jpg), is shown here:

The input image used to execute the histogram.py file is shown here:8.

Detecting Edges and Contours in Images Chapter 6

[187]

The histogram equalized grayscale image obtained after executing9.
the histogram.py file is shown here:

Detecting Edges and Contours in Images Chapter 6

[188]

The histogram equalized color image obtained after executing the histogram.py10.
file is shown here:

Detecting corners in images
Corners are borders in images used to extract special features that infer the content of an
image. Corner detection is frequently used in image registration, video tracking, image
mosaics, motion detection, 3D modelling, panorama stitching, and object recognition.

Detecting Edges and Contours in Images Chapter 6

[189]

How to do it...
Import the necessary packages:1.

import sys
import cv2
import numpy as np

Load the input image:2.

in_file = sys.argv[1]
image = cv2.imread(in_file)
cv2.imshow('Input image', image)
image_gray1 = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image_gray2 = np.float32(image_gray1)

Implement the Harris corner detection scheme:3.

image_harris1 = cv2.cornerHarris(image_gray2, 7, 5, 0.04)

Dilate the input image and construct the corners:4.

image_harris2 = cv2.dilate(image_harris1, None)

Implement image thresholding:5.

image[image_harris2 > 0.01 * image_harris2.max()] = [0, 0, 0]

Display the input image:6.

cv2.imshow('Harris Corners', image)

Wait for the instruction from the operator:7.

cv2.waitKey()

The command used to execute the Detecting_corner.py Python program file,8.
along with the input image (box.jpg), is shown here:

Detecting Edges and Contours in Images Chapter 6

[190]

The input image used to execute the Detecting_corner.py file is shown here:9.

Harris Corners obtained after executing the Detecting_corner.py file are10.
shown here:

Detecting Edges and Contours in Images Chapter 6

[191]

In order to learn how it works for an input image, refer to the following:

Image corner detection involves finding the edges/corners in the given picture. It
can be used to extract the vital shape features from grayscale and RGB pictures.
Refer to this survey paper on edge and corner detection:

https:/​/ ​pdfs. ​semanticscholar. ​org/ ​24dd/
6c2c08f5601e140aad5b9170e0c7485f6648. ​pdf.

https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf
https://pdfs.semanticscholar.org/24dd/6c2c08f5601e140aad5b9170e0c7485f6648.pdf

7
Creating 3D Graphics

In this chapter, we will cover the following topics:

Getting started with 3D coordinates and vertices
Creating and importing 3D models
Creating a 3D world to explore
Building 3D maps and mazes

Introduction
The chip at the heart of the original Raspberry Pi (a Broadcom BCM2835 processor) was
originally designed to be a Graphical Processing Unit (GPU) for mobile and embedded
applications. The ARM core that drives most of Raspberry Pi's functionality was added
because some extra space was available on the chip; this enabled this powerful GPU to be
used as a System-on-Chip (SoC) solution.

An SoC is an integrated service microchip with all the necessary electronic circuits and parts
of a computer or electronic system, it is used in smartphones or wearable computers, on a
single integrated circuit (IC).

As you can imagine, if that original ARM core (ARM1176JZF-S, which is the ARMv6
architecture) consisted of only a small part of the chip on Raspberry Pi, you would be right
in thinking that the GPU must perform rather well.

Creating 3D Graphics Chapter 7

[193]

The processor at the heart of Raspberry Pi 3 has been upgraded (to a
Broadcom BCM2837 processor); it now contains four ARM cores (Cortex
A53 ARMv8A), each of which are more powerful than the original
ARMv6. Coupled with the same GPU from the previous generation,
Raspberry Pi 3 is far better equipped to perform the calculations required
to build 3D environments. However, although Raspberry Pi 3 will load the
examples faster, once the 3D models are generated, both versions of the
chip perform just as well.

The VideoCore IV GPU consists of 48 purpose-built processors, with some providing
support for 1080p high-definition encoding and decoding of video, while others support
OpenGL ES 2.0, which provides fast calculations for 3D graphics. It has been said that its
graphics processing power is equivalent to that of an Apple iPhone 4S and the original
Microsoft Xbox. This is even more apparent if you run Quake 3 or OpenArena on
Raspberry Pi (go to http://www.raspberrypi.org/openarena-for-raspberry-pi for
details).

In this chapter, I hope to show you that while you can achieve a lot by performing
operations using the ARM side of Raspberry Pi, if you venture to the side where the GPU is
hidden, you may see that there is even more to this little computer than what first appears.

The pi3d library created by the pi3d team (Patrick Gaunt, Tom Swirly, Tim Skillman, and
others) provides a way to put the GPU to work by creating 3D graphics.

The pi3d Wiki and documentation pages can be found at the following
link: http://pi3d.github.io/html/index.html.

The support/development group can be found at the following
link: https://groups.google.com/forum/#!forum/pi3d.

The library contains many features, so it will not be possible to cover everything that is
available in the following examples. It is recommended that you also take some time to try
out the pi3d demos. To discover more options for the creation and handling of the 3D
graphics, you can have a look through some of the Python modules which make up the
library itself (described in the documentation or the code on GitHub at
https://github.com/pi3d/pi3d.github.com). It is hoped that this chapter will introduce
you to enough concepts to illustrate some of the raw potential available to you.

http://www.raspberrypi.org/openarena-for-raspberry-pi
http://pi3d.github.io/html/index.html
https://groups.google.com/forum/#!forum/pi3d
https://github.com/pi3d/pi3d.github.com

Creating 3D Graphics Chapter 7

[194]

Getting started with 3D coordinates and
vertices
The world around us is three-dimensional, so in order to simulate parts of the world, we
can create a 3D representation and display it on our 2D screen.

Raspberry Pi enables us to simulate a 3D space, place 3D objects within it, and observe them
from a selected viewpoint. We will use the GPU to produce a representation of the 3D view
as a 2D image to display it on the screen.

The following example will show you how we can use pi3d (an OpenGL ES library for
Raspberry Pi) to place a single 3D object and display it within the 3D space. We will then
allow the mouse to rotate the view around the object:

Single 3D object

Getting ready
Raspberry Pi must be directly connected to a display, either via the HDMI or an analog
video output. The 3D graphics rendered by the GPU will only be displayed on a local
display, even if you are connecting to Raspberry Pi remotely over a network. You will also
need to use a locally connected mouse for control (however, keyboard control does work
via a SSH connection).

Creating 3D Graphics Chapter 7

[195]

The first time we use pi3d, we will need to download and install it via the following steps:

The pi3d library uses Pillow, a version of the Python Imaging Library that is1.
compatible with Python 3, to import graphics used in models (such as textures
and backgrounds).

The installation of Pillow has been covered in the Getting ready section of Chapter
3, Using Python for Automation and Productivity.

The commands for the installation are shown in the following code (if you've
installed them before, it will skip them and continue):

sudo apt-get update
sudo apt-get install python3-pip
sudo apt-get install libjpeg-dev
sudo pip-3.2 install pillow

We can now use pip to install pi3d using the following command:2.

sudo pip-3.2 install pi3d

The pi3d team is continuously developing and improving the library; if
you are experiencing problems, it may mean that a new release is not
compatible with the previous ones.

You can also check in the Appendix, Hardware and Software List, to confirm
which version of pi3d you have and, if required, install the same version
listed. Alternatively, contact the pi3d team via the Google group; they will
be happy to help!

Obtain pi3d demos from the GitHub site, as shown in the following
command lines. You will need around 90 MB of free space to download
and extract the files:

 cd ~

 wget
 https://github.com/pi3d/pi3d_demos/archive/master.zip

 unzip master.zip

 rm master.zip

Creating 3D Graphics Chapter 7

[196]

You will find that the demos have been unpacked to pi3d_demos-master.

By default, the demos are expected to be located at home/pi/pi3d; therefore, we
will rename this directory pi3d, as shown in the following command:

mv pi3d_demos-master pi3d

Finally, check the Raspberry Pi memory split. Run raspi-config (sudo raspi-3.
config) and ensure that your memory split is set to 128. (You should only need
to do this if you have changed it in the past, as 128 MB is the default.) This
ensures that you have plenty of RAM allocated for the GPU, so it will be able to
handle lots of 3D objects if required.
Test if everything is working properly. You should now be able to run any of the4.
scripts in the pi3d_demos-master directory. See the pi3d Wiki pages for details
on how they function (http://pi3d.github.io/html/ReadMe.html). To get the
best performance, it is recommended that the scripts are run from the command
prompt (without loading the desktop):

cd pi3d
python3 Raspberry_Rain.py

The pi3d.Keyboard object also supports keyboard control via SSH (see
the Connecting remotely to Raspberry Pi over the network using SSH (and X11
forwarding) section of Chapter 1, Getting Started with a Raspberry Pi 3
Computer).

Configure the setup for your own scripts. Since we will use some of the
textures and models from the demos, it is recommended that you create
your scripts within the pi3d directory. If you have a username that's
different from the default Pi account, you will need to adjust
/pi3d/demo.py. Replace the USERNAME part with your own username by
editing the file:

 nano ~/pi3d/demo.py

 import sys

 sys.path.insert(1, '/home/USERNAME/pi3d')

If you want to relocate your files somewhere else, ensure that you add a copy of
demo.py in the folder with the correct path to any resource files you require.

http://pi3d.github.io/html/ReadMe.html

Creating 3D Graphics Chapter 7

[197]

How to do it...
Create the following 3dObject.py script:

#!/usr/bin/python3
""" Create a 3D space with a Tetrahedron inside and rotate the
 view around using the mouse.
"""
from math import sin, cos, radians

import demo
import pi3d

KEY = {'ESC':27,'NONE':-1}

DISPLAY = pi3d.Display.create(x=50, y=50)
#capture mouse and key presses
mykeys = pi3d.Keyboard()
mymouse = pi3d.Mouse(restrict = False)
mymouse.start()

def main():
 CAMERA = pi3d.Camera.instance()
 tex = pi3d.Texture("textures/stripwood.jpg")
 flatsh = pi3d.Shader("uv_flat")

 #Define the coordinates for our shape (x,y,z)
 A = (-1.0,-1.0,-1.0)
 B = (1.0,-1.0,1.0)
 C = (-1.0,-1.0,1.0)
 D = (-1.0,1.0,1.0)
 ids = ["A","B","C","D"]
 coords = [A,B,C,D]
 myTetra = pi3d.Tetrahedron(x=0.0, y=0.0, z=0.0,
 corners=(A,B,C,D))
 myTetra.set_draw_details(flatsh,[tex])
 # Load ttf font and set the font to black
 arialFont = pi3d.Font("fonts/FreeMonoBoldOblique.ttf",
 "#000000")
 mystring = []
 #Create string objects to show the coordinates
 for i,pos in enumerate(coords):
 mystring.append(pi3d.String(font=arialFont,
 string=ids[i]+str(pos),
 x=pos[0], y=pos[1],z=pos[2]))
 mystring.append(pi3d.String(font=arialFont,
 string=ids[i]+str(pos),

Creating 3D Graphics Chapter 7

[198]

 x=pos[0], y=pos[1],z=pos[2], ry=180))
 for string in mystring:
 string.set_shader(flatsh)

 camRad = 4.0 # radius of camera position
 rot = 0.0 # rotation of camera
 tilt = 0.0 # tilt of camera
 k = KEY['NONE']
 omx, omy = mymouse.position()
 # main display loop
 while DISPLAY.loop_running() and not k == KEY['ESC']:
 k = mykeys.read()
 mx, my = mymouse.position()
 rot -= (mx-omx)*0.8
 tilt += (my-omy)*0.8
 omx = mx
 omy = my

 CAMERA.reset()
 CAMERA.rotate(-tilt, rot, 0)
 CAMERA.position((camRad * sin(radians(rot)) *
 cos(radians(tilt)),
 camRad * sin(radians(tilt)),
 -camRad * cos(radians(rot)) *
 cos(radians(tilt))))
 #Draw the Tetrahedron
 myTetra.draw()
 for string in mystring:
 string.draw()

try:
 main()
finally:
 mykeys.close()
 mymouse.stop()
 DISPLAY.destroy()
 print("Closed Everything. END")
#End

To run the script, use python3 3dObject.py.

Creating 3D Graphics Chapter 7

[199]

How it works...
We import the math modules (for angle calculations used to control the view based on
mouse movements). We also import the demo module, which just provides the path to the
shaders and textures in this example.

We start by defining some key elements that will be used by pi3d to generate and display
our object. The space in which we shall place our object is the pi3d.Display object; this
defines the size of the space and initializes the screen to generate and display OpenGL ES
graphics.

Next, we define a pi3d.Camera object, which will allow us to define how we view the
object within our space. To render our object, we define a texture to be applied to the
surface and a shader that will apply the texture to the object. The shader is used to apply all
the effects and lighting to the object, and it is coded to use the GPU's OpenGL ES core
instead of the ARM processor.

We define the keyboard and mouse object using pi3d.keyboard() and pi3d.mouse() so
that we can respond to the keyboard and mouse input. The restrict flag of the mouse
object allows the absolute mouse position to continue past the screen limits (so we can
continuously rotate our 3D object). The main loop, when running, will check if the Esc key
is pressed and will then close everything down (including calling DISPLAY.destroy() to
release the screen). We use the try: finally: method to ensure that the display is closed
correctly, even if there is an exception within main().

The mouse movement is collected in the main display loop using mymouse.position(),
which returns the x and y coordinates. The difference in the x and y movement is used to
rotate around the object.

The mouse movements determine the position and angle of the camera. Any adjustment to
the forward/backward position of the mouse is used to move it over or under the object and
change the angle of the camera (using tilt) so it remains pointing at the object. Similarly,
any sideways movement will move the camera around the object using the
CAMERA.reset() function. This ensures that the display updates the camera view with the
new position, CAMERA.rotate(), to change the angle, and uses CAMERA.position() to
move the camera to a position around the object, camRad units away from its center.

Creating 3D Graphics Chapter 7

[200]

We will draw a three-dimensional object called a tetrahedron, a shape made up of four
triangles to form a pyramid with a triangular base. The four corners of the shape (three
around the base and one at the top) will be defined by the three-dimensional coordinates A,
B, C, and D, as shown in the following diagram:

The tetrahedron placed within the 3D coordinates

The pi3d.Tetrahedron object is defined by specifying x, y, and z coordinates of four
points to position it in the space and then specify the corners that will be joined to form the
four triangles that make up the shape.

Using set_draw_details(flatsh,[text]), we apply the shader(s) we wish to use and
the texture(s) for the object. In our example, we are just using a single texture, but some
shaders can use several textures for complex effects.

To help highlight where the coordinates are, we will add some pi3d.String objects by
setting the string text to specify the ID and coordinates next to them and placing it at the
required location. We will create two string objects for each location, one facing forward
and another facing backward (ry=180 rotates the object by 180 degrees on the y axis). The
pi3d.String objects are single-sided, so if we only had one side facing forward, it
wouldn't be visible from behind when the view was rotated and would just disappear (plus,
if it was visible, the text would be backwards anyway). Again, we use the flatsh shader to
render it using the set_shader() string object.

All that is left to do now is to draw our tetrahedron and the string objects while checking
for any keyboard events. Each time the while loop completes, DISPLAY.loop_running()
is called, which will update the display with any adjustments to the camera as required.

Creating 3D Graphics Chapter 7

[201]

There's more...
In addition to introducing how to draw a basic object within the 3D space, the preceding
example makes use of the following four key elements used in 3D graphics programming.

Camera
The camera represents our view in the 3D space; one way to explore and see more of the
space is by moving the camera. The Camera class is defined as follows:

pi3d.Camera.Camera(at=(0, 0, 0), eye=(0, 0, -0.1),
 lens=None, is_3d=True, scale=1.0)

The camera is defined by providing two locations, one to look at (usually the object we wish
to see, defined by at) and another to look from (the object's position, defined by eye). Other
features of the camera, such as its field of view (lens) and so on, can be adjusted or used
with the default settings.

If we didn't define a camera in our display, a default one will be created
that points at the origin (the center of the display, that is, 0,0,0),
positioned slightly in front of it (0,0,-0.1).

See the pi3d documentation regarding the camera module for more
details.

Shaders
Shaders are very useful as they allow a lot of the complex work required to apply textures
and lighting to an object by offloading the task to the more powerful GPU in Raspberry Pi.
The Shader class is defined as follows:

class pi3d.Shader.Shader(shfile=None, vshader_source=None,
 fshader_source=None)

This allows you to specify a shader file (shfile) and specific vertex and fragment shaders
(if required) within the file.

There are several shaders included in the pi3d library, some of which allow multiple
textures to be used for reflections, close-up details, and transparency effects. The
implementation of the shader will determine how the lights and textures are applied to the
object (and in some cases, such as uv_flat, the shader will ignore any lighting effects).

Creating 3D Graphics Chapter 7

[202]

The shader files are listed in the pi3dshaders directory. Try experimenting with different
shaders, such as mat_reflect, which will ignore the textures/fonts but still apply the
lighting effects, or uv_toon, which will apply a cartoon effect to the texture.

Each shader consists of two files, vs (vertex shader) and fs (fragment shader), written in C-
like code. They work together to apply the effects to the object as desired. The vertex shader
is responsible for mapping the 3D location of the vertices to the 2D display. The fragment
shader (sometimes called the pixel shader) is responsible for applying lighting and texture
effects to the pixels themselves. The construction and operation of these shaders is well
beyond the scope of this chapter, but there are several example shaders that you can
compare, change, and experiment with within the pi3dshaders directory.

Lights
Lighting is very important in a 3D world; it could range from simple general lighting (as
used in our example) to multiple lights angled from different directions providing different
strengths and colors. How lights interact with objects and the effects they produce will be
determined by the textures and shaders used to render them.

Lights are defined by their direction, their color and brightness, and also by an ambient
light to define the background (non-directional) light. The Light class is defined as follows:

class pi3d.Light (lightpos=(10, -10, 20),
 lightcol=(1.0, 1.0, 1.0),
 lightamb=(0.1, 0.1, 0.2))

By default, the display will define a light that has the following properties:

lightpos=(10, -10, 20): This is a light that shines from the
front of the space (near the top-left side) down towards the back
of the space (towards the right)

lightcol=(1.0, 1.0, 1.0): This is a bright, white,
directional light (the direction is defined in the preceding
dimension, and it is the color defined by the RGB values 1.0,
1.0, 1.0)

ightamb=(0.1, 0.1, 0.2): This is overall a dull, slightly
bluish light

Creating 3D Graphics Chapter 7

[203]

Textures
Textures are able to add realism to an object by allowing fine detail to be applied to the
object's surface; this could be an image of bricks for a wall or a person's face displayed on
the character. When a texture is used by the shader, it can often be rescaled and reflection
can be added to it; some shaders even allow you to apply surface detail.

We can apply multiple textures to an object to combine them and produce
different effects; it will be up to the shader to determine how they are
applied.

Creating and importing 3D models
Creating complex shapes directly from code can often be cumbersome and time-consuming.
Fortunately, it is possible to import prebuilt models into your 3D space.

It is even possible to use graphical 3D modeling programs to generate models and then
export them as a suitable format for you to use. This example produces a Newell Teapot
in the Raspberry Pi theme, as shown in the following screenshot:

Newell Raspberry Pi teapot

Creating 3D Graphics Chapter 7

[204]

Getting ready
We shall use 3D models of a teapot (both teapot.obj and teapot.mdl) located in
pi3dmodels.

Modeling a teapot is the traditional 3D equivalent of displaying Hello
World. Computer graphics researcher Martin Newell first created the
Newell Teapot in 1975 as a basic test model for his work. The Newell
Teapot soon became the standard model to quickly check if a 3D rendering
system was working correctly (it even appeared in Toy Story and a 3D
episode of The Simpsons).

Other models are available in the pi3dmodels directory
(monkey.obj/mdl, which has been used later on, is available in the book's
resource files).

How to do it...
Create and run the following 3dModel.py script:

#!/usr/bin/python3
""" Wavefront obj model loading. Material properties set in
 mtl file. Uses the import pi3d method to load *everything*
"""
import demo
import pi3d
from math import sin, cos, radians

KEY = {'ESC':27,'NONE':-1}

Setup display and initialise pi3d
DISPLAY = pi3d.Display.create()
#capture mouse and key presses
mykeys = pi3d.Keyboard()
mymouse = pi3d.Mouse(restrict = False)
mymouse.start()
def main():
 #Model textures and shaders
 shader = pi3d.Shader("uv_reflect")
 bumptex = pi3d.Texture("textures/floor_nm.jpg")
 shinetex = pi3d.Texture("textures/stars.jpg")
 # load model
 #mymodel = pi3d.Model(file_string='models/teapot.obj', z=10)
 mymodel = pi3d.Model(file_string='models/monkey.obj', z=10)

Creating 3D Graphics Chapter 7

[205]

 mymodel.set_shader(shader)
 mymodel.set_normal_shine(bumptex, 4.0, shinetex, 0.5)

 #Create environment box
 flatsh = pi3d.Shader("uv_flat")
 ectex = pi3d.loadECfiles("textures/ecubes","sbox")
 myecube = pi3d.EnvironmentCube(size=900.0, maptype="FACES",
 name="cube")
 myecube.set_draw_details(flatsh, ectex)
 CAMERA = pi3d.Camera.instance()
 rot = 0.0 # rotation of camera
 tilt = 0.0 # tilt of camera
 k = KEY['NONE']
 omx, omy = mymouse.position()
 while DISPLAY.loop_running() and not k == KEY['ESC']:
 k = mykeys.read()
 #Rotate camera - camera steered by mouse
 mx, my = mymouse.position()
 rot -= (mx-omx)*0.8
 tilt += (my-omy)*0.8
 omx = mx
 omy = my
 CAMERA.reset()
 CAMERA.rotate(tilt, rot, 0)
 #Rotate object
 mymodel.rotateIncY(2.0)
 mymodel.rotateIncZ(0.1)
 mymodel.rotateIncX(0.3)
 #Draw objects
 mymodel.draw()
 myecube.draw()

try:
 main()
finally:
 mykeys.close()
 mymouse.stop()
 DISPLAY.destroy()
 print("Closed Everything. END")
#End

Creating 3D Graphics Chapter 7

[206]

How it works...
Like the 3dObject.py example, we define the DISPLAY shader (this time using
uv_reflect) and some additional textures—bumptex (floor_nm.jpg) and shinetex
(stars.jpg)—to use later. We define a model that we want to import, placing it at z=10 (if
no coordinates are given, it will be placed at (0,0,0)). Since we do not specify a camera
position, the default will place it within the view (see the section regarding the camera for
more details).

We apply the shader using the set_shader() function. Next, we add some textures and
effects using bumptex as a surface texture (scaled by 4). We apply an extra shiny effect
using shinetex and apply a reflection strength of 0.5 (the strength ranges from 0.0, the
weakest, to 1.0, the strongest) using the set_normal_shine() function. If you look closely
at the surface of the model, the bumptex texture provides additional surface detail and the
shinetex texture can be seen as the reflection on the surface.

To display our model within something more interesting than a default blue space, we will
create an EnvironmentCube object. This defines a large space that has a special texture
applied to the inside space (in this instance, it will load the
sbox_front/back/bottom/left and sbox_right images from the texturesecubes
directory), so it effectively encloses the objects within. The result is that you get a pleasant
backdrop for your object.

Again, we define a default CAMERA object with rot and tilt variables to control the view.
Within the DISPLAY.loop_running() section, we can control the view of the
CAMERA object using the mouse and rotate the model on its axis at different rates to let it
spin and show all its sides (using the RotateIncX/Y/Z() function to specify the rate of
rotation). Finally, we ensure that the DISPLAY is updated by drawing the model and the
environment cube.

There's more...
We can create a wide range of objects to place within our simulated environment. pi3d
provides methods to import our own models and apply multiple textures to them.

Creating 3D Graphics Chapter 7

[207]

Creating or loading your own objects
If you wish to use your own models in this example, you shall need to create one in the
correct format; pi3d supports obj (wavefront object files) and egg (Panda3D).

An excellent, free, 3D modeling program is called Blender (available at
http://www.blender.org). There are lots of examples and tutorials on their website to get
you started with basic modeling (http://www.blender.org/education-help/tutorials).

The pi3d model support is limited and will not support all the features that Blender can
embed in an exported model, for example, deformable meshes. Therefore, only basic
multipart models are supported. There are a few steps required to simplify the model so it
can be loaded by pi3d.

To convert an .obj model to use it with pi3d, proceed with the following steps:

Create or load a model in Blender—try starting with a simple object before1.
attempting more complex models.
Select each Object and switch to Edit mode (press Tab).2.
Select all vertices (press A) and uv-map them (press U and then select Unwrap).3.
Return to Object mode (press Tab).4.
Export it as obj – from the File menu at the top, select Export, and then5.
select Wavefront (.obj). Ensure that Include Normals is also checked in the list of
options in the bottom-left list.
Click on Save and place the .obj and .mtl files in the pi3dmodels directory,6.
and ensure that you update the script with the model's filename, as follows:

mymodel = pi3d.Model(file_string='models/monkey.obj',
 name='monkey', z=4)

When you run your updated script, you will see your model displayed in the 3D space. For
example, the monkey.obj model is shown in the following screenshot:

http://www.blender.org
http://www.blender.org/education-help/tutorials

Creating 3D Graphics Chapter 7

[208]

A monkey head model created in Blender and displayed by pi3d

Changing the object's textures and .mtl files
The texture that is applied to the surface of the model is contained within the .mtl file of
the model. This file defines the textures and how they are applied as set by the modeling
software. Complex models may contain multiple textures for various parts of the object.

If no material is defined, the first texture in the shader is used (in our example, this is the
bumptex texture). To add a new texture to the object, add (or edit) the following line in the
.mtl file (that is, to use water.jpg):

map_Kd ../textures/water.jpg

More information about .mtl files and .obj files can be found at the following
Wikipedia link: https://en.wikipedia.org/wiki/Wavefront_.obj_file.

https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/Wavefront_.obj_file

Creating 3D Graphics Chapter 7

[209]

Taking screenshots
The pi3d library includes a useful screenshot function to capture the screen in a .jpg or
.png file. We can add a new key event to trigger it and call
pi3d.screenshot("filename.jpg") to save an image (or use a counter to take multiple
screenshots), as shown in the following code:

shotnum = 0 #Set counter to 0
while DISPLAY.loop_running()
...
 if inputs.key_state("KEY_P"):
 while inputs.key_state("KEY_P"):
 inputs.do_input_events() # wait for key to go up
 pi3d.screenshot("screenshot%04d.jpg"%(shotnum))
 shotnum += 1
...

Creating a 3D world to explore
Now that we are able to create models and objects within our 3D space, as well as
generate backgrounds, we may want to create a more interesting environment within
which to place them.

3D terrain maps provide an elegant way to define very complex landscapes. The terrain is
defined using a grayscale image to set the elevation of the land. The following example
shows how we can define our own landscape and simulate flying over it, or even walk on
its surface:

A 3D landscape generated from a terrain map

Creating 3D Graphics Chapter 7

[210]

Getting ready
You will need to place the Map.png file (available in the book resource files) in the
pi3d/textures directory of the pi3d library. Alternatively, you can use one of the
elevation maps already present—replace the reference to Map.png with another one of the
elevation maps, such as testislands.jpg.

How to do it...
Create the following 3dWorld.py script:

#!/usr/bin/python3
from __future__ import absolute_import, division
from __future__ import print_function, unicode_literals
""" An example of generating a 3D environment using a elevation map
"""
from math import sin, cos, radians
import demo
import pi3d

KEY = {'R':114,'S':115,'T':116,'W':119,'ESC':27,'NONE':-1}

DISPLAY = pi3d.Display.create(x=50, y=50)
#capture mouse and key presses
mykeys = pi3d.Keyboard()
mymouse = pi3d.Mouse(restrict = False)
mymouse.start()

def limit(value,min,max):
 if (value < min):
 value = min
 elif (value > max):
 value = max
 return value

def main():
 CAMERA = pi3d.Camera.instance()
 tex = pi3d.Texture("textures/grass.jpg")
 flatsh = pi3d.Shader("uv_flat")
 # Create elevation map
 mapwidth,mapdepth,mapheight = 200.0,200.0,50.0
 mymap = pi3d.ElevationMap("textures/Map.png",
 width=mapwidth, depth=mapdepth, height=mapheight,
 divx=128, divy=128, ntiles=20)
 mymap.set_draw_details(flatsh, [tex], 1.0, 1.0)

Creating 3D Graphics Chapter 7

[211]

 rot = 0.0 # rotation of camera
 tilt = 0.0 # tilt of camera
 height = 20
 viewhight = 4
 sky = 200
 xm,ym,zm = 0.0,height,0.0
 k = KEY['NONE']
 omx, omy = mymouse.position()
 onGround = False
 # main display loop
 while DISPLAY.loop_running() and not k == KEY['ESC']:
 CAMERA.reset()
 CAMERA.rotate(-tilt, rot, 0)
 CAMERA.position((xm,ym,zm))
 mymap.draw()
 mx, my = mymouse.position()
 rot -= (mx-omx)*0.8
 tilt += (my-omy)*0.8
 omx = mx
 omy = my

 #Read keyboard keys
 k = mykeys.read()
 if k == KEY['W']:
 xm -= sin(radians(rot))
 zm += cos(radians(rot))
 elif k == KEY['S']:
 xm += sin(radians(rot))
 zm -= cos(radians(rot))
 elif k == KEY['R']:
 ym += 2
 onGround = False
 elif k == KEY['T']:
 ym -= 2
 ym -= 0.1 #Float down!
 #Limit the movement
 xm = limit(xm,-(mapwidth/2),mapwidth/2)
 zm = limit(zm,-(mapdepth/2),mapdepth/2)
 if ym >= sky:
 ym = sky
 #Check onGround
 ground = mymap.calcHeight(xm, zm) + viewhight
 if (onGround == True) or (ym <= ground):
 ym = mymap.calcHeight(xm, zm) + viewhight
 onGround = True

try:
 main()

Creating 3D Graphics Chapter 7

[212]

finally:
 mykeys.close()
 mymouse.stop()
 DISPLAY.destroy()
 print("Closed Everything. END")
#End

How it works...
Once we have defined the display, camera, textures, and shaders that we are going to use,
we can define the ElevationMap object.

It works by assigning a height to the terrain image based on the pixel value of the selected
points of the image. For example, a single line of an image will provide a slice of the
ElevationMap object and a row of elevation points on the 3D surface:

Mapping the map.png pixel shade to the terrain height

Creating 3D Graphics Chapter 7

[213]

We create an ElevationMap object by providing the filename of the image we will use for
the gradient information (textures/Map.png), and we also create the dimensions of the
map (width, depth, and height—which is how high the white spaces will be compared to
the black spaces):

ElevationMap object

The Map.png texture provides an example terrain map, which is converted into a
three-dimensional surface.

We also specify divx and divy, which determine how much detail of the terrain map is
used (how many points from the terrain map are used to create the elevation surface).
Finally, ntiles specifies that the texture used will be scaled to fit 20 times across the
surface.

Within the main DISPLAY.loop_running() section, we will control the camera, draw
ElevationMap, respond to inputs, and limit movements in our space.

Creating 3D Graphics Chapter 7

[214]

As before, we use a Keyboard object to capture mouse movements and translate them to
control the camera. We will also use mykeys.read() to determine if W, S, R, and T have
been pressed, which allow us to move forward and backwards, as well as rise up and down.

To allow easy conversion between the values returned from the and their
equivalent meaning, we will use a Python dictionary:

 KEY =
{'R':114,'S':115,'T':116,'W':119,'ESC':27,'NONE':-1}

The dictionary provides an easy way to translate between a given value
and the resulting string. To access a key's value, we use KEY['W']. We
also used a dictionary in Chapter 3, Using Python for Automation and
Productivity, to translate between the image EXIF tag names and IDs.

To ensure that we do not fall through the surface of the ElevationMap object when
we move over it, we can use mymap.calcHeight() to provide us with the height of
the terrain at a specific location (x,y,z). We can either follow the ground by ensuring the
camera is set to equal this, or fly through the air by just ensuring that we never go below it.
When we detect that we are on the ground, we ensure that we remain on the ground until
we press R to rise again.

Building 3D maps and mazes
We've seen that the pi3d library can be used to create lots of interesting objects and
environments. Using some of the more complex classes (or by constructing our own), whole
custom spaces can be designed for the user to explore.

Creating 3D Graphics Chapter 7

[215]

In the following example, we use a special module called Building, which has been
designed to allow you to construct a whole building using a single image file to provide the
layout:

Exploring the maze and finding the sphere that marks the exit

Getting ready
You will need to ensure that you have the following files in the pi3d/textures directory:

squareblocksred.png

floor.png

inside_map0.png, inside_map1.png, inside_map2.png

These files are available as part of the book's resources placed in
Chapter07resourcesource_filestextures.

Creating 3D Graphics Chapter 7

[216]

How to do it...
Let's run the following 3dMaze.py script by performing the following steps:

First, we set up the keyboard, mouse, display, and settings for the model using1.
the following code:

#!/usr/bin/python3
"""Small maze game, try to find the exit
"""
from math import sin, cos, radians
import demo
import pi3d
from pi3d.shape.Building import Building, SolidObject
from pi3d.shape.Building import Size, Position

KEY = {'A':97,'D':100,'H':104,'R':114,'S':115,'T':116,
 'W':119,'ESC':27,'APOST':39,'SLASH':47,'NONE':-1}

Setup display and initialise pi3d
DISPLAY = pi3d.Display.create()
#capture mouse and key presses
mykeys = pi3d.Keyboard()
mymouse = pi3d.Mouse(restrict = False)

#Load shader
shader = pi3d.Shader("uv_reflect")
flatsh = pi3d.Shader("uv_flat")
Load textures
ceilingimg = pi3d.Texture("textures/squareblocks4.png")
wallimg = pi3d.Texture("textures/squareblocksred.png")
floorimg = pi3d.Texture("textures/dunes3_512.jpg")
bumpimg = pi3d.Texture("textures/mudnormal.jpg")
startimg = pi3d.Texture("textures/rock1.jpg")
endimg = pi3d.Texture("textures/water.jpg")
Create elevation map
mapwidth = 1000.0
mapdepth = 1000.0
#We shall assume we are using a flat floor in this example
mapheight = 0.0
mymap = pi3d.ElevationMap(mapfile="textures/floor.png",
 width=mapwidth, depth=mapdepth, height=mapheight,
 divx=64, divy=64)
mymap.set_draw_details(shader,[floorimg, bumpimg],128.0, 0.0)
levelList = ["textures/inside_map0.png","textures/inside_map1.png",
 "textures/inside_map2.png"]
avhgt = 5.0

Creating 3D Graphics Chapter 7

[217]

aveyelevel = 4.0
MAP_BLOCK = 15.0
aveyeleveladjust = aveyelevel - avhgt/2
PLAYERHEIGHT = (mymap.calcHeight(5, 5) + avhgt/2)
#Start the player in the top-left corner
startpos = [(8*MAP_BLOCK),PLAYERHEIGHT,(8*MAP_BLOCK)]
endpos = [0,PLAYERHEIGHT,0] #Set the end pos in the centre
person = SolidObject("person", Size(1, avhgt, 1),
 Position(startpos[0],startpos[1],startpos[2]), 1)
#Add spheres for start and end, end must also have a solid object
#so we can detect when we hit it
startobject = pi3d.Sphere(name="start",x=startpos[0],
 y=startpos[1]+avhgt,z=startpos[2])
startobject.set_draw_details(shader, [startimg, bumpimg],
 32.0, 0.3)
endobject = pi3d.Sphere(name="end",x=endpos[0],
 y=endpos[1],z=endpos[2])
endobject.set_draw_details(shader, [endimg, bumpimg], 32.0, 0.3)
endSolid = SolidObject("end", Size(1, avhgt, 1),
 Position(endpos[0],endpos[1],endpos[2]), 1)

mazeScheme = {"#models": 3,
 (1,None): [["C",2]], #white cell : Ceiling
 (0,1,"edge"): [["W",1]], #white cell on edge next
 # black cell : Wall
 (1,0,"edge"): [["W",1]], #black cell on edge next
 # to white cell : Wall
 (0,1):[["W",0]]} #white cell next
 # to black cell : Wall

details = [[shader, [wallimg], 1.0, 0.0, 4.0, 16.0],
 [shader, [wallimg], 1.0, 0.0, 4.0, 8.0],
 [shader, [ceilingimg], 1.0, 0.0, 4.0, 4.0]]

arialFont = pi3d.Font("fonts/FreeMonoBoldOblique.ttf",
 "#ffffff", font_size=10)

We then create functions to allow us to reload the levels and display messages to2.
the player using the following code:

def loadLevel(next_level):
 print(">>> Please wait while maze is constructed...")
 next_level=next_level%len(levelList)
 building = pi3d.Building(levelList[next_level], 0, 0, mymap,
 width=MAP_BLOCK, depth=MAP_BLOCK, height=30.0,
 name="", draw_details=details, yoff=-15, scheme=mazeScheme)
 return building

Creating 3D Graphics Chapter 7

[218]

def showMessage(text,rot=0):
 message = pi3d.String(font=arialFont, string=text,
 x=endpos[0],y=endpos[1]+(avhgt/4),
 z=endpos[2], sx=0.05, sy=0.05,ry=-rot)
 message.set_shader(flatsh)
 message.draw()

Within the main function, we set up the 3D environment and draw all of the 3.
objects using the following code:

def main():
 #Load a level
 level=0
 building = loadLevel(level)
 lights = pi3d.Light(lightpos=(10, -10, 20),
 lightcol =(0.7, 0.7, 0.7),
 lightamb=(0.7, 0.7, 0.7))
 rot=0.0
 tilt=0.0
 #capture mouse movements
 mymouse.start()
 omx, omy = mymouse.position()

 CAMERA = pi3d.Camera.instance()
 while DISPLAY.loop_running() and not
 inputs.key_state("KEY_ESC"):
 CAMERA.reset()
 CAMERA.rotate(tilt, rot, 0)
 CAMERA.position((person.x(), person.y(),
 person.z() - aveyeleveladjust))
 #draw objects
 person.drawall()
 building.drawAll()
 mymap.draw()
 startobject.draw()
 endobject.draw()
 #Apply the light to all the objects in the building
 for b in building.model:
 b.set_light(lights, 0)
 mymap.set_light(lights, 0)

 #Get mouse position
 mx, my = mymouse.position()
 rot -= (mx-omx)*0.8
 tilt += (my-omy)*0.8
 omx = mx
 omy = my

Creating 3D Graphics Chapter 7

[219]

 xm = person.x()
 ym = person.y()
 zm = person.z()

Finally, we monitor for key presses, handle any collisions with objects, and move4.
within the maze as follows:

#Read keyboard keys
k = mykeys.read()
if k == KEY['APOST']: #' Key
 tilt -= 2.0
elif k == KEY['SLASH']: #/ Key
 tilt += 2.0
elif k == KEY['A']:
 rot += 2.0
elif k == KEY['D']:
 rot -= 2.0
elif k == KEY['H']:
 #Use point_at as help - will turn the player to face
 # the direction of the end point
 tilt, rot = CAMERA.point_at([endobject.x(), endobject.y(),
 endobject.z()])
elif k == KEY['W']:
 xm -= sin(radians(rot))
 zm += cos(radians(rot))
elif k == KEY['S']:
 xm += sin(radians(rot))
 zm -= cos(radians(rot))

NewPos = Position(xm, ym, zm)
collisions = person.CollisionList(NewPos)
if collisions:
 #If we reach the end, reset to start position!
 for obj in collisions:
 if obj.name == "end":
 #Required to remove the building walls from the
 # solidobject list
 building.remove_walls()
 showMessage("Loading Level",rot)
 DISPLAY.loop_running()
 level+=1
 building = loadLevel(level)
 showMessage("")
 person.move(Position(startpos[0],startpos[1],
 startpos[2]))
else:
 person.move(NewPos)

Creating 3D Graphics Chapter 7

[220]

try:
 main()
finally:
 mykeys.close()
 mymouse.stop()
 DISPLAY.destroy()
 print("Closed Everything. END")
#End

How it works...
We define many of the elements we used in the preceding examples, such as the display,
textures, shaders, font, and lighting. We also define the objects, such as the building itself,
the ElevationMap object, as well as the start and end points of the maze. We also use
SolidObjects to help detect movement within the space. See the Using SolidObjects to detect
collisions subsection in the There's more... section of this recipe for more information.

Finally, we create the actual Building object based on the selected map image (using the
loadLevel() function) and locate the camera (which represents our first person
viewpoint) at the start. See the The Building module subsection in the There's more... section of
this recipe for more information.

Within the main loop, we draw all the objects in our space and apply the lighting effects.
We will also monitor for movement in the mouse (to control the tilt and rotation of the
camera) or the keyboard to move the player (or exit/provide help).

The controls are as follows:

Mouse movement: This changes the camera tilt and rotation.
' or / key: This changes the camera to tilt either downwards or upwards.
A or D: This changes the camera to rotate from left to right or vice versa.
W or S: This moves the player forwards or backwards.
H: This helps the player by rotating them to face the end of the maze. The useful
CAMERA.point_at() function is used to quickly rotate and tilt the camera's
viewpoint towards the provided coordinates (the end position).

Whenever the player moves, we check if the new position (NewPos) collides with another
SolidObject using CollisionList(NewPos). The function will return a list of any other
SolidObjects that overlap the coordinates provided.

Creating 3D Graphics Chapter 7

[221]

If there are no SolidObjects in the way, we make the player move; otherwise, we check to
see if one of the SolidObject's names is the end object, in which case we have reached the
end of the maze.

When the player reaches the end, we remove the walls from the old Building object and
display a loading message. If we don't remove the walls, all of the SolidObjects belonging to
the previous Building will still remain, creating invisible obstacles in the next level.

We will use the showMessage() function to inform the user that the next level will be
loaded soon (since it can take a while for the building object to be constructed). We need to
ensure that we call DISPLAY.loop_running() after we draw the message. This ensures it
is displayed on the screen before we start loading the level (after which the person will be
unable to move while loading takes place). We need to ensure that the message is always
facing the player, regardless of which of their sides collides with the end object, by using
the camera rotation (rot) for its angle:

When the exit ball is found, the next level is loaded

When the next level in the list has been loaded (or the first level has been loaded again
when all the levels have been completed), we replace the message with a blank one to
remove it and reset the person's position back to the start.

You can design and add your own levels by creating additional map files (20 x 20 PNG files
with walls marked out with black pixels and walkways in white) and listing them in
levelList. The player will start at the top-left corner of the map, and the exit is placed at
the center.

Creating 3D Graphics Chapter 7

[222]

You will notice that loading the levels can take quite a long time; this is the relatively slow
ARM processor in Raspberry Pi performing all the calculations required to construct the
maze and locate all the components. As soon as the maze has been built, the more powerful
GPU takes over, which results in fast and smooth graphics as the player explores the space.

This recipe demonstrates the difference between the original Raspberry Pi
processor and Raspberry Pi 2. Raspberry Pi 2 takes around 1 minute 20
seconds to load the first level, while the original Raspberry Pi can take up
to 4 minutes 20 seconds. Raspberry Pi 3 takes a stunning 4 seconds to load
the same level.

There's more...
The preceding example creates a building for the player to explore and interact with. In
order to achieve this, we use the Building module of pi3d to create a building and use
SolidObject to detect collisions.

The Building module
The pi3d.Building module allows you to define a whole level or floor of a building using
map files. Like the terrain maps used in the preceding example, the color of the pixels will
be converted into different parts of the level. In our case, black is for the walls and white is
used for the passages and halls, complete with ceilings:

The building layout is defined by the pixels in the image

Creating 3D Graphics Chapter 7

[223]

The sections built by the Building object are defined by the Scheme used. The Scheme is
defined by two sections, by the number of models, and then by the definitions for various
aspects of the model, as seen in the following code:

mazeScheme = {"#models": 3,
 (1,None): [["C",2]], #white cell : Ceiling
 (0,1,"edge"): [["W",1]], #white cell on edge by black cell : Wall
 (1,0,"edge"): [["W",1]], #black cell on edge by white cell : Wall
 (0,1):[["W",0]]} #white cell next to black cell : Wall

The first tuple defines the type of cell/square that the selected model should be applied to.
Since there are two pixel colors in the map, the squares will either be black (0) or white (1).
By determining the position and type of a particular cell/square, we can define which
models (wall, ceiling, or roof) we want to apply.

We can define three main types of cell/square location:

A whole square (1,None): This is a white cell representing open space in
the building.
One cell bordering another, on the edge (0,1,"edge"): This is a black cell next to a
white one on the map edge. This also includes (1,0,"edge"). This will
represent the outer wall of the building.
Any black cell that is next to a white cell (0,1): This will represent all of the
internal walls of the building.

Next, we allocate a type of object(s) to be applied for that type (W or C):

Wall (W): This is a vertical wall that is placed between the specified cells (such as
between black and white cells).
Ceiling (C): This is a horizontal section of the ceiling to cover the current cell.
Roof (R): This is an additional horizontal section that is placed slightly above the
ceiling to provide a roofing effect. It is typically used for buildings that may need
to be viewed from the outside (this is not used in our example).
Ceiling Edge (CE): This is used to join the ceiling sections to the roof around the
edges of the building (it is not used in our example since ours is an indoor
model).

Finally, we specify the model that will be used for each object. We are using three models in
this example (normal walls, walls on an edge, and the ceiling), so we can define the model
used by specifying 0, 1, or 2.

Creating 3D Graphics Chapter 7

[224]

Each of the models are defined in the details array, which allows us to set the required
textures and shaders for each one (this contains the same information that would normally
be set by the .set_draw_details() function), as shown in the following code:

details = [[shader, [wallimg], 1.0, 0.0, 4.0, 16.0],
 [shader, [wallimg], 1.0, 0.0, 4.0, 8.0],
 [shader, [ceilingimg], 1.0, 0.0, 4.0, 4.0]]

In our example, the inside walls are allocated to the wallimg texture
(textures/squareblocksred.png) and the ceilings are allocated to the ceilingimg
texture (textures/squareblocks4.png). You may be able to note from the following
screenshot that we can apply different texture models (in our case, a slightly different
scaling) to the different types of blocks. The walls that border the outside of the maze (with
the edge identifier) will use the wallimg model texture scaled by 4 x 8 (details[1]) while
the same model texture will be scaled 4 x 16 for the internal walls (details[0]):

Walls with different scaling

Both scheme and draw_details are set when the pi3d.Building object is created, as
shown in the following code:

building = pi3d.Building(levelList[next_level], 0, 0, mymap,
 width=MAP_BLOCK, depth=MAP_BLOCK, height=30.0, name="",
 draw_details=details, yoff=-15, scheme=mazeScheme)

Creating 3D Graphics Chapter 7

[225]

Using the map file (levelList[next_level]), the scheme (mazeScheme), and draw
details (details), the entire building is created within the environment:

An overhead view of the 3D maze we created

Although we use just black and white in this example, other colored pixels
can also be used to define additional block types (and therefore different
textures, if required). If another color (such as gray) is added, the indexing
of the color mapping is shifted so that black blocks are referenced as 0, the
new colored blocks as 1, and the white blocks as 2. See the Silo example in
the pi3d demos for details.

We also need to define an ElevationMap object: mymap. The
pi3d.Building module makes use of the ElevationMap object's
calcHeight() function to correctly place the walls on top of the
ElevationMap object's surface. In this example, we will apply a basic
ElevationMap object using textures/floor.png, which will generate a
flat surface that the Building object will be placed on.

Creating 3D Graphics Chapter 7

[226]

Using SolidObjects to detect collisions
In addition to the Building object, we will define an object for the player and also define
two objects to mark the start and end points of the maze. Although the player's view is the
first person viewpoint (that is, we don't actually see them since the view is effectively
through their eyes), we need to define a SolidObject to represent them.

A SolidObject is a special type of invisible object that can be checked to determine if the
space that would be occupied by one SolidObject has overlapped another. This will allow us
to use person.CollisionList(NewPos) to get a list of any other SolidObjects that the
person object will be in contact with at the NewPos position. Since the Building class
defines SolidObjects for all of the parts of the Building object, we will be able to detect
when the player tries to move through a wall (or, for some reason, the roof/ceiling) and stop
them from moving through it.

We also use SolidObjects for the start and end locations in the maze. The place where the
player starts is set as the top-left corner of the map (the white-space pixel from the top left
of the map) and is marked by the startpos object (a small pi3d.Sphere with the
rock1.jpg texture) placed above the person's head. The end of the maze is marked with
another pi3d.Sphere object (with the water.jpg texture) located at the center of the map.
We also define another SolidObject at the end so that we can detect when the player reaches
it and collides with it (and load the next level).

8
Building Face Detector and

Face Recognition Applications
This chapter presents the following recipes:

Introduction to the face recognition system
Building a face detector application
Building a face recognition application
Applications of a face recognition system

Introduction
In recent years, face recognition has emerged as one of the hottest research areas. A face
recognition system is a computer program with the ability to detect and recognize faces. In
order to recognize a person, it considers their unique facial features. Recently, it has been
adopted in several security and surveillance installations to ensure safety in high-risk areas,
residential zones, private and public buildings, and so on.

Building a face detector application
In this section, we discuss how human faces can be detected from webcam images. A USB
webcam needs to be connected to Raspberry Pi 3 to implement real-time human face
detection.

Building Face Detector and Face Recognition Applications Chapter 8

[228]

How to do it...
Import the necessary packages:1.

import cv2
import numpy as np

Load the face cascade file:2.

frontalface_cascade=
cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')

Check whether the face cascade file has been loaded:3.

if frontalface_cascade.empty():
 raiseIOError('Unable to load the face cascade classifier xml
file')

Initialize the video capture object:4.

capture = cv2.VideoCapture(0)

Define the scaling factor:5.

scale_factor = 0.5

Perform the operation until the Esc key is pressed:6.

Loop until you hit the Esc key
while True:

Capture the current frame and resize it:7.

 ret, frame = capture.read()
 frame = cv2.resize(frame, None, fx=scale_factor, fy=scale_factor,
 interpolation=cv2.INTER_AREA)

Convert the image frame into grayscale:8.

 gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Run the face detector on the grayscale image:9.

 face_rectangle = frontalface_cascade.detectMultiScale(gray_image,
1.3, 5)

Building Face Detector and Face Recognition Applications Chapter 8

[229]

Draw the rectangles box:10.

 for (x,y,w,h) in face_rectangle:
 cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)

Display the output image:11.

 cv2.imshow('Face Detector', frame)

Check whether the Esc key has been pressed for operation termination:12.

 a = cv2.waitKey(1)
 if a == 10:
 break

Stop the video capturing and terminate the operation:13.

capture.release()
cv2.destroyAllWindows()

The result obtained in the human face detection system is shown here:

Building Face Detector and Face Recognition Applications Chapter 8

[230]

Building a face recognition application
Face recognition is a technique that is performed after face detection. The detected human
face is compared with the images stored in the database. It extracts features from the input
image and matches them with human features stored in the database.

How to do it...
Import the necessary packages:1.

import cv2
import numpy as np
from sklearn import preprocessing

Load the encoding and decoding task operators:2.

class LabelEncoding(object):
 # Method to encode labels from words to numbers
 def encoding_labels(self, label_wordings):
 self.le = preprocessing.LabelEncoder()
 self.le.fit(label_wordings)

Implement word-to-number conversion for the input label:3.

 def word_to_number(self, label_wordings):
 return int(self.le.transform([label_wordings])[0])

Convert the input label from a number to word:4.

 def number_to_word(self, label_number):
 return self.le.inverse_transform([label_number])[0]

Extract images and labels from the input path:5.

def getting_images_and_labels(path_input):
 label_wordings = []

Iterate the procedure for the input path and append the files:6.

 for roots, dirs, files in os.walk(path_input):
 for fname in (x for x in files if x.endswith('.jpg')):
 fpath = os.path.join(roots, fname)
 label_wordings.append(fpath.split('/')[-2])

Building Face Detector and Face Recognition Applications Chapter 8

[231]

Initialize the variables and parse the input register:7.

 images = []
 le = LabelEncoding()
 le.encoding_labels(label_wordings)
 labels = []
 # Parse the input directory
 for roots, dirs, files in os.walk(path_input):
 for fname in (x for x in files if x.endswith('.jpg')):
 fpath = os.path.join(roots, fname)

Read the grayscale image:8.

 img = cv2.imread(fpath, 0)

Extract the label:9.

 names = fpath.split('/')[-2]

Perform face detection:10.

 face = faceCascade.detectMultiScale(img, 1.1, 2,
minSize=(100,100))

Iterate the procedure with face rectangles:11.

 for (x, y, w, h) in face:
 images.append(img[y:y+h, x:x+w])
 labels.append(le.word_to_number(names))
 return images, labels, le
if __name__=='__main__':
 path_cascade = "haarcascade_frontalface_alt.xml"
 train_img_path = 'faces_dataset/train'
 path_img_test = 'faces_dataset/test'

Load the face cascade file:12.

 faceCascade = cv2.CascadeClassifier(path_cascade)

Initialize face detection with local binary patterns:13.

 face_recognizer = cv2.createLBPHFaceRecognizer()

Building Face Detector and Face Recognition Applications Chapter 8

[232]

Extract the face features from the training face dataset:14.

 imgs, labels, le = getting_images_and_labels(train_img_path)

Train the face detection system:15.

 print "nTraining..."
 face_recognizer.train(imgs, np.array(labels))

Test the face detection system:16.

 print 'nPerforming prediction on test images...'
 flag_stop = False
 for roots, dirs, files in os.walk(path_img_test):
 for fname in (x for x in files if x.endswith('.jpg')):
 fpath = os.path.join(roots, fname)

Validate the face recognition system:17.

 predicting_img = cv2.imread(fpath, 0)
 # Detect faces
 face = faceCascade.detectMultiScale(predicting_img, 1.1,
 2, minSize=(100,100))
 # Iterate through face rectangles
 for (x, y, w, h) in face:
 # Predict the output
 index_predicted, config = face_recognizer.predict(
predicting_img[y:y+h, x:x+w])
 # Convert to word label
 person_predicted = le.number_to_word(index_predicted)
 # Overlay text on the output image and display it
 cv2.putText(predicting_img, 'Prediction: ' +
person_predicted,
 (10,60), cv2.FONT_HERSHEY_SIMPLEX, 2,
(255,255,255), 6)
 cv2.imshow("Recognizing face", predicting_img)
 a = cv2.waitKey(0)
 if a == 27:
 flag = True
 break
 if flag_stop:
 break

Building Face Detector and Face Recognition Applications Chapter 8

[233]

The face recognition output obtained is shown here:

How it works...
Face recognition systems are widely used to implement personal security systems. Readers
can refer to the article The system of face detection based on OpenCV at http:/ ​/ ​ieeexplore.
ieee.​org/​document/ ​6242980/ ​.

See also Study of Face Detection Algorithm for Real-time Face Detection System at http:/ ​/
ieeexplore.​ieee. ​org/ ​document/ ​5209668.

http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/6242980/
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668
http://ieeexplore.ieee.org/document/5209668

Building Face Detector and Face Recognition Applications Chapter 8

[234]

See also
Please refer to the following articles:

http:/​/​www. ​ex- ​sight. ​com/ ​technology. ​htm

https:/​/ ​www. ​eurotech. ​com/ ​en/ ​products/ ​devices/ ​face+recognition+systems

https:/​/ ​arxiv. ​org/ ​ftp/ ​arxiv/ ​papers/ ​1403/ ​1403. ​0485. ​pdf

Applications of a face recognition system
Face recognition is widely used in security, healthcare, and marketing. Industries are
developing novel face recognition systems using deep learning to recognize fraud, identify
the difference between human faces and photographs, and so on. In healthcare, face
recognition, combined with other computer vision algorithms, is used to detect facial skin
diseases.

http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
http://www.ex-sight.com/technology.htm
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://www.eurotech.com/en/products/devices/face+recognition+systems
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf
https://arxiv.org/ftp/arxiv/papers/1403/1403.0485.pdf

9
Using Python to Drive

Hardware
In this chapter, we will cover the following topics:

Controlling an LED
Responding to a button
The controlled shutdown button
The GPIO keypad input
Multiplexed color LEDs
Writing messages using persistence of vision

Introduction
One of the key features of a Raspberry Pi computer that sets it apart from most other
home/office computers is that it has the ability to directly interface with other hardware.
The general-purpose input/output (GPIO) pins on the Raspberry Pi can control a wide
range of low-level electronics, from light-emitting diodes (LEDs) to switches, sensors,
motors, servos, and even extra displays.

This chapter will focus on connecting the Raspberry Pi with some simple circuits and
getting to grips with using Python to control and respond to the connected components.

Using Python to Drive Hardware Chapter 9

[236]

The Raspberry Pi hardware interface consists of 40 pins located along one side of the board.

The GPIO pins and their layout will vary slightly according to the
particular model you have.

The Raspberry Pi 3, Raspberry Pi 2, and Raspberry Pi B+ all have the same
40-pin layout.

The older Raspberry Pi 1 models (nonplus types) have a 26-pin header,
which is the same as the 1-26 pins of the newer models.

Raspberry Pi 2, Raspberry Pi B+, and Raspberry Pi Model Plus GPIO header pins (pin functions)

The layout of the connector is shown in the preceding diagram; the pin numbers are shown
as seen from pin 1 of the GPIO header.

Using Python to Drive Hardware Chapter 9

[237]

Pin 1 is at the end that is nearest to the SD card, as shown in the following photo:

The Raspberry Pi GPIO header location

Care should be taken when using the GPIO header, since it also includes power pins (3V3
and 5 V), as well as ground (GND) pins. All of the GPIO pins can be used as standard
GPIO, but several also have special functions; these are labeled and highlighted with
different colors.

It is common for engineers to use a 3V3 notation to specify values in
schematics in order to avoid using decimal places that could easily be
missed (using 33V rather than 3.3V would cause severe damage to the
circuitry). The same can be applied to the values of other components,
such as resistors, for example, 1.2K ohms can be written as 1K2 ohms.

The TX and RX pins are used for serial communications, and with the aid of a voltage-level
converter, information can be transferred via a serial cable to another computer or device.

We also have the SDA and SCL pins, which are able to support a two-wire bus
communication protocol called I2C (there are two I2C channels on Raspberry Pi 3 and Model
Plus boards: channel 1 ARM, which is for general use, and channel 0 VC, which is typically
used for identifying hardware attached on top (HAT) modules). There are also the SPI
MOSI, SPI MISO, SPI SCLK, SPI CE0, and SPI CE1 pins, which support another type of
bus protocol called SPI for high-speed data. Finally, we have the PWM0/1 pin, which
allows a pulse-width modulation signal to be generated, which is useful for servos and
generating analog signals.

Using Python to Drive Hardware Chapter 9

[238]

However, we will focus on using just the standard GPIO functions in this chapter. The
GPIO pin layout is shown in the following diagram:

Raspberry Pi GPIO header pins (GPIO.BOARD and GPIO.BCM)

The Raspberry Pi Rev 2 (pre-July 2014) has the following differences compared to the
Raspberry Pi 2 GPIO layout:

26-GPIO-pin header (matching the first 26 pins).
An additional secondary set of eight holes (P5) located next to the pin header. The
details are as follows:

Raspberry Pi Rev 2 P5 GPIO header pins

Using Python to Drive Hardware Chapter 9

[239]

The original Raspberry Pi Rev 1 (pre-October 2012) has only 26 GPIO pins in
total, (matching the first 26 pins of the current Raspberry Pi, except for the
following details:

Raspberry Pi Rev 1 GPIO header differences

The RPi.GPIO library can reference the pins on the Raspberry Pi using one of two systems.
The numbers shown in the center refer to the physical position of the pins, and are also the
numbers referenced by the RPi.GPIO library when in GPIO.BOARD mode. The numbers
on the outside (GPIO.BCM) are the actual reference numbers of the physical ports of the
processor that indicate which of the pins are wired (which is why they are not in any
specific order). They are used when the mode is set to GPIO.BCM, and they allow control
of the GPIO header pins as well as any peripherals connected to other GPIO lines. This
includes the LED on the add-on camera on BCM GPIO 4 and the status LED on the board.
However, this can also include the GPIO lines used for reading/writing to the SD card,
which would cause serious errors if interfered with.

If you use other programming languages to access the GPIO pins, the numbering scheme
may be different, so it will be helpful if you are aware of the BCM GPIO references, which
refer to the physical GPIO ports of the processor.

Be sure to check out the Appendix, Hardware and Software List, which lists
all the items used in this chapter and the places that you can obtain them
from.

Using Python to Drive Hardware Chapter 9

[240]

Controlling an LED
The hardware equivalent of hello world is an LED flash, which is a great test to ensure
that everything is working and that you have wired it correctly. To make it a little more
interesting, I've suggested using a red, blue, and green (RGB) LED, but feel free to use
separate LEDs if that is all you have available.

Getting ready
You will need the following equipment:

4 x DuPont female-to-male patch wires
Mini breadboard (170 tie points) or a larger one
RGB LED (common cathode)/3 standard LEDs (ideally red, green, and blue)
Breadboard wire (solid core)
3 x 470 ohm resistors

Each of the preceding components shouldn't cost many dollars and can be reused for other
projects afterwards. The breadboard is a particularly useful item that allows you to try out
your own circuits without needing to solder them:

Diagrams of an RGB LED, a standard LED, and an RGB circuit

Using Python to Drive Hardware Chapter 9

[241]

The following diagram shows the breadboard circuitry:

The wiring of an RGB LED/standard LEDs connected to the GPIO header

There are several different kinds of RGB LEDs available, so check the
datasheet of your component to confirm the pin order and type you have.
Some are RGB, so ensure that you wire accordingly or adjust the RGB_ pin
settings in the code. You can also get common anode variants, which will
require the anode to be connected to 3V3 (GPIO-pin 1) for it to light up
(and they will also require RGB_ENABLE and RGB_DISABLE to be set to 0
and 1 respectively).

The breadboard and component diagrams of this book have been created using a free tool
called Fritzing (www.fritzing.org); it is great for planning your own Raspberry Pi projects.

http://www.fritzing.org

Using Python to Drive Hardware Chapter 9

[242]

How to do it...
Create the ledtest.py script as follows:1.

#!/usr/bin/python3
#ledtest.py
import time
import RPi.GPIO as GPIO
RGB LED module
#HARDWARE SETUP
GPIO
2[======XRG=B==]26[=======]40
1[=============]25[=======]39
X=GND R=Red G=Green B=Blue
#Setup Active States
#Common Cathode RGB-LED (Cathode=Active Low)
RGB_ENABLE = 1; RGB_DISABLE = 0

#LED CONFIG - Set GPIO Ports
RGB_RED = 16; RGB_GREEN = 18; RGB_BLUE = 22
RGB = [RGB_RED,RGB_GREEN,RGB_BLUE]

def led_setup():
 #Setup the wiring
 GPIO.setmode(GPIO.BOARD)
 #Setup Ports
 for val in RGB:
 GPIO.setup(val,GPIO.OUT)

def main():
 led_setup()
 for val in RGB:
 GPIO.output(val,RGB_ENABLE)
 print("LED ON")
 time.sleep(5)
 GPIO.output(val,RGB_DISABLE)
 print("LED OFF")

try:
 main()
finally:
 GPIO.cleanup()
 print("Closed Everything. END")
#End

Using Python to Drive Hardware Chapter 9

[243]

The RPi.GPIO library will require sudo permissions to access the GPIO pin2.
hardware, so you will need to run the script using the following command:

sudo python3 ledtest.py

When you run the script, you should see the red, green, and blue parts of the LED
(or each LED, if you're using separate ones) light up in turn. If not, double-check
your wiring or confirm that the LED is working by temporarily connecting the
red, green, or blue wire to the 3V3 pin (pin 1 of the GPIO header).

The sudo command is required for most hardware-related scripts because
it isn't normal for users to directly control hardware at such a low level.
For example, setting or clearing a control pin that is part of the SD card
controller could corrupt data being written to it. Therefore, for security
purposes, superuser permissions are required to stop programs from
using hardware by accident (or with malicious intent).

How it works...
To access the GPIO pins using Python, we import the RPi.GPIO library, which allows direct
control of the pins through the module functions. We also require the time module to
pause the program for a set number of seconds.

We then define values for the LED wiring and active states (see Controlling the GPIO current
segment in the There's more... section of this recipe).

Before the GPIO pins are used by the program, we need to set them up by specifying the
numbering method—GPIO.BOARD—and the direction—GPIO.OUT or GPIO.IN (in this case,
we set all the RGB pins to outputs). If a pin is configured as an output, we will be able to set
the pin state; similarly, if it is configured as an input, we will be able to read the pin state.

Next, we control the pins using GPIO.ouput() by stating the number of the GPIO pin and
the state we want it to be in (1 = high/on and 0 = low/off). We switch each LED on, wait five
seconds, and then switch it back off.

Finally, we use GPIO.cleanup() to return the GPIO pins back to their original default state
and release control of the pins for use by other programs.

Using Python to Drive Hardware Chapter 9

[244]

There's more...
Using the GPIO pins on the Raspberry Pi must be done with care since these pins are
directly connected to the main processor of the Raspberry Pi without any additional
protection. Caution must be used as any incorrect wiring will probably damage the
Raspberry Pi processor and cause it to stop functioning altogether.

Alternatively, you could use one of the many modules available that plug directly into the
GPIO header pins (reducing the chance of wiring mistakes):

For example, the Pi-Stop is a simple pre-built LED board that simulates a
set of traffic lights, designed to be a stepping stone for those who are
interested in controlling hardware but want to avoid the risk of damaging
their Raspberry Pi. After the basics have been mastered, it also makes an
excellent indicator to aid debugging.

Just ensure that you update the LED CONFIG pin references in the
ledtest.py script to reference the pin layout and location used for the
hardware you are using.

See the Appendix, Hardware and Software List, for a list of Raspberry Pi hardware retailers.

Using Python to Drive Hardware Chapter 9

[245]

Controlling the GPIO current
Each GPIO pin is only able to handle a certain current before it burns out (a maximum of 16
mA from a single pin or 30 mA in total), and similarly, the RGB LED should be limited to no
more than 100 mA. By adding a resistor before or after an LED, we will be able to limit the
current that will be passed through it and control how bright it is (more current will equal a
brighter LED).

Since we may wish to power more than one LED at a time, we typically aim to set the
current as low as we can get away with while still providing enough power to light up the
LED.

We can use Ohm's law to tell us how much resistance to use to provide a particular current.
The law is as shown in the following diagram:

Ohm's law: The relationship between the current, resistance, and voltage in electrical circuits

Using Python to Drive Hardware Chapter 9

[246]

We will aim for a minimum current (3 mA) and maximum current (16 mA), while still
producing a reasonably bright light from each of the LEDs. To get a balanced output for the
RGB LEDs, I tested different resistors until they provided a near white light (when viewed
through a card). A 470 ohm resistor was selected for each one (your LEDs may differ
slightly):

Resistors are needed to limit the current that passes through the LEDs

The voltage across the resistor is equal to the GPIO voltage (Vgpio = 3.3V) minus the
voltage drop on the particular LED (Vfwd); we can then use this resistance to calculate the
current used by each of the LEDs, as shown in the following formulas:

We can calculate the current drawn by each of the LEDs

Using Python to Drive Hardware Chapter 9

[247]

Responding to a button
Many applications using the Raspberry Pi require that actions are activated without
requiring a keyboard and screen to be attached to it. The GPIO pins provide an excellent
way for the Raspberry Pi to be controlled by your own buttons and switches without a
mouse/keyboard and screen.

Getting ready
You will need the following equipment:

2 x DuPont female-to-male patch wires
Mini breadboard (170 tie points) or a larger one
Push-button switch (momentary close) or a wire connection to make/break the
circuit
Breadboard wire (solid core)
1K ohm resistor

The switches are as shown in the following diagram:

The push-button switch and other types of switch

Using Python to Drive Hardware Chapter 9

[248]

The switches used in the following examples are single-pole, single-
throw (SPST), momentary close, push-button switches. Single pole (SP)
means that there is one set of contacts that makes a connection. In the case
of the push switch used here, the legs on each side are connected together
with a single-pole switch in the middle. A double-pole (DP) switch acts
just like a SP switch, except that the two sides are separated electrically,
allowing you to switch two separate components on/off at the same time.

Single throw (ST) means the switch will make a connection with just one
position; the other side will be left open. Double throw (DT) means both
positions of the switch will connect to different parts.

Momentary close means that the button will close the switch when
pressed and automatically open it when released. A latched push-button
switch will remain closed until it is pressed again.

Trying a speaker or headphone with Raspberry Pi

The layout of the button circuit

Using Python to Drive Hardware Chapter 9

[249]

We will use sound in this example, so you will also need speakers or headphones attached
to the audio socket of the Raspberry Pi.

You will need to install a program called flite using the following command, which will
let us make the Raspberry Pi talk:

sudo apt-get install flite

After it has been installed, you can test it with the following command:

sudo flite -t "hello I can talk"

If it is a little too quiet (or too loud), you can adjust the volume (0-100 percent) using the
following command:

amixer set PCM 100%

How to do it...
Create the btntest.py script as follows:

#!/usr/bin/python3
#btntest.py
import time
import os
import RPi.GPIO as GPIO
#HARDWARE SETUP
GPIO
2[==X==1=======]26[=======]40
1[=============]25[=======]39
#Button Config
BTN = 12

def gpio_setup():
 #Setup the wiring
 GPIO.setmode(GPIO.BOARD)
 #Setup Ports
 GPIO.setup(BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP)

def main():
 gpio_setup()
 count=0
 btn_closed = True
 while True:
 btn_val = GPIO.input(BTN)
 if btn_val and btn_closed:

Using Python to Drive Hardware Chapter 9

[250]

 print("OPEN")
 btn_closed=False
 elif btn_val==False and btn_closed==False:
 count+=1
 print("CLOSE %s" % count)
 os.system("flite -t '%s'" % count)
 btn_closed=True
 time.sleep(0.1)

try:
 main()
finally:
 GPIO.cleanup()
 print("Closed Everything. END")
#End

How it works...
As in the previous recipe, we set up the GPIO pin as required, but this time as an input, and
we also enable the internal pull-up resistor (see Pull-up and pull-down resistor circuits in the
There's more... section of this recipe for more information) using the following code:

GPIO.setup(BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP)

After the GPIO pin is set up, we create a loop that will continuously check the state of BTN
using GPIO.input(). If the value returned is false, the pin has been connected to 0V
(ground) through the switch, and we will use flite to count out loud for us each time the
button is pressed.

Since we have called the main function from within a try/finally condition, it will still
call GPIO.cleanup() even if we close the program using Ctrl + Z.

Using Python to Drive Hardware Chapter 9

[251]

We use a short delay in the loop; this ensures that any noise from the
contacts on the switch is ignored. This is because when we press the
button, there isn't always perfect contact as we press or release it, and it
may produce several triggers if we press it again too quickly. This is
known as software debouncing; we ignore the bounce in the signal here.

There's more...
The Raspberry Pi GPIO pins must be used with care; voltages used for inputs should be
within specific ranges, and any current drawn from them should be minimized using
protective resistors.

Safe voltages
We must ensure that we only connect inputs that are between 0 (ground) and 3V3. Some
processors use voltages between 0V and 5V, so extra components are required to interface
safely with them. Never connect an input or component that uses 5V unless you are certain
it is safe, or you will damage the GPIO ports of the Raspberry Pi.

Pull-up and pull-down resistor circuits
The previous code sets the GPIO pins to use an internal pull-up resistor. Without a pull-up
resistor (or pull-down resistor) on the GPIO pin, the voltage is free to float somewhere
between 3V3 and 0V, and the actual logical state remains undetermined (sometimes 1 and
sometimes 0).

Raspberry Pi's internal pull-up resistors are 50K ohm-65K ohm, and the pull-down resistors
are 50K ohm-65K ohm. External pull-up/pull-down resistors are often used in GPIO circuits
(as shown in the following diagram), typically using 10K ohm or larger for similar reasons
(giving a very small current draw when they are not active).

Using Python to Drive Hardware Chapter 9

[252]

A pull-up resistor allows a small amount of current to flow through the GPIO pin and will
provide a high voltage when the switch isn't pressed. When the switch is pressed, the small
current is replaced by the larger one flowing to 0V, so we get a low voltage on the GPIO pin
instead. The switch is active low and logic 0 when pressed. It works as shown in the
following diagram:

A pull-up resistor circuit

Pull-down resistors work in the same way, except the switch is active high (the GPIO pin is
logic 1 when pressed). It works as shown in the following diagram:

A pull-down resistor circuit

Using Python to Drive Hardware Chapter 9

[253]

Protection resistors
In addition to the switch, the circuit includes a resistor in series with the switch to protect
the GPIO pin, as shown in the following diagram:

A GPIO protective current-limiting resistor

The purpose of the protection resistor is to protect the GPIO pin if it is accidentally set as an
output rather than an input. Imagine, for instance, that we have our switch connected
between the GPIO and ground. Now the GPIO pin is set as an output and switched on
(driving it to 3V3) as soon as we press the switch, without a resistor present, the GPIO pin
will be directly connected to 0V. The GPIO will still try to drive it to 3V3; this will cause the
GPIO pin to burn out (since it will use too much current to drive the pin to the high state). If
we use a 1K ohm resistor here, the pin is able to be driven high using an acceptable amount
of current (I = V/R = 3.3/1K = 3.3 mA).

A controlled shutdown button
The Raspberry Pi should always be shut down correctly to avoid the SD card being
corrupted (by losing power while performing a write operation to the card). This can pose a
problem if you don't have a keyboard or screen connected (you might be running an
automated program or controlling it remotely over a network and forget to turn it off) as
you can't type the command or see what you are doing. By adding our own buttons and
LED indicator, we can easily command a shutdown and reset, and then start up again to
indicate when the system is active.

Getting ready
You will need the following equipment:

3 x DuPont female-to-male patch wires
Mini breadboard (170 tie points) or a larger one
Push-button switch (momentary close)

Using Python to Drive Hardware Chapter 9

[254]

General-purpose LED
2 x 470 ohm resistors
Breadboard wire (solid core)

The entire layout of the shutdown circuit will look as shown in the following figure:

The controlled shutdown circuit layout

How to do it...
Create the shtdwn.py script as follows:1.

#!/usr/bin/python3
#shtdwn.py
import time
import RPi.GPIO as GPIO
import os

Shutdown Script
DEBUG=True #Simulate Only
SNDON=True
#HARDWARE SETUP
GPIO
2[==X==L=======]26[=======]40

Using Python to Drive Hardware Chapter 9

[255]

1[===1=========]25[=======]39

#BTN CONFIG - Set GPIO Ports
GPIO_MODE=GPIO.BOARD
SHTDWN_BTN = 7 #1
LED = 12 #L

def gpio_setup():
 #Setup the wiring
 GPIO.setmode(GPIO_MODE)
 #Setup Ports
 GPIO.setup(SHTDWN_BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP)
 GPIO.setup(LED,GPIO.OUT)

def doShutdown():
 if(DEBUG):print("Press detected")
 time.sleep(3)
 if GPIO.input(SHTDWN_BTN):
 if(DEBUG):print("Ignore the shutdown (<3sec)")
 else:
 if(DEBUG):print ("Would shutdown the RPi Now")
 GPIO.output(LED,0)
 time.sleep(0.5)
 GPIO.output(LED,1)
 if(SNDON):os.system("flite -t 'Warning commencing power down 3
2 1'")
 if(DEBUG==False):os.system("sudo shutdown -h now")
 if(DEBUG):GPIO.cleanup()
 if(DEBUG):exit()

def main():
 gpio_setup()
 GPIO.output(LED,1)
 while True:
 if(DEBUG):print("Waiting for >3sec button press")
 if GPIO.input(SHTDWN_BTN)==False:
 doShutdown()
 time.sleep(1)

try:
 main()
finally:
 GPIO.cleanup()
 print("Closed Everything. END")
#End

Using Python to Drive Hardware Chapter 9

[256]

To get this script to run automatically (once we have tested it), we can place the2.
script in the ~/bin (we can use cp instead of mv if we just want to copy it) and
add it to crontab with the following code:

mkdir ~/bin
mv shtdwn.py ~/bin/shtdwn.py
crontab -e

At the end of the file, we add the following code:3.

@reboot sudo python3 ~/bin/shtdwn.py

How it works...
This time, when we set up the GPIO pin, we define the pin connected to the shutdown
button as an input and the pin connected to the LED as an output. We turn the LED on to
indicate that the system is running.

By setting the DEBUG flag to True, we can test the functionality of our script without causing
an actual shutdown (by reading the terminal messages); we just need to ensure that we set
DEBUG to False when using the script for real.

We enter a while loop and check the pin every second to see whether the GPIO pin is set to
LOW (that is, to check whether the switch has been pressed); if so, we enter the
doShutdown() function.

The program will wait for three seconds and then test again to see whether the button is still
being pressed. If the button is no longer being pressed, we return to the previous while
loop. However, if it is still being pressed after three seconds, the program will flash the LED
and trigger the shutdown (and also provide an audio warning using flite).

When we are happy with how the script is operating, we can disable the DEBUG flag (by
setting it to False) and add the script to crontab. crontab is a special program that runs
in the background and allows us to schedule (at specific times, dates, or periodically)
programs and actions when the system is started (@reboot). This allows the script to be
started automatically every time the Raspberry Pi is powered up. When we press and hold
the shutdown button for more than three seconds, it safely shuts down the system and
enters a low power state (the LED switches off just before this, indicating that it is safe to
remove the power shortly after). To restart the Raspberry Pi, we briefly remove the power;
this will restart the system, and the LED will light up when the Raspberry Pi has loaded.

Using Python to Drive Hardware Chapter 9

[257]

There's more...
We can extend this example further using the reset header by adding extra functionality
and making use of additional GPIO connections (if available).

Resetting and rebooting Raspberry Pi
The Raspberry Pi has holes for mounting a reset header (marked RUN on the Raspberry Pi
3/2 and P6 on the Raspberry Pi 1 Model A and Model B Rev 2). The reset pin allows the
device to be reset using a button rather than removing the micro USB connector each
time to cycle the power:

Raspberry Pi reset headers - on the left, Raspberry Pi Model A/B (Rev2), and on the right, Raspberry Pi 3

Using Python to Drive Hardware Chapter 9

[258]

To make use of it, you will need to solder a wire or pin header to the Raspberry Pi and
connect a button to it (or briefly touch a wire between the two holes each time).
Alternatively, we can extend our previous circuit, as shown in the following diagram:

The controlled shutdown circuit layout and reset button

We can add this extra button to our circuit, which can be connected to the reset header (this
is the hole nearest the middle on the Raspberry Pi 3 or closest to the edge on other models).
This pin, when temporarily pulled low by connecting to ground (such as the hole next to it
or by another ground point, such as pin 6 of the GPIO header), will reset the Raspberry Pi
and allow it to boot up again following a shutdown.

Using Python to Drive Hardware Chapter 9

[259]

Adding extra functions
Since we now have the script monitoring the shutdown button all the time, we can add
extra buttons/switches/jumpers to be monitored at the same time. This will allow us to
trigger specific programs or set up particular states just by changing the inputs. The
following example allows us to easily switch between automatic DHCP networking (the
default networking setup) and using a direct IP address, as used in the Networking directly to
a laptop or computer recipe of Chapter 1, Getting Started with a Raspberry Pi 3 Computer, for
direct LAN connections.

Add the following components to the previous circuit:

A 470 ohm resistor
Two pin headers with a jumper connector (or, optionally, a switch)
Breadboard wire (solid core)

After adding the preceding components, our controlled shutdown circuit now looks as
follows:

The controlled shutdown circuit layout, reset button, and jumper pins

Using Python to Drive Hardware Chapter 9

[260]

In the previous script, we add an additional input to detect the status of the LAN_SWA pin
(the jumper pins we added to the circuit) using the following code:

LAN_SWA = 11 #2

Ensure that it is set up as an input (with a pull-up resistor) in the gpio_setup() function
using the following code:

GPIO.setup(LAN_SWA,GPIO.IN,pull_up_down=GPIO.PUD_UP)

Add a new function to switch between the LAN modes and read out the new IP address.
The doChangeLAN() function checks whether the status of the LAN_SWA pin has changed
since the last call, and if so, it sets the network adapter to DHCP or sets the direct LAN
settings accordingly (and uses flite to speak the new IP setting, if available). Finally, the
LAN being set for direct connection causes the LED to flash slowly while that mode is
active. Use the following code to do this:

def doChangeLAN(direct):
 if(DEBUG):print("Direct LAN: %s" % direct)
 if GPIO.input(LAN_SWA) and direct==True:
 if(DEBUG):print("LAN Switch OFF")
 cmd="sudo dhclient eth0"
 direct=False
 GPIO.output(LED,1)
 elif GPIO.input(LAN_SWA)==False and direct==False:
 if(DEBUG):print("LAN Switch ON")
 cmd="sudo ifconfig eth0 169.254.69.69"
 direct=True
 else:
 return direct
 if(DEBUG==False):os.system(cmd)
 if(SNDON):os.system("hostname -I | flite")
 return direct

Add another function, flashled(), which will just toggle the state of the LED each time it
is called. The code for this function is as follows:

def flashled(ledon):
 if ledon:
 ledon=False
 else:
 ledon=True
 GPIO.output(LED,ledon)
 return ledon

Using Python to Drive Hardware Chapter 9

[261]

Finally, we adjust the main loop to also call doChangeLAN() and use the result to decide
whether we call flashled() using ledon to keep track of the LED's previous state each
time. The main() function should now be updated as follows:

def main():
 gpio_setup()
 GPIO.output(LED,1)
 directlan=False
 ledon=True
 while True:
 if(DEBUG):print("Waiting for >3sec button press")
 if GPIO.input(SHTDWN_BTN)==False:
 doShutdown()
 directlan= doChangeLAN(directlan)
 if directlan:
 flashled(ledon)
 time.sleep(1)

The GPIO keypad input
We have seen how we can monitor inputs on the GPIO to launch applications and control
the Raspberry Pi; however, sometimes we need to control third-party programs. Using the
uInput library, we can emulate key presses from a keyboard (or even mouse movement) to
control any program using our own custom hardware.

For more information about using uInput, visit http://tjjr.fi/sw/python-uinput/.

Getting ready
Perform the following steps to install uInput:

First, we need to download uInput.1.

You will need to download the uInput Python library from GitHub (~50 KB)
using the following commands:

wget
https://github.com/tuomasjjrasanen/python-uinput/archive/master.zip
unzip master.zip

The library will unzip to a directory called python-uinput-master.

http://tjjr.fi/sw/python-uinput/

Using Python to Drive Hardware Chapter 9

[262]

Once completed, you can remove the ZIP file using the following command:2.

rm master.zip

Install the required packages using the following commands (if you have3.
installed them already, the apt-get command will ignore them):

sudo apt-get install python3-setuptools python3-dev
sudo apt-get install libudev-dev

Compile and install uInput using the following commands:4.

cd python-uinput-master
sudo python3 setup.py install

Finally, we load the new uinput kernel module using the following command:5.

sudo modprobe uinput

To ensure it is loaded upon startup, we can add uinput to the modules file using
the following command:

sudo nano /etc/modules

Put uinput on a new line in the file and save it (Ctrl + X, Y).

Create the following circuit using the following equipment:6.
Breadboard (half-sized or larger)
7 x DuPont female-to-male patch wires
Six push buttons
6 x 470 ohm resistors
Breadboarding wire (solid core)

Using Python to Drive Hardware Chapter 9

[263]

GPIO keypad circuit layout

The keypad circuit can also be built into a permanent circuit by soldering the
components into a Vero prototype board (also known as a stripboard), as shown
in the following photo:

GPIO keypad Pi hardware module

This circuit is available as a solder-yourself kit from PiHardware.com.

http://pihardware.com/

Using Python to Drive Hardware Chapter 9

[264]

Connect the circuit to the Raspberry Pi GPIO pins by matching the appropriate7.
buttons with the appropriate pins, as shown in the following table:

Button GPIO pin

GND 6

v B_DOWN 22

< B_LEFT 18

^ B_UP 15

> B_RIGHT 13

1 B_1 11

2 B_2 7

How to do it...
Create a gpiokeys.py script as follows:

#!/usr/bin/python3
#gpiokeys.py
import time
import RPi.GPIO as GPIO
import uinput

#HARDWARE SETUP
GPIO
2[==G=====<=V==]26[=======]40
1[===2=1>^=====]25[=======]39
B_DOWN = 22 #V
B_LEFT = 18 #<
B_UP = 15 #^
B_RIGHT = 13 #>
B_1 = 11 #1
B_2 = 7 #2

DEBUG=True
BTN = [B_UP,B_DOWN,B_LEFT,B_RIGHT,B_1,B_2]
MSG = ["UP","DOWN","LEFT","RIGHT","1","2"]

#Setup the DPad module pins and pull-ups
def dpad_setup():
 #Set up the wiring

Using Python to Drive Hardware Chapter 9

[265]

 GPIO.setmode(GPIO.BOARD)
 # Setup BTN Ports as INPUTS
 for val in BTN:
 # set up GPIO input with pull-up control
 #(pull_up_down can be:
 # PUD_OFF, PUD_UP or PUD_DOWN, default PUD_OFF)
 GPIO.setup(val, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def main():
 #Setup uinput
 events = (uinput.KEY_UP,uinput.KEY_DOWN,uinput.KEY_LEFT,
 uinput.KEY_RIGHT,uinput.KEY_ENTER,uinput.KEY_ENTER)
 device = uinput.Device(events)
 time.sleep(2) # seconds
 dpad_setup()
 print("DPad Ready!")

 btn_state=[False,False,False,False,False,False]
 key_state=[False,False,False,False,False,False]
 while True:
 #Catch all the buttons pressed before pressing the related keys
 for idx, val in enumerate(BTN):
 if GPIO.input(val) == False:
 btn_state[idx]=True
 else:
 btn_state[idx]=False

 #Perform the button presses/releases (but only change state once)
 for idx, val in enumerate(btn_state):
 if val == True and key_state[idx] == False:
 if DEBUG:print (str(val) + ":" + MSG[idx])
 device.emit(events[idx], 1) # Press.
 key_state[idx]=True
 elif val == False and key_state[idx] == True:
 if DEBUG:print (str(val) + ":!" + MSG[idx])
 device.emit(events[idx], 0) # Release.
 key_state[idx]=False

 time.sleep(.1)
try:
 main()
finally:
 GPIO.cleanup()
#End

Using Python to Drive Hardware Chapter 9

[266]

How it works...
First, we import uinput and define the wiring of the keypad buttons. For each of the
buttons in BTN, we enable them as inputs, with internal pull-ups enabled.

Next, we set up uinput, defining the keys we want to emulate and adding them to the
uinput.Device() function. We wait a few seconds to allow uinput to initialize, set the
initial button and key states, and start our main loop.

The main loop is split into two sections: the first section checks through the buttons and
records the states in btn_state, and the second section compares the btn_state with the
current key_state array. This way, we can detect a change in btn_state and call
device.emit() to toggle the state of the key.

To allow us to run this script in the background, we can run it with &, as shown in the
following command:

sudo python3 gpiokeys.py &

The & character allows the command to run in the background, so we can
continue with the command line to run other programs. You can use fg to
bring it back to the foreground, or %1, %2, and so on if you have several
commands running. Use jobs to get a list.

You can even put a process/program on hold to get to Command Prompt
by pressing Ctrl + Z and then resume it with bg (which will let it run in the
background).

You can test the keys using the game created in the Creating an overhead
scrolling game recipe in Chapter 5, Creating Games and Graphics, which you
can now control using your GPIO directional pad. Don't forget that if you
are connecting to the Raspberry Pi remotely, any key presses will only be
active on the locally connected screen.

There's more...
We can do more using uinput to provide hardware control for other programs, including
those that require mouse input.

Using Python to Drive Hardware Chapter 9

[267]

Generating other key combinations
You can create several different key mappings in your file to support different programs.
For instance, the events_z80 key mapping would be useful for a spectrum emulator, such
as Fuse (browse to
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi

for more details). The events_omx key mappings are suitable for controlling video played
through the OMXPlayer using the following command:

omxplayer filename.mp4

You can get a list of keys supported by omxplayer by using the -k parameter.

Replace the line that defines the events list with a new key mapping, and select different
ones by assigning them to events using the following code:

events_dpad = (uinput.KEY_UP,uinput.KEY_DOWN,uinput.KEY_LEFT,
 uinput.KEY_RIGHT,uinput.KEY_ENTER,uinput.KEY_ENTER)
events_z80 = (uinput.KEY_Q,uinput.KEY_A,uinput.KEY_O,
 uinput.KEY_P,uinput.KEY_M,uinput.KEY_ENTER)
events_omx = (uinput.KEY_EQUAL,uinput.KEY_MINUS,uinput.KEY_LEFT,
 uinput.KEY_RIGHT,uinput.KEY_P,uinput.KEY_Q)

You can find all the KEY definitions in the input.h file; you can view it using the less
command (press Q to exit), as shown in the following command:

less /usr/include/linux/input.h

Emulating mouse events
The uinput library can emulate mouse and joystick events, as well as keyboard presses. To
use the buttons to simulate a mouse, we can adjust the script to use mouse events (as well as
defining mousemove to set the step size of the movement) using the following code:

MSG = ["M_UP","M_DOWN","M_LEFT","M_RIGHT","1","Enter"]
events_mouse=(uinput.REL_Y,uinput.REL_Y, uinput.REL_X,
 uinput.REL_X,uinput.BTN_LEFT,uinput.BTN_RIGHT)
mousemove=1

We also need to modify the button handling to provide continuous movement, as we don't
need to keep track of the state of the keys for the mouse. To do so, use the following code:

#Perform the button presses/releases
#(but only change state once)
for idx, val in enumerate(btn_state):

http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi

Using Python to Drive Hardware Chapter 9

[268]

 if MSG[idx] == "M_UP" or MSG[idx] == "M_LEFT":
 state = -mousemove
 else:
 state = mousemove
 if val == True:
 device.emit(events[idx], state) # Press.
 elif val == False:
 device.emit(events[idx], 0) # Release.
time.sleep(0.01)

Multiplexed color LEDs
The next example in this chapter demonstrates that some seemingly simple hardware can
produce some impressive results if controlled with software. For this, we will go back to
using RGB LEDs. We will use five RGB LEDs that are wired so that we only need to use
eight GPIO pins to control their red, green, and blue elements using a method called
hardware multiplexing (see the Hardware multiplexing subsection in the There's more...
section of this recipe).

Getting ready
You will need the RGB LED module shown in the following picture:

The RGB LED module from PiHardware.com

Using Python to Drive Hardware Chapter 9

[269]

As you can see in the preceding photo, the RGB LED module from http:/ ​/​pihardware.
com/​ comes with GPIO pins and a DuPont female-to-female cable for connecting it.
Although there are two sets of pins labelled from 1 to 5, only one side needs to be
connected.

Alternatively, you can recreate your own with the following circuit using five common
cathode RGB LEDs, 3 x 470 ohm resistors, and a Vero prototype board (or large
breadboard). The circuit will look as shown in the following diagram:

Circuit diagram for the RGB LED module

Strictly speaking, we should use 15 resistors in this circuit (one for each
RGB LED element), which will avoid interference from LEDs sharing the
same resistor, and will also prolong the life of the LEDs themselves if
switched on together. However, there is only a slight advantage in using
this, particularly since we intend to drive each RGB LED independently of
the other four to achieve multi-color effects.

You will need to connect the circuit to the Raspberry Pi GPIO header as follows:

RGB LED 1 2 3 4

Rpi GPIO pin 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Rpi GPIO pin 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

RGB LED 5 R G B

http://pihardware.com/
http://pihardware.com/
http://pihardware.com/
http://pihardware.com/
http://pihardware.com/
http://pihardware.com/
http://pihardware.com/

Using Python to Drive Hardware Chapter 9

[270]

How to do it...
Create the rgbled.py script and perform the following steps:

Import all the required modules and define the values to be used with the help of1.
the following code:

#!/usr/bin/python3
#rgbled.py
import time
import RPi.GPIO as GPIO

#Setup Active states
#Common Cathode RGB-LEDs (Cathode=Active Low)
LED_ENABLE = 0; LED_DISABLE = 1
RGB_ENABLE = 1; RGB_DISABLE = 0
#HARDWARE SETUP
GPIO
2[=====1=23=4==]26[=======]40
1[===5=RGB=====]25[=======]39
#LED CONFIG - Set GPIO Ports
LED1 = 12; LED2 = 16; LED3 = 18; LED4 = 22; LED5 = 7
LED = [LED1,LED2,LED3,LED4,LED5]
RGB_RED = 11; RGB_GREEN = 13; RGB_BLUE = 15
RGB = [RGB_RED,RGB_GREEN,RGB_BLUE]
#Mixed Colors
RGB_CYAN = [RGB_GREEN,RGB_BLUE]
RGB_MAGENTA = [RGB_RED,RGB_BLUE]
RGB_YELLOW = [RGB_RED,RGB_GREEN]
RGB_WHITE = [RGB_RED,RGB_GREEN,RGB_BLUE]
RGB_LIST = [RGB_RED,RGB_GREEN,RGB_BLUE,RGB_CYAN,
 RGB_MAGENTA,RGB_YELLOW,RGB_WHITE]

Define functions to set up the GPIO pins using the following code:2.

def led_setup():
 '''Setup the RGB-LED module pins and state.'''
 #Set up the wiring
 GPIO.setmode(GPIO.BOARD)
 # Setup Ports
 for val in LED:
 GPIO.setup(val, GPIO.OUT)
 for val in RGB:
 GPIO.setup(val, GPIO.OUT)
 led_clear()

Using Python to Drive Hardware Chapter 9

[271]

Define our utility functions to help control the LEDs using the following code:3.

def led_gpiocontrol(pins,state):
 '''This function will control the state of
 a single or multiple pins in a list.'''
 #determine if "pins" is a single integer or not
 if isinstance(pins,int):
 #Single integer - reference directly
 GPIO.output(pins,state)
 else:
 #if not, then cycle through the "pins" list
 for i in pins:
 GPIO.output(i,state)

def led_activate(led,color):
 '''Enable the selected led(s) and set the required color(s)
 Will accept single or multiple values'''
 #Enable led
 led_gpiocontrol(led,LED_ENABLE)
 #Enable color
 led_gpiocontrol(color,RGB_ENABLE)

def led_deactivate(led,color):
 '''Deactivate the selected led(s) and set the required
 color(s) will accept single or multiple values'''
 #Disable led
 led_gpiocontrol(led,LED_DISABLE)
 #Disable color
 led_gpiocontrol(color,RGB_DISABLE)
def led_time(led, color, timeon):
 '''Switch on the led and color for the timeon period'''
 led_activate(led,color)
 time.sleep(timeon)
 led_deactivate(led,color)

def led_clear():
 '''Set the pins to default state.'''
 for val in LED:
 GPIO.output(val, LED_DISABLE)
 for val in RGB:
 GPIO.output(val, RGB_DISABLE)

def led_cleanup():
 '''Reset pins to default state and release GPIO'''
 led_clear()
 GPIO.cleanup()

Using Python to Drive Hardware Chapter 9

[272]

Create a test function to demonstrate the functionality of the module:4.

def main():
 '''Directly run test function.
 This function will run if the file is executed directly'''
 led_setup()
 led_time(LED1,RGB_RED,5)
 led_time(LED2,RGB_GREEN,5)
 led_time(LED3,RGB_BLUE,5)
 led_time(LED,RGB_MAGENTA,2)
 led_time(LED,RGB_YELLOW,2)
 led_time(LED,RGB_CYAN,2)

if __name__=='__main__':
 try:
 main()
 finally:
 led_cleanup()
#End

How it works...
To start with, we define the hardware setup by defining the states required to Enable and
Disable the LED depending on the type of RGB LED (common cathode) used. If you are
using a common anode device, just reverse the Enable and Disable states.

Next, we define the GPIO mapping to the pins to match the wiring we did previously.

We also define some basic color combinations by combining red, green, and/or blue
together, as shown in the following diagram:

LED color combinations

We define a series of useful functions, the first being led_setup(), which will set the GPIO
numbering to GPIO.BOARD and define all the pins that are to be used as outputs. We also
call a function named led_clear(), which will set the pins to the default state with all the
pins disabled.

Using Python to Drive Hardware Chapter 9

[273]

This means that the LED pins, 1-5 (the common cathode on each LED), are
set to HIGH, while the RGB pins (the separate anodes for each color) are set
to LOW.

We create a function called led_gpiocontrol() that will allow us to set the state of one or
more pins. The isinstance() function allows us to test a value to see whether it matches a
particular type (in this case, a single integer); then we can either set the state of that single
pin or iterate through the list of pins and set each one.

Next, we define two functions, led_activate() and led_deactivate(), which will
enable and disable the specified LED and color. Finally, we define led_time(), which will
allow us to specify an LED, color, and time to switch it on for.

We also create led_cleanup() to reset the pins (and LEDs) to the default values and call
GPIO.cleanup() to release the GPIO pins in use.

This script is intended to become a library file, so we will use the if
__name__=='__main__' check to only run our test code when running the file directly:

By checking the value of __name__, we can determine whether the file
was run directly (it will equal __main__) or whether it was imported by
another Python script.

This allows us to define a special test code that is only executed when we
directly load and run the file. If we include this file as a module in another
script, then this code will not be executed.

As before, we will use try/finally to allow us to always perform
cleanup actions, even if we exit early.

To test the script, we will set the LEDs to light up in various colors, one after another.

There's more...
We can create a few different colors by switching on one or more parts of the RGB LED at a
time. However, with some clever programming, we can create a whole spectrum of colors.
Also, we can display different colors on each LED, seemingly at the same time.

Using Python to Drive Hardware Chapter 9

[274]

Hardware multiplexing
An LED requires a high voltage on the anode side and a lower voltage on the cathode side
in order to light up. The RGB LEDs used in the circuit are common cathodes, so we must
apply a high voltage (3V3) on the RGB pins and a low voltage (0V) on the cathode pin
(wired to pins 1 to 5 for each of the LEDs).

The cathode and RGB pin states are as follows:

Cathode and RGB pin states

Therefore, we can enable one or more of the RGB pins, but still control which of the LEDs
are lit. We enable the pins of the LEDs we want to light up and disable the ones we don't.
This allows us to use far fewer pins than we would need to control each of the 15 RGB lines
separately.

Displaying random patterns
We can add new functions to our library to produce different effects, such as generating
random colors. The following function uses randint() to get a value between 1 and the
number of colors. We ignore any values that are over the number of the available colors so
that we can control how often the LEDs are switched off. Perform the following steps to add
the required functions:

Add the randint() function from the random module to the rgbled.py script1.
using the following code:

from random import randint

Now add led_rgbrandom() using the following code:2.

def led_rgbrandom(led,period,colors):
 ''' Light up the selected led, for period in seconds,
 in one of the possible colors. The colors can be

Using Python to Drive Hardware Chapter 9

[275]

 1 to 3 for RGB, or 1-6 for RGB plus combinations,
 1-7 includes white. Anything over 7 will be set as
 OFF (larger the number more chance of OFF).'''
 value = randint(1,colors)
 if value < len(RGB_LIST):
 led_time(led,RGB_LIST[value-1],period)

Use the following commands in the main() function to create a series of3.
flashing LEDs:

for i in range(20):
 for j in LED:
 #Select from all, plus OFF
 led_rgbrandom(j,0.1,20)

Mixing multiple colors
Until now, we have only displayed a single color at a time on one or more of the LEDs. If
you consider how the circuit is wired up, you might wonder how we can get one LED to
display one color and another a different one at the same time. The simple answer is that we
don't need to-we just do it quickly!

All we need to do is display one color at a time, but change it back and forth, so quickly that
the color looks like a mix of the two (or even a combination of the three red/green/blue
LEDs). Fortunately, this is something that computers such as the Raspberry Pi can do very
easily, even allowing us to combine the RGB elements to make multiple shades of colors
across all five LEDs. Perform the following steps to mix the colors:

Add combo color definitions to the top of the rgbled.py script, after the1.
definition of the mixed colors, using the following code:

#Combo Colors
RGB_AQUA = [RGB_CYAN,RGB_GREEN]
RGB_LBLUE = [RGB_CYAN,RGB_BLUE]
RGB_PINK = [RGB_MAGENTA,RGB_RED]
RGB_PURPLE = [RGB_MAGENTA,RGB_BLUE]
RGB_ORANGE = [RGB_YELLOW,RGB_RED]
RGB_LIME = [RGB_YELLOW,RGB_GREEN]
RGB_COLORS = [RGB_LIME,RGB_YELLOW,RGB_ORANGE,RGB_RED,
 RGB_PINK,RGB_MAGENTA,RGB_PURPLE,RGB_BLUE,
 RGB_LBLUE,RGB_CYAN,RGB_AQUA,RGB_GREEN]

Using Python to Drive Hardware Chapter 9

[276]

The preceding code will provide the combination of colors needed to create our
shades, with RGB_COLORS providing a smooth progression through the shades.

Next, we need to create a function called led_combo() to handle single or2.
multiple colors. The code for the function will be as follows:

def led_combo(pins,colors,period):
 #determine if "colors" is a single integer or not
 if isinstance(colors,int):
 #Single integer - reference directly
 led_time(pins,colors,period)
 else:
 #if not, then cycle through the "colors" list
 for i in colors:
 led_time(pins,i,period)

Now we can create a new script, rgbledrainbow.py, to make use of the new3.
functions in our rgbled.py module. The rgbledrainbow.py script will be as
follows:

#!/usr/bin/python3
#rgbledrainbow.py
import time
import rgbled as RGBLED

def next_value(number,max):
 number = number % max
 return number

def main():
 print ("Setup the RGB module")
 RGBLED.led_setup()

 # Multiple LEDs with different Colors
 print ("Switch on Rainbow")
 led_num = 0
 col_num = 0
 for l in range(5):
 print ("Cycle LEDs")
 for k in range(100):
 #Set the starting point for the next set of colors
 col_num = next_value(col_num+1,len(RGBLED.RGB_COLORS))
 for i in range(20): #cycle time
 for j in range(5): #led cycle
 led_num = next_value(j,len(RGBLED.LED))
 led_color = next_value(col_num+led_num,
 len(RGBLED.RGB_COLORS))

Using Python to Drive Hardware Chapter 9

[277]

 RGBLED.led_combo(RGBLED.LED[led_num],
 RGBLED.RGB_COLORS[led_color],0.001)

 print ("Cycle COLORs")
 for k in range(100):
 #Set the next color
 col_num = next_value(col_num+1,len(RGBLED.RGB_COLORS))
 for i in range(20): #cycle time
 for j in range(5): #led cycle
 led_num = next_value(j,len(RGBLED.LED))
 RGBLED.led_combo(RGBLED.LED[led_num],
 RGBLED.RGB_COLORS[col_num],0.001)
 print ("Finished")

if __name__=='__main__':
 try:
 main()
 finally:
 RGBLED.led_cleanup()
#End

The main() function will first cycle through the LEDs, setting each color from the
RGB_COLORS array on all the LEDs. Then, it will cycle through the colors, creating
a rainbow effect across the LEDs:

Cycling through multiple colors on the five RGB LEDs

Using Python to Drive Hardware Chapter 9

[278]

Writing messages using persistence of
vision
Persistence of vision (POV) displays can produce an almost magical effect, displaying
images in the air by moving a line of LEDs back and forth very quickly or around in circles.
The effect works because your eyes are unable to adjust fast enough to separate out the
individual flashes of light, and so you observe a merged image (the message or picture
being displayed):

Persistence of vision using RGB LEDs

Getting ready
This recipe uses the RGB LED kit used in the previous recipe; you will also need the
following additional items:

Breadboard (half-sized or larger)
2 x DuPont female-to-male patch wires
Tilt switch (the ball-bearing type is suitable)
1 x 470 ohm resistor (R_Protect)
Breadboard wire (solid core)

The tilt switch should be added to the RGB LED (as described in the Getting ready section of
the Multiplexed color LEDs recipe). The tilt switch is wired as follows:

Using Python to Drive Hardware Chapter 9

[279]

The tilt switch is connected to GPIO Input (GPIO pin 24) and Gnd (GPIO pin 6)

To reproduce the POV image, you will need to be able to quickly move the LEDs and tilt the
switch back and forth. Note how the tilt switch is mounted angled to the side, so the switch
will open when moved to the left. It is recommended that the hardware is mounted onto a
length of wood or similar piece of equipment. You can even use a portable USB battery
pack along with a Wi-Fi dongle to power and control the Raspberry Pi through a remote
connection (see the Connecting Remotely to the Raspberry Pi over the Network using SSH (and
X11 forwarding) recipe in Chapter 1, Getting Started with a Raspberry Pi 3 Computer, for
details):

Persistence of vision hardware setup

You will also need the completed rgbled.py file, which we will extend further in the How
to do it... section.

Using Python to Drive Hardware Chapter 9

[280]

How to do it...
Create a script called tilt.py to report the state of the tilt switch:1.

#!/usr/bin/python3
#tilt.py
import RPi.GPIO as GPIO
#HARDWARE SETUP
GPIO
2[===========T=]26[=======]40
1[=============]25[=======]39
#Tilt Config
TILT_SW = 24

def tilt_setup():
 #Setup the wiring
 GPIO.setmode(GPIO.BOARD)
 #Setup Ports
 GPIO.setup(TILT_SW,GPIO.IN,pull_up_down=GPIO.PUD_UP)

def tilt_moving():
 #Report the state of the Tilt Switch
 return GPIO.input(TILT_SW)

def main():
 import time
 tilt_setup()
 while True:
 print("TILT %s"% (GPIO.input(TILT_SW)))
 time.sleep(0.1)

if __name__=='__main__':
 try:
 main()
 finally:
 GPIO.cleanup()
 print("Closed Everything. END")
#End

You can test the script by running it directly with the following command:2.

sudo python3 tilt.py

Using Python to Drive Hardware Chapter 9

[281]

Add the following rgbled_pov() function to the rgbled.py script we created3.
previously; this will allow us to display a single line of our image:

def rgbled_pov(led_pattern,color,ontime):
 '''Disable all the LEDs and re-enable the LED pattern in the
required color'''
 led_deactivate(LED,RGB)
 for led_num,col_num in enumerate(led_pattern):
 if col_num >= 1:
 led_activate(LED[led_num],color)
 time.sleep(ontime)

We will now create the following file, called rgbledmessage.py, to perform the4.
required actions to display our message. First, we will import the modules used:
the updated rgbled module, the new tilt module, and the Python os module.
Initially, we set DEBUG to True, so the Python terminal will display additional
information while the script is running:

#!/usr/bin/python3
rgbledmessage.py
import rgbled as RGBLED
import tilt as TILT
import os

DEBUG = True

Add a readMessageFile() function to read the content of the letters.txt file5.
and then add processFileContent() to generate a Python dictionary of the
LED patterns for each letter:

def readMessageFile(filename):
 assert os.path.exists(filename), 'Cannot find the message file:
%s' % (filename)
 try:
 with open(filename, 'r') as theFile:
 fileContent = theFile.readlines()
 except IOError:
 print("Unable to open %s" % (filename))
 if DEBUG:print ("File Content START:")
 if DEBUG:print (fileContent)
 if DEBUG:print ("File Content END")
 dictionary = processFileContent(fileContent)
 return dictionary

def processFileContent(content):
 letterIndex = [] #Will contain a list of letters stored in the

Using Python to Drive Hardware Chapter 9

[282]

file
 letterList = [] #Will contain a list of letter formats
 letterFormat = [] #Will contain the format of each letter
 firstLetter = True
 nextLetter = False
 LETTERDIC={}
 #Process each line that was in the file
 for line in content:
 # Ignore the # as comments
 if '#' in line:
 if DEBUG:print ("Comment: %s"%line)
 #Check for " in the line = index name
 elif '"' in line:
 nextLetter = True
 line = line.replace('"','') #Remove " characters
 LETTER=line.rstrip()
 if DEBUG:print ("Index: %s"%line)
 #Remaining lines are formatting codes
 else:
 #Skip firstLetter until complete
 if firstLetter:
 firstLetter = False
 nextLetter = False
 lastLetter = LETTER
 #Move to next letter if needed
 if nextLetter:
 nextLetter = False
 LETTERDIC[lastLetter]=letterFormat[:]
 letterFormat[:] = []
 lastLetter = LETTER
 #Save the format data
 values = line.rstrip().split(' ')
 row = []
 for val in values:
 row.append(int(val))
 letterFormat.append(row)
 LETTERDIC[lastLetter]=letterFormat[:]
 #Show letter patterns for debugging
 if DEBUG:print ("LETTERDIC: %s" %LETTERDIC)
 if DEBUG:print ("C: %s"%LETTERDIC['C'])
 if DEBUG:print ("O: %s"%LETTERDIC['O'])
 return LETTERDIC

Using Python to Drive Hardware Chapter 9

[283]

Add a createBuffer() function, which will convert a message into a series of6.
LED patterns for each letter (assuming the letter is defined by the letters.txt
file):

def createBuffer(message,dictionary):
 buffer=[]
 for letter in message:
 try:
 letterPattern=dictionary[letter]
 except KeyError:
 if DEBUG:print("Unknown letter %s: use _"%letter)
 letterPattern=dictionary['_']
 buffer=addLetter(letterPattern,buffer)
 if DEBUG:print("Buffer: %s"%buffer)
 return buffer

def addLetter(letter,buffer):
 for row in letter:
 buffer.append(row)
 buffer.append([0,0,0,0,0])
 buffer.append([0,0,0,0,0])
 return buffer

Next, we define a displayBuffer() function to display the LED patterns using7.
the rgbled_pov() function in the rgbled module:

def displayBuffer(buffer):
 position=0
 while(1):
 if(TILT.tilt_moving()==False):
 position=0
 elif (position+1)<len(buffer):
 position+=1
 if DEBUG:print("Pos:%s ROW:%s"%(position,buffer[position]))
 RGBLED.rgbled_pov(buffer[position],RGBLED.RGB_GREEN,0.001)
 RGBLED.rgbled_pov(buffer[position],RGBLED.RGB_BLUE,0.001)

Finally, we create a main() function to perform each of the required steps:8.
Set up the hardware components (RGB LEDs and the tilt switch).1.
Read the letters.txt file.2.
Define the dictionary of LED letter patterns.3.
Generate a buffer to represent the required message.4.
Display the buffer using the rgbled module and control it with the5.
tilt module:

Using Python to Drive Hardware Chapter 9

[284]

def main():
 RGBLED.led_setup()
 TILT.tilt_setup()
 dict=readMessageFile('letters.txt')
 buffer=createBuffer('_COOKBOOK_',dict)
 displayBuffer(buffer)
if __name__=='__main__':
 try:
 main()
 finally:
 RGBLED.led_cleanup()
 print("Closed Everything. END")
#End

Create the following file, called letters.txt, to define the LED patterns needed9.
to display the example '_COOKBOOK_' message. Note that this file only needs to
define a pattern for each unique letter or symbol in the message:

#COOKBOOK
"C"
0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
"O"
0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
0 1 1 1 0
"K"
1 1 1 1 1
0 1 0 1 0
1 0 0 0 1
"B"
1 1 1 1 1
1 0 1 0 1
0 1 0 1 0
"_"
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Using Python to Drive Hardware Chapter 9

[285]

How it works...
The first function, readMessageFile(), will open and read the contents of a given file.
This will then use processFileContent() to return a Python dictionary containing the
corresponding patterns for the letters defined in the file provided. Each line in the file is
processed, ignoring any line containing a # character and checking for " characters to
indicate the name of the LED pattern that follows after. After the file has been processed,
we end up with a Python dictionary that contains LED patterns for the '_', 'C', 'B', 'K',
and 'O' characters:

'_': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]
'C': [[0, 1, 1, 1, 0], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1]]
'B': [[1, 1, 1, 1, 1], [1, 0, 1, 0, 1], [0, 1, 0, 1, 0]]
'K': [[1, 1, 1, 1, 1], [0, 1, 0, 1, 0], [1, 0, 0, 0, 1]]
'O': [[0, 1, 1, 1, 0], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [0, 1, 1, 1, 0]]

Now that we have a selection of letters to choose from, we can create a sequence of LED
patterns using the createBuffer() function. As the name suggests, the function will build
up a buffer of LED patterns by looking up each letter in the message and adding the related
pattern row by row. If a letter isn't found in the dictionary, then a space will be used
instead.

Finally, we now have a list of LED patterns ready to display. To control when we start the
sequence, we will use the TILT module and check the status of the tilt switch:

The tilt switch position when not moving (left) and moving (right)

Using Python to Drive Hardware Chapter 9

[286]

The tilt switch consists of a small ball bearing enclosed in a hollow, insulated cylinder; the
connection between the two pins is closed when the ball is resting at the bottom of the
cylinder. The tilt switch is open when the ball is moved to the other end of the cylinder, out
of contact of the pins:

The tilt switch circuit with the switch closed and with the switch open

The tilt switch circuit shown previously will allow GPIO pin 24 to be connected to the
ground when the switch is closed. Then, if we read the pin, it will return False when it is at
rest. By setting the GPIO pin as an input and enabling the internal pull-up resistor, when
the tilt switch is open, it will report True.

If the tilt switch is open (reporting True), then we will assume the unit is being moved and
begin displaying the LED sequences, incrementing the current position each time we
display a row of the LED pattern. Just to make the pattern a little more colorful (just because
we can!) we repeat each row in another color. As soon as the TILT.tilt_moving()
function reports that we have stopped moving or that we are moving in the opposite
direction, we will reset the current position, ready to start the whole pattern all over again:

The message is displayed by the RGB LEDs - here, we are using green and blue together

When the RGB LED module and tilt switch are moved back and forth, we should see the
message displayed in the air!

Try experimenting with different color combinations, speeds, and arm waviness to see what
effects you can produce. You could even create a similar setup mounted on a wheel to
produce a continuous POV effect.

10
Sensing and Displaying Real-

World Data
In this chapter, we will cover the following topics:

Using devices with the I2C bus
Reading analog data using an analog-to-digital converter
Logging and plotting data
Extending the Raspberry Pi GPIO with an I/O expander
Capturing data in an SQLite database
Viewing data from your own web server
Sensing and sending data to online services

Introduction
In this chapter, we will learn how to collect analog data from the real world and process it
so we can display, log, graph, and share the data and make use of it in our programs.

We will extend the capabilities of the Raspberry Pi by interfacing with analog-to-digital
converters (ADCs), LCD alphanumeric displays, and digital port expanders using
Raspberry Pi's GPIO connections.

Be sure to check out Appendix, Hardware and Software List, which lists all
the items used in this chapter and the places you can obtain them from.

Sensing and Displaying Real-World Data Chapter 10

[288]

Using devices with the I2C bus
Raspberry Pi can support several higher-level protocols that a wide range of devices can
easily be connected to. In this chapter, we shall focus on the most common bus, called I-
squared-C (I2C). It provides a medium-speed bus for communicating with devices over two
wires. In this section, we shall use I2C to interface with an 8-bit ADC. This device will
measure an analog signal, convert it to a relative value between 0 and 255, and send the
value as a digital signal (represented by 8-bits) over the I2C bus to the Raspberry Pi.

The advantages of I2C can be summarized as follows:

Maintains a low pin/signal count, even with numerous devices on the bus
Adapts to the needs of different slave devices
Readily supports multiple masters
Incorporates ACK/NACK functionality for improved error handling

Getting ready
The I2C bus is not enabled in all Raspberry Pi images; therefore, we need to enable the
module and install some supporting tools. Newer versions of Raspbian use device trees to
handle hardware peripherals and drivers.

In order to make use of the I2C bus, we need to enable the ARM I2C in the bootconfig.txt
file.

You can do this automatically using the following command:

sudo raspi-config

Select Advanced Options from the menu and then select I2C, as shown in the following
screenshot. When asked, select Yes to enable the interface and then click Yes to load the
module by default:

Sensing and Displaying Real-World Data Chapter 10

[289]

The raspi-config menu

From the menu, select I2C and select Yes to enable the interface and to load the module
by default.

The raspi-config program enables the I2C_ARM interface by altering
/boot/config.txt to include dtparam=i2c_arm=on. The other bus
(I2C_VC) is typically reserved for interfacing with Raspberry Pi HAT add-
on boards (to read the configuration information from the on-board
memory devices); however, you can enable this using
dtparam=i2c_vc=on.

If you wish, you can also enable the SPI using the raspi-config list, which is another type
of bus (we will look at this in more detail in Chapter 13, Interfacing with Technology).

Next, we should include the I2C module to be loaded upon turning the Raspberry Pi on, as
follows:

sudo nano /etc/modules

Add the following on separate lines and save (Ctrl + X, Y, Enter):

i2c-dev
i2c-bcm2708

Similarly, we can also enable the SPI module by adding spi-bcm2708.

Sensing and Displaying Real-World Data Chapter 10

[290]

Next, we will install some tools to use I2C devices directly from the command line, as
follows:

sudo apt-get update
sudo apt-get install i2c-tools

Finally, shut down the Raspberry Pi before attaching the hardware in order to allow the
changes to be applied, as follows:

sudo halt

You will need a PCF8591 module (retailers of these are listed in the Appendix, Hardware and
Software List) or you can obtain the PCF8591 chip separately and build your own circuit (see
the There's more... section for details on the circuit):

The PCF8591 ADC and sensor module from dx.com

Connect the GND, VCC, SDA, and SCL pins to the Raspberry Pi GPIO header as follows:

I2C connections on the Raspberry Pi GPIO header

You can use the same I2C tools/code with other I2C devices by studying the
datasheet of the device to find out what messages to send/read and which
registers are used to control your device.

Sensing and Displaying Real-World Data Chapter 10

[291]

How to do it...
The i2cdetect command is used to detect the I2C devices (the --y option skips1.
any warnings about possible interference with other hardware that could be
connected to the I2C bus). The following commands are used to scan both the
buses:

sudo i2cdetect -y 0
sudo i2cdetect -y 1

Depending on your Raspberry Pi board revision, the address of the device should2.
be listed on bus 0 (for Model B Rev1 boards) or bus 1 (for Raspberry Pi 2 and 3,
and Raspberry Pi 1 Model A and Model B Revision 2). By default, the PCF8591
address is 0x48:

I2C bus number to use Bus 00 Bus 11

Raspberry Pi 2 and 3 HAT ID (I2C_VC) GPIO (I2C_ARM)

Model A and Model B Revision 2 P5 GPIO

Model B Revision 1 GPIO N/A

The following screenshot shows the output of i2cdetect:3.

The PCF8591 address (48) is displayed here on bus 1

Sensing and Displaying Real-World Data Chapter 10

[292]

If nothing is listed, shut down and double-check your connections (the ADC
module from www.dx.com will switch on a red LED when powered).

If you receive an error stating that the /dev/i2c1 bus doesn't exist, you
can perform the following checks:

Ensure that the /etc/modprobe.d/raspi-blacklist.conf
file is empty (that is, that the modules haven't been blacklisted),
using the following command to view the file:

 sudo nano /etc/modprobe.d/raspi-blacklist.conf

If there is anything in the file (such as blacklist i2c-
bcm2708), remove it and save

Check /boot/config and ensure there isn't a line that contains
device_tree_param= (this will disable support for the new
device tree configurations and disable support for some
Raspberry Pi HAT add-on boards)

Check whether the modules have been loaded by using lsmod
and look for i2c-bcm2708 and i2c_dev

Using the detected bus number (0 or 1) and the device address (0x48), use4.
i2cget to read from the device (after a power up or channel change, you will
need to read the device twice to see the latest value), as follows:

sudo i2cget -y 1 0x48
sudo i2cget -y 1 0x48

To read from channel 1 (this is the temperature sensor on the module), we can5.
use i2cset to write 0x01 to the PCF8591 control register. Again, use two reads
to get a new sample from channel 1, as follows:

sudo i2cset -y 1 0x48 0x01
sudo i2cget -y 1 0x48
sudo i2cget -y 1 0x48

To cycle through each of the input channels, use i2cset to set the control register6.
to 0x04, as follows:

sudo i2cset -y 1 0x48 0x04

http://www.dx.com/

Sensing and Displaying Real-World Data Chapter 10

[293]

We can also control the AOUT pin using the following command to set it fully on7.
(lighting up the LED D1):

sudo i2cset -y 1 0x48 0x40 0xff

Finally, we can use the following command to set it fully off (switching off the8.
LED D1):

sudo i2cset -y 1 0x48 0x40 0x00

How it works...
The first read from the device after it has been switched on will return 0x80 and will also
trigger the new sample from channel 0. If you read it a second time, it will return the
sample previously read and generate a fresh sample. Each reading will be an 8-bit value
(ranging from 0 to 255), representing the voltage to VCC (in this case, 0 V to 3.3 V). On the
www.dx.com module, channel 0 is connected to a light sensor, so if you cover up the module
with your hand and resend the command, you will observe a change in the values (darker
means a higher value and lighter means a lower one). You will find that the readings are
always one behind; this is because, as it returns the previous sample, it captures the next
sample.

We use the following command to specify a particular channel to read:

sudo i2cset -y 1 0x48 0x01

This changes the channel that is read to channel 1 (this is marked as AIN1 on the module).
Remember, you will need to perform two reads before you see data from the newly selected
channel. The following table shows the channels and pin names, as well as which jumper
connectors enable/disable each of the sensors:

Channel 0 1 2 3

Pin Name AIN0 AIN1 AIN2 AIN3

Sensor Light-Dependent Resistor Thermistor External Pin Potentiometer

Jumper P5 P4 P6

http://www.dx.com

Sensing and Displaying Real-World Data Chapter 10

[294]

Next, we control the AOUT pin by setting the analog output enable flag (bit 6) of the control
register and using the next value to set the analog voltage (0V-3.3V, 0x00-0xFF), as follows:

sudo i2cset -y 1 0x48 0x40 0xff

Finally, you can set bit 2 (0x04) to auto increment and cycle through the input channels as
follows:

sudo i2cset -y 1 0x48 0x04

Each time you run i2cget -y 1 0x48, the next channel will be selected, starting with
channel AIN0, then running from AIN1 through to AIN3 and back to AIN0 again.

To understand how to set a particular bit in a value, it helps to look at the
binary representation of the number. The 8-bit value 0x04 can be written
as b0000 0100 in binary (0x indicates the value is written in hexadecimal,
or hex, and b indicates a binary number).

Bits within binary numbers are counted from right to left, starting with 0 -
that is, MSB 7 6 5 4 3 2 1 0 LSB.

Bit 7 is known as the most significant bit (MSB) and bit 0 is known as the
least significant bit (LSB). Therefore, by setting bit 2, we end up with
b0000 0100 (which is 0x04).

There's more...
The I2C bus allows us to easily connect multiple devices using only a few wires. The
PCF8591 chip can be used to connect your own sensors to the module or just the chip.

Using multiple I2C devices
All commands on the I2C bus are addressed to a specific I2C device (many have the option
to set some pins high or low to select additional addresses and allow multiple devices to
exist on the same bus). Each device must have a unique address so that only one device will
respond at any one time. The PCF8591 starting address is 0x48, with additional addresses
selectable by the three address pins to 0x4F. This allows up to eight PCF8591 devices to be
used on the same bus.

Sensing and Displaying Real-World Data Chapter 10

[295]

If you decide to use the I2C_VC bus that is located on GPIO pins 27 and
2828 (or on the P5 header on Model A and Revision 2 Model B devices),
you may need to add a 1k8 ohm pull-up resistor between the I2C lines and
3.3 V. These resistors are already present on the I2C bus on the GPIO
connector. However, some I2C modules, including the PCF8591 module,
have their own resistors fitted, so it will work without the extra resistors.

I2C bus and level shifting
The I2C bus consists of two wires, one data (SDA), and one clock (SCL). Both are passively
pulled to VCC (on the Raspberry Pi, this is 3.3 V) with pull-up resistors. The Raspberry Pi
will control the clock by pulling it low every cycle and the data line can be pulled low by
Raspberry Pi to send commands or by the connected device to respond with data:

The Raspberry Pi I2C pins include pull-up resistors on SDA and SCL

Since the slave devices can only pull the data line to GND, the device may be powered by
3.3 V or even 5 V without the risk of driving the GPIO pins too high (remember that the
Raspberry Pi GPIO is not able to handle voltages over 3.3 V). This should work as long as
the I2C bus of the device can recognize the logic maximum a 3.3 V rather than 5 V. The I2C
device must not have its own pull-up resistors fitted, as this will cause the GPIO pins to be
pulled to the supply voltage of the I2C device.

Sensing and Displaying Real-World Data Chapter 10

[296]

Note that the PCF8591 module used in this chapter has resistors fitted; therefore, we must
only use VCC = 3V3. A bidirectional logic level converter can be used to overcome any
issues with logic levels. One such device is the Adafruit I2C bidirectional logic level
translator module, which is shown in the following image:

Adafruit I2C Bidirectional logic level translator module

In addition to ensuring that any logic voltages are at suitable levels for the device you are
using, it will allow the bus to be extended over longer wires (the level shifter will also act as
a bus repeater).

Using just the PCF8591 chip or adding alternative
sensors
A circuit diagram of the PCF8591 module without the sensors attached is shown in the
following diagram:

Circuit diagram of the PCF8591 module without sensor attachment

Sensing and Displaying Real-World Data Chapter 10

[297]

As you can see, excluding the sensors, there are only five additional components. We have a
power-filtering capacitor (C1) and a power-indicating LED (D2) with a current-limiting
resistor (R5), all of which are optional.

Note that the module includes two 10K pull-up resistors (R8 and R9) for SCL and SDA
signals. However, since the GPIO I2C connections on the Raspberry Pi also include pull-up
resistors, these are not needed on the module (and could be removed). It also means we
should only connect this module to VCC = 3.3 V (if we use 5 V, then voltages on SCL and
SDA will be around 3.56 V, which is too high for the Raspberry Pi GPIO pins).

The sensors on the PCF891 module are all resistive, so the voltage level that is present on
the analog input will change between GND and VCC as the resistance of the sensor
changes:

A potential divider circuit. This provides voltage proportional to the sensor's resistance.

The module uses a circuit known as a potential divider. The resistor at the top balances the
resistance provided by the sensor at the bottom to provide a voltage that is somewhere
between VCC and GND.

The output voltage (Vout) of the potential divider can be calculated as follows:

Sensing and Displaying Real-World Data Chapter 10

[298]

Rt and Rb are the resistance values at the top and bottom, respectively, and VCC is the
supply voltage.

The potentiometer in the module has the 10K ohm resistance split between the top and
bottom, depending on the position of the adjuster. So, halfway, we have 5K ohm on each
side and an output voltage of 1.65 V; a quarter of the way (clockwise), we have 2.5K ohm
and 7.5K ohm, producing 0.825 V.

I haven't shown the AOUT circuit, which is a resistor and LED. However,
as you will find, an LED isn't suited to indicate an analog output (except to
show the on/off states).

For more sensitive circuits, you can use more complex circuits, such as a Wheatstone bridge
(which allows the detection of very small changes in resistance), or you can use dedicated
sensors that output an analog voltage based on their readings (such as a TMP36
temperature sensor). The PCF891 also supports the differential input mode, where the input
of one channel can be compared to the input of another (the resultant reading will be the
difference between the two).

For more information on the PCF8591 chip, refer to the datasheet at
http://www.nxp.com/documents/data_sheet/PCF8591.pdf.

Reading analog data using an analog-to-
digital converter
The I2C tools (used in the previous section) are very useful for debugging I2C devices in the
command line, but they are not practical for use within Python, as they would be slow and
require significant overhead to use. Fortunately, there are several Python libraries that
provide I2C support, allowing the efficient use of I2C to communicate with connected
devices and providing easy operation.

We will use such a library to create our own Python module that will allow us to quickly
and easily obtain data from the ADC device and use it in our programs. The module is
designed in such a way that other hardware or data sources may be put in its place without
impacting the remaining examples.

http://www.nxp.com/documents/data_sheet/PCF8591.pdf

Sensing and Displaying Real-World Data Chapter 10

[299]

Getting ready
To use the I2C bus using Python 3, we will use Gordon Henderson's WiringPi2 (see
http://wiringpi.com/ for more details).

The easiest way to install wiringpi2 is by using pip for Python 3. The pip is a package
manager for Python that works in a similar way to apt-get. Any packages you wish to
install will be automatically downloaded and installed from an online repository.

To install pip, use the following command:

sudo apt-get install python3-dev python3-pip

Then, install wiringpi2 with the following command:

sudo pip-3.2 install wiringpi2

Once the installation has completed, you should see the following, indicating success:

Successfully installed WiringPi2

You will need the PCF8591 module wired as it was previously used in the I2C connections
of the Raspberry Pi:

The PCF8591 module and pin connections to the Raspberry Pi GPIO connector

http://wiringpi.com/

Sensing and Displaying Real-World Data Chapter 10

[300]

How to do it...
In the next section, we shall write a script to allow us to gather data that we will then use
later on in this chapter.

Create the following script, data_adc.py, as follows:

First, import the modules and create the variables we will use, as follows:1.

#!/usr/bin/env python3
#data_adc.py
import wiringpi2
import time

DEBUG=False
LIGHT=0;TEMP=1;EXT=2;POT=3
ADC_CH=[LIGHT,TEMP,EXT,POT]
ADC_ADR=0x48
ADC_CYCLE=0x04
BUS_GAP=0.25
DATANAME=["0:Light","1:Temperature",
 "2:External","3:Potentiometer"]

Create the device class with a constructor to initialize it, as follows:2.

class device:
 # Constructor:
 def __init__(self,addr=ADC_ADR):
 self.NAME = DATANAME
 self.i2c = wiringpi2.I2C()
 self.devADC=self.i2c.setup(addr)
 pwrup = self.i2c.read(self.devADC) #flush powerup value
 if DEBUG==True and pwrup!=-1:
 print("ADC Ready")
 self.i2c.read(self.devADC) #flush first value
 time.sleep(BUS_GAP)
 self.i2c.write(self.devADC,ADC_CYCLE)
 time.sleep(BUS_GAP)
 self.i2c.read(self.devADC) #flush first value

Within the class, define a function to provide a list of channel names, as follows:3.

def getName(self):
 return self.NAME

Sensing and Displaying Real-World Data Chapter 10

[301]

Define another function (still as part of the class) to return a new set of samples4.
from the ADC channels, as follows:

def getNew(self):
 data=[]
 for ch in ADC_CH:
 time.sleep(BUS_GAP)
 data.append(self.i2c.read(self.devADC))
 return data

Finally, after the device class, create a test function to exercise our new device5.
class, as follows. This is only to be run when the script is executed directly:

def main():
 ADC = device(ADC_ADR)
 print (str(ADC.getName()))
 for i in range(10):
 dataValues = ADC.getNew()
 print (str(dataValues))
 time.sleep(1)

if __name__=='__main__':
 main()
#End

You can run the test function of this module using the following command:

sudo python3 data_adc.py

How it works...
We start by importing wiringpi2 so we can communicate with our I2C device later on. We
will create a class to contain the required functionality to control the ADC. When we create
the class, we can initialize wiringpi2 in such a way that it is ready to use the I2C bus (using
wiringpi2.I2C()), and we will set up a generic I2C device with the chip's bus address
(using self.i2c.setup(0x48)).

wiringpi2 also has a dedicated class to use with the PCF8591 chip;
however, in this case, it is more useful to use the standard I2C functionality
to illustrate how any I2C device can be controlled using wiringpi2. By
referring to the device datasheet, you can use similar commands to
communicate to any connected I2C device (whether it is directly supported
or not).

Sensing and Displaying Real-World Data Chapter 10

[302]

As before, we perform a device read and configure the ADC to cycle through the channels,
but instead of i2cget and i2cset, we use the wiringpi2 read and write functions of the
I2C object. Once initialized, the device will be ready to read the analog signals on each of
the channels.

The class will also have two member functions. The first function, getName(), returns a list
of channel names (which we can use to correlate our data to its source) and the second
function, getNew(), returns a new set of data from all the channels. The data is read from
the ADC using the i2c.read() function, and since we have already put it into cycle mode,
each read will be from the next channel.

As we plan to reuse this class later on, we will use the if __name__ test to allow us to
define a code to run when we execute the file directly. Within our main() function, we
create the ADC, which is an instance of our new device class. We can choose to select a non-
default address if we need to; otherwise, the default address for the chip will be used. We
use the getName() function to print out the names of the channels and then we can collect
data from the ADC (using getNew()) and display them.

There's more...
The following allows us to define an alternative version of the device class in data_adc.py
so it can be used in place of the ADC module. This will allow the remaining sections of the
chapter to be tried without needing any specific hardware.

Gathering analog data without hardware
If you don't have an ADC module available, there is a wealth of data available from within
Raspberry Pi that you can use instead.

Create the data_local.py script as follows:

#!/usr/bin/env python3
#data_local.py
import subprocess
from random import randint
import time

MEM_TOTAL=0
MEM_USED=1
MEM_FREE=2
MEM_OFFSET=7

Sensing and Displaying Real-World Data Chapter 10

[303]

DRIVE_USED=0
DRIVE_FREE=1
DRIVE_OFFSET=9
DEBUG=False
DATANAME=["CPU_Load","System_Temp","CPU_Frequency",
 "Random","RAM_Total","RAM_Used","RAM_Free",
 "Drive_Used","Drive_Free"]

def read_loadavg():
 # function to read 1 minute load average from system uptime
 value = subprocess.check_output(
 ["awk '{print $1}' /proc/loadavg"], shell=True)
 return float(value)

def read_systemp():
 # function to read current system temperature
 value = subprocess.check_output(
 ["cat /sys/class/thermal/thermal_zone0/temp"],
 shell=True)
 return int(value)

def read_cpu():
 # function to read current clock frequency
 value = subprocess.check_output(
 ["cat /sys/devices/system/cpu/cpu0/cpufreq/"+
 "scaling_cur_freq"], shell=True)
 return int(value)
def read_rnd():
 return randint(0,255)

def read_mem():
 # function to read RAM info
 value = subprocess.check_output(["free"], shell=True)
 memory=[]
 for val in value.split()[MEM_TOTAL+
 MEM_OFFSET:MEM_FREE+
 MEM_OFFSET+1]:
 memory.append(int(val))
 return(memory)
def read_drive():
 # function to read drive info
 value = subprocess.check_output(["df"], shell=True)
 memory=[]
 for val in value.split()[DRIVE_USED+
 DRIVE_OFFSET:DRIVE_FREE+
 DRIVE_OFFSET+1]:
 memory.append(int(val))
 return(memory)

Sensing and Displaying Real-World Data Chapter 10

[304]

class device:
 # Constructor:
 def __init__(self,addr=0):
 self.NAME=DATANAME
 def getName(self):
 return self.NAME

 def getNew(self):
 data=[]
 data.append(read_loadavg())
 data.append(read_systemp())
 data.append(read_cpu())
 data.append(read_rnd())
 memory_ram = read_mem()
 data.append(memory_ram[MEM_TOTAL])
 data.append(memory_ram[MEM_USED])
 data.append(memory_ram[MEM_FREE])
 memory_drive = read_drive()
 data.append(memory_drive[DRIVE_USED])
 data.append(memory_drive[DRIVE_FREE])
 return data

def main():
 LOCAL = device()
 print (str(LOCAL.getName()))
 for i in range(10):
 dataValues = LOCAL.getNew()
 print (str(dataValues))
 time.sleep(1)

if __name__=='__main__':
 main()
#End

The preceding script allows us to gather system information from the Raspberry Pi using
the following commands (the subprocess module allows us to capture the results and
process them):

CPU speed:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

CPU load:

awk '{print $1}' /proc/loadavg

Sensing and Displaying Real-World Data Chapter 10

[305]

Core temperature (scaled by 1,000):

cat /sys/class/thermal/thermal_zone0/temp

Drive info:

df

RAM info:

free

Each data item is sampled using one of the functions. In the case of the drive and RAM
information, we split the response into a list (separated by spaces) and select the items that
we want to monitor (such as available memory and used drive space).

This is all packaged up to function in the same way as the data_adc.py file and the
device class (so you can choose to use either in the following examples just by swapping
the data_adc include with data_local).

Logging and plotting data
Now that we are able to sample and collect a lot of data, it is important that we can capture
and analyze it. For this, we will make use of a Python library called matplotlib, which
includes lots of useful tools for manipulating, graphing, and analyzing data. We will use
pyplot (which is a part of matplotlib) to produce graphs of our captured data. For more
information on pyplot, go to http://matplotlib.org/users/pyplot_tutorial.html.

It is a MATLAB-style data visualization framework for Python.

Getting ready
To use pyplot, we will need to install matplotlib.

http://matplotlib.org/users/pyplot_tutorial.html

Sensing and Displaying Real-World Data Chapter 10

[306]

Because of a problem with the matplotlib installer, performing the
installation using pip-3.2 doesn't always work correctly. The method
that follows will overcome this problem by performing all the steps pip
does manually; however, this can take over 30 minutes to complete.

To save time, you can try the pip installation, which is much quicker. If it
doesn't work, you can install it using the aforementioned manual method.

Use the following commands to try to install matplotlib using pip:

 sudo apt-get install tk-dev python3-tk libpng-dev
 sudo pip-3.2 install numpy
 sudo pip-3.2 install matplotlib

You can confirm that matplotlib has been installed by running python3 and trying to
import it from the Python Terminal, as follows:

import matplotlib

If the installation fails, it will respond with the following:

 ImportError: No module named matplotlib

Otherwise, there will be no errors.

Use the following steps to install matplotlib manually:

Install the support packages as follows:1.

sudo apt-get install tk-dev python3-tk python3-dev libpng-dev
sudo pip-3.2 install numpy
sudo pip-3.2 install matplotlib

Download the source files from the Git repository (the command should be a2.
single line) as follows:

wget https://github.com/matplotlib/matplotlib/archive/master.zip

Unzip and open the matplotlib-master folder that is created, as follows:3.

unzip master.zip
rm master.zip
cd matplotlib-master

Sensing and Displaying Real-World Data Chapter 10

[307]

Run the setup file to build (this will take a while) and install it as follows:4.

sudo python3 setup.py build
sudo python3 setup.py install

Test the installation in the same way as the automated install.5.

We will either need the PCF8591 ADC module (and wiringpi2, installed as before), or we
can use the data_local.py module from the previous section (just replace data_adc with
data_local in the import section of the script). We also need to have data_adc.py and
data_local.py in the same directory as the new script, depending on which you use.

How to do it...
Create a script called log_adc.py:1.

#!/usr/bin/python3
#log_adc.c
import time
import datetime
import data_adc as dataDevice

DEBUG=True
FILE=True
VAL0=0;VAL1=1;VAL2=2;VAL3=3 #Set data order
FORMATHEADER = "t%st%st%st%st%s"
FORMATBODY = "%dt%st%ft%ft%ft%f"

if(FILE):f = open("data.log",'w')

def timestamp():
 ts = time.time()
 return datetime.datetime.fromtimestamp(ts).strftime(
 '%Y-%m-%d %H:%M:%S')

def main():
 counter=0
 myData = dataDevice.device()
 myDataNames = myData.getName()
 header = (FORMATHEADER%("Time",
 myDataNames[VAL0],myDataNames[VAL1],
 myDataNames[VAL2],myDataNames[VAL3]))
 if(DEBUG):print (header)
 if(FILE):f.write(header+"n")
 while(1):

Sensing and Displaying Real-World Data Chapter 10

[308]

 data = myData.getNew()
 counter+=1
 body = (FORMATBODY%(counter,timestamp(),
 data[0],data[1],data[2],data[3]))
 if(DEBUG):print (body)
 if(FILE):f.write(body+"n")
 time.sleep(0.1)

try:
 main()
finally:
 f.close()
#End

Create a second script called log_graph.py, as follows:2.

#!/usr/bin/python3
#log_graph.py
import numpy as np
import matplotlib.pyplot as plt

filename = "data.log"
OFFSET=2
with open(filename) as f:
 header = f.readline().split('t')
data = np.genfromtxt(filename, delimiter='t', skip_header=1,
 names=['sample', 'date', 'DATA0',
 'DATA1', 'DATA2', 'DATA3'])
fig = plt.figure(1)
ax1 = fig.add_subplot(211)#numrows, numcols, fignum
ax2 = fig.add_subplot(212)
ax1.plot(data['sample'],data['DATA0'],'r',
 label=header[OFFSET+0])
ax2.plot(data['sample'],data['DATA1'],'b',
 label=header[OFFSET+1])
ax1.set_title("ADC Samples")
ax1.set_xlabel('Samples')
ax1.set_ylabel('Reading')
ax2.set_xlabel('Samples')
ax2.set_ylabel('Reading')

leg1 = ax1.legend()
leg2 = ax2.legend()

plt.show()
#End

Sensing and Displaying Real-World Data Chapter 10

[309]

How it works...
The first script, log_adc.py, allows us to collect data and write it to a log file.

We can use the ADC device by importing data_adc as the dataDevice, or we can import
data_local to use the system data. The numbers given to VAL0 through VAL3 allow us to
change the order of the channels (and, if using the data_local device, select the other
channels). We can also define the format string for the header and each line in the log file (to
create a file with data separated by tabs) using %s, %d, and %f to allow us to substitute
strings, integers, and float values, as shown in the following table:

The table of data captured from the ADC sensor module

When logging in to the file (when FILE=True), we open data.log in write mode using the
'w' option (this will overwrite any existing files; to append to a file, use 'a').

As part of our data log, we generate timestamp using time and datetime to get the
current epoch time (this is the number of milliseconds since January 1, 1970) using the
time.time() command. We convert the value into a more friendly year-month-day
hour:min:sec format using strftime().

The main() function starts by creating an instance of our device class (we made this in the
previous example), which will supply the data. We fetch the channel names from the data
device and construct the header string. If DEBUG is set to True, the data is printed to the
screen; if FILE is set to True, it will be written to the file.

In the main loop, we use the getNew() function of the device to collect data and format it to
display on the screen or be logged to the file. The main() function is called using the try:
finally: command, which will ensure that when the script is aborted, the file will be
closed correctly.

Sensing and Displaying Real-World Data Chapter 10

[310]

The second script, log_graph.py, allows us to read the log file and produce a graph of the
recorded data, as shown in the following diagram:

Graphs produced by log_graph.py from the light and temperature sensors

We start by opening up the log file and reading the first line; this contains the header
information (which we can then use to identify the data later on). Next, we use numpy, a
specialist Python library that extends how we can manipulate data and numbers. In this
case, we use it to read in the data from the file, split it up based on the tab delimiter, and
provide identifiers for each of the data channels.

We define a figure to hold our graphs, adding two subplots (located in a 2 x 1 grid at
positions 1 and 2 in the grid - set by the values 211 and 212). Next, we define the values we
want to plot, providing the x values (data['sample']), the y values (data['DATA0']),
the color value ('r' for Red or 'b' for Blue), and label (set to the heading text we read
previously from the top of the file).

Finally, we set a title and the x and y labels for each subplot, enable legends (to show the
labels), and display the plot (using plt.show()).

Sensing and Displaying Real-World Data Chapter 10

[311]

There's more...
Now that we have the ability to see the data we have been capturing, we can take things
even further by displaying it as we sample it. This will allow us to instantly see how the
data reacts to changes in the environment or stimuli. We can also calibrate our data so that
we can assign the appropriate scaling to produce measurements in real units.

Plotting live data
Besides plotting data from files, we can use matplotlib to plot sensor data as it is
sampled. To achieve this, we can use the plot-animation feature, which automatically
calls a function to collect new data and update our plot.

Create the following script, called live_graph.py:

#!/usr/bin/python3
#live_graph.py
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import data_local as dataDevice

PADDING=5
myData = dataDevice.device()
dispdata = []
timeplot=0
fig, ax = plt.subplots()
line, = ax.plot(dispdata)

def update(data):
 global dispdata,timeplot
 timeplot+=1
 dispdata.append(data)
 ax.set_xlim(0, timeplot)
 ymin = min(dispdata)-PADDING
 ymax = max(dispdata)+PADDING
 ax.set_ylim(ymin, ymax)
 line.set_data(range(timeplot),dispdata)
 return line

def data_gen():
 while True:
 yield myData.getNew()[1]/1000

ani = animation.FuncAnimation(fig, update,

Sensing and Displaying Real-World Data Chapter 10

[312]

 data_gen, interval=1000)
plt.show()
#End

We start by defining our dataDevice object and creating an empty array, dispdata[],
which will hold all the data which has been collected. Next, we define our subplot and the
line we are going to plot.

The FuncAnimation() function allows us to update a figure (fig) by defining an update
function and a generator function. The generator function (data_gen()) will be called
every interval (1,000 ms) and will produce a data value.

This example uses the core temperature reading that, when divided by 1,000, gives the
actual temperature in degC:

To use the ADC data instead, change the import for dataDevice to
data_adc and adjust the following line to use a channel other than [1]
and apply a scaling that is different from 1,000:

yield myData.getNew()[1]/1000

Raspberry Pi plotting in real time

Sensing and Displaying Real-World Data Chapter 10

[313]

The data value is passed to the update() function, which allows us to add it to our
dispdata[] array that will contain all the data values to be displayed in the plot. We adjust
the x axis range to be near the min and max values of the data. We also adjust the y axis to
grow as we continue to sample more data.

The FuncAnimation() function requires the data_gen() object to be a
special type of function called a generator. A generator function
produces a continuous series of values each time it is called, and can even
use its previous state to calculate the next value if required. This is used to
perform continuous calculations for plotting; this is why it is used here. In
our case, we just want to run the same sampling function (new_data())
continuously so that each time it is called, it will yield a new sample.

Finally, we update the x and y axes data with our dispdata[] array (using the
set_data() function), which will plot our samples against the number of seconds we are
sampling. To use other data, or to plot data from the ADC, adjust the import for
dataDevice and select the required channel (and scaling) in the data_gen() function.

Scaling and calibrating data
You may have noticed that it can sometimes be difficult to interpret data read from an ADC,
since the value is just a number. A number isn't much help on its own; all it can tell you is
that the environment is slightly hotter or slightly darker than the previous sample.
However, if you can use another device to provide comparable values (such as the current
room temperature), you can then calibrate your sensor data to provide more useful real-
world information.

Sensing and Displaying Real-World Data Chapter 10

[314]

To obtain a rough calibration, we shall use two samples to create a linear fit model that can
then be used to estimate real-world values for other ADC readings (this assumes the sensor
itself is mostly linear in its response). The following diagram shows a linear fit graph using
two readings at 25 and 30 degrees Celsius, providing estimated ADC values for other
temperatures:

Samples are used to linearly calibrate temperature sensor readings

We can calculate our model using the following function:

def linearCal(realVal1,readVal1,realVal2,readVal2):
 #y=Ax+C
 A = (realVal1-realVal2)/(readVal1-readVal2)
 C = realVal1-(readVal1*A)
 cal = (A,C)
 return cal

Sensing and Displaying Real-World Data Chapter 10

[315]

This will return cal, which will contain the model slope (A) and offset (C).

We can then use the following function to calculate the value of any reading by using the
calculated cal values for that channel:

def calValue(readVal,cal = [1,0]):
 realVal = (readVal*cal[0])+cal[1]
 return realVal

For more accuracy, you can take several samples and use linear interpolation between the
values (or fit the data to other, more complex mathematical models), if required.

Extending the Raspberry Pi GPIO with an I/O
expander
As we have seen, making use of the higher-level bus protocols allows us to connect to more
complex hardware quickly and easily. The I2C can be put to great use by using it to expand
the available I/O on the Raspberry Pi, as well as providing additional circuit protection
(and, in some cases, additional power to drive more hardware).

There are lots of devices available that provide I/O expansion over the I2C bus (and also
SPI), but the most commonly used is a 28-pin device, MCP23017, which provides 16
additional digital input/output pins. Being an I2C device, it only requires the two signals
(SCL and SDA connections, plus ground, and power) and will happily function with other
I2C devices on the same bus.

We shall see how the Adafruit I2C 16x2 RGB LCD Pi Plate makes use of one of these chips to
control an LCD alphanumeric display and keypad over the I2C bus (without the I/O
expander, this would normally require up to 15 GPIO pins).

Boards from other manufacturers will also work. A 16x2 LCD module and I2C-to-serial
interface module can be combined to have our own low cost I2C LCD module.

Sensing and Displaying Real-World Data Chapter 10

[316]

Getting ready
You will need the Adafruit I2C 16x2 RGB LCD Pi Plate (which also includes five keypad
buttons), shown in the following photo:

Adafruit I2C 16x2 RGB LCD Pi Plate with keypad buttons

The Adafruit I2C 16x2 RGB LCD Pi Plate directly connects to the GPIO connector of
Raspberry Pi.

As before, we can use the PCF8591 ADC module or use the data_local.py module from
the previous section (use data_adc or data_local in the import section of the script). The
data_adc.py and data_local.py files should be in the same directory as the new script.

The LCD Pi Plate only requires four pins (SDA, SCL, GND, and 5V); it
connects over the whole GPIO header. If we want to use it with other
devices, such as the PCF8591 ADC module, then something similar to a
TriBorg from PiBorg (which splits the GPIO port into three) can be used to
add ports.

How to do it...
Create the following script, called lcd_i2c.py:1.

#!/usr/bin/python3
#lcd_i2c.py
import wiringpi2
import time
import datetime
import data_local as dataDevice

Sensing and Displaying Real-World Data Chapter 10

[317]

AF_BASE=100
AF_E=AF_BASE+13; AF_RW=AF_BASE+14; AF_RS=AF_BASE+15
AF_DB4=AF_BASE+12; AF_DB5=AF_BASE+11; AF_DB6=AF_BASE+10
AF_DB7=AF_BASE+9

AF_SELECT=AF_BASE+0; AF_RIGHT=AF_BASE+1; AF_DOWN=AF_BASE+2
AF_UP=AF_BASE+3; AF_LEFT=AF_BASE+4; AF_BACK=AF_BASE+5

AF_GREEN=AF_BASE+6; AF_BLUE=AF_BASE+7; AF_RED=AF_BASE+8
BNK=" "*16 #16 spaces

def gpiosetup():
 global lcd
 wiringpi2.wiringPiSetup()
 wiringpi2.mcp23017Setup(AF_BASE,0x20)
 wiringpi2.pinMode(AF_RIGHT,0)
 wiringpi2.pinMode(AF_LEFT,0)
 wiringpi2.pinMode(AF_SELECT,0)
 wiringpi2.pinMode(AF_RW,1)
 wiringpi2.digitalWrite(AF_RW,0)
 lcd=wiringpi2.lcdInit(2,16,4,AF_RS,AF_E,
 AF_DB4,AF_DB5,AF_DB6,AF_DB7,0,0,0,0)

def printLCD(line0="",line1=""):
 wiringpi2.lcdPosition(lcd,0,0)
 wiringpi2.lcdPrintf(lcd,line0+BNK)
 wiringpi2.lcdPosition(lcd,0,1)
 wiringpi2.lcdPrintf(lcd,line1+BNK)

def checkBtn(idx,size):
 global run
 if wiringpi2.digitalRead(AF_LEFT):
 idx-=1
 printLCD()
 elif wiringpi2.digitalRead(AF_RIGHT):
 idx+=1
 printLCD()
 if wiringpi2.digitalRead(AF_SELECT):
 printLCD("Exit Display")
 run=False
 return idx%size

def main():
 global run
 gpiosetup()
 myData = dataDevice.device()
 myDataNames = myData.getName()
 run=True

Sensing and Displaying Real-World Data Chapter 10

[318]

 index=0
 while(run):
 data = myData.getNew()
 printLCD(myDataNames[index],str(data[index]))
 time.sleep(0.2)
 index = checkBtn(index,len(myDataNames))

main()
#End

With the LCD module connected, run the script as follows:2.

sudo python3 lcd_i2c.py

Select the data channel you want to display using the left and right buttons and press the
SELECT button to exit.

How it works...
The wiringpi2 library has excellent support for I/O expander chips, like the one used for
the Adafruit LCD character module. To use the Adafruit module, we need to set up the pin
mapping for all the pins of MCP23017 Port A, as shown in the following table (then, we set
up the I/O expander pins with an offset of 100):

Name SELECT RIGHT DOWN UP LEFT GREEN BLUE RED

MCP23017 Port A A0 A1 A2 A3 A4 A6 A7 A8

WiringPi pin 100 101 102 103 104 106 107 108

The pin mapping for all of MCP23017 Port B's pins is as follows:

Name DB7 DB6 DB5 DB4 E RW RS

MCP23017 Port B B1 B2 B3 B4 B5 B6 B7

WiringPi pin 109 110 111 112 113 114 115

Sensing and Displaying Real-World Data Chapter 10

[319]

To set up the LCD screen, we initialize wiringPiSetup() and the I/O expander,
mcp23017Setup(). We then specify the pin offset and bus address of the I/O expander.
Next, we set all the hardware buttons as inputs (using pinMode(pin number,0)), and the
RW pin of the LCD to an output. The wiringpi2 LCD library expects the RW pin to be set
to LOW (forcing it into read-only mode), so we set the pin to LOW (using
digitalWrite(AF_RW,0)).

We create an lcd object by defining the number of rows and columns of the screen and
stating whether we are using a 4- or 8-bit data mode (we are using four of the eight data
lines, so we will be using 4-bit mode). We also provide the pin mapping of the pins we are
using (the last four are set to 0 since we are only using four data lines).

Now, we will create a function called PrintLCD(), which will allow us to send strings to
show on each line of the display. We use lcdPosition() to set the cursor position on the
lcd object for each line and then print the text for each line. We also add some blank spaces
at the end of each line to ensure the full line is overwritten.

The next function, checkBtn(), briefly checks the left/right and select buttons to see if they
have been pressed (using the digitalRead() function). If the left/right button has been
pressed, then the index is set to the previous/next item in the array. If the SELECT button is
pressed, then the run flag is set to False (this will exit the main loop, allowing the script to
finish).

The main() function calls gpiosetup() to create our lcd object; then, we create our
dataDevice object and fetch the data names. Within the main loop, we get new data; then,
we use our printLCD() function to display the data name on the top line and the data
value on the second line. Finally, we check to see whether the buttons have been pressed
and set the index to our data as required.

There's more...
Using an expander chip such as the MCP23017 provides an excellent way to increase the
amount of hardware connectivity to the Raspberry Pi while also providing an additional
layer of protection (it is cheaper to replace the expander chip Raspberry Pi).

Sensing and Displaying Real-World Data Chapter 10

[320]

I/O expander voltages and limits
The port expander only uses a small amount of power when in use, but if you are powering
it using the 3.3 V supply, then you will still only be able to draw a maximum of 50 mA in
total from all the pins. If you draw too much power, then you may experience system
freezes or corrupted read/writes on the SD card.

If you power the expander using the 5V supply, then you can draw up to the maximum
power the expander can support (around a maximum of 25 mA per pin and 125 mA in
total), as long as your USB power supply is powerful enough.

We must remember that if the expander is powered with a 5 V supply, the inputs/outputs
and interrupt lines will also be 5 V and should never be connected back to the Raspberry Pi
(without using level shifters to translate the voltage down to 3.3 V).

By changing the wiring of the address pins (A0, A1, and A2) on the expander chip, up to
eight modules can be used on the same I2C bus simultaneously. To ensure there is enough
current available for each, we would need to use a separate 3.3 V supply. A linear regulator
such as LM1117-3.3 would be suitable (this would provide up to 800 mA at 3.3 V, 100 mA
for each), and only needs the following simple circuit:

The LM1117 linear voltage regulator circuit

The following diagram shows how a voltage regulator can be connected to the I/O expander
(or other device) to provide more current for driving extra hardware:

Sensing and Displaying Real-World Data Chapter 10

[321]

Using a voltage regulator with the Raspberry Pi

The input voltage (Vin) is provided by the Raspberry Pi (for example, from the GPIO pin
header, such as 5 V pin 2). However, Vin could be provided by any other power supply (or
battery pack) as long as it is between 4.5 V and 15 V and is able to provide enough current.
The important part is to ensure that the ground connections (GND) of the Raspberry Pi, the
power supply (if a separate one is used), the regulator, and the I/O expander are all
connected together (as a common ground).

Using your own I/O expander module
You can use one of the I/O expander modules that are available (or just the MCP23017 chip
in the following circuit) to control most HD44780-compatible LCD displays:

The I/O expander and a HD44780-compatible display

Sensing and Displaying Real-World Data Chapter 10

[322]

The D-Pad circuit, using Python-to-drive hardware, can also be connected to the remaining
port A pins of the expander (PA0 to button 1, PA1 to right, PA2 to down, PA3 to up, PA4 to
left, and PA5 to button 2). As in the previous example, the buttons will be PA0 to PA4
(WiringPi pin number 100 to 104); apart from these, we have the second button added to
PA5 (WiringPi pin number 105).

Directly controlling an LCD alphanumeric display
Alternatively, you can also drive the screen directly from the Raspberry Pi with the
following connections:

We are not using the I2C bus here.

LCD VSS VDD V0 RS RW E DB4 DB5 DB6 DB7

LCD Pin 1 2 3 4 5 6 11 12 13 14

Raspberry Pi GPIO 6 (GND) 2 (5V) Contrast 11 13 (GND) 15 12 16 18 22

The preceding table lists the connections required between the Raspberry Pi and the
HD44780-compatible, alphanumeric display module.

The contrast pin (V0) can be connected to a variable resistor as before (with one side
connected to the 5 V supply and the other to GND); although, depending on the screen, you
may find you can connect directly to GND/5 V to obtain the maximum contrast.

The wiringpi2 LCD library assumes that the RW pin is connected to GND (read only); this
avoids the risk that the LCD will send data back if it is connected directly to the Raspberry
Pi (this would be a problem since the screen is powered by 5 V and will send data using 5 V
logic).

Ensure that you update the code with the new AF_XX references and refer to the physical
pin number by changing the setup within the gpiosetup() function. We can also skip the
setup of the MCP23017 device.

Have a look at the following commands:

wiringpi2.wiringPiSetup()
wiringpi2.mcp23017Setup(AF_BASE,0x20)

Sensing and Displaying Real-World Data Chapter 10

[323]

Replace the preceding commands with the following command:

wiringpi.wiringPiSetupPhys()

You can see that we only need to change the pin references to switch between using the I/O
expander and not using it, which shows how convenient the wiringpi2 implementation is.

Capturing data in an SQLite database
Databases are a perfect way to store lots of structured data while maintaining the ability to
access and search for specific data. Structured Query Language (SQL) is a standardized set
of commands to update and query databases. For this example, we will use SQLite (a
lightweight, self-contained implementation of an SQL database system).

In this chapter, we will gather raw data from our ADC (or local data source) and build our
own database. We can then use a Python library called sqlite3 to add data to a database
and then query it:

 ## Timestamp 0:Light 1:Temperature 2:External
3:Potentiometer
 0 2015-06-16 21:30:51 225 212 122
216
 1 2015-06-16 21:30:52 225 212 148
216
 2 2015-06-16 21:30:53 225 212 113
216
 3 2015-06-16 21:30:54 225 212 137
216
 4 2015-06-16 21:30:55 225 212 142
216
 5 2015-06-16 21:30:56 225 212 115
216
 6 2015-06-16 21:30:57 225 212 149
216
 7 2015-06-16 21:30:58 225 212 128
216
 8 2015-06-16 21:30:59 225 212 123
216
 9 2015-06-16 21:31:02 225 212 147
216

Sensing and Displaying Real-World Data Chapter 10

[324]

Getting ready
To capture data in our database, we will install SQLite so that it is ready to be used with
Python's sqlite3 built-in module. Use the following command to install SQLite:

sudo apt-get install sqlite3

Next, we will perform some basic operations with SQLite to see how to use SQL queries.

Run SQLite directly, creating a new test.db database file with the following command:

sqlite3 test.db
SQLite version 3.7.13 2012-06-11 02:05:22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

This will open an SQLite console, within which we enter SQL commands directly. For
example, the following commands will create a new table, add some data, display the
content, and then remove the table:

CREATE TABLE mytable (info TEXT, info2 TEXT,);
INSERT INTO mytable VALUES ("John","Smith");
INSERT INTO mytable VALUES ("Mary","Jane");
John|Smith
Mary|Jane
DROP TABLE mytable;
.exit

You will need the same hardware setup as the previous recipe, as detailed in the Getting
ready section of the Using devices with the I2C bus recipe.

How to do it...
Create the following script, called mysqlite_adc.py:

#!/usr/bin/python3
#mysql_adc.py
import sqlite3
import datetime
import data_adc as dataDevice
import time
import os

Sensing and Displaying Real-World Data Chapter 10

[325]

DEBUG=True
SHOWSQL=True
CLEARDATA=False
VAL0=0;VAL1=1;VAL2=2;VAL3=3 #Set data order
FORMATBODY="%5s %8s %14s %12s %16s"
FORMATLIST="%5s %12s %10s %16s %7s"
DATEBASE_DIR="/var/databases/datasite/"
DATEBASE=DATEBASE_DIR+"mydatabase.db"
TABLE="recordeddata"
DELAY=1 #approximate seconds between samples

def captureSamples(cursor):
 if(CLEARDATA):cursor.execute("DELETE FROM %s" %(TABLE))
 myData = dataDevice.device()
 myDataNames=myData.getName()

 if(DEBUG):print(FORMATBODY%("##",myDataNames[VAL0],
 myDataNames[VAL1],myDataNames[VAL2],
 myDataNames[VAL3]))
 for x in range(10):
 data=myData.getNew()
 for i,dataName in enumerate(myDataNames):
 sqlquery = "INSERT INTO %s (itm_name, itm_value) " %(TABLE) +
 "VALUES('%s', %s)"
 %(str(dataName),str(data[i]))
 if (SHOWSQL):print(sqlquery)
 cursor.execute(sqlquery)

 if(DEBUG):print(FORMATBODY%(x,
 data[VAL0],data[VAL1],
 data[VAL2],data[VAL3]))
 time.sleep(DELAY)
 cursor.commit()

def displayAll(connect):
 sqlquery="SELECT * FROM %s" %(TABLE)
 if (SHOWSQL):print(sqlquery)
 cursor = connect.execute (sqlquery)
 print(FORMATLIST%("","Date","Time","Name","Value"))

 for x,column in enumerate(cursor.fetchall()):
 print(FORMATLIST%(x,str(column[0]),str(column[1]),
 str(column[2]),str(column[3])))

def createTable(cursor):
 print("Create a new table: %s" %(TABLE))
 sqlquery="CREATE TABLE %s (" %(TABLE) +
 "itm_date DEFAULT (date('now','localtime')), " +

Sensing and Displaying Real-World Data Chapter 10

[326]

 "itm_time DEFAULT (time('now','localtime')), " +
 "itm_name, itm_value)"
 if (SHOWSQL):print(sqlquery)
 cursor.execute(sqlquery)
 cursor.commit()

def openTable(cursor):
 try:
 displayAll(cursor)
 except sqlite3.OperationalError:
 print("Table does not exist in database")
 createTable(cursor)
 finally:
 captureSamples(cursor)
 displayAll(cursor)

try:
 if not os.path.exists(DATEBASE_DIR):
 os.makedirs(DATEBASE_DIR)
 connection = sqlite3.connect(DATEBASE)
 try:
 openTable(connection)
 finally:
 connection.close()
except sqlite3.OperationalError:
 print("Unable to open Database")
finally:
 print("Done")

#End

If you do not have the ADC module hardware, you can capture local data
by setting the dataDevice module as data_local. Ensure you have
data_local.py (from the There's more... section in the Reading analog data
using an analog-to-digital converter recipe) in the same directory as the
following script:

 import data_local as dataDevice

This will capture the local data (RAM, CPU activity, temperature, and so
on) to the SQLite database instead of ADC samples.

Sensing and Displaying Real-World Data Chapter 10

[327]

How it works...
When the script is first run, it will create a new SQLite database file called mydatabase.db,
which will add a table named recordeddata. The table is generated by createTable(),
which runs the following SQLite command:

CREATE TABLE recordeddata
(
 itm_date DEFAULT (date('now','localtime')),
 itm_time DEFAULT (time('now','localtime')),
 itm_name,
 itm_value
)

The new table will contain the following data items:

Name Description

itm_date
Used to store the date of the data sample. When the data record is created,
the current date (using date('now','localtime')) is applied as the
default value.

itm_time
Used to store the time of the data sample. When the data record is created,
the current time (using time('now','localtime')) is applied as the
default value.

itm_name Used to record the name of the sample.

itm_value Used to keep the sampled value.

We then use the same method to capture 10 data samples from the ADC as we did in the
Logging and plotting data recipe previously (as shown in the captureSamples() function).
However, this time, we will then add the captured data into our new SQLite database table,
using the following SQL command (applied using cursor.execute(sqlquery)):

INSERT INTO recordeddata
 (itm_name, itm_value) VALUES ('0:Light', 210)

Sensing and Displaying Real-World Data Chapter 10

[328]

The current date and time will be added by default to each record as it is created. We end
up with a set of 40 records (4 records for every cycle of ADC samples captured), which are
now stored in the SQLite database:

Eight ADC samples have been captured and stored in the SQLite database

After the records have been created, we must remember to call cursor.commit(), which
will save all the new records to the database.

The last part of the script calls displayAll(), which will use the following SQL command:

SELECT * FROM recordeddata

This will select all of the data records in the recordeddata table, and we use
cursor.fetch() to provide the selected data as a list we can iterate through:

for x,column in enumerate(cursor.fetchall()):
 print(FORMATLIST%(x,str(column[0]),str(column[1]),
 str(column[2]),str(column[3])))

This allows us to print out the full contents of the database, displaying the captured data.

Sensing and Displaying Real-World Data Chapter 10

[329]

Note that here we use the try, except, and finally constructs in this
script to attempt to handle the mostly likely scenario that users will face
when running the script.

First, we ensure that if the database directory doesn't exist, we create it.
Next, we try opening the database file; this process will automatically
create a new database file if one doesn't already exist. If either of these
initial steps fail (because they don't have read/write permissions, for
example) we cannot continue, so we report that we cannot open the
database and simply exit the script.

Next, we try to open the required table within the database and display it.
If the database file is brand new, this operation will always fail, as it will
be empty. However, if this occurs, we just catch the exception and create
the table before continuing with the script to add our sampled data to the
table and display it.

This allows the script to gracefully handle potential problems, take
corrective action, and then continue smoothly. The next time the script is
run, the database and table will already exist, so we won't need to create
them a second time, and we can append the sample data to the table
within the same database file.

There's more...
There are many variants of SQL servers available (such as MySQL, Microsoft SQL Server,
and PostgreSQL), however they should at least have the following primary commands (or
equivalent):

CREATE, INSERT, SELECT, WHERE, UPDATE, SET, DELETE, and DROP

You should find that even if you choose to use a different SQL server to the SQLite one used
here, the SQL commands will be relatively similar.

Sensing and Displaying Real-World Data Chapter 10

[330]

The CREATE TABLE command
The CREATE TABLE command is used to define a new table by specifying the column
names (and also to set default values, if desired):

CREATE TABLE table_name (
 column_name1 TEXT,
 column_name2 INTEGER DEFAULT 0,
 column_name3 REAL)

The previous SQL command will create a new table called table_name, containing three
data items. One column will contain text, other integers (for example, 1, 3, -9), and finally,
one column will contain real numbers (for example, 5.6, 3.1749, 1.0).

The INSERT command
The INSERT command will add a particular entry to a table in the database:

INSERT INTO table_name (column_name1name1, column_name2name2,
column_name3)name3)
 VALUES ('Terry'Terry Pratchett', 6666, 27.082015)082015)

This will enter the values provided into the corresponding columns in the table.

The SELECT command
The SELECT command allows us to specify a particular column or columns from the
database table, returning a list of records with the data:

SELECT column_name1, column_name2 FROM table_name

It can also allow us to select all of the items, using this command:

SELECT * FROM table_name

The WHERE command
The WHERE command is used to specify specific entries to be selected, updated, or deleted:

SELECT * FROM table_name
 WHERE column_name1= 'Terry Pratchett'

This will SELECT any records where the column_name1 matches 'Terry Pratchett'.

Sensing and Displaying Real-World Data Chapter 10

[331]

The UPDATE command
The UPDATE command will allow us to change (SET) the values of data in each of the
specified columns. We can also combine this with the WHERE command to limit the records
the change is applied to:

UPDATE table_name
 SET column_name2=49name2=49,column_name3=30name3=30.111997
 WHERE column_name1name1= 'Douglas Adams'Adams';

The DELETE command
The DELETE command allows any records selected using WHERE to be removed from the
specified table. However, if the whole table is selected, using DELETE * FROM
table_name will delete the entire contents of the table:

DELETE FROM table_name
 WHERE columncolumn_name2=9999

The DROP command
The DROP command allows a table to be removed completely from the database:

DROP table_name

Be warned that this will permanently remove all the data that was stored in the specified
table and the structure.

Viewing data from your own webserver
Gathering and collecting information into databases is very helpful, but if it is locked inside
a database or a file, it isn't of much use. However, if we allow the stored data to be viewed
via a web page, it will be far more accessible; not only can we view the data from other
devices, but we can also share it with others on the same network.

Sensing and Displaying Real-World Data Chapter 10

[332]

We shall create a local web server to query and display the captured SQLite data and allow
it to be viewed through a PHP web interface. This will allow the data to be viewed, not only
via the web browser on the Raspberry Pi, but also on other devices, such as cell phones or
tablets, on the local network:

Data captured in the SQLite database displayed via a web page

Using a web server to enter and display information is a powerful way to allow a wide
range of users to interact with your projects. The following example demonstrates a web
server setup that can be customized for a variety of uses.

Getting ready
Ensure you have completed the previous recipe so that the sensor data has been collected
and stored in the SQLite database. We need to install a web server (Apache2) and enable
PHP support to allow SQLite access.

Sensing and Displaying Real-World Data Chapter 10

[333]

Use these commands to install a web server and PHP:

sudo apt-get update
sudo aptitude install apache2 php5 php5-sqlite

The /var/www/ directory is used by the web server; by default, it will load index.html (or
index.php) – otherwise, it will just display a list of the links to the files within the
directory.

To test whether the web server is running, create a default index.html page. To do this,
you will need to create the file using sudo permissions (the /var/www/ directory is
protected from changes made by normal users). Use the following command:

sudo nano /var/www/index.html

Create index.html with the following content:

<h1>It works!</h1>

Close and save the file (using Ctrl + X, Y and Enter).

If you are using the Raspberry Pi with a screen, you can check whether it is working by
loading the desktop:

startx

Then, open the web browser (epiphany-browser) and enter http://localhost as the
address. You should see the following test page, indicating that the web server is active:

Raspberry Pi browser displaying the test page, located at http://localhost

If you are using the Raspberry Pi remotely or it is connected to your network, you should
also be able to view the page on another computer on your network. First, identify the IP
address of the Raspberry Pi (using sudo hostname -I) and then use this as the address in
your web browser. You may even find you can use the actual hostname of the Raspberry Pi
(by default, this is http://raspberrypi/).

Sensing and Displaying Real-World Data Chapter 10

[334]

If you are unable to see the web page from another computer, ensure that
you do not have a firewall enabled (on the computer itself, or on your
router) that could be blocking it.

Next, we can test that PHP is operating correctly. We can create a web page called
test.php, and ensure that it is located in the /var/www/ directory:

<?php
 phpinfo();
?>;

The PHP web page to view the data in the SQLite database has the following details:

Viewing the test.php page at http://localhost/test.php

We are now ready to write our own PHP web page to view the data in the SQLite database.

Sensing and Displaying Real-World Data Chapter 10

[335]

How to do it...
Create the following PHP files and save them in the web server directory named1.
/var/www/./.
Use the following command to create the PHP file:2.

sudo nano /var/www/show_data_lite.php

The show_data_lite.php file should contain the following:3.

<head>
<title>DatabaseDatabase Data</title>
<meta http-equiv="refresh" content="10" >
</head>
<body>

Press button to remove the table data

<input type="button" onclick="location.href = 'del_data_lite.php';"
value="Delete">

Recorded Data

<?php
$db = new
PDO("sqlite:/var/databases/datasitedatasite/mydatabase.db");
//SQL query
$strSQL = "SELECT * FROM recordeddatarecordeddata WHERE itmitm_name
LIKE '%'%temp%'";
//Execute the query
$response = $db->query($strSQL);
//Loop through the response
while($column = $response->fetch())
{
 //Display the content of the response
 echo $column[0] . " ";
 echo $column[1] . " ";
 echo $column[2] . " ";
 echo $column[3] . "
";
}
?>
Done
</body>
</html>

Sensing and Displaying Real-World Data Chapter 10

[336]

Use the following command to create the PHP file:4.

sudo nano /var/www/del_data_lite.php
<html>
<body>
Remove all the data in the table.

<?php
$db = new
PDO("sqlite:/var/databases/datasitedatasite/mydatabase.db");
//SQL query
$strSQL = "DROPDROP TABLErecordeddata recordeddata";
//ExecuteExecute the query
$response = $db->query($strSQL);

if ($response == 1)
 {
 echo "Result: DELETED DATA";
 }
else
 {
 echo "Error: Ensure table exists and database directory is
owned
by www-data";
 }
?>

Press button to return to data display.

<input type="button" onclick="location.href =
'show'show_data_lite.php';" value="Return">
</body>
</html>

In order for the PHP code to delete the table within the database, it needs
to be writable by the web server. Use the following command to allow it to
be writable:

 sudo chown www-data /var/databases/datasite -R

The show_data_lite.php file will appear as a web page if you open it in a web5.
browser by using the following address:

http://localhost/showshow_data_lite.php

Sensing and Displaying Real-World Data Chapter 10

[337]

Alternatively, you can open the web page (on another computer within your6.
network, if you wish) by referencing the IP address of the Raspberry Pi (use
hostname -I to confirm the IP address):

http://192.168.1.101/showshow_data_lite.php

You may be able to use the hostname instead (by default, this would make the
address http://raspberrypi/show_data_lite.php). However, this may
depend upon your network setup.

If there is no data present, ensure that you run the mysqlite_adc.py script to
capture additional data.

To make the show_data_lite.php page display automatically when you visit7.
the web address of your Raspberry Pi (instead of the It works! page), we can
change the index.html to the following:

<meta http-equiv="refresh" content="0; URL='show_data_lite.php' "
/>

This will automatically redirect the browser to load our show_data_lite.php
page.

How it works...
The show_data_lite.php file shall display the temperature data that has been stored
within the SQLite database (either from the ADC samples or local data sources).

The show_data_lite.php file consists of standard HTML code, as well as a special PHP
code section. The HTML code sets ACD Data as the title on the head section of the page and
uses the following command to make the page automatically reload every 10 seconds:

<meta http-equiv="refresh" content="10" >

Next, we define a Delete button, which will load the del_data_lite.php page when
clicked:

<input type="button" onclick="location.href = 'del_data_lite.php';"
value="Delete">

Sensing and Displaying Real-World Data Chapter 10

[338]

Finally, we use the PHP code section to load the SQLite database and display the Channel 0
data.

We use the following PHP command to open the SQLite database we have previously
stored data in (located at /var/databases/testsites/mydatabase.db):

$db = new PDO("sqlite:/var/databases/testsite/mydatabase.db");

Next, we use the following SQLite query to select all the entries where the zone includes 0:
in the text (for example, 0:Light):

SELECT * FROM recordeddatarecordeddata WHERE itm_namename LIKE '%temp%''

Note that even though we are now using PHP, the queries we use with the
SQLite database are the same as we would use when using the sqlite3
Python module.

We now collect the query result in the $response variable:

$response = $db->query($strSQL);
Allowing us to use fetch() (like we used cursor.fetchall() previously) to
list all the data columns in each of the data entries within the response.
while($column = $response->fetch())
{
 //Display the content of the response
 echo $column[0] . " ";
 echo $column[1] . " ";
 echo $column[2] . " ";
 echo $column[3] . "
";
}
?>

The del_data_lite.php file is fairly similar; it starts by reopening the mydatabase.db
file as before. It then executes the following SQLite query:

DROP TABLE recordeddata

As described in the There's more... section, this will remove the recordeddata table from
the database. If the response isn't equal to 1, the action was not completed. The most likely
reason for this is that the directory that contains the mydatabase.db file isn't writable by
the web server (see the note in the How to do it... section about changing the file owner to
www-data).

Sensing and Displaying Real-World Data Chapter 10

[339]

Finally, we provide another button that will take the user back to
the show_data_lite.php page (which will show that the recorded data has now been
cleared):

Show_data_lite.php

There's more...
You may have noticed that this recipe has focused more on HTML and PHP than Python
(yes, check the cover – this is still a book for Python programmers!). However, it is
important to remember that a key part of engineering is integrating and combining
different technologies to produce the desired results.

By design, Python lends itself well to this kind of task since it allows easy customization
and integration with a huge range of other languages and modules. We could just do it all
in Python but why not make use of the existing solutions, instead? After all, they are
usually well documented, have undergone extensive testing, and often meet industry
standards.

Security
SQL databases are used in many places to store a wide range of information, from product
information to customer details. In such circumstances, users may be required to enter
information that is then formed into SQL queries. In a poorly implemented system, a
malicious user may be able to include additional SQL syntax in their response, allowing
them to compromise the SQL database (perhaps by accessing sensitive information, altering
it, or simply deleting it).

Sensing and Displaying Real-World Data Chapter 10

[340]

For example, when asking for a username within a web page, the user could enter the
following text:

John; DELETE FROM Orders

If this was used directly to construct the SQL query, we would end up with the following:

SELECT * FROM Users WHERE UserName = John; DELETE FROM CurrentOrders

We have just allowed the attacker to delete everything in the CurrentOrders table!

Using user input to form part of SQL queries means we have to be careful what commands
we allow to be executed. In this example, the user may be able to wipe out potentially
important information, which could be very costly for a company and its reputation.

This technique is called SQL injection, and is easily protected against by using the
parameters option of the SQLite execute() function. We can replace our Python SQLite
query with a safer version, as follows:

sqlquery = "INSERT INTO %s (itm_name, itm_value) VALUES(?, ?)" %(TABLE)
cursor.execute(sqlquery, (str(dataName), str(data[i]))

Instead of blindly building the SQL query, the SQLite module will first check that the
provided parameters are valid values to enter into the database. Then, it will ensure that no
additional SQL actions will result from inserting them into the command. Finally, the value
of the dataName and data[i] parameters will be used to replace the ? characters to
generate the final safe SQLite query.

Using MySQL instead
SQLite, which is used in this recipe, is just one of many SQL databases available. It is
helpful for small projects that only require relatively small databases and minimal
resources. However, for larger projects that require additional features (such as user
accounts to control access and additional security), you can use alternatives, such as
MySQL.

To use a different SQL database, you will need to adjust the Python code that we used to
capture the entries using a suitable Python module.

Sensing and Displaying Real-World Data Chapter 10

[341]

For MySQL (mysql-server), we can use a Python-3-compatible library called PyMySQL
to interface with it. See the PyMySQL website (https://github.com/PyMySQL/PyMySQL) for
additional information about how to use this library.

To use PHP with MySQL, you will also need PHP MySQL (php5-mysql); for more
information, see the excellent resource at W3 Schools
(http://www.w3schools.com/php/php_mysql_connect.asp).

You will notice that although there are small differences between SQL implementations, the
general concepts and commands should now be familiar to you, whichever one you select.

Sensing and sending data to online services
In this section, we shall make use of an online service called Xively. The service allows us to
connect, transmit, and view data online. Xively makes use of a common protocol that is
used for transferring information over HTTP called REpresentational State Transfer
(REST). REST is used by many services, such as Facebook and Twitter, using various keys
and access tokens to ensure data is transferred securely between authorized applications
and verified sites.

You can perform most REST operations (methods such as POST, GET, SET, and so on)
manually using a Python library called requests (http://docs.python-requests.org).

However, it is often easier to make use of specific libraries available for the service you
intend to use. They will handle the authorization process and provide access functions, and
if the service changes, the library can be updated rather than your code.

We will use the xively-python library, which provides Python functions to allow us to
easily interact with the site.

For details about the xively-python library, refer to
http://xively.github.io/xively-python/.

https://github.com/PyMySQL/PyMySQL
http://www.w3schools.com/php/php_mysql_connect.asp
http://docs.python-requests.org
http://xively.github.io/xively-python/

Sensing and Displaying Real-World Data Chapter 10

[342]

The data collected by Xively is shown in the following screenshot:

Xively collects and graphs data transferred using REST

Getting ready
You will need to create an account at www.xively.com, which we will use to receive our
data. Go to the site and sign up for a free developer account:

http://www.xively.com

Sensing and Displaying Real-World Data Chapter 10

[343]

Signing up and creating a Xively account

Once you have registered and verified your account, you can follow the instructions that
will take you through a test drive example. This will demonstrate how you can link to data
from your smartphone (gyroscopic data, location, and so on), which will give you a taste of
what we can do with the Raspberry Pi.

When you log in, you will be taken to the Development Devices dashboard (located in the
WebTools drop-down menu):

Adding a new device

Sensing and Displaying Real-World Data Chapter 10

[344]

Select +Add Device and fill in the details, giving your device a name and setting Device as
Private.

You will now see the control page for your remote device, which contains all the
information you need to connect it and also where your data will be displayed:

Example API key and feed number (this will be unique for your device)

Although there is a lot of information on this page, you only need two key pieces of
information:

The API key (which is the long code in the API Keys section), as follows:

API_KEY = CcRxJbP5TuHp1PiOGVrN2kTGeXVsb6QZRJU236v6PjOdtzze

The feed number (referred to in the API Keys section and also listed at the top of
the page), as follows:

FEED_ID = 399948883

Now that we have the details we need to connect with Xively, we can focus on the
Raspberry Pi side of things.

We will use pip-3.2 to install Xively, as follows:

sudo pip-3.2 install xively-python

Ensure that the following is reported:

Successfully installed xively-python requests

You are now ready to send some data from your Raspberry Pi.

Sensing and Displaying Real-World Data Chapter 10

[345]

How to do it...
Create the following script, called xivelyLog.py. Ensure that you set FEED_ID and
API_KEY within the code to match the device you created:

#!/usr/bin/env python3
#xivelylog.py
import xively
import time
import datetime
import requests
from random import randint
import data_local as dataDevice

Set the FEED_ID and API_KEY from your account
FEED_ID = 399948883
API_KEY = "CcRxJbP5TuHp1PiOGVrN2kTGeXVsb6QZRJU236v6PjOdtzze"
api = xively.XivelyAPIClient(API_KEY) # initialize api client
DEBUG=True

myData = dataDevice.device()
myDataNames=myData.getName()

def get_datastream(feed,name,tags):
 try:
 datastream = feed.datastreams.get(name)
 if DEBUG:print ("Found existing datastream")
 return datastream
 except:
 if DEBUG:print ("Creating new datastream")
 datastream = feed.datastreams.create(name, tags=tags)
 return datastream

def run():
 print ("Connecting to Xively")
 feed = api.feeds.get(FEED_ID)
 if DEBUG:print ("Got feed" + str(feed))
 datastreams=[]
 for dataName in myDataNames:
 dstream = get_datastream(feed,dataName,dataName)
 if DEBUG:print ("Got %s datastream:%s"%(dataName,dstream))
 datastreams.append(dstream)

 while True:
 data=myData.getNew()
 for idx,dataValue in enumerate(data):
 if DEBUG:

Sensing and Displaying Real-World Data Chapter 10

[346]

 print ("Updating %s: %s" % (dataName,dataValue))
 datastreams[idx].current_value = dataValue
 datastreams[idx].at = datetime.datetime.utcnow()
 try:
 for ds in datastreams:
 ds.update()
 except requests.HTTPError as e:
 print ("HTTPError({0}): {1}".format(e.errno, e.strerror))
 time.sleep(60)

run()
#End

How it works...
First, we initialize the Xively API client, to which we supply the API_KEY (this authorizes
us to send data to the Xively device we created previously). Next, we use FEED_ID to link
us to the specific feed we want to send the data to. Finally, we request the data stream to
connect to (if it doesn't already exist in the feed, the get_datastream() function will
create one for us).

For each data stream in the feed, we supply a name function and tags (these are keywords
that help us identify the data; we can use our data names for this).

Once we have defined our data streams, we enter the main loop. Here, we gather our data
values from dataDevice. We then set the current_value function and also the timestamp
of the data for each data item and apply them to our data stream objects.

Finally, when all the data is ready, we update each of the data streams and the data is sent
to Xively, appearing within a few moments on the dashboard of the device.

We can log in to our Xively account and view data as it comes in, using a standard web
browser. This provides the means to send data and remotely monitor it anywhere in the
world (perhaps from several Raspberry Pis at once, if required). The service even supports
the creation of triggers that can send additional messages back if certain items go out of
expected ranges, reach specific values, or match set criteria. The triggers can, in turn, be
used to control other devices or raise alerts, and so on. They can also be used in other
platforms, such as ThingSpeak or plot.ly.

Sensing and Displaying Real-World Data Chapter 10

[347]

See also
The AirPi Air Quality and Weather project (http://airpi.es) shows you how to add your
own sensors or use their AirPi kit to create your own air quality and weather station (with
data logging to your own Xively account). The site also allows you to share your Xively
data feeds with others around the world.

http://airpi.es

11
Building Neural Network

Modules for Optical Character
Recognition

This chapter presents the following recipes:

Using the Optical Character Recognition (OCR) system
Visualizing optical characters using the software
Building an optical character recognizer using neural networks
Application of the OCR system

Introduction
The OCR system is used to convert images of text into letters, words, and sentences. It is
widely used in various fields to convert/extract the information from the image. It is also
used in signature recognition, automated data evaluation, and security systems. It is
commercially used to validate data records, passport documents, invoices, bank statements,
computerized receipts, business cards, printouts of static data, and so on. OCR is a field of
research in pattern recognition, artificial intelligence, and computer vision.

Visualizing optical characters
Optical character visualization is a common method of digitizing printed texts so that such
texts can be electronically edited, searched, stored compactly, and displayed online.
Currently, they are widely used in cognitive computing, machine translation, text-to-speech
conversion, text mining, and so on.

Building Neural Network Modules for Optical Character Recognition Chapter 11

[349]

How to do it...
Import the following packages:1.

import os
import sys
import cv2
import numpy as np

Load the input data:2.

in_file = 'words.data'

Define the visualization parameters:3.

scale_factor = 10
s_index = 6
e_index = -1
h, w = 16, 8

Loop until you encounter the Esc key:4.

with open(in_file, 'r') as f:
 for line in f.readlines():
 information = np.array([255*float(x) for x in
line.split('t')[s_index:e_index]])
 image = np.reshape(information, (h,w))
 image_scaled = cv2.resize(image, None, fx=scale_factor,
fy=scale_factor)
 cv2.imshow('Image', image_scaled)
 a = cv2.waitKey()
 if a == 10:
 break

Type python visualize_character.py to execute the code:5.

Building Neural Network Modules for Optical Character Recognition Chapter 11

[350]

The result obtained when visualize_character.py is executed is shown here:6.

Building an optical character recognizer
using neural networks
This section describes the neural network based optical character identification scheme.

How to do it...
Import the following packages:1.

import numpy as np
import neurolab as nl

Read the input file:2.

in_file = 'words.data'

Building Neural Network Modules for Optical Character Recognition Chapter 11

[351]

Consider 20 data points to build the neural network based system:3.

Number of datapoints to load from the input file
num_of_datapoints = 20

Represent the distinct characters:4.

original_labels = 'omandig'
Number of distinct characters
num_of_charect = len(original_labels)

Use 90% of data for training the neural network and the remaining 10% for5.
testing:

train_param = int(0.9 * num_of_datapoints)
test_param = num_of_datapoints - train_param

Define the dataset extraction parameters:6.

s_index = 6
e_index = -1

Build the dataset:7.

information = []
labels = []
with open(in_file, 'r') as f:
 for line in f.readlines():
 # Split the line tabwise
 list_of_values = line.split('t')

Implement an error check to confirm the characters:8.

 if list_of_values[1] not in original_labels:
 continue

Extract the label and attach it to the main list:9.

 label = np.zeros((num_of_charect , 1))
 label[original_labels.index(list_of_values[1])] = 1
 labels.append(label)

Building Neural Network Modules for Optical Character Recognition Chapter 11

[352]

Extract the character and add it to the main list:10.

 extract_char = np.array([float(x) for x in
list_of_values[s_index:e_index]])
 information.append(extract_char)

Exit the loop once the required dataset has been loaded:11.

 if len(information) >= num_of_datapoints:
 break

Convert information and labels to NumPy arrays:12.

information = np.array(information)
labels = np.array(labels).reshape(num_of_datapoints,
num_of_charect)

Extract the number of dimensions:13.

num_dimension = len(information[0])

Create and train the neural network:14.

neural_net = nl.net.newff([[0, 1] for _ in
range(len(information[0]))], [128, 16, num_of_charect])
neural_net.trainf = nl.train.train_gd
error = neural_net.train(information[:train_param,:],
labels[:train_param,:], epochs=10000, show=100, goal=0.01)

Predict the output for the test input:15.

p_output = neural_net.sim(information[train_param:, :])
print "nTesting on unknown data:"
 for i in range(test_param):
 print "nOriginal:", original_labels[np.argmax(labels[i])]
 print "Predicted:", original_labels[np.argmax(p_output[i])]

Building Neural Network Modules for Optical Character Recognition Chapter 11

[353]

The result obtained when optical_character_recognition.py is executed is16.
shown in the following screenshot:

How it works...
A neural network-supported optical character recognition system is constructed to extract
the text from the images. This procedure involves training the neural network system,
testing, and validation using the character dataset.

Building Neural Network Modules for Optical Character Recognition Chapter 11

[354]

Readers can refer to the article Neural network based optical character recognition system to
learn the basic principles behind OCR: http:/ ​/​ieeexplore. ​ieee. ​org/ ​document/ ​6419976/ ​.

See also
Please refer to the following:

https:/​/ ​searchcontentmanagement. ​techtarget. ​com/ ​definition/ ​OCR- ​optical-
character- ​recognition

https:/​/ ​thecodpast. ​org/ ​2015/ ​09/​top- ​5- ​ocr-​apps/ ​

https:/​/ ​convertio. ​co/ ​ocr/ ​

Applications of an OCR system
An OCR system is widely used to convert/extract the text (the alphabet and numbers) from
an image. The OCR system is widely used to validate business documents, in automatic
number plate recognition, and in key character extraction from documents. It is also used to
make electronic images of printed documents searchable and to build assistive technology
for blind and visually impaired users.

http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
http://ieeexplore.ieee.org/document/6419976/
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://searchcontentmanagement.techtarget.com/definition/OCR-optical-character-recognition
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://thecodpast.org/2015/09/top-5-ocr-apps/
https://convertio.co/ocr/
https://convertio.co/ocr/
https://convertio.co/ocr/
https://convertio.co/ocr/
https://convertio.co/ocr/
https://convertio.co/ocr/
https://convertio.co/ocr/
https://convertio.co/ocr/
https://convertio.co/ocr/
https://convertio.co/ocr/

12
Building Robots

In this chapter, we will cover the following topics:

Building a Rover-Pi robot with forward driving motors
Using advanced motor control
Building a six-legged Pi-Bug robot
Controlling servos directly with ServoBlaster
Avoiding objects and obstacles
Getting a sense of direction

Introduction
A little computer with a "brain the size of a planet" (to quote Douglas Adams, the author of
Hitchhiker's Guide to the Galaxy) would be perfect as the brain of your own robotic creation.
In reality, the Raspberry Pi probably provides far more processing power than a little robot
or rover needs; however, its small size, excellent connectivity, and fairly low-power
requirements mean that it is ideally suited.

This chapter will focus on exploring the various ways we can combine motors or servos to
produce robotic movement, use sensors to gather information, and allow our creation to act
upon it.

Be sure to check out the Appendix, Hardware and Software List; it lists all of
the items used in this chapter and the places you can obtain them from.

Building Robots Chapter 12

[356]

Building a Rover-Pi robot with forward
driving motors
Creating robots does not need to be an expensive hobby. A small, rover-type robot can be
constructed using household items for the chassis (the base everything is attached to), and a
couple of small driving motors can be used to move it.

A Rover-Pi robot is a small, buggy-type robot that has two wheels and a skid or caster at the
front to allow it to turn. One such robot is shown in the following image:

A home-built Rover-Pi robot

While it may not be in the same league as a Mars exploration rover, as you will see, there is
plenty for you to experiment with.

You can also purchase one of many inexpensive robot kits that contain most of what you
need in a single package (see the There's more... section at the end of this example).

Getting ready
The rover that we will build will need to contain the elements shown in the following
diagram:

Building Robots Chapter 12

[357]

The separate parts of the Rover-Pi robot

The elements are discussed in detail as follows:

Chassis: This example uses a modified, battery-operated push nightlight
(although any suitable platform can be used). Remember that the larger and
heavier your robot is, the more powerful the driving motors will need to be to
move it. Alternatively, you can use one of the chassis kits listed in the There's
more... section. A suitable push nightlight is shown in the following photo:

This push nightlight forms the basic chassis of a Rover-Pi robot

Building Robots Chapter 12

[358]

Front skid or caster: This can be as simple as a large paper clip (76 mm/3 inches)
bent into shape, or a small caster wheel. A skid works best when it is on a smooth
surface, but it may get stuck on the carpet. A caster wheel works well on all
surfaces, but sometimes, it can have problems turning.
Wheels, motors, and gears: The wheel movement of the Rover-Pi robot is a
combination of the motor, gears, and wheels. The gears are helpful, as they allow
a fast-spinning motor to turn the wheels at a slower speed and more force
(torque); this will allow for better control of our robot. A unit that combines the
wheels, motors, and gears in a single unit is shown in the following photo:

These wheels, with built-in geared motors, are ideal for small rovers

Battery/power source: The Rover-Pi robot will be powered using four AA
batteries, fitted into the bay of the chassis. Alternatively, a standard battery
holder can be used, or even a long wire connected to a suitable power supply. It
is recommended that you power the motors from a supply independent from the
Raspberry Pi. This will help to avoid a situation in which the Raspberry Pi
suddenly loses power when driving the motors, which require a big jump in
current to move. Alternatively, you can power the Raspberry Pi with the batteries
using a 5V regulator. The following image shows a chassis with four AA
batteries:

Building Robots Chapter 12

[359]

Four AA batteries provide a power source to drive the wheels

Motor driver/controller: Motors will require a voltage and current greater than
the GPIO can handle. Therefore, we will use a Darlington array module (which
uses a ULN2003 chip). See the There's more... section at the end of this example for
more details on how this particular module works. The following photo shows a
Darlington array module:

This Darlington array module, available at http://www.dx.com, can be used to drive small motors

Building Robots Chapter 12

[360]

Small cable ties or wire ties: This will allow us to attach items, such as a motor
or a controller, to the chassis. The following photo shows the use of cable ties:

We use cable ties to secure the motors and wheels to the chassis

The Raspberry Pi connection: The easiest setup is to attach the control wires to
the Raspberry Pi using long cables, so that you can easily control your robot
directly using an attached screen and keyboard. Later, you can consider
mounting the Raspberry Pi on the robot and controlling it remotely (or even
autonomously, if you include sensors and intelligence to make sense of them).

In this chapter, we will use the wiringpi2 Python library to control the GPIO; see Chapter
10, Sensing and Displaying Real-World Data, for details on how to install it using a Python
package manager (pip).

How to do it...
Perform the following steps to create a small Rover-Pi robot:

At the front of the chassis, you will need to mount the skid by bending the1.
paperclip/wire into a V shape. Attach the paperclip/wire to the front of the
chassis by drilling small holes on either side, threading cable ties through the
holes around the wire, and pulling tightly to secure. The fitted wire skid should
look similar to the one shown in the following photo:

Building Robots Chapter 12

[361]

Wire skid fitted to the front of the Rover-Pi robot

Before you mount the wheels, you need to work out the approximate center of2.
gravity of the chassis (do this with the batteries fitted in the chassis, as they will
affect the balance). Get a feel of where the center is by trying to balance the unit
on two fingers on either side and finding out how far forward or backward the
chassis tilts. For my unit, this was about 1 cm (approximately one-third of an
inch) back from the center. You should aim to place the wheel axles slightly
behind this so that the rover will rest slightly forward on the skid. Mark the
location of the wheels on the chassis.
Drill three holes on each side to mount the wheels using the cable ties. If the cable3.
ties aren't long enough, you can join two together by pulling the end of one
through the end of the other (only pull through far enough for the tie to grip so
that it extends the tie). The following diagram shows how you can use the cable
ties:

Securely fix the motors to the chassis

Building Robots Chapter 12

[362]

Next, test the motors by inserting the batteries into the unit; then, disconnect the4.
wires that originally connected to the bulb, and touch them to the motor contacts.
Determine which connection on the motor should be positive and which should
be negative for the motor to move the robot forward (the top of the wheel should
move forward when the robot is facing forwards). Connect red and black wires to
the motor (on mine, black equals negative at the top of the motor, and red equals
positive at the bottom), ensuring that the wires are long enough to reach
anywhere on the chassis (around 14 cm, that is, approximately 5.5 inches, is
enough for the nightlight).

The Rover-Pi robot components should be wired up as shown in the following
diagram:

The wiring layout of the Rover-Pi robot

To make the connections, perform the following steps:

Connect the black wires of the motors to the OUT 1 (left) and OUT 2 (right)1.
output of the Darlington module, and connect the red wires to the last pin (the
COM connection).
Next, connect the battery wires to the GND/V- and V+ connections at the bottom2.
of the module.
Finally, connect the GND from the GPIO connector (Pin 6) to the same GND3.
connection.
Test the motor control by connecting 3.3V (GPIO Pin 1) to IN1 or IN2, to simulate4.
a GPIO output. When you're happy, connect GPIO Pin 16 to IN1 (for left) and
GPIO Pin 18 to IN2 (for right).

Building Robots Chapter 12

[363]

The wiring should now match the details given in the following table:

Raspberry Pi GPIO Darlington module

Pin 16: Left IN1

Pin 18: Right IN2

Pin 6: GND GND/V- (marked with -)

Motor 4 x AA battery Darlington module

Positive side of battery V+ (marked with +)

Negative side of battery GND/V- (marked with -)

Motors

Left motor: black wire OUT 1 (top pin in white socket)

Right motor: black wire OUT 2 (second pin in white socket)

Both motors: red wires COM (last pin in white socket)

Use the following rover_drivefwd.py script to test the control:

#!/usr/bin/env python3
#rover_drivefwd.py
#HARDWARE SETUP
GPIO
2[==X====LR====]26[=======]40
1[=============]25[=======]39
import time
import wiringpi2
ON=1;OFF=0
IN=0;OUT=1
STEP=0.5
PINS=[16,18] # PINS=[L-motor,R-motor]
FWD=[ON,ON]
RIGHT=[ON,OFF]
LEFT=[OFF,ON]
DEBUG=True

class motor:
 # Constructor
 def __init__(self,pins=PINS,steptime=STEP):
 self.pins = pins
 self.steptime=steptime
 self.GPIOsetup()

Building Robots Chapter 12

[364]

 def GPIOsetup(self):
 wiringpi2.wiringPiSetupPhys()
 for gpio in self.pins:
 wiringpi2.pinMode(gpio,OUT)

 def off(self):
 for gpio in self.pins:
 wiringpi2.digitalWrite(gpio,OFF)

 def drive(self,drive,step=STEP):
 for idx,gpio in enumerate(self.pins):
 wiringpi2.digitalWrite(gpio,drive[idx])
 if(DEBUG):print("%s:%s"%(gpio,drive[idx]))
 time.sleep(step)
 self.off()

 def cmd(self,char,step=STEP):
 if char == 'f':
 self.drive(FWD,step)
 elif char == 'r':
 self.drive(RIGHT,step)
 elif char == 'l':
 self.drive(LEFT,step)
 elif char == '#':
 time.sleep(step)

def main():
 import os
 if "CMD" in os.environ:
 CMD=os.environ["CMD"]
 INPUT=False
 print("CMD="+CMD)
 else:
 INPUT=True
 roverPi=motor()
 if INPUT:
 print("Enter CMDs [f,r,l,#]:")
 CMD=input()
 for idx,char in enumerate(CMD.lower()):
 if(DEBUG):print("Step %s of %s: %s"%(idx+1,len(CMD),char))
 roverPi.cmd(char)

if __name__=='__main__':
 try:
 main()
 finally:
 print ("Finish")
#End

Building Robots Chapter 12

[365]

Remember that wiringpi2 should be installed before running the scripts
in this chapter (see Chapter 10, Sensing and Displaying Real-World Data).

Run the previous code using the following command:

sudo python3 rover_drivefwd.py

The script will prompt you with the following message:

Enter CMDs [f,r,l,#]:

You can enter a series of commands to follow; for example:

ffrr#ff#llff

The preceding command will instruct the Rover-Pi robot to perform a series of movements:
forward (f), right (r), pause (#), and left (l).

How it works...
Once you have built the robot and wired up the wheels to the motor controller, you can
work out how to control it.

Start by importing time (which will allow you to put pauses in the motor control) and
wiringpi2 (to allow control of the GPIO pins). Use wiringpi2 here, since it makes it much
easier to make use of I/O expanders and other I2C devices, if you want to later on.

Define values to use for setting the pins ON/OFF, for the direction IN/OUT, as well as the
duration of each motor STEP. Also, define which PINS are wired to the motor controls, and
our movements, FWD, RIGHT, and LEFT. The movement is defined in such a way that by
switching both motors ON, you will move forward, and by switching just one motor ON, you
will turn. By setting these values at the start of the file using variables, our code is easier to
maintain and understand.

Building Robots Chapter 12

[366]

We define a motor class that will allow us to reuse it in other code, or easily swap it with
alternative motor classes so that we can use other hardware if we want to. We set the
default pins we are using and our steptime value (the steptime object defines how long
we drive the motor(s) for in each step). However, both can still be specified when
initializing the object, if desired.

Next, we call GPIOsetup(); it selects the physical pin numbering mode (so we can refer to
the pins as they are located on the board). We also set all of the pins we are using to output.

Finally, for the motor class, we define the following three functions:

The first function we define (called off()) will allow us to switch off the motors,
so we cycle through the pins list and set each GPIO pin to low (and therefore
switch the motors off).
The drive() function allows us to provide a list of drive actions (a combination
of ON and OFF for each of the GPIO pins). Again, we cycle through each of the
pins and set them to the corresponding drive action, wait for the step time, and
then switch the motors off using the off() function.
The last function we define (called cmd()) simply allows us to send char (a
single character) and use it to select the set of drive actions we want to use (FWD,
RIGHT or LEFT, or wait (#)).

For testing, main() allows us to specify a list of actions that need to be performed from the
command line using the following command:

sudo CMD=f#lrr##fff python3 rover_drivefwd.py

Using os.environ (by importing the os module so we can use it), we can check for CMD in
the command and use it as our list of drive actions. If no CMD command has been provided,
we can use the input() function to directly prompt for a list of drive actions. To use the
motor class, we set roverPi=motor(); this allows us to call the cmd() function (of the
motor class) with each character from the list of drive actions.

Building Robots Chapter 12

[367]

There's more...
Your robot should be limited only by your own creativity. There are lots of suitable chassis
options, other motors, wheels, and ways to control and drive the wheels. You should
experiment and test things to determine which combinations work best together. That is all
part of the fun!

Darlington array circuits
Darlington transistors are a low-cost way to drive high powered devices, such as motors, or
even relays. They consist of two transistors arranged in a series, where one feeds the other
(allowing the gain in the current to be multiplied). That is, if the first transistor has a gain of
20, and the second one also has a gain of 20, together, they will provide an overall gain of
400.

This means that 1 mA on the base pin (1) in the following diagram will allow you to drive
up to 400 mA through the Darlington transistor. The Darlington transistor's electrical
symbol is shown in the following diagram:

The electrical symbol for a Darlington transistor shows how two transistors are packaged together

Building Robots Chapter 12

[368]

The ULN2003 chip is used in the previous module and provides seven NPN Darlington
transistors (an eight-way version, ULN2803, is also available if more output is required or to
use with two stepper motors). The following diagram shows how a Darlington array can be
used to drive motors:

A Darlington array being used to drive two small motors

Each output from the chip can supply a maximum of 500 mA at up to 50V (enough to
power most small motors). However, with extended use, the chip may overheat, so a heat
sink is recommended when driving larger motors. An internal diode, connected across each
Darlington for protection, is built into the chip. This is needed because when the motor
moves without being driven (this can occur due to the natural momentum of the motor), it
will act like a generator. A reverse voltage called back EMF is created, which would destroy
the transistor if it wasn't dissipated back through the diode.

One disadvantage of the chip is that the positive supply voltage must always be connected
to the common pin (COM), so each output is only able to sink current. That is, it will only
drive the motor in one direction, with the positive voltage on COM and the negative
voltage on the OUT pins. Therefore, we will need a different solution if we wish to drive
our Rover-Pi robot in different directions (see the next example in the Using advanced motor
control recipe).

These chips can also be used to drive certain types of stepper motors. One of the modules
from http://www.dx.com includes a stepper motor as a part of the kit. Although the gearing
is for very slow movement, at around 12 seconds per rotation (too slow for a rover), it is still
interesting to use (for a clock, perhaps).

http://www.dx.com
http://www.dx.com

Building Robots Chapter 12

[369]

Transistor and relay circuits
Relays are able to handle much more highly powered motors, since they are mechanical
switches controlled by an electromagnetic coil that physically moves the contacts together.
However, they require a reasonable amount of current to be turned on – usually more than
3.3V. To switch even small relays, we need around 60 mA at 5V (more than is available
from the GPIO), so we will still need to use some additional components to switch it.

We can use the Darlington array (as used previously) or a small transistor (any small
transistor, such as the 2N2222, will be fine) to provide the current and voltage required to
switch it. The following circuit will allow us to do that:

The transistor and relay circuit used to drive external circuits

Much like a motor, a relay can also generate EMF spikes, so a protection diode is needed to
avoid any reverse voltage on the transistor.

Building Robots Chapter 12

[370]

This is a very useful circuit, not just for driving motors, but for any external circuit; the
physical switch allows it to be independent and electrically isolated from the Raspberry Pi
controlling it.

As long as the relay is rated correctly, you can drive DC or AC devices through it.

You can use some relays to control items powered by the mains. However,
this should be done only with extreme caution and proper electrical
training. Electricity from the mains can kill or cause serious harm.

PiBorg has a ready-made module named the PicoBorg that will allow the switching of up to
four relays. It uses devices called metal-oxide-semiconductor field-effect
transistor (MOSFETs), which are essentially high-power versions of transistors that
function with the same principle as discussed previously.

Tethered or untethered robots
An important choice when designing your own Rover-Pi robot is to decide if you want to
make it fully self-contained, or if you are happy to have a tether (a long control/power cable
connected to the Rover-Pi). Using a tether, you can keep the weight of the Rover-Pi robot
down, which means the small motors will be able to move the unit with ease. This will
allow you to keep the Raspberry Pi separate from the main unit so that it can remain
connected to a screen and keyboard for easy programming and debugging. The main
disadvantage is that you will need a long, umbilical-like connection to your Rover-Pi robot
(with a wire for each control signal) that may impede its movement. However, as we will
see later, you may only need three or four wires to provide all of the control you need (see
the Using I/O expanders section in the next recipe).

If you intend to mount the Raspberry Pi directly on the Rover-Pi robot, you will need a
suitable power supply, such as a phone charger battery pack. If the battery pack has two
USB ports, then you may be able to use it as a power source to drive both the Raspberry Pi
and the motors. The unit must be able to maintain the supplies independently, as any
power spike caused by driving the motors could reset the Raspberry Pi.

Remember that if the Raspberry Pi is now attached to the robot, you will need a means to
control it. This could be a USB Wi-Fi dongle that allows a remote connection via SSH (and
so on), or a wireless keyboard (that uses RF/Bluetooth), or even the GPIO D-Pad from
Chapter 9, Using Python to Drive Hardware, which can be used for direct control.

Building Robots Chapter 12

[371]

However, the more you mount on the chassis, the harder the motors will need to work to
move. You may find that stronger motors are required, rather than the little ones used here.
A Rover-Pi robot powered by a USB battery pack is shown in the following photo:

A battery-powered Raspberry Rover-Pi robot being controlled via Wi-Fi (cable management is optional)

Rover kits
If you don't fancy making your own chassis, there are also a number of pre-made rover
chassis available. They are as follows:

2WD Magician Robot Chassis from https:/ ​/​www. ​sparkfun. ​com/​

4-Motor Smart Car Chassis from http:/ ​/​www. ​dx. ​com/​

https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
https://www.sparkfun.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/

Building Robots Chapter 12

[372]

2-Wheel Smart Car Model from http:/ ​/ ​www.​dx. ​com/ ​

The TiddlyBot shows how multiple components can be integrated together within a single platform, as shown in my modified version

A particularly nice robot setup is the TiddlyBot (from http://www.PiBot.org), which
combines multiple sensors, continuous servos, an onboard battery pack, and the Raspberry
Pi camera. An SD card is set up so the TiddlyBot acts as a Wi-Fi hotspot, hosting a simple
drag and drop programming platform with a remote control interface.

http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.dx.com/
http://www.PiBot.org
http://www.PiBot.org

Building Robots Chapter 12

[373]

This shows how simple components such as the ones described in this chapter can be
combined into a complete system:

The TiddlyBot GUI provides a cross-platform drag and drop interface, as well as Python support

Be sure to check out the Appendix, Hardware and Software List; it lists all of
the items used in this chapter and the places you can obtain them from.

Using advanced motor control
The previous driving circuits are not suitable for driving motors in more than one direction
(as they only switch the motor on or off). However, using a circuit named an H-bridge, you
can switch and control the motor's direction, too.

Building Robots Chapter 12

[374]

The switch combinations are shown in the following diagram:

The direction of the motor can be controlled by different switch combinations

Using a different combination of switching, we can change the direction of the motor by
switching the positive and negative supply to the motor (SW1 and SW4 activate the motor,
and SW2 and SW3 reverse the motor). However, not only do we need four switching
devices for each motor, but since the ULN2X03 devices and PiBorg's PicoBorg module can
only sink current, equivalent devices would be required to source current (to make up the
top section of switches).

Fortunately, there are purpose-built H-bridge chips, such as L298N, that contain the
previous circuit inside them to provide a powerful and convenient way to control motors.

Building Robots Chapter 12

[375]

Getting ready
We shall replace the previous Darlington array module with the H-bridge motor controller
shown in the following image:

The H-bridge motor controller allows for directional control of motors

The datasheet of L298N is available at
http://www.st.com/resource/en/datasheet/l298.pdf.

How to do it...
The unit will need to be wired as follows (this will be similar for other H-bridge type
controllers, but check with the relevant datasheet if unsure).

http://www.st.com/resource/en/datasheet/l298.pdf

Building Robots Chapter 12

[376]

The following table shows how the motors and motor power supply connect to the H-
bridge controller module:

The motor side of the module – connecting to the battery and motors

Motor A VMS GND 5V OUT Motor B

Left motor
red wire

Left motor
black wire

Battery
positive

Battery
GND None

Right
motor red
wire

Right motor
black wire

The following table shows how the H-bridge controller module connects to the Raspberry
Pi:

Control side of the module – connecting to the Raspberry Pi GPIO header

ENA IN1 IN2 IN3 IN4 ENB GND 5V

None Pin 15 Pin 16 Pin 18 Pin 22 None Pin 6 None

It is recommended that you keep the pull-up resistor jumpers on (UR1-UR4) and allow the
motor supply to power the onboard voltage regulator, which will in turn power the L298N
controller (jumper 5V_EN). The onboard regulator (the 78M05 device) can supply up to 500
mA, enough for the L298N controller plus any additional circuits, such as an I/O expander
(see the There's more... section for more information). Both the ENA and ENB pins should be
disconnected (the motor output will stay enabled by default).

You will need to make the following changes to the previous rover_drivefwd.py script
(you can save it as rover_drive.py).

At the top of the file, redefine PINS, as follows:

PINS=[15,16,18,22] # PINS=[L_FWD,L_BWD,R_FWD,R_BWD]

Building Robots Chapter 12

[377]

And update the control patterns, as follows:

FWD=[ON,OFF,ON,OFF]
BWD=[OFF,ON,OFF,ON]
RIGHT=[OFF,ON,ON,OFF]
LEFT=[ON,OFF,OFF,ON]

Next, we need to add the backwards command to cmd(), as follows:

 def cmd(self,char,step=STEP):
 if char == 'f':
 self.drive(FWD,step)
 elif char == 'b':
 self.drive(BWD,step)
 elif char == 'r':
 self.drive(RIGHT,step)
 elif char == 'l':
 self.drive(LEFT,step)
 elif char == '#':
 time.sleep(step)

Finally, we can update the prompt that we have within the main() function to include b
(backwards) as an option, as follows:

print("Enter CMDs [f,b,r,l,#]:")

How it works...
The H-bridge motor controller recreates the previous switching circuit with additional
circuitry to ensure that the electronic switches cannot create a short circuit (by not allowing
SW1 and SW3 or SW2 and SW4 to be enabled at the same time).

Building Robots Chapter 12

[378]

The H-bridge motor controller's switching circuit is shown in the following diagram:

An approximation of the H-bridge switching circuit (in motor off state)

The input (IN1 and IN2) will produce the following action on the motors:

IN1
IN2 0 1

0 Motor off Motor backwards

1 Motor forwards Motor off

As we did in the previous recipe, we can move forward by driving both motors forward;
however, now we can drive them both backwards (to move backwards), as well as in
opposite directions (allowing us to turn the Rover-Pi robot on the spot).

There's more...
We can achieve finer control of the motors using a pulse width modulated (PWM) signal
and expand the available input/output using an I/O expander.

Building Robots Chapter 12

[379]

Motor speed control using PWM control
Currently, the Rover-Pi robot motors are controlled by being switched on and off; however,
if the robot is moving too fast (for example, if you have fitted bigger motors or used higher
gearing), we can make use of the ENA and ENB input on the controller. If these are set low,
the motor output is disabled, and if set high, it is enabled again. Therefore, by driving them
with a PWM signal, we can control the speed of the motors. We could even set slightly
different PWM rates (if required) to compensate for any differences in the motors/wheels or
surface to drive them at slightly different speeds, as shown in the following diagram:

A PWM signal controls the ratio of the ON and OFF times

A PWM signal is a digital on/off signal that has different amounts of ON time compared to
OFF time. A motor driven with a 50:50, ON:OFF signal would drive a motor with half the
power of an ON signal at 100 percent, and would therefore run more slowly. Using
different ratios, we can drive the motors at different speeds.

We can use the hardware PWM of the Raspberry Pi (GPIO pin 12 can use the PWM driver).

The PWM driver normally provides one of the audio channels of the
analog audio output. Sometimes, this generates interference; therefore, it is
suggested that you disconnect any devices connected to the analog audio
socket.

The hardware PWM function is enabled in wiringpi2 by setting the pin mode to 2 (which
is the value of PWM) and specifying the on time (represented as ON_TIME) as follows:

PWM_PIN=12; PWM=2; ON_TIME=512 #0-1024 Off-On

 def GPIOsetup(self):
 wiringpi2.wiringPiSetupPhys()
 wiringpi2.pinMode(PWM_PIN,PWM)
 wiringpi2.pwmWrite(PWM_PIN,ON_TIME)

Building Robots Chapter 12

[380]

 for gpio in self.pins:
 wiringpi2.pinMode(gpio,OUT)

However, this is only suitable for joint PWM motor control (as it is connected to both ENA
and ENB), since there is only the one available hardware PWM output.

Another alternative is to use the software PWM function of wiringpi2. This creates a crude
PWM signal using software; depending on your requirements, this may be acceptable. The
code for generating a software PWM signal on GPIO Pin 7 and GPIO Pin 11 is as follows:

PWM_PIN_ENA=7;PWM_PIN_ENA=11;RANGE=100 #0-100 (100Hz Max)
ON_TIME1=20; ON_TIME2=75 #0-100
ON_TIME1=20 #0-100
 def GPIOsetup(self):
 wiringpi2.wiringPiSetupPhys()
 wiringpi2.softPwmCreate(PWM_PIN_ENA,ON_TIME1,RANGE)
 wiringpi2.softPwmCreate(PWM_PIN_ENB,ON_TIME2,RANGE)
 for gpio in self.pins:
 wiringpi2.pinMode(gpio,OUT)

The previous code sets both pins to 100 Hz, with GPIO Pin 7 set to an on time of 2 ms (and
an off time of 8 ms) and GPIO Pin 11 set to 7.5 ms/2.5 ms.

To adjust the PWM timings, use wiringpi2.softPwmWrite(PWM_PIN_ENA,ON_TIME2).

The accuracy of the PWM signal may be interrupted by other system processes, but it can
control a small micro servo, even if it's slightly jittery.

Using I/O expanders
As we saw previously (in Chapter 10, Sensing and Displaying Real-World Data), wiringpi2
allows us to easily adjust our code to make use of I/O expanders using I2C. In this case, it
can be useful to add additional circuits, such as sensors and LED status indicators, and
perhaps even displays and control buttons, to assist with debugging and controlling the
Rover-Pi robot as you develop it.

It can be particularly helpful if you intend to use it as a tethered device, since you will only
require three wires to connect back to the Raspberry Pi (I2C Data GPIO Pin 3, I2C Clock
GPIO Pin 5, and Ground GPIO Pin 6), with I2C VCC being provided by the motor controller
5V output.

Building Robots Chapter 12

[381]

As shown in the earlier example, add defines for the I2C address and pin base, as follows:

IO_ADDR=0x20
AF_BASE=100

Then, in gpiosetup(), set up the MCP23017 device using the following code:

wiringpi2.mcp23017Setup(AF_BASE,IO_ADDR)

Ensure that any pin references you make are numbered 100-115 (to refer to the I/O expander
pins A0-7 and B0-7) with AF_BASE added (which is the pin offset for the I/O expander).

Building a six-legged Pi-Bug robot
Controlling motors is very useful for creating vehicle-like robots, but creating more
naturally behaving robot components (such as servos) can provide excellent results. There
are many creative designs of insect-like robots, or even biped designs (with humanoid-like
legs) that use servos to provide natural joint movements. The design in this example uses
three servos, but these principles and concepts can be easily applied to far more complex
designs, to control legs/arms that use multiple servos. The Pi-Bug robot is shown in the
following photo:

The six-legged Pi-Bug robot uses a servo driver to control three servos to scuttle around

Building Robots Chapter 12

[382]

Getting ready
You will need the following hardware:

A PWM driver module: A driver module, such as the Adafruit 16-Channel 12-bit
PWM/Servo Driver, will be needed. This uses a PCA9685 device; see the
datasheet at http://www.adafruit.com/datasheets/PCA9685.pdf for details.
Three micro servos: The MG90S 9g Metal Gear Servos provide a reasonable
amount of torque at a low cost.
A heavy gauge wire: This will form the legs; three giant paper clips (76 mm/3
inches) are ideal for this.
A light gauge wire/cable ties: These will be used to connect the legs to the servos
and to mount the servos to the main board.
A small section of plywood or fiberboard: Holes can be drilled into this, and the
servos can be mounted on it.

You will need to have wiringpi2 installed to control the PWM module, and it will be
useful to install the I2C tools for debugging. See Chapter 10, Sensing and Displaying Real-
World Data, for details on how to install wiringpi2 and the I2C tools. The I2C connections
are shown in the following diagram:

I2C connections on the Raspberry Pi GPIO header

How to do it...
The Pi-Bug robot uses three servos, one on either side and one in the middle. Mount each
servo by drilling a hole on either side of the servo body, looping a wire or cable ties through
it, and pulling to hold the servo tightly.

http://www.adafruit.com/datasheets/PCA9685.pdf

Building Robots Chapter 12

[383]

Bend the paper clip wire into a suitable shape to form the Pi-Bug robot's legs, and add a
small kink that will allow you to wire the legs securely to the servo arms. It is
recommended that you run the program first, with the Pi-Bug robot set to the home
position h, before you screw the servo arms in place. This will ensure that the legs are
located in the middle.

The following diagram shows the components on the Pi-Bug robot:

The layout of components on the Pi-Bug robot

Create the following servoAdafruit.py script to control the servos:

#!/usr/bin/env python3
#servoAdafruit.py
import wiringpi2
import time

#PWM Registers
MODE1=0x00
PRESCALE=0xFE
LED0_ON_L=0x06
LED0_ON_H=0x07
LED0_OFF_L=0x08
LED0_OFF_H=0x09

PWMHZ=50
PWMADR=0x40

class servo:

Building Robots Chapter 12

[384]

 # Constructor
 def __init__(self,pwmFreq=PWMHZ,addr=PWMADR):
 self.i2c = wiringpi2.I2C()
 self.devPWM=self.i2c.setup(addr)
 self.GPIOsetup(pwmFreq,addr)

 def GPIOsetup(self,pwmFreq,addr):
 self.i2c.read(self.devPWM)
 self.pwmInit(pwmFreq)

 def pwmInit(self,pwmFreq):
 prescale = 25000000.0 / 4096.0 # 25MHz / 12-bit
 prescale /= float(pwmFreq)
 prescale = prescale - 0.5 #-1 then +0.5 to round to
 # nearest value
 prescale = int(prescale)
 self.i2c.writeReg8(self.devPWM,MODE1,0x00) #RESET
 mode=self.i2c.read(self.devPWM)
 self.i2c.writeReg8(self.devPWM,MODE1,
 (mode & 0x7F)|0x10) #SLEEP
 self.i2c.writeReg8(self.devPWM,PRESCALE,prescale)
 self.i2c.writeReg8(self.devPWM,MODE1,mode) #restore mode
 time.sleep(0.005)
 self.i2c.writeReg8(self.devPWM,MODE1,mode|0x80) #restart

 def setPWM(self,channel, on, off):
 on=int(on)
 off=int(off)
 self.i2c.writeReg8(self.devPWM,
 LED0_ON_L+4*channel,on & 0xFF)
 self.i2c.writeReg8(self.devPWM,LED0_ON_H+4*channel,on>>8)
 self.i2c.writeReg8(self.devPWM,
 LED0_OFF_L+4*channel,off & 0xFF)
 self.i2c.writeReg8(self.devPWM,LED0_OFF_H+4*channel,off>>8)

def main():
 servoMin = 205 # Min pulse 1ms 204.8 (50Hz)
 servoMax = 410 # Max pulse 2ms 409.6 (50Hz)
 myServo=servo()
 myServo.setPWM(0,0,servoMin)
 time.sleep(2)
 myServo.setPWM(0,0,servoMax)
if __name__=='__main__':
 try:
 main()
 finally:
 print ("Finish")
#End

Building Robots Chapter 12

[385]

Create the following bug_drive.py script to control the Pi-Bug robot:

#!/usr/bin/env python3
#bug_drive.py
import time
import servoAdafruit as servoCon

servoMin = 205 # Min pulse 1000us 204.8 (50Hz)
servoMax = 410 # Max pulse 2000us 409.6 (50Hz)

servoL=0; servoM=1; servoR=2
TILT=10
MOVE=30
MID=((servoMax-servoMin)/2)+servoMin
CW=MID+MOVE; ACW=MID-MOVE
TR=MID+TILT; TL=MID-TILT
FWD=[TL,ACW,ACW,TR,CW,CW]#[midL,fwd,fwd,midR,bwd,bwd]
BWD=[TR,ACW,ACW,TL,CW,CW]#[midR,fwd,fwd,midL,bwd,bwd]
LEFT=[TR,ACW,CW,TL,CW,ACW]#[midR,fwd,bwd,midL,bwd,fwd]
RIGHT=[TL,ACW,CW,TR,CW,ACW]#[midL,fwd,bwd,midR,bwd,fwd]
HOME=[MID,MID,MID,MID,MID,MID]
PINS=[servoM,servoL,servoR,servoM,servoL,servoR]
STEP=0.2
global DEBUG
DEBUG=False

class motor:
 # Constructor
 def __init__(self,pins=PINS,steptime=STEP):
 self.pins = pins
 self.steptime=steptime
 self.theServo=servoCon.servo()

 def off(self):
 #Home position
 self.drive(HOME,step)

 def drive(self,drive,step=STEP):
 for idx,servo in enumerate(self.pins):
 if(drive[idx]==servoM):
 time.sleep(step)
 self.theServo.setPWM(servo,0,drive[idx])
 if(drive[idx]==servoM):
 time.sleep(step)
 if(DEBUG):print("%s:%s"%(gpio,drive[idx]))

 def cmd(self,char,step=STEP):

Building Robots Chapter 12

[386]

 if char == 'f':
 self.drive(FWD,step)
 elif char == 'b':
 self.drive(BWD,step)
 elif char == 'r':
 self.drive(RIGHT,step)
 elif char == 'l':
 self.drive(LEFT,step)
 elif char == 'h':
 self.drive(HOME,step)
 elif char == '#':
 time.sleep(step)

def main():
 import os
 DEBUG=True
 if "CMD" in os.environ:
 CMD=os.environ["CMD"]
 INPUT=False
 print("CMD="+CMD)
 else:
 INPUT=True
 bugPi=motor()
 if INPUT:
 print("Enter CMDs [f,b,r,l,h,#]:")
 CMD=input()
 for idx,char in enumerate(CMD.lower()):
 if(DEBUG):print("Step %s of %s: %s"%(idx+1,len(CMD),char))
 bugPi.cmd(char)
if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 print ("Finish")
#End

How it works...
We explain the previous script functions by exploring how the servos are controlled using a
PWM. Next, we will see how the servo class provides the methods to control the PCA9685
device. Finally, we will look at how the movements of the three servos combine to produce
forward and turning motions for the Pi-Bug robot itself.

Building Robots Chapter 12

[387]

Controlling the servos
To control the servos used for the Pi-Bug robot, we require a special control signal that will
determine the angle that the servo is required to move to. We will send the servo a PWM
signal, where the duration of the on time will allow us to control the angle of the servo arm
(and thereby, allow us to control the Pi-Bug robot's legs). The following diagram shows
how a PWM signal can be used to control the angle of the servo:

The angle of the servo is controlled by the duration of the up time of the PWM signal

Most servos will have an angular range of approximately 180 degrees and a mid-position of
90 degrees. A PWM frequency of 50 Hz will have a period of 20 ms, and the mid-position of
90 degrees typically corresponds to an Up Time of 1.5 ms, with a range of +/- 0.5 ms to 0.4
ms for near 0 degrees and near 180 degrees. Each type of servo will be slightly different, but
you should be able to adjust the code to suit if required. The following diagram shows how
you can control the servo angle using different PWM Up Times:

The servo angle is controlled by sending a PWM Up Time between 1 ms and 2 ms

Building Robots Chapter 12

[388]

Another type of servo is called a continuous servo (not used here). It
allows you to control the rotation speed instead of the angle, and will
rotate at a constant speed depending on the PWM signal that has been
applied. Both servo types have internal feedback loops that will
continuously drive the servo until the required angle or speed is reached.

Although it is theoretically possible to generate these signals using software, you will find
that any tiny interruption by other processes on the system will interfere with the signal
timing; this, in turn, will produce an erratic response from the servo. This is why we use a
hardware PWM controller, which only needs to be set with a specific up and down time, to
then automatically generate the required signal for us.

The servo class
The servo code is based on the PWM driver that Adafruit uses for their module; however, it
is not Python 3 friendly, so we need to create our own version. We will use wiringpi2 I2C
driver to initialize and control the I2C PWM controller. We define the registers that we will
need to use (see the datasheet for the PCA9685 device), as well as its default bus
address, 0x40 (PWMADR), and a PWM frequency of 50 Hz (PWMHZ).

Within our servo class, we initialize the I2C driver in wiringpi2 and set up our devPWM
device on the bus. Next, we initialize the PWM device itself (using pwmInit()). We have to
calculate the prescaler required for the device to convert the onboard 25 MHz clock to a 50
Hz signal to generate the PWM frequency we need; we will use the following formula:

The prescale register value sets the PWM frequency using a 12-bit value to scale the 25 MHz clock

The prescale value is loaded into the device, and a device reset is triggered to enable it.

Next, we create a function to allow the PWM ON and OFF times to be controlled. The ON and
OFF times are 12-bit values (0-4096), so each value is split into upper and lower bytes (8-bits
each) that need to be loaded into two registers. For the L (low) registers, we mask off the
upper 8 bits using &0xFF, and for the H (high) registers, we shift down by 8 bits to provide
the higher 8 bits. Each PWM channel will have two registers for the on time and two for the
off time, so we can multiply the addresses of the first PWM channel registers by 4 and the
channel number to get the addresses of any of the others.

Building Robots Chapter 12

[389]

To test our servo class, we define the minimum and maximum ranges of the servos, which
we calculate as follows:

The PWM frequency of 50 Hz has a 20 ms period (T=1/f)
The ON/OFF times range from 0-4,096 (so 0 ms to 20 ms)

Now, we can calculate the control values for 0 degrees (1 ms) and 180 degrees (2 ms)
as follows:

1 ms (servo min) is equal to 4,096/20 ms, which is 204.8
2 ms (servo max) is equal to 4,096/10 ms, which is 409.6

We round the values to the nearest whole number.

Learning to walk
The Pi-Bug robot uses a common design that allows three servos to be used to create a
small, six-legged robot. The servos at the two ends provide forward and backward
movement, while the servo in the middle provides the control. The following photo shows
the mounted servos:

The servos are mounted upside-down on the underside of the board

The following table assumes that the left and right servos are mounted upside-down on the
underside of the board, with the middle servo fitted vertically. You will have to adjust the
code if mounted differently.

Building Robots Chapter 12

[390]

The following table shows the servo movements used to walk forward:

Direction Middle (servoM) Left (servoL) Right (servoR)

home MID/Middle MID/Middle MID/Middle

fwdStep1 TR/Right side up ACW/Legs forward ACW/Legs backward

fwdStep2 TL/Left side up CW/Legs backward CW/Legs forward

The following diagram shows how the movement makes the Pi-Bug robot step forward:

The Pi-Bug robot moving forward

While it may seem a little confusing at first, when you see the robot moving, it should make
more sense.

For the first forward step, we move the middle servo (servoM) clockwise so that the left
side of the Pi-Bug robot is lifted off the ground by the movement of the remaining middle
leg. We can then move the left servo (servoL) to move the legs on the left side forward
(ready for movement later; they are not touching the ground at this point). Now, by moving
the right servo (servoR), we can move the legs on the right backwards (allowing the Pi-Bug
robot to be pushed forward on that side).

The second forward step is the same, except that we use the middle servo (servoM) to lift
the right side off the ground. Again, we move the legs that are off the ground forward
(ready for next time) and then move the legs on the other side backward (allowing that side
of the Pi-Bug robot to move forward). By repeating the forward steps, the Pi-Bug robot will
move forward; or, by swapping the sides that are being lifted up by the middle servo
(servoM), it will move backward. The result is a rather bug-like scuttle!

Building Robots Chapter 12

[391]

To make the Pi-Bug robot turn, we perform a similar action, except that just like the
advanced motor control for the Rover-Pi robot, we move one side of the robot forward and
the other side backward. The following table shows the servo movements used to turn
right:

Direction Middle (servoM) Left (servoL) Right (servoR)

home MID/Middle MID/Middle MID/Middle

rightStep1 TL/Left side up CW/Legs backward ACW/Legs backward

rightStep2 TR/Right side up ACW/Legs forward CW/Legs forward

The steps to turn the Pi-Bug robot to the right are shown in the following diagram:

The Pi-Bug robot making a right turn

To turn right, we lift the left side of the Pi-Bug robot off the ground, but this time, we move
the legs on both sides backward. This allows the right side of the Pi-Bug robot to move
forward. The second half of the step lifts the right side off the ground, and we move the legs
forward (which will push the left side of the Pi-Bug robot backward). In this manner, the
bug will turn as it steps; again, just by swapping the sides that are being lifted, we can
change the direction that the Pi-Bug robot will turn in.

Building Robots Chapter 12

[392]

The Pi-Bug code for walking
The code for the Pi-Bug robot has been designed to provide the same interface as the Rover-
Pi robot so that they can be interchanged easily. You should notice that each class consists
of the same four functions (__init__(), off(), drive(), and cmd()). The __init__()
function defines the set of pins we will control, the steptime value of the walking action
(this time, the gap between movements), and the previously defined servo module.

Once again, we have an off() function that provides a function that can be called to set the
servos in their middle positions (which is very useful for when you need to fit the legs in
position, as described previously in the home position). The off() function uses the
drive() function to set each servo to the MID position. The MID value is halfway between
servoMin and servoMax (1.5 ms to give a position of 90 degrees).

The drive() function is just like the previous motor control version; it cycles through each
of the actions required for each servo, as defined in the various movement patterns (FWD,
BWD, LEFT, and RIGHT) we discussed previously. However, to reproduce the required
pattern of movement, we cycle through each servo twice, while inserting a small delay
whenever we move the middle servo (servoM). This allows time for the servo to move and
provide the necessary tilt to lift the other legs off the ground before allowing them to move.

We define each of the servo commands as a clockwise (CW) or
anticlockwise/counterclockwise (ACW) movement of the servo arm. Since the servos are
mounted upside down, an ACW (CW, if viewed from above) movement of the left servo
(servoL) will bring the legs forwards, while the same direction of movement on the right
servo (servoR) will move the legs backward (which is fwdStep1 in the previous diagram).
In this way, each of the patterns can be defined.

Once again, we provide a test function using the following command that allows a list of
instructions to either be defined from the command line or directly entered at the prompt:

sudo CMD=fffll##rr##bb##h python3 bug_drive.py

This includes the addition of h to return to the home position, if desired.

Controlling servos directly with ServoBlaster
The previous recipe demonstrated using a dedicated servo controller to handle the control
of the servos used by the Pi-Bug. This has the advantage that any disturbances in the
processing taking place on the Raspberry Pi do not cause interference with the delicate
servo control (since the controller will continue to send the correct signals).

Building Robots Chapter 12

[393]

However, the Raspberry Pi is also capable of direct servo control. To achieve this, we will
make use of Richard Hurst's ServoBlaster, which is a multiple servo driver.

In this recipe, we will control four servos attached to the MeArm, a simple laser-cut robot
arm; however, you can choose to fit servos to whatever device you like:

The MeArm is a simple robot arm powered by four miniature servos

Getting ready
Most common servos will have three wires and a three pin connector, as follows:

Black/Brown Red Orange/White/Yellow/Blue

Ground Positive supply (typically 5V for small servos) Signal

Building Robots Chapter 12

[394]

While it is usually possible to power the servos directly from the Raspberry Pi 5V pins on
the GPIO header, they can draw a significant amount of current when moving. Unless you
have a very good power supply, this can cause the Raspberry Pi to reset unexpectedly,
risking corrupting the SD card. Therefore, it is recommended that you power them
separately; for example, with an additional USB power supply and cable connected to the
ground and positive supply.

By default, the servos can be wired as follows:

Servo 0 1 2 3 4 5 6 7 All GND All Power

Raspberry Pi
GPIO Pin 7 11 12 13 15 16 19 22 6 No Connect

5V Power Supply GND +5V

We will assume that we are controlling four servos (0, 1, 2, and 3) that will be fitted to the
MeArm or a similar device later:

To install ServoBlaster, start by downloading the source files from the Git repository:

cd ~
wget https://github.com/richardghirst/PiBits/archive/master.zip

Unzip and open the matplotlib-master folder, as follows:

unzip master.zip
rm master.zip
cd PiBits-master/ServoBlaster/user

We will use the user space daemon (which is located in the user directory) that is called
servod. Before we can use it, we should compile it with this command:

make servod

Building Robots Chapter 12

[395]

There should be no errors, showing the following text:

gcc -Wall -g -O2 -o servod servod.c mailbox.c -lm

For usage information, use the following command:

./servod --help

Now we can test a servo; first, start the servod daemon (with a timeout of 2,000 ms to
switch the servo off after it has moved):

sudo servod --idle-timeout=2000

You can move the servo's position to 0% of the servo's range:

echo 0=0% > /dev/servoblaster

Now, update the servo to 50%, causing the servo to rotate to 90 degrees (servo mid-point):

echo 0=50% > /dev/servoblaster

As recommended by the MeArm build instructions, the servos should be connected and
calibrated before building the arm, to ensure that each servo is able to move the arm in its
correct range. This is done by ensuring that each servo is powered up and commanded to
its mid-point position (50%/90 degrees), and the servo-arm is fitted at the expected
orientation:

Each of the servos should be calibrated in the correct position before you fit them on the MeArm

You can now set each of the MeArm servos (0, 1, 2, and 3) to their mid-points (by
commanding each, in turn, to 50%) before building and fitting them to a completed arm.

Building Robots Chapter 12

[396]

The servos could be used to control a wide range of alternative devices other than the
MeArm, but your servos will probably need to be calibrated in a similar manner:

The precision control of servos means they can be used for a variety of applications, for example, controlling simulated hands

How to do it...
Create the following servo_control.py script:1.

#!/usr/bin/env python3
#servo_control.py
import curses
import os
#HARDWARE SETUP
GPIO
2[=VX==2=======]26[=======]40
1[===013=======]25[=======]39
V=5V X=Gnd
Servo 0=Turn 1=Shoulder 2=Elbow 3=Claw
name=["Turn","Shoulder","Elbow","Claw"]
CAL=[90,90,90,90]
MIN=[0,60,40,60]; MAX=[180,165,180,180]
POS=list(CAL)

Building Robots Chapter 12

[397]

KEY_CMD=[ord('c'),ord('x')]
#Keys to rotate counter-clockwise
KEY_LESS={ord('d'):0,ord('s'):1,ord('j'):2,ord('k'):3}
#Keys to rotate clockwise
KEY_MORE={ord('a'):0,ord('w'):1,ord('l'):2,ord('i'):3}

STEP=5; LESS=-STEP; MORE=STEP #Define control steps
DEG2MS=1.5/180.0; OFFSET=1 #mseconds
IDLE=2000 #Timeout servo after command
SERVOD="/home/pi/PiBits-mater/ServoBlaster/user/servod" #Location
of servod
DEBUG=True
text="Use a-d, w-s, j-l and i-k to control the MeArm. c=Cal x=eXit"

def initialize():
 cmd=("sudo %s --idle-timeout=%s"%(SERVOD, IDLE))
 os.system(cmd)

def limitServo(servo,value):
 global text
 if value > MAX[servo]:
 text=("Max %s position %s:%s"%(name[servo],servo,POS[servo]))
 return MAX[servo]
 elif value < MIN[servo]:
 text=("Min %s position %s:%s"%(name[servo],servo,POS[servo]))
 return MIN[servo]
 else:
 return value

def updateServo(servo,change):
 global text
 POS[servo]=limitServo(servo,POS[servo]+change)
 setServo(servo,POS[servo])
 text=str(POS)

def setServo(servo,position):
 ms=OFFSET+(position*DEG2MS)
 os.system("echo %d=%dus > /dev/servoblaster" %(servo, ms/1000))

def calibrate():
 global text
 text="Calibrate 90deg"
 for i,value in enumerate(CAL):
 POS[i]=value
 setServo(i,value)

def main(term):
 term.nodelay(1)

Building Robots Chapter 12

[398]

 term.addstr(text)
 term.refresh()
 while True:
 term.move(1,0)
 c = term.getch()
 if c != -1:
 if c in KEY_MORE:
 updateServo(KEY_MORE[c],MORE)
 elif c in KEY_LESS:
 updateServo(KEY_LESS[c],LESS)
 elif c in KEY_CMD:
 if c == ord('c'):
 calibrate()
 elif c == ord('x'):
 exit()
 if DEBUG:term.addstr(text+" ")

if __name__=='__main__':
 initialize()
 curses.wrapper(main)
#End

Run the script:2.

python3 servo_control.py

You can control the servos fitted to the MeArm (or whatever you are using) as3.
prompted:

Use a-d, w-s, j-l and i-k to control the MeArm. c=Cal x=eXit

How it works...
The script starts by importing the curses and os modules. A standard Python input()
command would require the Enter key to be pressed after each key press before we could
act upon it. However, as we will see shortly, the curses module simply allows us to scan
for keyboard presses and respond to them immediately. We use the os module to call the
ServoBlaster commands, as we would via the Terminal.

First, we define our setup, such as the servo mappings, calibration positions, min/max
ranges, our control keys, and the STEP size in degrees for each control command. We also
define our parameters for our requested angle (in degrees) to target PWM signal up time (in
milliseconds) calculation.

Building Robots Chapter 12

[399]

For these particular servos, an up time of 1 ms is equal to 0 degrees and 2.5
ms is 180 degrees, so we have an offset (OFFSET) of 1 ms and a scale
(DEG2MS) of 180 degrees/1.5 ms.

Therefore, our required up time (in milliseconds) can be calculated as OFFSET +
(degrees*DEG2MS). Finally, we define the SERVOD command line and servo IDLE timeout to
initialize the ServoBlaster user daemon. Within initialize (), we use os.system() to
start the servod daemon, as we did before.

In order to detect key presses, we call the main() function of the script from
curses.wrapper(), allowing term to control the terminal input and output. We use
term.nodelay(1) so that when we do check for any key presses (using term.getch()),
execution will continue normally. We use term.addstr(text) to show the user the
control keys and then update the display via term.refresh(). The remaining script
checks the terminal for key presses and the result assigned to c. If no key was pressed, then
term.getch() returns -1; otherwise, the ASCII equivalent value is returned, and we can
check for it in each of the dictionaries we defined for control keys. We will use KEY_MORE
and KEY_LESS to change the servo positions, and KEY_CMD (c or x) to allow us to set all the
servos to their calibrated position or to exit cleanly. Finally, we display any useful
debugging information (if DEBUG is set to True) using term.addstr(), and ensure that it is
displayed at (1,0) in the terminal (one line down from the top).

For normal control, the position of the servos will be controlled using the updateServo()
function, which adjusts the current position (stored in the POS array) by the required
change (either +STEP or -STEP). We ensure the new position is within the MAX/MIN limits
defined, and report if we've hit them. The servo is then instructed to move to the required
position using setServo(), specifying the needed PWM up time in micro seconds.

The last function, calibrate(), called when C is pressed, simply sets each of the servos to
the angle defined in the CAL array (using setServo()) and ensures that the current
position is kept up to date.

Building Robots Chapter 12

[400]

Using an infrared remote control with your
Raspberry Pi
It is often useful to control robots remotely. An easy way to add additional input is to make
use of an infrared (IR) receiver and a standard remote control. Fortunately, the receiver is
well supported.

We will use a module called lirc to capture and decode IR signals from a standard
remote control.

Getting ready
LIRC supports many types of IR detectors, such as Energenie's PiMote IR board; however,
since we only need to receive IR signals, we can use a simple (TSOP38238) IR detector:

The three pins of the TSOP38238 IR receiver can fit directly onto the Raspberry Pi header

Install the following packages using the apt-get command:

sudo apt-get install lirc lirc-x

Add the following to /boot/config.txt. This will enable the driver and define the pin the
receiver is fitted on (BCM GPIO24):

dtoverlay=lirc-rpi,gpio_in_pin=23

Building Robots Chapter 12

[401]

Perform a restart of the Raspberry Pi so that the configuration takes effect:

sudo reboot

We should now find that the IR device is located at /dev/lirc0. We can observe the
output of the receiver if we point a remote control at it and press some buttons after using
the following command (use Ctrl + Z to exit):

mode2 -d /dev/lirco0

The lirc0 resource may report as busy:
mode2: could not open /dev/lirc0

mode2: default_init(): Device or resource busy

Then we will need to stop the lirc service:
sudo /etc/init.d/lirc stop

It will give the following response:
[ok] Stopping lirc (via systemctl): lirc.service

When you are ready, you can start the service again:
sudo /etc/init.d/lirc start

This will give the following response:
[ok] Starting lirc (via systemctl): lirc.service

You will see output similar to the following (if not, ensure that you have connected the
receiver connected to the correct pins on the Raspberry Pi GPIO):

space 16300
pulse 95
space 28794
pulse 80
space 19395
pulse 83
...etc...

Now that we know our device is working, we can configure it.

Building Robots Chapter 12

[402]

How to do it...
The global LIRC configurations are stored in /etc/lirc. We are interested in the following
files:

hardware.conf: Defines where our IR sensor is installed and the overall setting
for our sensor.
lircd.conf: The remote control configuration file; this contains the recorded
outputs for your remote control's keys and maps them to specific key symbols.
You can often obtain pre-recorded files from lirc.sourceforge.net/remotes, or
you can record a custom one, as shown next.
lircrc: This file provides mapping of each of the key symbols to specific
commands or keyboard mappings.

All of the LIRC configurations stored in /etc/lirc are available for all
users; however, if required, different configurations can be defined for
each user by placing them in specific home folders (for
example, /home/pi/.config/), allowing the defaults to be overridden.

There are three steps to setting up the sensor, one for each of the LIRC configuration files:

First, ensure that hardware.conf is set up. For our sensor, we must ensure that1.
the following is set:

LIRCD_ARGS="--uinput"
DRIVER="default"
DEVICE="/dev/lirc0"
MODULES="lirc_rpi"

Next, obtain a lircd.conf file; or, if you do not have one for your remote, we2.
can generate it. The following process will now take you through detecting each
of the individual keys on the remote. For the purpose of this recipe, we only need
to map eight keys (to control the four servos from the previous recipe).

http://lirc.sourceforge.net/remotes/

Building Robots Chapter 12

[403]

If you want map additional keys, use the following command to find out the full3.
list of valid key symbols:

irrecord --list-namespace

KEY_UP KEY_RIGHT KEY_VOLUMEUP KEY_CHANNELUP

KEY_DOWN KEY_LEFT KEY_VOLUMEDOWN KEY_CHANNELDOWN

We can use the volume, channel, and direction buttons on this Goodman's remote as our MeArm controller

First, we will need to stop the lirc service, which, if it was running, would be using the
/dev/lirc0 device:

sudo /etc/init.d/lirc stop

Building Robots Chapter 12

[404]

Next, start the capture process using the following commands:

irrecord -d /dev/lirc0 ~/lircd.conf

Record each button on the remote using the irrecord tool

Now that we have captured the required keys, we ensure that the name of the remote is set
(by default, it will be set to the name of the lirc.conf file when the buttons are captured):

nano ~/lircd.conf

Set the name of the remote in the file; for example, Goodmans:

...
begin remote
 name Goodmans
 bits 16
...

Building Robots Chapter 12

[405]

Finally, we can replace the configuration in the /etc/lirc folder:

sudo cp ~/lircd.conf /etc/lirc/lirc.conf

We can confirm the key symbols that are mapped to the remote using the
irw program, as follows:

irw

This will report the details of the key pressed and the remote control as defined:

0000000000fe7a85 00 KEY_UP Goodmans
0000000000fe7a85 01 KEY_UP Goodmans
0000000000fe6a95 00 KEY_DOWN Goodmans
0000000000fe6a95 01 KEY_DOWN Goodmans
...

Now, we can map the keys to specific commands; in this case, we will map them to the keys
we used for controlling the MeArm servos. Create a new /etc/lirc/lircrc file:

sudo nano /etc/lirc/lircrc

Replace it with the following content:

begin
 prog=irxevent
 button=KEY_UP
 config=Key w CurrentWindow
end
begin
 prog=irxevent
 button=KEY_DOWN
 config=Key s CurrentWindow
end
begin
 prog=irxevent
 button=KEY_LEFT
 config=Key a CurrentWindow
end
begin
 prog=irxevent
 button=KEY_RIGHT
 config=Key d CurrentWindow
end
begin
 prog=irxevent
 button=KEY_VOLUMEUP

Building Robots Chapter 12

[406]

 config=Key i CurrentWindow
end
begin
 prog=irxevent
 button=KEY_VOLUMEDOWN
 config=Key k CurrentWindow
end
begin
 prog=irxevent
 button=KEY_CHANNELUP
 config=Key l CurrentWindow
end
begin
 prog=irxevent
 button=KEY_CHANNELDOWN
 config=Key j CurrentWindow
end

To apply the configuration, you may need to restart the service (or, if that doesn't work, try
restarting the Raspberry Pi):

sudo /etc/init.d/lirc restart

When we run the servo_control.py script in the previous recipe, the remote should
control the arm directly.

There's more...
LIRC supports several helper programs, of which irxevent is just one:

remote

By default, LIRC supports some simple controls; for example:
 prog=remote
 button=KEY_UP
 config=UP

This will provide simple cursor control from a remote (UP, DOWN, LEFT,
RIGHT, and also ENTER) that are perfect for simple menu control.
http:/ ​/​www. ​lirc. ​org/ ​html/ ​configure. ​html#lircrc_ ​format

http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format
http://www.lirc.org/html/configure.html#lircrc_format

Building Robots Chapter 12

[407]

irxevent

Emulates button clicks and key presses within X applications. You can specify
that the key event occurs in the CurrentWindow or in a specific window by
name, that is, leafpad. This only works if you are running from the graphical
desktop environment (or using X forwarding).
http:/ ​/​www. ​lirc. ​org/ ​html/ ​irxevent. ​html

irpty

Converts infrared remote commands into keystrokes for controlling a
particular program:
 rog=irpty
 button=KEY_EXIT
 config=x

Start it by specifying the lircrc configuration and program you want to
control:
irpty /etc/lirc/lircrc -- leafpad

http:/ ​/​www. ​lirc. ​org/ ​html/ ​irpty. ​html

irexec

Allows commands to be run directly from the remote control:
 prog=irexec
 button=KEY_POWER
 config=sudo halt #Power Down

http:/ ​/​www. ​lirc. ​org/ ​html/ ​irexec. ​html

You can test any part of the lircrc file by using ircat with the required prog:

ircat irxevent

The preceding command will report the following:

Key k CurrentWindow
Key i CurrentWindow

Finally, if you have a suitable IR Transmitter LED attached (including a protective
resistor/switching transistor), you can also use LIRC to send infrared signals from the
Raspberry Pi. For this, you can use the irsend command, for example:

irsend SEND_ONCE Goodmans KEY_PROGRAMUP

http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irxevent.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irpty.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html
http://www.lirc.org/html/irexec.html

Building Robots Chapter 12

[408]

The IR output channel is enabled within the /boot/config.txt file (assuming connected
to GPIO Pin 19):

dtoverlay=lirc-rpi,gpio_in_pin=24,gpio_out_pin=19

Avoiding objects and obstacles
To avoid obstacles, you can place sensors around the robot's perimeter to activate whenever
an object is encountered. Depending on how you want your robot to behave, one avoidance
strategy is to just reverse any action last taken (with an additional turn for
forward/backward actions) that caused one of the sensors to be activated.

Getting ready
You will need some micro switches to be triggered when there is an impact with objects.
Depending on the type you have, you need to place enough switches to detect any object
around the outside (if required, you can use an additional length of wire to extend the reach
of the switch). Shown in the following photo are two possible sensors that will cause the
switch to activate when the spring or the metal arm hits an object. You need to determine
which contacts of the switch open or close the circuit (this will depend on the device):

Small micro switches can be used as collision sensors

Building Robots Chapter 12

[409]

How to do it...
Connect the switches to the GPIO using a method similar to the one we used in Chapter 9,
Using Python to Drive Hardware, for the D-Pad controller. A circuit diagram of the switches is
as follows:

The switches should include current limiting resistors (1K ohm is ideal)

How you connect to the Raspberry Pi's GPIO will depend on how your motor/servo drive is
wired up. For example, a Rover-Pi robot with an H-bridge motor controller can be wired up
as follows:

Control side of the module – connecting to the Raspberry Pi GPIO header

ENA IN1 IN2 IN3 IN4 ENB GND 5V

None Pin 15 Pin 16 Pin 18 Pin 22 None Pin 6 None

Building Robots Chapter 12

[410]

Four additional proximity/collision sensors can be connected to the Raspberry Pi GPIO
as follows:

Proximity/collision sensors – connecting to the Raspberry Pi GPIO header

R_FWD L_FWD R_BWD L_BWD GND

Pin 7 Pin 11 Pin 12 Pin 13 Pin 6

If you wired it differently, you can adjust the pin numbers within the code, as required. If
you require additional pins, then any of the multipurpose pins, such as RS232 RX/TX (pins 8
and 10) or the SPI/I2C, can be used as normal GPIO pins, too; just set them as input or
output, as normal. Normally, we just avoid using them, as they are often more useful for
expansion and other things, so it is sometimes useful to keep them available.

You can even use a single GPIO pin for all your sensors if you are just using the following
example code, since the action is the same, regardless of which sensor is triggered.
However, by wiring each one separately, you can adjust your strategy based on where the
obstacle is around the robot or provide additional debug information about which sensor
has been triggered.

Create the following avoidance.py script:

#!/usr/bin/env python3
#avoidance.py
import rover_drive as drive
import wiringpi2
import time

opCmds={'f':'bl','b':'fr','r':'ll','l':'rr','#':'#'}
PINS=[7,11,12,13] # PINS=[L_FWD,L_BWD,R_FWD,R_BWD]
ON=1;OFF=0
IN=0;OUT=1
PULL_UP=2;PULL_DOWN=1

class sensor:
 # Constructor
 def __init__(self,pins=PINS):
 self.pins = pins
 self.GPIOsetup()

 def GPIOsetup(self):
 wiringpi2.wiringPiSetupPhys()
 for gpio in self.pins:
 wiringpi2.pinMode(gpio,IN)

Building Robots Chapter 12

[411]

 wiringpi2.pullUpDnControl(gpio,PULL_UP)

 def checkSensor(self):
 hit = False
 for gpio in self.pins:
 if wiringpi2.digitalRead(gpio)==False:
 hit = True
 return hit

def main():
 myBot=drive.motor()
 mySensors=sensor()
 while(True):
 print("Enter CMDs [f,b,r,l,#]:")
 CMD=input()
 for idx,char in enumerate(CMD.lower()):
 print("Step %s of %s: %s"%(idx+1,len(CMD),char))
 myBot.cmd(char,step=0.01)#small steps
 hit = mySensors.checkSensor()
 if hit:
 print("We hit something on move: %s Go: %s"%(char,
 opCmds[char]))
 for charcmd in opCmds[char]:
 myBot.cmd(charcmd,step=0.02)#larger step

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 print ("Finish")
#End

How it works...
We import rover_drive to control the robot (if we are using a Pi-Bug robot, bug_drive
can be used) and wiringpi2 so that we can use the GPIO to read the sensors (defined as
PINS). We define opCmds, which uses a Python dictionary to allocate new commands in
response to the original command (using opCmds[char], where char is the original
command).

We create a new class called sensor and set up each of the switches as GPIO input (each
with an internal pull-ups set). Now, whenever we make a movement (as earlier, from the
list of requested commands in the main() function), we check to see if any of the switches
have been triggered (by calling mySensor.checkSensor()).

Building Robots Chapter 12

[412]

If a switch was tripped, we stop the current movement, and then move in the opposite
direction. However, if we are moving forward when one of the sensors is triggered, we
move backward, and then turn. This allows the robot to gradually turn away from the
object that is blocking its path and continue its movement in another direction. Similarly, if
we are moving backwards and a sensor is triggered, we move forward, and then turn. By
combining simple object avoidance with directional information, the robot can be
commanded to navigate around as desired.

There's more...
There are also ways to detect objects that are near the robot without actually making
physical contact with them. One such way is to use ultrasonic sensors, commonly used for
vehicle reversing/parking sensors.

Ultrasonic reversing sensors
Ultrasonic sensors provide an excellent way to measure the distance of the robot from
obstacles (providing a measurement of between 2 cm and 20 cm) and are available at most
electrical hobby stores (see the Appendix, Hardware and Software List). The ultrasonic module
functions by sending a short burst of ultrasonic pulses and then measures the time it takes
for the receiver to detect the echo. The module then produces a pulse on the echo output
that is equal to the time measured. This time is equal to the distance traveled divided by the
speed of sound (340.29 m/sec or 34,029 cm/s), which is the distance from the sensor to the
object and back again. An ultrasonic module is shown in the following photo:

The HC-SR04 ultrasonic sensor module

Building Robots Chapter 12

[413]

The sensor requires 5V to power it; it has an input that will receive the trigger pulse and an
output that the echo pulse will be sent on. While the module works with a 3.3V trigger
pulse, it responds with a 5V signal on the echo line; so, it requires some extra resistors to
protect the Raspberry Pi's GPIO.

The following circuit diagram shows the connection of the sensor output:

The sensor echo output must be connected to the Raspberry Pi via a potential divider

The resistors Rt and Rb create a potential divider; the aim is to drop the echo voltage from
5V to around 3V (but not less than 2.5V). Use the following equation from Chapter 10,
Sensing and Displaying Real-World Data, to obtain the output voltage:

The output voltage (Vout) of the potential divider is calculated using this equation

Building Robots Chapter 12

[414]

This means that we should aim for an Rt to Rb ratio of 2:3 to give 3V (and not lower than 1:1,
which would give 2.5V); that is, Rt equals 2K ohm and Rb equals 3K ohm, or 330 ohm and
470 ohm will be fine.

If you have a voltage meter, you can check it (with everything else disconnected). Connect
the top of the potential divider to GPIO Pin 2 (5V) and the bottom to GPIO Pin 6 (GND),
and measure the voltage from the middle (it should be around 3V).

Create the following sonic.py script:

#!/usr/bin/python3
#sonic.py
import wiringpi2
import time
import datetime

ON=1;OFF=0; IN=0;OUT=1
TRIGGER=15; ECHO=7
PULSE=0.00001 #10us pulse

SPEEDOFSOUND=34029 #34029 cm/s

def gpiosetup():
 wiringpi2.wiringPiSetupPhys()
 wiringpi2.pinMode(TRIGGER,OUT)
 wiringpi2.pinMode(ECHO,IN)
 wiringpi2.digitalWrite(TRIGGER,OFF)
 time.sleep(0.5)

def pulse():
 wiringpi2.digitalWrite(TRIGGER,ON)
 time.sleep(PULSE)
 wiringpi2.digitalWrite(TRIGGER,OFF)
 starttime=time.time()
 stop=starttime
 start=starttime
 while wiringpi2.digitalRead(ECHO)==0 and start<starttime+2:
 start=time.time()
 while wiringpi2.digitalRead(ECHO)==1 and stop<starttime+2:
 stop=time.time()
 delta=stop-start
 print("Start:%f Stop:%f Delta:%f"%(start,stop,delta))
 distance=delta*SPEEDOFSOUND
 return distance/2.0
def main():
 global run
 gpiosetup()

Building Robots Chapter 12

[415]

 while(True):
 print("Sample")
 print("Distance:%.1f"%pulse())
 time.sleep(2)
if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 print ("Finish")
#End

First, we define the TRIGGER and ECHO pins, the length of the trigger pulse, and also the
speed of sound (340.29 m/s). The TRIGGER pin is set as an output, and the ECHO as an input
(we will not need a pull-up or pull-down resistor, since the module already has one).

The pulse() function will send a short trigger pulse (10 microseconds); then it will time the
duration of the echo pulse. We then calculate the total distance traveled by dividing the
duration by the speed of sound (the distance to the object is just half of this value).

Unfortunately, the sensor can get confused with certain types of objects; it will either detect
echoes that bounce off a nearby object before being reflected back, or not pick up narrow
items, such as chair legs. However, combined with localized collision sensors, the ultrasonic
sensor can aid with the general navigation and avoidance of the larger objects.

An improvement to this setup would be to mount the sonic sensor on top of a servo,
thereby allowing you to make a sensor sweep of the robot's surroundings. By making
multiple sweeps, taking distance measurements, and tracking the angle of the servo, you
could build an internal map of the robot's surroundings.

Getting a sense of direction
In order to navigate your robot around the environment, you will need to keep track of
which way your robot is facing. You can estimate the angle that your robot turns at by
measuring the angle that it turned at in a fixed time period. For wheeled robots, you can
also measure the rotation of each wheel using a rotary encoder (a device that provides a
count of the wheel's rotations). However, as you make the robot take multiple turns, the
direction the robot is facing becomes more and more uncertain, as differences in the
surfaces and the grip of the wheels or legs cause differences in the angles that the robot is
turning at.

Building Robots Chapter 12

[416]

Fortunately, we can use an electronic version of a compass; it allows us to determine the
direction that the robot is facing by providing an angle from magnetic north. If we know
which direction the robot is facing, we can receive commands requesting a particular angle
and ensure that the robot moves towards it. This allows the robot to perform controlled
movements and navigate as required.

When given a target angle, we can determine which direction we need to turn towards,
until we reach it.

Getting ready
You will need a magnetometer device, such as PiBorg's XLoBorg module (which is a
combined I2C magnetometer and accelerometer). In this example, we will only focus on the
magnetometer (the smaller chip on the left) output. The XLoBorg module is shown in the
following photo:

The PiBorg XLoBorg module contains a three-axis magnetometer and accelerometer

This device can be used with both types of robot, and the angle information received from
the module can be used to determine which direction the robot needs to move in.

Building Robots Chapter 12

[417]

The module is designed to connect directly to the GPIO header, which will block all the
remaining pins. So, in order to use other GPIO devices, a GPIO splitter (such as the PiBorg
TriBorg) can be used. Alternatively, you can use Dupont female to male patch wires to
connect just the I2C pins. The connections to be made are shown in the following table:

Connections to manually wire the XLoBorg module to the Raspberry Pi (using standard I2C connections)

When viewed from the underside, the PiBorg XLoBorg pins are mirrored compared to the
Raspberry Pi GPIO header.

How to do it...
Create a Python 3-friendly version of the XLoBorg library (XLoBorg3.py) using
wiringpi2, as follows:

#!/usr/bin/env python3
#XLoBorg3.py
import wiringpi2
import struct
import time

def readBlockData(bus,device,register,words):
 magData=[]
 for i in range(words):
 magData.append(bus.readReg16(device,register+i))
 return magData

class compass:
 def __init__(self):
 addr = 0x0E #compass
 self.i2c = wiringpi2.I2C()
 self.devMAG=self.i2c.setup(addr)
 self.initCompass()

 def initCompass(self):
 # Acquisition mode
 register = 0x11 # CTRL_REG2

Building Robots Chapter 12

[418]

 data = (1 << 7) # Reset before each acquisition
 data |= (1 << 5) # Raw mode, do not apply user offsets
 data |= (0 << 5) # Disable reset cycle
 self.i2c.writeReg8(self.devMAG,register,data)
 # System operation
 register = 0x10 # CTRL_REG1
 data = (0 << 5) # Output data rate
 # (10 Hz when paired with 128 oversample)
 data |= (3 << 3) # Oversample of 128
 data |= (0 << 2) # Disable fast read
 data |= (0 << 1) # Continuous measurement
 data |= (1 << 0) # Active mode
 self.i2c.writeReg8(self.devMAG,register,data)

 def readCompassRaw(self):
 #x, y, z = readCompassRaw()
 self.i2c.write(self.devMAG,0x00)
 [status, xh, xl, yh, yl,
 zh, zl, who, sm, oxh, oxl,
 oyh, oyl, ozh, ozl,
 temp, c1, c2] = readBlockData(self.i2c,self.devMAG, 0, 18)
 # Convert from unsigned to correctly signed values
 bytes = struct.pack('BBBBBB', xl, xh, yl, yh, zl, zh)
 x, y, z = struct.unpack('hhh', bytes)
 return x, y, z

if __name__ == '__main__':
 myCompass=compass()
 try:
 while True:
 # Read the MAG Data
 mx, my, mz = myCompass.readCompassRaw()
 print ("mX = %+06d, mY = %+06d, mZ = %+06d" % (mx, my, mz))
 time.sleep(0.1)
 except KeyboardInterrupt:
 print("Finished")
#End

How it works...
The script is based on the XLoBorg library available for the XLoBorg module, except that we
use WiringPi2, which is Python 3-friendly, to perform the I2C actions. Just like our
motor/servo drivers, we also define it as a class, so that we can drop it into our code and
easily replace it with alternative devices if required.

Building Robots Chapter 12

[419]

We import wiringpi2, time, and a library called struct (which allows us to quickly
unpack a block of data read from the device into separate items).

We create the compass class, which will include the __init__(), initCompass(), and
readCompassRaw() functions. The readCompassRaw() function is the equivalent of the
standard XLoBorg ReadCompassRaw() function provided by their library.

The __init__() function sets up the I2C bus with wiringpi2 and registers the degMAG
device on the bus address 0x0E. The initCompass() function sets the CTRL_REG1 and
CTRL_REG2 registers of the device with the settings required to quickly get raw readings
from the device.

More details on the MAG3110 registers are available at
http://www.freescale.com/files/sensors/doc/data_sheet/MAG3110.pdf.

The readCompassRaw() function reads the data registers of the device in a single block
(using the custom function readBlockData()). It reads all of the 18 registers of the device
(0x00 through to 0x11). The sensor readings we need are contained within the registers
0x01 to 0x06, which contain the x, y, and z readings, split into upper and lower bytes (8-bit
values). The struct.pack() and struct.unpack() functions provide an easy way to
package them together and re-split them as separate words (16-bit values).

We can test our script by creating a myCompass object from the compass class and reading
the sensor values using myCompass.readCompassRaw(). You will see the raw x, y, and z
values from the device, just as you would from the standard XLoBorg library.

As you will find, these values aren't of much use on their own, since they are uncalibrated
and only give you RAW readings from the magnetometer. What we need is a far more
useful angle, relative to magnetic north (see the following There's more... section for details
on how to do this).

There's more...
So far, the basic library allows us to see the strength of the magnetic field on each of the
three axes around the sensor (up/down, left/right, and forward/backward). While we can
see that these values will change as we move the sensor around, this is not enough to steer
our robot. First, we need to calibrate the sensor, and then determine the direction of the
robot from the readings of the x and y axes.

http://www.freescale.com/files/sensors/doc/data_sheet/MAG3110.pdf

Building Robots Chapter 12

[420]

Calibrating the compass
The compass needs to be calibrated in order to report values that are centered and
equalized. This is needed because there are magnetic fields all around; by calibrating the
sensor, we can cancel out the effect of any localized fields.

By measuring the readings of the compass on all axes, we can determine the minimum
and maximum values for each axis. This will allow us to calculate the mid-point of the
readings, and also the scaling, so that each axis will read the same value whenever it is
facing the same way.

Add the following code at the top of the file (after the import statements):

CAL=100 #take CAL samples

Add the following code to __init__(self) of the compass class:

 self.offset,self.scaling=self.calibrateCompass()
 if DEBUG:print("offset:%s scaling:%s"%(str(self.offset),
 str(self.scaling)))

Add a new function named calibrateCompass() within the compass class, as follows:

 def calibrateCompass(self,samples=CAL):
 MAXS16=32768
 SCALE=1000.0
 avg=[0,0,0]
 min=[MAXS16,MAXS16,MAXS16];max=[-MAXS16,-MAXS16,-MAXS16]
 print("Rotate sensor around axis (start in 5 sec)")
 time.sleep(5)
 for calibrate in range(samples):
 for idx,value in enumerate(self.readCompassRaw()):
 avg[idx]+=value
 avg[idx]/=2
 if(value>max[idx]):
 max[idx]=value
 if(value<min[idx]):
 min[idx]=value
 time.sleep(0.1)
 if DEBUG:print("#%d min=[%+06d,%+06d,%+06d]"
 %(calibrate,min[0],min[1],min[2])
 +" avg[%+06d,%+06d,%+06d]"
 %(avg[0],avg[1],avg[2])
 +" max=[%+06d,%+06d,%+06d]"
 %(max[0],max[1],max[2]))
 offset=[]
 scaling=[]

Building Robots Chapter 12

[421]

 for idx, value in enumerate(min):
 magRange=max[idx]-min[idx]
 offset.append((magRange/2)+min[idx])
 scaling.append(SCALE/magRange)
 return offset,scaling

Add another new function named readCompass() in the compass class, as follows:

 def readCompass(self):
 raw = self.readCompassRaw()
 if DEBUG:print("mX = %+06d, mY = %+06d, mZ = %+06d"
 % (raw[0],raw[1],raw[2]))
 read=[]
 for idx,value in enumerate(raw):
 adj=value-self.offset[idx]
 read.append(adj*self.scaling[idx])
 return read

If you look closely at the readings (if you use readCompass()), you will now find that all of
the readings have the same range and are centered around the same values.

Calculating the compass bearing
The XLoBorg library only provides access to the RAW values of the MAG3110 device,
which provides a measure of how strong the magnetic field on each of the axes is. To
determine the direction of the sensor, we can use the readings from the x and y axes
(assuming that we have mounted and calibrated the sensor horizontally). The readings of
the x and y axes are proportional to the magnetic field in each direction around the sensor,
as shown in the following diagram:

The magnetometer measures the strength of the magnetic field on each axis

Building Robots Chapter 12

[422]

The angle at which we turned away from the north can be calculated with the formula
shown in the following diagram:

The angle we are pointing towards (that is relative to magnetic north) can be calculated using the measurements Rx and Ry

We can now obtain the compass angle by adding the readCompassAngle() function to
our compass class, as follows:

 def readCompassAngle(self,cal=True):
 if cal==True:
 read = self.readCompass()
 else:
 read = self.readCompassRaw()
 angle = math.atan2 (read[1],read[0]) # cal angle in radians
 if (angle < 0):
 angle += (2 * math.pi) # ensure positive
 angle = (angle * 360)/(2*math.pi); #report in degrees
 return angle

We also need to add the following import with the other import statements:

import math

We use the math function, math.atan2(), to calculate our angle (atan2 will return with
the angle relative to the x axis of the coordinates read[1] and read[2] – the angle we
want). The angle is in radians, which means that one full turn is defined as 2Pi, rather than
360 degrees. We convert it back to degrees by multiplying it by 360 and dividing by 2Pi.
Since we wish to have our angle between the range of 0 to 360 degrees (rather than -180 to
180 degrees), we must ensure that it is positive by adding the equivalent of a full circle (2Pi)
to any negative values.

Building Robots Chapter 12

[423]

With the sensor calibrated and the angle calculated, we should now have the proper
compass bearing to use on our robot. To compare, you can see the result of using the
uncalibrated value in our calculation by calling the function with readCompassAngle
(cal=False).

Saving the calibration
Having calibrated the sensor once in its current position, it would be inconvenient to have
to calibrate it each and every time that you ran the robot. Therefore, you can add the
following code to your library to automatically save your calibration and read it from a file
the next time you run your robot. To create a new calibration, either delete or rename
mag.cal (which is created in the same folder as your script), or create your compass object
compass(newCal=True).

Add the following code near the top of the file (after the imports statements):

FILENAME="mag.cal"

Change __init__(self) to __init__(self,newCal=False).

Also, consider the following line:

self.offset,self.scaling=self.calibrateCompass()

Change the previous line to the following line:

self.offset,self.scaling=self.readCal(newCal)

Add readCal() to the compass class, as follows:

 def readCal(self,newCal=False,filename=FILENAME):
 if newCal==False:
 try:
 with open(FILENAME,'r') as magCalFile:
 line=magCalFile.readline()
 offset=line.split()
 line=magCalFile.readline()
 scaling=line.split()
 if len(offset)==0 or len(scaling)==0:
 raise ValueError()
 else:
 offset=list(map(float, offset))
 scaling=list(map(float, scaling))
 except (OSError,IOError,TypeError,ValueError) as e:
 print("No Cal Data")

Building Robots Chapter 12

[424]

 newCal=True
 pass
 if newCal==True:
 print("Perform New Calibration")
 offset,scaling=self.calibrateCompass()
 self.writeCal(offset,scaling)
 return offset,scaling

Add writeCal() to the compass class, as follows:

 def writeCal(self,offset,scaling):
 if DEBUG:print("Write Calibration")
 if DEBUG:print("offset:"+str(offset))
 if DEBUG:print("scaling:"+str(scaling))
 with open(FILENAME,'w') as magCalFile:
 for value in offset:
 magCalFile.write(str(value)+" ")
 magCalFile.write("n")
 for value in scaling:
 magCalFile.write(str(value)+" ")
 magCalFile.write("n")

Driving the robot using the compass
Now, all that remains for us to do is use the compass bearing to steer our robot to the
desired angle.

Create the following compassDrive.py script:

#!/usr/bin/env python3
#compassDrive.py
import XLoBorg3 as XLoBorg
import rover_drive as drive
import time

MARGIN=10 #turn until within 10degs
LEFT="l"; RIGHT="r"; DONE="#"

def calDir(target, current, margin=MARGIN):
 target=target%360
 current=current%360
 delta=(target-current)%360
 print("Target=%f Current=%f Delta=%f"%(target,current,delta))
 if delta <= margin:
 CMD=DONE
 else:

Building Robots Chapter 12

[425]

 if delta>180:
 CMD=LEFT
 else:
 CMD=RIGHT
 return CMD

def main():
 myCompass=XLoBorg.compass()
 myBot=drive.motor()
 while(True):
 print("Enter target angle:")
 ANGLE=input()
 try:
 angleTarget=float(ANGLE)
 CMD=LEFT
 while (CMD!=DONE):
 angleCompass=myCompass.readCompassAngle()
 CMD=calDir(angleTarget,angleCompass)
 print("CMD: %s"%CMD)
 time.sleep(1)
 myBot.cmd(CMD)
 print("Angle Reached!")
 except ValueError:
 print("Enter valid angle!")
 pass

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 print ("Finish")
#End

We import the modules that we previously created: XLoBorg3, rover_drive (for the
Rover-Pi robot, or the alternative bug_drive, as required), and time. Next, we create a
function that will return LEFT, RIGHT, or DONE, based on the given target angle (requested
by the user) and the current angle (read from the compass class). If the compass angle is
within 180 degrees less than the target angle, then we turn LEFT. Similarly, if it is within 180
degrees, we turn RIGHT. Finally, if the compass angle is within the margin (+10 degrees/-10
degrees), then we are DONE. By using angle%360 (which gives us the remainder from
dividing the angle by 360), we ensure the angles are all 0-360 (that is, -90 becomes 270).

Building Robots Chapter 12

[426]

For the main() function, we create myCompass (an XLoBorg.compass object) and myBot (a
drive.motor() object); these allow us to determine the direction we are facing in, and
provide us with a way to drive in the desired direction. Within the main loop, we prompt
for a target angle, find the current angle that our robot is facing at, and then continue to
turn towards the required angle until we reach it (or reach somewhere near enough to that
angle).

13
Interfacing with Technology

In this chapter, we will cover the following topics:

Automating your home with remotely controlled electrical sockets
Using SPI to control an LED matrix
Communicating using a serial interface
Controlling Raspberry Pi using Bluetooth
Controlling USB devices

Introduction
One of the key aspects of Raspberry Pi that differentiates it from an average computer is its
ability to interface with and control hardware. In this chapter, we use Raspberry Pi to
control remotely activated mains sockets, send commands over serial connections from
another computer, and control the GPIO remotely. We make use of SPI (another useful
protocol) to drive an 8 x 8 LED matrix display.

We also use a Bluetooth module to connect with a smartphone, allowing information to be
transferred wirelessly between devices. Finally, we take control of USB devices by tapping
into the commands sent over USB.

Be sure to check out the Hardware list section in the Appendix, Hardware
and Software List; it lists all the items used in this chapter and the places
you can obtain them from.

Interfacing with Technology Chapter 13

[428]

Automating your home with remotely
controlled electrical sockets
Raspberry Pi can make an excellent tool for home automation by providing accurate timing,
control, and the ability to respond to commands, button inputs, environmental sensors, or
messages from the internet.

Getting ready
Great care must be taken when controlling devices that use electricity from the mains,
because high voltage and currents are often involved.

Never attempt to modify or alter devices that are connected to mains
electricity without proper training. You must never directly connect any
homemade devices to the mains supply. All electronics must undergo
rigorous safety testing to ensure that there will be no risk or harm to
people or property in the event of a failure.

In this example, we will use remote-controlled radio frequency (RF) plug-in sockets; these
use a separate remote unit to send a specific RF signal to switch any electrical device that is
plugged into it on or off. This allows us to modify the remote control and use Raspberry Pi
to activate the switches safely, without interfering with dangerous voltage:

Remote control and remote mains socket

Interfacing with Technology Chapter 13

[429]

The particular remote control used in this example has six buttons on it to directly switch
three different sockets on or off and is powered by a 12V battery. It can be switched into
four different channels, which allows you to control a total of 12 sockets (each socket has a
similar selector that will be used to set the signal it will respond to):

Inside the remote control

The remote buttons, when pressed, will broadcast a specific RF signal (this one uses a
transmission frequency of 433.92 MHz). This will trigger any socket(s) that are set to the
corresponding channel (A, B, C, or D) and number (1, 2, or 3).

Interfacing with Technology Chapter 13

[430]

Internally, each of the buttons connects two separate signals to ground, the number (1, 2,
or 3), and state (on or off). This triggers the correct broadcast that is to be made by the
remote control:

Connect the wires to ON and OFF, 1, 2, and 3, and GND at suitable points on the remote's PCB (only ON, OFF, 1, and GND are connected in the image)

It is recommended that you do not connect anything to your sockets that could cause a
hazard if switched on or off. The signals sent by the remote are not unique (there are only
four different channels available). This therefore makes it possible for someone else nearby
who has a similar set of sockets to unknowingly activate/deactivate one of your sockets. It is
recommended that you select a channel other than the default, A, which will slightly reduce
the chance of someone else accidentally using the same channel.

Interfacing with Technology Chapter 13

[431]

To allow Raspberry Pi to simulate the button presses of the remote, we will need five
relays to allow us to select the number (1, 2, or 3) and state (on or off):

A prebuilt relay module can be used to switch the signals

Alternatively, the transistor and relay circuit from Chapter 12, Building Robots, can be used
to simulate the button presses.

Interfacing with Technology Chapter 13

[432]

Wire the relay control pins to the Raspberry Pi GPIO and connect the socket remote control
to each relay output as follows:

The socket remote control circuit

Although the remote socket requires both the number (1, 2, or 3) and the
state (on or off) to activate a socket, it is the state signal that activates the
RF transmission. To avoid draining the remote's battery, we must ensure
that we have turned off the state signal.

How to do it...
Create the following socketControl.py script:1.

#!/usr/bin/python3
socketControl.py
import time
import RPi.GPIO as GPIO

Interfacing with Technology Chapter 13

[433]

#HARDWARE SETUP
P1
2[V=G====XI====]26[=======]40
1[=====321=====]25[=======]39
#V=5V G=Gnd
sw_num=[15,13,11]#Pins for Switch 1,2,3
sw_state=[16,18]#Pins for State X=Off,I=On
MSGOFF=0; MSGON=1
SW_ACTIVE=0; SW_INACTIVE=1

class Switch():
 def __init__(self):
 self.setup()
 def __enter__(self):
 return self
 def setup(self):
 print("Do init")
 #Setup the wiring
 GPIO.setmode(GPIO.BOARD)
 for pin in sw_num:
 GPIO.setup(pin,GPIO.OUT)
 for pin in sw_state:
 GPIO.setup(pin,GPIO.OUT)
 self.clear()
 def message(self,number,state):
 print ("SEND SW_CMD: %s %d" % (number,state))
 if state==MSGON:
 self.on(number)
 else:
 self.off(number)
 def on(self,number):
 print ("ON: %d"% number)
 GPIO.output(sw_num[number-1],SW_ACTIVE)
 GPIO.output(sw_state[MSGON],SW_ACTIVE)
 GPIO.output(sw_state[MSGOFF],SW_INACTIVE)
 time.sleep(0.5)
 self.clear()
 def off(self,number):
 print ("OFF: %d"% number)
 GPIO.output(sw_num[number-1],SW_ACTIVE)
 GPIO.output(sw_state[MSGON],SW_INACTIVE)
 GPIO.output(sw_state[MSGOFF],SW_ACTIVE)
 time.sleep(0.5)
 self.clear()
 def clear(self):
 for pin in sw_num:
 GPIO.output(pin,SW_INACTIVE)
 for pin in sw_state:

Interfacing with Technology Chapter 13

[434]

 GPIO.output(pin,SW_INACTIVE)
 def __exit__(self, type, value, traceback):
 self.clear()
 GPIO.cleanup()
def main():
 with Switch() as mySwitches:
 mySwitches.on(1)
 time.sleep(5)
 mySwitches.off(1)
if __name__ == "__main__":
 main()
#End

The socket control script performs a quick test by switching the first socket on for
5 seconds and then turning it off again.

To control the rest of the sockets, create a GUI menu as follows:2.

Remote Switches GUI

Create the following socketMenu.py script:3.

#!/usr/bin/python3
#socketMenu.py
import tkinter as TK
import socketControl as SC

#Define Switches ["Switch name","Switch number"]
switch1 = ["Living Room Lamp",1]
switch2 = ["Coffee Machine",2]
switch3 = ["Bedroom Fan",3]
sw_list = [switch1,switch2,switch3]
SW_NAME = 0; SW_CMD = 1
SW_COLOR=["gray","green"]

Interfacing with Technology Chapter 13

[435]

class swButtons:
 def __init__(self,gui,sw_index,switchCtrl):
 #Add the buttons to window
 self.msgType=TK.IntVar()
 self.msgType.set(SC.MSGOFF)
 self.btn = TK.Button(gui,
 text=sw_list[sw_index][SW_NAME],
 width=30, command=self.sendMsg,
 bg=SW_COLOR[self.msgType.get()])
 self.btn.pack()
 msgOn = TK.Radiobutton(gui,text="On",
 variable=self.msgType, value=SC.MSGON)
 msgOn.pack()
 msgOff = TK.Radiobutton(gui,text="Off",
 variable=self.msgType,value=SC.MSGOFF)
 msgOff.pack()
 self.sw_num=sw_list[sw_index][SW_CMD]
 self.sw_ctrl=switchCtrl
 def sendMsg(self):
 print ("SW_CMD: %s %d" % (self.sw_num,
 self.msgType.get()))
 self.btn.configure(bg=SW_COLOR[self.msgType.get()])
 self.sw_ctrl.message(self.sw_num,
 self.msgType.get())

root = TK.Tk()
root.title("Remote Switches")
prompt = "Control a switch"
label1 = TK.Label(root, text=prompt, width=len(prompt),
 justify=TK.CENTER, bg='lightblue')
label1.pack()
#Create the switch
with SC.Switch() as mySwitches:
 #Create menu buttons from sw_list
 for index, app in enumerate(sw_list):
 swButtons(root,index,mySwitches)
 root.mainloop()
#End

Interfacing with Technology Chapter 13

[436]

How it works...
The first script defines a class called Switch; it sets up the GPIO pins required to control the
five relays (within the setup function). It also defines the __enter__ and __exit__
functions, which are special functions used by the with..as statement. When a class is
created using with..as, it uses __enter__ to perform any extra initialization or setup (if
required), and then it performs any cleanup by calling __exit__. When the Switch class
has been executed, all the relays are switched off to preserve the remote's battery and
GPIO.cleanup() is called to release the GPIO pins. The parameters of the __exit__
function (type, value, and traceback) allow the handling of any specific exceptions that
may have occurred when the class was being executed within the with..as statement (if
required).

To control the sockets, create two functions that will switch the relevant relays on or off to
activate the remote control to send the required signal to the sockets. Then, shortly after,
turn the relays off again using clear(). To make controlling the switches even easier,
create a message function that will allow a switch number and state to be specified.

We make use of the socketControl.py script by creating a Tkinter GUI menu. The menu
is made up of three sets of controls (one for each of the switches) that are defined by the
swButtons class.

The swButtons class creates a Tkinter button and two Radiobutton controls. Each
swButtons object is given an index and a reference to the mySwitches object. This allows
us to set a name for the button and control a particular switch when it is pressed. The socket
is activated/deactivated by calling message(), with the required switch number and state
set by the Radiobutton controls.

There's more...
The previous example allows you to rewire the remotes of most remote-controlled sockets,
but another option is to emulate the signals to control it directly.

Interfacing with Technology Chapter 13

[437]

Sending RF control signals directly
Instead of rewiring the remote control, you can replicate the remote's RF signals using a
transmitter that uses the same frequency as your sockets (these particular units use 433.94
MHz). This will depend on the particular sockets and sometimes your location – some
countries prohibit the use of certain frequencies – as you may require certification before
making your own transmissions:

The 433.94 MHz RF transmitter (left) and receiver (right)

The signals sent by the RF remote control can be recreated using 433Utils created by
http://ninjablocks.com. The 433Utils uses WiringPi and is written in C++, allowing high
speed capture and replication of the RF signals.

Obtain the code using the following command:

cd ~
wget https://github.com/ninjablocks/433Utils/archive/master.zip
unzip master.zip

Next, we need to wire up our RF transmitter (so we can control the switches) and RF
receiver (so we can determine the control codes) to the Raspberry Pi.

The transmitter (the smaller square module) has three pins, which are power (VCC),
ground (GND), and data out (DATA). The voltage supplied on the power pin will govern
the transmission range (we will use a 5V supply from Raspberry Pi, but you could replace
this with 12V, as long as you ensure you connect the ground pin to both your 12V supply
and Raspberry Pi).

http://ninjablocks.com

Interfacing with Technology Chapter 13

[438]

Although the receiver has four pins, there is a power pin (VCC), ground pin (GND), and
two data out pins (DATA), which are wired together, so we only need to connect three
wires to Raspberry Pi:

RF Tx RPi GPIO pin RF Rx RPi GPIO pin

VCC (5V) 2 VCC (3V3) 1

Data out 11 Data in 13

GND 6 GND 9

Before we use the programs within the RPi_Utils, we will make a few adjustments to
ensure our RX and TX pins are set correctly.

Locate codesend.cpp in 433Utils-master/RPi_utils/ to make the required changes:

cd ~/433Utils-master/RPi_utils
nano codesend.cpp -c

Change int PIN = 0; (located at around line 24) to int PIN = 11; (RPi physical
pin number).

Change wiringPi to use physical pin numbering (located around line 27) by replacing
wiringPiSetup() with wiringPiSetupPhy(). Otherwise, the default is wiringPi GPIO
numbers; for more details, see http://wiringpi.com/reference/setup/. Find the following
line:

if (wiringPiSetup () == -1) return 1;

Change it to this:

if (wiringPiSetupPhys () == -1) return 1;

Save and exit nano using Ctrl + X, Y.

Make similar adjustments to RFSniffer.cpp:

nano RFSniffer.cpp -c

Find the following line (located at around line 25):

int PIN = 2;

http://wiringpi.com/reference/setup/

Interfacing with Technology Chapter 13

[439]

Change it to this:

int PIN = 13; //RPi physical pin number

Find the following line (located at around line 27):

if(wiringPiSetup() == -1) {

Change it to this:

if(wiringPiSetupPhys() == -1) {

Save and exit nano using Ctrl + X, Y.

Build the code using the following command:

make all

This should build without errors, as shown here:

g++ -c -o codesend.o codesend.cpp
g++ RCSwitch.o codesend.o -o codesend -lwiringPi
g++ -c -o RFSniffer.o RFSniffer.cpp
g++ RCSwitch.o RFSniffer.o -o RFSniffer -lwiringPi

Now that we have our RF modules connected to Raspberry Pi and our code ready, we can
capture the control signals from our remote. Run the following command and take note of
the reported output:

sudo ./RFSniffer

Get the output by switching button 1 OFF with the remote set to channel A (note that we
may pick up some random noise):

Received 1381716
Received 1381716
Received 1381716
Received 1381717
Received 1398103

We can now send out the signals using the sendcode command to switch the sockets OFF
(1381716) and ON (1381719):

sendcode 1381716
sendcode 1381719

Interfacing with Technology Chapter 13

[440]

You could even set up Raspberry Pi to use the receiver module to detect signals from the
remote (on an unused channel) and to act upon them to start processes, control other
hardware, or perhaps trigger a software shutdown/reboot.

Extending the range of the RF transmitter
The range of the transmitter is very limited when it is powered by 5V and without an
additional antenna. However, it is worth testing everything before you make any
modifications.

Simple wire antenna can be made from 25 cm of single core wire, 17 mm side connected to
the antenna solder point, then 16 turns (made using a thin screwdriver shaft or similar) and
the remaining wire on top (approximately 53 mm):

The transmitter range is vastly improved with a simple antenna

Determining the structure of the remote control codes
Recording the codes for each of the buttons, we can determine the codes for each (and break
down the structure):

1 2 3

ON OFF ON OFF ON OFF

A 0x15 15 57
(1381719)

0x15 15 54
(1381716)

0x15 45 57
(1394007)

0x15 45
54
(1394004
)

0x15 51
57
(1397079)

0x15 51 54
(1397076)

Interfacing with Technology Chapter 13

[441]

B 0x45 15 57
(4527447)

0x45 15 54
(4527444)

0x45 45 57
(4539735)

0x45 45
54
(4539732
)

0x45 51
57
(4542807)

0x45 51 54
(4542804)

C 0x51 15 57
(5313879)

0x51 15 54
(5313876)

0x51 45 57
(5326167)

0x51 45
54
(5326164
)

0x51 51
57
(5329239)

0x51 51 54
(5329236)

D 0x54 15 57
(5510487)

0x54 15 57
(5510487)

0x54 45 57
(5522775)

0x54 45
54
(5522772
)

0x54 51
57
(5525847)

0x54 51 54
(5526612)

A B C D 1 2 3 na na na na ON/OFF

01 01 01 01 01 01 01 01 01 01 01 11/00

The different codes are shown in hex format to help you see the structure; the sendcode command uses the decimal format (shown within the parentheses)

To select channel A, B, C, or D, set the two bits to 00. Similarly, for button 1, 2, or 3, set the
two bits to 00 to select that button. Finally, set the last two bits to 11 for ON or 00 for OFF.

See
https://arduinodiy.wordpress.com/2014/08/12/433-mhz-system-for-your-arduino/,
which analyses these and other similar RF remote controls.

Using SPI to control an LED matrix
In Chapter 10, Sensing and Displaying Real-World Data, we connected to devices using a bus
protocol called I2C. Raspberry Pi also supports another chip-to-chip protocol called Serial
Peripheral Interface (SPI). The SPI bus differs from I2C because it uses two single direction
data lines (where I2C uses one bidirectional data line).

https://arduinodiy.wordpress.com/2014/08/12/433-mhz-system-for-your-arduino/

Interfacing with Technology Chapter 13

[442]

Although SPI requires more wires (I2C uses two bus signals, SDA and SCL), it supports the
simultaneous sending and receiving of data and much higher clock speeds than I2C:

General connections of SPI devices with Raspberry Pi

The SPI bus consists of the following four signals:

SCLK: This allows the clock edges to read/write data on the input/output lines; it
is driven by the master device. As the clock signal changes from one state to
another, the SPI device will check the state of the MOSI signal to read a single bit.
Similarly, if the SPI device is sending data, it will use the clock signal edges to
synchronize when it sets the state of the MISO signal.
CE: This refers to Chip Enable (typically, a separate Chip Enable is used for each
slave device on the bus). The master device will set the Chip Enable signal to low
for the device that it wants to communicate with. When the Chip Enable signal is
set to high, it ignores any other signals on the bus. This signal is sometimes called
Chip Select (CS) or Slave Select (SS).
Master Output, Slave Input (MOSI): It connects to Data Out of the master device
and Data In of the slave device.
Master Input, Slave Output (MISO): It provides a response from the slave.

Interfacing with Technology Chapter 13

[443]

The following diagram shows each of the signals:

The SPI signals: SCLK (1), CE(2), MOSI(3), and MISO(4)

The previous scope trace shows two bytes being sent over SPI. Each byte is clocked into the
SPI device using the SCLK (1) signal. A byte is signified by a burst of eight clock cycles (a
low and then high period on the SCLK (1) signal), where the value of a specific bit is read
when the clock state changes. The exact sample point is determined by the clock mode; in
the following diagram, it is when the clock goes from low to high:

The first data byte sent by Raspberry Pi to the SPI device using the MOSI(3) signal

The first byte sent is 0x01 (all the bits are low, except Bit 0) and the second sent is 0x03 (only
Bit 1 and Bit 0 are high). At the same time, the MOSI (4) signal returns data from the SPI
device-in this case, 0x08 (Bit 3 is high) and 0x00 (all the bits are low). The SCLK (1) signal is
used to sync everything, even the data being sent from the SPI device.

The CE (2) signal is held low while the data is being sent to instruct that particular SPI
device to listen to the MOSI (4) signal. When the CE (2) signal is set to high again, it
indicates to the SPI device that the transfer has been completed.

Interfacing with Technology Chapter 13

[444]

The following is an image of an 8 x 8 LED matrix that is controlled via the SPI Bus:

An 8 x 8 LED module displaying the letter K

Getting ready
The wiringPi library that we used previously for I2C also supports SPI. Ensure that
wiringPi is installed (see Chapter 10, Sensing and Displaying Real-World Data, for details)
so that we can use it here.

Next, we need to enable SPI if we didn't do so when we enabled I2C previously:

sudo nano /boot/config.txt

Remove the # before #dtparam=spi=on to enable it, so it reads, and save (Ctrl + X, Y,
Enter):

dtparam=spi=on

You can confirm that the SPI is active by listing all the running modules using the following
command and locating spi_bcm2835:

lsmod

You can test the SPI with the following spiTest.py script:

#!/usr/bin/python3
spiTest.py
import wiringpi

print("Add SPI Loopback - connect GPIO Pin19 and Pin21")
print("[Press Enter to continue]")

Interfacing with Technology Chapter 13

[445]

input()
wiringpi.wiringPiSPISetup(1,500000)
buffer=str.encode("HELLO")
print("Buffer sent %s" % buffer)
wiringpi.wiringPiSPIDataRW(1,buffer)
print("Buffer received %s" % buffer)
print("Remove the SPI Loopback")
print("[Press Enter to continue]")
input()
buffer=str.encode("HELLO")
print("Buffer sent %s" % buffer)
wiringpi.wiringPiSPIDataRW(1,buffer)
print("Buffer received %s" % buffer)
#End

Connect inputs 19 and 21 to create an SPI loopback for testing:

The SPI loopback test

You should get the following result:

Buffer sent b'HELLO'
Buffer received b'HELLO'
Remove the SPI Loopback
[Press Enter to continue]
Buffer sent b'HELLO'
Buffer received b'x00x00x00x00x00'

Interfacing with Technology Chapter 13

[446]

The example that follows uses an LED 8 x 8 matrix display that is being driven by an
SPI-controlled MAX7219 LED driver:

An LED Controller MAX7219 pin-out, LED matrix pin-out, and LED matrix internal wiring (left to right)

Although the device has been designed to control eight separate seven-segment LED digits,
we can use it for our LED matrix display. When used for digits, each of the seven segments
(plus a decimal place) is wired to one of the SEG pins and the COM connection of each of
the digits is wired to the DIG pins. The controller then switches each of the segments on as
required, while setting the relevant digit COM to low to enable it. The controller can quickly
cycle through each of the digits using the DIG pin quickly enough that all eight appear to be
lit at the same time:

A seven-segment LED digit uses segments A to G, plus DP (decimal place)

Interfacing with Technology Chapter 13

[447]

We use the controller in a similar way, except each SEG pin will connect to a column in the
matrix and the DIG pins will enable/disable a row.

We use an 8 x 8 module connected to the MAX7219 chip as follows:

The MAX7219 LED controller driving an 8 x 8 LED matrix display

How to do it...
To control an LED matrix connected to an SPI MAX7219 chip, create the1.
following matrixControl.py script:

#!/usr/bin/python3
matrixControl.py
import wiringpi
import time

MAX7219_NOOP = 0x00
DIG0=0x01; DIG1=0x02; DIG2=0x03; DIG3=0x04
DIG4=0x05; DIG5=0x06; DIG6=0x07; DIG7=0x08
MAX7219_DIGIT=[DIG0,DIG1,DIG2,DIG3,DIG4,DIG5,DIG6,DIG7]
MAX7219_DECODEMODE = 0x09
MAX7219_INTENSITY = 0x0A
MAX7219_SCANLIMIT = 0x0B

Interfacing with Technology Chapter 13

[448]

MAX7219_SHUTDOWN = 0x0C
MAX7219_DISPLAYTEST = 0x0F
SPI_CS=1
SPI_SPEED=100000

class matrix():
 def __init__(self,DEBUG=False):
 self.DEBUG=DEBUG
 wiringpi.wiringPiSPISetup(SPI_CS,SPI_SPEED)
 self.sendCmd(MAX7219_SCANLIMIT, 8) # enable outputs
 self.sendCmd(MAX7219_DECODEMODE, 0) # no digit decode
 self.sendCmd(MAX7219_DISPLAYTEST, 0) # display test off
 self.clear()
 self.brightness(7) # brightness 0-15
 self.sendCmd(MAX7219_SHUTDOWN, 1) # start display
 def sendCmd(self, register, data):
 buffer=(register<<8)+data
 buffer=buffer.to_bytes(2, byteorder='big')
 if self.DEBUG:print("Send byte: 0x%04x"%
 int.from_bytes(buffer,'big'))
 wiringpi.wiringPiSPIDataRW(SPI_CS,buffer)
 if self.DEBUG:print("Response: 0x%04x"%
 int.from_bytes(buffer,'big'))
 return buffer
 def clear(self):
 if self.DEBUG:print("Clear")
 for row in MAX7219_DIGIT:
 self.sendCmd(row + 1, 0)
 def brightness(self,intensity):
 self.sendCmd(MAX7219_INTENSITY, intensity % 16)

def letterK(matrix):
 print("K")
 K=(0x0066763e1e366646).to_bytes(8, byteorder='big')
 for idx,value in enumerate(K):
 matrix.sendCmd(idx+1,value)

def main():
 myMatrix=matrix(DEBUG=True)
 letterK(myMatrix)
 while(1):
 time.sleep(5)
 myMatrix.clear()

Interfacing with Technology Chapter 13

[449]

 time.sleep(5)
 letterK(myMatrix)

if __name__ == '__main__':
 main()
#End

Running the script (python3 matrixControl.py) displays the letter K.

We can use a GUI to control the output of the LED matrix using matrixMenu.py:2.

#!/usr/bin/python3
#matrixMenu.py
import tkinter as TK
import time
import matrixControl as MC

#Enable/Disable DEBUG
DEBUG = True
#Set display sizes
BUTTON_SIZE = 10
NUM_BUTTON = 8
NUM_LIGHTS=NUM_BUTTON*NUM_BUTTON
MAX_VALUE=0xFFFFFFFFFFFFFFFF
MARGIN = 2
WINDOW_H = MARGIN+((BUTTON_SIZE+MARGIN)*NUM_BUTTON)
WINDOW_W = WINDOW_H
TEXT_WIDTH=int(2+((NUM_BUTTON*NUM_BUTTON)/4))
LIGHTOFFON=["red4","red"]
OFF = 0; ON = 1
colBg = "black"

def isBitSet(value,bit):
 return (value>>bit & 1)

def setBit(value,bit,state=1):
 mask=1<<bit
 if state==1:
 value|=mask
 else:
 value&=~mask
 return value

def toggleBit(value,bit):
 state=isBitSet(value,bit)
 value=setBit(value,bit,not state)
 return value

Interfacing with Technology Chapter 13

[450]

class matrixGUI(TK.Frame):
 def __init__(self,parent,matrix):
 self.parent = parent
 self.matrix=matrix
 #Light Status
 self.lightStatus=0
 #Add a canvas area ready for drawing on
 self.canvas = TK.Canvas(parent, width=WINDOW_W,
 height=WINDOW_H, background=colBg)
 self.canvas.pack()
 #Add some "lights" to the canvas
 self.light = []
 for iy in range(NUM_BUTTON):
 for ix in range(NUM_BUTTON):
 x = MARGIN+MARGIN+((MARGIN+BUTTON_SIZE)*ix)
 y = MARGIN+MARGIN+((MARGIN+BUTTON_SIZE)*iy)
 self.light.append(self.canvas.create_rectangle(x,y,
 x+BUTTON_SIZE,y+BUTTON_SIZE,
 fill=LIGHTOFFON[OFF]))
 #Add other items
 self.codeText=TK.StringVar()
 self.codeText.trace("w", self.changedCode)
 self.generateCode()
 code=TK.Entry(parent,textvariable=self.codeText,
 justify=TK.CENTER,width=TEXT_WIDTH)
 code.pack()
 #Bind to canvas not tk (only respond to lights)
 self.canvas.bind('<Button-1>', self.mouseClick)
 def mouseClick(self,event):
 itemsClicked=self.canvas.find_overlapping(event.x,
 event.y,event.x+1,event.y+1)
 for item in itemsClicked:
 self.toggleLight(item)

 def setLight(self,num):
 state=isBitSet(self.lightStatus,num)
 self.canvas.itemconfig(self.light[num],
 fill=LIGHTOFFON[state])
 def toggleLight(self,num):
 if num != 0:
 self.lightStatus=toggleBit(self.lightStatus,num-1)
 self.setLight(num-1)
 self.generateCode()

 def generateCode(self):
 self.codeText.set("0x%016x"%self.lightStatus)

 def changedCode(self,*args):

Interfacing with Technology Chapter 13

[451]

 updated=False
 try:
 codeValue=int(self.codeText.get(),16)
 if(codeValue>MAX_VALUE):
 codeValue=codeValue>>4
 self.updateLight(codeValue)
 updated=True
 except:
 self.generateCode()
 updated=False
 return updated

 def updateLight(self,lightsetting):
 self.lightStatus=lightsetting
 for num in range(NUM_LIGHTS):
 self.setLight(num)
 self.generateCode()
 self.updateHardware()

 def updateHardware(self):
 sendBytes=self.lightStatus.to_bytes(NUM_BUTTON,
 byteorder='big')
 print(sendBytes)
 for idx,row in enumerate(MC.MAX7219_DIGIT):
 response = self.matrix.sendCmd(row,sendBytes[idx])
 print(response)

def main():
 global root
 root=TK.Tk()
 root.title("Matrix GUI")
 myMatrixHW=MC.matrix(DEBUG)
 myMatrixGUI=matrixGUI(root,myMatrixHW)
 TK.mainloop()
if __name__ == '__main__':
 main()
#End

Interfacing with Technology Chapter 13

[452]

The Matrix GUI allows us to switch each of the LEDs on/off by clicking on each of3.
the squares (or by directly entering the hexadecimal value) to create the required
pattern:

Using the Matrix GUI to control the 8 x 8 LED matrix

How it works...
Initially, we defined addresses for each of the control registers used by the MAX7219
device. View the datasheet at for more information:

https:/​/​datasheets. ​maximintegrated. ​com/ ​en/ ​ds/​MAX7219- ​MAX7221. ​pdf.

We created a class called matrix that will allow us to control the module. The __init__()
function sets up the SPI of Raspberry Pi (using SPI_CS as pin 26 CS1 and SPI_SPEED as 100
kHz).

The key function in our matrix class is the sendCmd() function; it uses
wiringpi.wiringPiSPIDataRW(SPI_CS,buff) to send buffer (which is the raw byte
data that we want to send) over the SPI bus (while also setting the SPI_CS pin to low when
the transfer occurs). Each command consists of two bytes: the first specifies the address of
the register, and the second sets the data that needs to be put into it. To display a row of
lights, we send the address of one of the ROW registers (MC.MAX7219_DIGIT) and the bit-
pattern we want to display (as a byte).

After the wiringpi.wiringPiSPIDataRW() function is called, buffer
contains the result of whatever is received on the MISO pin (which is read
simultaneously as the data is sent via the MOSI pin). If connected, this will
be the output of the LED module (a delayed copy of the data that was
sent). Refer to the following There's more... section regarding daisy-chained
SPI configurations to learn how the chip output can be used.

https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf

Interfacing with Technology Chapter 13

[453]

To initialize the MAX7219, we need to ensure that it is configured in the correct mode. First,
we set the Scan Limit field to 7 (which enables all the DIG0 - DIG7 outputs). Next, we
disable the built-in digit decoding since we are using the raw output for the display (and
don't want it to try to display digits). We also want to ensure that the
MAX7219_DISPLAYTEST register is disabled (if enabled, it would turn on all the LEDs).

We ensure the display is cleared by calling our own clear() function, which sends 0
to each of the MAX7219_DIGIT registers to clear each of the rows. Finally, we use the
MAX7219_INTENSITY register to set the brightness of the LEDs. The brightness is controlled
using a PWM output to make the LEDs appear brighter or darker according to the
brightness that is required.

Within the main() function, we perform a quick test to display the letter K on the grid by
sending a set of 8 bytes (0x0066763e1e366646):

Each 8 x 8 pattern consists of 8 bits in 8 bytes (one bit for each column, making each byte a row in the display)

The matrixGUI class creates a canvas object that is populated with a grid of rectangle
objects to represent the 8 x 8 grid of LEDs we want to control (these are kept in
self.light). We also add a text entry box to display the resulting bytes that we will send
to the LED matrix module. We then bind the <Button-1> mouse event to the canvas so that
mouseClick is called whenever a mouse click occurs within the area of the canvas.

We attach a function called changedCode() to the codeText variable using trace, a
special Python function, which allows us to monitor specific variables or functions. If we
use the 'w' value with the trace function, the Python system will call the callback
function whenever the value is written to.

Interfacing with Technology Chapter 13

[454]

When the mouseClick() function is called, we use the event.x and event.y coordinates
to identify the object that is located there. If an item is detected, then the ID of the item is
used (via toggleLight()) to toggle the corresponding bit in the self.lightStatus
value, and the color of the light in the display changes accordingly (via setLight()). The
codeText variable is also updated with the new hexadecimal representation of the
lightStatus value.

The changeCode() function allows us to use the codeText variable and translate it into an
integer. This allows us to check whether it is a valid value. Since it is possible to enter text
here freely, we must validate it. If we are unable to convert it to an integer, the codeValue
text is refreshed using the lightStatus value. Otherwise, we check if it is too large, in
which case we perform a bit-shift by 4 to divide it by 16 until it is within a valid range. We
update the lightStatus value, the GUI lights, the codeText variable, and also the
hardware (by calling updateHardware()).

The updateHardware() function makes use of the myMatrixHW object that was created
using the MC.matrix class. We send the bytes that we want to display to the matrix
hardware one byte at a time (along with the corresponding MAX7219_DIGIT value to
specify the row).

There's more...
The SPI bus allows us to control multiple devices on the same bus by using the Chip
Enable signal. Some devices, such as the MAX7219, also allow what is known as a
daisy-chain SPI configuration.

Daisy-chain SPI configuration
You may have noticed that the matrix class also returns a byte when we send the data on
the MOSI line. This is the data output from the MAX7219 controller on the DOUT
connection. The MAX7219 controller actually passes all the DIN data through to DOUT,
which is one set of instructions behind the DIN data. In this way, the MAX7219 can be
daisy-chained (with each DOUT feeding into the next DIN). By keeping the CE signal low,
multiple controllers can be loaded with data by being passed though one another.

Interfacing with Technology Chapter 13

[455]

The data is ignored while CE is set to low; the output will only be changed when we set it to
high again. In this way, you can clock in all the data for each of the modules in the chain
and then set the CE to high to update them:

The daisy-chain SPI configuration

We need to do this for each row that we wish to update (or use MAX7219_NOOP if we want
to keep the current row the same). This is known as a daisy-chain SPI configuration,
supported by some SPI devices, where data is passed through each device on the SPI bus to
the next one, which allows the use of three bus control signals for multiple devices.

Communicating using a serial interface
Traditionally, serial protocols such as RS232 are a common way to connect devices such as
printers and scanners as well as joysticks and mouse devices to computers. Now, despite
being superseded by USB, many peripherals still make use of this protocol for internal
communication between components, to transfer data, and to update firmware. For
electronics hobbyists, RS232 is a very useful protocol for debugging and controlling other
devices while avoiding the complexities of USB.

The two scripts in this example allow for the control of the GPIO pins to illustrate how we
can remotely control Raspberry Pi using the serial port. The serial port can be connected to a
PC, another Raspberry Pi device, or even an embedded microcontroller (such as Arduino,
PIC, or similar).

Interfacing with Technology Chapter 13

[456]

Getting ready
The easiest way to connect to Raspberry Pi via a serial protocol will depend on whether
your computer has a built-in serial port or not. The serial connection, software, and test
setup are described in the following three steps:

Create an RS232 serial connection between your computer and Raspberry Pi. For1.
this, you need one of the following setups:

If your computer has a built-in serial port available, you can use
a Null-Modem cable with an RS232-to-USB adaptor to connect to
Raspberry Pi:

RS232-to-USB adapter

A Null-Modem is a serial cable/adapter that has the TX and RX wires
crossed over so that one side is connected to the TX pin of the serial port
and the other side is connected to the RX pin:

A PC serial port connected to Raspberry Pi via a Null-Modem cable and an RS232-to-USB adapter USB for an RS232 adapter

Interfacing with Technology Chapter 13

[457]

A list of supported USB-to-RS232 devices is available at the following link:
http://elinux.org/RPi_VerifiedPeripherals#USB_UART_and_USB_to_Se

rial_.28RS-232.29_adapters.

Refer to the There's more... section for details on how to set them up.

If you do not have a serial port built in to your computer, you can use
another USB-to-RS232 adapter to connect to the PC/laptop, converting the
RS232 to the more common USB connection.

If you do not have any available USB ports on Raspberry Pi, you can use
the GPIO serial pins directly with either a serial console cable or a
Bluetooth serial module (refer to the There's more... section for details).
Both of these will require some additional setup.

In all cases, you can use an RS232 loopback to confirm that everything is
working and set up correctly (again, refer to the There's more... section).

Next, prepare the software you need for this example.2.

You will need to install pyserial so we can use the serial port with Python.

Install pyserial with the following command (you will also need pip installed;3.
refer to Chapter 3, Using Python for Automation and Productivity, for details):

sudo pip-3.2 install pyserial

Refer to the pySerial site for further documentation:

https://pyserial.readthedocs.io/en/latest/.

In order to demonstrate the RS232 serial control, you will require some example
hardware attached to Raspberry Pi's GPIO pins.

http://elinux.org/RPi_VerifiedPeripherals#USB_UART_and_USB_to_Serial_.28RS-232.29_adapters
http://elinux.org/RPi_VerifiedPeripherals#USB_UART_and_USB_to_Serial_.28RS-232.29_adapters
https://pyserial.readthedocs.io/en/latest/

Interfacing with Technology Chapter 13

[458]

The serialMenu.py script allows the GPIO pins to be controlled using
commands sent through the serial port. To fully test this, you can connect suitable
output devices (such as LEDs) to each of the GPIO pins. You can ensure that the
total current is kept low using 470-ohm resistors for each of the LEDs so that the
maximum GPIO current that the Raspberry Pi can supply is not exceeded:

A test circuit to test the GPIO output via serial control

How to do it...
Create the following serialControl.py script:1.

#!/usr/bin/python3
#serialControl.py
import serial
import time

#Serial Port settings
SERNAME="/dev/ttyUSB0"
#default setting is 9600,8,N,1
IDLE=0; SEND=1; RECEIVE=1

Interfacing with Technology Chapter 13

[459]

def b2s(message):
 '''Byte to String'''
 return bytes.decode(message)
def s2b(message):
 '''String to Byte'''
 return bytearray(message,"ascii")

class serPort():
 def __init__(self,serName="/dev/ttyAMA0"):
 self.ser = serial.Serial(serName)
 print (self.ser.name)
 print (self.ser)
 self.state=IDLE
 def __enter__(self):
 return self
 def send(self,message):
 if self.state==IDLE and self.ser.isOpen():
 self.state=SEND
 self.ser.write(s2b(message))
 self.state=IDLE

 def receive(self, chars=1, timeout=5, echo=True,
 terminate="r"):
 message=""
 if self.state==IDLE and self.ser.isOpen():
 self.state=RECEIVE
 self.ser.timeout=timeout
 while self.state==RECEIVE:
 echovalue=""
 while self.ser.inWaiting() > 0:
 echovalue += b2s(self.ser.read(chars))
 if echo==True:
 self.ser.write(s2b(echovalue))
 message+=echovalue
 if terminate in message:
 self.state=IDLE
 return message
 def __exit__(self,type,value,traceback):
 self.ser.close()

def main():
 try:
 with serPort(serName=SERNAME) as mySerialPort:
 mySerialPort.send("Send some data to me!rn")
 while True:
 print ("Waiting for input:")
 print (mySerialPort.receive())
 except OSError:

Interfacing with Technology Chapter 13

[460]

 print ("Check selected port is valid: %s" %serName)
 except KeyboardInterrupt:
 print ("Finished")

if __name__=="__main__":
 main()
#End

Ensure that the serName element is correct for the serial port you want to use
(such as /dev/ttyAMA0 for the GPIO pins or /dev/ttyUSB0 for a USB RS232
adapter).

Connect the other end to a serial port on your laptop or computer (the serial port
can be another USB-to-RS232 adapter).

Monitor the serial port on your computer using a serial program such as
HyperTerminal or RealTerm for Windows or Serial Tools for OS X. You will need
to ensure that you have the correct COM port set and a baud rate of 9,600 bps
(Parity=None, Data Bits=8, Stop Bits=1, and Hardware Flow
Control=None).

The script will send a request for data to the user and wait for a response.

To send data to Raspberry Pi, write some text on the other computer and press
Enter to send it over to Raspberry Pi.

You will see output similar to the following in the Raspberry Pi terminal:2.

The text Switch on LED 1 has been sent via a USB-to-RS232 cable from a connected computer

You will also see output similar to the following in the serial monitoring3.
program:

Interfacing with Technology Chapter 13

[461]

RealTerm displaying typical output from the connected serial port

Press Ctrl + C on Raspberry Pi to stop the script.4.
Now, create a GPIO control menu. Create serialMenu.py:5.

#!/usr/bin/python3
#serialMenu.py
import time
import RPi.GPIO as GPIO
import serialControl as SC
SERNAME = "/dev/ttyUSB0"
running=True

CMD=0;PIN=1;STATE=2;OFF=0;ON=1
GPIO_PINS=[7,11,12,13,15,16,18,22]
GPIO_STATE=["OFF","ON"]
EXIT="EXIT"

def gpioSetup():
 GPIO.setmode(GPIO.BOARD)
 for pin in GPIO_PINS:
 GPIO.setup(pin,GPIO.OUT)

def handleCmd(cmd):
 global running
 commands=cmd.upper()
 commands=commands.split()
 valid=False

Interfacing with Technology Chapter 13

[462]

 print ("Received: "+ str(commands))
 if len(commands)==3:
 if commands[CMD]=="GPIO":
 for pin in GPIO_PINS:
 if str(pin)==commands[PIN]:
 print ("GPIO pin is valid")
 if GPIO_STATE[OFF]==commands[STATE]:
 print ("Switch GPIO %s %s"% (commands[PIN],
 commands[STATE]))
 GPIO.output(pin,OFF)
 valid=True
 elif GPIO_STATE[ON]==commands[STATE]:
 print ("Switch GPIO %s %s"% (commands[PIN],
 commands[STATE]))
 GPIO.output(pin,ON)
 valid=True
 elif commands[CMD]==EXIT:
 print("Exit")
 valid=True
 running=False
 if valid==False:
 print ("Received command is invalid")
 response=" Invalid:GPIO Pin#(%s) %srn"% (
 str(GPIO_PINS), str(GPIO_STATE))
 else:
 response=" OKrn"
 return (response)

def main():
 try:
 gpioSetup()
 with SC.serPort(serName=SERNAME) as mySerialPort:
 mySerialPort.send("rn")
 mySerialPort.send(" GPIO Serial Controlrn")
 mySerialPort.send(" -------------------rn")
 mySerialPort.send(" CMD PIN STATE "+
 "[GPIO Pin# ON]rn")
 while running==True:
 print ("Waiting for command...")
 mySerialPort.send(">>")
 cmd = mySerialPort.receive(terminate="rn")
 response=handleCmd(cmd)
 mySerialPort.send(response)
 mySerialPort.send(" Finished!rn")
 except OSError:
 print ("Check selected port is valid: %s" %serName)
 except KeyboardInterrupt:
 print ("Finished")

Interfacing with Technology Chapter 13

[463]

 finally:
 GPIO.cleanup()

main()
#End

When you run the script (sudo python3 serialMenu.py), type the control 6.
messages within the serial monitoring program:

The GPIO Serial Control menu

The Terminal output on Raspberry Pi will be similar to the following screenshot,7.
and the LEDs should respond accordingly:

The GPIO Serial Control menu

Interfacing with Technology Chapter 13

[464]

Raspberry Pi validates the commands received from the serial connection and
switches the LEDs connected to the GPIO pins 7 and 11 on and then off.

How it works...
The first script, serialControl.py, provides us with a serPort class. We define the class
with the following functions:

__init__(self,serName="/dev/ttyAMA0"): This function will create a new
serial device using serName – the default of /dev/ttyAMA0 is the ID for the
GPIO serial pins (see the There's more... section). After it is initialized, information
about the device is displayed.
__enter__(self): This is a dummy function that allows us to use the
with...as method.
send(self,message): This is used to check that the serial port is open and not
in use; if this is the case, it will then send a message (after converting it to raw
bytes using the s2b() function).
receive(self, chars=1, echo=True, terminate="r"): After checking
whether the serial port is open and not in use, this function then waits for data
through the serial port. The function will collect data until the terminated
characters are detected and then the full message is returned.
__exit__(self,type,value,traceback): This function is called when the
serPort object is no longer required by the with...as method, so we can close
the port at this point.

The main() function in the script performs a quick test of the class by sending a prompt for
data through the serial port to a connected computer and then waits for input that will be
followed by the terminated character(s).

The next script, serialMenu.py, allows us to make use of the serPort class.

The main() function sets up the GPIO pins as output (via gpioSetup()), creates a new
serPort object, and finally waits for commands coming from the serial port. Whenever a
new command is received, the handleCmd() function is used to parse the message to
ensure that it is correct before acting on it.

Interfacing with Technology Chapter 13

[465]

The script will switch a particular GPIO pin on or off as commanded via the serial port
using the GPIO command keyword. We could add any number of command keywords and
control (or read) whatever device (or devices) we attached to Raspberry Pi. We now have a
very effective way to control Raspberry Pi using any devices connected via a serial link.

There's more...
In addition to the serial transmit and receive, the RS232 serial standard includes several
other control signals. To test it, you can use a serial loopback to confirm if the serial ports
are set up correctly.

Configuring a USB-to-RS232 device for Raspberry Pi
Once you have connected the USB-to-RS232 device to Raspberry Pi, check to see whether
a new serial device is listed by typing the following command:

dmesg | grep tty

The dmesg command lists events that occur on the system; using grep, we can filter any
messages that mention tty, as shown in the following code:

[2409.195407] usb 1-1.2: pl2303 converter now attached to ttyUSB0

This shows that a PL2303-based USB-RS232 device was attached (2,409 seconds after
startup) and allocated the ttyUSB0 identity. You will see that a new serial device has been
added within the /dev/ directory (usually /dev/ttyUSB0 or something similar).

If the device has not been detected, you can try steps similar to the ones used in Chapter 1,
Getting Started with a Raspberry Pi 3 Computer, to locate and install suitable drivers (if they
are available).

RS232 signals and connections
The RS232 serial standard has lots of variants and includes six additional control signals.

Interfacing with Technology Chapter 13

[466]

The Raspberry Pi GPIO serial drivers (and the Bluetooth TTL module used in the following
example) only support RX and TX signals. If you require support for other signals, such as
DTR, which is often used for a reset prior to the programming of AVR/Arduino devices,
then alternative GPIO serial drivers may be needed to set these signals via other GPIO pins.
Most RS232-to-USB adapters support the standard signals; however, ensure that anything
you connect is able to handle standard RS232 voltages:

The RS232 9-Way D connector pin-out and signals

For more details on the RS232 serial protocol and to learn how these signals are used, visit
the following link:

http://en.wikipedia.org/wiki/Serial_port.

Using the GPIO built-in serial pins
Standard RS232 signals can range from -15V to +15V, so you must never directly connect
any RS232 device to the GPIO serial pins. You must use an RS232 to TTL voltage-level
converter (such as a MAX232 chip) or a device that uses TTL-level signals (such as another
microcontroller or a TTL serial console cable):

A USB-to-TTL serial console cable (voltage level is 3V)

http://en.wikipedia.org/wiki/Serial_port

Interfacing with Technology Chapter 13

[467]

Raspberry Pi has TTL-level serial pins on the GPIO header that allow the connection of a
TTL serial USB cable. The wires will connect to the Raspberry Pi GPIO pins and the USB
will plug in to your computer and be detected like a standard RS232-to-USB cable:

Connection of a USB-to-TTL serial console cable to the Raspberry Pi GPIO

It is possible to provide power from the USB port to the 5V pin; however, this will bypass
the built-in polyfuse, so it is not recommended for general use (just leave the 5V wire
disconnected and power it up as normal using the micro USB).

By default, these pins are set up to allow remote terminal access, allowing you to connect
to the COM port via PuTTY and to create a serial SSH session.

A serial SSH session can be helpful if you want to use Raspberry Pi
without a display attached to it.

However, a serial SSH session is limited to text-only Terminal access since
it does not support X10 forwarding, as used in the Connecting remotely to
Raspberry Pi over the network using SSH (and X11 forwarding) section of
Chapter 1, Getting Started with a Raspberry Pi 3 Computer.

In order to use it as a standard serial connection, we have to disable the serial console so it is
available for us to use.

First, we need to edit /boot/cmdline.txt to remove the first console and kgboc options
(do not remove the other console=tty1 option, which is the default Terminal when you
switch on):

sudo nano /boot/cmdline.txt
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200
console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait

Interfacing with Technology Chapter 13

[468]

The previous command line becomes the following (ensure that this is still a single
command line):

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4
elevator=deadline rootwait

We also have to remove the task that runs the getty command (the program that handles
the text Terminal for the serial connection) by commenting it out with #. This is set in
/etc/inittab as follows:

sudo nano /etc/inittab
T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

The previous command line becomes the following:

#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

To reference the GPIO serial port in our script, we use its name, /dev/ttyAMA0.

The RS232 loopback
You can check whether the serial port connections are working correctly using a
serial loopback.

A simple loopback consists of connecting RXD and TXD together. These are pins 8 and 10
on the Raspberry Pi GPIO header, or pins 2 and 3 on the standard RS232 D9 connector on
the USB-RS232 adapter:

Serial loopback connections to test the Raspberry Pi GPIO (left) and RS232 9-Way D connector (right)

Interfacing with Technology Chapter 13

[469]

An RS232 full loopback cable also connects pin 4 (DTR) and pin 6 (DSR) as well as pin 7
(RTS) and pin 8 (CTS) on the RS232 adapter. However, this is not required for most
situations, unless these signals are used. By default, no pins are allocated on Raspberry Pi
specifically for these additional signals:

RS232 full loopback

Create the following serialTest.py script:

#!/usr/bin/python3
#serialTest.py
import serial
import time

WAITTIME=1
serName="/dev/ttyAMA0"
ser = serial.Serial(serName)
print (ser.name)
print (ser)
if ser.isOpen():
 try:
 print("For Serial Loopback - connect GPIO Pin8 and Pin10")
 print("[Type Message and Press Enter to continue]")
 print("#:")
 command=input()
 ser.write(bytearray(command+"rn","ascii"))
 time.sleep(WAITTIME)
 out=""
 while ser.inWaiting() > 0:
 out += bytes.decode(ser.read(1))
 if out != "":
 print (">>" + out)
 else:
 print ("No data Received")
 except KeyboardInterrupt:
 ser.close()
#End

Interfacing with Technology Chapter 13

[470]

When a loopback is connected, you will observe that the message is echoed back to the
screen (when removed, No data Received will be displayed):

An RS232 loopback test on GPIO serial pins

If we require non-default settings, they can be defined when the serial port is initialized (the
pySerial documentation at https://pyserial.readthedocs.io/en/latest/ provides full
details of all the options), as shown in the following code:

ser = serial.Serial(port=serName, baudrate= 115200,
 timeout=1, parity=serial.PARITY_ODD,
 stopbits=serial.STOPBITS_TWO,
 bytesize=serial.SEVENBITS)

Controlling Raspberry Pi using Bluetooth
Serial data can also be sent through Bluetooth by connecting a HC-05 Bluetooth module that
supports the Serial Port Profile (SPP) to the GPIO serial RX/TX pins. This allows the serial
connection to become wireless, which allows Android tablets or smartphones to be used to
control things and to read data from Raspberry Pi:

https://pyserial.readthedocs.io/en/latest/

Interfacing with Technology Chapter 13

[471]

The HC-05 Bluetooth module for the TLL serial

While it is possible to achieve a similar result using a USB Bluetooth
dongle, additional configuration would be required depending on the
particular dongle used. The TTL Bluetooth module provides a drop-in
replacement for a physical cable, requiring very little additional
configuration.

Getting ready
Ensure that the serial console has been disabled (see the previous There's more... section).

The module should be connected using the following pins:

Connection to a Bluetooth module for the TLL serial

Interfacing with Technology Chapter 13

[472]

How to do it...
With the Bluetooth module configured and connected, we can pair the module with a
laptop or smartphone to send and receive commands wirelessly. Bluetooth spp pro
provides an easy way to use a serial connection over Bluetooth to control or monitor
Raspberry Pi for Android devices.

Alternatively, you may be able to set up a Bluetooth COM port on your PC/laptop and use
it in the same way as the previous wired example:

When the device is connected initially, the LED flashes quickly to indicate that it1.
is waiting to be paired. Enable Bluetooth on your device and select the HC-05
device:

The HC-05 Bluetooth module viewable in Bluetooth spp pro

Click on the Pair button to begin the pairing process and enter the device's PIN2.
(the default is 1234):

Pair the Bluetooth device with the PIN code (1234)

Interfacing with Technology Chapter 13

[473]

If the pairing was successful, you will be able to connect with the device and send3.
and receive messages to and from Raspberry Pi:

Connect to the device and select the control method

In Keyboard mode, you can define actions for each of the buttons to send suitable4.
commands when pressed.

For example, Pin12 ON can be set to send gpio 12 on and Pin12 OFF can be set
to send gpio 12 off.

Ensure that you set the end flag to rn via the menu options.5.
Ensure that menuSerial.py is set to use the GPIO serial connection:6.

serName="/dev/ttyAMA0"

Run the menuSerial.py script (with the LEDs attached):7.

sudo python3 menuSerial.py

Interfacing with Technology Chapter 13

[474]

Check that the Bluetooth serial app displays the GPIO Serial Control menu8.
as shown in the following screenshot:

GPIO control over Bluetooth

We can see from the output in the following screenshot that the commands have
been received and the LED connected to pin 12 has been switched on and off as
required:

Raspberry Pi receiving GPIO control over Bluetooth

Interfacing with Technology Chapter 13

[475]

How it works...
By default, the Bluetooth module is set up to act like a TTL serial slave device, so we can
simply plug it in to the GPIO RX and TX pins. Once the module is paired with a device, it
will transfer the serial communication over the Bluetooth connection. This allows us to send
commands and receive data via Bluetooth and to control Raspberry Pi using a smartphone
or PC.

This means you can attach a second module to another device (such as an Arduino) that
has TTL serial pins and control it using Raspberry Pi (either by pairing it with another
TTL Bluetooth module or suitably configuring a USB Bluetooth dongle). If the module is
set up as a master device, then you will need to reconfigure it to act as a slave (see the
There's more... section).

There's more...
Now, let's understand how to configure the Bluetooth settings.

Configuring Bluetooth module settings
The Bluetooth module can be set to one of two different modes using the KEY pin.

In a normal operation, serial messages are sent over Bluetooth; however, if we need to
change the settings of the Bluetooth module itself, we can do so by connecting the KEY pin
to 3V3 and putting it into AT mode.

AT mode allows us to directly configure the module, allowing us to change the baud rate,
the pairing code, the device name, or even set it up as a master/slave device.

You can use miniterm, which is part of pySerial, to send the required messages, as shown
in the following code:

python3 -m serial.tools.miniterm

The miniterm program, when started, will prompt you for the port to use:

Enter port name: /dev/ttyAMA0

Interfacing with Technology Chapter 13

[476]

You can send the following commands (you will need to do this quickly, or paste them in,
as the module will time out if there is a gap and respond with an error):

AT: This command should respond with OK.
AT+UART?: This command will report the current settings as
UART=<Param1>,<Param2>,<Param3>. The output of this command will be OK.
To change the current settings, use AT+UART=<Param1>,<Param2>,<Param3>,
that is, AT+UART=19200,0,0.

HC-05 AT mode AT+UART command parameters

Zak Kemble has written an excellent guide on how to configure modules as paired master
and slave devices (for example, between two Raspberry Pi devices). It is available at the
following link:

http://blog.zakkemble.co.uk/getting-bluetooth-modules-talking-to-each-other/.

For additional documentation on the HC-05 module, visit the following link:

http://www.robotshop.com/media/files/pdf/rb-ite-12-bluetooth_hc05.pdf.

Controlling USB devices
The Universal Serial Bus (USB) is used extensively by computers to provide additional
peripherals and expansion through a common standard connection. We will use the
pyusb Python library to send custom commands to connected devices over USB.

http://blog.zakkemble.co.uk/getting-bluetooth-modules-talking-to-each-other/
http://www.robotshop.com/media/files/pdf/rb-ite-12-bluetooth_hc05.pdf

Interfacing with Technology Chapter 13

[477]

The following example controls a USB toy missile launcher, which in turn allows it to be
controlled by our Python control panel. We can see that the same principle can be applied
to other USB devices, such as a robotic arm, using similar techniques, and the controls can
be activated using a sensor connected to the Raspberry Pi GPIO:

The USB Tenx Technology SAM missile launcher

Getting ready
We will need to install pyusb for Python 3 using pip-3.2 as follows:

sudo pip-3.2 install pyusb

You can test whether pyusb has installed correctly by running the following:

python3
> import usb
> help (usb)
> exit()

This should allow you to view the package information, if it was installed correctly.

Interfacing with Technology Chapter 13

[478]

How to do it...
We will create the following missileControl.py script, which will include two classes
and a default main() function to test it:

Import the required modules as follows:1.

#!/usr/bin/python3
missileControl.py
import time
import usb.core

Define the SamMissile() class, which provides the specific commands for the2.
USB device, as follows:

class SamMissile():
 idVendor=0x1130
 idProduct=0x0202
 idName="Tenx Technology SAM Missile"
 # Protocol control bytes
 bmRequestType=0x21
 bmRequest=0x09
 wValue=0x02
 wIndex=0x01
 # Protocol command bytes
 INITA = [ord('U'), ord('S'), ord('B'), ord('C'),
 0, 0, 4, 0]
 INITB = [ord('U'), ord('S'), ord('B'), ord('C'),
 0, 64, 2, 0]
 CMDFILL = [8, 8,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0]#48 zeros
 STOP = [0, 0, 0, 0, 0, 0]
 LEFT = [0, 1, 0, 0, 0, 0]
 RIGHT = [0, 0, 1, 0, 0, 0]
 UP = [0, 0, 0, 1, 0, 0]
 DOWN = [0, 0, 0, 0, 1, 0]
 LEFTUP = [0, 1, 0, 1, 0, 0]
 RIGHTUP = [0, 0, 1, 1, 0, 0]
 LEFTDOWN = [0, 1, 0, 0, 1, 0]
 RIGHTDOWN = [0, 0, 1, 0, 1, 0]
 FIRE = [0, 0, 0, 0, 0, 1]

Interfacing with Technology Chapter 13

[479]

 def __init__(self):
 self.dev = usb.core.find(idVendor=self.idVendor,
 idProduct=self.idProduct)
 def move(self,cmd,duration):
 print("Move:%s %d sec"% (cmd,duration))
 self.dev.ctrl_transfer(self.bmRequestType,
 self.bmRequest,self.wValue,
 self.wIndex, self.INITA)
 self.dev.ctrl_transfer(self.bmRequestType,
 self.bmRequest,self.wValue,
 self.wIndex, self.INITB)
 self.dev.ctrl_transfer(self.bmRequestType,
 self.bmRequest, self.wValue,
 self.wIndex, cmd+self.CMDFILL)
 time.sleep(duration)
 self.dev.ctrl_transfer(self.bmRequestType,
 self.bmRequest, self.wValue,
 self.wIndex, self.INITA)
 self.dev.ctrl_transfer(self.bmRequestType,
 self.bmRequest, self.wValue,
 self.wIndex, self.INITB)
 self.dev.ctrl_transfer(self.bmRequestType,
 self.bmRequest, self.wValue,
 self.wIndex, self.STOP+self.CMDFILL)

Define the Missile() class, which allows you to detect the USB device and3.
provide command functions, as follows:

class Missile():
 def __init__(self):
 print("Initialize Missiles")
 self.usbDevice=SamMissile()
 if self.usbDevice.dev is not None:
 print("Device Initialized:" +
 " %s" % self.usbDevice.idName)
 #Detach the kernel driver if active
 if self.usbDevice.dev.is_kernel_driver_active(0):
 print("Detaching kernel driver 0")
 self.usbDevice.dev.detach_kernel_driver(0)
 if self.usbDevice.dev.is_kernel_driver_active(1):
 print("Detaching kernel driver 1")
 self.usbDevice.dev.detach_kernel_driver(1)
 self.usbDevice.dev.set_configuration()
 else:
 raise Exception("Missile device not found")
 def __enter__(self):
 return self

Interfacing with Technology Chapter 13

[480]

 def left(self,duration=1):
 self.usbDevice.move(self.usbDevice.LEFT,duration)
 def right(self,duration=1):
 self.usbDevice.move(self.usbDevice.RIGHT,duration)
 def up(self,duration=1):
 self.usbDevice.move(self.usbDevice.UP,duration)
 def down(self,duration=1):
 self.usbDevice.move(self.usbDevice.DOWN,duration)
 def fire(self,duration=1):
 self.usbDevice.move(self.usbDevice.FIRE,duration)
 def stop(self,duration=1):
 self.usbDevice.move(self.usbDevice.STOP,duration)
 def __exit__(self, type, value, traceback):
 print("Exit")

Finally, create a main() function, which provides a quick test of our4.
missileControl.py module if the file is run directly, as follows:

def main():
 try:
 with Missile() as myMissile:
 myMissile.down()
 myMissile.up()
 except Exception as detail:

 time.sleep(2)
 print("Error: %s" % detail)
if __name__ == '__main__':
 main()
#End

When the script is run using the following command, you should see the missile5.
launcher move downwards and then up again:

sudo python3 missileControl.py

To have easy control of the device, create the following GUI:6.

The Missile Command GUI

Interfacing with Technology Chapter 13

[481]

Although simple commands have been used here, you could use a series of preset
commands if desired.

Create the GUI for the missileMenu.py missile command:7.

#!/usr/bin/python3
#missileMenu.py
import tkinter as TK
import missileControl as MC

BTN_SIZE=10

def menuInit():
 btnLeft = TK.Button(root, text="Left",
 command=sendLeft, width=BTN_SIZE)
 btnRight = TK.Button(root, text="Right",
 command=sendRight, width=BTN_SIZE)
 btnUp = TK.Button(root, text="Up",
 command=sendUp, width=BTN_SIZE)
 btnDown = TK.Button(root, text="Down",
 command=sendDown, width=BTN_SIZE)
 btnFire = TK.Button(root, text="Fire",command=sendFire,
 width=BTN_SIZE, bg="red")
 btnLeft.grid(row=2,column=0)
 btnRight.grid(row=2,column=2)
 btnUp.grid(row=1,column=1)
 btnDown.grid(row=3,column=1)
 btnFire.grid(row=2,column=1)

def sendLeft():
 print("Left")
 myMissile.left()
def sendRight():
 print("Right")
 myMissile.right()
def sendUp():
 print("Up")
 myMissile.up()
def sendDown():
 print("Down")
 myMissile.down()
def sendFire():
 print("Fire")
 myMissile.fire()

root = TK.Tk()
root.title("Missile Command")

Interfacing with Technology Chapter 13

[482]

prompt = "Select action"
label1 = TK.Label(root, text=prompt, width=len(prompt),
 justify=TK.CENTER, bg='lightblue')
label1.grid(row=0,column=0,columnspan=3)
menuInit()
with MC.Missile() as myMissile:
 root.mainloop()
#End

How it works...
The control script consists of two classes: one called Missile, which provides a common
interface for the control, and another called SamMissile, which provides all the specific
details of the particular USB device being used.

In order to drive a USB device, we need a lot of information about the device, such as its
USB identification, its protocol, and the control messages it requires to be controlled.

The USB ID for the Tenx Technology SAM missile device is determined by the vendor
ID (0x1130) and the product ID (0x0202). This is the same identification information
you would see within Device Manager in Windows. These IDs are usually registered with
www.usb.org; therefore, each device should be unique. Again, you can use the dmesg |
grep usb command to discover these.

We use the device IDs to find the USB device using usb.core.find; then, we can send
messages using ctrl_transfer().

The USB message has five parts:

Request type (0x21): This defines the type of the message request, such as the
message direction (host to device), its type (vendor), and the recipient (interface).
Request (0x09): This is the set configuration.
Value (0x02): This is the configuration value.
Index (0x01): This is the command we want to send.
Data: This is the command we want to send (as described next).

http://www.usb.org

Interfacing with Technology Chapter 13

[483]

The SamMissile device requires the following commands to move:

It requires two initialization messages (INITA and INITB).
It also requires the control message. This consists of the CMD, which includes one
of the control bytes that has been set to 1 for the required component. The CMD is
then added to CMDFILL to complete the message.

You will see that the other missile devices and the robot arm (see the following There's
more... section) have similar message structures.

For each device, we created the __init__() and move() functions and defined values for
each of the valid commands, which the missile class will use whenever the left(),
right(), up(), down(), fire(), and stop() functions are called.

For the control GUI for our missile launcher, we create a small Tkinter window with five
buttons, each of which will send a command to the missile device.

We import missileControl and create a missile object called myMissile that will be
controlled by each of the buttons.

There's more...
The example only shows how to control one particular USB device; however, it is possible
to extend this to support several types of missile devices and even other USB devices in
general.

Controlling similar missile-type devices
There are several variants of USB missile-type devices, each with their own USB IDs and
USB commands. We can add support for these other devices by defining their own classes
to handle them.

Use lsusb -vv to determine the vendor and product ID that matches your device.

For Chesen Electronics/Dream Link, we have to add the following code:

class ChesenMissile():
 idVendor=0x0a81
 idProduct=0x0701
 idName="Chesen Electronics/Dream Link"
 # Protocol control bytes
 bmRequestType=0x21

Interfacing with Technology Chapter 13

[484]

 bmRequest=0x09
 wValue=0x0200
 wIndex=0x00
 # Protocol command bytes
 DOWN = [0x01]
 UP = [0x02]
 LEFT = [0x04]
 RIGHT = [0x08]
 FIRE = [0x10]
 STOP = [0x20]
 def __init__(self):
 self.dev = usb.core.find(idVendor=self.idVendor,
 idProduct=self.idProduct)
 def move(self,cmd,duration):
 print("Move:%s"%cmd)
 self.dev.ctrl_transfer(self.bmRequestType,
 self.bmRequest,
 self.wValue, self.wIndex, cmd)
 time.sleep(duration)
 self.dev.ctrl_transfer(self.bmRequestType,
 self.bmRequest, self.wValue,
 self.wIndex, self.STOP)

For Dream Cheeky Thunder, we need the following code:

class ThunderMissile():
 idVendor=0x2123
 idProduct=0x1010
 idName="Dream Cheeky Thunder"
 # Protocol control bytes
 bmRequestType=0x21
 bmRequest=0x09
 wValue=0x00
 wIndex=0x00
 # Protocol command bytes
 CMDFILL = [0,0,0,0,0,0]
 DOWN = [0x02,0x01]
 UP = [0x02,0x02]
 LEFT = [0x02,0x04]
 RIGHT = [0x02,0x08]
 FIRE = [0x02,0x10]
 STOP = [0x02,0x20]
 def __init__(self):
 self.dev = usb.core.find(idVendor=self.idVendor,
 idProduct=self.idProduct)
 def move(self,cmd,duration):
 print("Move:%s"%cmd)
 self.dev.ctrl_transfer(self.bmRequestType,

Interfacing with Technology Chapter 13

[485]

 self.bmRequest, self.wValue,
 self.wIndex, cmd+self.CMDFILL)
 time.sleep(duration)
 self.dev.ctrl_transfer(self.bmRequestType,
 self.bmRequest, self.wValue,
 self.wIndex, self.STOP+self.CMDFILL)

Finally, adjust the script to use the required class as follows:

class Missile():
 def __init__(self):
 print("Initialize Missiles")
 self.usbDevice = ThunderMissile()

Robot arm
Another device that can be controlled in a similar manner is the OWI Robotic Arm with
a USB interface:

The OWI Robotic Arm with a USB interface (image courtesy of Chris Stagg)

This has featured in The MagPi magazine several times, thanks to Stephen Richards's
articles on Skutter; the USB control has been explained in detail in issue 3 (page 14)
at https://issuu.com/themagpi/docs/the_magpi_issue_3_final/14. It can also be found
at https://www.raspberrypi.org/magpi/issues/3/.

https://issuu.com/themagpi/docs/the_magpi_issue_3_final/14
https://www.raspberrypi.org/magpi/issues/3/

Interfacing with Technology Chapter 13

[486]

The robotic arm can be controlled using the following class. Remember that you will also
need to adjust the commands, UP, DOWN, and so on, when calling the move() function, as
shown in the following code:

class OwiArm():
 idVendor=0x1267
 idProduct=0x0000
 idName="Owi Robot Arm"
 # Protocol control bytes
 bmRequestType=0x40
 bmRequest=0x06
 wValue=0x0100
 wIndex=0x00
 # Protocol command bytes
 BASE_CCW = [0x00,0x01,0x00]
 BASE_CW = [0x00,0x02,0x00]
 SHOLDER_UP = [0x40,0x00,0x00]
 SHOLDER_DWN = [0x80,0x00,0x00]
 ELBOW_UP = [0x10,0x00,0x00]
 ELBOW_DWN = [0x20,0x00,0x00]
 WRIST_UP = [0x04,0x00,0x00]
 WRIST_DOWN = [0x08,0x00,0x00]
 GRIP_OPEN = [0x02,0x00,0x00]
 GRIP_CLOSE = [0x01,0x00,0x00]
 LIGHT_ON = [0x00,0x00,0x01]
 LIGHT_OFF = [0x00,0x00,0x00]
 STOP = [0x00,0x00,0x00]

Taking USB control further
The theory and method of control used for the USB missile device can be applied to very
complex devices such as the Xbox 360's Kinect (a special 3D camera add-on for the Xbox
game console) as well.

Adafruit's website has a very interesting tutorial written by Limor Fried (also known as
Ladyada) on how to analyze and investigate USB commands; access it at
http://learn.adafruit.com/hacking-the-kinect.

This is well worth a look if you intend to reverse engineer other USB items. In this chapter,
we have used Raspberry Pi to control remotely activated mains sockets, to send commands
over serial connections from another computer, and to control the GPIO remotely. We have
also used SPI to drive an 8 x 8 LED matrix display.

http://learn.adafruit.com/hacking-the-kinect

14
Can I Recommend a Movie for

You?
In this chapter, we will cover the following recipes:

Euclidean distance score computation
Pearson correlation score computation
How to find similar users in the dataset
How to develop a movie recommendation module
Application of recommender systems

Introduction
Movie recommendations are used to predict movies for users based on their interests. The
content in the database is filtered and an appropriate movie is recommended for the user.
Having the appropriate movie recommended increases the probability of the user
purchasing the movie. Collaborative filtering is used to build the movie recommendation
system. It considers the behavior of the current user in the past. It also considers the ratings
given by my other users. Collaborative filtering involves finding and computing the
Euclidean distance, Pearson correlation, and finding similar users in the dataset.

Computing the Euclidean distance score
The first step in building a recommendation engine includes finding similar users in the
database. The Euclidean distance score is one of the measures to find similarities.

Can I Recommend a Movie for You? Chapter 14

[488]

Getting ready
NumPy (Numerical Python) needs to be installed on Raspberry Pi 3 to calculate Euclidean
distance. Readers can install numpy by typing the following command in the Raspberry Pi 3
Terminal:

sudo apt-get -y install python-numpy

How to do it...
We will create a new Python file and import the following packages into it:1.

import json
import numpy as np

To calculate the Euclidean score between two users, we will define a new2.
function. Let's check the presence of the users in the database:

The following code will return the Euclidean distance score
between user1 and user2:

def euclidean_dist_score(dataset, FirstUser, SecondUser):
 if FirstUser not in dataset:
 raiseTypeError('User ' + FirstUser + ' not present in the
dataset')
 if SecondUser not in dataset:
 raiseTypeError('User ' + SecondUser + ' not present in the
dataset')

We will now extract the movies that have been rated by both users. Then we will3.
compute the score:

 # Movies rated by both FirstUser and SecondUser
 Both_User_rated = {}
 for element in dataset[FirstUser]:
 if element in dataset[SecondUser]:
 Both_User_rated[element] = 1

Can I Recommend a Movie for You? Chapter 14

[489]

No movies in common indicates no similarities between the first and second user.4.
(otherwise unable to compute the ratings in database):

 # Score 0 indicate no common movies
 if len(Both_User_rated) == 0:
 return 0

If the ratings are common, calculate the sum of the squared differences, compute5.
the square root of the result obtained, and then normalize it. The score will now
be between zero and one:

 SquareDifference = []
 for element in dataset[FirstUser]:
 if element in dataset[SecondUser]:
 SquareDifference.append(np.square(dataset[FirstUser][element]
-
dataset[SecondUser][element]))
 return 1 / (1 + np.sqrt(np.sum(SquareDifference)))

If both user ratings are same, then sum of squared differences will be a small
value. Therefore, the score will be high. This the aim here.

We will name our data file movie_rates.json. We will now load it:6.

if __name__=='__main__':
 data_file = 'movie_rates.json'
 with open(data_file, 's') as m:
 data = json.loads(m.read())

Let's calculate the Euclidean distance score for two random users:7.

FirstUser = 'Steven Ferndndes'
SecondUser = 'Ramesh Nayak'
print "nEuclidean score:"
print euclidean_dist_score(data, FirstUser, SecondUser)

The preceding code will print the Euclidean distance score in the Terminal:8.

Can I Recommend a Movie for You? Chapter 14

[490]

How it works...
Readers can refer to the article Similarity and recommender systems to learn how Euclidean
distance works:

http:/​/​www.​inf.​ed. ​ac. ​uk/ ​teaching/ ​courses/ ​inf2b/ ​learnnotes/ ​inf2b- ​learn- ​note02-
2up.​pdf

There's more...
Readers can refer to the article Comparison of various metrics used in collaborative filtering for
recommendation system to learn more about various metrics used in recommendation
systems:

http:/​/​ieeexplore. ​ieee. ​org/ ​document/ ​7346670/ ​

See also
Quick Guide to Build a Recommendation Engine in Python:

https://www.analyticsvidhya.com/blog/2016/06/quick-guide-build-recomme
ndation-engine-python/

Computing a Pearson correlation score
Euclidean distance assumes that the sample points are distributed about the sample mean
in a spherical manner, which is not always true. Hence, the Pearson correlation score is used
instead of the Euclidean distance score. The computation of the Pearson correlation score is
explained next.

How to do it...
We will create a new Python file and import the following packages:1.

import json
import numpy as np

http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note02-2up.pdf
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
http://ieeexplore.ieee.org/document/7346670/
https://www.analyticsvidhya.com/blog/2016/06/quick-guide-build-recommendation-engine-python/
https://www.analyticsvidhya.com/blog/2016/06/quick-guide-build-recommendation-engine-python/

Can I Recommend a Movie for You? Chapter 14

[491]

To calculate the Pearson correlation score between two users, we will define a2.
new function. Let's check the presence of the users in the database:

Returns the Pearson correlation score between user1 and user2
def pearson _dist_score(dataset, FirstUser, SecondUser):
 if FirstUser not in dataset:
 raise TypeError('User ' + FirstUser + ' not present in the
dataset')
 if SecondUser not in dataset:
 raise TypeError('User ' + SecondUser + ' not present in the
dataset')

We will now extract the movies that have been rated by both users:3.

 # Movies rated by both FirstUser and SecondUser
 Both_User_rated = {}
 for item in dataset[FirstUser]:
 if item in dataset[SecondUser]:
 both_User_rated[element] = 1
 rating_number= len(both_User_rated)

No movies in common indicates no similarities between the first and second user;4.
hence, we return zero:

 # Score 0 indicate no common movies
 if rating_number == 0:
 return 0

Calculate the sum of squared values of common movie ratings:5.

 # Calculate the sum of ratings of all the common preferences
 FirstUser_sum= np.sum([dataset[FirstUser][element] for item in
both_User_rated])
 SecondUser_sum=np.sum([dataset[SecondUser][element] for item in
both_User_rated])

Calculate the sum of squared ratings of all the common movie ratings:6.

 # Calculate the sum of squared ratings of all the common
preferences
 FirstUser_squared_sum =
np.sum([np.square(dataset[FirstUser][element]) for element in
both_User_rated])
 SecondUser_squared_sum=
np.sum([np.square(dataset[SecondUser][element]) for element
inboth_User_rated])

Can I Recommend a Movie for You? Chapter 14

[492]

Now, calculate the sum of the products:7.

 # Calculate the sum of products of the common ratings
 sum_product = np.sum([dataset[FirstUser][element] *
dataset[SecondUser][element] for item inboth_User_rated])

Calculate the various variables required to calculate the Pearson correlation score:8.

 # Pearson correlation calculation
 PSxy = sum_product - (FirstUser_sum*
SecondUser_sum/rating_number)
 PSxx = FirstUser_squared_sum- np.square(FirstUser_sum) /
rating_number
 PSyy = SecondUser_squared_sum - np.square(SecondUser_sum) /
rating_number

We need to take care of the issue where the denominator becomes zero:9.

 if PSxx * PSyy == 0:
 return 0

Return the Pearson correlation score:10.

 return PSxy / np.sqrt(PSxx * PSyy)

Define the main function and calculate the Pearson correlation score between the11.
two users:

if __name__=='__main__':
 data_file = 'movie_rates.json'
 with open(data_file, 's') as m:
 data = json.loads(m.read())
 FirstUser = 'StevenFerndndes'
 SecondUser = 'Rameshnayak'
 print "nPearson score:"
 print pearson _dist_score(data, FirstUser, SecondUser)

The preceding code will print the Pearson correlation in the Terminal:12.

Can I Recommend a Movie for You? Chapter 14

[493]

How it works...
Readers can refer to Pearson Correlation Coefficient - Simple Tutorial to learn how the Pearson
correlation coefficient is calculated:
https://www.spss-tutorials.com/pearson-correlation-coefficient/

There's more...
Readers can refer to two different variants of Pearson Correlation Coefficient here:

Correlation Coefficient: Simple Definition, Formula, Easy Steps:

http:/​/​www. ​statisticshowto. ​com/​how- ​to- ​compute- ​pearsons- ​correlation-
coefficients/ ​

A new user similarity model to improve the accuracy of collaborative filtering:

http:/​/​www. ​sciencedirect. ​com/ ​science/ ​article/ ​pii/ ​S0950705113003560

See also
The new similarity measure based on user preference models for collaborative filtering:

http://ieeexplore.ieee.org/document/7279353/

Application of artificial immune systems combines collaborative filtering in movie
recommendation system:

http://ieeexplore.ieee.org/document/6846855/

Finding similar users in the dataset
Finding similar users in the dataset is a critical step in movie recommendations, and this
process is explained next.

https://www.spss-tutorials.com/pearson-correlation-coefficient/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://ieeexplore.ieee.org/document/7279353/
http://ieeexplore.ieee.org/document/6846855/

Can I Recommend a Movie for You? Chapter 14

[494]

How to do it...
We will create a new Python file and import the following packages:1.

import json
import numpy as np
from pearson _dist_score import pearson _dist_score

First, define a function for the input user that will find the similar users. For this,2.
three arguments are needed: the number of similar users, the input user, and the
database. Check whether the user is present in the database. If they are present,
calculate the Pearson correlation score between the users present in the database
and the input user:

Finds a specified number of users who are similar to the input
user
 def search_similar_user (dataset, input_user, users_number):
 if input_user not in dataset:
 raiseTypeError('User ' + input_user + ' not present in the
dataset')
 # Calculate Pearson scores for all the users
 scores = np.array([[x, pearson _dist_score(dataset,
input_user, i)] for i in dataset if
user != i])

Now sort the obtained scores in descending order:3.

 # Based on second column, sort the score
 sorted_score= np.argsort(scores[:, 1])
 # Sorting in decreasing order (highest score first)
 dec_sorted_score= sorted_score[::-1]

We will pick the first k scores:4.

 # Pick top 'k' elements
 top_q= dec_sorted_score[0:users_number]
 return scores[top_q]

Can I Recommend a Movie for You? Chapter 14

[495]

We define the main function and load the input database:5.

if __name__=='__main__':
 data_file = ''movie_rates.json'
 with open(data_file, 's') as m:
 data = json.loads(m.read())

We find three similar users:6.

user = 'JohnCarson'
print "nUsers similar to " + input_user + ":n"
similar_one = search_similar_user(data, input_user, 3)
print "input_usertttSimilarity scoren"

for element in similar_one:
 print element[0], 'tt', round(float(element[1]), 2)

See also
Recommendation for Movies and Stars Using YAGO and IMDB:

http://ieeexplore.ieee.org/document/5474144/

Developing a movie recommendation
module
We are now ready to build the movie recommendation engine. We will use all the
functionalities that we built in the previous recipes. Let's see how it can be done.

How to do it...
We will create a new Python file and import the following packages:1.

import json
import numpy as np
from euclidean_score import euclidean_score
from pearson_score import pearson_score
from search_similar_user import search_similar_user

http://ieeexplore.ieee.org/document/5474144/

Can I Recommend a Movie for You? Chapter 14

[496]

For movie recommendations for a given user, we will define a function first. We2.
now check whether the user already exists:

Generate recommendations for a given user
def recommendation_generated(dataset, user):
if user not in dataset:
raiseTypeError('User ' + user + ' not present in the dataset')

Compute the person score for the present user:3.

sumofall_scores= {}
identical_sums= {}
for u in [x for x in dataset if x != user]:
identical_score= pearson_score(dataset, user, u)
if identical_score<= 0:
continue

Find the movies that have not been rated by the user:4.

for element in [x for x in dataset[u] if x not in dataset[user] or
dataset[user][x] == 0]:
sumofall_scores.update({item: dataset[u][item] * identical_sums})
identical_sums.update({item: identical_score})

What if the user has seen all the movies in the dataset? Then there will be no5.
recommendations:

if len(sumofall_scores) == 0:
return ['No recommendations possible']

We now have a list of these scores. Let's create a normalized list of movie ranks:6.

Create the normalized list
rank_of_movie= np.array([[total/ identical_sums[element], element]
for element, total in sumofall_scores.element()])

Based on the score, sort the list in descending order:7.

Based on first column, sort in decreasing order
rank_of_movie = rank_of_movie[np.argsort(rank_of_movie[:,
0])[::-1]]

Can I Recommend a Movie for You? Chapter 14

[497]

We are finally ready to extract the movie recommendations:8.

Recommended movies needs to be extracted
recommended = [movie for _, movie in movie_ranks]
return recommended

Define the main function and load the dataset:9.

if __name__=='__main__':
data_file = rating_of_miovie.json'
with open(data_file, 'r') as f:
data = json.loads(f.read())

Let's generate recommendations for Steven Ferndndes:10.

user = ' Steven Ferndndes '
print "nRecommendations for " + user + ":"
movies = recommendation_generated(data, user)
for i, movie in enumerate(movies):
print str(i+1) + '. ' + movie

The user Ramesh Nayak has watched all the movies. Therefore, if we try to11.
generate recommendations for him, it should display zero recommendations:

user = ' Ramesh Nayak '
print "nRecommendations for " + user + ":"
movies = recommendation_generated(data, user)
for i, movie in enumerate(movies):
print str(i+1) + '. ' + movie

The preceding code will print the movie recommendations in the Terminal:12.

Can I Recommend a Movie for You? Chapter 14

[498]

See also
Recommender systems explained:

https://medium.com/recombee-blog/recommender-systems-explained-d98e822
1f468

Recommendation System Algorithms:

https://blog.statsbot.co/recommendation-system-algorithms-ba67f39ac9a3

Applications of recommender systems
Recommender systems are currently used in various fields. They play a very prominent role
and are utilized in a variety of areas including music, movies, books, news, search queries,
social tags, research articles, and products in general. There are also recommender systems
for restaurants, experts, collaborators, financial services, jokes, garments, Twitter pages, and
life insurance.

https://medium.com/recombee-blog/recommender-systems-explained-d98e8221f468
https://medium.com/recombee-blog/recommender-systems-explained-d98e8221f468
https://blog.statsbot.co/recommendation-system-algorithms-ba67f39ac9a3

Hardware and Software List
In this chapter, we will cover the following topics:

General component sources
The hardware list
The software list

Introduction
This book uses a wide range of hardware to demonstrate what can be achieved by
combining hardware and software in various ways. To get the most out of this book, it is
highly recommended that you experiment with some of the hardware projects. I feel that it
is particularly rewarding to observe physical results from your coding efforts, and this is
where Raspberry Pi differs from a typical computer.

A common problem is finding the right components for a project while not spending a
fortune on it. All the hardware components used in this book focus on using low-cost items
that can usually be purchased from a variety of suppliers, in most cases, for only a few
dollars.

To help you locate suitable items, this appendix will list each hardware item used in the
chapters with links to where they can be obtained. The list is not exhaustive, and it is likely
that the availability of the items (and prices) may vary over time, so whenever you
purchase, ensure that you search around for the best value. In this book, practical and
enough detail has been provided in the chapters to allow you to source your own
components and build your own modules.

This appendix also includes a full list of software and Python modules mentioned in the
book, including the specific versions used. If the software used in the book is updated and
improved, it is likely that some modules will lose their backward compatibility. Therefore,
if you find that the latest version installed does not function as expected, it may be that you
will need to install an older version (details on how to do this are provided in the There's
more... section of the Software list recipe).

Hardware and Software List

[500]

General component sources
Once you have completed some of the hardware-based recipes in this book, you may find
that you want to experiment with other components. There are many places where you can
get a good value for components and add-on modules for general electronics, specifically
for Raspberry Pi or other electronic-based hobbies. This list is not exhaustive, but it contains
a selection of places I have ordered items from in the past and that offer good value for
money.

General electronic component retailers
You will probably find that every retailer mentioned in the following list has localized sites
for their own country, offers worldwide services, or has local distribution services:

Farnell/element14/Newark: http://www.newark.com
RS Components: http://www.rs-components.com
Amazon: http://www.amzon.com
eBay: http://www.ebay.com
Tandy UK: http://www.tandyonline.co.uk
Maplin UK: http://www.maplin.co.uk

Makers, hobbyists, and Raspberry Pi specialists
There are many companies that specialize in selling modules and add-ons that can be used
with computers and devices, such as Raspberry Pi, that are aimed at the hobbyist. Some of
them are as follows:

Adafruit Industries: http://www.adafruit.com
SparkFun Electronics: http://www.sparkfun.com
Mouser Electronics: http://www.mouser.com
Banggood: http://www.banggood.com
DealExtreme: http://dx.com
Pimoroni: http://shop.pimoroni.com
Pi Supply: http://www.pi-supply.com
PiBorg: http://www.piborg.com
Hobbyking: http://www.hobbyking.com

http://www.newark.com
http://www.rs-components.com
http://www.amazon.com
http://www.ebay.com
http://www.tandyonline.co.uk
http://www.maplin.co.uk
http://www.adafruit.com
http://www.sparkfun.com
http://www.mouser.com
http://www.banggood.com
http://dx.com
http://shop.pimoroni.com
http://www.pi-supply.com
http://www.piborg.com
http://www.hobbyking.com

Hardware and Software List

[501]

ModMyPi: http://www.modmypi.com
Quick2Wire: http://quick2wire.com
GeekOnFire: http://www.geekonfire.com
Ciseco: http://shop.ciseco.co.uk

You can also take a look at my own site, which specializes in educational kits and tutorials:

Pi Hardware: http://PiHardware.com

The hardware list
A summary of the hardware used in the chapters of this book is mentioned in this section.

Chapter 1
A summary of the hardware used in the chapters of this book is mentioned in this section.

This chapter describes the Raspberry Pi setup; the items mentioned include the following:

Raspberry Pi and its power supply
An HDMI display and HDMI cable/analog TV and an analog video cable
Keyboard
Mouse
Network cable/Wi-Fi adaptor

Chapters 2 – Chapter 7
No additional hardware has been used in these chapters, as they discuss purely
software recipes.

Chapter 8
This chapter only uses the USB webcam hardware.

http://www.modmypi.com
http://quick2wire.com
http://www.geeksonfire.com.br
http://shop.ciseco.co.uk
http://PiHardware.com

Hardware and Software List

[502]

Chapter 9
The components used in this chapter are available at most electronic component retailers
(such as those listed previously in the General electronic component retailers section). They are
also available as a complete kit from Pi Hardware; where items are available from specific
retailers, they are highlighted in the text.

The kit for controlling an LED includes the following equipment:

Four Dupont Female-to-Male Patch Wires (Pimoroni Jumper Jerky)
A mini breadboard (170 tie-point) or a larger one (Pimoroni)
An RGB LED (common-cathode) or 3 standard LEDs (ideally red/green/blue)
A breadboarding wire (solid core)
Three 470-ohm resistors

The kit for responding to a button includes the following equipment:

Two Dupont Female to Male Patch wires (Pimoroni Jumper Jerky)
A mini breadboard (170 tie-point) or a larger one (Pimoroni)
A push button to make switch and momentary switch (or a wire connection
to make/break the circuit)
A breadboarding wire (solid core)
A 1K ohm resistor

The items used for the controlled shutdown button are as follows:

Three Dupont Female-to-Male Patch Wires (Pimoroni Jumper Jerky)
A mini breadboard (170 tie-point) or larger (Pimoroni)
A push-button switch (momentary close)
A normal LED (red)
Two 470-ohm resistors
A breadboarding wire (solid core)

The additional items used in the There's more... section of the recipe, A controlled shutdown
button, are as follows:

A push button
A 470-ohm resistor
A pin header and two pins with a jumper connector (or optionally a switch)

Hardware and Software List

[503]

A breadboarding wire (solid core)
Two 4 pin headers

The items used for the GPIO keypad input are as follows:

Breadboard: half-sized or larger (Pimoroni)
Seven Dupont Female-to-Male Patch Wires (Pimoroni Jumper Jerky)
Six push buttons
Six 470-ohm resistors
Alternatively, a self-solder DPad Kit (Pi Hardware)

The items used for multiplexed color LEDs are as follows:

Five Common-Cathode RGB LEDs
Three 470-ohm resistors
Vero-prototype board or large breadboard (Tandy)
A self-solder RGB-LED kit (Pi Hardware)

The items used for writing messages require the same items as the preceding recipe, plus
the following:

A mounting stick, rubber bands, USB Wi-Fi, portable USB battery, and so on
A Tilt Switch (ball-bearing type is suitable) (4-Tronix)

Chapter 10
This chapter uses the following hardware:

A PCF8591 chip or module (DealExtreme SKU: 150190 or a Quick2Wire I2C
Analogue Board Kit)
Adafruit I2C Bidirectional logic-level translator (Adafruit ID: 757)

Chapter 11
No additional hardware has been used in this chapter, as they discuss purely software
recipes.

Hardware and Software List

[504]

Chapter 12
Pi-Rover requires the following hardware or a hardware similar to that:

A giant paper clip (76 mm/3 inches) or a caster wheel
Motor and geared wheels (ModMyPi or PiBorg)
Battery/power source
Chassis: push nightlight
Motor driver/controller: Darlington Array Module ULN2003 (DealExtreme SKU -
153945)
Small cable ties or wire ties

The following list is also mentioned in the There's more... section:

PicoBorg Motor Controller (PiBorg PicoBorg)
Magician Robot Chassis (Sparkfun ID: 10825)
4-Motor Smart Car Chassis (DealExtreme SKU: 151803)
2-Wheel Smart Car Model (DealExtreme SKU: 151803)

The advanced motor control example uses the following item:

The H-Bridge motor controller (DealExtreme SKU: 120542 or GeekOnFire SKU:
A2011100407)

The Hex Pod Pi-Bug requires the following hardware or similar:

Adafruit I2C 16-Channel 12-bit PWM/Servo Driver (Adafruit ID: 815)
MG90S 9g Metal Gear Servos (HobbyKing)
Three giant paper clips (76mm/3 inches)
Light gauge wire/cable ties
A small section of plywood or a fiberboard

A basic servo-based robot arm is used for the ServoBlaster example (4-Tronix MeArm).

The Infrared remote control example uses the following component:

TSOP38238 (Farnell 2251359)

Hardware and Software List

[505]

The following hardware is used in the remaining sections to expand the available
inputs/outputs, avoid obstacles, and determine the direction of the robot:

MCP23017 I/O Expander (Ciseco SKU: K002)
Micro switches
HC-SR04 Ultrasonic sensor (DealExtreme SKU: 133696)
The ultrasonic sensor uses a 2K ohm resistor and a 3K ohm resistor
XLoBorg: MAG3110 Compass Module (PiBorg XLoBorg)

Optionally, four Female-to-Male Dupont wires can be used to connect to the XLoBorg
(Pimoroni Jumper Jerky)

Chapter 13
This chapter uses the following hardware:

Remote-controlled mains sockets (Maplin/Amazon)
Relay modules (Banggood 8-Way SKU075676)
The alternative is to use the 433Mhz RF Transmitter/Receiver (Banggood
SKU075671)
LED 8x8 SPI Matrix Module MAX7219 (Banggood self-solder kit SKU072955)
RS-232 to USB Cable (Amazon/general computer supplies)
RS-232 null-modem cable/adaptor (Amazon/general computer supplies)
RS-232 TTL USB console cable (Adafruit ID: 70)
HC-05 Bluetooth master/slave module with PCB backplate (Banggood
SKU078642)
USB Tenx Technology SAM missile launcher
OWI robotic arm with USB interface (Maplin/Amazon)

Chapter 14
No additional hardware has been used in this chapter, as they discuss purely software
recipes.

Hardware and Software List

[506]

The software list
The book uses a range of software packages to extend the capabilities of the pre-installed
software.

PC software utilities
In most cases, the latest version of the software available should be used (versions are listed
just in case there is a compatibility issue in a later release). The list of software used is
as follows:

Notepad ++: www.notepad-plus-plus.org (Version 7.5.6)
PuTTY: www.putty.org (Version 0.62)
VNC Viewer: www.realvnc.com (Version 6.2.1)
Xming: www.straightrunning.com/XmingNotes (Version 6.9.0.31 public domain
release)
MobaXterm: mobaxterm.mobatek.net (Version 8.6)
SD Formatter: www.sdcard.org/downloads/formatter_4 (Version 5.0)
RealTerm: realterm.sourceforge.net (Version 2.0.0.70)

Raspberry Pi packages
This section lists each of the packages used in the chapters in the book in the following
format (versions are listed just in case there is a compatibility issue in a later release):

Package name (version) Supporting website:

Install command

Chapter 1
This chapter describes the hardware setup, and, therefore, the following packages
are optional (or specific hardware drivers where necessary):

TightVNC (Version 1.3.9-6.5): http://www.tightvnc.com

sudo apt-get install tightvncserver

https://notepad-plus-plus.org//
https://www.putty.org/
https://www.realvnc.com/en/
http://www.straightrunning.com/XmingNotes/
https://mobaxterm.mobatek.net/
https://www.sdcard.org/downloads/formatter_4/index.html
https://realterm.sourceforge.io/
http://www.tightvnc.com

Hardware and Software List

[507]

Samba (Version 2:4.2.10): https://www.samba.org

sudo apt-get install samba

Chapter 2
Following are the commands used in Chapter 2, Dividing Text Data and Building Text
Classifier:

sudo apt-get install geany
sudo apt-get -y install python-pip
sudo apt-get -y install python-git
sudo apt-get -y install python-numpy
sudo apt-get -y install python-scipy
sudo pip install --upgrade cython
sudo pip install -U scikit-learn
sudo pip install imutils
sudo apt-get -y install python-sklearn
sudo apt-get -y install python-skimage

Chapter 3
Tkinter (Version 3.4.2-1): https://wiki.python.org/moin/TkInter

sudo apt-get install python3-tk

pip-3.2 (Version 1.5.6-5): https://pip.pypa.io/en/latest

sudo apt-get install python3-pip

libjpeg-dev (Version 1:1.3.1-12): http://libjpeg.sourceforge.net

sudo apt-get install libjpeg-dev

Pillow (Version 2.1.0): http://pillow.readthedocs.io/en/latest

sudo pip-3.2 install pillow

https://www.samba.org
https://wiki.python.org/moin/TkInter
https://pip.pypa.io/en/latest
http://libjpeg.sourceforge.net
http://pillow.readthedocs.io/en/latest

Hardware and Software List

[508]

Chapter 4
Following are the commands used in Chapter 4, Predicting Sentiments in Words:

sudo apt-get install geany
sudo apt-get -y install python-pip
sudo apt-get -y install python-git
sudo apt-get -y install python-numpy
sudo apt-get -y install python-scipy
sudo pip install --upgrade cython
sudo pip install -U scikit-learn
sudo pip install imutils
sudo apt-get -y install python-sklearn
sudo apt-get -y install python-skimage

Chapter 5
Tkinter (Version 3.4.2-1): https:/ ​/​wiki. ​python. ​org/ ​moin/ ​TkInter

sudo apt-get install python3-tk

Chapter 6
Following are the commands used in Chapter 6, Detecting Edges and Contours in Images:

sudo apt-get install geany
sudo apt-get -y install python-pip
sudo apt-get -y install python-opencv
sudo apt-get -y install python-numpy
sudo apt-get -y install python-scipy
sudo pip install --upgrade cython
sudo pip install -U scikit-learn
sudo pip install imutils
sudo apt-get -y install python-sklearn
sudo apt-get -y install python-skimage

https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter

Hardware and Software List

[509]

Chapter 7
pip-3.2 (Version 1.1-3): http:/ ​/​www.​pip- ​installer. ​org/ ​en/ ​latest

sudo apt-get install python3-pip

Pi3D (Version 2.13): http:/ ​/​pi3d. ​github. ​iosudo

pip-3.2 install pi3d

Also, take a look at 3D Graphics with Pi3D:

http:/​/​paddywwoof. ​github. ​io/ ​pi3d_ ​book/ ​_​build/ ​latex/ ​pi3d_ ​book. ​pdf

Chapter 8
Following are the commands used in Chapter 8, Building Face Detector and Face Recognition
Applications:

sudo apt-get install geany
sudo apt-get -y install python-pip
sudo apt-get -y install python-opencv
sudo apt-get -y install python-numpy
sudo apt-get -y install python-scipy
sudo pip install --upgrade cython
sudo pip install -U scikit-learn
sudo pip install imutils
sudo apt-get -y install python-sklearn
sudo apt-get -y install python-skimage

Chapter 9
RPi.GPIO is usually pre-installed on Raspbian (Version 0.6.2~jessie-1): http:/ ​/
sourceforge. ​net/ ​p/ ​raspberry- ​gpio- ​python/ ​wiki/ ​BasicUsage

sudo apt-get install python3-rpi.gpio

flite (Version 1.4 release-12): http:/ ​/​www. ​festvox. ​org/ ​flite

sudo apt-get install flite

uInput (Version 0.11.2): http:/ ​/ ​tjjr.​fi/ ​sw/​python- ​uinput

http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://pi3d.github.iosudo
http://pi3d.github.iosudo
http://pi3d.github.iosudo
http://pi3d.github.iosudo
http://pi3d.github.iosudo
http://pi3d.github.iosudo
http://pi3d.github.iosudo
http://pi3d.github.iosudo
http://pi3d.github.iosudo
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://paddywwoof.github.io/pi3d_book/_build/latex/pi3d_book.pdf
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://www.festvox.org/flite
http://www.festvox.org/flite
http://www.festvox.org/flite
http://www.festvox.org/flite
http://www.festvox.org/flite
http://www.festvox.org/flite
http://www.festvox.org/flite
http://www.festvox.org/flite
http://www.festvox.org/flite
http://www.festvox.org/flite
http://www.festvox.org/flite
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput
http://tjjr.fi/sw/python-uinput

Hardware and Software List

[510]

Installation instructions are provided in Chapter 9, Using Python to Drive Hardware:

Fuze: http:/ ​/​raspi. ​tv/ ​2012/ ​how-​to- ​install- ​fuse- ​zx- ​spectrum- ​emulator- ​on-
raspberry- ​pi

Chapter 10
i2c-tools (Version 3.1.1+svn-2): http:/ ​/​www. ​lm-​sensors. ​org/ ​wiki/ ​I2CTools

sudo apt-get install i2c-tools

pip-3.2 (Version 1.5-6-5): http:/ ​/​www. ​pip- ​installer. ​org/ ​en/​latest

sudo apt-get install python3-pip

python3-dev (Version 3.4.2-2): header files and static library for Python required
for some software

sudo apt-get install python3-dev

wiringpi2 (Version 2.32.3): http:/ ​/​wiringpi. ​com

sudo pip-3.2 install wiringpi2

Chapter 11
Following are the commands used in Chapter 11, Building Neural Network Module for Optical
Character Recognition:

sudo apt-get install geany
sudo apt-get -y install python-pip
sudo apt-get -y install python-opencv
sudo apt-get -y install python-numpy
sudo apt-get -y install python-scipy
sudo pip install --upgrade cython
sudo pip install -U scikit-learn
sudo pip install imutils
sudo apt-get -y install python-sklearn
sudo apt-get -y install python-skimage
sudo pip install -U nltk
sudo pip install neurolab

http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://raspi.tv/2012/how-to-install-fuse-zx-spectrum-emulator-on-raspberry-pi
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.lm-sensors.org/wiki/I2CTools
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://www.pip-installer.org/en/latest
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com

Hardware and Software List

[511]

Chapter 12
wiringpi2 (Version 2.32.3): http:/ ​/​wiringpi. ​com

sudo pip-3.2 install wiringpi2

ServoBlaster (Version 2.32.3): https:/ ​/​github. ​com/ ​richardghirst/ ​PiBits

sudo pip-3.2 install wiringpi2

Chapter 13
RPi.GPIO is usually pre-installed on Raspbian (Version 0.6.2~jessie-1):
http:/​/​sourceforge. ​net/ ​p/​raspberry- ​gpio- ​python/ ​wiki/ ​BasicUsage

sudo apt-get install python3-rpi.gpio

Tkinter (Version 3.4.2-1): https:/ ​/​wiki. ​python. ​org/ ​moin/ ​TkInter

sudo apt-get install python3-tk

wiringpi2 (Version 2.32.2): http:/ ​/​wiringpi. ​com

sudo pip-3.2 install wiringpi2

minicom (Version 2.7-1): http:/ ​/​linux. ​die. ​net/​man/ ​1/ ​minicom

sudo apt-get install minicom

pyserial (Version 2.6): http:/ ​/​pyserial. ​sourceforge. ​net

sudo pip-3.2 install pyserial

pyusb (Version 1.0.0): https:/ ​/​github. ​com/ ​walac/ ​pyusb

sudo pip-3.2 install pyusb

http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
https://github.com/richardghirst/PiBits
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://wiringpi.com
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://linux.die.net/man/1/minicom
http://pyserial.sourceforge.net
http://pyserial.sourceforge.net
http://pyserial.sourceforge.net
http://pyserial.sourceforge.net
http://pyserial.sourceforge.net
http://pyserial.sourceforge.net
http://pyserial.sourceforge.net
http://pyserial.sourceforge.net
http://pyserial.sourceforge.net
https://github.com/walac/pyusb
https://github.com/walac/pyusb
https://github.com/walac/pyusb
https://github.com/walac/pyusb
https://github.com/walac/pyusb
https://github.com/walac/pyusb
https://github.com/walac/pyusb
https://github.com/walac/pyusb
https://github.com/walac/pyusb
https://github.com/walac/pyusb
https://github.com/walac/pyusb

Hardware and Software List

[512]

Chapter 14
Following are the commands used in Chapter 14, Can I Recommend a Movie for You?:

sudo apt-get install geany
sudo apt-get -y install python-pip
sudo apt-get -y install python-opencv
sudo apt-get -y install python-numpy
sudo apt-get -y install python-scipy
sudo pip install --upgrade cython
sudo pip install -U scikit-learn
sudo pip install imutils
sudo apt-get -y install python-sklearn
sudo apt-get -y install python-skimage

There's more...
The majority of the Raspberry Pi software packages used in the book have been installed
and configured using apt-get and pip. Useful commands have been given for each in the
following sections.

APT commands
The following are the useful commands for APT (this is pre-installed by default on
Raspbian):

Always update the package list to obtain the latest versions and programs before
installing a package with the sudo apt-get update command
Find software by searching for any packages that include the
<searchtext> command in the package name or description using
sudo apt-cache search <seachtext>

Install software with a particular <packagename> using
sudo apt-get install <packagename>

Uninstall a particular software package using
sudo apt-get remove <packagename>

Display the currently installed version of a software package using
sudo apt-cache showpkg <packagename>

Hardware and Software List

[513]

If you want to install a specific version of a software package, use sudo apt-get install
<package name>=<version>

If you need to use the packages on a system without internet access, you
can use the following command to download the packages (and their
dependencies) to the specified directory:
sudo apt-get -o dir::cache::archives="<target_directory>"
-d -y install <package name>

You can see the details of additional commands by running sudo apt-get and sudo apt-
cache. Alternatively, they are listed by reading the manual pages using the man command,
the man apt-get command, and the man apt-cache command.

Pip Python package manager commands
Useful commands for Pip (this is not usually pre-installed on Raspbian) are listed as
follows:

To install Pip or Python 3, use the sudoapt-get install python3-pip
command
Install the required package using sudo pip-3.2 install <packagename>
Uninstall a particular package using sudo pip-3.2
uninstall<packagename>

To find out the version of an installed package, use
pip-3.2 freeze | grep <packagename>

Install a specific package version using
sudo pip-3.2 install <packagename>==<version>

For example, to check the version of Pi3D installed on your system, use
pip-3.2 freeze | grep pi3d.

To replace the installed version of Pi3D with Version 2.13, use
sudo pip-3.2 uninstall pi3d and sudo pip-3.2 install pi3d==2.13.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Build Supercomputers with Raspberry Pi 3
Carlos R. Morrison

ISBN: 978-1-78728-258-2

Understand the concept of the Message Passing Interface (MPI)
Understand node networking.
Configure nodes so that they can communicate with each other via the network
switch
Build a Raspberry Pi3 supercomputer.
Test the supercluster
Use the supercomputer to calculate MPI π codes.
Learn various practical supercomputer applications

https://www.packtpub.com/hardware-and-creative/build-supercomputers-raspberry-pi-3

Other Books You May Enjoy

[515]

Practical Internet of Things with JavaScript
Arvind Ravulavaru

ISBN: 978-1-78829-294-8

Integrate sensors and actuators with the cloud and control them for your Smart
Weather Station.
Develop your very own Amazon Alexa integrating with your IoT solution
Define custom rules and execute jobs on certain data events using IFTTT
Build a simple surveillance solutions using Amazon Recognition & Raspberry Pi
3
Design a fall detection system and build a notification system for it.
Use Amazon Rekognition for face detection and face recognition in your
Surveillance project

https://www.packtpub.com/hardware-and-creative/advanced-iot-javascript

Other Books You May Enjoy

[516]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.mtl files
 reference 208

3
3D coordinates and vertices
 camera 201
 lights 202
 shaders 201
 textures 203
 using 194, 195, 199, 201
3D maps
 building 214, 218, 220
3D models
 creating 203, 206
 importing 203, 206
 object's textures and .mtl files, changing 208
 objects, creating 207
 objects, loading 207
 screenshots, taking 209
3D world
 creating 209, 212, 213

A
Adafruit 296
advanced motor control
 I/O expanders, using 380
 PWM control, using 379
 reference 375
 using 373, 378
 working 377
AirPi Air
 reference 347
analog data
 analog-to-digital converter 301, 302

 gathering, without hardware 302, 305
 reading, analog-to-digital converter used 298
analog-to-digital converters (ADCs)
 about 287
 used, for reading analog data 298, 301, 302
Analogue 16
anticlockwise/counterclockwise (ACW) 392
Auto-MDIX (Automatic Medium-Dependent

Interface Crossover) 43

B
back EMF 368
bag-of-words model
 building 85, 86, 88
bat and ball game
 creating 136, 139, 141, 143
binary blob 23
Blender
 reference 207
Bluetooth
 module settings, configuring 475
 reference 476
Bonjour Installer
 reference 35
Building module 215, 222, 224
built-in Wi-Fi and bluetooth
 devices, connecting 38
 using, on Raspberry Pi 35
 Wi-Fi network, connecting 36
button
 responding to 247, 249

C
CAT6 Ethernet cable
 used, for connecting via an Ethernet port 33
chunking

[518]

 used, for dividing text 83
classes 90
compute module 12
constructor 98
continuous servo 388
controlled shutdown button
 about 253
 using 254
 working 256
corners
 detecting, in images 188
cross-validation
 used, for evaluating accuracy 122

D
Darlington array module
 about 359
 reference 360
data pre-processing
 tokenization, using 80
data
 calibrating 314
 capturing, in SQLite database 323, 327
 logging 305, 309
 plotting 305, 309
 scaling 313
 viewing, from webserver 331, 335, 338
dataset
 similar users, finding 493, 495
 splitting, for training and testing 120, 122
device trees 288
devices
 using, with I2C bus 288, 290, 291, 293
dilation 167, 171
Double throw (DT) 247
double-pole (DP) switch 247
Dynamic Host Configuration Protocol (DHCP) 33

E
edge detection
 reference 184
edges
 detecting, in images 180, 183
erosin 167, 170

Euclidean distance score computation
 reference 490
 using 487, 489
 working, reference 490
Exchangeable Image File Format (EXIF) 104

F
face detector application
 building 227
face recognition application
 building 230, 233
 reference 233
face recognition system
 application 234
field-effect transistor (MOSFETs) 370
File Allocation Table (FAT) partitions 29
forward driving motors
 used, for building Rover-Pi robot 356
Fritzing
 reference 241
fuze
 reference 267

G
general-purpose input/output (GPIO) 235
GPIO keypad input
 about 261
 installing 261, 264
 key combinations, generating 266
 working 266
graphical application
 creating 96, 98, 100
graphical processing unit (GPU) 11, 192
graphical user interfaces (GUIs)
 about 89
 creating, Tkinter used 90, 93, 96

H
hardware attached on top (HAT) 237
hardware multiplexing 268
hardware requirements, six-legged Pi-Bug robot
 heavy gauge wire 382
 light gauge wire/cable ties 382
 PWM driver module 382

[519]

 small section of plywood or fiberboard 382
 three micro servos 382
histogram equalization
 using 185, 187, 188
home folder
 sharing, with Server Message Block (SMB) 71,

73

home
 automating, with remotely controlled electrical

sockets 428, 430, 436

I
I-squared-C (I2C) bus
 and level shifting 295
 multiple devices, using 294
 PCF8591 chip, using 296
 using, with devices 288, 290, 293, 294
I/O expander
 LCD alphanumeric display, direct controlling 322
 own module, using 321
 used, for extending Raspberry Pi GPIO 315, 318
 voltages and limits 320
IDLE3
 used, for debugging programs 130, 131, 134
images
 blurring 175, 178, 180
 corners, detecting 188, 191
 displaying 156
 edges, detecting 180, 183, 184
 flipping 157, 159
 loading 156
 saving 156
 scaling 162, 163, 165, 166
 segmentation 172, 174
 sharpening 175, 178, 180
infrared (IR) receiver 400
infrared remote control
 using, with Raspberry Pi 400, 402, 405, 407
Internet Connection Sharing (ICS) 42
Internet Service Provider (ISP) 39
internet
 connecting, through proxy server 60, 61, 62

J
Joint Test Action Group (JTAG) 19

K
key combinations
 mouse events, emulating 267

L
latched push-button switch 247
least significant bit (LSB) 294
LED matrix
 controlling, SPI used 441, 446, 449, 453
 daisy-chain SPI configuration 454
LED
 controlling 240, 241, 243, 244
 GPIO current, controlling 245, 246
light-emitting diodes (LEDs) 235
Linux Reader
 reference 30
live data
 plotting 311, 313
logistic regression classifier
 using 118
logistic regression
 reference 123

M
machine code assembler 9
MAG3110 registers
 reference 419
manual network configuration
 about 39
 steps 41
mazes
 building 214, 218, 220
messages
 writing, persistence of vision (POV) used 278,

280, 283, 286
metal-oxide-semiconductor field-effect transistor

(MOSFETs) 370
Midori 61
momentary close 247
most significant bit (MSB) 294

[520]

mouse
 used, for drawing lines on Tkinter Canvas 134,

136

movie recommendation module
 developing 495
movie recommendations 487
multiplexed color LEDs
 hardware multiplexing 274
 multiple colors, mixing 275
 random patterns, displaying 274
 using 268, 270
 working 272

N
Naive Bayes classifier
 building 116, 118
 reference 118
neural networks
 used, for building optical character recognizer

350, 353
New Out Of Box System (NOOBS)
 about 13
 reference 20
 used, for setting up Raspberry Pi SD card 19,

22, 24

O
Object-Orientated Design (OOD) 99
objects
 avoiding 408
 ultrasonic reversing sensors 412, 415
obstacles
 avoiding 408, 410, 412
 ultrasonic reversing sensors 412, 415
OCR system
 applications 354
on-the-go (OTG) 11
online services
 data, sending 341, 345
 data, sensing 341, 345
 working 346
OpenGL ES 2.0 193
Optical Character Recognition (OCR) 348
optical character recognizer

 building, neural networks used 350, 353
optical characters
 visualizing 348, 350
overhead scrolling game
 creating 144, 146, 151, 154

P
pattern identification, text
 topic modeling, using 126, 128
PCF8591 chip
 reference 298
Pearson correlation score computation
 reference 493
 using 490, 491
 working, reference 493
persistence of vision (POV)
 used, for writing messages 278, 281, 285, 286
photo information
 displaying, in application 101, 104, 107, 110
photos
 organizing 110, 113, 115
PHP MySQL
 reference 341
Pi-Kitchen project
 reference 75
pi3d
 egg 207
 obj 207
 reference 193
PicoBorg 370
Pillow 101
PINN Is Not NOOBS (PINN) 76
Portable Pixmap Format (PPM) 106
prescaler 388
programs
 debugging, IDLE3 used 130, 131, 134
protection resistors 253
proxy server
 internet, connecting to 60, 63
pull-down resistor circuits 251
pull-up resistor circuits 251
pulse width modulated (PWM) 378
PuTTY
 reference 67
PyMySQL

[521]

 reference 341
pyplot
 reference 305
Python dictionary 281
Python Image Library (PIL) 101
python package manager (pip) 101, 360
Python Software Foundation 10
Python-uinput
 reference 261

R
radio frequency (RF) 428
Raspberry Pi GPIO
 extending, with I//O expander 315, 318
Raspberry Pi LAN port
 connecting, directly to laptop or computer 42, 45,

47, 50, 52, 53
 direct network link 53
Raspberry Pi
 about 8, 9
 analogue 16
 built-in Wi-Fi and bluetooth, using 35
 connecting to 13, 14, 18
 connecting, to internet via Ethernet port using

CAT6 Ethernet cable 33
 connecting, to internet via USB Wi-Fi dongle 54,

56, 59
 controlling, Bluetooth used 470
 Direct Display DSI 16
 display, HDMI 14
 extra functions, adding 259, 261
 hardware interface 236
 infrared remote control, using 400, 402, 405,

407

 micro USB power 17
 Model A 11
 Model B 11
 network 17
 networking, to internet via Ethernet port using

CAT6 Ethernet cable 33
 Onboard Wi-Fi and Bluetooth 17
 overview 11
 Pi Zero 11
 Python 2 10
 Python 3 10

 Python version, selecting 10
 Python, using 9
 rebooting 257
 reference 12
 remote connection, over network using SSH (and

X11 forwarding 66, 68, 70
 remote connection, over network using VNC 63,

65

 resetting 257
 secondary hardware connections 18
 selecting 12
 speaker or headphone, using 249
 stereo analogue audio 16
 updating 73, 76
 USB 17
 USB wired network adapters, using 60
Raspbian
 reference 25
recommender systems
 applications 498
 reference 498
red, blue, and green (RGB) 240
remotely controlled electrical socket
 remote control codes structure, determining 440
 RF control signals, sending 437, 439
 RF transmitter range, extending 440
 used, for home automation 428, 432, 436
REpresentational State Transfer (REST) 341
requisites, manual network configuration
 default gateway address 39
 Domain Name Service (DNS) server 39
 IPv4 address 39
 subnet mask 39
RGB LED module
 reference 269
rover chassis
 reference 371
Rover-Pi robot
 battery/power source 358
 building, with forward driving motors 356, 360,

362, 365, 366, 372
 chassis 357
 Darlington array circuits 367
 front skid or caste 358
 motor driver/controller 359

[522]

 Raspberry Pi connection 360
 relay circuits 369
 Rover kits 371
 small cable ties or wire ties 360
 tethered robots 370
 transistor 369
 untethered robots 370
 wheels, motors and gears 358

S
safe voltages 251
SD card, setting up
 data corruption, avoiding 25
 default user password, changing 24
 manual preparation 25
 NOOBS, using 19
 RECOVERY/BOOT partition, accessing 29
 system, expanding 28
 tools, used for backup 32
sense of direction
 calibration, saving 423
 compass bearing, calculating 421
 compass, calibrating 420
 obtaining 415, 418
 robot, driving with compass 424
sentence sentiment
 analyzing 123
sentiment analysis
 applications 128
 reference 88
serial interface
 GPIO built-in serial pins, using 466
 RS232 loopback 468, 470
 RS232 signals and connections 466
 USB-to-RS232 device, configuring 465
 used, for communication 455, 457, 463, 465
Serial Peripheral Interface (SPI)
 used, for controlling LED matrix 441, 444, 447,

453

Serial Port Profile (SPP) 470
Server Message Block (SMB)
 used, for sharing home folder 71, 73
service set identifier (SSID) 54
ServoBlaster
 used, for controlling servos 392, 395, 399

shaders 199
signals, SPI
 CE 442
 Master Input, Slave Output (MISO) 442
 Master Output, Slave Input (MOSI) 442
 SCLK 442
Single throw (ST) 247
single-pole, single-throw (SPST) 247
six-legged Pi-Bug robot
 building 381, 383
 hardware requisites 382
 Pi-Bug code, for walking 392
 servo class 388
 servos, controlling 387
 walk feature, adding 389, 391
SolidObjects
 used, for collision detection 226
SQLite database
 CREATE command 330
 data, capturing 323, 327
 DELETE command 331
 DROP command 331
 INSERT command 330
 SELECT command 330
 UPDATE command 331
 WHERE command 330
SSH (and X11 forwarding)
 used, for establishing remote connection to

Raspberry Pi 66, 67, 69
Static IP DHCP address 35
Structured Query Language (SQL) 323
System-on-Chip (SoC) solution 192

T
term frequency-inverse document frequency (tf-idf)

78

tetrahedron 200
text classifiers
 applications 88
 building 78, 79
text data
 stemming 81
text
 dividing, chunking used 83, 84
textures 199

TiddlyBot
 reference 372
Tkinter Canvas
 lines, drawing with mouse 134, 136
Tkinter
 about 90
 graphical user interfaces 93, 96
 used, for creating graphical user interfaces 90
tokenization
 used, for pre-processing data 80
topic modeling
 used, for pattern identification in text 126, 128

U
Universal Serial Bus (USB) devices
 controlling 476, 478, 481, 482, 483
USB messages
 parts 482
USB Wi-Fi dongle
 used, for connecting Raspberry Pi 54, 57, 59
USB
 control 486
 missile-type devices, controlling 483
 robot arm 485

V
VideoCore IV GPU 193
VNC Viewer
 reference 65

 used, for connecting remotely to Raspberry Pi
64, 65

W
webserver
 data, viewing 331, 335, 337
 MySQL instead, using 340
 security 340
Wheatstone bridge 298
Wi-Fi adapters
 reference 54
widgets 90
Win32 Disk Imager 32
WiringPi2 Python library 360

X
X server 91
X11 forwarding
 about 91
 desktop, executing through 70
 used, for executing multiple programs 70
 used, for Pygame execution 71
 used, for Tkinter execution 71
xively-python library
 reference 342
Xively
 reference 342
XLoBorg module 416
Xming
 reference 67

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with a Raspberry Pi 3 Computer

	Introduction
	Introducing Raspberry Pi
	What's with the name?
	Why Python?
	Python 2 and Python 3
	Which version of Python should you use?
	The Raspberry Pi family – a brief history of Pi
	Which Pi to choose?

	Connecting to Raspberry Pi
	Getting ready
	How to do it...
	There's more...
	Secondary hardware connections

	Using NOOBS to set up your Raspberry Pi SD card
	Getting ready
	How to do it...
	How it works...
	There's more...
	Changing the default user password
	Ensuring that you shut down safely
	Preparing an SD card manually
	Expanding the system to fit in your SD card
	Accessing the RECOVERY/BOOT partition
	Using the tools to back up your SD card in case of failure

	Networking and connecting your Raspberry Pi to the internet via an Ethernet port, using a CAT6 Ethernet cable
	Getting ready
	How to do it...
	There's more...

	Using built-in Wi-Fi and Bluetooth on Raspberry Pi
	Getting ready
	How to do it...
	Connecting to your Wi-Fi network
	Connecting to Bluetooth devices

	Configuring your network manually
	Getting ready
	How to do it...
	There's more...

	Networking directly to a laptop or computer
	Getting ready
	How to do it...
	How it works...
	There's more...
	Direct network link

	See also

	Networking and connecting your Raspberry Pi to the internet via a USB Wi-Fi dongle
	Getting ready
	How to do it...
	There's more...
	Using USB wired network adapters

	Connecting to the internet through a proxy server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Connecting remotely to Raspberry Pi over the network using VNC
	Getting ready
	How to do it...
	There's more...

	Connecting remotely to Raspberry Pi over the network using SSH (and X11 forwarding)
	Getting ready
	How to do it...
	How it works...
	There's more...
	Running multiple programs with X11 forwarding
	Running as a desktop with X11 forwarding
	Running Pygame and Tkinter with X11 forwarding

	Sharing the home folder of Raspberry Pi with SMB
	Getting ready
	How to do it...

	Keeping Raspberry Pi up to date
	Getting ready
	How to do it...
	There's more...

	Chapter 2: Dividing Text Data and Building Text Classifiers

	Introduction
	Building a text classifier
	How to do it...
	How it works...
	See also

	Pre-processing data using tokenization
	How to do it...

	Stemming text data
	How to do it...

	Dividing text using chunking
	How to do it...

	Building a bag-of-words model
	How to do it...

	Applications of text classifiers

	Chapter 3: Using Python for Automation and Productivity

	Introduction
	Using Tkinter to create graphical user interfaces
	Getting ready
	How to do it...
	How it works...

	Creating a graphical application – Start menu
	Getting ready
	How to do it...
	How it works...
	There's more...

	Displaying photo information in an application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Organizing your photos automatically
	Getting ready
	How to do it...
	How it works...

	Chapter 4: Predicting Sentiments in Words

	Building a Naive Bayes classifier
	How to do it...
	See also

	Logistic regression classifier
	How to do it...

	Splitting the dataset for training and testing
	How to do it...

	Evaluating the accuracy using cross-validation
	How to do it...

	Analyzing the sentiment of a sentence
	How to do it...

	Identifying patterns in text using topic modeling
	How to do it...

	Applications of sentiment analysis

	Chapter 5: Creating Games and Graphics

	Introduction
	Using IDLE3 to debug your programs
	How to do it...
	How it works...

	Drawing lines using a mouse on Tkinter Canvas
	Getting ready
	How to do it...
	How it works...

	Creating a bat and ball game
	Getting ready
	How to do it...
	How it works...

	Creating an overhead scrolling game
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Detecting Edges and Contours in Images

	Introduction
	Loading, displaying, and saving images
	How to do it...

	Image flipping
	How to do it...

	Image scaling
	How to do it...

	Erosion and dilation
	How to do it...

	Image segmentation
	How to do it...

	Blurring and sharpening images
	How to do it...

	Detecting edges in images
	How to do it...
	How it works...
	See also

	Histogram equalization
	How to do it…

	Detecting corners in images
	How to do it...

	Chapter 7: Creating 3D Graphics

	Introduction
	Getting started with 3D coordinates and vertices
	Getting ready
	How to do it...
	How it works...
	There's more...
	Camera
	Shaders
	Lights
	Textures

	Creating and importing 3D models
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating or loading your own objects
	Changing the object's textures and .mtl files
	Taking screenshots

	Creating a 3D world to explore
	Getting ready
	How to do it...
	How it works...

	Building 3D maps and mazes
	Getting ready
	How to do it...
	How it works...
	There's more...
	The Building module
	Using SolidObjects to detect collisions

	Chapter 8: Building Face Detector and Face Recognition Applications

	Introduction
	Building a face detector application
	How to do it...

	Building a face recognition application
	How to do it...
	How it works...
	See also

	Applications of a face recognition system

	Chapter 9: Using Python to Drive Hardware

	Introduction
	Controlling an LED
	Getting ready
	How to do it...
	How it works...
	There's more...
	Controlling the GPIO current

	Responding to a button
	Getting ready
	Trying a speaker or headphone with Raspberry Pi

	How to do it...
	How it works...
	There's more...
	Safe voltages
	Pull-up and pull-down resistor circuits
	Protection resistors

	A controlled shutdown button
	Getting ready
	How to do it...
	How it works...
	There's more...
	Resetting and rebooting Raspberry Pi
	Adding extra functions

	The GPIO keypad input
	Getting ready
	How to do it...
	How it works...
	There's more...
	Generating other key combinations
	Emulating mouse events

	Multiplexed color LEDs
	Getting ready
	How to do it...
	How it works...
	There's more...
	Hardware multiplexing
	Displaying random patterns
	Mixing multiple colors

	Writing messages using persistence of vision
	Getting ready
	How to do it...
	How it works...

	Chapter 10: Sensing and Displaying Real-World Data

	Introduction
	Using devices with the I2C bus
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using multiple I2C devices
	I2C bus and level shifting
	Using just the PCF8591 chip or adding alternative sensors

	Reading analog data using an analog-to-digital converter
	Getting ready
	How to do it...
	How it works...
	There's more...
	Gathering analog data without hardware

	Logging and plotting data
	Getting ready
	How to do it...
	How it works...
	There's more...
	Plotting live data
	Scaling and calibrating data

	Extending the Raspberry Pi GPIO with an I/O expander
	Getting ready
	How to do it...
	How it works...
	There's more...
	I/O expander voltages and limits
	Using your own I/O expander module
	Directly controlling an LCD alphanumeric display

	Capturing data in an SQLite database
	Getting ready
	How to do it...
	How it works...
	There's more...
	The CREATE TABLE command
	The INSERT command
	The SELECT command
	The WHERE command
	The UPDATE command
	The DELETE command
	The DROP command

	Viewing data from your own webserver
	Getting ready
	How to do it...
	How it works...
	There's more...
	Security
	Using MySQL instead

	Sensing and sending data to online services
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 11: Building Neural Network Modules for Optical Character Recognition

	Introduction
	Visualizing optical characters
	How to do it...

	Building an optical character recognizer using neural networks
	How to do it...
	How it works...
	See also

	Applications of an OCR system

	Chapter 12: Building Robots

	Introduction
	Building a Rover-Pi robot with forward driving motors
	Getting ready
	How to do it...
	How it works...
	There's more...
	Darlington array circuits
	Transistor and relay circuits
	Tethered or untethered robots
	Rover kits

	Using advanced motor control
	Getting ready
	How to do it...
	How it works...
	There's more...
	Motor speed control using PWM control
	Using I/O expanders

	Building a six-legged Pi-Bug robot
	Getting ready
	How to do it...
	How it works...
	Controlling the servos
	The servo class
	Learning to walk
	The Pi-Bug code for walking

	Controlling servos directly with ServoBlaster
	Getting ready
	How to do it...
	How it works...

	Using an infrared remote control with your Raspberry Pi
	Getting ready
	How to do it...
	There's more...

	Avoiding objects and obstacles
	Getting ready
	How to do it...
	How it works...
	There's more...
	Ultrasonic reversing sensors

	Getting a sense of direction
	Getting ready
	How to do it...
	How it works...
	There's more...
	Calibrating the compass
	Calculating the compass bearing
	Saving the calibration
	Driving the robot using the compass

	Chapter 13
: Interfacing with Technology
	Introduction
	Automating your home with remotely controlled electrical sockets
	Getting ready
	How to do it...
	How it works...
	There's more...
	Sending RF control signals directly
	Extending the range of the RF transmitter
	Determining the structure of the remote control codes

	Using SPI to control an LED matrix
	Getting ready
	How to do it...
	How it works...
	There's more...
	Daisy-chain SPI configuration

	Communicating using a serial interface
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuring a USB-to-RS232 device for Raspberry Pi
	RS232 signals and connections
	Using the GPIO built-in serial pins
	The RS232 loopback

	Controlling Raspberry Pi using Bluetooth
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuring Bluetooth module settings

	Controlling USB devices
	Getting ready
	How to do it...
	How it works...
	There's more...
	Controlling similar missile-type devices
	Robot arm
	Taking USB control further

	Chapter 14: Can I Recommend a Movie for You?

	Introduction
	Computing the Euclidean distance score
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Computing a Pearson correlation score
	How to do it...
	How it works...
	There's more...
	See also

	Finding similar users in the dataset
	How to do it...
	See also

	Developing a movie recommendation module
	How to do it...
	See also

	Applications of recommender systems

	Appendix: Hardware and Software List

	Introduction
	General component sources
	General electronic component retailers
	Makers, hobbyists, and Raspberry Pi specialists

	The hardware list
	Chapter 1
	Chapters 2 – Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	The software list
	PC software utilities
	Raspberry Pi packages
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	There's more...
	APT commands
	Pip Python package manager commands

	Other Books You May Enjoy
	Index

