

JAVA
Illuminated

An Active Learning Approach

FIFTH EDITION

Julie Anderson
Rollins College

Hervé Franceschi
Loyola University Maryland

JONES � BARTLETT
LEARNING

™

World Headquarters
Jones & Bartlett Learning
5 Wall Street
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are
available through most bookstores and online
booksellers. To contact Jones & Bartlett Learning
directly, call 800-832-0034, fax 978-443-8000, or visit
our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones
& Bartlett Learning publications are available to
corporations, professional associations, and
other qualified organizations. For details and
specific discount information, contact the special
sales department at Jones & Bartlett Learning via

mailto:info@jblearning.com
http://www.jblearning.com/
http://www.jblearning.com/

the above contact information or send an email to
specialsales@jblearning.com.

mailto:specialsales@jblearning.com

Copyright © 2019 by Jones & Bartlett Learning, LLC,
an Ascend Learning Company

All rights reserved. No part of the material protected
by this copyright may be reproduced or utilized in
any form, electronic or mechanical, including
photocopying, recording, or by any information
storage and retrieval system, without written
permission from the copyright owner.

The content, statements, views, and opinions herein
are the sole expression of the respective authors and
not that of Jones & Bartlett Learning, LLC. Reference
herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer,
or otherwise does not constitute or imply its
endorsement or recommendation by Jones & Bartlett
Learning, LLC and such reference shall not be used
for advertising or product endorsement purposes. All
trademarks displayed are the trademarks of the
parties noted herein. Java Illuminated, Fifth Edition,
is an independent publication and has not been
authorized, sponsored, or otherwise approved by the
owners of the trademarks or service marks
referenced in this product.

There may be images in this book that feature
models; these models do not necessarily endorse,
represent, or participate in the activities represented

in the images. Any screenshots in this product are
for educational and instructive purposes only. Any
individuals and scenarios featured in the case
studies throughout this product may be real or
fictitious, but are used for instructional purposes only.

23993-5

Production Credits
Director of Product Management: Matthew Kane
Product Manager: Laura Pagluica
Product Assistant: Rebecca Feeney
Production Manager: Carolyn Pershouse
Production Manager: Dan Stone
VP, Manufacturing and Inventory Control: Therese
Connell
Media Development Editor: Shannon Sheehan
Rights & Media Specialist: Thais Miller
Cover & Title Page Design: Kristin E. Parker
Cover Image (Title Page, Part Opener, Chapter
Opener): © itsskin/Getty Images
Printing and Binding: LSC Communications
Cover Printing: LSC Communications

Library of Congress Cataloging-in-Publication
Data
ISBN13: 978-1-284-23993-5

Application submitted.

6048

Printed in the United States of America
22 21 20 19 18 10 9 8 7 6 5 4 3 2 1

Dedications

To the memory of my parents, Glenn and Rosemary
Austin, my first teachers. – Julie Anderson

A ma mère, trop tôt disparue, et à mon père. – Hervé
Franceschi

Contents
Preface

Turing’s Craft CodeLab Student
Registration Instructions

Acknowledgments

Chapter 1 Introduction to Programming and the
Java Language

1.1 Basic Computer Concepts
1.1.1 Hardware
1.1.2 Operating Systems
1.1.3 Application Software
1.1.4 Computer Networks and the Internet

1.2 Practice Activity: Displaying System
Configuration
1.2.1 Displaying Windows Configuration

Information

1.2.2 Displaying Mac OS Configuration
Information

1.3 Data Representation
1.3.1 Binary Numbers
1.3.2 Using Hexadecimal Numbers to

Represent Binary Numbers
1.3.3 Representing Characters with the

Unicode Character Set
1.4 Programming Languages

1.4.1 High- and Low-Level Languages
1.4.2 An Introduction to Object-Oriented

Programming
1.4.3 The Java Language

1.5 An Introduction to Programming
1.5.1 Programming Basics
1.5.2 Program Design with Pseudocode
1.5.3 Developing a Java Application
1.5.4 Programming Activity 1: Writing a

First Java Application
Debugging Techniques
Testing Techniques

1.5.5 Making a JAR File
1.6 Chapter Summary
1.7 Exercises, Problems, and Projects

1.7.1 Multiple Choice Exercises
1.7.2 Converting Numbers
1.7.3 General Questions
1.7.4 Technical Writing

1.7.5 Group Project (for a group of 1, 2, or 3
students)

Chapter 2 Programming Building Blocks—Java
Basics

2.1 Java Application Structure
2.2 Data Types, Variables, and Constants

2.2.1 Declaring Variables
2.2.2 Integer Data Types
2.2.3 Floating-Point Data Types
2.2.4 Character Data Type
2.2.5 Boolean Data Type
2.2.6 The Assignment Operator, Initial

Values, and Literals
2.2.7 String Literals and Escape

Sequences
2.2.8 Constants

2.3 Expressions and Arithmetic Operators
2.3.1 The Assignment Operator and

Expressions
2.3.2 Arithmetic Operators
2.3.3 Operator Precedence
2.3.4 Programming Activity 1: Converting

Inches to Centimeters
2.3.5 Integer Division and Modulus
2.3.6 Division by Zero
2.3.7 Mixed-Type Arithmetic and Type

Casting
2.3.8 Shortcut Operators

2.4 Programming Activity 2: Temperature
Conversion

2.5 Chapter Summary
2.6 Exercises, Problems, and Projects

2.6.1 Multiple Choice Exercises
2.6.2 Reading and Understanding Code
2.6.3 Fill In the Code
2.6.4 Identifying Errors in Code
2.6.5 Debugging Area—Using Messages

from the Java Compiler and Java
JVM

2.6.6 Write a Short Program
2.6.7 Programming Projects
2.6.8 Technical Writing

Chapter 3 Object-Oriented Programming, Part 1:
Using Classes

3.1 Class Basics and Benefits
3.2 Creating Objects Using Constructors
3.3 Calling Methods
3.4 Using Object References
3.5 Programming Activity 1: Calling Methods
3.6 The Java Class Library
3.7 The String Class

The length Method
The toUpperCase and
toLowerCase Methods
The charAt Method
The indexOf Methods
The substring Methods

String Processing
3.8 Formatting Output with the

DecimalFormat Class
3.9 Generating Random Numbers with the

Random Class
3.10 Input from the Console Using the

Scanner Class
3.11 Calling Static Methods and Using

Static Class Variables
3.12 Using System.in and System.out

3.13 The Math Class
The pow Method
The round Method
The min and max Methods

3.14 Formatting Output with the
NumberFormat Class

3.15 The Integer, Double, Character, and Other
Wrapper Classes

3.16 Programming Activity 2: Using Predefined
Classes

3.17 Chapter Summary
3.18 Exercises, Problems, and Projects

3.18.1 Multiple Choice Exercises
3.18.2 Reading and Understanding Code
3.18.3 Fill In the Code
3.18.4 Identifying Errors in Code
3.18.5 Debugging Area—Using Messages

from the Java Compiler and Java
JVM

3.18.6 Write a Short Program

3.18.7 Programming Projects
3.18.8 Technical Writing
3.18.9 Group Project (for a group of 1, 2, or

3 students)

Chapter 4 Introduction to Graphical
Applications

4.1 JavaFX Application Structure
4.2 The Graphics Coordinate System and Color
4.3 Drawing Shapes and Text
4.4 Drawing Custom Shapes
4.5 Programming Activity 1: Writing an

Application with Graphics
4.6 Chapter Summary
4.7 Exercises, Problems, and Projects

4.7.1 Multiple Choice Exercises
4.7.2 Reading and Understanding Code
4.7.3 Fill In the Code
4.7.4 Identifying Errors in Code
4.7.5 Debugging Area—Using Messages

from the Java Compiler and Java
JVM

4.7.6 Write a Short Program
4.7.7 Programming Projects
4.7.8 Technical Writing
4.7.9 Group Project (for a group of 1, 2, or 3

students)

Chapter 5 Flow of Control, Part 1: Selection
5.1 Forming Conditions

5.1.1 Equality Operators

5.1.2 Relational Operators
5.1.3 Logical Operators

DeMorgan’s Laws
5.2 Simple Selection with if
5.3 Selection Using if/else

Block Scope
5.4 Selection Using if/else if

5.5 Sequential and Nested if/else Statements
5.5.1 Sequential if/else Statements

Finding the Minimum or
Maximum Values

5.5.2 Nested if/else Statements
Dangling else

5.6 Testing Techniques for if/else Statements
5.7 Programming Activity 1: Working with if/else

5.8 Comparing Floating-Point Numbers
5.9 Comparing Objects

5.9.1 The equals Method
5.9.2 String Comparison Methods

5.10 The Conditional Operator (?:)
5.11 The switch Statement
5.12 Programming Activity 2: Using the

switch Statement
5.13 Chapter Summary
5.14 Exercises, Problems, and Projects

5.14.1 Multiple Choice Exercises
5.14.2 Reading and Understanding Code
5.14.3 Fill In the Code
5.14.4 Identifying Errors in Code

5.14.5 Debugging Area—Using Messages
from the Java Compiler and Java
JVM

5.14.6 Write a Short Program
5.14.7 Programming Projects
5.14.8 Technical Writing
5.14.9 Group Project (for a group of 1, 2, or

3 students)

Chapter 6 Flow of Control, Part 2: Looping
6.1 Event-Controlled Loops Using while

6.2 General Form for while Loops
6.3 Event-Controlled Looping

6.3.1 Reading Data from the User
6.3.2 Reading Data from a Text File

6.4 Looping Techniques
6.4.1 Accumulation
6.4.2 Counting Items
6.4.3 Calculating an Average
6.4.4 Finding Maximum or Minimum Values

6.5 Type-Safe Input Using Scanner

6.6 Constructing Loop Conditions
6.7 Testing Techniques for while Loops
6.8 Event-Controlled Loops Using do/while

6.9 Programming Activity 1: Using while Loops
Task Instructions

Troubleshooting

6.10 Count-Controlled Loops Using for

6.10.1 Basic Structure of for Loops
6.10.2 Constructing for Loops

6.10.3 Testing Techniques for for Loops
6.11 Nested Loops
6.12 Programming Activity 2: Using for Loops

Instructions

Troubleshooting

6.13 Chapter Summary
6.14 Exercises, Problems, and Projects

6.14.1 Multiple Choice Exercises
6.14.2 Reading and Understanding Code
6.14.3 Fill In the Code
6.14.4 Identifying Errors in Code
6.14.5 Debugging Area—Using Messages

from the Java Compiler and Java
JVM

6.14.6 Write a Short Program
6.14.7 Programming Projects
6.14.8 Technical Writing
6.14.9 Group Project (for a group of 1, 2, or

3 students)

Chapter 7 Object-Oriented Programming, Part 2:
User-Defined Classes

7.1 Defining a Class
7.2 Defining Instance Variables
7.3 Writing Class Methods
7.4 Writing Constructors
7.5 Writing Accessor Methods
7.6 Writing Mutator Methods
7.7 Writing Data Manipulation Methods

7.8 Programming Activity 1: Writing a Class
Definition, Part 1

7.9 The Object Reference this

7.10 The toString and equals Methods
7.11 Static Class Members
7.12 Graphical Objects
7.13 Enumeration Types
7.14 Programming Activity 2: Writing a Class

Definition, Part 2
7.15 Creating Packages
7.16 Generating Web-Style Documentation with

Javadoc
7.17 Chapter Summary
7.18 Exercises, Problems, and Projects

7.18.1 Multiple Choice Exercises
7.18.2 Reading and Understanding Code
7.18.3 Fill In the Code
7.18.4 Identifying Errors in Code
7.18.5 Debugging Area—Using Messages

from the Java Compiler and Java
JVM

7.18.6 Write a Short Program
7.18.7 Programming Projects
7.18.8 Technical Writing
7.18.9 Group Project (for a group of 1, 2, or

3 students)

Chapter 8 Single-Dimensional Arrays
8.1 Declaring and Instantiating Arrays

8.1.1 Declaring Arrays

8.1.2 Instantiating Arrays
8.1.3 Combining the Declaration and

Instantiation of Arrays
8.1.4 Assigning Initial Values to Arrays

8.2 Accessing Array Elements
8.3 Aggregate Array Operations

8.3.1 Printing Array Elements
8.3.2 Reading Data into an Array
8.3.3 Summing the Elements of an Array
8.3.4 Finding Maximum or Minimum Values
8.3.5 Copying Arrays
8.3.6 Changing the Size of an Array
8.3.7 Comparing Arrays for Equality
8.3.8 Displaying Array Data as a Bar Chart

8.4 Programming Activity 1: Working with Arrays
Instructions

Troubleshooting

8.5 Using Arrays in Classes
8.5.1 Using Arrays in User-Defined Classes
8.5.2 Retrieving Command Line Arguments

8.6 Searching and Sorting Arrays
8.6.1 Sequential Search of an Unsorted

Array
8.6.2 Selection Sort
8.6.3 Insertion Sort
8.6.4 Sorting Arrays of Objects
8.6.5 Sequential Search of a Sorted Array
8.6.6 Binary Search of a Sorted Array

8.7 Programming Activity 2: Searching and
Sorting Arrays

Instructions

Troubleshooting

8.8 Using Arrays as Counters
8.9 Methods Accepting a Variable Number of

Arguments
8.10 Chapter Summary
8.11 Exercises, Problems, and Projects

8.11.1 Multiple Choice Exercises
8.11.2 Reading and Understanding Code
8.11.3 Fill In the Code
8.11.4 Identifying Errors in Code
8.11.5 Debugging Area—Using Messages

from the Java Compiler and Java
JVM

8.11.6 Write a Short Program
8.11.7 Programming Projects
8.11.8 Technical Writing
8.11.9 Group Project (for a group of 1, 2, or

3 students)

Chapter 9 Multidimensional Arrays and the
ArrayList Class

9.1 Declaring and Instantiating Multidimensional
Arrays
9.1.1 Declaring Multidimensional Arrays
9.1.2 Instantiating Multidimensional Arrays
9.1.3 Combining the Declaration and

Instantiation of Multidimensional

Arrays
9.1.4 Assigning Initial Values to

Multidimensional Arrays
9.2 Accessing Multidimensional Array Elements
9.3 Aggregate Two-Dimensional Array

Operations
9.3.1 Processing All the Elements of a Two-

Dimensional Array
9.3.2 Processing a Given Row of a Two-

Dimensional Array
9.3.3 Processing a Given Column of a Two-

Dimensional Array
9.3.4 Processing a Two-Dimensional Array

One Row at a Time
9.3.5 Processing a Two-Dimensional Array

One Column at a Time
9.3.6 Displaying Two-Dimensional Array

Data as a Bar Chart
9.4 Two-Dimensional Arrays Passed to and

Returned from Methods
9.5 Programming Activity 1: Working with Two-

Dimensional Arrays
Instructions

Troubleshooting

9.6 Other Multidimensional Arrays
9.7 The ArrayList Class

9.7.1 Declaring and Instantiating
ArrayList Objects

9.7.2 Methods of the ArrayList Class

9.7.3 Looping Through an ArrayList Using
an Enhanced for Loop

9.7.4 Using the ArrayList Class in a
Program

9.8 Programming Activity 2: Working with the
ArrayList Class

Instructions

Troubleshooting

9.9 Chapter Summary
9.10 Exercises, Problems, and Projects

9.10.1 Multiple Choice Exercises
9.10.2 Reading and Understanding Code
9.10.3 Fill In the Code
9.10.4 Identifying Errors in Code
9.10.5 Debugging Area—Using Messages

from the Java Compiler and Java
JVM

9.10.6 Write a Short Program
9.10.7 Programming Projects
9.10.8 Technical Writing
9.10.9 Group Project (for a group of 1, 2, or

3 students)

Chapter 10 Object-Oriented Programming, Part
3: Inheritance, Polymorphism, and
Interfaces

10.1 Inheritance
10.2 Inheritance Design

10.2.1 Inherited Members of a Class
10.2.2 Subclass Constructors

10.2.3 Adding Specialization to the
Subclass

10.2.4 Overriding Inherited Methods
10.3 The protected Access Modifier
10.4 Programming Activity 1: Using Inheritance

Instructions

10.5 Abstract Classes and Methods
10.6 Polymorphism
10.7 Programming Activity 2: Using

Polymorphism
Instructions

10.8 Interfaces
10.9 Chapter Summary

10.10 Exercises, Problems, and Projects
10.10.1 Multiple Choice Exercises
10.10.2 Reading and Understanding Code
10.10.3 Fill In the Code
10.10.4 Identifying Errors in Code
10.10.5 Debugging Area—Using

Messages from the Java Compiler
and Java JVM

10.10.6 Write a Short Program
10.10.7 Programming Projects
10.10.8 Technical Writing
10.10.9 Group Project (for a group of 1, 2,

or 3 students)

Chapter 11 Exceptions and Input/Output
Operations

11.1 Simple Exception Handling

11.2 Catching Multiple Exceptions
11.3 Reading Text Files Using Scanner

11.4 The java.io Package
11.5 Recovering from an Exception
11.6 Writing and Appending to Text Files

11.6.1 Writing to Text Files
11.6.2 Appending to Text Files

11.7 Reading Structured Text Files
11.7.1 Parsing a String Using Scanner

11.7.2 Reading Structured Data Using
Scanner

11.8 Programming Activity 1: Reading from a
Structured Text File

Instructions

If you have time …
Troubleshooting

11.9 Streams
11.10 Reading Formatted Open Data from a

Remote Location
11.10.1 Accessing Remote Data
11.10.2 JSON Formatting and Parsing
11.10.3 Reading, Parsing, Streaming, and

Processing Remote Data
11.11 Reading and Writing Objects to a File

11.11.1 Writing Objects to Files
11.11.2 Reading Objects from Files

11.12 Programming Activity 2: Reading Objects
from a File

Task Instructions: Reading from
the transactions.obj File

If you have time …
Troubleshooting

11.13 User-Defined Exceptions
11.14 Chapter Summary
11.15 Exercises, Problems, and Projects

11.15.1 Multiple Choice Exercises
11.15.2 Reading and Understanding Code
11.15.3 Fill In the Code
11.15.4 Identifying Errors in Code
11.15.5 Debugging Area—Using

Messages from the Java Compiler
and Java JVM

11.15.6 Write a Short Program
11.15.7 Programming Projects
11.15.8 Technical Writing
11.15.9 Group Project (for groups of 2, 3,

or more students)

Chapter 12 Graphical User Interfaces Using
JavaFX

12.1 The Structure of a JavaFX Application
12.2 GUI Controls
12.3 A Simple Control: Label

12.4 Event Handling: Managing User
Interactions

12.5 Text Fields and Command Buttons
12.6 Radio Buttons and Checkboxes

12.7 Programming Activity 1: Working with
Buttons

Instructions

Troubleshooting

12.8 Combo Boxes
12.9 Sliders

12.10 Building a GUI Programmatically
12.11 Layout Containers: Dynamically Setting Up

the GUI Using GridPane

12.12 BorderPane Layout, Animations, Sounds,
and Lambda Expressions

12.13 Nesting Components
12.14 Mouse and Touch Events
12.15 Using a List to Display a Pie Chart
12.16 Using a List to Display a Dynamic Bar

Chart
12.17 Using a Style Sheet to Style the View
12.18 Programming Activity 2: Working with

Layout Containers
Instructions

12.19 Chapter Summary
12.20 Exercises, Problems, and Projects

12.20.1 Multiple Choice Exercises
12.20.2 Reading and Understanding Code
12.20.3 Fill In the Code
12.20.4 Identifying Errors in Code
12.20.5 Debugging Area—Using

Messages from the Java Compiler
and Java JVM

12.20.6 Write a Short Program
12.20.7 Programming Projects
12.20.8 Technical Writing
12.20.9 Group Project (for a group of 1, 2,

or 3 students)

Chapter 13 Recursion
13.1 Simple Recursion: Identifying the General

and Base Cases
13.2 Recursion with a Return Value

13.2.1 Computing the Factorial of a
Number

13.2.2 Computing the Greatest Common
Divisor

13.3 Recursion with Two Base Cases
13.4 Programming Activity 1: Checking for a

Palindrome
Instructions

Task Instructions

Troubleshooting

13.5 Binary Search: A Recursive Solution
13.6 Programming Activity 2: The Towers of

Hanoi
Instructions

Task Instructions

Troubleshooting

13.7 Recursion Versus Iteration
13.8 Chapter Summary
13.9 Exercises, Problems, and Projects

13.9.1 Multiple Choice Exercises

13.9.2 Reading and Understanding Code
13.9.3 Fill In the Code
13.9.4 Identifying Errors in Code
13.9.5 Debugging Area—Using Messages

from the Java Compiler and Java
JVM

13.9.6 Write a Short Program
13.9.7 Programming Projects
13.9.8 Technical Writing
13.9.9 Group Projects (for a group of 1, 2,

or 3 students)

Chapter 14 An Introduction to Data Structures
14.1 Linked Lists

14.1.1 Linked-List Concepts and Structure
14.1.2 Linked-List Basics
14.1.3 Methods of a Linked List
14.1.4 Testing a Linked-List Class

14.2 Linked Lists of Objects
14.2.1 A Linked-List Shell
14.2.2 Generating an Exception
14.2.3 Other Methods of a Linked List
14.2.4 Testing a Linked-List Class

14.3 Implementing a Stack Using a Linked List
14.4 Implementing a Queue Using a Linked List
14.5 Array Representation of Stacks
14.6 Programming Activity 1: Writing Methods

for a Stack Class
Instructions

Troubleshooting

14.7 Array Representation of Queues
14.8 Sorted Linked Lists
14.9 Programming Activity 2: Writing Insert and

Delete Methods for a Sorted Linked List
Instructions

Troubleshooting

14.10 Doubly Linked Lists
14.11 Linked Lists Using Generic Types
14.12 Recursively Defined Linked Lists
14.13 Chapter Summary
14.14 Exercises, Problems, and Projects

14.14.1 Multiple Choice Exercises
14.14.2 Reading and Understanding Code
14.14.3 Fill In the Code
14.14.4 Identifying Errors in Code
14.14.5 Debugging Area—Using

Messages from the Java Compiler
and Java JVM

14.14.6 Write a Short Program
14.14.7 Programming Projects
14.14.8 Technical Writing
14.14.9 Group Project (for a group of 1, 2,

or 3 students)

Chapter 15 Running Time Analysis
15.1 Orders of Magnitude and Big-Oh Notation
15.2 Running Time Analysis of Algorithms:

Counting Statements
15.3 Running Time Analysis of Algorithms and

Impact of Coding: Evaluating Recursive

Methods
Handwaving Method
Iterative Method
Proof by Induction Method
Other Methods

15.4 Programming Activity: Tracking How Many
Statements Are Executed by a Method

Instructions

Troubleshooting

15.5 Running Time Analysis of Searching and
Sorting Algorithms

15.6 Chapter Summary
15.7 Exercises, Problems, and Projects

15.7.1 Multiple Choice Exercises
15.7.2 Compute the Running Time of a

Method
15.7.3 Programming Projects
15.7.4 Technical Writing
15.7.5 Group Project (for a group of 1, 2,

or 3 students)

Appendix A Java Reserved Words and
Keywords

Appendix B Operator Precedence

Appendix C The Unicode Character Set

Appendix D Representing Negative Integers

Appendix E Representing Floating-Point
Numbers

Appendix F Solutions to Selected Exercises

Index

Preface

Purpose of This Text and Its Audience
Java Illuminated, Fifth Edition, covers all of the material
required for the successful completion of an introductory
course in Java. While the focus is on the material required for
the Computer Science I (CS1) and Computer Science II (CS2)
curricula, students enrolled in Information Systems,
Information Technology, or self-directed study courses will find
the text useful as well. It has been written to provide
introductory computer science students with a comprehensive
overview of the fundamentals of programming using Java as
the teaching language. In addition, the text presents other
topics of interest, including graphical user interfaces (GUI),
data structures, file input and output, and graphical
applications.

Throughout the text, we take an “active learning” approach to
presenting the material. Instead of merely presenting the
concepts to students in a one-sided, rote manner, we ask
them to take an active role in their understanding of the
concepts through the use of numerous interactive examples,
exercises, and projects.

Coverage and Approach
Our approach is to teach object-oriented programming in a
progressive manner. We start in Chapter 1 by presenting an
overview of object-oriented programming. In Chapter 3, we
delve a little deeper into the concepts of classes and objects
and introduce the student to many of the useful classes in the
Java Class Library. Our emphasis at this point is on using
classes; we teach the student how to read APIs in order to
determine how to instantiate objects and call methods of the
classes. In Chapter 7, we move on to designing user-defined
classes, and in Chapter 10, we present inheritance,
polymorphism, and interfaces. Throughout the text, we
present concepts in an object-oriented context.

Our philosophy is to emphasize good software engineering
practices by focusing on designing and writing correct,
maintainable programs. As such, we discuss pseudocode,
testing techniques, design trade-offs, and other software
engineering tips.

We teach the student basic programming techniques, such as
accumulation, counting, calculating an average, finding
maximum and minimum values, using flag and toggle
variables, and basic searching and sorting algorithms. In
doing so, we emphasize the patterns inherent in
programming. Concepts are taught first, followed by fully
implemented examples with source code. We promote Java
standards, conventions, and methodologies.

What’s New in Java Illuminated
In this edition, we have incorporated the latest features of
Java in Java 8 and Java 9: the jshell sandbox, Streams,
functional interfaces and lambda expressions, the use of
default methods in interfaces, JavaFX graphics, using FXML
in JavaFX applications, tying a JavaFX GUI component to
data in a Collection, JavaFX animations, and the StackWalker
class. We have converted all graphics examples and
graphical Programming Activities to JavaFX.

Throughout the book, we updated, improved, and replaced
examples.

In Chapter 1, we added instructions for making a JAR file.

In Chapter 2, we use the Java 9 jshell sandbox to
demonstrate the definition of variables, assigning of values to
variables, and the results of performing arithmetic
calculations.

In Chapter 3, we augmented the existing example on Strings
with more explanations of Strings methods, and added
another example with illustrations to demonstrate Strings
Processing techniques. In both examples, we emphasize
sending arguments to methods and receiving return values.

We converted Chapter 4 to JavaFX. To make it easier for the
students to write JavaFX applications, we provide a utility
class that encapsulates the overhead code to create a
window. As a result, the students can concentrate on calling
methods of the GraphicsContext class. We provide an online

version of the Swing version of Chapter 4 from the 4th edition
for those instructors who prefer the Swing graphics system.

In Chapter 7, we modified mutator methods to change
instance variable values only if the parameter value is valid.
Otherwise, the instance variable value is unchanged and we
no longer output an error message. After we introduce the
implicit reference, this, we implement the standard Java
coding style of defining parameters with the same name as
the instance variable. Further, we allow mutator methods to
be chained by returning a reference to the object being
modified. We have also moved the material on creating
packages to an online supplement.

In Chapter 10, we converted the polymorphism example to
JavaFX. We revised our existing interface example to use a
default method and added an example demonstrating
polymorphism with interfaces.

In Chapter 11, we added sections showing how to read file
data into a Stream, and then filter and process that Stream
using lambda expressions. We also added an example that
reads and parses JSON data from a remote location on the
Internet.

We converted Chapter 12 from Swing to JavaFX (the Swing
version of Chapter 12 from the Fourth Edition is now available
online). We added how to define a View using FXML, as well
as programmatically, how to process touches, how to tie a
GUI component to a Collection so that it is automatically
updated as the data changes using ObservableLists, how to
play sounds, and how to perform animations using JavaFX.

We explain how to write event handlers using lambda
expressions.

In Chapter 13, we use the StackWalker class to illustrate the
state of the stack as recursive calls are made.

Learning Features
Recognizing today’s students’ growing interest in
visualization, we distribute techniques for producing graphical
output throughout the book, starting in Chapter 4 with
graphical applications. An example using either animation or
graphical output is included in most chapters. Instructors who
are not interested in incorporating graphics into their
curriculum can simply skip these sections. In addition, some
of our examples are small games, which we find motivational
for students.

In each chapter, we include one or two Programming
Activities, which are designed to provide visual feedback to
the students so that they can assess the correctness of their
code. In most Programming Activities, we provide a
framework, usually with a graphical user interface, to which
the student adds code to complete the application. The
student should be able to finish the Programming Activity in
about 15 to 20 minutes; thus, these activities can be used in
the classroom to reinforce the topics just presented. Each
Programming Activity also includes several discussion
questions that test the student’s understanding of the
concepts the activity illustrates. The Programming Activities
are also appropriate for a closed or open laboratory
environment. In short, this text can be used in a traditional
lecture environment, a computer-equipped classroom, or a lab
environment.

In addition, we supplement each chapter with a browser-
based module that animates sample code, visually illustrating
concepts such as the assignment of variable values,
evaluation of conditions, and flow of control.

We also provide the instructor and students with an extensive
variety of end-of-chapter material: multiple-choice questions,
examples that ask the student to predict the output of
prewritten code or to fill in missing code, debugging activities,
short exercises, programming projects, technical writing
assignments, one or more learning-to-learn exercises called
Look It Up, and a higher-difficulty group project.

Chapter-by-Chapter Overview
The chapters are logically organized from simple to more
difficult topics, while incorporating object orientation as
needed, taking into account the specifics of the Java
language. Here is a brief summary of the topics covered in
each chapter:

Chapter 1: Introduction to Programming
and the Java Language
We introduce the student to the concept of programming, first
covering computer hardware and operating systems, and
following with a brief evolution of programming languages,
including an introduction to object-oriented programming. We
explain programming basics and pseudocode as a program
design technique. The student writes, compiles, and debugs
their first program using an integrated development
environment.

Chapter 2: Programming Building
Blocks—Java Basics
In this chapter, we concentrate on working with variables and
constants of primitive data types and composing arithmetic
expressions. We illustrate the differences between integer and
floating-point calculations and introduce operator precedence.
We introduce jshell, the programming sandbox now available
with Java 9. We use a combination of jshell sessions and
complete programs to demonstrate the concepts at hand.

Chapter 3: Object-Oriented
Programming, Part 1: Using Classes
Chapter 3 introduces classes from the user, or client,
standpoint and discusses the benefits of encapsulation and
code reuse. The student learns how to instantiate objects and
call methods. We also demonstrate useful Java classes for
console input and output, formatting output, performing
mathematical calculations, generating random numbers, and
using methods of the Wrapper classes. We use methods of
the String class to visually illustrate the passing of arguments
and receiving of and use of return values.

Chapter 4: Introduction to Graphical
Applications
Chapter 4 presents several methods of the JavaFX
GraphicsContext class that can be used to create graphical
output by drawing shapes, text, and sprites. The windowing
graphics coordinate system is explained and using color is
also explored. We demonstrate these graphics methods in
JavaFX applications. Instructors wishing to postpone or skip
graphics coverage altogether can use as little or as much of
this chapter as they desire.

Chapter 5: Flow of Control, Part 1:
Selection
Various forms of the if, if/else, and if/else if statements are
presented, along with the appropriate situations in which to
use each form. We also demonstrate nested if/else
statements and testing techniques. We begin our coverage of
scope by introducing block scope. Later chapters build upon
this foundation. As part of our object-oriented programming
coverage, we teach the importance of comparing objects
using the equals method. This chapter also covers the
conditional operator and the switch statement.

Chapter 6: Flow of Control, Part 2:
Looping
This is probably the most important chapter in the book. We
have found that looping and repetition are the most difficult
basic programming concepts for the average student to grasp.
We try to ease the student’s understanding of looping
techniques by presenting patterns to follow in coding basic
algorithms: accumulation, counting, calculating an average,
and finding minimum and maximum values. Looping is further
explored as a tool for validation of input values. We also
introduce toggle variables and flag variables as tools to
facilitate writing loops. We continue our coverage of scope by
illustrating the scope of variables declared within the while
loop body and for loop header. We concentrate on using the
while loop for event-controlled and sentinel-controlled
repetition and the for loop for count-controlled looping. A large
section focuses on constructing loop conditions, which is often
a challenging task for the student. Sections are also provided
on testing techniques for loops. In this chapter, we also
introduce reading data from a text file using the Scanner
class.

Chapter 7: Object-Oriented
Programming, Part 2: User-Defined
Classes
In this chapter, we teach the student to write classes, as well
as client applications that instantiate objects and call methods
of the class. We present class design techniques and
standard patterns for writing constructors, mutators and
accessors, and the toString, equals, and other user-defined
methods. We further explain scope in the context of class
members and method parameters. We also explain how to
write classes with static methods and static data. Additionally,
we illustrate how to write methods so that the method calls
can be chained. Enum is also covered as a user-defined class
type. Finally, we teach the student how to use Javadoc.

Chapter 8: Single-Dimensional Arrays
This chapter begins with the declaration, instantiation, and
initialization of single-dimensional arrays. From there, the
student learns to perform the basic programming techniques
(accumulation, counting, calculating an average, and finding
maximum and minimum values) on array elements. We also
cover arrays as instance variables of a class, and
demonstrate maintaining encapsulation while accepting
arrays as method parameters and returning arrays from
methods. We demonstrate how to represent an array as a bar
chart. Basic searching and sorting algorithms are also
presented, including sequential and binary searches and
Selection and Insertion sorts.

Chapter 9: Multidimensional Arrays and
the ArrayList Class
We focus in this chapter on two-dimensional array processing,
including techniques for processing the elements in the entire
array, or the elements in a specific column or row. We also
demonstrate the extra processing needed to handle arrays
with rows of different lengths. Creating a bar chart of the data
in the array is also demonstrated. In addition, we extrapolate
the concepts from two-dimensional arrays to discuss
multidimensional arrays.

We present the ArrayList class as an expandable array and
demonstrate using classes with generic types, the enhanced
for loop, and autoboxing and unboxing.

Chapter 10: Object-Oriented
Programming, Part 3: Inheritance,
Polymorphism, and Interfaces
Continuing our object-oriented programming coverage, we
discuss the important concepts and benefits of inheritance
and the design of class hierarchies, including abstract
classes. We cover inherited members of a class, constructing
objects of a subclass, adding specialization to a subclass,
overriding inherited methods, and calling methods of the
superclass. We discuss the trade-offs of declaring members
as protected versus private. We demonstrate polymorphism
with a graphical example. We introduce the student to
interfaces, emphasizing code reuse as the motivation for
defining interfaces. We explain default methods and how we
can use them in new versions of a program so that our old
code does not break as we add new features. We also
demonstrate polymorphism using interfaces. Interfaces are
used extensively in Graphical User Interfaces (See Chapter
12.) We introduce UML diagrams to help students visualize
the inheritance hierarchy of the examples.

Chapter 11: Exceptions and Input/Output
Operations
Recognizing that building robust applications requires error
handling, we present exception handling as a tool for
validating user input and recovering from errors at run time.
We demonstrate handling predefined exceptions and writing
user-defined exceptions.

With this knowledge, the student is ready to perform file input
and output operations. We demonstrate reading and writing
Strings and primitive data types to text files, and reading and
writing objects directly to files. The Scanner class is used to
read and parse input from text files and Strings. We
demonstrate how to read and place file contents into a Stream
and how to filter and process that Stream. We use lambda
expressions when processing the Stream. We demonstrate
how to read data from a remote file located on the Internet,
including parsing JSON data and converting that data into a
Stream for filtering and processing.

Chapter 12: Graphical User Interfaces
Using JavaFX
This chapter introduces the student to event-driven
programming and writing event handlers for text fields,
buttons, radio buttons, checkboxes, combo boxes, sliders,
and mouse and touch activities. We also demonstrate panels
and several layout managers for organizing GUI components,
as well as how to nest components. In our examples, we
illustrate how to separate the graphical user interface code
from the underlying data and program logic using the Model-
View-Controller architecture. We demonstrate how to use
FXML to define a View, and we also show how we can define
a View programmatically. Showing bar charts and pie charts,
we demonstrate how we can use Collections with JavaFX
components so that the GUI is automatically updated when its
model (a Collection) is changed. We explain how to write
lambda expressions and use them throughout the chapter.
We demonstrate how we can use the various animation
classes of JavaFX to animate a sprite, including performing
sequential and parallel animations.

Chapter 13: Recursion
Recursion is presented as a design technique, reducing the
size of a problem until an easy-to-solve problem is reached.
We demonstrate recursive methods with one base case and
with multiple base cases, and with and without return values.
Specific examples provided include computing the factorial of
a number, finding the greatest common divisor, performing a
binary search, determining if a phrase is a palindrome,
calculating combinations, and solving the Towers of Hanoi
problem. We use the StackWalker class to demonstrate how
values are pushed onto and popped off the stack as recursive
calls are executed. The benefits and trade-offs of recursion
versus iteration are also discussed.

Chapter 14: An Introduction to Data
Structures
In this chapter, we cover data structures by exploring the
concepts and implementations of various types of linked lists,
stacks, and queues. We demonstrate many types and uses of
linked lists: a singly linked list, a linked list as a stack, a linked
list as a queue, a doubly linked list, a sorted linked list, and a
recursively defined linked list. Arrays as stacks and circular
arrays as queues are also covered in detail.

We begin with a list of primitive types (int) and progress to a
list consisting of objects of a user-defined Player class. Then
we cover defining a class using generic types to demonstrate
how a list can be defined to hold generic objects.

Chapter 15: Running Time Analysis
We explain how to evaluate the performance of an algorithm
in this chapter. We explain the Big-Oh notation and orders of
magnitude. Students learn various methods for deriving
performance estimates: counting statements in loops,
iterative, handwaving, and proof by induction analyses for
recursive methods. We demonstrate how the coding of an
algorithm influences its running time. Worst-case, best-case,
and average-case performances are explained and illustrated.

Pedagogy
Concepts are always taught first, followed by complete,
executable examples illustrating these concepts. Most
examples demonstrate real-life applications so that the
student can understand the need for the concept at hand. The
example code is colored to better illustrate the syntax of the
code and to reflect the use of colors in today’s IDE tools, as
shown in this example from Chapter 3:

EXAMPLE 3.10 Reading from the
Keyboard Using Scanner
 1 /* A demonstration of reading from the keyboard using

Scanner

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class DataInput

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12

13 System.out.print("Enter your first name > ");

14 String firstName = scan.next();

15 System.out.println("Your name is " + firstName);

16

17 System.out.print("\nEnter your age as an integer > "

);

18 int age = scan.nextInt();

19 System.out.println("Your age is " + age);

20

21 System.out.print("\nEnter your GPA > ");

22 float gpa = scan.nextFloat();

23 System.out.println("Your GPA is " + gpa);

24 }

25 }

Note that in this example and throughout the text, we place
the opening curly brace of a block on a line of its own. We
have found this placement easier for a student new to Java to
understand where a block begins and ends.

Figures and tables are used to illustrate or summarize the
concept at hand, such as these from Chapters 6 and 7:

Figure 6.1
Flow of Control of a while Loop

TABLE 7.1 ACCESS MODIFIERS
Access
Modifier

Class or member can be referenced by ...

public methods of the same class, as well as methods of other
classes

private methods of the same class only

protected methods in the same class, as well as methods of
subclasses and methods in classes in the same package

no modifier
(package
access)

methods in the same package or same folder only

In each chapter, we emphasize good design concepts using
“Software Engineering Tips,” such as the one to the left from
Chapter 7.

SOFTWARE ENGINEERING TIP
Define instance variables of a class as private so that only
methods of the class will be able to set or change their values.

We also provide “Common Error Traps,” such as the one to
the left from Chapter 5, to alert students against common
syntax and logic errors.

In each chapter, “active learning” Programming Activities
reinforce concepts with enjoyable, hands-on projects that
provide visual feedback to the students. These activities can
be done in lab-type classrooms or can be assigned as
projects. A header for a Programming Activity looks like this:

COMMON ERROR TRAP
Be sure that both operands of the logical AND and logical OR
operators are boolean expressions. Expressions such as this:
x < y && z , with x, y, and z being numeric types, are
illegal. Instead, use the expression: x < y && x < z

6.9 Programming Activity 1: Using while
Loops
In this activity, you will work with a sentinel-controlled while
loop, performing this activity:

Write a while loop to process the contents of a
grocery cart and calculate the total price of the
items. It is important to understand that, in this
example, we do not know how many items are
in the cart.

Because technology is ever-changing, students need to be
able to learn new concepts and find relevant classes on their
own. To promote the development of this important skill of
“learning-to-learn,” we include one or more “Look It Up”
questions in the end-of-chapter exercises. These questions

require the student to perform some research to acquire the
knowledge necessary to answer the question and write the
required code.

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see two step-by-step illustrations of do/while loops,
look for this chapter’s movie within the online
resources. Click on the link to start the movie.

Within the online resources, for each chapter, we provide a
movie that illustrates the execution of code implementing the
concepts taught in the chapter. Each movie animates a brief
code sample, one line at a time, and is controlled by the user
via a “Next Step” button. These modules can be beneficial for
students who learn best with visual aids, graphs, illustrations,
and at their own pace outside the classroom. The modules
are announced in each chapter using a special icon as in the
sample above.

Graphics Coverage
Graphics are distributed throughout the book and are used to
engage the student and reinforce the chapter concepts. The
graphics coordinate system, methods for drawing shapes and
text, and color concepts are presented with simple JavaFX
applications in Chapter 4. At least one graphical example is
presented in subsequent chapters using JavaFX. In Chapter
5, a switch statement is used to draw dots on a die; in
Chapter 6, a loop is used to draw a bull’s eye target. Classes
for displayable objects are presented in Chapter 7; drawing a
bar chart of array data is illustrated in Chapters 8 and 9;
polymorphism is demonstrated using a Tortoise and Hare
Race in Chapter 10; GUIs, dynamic charts, and JavaFX
animations are covered in Chapter 12. The two figures that
follow illustrate graphical examples from Chapters 7 and 8.

Figure 7.11
The SpriteClient Window

Figure 8.15
The cellBills Array as a Bar Chart

End-of-Chapter Exercises and Problems
A large collection of exercises and problems is proposed at
the end of each chapter. Short exercises cover programming
from a variety of angles: multiple choice concept questions,
reading and understanding code segments, filling in some
code, correcting errors, and interpreting compiler error
messages to diagnose application bugs. Many programming
projects are proposed with an emphasis on writing classes,
not just a program. A more challenging group project is
proposed in each chapter, allowing students to work as a
group and develop communication skills, in accordance with
recommendations from accreditation organizations and
potential employers in the computer industry. Small, essay-
type questions are also proposed to enable students to
acquire proficiency in technical writing and communication.

Web Materials Accompanying This Book
Available on the Jones & Bartlett Learning website
(www.jblearning.com):

Programming Activity framework code

Full example code from each chapter

Browser-based modules with visual step-by-step
demonstrations of code execution

Swing versions of Chapters 4 and 12.

A supplement on creating packages

Appendices
The appendices include the following:

Java reserved words and keywords

Operator precedence

Unicode character set

Representing negative numbers

Representing floating-point numbers

Answers to selected exercises

http://www.jblearning.com/

Instructor Resources
These materials are available to instructors on the Jones &
Bartlett Learning website (go.jblearning.com/Java5e), and
include

Programming activity solution code (for instructors
only)

Answers to many end-of-chapter exercises

Lecture slides in PowerPoint format for each chapter

Test banks for each chapter

Contacting the Authors
We have checked and rechecked the many technical details
in this text. Despite our best efforts, however, we realize that
some errors may have been missed. If you discover a
technical error in the text, please contact us at
JulieAustinAnderson@gmail.com or hjfranceschi@loyola.edu.
We will post any corrections on the text’s website:
go.jblearning.com/Java5e.

mailto:JulieAustinAnderson@gmail.com
mailto:hjfranceschi@loyola.edu
http://go.jblearning.com/Java5e

Turing’s Craft CodeLab Student
Registration Instructions

CodeLab is the web-based interactive programming exercise
service that accompanies this text. It is designed to reduce
attrition and raise the overall level of the class. Since 2002,
CodeLab has analyzed over twenty-two million exercise
submissions from more than 75,000 students.

CodeLab has over 300 short exercises, each focused on a
particular programming idea or language construct. The
student types in code and the system immediately judges its
correctness, offering hints when the submission is incorrect.
Through this process, the student gains mastery over the
semantics, syntax, and common usage of the language
elements.

For the Students
CodeLab offers a tree-based table of content navigation
system augmented by prev/next buttons that permit
sequential traversal. Exercises are organized within a
hierarchy of topics that match the textbook’s organization and
can be reconfigured as needed by the instructor. The student
interface offers three tabs for each exercise: a work-area tab
containing the instructions of the exercise and a text area for
typing in a submission; a results tab that indicates the
correctness of the student’s submission and provides an
analysis of the submission code in the event of an error; a
solutions tab which, by default, is invisible but may be made
available at the discretion of the instructor. The solutions tab
contains one or more solutions to the exercise; the results
tabs contains one or more of the following: correctness
indicator, ad hoc hints, marked-up submission indicating
possible errors, compiler messages, table of passed and
failed test cases. In addition, the usual online amenities of
preferences, account management, documentation, and
customer support options are provided.

A unique student access code can be found at the beginning
of this textbook. Length of student access is 52 weeks for this
version of the textbook.

Students can also purchase the access code online at
jblearning.turingscraft.com.

For the Instructors
CodeLab provides the preceding student interface and in
addition provides

a Course Manager that permits the instructor to
rearrange, rename, and/or omit topics and exercises.
It also allows instructors to assign deadlines, specify
dates when solutions can be seen by students, dates
past which student work will not be “counted,” and
dates prior to which the exercises will be invisible to
students.

a Grading Roster that presents a graphical
spreadsheet view of student work, where each row
corresponds to a student and each column to an
exercise. It is also possible to mail and/or download
rosters in CSV format.

an Exercise Creation Tool that permits faculty to
create their own exercises.

Custom CodeLab
CodeLab is customized to this textbook as follows:

1. The organization of the CodeLab matches the organization of the textbook.

2. For each chapter that covers an appropriate standard introductory

programming topic, the CodeLab offers approximately 50 CodeLab

exercises, taken from either the standard set of existing CodeLab exercises

or added to fill in any gaps in coverage.

3. Each chapter in the CodeLab implements 5 exercises taken from this text,

and, if necessary, the exercises are modified to meet CodeLab requirements.

Demonstration Site for CodeLab
A Jones & Bartlett Learning demonstration site is available
online at

jblearning.turingscraft.com
Visitors to this site will be directed to a landing page that
provides an overview of the product. By clicking on the
selected Jones & Bartlett Learning textbook cover, you will be
led to more detailed product description pages. In the detailed
product description pages there are further descriptions,
examples of or links to examples of specific examples of
custom CodeLab tie-ins with this textbook, and a link to a fully
functional demo version of the Custom CodeLab. The latter
offers full functionality and contains all of the exercise content
of the particular Custom CodeLab. To make use of this link,
instructors will need a unique Section Creation access code
provided by their Jones & Bartlett Learning Computer Science
Account Specialist at 1-800-832-0034, or online at
www.jblearning.com.

Using this CodeLab Section Creation Code permits instructors
to use the online tool to create their own unique CodeLab
sections based on the Custom CodeLab. This permits
instructors to have instructor accounts that enable access to
the Course Manager, roster, and exercise creation tools
described above.

Additonally Turing’s Craft provides online documentation and
support for both prospective adopters and actual faculty users
of this text. In creating sections for classroom adopting,
instructors will receive CodeLab Section Access Codes that
should be provided to their students—enabling their students

mailto:jblearning.turingscraft.com
http://www.jblearning.com/

to associate their accounts (i.e., join their instructor’s
CodeLab section).

System Requirements: CodeLab runs on recent versions of
most browsers (e.g. Internet Explorer, Firefox, Safari) on
Windows and MacOS and on many versions of Linux.
CodeLab does require the installation of the latest Flash
Reader, available from www.adobe.com. (Most systems come
with Flash pre-installed.) More details about CodeLab browser
compatibility can be found at:

www.turingscraft.com/browsers.html

http://www.adobe.com/
http://www.turingscraft.com/browsers.html

Acknowledgments
We would like to acknowledge the contributions of many
partners, colleagues, and family members to this book.

First and foremost, we would like to thank our publisher,
Jones & Bartlett Learning, especially Laura Pagluica, Product
Manager; Daniel Stone, Production Manager; and Rebecca
Sweeney and Mary Menzemer, Product Assistants. We also
want to thank the compositor, codeMantra; the proofreader,
Eileen Worthley; and Kristin Parker, who designed the cover.

Second, we extend our thanks to the reviewers: Zareh
Gorjian, Pasadena City College; Lee Nicholson, Alpharetta
High School; Jody Paul, Metropolitan State University of
Denver; Steven Kreutzer, Bloomfield College; Larry
Henderson, Wenatchee Valley College; Fred D’Angelo, Pima
Community College; Waleed Farag, Indiana University of
Pennsylvania; Jason Smith, University of Texas, Dallas;

Valerie Chau, Palomar College; Jeanann Boyce, Montgomery
College; Kevin Brunner, Graceland University; Patrick
Plunkett, Wheeling Jesuit University; Russel Bruhn, University
of Arkansas, Little Rock; Burdett E. Wilson, Macon Area
Career and Technical Education Center; Jonathan Sprague,
College of Lake County; Giuseppe Turini, Kettering University;
Nary Subramanian, University of Texas, Tyler; Jeffrey Kimball,
Southwest Baptist University; Zhiling Lan, Illinois Institute of
Technology; Peter L. Stanchev, Kettering University;
Jacquelyne Lewis, North Carolina Wesleyan College; Vicky
Hardin, Jefferson Community & Technical College; Jesse
Kidd, Motlow State Community College; Mark Meysenburg,
Doane College; Derrf Seitz, Georgia Military College; Ellen
Spertus, Mills College; Scott Reed, College of Lake County;
Peter Johnson, South Central College; and Sungbum Hong,
Jackson State University. We have taken your thoughtful
comments to heart and we think the book is better for them.

Julie Anderson would also like to acknowledge the
pedagogical insight of Richard Rasala and Viera Proulx of
Northeastern University. Thanks also to Jon Dornback, Garth
Gerstein, and our former colleagues Pat Smit and the late
Earl Gottsman.

I am extremely grateful for the help extended by
many family members: my father, Glenn Austin,
sons Brian and Jon Anderson, daughter-in-law
Silvia Eckert, grandson, Ben Anderson (for his
sound effects), sister Kathleen Austin, and
mother-in-law Virginia Anderson. And of course,
much gratitude goes to my loving husband, Tom,
for his support and encouragement.

—Julie Anderson

I also recognize the support of my family. In
particular, my brother, Paul, provided feedback
on our sample chapter and the movies, and my
wife, Kristin, gave her support and provided
advice.

—Hervé Franceschi

CHAPTER 1
Introduction to Programming and
the Java Language

CHAPTER CONTENTS
Introduction
1.1 Basic Computer Concepts

1.1.1 Hardware
1.1.2 Operating Systems
1.1.3 Application Software
1.1.4 Computer Networks and the Internet

1.2 Practice Activity: Displaying System Configuration
1.2.1 Displaying Windows Configuration Information
1.2.2 Displaying Mac OS Configuration Information

1.3 Data Representation
1.3.1 Binary Numbers
1.3.2 Using Hexadecimal Numbers to Represent Binary
Numbers
1.3.3 Representing Characters with the Unicode
Character Set

1.4 Programming Languages
1.4.1 High- and Low-Level Languages
1.4.2 An Introduction to Object-Oriented Programming
1.4.3 The Java Language

1.5 An Introduction to Programming
1.5.1 Programming Basics
1.5.2 Program Design with Pseudocode
1.5.3 Developing a Java Application
1.5.4 Programming Activity 1: Writing a First Java
Application
1.5.5 Making a JAR File

1.6 Chapter Summary
1.7 Exercises, Problems, and Projects

1.7.1 Multiple Choice Exercises

1.7.2 Converting Numbers
1.7.3 General Questions
1.7.4 Technical Writing
1.7.5 Group Project

Introduction
Computer applications touch almost every aspect of our lives.
They run automated teller machines, the grocery store’s
checkout register, the appointment calendar at your doctor’s
office, airport kiosks for flight check-in, a restaurant’s meal-
ordering system, and online auctions, just to name a few
applications. On your personal computer, you may run a word
processor, virus detection software, a spreadsheet, computer
games, and an image processing system.

Someone, usually a team of programmers, wrote those
applications. If you’re reading this text, you’re probably
curious about what’s involved in writing applications, and you
would like to write a few yourself. Perhaps you have an idea
for the world’s next great application or computer game.

In this text, we’ll cover the basics of writing applications.
Specifically, we’ll use the Java programming language. Keep
in mind, however, that becoming a good programmer requires
more than mastering the rules, or syntax, of a programming
language. You also must master basic programming
techniques. These are established methods for performing
common programming operations, such as calculating a total,
finding an average, or arranging a group of items in order.

You also must master good software engineering principles so
that you design code that is readable, easily maintained, and
reusable. By readable, we mean that someone else should be
able to read your program and figure out what it does and
how it does it. Writing readable code is especially important
for programmers who want to advance in their careers,
because it allows someone else to take over the maintenance

of your program while you move on to bigger and better
responsibilities. Ease of maintenance is also an important
aspect of programming, because the specifications for any
program are continually changing. How many programs can
you name that have had only one version? Not many. Well-
designed code allows you and others to incorporate prewritten
and pretested modules into your program, thus reducing the
time to develop a program and yielding code that is more
robust and has fewer bugs. One useful feature of the Java
programming language is the large supply of prewritten code
that you are free to use in your programs.

Programming is an exciting activity. It’s very satisfying to
decompose a complex task into computer instructions and
watch your program come alive. It can be frustrating,
however, when your program either doesn’t run at all or
produces the wrong output.

Writing correct programs is critical. Someone’s life or life
savings may depend on the correctness of your program.
Reusing code helps in developing correct programs, but you
must also master effective testing techniques to verify that the
output of your program is correct.

In this text, we’ll concentrate not only on the syntax of the
Java language, but also on basic programming techniques,
good software engineering principles, and effective testing
techniques.

Before you can write programs, however, it’s important to
understand the platform on which your program will run. A
platform refers to the computer hardware and the operating

system. Your program will use the hardware for inputting data,
for performing calculations, and for outputting results. The
operating system will start your program running and will
provide your program with essential resources, such as
memory, and services, such as reading and writing files.

1.1 Basic Computer Concepts

1.1.1 Hardware
As shown in Figure 1.1, a computer typically includes the
following components:

a CPU, or central processing unit, which executes
the instructions of a program

a memory unit, which holds the instructions and
data of a program while it is executing

a hard disk, used to store programs and data so
that they can be loaded into memory and accessed
by the CPU

a keyboard used for input of data

a monitor, used to display output from a program

an Ethernet port and wireless networking
transceiver for connecting to the Internet or a Local
Area Network (LAN)

other components (not shown) such as a graphics
card and a DVD drive

For example, if you were to go to a computer store in
search of the latest personal computer, you might be shown
a computer with this set of specifications:

a 3.4-GHz Intel Core i3-3240 processor

a touch screen

3 MB of cache memory

8 GB of RAM (Random Access Memory)

a 1 TB (Terabyte) hard disk

Figure 1.1
A Typical Design of a Personal Computer

In these specifications, the Intel Core i3-3240 is the CPU.
Other processors used as CPUs in personal computers and
servers include the AMD Athlon, the Oracle SPARC, and
the IBM POWER processor.

CPUs consist of an Arithmetic Logic Unit (ALU) [also called
an Integer Unit (IU)], which performs basic integer
arithmetic and logical operations; a Floating Point Unit
(FPU), which performs floating-point arithmetic; a set of
hardware registers for holding data and memory addresses;
and other supporting hardware, including a control unit to
sequence the instructions. Each CPU comes with its own
set of instructions, which are the operations that it can

perform. The instructions typically perform arithmetic and
logic operations, move data from one location to another,
and change the flow of the program (that is, determine
which instruction is to be executed next).

A program consists of many instructions. The first step in
executing a program is loading it into memory. Each
instruction in the program is executed using a Fetch-
Decode-Execute Cycle. The Program Counter keeps
track of the next instruction to be fetched. The CPU fetches
the next instruction from memory and places it into the
Instruction Register. The instruction is decoded (is the
instruction a move, load, store, etc.?). Then, the instruction
is executed. This Fetch-Decode-Execute Cycle repeats until
the program ends.

The speed of a CPU is related to its clock cycle, typically
rated in GHz (gigahertz); at the time of this edition, a high-
end CPU speed would be rated at 3.4 GHz. The clock
speed, measured in clock cycles per second, determines
how fast a processor can perform operations such as
fetching, decoding, and executing instructions. A CPU rated
at 2.5 GHz executes 2.5 billion clock cycles a second.
Current RISC processors feature pipelining, which allows
the CPU to process several instructions at once, so that
while one instruction is executing, the processor can
decode the next instruction and fetch the next instruction
after that. This greatly improves performance of
applications.

Memory or storage devices, such as L2 cache, memory, or
hard disks, are typically rated in terms of their capacity,
expressed in bytes. A byte is eight binary digits, or bits. A
single bit’s value is 0 or 1. Depending on the type of
memory or storage device, the capacity will be stated in
kilobytes, megabytes, gigabytes, or even terabytes. The
sizes of these units are shown in Table 1.1.

TABLE 1.1 Memory Units and Their Sizes
Memory Unit Size
KB, or Kbytes, or
kilobytes

About 1,000 bytes (exactly 2 or 1,024 bytes)

MB, or Mbytes, or
megabytes

About 1 million bytes (exactly 2 or 1,048,576
bytes)

GB, or Gbytes, or
gigabytes

About 1 billion bytes (exactly 2 or
1,073,741,824 bytes)

TB, or Tbytes, or
terabytes

About 1 trillion bytes (exactly 2 or 1.09951 ×
10 bytes)

For the CPU to execute at its rated speed, however,
instructions and data must be available to the CPU at that
speed as well. Instructions and data come directly from the
L1 cache, which is memory directly located on the CPU
chip. Since the L1 cache is located on the CPU chip, it runs
at the same speed as the CPU. However, the L1 cache,
which can be several Mbytes, is typically much smaller than
main memory, and eventually the CPU will need to process
more instructions and data than can be held in the L1 cache
at one time.

At that point, the CPU typically brings data from what is
called the L2 cache, which is located on separate memory
chips connected to the CPU. A typical speed for the L2

10

20

30

40

12

cache would be a few nanoseconds (billionths of a second)
access time, and this will considerably slow down the rate at
which the CPU can execute instructions. L2 cache size
today is typically 3 to 8 Mbytes, and again, the CPU will
eventually need more space for instructions and data than
the L2 cache can hold at one time.

At that point, the CPU will bring data and instructions from
main memory, also located outside, but connected to, the
CPU chip. This will slow down the CPU even more,
because main memory typically has an access time of
about 20 to 50 nanoseconds. Main memory, though, is
significantly larger in size than the L1 and L2 caches,
typically anywhere between 3 and 8 Gbytes. When the CPU
runs out of space again, it will have to get its data from the
hard disk, which is typically 1 Tbyte or more, but with an
access time in the milliseconds (thousandths of a second)
range.

As you can see from these numbers, a considerable
amount of speed is lost when the CPU goes from main
memory to disk, which is why having sufficient memory is
very important for the overall performance of applications.

Another factor that should be taken into consideration is
cost per kilobyte. Typically the cost per kilobyte decreases
significantly stepping down from L1 cache to hard disk, so
high performance is often traded for low price.

Main memory (also called RAM) uses DRAM, or Dynamic
Random Access Memory technology, which maintains data

only when power is applied to the memory and needs to be
refreshed regularly in order to retain data. The L1 and L2
caches use SRAM, or Static Random Access Memory
technology, which also needs power but does not need to
be refreshed in order to retain data. Memory capacities are
typically stated in powers of 2. For instance, 256 Kbytes of
memory is 2 bytes, or 262,144 bytes.

Memory chips contain cells, each cell containing a bit, which
can store either a 0 or a 1. Cells can be accessed
individually or as a group of typically 4, 8, or 16 cells. For
instance, a 32-Kbit RAM chip organized as 8K × 4 is
composed of exactly 2 , or 8,192 units, each unit
containing four cells. This RAM chip will have four data
output pins (or lines) and 13 access pins (or lines), enabling
access to all 8,192 units because each access pin can have
a value of 0 or 1. Table 1.2 compares the features of various
memory types.

TABLE 1.2 A Comparison of Memory Types
Device Location Type Speed Capacity

(MB)
Cost/KB

L1
cache

On-chip SRAM Very fast Very small Very high

L2
cache

Off-chip SRAM Fast Small High

Memory Off-chip DRAM Moderate Moderate Moderate

Hard
disk

Separate Disk
media

Slow Large Small

18

13

1.1.2 Operating Systems
An operating system (OS) is a software program that

controls the peripheral devices (for instance, it
manages the file system)

supports multitasking, by scheduling multiple
programs or tasks to execute during the same
interval

allocates memory to each program, so that there is
no conflict among the memory of any programs
running at the same time

prevents the user from damaging the system. For
instance, it prevents user programs from overwriting
the operating system or another program’s memory

The operating system loads, or boots, when the computer
system is turned on and is intended to run as long as the
computer is running.

Examples of operating systems are macOS, Microsoft
Windows, Linux, and iOS and Android for mobile devices.

1.1.3 Application Software
Application software consists of the programs written to
perform specific tasks. These programs are run by the
operating system, or as is typically said, they are run “on top
of” the operating system. Examples of applications are word
processors, such as Microsoft Word or Apache OpenOffice;
spreadsheets, such as Microsoft Excel; database
management systems, such as Oracle or Microsoft SQL
Server; Internet browsers, such as Mozilla Firefox, Google
Chrome, or Microsoft Edge; and most of the programs you
will write during your study of Computer Science.

1.1.4 Computer Networks and the
Internet
Computer Networks
Computer networks connect two or more computers. A
common network used by many corporations and
universities is a LAN, or Local Area Network. A typical LAN
connects several computers that are geographically close to
one another, often in the same building, and allows them to
share resources, such as a printer, a database, or a file
system. In a LAN, most user computers are called clients,
and one or more computers act as servers. The server
controls access to resources on the network and can supply
services to the clients, such as answering database
requests, storing and serving files, or managing email. The
computers on the network can exchange data through
physical cables or through a wireless network.

The Internet
The Internet is a network of networks, connecting millions of
computers around the world. The Internet evolved from
ARPANET, a 1969 U.S. military research project whose goal
was to design a method for computers to communicate.
Most computers on the Internet are clients, typically
requesting resources, such as webpages, through an
Internet browser. These resources are provided by web
servers, which store webpages and respond to these
requests.

Every machine on the Internet has a unique ID called its IP
address (IP stands for Internet Protocol). Special computers
called routers find a path through the Internet from one
computer to another using these IP addresses. A computer
can have a static IP address, which is dedicated to that
machine, or a dynamic IP address, which is assigned to the
computer when it connects to the Internet. An IP address is
made up of four octets, whose values in decimal notation
are between 0 and 255. For instance, 58.203.151.103 could
represent such an IP address. In binary notation, this IP
address is 111010.11001011.10010111.1100111. Later in
this chapter, we will learn how to convert a decimal number,
such as 103, to its binary equivalent, 1100111.

Most people are familiar with URL (Uniform Resource
Locator) addresses that look like
http://www.oracle.com/technetwork/java/index.html. A URL
is actually an Internet domain name as well as the path on
that domain to a specific web page. In this URL, the domain
name is www.oracle.com. The page requested is

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/

index.html, which is located in the java folder under the
technetwork folder.

Domain name resolution servers, which implement the
Domain Name System (DNS), convert domain names to IP
addresses, so that Internet users don’t need to know the IP
addresses of websites they want to visit. The World Wide
Web Consortium (W3C), an international group developing
standards for Internet access, prefers the term Uniform
Resource Identifier (URI) rather than URL, because URI
covers future Internet addressing schemes.

Skill Practice
with these end-of-chapter questions

1.7.1 Multiple Choice Exercises

Questions 1, 2, 3, 4

1.7.3 General Questions

Questions 21, 22, 23

1.7.4 Technical Writing

Questions 31, 32, 33

1.2 Practice Activity: Displaying System
Configuration
We have explored hardware and operating systems in
general. Now, let’s discover some information about the
hardware and operating system on your computer. Depending
on whether you’re using a Windows operating system or a
Mac OS operating system, choose the appropriate directions
that follow to display the operating system’s name, the CPU
type, and how much memory the computer has.

1.2.1 Displaying Windows Configuration
Information
To display system configuration information on a computer
running Windows 10, run msinfo32.exe from the command
line. From the Start menu, type cmd to start the Command
Prompt program and then type msinfo32 into the Command
Prompt window. You will get a display similar to the one in
Figure 1.2, although the information displayed varies,
depending on your hardware and the version of Windows you
are running.

Figure 1.2
Windows System Information
Screen shots reprinted with permission from Microsoft.

Item Value

OS Name Microsoft Windows 10 Enterprise

Version 10.0.14393 Build 14393

Other OS Description Not Available

OS Manufacturer Microsoft Corporation

System Name PC07WK39

System Manufacturer LENOVO

System Model 20FAS3QE00

System Type x64-based PC

System SKU LENOVO_MT_20FA_BU_Think_FM_ThinkPad

T460s

Processor Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz,
2808

Mhz, 2 Core(s), 4 Logical Processor(s)

BIOS Version/Date LENOVO N1CET47W (1.15), 8/8/2016

SMBIOS Version 2.8

Embedded Controller
Version

1.09

BIOS Mode Legacy

BaseBoard Manufacturer LENOVO

BaseBoard Model Not Available

BaseBoard Name Base Board

Platform Role Mobile

Secure Boot State Unsupported

PCR7 Configuration Binding Not Possible

Windows Directory C:\windows

System Directory C:\windows\system32

Boot Device \Device\HarddiskVolume1

Locale United States

Hardware Abstraction Layer Version = “10.0.14393.206”

User Name UNIVERSITY\USER

Time Zone Eastern Daylight Time

Installed Physical Memory
(RAM)

12.0 GB

Total Physical Memory 11.4 GB

Available Physical Memory 8.41 GB

Item Value
Total Virtual Memory 13.8 GB

Available Virtual Memory 10.2 GB

Page File Space 2.38 GB

Page File C:\pagefile.sys

Device Guard Virtualization
based security

Not enabled

Hyper-V - VM Monitor Mode
Extensions

Yes

Hyper-V - Second Level
Address Translation

Yes

Extensions

Hyper-V - Virtualization
Enabled in Firmware

Yes

Hyper-V - Data Execution
Protection

Yes

As you can see in Figure 1.2, this computer is running Intel™
Core™ i7-6600U CPU processor running at 2.6 GHz, and the
computer has 12 Gbytes of memory, 8.41 Gbytes of which is
not being used at the time of the display.

1.2.2 Displaying Mac OS Configuration
Information
To display system information on a Mac OS computer, click on
the apple icon on the top left of the screen and select “About
This Mac.” You will see something similar to the display in
Figure 1.3, which displays the version of the MAC OS
operating system that is running on the computer.

Figure 1.3
Mac Operating System Information
Screen shots reprinted with permission from Apple Inc.

As you can see, this iMac is running macOS High Sierra
version 10.13.1. The processor is an Intel Core i5 running at
3.2 GHz and the iMac has 16 Gbytes of memory. Your
information may be different from that shown in the figure,
depending on your hardware and operating system version.

DISCUSSION QUESTIONS
1. Compare the system information on several computers. Is it the

same or different from computer to computer? Explain why the
information is the same or different.

2. In the sample display for Windows 10, the computer has 12 Gbytes
of memory, but only 8.41 Gbytes of memory is available. Why do
you think some memory is not available?

3. Compare your computer to the ones on the previous pages shown
here. Which do you think would have better performance? Explain
your answer.

1.3 Data Representation

1.3.1 Binary Numbers
As mentioned earlier, a CPU understands only binary numbers, whose
digits consist of either 0 or 1. All data is stored in a computer’s memory as
binary digits. A bit holds one binary digit. A byte holds eight binary digits.

Binary numbers are expressed in the base 2 system, because there are
only 2 values in that system, 0 and 1. By contrast, most people are used
to the decimal, or base 10, system, which uses the values 0 through 9.

There are other number systems, such as the octal, or base 8, system,
which uses the digits from 0 to 7, and the hexadecimal, or base 16,
system, which uses the digits 0 to 9 and the letters A to F.

As we know it in the decimal system, the number 359 is composed of the
following three digits:

3, representing the hundreds, or 10

5, representing the tens, or 10

9, representing the ones, or 10

Therefore, we can write 359 as

359 = 3*10 + 5*10 + 9*10

Thus, the decimal number 359 is written as a linear combination of
powers of 10 with coefficients from the base 10 alphabet, that is, the digits
from 0 to 9. Similarly, the binary number 11011 is written as a linear
combination of powers of 2 with coefficients from the base 2 alphabet, that
is, the digits 0 and 1.

For example, the binary number 11011 can be written as

11011 = 1*2 + 1*2 + 0*2 + 1*2 + 1*2

Table 1.3 lists the binary equivalents for the decimal numbers 0 through 8,
while Table 1.4 lists the decimal equivalents of the first 15 powers of 2.

2

1

0

2 1 0

4 3 2 1 0

TABLE 1.3 Binary Equivalents of Decimal Numbers 0
Through 8

Decimal Binary
0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

TABLE 1.4 Powers of 2 and Their Decimal Equivalents
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

16,384 8,192 4,096 2,048 1,024 512 256 128 64 32 16 8 4 2 1

Note that in Table 1.3, as we count in increments of 1, the last digit
alternates between 0 and 1. In fact, we can see that for even numbers,
the last digit is always 0 and for odd numbers, the last digit is always 1.

Because computers store numbers as binary, and people recognize
numbers as decimal values, conversion between the decimal and binary
number systems often takes place inside a computer.

Let’s try a few conversions. To convert a binary number to a decimal
number, multiply each digit in the binary number by 2 , counting
the rightmost position as position 1 and moving left through the binary
number. Then add the products together.

Using this method, let’s calculate the equivalent of the binary number
11010 in our decimal system.

11010 = 1*2 + 1*2 + 0*2 + 1*2 + 0*2

 = 16 + 8 + 0 + 2 + 0

 = 26

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

position − 1

4 3 2 1 0

Now let’s examine how to convert a decimal number to a binary number.
Let’s convert the decimal number 359 into its binary number equivalent.
As we can see from the way we rewrote 11011 , a binary number can be
written as a sum of powers of 2 with coefficients 0 and 1.

The strategy to decompose a decimal number into a sum of powers of 2 is
simple: first find the largest power of 2 that is smaller than or equal to the
decimal number, subtract that number from the decimal number, then do
the same with the remainder, and so on, until you reach 0.

The largest power of 2 that is smaller than 359 is 256, or 2 (the next
larger power of 2 would be 512, which is larger than 359). Subtracting 256
from 359 gives us 103 (359 − 256 = 103), so we now have

359 = 2 *1 + 103

Now we apply the same procedure to 103. The largest power of 2 that is
smaller than 103 is 64, or 2 . That means that there is no factor for 2 , so
that digit’s value is 0. Subtracting 64 from 103 gives us 39.

Now we have

359 = 2 *1 + 2 *0 + 2 *1 + 39

Repeating the procedure for 39, we find that the largest power of 2
smaller than 39 is 32 or 2 . Subtracting 32 from 39 gives us 7.

So we now have

359 = 2 *1 + 2 *0 + 2 *1 + 2 *1 + 7

Repeating the procedure for 7, the largest power of 2 smaller than 7 is 2 ,
or 4. That means that there are no factors for 2 or 2 , so the value for
each of those digits is 0. Subtracting 4 from 7 gives us 3, so we have

359 = 2 *1 + 2 *0 + 2 *1 + 2 *1 + 2 *0 + 2 *0 + 2 *1 + 3

8

8

6 7

8 7 6

5

8 7 6 5

2

4 3

8 7 6 5 4 3 2

Repeating the procedure for 3, the largest power of 2 smaller than 3 is 2,
or 2 , and we have:

359 = 2 *1 + 2 *0 + 2 *1 + 2 *1 + 2 *0 + 2 *0 + 2 *1 + 2 *1 + 1

1 is a power of 2; it is 2 , so we finally have

359 = 2 *1 + 2 *0 + 2 *1 + 2 *1 + 2 *0 + 2 *0 + 2 *1 + 2 *1 + 2 *1

Removing the power of 2 multipliers, 359 can be represented in the binary
system as

359 = 2 *1 + 2 *0 + 2 *1 + 2 *1 + 2 *0 + 2 *0 + 2 *1 + 2 *1 + 2 *1

 = 1 0 1 1 0 0 1 1 1

or

1 0110 0111

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see a step-by-step demonstration of converting between
decimal and binary numbers, look for the movie within the online
resources. Click on the link to start the movie.

In a computer program, we will use both positive and negative numbers.
Appendix D explains how negative numbers, such as −34, are
represented in the binary system. In a computer program, we also use

1

8 7 6 5 4 3 2 1

0

8 7 6 5 4 3 2 1 0

8 7 6 5 4 3 2 1 0

floating-point numbers, such as 3.75. Appendix E explains how floating-
point numbers are represented using the binary system.

1.3.2 Using Hexadecimal Numbers to Represent
Binary Numbers
As you can see, binary numbers can become rather long. With only two
possible values, 0 and 1, it takes 16 binary digits to represent the decimal
value +32,768. For that reason, the hexadecimal, or base 16, system is
often used as a shorthand representation of binary numbers. The
hexadecimal system uses 16 digits: 0 to 9 and A to F. The letters A to F
represent the values 10, 11, 12, 13, 14, and 15.

The maximum value that can be represented in four binary digits is 2 − 1,
or 15. The maximum value of a hexadecimal digit is also 15, which is
represented by the letter F. So you can reduce the size of a binary number
by using hexadecimal digits to represent each group of four binary digits.

Table 1.5 displays the hexadecimal digits along with their binary
equivalents.

TABLE 1.5 Hexadecimal Digits and Equivalent Binary Values
Hex Digit Binary Value
0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

To represent the following binary number in hexadecimal, you simply
substitute the appropriate hex digit for each set of four binary digits.

4

0001 1010 1111 1001 1011 0011 1011 1110

 1 A F 9 B 3 B E

Here’s an interesting sequence of hexadecimal numbers. The first 32 bits
of every Java applet are:

1100 1010 1111 1110 1011 1010 1011 1110

Translated into hexadecimal, that binary number becomes:

CAFE BABE

1.3.3 Representing Characters with the Unicode
Character Set
Java represents characters using the Unicode Worldwide Character
Standard, or simply Unicode. Each Unicode character is represented as
16 bits, or two bytes. This means that the Unicode character set can
encode 65,536 characters.

The Unicode character set was developed by the Unicode Consortium,
which consists of computer manufacturers, software vendors, the
governments of several nations, and others. The consortium’s goal was to
support an international character set, including the printable characters
on the standard QWERTY keyboard, as well as international characters
such as é or λ.

Many programming languages store characters using the ASCII
(American Standard Code for Information Interchange) character set,
which uses 7 bits to encode each character, and thus, can represent only
128 characters. For compatibility with the ASCII character set, the first
128 characters in the Unicode character set are the same as the ASCII
character set.

Table 1.6 shows a few examples of Unicode characters and their decimal
equivalents.

TABLE 1.6 Selected Unicode Characters and Their Decimal
Equivalents

Unicode Character Decimal Value Hex Value
NUL, the null character (a nonprintable character) 0 0000

* 42 002A

1 49 0031

2 50 0032

A 65 0041

B 66 0042

a 97 0061

b 98 0062

} 125 007D

delete (a nonprintable character) 127 007F

For more information on the Unicode character set, see Appendix C or
visit the Unicode Consortium’s website at http://www.Unicode.org.

Skill Practice
with these end-of-chapter questions

1.7.1 Multiple Choice Exercises

Questions 5, 6, 7, 8

1.7.2 Converting Numbers

Questions 15, 16, 17, 18, 19, 20

1.7.3 General Questions

Questions 24, 25, 26

http://www.unicode.org/

1.4 Programming Languages

1.4.1 High- and Low-Level
Languages
Programming languages can be categorized into
three types:

machine language

assembly language

high-level language

In the early days of computing, programmers often
used machine language or assembly language.
Machine language uses binary codes, or strings of
0s and 1s, to execute the instruction set of the CPU
and to refer to memory addresses. This method of
programming is extremely challenging and time
consuming. Also, the code written in machine
language is not portable to other computer
architectures because each CPU has its own set of
instructions. Machine language’s early popularity can
be attributed largely to the fact that programmers
had no other choices. However, programmers rarely
use machine language today.

Assembly languages are one step above machine
language, using symbolic names for memory
addresses and mnemonics for processor instructions
—for example: BEQ (branch if equal), SW (store), or
LW (load). An Assembler program converts the code

to machine language before it is executed. Like
machine language, assembly languages are also
CPU-dependent and are not portable among
computers with different processors (for instance,
between Intel and SPARC). Assembly language is
easier to write than machine language but still
requires a significant effort and, thus, is usually used
only when the program requires features, such as
direct hardware access, that are not supported by a
high-level language.

High-level languages, such as Java, C++, Swift,
PHP, and Python, are closer to the English language
than they are to machine language, making them a
lot easier to use for software development and more
portable among CPU architectures. For this reason,
programmers have embraced high-level languages
for more and more applications.

Characteristics of high-level languages, such as
Java, are

The languages are highly symbolic.
Programmers write instructions using
keywords and special characters and use
symbolic names for data.

The languages are somewhat portable
(some more portable than others) among

different CPUs.

Some high-level programming languages,
such as C++, Java, and Python, can be used
for general-purpose applications, and some
high-level programming languages can be
used for specialized applications, such as
Swift for iPhone development and PHP for
Internet applications.

High-level languages are compiled, interpreted, or a
combination of both. A program written in a compiled
language, such as C++, is converted by a compiler
into machine code, then the machine code is
executed.

By contrast, a program written using an interpreted
language, such as Perl, is read and converted to
machine code, line by line, at execution time.
Typically, a program written in an interpreted
language will run more slowly than its equivalent
written in a compiled language.

Java uses a combination of a compiler and an
interpreter. A Java program is first compiled into
processor-independent byte codes, then the byte
code file is interpreted at run time by software called
the Java Virtual Machine (JVM).

1.4.2 An Introduction to Object-
Oriented Programming
Initial high-level languages, such as Fortran or C,
were procedural. Typically, programmers wrote task-
specific code in separate procedures, or functions,
and invoked these procedures from other sections of
the program in order to perform various tasks. The
program’s data was generally shared among the
procedures.

In the mid-1970s, the first object-oriented
programming language, Smalltalk, was introduced,
enabling programmers to write code with a different
approach. Whereas procedures or functions dealt
mainly with basic data types such as integers, real
numbers, or single characters, Smalltalk provided
the programmer with a new tool: classes and objects
of those classes.

A class enables the programmer to encapsulate data
and the functions to manipulate that data into one
package. A class essentially defines a template, or
model, from which objects are created. Creating an
object is called instantiation. Thus, objects are
created—instantiated—according to the design of
the class.

A class could represent something in real life, such
as a person. The class could have various attributes

such as, in the example of a “person” class, a first
name, a last name, and an age. The class would
also provide code, called methods, that allow the
creator of the object to set and retrieve the values of
the attributes.

One big advantage to object-oriented programming
is that well-written classes can be reused in new
programs, thereby reducing future development time.

Smalltalk was somewhat successful, but had a major
deficiency: its syntax was unlike any syntax already
known by most programmers. Most programmers
who knew the procedural C programming language
were attracted by the object-oriented features of
Smalltalk but were reluctant to use it because its
syntax was so different from C’s syntax. C++ added
object-oriented features to C, but also added
complexity.

Meanwhile, the Internet was growing by leaps and
bounds and gaining popularity daily. Web developers
used HTML to develop webpages and soon felt the
need to incorporate programming features not only
on the server side, but also directly on the client side.
Fortunately, Java appeared on the scene.

1.4.3 The Java Language
On May 23, 1995, Sun Microsystems introduced
Java, originally named Oak, as a free, object-
oriented language targeted at embedded
applications for consumer devices. A Java Virtual
Machine was incorporated immediately into the
Netscape Navigator Internet browser, and as the
Internet grew, small Java programs, known as
applets, began to appear on webpages in increasing
numbers. Java syntax is basically identical (with
some minor exceptions) to that of C++, and soon
programmers all over the world started to realize the
benefits of using Java. Those benefits include

syntax identical to that of C++, except that
Java eliminates some of C++’s more
complex features

object orientation

Internet-related features, such as servlets,
which are run by the web server

an extensive library of classes that can be
reused readily, including classes for
providing a Graphical User Interface and
Java Database Connectivity (JDBC) for
communicating with a database

portability among every platform that
supports a Java Virtual Machine

built-in networking

open source availability of the Java
Development Kit

As we mentioned earlier, a Java program is first
compiled into processor-independent byte codes,
then the byte codes are interpreted at run time by the
Java Virtual Machine (JVM). As its name implies, the
JVM simulates a virtual processor with its own
instruction set, registers, and instruction pointer.
Thus, to run a Java program, we only need a JVM.
Fortunately, JVMs are available on every major
computing platform.

Because Java programs are interpreted at run time,
they typically run more slowly than their C++
counterparts. However, many platforms provide Java
compilers that convert source code directly to
machine code. This results in greater execution
speed, but with an accompanying loss of portability.
Just-in-Time (JIT) compilers are also available.
These JITs compile code at run time so that
subsequent execution of the same code runs much
faster.

Java programs can be written as servlets, Android
apps, or applications.

Java servlets are invoked by the web server and run
on the server, without being downloaded to the
client. Typically, servlets dynamically generate web
content by reading and writing to a database using
JDBC (Java Database Connectivity).

The Android Open Source project has chosen Java
to be the language for developing apps for Android
devices, such as cell phones, tablets, and smart
TVs.

Java applications run standalone on a client
computer. In this text, we will write Java applications.

Oracle Corporation, which acquired Sun
Microsystems in January 2010, provides a valuable
Java website (www.oracle.com/technetwork/java),
which has information on using the prewritten
classes, a tutorial on Java, and many more
resources for the Java programmer. We will refer you
to that site often in this text.

http://www.oracle.com/technetwork/java

1.5 An Introduction to Programming

1.5.1 Programming Basics
In many ways, programming is like solving a puzzle. We have
a task to perform and we know the operations that a computer
can perform (input, calculations, comparisons, rearranging of
items, and output). As programmers, our job is to decompose
a task into individual, ordered steps of inputting, calculating,
comparing, rearranging, and outputting.

For example, suppose our task is to find the sum of two
numbers. First, our program needs to read (input) the
numbers into the computer. Next, our program needs to add
the two numbers together (calculate). Finally, our program
needs to write (output) the sum.

Notice that this program consists of steps, called
instructions, which are performed in order (“First,” “Next,”
“Finally”). Performing operations in order, one after another, is
called sequential processing.

The order in which instructions are executed by the computer
is critical in programming. You can’t calculate the sum of two
numbers before you have read the two numbers, and you
can’t output a sum before you have calculated it.
Programming, therefore, requires the programmer to specify
the ordering of instructions, which is called the flow of
control of the program. There are four different ways that the
flow of control can progress through a program: sequential
execution, method call, selection, and looping. We’ve just
seen sequential execution, and we’ll discuss the other types
of flow of control in the next section.

Because getting the flow of control correct is essential to
getting a program to produce correct output, programmers
use a tool called pseudocode (pronounced sue dough code)
to help them design the flow of control before writing the code.

1.5.2 Program Design with Pseudocode
Pseudocode, from pseudo, which means “appearing like,” is a
method for expressing a program’s order of instructions in the
English language, rather than a programming language. In
this way, the programmer can concentrate on designing a
program without also being bogged down in the syntax of the
particular programming language.

The pseudocode for calculating the sum of two numbers
would look like Example 1.1.

EXAMPLE 1.1 Pseudocode for Summing
Two Numbers
read first number

read second number

set total to (first number + second number)

output total

Fortunately, the rules for writing pseudocode are not rigid.
Essentially, you can use any wording that works for you.

Let’s look at another example. Suppose our program needs to
calculate the square root of a number. The instructions for
calculating a square root are rather complex; fortunately, Java
provides prewritten code that computes the square root of a
number. The prewritten code is called a method, and our
program can execute that code by calling the method. As
part of the method call, we tell the method which number’s
square root we want to calculate. This is called passing an
argument to the method. When the method finishes
executing its instructions, control is passed back to our

program just after the method call and our program can use
the square root of the number calculated by the method. This
is called returning a value. Another way of looking at method
calls is to consider what happens when we’re reading a book
and find a word we don’t understand. We mark our place in
the book and look up the word in a dictionary. When we’re
finished looking up the word, we go back to our place in the
book and continue reading.

Example 1.2 shows the pseudocode for calculating the square
root of an integer.

EXAMPLE 1.2 Using a Method Call to
Calculate a Square Root
read a number

call the square root method, passing the number and receiving

the square root

output the square root of the number

The order of operations is still input, calculate, and output, but
we’re calling a method to perform the calculation for us.

Now suppose our task is to determine whether a number is
positive or negative. First, our program should input the
number into the computer. Next, we need to determine
whether the number is positive or negative. We know that
numbers greater than or equal to 0 are positive and numbers
less than 0 are negative, so our program should compare the
number to 0. Finally, our program should write a message
indicating whether the number is positive or negative.

Like Examples 1.1 and 1.2, the operations are input,
calculate, and output, in that order. However, depending on
whether the number is positive or negative, our program
should write a different message. If the number is greater than
or equal to 0, the program should write a message that the
number is positive, but if the number is less than 0, the
program should write a message that the number is negative.
Code used to handle this situation is called selection; the
program selects which code to execute based on the value of
the data.

The pseudocode for this program could be written as that
shown in Example 1.3.

EXAMPLE 1.3 Using Selection
read a number

if the number is greater than or equal to 0

 write "Number is positive."

else

 write "Number is negative."

Notice the indentation for the code that will be selected based
on the comparison of the number with 0. Programmers use
indentation to make it easier to see the flow of control of the
program.

Now let’s get a little more complicated. Suppose our program
needs to find the sum of a group of numbers. This is called
accumulating. To accomplish this, we can take the same
approach as if we were adding a group of numbers using a
calculator. We start with a total of 0 and add each number,

one at a time, to the running total. When we have no more
numbers to add, the running total is the total of all the
numbers.

Translating this into pseudocode, we get the code shown in
Example 1.4.

EXAMPLE 1.4 Accumulating a Total
set total to 0

read a number

while there was a number to read, repeat next two

instructions

 add number to total

 read the next number

write total

The indented code will be repeated for each number read until
there are no more numbers. This repeated execution of the
same code is called looping, or iteration, and is used
extensively in programming whenever the same processing
needs to be performed on each item in a set.

Accumulating a total and determining whether a number is
positive or negative are just two of many commonly performed
operations. In programming, we will often perform tasks for
which there are standard methods of processing, called
algorithms. For example, the algorithm for accumulation is to
set a total to 0, use looping to add each item to the total, then
output the total. More generally, we can think of an algorithm
as a strategy to solve a problem. Earlier in the chapter, we

used an algorithm to convert a decimal number to its binary
representation.

Other common programming tasks are counting items,
calculating an average, sorting items into order, and finding
the minimum and maximum values. In this text, we will learn
the standard algorithms for performing these common
operations. Once we learn these algorithms, our programming
job will become easier. When we recognize that a program
requires any of these tasks, we can simply plug in the
appropriate algorithm with some minor modifications.

Programming, in large part, is simply reducing a complex task
to a set of subtasks that can be implemented by combining
standard algorithms that use sequential processing, method
calls, selection, and looping.

SOFTWARE ENGINEERING TIP
Looking for patterns will help you determine the appropriate
algorithms for your programs.

The most difficult part of programming, however, is
recognizing which algorithms to apply to the problem at hand.
This requires analytical skills and the ability to see patterns.
Throughout this text, we will point out common patterns
wherever possible.

1.5.3 Developing a Java Application
Writing a Java application consists of several steps: writing
the code, compiling the code, and executing the application.
Java source code is stored in a text file with the extension
.java. Compiling the code creates one or more .class files,
which contain processor-independent byte codes. The Java
Virtual Machine (JVM) translates the byte codes into machine-
level instructions for the processor on which the Java
application is running. Thus, if a Java application is running on
an Intel i7 processor, the JVM translates the byte codes into
the i7’s instruction set.

Oracle provides a Java SE Development Toolkit (JDK) on its
website (www.oracle.com/technetwork/java), which is
downloadable free of charge. The JDK contains a compiler,
JVM, and jshell, which is a tool for immediate execution of
Java code. In addition, the JDK contains a broad range of
prewritten Java classes that programmers can use in their
Java applications.

If you are downloading and installing Java yourself, be sure to
follow the directions on the Oracle website, including the
directions for setting the path for javac, the Java compiler. You
need to set the path correctly so that you can run the Java
compiler from any folder on your computer.

To develop an application using the JDK, write the source
code using any text editor, such as Notepad on Windows,
TextEdit on Macs, or the vi editor on Linux. To compile the
code, invoke the compiler from the command line:

http://www.oracle.com/technetwork/java

javac ClassName.java

where ClassName.java is the name of the source file.

If our program, written in the file ClassName.java, compiles
correctly, a new file, ClassName.class, will be created in our
current directory.

To run the application, we invoke the JVM from the command
line:

java ClassName

Typically, programmers use an Integrated Development
Environment (IDE) to develop applications rather than
invoking the compiler and JVM from the command line. An
IDE consists of a program editor, a compiler, and a run-time
environment, integrated via a Graphical User Interface. The
advantage to using an IDE is that errors in the Java code that
are found by the compiler or the JVM can be linked directly to
the program editor at the line in the source file that caused the
error. Additionally, the Graphical User Interface enables the
programmer to switch among the editor, compiler, and
execution of the program without launching separate
applications.

Some of the many available IDEs include Eclipse from the
Eclipse Foundation, Inc.; JGRASP, developed at Auburn
University; NetBeans, downloadable from Oracle; and
TextPad from Helios Software Solutions. Some IDEs are
freely available, while others require a software license fee.

Skill Practice
with these end-of-chapter questions

1.7.1 Multiple Choice Exercises

Questions 9, 10, 11, 12, 13, 14

1.7.3 General Questions

Questions 27, 28, 29, 30

1.7.4 Technical Writing

Question 34

1.5.4 Programming Activity 1: Writing a
First Java Application
Let’s create our first Java program. This program prints the
message, “Programming is not a spectator sport!”

Start by launching your IDE and open a new editor window.
This is where you will write the code for the program.

Before you type any code, however, let’s name the document.
You do this by saving the document as FirstProgram.java. Be
sure to capitalize the F and the P and keep the other letters
lowercase. Java is case-sensitive, so Java considers
firstprogram.java or even Firstprogram.java to be a different
name. Also, note that there is no space between First and
Program.

Keeping case sensitivity in mind, type in the program shown
in Example 1.5.

EXAMPLE 1.5 A First Program in Java
 1 // First program in Java

 2 // Anderson, Franceschi

 3

 4 public class FirstProgram

 5 {

 6 public static void main(String [] args)

 7 {

 8 System.out.println("Programming is not a spectator

sport!");

 9

10 System.exit(0);

11 }

12 }

At this point, we ask that you just type the program as you see
it here, except for the line numbers, which are not part of the
program. Line numbers are displayed in this example to allow
easy reference to a particular line in the code. We’ll explain a
little about the program now; additional details will become
clear as the semester progresses.

The first two lines, which start with two forward slashes, are
comments. They will not be compiled or executed; they are
simply information for the programmer and are used to
increase the readability of the program.

COMMON ERROR TRAP
Java is case-sensitive. The class name and the file name
must match exactly, including capitalization.

Line 4 defines the class name as FirstProgram. Notice that
the class name must be spelled exactly the same way—
including capitalization—as the file name, FirstProgram.java.

The curly braces in lines 5 and 12 mark the beginning and
ending of the FirstProgram class, and the curly braces in lines
7 and 11 mark the beginning and ending of the main method.
Every Java application must define a class and a main
method. Execution of a Java application always begins with
the code inside main. So when this application begins, it will
execute line 8, which writes the message “Programming is not
a spectator sport!” to the system console. Next, it executes
line 10, System.exit(0), which exits the program. Including
this line is optional; if you omit this line, the application will still
exit normally.

As you type the program, notice that your IDE automatically
colors your text to help you distinguish comments, String
literals (“Programming is not a spectator sport!”), Java class
names (String, System), and keywords (public, class, static),
which are reserved for specific uses in Java. Curly braces,
brackets, and parentheses, which have syntactical meaning in
Java, are usually displayed in color as well. Your IDE may use
different colors than those shown in Example 1.5.

When you have completed typing the code in Example 1.5,
compile it. If everything is typed correctly, the compiler will
create a FirstProgram.class file, which contains the byte
codes for the program.

If you received any compiler errors, check that you have
entered the code exactly as it is written in Example 1.5. We

give you tips on finding and fixing the errors in the next
section.

If you got a clean compile with no errors, congratulations!
You’re ready to execute the application. This will invoke the
JVM and pass it the First Program.class file created by the
compiler. If all is well, you will see the message, Programming
is not a spectator sport!, displayed on the Java console, which
is the text window that opens automatically. Figure 1.4 shows
the correct output of the program.

Figure 1.4
Output from Example 1.5

 Programming is not a spectator sport!

Debugging Techniques
If the compiler found syntax errors in the code, these are
called compiler errors, not because the compiler caused
them, but because the compiler found them. When the
compiler detects errors in the code, it writes diagnostic
information about the errors.

For example, try typing println with a capital P (as Println), and
recompiling. The compiler displays the following message:

FirstProgram.java:8: error: cannot find symbol

 System.out.Println("Programming is not a spectator

sport!");

 ^

 symbol: method Println(String)

 location: variable out of type PrintStream

1 error

The first line identifies the file name that contains the Java
source code, as well as the line number in the source code
where the error occurred. In this case, the error occurred on
line 8. The second line displays line 8 from the source code
with a caret (^) pointing to Println as being the cause of the
error. The symbol and location information in the third and
fourth lines indicate that the Println method is unknown.
Remember that Java is case-sensitive, so println and Println
are considered to be different. As you gain experience with
Java, these error messages will become more meaningful to
you. With most IDEs, double-clicking on the first line in the
error message transfers you to the source code window with
your cursor positioned on line 8 so you can correct the error.

Many times, the compiler will find more than one error in the
source code. When that happens, don’t panic. Often, a single
problem, such as a missing semicolon or curly brace, can
cause multiple compiler errors.

For example, after correcting the preceding error, try deleting
the left curly brace in line 7, then recompiling. The compiler
reports four errors:

FirstProgram.java:6: error: ';' expected

 public static void main(String [] args)

 ^

FirstProgram.java:10: error: <identifier> expected

 System.exit(0);

 ^

FirstProgram.java:10: error: illegal start of type

 System.exit(0);

 ^

FirstProgram.java:12: error: class, interface or enum

expected

}

^

4 errors

As you can see, the compiler messages do not always report
the problem exactly. When you receive a compiler message,
looking at the surrounding lines will often help you find the
error. Depending on your IDE, you might see messages other
than those shown here because some IDEs attempt to
interpret the error messages from the compiler to provide
more relevant information on the errors.

SOFTWARE ENGINEERING TIP
Because one syntax error can cause multiple compiler errors,
correct only the obvious errors and recompile after each
correction.

It is sometimes easier to fix one error at a time and recompile
after each fix, because the first fix might eliminate many of the
reported errors.

When all the compiler errors are corrected, you’re ready to
execute the program.

It is possible to get a clean bill of health from the compiler, yet
the program still won’t run. To demonstrate this, try eliminating
the brackets in line 6 after the word String. If you then compile
the program, no errors are reported. But when you try to run
the program, you get a run-time error.

Instead of Programming is not a spectator sport!, the following
message is displayed on the Java console:

Error: Main method not found in class FirstProgram, please

define the main

method as:

 public static void main(String[] args)

or a JavaFX application class must extend

javafx.application.Application

This means that the main method header (line 6) was not
typed correctly.

Thus, we’ve seen that two types of errors can occur while you
are developing a Java program: compiler errors, which are
usually caused by language syntax errors or misspellings, and
run-time errors, which are often caused by problems using the
prewritten classes. Run-time errors can also be caused by
exceptions that the JVM detects as it is running, such as an
attempt to divide by zero.

Testing Techniques
Once your program compiles cleanly and executes without
run-time errors, you may be tempted to conclude that your job
is finished. Far from it—you must also verify the results, or
output, of the program.

In the sample program, it’s difficult to get incorrect results—
other than misspelling the message or omitting the spaces
between the words. But any nontrivial program should be
tested thoroughly before declaring it production ready.

To test a program, consider all the possible inputs and the
corresponding correct outputs. It often isn’t feasible to test
every possible input, so programmers usually test boundary
conditions, which are the values that sit on the boundaries of
producing different output for a program.

For example, to test the code that determines whether an
integer is negative or nonnegative, you would feed the
program −1 and 0. These are the boundaries of negative and
nonnegative integers. In other words, the boundary between
negative and nonnegative integers is between −1 and 0.

When a program does not produce the correct output, we say
the program contains logic errors. By testing your program
thoroughly, you can discover and correct most logic errors.
Table 1.7 shows types of program errors and their usual
causes.

TABLE 1.7 Types of Program Errors and Their
Causes

Type of Error Usual Causes
Compiler
errors

Incorrect language syntax or misspellings

Run-time
errors

Incorrect use of classes

Logic errors Incorrect program design or incorrect implementation of the
design

We’ll talk more about testing techniques throughout the text.

DISCUSSION QUESTIONS
1. In the Debugging Techniques section, we saw that making one typo

could generate several compiler errors. Why do you think that
happens?

2. Explain why testing boundary conditions is an efficient way to
verify a program’s correctness.

3. Did any errors occur while you were developing the first
application? If so, explain whether they were compiler or run-time
errors and what you did to fix them.

1.5.5 Making a JAR File
After we finish writing, compiling, and testing our application,
we may want to distribute it. Java programs are typically
distributed as JARs, which stands for Java ARchive. The JAR
format allows the compression and aggregation of multiple
files into one. The .jar extension is, by default, associated with
the Java Virtual Machine. Thus, a user can double-click on a
JAR file and launch its corresponding application directly.
Most IDEs include a tool to easily create a JAR file. But you
can also create a JAR file from the command line. The
general syntax to create a JAR file is:

jar cf jarfile inputfile(s)

The c and f characters are options. The c option
means that we want to create a JAR file. The f option
means that we want to send the output to a file.

jarfile is the name of the JAR file that we want to
create; it can be a different name from the name of
our Java file(s).

inputfile(s) is a space-separated list of files that we
want to include in the JAR file. It typically includes the
.class files and may include folders or files containing
resources used in our application, such as images or
sounds.

We can create a JAR file named Greeting.jar from our
FirstProgram application by typing the following at the
command line:

jar cf Greeting.jar FirstProgram.class

Note that the input file is the .class file, not the .java file.
Figure 1.5 shows the contents of the folder after executing the
command above.

The file Greeting.jar is created in the current folder, as shown
in Figure 1.5.

If our application includes several Java files, we can use the
wildcard character * to include all the corresponding .class
files. The following creates a JAR file for all the .class files
located in the current folder:

jar cf Greetings.jar *.class

Figure 1.5
The Folder After the JAR File Is Created

CHAPTER REVIEW

1.6 Chapter Summary
Basic components of a computer include the
CPU, memory, a hard disk, keyboard, and
monitor.

Each type of CPU has its own set of
instructions for performing arithmetic and
logical operations, moving data, and
changing the order of execution of
instructions.

An operating system controls peripheral
devices, supports multitasking, allocates
memory to programs, and prevents the user
from damaging the system.

Computer networks link two or more
computers so that they can share resources,
such as files or printers.

The Internet connects millions of computers
around the world. Web servers deliver
webpages to clients running Internet
browsers.

Binary numbers are composed of bits. Each
bit has the value 0 or 1. A byte holds eight
binary digits.

To convert a binary number to a decimal
number, multiply each digit in the binary
number by 2 , counting the rightmostposition−1

position as position 1 and moving left
through the number. Then add the products
together.

To convert a decimal number into a binary
number, first find the largest power of 2 that
is smaller than or equal to the decimal
number, subtract that number from the
decimal number, then do the same with the
remainder, and so on, until the decimal
number reaches 0.

Hexadecimal digits can be used to represent
groups of four bits.

The Unicode character set, which Java uses,
can encode up to 65,536 characters using 16
bits per character.

Machine language and assembly language
are early forms of programming languages
that require the programmer to write to the
CPU’s instruction set. Because this low-level
programming is time consuming and difficult,
and the programs are not portable to other
CPU architectures, machine language and
assembly language are rarely used.

High-level languages are highly symbolic
and somewhat portable. They can be
compiled, interpreted, or as in the case of
Java, converted to byte codes, which are

interpreted at run time by the Java Virtual
Machine.

A good program is readable, easily
maintainable, and reusable.

Object-oriented programming uses classes
to encapsulate data and the functions
needed to manipulate that data. Objects are
instantiated according to the class design.
An advantage to object-oriented
programming is the ability to reuse classes.

Programs use a combination of sequential
processing, method calls, selection, and
iteration to control the order of execution of
instructions. Performing operations in order,
one after another, is called sequential
processing. Temporarily executing other
code, then returning, is called a method call.
Selecting which code to execute based on
the value of data is called selection.
Repeating the same code on each item in a
group of values is called iteration, or looping.

Pseudocode allows a programmer to design
a program without worrying about the syntax
of the language.

In programming, we often perform tasks for
which there are standard methods of
processing, called algorithms. For example,

accumulating is a common programming
operation that finds the sum of a group of
numbers.

Programming, in large part, is reducing a
complex task to a set of subtasks that can be
implemented by combining standard
algorithms that use sequential processing,
selection, and looping.

Java source code is stored in a text file with
an extension of .java. Compiling the code
produces one or more .class files.

An Integrated Development Environment
(IDE) consists of a program editor, a
compiler, and a run-time environment,
integrated via a Graphical User Interface.

Compiler errors are detected by the compiler
and are usually caused by incorrect Java
syntax or misspellings. Run-time errors are
detected by the Java Virtual Machine and are
usually caused by exceptions or incorrect
use of classes. Logic errors occur during
program execution and are caused by
incorrect program design.

1.7 Exercises, Problems, and
Projects

1.7.1 Multiple Choice Exercises
 1. Which one of these is not an operating system?

❑ Linux

❑ Java
❑ Windows

❑ Android

 2. Which one of these is not an application?

❑ Word
❑ Firefox

❑ Linux
❑ Excel

 3. How many bits are in three bytes?

❑ 3

❑ 8
❑ 24

❑ 0

 4. In a network, the computers providing services to the other
computers are called

❑ clients.
❑ servers.

❑ laptops.

 5. A binary number ending with a 0

❑ is even.
❑ is odd.

❑ cannot tell.

 6. A binary number ending with a 1

❑ is even.
❑ is odd.

❑ cannot tell.

 7. A binary number ending with two 0s

❑ is a multiple of 4.

❑ is not a multiple of 4.
❑ cannot tell.

 8. Using four bits, the largest positive binary number we can
represent is 1111.

❑ true

❑ false

 9. Which one of these is not a programming language?

❑ C++
❑ Java

❑ Windows
❑ Fortran

10. Which one of these is not an object-oriented programming
language?

❑ C

❑ Java
❑ C++

❑ Smalltalk

11. What is the file extension for a Java source code file?

❑ .java
❑ .exe

❑ .class

12. What is the file extension of a compiled Java program?

❑ .java
❑ .exe

❑ .class

13. In order to compile a program named Hello.java, what do you type
at the command line?

❑ java Hello

❑ java Hello.java
❑ javac Hello

❑ javac Hello.java

14. You have successfully compiled Hello.java into Hello.class. What
do you type at the command line in order to run the application?

❑ java Hello.class
❑ java Hello

❑ javac Hello
❑ javac Hello.class

1.7.2 Converting Numbers
15. Convert the decimal number 67 into binary.

16. Convert the decimal number 1,564 into binary.

17. Convert the binary number 0001 0101 into decimal.

18. Convert the binary number 1101 0101 0101 into decimal.

19. Convert the binary number 0001 0101 into hexadecimal.

20. Convert the hexadecimal number D8F into binary.

1.7.3 General Questions
21. A RAM chip is organized as × 8 memory, i.e., each unit contains 8

bits, or a byte. There are 7 address pins on the chip. How many
bytes does that memory chip contain?

22. If a CPU is rated at 2.5 GHz, how many clock cycles per second
are performed?

23. If a CPU’s clock cycles 2.6 billion times per second, what is the
rating of the CPU in MHz?

24. Suppose we are using binary encoding to represent colors. For
example, a black-and-white color system has only two colors and
therefore needs only 1 bit to encode the color system as follows:

Bit Color

0 black

1 white

With 2 bits, we can encode four colors as follows:

Bit pattern Color

00 black

01 red

10 blue

11 white

With 5 bits, how many colors can we encode?

With n bits (n being a positive integer), how many colors can we
encode? (Express your answer as a function of n.)

25. In HTML, a color can be coded in the following hexadecimal
notation: #rrggbb, where

rr represents the amount of red in the color

gg represents the amount of green in the color

bb represents the amount of blue in the color

rr, gg, and bb vary between 00 and FF in hexadecimal notation,
i.e., 0 and 255 in decimal equivalent notation. Give the decimal

values of the red, green, and blue values in the color #33AB12.

26. RGB is a color system representing colors: R stands for red, G for
green, and B for blue. A color can be coded as rgb where r is a
number between 0 and 255 representing how much red there is in
the color, g is a number between 0 and 255 representing how
much green there is in the color, and b is a number between 0 and
255 representing how much blue there is in the color. The color
gray is created by using the same value for r, g, and b. How many
shades of gray are there?

27. List three benefits of the Java programming language.

28. What is the name of the Java compiler?

29. Write the pseudocode for a program that finds the product of two
numbers.

30. Write the pseudocode for a program that finds the sums of the
numbers input that are greater than or equal to 10 and the
numbers input that are less than 10.

1.7.4 Technical Writing
31. List the benefits of having a Local Area Network versus standalone

computer systems.

32. For one day, keep a diary of the computer applications that you
use. Also note any features of the applications that you think
should be improved or any features you’d like to see added.

33. You are looking at two computers with the following specifications,
everything else being equal:

PC # 1 PC # 2

3.4-GHz
CPU

3.3-GHz
CPU

16 MB L2
cache

16 MB L2
cache

1 GB
RAM

4 GB
RAM

1 TB hard
drive

1 TB hard
drive

$399 $399

Which PC would you buy? Explain the reasoning behind your
selection.

34. Go to Oracle’s Java site (www.oracle.com/technetwork/java).
Explain what resources are available there for someone who
wants to learn Java.

http://www.oracle.com/technetwork/java

1.7.5 Group Project (for a group of
1, 2, or 3 students)
35. In the octal system (base 8), numbers are represented using digits

from 0 to 7; a 0 is placed in front of the octal number to indicate
that the octal system is being used. For instance, here are some
examples of the equivalent of some octal numbers in the decimal
system:

Octal Decimal

000 0

001 1

007 7

010 8

011 9

In the hexadecimal system, numbers are represented using digits
from 0 to 9 and letters A to F; 0x is placed in front of the
hexadecimal number to indicate that the hexadecimal system is
being used. For instance, here are some examples of the decimal
equivalents of some hexadecimal numbers:

Hexadecimal Decimal

0x0  0

0x1  1

0x9  9

0xA 10

0xB 11

0xF 15

0x10 16

0x11 17

0x1C 28

1. Convert 0xC3E (in hexadecimal notation) into an octal
number.

2. Convert 0377 (in octal notation) into a hexadecimal
number.

3. Discuss how, in general, you would convert a
hexadecimal number into an octal number and an octal
number into a hexadecimal number.

CHAPTER 2
Programming Building Blocks—
Java Basics

CHAPTER CONTENTS
Introduction
2.1 Java Application Structure
2.2 Data Types, Variables, and Constants

2.2.1 Declaring Variables
2.2.2 Integer Data Types
2.2.3 Floating-Point Data Types
2.2.4 Character Data Type
2.2.5 Boolean Data Type
2.2.6 The Assignment Operator, Initial Values, and
Literals
2.2.7 String Literals and Escape Sequences
2.2.8 Constants

2.3 Expressions and Arithmetic Operators
2.3.1 The Assignment Operator and Expressions
2.3.2 Arithmetic Operators
2.3.3 Operator Precedence
2.3.4 Programming Activity 1: Converting Inches to
Centimeters
2.3.5 Integer Division and Modulus
2.3.6 Division by Zero
2.3.7 Mixed-Type Arithmetic and Type Casting
2.3.8 Shortcut Operators

2.4 Programming Activity 2: Temperature Conversion
2.5 Chapter Summary
2.6 Exercises, Problems, and Projects

2.6.1 Multiple Choice Exercises
2.6.2 Reading and Understanding Code
2.6.3 Fill In the Code

2.6.4 Identifying Errors in Code
2.6.5 Debugging Area—Using Messages from the Java
Compiler and Java JVM
2.6.6 Write a Short Program
2.6.7 Programming Projects
2.6.8 Technical Writing

Introduction
If we boil it down to the basics, a program has two elements:
instructions and data. The instructions tell the CPU what to do
with the data. Typically, a program’s structure will consist of
the following operations:

1. Input the data.

2. Perform some processing on the data.

3. Output the results.

The data used by a program can come from a variety of
sources. The user can enter data from the keyboard, for
example, when we type a new document into a word
processor. The program can read the data from a file, for
example, when we load an existing document into the word
processor. Or the program can generate the data randomly,
for example, when a computer card game deals hands.
Finally, some data is already known; for example, the number
of hours in a day is 24, the number of days in December is 31,
and the value of pi is 3.14159. This type of data is constant.
The Java language provides a syntax for describing a
program’s data using keywords, symbolic names, and data
types.

Although the data may be different in each execution of the
program, the instructions stay the same. In a word processor,
the words (data) are different from document to document, but
the operation (instructions) of the word processor remains the
same. When a line becomes full, for example, the word
processor automatically wraps to the next line. It doesn’t
matter which words are on the line, only that the line is full.
When we select a word and change the font to bold, it doesn’t

matter which word we select; it will become bold. Thus, a
program’s instructions (its algorithm) must be written to
correctly handle any data it may receive.

We will write our programs by translating our algorithms into
the basic operations that the computer can perform: input and
output of data and various operations related to processing
data, such as arithmetic calculations, comparisons of data
and subsequent changes to the flow of control, and
movement of data from one location in memory to another.

In this chapter, we’ll look at basic Java syntax for defining the
data to be used in the program, performing calculations on
that data, and outputting program results to the screen.

2.1 Java Application Structure
Every Java program consists of at least one class. It
is impossible to write a Java program that doesn’t
use classes. Classes describe a logical entity that
has data as well as methods (the instructions) to
manipulate that data. An object is a physical
instantiation of the class that contains specific data.
In Example 2.1 we provide a shell that contains the
basic format of a Java application with a class name
of ShellApplication. Our source code will use this
format, changing the class name as appropriate.

EXAMPLE 2.1 A Shell for a Java
Application
 1 /* An application shell

 2 Anderson, Franceschi

 3 */

 4 public class ShellApplication

 5 {

 6 public static void main(String [] args) //

required

 7 {

 8 // write your code here

 9 }

10 }

In Example 2.1, the numbers to the left of each line
are not part of the program code; they are included
here for our convenience. IDEs typically allow us to
display line numbers.

From application to application, the name of the
class, ShellApplication, will change, because we will
want to name our class something meaningful that
reflects its function. Each Java source code file must
have the same name as the class name with a .java
extension. In this case, the source file must be
ShellApplication.java. Whatever name we select for
a class must comply with the Java syntax for
identifiers.

Java identifiers are symbolic names that we assign
to classes, methods, and data. Identifiers must start
with a Java letter and may contain any combination
of letters and digits, but no spaces. A Java letter is
any character in the range a–z or A–Z, the
underscore (_), or the dollar sign ($), as well as
many Unicode characters that are used as letters in
other languages. Digits are any character between 0
and 9. The length of an identifier is essentially
unlimited. Identifier names are case sensitive, so
Number1 and number1 are considered to be
different identifiers.

In addition, none of Java’s reserved words can be
used as identifiers. These reserved words, which are
listed in Appendix A, consist of keywords used in
Java instructions, as well as three special data
values: true, false, and null. As of Java 9, the single
underscore (_) is a reserved word and cannot be
used as an identifier. Given that Java identifiers are
case sensitive, note that it is legal to use True or
TRUE as identifiers, but true is not a legal variable
name. Table 2.1 lists the rules for creating Java
identifiers.

TABLE 2.1 Rules for Creating Identifiers
Java Identifiers

Must start with a Java letter (A–Z, a–z, _, $, or many Unicode
characters)
Can contain an almost unlimited number of letters and/or digits
(0–9)
Cannot contain spaces
Are case sensitive
Cannot be a Java reserved word

The shell code in Example 2.1 uses four identifiers:
ShellApplication, main, String, and args. The
remainder of Example 2.1 consists of comments,
Java keywords, and required punctuation.

The basic building block of a Java program is the
statement. A statement is terminated with a

semicolon and can span several lines.

SOFTWARE ENGINEERING TIP
Liberal use of white space makes your program
more readable. It is good programming style to
surround identifiers, operands, and operators with
spaces and to skip lines between logical sections of
the program.

Any amount of white space is permitted between
identifiers, Java keywords, operands, operators, and
literals. White space characters are the space, tab,
newline, carriage return, and a few other rarely used
characters. Liberal use of white space makes our
program more readable. It is good programming
style to surround identifiers, operands, and operators
with spaces and to skip lines between logical
sections of the program.

A block, which consists of 0, 1, or more statements,
starts with a left curly brace ({) and ends with a
right curly brace (}). Blocks are required for class
and method definitions and can be used anywhere
else in the program that a statement is legal.
Example 2.1 has two blocks: the class definition
(lines 5 through 10) and the main method definition
(lines 7 through 9). As we can see, nesting blocks

within blocks is perfectly legal. The main block is
nested completely within the class definition block.

SOFTWARE ENGINEERING TIP
Include a block comment at the beginning of each
source file that identifies the author of the program
and briefly describes the function of the program.

Comments document the operation of the program
and are notes to ourselves and to other
programmers who read our code. Comments are not
compiled and can be coded in two ways. Block
comments can span several lines; they begin with a
forward slash-asterisk (/*) and end with an asterisk-
forward slash (*/). Everything between the /* and the
*/ is ignored by the compiler. Note that there are no
spaces between the asterisk and forward slash.
Lines 1–3 in Example 2.1 are block comments and
illustrate the good software engineering practice of
providing at the beginning of our source code a few
comments that identify ourselves as the author and
briefly describe what the program does.

The second way to include comments in our code is
to precede the comment with two forward slashes
(//). There are no spaces between the forward
slashes. The compiler ignores everything from the
two forward slashes to the end of the line. In

Example 2.1, the compiler ignores all of line 8, but
only the part of line 6 after the two forward slashes.

Let’s look at an example to get a sense of what a
simple program looks like and to get a feel for how a
program operates. Example 2.2 calculates the area
of a circle.

EXAMPLE 2.2 Calculating the Area
of a Circle
 1 /* Calculate the area of a circle

 2 Anderson, Franceschi

 3 */

 4

 5 public class AreaOfCircle

 6 {

 7 public static void main(String [] args)

 8 {

 9 // define the data we know

 10 final double PI = 3.14159;

 11

 12 // define other data we will use

 13 double radius = 3.5;

 14

 15 // perform the calculation and store the

result

 16 double area = PI * radius * radius;

 17

 18 // output the result

 19 System.out.println("The area of the circle

is " + area);

 20 }

 21 }

Figure 2.1a shows the output when the program is
run with a radius of 3.5. To calculate the area of a

circle with a different radius, replace the value 3.5 in
line 13 with the new radius value. For example, to
calculate the area of a circle with a radius of 20,
change line 13 to

double radius = 20;

Then recompile the program and run it again. Figure
2.1b shows the output for a radius of 20.

Figure 2.1a
Output from Example 2.2 with a Radius of 3.5

 The area of the circle is 38.4844775

Figure 2.1b
Output from Example 2.2 with a Radius of 20

 The area of the circle is 1256.636

We can see that Example 2.2 has the basic elements
that we saw in the ShellApplication (Example 2.1).
We have added some statements in lines 9 through
19 that do the work of the program. First, we identify
the data we will need. To calculate the area of a
circle, we use the formula (πr). We know the value2

of π (3.14159), so we store that value in a memory
location we name PI (line 10). We also need places
in memory to hold the radius and the area. In line 13
we name the radius and, we give the radius a value;
here we have chosen 3.5, but our program will need
to work with any value for the radius.

Now we’re ready to calculate the area. We want this
program to output correct results with any radius, so
we need to write the algorithm of the program using
the formula for calculating a circle’s area given
above. Java provides arithmetic operators for
performing calculations. We use Java’s multiplication
operator (*) in line 16 to multiply PI times the radius
times the radius and store the result into the memory
location we named area. Now we’re ready to output
the result. On line 19, we write a message that
includes the area value we calculated.

With Java 9, we have another option to running Java
code. If we just want to try out some Java code
without writing a complete application, we can use
the jshell utility. The jshell utility is an REPL (Read,
Evaluate, Print, Loop) tool that allows us to type
small amounts of code, called snippets, and see the
immediate result without compiling. Some IDEs
(Integrated Development Environments) already
provide an interactive utility like jshell. For example,
jGRASP (jgrasp.org) provides an Interactions tool.

http://jgrasp.org/

We will use jshell to illustrate many concepts in this
chapter. You will find jshell in the bin folder where the
Java JDK is stored. If you have already updated your
classpath environment variable for javac and java,
then it is automatically set for jshell because these
three programs are in the same folder. Consult your
operating system instructions for details about
setting the classpath.

To use jshell, open a command line application and
launch jshell. To try out some code, simply type it at
the prompt. To see a complete list of jshell
commands, type /help. As you will see, jshell
commands start with a forward slash (/). To exit
jshell, type /exit.

2.2 Data Types, Variables, and
Constants
In Example 2.2, we used as data the value of PI and
the radius, and we calculated the area of the circle.
For each of these values, we assigned a name. We
also used the Java keyword double, which defines
the data type of the data. The keyword double
means that the value will be a floating-point number.

Java allows us to refer to the data in a program by
defining variables, which are named locations in
memory where we can store values. A variable can
store one data value at a time, but that value might
change as the program executes, and it might
change from one execution of the program to the
next. The real advantage of using variables is that
we can name a variable, assign it a value, and
subsequently refer to the name of the variable in an
expression rather than hard coding the specific
value.

When we use a named variable, we need to tell the
compiler which kind of data we will store in the
variable. We do this by giving a data type for each
variable.

Java supports eight primitive data types: byte, short,
int, long, float, double, char, and boolean. They are
called primitive data types because they are part of
the core Java language.

The data type we specify for a variable tells the
compiler how much memory to allocate and the
format in which to store the data. For example, if we
specify that a data item is an int, then the compiler
will allocate four bytes of memory and store its value
as a 32-bit signed binary number. If, however, we
specify that a data item is a double (a double-
precision floating-point number), then the compiler
will allocate 8 bytes of memory and store its value as
a double-precision IEEE 754 floating-point number.

SOFTWARE ENGINEERING TIP
When selecting identifiers, choose meaningful
names that reflect the use of the identifier in the
program; this will make your code self-documented.
Use as many characters as necessary to make the
identifier clear, but avoid extremely long identifiers.
Also, for clarity in your program logic, avoid
identifiers that resemble Java keywords.

Once we declare a data type for a data item, the
compiler will monitor our use of that data item. If we
attempt to perform operations that are not allowed

for that type or are not compatible with that type, the
compiler will generate an error. Because the Java
compiler monitors the operations on each data item,
Java is called a strongly typed language.

Take care in selecting identifiers for your programs.
The identifiers should be meaningful and should
reflect the data that will be stored in a variable, the
concept encapsulated by a class, or the function of a
method. For example, the identifier age clearly
indicates that the variable will hold the age of a
person. When we select meaningful variable names,
the logic of our program is more easily understood,
and we are less likely to introduce errors.
Sometimes, it may be necessary to create a long
identifier in order to clearly indicate its use, for
example, numberOfStudentsWhoPassedCS1.
Although the length of identifiers is essentially
unlimited, avoid creating extremely long identifiers
because they are more cumbersome to use. Also,
the longer the identifier, the more likely we are to
make typos when entering the identifier into our
program. Finally, although it is legal to use identifiers,
such as TRUE, which differ from Java keywords only
in case, it isn’t a good idea because they easily can
be confused with Java keywords, making the
program logic less clear.

2.2.1 Declaring Variables
Every variable must be given a name and a data
type before it can be used. This is called declaring a
variable.

The syntax for declaring a variable is:

dataType identifier; // this declares one variable

or

dataType identifier1, identifier2, ...; // this

declares multiple

 // variables

of the same

 // data type

Note that a comma follows each identifier in the list
except the last identifier, which is followed by a
semicolon.

By convention, the identifiers for variable names
should start with a lowercase letter. If the variable
name consists of more than one word, then each
word after the first should begin with a capital letter.
For example, these identifiers are conventional Java
variable names: number1, highScore, booksToRead,
ageInYears, and xAxis. Underscores conventionally
are not used in variable names; they are reserved for

the identifiers of constants, as we shall discuss later
in the chapter. Similarly, do not use dollar signs to
begin variable names. The dollar sign is reserved for
the first letter of programmatically generated variable
names—that is, variable names generated by
software, not people. Although this may sound
arbitrary now, the value of following these
conventions will become clearer as we gain more
experience in Java and our programs become more
complex.

SOFTWARE ENGINEERING TIP
Begin variable names with a lowercase letter. If the
variable name consists of more than one word, begin
each word after the first with a capital letter. Avoid
underscores in variable names, and do not begin a
variable name with a dollar sign.

2.2.2 Integer Data Types
An integer data type is one that evaluates to a
positive or negative whole number. Java provides
four integer data types: int, short, long, and byte.

The int, short, long, and byte types differ in the
number of bytes of memory allocated to store each
type and, therefore, the maximum and minimum
values that can be stored in a variable of that type.
All of Java’s integer types are signed, meaning that
they can be positive or negative; the high-order, or
leftmost, bit is reserved for the sign.

Table 2.2 summarizes the integer data types, their
sizes in memory, and their maximum and minimum
values.

TABLE 2.2 Integer Data Types
Integer
Data
Type

Size
in
Bytes

Minimum Value Maximum Value

byte 1 −128 127

short 2 −32,768 32,767

int 4 −2,147,483,648 2,147,483,647

long 8 −9,223,372,036,854,775,808 9,223,372,036,854,775,807

In most applications, the int type will be sufficient for
our needs, since it can store positive and negative
numbers into the 2 billion range. The short and byte

data types typically are used only when memory
space is critical, and the long data type is needed
only for data values larger than 2 billion.

Let’s look at some examples of integer variable
declarations. Note that the variable names clearly
indicate the data that the variables will hold.

int testGrade;

int numPlayers, highScore, diceRoll;

short xCoordinate, yCoordinate;

long cityPopulation;

byte ageInYears;

2.2.3 Floating-Point Data Types
Floating-point data types store numbers with
fractional parts. Java supports two floating-point data
types: the single-precision float and the double-
precision double.

The two types differ in the amount of memory
allocated and the size and precision of the number
that can be represented. The single-precision type
(float) is stored in 32 bits, while the double-precision
type (double) is stored in 64 bits. Floats and doubles
can be positive or negative.

REFERENCE POINT
Floating-point numbers are stored using the IEEE
754 standard, which is discussed in Appendix E.

Table 2.3 summarizes Java’s floating-point data
types, their sizes in memory, and their maximum and
minimum positive nonzero values.

TABLE 2.3 Floating-Point Data Types
Floating-
Point Data
Type

Size in
Bytes

Minimum
Positive
Nonzero
Value

Maximum Value

float 4 1.4E-45 3.4028235E38

double 8 4.9E-324 1.7976931348623157E308

Because of its greater precision, the double data
type is usually preferred over the float data type.
However, for calculations not requiring such
precision, floats are often used because they require
less memory.

Although integers can be stored as doubles or floats,
it isn’t advisable to do so because floating-point
numbers require more processing time for
calculations.

Let’s look at a few examples of floating-point variable
declarations:

float salesTax;

double interestRate;

double paycheck, sumSalaries;

2.2.4 Character Data Type
REFERENCE POINT
The encoding of ASCII and Unicode characters is
discussed in Appendix C.

The char data type stores one Unicode character.
Because Unicode characters are encoded as
unsigned numbers using 16 bits, a char variable is
stored in two bytes of memory.

Table 2.4 shows the size of the char data type, as
well as the minimum and maximum values. The
maximum value is the unsigned hexadecimal
number FFFF, which is reserved as a special code
for “not a character.”

TABLE 2.4 The Character Data Type
Character
Data Type

Size
in
Bytes

Minimum Value Maximum Value

char 2 The character
encoded as 0000,
the null character

The value FFFF, which
is a special code for
“not a character”

Obviously, since the char data type can store only a
single character, such as a K, a char variable is not
useful for storing names, titles, or other text data. For
text data, Java provides a String class, which we’ll
discuss later in this chapter.

Here are a few declarations of char variables:

char finalGrade;

char middleInitial;

char newline, tab, doubleQuotes;

2.2.5 Boolean Data Type
The boolean data type can store only two values,
which are expressed using the Java reserved words
true and false, as shown in Table 2.5.

TABLE 2.5 The boolean Data Type
boolean Data Type Possible Values
boolean true

 false

Booleans are typically used for decision making and
for controlling the order of execution of a program.

Here are examples of declarations of boolean
variables:

boolean isEmpty;

boolean passed, failed;

2.2.6 The Assignment Operator,
Initial Values, and Literals
When we declare a variable, we can also assign an
initial value for the data. To do that, we use the
assignment operator (=) with the following syntax:

dataType variableName = initialValue;

This statement is read as “variableName gets
initialValue”.

or

dataType variable1 = initialValue1, variable2 =

initialValue2;

Notice that assignment is right to left. The initial
value is assigned to the variable.

One way to specify the initial value is by using a
literal value. In the following statement, the value
100 is an int literal value, which is assigned to the
variable testGrade.

COMMON ERROR TRAP
Although Unicode characters occupy two bytes in
memory, they still represent a single character.
Therefore, a literal value must also represent only
one character.

int testGrade = 100;

Table 2.6 summarizes the legal characters in literals
for all primitive data types.

Notice in Table 2.6 under the literal format for char,
that \n and \t can be used to format output. We’ll
discuss these and other escape sequences in the
next section of this chapter.

TABLE 2.6 Literal Formats for Java Data
Types

Data
Type

Literal Format

int,

short,

byte

Optional initial sign (+ or −) followed by digits 0–9 in
any combination. A literal in this format is an int literal;
however, an int literal may be assigned to a byte or
short variable if the literal is a legal value for the
assigned data type. An integer literal that begins with a
0 digit is considered to be an octal number (base 8) and
the remaining digits must be 0–7. An integer literal that
begins with 0x is considered to be a hexadecimal
number (base 16) and the remaining digits must be 0–9
or A–F.

long Optional initial sign (+ or −) followed by digits 0–9 in
any combination, terminated with an L or l. It’s
preferable to use the capital L, because the lowercase l
can be confused with the number 1. An integer literal
that begins with a 0 digit is considered to be an octal
number (base 8) and the remaining digits must be 0–7.
An integer literal that begins with 0x is considered to be
a hexadecimal number (base 16) and the remaining
digits must be 0–9 or A–F.

float Optional initial sign (+ or −) followed by a floating-point
number in fixed or scientific format, terminated by an F
or f.

double Optional initial sign (+ or −) followed by a floating-point
number in fixed or scientific format.

char Any printable character enclosed in single quotes.
A decimal value from 0 to 65,535.
‘\unnnn’ where nnnn are hexadecimal digits.
‘\m’, where \m is an escape sequence. For example,
‘\n’ represents a newline, and ‘\t’ represents a tab
character.

boolean true or false

Example 2.3 shows a jshell session where we
declare variables and assign a value using a literal.
We then execute the jshell /vars command to see our
variables and their values.

Another way to specify an initial value for a variable
is to assign the variable the value of another
variable, using this syntax:

dataType variable2 = variable1;

Two things need to be true for this assignment to
work:

variable1 needs to be declared and assigned
a value before this statement appears in the
source code.

variable1 and variable2 need to be
compatible data types; in other words, the
precision of variable1 must be lower than or
equal to that of variable2.

EXAMPLE 2.3 Declaring and
Initializing Variables

jshell> int testGrade = 100;

testGrade ==> 100

jshell> long cityPopulation = 425612340L;

cityPopulation ==> 425612340

jshell> byte numberOfPets = 2;

numberOfFPetS ==> 2

jshell> short ageInYears = 19;

ageInYears ==> 19

jshell> float salesTax = .05F;

salesTax ==> 0.05

jshell> double interestRate = 0.0425;

interestRate ==> 0.0425

jshell> double avogadroNumber = +6.022E23;

avogadroNumber ==> 6.022E23

jshell> char finalGrade = 'A';

finalGrade ==> 'A'

jshell> boolean isEmpty = true;

isEmpty ==> true

jshell> /vars

| int testGrade = 100

| long cityPopulation = 425612340

| byte numberOfPets = 2

| short ageInYears = 19

| float salesTax = 0.05

| double interestRate = 0.0425

| double avogadroNumber = 6.022E23

| char finalGrade = 'A'

| boolean isEmpty = true

jshell>

For example, in these statements:

jshell> boolean isPassingGrade = true;

isPassingGrade ==> true

jshell> boolean isPromoted = isPassingGrade;

isPromoted ==> true

isPassingGrade is given an initial value of true. Then
isPromoted is assigned the value already given to
isPassingGrade. Thus, isPromoted is also assigned
the initial value true. If isPassingGrade were
assigned the initial value false, then isPromoted
would also be assigned the initial value false.

And in these statements,

jshell> float salesTax = .05f;

sales Tax ==> 0.05

jshell> double taxRate = salesTax;

taxRate ==> 0.05000000074505806

the initial value of .05 is assigned to salesTax and
then to taxRate. It’s legal to assign a float value to a
double, because all values that can be stored as
floats are also valid double values. Note that after
assigning the float value to the double, that taxRate
has some extraneous digits. This is due to rounding
errors when converting the float value to a double.
Essentially, the two values are equivalent.

However, assigning a double value to a float variable
is not valid:

jshell> double taxRate = .05;

taxRate ==> 0.05

jshell> float salesTax = taxRate;

| Error:

| incompatible types: possible lossy conversion

from double to float

| float salesTax = taxRate;

 ^_ _ _^

Even though .05 is a valid float value, the compiler
will generate a “ possible lossy conversion ”
error similar to the error shown in jshell above.

Similarly, we can assign a lower-precision integer
value to a higher-precision integer variable.

Table 2.7 summarizes compatible data types; a
variable or literal of any type in the right column can
be assigned to a variable of the data type in the left
column.

TABLE 2.7 Valid Data Types for Assignment
Data Type Compatible Data Types
byte byte

short byte, short

int byte, short, int, char

long byte, short, int, char, long

float byte, short, int, char, long, float

double byte, short, int, char, long, float, double

boolean boolean

char char

Variables need to be declared before they can be
used in our program, but be careful to declare each
variable only once; that is, specify the data type of
the variable only the first time that variable is used in
the program. If we attempt to declare a variable that

has already been declared, as in the following
statements:

double twoCents;

double twoCents = 2; // incorrect, second

declaration of twoCents

we will receive a compiler error similar to the
following:

twoCents is already defined

Similarly, once we have declared a variable, we
cannot change its data type. Thus, these statements:

COMMON ERROR TRAP
Declare each variable only once, the first time the
variable is used. After the variable has been
declared, its data type cannot be changed.

double cashInHand;

int cashInHand; // incorrect, data type cannot be

changed

will generate a compiler error similar to the following:

cashInHand is already defined

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie showing a step-by-step illustration of
declaring variables and assigning initial
values. Click on this chapter’s link to start the
movie.

2.2.7 String Literals and Escape
Sequences
In addition to literals for all the primitive data types,
Java also supports String literals. String literals are
objects of Java’s String class.

A String literal is a sequence of characters
enclosed by double quotes. One set of quotes
“opens” the String literal and the second set of
quotes “closes” the literal. For example, these are all
String literals:

"Hello"

"Hello world"

"The value of x is "

We used String literals in output statements in
Example 2.2 to label the data that we printed:

System.out.println("The area of the circle is " +

area);

The + operator is the String concatenation
operator. Among other uses, the concatenation
operator allows us to print the values of variables
along with String literals. As we can see from the
output of Example 2.2, the characters in the String
literal are output exactly as typed, whereas the
variable area is replaced by its current value.

String literals cannot extend over more than one line.
If the compiler finds a newline character in the
middle of a String literal, it will generate a compiler
error. For example, the following statement is not
valid:

System.out.println("Never pass a water fountain

 without taking a drink.");

SOFTWARE ENGINEERING TIP
Add a space to the end of a String literal before
concatenating a value for more readable output.

In fact, that statement will generate errors:

jshell> System.out.println("Never pass a water

fountain

| Error:

| unclosed string literal

| System.out.println("Never pass a water fountain

| ^

COMMON ERROR TRAP
All open quotes for a String literal should be matched
with a set of closing quotes, and the closing quotes
must appear before the line ends.

If we have a long String to print, break it into several
strings and use the concatenation operator. This
statement is a correction of the previous invalid
statement:

jshell> System.out.println("Never pass a water

fountain"

 ... > + "without taking a

drink.");

Never pass a water fountain without taking a drink.

Another common programming error is omitting the
closing quotes. Be sure that all open quotes have
matching closing quotes on the same line.

Now that we know that quotes open and close String
literals, how can we define a literal that includes
quotes? This statement, which has quotes inside a
String literal

System.out.println("She said, "Java is fun"."); //

illegal quotes

 //

within literal

generates this error:

jshell> System.out.println("She said, "Java is

fun".");

| Error:

| ')' expected

| System.out.println("She said, "Java is fun".");

| ^

And since String literals can’t extend over two lines,
how can we create a String literal that includes a
newline character? Java solves both problems by
providing a set of escape sequences that can be
used to include a special character within String and
char literals. The escape sequences \n, \t, \b, \r, and
\f are nonprintable characters. Table 2.8 lists the
Java escape sequences.

TABLE 2.8 Java Escape Sequences
Character Escape Sequence
newline \n

tab \t

double quotes \”

single quote \’

backslash \\

backspace \b

carriage return \r

form feed \f

Using the \" escape character, we can now output
embedded quotes as:

jshell> System.out.println("She said, \"Java is

fun\".");

She said, "Java is fun".

We can force part of the output to the next line by
inserting a \n escape character, as in:

jshell> System.out.println("One potato\nTwo

potatoes");

One potato

Two potatoes

We will find that the \n escape character is useful for
skipping lines in output.

Finally, we can format output by inserting \t where we
want a tab, as in:

jshell> System.out.println("\tTabs can make the

output easier to read.");

 Tabs can make the output easier to read.

2.2.8 Constants
Sometimes we know the value of a data item, and
we know that its value will not (and should not)
change during program execution, nor is it likely to
change from one execution of the program to
another. In this case, it is a good software
engineering practice to define that data item as a
constant.

Defining constants uses the same syntax as
declaring variables, except that the data type is
preceded by the keyword final.

final dataType CONSTANT_IDENTIFIER = assignedValue;

Assigning a value is optional when the constant is
defined, but we must assign a value before the
constant is used in the program. Also, once the
constant has been assigned a value, its value cannot
be changed (reassigned) later in the program. Any
attempt by our program to change the value of a
constant will generate the following compiler error:

cannot assign a value to final variable

Think of this as a service of the compiler in
preventing our program from unintentionally
corrupting its data.

By convention, CONSTANT_IDENTIFIER consists of
all capital letters, and embedded words are
separated by an underscore. This makes constants
stand out in the code and easily identified as
constants. Also, constants are usually defined at the
top of a program where their values can be seen
easily.

Example 2.4 shows how to use constants in a
program.

EXAMPLE 2.4 Using Constants

 1 /* Constants Class

 2 Anderson, Franceschi

 3 */

 4

 5 public class Constants

 6 {

 7 public static void main(String [] args)

 8 {

 9 final char ZORRO = 'Z';

10 final double PI = 3.14159;

11 final int DAYS_IN_LEAP_YEAR = 366,

DAYS_IN_NON_LEAP_YEAR = 365;

12

13 System.out.println("The value of

constant ZORRO is " + ZORRO);

14 System.out.println("The value of

constant PI is " + PI);

15 System.out.println("The number of days

in a leap year is "

16 +

DAYS_IN_LEAP_YEAR);

17 System.out.println("The number of days

in a non-leap year is "

18 +

DAYS_IN_NON_LEAP_YEAR);

19

20 // PI = 3.14;

21 // The statement above would generate a

compiler error

22 // You cannot change the value of a

constant

23 }

24 }

SOFTWARE ENGINEERING TIP
Use all capital letters for a constant’s identifier;
separate words with an underscore (_). Declare
constants at the top of the program so their value
can be seen easily.

SOFTWARE ENGINEERING TIP
Declare as a constant any data that should not
change during program execution. The compiler will
then flag any attempts by your program to change
the value of the constant, thus preventing any
unintentional corruption of the data.

Lines 9, 10, and 11 define four constants. On line 11,
note that both DAYS_IN_LEAP_YEAR and
DAYS_IN_NON_LEAP_YEAR are constants. We
don’t need to repeat the keyword final to define two
(or more) constants of the same data types. Lines 13
to 18 output the values of the four constants. If line
20 were not commented out, it would generate a
compiler error because once a constant is assigned

a value, its value cannot be changed. Figure 2.2
shows the output of Example 2.4.

Constants can make our code more readable: PI is
more meaningful than 3.14159 when used inside an
arithmetic expression. Another advantage of using
constants is to keep programmers from making logic
errors: Let’s say we set a constant to a particular
value and it is used at various places throughout the
code (for instance, a constant representing a tax
rate); we then discover that the value of that constant
needs to be changed. All we have to do is make the
change in one place, most likely at the beginning of
the code. If we had to change the value at many
places throughout the code, that could very well
result in logic errors or typos.

Figure 2.2
Output of Example 2.4

 The value of constant ZORRO is Z

 The value of constant PI is 3.14159

 The number of days in a leap year is 366

 The number of days in a non-leap year is 365

Skill Practice
with these end-of-chapter questions

2.6.1 Multiple Choice

Questions 1, 2

2.6.2 Reading and Understanding Code

Questions 4, 5, 6

2.6.3 Fill In the Code

Questions 23, 24, 25, 26

2.6.4 Identifying Errors in Code

Questions 33, 34, 38, 39

2.6.5 Debugging Area

Questions 40, 41

2.6.6 Write a Short Program

Question 46

2.6.8 Technical Writing

Question 52

2.3 Expressions and Arithmetic
Operators

2.3.1 The Assignment Operator
and Expressions
In a previous section, we mentioned using the
assignment operator to assign initial values to
variables and constants. Now let’s look at the
assignment operator in more detail.

The syntax for the assignment operator is:

target = expression;

An expression consists of operators and operands
that evaluate to a single value. The value of the
expression is then assigned to target (target gets
expression), which must be a variable or a constant
having a data type compatible with the value of the
expression.

If target is a variable, the value of the expression
replaces any previous value the variable was
holding. For example, let’s look at these instructions:

jshell> int numberOfPlayers = 10;

numberOfPlayers ==> 10

jshell> numberOfPlayers = 8;

numberOfPlayers ==> 8

jshell> /vars

| int numberOfPlayers = 8

The first instruction declares an int named
numberOfPlayers. This allocates four bytes in
memory to a variable named numberOfPlayers and
stores the value 10 in that variable. Then, the second
statement changes the value stored in the variable
numberOfPlayers to 8. The previous value, 10, is
discarded. Note that we do not repeat “int.” As
mentioned earlier, we declare the data type only the
first time we use a variable.

An expression can be a single variable name or a
literal of any type, in which case, the value of the
expression is simply the value of the variable or the
literal. For example, in these statements,

jshell> int legalAge = 18;

legalAge ==> 18

jshell> int voterAge = legalAge;

voterAge ==> 18

the literal 18 is an expression. Its value is 18, which
is assigned to the variable legalAge. Then, in the
second statement, legalAge is an expression, whose
value is 18. Thus, the value 18 is assigned to
voterAge. So after these statements have been
executed, both legalAge and voterAge will have the
value 18.

One restriction, however, is that an assignment
expression cannot include another variable unless
that variable has been defined previously. The
statement defining the length variable that follows is
invalid, because it refers to width, which is not
defined until the next line.

int length = width * 2; // invalid, width is not yet

defined

int width = 30;

The compiler will flag the statement defining length
as an error with a message similar to the one in the
jshell session below

jshell> int length = width * 2;

| Error:

| cannot find symbol

| symbol: variable width

| int length = width * 2;

| ^---^

because width has not yet been defined.

An expression can be quite complex, consisting of
multiple variables, constants, literals, and operators.
Before we can look at examples of more complex
expressions, however, we need to discuss the
arithmetic operators.

2.3.2 Arithmetic Operators
Java’s arithmetic operators are used for performing
calculations on numeric data. Some of these
operators are shown in Table 2.9.

TABLE 2.9 Arithmetic Operators
Operator Operation
+ addition

− subtraction

* multiplication

/ division

% modulus (remainder after division)

All these operators take two operands; thus, they are
called binary operators. Each operand is an
expression.

In Example 2.5, we make a variety of calculations to
demonstrate the addition, subtraction, multiplication,
and division arithmetic operators. We will discuss
integer division and the modulus operator later in the
chapter. The output from this program is shown in
Figure 2.3.

EXAMPLE 2.5 Using Arithmetic
Operators

 1 /* Arithmetic Operators

 2 Anderson, Franceschi

 3 */

 4

 5 public class ArithmeticOperators

 6 {

 7 public static void main(String [] args)

 8 {

 9 // calculate the cost of lunch

10 double salad = 5.95;

11 double water = .89;

12 System.out.println("The cost of lunch is $"

13 + (salad + water)

);

14

15 // calculate your age as of a certain year

16 int targetYear = 2025;

17 int birthYear = 2005;

18 System.out.println("Your age in " +

targetYear + " is "

19 + (targetYear -

birthYear));

20

21 // calculate the total calories of apples

22 int caloriesPerApple = 127;

23 int numberOfApples = 3;

24 System.out.println("The calories in " +

numberOfApples

25 + " apples is " +

26 + (

caloriesPerApple * numberOfApples));

27

28 // calculate miles per gallon

29 double miles = 426.8;

30 double gallons = 15.2;

31 double mileage = miles / gallons;

32 System.out.println("The mileage is "

33 + mileage + " miles

per gallon.");

34 }

35 }

SOFTWARE ENGINEERING TIP
For readable code, insert a space between operators
and operands.

Example 2.5 demonstrates a number of small
operations. To calculate a total price (lines 12 and
13), we add the individual prices. To calculate an age
(lines 18 and 19), we subtract the birth year from the
target year. To calculate the number of calories in
multiple apples (lines 24–26), we multiply the
number of calories in one apple by the number of
apples. We calculate miles per gallon by dividing the
number of miles driven by the number of gallons of
gas used (line 31). Note that we can either store the

result in another variable, as we did in line 31, and
subsequently output the result (lines 32–33), or we
can output the result of the calculation directly by
writing the expression in the System.out.println
statement, as we did in the other calculations in this
example.

SOFTWARE ENGINEERING TIP
Developing and testing your code in steps makes it
easier to find and fix errors.

2.3.3 Operator Precedence
Figure 2.3
Output from Example 2.5

 The cost of lunch is $6.84

 Your age in 2025 is 20

 The calories in 3 apples is 381

 The mileage is 28.078947368421055 miles per

gallon.

The statements in Example 2.5 perform simple
calculations, but what if we want to make more
complex calculations using several operations, such
as calculating how much money we have in coins?
Let’s say we have two quarters, three dimes, and two
nickels. To calculate the value of these coins in
pennies, we might use this expression:

int pennies = 2 * 25 + 3 * 10 + 2 * 5;

In which order should the computer do the
calculation? If the value of the expression were
calculated left to right, then the result would be

= 2 * 25 + 3 * 10 + 2 * 5

= 50 + 3 * 10 + 2 * 5

= 53 * 10 + 2 * 5

= 530 + 2 * 5

= 532 * 5

= 2660

Clearly, 2,660 pennies is not the right answer. To
calculate the correct number of pennies, the
multiplications should be performed first, then the
additions. This, in fact, is the order in which Java will
calculate the preceding expression.

The Java compiler follows a set of rules called
operator precedence to determine the order in
which the operations should be performed.

Table 2.10 provides the order of precedence of the
operators we’ve discussed so far. The operators in
the first row—parentheses—are evaluated first, then
the operators in the second row (*, /, %) are
evaluated, and so on with the operators in each row.
When two or more operators on the same level
appear in the same expression, the order of
evaluation is left to right, except for the assignment
operator, which is evaluated right to left.

TABLE 2.10 Operator Precedence
Operator
Hierarchy

Order of Same-Statement
Evaluation

Operation

() left to right parentheses for
explicit grouping

*, /, % left to right multiplication,
division, modulus

+, − left to right addition, subtraction

= right to left assignment

As we introduce more operators, we’ll add them to
the Order of Precedence chart. The complete chart
is provided in Appendix B.

Using Table 2.10 as a guide, let’s recalculate the
number of pennies:

int pennies = 2 * 25 + 3 * 10 + 2 * 5;

 = 50 + 30 + 10

 = 90

As we can see, 90 is the correct number of pennies
in two quarters, three dimes, and two nickels.

We also could have used parentheses to clearly
display the order of calculation. For example,

int pennies = (2 * 25) + (3 * 10) + (2 * 5);

 = 50 + 30 + 10

 = 90

The result is the same, 90 pennies as shown below:

jshell> int pennies = 2 * 25 + 3 * 10 + 2 * 5;

pennies ==> 90

jshell> pennies = (2 * 25) + (3 * 10) + (2 * 5

);

pennies ==> 90

It sometimes helps to use parentheses to clarify the
order of calculations, but parentheses are essential
when our desired order of evaluation is different from
the rules of operator precedence. For example, to
calculate the value of this formula:

 x

 2+y

we could write this code:

double result = x / 2 + y;

This would generate incorrect results because,
according to the rules of precedence, x/2 would be
calculated first, then y would be added to the result
of that division. In algebraic terms, the preceding
statement is equivalent to:

To code the original formula correctly, we need to
use parentheses to force the addition to occur before
the division:

double result = x / (2 + y);

2.3.4 Programming Activity 1:
Converting Inches to Centimeters
Now that we know how to define variables and
constants and make calculations, let’s put this all
together by writing a program that converts inches
into the equivalent centimeters.

Locate the MetricLength.java source file found in this
chapter’s Programming Activity 1 folder in the
supplied code files. Copy the file to your computer.

Open the MetricLength.java source file. You’ll notice
that the class already contains some source code.
Your job is to fill in the blanks.

When we write a program, we begin by considering
these questions:

1. What data values does the program require?

a. What data values do we know?

b. What data values will change from one execution of the

program to the next?

2. What processing (algorithm) do we need to implement?

3. What is the output?

The comments in the source file will guide you
through the answers to these questions, and by

doing so, you will complete the program. Search for
five asterisks in a row (*****). This will position you to
the places in the source code where you will add
your code. The MetricLength.java source code is
shown in Example 2.6. Sample output for a value of
5.2 inches is shown in Figure 2.4.

Figure 2.4
Sample Output for Programming Activity 1

 5.2 inches are equivalent to 13.208

centimeters.

EXAMPLE 2.6 Converting Inches
to Centimeters

 1 /* MetricLength - converts inches to centimeters

 2 Anderson, Franceschi

 3 */

 4

 5 public class MetricLength

 6 {

 7 public static void main(String [] args)

 8 {

 9

10 /***** 1. What data values do we know?

11 We know that there are 2.54 centimeters in

an inch.

12 Declare a double constant named

CM_PER_INCH.

13 Assign CM_PER_INCH the value 2.54.

14 */

15

16

17 /***** 2. What other data does the program

require?

18 For this program, we require the number of

inches.

19 Declare a double variable named inches.

20 Assign any desired value to this variable.

21 */

22

23

24 /***** 3. Calculation: convert inches to

centimeters

25 Declare a double variable named

centimeters.

26 Multiply inches by CM_PER_INCH

27 and store the result in centimeters.

28 */

29

30

31 /***** 4. Output

32 Write one or two statements that output

33 the original inches and the equivalent

centimeters.

34 Try to match the sample output in Figure

2.4

35 */

36

37

38

39 }

40 }

DISCUSSION QUESTIONS
1. How do you know that your program results are

correct?
2. If you change the inches data value, does your program

still produce correct results?

2.3.5 Integer Division and Modulus
Division of a floating-point number by another
floating-point number will result in a floating-point
number; that is, a number with a fractional part. This
is like the result you would receive using a calculator.
For example, 12.6 / 2.4 will yield 5.25.

Division with two integer operands, however, is
performed in the Arithmetic Logic Unit (ALU), which
can calculate only an integer result. Any fractional
part is truncated; no rounding is performed. The
remainder after division is available, however, as an
integer, by taking the modulus (%) of the two integer
operands. Thus, in Java, the integer division (/)
operator will calculate the quotient of the division,
whereas the modulus (%) operator will calculate the
remainder of the division.

In Example 2.7, we have 113 pennies and we want
to convert those pennies into quarters. We can find
the number of quarters by dividing 113 by 25. The int
variable pennies is assigned the value 113 at line 10.
At line 12, the variable quarters is assigned the result
of the integer division of pennies by the constant
PENNIES_PER_QUARTER. Since the quotient of
the division of 113 by 25 is 4, quarters will be
assigned 4. At line 16, we use the modulus operator
to assign to the variable penniesLeftOver the
remainder of the division of pennies by

PENNIES_PER_QUARTER. Since the remainder of
the division of 113 by 25 is 13, 13 will be assigned to
penniesLeftOver. Notice that integer division and
modulus are independent calculations. We can
perform a division without also calculating the
modulus, and we can calculate the modulus without
performing the division.

EXAMPLE 2.7 How Integer
Division and Modulus Work

 1 /* DivisionAndModulus Class

 2 Anderson, Franceschi

 3 */

 4

 5 public class DivisionAndModulus

 6 {

 7 public static void main(String [] args)

 8 {

 9 final int PENNIES_PER_QUARTER = 25;

10 int pennies = 113;

11

12 int quarters = pennies /

PENNIES_PER_QUARTER;

13 System.out.println("There are " + quarters

+ " quarters in "

14 + pennies + " pennies");

15

16 int penniesLeftOver = pennies %

PENNIES_PER_QUARTER;

17 System.out.println("There are " +

penniesLeftOver

18 + " pennies left over");

19

20 final double MONTHS_PER_YEAR = 12;

21 double annualSalary = 50000.0;

22

23 double monthlySalary = annualSalary /

MONTHS_PER_YEAR;

24 System.out.println("The monthly salary is "

+ monthlySalary);

25 }

26 }

At line 23, we divide a double by a double; therefore,
a floating-point division will be performed by the
floating-point unit (FPU), and the floating-point result
will be assigned to the variable monthlySalary.
Figure 2.5 shows the output of the program.

Figure 2.5
Output of Example 2.7

 There are 4 quarters in 113 pennies

 There are 13 pennies left over

 The monthly salary is 4166.666666666667

The modulus is a useful operator. As we will see
later in this text, it can be used to determine whether
a number is even or odd, to control the number of
data items that are written per line, to determine if
one number is a factor of another, and for many
other uses.

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see arithmetic operators used in a program,
look for this chapter’s movie within the online
resources. Click on this chapter’s link to start
the movie.

Skill Practice
with these end-of-chapter questions

2.6.2 Reading and Understanding Code

Questions 7, 8, 9, 10, 11, 12, 13

2.6.3 Fill In the Code

Questions 27, 29, 32

2.6.4 Identifying Errors in Code

Question 35

2.6.6 Write a Short Program

Question 44

2.3.6 Division by Zero
As we might expect, Java does not allow integer
division by 0. If we include this statement in our
program,

int result = 4 / 0;

the code will compile without errors, but at run time,
when this statement is executed, the JVM will
generate an exception and print an error message
on the Java console:

Exception in thread "main"

java.lang.ArithmeticException: / by zero

In most cases, this stops the program. After we
discuss selection techniques, we will be able to avoid
dividing by zero by first testing whether the divisor is
zero before performing the division.

In contrast, floating-point division by zero does not
generate an exception. If the dividend is not zero, the
answer is Infinity. If both the dividend and divisor are
zero, the answer is NaN, which stands for “Not a
Number.”

Example 2.8 illustrates the three cases of dividing by
zero. As we can see on the output shown in Figure

2.6, line 16 never executes. We can see from the last
line in the figure:

at DivisionByZero.main(DivisionByZero.java.15)

that an exception is generated at line 15 and the
program halts execution. Line 16 was not executed.

EXAMPLE 2.8 Results of Division
by Zero
 1 /* DivisionByZero Class

 2 Anderson, Franceschi

 3 */

 4

 5 public class DivisionByZero

 6 {

 7 public static void main(String [] args)

 8 {

 9 double result1 = 4.3 / 0.0;

10 System.out.println("The value of result1 is

" + result1);

11

12 double result2 = 0.0 / 0.0;

13 System.out.println("The value of result2 is

" + result2);

14

15 int result3 = 4 / 0;

16 System.out.println("The value of result3 is

" + result3);

17 }

18 }

Although floating-point division by zero doesn’t bring
our program to a halt, it doesn’t provide useful
results either. It’s a good practice to avoid dividing by
zero in the first place.

2.3.7 Mixed-Type Arithmetic and
Type Casting
So far, we’ve used a single data type in the
expressions we’ve evaluated. But life isn’t always
like that. Calculations often involve data of different
primitive types.

Figure 2.6
Output of Example 2.8

 The value of result1 is Infinity

 The value of result2 is NaN

 Exception in thread "main"

java.lang.ArithmeticException: / by zero

 at

DivisionByZero.main(DivisionByZero.java:15)

When calculations of mixed types are performed,
lower-precision operands are converted, or
promoted, to the type of the operand that has the
higher precision.

The promotions are performed using the first of
these rules that fits the situation:

1. If either operand is a double, the other operand is converted to a

double.

2. If either operand is a float, the other operand is converted to a

float.

3. If either operand is a long, the other operand is converted to a

long.

4. If either operand is an int, the other operand is promoted to an

int.

5. If neither operand is a double, float, long, or an int, both

operands are promoted to int.

Table 2.11 summarizes these rules of promotion.

TABLE 2.11 Rules of Operand Promotion
Data Type of
One Operand

Data Type of
Other Operand

Promotion of
Other Operand

Data Type
of Result

double char, byte,

short, int, long,

float

double double

float char, byte,

short, int, long

float float

long char, byte,

short, int

long long

int char, byte,

short

int int

short char, byte Both operands
are promoted to
int

int

byte char Both operands
are promoted to
int

int

This arithmetic promotion of operands is called
implicit type casting because the compiler
performs the promotions automatically, without our
specifying that the conversions should be made.
Note that the data type of any promoted variable is
not permanently changed; its type remains the same
after the calculation has been performed.

Table 2.11 shows many rules, but essentially, any
arithmetic expression involving integers and floating-
point numbers will evaluate to a floating-point
number.

The code snippet below illustrates the rules of
promotion. We calculate the area of a circle using a
radius that is an int and 3.14159, which is a double.
Our first calculation is to square the radius. Because
radius is an int, the result is also an int. Then we
multiply radiusSquared by 3.14159, a double. At this
point, the radiusSquared value is promoted to a
double and the resulting area is a double. Note that
when we list our variables that radiusSquared is still
an int.

jshell> int radius = 4;

radius ==> 4

jshell> int radiusSquared = radius * radius;

radiusSquared ==> 16

jshell> double area = 3.14159 * radiusSquared;

area ==> 50.26544

jshell> /vars

| int radius = 4

| int radiusSquared = 16

| double area = 50.26544

Sometimes, it’s useful to instruct the compiler
specifically to convert the type of a variable. In this
case, we use explicit type casting, which uses this
syntax:

(dataType) (expression)

The expression will be converted, or type cast, to the
data type specified. The parentheses around
expression are needed only when the expression
consists of a calculation that we want to be
performed before the type casting.

Type casting is useful in calculating an average. The
snippet below shows how to calculate an average
test grade. The test scores are 94, 86, 88, and 97,
making the combined total score 365. We expect the
average to be 91.25.

Our first attempt to calculate the average results in
the wrong answer. Because totalScores and count
are both integers, integer division is performed. This
truncates any remainder, as shown by the value of
the temporary variable $3 (91). When we then assign
the integer result to the double average, the integer
value is promoted to a double. The result, 91.0,
appears to be accurate to one decimal place, but it
is, in fact, incorrect.

jshell> int totalScores = 94 + 86 + 88 + 97;

totalScores ==> 365

jshell> int count= 4;

count ==> 4

jshell> totalScores / count

$3 ==> 91

jshell> double average = totalScores / count;

average ==> 91. 0

In our second attempt, we explicitly type cast the
division to a double. But we are too late. The integer
division is performed first (which we’ve seen is 91),
then the result of the integer division is type cast to a
double. Again, we receive the same incorrect and
misleading result, 91.0.

jshell> (double) (totalScores / count)

i7 ==> 91.0

jshell> average = (double) (totalScores / count

);

average ==> 91.0

In our third attempt, we calculate the correct answer
by type casting the totalScores variable to a double,
then dividing. The result is that floating-point division
is performed and we get the correct answer, 91.25. It
doesn’t matter whether we type cast totalScores or
count to a double before performing the division.
Casting either to a double forces floating-point
division.

jshell> (double) (totalScores) / count

$9 ==> 91.25

jshell> average = (double) (totalScores) /

count;

average ==> 91.25

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see the calculation of an average using
mixed data types, look for this chapter’s movie
within the online resources. Click on this
chapter’s link to start the movie.

2.3.8 Shortcut Operators
A common operation in programming is adding 1 to a
number (incrementing) or subtracting 1 from a
number (decrementing). For example, if we want to
count how many data items the user enters, every
time we read another data item, we could add 1 to a
count variable.

Because incrementing or decrementing a value is so
common in programming, Java provides shortcut
operators to do this: ++ and −− . (Note that there
are no spaces between the two plus and minus
signs.) The statement

count++;

adds 1 to the value of count, and the statement

count−−;

subtracts 1 from the value of count. Thus,

count++;

is equivalent to

count = count + 1;

and

count−−;

is equivalent to

count = count - 1;

Both of these operators have prefix and postfix
versions. The prefix versions precede the variable
name (++a or −−a) whereas the postfix versions
follow the variable name (a++ or a−−). Both
increment or decrement the variable. If they are used
as a single, atomic statement (as in the preceding
statements), there is no difference between the two
versions. So

a++;

is functionally equivalent to

++a;

and

a−−;

is functionally equivalent to

−−a;

However, if they are used inside a more complex
expression, then they differ as follows. The prefix
versions increment or decrement the variable first,
then the new value of the variable is used in
evaluating the expression. The postfix versions
increment or decrement the variable after the old
value of the variable is used in the expression.

Example 2.9 illustrates this difference.

EXAMPLE 2.9 Prefix and Postfix
Increment Operators
 1 /* ShortcutOperators Class

 2 Anderson, Franceschi

 3 */

 4

 5 public class ShortcutOperators

 6 {

 7 public static void main(String [] args)

 8 {

 9 int a = 6;

10 int b = 2;

11

12 System.out.println("At the beginning, a is "

+ a);

13 System.out.println("Increment a with prefix

notation: " + ++a);

14 System.out.println("In the end, a is " + a

);

15

16 System.out.println("\nAt the beginning, b is

" + b);

17 System.out.println("Increment b with postfix

notation: " + b++);

18 System.out.println("In the end, b is " + b

);

19 }

20 }

Lines 9 and 10 declare and initialize two int
variables, a and b, to 6 and 2, respectively. In order
to illustrate the effect of both the prefix and postfix
increment operators, we output their original values
at lines 12 and 16. At line 13, we use the prefix
increment operator to increment a inside an output
statement; a is incremented before the output
statement is executed, resulting in the output
statement using the value 7 for a. At line 17, we use
the postfix increment operator to increment b inside
an output statement; b is incremented after the
output statement is executed, resulting in the output
statement using the value 2 for b. Lines 14 and 18
simply output the values of a and b after the prefix
and postfix operators were used at lines 13 and 17.
Figure 2.7 shows the output of this example.

Another set of shortcut operators simplify common
calculations that change a single value. For example,
the statement

a = a + 2: // add 2 to a

can be simplified as

a += 2; // add 2 to a

The value added to the target variable can be a
variable name or a larger expression.

The shortcut addition operator (+=) is a single
operator; there are no spaces between the + and the
=. Also, be careful not to reverse the order of the
operators. For example, in the following statement,
the operators are reversed, so the compiler
interprets the statement as “assign positive 2 to a.”

a =+ 2 ; // Incorrect! Assigns positive 2 to a

Java provides shortcut operators for each of the
basic arithmetic operations: addition, subtraction,
multiplication, division, and modulus. These
operators are especially useful in performing
repetitive calculations and in converting values from
one scale to another. For example, to convert feet to
inches, we multiply the number of feet by 12. So we
can use the *= shortcut operator:

int length = 3; // length in feet

length *= 12; // length converted to inches

Converting from one scale to another is a common
operation in programming. For example, earlier in
the chapter we converted quarters, dimes, and
nickels to pennies.

Figure 2.7
Output of Example 2.9

 At the beginning, a is 6

 Increment a with prefix notation: 7

 In the end, a is 7

 At the beginning, b is 2

 Increment b with postfix notation: 2

 In the end, b is 3

We might also need to convert hours to seconds,
feet to meters, or Fahrenheit temperatures to
Celsius.

Example 2.10 demonstrates each of the shortcut
arithmetic operators. The output is shown in Figure
2.8.

EXAMPLE 2.10 Shortcut
Arithmetic Operators

 1 /* Shortcut Arithmetic Operators

 2 Anderson, Franceschi

 3 */

 4

 5 public class ShortcutArithmeticOperators

 6 {

 7 public static void main(String [] args)

 8 {

 9 int a = 5;

10 System.out.println("a is " + a);

11

12 a += 10; // a = a + 10;

13 System.out.println("\nAfter a += 10; a is "

+ a);

14

15 a -= 3; // a = a - 3;

16 System.out.println("\nAfter a -= 3; a is " +

a);

17

18 a *= 2; // a = a * 2;

19 System.out.println("\nAfter a *= 2; a is " +

a);

20

21 a /= 6; // a = a / 6;

22 System.out.println("\nAfter a /= 6; a is " +

a);

23

24 a %= 3; // a = a % 3;

25 System.out.println("\nAfter a %= 3; a is " +

a);

26 }

27 }

Figure 2.8
Output of Example 2.10

 a is 5

 After a += 10; a is 15

 After a -= 3; a is 12

 After a *= 2; a is 24

 After a /= 6; a is 4

 After a %= 3; a is 1

Table 2.12 summarizes the shortcut operators, and
Table 2.13 shows where the shortcut operators fit
into the order of operator precedence.

TABLE 2.12 Shortcut Operators
Shortcut Operator Example Equivalent Statement
++ a++; or ++a; a = a + 1;

−− a−−; or −−a; a = a − 1;

+= a += 3; a = a + 3;

−= a −=10; a = a − 10;

*= a *= 4; a = a * 4;

/= a /= 7; a = a / 7;

%= a %= 10; a = a % 10;

TABLE 2.13 Order of Operator Precedence
Operator
Hierarchy

Order of Same-
Statement
Evaluation

Operation

() left to right parentheses for explicit
grouping

++, −− right to left shortcut postincrement

++, −− right to left shortcut preincrement

*, /, % left to right multiplication, division,
modulus

+, − left to right addition or String

concatenation, subtraction

=, +=,
−=, *=,
/=, %=

right to left assignment operator and
shortcut assignment
operators

Skill Practice
with these end-of-chapter questions

2.6.1 Multiple Choice Exercises

Question 3

2.6.2 Reading and Understanding Code

Questions 14, 15, 16, 17, 18, 19, 20, 21,
22

2.6.3 Fill In the Code

Questions 28, 30, 31

2.6.4 Identifying Errors in Code

Questions 36, 37

2.6.5 Debugging Area

Questions 42, 43

2.6.6 Write a Short Program

Question 45

2.6.8 Technical Writing

Question 51

2.4 Programming Activity 2:
Temperature Conversion
For this Programming Activity, you will write a
program to convert a temperature in Fahrenheit to
Celsius. The conversion formula is the following:

T = 5 / 9 (T – 32)

where T is the temperature in Celsius and T is the
temperature in Fahrenheit, and 32 is the freezing
point of water.

Locate the TemperatureConversion.java source file
found in this chapter’s Programming Activity 2 folder
in the supplied code files. Copy the file to your
computer. The source code is shown in Example
2.11.

c f

c f

EXAMPLE 2.11
TemperatureConversion.java

 1 /* Temperature Conversion

 2 Anderson, Franceschi

 3 */

 4

 5 public class TemperatureConversion

 6 {

 7 public static void main(String [] args)

 8 {

 9 //***** 1. declare any constants here

10

11

12 //***** 2. declare the temperature in

Fahrenheit as an int

13

14

15 //***** 3. calculate equivalent Celsius

temperature

16

17

18 //***** 4. output the temperature in

Celsius

19

20

21 //***** 5. convert Celsius temperature

back to Fahrenheit

22

23

24 //***** 6. output Fahrenheit temperature

to check correctness

25

26

27 }

28 }

Open the TemperatureConversion.java source file.
You’ll notice that the class already contains a class
name and the main method. Your job is to fill in the
blanks.

To verify that your code produces the correct output,
add code to convert your calculated Celsius
temperature back to Fahrenheit and compare that
value to the original Fahrenheit temperature. The
formula for converting Celsius to Fahrenheit is:

T = 9 / 5 * T + 32

Before writing this program, you need to design a
plan of attack. Ask yourself:

What data do I need to define?

What calculations should I make?

What is the output of the program?

How do I select data values so they will
provide good test data for my code?

f c

Choose any input value for the Fahrenheit
temperature. After you write the program, try
changing the original temperature value, recompiling
and rerunning the program to verify that the
temperature conversion works for multiple input
values.

DISCUSSION QUESTIONS
1. How did you change the expression 5 / 9 so that the

value was not 0?
2. What constant(s) did you define?
3. What data type did you use for the Celsius temperature?

Why?

CHAPTER REVIEW

2.5 Chapter Summary
Java programs consist of at least one class.

Identifiers are symbolic names for classes,
methods, and data. Identifiers should start
with a letter and may contain any
combination of letters and digits, but no
spaces. The length of an identifier is
essentially unlimited. Identifier names are
case sensitive.

Java’s reserved words cannot be used as
identifiers.

The basic building block of a Java program is
the statement. A statement is terminated with
a semicolon and can span several lines.

Any amount of white space is permitted
between identifiers, Java keywords,
operands, operators, and literals. White
space characters are the space, tab,
newline, and carriage return.

A block, which consists of 0, 1, or more
statements, starts with a left curly brace and
ends with a right curly brace. Blocks can be
used anywhere in the program that a
statement is legal.

Comments are ignored by the compiler.
Block comments are delineated by /* and */.

Line comments start with // and continue to
the end of the line.

Java supports eight primitive data types:
double, float, long, int, short, byte, char, and
boolean.

The jshell utility, part of the JDK, is a tool that
allows us to type code and see the
immediate result without compiling.

Variables must be declared before they are
used. Declaring a variable is specifying the
data item’s identifier and data type. The
syntax for declaring a variable is: dataType
identifier1, identifier2, . . .;

Begin variable names with a lowercase letter.
If the variable name consists of more than
one word, begin each word after the first with
a capital letter. Do not put spaces between
words.

An integer data type is one that evaluates to
a positive or negative whole number. Java
recognizes four integer data types: int, short,
long, and byte.

Floating-point data types store numbers with
fractional parts. Java supports two floating-
point data types: the single-precision type
float, and the double-precision type double.

The char data type stores one Unicode
character. Because Unicode characters are
encoded as unsigned numbers using 16 bits,
a char variable is stored in two bytes of
memory.

The boolean data type can store only two
values, which are expressed using the Java
reserved words true and false.

The assignment operator (=) is used to give
a value to a variable.

To assign an initial value to a variable, use
this syntax when declaring the variable:

dataType variable1 = initialValue1;

Literals can be used to assign initial values
or to reassign the value of a variable.

Constants are data items whose value, once
assigned, cannot be changed. Data items
that we know should not change throughout
the execution of a program should be
declared as a constant, using this syntax:

final dataType CONSTANT_IDENTIFIER =

initialValue;

Constant identifiers, by convention, are
composed of all capital letters with
underscores separating words.

An expression consists of operators and
operands that evaluate to a single value.

The value of an expression can be assigned
to a variable or constant, which must be a
data type compatible with the value of the
expression and cannot be a constant that
has been assigned a value already.

Java provides binary operators for addition,
subtraction, multiplication, division, and
modulus.

Calculation of the value of expressions
follows the rules of operator precedence.

Integer division truncates any fractional part
of the quotient.

When an arithmetic operator is invoked with
operands that are of different primitive types,
the compiler temporarily converts, or
promotes, one or both of the operands.

An expression or a variable can be
temporarily cast to a different data type using
this syntax:

(dataType) (expression)

Shortcut operators ++ and −− simplify
incrementing or decrementing a value by 1.
The prefix versions precede the variable

name and increment or decrement the
variable, then use its new value in evaluation
of the expression. The postfix versions follow
the variable name and increment or
decrement the variable after using the old
value in the expression.

Java provides shortcut operators for each of
the basic arithmetic operations: addition,
subtraction, multiplication, division, and
modulus.

2.6 Exercises, Problems, and
Projects

2.6.1 Multiple Choice Exercises
1. What is the valid way to declare an integer variable named a?

(Check all that apply.)

❑ int a;

❑ a int ;

❑ integer a;

 2. Which of the following identifiers are valid?

❑ a

❑ sales

❑ sales&profit

❑ int

❑ inter

❑ doubleSales

❑ TAX_RATE

❑ 1stLetterChar

❑ char

 3. Given three declared and initialized int variables a, b, and c, which
of the following statements are valid?

❑ a = b;

❑ a = 67;

❑ b = 8.7;

❑ a + b = 8;

❑ a * b = 12;

❑ c = a − b;

❑ c = a / 2.3;

❑ boolean t = a;

❑ a /= 4;

❑ a += c;

2.6.2 Reading and Understanding
Code
 4. What is the output of this code sequence?

double a = 12.5;
System.out.println(a);

 5. What is the output of this code sequence?

int a = 6;
System.out.println(a);

 6. What is the output of this code sequence?

float a = 13f;
System.out.println(a);

 7. What is the output of this code sequence?

double a = 13 / 5;
System.out.println(a);

 8. What is the output of this code sequence?

int a = 13 / 5;
System.out.println(a);

 9. What is the output of this code sequence?

int a = 13 % 5;
System.out.println(a);

10. What is the output of this code sequence?

int a = 12 / 6 * 2;
System.out.println(a);

11. What is the output of this code sequence?

int a = 12 / (6 * 2);
System.out.println(a) ;

12. What is the output of this code sequence?

int a = 4 + 6 / 2;
System.out.println(a);

13. What is the output of this code sequence?

int a = (4 + 6) / 2;
System.out.println(a);

14. What is the output of this code sequence?

double a = 12.0 / 5;
System.out.println(a);

15. What is the output of this code sequence?

int a = (int) 12.0 / 5;
System.out.println(a);

16. What is the output of this code sequence?

double a = (double) (12) / 5;
System.out.println(a);

17. What is the output of this code sequence?

double a = (double) (12 / 5);
System.out.println(a);

18. What is the output of this code sequence?

int a = 5;
a++;
System.out.println(a);

19. What is the output of this code sequence?

int a = 5;
System.out.println(a−−);

20. What is the output of this code sequence?

int a = 5;
System.out.println(−−a);

21. What is the output of this code sequence?

int a = 5;
a += 2;
System.out.println(a);

22. What is the output of this code sequence?

int a = 5;
a /= 6;
System.out.println(a);

2.6.3 Fill In the Code
23. Write the code to declare a float variable named a and assign a

the value 34.2.

// your code goes here

24. Write the code to assign the value 10 to an int variable named a.

int a;
// your code goes here

25. Write the code to declare a boolean variable named a and assign
a the value false.

// your code goes here

26. Write the code to declare a char variable named a and assign a
the character B.

// your code goes here

27. Write the code to calculate the total of three int variables a, b, and
c and print the result.

int a = 3;
int b = 5;
int c = 8;
// your code goes here

28. Write the code to calculate the average of two int variables a and b
and print the result. The average should be printed as a floating-
point number.

int a = 3;
int b = 5;
// your code goes here

29. Write the code to calculate and print the remainder of the division
of two int variables with the values 10 and 3 (the value printed will
be 1).

int a = 10;
int b = 3;
// your code goes here

30. This code increases the value of a variable a by 1, using the
shortcut increment operator.

int a = 7;
// your code goes here

31. This code multiplies the value of a variable a by 3, using a shortcut
operator.

int a = 7;
// your code goes here

32. Assume that we have already declared and initialized two int
variables, a and b. Convert the following sentences to legal Java
expressions and statements.

❑ b gets a plus 3 minus 7
❑ b gets a times 4

❑ a gets b times b
❑ a gets b times 3 times 5

❑ b gets the quotient of the division of a by 2
❑ b gets the remainder of the division of a by 3

2.6.4 Identifying Errors in Code
33. Where is the error in this code sequence?

int a = 3.3;

34. Where is the error in this code sequence?

double a = 45.2;
float b = a;

35. Where is the error in this code sequence?

int a = 7.5 % 3;

36. What would happen when this code sequence is compiled and
executed?

int a = 5 / 0;

37. Where is the error in this code sequence?

int a = 5;
a - = 4;

38. Is there an error in this code sequence? Explain.

char c = 67;

39. Is there an error in this code sequence? Explain.

boolean a = 1;

2.6.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
40. You coded the following on line 8 of class Test.java:

int a = 26.4;

When you compile, you get the following message:

Test.java:8 error: incompatible types: possible
lossy conversion from double
to int
 int a = 26.4;
 ^
1 error

Explain what the problem is and how to fix it.

41. You coded the following on line 8 of class Test.java:

int a = 3

When you compile, you get the following message:

Test.java:8 error: ';' expected
int a = 3
 ^

Explain what the problem is and how to fix it.

42. You coded the following in class Test.java:

int a = 32;
int b = 10;
double c = a / b;
System.out.println("The value of c is " + c);

The code compiles properly and runs, but the result is not what
you expected. The output is

The value of c is 3.0

You expected the value of c to be 3.2. Explain what the problem is
and how to fix it.

43. You coded the following in class Test.java:

int a = 5;
a =+ 3;
System.out.println("The value of a is " + a);

The code compiles properly and runs, but the result is not what
you expected. The output is

The value of a is 3

You expected the value of a to be 8. Explain what the problem is
and how to fix it.

2.6.6 Write a Short Program
44. Write a program that calculates and outputs the square of each

integer from 1 to 9.

45. Write a program that calculates and outputs the average of
integers 1, 7, 9, and 34.

46. Write a program that outputs the following:

2.6.7 Programming Projects
47. Write a program that prints the letter X composed of asterisks (*).

Your output should look like this:

* *
 * *
 *
 * *
* *

48. Write a program that converts 10, 50, and 100 kilograms to pounds
(1 lb = 0.454 kg).

49. Write a program that converts 2, 5, and 10 inches to millimeters (1
inch = 25.4 mm).

50. Write a program to compute and output the circumference of a
circle having a radius of 3.2 inches.

51. Write a program that outputs this String:

a + b = c3 3 3

2.6.8 Technical Writing
52. Some programmers like to write code that is as compact as

possible, for instance, using the increment (or decrement) operator
in the middle of another statement. Typically, these programmers
use very few comments in their programs. Discuss whether this is
a good idea, keeping in mind that a program “lives” through a
certain period of time.

53. Compare the following data types for integer numbers: int, short,
and long. Discuss their representation in binary, how much space
they take in memory, and the purpose of having these data types
available to programmers.

CHAPTER 3
Object-Oriented Programming,
Part 1: Using Classes

CHAPTER CONTENTS
Introduction
3.1 Class Basics and Benefits
3.2 Creating Objects Using Constructors
3.3 Calling Methods
3.4 Using Object References
3.5 Programming Activity 1: Calling Methods
3.6 The Java Class Library
3.7 The String Class
3.8 Formatting Output with the Decimal-Format Class
3.9 Generating Random Numbers with the Random Class
3.10 Input from the Console Using the Scanner Class
3.11 Calling Static Methods and Using Static Class Variables
3.12 Using System.in and System.out

3.13 The Math Class
3.14 Formatting Output with the NumberFormat Class
3.15 The Integer, Double, Character, and Other Wrapper
Classes
3.16 Programming Activity 2: Using Predefined Classes
3.17 Chapter Summary
3.18 Exercises, Problems, and Projects

3.18.1 Multiple Choice Exercises
3.18.2 Reading and Understanding Code
3.18.3 Fill In the Code
3.18.4 Identifying Errors in Code
3.18.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM
3.18.6 Write a Short Program
3.18.7 Programming Projects

3.18.8 Technical Writing
3.18.9 Group Project

Introduction
Writing computer programs that use classes and objects is
called object-oriented programming, or OOP. Every Java
program consists of at least one class.

In this chapter, we’ll introduce object-oriented programming as
a way to use classes that have already been written. Classes
provide services to the program. These services might include
writing a message to the program’s user, popping up a dialog
box, performing some mathematical calculations, formatting
numbers, drawing shapes in a window, or many other basic
tasks that add a more professional look to even simple
programs. The program that uses a class is called the client
of the class. Thus, in this chapter we will be writing client
programs.

One benefit of using a prewritten class is that we don’t need
to write the code ourselves; it has already been written and
tested for us. This means that we can write our client
programs more quickly. In other words, we shorten the
development time of the program. Using prewritten and
pretested classes provides other benefits as well, including
more reliable programs with fewer errors.

In this chapter, we’ll explore how using prewritten classes can
add functionality to our programs.

3.1 Class Basics and Benefits
In Java, classes are composed of data and
operations—or functions—that operate on the data.
Objects of a class are created using the class as a
template, or guide. Think of the class as a generic
description, and an object as a specific item of that
class. Or you can think of a class as a cookie cutter;
the objects of that class are the cookies made with
the cookie cutter. For example, a Student class might
have the following data: name, year, and grade point
average. All students have these three data items.
We can create an object of the Student class by
specifying an identifier for the object (for example,
student1) along with a name, year, and grade point
average for a particular student (for example, Maria
Gonzales, Sophomore, 3.5). The identifier of the
object is called the object reference. Creating an
object of a class is called instantiating an object,
and the object is called an instance of the class.
Many objects can be instantiated from one class.
There can be many instances of the Student class,
that is, many Student objects can be instantiated
from the Student class. For example, we could
create a second object of the Student class,
student2, with its data as Mike Smith, Junior, 3.0.

The data associated with an object of a class are
called instance variables, or fields, and can be
variables and constants of any primitive data type
(byte, short, int, long, float, double, char, and
boolean), or they can be objects of a class.

The operations for a class, called methods, set the
values of the data, retrieve the current values of the
data, and perform other class-related functions on
the data. For example, the Student class would
provide methods to set the values of the name, year,
and grade point average; retrieve the current values
of the name, year, and grade point average; and
perhaps promote a student to the next year. Invoking
a method on an object is called calling the method.
With a few exceptions, only the methods of a class
can directly access or change the instance variables
of an object. Programs using the class, such as
clients, must call the methods to set or retrieve the
values of the instance variables. Together, the fields
and methods of a class are called its members.

In essence, a class is a new data type, which is
created by combining items of Java primitive data
types and objects of classes. Just as the primitive
data types can be manipulated using arithmetic
operators (+, −, *, /, and %), an object can be
manipulated by calling the methods of its class.

The data of a class is typically declared to be private.
In this case, only the methods of the class can
change the data of an object, and thus the methods
provide a protective layer around the data. In other
words, the class encapsulates the data, and the
methods of the class provide the only interface to set
or change the data values from outside the class.
The benefit from this encapsulation is that the class
methods ensure that only valid values are assigned
to an object. For example, a method to set a
student’s grade point average would accept values
only between 0.0 and 4.0.

Let’s look at another example of a class. The
SimpleDate class, written by the authors of this text,
has the instance variables month, day, and year. An
object of this class, independenceDay, could be
instantiated with data values of 7, 4, and 1776.
Another object of the SimpleDate class,
moonWalking, might be instantiated with the values
7, 20, 1969. Methods of the SimpleDate class ensure
that only valid values are set for the month, day, and
year. For example, the methods would not allow us
to set a date with a value of January 32. Other
methods of the class increment the date to the next
day and provide the date in mm/dd/yyyy format.

SOFTWARE ENGINEERING TIP
By convention, class names in Java start with a
capital letter. Method names, instance variables, and
object names start with a lowercase letter. In all of
these names, embedded words begin with a capital
letter.

Notice that the class names we used, Student and
SimpleDate, begin with a capital letter, and the object
names, student1, independenceDay, and
moonWalking, start with a lowercase letter. By
convention, class names start with a capital letter.
Object names, instance variables, and method
names conventionally start with a lowercase letter.
Internal words start with a capital letter in class
names, object names, variables, and methods.

There are many benefits to using classes in a
program. Some of the most important benefits
include reusability (not only in the current program
but also in other programs), encapsulation, and
reliability.

A well-written class can be reused in many
programs. For example, a SimpleDate class could be
used in a calendar program, an appointment-
scheduling program, an online shopping program,
and many more applications that rely on dates.

Reusing code is much faster than writing and testing
new code. As an added bonus, reusing a tested and
debugged class in another program makes the
program more reliable.

Further, encapsulation of a class’s data and methods
helps to isolate operations on the data. This makes it
easier to track the source of a bug. For example,
when a bug is discovered in an object of the Student
class, then we know to look for the problem in the
methods of the Student class, because no other
code in our program can directly change the data in
a Student object.

We do not need to know the implementation details
of a class in order to use it in our program. Does the
SimpleDate class store the date in memory as three
integers, month, day, and year? Or is the date stored
as the number of milliseconds since 1980? The
beauty of object orientation is that we don’t need to
know the implementation of the class; all we need to
know is the class application programming
interface (API), that is, how to instantiate objects
and how to call the methods of the class.

3.2 Creating Objects Using
Constructors
A class describes a generic template for creating, or
instantiating, objects. In fact, an object must be
instantiated before it can be used. To understand
how to instantiate an object of a class and how to
call methods of the class, we must know the API of a
class, which the creators of the class make public.
Table 3.1 shows the API of the SimpleDate class,
written by the authors of this text.

TABLE 3.1 The SimpleDate Class API
SimpleDate Class Constructor Summary

SimpleDate()

creates a SimpleDate object with initial default values of 1, 1,
2000.

SimpleDate(int mm, int dd, int yy)

creates a SimpleDate object with the initial values of mm, dd,
and yy.

SimpleDate Class Method Summary
Return
value

Method name and argument list

int getMonth()

returns the value of month

int getDay()

returns the value of day

int getYear()

returns the value of year

void setMonth(int mm)

sets the month to mm; if mm is invalid, does not
change the value of month

void setDay(int dd)

sets the day to dd; if dd is invalid, does not
change the value of day

void setYear(int yy)

sets the year to yy

void nextDay()

increments the date to the next day

String toString()

returns the value of the date in the form:
month/day/year

Instantiating an object consists of defining an object
reference—which will hold the address of the object
in memory—and calling a special method of the
class called a constructor, which has the same
name as the class. The job of the constructor is to
assign initial values to the data of the class.

Example 3.1 illustrates how to instantiate objects of
the SimpleDate class. Note that we store the
SimpleDate.java file in the same folder as
Constructors.java.

EXAMPLE 3.1 Demonstrating
Constructors
 1 /* A Demonstration of Using Constructors

 2 Anderson, Franceschi

 3 */

 4

 5 public class Constructors

 6 {

 7 public static void main(String [] args)

 8 {

 9 SimpleDate independenceDay;

10 independenceDay = new SimpleDate(7, 4, 1776

);

11

12 SimpleDate nextCentury = new SimpleDate(1,

1, 2101);

13

14 SimpleDate defaultDate = new SimpleDate();

15 }

16 }

Declaring an object reference is very much like
declaring a variable of a primitive type; we specify
the data type and an identifier. For example, to
declare an integer variable named number1, we
provide the data type (int) and the identifier
(number1), as follows:

int number1;

One notable difference in declaring an object
reference is that its data type is the class name, not
a primitive data type. Here is the syntax for declaring
an object reference:

ClassName objectReference1, objectReference2, . . .;

In Example 3.1, lines 9, 12, and 14 declare object
references for a SimpleDate object. SimpleDate, the
class name, is the data type, and independenceDay,
nextCentury, and defaultDate are the object
references.

Object references can refer to any object of its class.
For example, SimpleDate object references can
point to any SimpleDate object, but a SimpleDate
object reference cannot point to objects of other
classes, such as a Student object.

Once an object reference has been declared, we
instantiate the object using the following syntax:

objectReference = new ClassName(argument list);

This calls a constructor of the class to initialize the
data. The argument list consists of a comma-
separated list of initial data values to assign to the

object. Classes often provide multiple constructors
with different argument lists. Depending on which
constructor we call, we can accept default values for
the data or specify initial values for the data. When
we instantiate an object, our argument list—that is,
the number of arguments and their data types—must
match one of the constructors’ argument lists.

As shown in Table 3.1, the SimpleDate class has two
constructors. Note that the API of a constructor does
not have a return value; nevertheless, constructors
implicitly return an object reference to the newly
instantiated object. The first constructor, SimpleDate(
), is called the default constructor, because its
argument list is empty. This constructor assigns
default values to all data in the object. Thus, in line
14 of Example 3.1, which uses the default
constructor, the data for the defaultDate object is set
to the default values for the SimpleDate class, which
are 1, 1, and 2000.

We see from Table 3.1 that the second constructor
for the SimpleDate class, SimpleDate(int mm, int dd,
int yy), takes three arguments, all of which should
evaluate to integer values. The first argument is the
value for the month, the second argument is the
value for the day, and the third argument is the value
for the year.

Figure 3.1
Three SimpleDate Objects after Instantiation

Lines 10 and 12 of Example 3.1 instantiate
SimpleDate objects using the second constructor. In
line 10, the argument list tells the constructor to give

the value 7 to the month, 4 to the day, and 1776 to
the year. In line 12, the argument list tells the
constructor to give the value 1 to the month, 1 to the
day, and 2101 to the year. Note that no data types
are given when calling the constructors, only the
initial values for the data. The data types of the
arguments are specified in the API so that the client
of the class knows what data types the constructor is
expecting for its arguments.

Lines 12 and 14 also illustrate that we can combine
the declaration of the object reference and
instantiation of the object in a single statement.

When an object is instantiated, the JVM allocates
memory to the new object. The object reference is
assigned an address that the JVM uses to find that
object in memory. Figure 3.1 shows the three objects
instantiated in Example 3.1.

COMMON ERROR TRAP
Do not forget to instantiate all objects that your
program needs. Objects must be instantiated before
they can be used.

It’s important to understand that an object reference
and the object data are different: The object
reference represents a memory location. Notice in

Figure 3.1 that the object references,
independenceDay, nextCentury, and defaultDate,
point to the locations of the object data.

3.3 Calling Methods
Once an object is instantiated, we can use the object
by calling its methods. As we mentioned earlier, the
authors of classes publish their API so that their
clients know what methods are available and how to
call those methods.

Figure 3.2 illustrates how calling a class method
alters the flow of control in our program. When this
program starts running, the JVM executes instruction
1, then instruction 2, then it encounters a method
call.

At that point, the JVM transfers control to the
method and starts executing instructions in the
method. When the method finishes executing, the
JVM transfers control back to the program
immediately after the point the method was called
and continues executing instructions in the program.

Figure 3.2
Flow of Control of a Method Call

A class API consists of the class method names,
their return values, and their argument lists. The
argument list for a method indicates the order and
number of arguments to send to the method, along

with the data type of each argument. Each item in
the argument list consists of a data type and a name.
The arguments sent to the method can be literals,
constants, variables, or any expression that
evaluates to the data type specified in the API of the
method. For example, the API in Table 3.1 shows
that the setMonth, setDay, and setYear methods all
take one argument, which must evaluate to an
integer value.

A method may or may not return a value, as
indicated by a data type, class type, or the keyword
void in front of the method name. If the method
returns a value, then the data type or class type of its
return value will precede the method’s name. For
instance, in Table 3.1, the getDay, getMonth, and
getYear methods each return an integer value. The
call to a value-returning method can be used in an
expression. When the method finishes executing, its
return value will replace the method call in the
expression. If the keyword void precedes the method
name, the method does not return a value. Because
methods with a void return type have no value, they
cannot be used in an expression; instead, a method
call to a method with a void return type is a complete
statement. In Table 3.1, the setMonth, setDay,
setYear, and nextDay methods do not return a value.

Another keyword we will see preceding the method
call in an API is public. This keyword means that any
client of the class can call this method. If the
keyword private precedes the method name, only
other methods of that class can call that method.
Although we will not formally include the public
keyword in the API, all the methods we discuss in
this chapter are public.

To call a method for an object of a class, we use dot
notation, as follows:

objectReference.methodName(arg1, arg2, arg3, . . .

)

The object reference is followed immediately by a
dot (a period), which is followed immediately by the
method name. (Later in the chapter, when we call
static methods, we will substitute the class name for
the object reference.) The arguments for the method
are enclosed in parentheses.

Let’s look again at the methods of the SimpleDate
class. The first three methods in the SimpleDate
class API, getMonth, getDay, and getYear, take an
empty argument list and return an int; thus, those
methods have a return value of type int. We can call
these methods in any expression in our program
where we could use an int. The value of the first

method, getMonth(), is the value of the month in the
object. Similarly, the value of getDay() is the value of
the day in the object, and the value of getYear() is
the value of the year. These “get” methods are
formally called accessor methods or getters; they
enable clients to access the value of the instance
variables of an object.

The next three methods in the SimpleDate class API,
setMonth, setDay, and setYear, take one argument
of type int and do not return a value, which is
indicated by the keyword void. These methods are
called in standalone statements. The first method,
setMonth(int mm), changes the value of the month
in the object to the value of the method’s argument,
mm. Similarly, setDay(int dd) changes the value of
the day in the object, and setYear(int yy) changes
the value of the year in the object to the value of the
method’s argument. These “set” methods are
formally called mutator methods or setters; they
enable a client to change the value of the instance
variables of an object. If, however, we send an
argument to the setDay or setMonth method that is
invalid, such as a day value of 0 or a month value of
13, the methods will not change the value of the
instance variables. Thus, the methods ensure that
the data of an object is always valid. In addition, the
nextDay method, which takes no arguments and
does not return a value, increments the date to the

day following its current value. Thus, if the month,
day, and year were 5, 31, and 2020, calling the
nextDay method would change the month to 6 and
the day to 1.

Example 3.2 illustrates how to use some of the
methods of the SimpleDate class. Line 10 calls the
getMonth method for the independenceDay object.
When line 10 is executed, control transfers to the
getMonth method. When the getMonth method
finishes executing, the value it returns (7) replaces
the method call in the statement. The statement then
effectively becomes:

int independenceMonth = 7;

COMMON ERROR TRAP
When calling a method that takes no arguments,
remember to include the empty parentheses after the
method’s name. The parentheses are required even
if there are no arguments.

In lines 15–16, we print the value of the day in the
nextCentury object. Again, control transfers to the
getDay method, then its return value (1) replaces the
method call. So the statement effectively becomes:

System.out.println("The day for nextCentury is "

 + 1);

COMMON ERROR TRAP
When calling a method, include only values or
expressions in your argument list. Including data
types in your argument list will cause a compiler
error.

Line 18 calls the setDay method, which is used to
change the value of the day for an object. The
setDay method takes one int argument and has a
void return value. Line 18 is a complete statement,
because the method call to a method with a void
return value cannot be used in an expression. The
method changes the value of the day in the
nextCentury object, which we illustrate in lines 19–20
by printing the new value as shown in Figure 3.3.
Then, on line 22, we instantiate another object,
programmersDay, with a month, day, and year of 9,
12, 2009, which we demonstrate by printing the
values returned by calls to the getMonth, getDay,
and getYear methods. International Programmers
Day is the 100th (base 16) day of the year, with the
first Programmers Day in 2009. However, since 2009
was not a leap year, the 100th day is actually 9, 13,
2009. So on line 28, we call the nextDay method,
which has a void return value, to increment the date

to the next day, and then we print the new values of
the programmersDay object.

EXAMPLE 3.2 Calling Methods

 1 /* A demonstration of calling methods

 2 Anderson, Franceschi

 3 */

 4

 5 public class Methods

 6 {

 7 public static void main(String [] args)

 8 {

 9 SimpleDate independenceDay = new SimpleDate(

7, 4, 1776);

10 int independenceMonth =

independenceDay.getMonth();

11 System.out.println("Independence day is in

month "

12 + independenceMonth);

13

14 SimpleDate nextCentury = new SimpleDate(1,

1, 2101);

15 System.out.println("The day for nextCentury

is "

16 + nextCentury.getDay()

);

17

18 nextCentury.setDay(2);

19 System.out.println("The revised day for

nextCentury is "

20 + nextCentury.getDay()

);

21

22 SimpleDate programmersDay = new SimpleDate(

9, 12, 2009);

23 System.out.println("The first Programmers

Day was "

24 +

programmersDay.getMonth() + '/'

25 + programmersDay.getDay(

) + '/'

26 + programmersDay.getYear(

));

27

28 programmersDay.nextDay();

29 System.out.println("The actual date for

Programmers Day is "

30 +

programmersDay.getMonth() + '/'

31 + programmersDay.getDay(

) + '/'

32 + programmersDay.getYear(

));

33 }

34 }

Figure 3.3
Output of Example 3.2

Independence day is in month 7

The day for nextCentury is 1

The revised day for nextCentury is 2

The first Programmers Day was 9/12/2009

The actual date for Programmers Day is

9/13/2009

For now, we’ll postpone discussion of the last
method in the class API, toString, except to say that
its function is to convert the object data to text
suitable for printing.

Skill Practice
with these end-of-chapter questions

3.18.1 Multiple Choice Exercises

Questions 2, 3, 4, 5, 9, 10

3.18.8 Technical Writing

Questions 69, 70

3.4 Using Object References
As we have mentioned, an object reference points to the data
of an object. The object reference and the object data are
distinct entities. An object can have more than one object
reference pointing to it, or an object can have no object
references pointing to it.

In Example 3.3, we declare two SimpleDate object
references, d1 and d2, and we instantiate their objects at lines
9 and 14. Lines 10–12 and 15–18 output the respective data
member values of d1 and d2. Then, line 20 uses the
assignment operator to copy the object reference d1 to the
object reference d2. Note that only the value of the object
reference is copied, not the object data. After line 20, both
object references have the same value and therefore point to
the location of the same object, as shown in Figure 3.4. The
second object, with values (9, 28, 2021), no longer has an
object reference pointing to it and is now marked for garbage
collection. The garbage collector, which is part of the JVM,
releases the memory allocated to objects that no longer have
an object reference pointing to them. Lines 22–24 and 25–27
output the respective instance variable values of d1 and d2
again. These are now identical, as shown in Figure 3.5.

Figure 3.4
Two Object References Pointing to the Same Object

EXAMPLE 3.3 Demonstrating Object
Reference Assignments
 1 /* A demonstration of object reference assignment

 2 Anderson, Franceschi

 3 */

 4

 5 public class ObjectReferenceAssignment

 6 {

 7 public static void main(String [] args)

 8 {

 9 SimpleDate d1 = new SimpleDate(2, 15, 2020);

10 System.out.println("d1 is " + d1.getMonth()

11 + "/" + d1.getDay()

12 + "/" + d1.getYear());

13

14 SimpleDate d2 = new SimpleDate(9, 28, 2021);

15 System.out.println("d2 is "

16 + d2.getMonth()

17 + "/" + d2.getDay()

18 + "/" + d2.getYear());

19

20 d2 = d1;

21 System.out.println("\nAfter assigning d1 to d2:");

22 System.out.println("d1 is " + d1.getMonth()

23 + "/" + d1.getDay()

24 + "/" + d1.getYear());

25 System.out.println("d2 is " + d2.getMonth()

26 + "/" + d2.getDay()

27 + "/" + d2.getYear());

28 }

29 }

Figure 3.5
Output of Example 3.3

d1 is 2/15/2020

d2 is 9/28/2021

After assigning d1 to d2:

d1 is 2/15/2020

d2 is 2/15/2020

When an object reference is first declared, but has not yet
been assigned to an object, its value is a special literal value,
null.

If we attempt to call a method using an object reference
whose value is null, Java generates either a compiler error or
a run-time error called an exception. The exception is a
NullPointerException and results in a series of messages
printed on the Java console indicating where in the program
the null object reference was used. Line 10 of Example 3.4
will generate a compiler error, as shown in Figure 3.6,
because aDate has not been instantiated.

EXAMPLE 3.4 Attempting to Use a null
Object Reference
 1 /* A demonstration of trying to use a null object

reference

 2 Anderson, Franceschi

 3 */

 4

 5 public class NullReference

 6 {

 7 public static void main(String [] args)

 8 {

 9 SimpleDate aDate;

10 aDate.setMonth(5);

11 }

12 }

COMMON ERROR TRAP
Using a null object reference to call a method will generate
either a compiler error or a NullPointerException at run time.
Be sure to instantiate an object before attempting to use the
object reference.

Java does not provide support for explicitly deleting an object.
One way to indicate to the garbage collector that our program
is finished with an object is to set its object reference to null.
Obviously, once an object reference has the value null, it can
no longer be used to call methods.

Example 3.5 shows a NullPointerException being generated
at run time. Line 9 instantiates the independenceDay object,
and lines 10–11 print the month. Line 13 assigns null to the

object reference, and lines 15–16 attempt to print the month
again. As Figure 3.7 shows, a NullPointerException is
generated. Notice that the console message indicates the
name of the application class (NullReference2), the method
main, and the line number 16, where the exception occurred.
The JVM often prints additional lines in the message,
depending on where in our program the error occurred.

Figure 3.8 shows the independenceDay object reference and
object data after setting the object reference to null.

Figure 3.6
Compiler Error from Example 3.4

NullReference.java:10: error: variable aDate might not

have been initialized

 aDate.setMonth(5);

 ^

1 error

EXAMPLE 3.5 Another Attempt to Use a
null Object Reference
1 /* A demonstration of trying to use a null object reference

2 Anderson, Franceschi

3 */

4

5 public class NullReference2

6 {

7 public static void main(String [] args)

8 {

9 SimpleDate independenceDay = new SimpleDate(7, 4,

1776);

10 System.out.println("The month of independenceDay is "

11 + independenceDay.getMonth());

12

13 independenceDay = null; // set object reference to

null

14 // attempt to use object reference

15 System.out.println("The month of independenceDay is "

16 + independenceDay.getMonth());

17 }

18 }

Figure 3.7
Output of Example 3.5

The month of independenceDay is 7

Exception in thread "main"

java.lang.NullPointerException

 at NullReference2.main(NullReference2.java:16)

Figure 3.8
The independenceDay Object Reference Set to null

3.5 Programming Activity 1: Calling
Methods
Let’s put this all together with a sample program that uses a
SimpleDate object. In this Programming Activity, you’ll use a
program that displays the values of the object data as you
instantiate the object and call the methods of the class.

Copy all the files in this chapter’s Programming Activity 1
folder in the supplied code files to a folder on your computer.
Note that all files should be in the same folder.

Open the DateDrawing.java source file. You’ll notice that the
class already contains some source code. Your job is to fill in
the blanks. Search for five asterisks in a row (*****). This will
position you to the places in the source code where you will
add your code. This section of code is shown in Figure 3.9.

Notice that line 22 is a declaration of a SimpleDate object
reference, dateObj.

private SimpleDate dateObj; // SimpleDate object reference

You will use this object reference for instantiating an object
and for calling the methods of the SimpleDate class.

In the source file, you will see nine commented lines that
instruct you to instantiate the object or call a method. You will
also notice that there are nine lines that look like this:

// animate(n);

where n is a number between 1 and 9.

Figure 3.9
Partial Listing of DateDrawing.java

37 public void workWithDates()

38 {

39 /***** Add your code here *****/

40 /***** 1. Instantiate dateObj using an empty

argument list */

41

42 //animate(1);

43

44 /***** 2. Set the month to the month you were

born */

45

46 //animate(2);

47

48 /***** 3. Set the day to the day of the month you

were born */

49

50 //animate(3);

51

52 /***** 4. Set the year to the year you were born

*/

53

54 //animate(4);

55

56 /***** 5. Call the nextDay method */

57

58 //animate(5);

59

60 /***** 6. Set the day to 32, an illegal value */

61

62 //animate(6);

63

64 /***** 7. Set the month to 13, an illegal value

*/

65

66 //animate(7);

67

68 /***** 8. Assign the value null to dateObj */

69

70 //animate(8);

71

72 /***** 9. Attempt to set the month to 1 */

73

74 //animate(9);

75

76 }

These lines are calls to an animate method in this class that
displays the object reference and the object data after you
have executed your code. The n value refers to an action your
code just performed. The animate method will display a
message, as well as the object data. Note that when you call
a method in the same class, you don’t use an object reference
and dot notation.

To complete the Programming Activity, write the requested
code on the line between the numbered instruction and the
animate method call. Then uncomment (remove the two
slashes from) the animate method call.

For example, after you’ve written the code for the first
instruction, lines 40 through 42 should look as follows.

/* 1. Instantiate dateObj using an empty argument list */

dateObj = new SimpleDate();

animate(1);

Compile DateDrawing.java and run DateApplication and you
will see a window that looks like the one in Figure 3.10.

As you can see, the dateObj reference points to the
SimpleDate object, and the month, day, and year instance
variables have been assigned default values.

Write the code for the remaining instructions, compiling and
running the program after completing each task. The program
will display the changes you make to the object data.

DISCUSSION QUESTIONS
1. After instructions 6 and 7 have executed, why are the day and

month values not changed?
2. At the end of the execution of the program, a NullPointerException

is generated. Which statement in the program causes this error?
Explain why.

Figure 3.10
Programming Activity 1 Output

3.6 The Java Class Library
Java provides more than 2,000 predefined classes
that we can use to add functionality to our program.
In this chapter, we’ll discuss a few commonly used
Java classes:

String, which provides a data type for
character sequences along with methods for
searching and manipulating strings

Random, which generates random numbers

Scanner, which provides methods for
reading input from the keyboard

System and PrintStream, which provide data
members and methods for printing data on
the Java console

DecimalFormat and NumberFormat, which
allow us to format numbers for output

Math, which provides methods for performing
mathematical operations

Object wrappers, which provide an object
equivalent to primitive data types so they can
be used in our program as if they were
objects

The Java classes are arranged in packages,
grouped according to functionality.

Table 3.2 describes some of the Java packages that
we will cover in this text. We can find more details on
these classes on Oracle’s Java website:
www.oracle.com/technetwork/java.

TABLE 3.2 Commonly Used Java Packages
Package Categories of Classes
java.lang Basic functionality common to many programs, such

as the String class, Math class, and object wrappers
for the primitive data types

java.text Classes for formatting numeric output

java.util The Scanner class, the Random class, and other
miscellaneous classes

java.io Classes for reading from and writing to files

Many of the commonly used classes, such as String
and Math, reside in the java.lang package. Any class
in the java.lang package is automatically available to
our program.

To use a class from the Java Class Library that is not
in the java.lang package, we need to tell the compiler
in which package the class resides; in other words,
we need to tell the compiler where to find the class.
To do this, we include an import statement in our
program. The import statement is inserted at the top

http://www.oracle.com/technetwork/java

of the program after our introductory comments, but
before the class statement that begins the program.

For example, if we want to use the DecimalFormat
class to format a floating-point number for output, we
would import the DecimalFormat class from the
java.text package as follows:

import java.text.DecimalFormat;

If we’re using more than one class from a package,
we can import all those classes we use by replacing
the class name with an asterisk, as in the following
example:

import java.text.*;

3.7 The String Class
As we’ve discussed, Java provides the char primitive data
type, which stores one character. Almost every program,
however, needs a data type that stores more than one
character. Programs need to process names, addresses, or
labels of many kinds. For example, many programs involve a
login procedure where the user has to enter a user ID and a
password. The program reads the user ID and password,
compares them to values stored in a database, and allows the
user to continue only if the user ID and password match the
database values.

To handle this type of data, Java provides a String class.
Because the String class is part of the java.lang package, it is
automatically available to any Java program and we do not
need to use the import statement. The String class provides
several constructors, as well as a number of methods to
manipulate, search, and compare String objects. In addition,
the Java language provides two concatenation operators to
combine String objects with variables, literals, or other String
objects.

Let’s look at two of the String class constructors shown in
Table 3.3. Example 3.6 shows how to use these two
constructors in a program.

TABLE 3.3 String Class Constructors
String Class Constructor Summary

String(String str)

allocates a String object with the value of str, which can be a String object
or a String literal

String()

allocates an empty String object

EXAMPLE 3.6 Demonstrating String
Methods

 1 /* Demonstrating String methods

 2 Anderson, Franceschi

 3 */

 4 public class StringDemo

 5 {

 6 public static void main(String [] args)

 7 {

 8 String s1 = new String("OOP in Java ");

 9 System.out.println("s1 is: " + s1);

10 String s2 = "is not that difficult. ";

11 System.out.println("s2 is: " + s2);

12

13 String s3 = s1 + s2; // new String is s1, followed by

s2

14 System.out.println("s1 + s2 is: " + s3);

15

16 System.out.println("s1 is still: " + s1); // s1 is

unchanged

17 System.out.println("s2 is still: " + s2); // s2 is

unchanged

18

19 String empty = new String();

20 System.out.println("\nThe length of the empty String

is "

21 + empty.length());

22

23 String greeting = "Hello"; // instantiate greeting

24 int len = greeting.length(); // len will be assigned

5

25 System.out.println("\nThe length of " + greeting + "

is " + len);

26

27 String greetingUpper = greeting.toUpperCase();

28 System.out.println(greeting + " converted to upper

case is "

29 + greetingUpper);

30 System.out.println(greeting + " converted to

lowercase is "

31 + greeting.toLowerCase());

32

33 char firstChar = greeting.charAt(0);

34 char lastChar = greeting.charAt(greeting.length() -

1);

35 System.out.println("\nThe first and last characters

of "

36 + greeting + " are " + firstChar

37 + " and " + lastChar);

38

39 int indexOfE = greeting.indexOf('e');

40 System.out.println("\nThe index of e is " + indexOfE

);

41 System out.println("The index of l is "

42 + greeting.indexOf('l'));

43 System.out.println("The index of lo is "

44 + greeting.indexOf("lo"));

45 System.out.println("The index of h is "

46 + greeting.indexOf('h'));

47

48 System.out.println("\nThe middle three characters of

Hello are "

49 + greeting.substring(1, 4));

50 System.out.println("All characters of Hello except

the first are "

51 + greeting.substring(1));

52 }

53 }

When this program runs, it will produce the output shown in
Figure 3.11.

The first constructor

String(String str)

allocates a String object and sets its value to the sequence of
characters in the argument str, which can be a String object or
a String literal. Line 8 instantiates the String s1 and sets its
value to “OOP in Java”.

The second constructor

String()

creates an empty String—in other words, a String containing
no characters. We can add characters to the String later. This
constructor will come in handy in programs where we build up
our output, piece by piece. Line 19 uses the second
constructor to instantiate an empty String named empty.

Figure 3.11
Output from Example 3.6

s1 is: OOP in Java

s2 is: is not that difficult.

s1 + s2 is: OOP in Java is not that difficult.

s1 is still: OOP in Java

s2 is still: is not that difficult.

The length of the empty String is 0

The length of Hello is 5

Hello converted to upper case is HELLO

Hello converted to lowercase is hello

The first and last characters of Hello are H and o

The index of e is 1

The index of l is 2

The index of lo is 3

The index of h is -1

The middle three characters of Hello are ell

All characters of Hello except the first are ello

Additionally, because Strings are used so frequently in
programs, Java provides special support for instantiating
String objects without explicitly using the new operator. We
can simply assign a String literal to a String object reference.
For example, at line 10, we assign a String literal to the s2
String reference.

Java also provides special support for appending a String to
the end of another String through the concatenation
operator (+) and the shortcut version of the concatenation
operator (+=). This concept is illustrated in Example 3.6.
Lines 8–11 declare, instantiate, and print two String objects,
s1 and s2. Line 13 concatenates s1 and s2, and the resulting
String is assigned to the s3 String reference, which is printed
at line 14. Finally, we output s1 and s2 again at lines 16 and
17 to illustrate that their values have not changed.

Note that the String concatenation operator is the same
character as the addition arithmetic operator. In some cases,
we need to make clear to the compiler which operator we
want to use. For example, this statement uses both the String
concatenation operator and the addition arithmetic operator:

System.out.println("The sum of 1 and 2 is " + (1 + 2));

Notice that we put 1 + 2 inside parentheses to let the compiler
know that we want to add two ints using the addition
arithmetic operator (+). The addition will be performed first
because of the higher operator precedence of parentheses.
Then it will become clear to the compiler that the other +
operator is intended to be a String concatenation operator
because its operands are a String and an int.

Example 3.6 also demonstrates some useful methods of the
String class, which are summarized in Table 3.4.

TABLE 3.4 String Methods
String Class Method Summary

Return
value

Method name and argument list

int length()

returns the length of the String

String toUpperCase()

returns a copy of the String with all letters in uppercase

String toLowerCase()

returns a copy of the String with all letters in lowercase

char charAt(int index)

returns the character at the position specified by index

int indexOf(String searchString)

returns the index of the beginning of the first occurrence of
searchString or −1 if searchString is not found

int indexOf(char searchChar)

returns the index of the first occurrence of searchChar in the
String or −1 if searchChar is not found

String substring(int startIndex, int endIndex)

returns a substring of the String object beginning at the
character at index startIndex and ending at the character at
index endIndex − 1

String substring(int startIndex)

returns a substring of the String object beginning at the
character at index startIndex and continuing to the end of the
String

The length Method
The length method returns the number of characters in a
String, including any spaces and punctuation. Sometimes, the
number of characters in a user ID is limited, for example, to
eight, and this method is useful to ensure that the length of
the ID does not exceed the limit.

The length method is called using a String object reference
and the dot operator. As we can see in Table 3.4, the length
method does not take any arguments and returns an int,
which contains the number of characters in the String. We can
output the return value or we can store the return value in an
int variable. In Example 3.6, at line 21, we call the length
method inside the output statement. The return value replaces
the method call, so the result is that we output the number of
characters—in this case 0, as seen in Figure 3.11. At line 24,
we store the return value from the length method in the
variable len. This allows us to refer to that value in the next
line to output the number of characters in the String greeting.

The toUpperCase and toLowerCase
Methods
The toUpperCase method returns a copy of the String with all
the letters in uppercase, while the toLowerCase method
returns a copy of the String with all the letters in lowercase.
Digits and special characters are unchanged.

Both methods do not take any arguments. If we want to
convert the original String to upper- or lowercase, we need to
assign the return value to the original String. Optionally, we
can assign the converted String to another String object or
output the return value directly.

At line 27 in Example 3.6, we call the toUpperCase method on
greeting and store the returned capitalized String into a new
String greetingUpper. We then output greetingUpper at lines
28–29. The String greeting is unchanged.

We call the toLowerCase method at lines 30–31 in an output
statement and print the return value directly. Again, the String
greeting is unchanged.

Before discussing the remaining methods in Table 3.4, we
need to introduce the concept of indexes. Each character in a
String is assigned an index representing its position within the
String. The index of the first character is always 0. The index
of the second character is always 1, and so on. It stands to
reason, then, that the index of the last character is always the
length of the String – 1.

Shown below is the String greeting and the indexes of its
characters. As we can see, the index of the first letter, H, is 0,

and the index of the last letter, o, is 4, which is one less than
the length of the String (5).

Several of the String methods use these indexes to identify
which characters within the String to process.

The charAt Method
The charAt method returns the character at a specified index
in a String.

One of the uses of this method is for extracting just the first
character of a String, which might be advantageous when
prompting the user for an answer to a question.

For example, we might ask users if they want to play a game
again. They can answer “y,” “yes,” or “you bet!” Our only
concern is whether the first character is a y, so we could use
this method to store just the first character of their answer into
a char variable. Assuming the user’s answer was previously
read and stored into a String variable named answerString,
we could use the following statement to extract the first
character of answerString:

char answerChar = answerString.charAt(0);

Later in this text, when we talk about selection, we will be able
to test whether answerChar is a ‘y’.

As shown in Table 3.4, the charAt method takes one
argument, an int, which is the index of the character within the
String to extract. The method returns that character as a char.
In Example 3.6, at line 33, we call the charAt method with an
argument of 0 to extract the first character in greeting and
store the return value in the char variable, firstChar. At line 34,
we extract the last character in greeting by calling the charAt
method with the argument greeting.length() – 1 and store the
return value in the char variable, lastChar. Although in this
case we could have sent an argument of 4 and gotten the

same result, sending an argument of length() -1 to the charAt
method will extract the last character of any String. We then
output both characters (lines 35–37). Note that we assume
that greeting has at least one character; otherwise, the
expression greeting.length() –1 is equal to -1, an invalid
index.

The indexOf Methods
The indexOf methods are useful for searching a String for a
specific character or String. Table 3.4 shows two versions of
this method, one that accepts a single char as the argument
and one that accepts a String as an argument. In either case,
the methods return as an int the index of the first occurrence
of the char or the first occurrence of the first character of the
String. If the character or String is not found, the indexOf
methods return −1.

In Example 3.6, we use the indexOf method to search the
String greeting for various characters. First, at line 39, we
search greeting for the character ‘e’ and store the returned
index in indexOfE. When we output that index at line 40, we
see in Figure 3.11 that ‘e’ was found at index 1. At lines 41–
42, we search greeting for the letter ‘l’ and output the returned
index. Notice that greeting has two letter ls, but the indexOf
method returns only the index of the first occurrence, which is
2. Then at lines 43–44, we search greeting for the String “lo”,
which the indexOf method finds beginning at index 3. Finally,
at lines 45–46, we search greeting for the lowercase letter ‘h’,
which is not in our String. We see when outputting the return
value that the method returned −1, indicating that the indexOf
method did not find a lowercase h in greeting.

The substring Methods
The substring methods are useful for creating a new String
from characters in an existing String. The substring method
returns a group of characters, or substring, from a String.
The original String is unchanged. Table 3.4 shows two
versions of the substring method. The first version takes two
int arguments. The first argument is the index at which to start
extracting the characters, and the second argument is the
index of the first character not to extract. Thus, the endIndex
argument is one position past the last character to extract. We
know this sounds a little awkward, but setting up the
arguments this way actually makes the method easier to use,
as we will demonstrate.

In Example 3.6, we create and output a new String containing
the middle three characters of greeting (lines 48–49). The first
argument specifies that the new String should start with the
character at index 1, which is an ‘e’, and the String should
include all succeeding characters up to but not including the
character at index 4. The result is a String containing “ell”.

The second version of the substring method is convenient for
extracting all characters in a String from one position to the
end of the String. This version of substring takes only one int
argument, which is the index at which to start collecting
characters. The returned String will consist of all characters
starting at startIndex and continuing to the end of the String.
We call this version at lines 50–51, where we extract and
output all characters in greeting except the first.

String Processing
With the popularity of large search engines and Big Data, the
ability to find, extract, and reformat information in a String of
characters is becoming an important part of computer
science. We call this string processing. For example, using
the String methods we have just discussed, we can write an
application to extract and format a first and last name from a
String. Assume we know that a String contains a name in this
format:

<lastname>, <firstname>

that is, with the last name first, followed by a comma and a
space, then the first name.

Our job is to produce a String in this format:

<Firstname> <Lastname>

with a space separating the first and last names and with the
first character of each name capitalized and all other letters in
lowercase.

Example 3.7 shows the code to accomplish this, and its
output is shown in Figure 3.12. In this example, we have hard-
coded the name in the String invertedName (line 8) to be:
“lincoln, abraham” but the code we write needs to work for
any name in this format.

Let’s look at the characters and indexes of this String. (Again,
this is just one example. We are writing code to work with any
name in this format.)

Let’s begin by extracting the last name. We know the last
name starts at the beginning of the String and ends at the
character before the comma, so we need to find the comma.
As we have seen, the indexOf method allows us to search for
the location of a character. At line 10, we call the indexOf
method, sending it a comma as the search argument, and
storing the return value in the int variable, indexOfComma.
We output the indexOfComma at lines 11–12 to verify that we
have indeed found the comma at index 7.

We then use the substring method to extract all the characters
from the first character up to, but not including, the location
of the comma. Our two arguments, then, are 0 as the start
index, and indexOfComma as the end index. At line 16, we
output the extracted last name.

Next, we want to extract the first name. Looking at our
inverted name above, we see that the first name starts at the
character after the space (index 9 in this case) and continues
to the end of the String. We could either search for the space,
or we could specify the starting index for the first name as an
offset from the location of the comma that we have already
found. Let’s do the latter.

Because we want to extract all characters starting two
positions after the comma until the end of the String, we can
use the version of the substring method that accepts one
argument. At line 19, we call the substring method with the
argument indexOfComma + 2. This will extract all characters
from index 9 to the end of invertedName. We output the
returned String, firstName, at line 20.

We have now isolated the first and last names in their own
Strings.

We have one more task to perform: formatting the
capitalization of the names. As mentioned, we want to
capitalize the first character of each name and make the rest
of the characters lowercase. We can do this by dividing each

name into two Strings: one String that will contain just the first
character, and the second String that will contain the
remaining characters. At line 23, we extract just the first
character of the first name using the substring method with
the start index being 0 and the end index being 1. We then
capitalize the first letter by calling the toUpperCase method on
that String and storing the return value back into
firstNameStart (line 24). We again call the substring method to
extract the remaining characters of the first name (line 25),
starting at index 1 and continuing to the end of the String and
convert that String to lowercase by calling the toLowerCase
method (line 26), storing the result back into the
firstNameRemainder String. We can now combine those two
Strings into a formatted first name using the String
concatenation operator (line 27).

At lines 29–33, we perform the corresponding operations on
the last name.

At this point, the formatting of the name is complete and we
concatenate the first name, a space, and the last name to
form the full name (line 35), which we output at lines 36–37.

COMMON ERROR TRAP
Specifying a negative start index or a start index past the last
character of the String will generate a
StringIndexOutOfBoundsException. Specifying a negative end
index or an end index greater than the length of the String will
also generate a StringIndexOutOfBoundsException.

EXAMPLE 3.7 StringProcessing.java

 1 /* Demonstrating String Processing

 2 Anderson, Franceschi

 3 */

 4 public class StringProcessing

 5 {

 6 public static void main(String [] args)

 7 {

 8 String invertedName = "lincoln, abraham";

 9

10 int comma = invertedName.indexOf(','); // find the

comma

11 System.out.println("\nThe index of ',' in \""

12 + invertedName + "\" is " + comma

);

13

14 // last name: extract all characters before the comma

15 String lastName = invertedName.substring(0, comma);

16 System.out.println("The last name is " + lastName);

17

18 // first name: extract all characters after the space

19 String firstName = invertedName.substring(comma + 2

);

20 System.out.println("The first name is " + firstName

);

21

22 // convert the first letter of each name to uppercase

23 String firstNameStart = firstName.substring(0, 1);

24 firstNameStart = firstNameStart.toUpperCase();

25 String firstNameRemainder = firstName.substring(1);

26 firstNameRemainder = firstNameRemainder.toLowerCase(

);

27 firstName = firstNameStart + firstNameRemainder;

28

29 String lastNameStart = lastName.substring(0, 1);

30 lastNameStart = lastNameStart.toUpperCase();

31 String lastNameRemainder = lastName.substring(1);

32 lastNameRemainder = lastNameRemainder.toLowerCase();

33 lastName = lastNameStart + lastNameRemainder;

34

35 String fullName = firstName + " " + lastName;

36 System.out.println("\nThe formatted full name is "

37 + fullName);

38 }

39 }

REFERENCE POINT
You can read more about the String class on Oracle’s Java
website www.oracle.com/technetwork/java.

Try running this example with your name and with a mixture of
upper- and lowercase letters to verify that it does indeed work
with other names.

When we are calculating indexes and the number of
characters to extract, we need to be careful not to specify an
index that is not in the String, because that will generate a
run-time error, StringIndexOutOfBoundsException.

http://www.oracle.com/technetwork/java

Figure 3.12
The Output of Example 3.7

The index of ',' in "lincoln, abraham" is 7

The last name is lincoln

The first name is abraham

The formatted full name is Abraham Lincoln

3.8 Formatting Output with the
DecimalFormat Class
In a computer program, numbers represent a real-life
entity, for instance, a price or a winning percentage.
Floating-point numbers, however, are calculated to
many decimal places and, as a result of some
computations, can end up with more significant digits
than our programs need. For example, the price of
an item after a discount could look like
3.466666666666666, when all we really want to
display is $3.47; that is, a leading dollar sign and two
significant digits after the decimal point. The
DecimalFormat class allows us to specify the
number of digits to display after the decimal point
and to add dollar signs, commas, and percentage
signs (%) to our output.

The DecimalFormat class is part of the java.text
package, so to use the DecimalFormat class, we
include the following import statement in our
program:

import java.text.DecimalFormat;

We can instantiate a DecimalFormat object using a
simple constructor that takes a String object as an
argument. This String object represents how we

want our formatted number to look when it’s printed.
The API for that constructor is shown in Table 3.5.

TABLE 3.5 A DecimalFormat Constructor
and the format Method

DecimalFormat Class Constructor
DecimalFormat(String pattern)

instantiates a DecimalFormat object with the output pattern
specified in the argument

The format Method
Return
value

Method name and argument list

String format(double number)

returns a String representation of number formatted
according to the DecimalFormat object used to call the
method

The pattern that we use to instantiate the
DecimalFormat object consists of special characters
and symbols and creates a “picture” of how we want
the number to look when printed. Some of the more
commonly used symbols and their meanings are
listed in Table 3.6.

TABLE 3.6 Special Characters for
DecimalFormat Patterns

Common Pattern Symbols for a DecimalFormat object
Symbol Meaning

0 Required digit. Do not suppress leading or terminating
0s in this position.

Optional digit. Do not include a leading or terminating
digit that is 0.

. Decimal point.

, Comma separator.

$ Dollar sign.

% Multiply by 100 and append a percentage sign.

EXAMPLE 3.8 Demonstrating the
DecimalFormat Class

 1 /* Demonstrating the DecimalFormat class

 2 Anderson, Franceschi

 3 */

 4

 5 // import the DecimalFormat class from the

java.text package

 6 import java.text.DecimalFormat;

 7

 8 public class DemoDecimalFormat

 9 {

10 public static void main(String [] args)

11 {

12 // first, instantiate a DecimalFormat object

specifying a

13 // pattern for currency

14 DecimalFormat pricePattern = new

DecimalFormat("$0.00");

15

16 double price1 = 78.66666666;

17 double price2 = 34.5;

18 double price3 = .3333333;

19 int price4 = 3;

20 double price5 = 100.23;

21

22 // then print the values using the pattern

23 System.out.println("The first price is: "

24 +

pricePattern.format(price1));

25 System.out.println("\nThe second price is: "

26 +

pricePattern.format(price2));

27 System.out.println("\nThe third price is: "

28 +

pricePattern.format(price3));

29 System.out.println("\nThe fourth price is: "

30 +

pricePattern.format(price4));

31 System.out.println("\nThe fifth price is: "

32 +

pricePattern.format(price5));

33

34 // instantiate another new DecimalFormat

object

35 // for printing percentages

36 DecimalFormat percentPattern = new

DecimalFormat("0.0#%");

37

38 double average1 = .98;

39 System.out.println("\nThe first average is:

"

40 + percentPattern.format(

average1));

41 double average2 = .98748;

42 System.out.println("\nThe second average is:

"

43 + percentPattern.format(

average2));

44

45 // now instantiate another new DecimalFormat

object

46 // for printing time as two digits

47 DecimalFormat timePattern = new

DecimalFormat("00");

48

49 int hours = 5, minutes = 12, seconds = 0;

50 System.out.println("\nThe time is "

51 + timePattern.format(hours)

+ ":"

52 + timePattern.format(minutes

) + ":"

53 + timePattern.format(seconds

));

54

55 // now instantiate another DecimalFormat

object

56 // for printing numbers in the millions.

57 DecimalFormat bigNumber = new DecimalFormat(

"#,###");

58

59 int millions = 1234567;

60 System.out.println("\nmillions is "

61 + bigNumber.format(millions)

);

62 }

63 }

Once we have instantiated a DecimalFormat object,
we format a number by passing it as an argument to
the format method, shown in Table 3.5. Example 3.8
demonstrates the use of the DecimalFormat patterns
and calling the format method. The output for this
program is shown in Figure 3.13.

In Example 3.8, line 14 instantiates the
DecimalFormat object, pricePattern, which will be
used to print prices. In the pattern

"$0.00"

Figure 3.13
Output from Example 3.8

The first price is: $78.67

The second price is: $34.50

The third price is: $0.33

The forth price is: $3.00

The fifth price is: $100.23

The first average is: 98.0%

The second average is: 98.75%

The time is 05:12:00

millions is 1,234,567

the first character of this pattern is the dollar sign ($),
which we want to precede the price. The 0 specifies
that there should be at least one digit to the left of
the decimal point. If there is no value to the left of the
decimal point, then insert a zero. The two 0s that
follow the decimal point specify that exactly two
digits should be to the right of the decimal point; that
is, if more than two digits are to the right of the
decimal point, round to two digits; if the last digit is a
0, include the zero, and if there is no fractional part
to the number, include two zeroes. Using this
pattern, we see that in lines 23–24, price1 is printed
to two decimal places. In lines 25–26, price2 is
printed with a zero in the second decimal place.

In lines 29–30, we print price4, which is an integer.
The format method API calls for a double as the
argument; however, because all numeric data types
can be promoted to a double, any numeric data type
can be sent as an argument. The result is that two
zeroes are added to the right of the decimal point.

Finally, we use the pricePattern pattern to print
price5 in lines 31–32, which needs no rounding or
padding of extra digits.

COMMON ERROR TRAP
When using a % symbol to format a percentage, do
not multiply the value by 100. The format method will
do that for you.

Next, line 36 instantiates a DecimalFormat object,
percentPattern, for formatting percentages to one or
two decimal places (“0.0#%”). Lines 38–40 and
41–43 define the variables average1 and average2
then print them using the format method in an output
statement. Notice that we do not multiply the
averages by 100 before we format the percentage. A
% in the pattern signals to the format method that it
should multiply the value by 100 before converting
the number to a String.

REFERENCE POINT
You can read more about the DecimalFormat class
on Oracle’s Java website:
www.oracle.com/technetwork/java.

Line 47 defines another pattern, “00” , which is
useful for printing the time with colons between the
hour, minutes, and seconds. When the time is
printed on lines 50–53, the hours, minutes, and
seconds are padded with a leading zero, if
necessary.

http://www.oracle.com/technetwork/java

Line 57 defines our last pattern, “#,###” , which
can be used to insert commas into integer values in
the thousands and above. Lines 60–61 print the
variable millions with commas separating the millions
and thousands digits. Notice that the pattern is
extrapolated for a number that has more digits than
the pattern.

3.9 Generating Random Numbers
with the Random Class
Random numbers come in handy for many
operations in a program, such as rolling dice, dealing
cards, timing the appearance of a nemesis in a
game, or other simulations of seemingly random
events.

There’s one problem in using random numbers in
programs, however: Computers are deterministic.
In essence, this means that given a specific input to
a specific set of instructions, a computer will always
produce the same output. The challenge, then, is
generating random numbers while using a
deterministic system. Many talented computer
scientists have worked on this problem, and some
innovative and complex solutions have been
proposed.

The Random class, which is in the java.util package,
uses a mathematical formula to generate a
sequence of numbers. The constructor generates a
seed value, which determines where in that
sequence the set of random numbers will begin. As
such, the Random class generates numbers that
appear to be, but are not truly, random. These

numbers are called pseudorandom numbers, and
they work just fine for our purposes.

Table 3.7 shows a constructor for the Random class
and a method for retrieving a random integer. The
default constructor creates a random number
generator using a seed value. Once the random
number generator is created, we can ask for a
random number by calling the nextInt method. Other
methods, nextDouble, nextBoolean, nextByte, and
nextLong, which are not shown in Table 3.7, return a
random double, boolean, byte, or long value,
respectively.

TABLE 3.7 A Random Class Constructor
and the nextInt Method

Random Class Constructor
Random()

creates a random number generator with a seed generated
using the system time

The nextlnt Method
Return
value

Method name and argument list

int nextInt(int number)

returns a random integer ranging from 0 up to, but
not including, number in uniform distribution

To demonstrate how to use the random number
generator, let’s take rolling a die as an example. To
simulate the roll of a six-sided die, we need to

simulate random occurrences of the numbers 1
through 6. If we call the nextInt method with an
argument of 6, it will return an integer between 0 and
5. To get randomly distributed numbers from 1 to 6,
we can simply add 1 to the value returned by the
nextInt method. Thus, if we have instantiated a
Random object named random, we can generate
random numbers from 1 to 6 by calling the nextInt
method in this way:

int die = random.nextInt(6) + 1;

In general, assuming than n is smaller than m, if we
want to generate random numbers from n to m, we
should call the nextInt method with the number of
possible random values (m − n + 1), and then add
the first value of our sequence (n) to the returned
value. Thus, this statement generates a random
number between 10 and 100 inclusive:

int randomNumber = random.nextInt(100 - 10 + 1) +

10;

Line 18 of Example 3.9 generates a random number
between 20 and 200 inclusive.

EXAMPLE 3.9 A Demonstration of
the Random Class

 1 /*A demonstration of the Random class

 2 Anderson, Franceschi

 3 */

 4 import java.util.Random;

 5

 6 public class RandomNumbers

 7 {

 8 public static void main(String [] args)

 9 {

10 Random random = new Random();

11

12 // simulate the roll of a die

13 int die = random.nextInt(6) + 1;

14 System.out.println("\nThe die roll is " +

die);

15

16 // generate a random number between 20 and

200

17 int start = 20, end = 200;

18 int number = random.nextInt(end - start + 1

) + start;

19 System.out.println("\nThe random number

between " + start

20 + " and " + end + " is "

+ number);

21 }

22 }

REFERENCE POINT
You can read more about the Random class on
Oracle’s Java website:
www.oracle.com/technetwork/java.

When the RandomNumbers program executes, it will
produce output similar to Figure 3.14. The output will
vary from one execution of the program to the next
because different random numbers will be
generated.

Figure 3.14
Output from Example 3.9

The die roll is 2

The random number between 20 and 200 is 117

http://www.oracle.com/technetwork/java

3.10 Input from the Console Using
the Scanner Class
As our programs become more complex, we will
need to allow the users of our programs to input
data. User input can be read into our program in
several ways:

from the keyboard

from a file

through a Graphical User Interface (GUI)

The Java Class Library provides classes for all types
of data input. In this chapter, we will concentrate on
inputting data from the keyboard.

The Scanner class provides methods for reading
byte, short, int, long, float, double, boolean, and
String data types from the keyboard. These methods
are shown in Table 3.8.

TABLE 3.8 Selected Methods of the Scanner
Class

A Scanner Class Constructor
Scanner(InputStream dataSource)

creates a Scanner object that will read from the InputStream

dataSource. To read from the keyboard, we will use the
predefined InputStream System.in.

Selected Methods of the Scanner Class
Return
value

Method name and argument list

byte nextByte()

returns the next input as a byte

short nextShort()

returns the next input as a short

int nextInt()

returns the next input as an int

long nextLong()

returns the next input as a long

float nextFloat()

returns the next input as a float

double nextDouble()

returns the next input as a double

boolean nextBoolean()

returns the next input as a boolean

String next()

returns the next token in the input line as a
String

String nextLine()

returns the unread characters of the input line
as a String

The Scanner class is defined in the java.util
package, so we need to include the following import
statement:

import java.util.Scanner;

In order to use the Scanner class, we must first
instantiate a Scanner object and associate it with a
data source. We will use the System.in input stream,
which by default is tied to the keyboard. Thus, our
data source for input will be System.in. The following
statement will instantiate a Scanner object named
scan and associate the keyboard as its data source.

Scanner scan = new Scanner(System.in);

Once the Scanner object has been instantiated, we
can use it to call any of the next. . . methods to input
data from the keyboard. The specific next. . . method
we call depends on the type of input we want from
the user. Each of the next. . . methods returns a
value from the input stream, that is, the value the
user types into the keyboard. We need to assign the
return value from the next. . . methods to a variable
to complete the data input. Obviously, the data type
of our variable must match or be compatible with the
data type of the value returned by the next. . .
method.

The next. . . methods just perform input. They do not
tell the user what data to enter. Before calling any of
the next methods, therefore, we need to prompt the
user for the input we want. We can print a prompt
using System.out.print, which is similar to using
System.out.println, except that the cursor remains
after the printed text rather than advancing to the
next line.

When writing a prompt for user input, we should
keep several things in mind. First, our prompt should
be specific. If we want the user to enter his or her full
name, then our prompt should say just that:

Please enter your first and last names.

If the input should fall within a range of values, then
we should tell the user which values will be valid, for
example:

Please enter an integer between 0 and 10.

We should also keep in mind that users are typically
not programmers. It’s important to phrase a prompt
using language the user understands. Many times,
programmers write a prompt from their point of view,
as in this bad prompt:

Please enter a String:

Users don’t know, and don’t care, about Strings or
any other data types, for that matter. Users want to
know only what they need to enter to get the
program to do its job.

When our prompts are clear and specific, the user
makes fewer errors and therefore feels more
comfortable using our program.

SOFTWARE ENGINEERING TIP
Provide the user with clear prompts for input.
Prompts should be phrased using words the user
understands and should describe the data requested
and any restrictions on input values.

Line 13 of Example 3.10 prompts the user to enter
his or her first name. Line 14 captures the user input
and assigns the word entered by the user to the
String variable firstName, which is printed in line 15.
Similarly, line 17 prompts for the user’s age, line 18
captures the integer entered by the user and assigns
it to the int variable age, and line 19 outputs the
value of age. Reading other primitive data types
follows the same pattern. Line 21 prompts for the
user’s grade point average (a float value). Line 22
captures the number entered by the user and

assigns it to the float variable gpa, and line 23
outputs the value of gpa.

EXAMPLE 3.10 Reading from the
Keyboard Using Scanner

 1 /* A demonstration of reading from the keyboard

using Scanner

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class DataInput

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12

13 System.out.print("Enter your first name >

");

14 String firstName = scan.next();

15 System.out.println("Your name is " +

firstName);

16

17 System.out.print("\nEnter your age as an

integer > ");

18 int age = scan.nextInt();

19 System.out.println("Your age is " + age

);

20

21 System.out.print("\nEnter your GPA > ");

22 float gpa = scan.nextFloat();

23 System.out.println("Your GPA is " + gpa

);

24 }

25 }

SOFTWARE ENGINEERING TIP
End your prompts with some indication that input is
expected, and include a trailing space for better
readability.

When this program executes, the prompt is printed
on the console and the cursor remains at the end of
the prompt. Figure 3.15 shows the output when
these statements are executed and the user enters
Syed, presses Enter, enters 21, presses Enter, and
enters 3.875, and presses Enter again.

The methods nextByte, nextShort, nextLong,
nextDouble, and nextBoolean can be used with the
same pattern as next, nextInt, and nextFloat.

Note that we end our prompt with a space, an angle
bracket, and another space. The angle bracket
indicates that we are waiting for input, and the
spaces separate the prompt from the input. Without
the trailing space, the user’s input would immediately
follow the prompt, which is more difficult to read, as
we show in Figure 3.16.

As you review Table 3.8, you may notice that the
Scanner class does not provide a method for reading
a single character. To do this, we can use the next
method, which returns a String, then extract the first
character from the String using the charAt(0)
method call, as shown in Example 3.11. Line 14
inputs a String from the user and assigns it to the
String variable initialS, then line 15 assigns the first
character of initialS to the char variable initial; initial
is then printed at line 16 as shown in Figure 3.17.

Figure 3.15
Data Input with Example 3.10

Enter your first name > Syed

Your name is Syed

Enter your age as an integer > 21

Your age is 21

Enter your GPA > 3.875

Your GPA is 3.875

Figure 3.16
Prompt and Input Running Together

Enter your age as an integer >21

EXAMPLE 3.11 Using Scanner for
Character Input
1 /* A demonstration of how to get character input

using Scanner

2 Anderson, Franceschi

3 */

4

5 import java.util.Scanner;

6

7 public class CharacterInput

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12

13 System.out.print("Enter your middle initial

> ");

14 String initialS = scan.next();

15 char initial = initialS.charAt(0);

16 System.out.println("Your middle initial is "

+ initial);

17 }

18 }

A Scanner object divides its input into sequences of
characters called tokens, using delimiters. The
default delimiters are the standard white space
characters, which among others include the space,

tab, and newline characters. The complete set of
Java white space characters is shown in Table 3.9.

TABLE 3.9 Java White Space Characters
Character Unicode equivalents
space \u00A0, \u2007, \u202F

tab \u0009, \u000B

line feed \u000A

form feed \u000C

carriage return \u000D

file, group, unit, and record
separators

\u001C, \u001D, \u001E,

\u001F

By default, when a Scanner object tokenizes the
input, it skips leading white space, then builds a
token composed of all subsequent characters until it
encounters another delimiter. Thus, if we have this
code,

System.out.print("Enter your age as an integer > "

);

int age = scan.nextInt();

and the user types, for example, three spaces and a
tab, 21, and a newline:

<space><space><space><tab>21<newline>

then the Scanner object skips the three spaces and
the tab, starts building a token with the character 2,
then adds the character 1 to the token, and stops
building the token when it encounters the newline
character. Thus, 21 is the resulting token, which the
nextInt method returns and which is then assigned to
the age variable.

Figure 3.17
Output of Example 3.11

Enter your middle initial > A

Your middle initial is A

An input line can contain more than one token. For
example, if we prompt the user for his or her name
and age, and the user enters the following line, then
presses Enter:

<tab>Jon<space>Olsen,<space>21<space>

then, the leading white space is skipped and the
Scanner object creates three tokens:

Jon

Olsen,

21

Note that commas are not white space, so the
comma is actually part of the second token. To input
these three tokens, our program would use two calls
to the next method to retrieve the two String tokens
and a call to nextInt to retrieve the age.

To capture a complete line of input from the user, we
use the method nextLine. Unlike other Scanner
methods, the nextLine method returns a String
containing any leading and trailing white space,
except for the newline character, which is the
nextLine method’s only delimiter. Example 3.12
shows how nextLine can be used in a program.
Figure 3.18 shows a sample run of the program with
the user entering data.

REFERENCE POINT
You can read more about the Scanner class on
Oracle’s Java website:
www.oracle.com/technetwork/java.

If the user’s input (that is, the next token) is not
compatible with the data type of the next. . . method
call, then an InputMismatchException is generated
and the program stops. Figure 3.19 demonstrates
Example 3.10 when the program calls the nextInt
method and the user enters a letter, rather than an

http://www.oracle.com/technetwork/java

integer. It is possible to avoid this exception, and we
show how when we discuss looping.

EXAMPLE 3.12 Using the nextLine
Method
 1 /* A demonstration of using Scanner's nextLine

method

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class InputALine

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12

13 System.out.print("Enter a sentence > ");

14 String sentence = scan.nextLine();

15 System.out.println("You said: \"" + sentence

+ "\"");

16 }

17 }

Figure 3.18
Output of Example 3.12

Enter a sentence > Scanner is useful.

You said: "Scanner is useful."

Figure 3.19
An Exception When Input Is Not the Expected Data
Type

Enter your first name > Sarah

Your name is Sarah

Enter your age as an integer > a

Exception in thread "main"

java.util.InputMismatchException

 at

java.base/java.util.Scanner.throwFor(Unknown

Source)

 at java.base/java.util.Scanner.next(Unknown

Source)

 at

java.base/java.util.Scanner.nextInt(Unknown

Source)

 at

java.base/java.util.Scanner.nextInt(Unknown

Source)

 at DataInput.main(DataInput.java:18)

If the user doesn’t type anything when prompted, or
if the user types some characters but doesn’t press
Enter, the program will simply wait until the user
does press Enter.

Skill Practice
with these end-of-chapter questions

3.18.1 Multiple Choice Exercises

Questions 1, 11

3.18.2 Reading and Understanding Code

Questions 14, 15, 16

3.18.3 Fill In the Code

Questions 24, 25, 26, 27

3.18.4 Identifying Errors in Code

Questions 36, 37, 38, 39, 43

3.18.5 Debugging Area

Questions 45, 49

3.18.6 Write a Short Program

Questions 50, 51, 52, 55, 56

3.11 Calling Static Methods and
Using Static Class Variables
Classes can also define static methods, which can
be called without instantiating an object. These are
also called class methods. The API of these
methods has the keyword static before the return
type:

static dataType methodName(arg1, arg2, . . .)

One reason a class may define static methods is to
provide some quick, one-time functionality without
requiring the client to instantiate an object. For
example, as part of a larger calculation, we might
want to calculate the square root of a number.
Creating an object just to calculate a square root is a
waste of memory and processor time. Fortunately,
the Math class provides a static method that finds
the square root of a number.

Class, or static, methods are invoked using the class
name, rather than an object reference, as in the
following syntax:

ClassName.staticMethodName(argumentList);

For example, in this statement:

absValue = Math.abs(someNumber);

the class name is Math, and the static method is abs,
which returns the absolute value of the argument
(someNumber). We use the class name rather than
an object reference, because static methods can be
called without instantiating an object. Later in this
chapter, we will explore some static methods of the
Math class in greater detail.

Because static methods can be called without an
object being instantiated, static methods cannot
access the instance variables of the class (because
instance variables are object data and exist only
after an object has been instantiated). Static
methods can access static data, however, and
classes often declare static data to be used with
static methods. Static data belong to the class, rather
than to a particular object, or instance, of the class.

A common use of static class variables is to define
constants for commonly used values or for
parameters for the static class methods. For
example, the Math class defines two static constants
to facilitate the use of pi and the natural logarithm, e.

Like static methods, static constants are also
accessed using the class name and dot operator, as
in this syntax:

ClassName.staticConstant

Thus, the static constant representing the value of pi
can be accessed this way:

Math.PI

At first, this may appear to go against our earlier
discussion of encapsulation and the restrictions on
clients directly accessing object data. Remember we
said that the client needed to use accessor methods
(getters) and mutator methods (setters) to access
object data. The reasoning behind encapsulation is
to protect the object data from corruption by the
client. However, in this case, the static data is
constant, so the client is unable to change it. For the
client, directly accessing the class constant is easier
and faster than calling a method.

3.12 Using System.in and
System.out
In order to print program output to the screen, we
have been using statements like

System.out.println("The value of b is " + b);

and

System.out.print("Enter your first name > ");

And to instantiate a Scanner object, we used this
statement:

Scanner scan = new Scanner(System.in);

It is now time to look at these statements in depth
and understand them completely.

System is an existing Java class in the java.lang
package. One of its fields is a static constant, out,
which represents the Java console by default.
Another of its fields is a static constant, in, which
represents the keyboard by default. Because in and
out are static, we refer to them using the class name,
System, and the dot notation:

System.out

System.in

Table 3.10 shows these static constants as well as
the static exit method, which can be used to
terminate a program. Calling exit at the end of a
program is optional. After the last instruction is
executed, the program will end in any case.
However, the exit method of the System class can be
useful if we want to stop execution at a place other
than the usual end of the program.

TABLE 3.10 Static Constants of the System
Class and the exit Method
Constant Value
in static constant that represents the standard input

stream, by default the keyboard

out static constant that represents the standard output
stream, by default the Java console

 A Useful System Method
Return
value

Method name and argument list

void exit(int exitStatus)

 static method that terminates the Java Virtual Machine.
A value of 0 for exitStatus indicates a normal
termination. Any other values indicate an abnormal
termination and are used to signal that the program
ended because an error occurred.

System.out is an object of the PrintStream class,
which is also an existing Java class; it can be found

in the java.io package. The out object refers to the
standard output device, which by default is the
Java console.

The methods print and println belong to the
PrintStream class and take arguments of any
primitive type, a String, or an object reference. The
only difference between print and println is that
println will also print a newline character after it
writes the output. Table 3.11 shows some methods of
the PrintStream class, which can be used with
System.out.

TABLE 3.11 PrintStream Methods for Use
with System.out

 Useful PrintStream Methods
Return
value

Method name and argument list

void print(argument)

prints argument to the standard output device. The
argument can be any primitive data type, a String object,
or another object reference.

void println(argument)

prints argument to the standard output device, then
prints a newline character. The argument can be any
primitive data type, a String, or another object reference.

void println()

prints a newline character. This method is useful for
skipping a line in the program’s output.

Example 3.13 demonstrates various ways to use the
print and println methods:

EXAMPLE 3.13 Demonstrating the
print and println Methods

 1 /* Testing the print and println methods

 2 Anderson, Franceschi

 3 */

 4

 5 public class PrintDemo

 6 {

 7 public static void main(String [] args)

 8 {

 9 System.out.println("Combine the arguments

using concatenation");

10 System.out.println("A double: " + 23.7 + ",

and an int: " + 78);

11

12 System.out.print("\nJava is case sensitive:

");

13 System.out.println('a' + " is different from

" + 'A');

14

15 System.out.println("\nCreate a variable and

print its value");

16 String s = new String("The grade is");

17 double grade = 3.81;

18 System.out.println(s + " " + grade);

19

20 System.out.println(); // skip a line

21 SimpleDate d = new SimpleDate(4, 5, 2020);

22 System.out.println("Explicitly calling

toString, d is "

23 + d.toString());

24 System.out.println("Implicitly calling

toString, d is " + d);

25

26 System.exit(0); // optional

27 }

28 }

Lines 10 and 13 show how print or println can be
used with various data types such as double, int, and
char. Variables and expressions can also be used
instead of literals, as shown in line 18, where two
Strings and the double variable grade are output.

We can also print objects. All classes have a toString
method, which converts the object data to a String
for printing. The toString method is called
automatically whenever an object is used as a
String. Notice that our SimpleDate class, introduced
earlier in the chapter, had a toString method that
returned the object data as a String in the format
mm/dd/yyyy.

The toString method’s API is

String toString()

REFERENCE POINT
You can read more about the System and
PrintStream classes on Oracle’s Java website:
www.oracle.com/technetwork/java.

After the SimpleDate object reference d is
instantiated at line 21, it is printed at lines 22–23 and
again at line 24. At lines 22–23, the method toString
is called explicitly; at line 24, it is called automatically.
The output of Example 3.13 is shown in Figure 3.20.
Finally, we terminate the program by calling the exit
method of the System class.

Figure 3.20
The Output from Example 3.13

Combine the arguments using concatenation

A double: 23.7, and an int: 78

Java is case sensitive: a is different from A

Create a variable and print its value

The grade is 3.81

Explicitly calling toString, d is 4/5/2020

Implicitly calling toString, d is 4/5/2020

http://www.oracle.com/technetwork/java

3.13 The Math Class
The Math class is also part of the java.lang package.
As such, it is automatically available to any Java
program; we do not need to use the import
statement. The Math class provides two static
constants (E and PI), as well as a number of static
methods that save the programmer from writing
some complex mathematical code.

The two constants, E and PI, are both doubles and
represent, respectively, e (the base of the natural
logarithm, i.e., log e = 1) and pi, the ratio of the
circumference of a circle to its diameter. Approximate
values of e and pi, as we know them, are 2.78 and
3.14, respectively. These constants are shown in
Table 3.12.

TABLE 3.12 Static Constants of the Math
Class

Constant Value
E e, the base of the natural logarithm

PI pi, the ratio of the circumference of a circle to its
diameter

Because E and PI are static data members of the
Math class, they are referenced using the name of
the Math class and the dot notation as follows:

Math.E

Math.PI

Useful methods of the Math class are shown in Table
3.13. All the methods of the Math class are static; so
they are called using the class name, Math, and the
dot notation as follows:

TABLE 3.13 Useful Methods of the Math
Class

Math Class Method Summary
Return value Method name and argument list

dataTypeOfArg abs(arg)

static method that returns the absolute
value of the argument arg, which can
be a double, float, int, or long.

double log(double arg)

static method that returns the natural
logarithm (in base e) of its argument,
arg. For example, log(1) returns 0 and
log(Math.E) returns 1.

dataTypeOfArgs min(argA, argB)

static method that returns the smaller
of the two arguments. The arguments
can be doubles, floats, ints, or longs.

dataTypeOfArgs max(argA, argB)

static method that returns the larger of
the two arguments. The arguments can
be doubles, floats, ints, or longs.

double pow(double base, double exp)

static method that returns the value of
base raised to the exp power.

long round(double arg)

static method that returns the closest
integer to its argument, arg.

double sqrt(double arg)

static method that returns the positive
square root of arg.

Math.abs(-5)

Example 3.14 demonstrates how the Math constants
and the abs method can be used in a Java program.
In lines 9 and 10, we print the values of e and pi
using the static constants of the Math class. Then in
lines 12 and 15, we call the abs method, which
returns the absolute value of its argument.

We then print the results in lines 13 and 16. The
output of Example 3.14 is shown in Figure 3.21.

EXAMPLE 3.14 Math Class
Constants and the abs Method
 1 /* A demonstration of the Math class methods and

constants

 2 Anderson, Franceschi

 3 */

 4

 5 public class MathConstants

 6 {

 7 public static void main(String [] args)

 8 {

 9 System.out.println("The value of e is " +

Math.E);

10 System.out.println("The value of pi is " +

Math.PI);

11

12 double d1 = Math.abs(6.7); // d1 will be

assigned 6.7

13 System.out.println("\nThe absolute value of

6.7 is " + d1);

14

15 double d2 = Math.abs(-6.7); // d2 will be

assigned 6.7

16 System.out.println("\nThe absolute value of

-6.7 is " + d2);

17 }

18 }

The operation and usefulness of most Math class
methods are obvious. But several methods—pow,
round, and min/max—require a little explanation.

Figure 3.21
Output from Example 3.14

The value of e is 2.718281828459045

The value of pi is 3.141592653589793

The absolute value of 6.7 is 6.7

The absolute value of -6.7 is 6.7

The pow Method
Example 3.15 demonstrates how some of these
Math methods can be used in a Java program.

EXAMPLE 3.15 A Demonstration of
Some Math Class Methods
 1 /* A demonstration of some Math class methods

 2 Anderson, Franceschi

 3 */

 4

 5 public class MathMethods

 6 {

 7 public static void main(String [] args)

 8 {

 9 double d2 = Math.log(5);

10 System.out.println("\nThe log of 5 is " + d2

);

11

12 double d4 = Math.sqrt(9);

13 System.out.println("\nThe square root of 9

is " + d4);

14

15 double fourCubed = Math.pow(4, 3);

16 System.out.println("\n4 to the power 3 is "

+ fourCubed);

17

18 double bigNumber = Math.pow(43.5, 3.4);

19 System.out.println("\n43.5 to the power 3.4

is " + bigNumber);

20 }

21 }

Figure 3.22
Output from Example 3.15

The log of 5 is 1.6094379124341003

The square root of 9 is 3.0

4 to the power 3 is 64.0

43.5 to the power 3.4 is 372274.65827529586

The Math class provides the pow method for raising
a number to a power. The pow method takes two
arguments; the first is the base and the second is the
exponent.

Although the argument list for the pow method
specifies that the base and the exponent are both
doubles, we can, in fact, send arguments of any
numeric type to the pow method because all numeric
types can be promoted to a double. No matter what
type the arguments are, however, the return value is
always a double. Thus, when line 15 calls the pow
method with two integer arguments, the value of
fourCubed will be 64.0. If we prefer that the return
value be 64, we can cast the return value to an int.

Line 18 shows how to use the pow method with
arguments of type double. The output of Example
3.15 is shown in Figure 3.22.

The round Method
The round method converts a double to its nearest
integer using these rules:

Any fractional part .0 to .4 is rounded down.

Any fractional part .5 and above is rounded
up.

Lines 9–13 in Example 3.16 use the round method
with various numbers. Figure 3.23 shows the output.

EXAMPLE 3.16 A Demonstration of
the Math round Method
 1 /* A demonstration of the Math round method

 2 Anderson, Franceschi

 3 */

 4

 5 public class MathRounding

 6 {

 7 public static void main(String [] args)

 8 {

 9 System.out.println("23.4 rounded is " +

Math.round(23.4));

10 System.out.println("23.49 rounded is " +

Math.round(23.49));

11 System.out.println("23.5 rounded is " +

Math.round(23.5));

12 System.out.println("23.51 rounded is " +

Math.round(23.51));

13 System.out.println("23.6 rounded is " +

Math.round(23.6));

14 }

15 }

Figure 3.23
Output from Example 3.16

23.4 rounded is 23

23.49 rounded is 23

23.5 rounded is 24

23.51 rounded is 24

23.6 rounded is 24

The min and max Methods
The min and max methods return the smaller or
larger of their two arguments, respectively. Example
3.17 demonstrates how the min and max methods
can be used in a Java program. Figure 3.24 shows
the output. Thus, the statement on line 9 of Example
3.17 will assign 2 to the int variable smaller. At line
12, a similar statement using the max method will
assign 8 to the int variable larger.

EXAMPLE 3.17 A Demonstration of
the min and max Methods

 1 /* A demonstration of min and max Math class

methods

 2 Anderson, Franceschi

 3 */

 4

 5 public class MathMinMaxMethods

 6 {

 7 public static void main(String [] args)

 8 {

 9 int smaller = Math.min(8, 2);

10 System.out.println("The smaller of 8 and 2

is " + smaller);

11

12 int larger = Math.max(8, 2);

13 System.out.println("The larger of 8 and 2 is

" + larger);

14

15 int a = 8, b = 5, c = 12;

16 int tempSmaller = Math.min(a, b); // find

smaller of a & b

17 int smallest = Math.min(tempSmaller, c); //

compare result to c

18 System.out.println("The smallest of " + a +

", " + b + ", and "

19 + c + " is " + smallest);

20 }

21 }

REFERENCE POINT
You can read more about the Math class on Oracle’s
Java website: www.oracle.com/technetwork/java.

The min method can also be used to compute the
smallest of three variables. After declaring and
initializing the three variables (a, b, and c) at line 15,
we assign to a temporary variable named
tempSmaller the smaller of the first two variables, a
and b, at line 16. Then, at line 17, we compute the
smaller of tempSmaller and the third variable, c, and
assign that value to the variable smallest, which is
output at lines 18 and 19.

The pattern for finding the largest of three numbers
is similar, and we leave that as an exercise at the
end of the chapter.

Figure 3.24
Output from Example 3.17

The smaller of 8 and 2 is 2

The larger of 8 and 2 is 8

The smallest of 8, 5, and 12 is 5

http://www.oracle.com/technetwork/java

Skill Practice
with these end-of-chapter questions

3.18.1 Multiple Choice Exercises

Questions 6, 7, 8, 13

3.18.2 Reading and Understanding Code

Questions 17, 18, 19, 20, 21, 22, 23

3.18.3 Fill In the Code

Questions 28, 29, 30, 31, 32, 34

3.18.4 Identifying Errors in Code

Questions 40, 41, 42

3.18.5 Debugging Area

Questions 46, 47, 48

3.18.6 Write a Short Program

Questions 53, 54

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see a step-by-step illustration of how to
instantiate an object and call both instance and
static methods, look for this chapter’s movie
within the online resources. Click on the link to
start the movie.

3.14 Formatting Output with the
NumberFormat Class
Like the DecimalFormat class, the NumberFormat
class can also be used to format numbers for output.
The NumberFormat class, however, provides
specialized static methods for creating objects
specifically for formatting currency and percentages.

The NumberFormat class is part of the java.text
package, so we need to include the following import
statement at the top of our program.

import java.text.NumberFormat;

The static methods of the NumberFormat class to
format currency and percentages are shown in Table
3.14.

TABLE 3.14 Useful Methods of the
NumberFormat Class

NumberFormat Method Summary
Return value Method name and argument list

NumberFormat getCurrencyInstance()

static method that creates a format object
for money

NumberFormat getPercentInstance()

static method that creates a format object
for percentages

String format(double number)

returns a String representation of number

formatted as a currency or percentage,
depending on the object used to call the
method

As we can see from the first two method headers,
their return type is a NumberFormat object. These
static methods, called factory methods, are used
instead of constructors to create objects. Thus,
instead of using the new keyword and a constructor,
we will call one of these methods to create our
formatting object.

The getCurrencyInstance method returns a
formatting object that reflects the local currency. In
the United States, that format is a leading dollar sign
and is two digits to the right of the decimal place.
The getPercentInstance method returns a formatting
object for printing a fraction as a percentage by

multiplying the fraction by 100, rounding to the
nearest whole percent, and adding a percent sign
(%).

We then use the format method from the
NumberFormat class to display a value either as
money or a percentage. The format method takes
one argument, a double, which is the variable or
value that we want to print; it returns the formatted
version of the value as a String object, which we can
then print.

Example 3.18 is a complete program illustrating how
to use these three methods.

EXAMPLE 3.18 Demonstrating the
NumberFormat Class

 1 /* Demonstration of currency and percentage

formatting

 2 using the NumberFormat class.

 3 Anderson, Franceschi

 4 */

 5

 6 // we need to import the NumberFormat class from

java.text

 7 import java.text.NumberFormat;

 8

 9 public class DemoNumberFormat

10 {

11 public static void main(String [] args)

12 {

13 double winningPercentage = .675;

14 double price = 78.9;

15

16 // get a NumberFormat object for printing a

percentage

17 NumberFormat percentFormat =

NumberFormat.getPercentInstance();

18

19 // call format method using the NumberFormat

object

20 System.out.print("The winning percentage is

");

21 System.out.println(percentFormat.format(

winningPercentage));

22

23 // get a NumberFormat object for printing

currency

24 NumberFormat priceFormat =

NumberFormat.getCurrencyInstance();

25

26 // call format method using the NumberFormat

object

27 System.out.println("\nThe price is: "

28 + priceFormat.format(

price));

29 }

30 }

The output of this program is shown in Figure 3.25.
As with DecimalFormat, the NumberFormat format
method multiples the fraction to be formatted by 100.
Note that the winning percentage is formatted as a
rounded whole number. If we wanted to print the
fraction .675 as 67.5%, we would need to use a
DecimalFormat object.

Figure 3.25
Output from Example 3.18

The winning percentage is 68%

The price is: $78.90

3.15 The Integer, Double,
Character, and Other Wrapper
Classes
Most programs use a combination of primitive data
types and objects. Some class methods, however,
will accept only objects as arguments, so we need
some way to convert a primitive data type into an
object. Conversely, there are times when we need to
convert an object into a primitive data type. For
example, let’s say we have a GUI where we ask
users to type their age into a text box or a dialog box.
We expect the age to be an int value; however, text
boxes and dialog boxes return their values as
Strings. To perform any calculations on an age in our
program, we will need to convert the value of that
String object into an int.

For these situations, Java provides wrapper
classes. A wrapper class “wraps” the value of a
primitive type, such as double or int, into an object.
These wrapper classes define an instance variable
of that primitive data type, and also provide useful
constants and methods for converting between the
objects and the primitive data types. Table 3.15 lists
the wrapper classes for each primitive data type.

TABLE 3.15 Wrapper Classes for Primitive
Data Types

Primitive Data Type Wrapper Class
double Double

float Float

long Long

int Integer

short Short

byte Byte

char Character

boolean Boolean

All these classes are part of the java.lang package.
So, the import statement is not needed in order to
use wrapper classes in a program.

Java provides special support for converting
between a primitive numeric type and its wrapper
class. For example, we can simply assign an int
variable to an Integer object reference. Java will
automatically provide the conversion for us. This
conversion is called autoboxing. In Example 3.19,
the conversion is illustrated in lines 9 and 10. The int
variable, intPrimitive, and the Integer object,
integerObject, are output at lines 12 and 13 and
have the same value (42). The output is shown in
Figure 3.26.

Similarly, when an Integer object is used as an int,
Java also provides this conversion, which is called
unboxing. Thus, when we use an Integer object in
an arithmetic expression, the int value is
automatically used. Line 15 of Example 3.19 uses
the Integer object integerObject in an arithmetic
expression, adding the Integer object to the int
variable intPrimitive. As shown in Figure 3.26, the
result is the same as if both operands were int
variables.

Similar operations are possible using other numeric
primitives and their associated wrapper classes.

In addition to automatic conversions between
primitive types and wrapper objects, the Integer and
Double classes provide methods, shown in Table
3.16, that allow us to convert Strings to numbers.

TABLE 3.16 Methods of the Integer and
Double Wrapper Classes

Useful Methods of the Integer Wrapper Class
Return
value

Method name and argument list

int parseInt(String s)

static method that converts the String s to an int

and returns that value

Integer valueOf(String s)

static method that converts the String s to an
Integer object and returns that object

Useful Methods of the Double Wrapper Class
Return
value

Method name and argument list

double parseDouble(String s)

static method that converts the String s to a
double and returns that value

Double valueOf(String s)

static method that converts the String s to a
Double object and returns that object

The parseInt, parseDouble, and valueOf methods
are static and are called using the Integer or Double
class name and the dot notation. The parse methods
convert a String to a primitive type, and the valueOf
methods convert a String to a wrapper object. For
example, line 18 of Example 3.19 converts the String
“76” to the int value 76. Line 19 converts the String
“76” to an equivalent Integer object.

EXAMPLE 3.19 A Demonstration of
the Wrapper Classes

 1 /* A demonstration of the Wrapper classes and

methods

 2 Anderson, Franceschi

 3 */

 4

 5 public class DemoWrapper

 6 {

 7 public static void main(String [] args)

 8 {

 9 int intPrimitive = 42;

10 Integer integerObject = intPrimitive;

11

12 System.out.println("The int is " +

intPrimitive);

13 System.out.println("The Integer object is "

+ integerObject);

14

15 int sum = intPrimitive + integerObject;

16 System.out.println("Their sum is " + sum);

17

18 int i1 = Integer.parseInt("76"); //

convert "76" to an int

19 Integer i2 = Integer.valueOf("76"); //

convert "76" to Integer

20 System.out.println("\nThe value of i1 is " +

i1);

21 System.out.println("The value of i2 is " +

i2);

22

23 double d1 = Double.parseDouble("58.32");

24 Double d2 = Double.valueOf("58.32");

25 System.out.println("\nThe value of d1 is " +

d1);

26 System.out.println("The value of d2 is " +

d2);

27 }

28 }

REFERENCE POINT
You can read more about the wrapper classes on
Oracle’s Java website:
www.oracle.com/technetwork/java.

Similarly, line 23 converts the String “58.32” to a
double, and line 24 converts the same String to an
equivalent Double object.

http://www.oracle.com/technetwork/java

Figure 3.26
Output from Example 3.19

The int is 42

The Integer object is 42

Their sum is 84

The value of i1 is 76

The value of i2 is 76

The value of d1 is 58.32

The value of d2 is 58.32

Because a char is a primitive type, we can’t call
methods on a char variable. By wrapping a char
variable into an object, however, the Character class
provides some helpful methods for dealing with
chars. Often, we may want to determine whether a
character is a digit or a letter. For example, if we are
checking whether a password is secure, we may
want to determine whether the password has at least
one digit, or we may want to change the case of a
char variable. Table 3.17 shows some useful
methods of the Character class. All these methods
are static, so we call them using the Character class
name instead of an object reference. The first four
methods test whether a char is a digit, a letter,

lowercase, or uppercase. For each of these
methods, we send the char variable as an argument
and the method returns true or false. The next two
methods, toLowerCase and toUpperCase, convert
the char argument to lower- or uppercase if the char
is a letter. We send the char variable to the method,
and it returns a copy of the char variable after
converting its case, if possible.

TABLE 3.17 Useful Methods of the
Character Wrapper Class

Useful static Methods of the Character Wrapper Class
Return
value

Method name and argument list

boolean isDigit(char c)

returns true if c is a character from ‘0’ to ‘9’ or a
digit in other languages; false, otherwise

boolean isLetter(char c)

returns true if c is a letter; false, otherwise

boolean isLowerCase(char c)

returns true if c is a lowercase letter; false,
otherwise

boolean isUpperCase(char c)

returns true if c is an uppercase letter; false,
otherwise

char toLowerCase(char c)

returns the lowercase version of c if c is a letter;
otherwise it returns c unchanged

char toUpperCase(char c)

returns the uppercase version of c if c is a letter;
otherwise it returns c unchanged

Example 3.20 demonstrates the use of these
methods.

Lines 12–14 prompt the user for a character to test
or convert. Remember that Scanner does not have a
nextChar method, so we need to use the next
method to read a String and then extract the first
character of the inputted String using the charAt
method.

Lines 16–17 output the decimal Unicode value of the
char variable by type casting it to an int.

At lines 19–20, we test whether the char is a digit by
calling the isDigit method and output the returned
value of true or false. Similarly, at lines 22–23, we
test whether the char is a letter by calling the isLetter
method and output the returned value of true or
false.

At lines 24–27, we test whether the char is an
uppercase or lowercase letter, again outputting the
return value of true or false.

Finally, at lines 29–32, we attempt to convert the
char to an uppercase letter and then to a lowercase
letter. If c is not a letter, or if it is already an
uppercase or lowercase letter, the methods return
the value unchanged.

EXAMPLE 3.20 Character Methods

 1 /* Character Methods

 2 Anderson, Franceschi

 3 */

 4 import java.util.Scanner;

 5

 6 public class CharacterMethods

 7 {

 8 public static void main(String [] args)

 9 {

10 Scanner scan = new Scanner(System.in);

11

12 System.out.print("Enter a character > ");

13 String input = scan.next();

14 char c = input.charAt(0);

15

16 System.out.println("The Unicode decimal

value of " + c + " is: "

17 + (int) c);

18

19 System.out.println("\n" + c + " is a digit:

"

20 +

Character.isDigit(c));

21

22 System.out.println("\n" + c + " is a

letter: "

23 +

Character.isLetter(c));

24 System.out.println(c + " is uppercase: "

25 +

Character.isUpperCase(c));

26 System.out.println(c + " is lowercase: "

27 +

Character.isLowerCase(c));

28

29 System.out.println("\n" + c + " in

uppercase is: "

30 +

Character.toUpperCase(c));

31 System.out.println(c + " in lowercase is: "

32 +

Character.toLowerCase(c));

33 }

34 }

Figure 3.27 shows the output of the program when
the user enters d.

Figure 3.27
Output from Example 3.20

Enter a character > d

The Unicode decimal value of d is: 100

d is a digit: false

d is a letter: true

d is uppercase: false

d is lowercase: true

d in uppercase is: D

d in lowercase is: d

Skill Practice
with these end-of-chapter questions

3.18.1 Multiple Choice Exercises

Question 12

3.18.3 Fill In the Code

Question 33

3.18.4 Identifying Errors in Code

Question 35

3.18.5 Debugging Area

Question 44

3.18.8 Technical Writing

Questions 71, 72

3.16 Programming Activity 2:
Using Predefined Classes
In this Programming Activity, you will write a short
program using some of the classes and methods
discussed in this chapter. Your program will perform
the following operations:

1.

a. Prompt the user for his or her first name

b. Print a message saying hello to the user

c. Tell the user how many characters are in his or her name

2.

a. Ask the user for the year of his or her birth

b. Calculate and print the age the user will be this year

c. Declare a constant for average life expectancy; set its value

to 78.94

d. Print a message that tells the user the percentage of his or

her expected life lived so far formatted to one decimal place

3.

a. Generate a random number between 1 and 20

b. Output a message telling the user that the program is

thinking of a number between 1 and 20 and ask for a guess

c. Output a message telling the user the number and how far

away from the number the user’s guess was

To complete this Programming Activity, copy the
contents of this chapter’s Programming Activity 2
folder in the supplied code accompanying this text.
Open the PracticeMethods.java file and look for four
sets of five asterisks (*****), where you will find
instructions to write import statements and items 1,
2, and 3 for completing the Programming Activity.

Example 3.21 shows the PracticeMethods.java file,
and Figure 3.28 shows the output from a sample run
after you have completed the Programming Activity.
Your output might vary from that shown because we
use 2020 as the current year for calculating age and
because item 3 generates a random number.

EXAMPLE 3.21
PracticeMethods.java

 1 /* Chapter 3 Programming Activity 2

 2 Calling class methods

 3 Anderson, Franceschi

 4 */

 5

 6 // ***** 1. add your import statements here

 7

 8 public class PracticeMethods

 9 {

10 public static void main(String [] args)

11 {

12 //*****

13 // 2. a. Create a Scanner object to read

from the keyboard.

14 // b. Prompt the user for their first

name.

15 // c. Print a message that says hello to

the user.

16 // d. Print a message that says how many

letters

17 // are in the user's name.

18 // Your code goes here

19

20

21 //*****

22 // 3. a. Skip a line, then prompt the user

for the year

23 // they were born.

24 // b. Declare a constant for the current

year.

25 // c. Calculate and print the age the

user will be this year.

26 // d. Declare a constant for average life

expectancy,

27 // set its value to 78.94.

28 // e. Calculate and print the percentage

29 // of the user's expected life

they've lived.

30 // Use the DecimalFormat class to

format the percentage

31 // to one decimal place.

32 // Your code goes here

33

34

35 //*****

36 // 4. a. Generate a secret random integer

between 1 and 20

37 // b. Skip a line, then ask the user for

a guess.

38 // c. Print a message telling the user

the secret number

39 // and how far from the number the

user's guess was

40 // (hint: use Math.abs).

41 // Your code goes here

42

43 }

44 }

Figure 3.28
Console Output from a Sample Run of Programming
Activity 2

Enter your first name > Esmerelda

Hello, Esmerelda

Your name has 9 letters.

In what year were you born? 2002

This year, you will be 18 years old.

So far, you have lived 22.9% of your expected

life span.

I'm thinking of a number between 1 and 20

What is your guess? 15

The secret number was 2

Your guess was 13 away.

DISCUSSION QUESTIONS
1. Which methods of the Scanner class did you choose for

reading the user’s name and birth year? Explain your
decisions.

2. How would you change your code to generate a random
number between 10 and 20?

CHAPTER REVIEW

3.17 Chapter Summary
Object-oriented programming entails writing
programs that use classes and objects.
Using prewritten classes shortens
development time and creates more reliable
programs. Programs that use prewritten
classes are called clients of the class.

Benefits of object-oriented programming
include encapsulation, reusability, and
reliability.

Classes consist of data, plus instructions that
operate on that data. Objects of a class are
created using the class as a template.
Creating an object is called instantiating an
object, and the object is an instance of the
class. The new keyword is used to
instantiate an object.

The object reference is the variable name for
an object and points to the data of the object.

The data of a class are called fields and
consist of instance variables and static
variables. The instructions of the class are
called methods. Methods of a class get or
set the values of the data or provide other
services of the class.

The name of a method, along with its
argument list and return value, is called the

Application Programming Interface (API) of
that method. Methods that are declared to be
public can be called by any client of the
class.

By convention, class names in Java start
with a capital letter. Method names, instance
variables, and object names start with a
lowercase letter. In all these names,
embedded words begin with a capital letter.

When our program makes a method call,
control transfers to the instructions in the
method until the method finishes executing.
Then control is transferred back to our
program.

Instance methods are called using the object
reference and the dot notation.

A constructor is called when an object is
instantiated. A constructor has the same
name as the class and its job is to initialize
the object’s data. Classes can have multiple
constructors.

A method’s data type is called the method’s
return type. If the data type is anything other
than the keyword void, the method returns a
value to the program. When a value-
returning method finishes executing, its

return value replaces the method call in the
expression.

Accessor methods, also called getters, allow
clients to retrieve the current value of object
data. Mutator methods, also called setters,
allow clients to change the value of object
data.

When an object reference is first declared, its
value is null. Attempting to use a null object
reference to call a method generates an
error.

The garbage collector runs occasionally and
deletes objects that have no object
references pointing to them.

Java packages are groups of classes
arranged according to functionality. Classes
in the java.lang packages are automatically
available to Java programs. Other classes
need to be imported.

The String class can be used to create
objects consisting of a sequence of
characters. String constructors accept String
literals, String objects, or no argument, which
creates an empty String. The length method
returns the number of characters in the
String object. The toUpperCase and
toLowerCase methods return a String in

upper or lower case. The charAt method
extracts a character from a String, while the
substring method extracts a String from a
String. The indexOf method searches a
String for a character or substring.

The DecimalFormat class, in the java.text
package, provides methods to format
numeric output. For example, we can specify
the number of digits to display after the
decimal point or add dollar signs and
percentage signs (%).

The Random class, in the java.util package,
provides methods to generate random
numbers.

The Scanner class, in the java.util package,
provides methods for reading input from the
keyboard. Methods are provided for reading
primitive data types and Strings.

When prompting the user for input, phrase
the prompt in language the user
understands. Describe the data requested
and any restrictions on valid input values.

Static methods, also called class methods,
can be called without instantiating an object.
Static methods can access only the static
data of a class.

Static methods are called using the class
name and the dot notation.

System.out.println prints primitive data types
or a String to the Java console and adds a
newline character. System.out.println with no
argument skips a line. System.out.print prints
the same data types to the Java console, but
does not add a newline. Classes provide a
toString method to convert objects to a String
in order to be printed.

The Math class provides static constants PI
and E and static methods to perform
common mathematical calculations, such as
finding the maximum or minimum of two
numbers, rounding values, and raising a
number to a power.

The NumberFormat class, in the java.text
package, provides static methods for
creating objects to format numeric output as
currency or a percentage.

Wrapper classes provide an object interface
for a primitive data type. The Integer and
Double wrapper classes provide static
methods for converting between ints and
doubles and Strings.

The Character wrapper class provides
methods for testing whether a character is a

digit or a letter, and for converting letters to
upper- or lowercase.

3.18 Exercises, Problems, and
Projects

3.18.1 Multiple Choice Exercises
 1. If you want to use an existing class from the Java Class Library in

your program, what keyword should you use?

❑ use

❑ import

❑ export

❑ include

 2. A constructor has the same name as the class name.

❑ true
❑ false

 3. A given class can have more than one constructor.

❑ true

❑ false

 4. What is the keyword used to instantiate an object in Java?

❑ make

❑ construct

❑ new

❑ static

 5. In a given class named Quiz, there can be only one method with
the name Quiz.

❑ true

❑ false

 6. A static method is

❑ a class method.
❑ an instance method.

 7. In the Quiz class, the foo method has the following API:

public static double foo(float f)

What can you say about foo?

❑ It is an instance method.
❑ It is a class field.

❑ It is a class method.
❑ It is an instance variable.

 8. In the Quiz class, the foo method has the following API:

public static void foo()

How would you call that method?

❑ Quiz.foo();

❑ Quiz.foo(8);

❑ Quiz(foo());

 9. In the Quiz class, the foo method has the following API:

public double foo(int i, String s, char c)

How many arguments does foo take?

❑ 0

❑ 1
❑ 2

❑ 3

10. In the Quiz class, the foo method has the following API:

public double foo(int i, String s, char c)

What is the return type of method foo?

❑ double

❑ int

❑ char

❑ String

11. String is a primitive data type in Java.

❑ true

❑ false

12. Which one of the following is not an existing wrapper class?

❑ Integer

❑ Char

❑ Float

❑ Double

13. What is the proper way of accessing the constant E of the Math
class?

❑ Math.E();

❑ Math.E;

❑ E;

❑ Math(E);

3.18.2 Reading and Understanding
Code
14. What is the output of this code sequence?

String s = new String("HI");
System.out.println(s);

15. What is the output of this code sequence?

String s = "A" + "BC" + "DEF" + "GHIJ";
System.out.println(s);

16. What is the output of this code sequence?

String s = "Hello";
s = s.toLowerCase();
System.out.println(s);

17. What is the output of this code sequence?

int a = Math.min(5, 8);
System.out.println(a);

18. What is the output of this code sequence?

System.out.println(Math.sqrt(4.0));

19. What is the output of this code sequence? (You will need to
actually compile this code and run it in order to have the correct
output.)

System.out.println(Math.PI);

20. What is the output of this code sequence?

double f = 5.7;
long i = Math.round(f);
System.out.println(i);

21. What is the output of this code sequence?

System.out.print(Math.round(3.5));

22. What is the output of this code sequence?

int i = Math.abs(-8);
System.out.println(i);

23. What is the output of this code sequence?

double d = Math.pow(2, 3);
System.out.println(d);

3.18.3 Fill In the Code
24. This code concatenates the three Strings “Intro ”, “to”, “

Programming” and outputs the resulting String. (Your output
should be Intro to Programming.)

String s1 = "Intro ";
String s2 = "to";
String s3 = " Programming";
// your code goes here

25. This code prints the number of characters in the String “Hello
World”.

String s = "Hello World";
// your code goes here

26. This code prompts the user for a String, then prints the String and
the number of characters in it.

// your code goes here

27. This code uses only a single line System.out.println. . . statement
in order to print

“Welcome to Java Illuminated”

on one line using the following variables and the String
concatenation operator:

String s1 = "Welcome ";
String s2 = "to ";
String s3 = "Java ";
String s4 = "Illuminated";
// your code goes here

28. This code uses exactly four System.out.print statements in order to
print

“Welcome to Java Illuminated”

on the same output line.

// your code goes here

29. This code assigns the maximum of the values 3 and 5 to the int
variable max and outputs the result.

int max;
// your code goes here

30. This code calculates the square root of 5 and outputs the result.

double d = 5.0;
// your code goes here

31. This code asks the user for two integer values, then calculates the
minimum of the two values and prints it.

// your code goes here

32. This code asks the user for three integer values, then calculates
the maximum of the three values and prints it.

// your code goes here

33. This code prompts the user for a single character and prints “true”
if the character is a letter and “false” if it is not a letter.

// your code goes here

34. This code asks the user for a double, then prints the square of that
number using the pow method of the Math class.

// your code goes here

3.18.4 Identifying Errors in Code
35. Where is the error in this statement?

import text.NumberFormat;

36. Where is the error in this statement?

import java.util.DecimalFormat;

37. Where is the error in this code sequence?

String s = "Hello World";
system.out.println(s);

38. Where is the error in this code sequence?

String s = String("Hello");
System.out.println(s);

39. Where is the error in this code sequence?

String s1 = "Hello";
String s2 = "ello";
String s = s1 - s2;

40. Where is the error in this code sequence?

short s = Math.round(3.2);
System.out.println(s);

41. Where is the error in this code sequence?

int a = Math.pow(3, 4);
System.out.println(a);

42. Where is the error in this code sequence?

double pi = Math(PI);
System.out.println(pi);

43. Where is the error in this code sequence?

String s = 'H';
System.out.println("s is " + s);

3.18.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
44. You coded the following program in the file Test.java:

public class Test
{
 public static void main(String [] args)
 {
 int a = 6;
 NumberFormat nf =
NumberFormat.getCurrencyInstance();
 }
}

When you compile, you get the following message:

Test.java: 6: error: cannot find symbol
 NumberFormat nf =
NumberFormat.getCurrencyInstance();
 ^
 symbol : class NumberFormat
 location: class Test
Test.java: 6: error: cannot find symbol
 NumberFormat nf =
NumberFormat.getCurrencyInstance();
 ^
 symbol : variable NumberFormat
 location: class Test
2 errors

Explain what the problem is and how to fix it.

45. You coded the following on lines 10–12 of class Test.java:

String s; // line 10
int l = s.length(); // line 11
System.out.println("length is " + l); //
line 12

When you compile, you get the following message:

Test.java:11: error: variable s might not have
been initialized.
int l = s.length(); // line 11
 ^
1 error

Explain what the problem is and how to fix it.

46. You coded the following on lines 10 and 11 of class Test.java:

double d = math.sqrt(6); // line 10
System.out.println("d = " + d); // line 11

When you compile, you get the following message:

Test.java: 10: error: cannot find symbol
double d = math.sqrt(6); // line 10
 ^
symbol : variable math
location: class Test
1 error

Explain what the problem is and how to fix it.

47. You coded the following on lines 10 and 11 of class Test.java:

double d = Math.PI(); // line 10
System.out.println ("d = " + d); // line 11

When you compile, you get the following message:

Test.java:10: error: cannot find symbol
 double d = Math.PI(); // line 10
 ^
symbol : method PI()
location: class Math
1 error

Explain what the problem is and how to fix it.

48. You coded the following on lines 10 and 11 of class Test.java:

double d = Math.e; // line 10
System.out.println("d = " + d); // line 11

When you compile, you get the following message:

Test.java:10: error: cannot find symbol
 double d = Math.e; // line
10
 ^
symbol : variable e
location: class Math
1 error

Explain what the problem is and how to fix it.

49. You imported the DecimalFormat class and coded the following in
the class Test.java:

double grade = .895;
DecimalFormat percent =
 new DecimalFormat("#.0%");
System.out.println("Your grade is " + grade);

The code compiles properly and runs, but the result is not what
you expected. You expect this output:

Your grade is 89.5%

But instead, the output is

Your grade is 0.895

Explain what the problem is and how to fix it.

3.18.6 Write a Short Program
50. Write a program that reads two words representing passwords

from the keyboard and outputs the number of characters in the
smaller of the two. For example, if the two words are open and
sesame, then the output should be 4, the length of the shorter
word, open.

51. Write a program that prompts the user for a domain name. Your
program should then concatenate that name with www. and .com
in order to form an Internet domain name and output the result. For
instance, if the name entered by the user is yahoo, then the output
will be www.yahoo.com.

52. Write a program that reads a word from the keyboard. Your
program should output the word in uppercase letters only, output
that word in lowercase letters only, and then, at the end, output the
original word.

53. Write a program that generates two random numbers between 0
and 100 and prints the smaller of the two numbers.

54. Write a program that takes a double as an input, then computes
and outputs the cube of that number using the pow method of the
Math class.

55. Write a program that reads a file name from the keyboard. You
should expect that the file name has one . (dot) character in it,
separating the file name from the file extension. Retrieve the file
extension and output it. For instance, if the user inputs index.html,
you should output html; if the user inputs MyClass.java, you should
output java.

56. Write a program that reads a full name (first name and last name)
from the keyboard as a single line; you should expect the first
name and the last name to be separated by a space. Retrieve and
output the first and last names.

http://www.yahoo.com/

3.18.7 Programming Projects
57. Write a program that reads three integer values from the keyboard

representing, respectively, a number of quarters, dimes, and
nickels. Convert the total coin amount to dollars and output the
result with a dollar notation.

58. Write a program that reads from the keyboard the radius of a
circle. Calculate and output the area and the circumference of that
circle. You can use the following formulas:

area = π * r

circumference = 2 * π * r

59. Write a program that generates five random integers between 60
and 100 and calculates the smallest of the five numbers.

60. Write a program that generates three random integers between 0
and 50, calculates the average, and prints the result to one
decimal place.

61. Write a program that reads two integers from the keyboard: one
representing the number of shots taken by a basketball player, the
other representing the number of shots made by the same player.
Calculate the shooting percentage and output it with the percent
notation.

62. Write a program that reads three double numbers from the
keyboard representing, respectively, the three coefficients a, b,
and c of a quadratic equation. Solve the equation using the
following formulas:

x1 = (− b + square root (b − 4 ac)) / (2a)

x2 = (− b − square root (b − 4 ac)) / (2a)

Run your program on the following sample values:

a = 1.0, b = 3.0, c = 2.0

a = 0.5, b = 0.5, c = 0.125

a = 1.0, b = 3.0, c = 10.0

2

2

2

Discuss the results for each program run, in particular what
happens in the last case.

63. Write a program that reads two numbers from the keyboard
representing, respectively, an investment and an interest rate (you
will expect the user to enter a number such as .065 for the interest
rate, representing a 6.5% interest rate). Your program should
calculate and output (in $ notation) the future value of the
investment in 5, 10, and 20 years using the following formula:

future value = investment * (1 + interest rate)

We will assume that the interest rate is an annual rate and is
compounded annually.

64. Write a program that reads from the keyboard the (x,y) coordinates
for two points in the plane. You can assume that all numbers are
integers. Using the Point class from the Java Class Library (you
may need to look it up on the Web), instantiate two Point objects
with your input data, then output the data for both Point objects.

65. Write a program that reads an email address. Assuming that the
email address contains one at sign (@), extract and print the
username and the domain name of the email address.

66. Write a program that reads a telephone number from the keyboard
as a String of 10 digits. You should output that same telephone
number formatted as (nnn) nnn-nnnn.

year

67. Write a program that reads a sentence from the keyboard. The
sentence has been encrypted so that the message consists of only
the first five characters with even-numbered indexes. All other
characters should be discarded. Decrypt the sentence and output
the result. For example, if the user inputs “Hiejlzl3ow”, your output
should be Hello.

68. Write a program that reads a commercial website URL from the
keyboard; you should expect that the URL starts with www. and
ends with .com. Retrieve the name of the site and output it. For
instance, if the user inputs www.yahoo.com, you should output
yahoo.

3.18.8 Technical Writing
69. At this point, we have written and debugged many examples of

code. When you compile a Java program with the Java compiler,
you get a list of all the errors in your code. Do you like the Java
compiler? Do the error messages it displays when your code does
not compile help you determine what’s wrong? How?

70. Computers, computer languages, and application programs
existed before object-oriented programming. However, OOP has
become an industry standard. Discuss the advantages of using
OOP compared to using only basic data types in a program.

71. Explain and discuss a situation where you would use the method
parseInt of the class Integer.

72. In addition to the basic data types (int, float, char, boolean,…),
Java provides many prewritten classes, such as Math,
NumberFormat, and DecimalFormat. Why is this an advantage?
How does this impact the way a programmer approaches a
programming problem in general?

http://www.yahoo.com/

3.18.9 Group Project (for a group
of 1, 2, or 3 students)
73. Write a program that calculates a monthly mortgage payment; we

will assume that the interest rate is compounded monthly.

You will need to do the following:

❑ Prompt the user for a double representing the annual interest
rate. For example, 3.5% would be entered as .035.

❑ Prompt the user for the number of years the mortgage will be
held (typical input here is 10, 15, or 30).

❑ Prompt the user for a number representing the mortgage
amount borrowed from the bank.

❑ Calculate the monthly payment using the following formulas:

Monthly payment = (mIR * M) / (1 − (1 / (1 + mIR)
)), where:

mIR = monthly interest rate = annual interest rate /
12

nOY = number of years
M = mortgage amount

❑ Output a summary of the mortgage problem, as follows:

the annual interest rate in percent notation

the mortgage amount in dollars
the monthly payment in dollars, with only two significant
digits after the decimal point

the total payment over the years, with only two
significant digits after the decimal point
the overpayment, i.e., the difference between the total
payment over the years and the mortgage amount, with
only two significant digits after the decimal point

the overpayment as a percentage (in percent notation)
of the mortgage amount

(12*nOY)

CHAPTER 4
Introduction to Graphical
Applications
CHAPTER CONTENTS
Introduction
4.1 JavaFX Application Structure
4.2 The Graphics Coordinate System and Color
4.3 Drawing Shapes and Text
4.4 Drawing Custom Shapes
4.5 Programming Activity 1: Writing an Application with
Graphics
4.6 Chapter Summary
4.7 Exercises, Problems, and Projects

4.7.1 Multiple Choice Exercises
4.7.2 Reading and Understanding Code
4.7.3 Fill In the Code
4.7.4 Identifying Errors in Code
4.7.5 Debugging Area—Using Messages from the Java
Compiler and Java JVM
4.7.6 Write a Short Program
4.7.7 Programming Projects
4.7.8 Technical Writing
4.7.9 Group Project

Introduction
Graphical output is an integral part of many programs today.
One compelling reason for using graphics in a program is the
ability to present data in a format that is easy to comprehend.
For example, our application could output average monthly
temperatures as text, as shown in Figure 4.1.

Or we could produce the bar chart shown in Figure 4.2.

Figure 4-1
Outputting Monthly Temperatures as Text

Jan 31

Feb 24

Mar 45

Apr 60

May 69

Jun 80

Jul 88

Aug 87

Sep 75

Oct 65

Nov 43

Dec 23

Figure 4.2
Bar Chart of Monthly Temperatures

The bar chart presents the same information as the text
output, but it adds a visual component that makes it easier to
compare the monthly temperatures—for example, to find the
highest or lowest temperature or to spot temperature trends
throughout the year. The colors also add information, with the
low temperatures shown in blue, the moderate temperatures
in yellow, and the high temperatures in red.

In this chapter, we use JavaFX to write programs that produce
graphical output.

4.1 JavaFX Application Structure
Over the years, Java has provided several
incarnations of graphics systems. The first was
Abstract Window Toolkit (AWT), which was
subsequently replaced by Swing. Java’s current
system for building graphics applications is JavaFX.
JavaFX makes it possible to create rich user
interfaces with animations and special effects. In this
chapter, we concentrate on JavaFX’s features for
creating graphical output for applications.

All the classes we need to build a JavaFX application
are downloaded with the Java SE SDK. Oracle
provides tutorial information on JavaFX at
http://docs.oracle.com/javafx/2/get_started/jfxpub-
get_started.htm and documentation for all the
JavaFX classes is included with the Java version 9
documentation.

JavaFX uses a mixed performance/art metaphor. We
start with a stage (a window) to which we add one or
more scenes. To produce graphical output, we add a
canvas to our scene, and we draw shapes and text
on the canvas. When our application begins, the
window opens and displays whatever we have drawn
on the canvas.

REFERENCE POINT
For a tutorial on JavaFX, visit Oracle’s website at
http://docs.oracle.com/javafx/2/get_started/jfxpub-
get_started.htm

We, the authors, are providing two classes to get you
started. First, we provide a utility program,
JIGraphicsUtility.java, to manage some of the
common code needed to set up a JavaFX
application. Second, we provide
ShellGraphicsApplication.java, which provides a
framework for adding your custom drawing code.
The JIGraphicsUtility.java class, shown in Example
4.1, has one static method, setUpGraphics, which is
designed to be called from our graphics application
to set up our window title and size. We show the
JIGraphicsUtility class here for completeness, but we
do not need to make any modifications to this file. All
we need to do is include this file in the same folder
as our graphics application and call the
setUpGraphics method from our application. The
setUpGraphics method has the API shown in Table
4.1.

TABLE 4.1 The static setUpGraphics
Method

Return value Method name and argument list
GraphicsContext setUpGraphics(Stage stage,

String title, int width, int

height)

initializes a scene on the stage, sets the
title of the window to title, and adds a
canvas with the width and height

specified; returns a GraphicsContext

object

In our graphics application, we use the
GraphicsContext object returned from the
setUpGraphics method to call methods that draw
shapes and text on the window.

EXAMPLE 4.1 JIGraphicsUtility
Class

 1 /* JIGraphicsUtility

 2 Utility class for building JavaFX graphics

applications

 3 Anderson, Franceschi

 4 */

 5

 6 import javafx.scene.Group;

 7 import javafx.scene.canvas.Canvas;

 8 import javafx.scene.canvas.GraphicsContext;

 9 import javafx.scene.Scene;

10 import javafx.stage.Stage;

11

12 public class JIGraphicsUtility

13 {

14 public static GraphicsContext setUpGraphics(

Stage stage,

15 String title, int

height, int width)

16 {

17 stage.setTitle(title);

18 Canvas canvas = new Canvas(height, width

);

19 GraphicsContext gc =

canvas.getGraphicsContext2D();

20 Group root = new Group(canvas);

21 stage.setScene(new Scene(root));

22 stage.show();

23 return gc;

24 }

25 }

Example 4.2 shows the ShellGraphicsApplication
class. This class provides skeleton code for an
application. We create a new application by
modifying this code.

EXAMPLE 4.2
ShellGraphicsApplication.java

 1 /* A Shell for creating graphics applications

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.stage.Stage;

 8

 9 public class ShellGraphicsApplication extends

Application

10 {

11 @Override

12 public void start(Stage stage)

13 {

14 // set up window title and size

15 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

16 stage, "Shell Graphics

Application", 700, 400);

17

18 // your drawing code goes here

19 }

20

21 public static void main(String [] args)

22 {

23 launch(args);

24 }

25 }

Lines 5–7 import the minimum classes needed for a
JavaFX application. Notice that all the package
names begin with javafx.

We define our application name in line 9. Here the
name is ShellGraphicsApplication. For each new
application we write, we will change this name to
reflect the application’s purpose. The phrase
“extends Application” means that we inherit basic
functionality and methods from the JavaFX
Application class.

One of the methods we inherit is the start method,
which the JavaFX platform calls automatically when
the application begins. It receives one parameter,
stage, which represents the application’s window.
We need to write our own version of the start method
(lines 11–19), however, in which we put our method
calls to draw shapes and text on the window. We use
the @Override annotation in line 11 to indicate that
our start method replaces the start method in the
Application class.

Our first order of business is to call the
setUpGraphics method (lines 14–16). Because
setUpGraphics is a static method, we call it using the
JIGraphicsUtility class name. Here we send as
arguments the stage representing our window; a title
for the window; and a size for the window, in this

case a width of 700 pixels and a height of 400 pixels.
For our applications, we can change the title to
something appropriate and alter the window size as
needed.

Line 18 indicates where we add code to create our
graphics.

In lines 21–24 we define the main method. Its only
job is to launch the JavaFX application by calling the
launch method of the Application class, passing
through any arguments that were sent to the main
method. Because this code will be the same for
every application, we place main at the end of the
program.

Thus, to run a JavaFX graphics application, we alter
the ShellGraphicsApplication.java class to add our
custom graphics code, and we put the
JIGraphicsUtility.java class and our custom class in
the same folder. We then compile both classes and
execute our custom class.

4.2 The Graphics Coordinate System
and Color
JavaFX’s GraphicsContext class, in the javafx.scene.canvas
package, provides methods to draw figures such as
rectangles, circles, and lines; to set the colors for drawing;
and to write text in a window.

To draw on the window, we specify the location where we
want to put our shapes and the color we want the shapes to
have.

A window is composed of pixels, which can be thought of as
colored dots. A window with a width of 700 pixels and a height
of 400 pixels has a total of 28,000 (700 * 400) pixels. Each
pixel has a location expressed using an (x, y) coordinate
system. The x coordinate specifies the horizontal position,
beginning at 0 on the left side of the window and increasing
as you move to the right. The y coordinate specifies the
vertical position, starting at 0 at the top of the window and
increasing as you move down. Thus, for a window that is 700
pixels wide and 400 pixels high, the coordinate (0, 0)
corresponds to the upper-left corner; (699, 0) is the upper-
right corner; (0, 399) is the lower-left corner; and (699, 399) is
the lower-right corner. Figure 4.3 shows a window with a few
sample pixels and their (x, y) coordinates.

Figure 4.3
The GraphicsContext Coordinate System

Each pixel also has a color. When a window opens, all pixels
are set to the background color, which by default is white.
Any drawing we perform is done in the foreground colors,
which are the stroke color and the fill color. Most of the
drawing methods have a stroke and a fill version, where the
stroke version draws an outlined shape in the current stroke
color and the fill version draws a solid shape in the current fill
color. By default, both the stroke color and fill color are black,
but we can set either to any color we prefer. The values set
for the colors remain in effect until we set either the stroke
color or the fill color to another color. For example, if we set
the stroke color to blue and the fill color to red, then draw an
outlined rectangle and a line, as well as a solid oval, the

rectangle and line will be drawn in blue and the oval will be
drawn in red. Then if we set the fill color to yellow and draw a
solid rectangle, that rectangle will be drawn in yellow.

To set the foreground colors, we call the setFill or setStroke
methods of the GraphicsContext class as shown in Table 4.2.
These methods take as an argument, a Paint object. Because
objects of the Color class are also Paint objects, we can send
Color objects as arguments to the setFill and setStroke
methods.

TABLE 4.2 Methods of the GraphicsContext Class
to Set the Foreground Colors

Return value Method name and argument list
void setStroke(Paint color)

sets the current outline color to color

void setFill(Paint color)

sets the current fill color to color

The Color class, which is in the javafx.scene.paint package,
defines colors using the RGB (red, green, blue) system. Any
RGB color is composed of red, green, and blue components.
Each component’s value can range from 0 to 255 (00 to FF in
hexadecimal); the higher the value, the higher the
concentration of that component in the color. For example, a
color with red = 255, green = 0, and blue = 0 is pure red, and
a color with red = 0, green = 0, and blue = 255 is pure blue.

The color white is (255, 255, 255): its red, green, and blue
components have the maximum value. Black is (0, 0, 0): its
red, green, and blue components have the minimum value.
Gray consists of equal amounts of each component. The
higher the value of the components, the lighter the color of

gray. This makes sense because the closer a color gets to
white, the lighter that color will be. Similarly, the closer the
gray value gets to 0, the darker the color of gray, because the
color is approaching black.

For convenience in setting stroke and fill colors, the Color
class provides approximately 150 static Color constants.
Table 4.3 lists some Color constants for common colors and
their corresponding red, green, and blue components in
hexadecimal. For a complete list of Color constants, see the
documentation for the Color class in the Java Class Library.

TABLE 4.3 Selected Color Constants and Their
Red, Green, and Blue Components

Color Constant Red Green Blue

 Color.BLACK 00 00 00

 Color.BLUE 00 00 FF

 Color.CYAN 00 FF FF

 Color.DARKGRAY A9 A9 A9

 Color.GRAY 80 80 80

 Color.GREEN 00 FF 00

 Color.LIGHTGRAY D3 D3 D3

 Color.MAGENTA FF 00 FF

 Color.ORANGE FF A5 00

 Color.PINK FF C0 CB

 Color.RED FF 00 00

 Color.WHITE FF FF FF

 Color.YELLOW FF FF 00

Each color constant is a predefined Color object, so you can
simply assign the constant to your Color object reference.
Color constants can be used wherever a Color or Paint object
is expected. For example, assuming that gc is a
GraphicsContext reference, this statement sets the current
stroke color to orange:

gc.setStroke (Color. ORANGE) ;

If none of these 150 predefined colors meets our needs, we
can create a custom color using any of the 16.7 million
possible combinations of the component values. The Color
class has a number of methods for creating colors, but for our
purposes we’ll need only the static factory method shown in
Table 4.4.

TABLE 4.4 A Color Class static Factory Method
Return
value

Method name and argument list

Color rgb (int rr, int gg, int bb)

 creates a Color object with an rr red component, gg green
component, and bb blue component

Skill Practice
with these end-of-chapter questions

4.7.1 Multiple Choice Exercises

Questions 1, 2, 3, 4, 5, 10

4.7.3 Fill In the Code

Question 16

4.7.4 Identifying Errors in Code

Questions 23, 24, 25, 26, 27

4.7.5 Debugging Area

Questions 29, 30

4.7.8 Technical Writing

Question 38

4.3 Drawing Shapes and Text
Now we’re ready to create some graphics. Let’s start with
drawing lines.

Table 4.5 shows some useful methods of the GraphicsContext
class for drawing shapes and displaying text in a window.

As you can see, all these methods have a void return type, so
they do not return a value. Method calls to these methods
should be stand-alone statements.

The pattern for the method names is simple. The draw
methods render the outline of the figure, while the fill methods
render solid figures. The clearRect method draws a rectangle
in the background color, which effectively erases anything
drawn within that rectangle.

Figure 4.4 shows the relationship among the method
arguments and the figures drawn.

TABLE 4.5 Drawing Methods of the
GraphicsContext Class

Return
value

Method name and argument list

void strokeLine(double xStart, double yStart,

 double xEnd, double yEnd)

draws a line starting at (xStart, yStart) and ending at (xEnd,

yEnd)

void strokeRect(double x, double y, double width,

 double height)

draws the outline of a rectangle with its top-left corner at (x, y),
with the specified width and height in pixels

void fillRect(double x, double y, double width,

 double height)

draws a solid rectangle with its top-left corner at (x, y), with the
specified width and height in pixels

void clearRect(double x, double y, double width,

 double height)

draws a solid rectangle in the current background color with its
top-left corner at (x, y), with the specified width and height in
pixels

void strokeOval(double x, double y, double width,

 double height)

draws the outline of an oval inside an invisible bounding
rectangle with the specified width and height in pixels; the top-
left corner of the bounding rectangle is (x, y)

void fillOval(double x, double y, double width,

 double height)

draws a solid oval inside an invisible bounding rectangle with the
specified width and height in pixels; the top-left corner of the
bounding rectangle is (x, y)

Return
value

Method name and argument list

void strokeText(String s, double x, double y)

displays the String s with the (x, y) coordinate indicating the
lower-left corner of the first character; the text is drawn in the
current stroke color and line width

void fillText(String s, double x, double y)

displays the String s with the (x, y) coordinate indicating the
lower-left corner of the first character; the text is drawn in the
current fill color

void setLineWidth(double width)

sets the current stroke line width to width pixels

void setFont(Font f)

sets the font to f for displaying text

Figure 4.4
The Arguments for Drawing Lines, Rectangles, Ovals, and
Text

Example 4.3 shows a graphics application that draws some
lines, and Figure 4.5 shows the output from this application.
For this application, we have modified
ShellGraphicsUtility.java, renamed it to DrawingLines.java,
and placed our application and JIGraphicsUtility.java in the
same folder.

Lines 5–8 import the JavaFX classes we use in this
application, including the Color class. We also import the
Random class from the standard Java Class Library on line
10.

In the call to the setUpGraphics method (lines 19–21), we
specify the window title to be “Drawing Lines” and set the size
of the window to be 700 by 400 pixels.

On lines 23–24, we draw a line by calling the strokeLine
method, sending as arguments the start and end coordinates
of the line. The line is horizontal because the y values for the
start and end coordinates are the same. The line’s color is the
default stroke color, black.

Next we draw a vertical red line (lines 26–29). We first set the
stroke color to red, using the predefined Color constant,
Color.RED. We make the line 5 pixels wide by calling the
setLineWidth method with an argument of 5. This line width
will stay in effect until we set the line width to a different value.
The line is vertical because the x values for the start and end
coordinates are the same.

Finally, we generate a random value for the stroke color (lines
31–37) by generating random values for the red, green, and

blue components, then we use those values to create a Color
object using the rgb factory method. We send FF to the
nextInt method of the Random class because each red,
green, and blue component’s value can range from 00 to FF
in hexadecimal. Note that preceding an integer literal value
with 0x indicates that the value is hexadecimal. Line 39 draws
a diagonal line in this random color from the top-left corner of
the window to the bottom-right corner, using the width and
height of the window defined in lines 17 and 18.

EXAMPLE 4.3 DrawingLines.java

 1 /* Drawing Lines

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.scene.paint.Color;

 8 import javafx.stage.Stage;

 9

10 import java.util.Random;

11

12 public class DrawingLines extends Application

13 {

14 @Override

15 public void start(Stage stage)

16 {

17 final int WIDTH = 700;

18 final int HEIGHT = 400;

19 // set up window title and size

20 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

21 stage, "Drawing Lines", WIDTH, HEIGHT);

22

23 // draw a vertical black line

24 gc.strokeLine(100, 125, 100, 300);

25

26 // draw a horizontal red line

27 gc.setStroke(Color.RED);

28 gc.setLineWidth(5); // widen the line

29 gc.strokeLine(300, 75, 550, 75);

30

31 // draw a diagonal line in a random color

32 Random rand = new Random();

33 int red = rand.nextInt(0xFF);

34 int green = rand.nextInt(0xFF);

35 int blue = rand.nextInt(0xFF);

36 Color randomColor = Color.rgb(red, green, blue);

37 gc.setStroke(randomColor);

38

39 gc.strokeLine(0, 0, WIDTH — 1, HEIGHT — 1);

40 }

41

42 public static void main(String [] args)

43 {

44 launch(args);

45 }

46 }

Figure 4.5
Output from DrawingLines.java

Example 4.4 shows how to use the GraphicsContext methods
for drawing shapes, and Figure 4.6 shows the output of this
application. To draw a rectangle, we call the strokeRect or
fillRect methods with the (x, y) coordinate of the upper-left
corner, as well as the width in pixels and the height in pixels.
As you might expect, to draw a square, we specify equal
values for the width and height. Line 23 draws an outlined
rectangle with an upper-left corner at the coordinate (100, 50)
and is 80 pixels wide and 200 pixels high; line 24 draws a
solid square with an upper-left corner at the coordinate (275,
75) with sides that are 160 pixels in length.

Drawing an oval or a circle is a little more complex. As you
can see in Figure 4.4, we need to imagine a rectangle
bounding all sides of the oval or circle. Then the (x, y)
coordinate we specify in the strokeOval or fillOval method is
the location of the upper-left corner of the bounding rectangle.
Accordingly, the width and height are the width and height of
the bounding rectangle. Line 27 in Example 4.4 draws a filled
oval whose upper-left corner is at coordinate (100, 50) and is
80 pixels wide and 200 pixels high. These are the same
arguments we sent to the strokeRect method in line 23; thus,
that rectangle at line 23 is the bounding rectangle for this oval,
and we see that the filled oval is drawn exactly inside that
rectangle. Line 28 draws an outlined oval 200 pixels wide and
80 pixels high, the same dimensions as the oval drawn at line
27 but rotated 90 degrees.

We draw a circle by calling the strokeOval or fillOval methods,
specifying equal values for the width and height. Sometimes it
seems more natural to identify circles by giving a center point
and a radius. In this case, we can convert the center point and
radius into the arguments for the strokeOval or fillOval
methods as done in lines 32–35.

EXAMPLE 4.4 DrawingShapes.java

 1 /* Drawing Shapes

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.scene.paint.Color;

 8 import javafx.stage.Stage;

 9

10 public class DrawingShapes extends Application

11 {

12 @Override

13 public void start(Stage stage)

14 {

15 // set up window title and size

16 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

17 stage, "Drawing Shapes", 700, 400);

18 // specify colors

19 gc.setFill(Color.CYAN);

20 gc.setStroke(Color.ORANGE);

21

22 // draw rectangles

23 gc.strokeRect(100, 50, 80, 200); // outlined

rectangle

24 gc.fillRect(275, 75, 160, 160); // solid

square

25

26 // draw ovals

27 gc.fillOval(100, 50, 80, 200); // oval inside

rectangle

28 gc.strokeOval(100, 275, 200, 80); // outlined

oval

29

30 // draw circle using center point and radius

31 gc.setFill(Color.MEDIUMSEAGREEN);

32 int centerX = 550, centerY = 275;

33 int radius = 75;

34 gc.fillOval(centerX — radius, centerY — radius,

35 radius * 2, radius * 2);

36 }

37

38 public static void main(String [] args)

39 {

40 launch(args);

41 }

42 }

Figure 4.6
Output from DrawingShapes.java

Example 4.5 shows how to use display text using the fillText
method. The coordinate we specify is the lower-left corner of
the first character in the String. The first call to fillText (line 23)
displays our message in the default font. As you can see in
Figure 4.7, the default text size is quite small. To display a
message in a larger font, we can use the setFont method of
the GraphicsContext class as shown in Table 4.5. First,
however, we need to create a Font (line 25) using the Font
constructor shown in Table 4.6. Its only argument is a
requested point size for the font; in this case, we request a
font size of 28. We then set the font in line 26. Line 29
redisplays the message in the larger font with a call to
strokeText so that the text is outlined.

EXAMPLE 4.5 DrawingText.java

 1 /* Drawing Text

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.scene.paint.Color;

 8 import javafx.scene.text.Font;

 9 import javafx.stage.Stage;

10

11 public class DrawingText extends Application

12 {

13 @Override

14 public void start(Stage stage)

15 {

16 // set up window title and size

17 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

18 stage, "Drawing Text", 700, 400);

19

20 String message = "Programming is not a spectator

sport!";

21 gc.setFill(Color.RED);

22

23 gc.fillText(message, 100, 100);

24

25 Font largeFont = new Font(28);

26 gc.setFont(largeFont);

27 gc.setStroke(Color.RED);

28

29 gc.strokeText(message, 100, 250);

30 }

31

32 public static void main(String [] args)

33 {

34 launch(args);

35 }

36 }

TABLE 4.6 A Font Class Constructor
Font Constructor
Font(double size)

creates a Font object with a height of size in the default typeface

What happens if the (x, y) coordinate you specify for a figure
isn’t inside the window? If a figure’s coordinates are outside
the bounds of the window, no error will be generated, but the
portion of the figure outside the window bounds won’t be
visible.

COMMON ERROR TRAP
If you want the whole drawing to be visible, be careful to
ensure that all parts of your shape are enclosed within the
bounds of the window.

Figure 4.7
Output from DrawingText.java

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a movie
illustrating step-by-step how to use the
GraphicsContext drawing methods. Click on the link to
start the movie.

Putting all this together, we can now write an application that
draws a sprite, which is a graphics object that can be
positioned and drawn as a unit. Example 4.6 shows the code
to do that, and Figure 4.8 shows our sprite.

EXAMPLE 4.6 DrawingASprite.java

 1 /* Drawing a Sprite

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.canvas.Canvas;

 7 import javafx.scene.canvas.GraphicsContext;

 8 import javafx.scene.paint.Color;

 9 import javafx.stage.Stage;

10

11 public class DrawingASprite extends Application

12 {

13 @Override

14 public void start(Stage stage)

15 {

16 // set up window title and size

17 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

18 stage, "Drawing a Sprite", 700, 400);

19

20 // drawing the sprite

21 int sX = 275;

22 int sY = 100;

23 gc.setFill(Color.CORAL); // body

24 gc.fillOval(sX, sY + 20, 120, 160);

25 gc.setFill(Color.DARKGOLDENROD); // hat

26 gc.fillRect(sX + 30, sY, 60, 30);

27 gc.setStroke(Color.DARKGOLDENROD); // hat brim

28 gc.setLineWidth(3);

29 gc.strokeLine(sX, sY + 30, sX + 120, sY + 30);

30 gc.setFill(Color.CHOCOLATE); // eye

31 gc.fillOval(sX + 80, sY + 60, 24, 16);

32 gc.setFill(Color.DARKSALMON); // feet

33 gc.setLineWidth(1);

34 gc.fillOval(sX + 64, sY + 166, 60, 16);

35 gc.strokeOval(sX + 64, sY + 166, 60, 16);

36 gc.fillOval(sX + 36, sY + 170, 60, 16);

37 gc.strokeOval(sX + 36, sY + 170, 60, 16);

38 }

39

40 public static void main(String [] args)

41 {

42 launch(args);

43 }

44 }

To draw our sprite, we use ovals for the body, eye, and feet,
and we use a rectangle and line for the hat. We use various
line widths to draw the hat brim, and we outline ovals to help
define the feet.

It’s important to realize that the rendering of the shapes
occurs in the order in which the stroke or fill methods are
executed. Any new shape that occupies the same space as a
previously drawn shape will overwrite the previously drawn
shape. In this drawing, we intentionally draw the eye and hat
after drawing the body; and for the feet, we draw the filled
ovals first, then outline the feet using stroked ovals.

Figure 4.8
Output from DrawingASprite .java with the Anchor Point
Indicated

In lines 21–22, we declare and initialize two variables, sX and
sY. These define an anchor point for drawing the sprite. As
indicated in Figure 4.8, the anchor point is the top-left point of
the sprite’s bounding rectangle. When we send x and y
arguments to the fillRect, strokeLine, fillOval, and strokeOval
methods, we specify those values relative to this starting (sX,
sY) coordinate, or anchor point. By specifying these values
relative to the anchor point—for example, sX + 60—we are
using offsets. By using offsets, we can easily change the
position of the sprite on the window by simply changing the
values of sX and sY. We don’t need to change any of the
arguments sent to the GraphicsContext methods. To

demonstrate this, try changing the values of sX and sY and
rerunning the application.

SOFTWARE ENGINEERING TIP
When drawing a figure using graphics, specify coordinates as
offsets from a starting (x, y) coordinate.

4.4 Drawing Custom Shapes
To draw custom shapes we create a path, which consists of a
series of coordinates between which the JavaFX platform
should draw lines. Our resulting shape can be displayed
either outlined or filled. Only one path can be defined at a
time. Table 4.7 shows the methods we use to create and
display a path.

TABLE 4.7 Path Drawing Methods of the
GraphicsContext Class

Return
value

Method name and argument list

void beginPath()

sets the drawing path to empty

void moveTo(double x, double y)

moves to the (x, y) location without adding a line to the path

void lineTo(double x, double y)

adds a line to the current path from the previous location to (x,

y)

void closePath()

closes the path by adding a line from the previous location to
the first location of the path

void stroke()

draws the path using the current stroke color

void fill()

draws the path using the current fill color

In Example 4.7, we illustrate drawing paths by creating an
outlined triangle and a filled hexagon.

To draw our outlined triangle, we start by defining our anchor
point coordinates (lines 21–22), which is the top point of the

triangle. Then we call the beginPath method (line 23) to
create an empty path. Next, we call the moveTo method (line
24) to set the origin of our drawing at the top point of the
triangle, which is our anchor point. Of course, we could begin
at any of the triangle’s three points. We call the lineTo method
(lines 25–26) twice to specify one line from the origin to the
lower-left point and a second line from that location to the
lower-right point.

We call the closePath method (line 27) to finish the shape;
this method adds a line from our current position to the origin.
Optionally, we could complete the shape by writing a third
lineTo method call that creates a line from the lower-right point
to the origin. In either case, once the path is fully defined, we
draw the triangle by setting the stroke color and calling the
stroke method (lines 29–31).

COMMON ERROR TRAP
Forgetting to close the path could result in an incomplete
shape.

Drawing the hexagon is similar. We define coordinates for an
anchor point (the leftmost point of the hexagon), begin a new
path, move to our anchor point, define five lines of the
hexagon using lineTo method calls, and close the path to
finish the shape (lines 35–44). We display the filled hexagon
by setting the fill color and calling the fill method (lines 46–49).

The resulting figures are shown in Figure 4.9.

EXAMPLE 4.7 DrawingPaths.java

 1 /* Drawing Shapes Using Paths

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.scene.paint.Color;

 8 import javafx.stage.Stage;

 9

10 public class DrawingPaths extends Application

11 {

12 @Override

13 public void start(Stage stage)

14 {

15 // set up window title and size

16 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

17 stage, "Using Paths", 700, 400);

18

19 // drawing a triangle

20 // 1. create the path

21 int startX = 175;

22 int startY = 120;

23 gc.beginPath();

24 gc.moveTo(startX, startY);

25 gc.lineTo(startX – 50, startY + 175);

26 gc.lineTo(startX + 50, startY + 175);

27 gc.closePath();

28

29 // 2 draw the path

30 gc.setStroke(Color.CRIMSON);

31 gc.stroke();

32

33 // draw a hexagon

34 // 1. create the path

35 startX = 350;

36 startY = 200;

37 gc.beginPath();

38 gc.moveTo(startX, startY);

39 gc.lineTo(startX + 50, startY – 100);

40 gc.lineTo(startX + 175, startY – 100);

41 gc.lineTo(startX + 225, startY);

42 gc.lineTo(startX + 175, startY + 100);

43 gc.lineTo(startX + 50, startY + 100);

44 gc.closePath();

45

46 // 2. draw the path

47 gc.setFill(Color.CORNFLOWERBLUE);

48 gc.fill();

49 }

50

51 public static void main(String [] args)

52 {

53 launch(args);

54 }

55 }

Figure 4.9
Output from DrawingPaths.java

Skill Practice
with these end-of-chapter questions

4.7.1 Multiple Choice Exercises

Questions 6, 7, 8, 9

4.7.2 Reading and Understanding Code

Questions 11, 12, 13, 14, 15

4.7.3 Fill In the Code

Questions 17, 18, 19, 20

4.7.4 Identifying Errors in Code

Questions 21, 22

4.7.5 Debugging Area

Question 28

4.7.6 Write a Short Program

Questions 31, 32, 33

4.7.8 Technical Writing

Question 39

4.5 Programming Activity 1:
Writing an Application with
Graphics
In this programming activity, you will create an
application that uses graphics to draw a picture of
your own design. The objective of this programming
activity is to gain experience with the window
coordinate system, the stroke and fill graphics
methods, and using colors.

1. Start with the ShellGraphicsApplication class, change the name

of the class to represent the figure you will draw, and add an

import statement for the Color class. Remember to include the

JIGraphicsUtility.java file in the same folder.

2. Create a drawing of your own design. It’s helpful to sketch the

drawing on graph paper first, then translate the drawing into the

coordinates of the application window. Your drawing should

define an anchor point, and include at least two each of

rectangles, ovals, and lines, plus a path. Your drawing should

also use at least three colors, one of which is a custom color.

3. Label your drawing using the fillText method.

Be creative and have fun with your drawing!

DISCUSSION QUESTIONS
1. If you define the starting (x, y) coordinate of the drawing

as (800, 400), you might not be able to see the drawing.
Explain why.

2. What is the advantage to drawing a figure using a
starting (x, y) coordinate as an anchor point?

CHAPTER REVIEW

4.6 Chapter Summary
Graphical applications, which extend the
JavaFX Application class, open a window
and allow us to create graphical output.

JavaFX applications use a performance/art
metaphor with a stage corresponding to the
window and a scene on which we can place
a canvas.

We put the code to draw shapes and text in
the start method, which is called
automatically when the application begins.

The GraphicsContext class provides
methods to draw on a canvas. Methods are
provided for drawing figures, such as
rectangles, ovals, custom shapes, and lines;
to set the colors for drawing; and to display
text in a window.

An (x, y) coordinate system is used to
specify locations in the window. Each
coordinate corresponds to a pixel (or picture
element). The x value specifies the
horizontal position, beginning at 0 on the left-
hand side of the window and increasing as
you move right across the window. The y
value specifies the vertical position, starting
at 0 at the top of the window and increasing
as you move down the window.

All drawing on a graphics window is done in
the current stroke or fill foreground color,
which are changed using the setStroke and
setFill methods, respectively. The stroke
color is used for lines and outlined shapes;
the fill color is used for drawing solid shapes.
Either the stroke or fill color can be used for
text.

Objects of the Color class can be used to set
the current stroke or fill color. The Color
class provides static constants for
convenience in using colors.

Custom Color objects can be instantiated by
using the rgb factory method and specifying
the red, green, and blue components of the
color.

When displaying text, we can set the size of
the text by instantiating a Font object and
calling the setFont method of the
GraphicsContext class.

A custom shape can be drawn using a path.
We start by creating a new path and moving
to our origin. We then define points to which
lines should be drawn. When finished, we
close the path, then either fill the path as a
solid figure or stroke the path as an outlined
figure.

A sprite is a graphics object composed of
shapes that is intended to move as a unit.
When drawing a sprite, define a starting (x,
y) coordinate as an anchor point and specify
all x and y values for the drawing methods as
offsets from the starting coordinate.

4.7 Exercises, Problems, and
Projects

4.7.1 Multiple Choice Exercises
 1. What package does the GraphicsContext class belong to?

❑ javafx.scene.paint

❑ javafx.scene.canvas

❑ javafx.stage

❑ javafx.application

 2. If a window is 400 by 800 pixels, how many pixels does the
window contain?

❑ 1,200 pixels
❑ 32,000 pixels

❑ 320,000 pixels

 3. A JavaFX graphical application opens a window.

❑ true
❑ false

 4. In JavaFX graphical applications, the start method is called
automatically; the programmer does not code the method call.

❑ true

❑ false

 5. Look at the following code:

Color c = Color. BLUE;

What is BLUE?

❑ a static constant of the class Color

❑ an instance variable of the class Color

❑ a static method of the class Color

❑ an instance method of the class Color

 6. What can be stated about the line drawn by the following code?

gc.strokeLine(100, 200, 300, 200);

❑ The line is vertical.

❑ The line is horizontal.

❑ The line is diagonal.
❑ None of the above.

 7. What do the arguments 10, 20 represent in the following
statement?

gc.strokeRect(10, 20, 100, 200);

❑ the (x, y) coordinate of the upper-left corner of the rectangle
we are drawing

❑ the width and height of the rectangle we are drawing

❑ the (x, y) coordinate of the center of the rectangle we are
drawing

❑ the (x, y) coordinate of the lower-right corner of the rectangle
we are drawing

 8. What do the arguments 100, 200 represent in the following
statement?

gc.strokeRect(10, 20, 100, 200);

❑ the (x, y) coordinate of the upper-left corner of the rectangle
we are drawing

❑ the width and height of the rectangle we are drawing

❑ the height and width of the rectangle we are drawing
❑ the (x, y) coordinate of the lower-right corner of the rectangle

we are drawing

 9. How many arguments does the fillOval method take?

❑ 0

❑ 2
❑ 4

❑ 5

10. In RGB format, a gray color can be coded as A A A, where the first
A represents the amount of red in the color, the second A the
amount of green, and the third A the amount of blue. A can vary
from 0 to 255, including both 0 and 255; how many possible gray
colors can we have?

❑ 1

❑ 2
❑ 255

❑ 256
❑ 257

4.7.2 Reading and Understanding
Code
In questions 11 through 15, assume that gc is a
GraphicsContext reference.

11. In what color will the rectangle be drawn?

gc.setFill(Color.BLUE);
gc.fillRect(10, 20, 100, 200);

12. What is the length of the line being drawn?

gc.strokeLine(50, 20, 50, 350);

13. What is the width of the rectangle being drawn?

gc.fillRect(10, 20, 250, 350);

14. What is the (x, y) coordinate of the upper-right corner of the
rectangle being drawn?

gc.fillRect(10, 20, 250, 350);

15. What is the (x, y) coordinate of the lower-right corner of the
rectangle being drawn?

gc.strokeRect(10, 20, 250, 350);

4.7.3 Fill In the Code
16. This code sets the current fill color to red and the current stroke

color to green.

// assume you have a GraphicsContext object named
gc
// your code goes here

17. This code draws the String “Fill In the Code” with the lower-left
corner of the first character (the F) being at the coordinate (100,
250).

// assume you have a GraphicsContext object named
gc
// your code goes here

18. This code draws a filled rectangle with a width of 100 pixels and a
height of 300 pixels, starting at the coordinate (50, 30).

// assume you have a GraphicsContext object
called gc
// your code goes here

19. This code draws a filled rectangle starting at (50, 30) for its upper-
left corner with a lower-right corner at (100, 300).

// assume you have a GraphicsContext object
called gc
// your code goes here

20. This code draws a circle of radius 100 with its center located at
(200, 200).

// assume you have a GraphicsContext object
called gc
// your code goes here

4.7.4 Identifying Errors in Code
In questions 21 through 25, assume that gc is a
GraphicsContext reference.

21. Where is the logic error in this code sequence that attempts to
draw a solid blue rectangle?

gc.setStroke(Color.BLUE);
gc.fillRect(10, 20, 100, 200);

22. Where is the error in this code sequence?

gc.fillText('Find the bug', 100, 200);

23. Where is the error in this code sequence?

gc.setFill(GREEN);

24. Where is the error in this code sequence?

gc.setColor(Color.RED);

25. Where is the error in this code sequence?

gc.color = Color.RED;

26. Where is the error in this statement?

import java.GraphicsContext;

27. Where is the error in this statement?

import java.stage.Stage;

4.7.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
28. You coded the following program in the file MyDrawingApp.java.

import javafx.application.Application;
import javafx.scene.canvas.GraphicsContext;
import javafx.stage.Stage;
public class MyDrawingApp extends Application
{
 @Override

 public void start(Stage stage)
 {
 GraphicsContext gc =
JIGraphicsUtility.setUpGraphics(
 stage, "Tester", 700, 400);
 gc.strokeRect(725, 200, 50, 50);
 }

 public static void main(String [] args)
 {
 launch(args);
 }
}

You get no compiler errors, but when you run the program, the
rectangle doesn’t appear. Explain what the problem is and how to
fix it.

29. You imported the Color class and coded the following on line 10 of
the class MyApplication.java:

Color c = Color.rgb(1.4, 234, 23); // line
10

When you compile, you get the following message:

MyApplication.java:10: error: incompatible types:
possible lossy conversion
from double to int
Color c = Color.rgb(1.4, 234, 23); // line
10
 ^
1 error

Explain what the problem is and how to fix it.

30. You coded the following on line 10 of the class MyApplication.java:

Color c = Color.Blue; // line 10

When you compile, you get the following message:

MyAppliction.java:10: error: cannot find symbol
 Color c = Color.Blue; // line 10
 ^
symbol : variable Blue
location : class Color
1 error

Explain what the problem is and how to fix it.

4.7.6 Write a Short Program
31. Write an application that displays the five Olympic rings.

32. Write an application that displays a tic-tac-toe board. Include a few
Xs and Os.

33. Write an application that displays a rhombus (i.e., a parallelogram
with equal sides). Your rhombus should not be a square.

4.7.7 Programming Projects

34. Write an application that displays two eyes. An eye can be drawn
using an oval, a filled circle, and lines. On the window, write a word
or two about these eyes.

35. Write an application that displays the following coins: a quarter, a
dime, and a nickel. These three coins should be drawn as basic
circles (of different diameters) with the currency value displayed
inside the coin (for example, “25¢”). (Hint: Use the Unicode
currency symbols chart to find the encoding for a cent sign.)

36. Write an application that displays a basic house made up of lines
(and possibly rectangles). Your house should have multiple colors.
Display a title for the house (for instance, “Java House”).

37. Write an application that displays four concentric circles. Each
circle should have a lighter shade of the same color. (Hint: Look up
the brighter method in the Color class.)

4.7.8 Technical Writing
38. Explain some advantages to displaying data visually as charts.

Also, explain the role that color can play in communicating data
values.

39. If the strokeRect method did not exist, but you still had the
strokeLine method available, explain how you would be able to
draw a rectangle.

4.7.9 Group Project (for a group of
1, 2, or 3 students)
40. Write an application that displays the following:

❑ a drawing of two or three chessboard pieces as sprites; use a
path for at least part of the drawing

❑ a description of one of the chessboard pieces (for instance, a
rook) and its main legal moves

In order to make the description visually appealing, use several
colors and several fonts.

CHAPTER 5
Flow of Control, Part 1: Selection

CHAPTER CONTENTS
Introduction
5.1 Forming Conditions

5.1.1 Equality Operators
5.1.2 Relational Operators
5.1.3 Logical Operators

5.2 Simple Selection with if
5.3 Selection Using if/else

5.4 Selection Using if/else if
5.5 Sequential and Nested if/else Statements

5.5.1 Sequential if/else Statements
5.5.2 Nested if/else Statements

5.6 Testing Techniques for if/else Statements
5.7 Programming Activity 1: Working with if/else
5.8 Comparing Floating-Point Numbers
5.9 Comparing Objects

5.9.1 The equals Method
5.9.2 String Comparison Methods

5.10 The Conditional Operator (?:)
5.11 The switch Statement
5.12 Programming Activity 2: Using the switch
Statement
5.13 Chapter Summary
5.14 Exercises, Problems, and Projects

5.14.1 Multiple Choice Exercises
5.14.2 Reading and Understanding Code
5.14.3 Fill In the Code
5.14.4 Identifying Errors in Code

5.14.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM
5.14.6 Write a Short Program
5.14.7 Programming Projects
5.14.8 Technical Writing
5.14.9 Group Project

Introduction
The order of a program’s instructions, called the flow of
control of the program, is critical to producing correct results.
There are essentially four types of flow of control: sequential
execution, method calls, selection, and looping. Most
programs use a combination of all types of flow of control.

With sequential execution in an application, the JVM executes
each instruction in order. Whenever one of the instructions
includes a method call, control transfers to the method, where
its instructions are executed. When the method completes, we
resume execution of the original instructions in order.

Sometimes, however, we don’t want to execute every
instruction. Some instructions should be executed only for
certain input values, but not for others. For example, we may
want to count only the odd numbers or perform only the
operation that the user selects from a menu. For these
applications, we need a way to determine at run time the input
values we have and, therefore, which instructions we should
execute.

In this chapter, we’ll discuss selection, which gives us a way
to test for certain conditions and to select the instructions to
execute based on the results of the test. To perform selection,
Java provides a number of alternatives: if, if/else, if/else if, the
conditional operator (?:), and switch.

5.1 Forming Conditions
Often in a program, we need to compare variables or
objects. For instance, to determine whether someone
can shop online, we want to know if the person’s age
is at least 18. Or, if we are adding students to the
honor roll, we want to add only those students with
averages of 90 or better. Similarly, if we are sending
warnings to students, we want to send those warnings
only to students whose averages are below 60.

Java provides equality, relational, and logical
operators to evaluate and test whether an expression
is true or false. It also provides selection statements to
transfer control to a different part of the program
depending on the result of that test.

5.1.1 Equality Operators
A common operation is to compare two variables or
values of the same data type to determine if their
values are equal. For example, we need to compare
the user’s input to a ‘y’ to determine whether he or she
wants to play a game again. Or if we want to print a
list of students who will continue next year, we need to
eliminate the students who are graduating seniors.

To compare values of primitive data types, Java
provides the equality operators shown in Table 5.1.
Both are binary operators, meaning that they take two
operands. The operands may be expressions that
evaluate to a primitive numeric or boolean type or an
object reference. The result of an expression
composed of a relational operator and its two
operands is a boolean value, that is, true or false.

TABLE 5.1 Equality Operators
Equality Operator Type Meaning
== binary is equal to

!= binary is not equal to

For instance, if an int variable age holds the value 32,
then

the expression (age == 32) will evaluate to
true, and
the expression (age != 32) will evaluate to
false.

The following expression can be used to eliminate
seniors by testing whether the value of the int variable
yearInCollege is not equal to 4:

yearInCollege != 4

The following expression can be used in a game
program to determine whether the user wants to play
again:

playAgain == 'y'

Assuming the user’s input is stored in the char
variable playAgain, then if the user typed ‘y’, the
expression evaluates to true; with any other input
value, the expression evaluates to false.

A common error is to use the assignment operator
instead of the equality operator. For example:

playAgain = 'y'

actually assigns the value y to the variable playAgain.

COMMON ERROR TRAP
Do not confuse the equality operator == (double equal
signs) with the assignment operator = (one equal
sign).

Although the equality operators can be used to
compare object references, these operators cannot be
used to compare object data. We discuss the
comparison of objects later in the chapter.

5.1.2 Relational Operators
To compare values of primitive numeric types, Java
provides the relational operators shown in Table 5.2.
These operators are binary, meaning that they take
two operands, each of which is an expression that
evaluates to a primitive numeric type. The relational
operators cannot be used with boolean expressions or
with object references.

TABLE 5.2 Relational Operators
Relational Operator Type Meaning
< binary is less than

<= binary is less than or equal to

> binary is greater than

>= binary is greater than or equal to

Again, if an int variable age holds the value 32, then

the expression (age < 32) will evaluate to
false,
the expression (age <= 32) will evaluate to
true,
the expression (age > 32) will evaluate to
false, and
the expression (age >= 32) will evaluate to
true.

This expression tests whether an int variable
testScore is at least 90:

testScore >= 90

This code tests whether that test score is less than 60:

testScore < 60

5.1.3 Logical Operators
A common operation in a program is to test whether a
combination of conditions is true or false. For these
operations, Java provides the logical operators !, &&,
and ||, which correspond to the Boolean logic
operators NOT, AND, and OR. These operators, which
are shown in Table 5.3, take boolean expressions as
operands. A boolean expression can be a combination
of variables, operators, and method calls that result in
a boolean value.

TABLE 5.3 Logical Operators
Logical Operator Type Meaning
! unary NOT

&& binary AND

|| binary OR

The NOT operator (!) takes one boolean expression
as an operand and inverts the value of that operand. If
the operand is true, the result will be false; and if the
operand is false, the result will be true.

The AND operator (&&) takes two boolean
expressions as operands; if both operands are true,
then the result will be true; otherwise, the result will be
false.

The OR operator (||) also takes two boolean
expressions as operands. If both operands are false,

then the result will be false; otherwise, it will be true.
The OR operator consists of two vertical bars with no
intervening space. On the PC keyboard, the vertical
bar is the shifted character above the Enter key.

The truth table for these logical operators is shown in
Table 5.4.

TABLE 5.4 Truth Table for Logical Operators
Operands Operations
a b !a a && b a || b

true true false true true

true false false false true

false true true false true

false false true false false

REFERENCE POINT
The complete Operator Precedence Chart is provided
in Appendix B.

The order of precedence of the relational and logical
operators is shown in Table 5.5, along with the
arithmetic operators. Note that the Unary NOT
operator (!) has the highest precedence of the
relational and logical operators, followed by the
relational operators, then the equality operators, then
AND (&&), then OR (||).

TABLE 5.5 Operator Precedence
Operator
Hierarchy

Order of
Same-
Statement
Evaluation

Operation

() left to right parentheses for explicit grouping

++, −− right to left shortcut
postincrement/postdecrement

++, −−,

!

right to left shortcut preincrement/predecrement,
logical unary NOT

*, /, % left to right multiplication, division, modulus

+, − left to right addition or String concatenation,
subtraction

<, <=,

>, >=

left to right relational operators: less than, less
than or equal to, greater than,
greater than or equal to

==, != left to right equality operators: equal to and not
equal to

&& left to right logical AND

|| left to right logical OR

=, +=,

−=, *=,

/=, %=

right to left Assignment operator and shortcut
assignment operators

Example 5.1 shows these operators at work.

EXAMPLE 5.1 How Logical
Operators Work

 1 /* Using Logical Operators

 2 Anderson, Franceschi

 3 */

 4

 5 public class LogicalOperators

 6 {

 7 public static void main(String [] args)

 8 {

 9 int age = 75;

10 boolean test;

11

12 test = (age > 18 && age < 65);

13 System.out.println(age + " > 18 && " + age + "

< 65 is " + test);

14

15 // short circuitry with AND

16 test = (age < 65 && age > 18);

17 System.out.println(age + " < 65 && " + age + "

> 18 is " + test);

18

19 // short circuitry with OR

20 test = (age > 65 || age < 18);

21 System.out.println(age + " > 65 || " + age + "

< 18 is " + test);

22

23 // AND has higher precedence than OR

24 test = (age > 65 || age < 18 && false);

25 System.out.println(age + " > 65 || " + age

26 + " < 18 && false is " +

test);

27

28 // use of parentheses to force order of

execution

29 test = ((age > 65 || age < 18) && false);

30 System.out.println("(" + age + " > 65 || " +

age

31 + " < 18) && false is " +

test);

32 }

33 }

Line 12 evaluates whether the variable age is greater
than 18 and less than 65 and assigns the result to the
boolean variable test. Since line 9 set the value of age
to 75, the first operand (age > 18) evaluates to true.
The second operand (age < 65) evaluates to false;
finally,

true && false

evaluates to false, and false is assigned to test, which
is printed at line 13. Line 16 evaluates the same
expression as in line 12, but in reverse order. Now the
first operand (age < 65) evaluates to false, and
therefore, since the operator is the logical AND, the
overall expression evaluates to false, independently of

the value of the second operand. Because (false &&
something) always evaluates to false, the second
operand (age > 18) will never be evaluated by the
JVM. This is called short-circuit evaluation.

Line 20 shows an example of short-circuit evaluation
for the logical OR operator. The first operand (age >
65) evaluates to true, resulting in the overall
expression evaluating to true, independently of the
value of the second operand. Because (true ||
something) always evaluates to true, the second
operand will never be evaluated by the JVM.

As shown in Table 5.5, the logical AND operator has
higher precedence than the logical OR operator. Thus,
the expression in line 24 is not evaluated from left to
right; rather, the second part of the expression (age <
18 && false) is evaluated first, which evaluates to
false. Then (age > 65 || false) evaluates to true, which
is assigned to test, and then output at lines 25–26. If
we want to evaluate the expression from left to right,
we have to use parentheses to force this, as in line 29.
Then, (age > 65 || age < 18) is evaluated first and
evaluates to true; (true && false) is evaluated next and
evaluates to false.

Figure 5.1 shows the output of Example 5.1.

Suppose we have three ints: x, y, and z, and we want
to test if x is less than both y and z. A common error is
to express the condition this way:

Figure 5.1
Output from Example 5.1

 75 > 18 && 75 < 65 is false

 75 < 65 && 75 > 18 is false

 75 > 65 || 75 < 18 is true

 75 > 65 || 75 < 18 && false is true

 (75 > 65 || 75 < 18) && false is false

x < y && z // incorrect comparison of x to y and z

COMMON ERROR TRAP
Be sure that both operands of the logical AND and
logical OR operators are boolean expressions.
Expressions such as x < y && z , with x, y, and z
being numeric types, are illegal. Instead, use the
expression x < y && x < z

Because z is not a boolean variable, this statement
will generate a compiler error. Both operands of the
logical AND and logical OR operators must evaluate to
a boolean expression. The correct expression is the
following:

x < y && x < z

There are often several ways to express the same
condition using the Java logical operators. For
instance, suppose we have two boolean variables
called flag1 and flag2, and we want to test if at least
one of them is false.

In plain English, we would translate it as flag1 is false
OR flag2 is false.

Table 5.6 provides several equivalent expressions for
the preceding test.

TABLE 5.6 Examples of Equivalent
Expressions

Equivalent Expressions English Meaning
(flag1 == false) || (flag2

== false)

flag1 is false OR flag2
is false

!flag1 || !flag2 !flag1 is true OR !flag2

is true

! (flag1 && flag2) not both flag1 and flag2
are true

Although all the expressions in Table 5.6 are
equivalent, the first expression, which is the simplest
translation of the condition to test, is the easiest to
understand and would be the best selection for
readability.

DeMorgan’s Laws
Thanks to the work of the British mathematician
Augustus DeMorgan, we have a set of rules to help
develop expressions that are equivalent. DeMorgan,
who is known for his work in Boolean algebra and set
theory, developed what are known as DeMorgan’s
Laws. They are the following:

1. NOT(A AND B) = (NOT A) OR (NOT B)
2. NOT(A OR B) = (NOT A) AND (NOT B)

In Java, therefore, using the first law, we see that

!(a && b) is equivalent to !a || !b

Using the second law, we see that

!(a || b) is equivalent to !a && !b

These laws are illustrated in the extended truth table
shown in Table 5.7.

TABLE 5.7 Truth Table for DeMorgan’s Laws
a b !a !b a &&

b
a || b !(a

&& b)
!a ||
!b

!(a ||
b)

!a &&
!b

true true false false true true false false false false

true false false true false true true true false false

false true true false false true true true false false

false false true true false false true true true true

Thus, to use DeMorgan’s Laws, we change the AND
operator to OR and change the OR operator to AND,
and apply the NOT operator (!) to each operand of a
logical operator. When the operands are expressions
using relational or equality operators, the negated
expressions are shown in Table 5.8.

TABLE 5.8 The Logical NOT Operator
Applied to Relational and Equality Operators

Expression ! (Expression)
a == b a != b

a != b a == b

a < b a >= b

a >= b a < b

a > b a <= b

a <= b a > b

SOFTWARE ENGINEERING TIP
Compose Boolean expressions so that they are easy
to read and understand.

For instance, suppose we have an int variable named
age, representing the age of a person, and we want to
assess whether age is less than or equal to 18 or
greater than or equal to 65.

Table 5.9 provides several equivalent expressions for
the preceding test.

TABLE 5.9 More Examples of Equivalent
Expressions

Equivalent Expressions English Meaning
(age <= 18 || age

>= 65)

age is less than or equal to 18 or age is
greater than or equal to 65

!(age > 18 && age

< 65)

age is not between 18 and 65

!(age > 18) || !

(age < 65)

age is not greater than 18 or age is not
less than 65

Again, although all the expressions in Table 5.9 are
equivalent, the first expression, which is the simplest
translation of the condition to test, is the easiest to
read.

Skill Practice
with these end-of-chapter questions

5.14.1 Multiple Choice Exercises

Questions 1, 2, 3, 4, 5, 6, 7

5.14.2 Reading and Understanding Code

Questions 10, 11

5.14.4 Identifying Errors in Code

Questions 31, 32

5.2 Simple Selection with if
The simple selection pattern is appropriate when our
program needs to perform an operation for one set of
data, but not for all other data. For this situation, we
use a simple if statement, which has this pattern:

if (condition)

{

 true block

}

next statement

The true block can contain one or more statements
and is executed only if the condition evaluates to
true. After the true block executes, the instruction
following the if statement is executed. If the condition
is false, the true block is skipped and execution picks
up at the next instruction after the if statement. If the
true block contains only one statement, the curly
braces are optional. Figure 5.2 illustrates the flow of
control of a simple if statement.

In Example 5.2, we first prompt the user to enter a
grade at lines 12–13. Then we prompt the user for
any extra credit points at lines 15–16. At line 18, we
test whether the extra credit points are greater than
0. If so, we add the extra credit points to the test

grade at line 19. Then, no matter what the extra
credit was, lines 21–22 are executed, which print the
final grade. Figures 5.3 and 5.4 show two runs of the
program, one with extra credit greater than 0, and
one with no extra credit.

Figure 5.2
Flow of Control of a Simple if Statement

EXAMPLE 5.2 Working with if
Statements

 1 /* Using if to calculate a final test grade

 2 Anderson, Franceschi

 3 */

 4 import java.util.Scanner;

 5

 6 public class TestGrade

 7 {

 8 public static void main(String [] args)

 9 {

10 Scanner scan = new Scanner(System.in);

11

12 System.out.print("Enter your test grade > "

);

13 int grade = scan.nextInt();

14

15 System.out.print("Enter your extra credit >

");

16 int extraCredit = scan.nextInt();

17

18 if (extraCredit > 0)

19 grade += extraCredit;

20

21 System.out.println("Your final test grade is

"

22 + grade);

23 }

24 }

Figure 5.3
Output of Example 5.2 with 10 Extra Credit Points

Enter your test grade > 85

Enter your extra credit > 10

Your final test grade is 95

Figure 5.4
Output of Example 5.2 with No Extra Credit

Enter your test grade > 85

Enter your extra credit > 0

Your final test grade is 85

SOFTWARE ENGINEERING TIP
Indent the true block in an if statement for clarity.

Notice the indentation of the true block (line 19).
Indenting clarifies the structure of the program. It’s
easy to see that we add the extra credit to the test
grade only if the condition is true. Notice also that we
skipped a line after the end of the if statement; this
further separates the true block from the instruction
that follows the if statement, making it easier to see
the flow of control.

Many software engineers believe it’s a good practice
to include the curly braces even if only one
statement is included in the true block, because it
increases clarity and ease of maintenance. The curly
braces increase clarity because they highlight the
section of code to be executed when the condition is
true. Program maintenance is easier because if the
program requirements change and we need to add a
second statement to the true block, the curly braces
are already in place.

Note that there is no semicolon after the condition. If
we place a semicolon after the condition, as in this
incorrect statement,

if (grade >= 60); // incorrect to place semicolon

here

 System.out.println("You passed");

COMMON ERROR TRAP
Adding a semicolon after the condition of an if
statement indicates that the true block is empty and
can cause a logic error at run time.

the compiler will not generate an error. Instead, it will
consider the semicolon to indicate that the true block
of the if statement is empty, because a semicolon by
itself indicates a statement that does nothing. In this

case, the compiler concludes that there is no
instruction to execute when the condition is true. As
a result, when the program runs, the statement

System.out.println("You passed");

is treated as though it follows the if statement, and
therefore, the message “You passed” will be
printed regardless of the value of grade.

5.3 Selection Using if/else
The second form of an if statement is appropriate
when the data falls into two mutually exclusive
categories and different instructions should be
executed for each category. For these situations, we
use an if/else statement, which has the following
pattern:

if (condition)

{

 true block

}

else

{

 false block

}

next statement

If the condition evaluates to true, the true block is
executed and the false block is skipped. If the
condition evaluates to false, the true block is skipped
and the false block is executed. In either situation,
the statement following the if statement is executed
next. Figure 5.5 illustrates the flow of control of an
if/else statement.

If the true or false block contains only one statement,
the curly braces are optional for that block.

Again, notice the indentation of the true and false
blocks and that the else and curly braces line up
under the if. This coding style makes it easy to see
which statements belong to the true block and which
belong to the false block. If the indentation is
incorrect, a reader of our program may
misunderstand which statements will be executed. In
any event, the compiler ignores the indentation; the
indentation is designed only to make it easier for
humans to understand the logic of the code.

Figure 5.5
Flow of Control of an if/else Statement

In Example 5.3, we test a grade to determine
whether it is a passing grade (>= 60) or a failing
grade (any other value). This is a case where the
data is mutually exclusive: either the grade is a
passing grade or it is not. We want to print a different
message depending on the grade. After prompting
the user for a numeric grade, we declare a String to
hold the appropriate message (line 16), which will be
determined in our if/else statement. If the if condition,

(grade >= 60) , is true, then we assign “You
passed” to message. If the condition is false, we
assign “You failed” to message. On line 22, after the
if/else statement completes, we print whatever String
we have assigned to message. Figures 5.6 and 5.7
show two runs of the program, first with a grade
greater than or equal to 60, and then with a grade
less than 60.

EXAMPLE 5.3 Working with if/else
Statements
 1 /* Using if/else

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class PassingGrade

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12

13 System.out.print("Enter a grade > ");

14 int grade = scan.nextInt();

15

16 String message;

17 if (grade >= 60)

18 message = "You passed";

19 else

20 message = "You failed";

21

22 System.out.println(message);

23 }

24 }

Note that we could have used two sequential if
statements, as in:

 if (grade >= 60)

 message = "You passed";

 if (grade < 60)

 message = "You failed";

However, if the first condition, (grade >= 60) , is
false, the second condition, (grade < 60) , must
be true. So an if/else simplifies our processing and
avoids unnecessarily testing two conditions when
only one of the conditions can be true.

Figure 5.6
Output from Example 5.3 with grade >= 60

Enter a grade > 60

You passed

Figure 5.7
Output from Example 5.3 with grade < 60

Enter a grade > 59

You failed

Block Scope
The scope of a variable is the region within a
program where the variable can be referenced, or
used. When we declare a variable, its scope extends
from the point at which it is declared until the end of
the block in which we declared it. A method, such as
main, is a block. Thus, in Example 5.3, the scope of
the object reference scan extends from line 11
through the end of main. Thus, we can legally
reference scan on line 14. Similarly, the scope of
grade extends from its declaration (line 14) through
the end of main, and we can legally reference it on
line 17 in the if condition. Finally, the scope of the
String message extends from line 16 through the end
of main, and thus we can legally reference message
on lines 18, 20, and 22.

The true blocks and false blocks for if statements are
also blocks. Thus, if instead of declaring the String
message on line 16, we declare it inside the true
block of the if statement as in the following,

 if (grade >= 60)

 {

 String message = "You passed";

 }

 else

 message = "You failed";

 System.out.println(message);

then the scope of message extends from its
declaration only until the end of the true block. In this
case, the compiler will generate “cannot find symbol”
error messages for the references to message inside
the false block and for the System.out.println
statement after the if statement because message is
out of scope outside of the true block.

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie illustrating step-by-step how to use an
if/else statement. Click on this chapter’s link to
start the movie.

Skill Practice
with these end-of-chapter questions

5.14.2 Reading and Understanding Code

Questions 1 2, 13

5.14.3 Fill In the Code

Questions 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30

5.14.4 Identifying Errors in Code

Questions 33, 34, 35

5.14.5 Debugging Area

Question 40

5.14.6 Write a Short Program

Questions 42, 43, 46, 48

5.14.8 Technical Writing

Question 54

5.4 Selection Using if/else if
The last form of an if statement is appropriate when
the data falls into more than two mutually exclusive
categories and the appropriate instructions to
execute are different for each category. For this
situation, Java provides the if/else if statement.

The if/else if statement follows this pattern:

if (condition 1)

{

 true block for condition 1

}

else if (condition 2)

{

 true block for condition 2

}

. . .

else if (condition n)

{

 true block for condition n

}

else

{

 false block for all conditions being false

}

next statement

The flow of control for this form of the if statement is
shown in Figure 5.8.

There can be any number of conditions in an if/else if
statement. As we can see, once a condition
evaluates to true for any value, control moves to the
true block for that condition, then skips the remainder
of the conditions, continuing execution at any
statement that follows the if/else if statement. The

final false block (along with the final else) is optional
and is executed only when none of the conditions
evaluates to true. Note that if the final else is used,
then the condition it covers is not coded. The else
stands alone on the line.

Figure 5.8
Flow of Control of an if/else if Statement

We can use the if/else if statement to determine a
student’s letter grade based on his or her numeric
grade. Example 5.4 demonstrates a Java application
that prompts a student for a test grade and translates
that grade into a letter grade.

EXAMPLE 5.4 A Demonstration of
if/else if

 1 /* A program to translate a numeric grade into a

letter grade

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class LetterGrade

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12

13 char letterGrade;

14

15 System.out.print("Enter your test grade: "

);

16 int grade = scan.nextInt();

17

18 if (grade >= 90)

19 letterGrade = 'A';

20

21 else if (grade >= 80)

22 letterGrade = 'B';

23

24 else if (grade >= 70)

25 letterGrade = 'C';

26

27 else if (grade >= 60)

28 letterGrade = 'D';

29

30 else // grade fits none of the conditions

31 letterGrade = 'F';

32

33 System.out.println("Your test grade of " +

grade

34 + " is a letter grade of

" + letterGrade);

35 }

36 }

COMMON ERROR TRAP
In an if/else or if/else/if statement, do not specify a
condition for the final else.

Figure 5.9 shows the output from the program when
a student enters a grade of 83.

Notice that each condition is a simple relational
expression. Even though we assign a B letter grade
when the numeric grade is between 80 and 89, the
condition for a B letter grade (line 21) is simply:

Figure 5.9
Output from Example 5.4

Enter your test grade: 83

Your test grade of 83 is a letter grade of B

if (grade >= 80)

We don’t need to write the condition as

if (grade >= 80 && grade < 90)

because by the time the condition is tested at line 21,
all numeric grades greater than or equal to 90 have
been eliminated by the test condition at line 18. Any
grade greater than or equal to 90 causes the
condition at line 18, (grade >= 90) , to
evaluate to true. For those grades, the flow of control
is to assign an A to letterGrade at line 19, then skip
the remainder of the conditions, continuing execution
at the statement following the if/else if statement,
which is line 33 in this example. Thus, if the condition
at line 21 is evaluated, we know that the grade must
be less than 90. Note that in line 30, the final else
covers the only other possibility: that the grade is
less than 60. We do not code that condition; rather
we include only the else.

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie illustrating step-by-step how to use an
if/else if statement. Click on this chapter’s link
to start the movie.

Skill Practice
with these end-of-chapter questions

5.14.1 Multiple Choice Exercises

Question 8

5.14.2 Reading and Understanding Code

Question 15

5.14.4 Identifying Errors in Code

Questions 36, 37, 38

5.5 Sequential and Nested if/else
Statements
When we need the results of one if statement’s
processing before we can evaluate the next
condition, we can write multiple if statements either
sequentially or nested within other if statements.

5.5.1 Sequential if/else Statements

Finding the Minimum or Maximum Values
To illustrate sequential if statements, let’s look at the
problem of finding the smallest of three numbers.

We can use multiple, sequential if statements. First
we find the smaller of the first two numbers, then we
find the smaller of that result and the third number.
The pseudocode for this application is:

read number1

read number2

read number3

if number1 is less than number2

 smallest is number1

else

 smallest is number2

if number3 is less than smallest

 smallest is number3

Translating the pseudocode into Java, we get the
application in Example 5.5, which prompts the user
for three integers and outputs the smallest of the
three numbers. In this application, we use two
sequential if statements. The first if statement (lines
23–26) uses an if/else statement to find the smaller
of the first two integers and stores that value into the
variable smallest. Then, the second if statement
(lines 28–29) compares the third integer to the value

stored in smallest. In the second if statement, we
don’t use an else clause, because we need to
change the value in smallest only if the condition is
true, that is, if the third number is less than smallest.
Otherwise, the smallest value is already stored in
smallest.

EXAMPLE 5.5 An Application with
Sequential if Statements

 1 /* Find the smallest of three integers

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class FindSmallest

 8 {

 9 public static void main(String [] args)

10 {

11 int smallest;

12 int num1, num2, num3;

13

14 Scanner scan = new Scanner(System.in);

15

16 System.out.print("Enter the first

integer: ");

17 num1 = scan.nextInt();

18 System.out.print("Enter the second

integer: ");

19 num2 = scan.nextInt();

20 System.out.print("Enter the third

integer: ");

21 num3 = scan.nextInt();

22

23 if (num1 < num2)

24 smallest = num1;

25 else

26 smallest = num2;

27

28 if (num3 < smallest)

29 smallest = num3;

30

31 System.out.println("The smallest is " +

smallest);

32 }

33 }

When the program in Example 5.5 is run using 6, 7,
and 5 for the three integers, the output is as shown
in Figure 5.10.

One more point. The code only checks that one
number is less than another. What happens if two or
more of the numbers are equal? The code still
works! We only need to find the smallest value; we
don’t care which of the variables holds that smallest
value.

5.5.2 Nested if/else Statements
If statements can be written as part of the true or
false block of another if statement. These are called
nested if statements. Typically, we nest if statements
when more information is required beyond the
results of the first if statement.

Figure 5.10
Output from Example 5.5

Enter the first integer: 6

Enter the second integer: 7

Enter the third integer: 5

The smallest is 5

One difficulty that arises with nested if statements is
specifying which else clause pairs with which if
statement, especially if some if statements have else
clauses and others do not. The compiler matches
any else clause with the most previous if statement
that doesn’t already have an else clause. If this
matching is not what we want, we can use curly
braces to specify the desired if/else pairing.

In this code, we have one if statement nested within
another if statement.

if (x == 2)

 if (y == x)

 System.out.println("x and y equal 2");

 else

 System.out.println("x equals 2, but y

does not");

Without curly braces, the entire second if statement
comprises the true block of the first condition (x ==
2) , and the else is paired with the second condition
(y == x) , because this is the most previous if
condition that doesn’t have an else.

However, we can force the else clause to be paired
with the first condition by using curly braces, as
follows:

if (x == 2)

{

 if (y == x)

 System.out.println("x and y equal 2");

}

else

 System.out.println("x does not equal 2");

With the curly braces added, the if condition (y ==
x) , along with its true block, becomes the complete
true block for the condition (x == 2) , and the else

clause now belongs to the first if condition (x ==
2) .

Why can’t we just alter the indentation to indicate our
meaning? Remember that indentation increases the
readability of the code for humans. The compiler
ignores indentation and instead follows Java’s
syntactic rules.

Dangling else
COMMON ERROR TRAP
Be sure that all else clauses match an if condition.
Writing else clauses that don’t match if conditions will
generate an ’else’ without ‘if’ compiler
error.

A common error is writing else clauses that don’t
match any if conditions. This is called a dangling
else. For example, the following code, which
includes three else clauses and only two if
conditions, will generate this compiler error:

 'else' without 'if'

if (x == 2)

 if (y == x)

 System.out.println("x and y equal 2");

 else // matches y==x

 System.out.println("y does not equal 2");

else // matches x==2

 System.out.println("x does not equal 2");

else // no matching if!

 System.out.println("x and y are not equal");

For a more complex and real-world example of
nested if statements, let’s generate a random
number between 1 and 10. After we generate the
random number, we’ll prompt the user for a guess.
First we’ll verify that the guess is between 1 and 10.
If it isn’t, we’ll print an error message. Otherwise,
we’ll check whether the user has guessed the
number. If so, we’ll print a congratulatory message. If
the user has not guessed the number, we’ll display
the number, then determine whether the guess was
close. We’ll define “close” as within three numbers.
We’ll print a message informing the user whether the

guess was close, then we’ll wish the user better luck
next time. The pseudocode for this program looks
like this:

generate a secret random number between 1 and 10

prompt the user for a guess

if guess is not between 1 and 10

 print message

else

 if guess equals the secret number

 print congratulations

 else

 print the secret number

 if guess is not within 3 numbers

 print "You missed it by a mile!"

 else

 print "You were close."

 print "Better luck next time."

This pseudocode uses three if statements; the first
determines if the guess is within the requested range
of numbers. If it isn’t, we print a message. Otherwise,
a nested if statement tests whether the user has
guessed the secret number. If so, we print a
congratulatory message. If not, we print the secret
number, and our last nested if statement determines
whether the guess was not within 3 numbers of the
secret number. If not, we print “You missed it by a

mile!”; otherwise, we print “You were close.” In either
case, we print “Better luck next time.”

Example 5.6 is the result of translating this
pseudocode into a Java application.

EXAMPLE 5.6 Nested if statements

 1 /* Guess a number between 1 and 10

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Random;

 6 import java.util.Scanner;

 6

 8 public class GuessANumber

 9 {

10 public static void main(String [] args)

11 {

12 Random random = new Random();

13 int secretNumber = random.nextInt(10) +

1;

14

15 Scanner scan = new Scanner(System.in);

16

17 System.out.print("I'm thinking of a

number"

18 + " between 1 and 10. What is

your guess? ");

19 int guess = scan.nextInt();

20

21 if (guess < 1 || guess > 10)

22 {

23 System.out.println("Well, if you're not

going to try,"

24 + " I'm not

playing.");

25 }

26 else

27 {

28 if (guess == secretNumber)

29 System.out.println("Hoorah. You

win!");

30 else

31 {

32 System.out.println("The number was

" + secretNumber);

33

34 if (Math.abs(guess - secretNumber

) > 3)

35 System.out.println("You missed

it by a mile!");

36 else

37 System.out.println("You were

close.");

38

39 System.out.println("Better luck

next time.");

40 }

41 }

42 }

43 }

Figure 5.11
Output from the GuessANumber Program in
Example 5.6

I'm thinking of a number between 1 and 10. What

is your guess? 2

The number was 10

You missed it by a mile!

Better luck next time.

On line 34, we used the abs method of the Math
class to determine whether the guess was within
three integers of the secret number. By taking the
absolute value of the difference between the guess
and the secret number, we don’t need to worry about
which number is higher than the other; we will
always receive a positive difference from the abs
method.

Figure 5.11 shows the output of a sample run of this
program.

5.6 Testing Techniques for if/else
Statements
When an application uses if/else statements, the
application’s flow of control depends on the user’s
input or other data values. For one input value, the
application may execute the true block, while for
another input value, the application may execute the
false block. Obviously, running an application only
once is no guarantee that the program is correct,
because if the true block was executed, then the
false block was not executed, and therefore, was not
tested. Similarly, if the false block was executed,
then the true block was not executed, and therefore
was not tested.

To test an application for correctness, we could
attempt to test all execution paths. To do this, we
devise a test plan that includes running the
application with different data values designed to
execute all the statements in the application.

For example, an application that determines whether
an integer is positive or negative might have this
code:

System.out.print("Enter an integer > ");

int x = scan.nextInt();

if (x > 0)

 System.out.println(x + " is positive");

else

 System.out.println(x + " is negative");

We could test this code by running the application
twice, the first time entering the value 1, and the
second time entering the value −1. We see that the
results for those two values are correct: 1 is positive
and −1 is negative. We have executed all the
statements successfully, but can we say for certain
that the program is correct? What if we entered the
value 0, which is considered neither a positive nor a
negative integer? As written, our program
determines that 0 is negative, which is incorrect.

We see, then, that testing the true and false blocks is
not sufficient; we need to test the condition of the
if/else statement as well. There are three
possibilities: x is less than 0, x is equal to 0, or x is
greater than 0. To test the condition, we should run
the application with input values that meet these
three criteria. So we should run the application one
more time with the input value of 0. This will show us
that the program is incorrect, because our code
identifies 0 as a negative number.

To correct the program, we should add another
condition (x < 0) so we can separate 0 from the
negative numbers. The code would then become:

 System.out.print("Enter an integer > ");

 int x = scan.nextInt();

 if (x > 0)

 System.out.println(x + " is positive");

 else if (x < 0)

 System.out.println(x + " is negative");

 else

 System.out.println("The integer is 0");

Now if we retest the program with input values −1, 1,
and 0, we get correct results for each of these
values.

Notice that the test values we chose are –1, 0, and
1. We call these values the boundary values
because they are the first possible values to cause
the conditions (x > 0, and x < 0, and the implicit x ==
0 condition) to evaluate to true. If we had incorrectly
coded the first condition as x > 1 and we chose, for
example, 2, to test our code, our test value of 2
would make the code appear to be correct. However,
the code would not work correctly for the value 1. For
this reason, we recommend using boundary values
to test the execution paths in a program.

SOFTWARE ENGINEERING TIP
When testing your program, develop input values
that test the boundary values for all execution paths
and confirm that the logic implements the program
specifications.

Another testing method is to treat the program like a
black box, that is, as if the program’s inner workings
are unknown and unknowable to us. We devise our
test plan based solely on the specifications of the
program and develop input values that test the
program logically. Thus, if our specifications are that
we should determine whether an integer is positive
or negative, we deduce that we should run the
program with inputs that are a negative number, a
positive number, and the special case, 0.

Both testing methods work together to ensure that a
program is correct.

5.7 Programming Activity 1: Working
with if/else
In this activity, you will write an if/else selection statement to
decide how a golfer’s score compares to par.

Copy to a folder on your computer all the files from the source
code provided with this text for this chapter’s Programming
Activity 1.

Open the SelectionPractice1Controller.java source file. You
will add your code to the workWithIfElse method. Part of the
method has been coded for you. Search for ***** in the source
file.

You should be positioned at the code shown in Example 5.7.

EXAMPLE 5.7 The Student Code Portion
of Programming Activity 1
public void workWithIfElse(int score)

{

 String result = "???";

 // ***** Student code starts here

 // If score is greater than 72, assign "over par" to

result

 // If score is equal to 72, assign "par" to result

 // If score is less than 72, assign "below par" to

result

 //

 // Student code ends here

 //

 animate(score, result);

}

Where indicated in the code, you should write an if/else
statement to perform the following function:

In the method header of the method workWithIfElse,
you see (int score). The int variable score
represents a golf score. This variable will be an input
from the user; the text box that allows the user to
enter the score has already been coded for you and
stores the user’s input in the variable score, which is
available to your code as a parameter of the

workWithIfElse method. Do not declare the variable
score inside the method; just use it.

We want to know if the golf score is “over par,” “par,”
or “below par.” Par is 72.

Inside the if/else statement, you need to assign a
value to the String variable named result, as follows:

If score is higher than 72, then assign “over par” to
result; if score is exactly 72, assign “par” to result;
and if score is lower than 72, assign “below par” to
result.

You do not need to write the code to call the method
animate; that part of the code has already been
written for you.

Figure 5.12
The Beginning of the Application

Animation: The application window will display the correct
path of the if/else statement (in green), which may or may not
be the same as your path, depending on how you coded the
if/else statement. The animation will also assess your result,
that is, the value of the variable result, and give you feedback
on the correctness of your result.

To test your code, compile SelectionPractice1Controller.java
and run SelectionPractice1Application and enter an integer in
the text box. Try the following input values for score: 71, 72,
and 73. Be sure your code produces the correct result for all
input values.

When the program begins, you will see a graphics window
with the text box of Figure 5.12, prompting you for an integer
value.

Figure 5.13 demonstrates the correct code path when the
input value is 73 and assesses that the student’s code is
correct.

Figure 5.14 again demonstrates the correct code path when
the input value is 73, but in this case, the student’s code is
incorrect.

DISCUSSION QUESTIONS
1. How many conditions did you use in the complete if/else

statement?
2. Your code should be correct if the application gets correct results

for the input values 71, 72, and 73. Explain why.

Figure 5.13
A Correct if/else Statement

Figure 5.14
An Incorrect if/else Statement

5.8 Comparing Floating-Point
Numbers
Java’s floats and doubles are stored using IEEE 754
standard format. Because a finite number of bits (32
or 64) is used to store floating-point numbers, not all
real-world values can be represented. As a result,
minor rounding errors can be introduced when
arithmetic is performed. That said, it is not advisable
to simply rely on the equality operators to compare
floating-point numbers.

REFERENCE POINT
Binary representation of floating-point numbers is
discussed in an appendix.

Let’s take a look at Example 5.8, which computes 11
* .1 two ways. First, at line 11, we assign .0 to a
double variable, d1, and at lines 12–22 we add .1 to
d1 eleven times. Then, at line 24, we declare a
second double variable, d2, and assign it the result
of multiplying .1 times 11. We would expect, then,
that d1 and d2 would have the same value. Not so,
as the output of the program shows in Figure 5.15.

We can also see the effects of rounding when
comparing a float to a double. For example, at lines

35 and 36 of Example 5.8, we assign the same
floating-point number (PI) to a double variable piD
and to a float variable piF, then compare the two
values at line 40. As we can see from the output in
Figure 5.15, they do not compare as equal. The
reason is that double-precision floating-point
numbers are able to store a larger number of
significant digits than single-precision floating- point
numbers.

EXAMPLE 5.8 Using the Equality
Operator to Compare Floating-
Point Numbers

 1 /* Using equality operators on floating-point

numbers

 2 Anderson, Franceschi

 3 */

 4

 5 public class EqualityFloatingPoint

 6 {

 7 public static void main(String [] args)

 8 {

 9 // Part 1: Compute 11 * .1 two ways

10

11 double d1 = .0; // add .1 to 0 eleven times

12 d1 += .1; // 1

13 d1 += .1; // 2

14 d1 += .1; // 3

15 d1 += .1; // 4

16 d1 += .1; // 5

17 d1 += .1; // 6

18 d1 += .1; // 7

19 d1 += .1; // 8

20 d1 += .1; // 9

21 d1 += .1; // 10

22 d1 += .1; // 11

23

24 double d2 = .1 * 11; // compute 11 * .1

25

26 System.out.println("d1 = " + d1);

27 System.out.println("d2 = " + d2);

28 if (d1 == d2)

29 System.out.println("d1 and d2 are equal"

);

30 else

31 System.out.println("d1 and d2 are not

equal");

32

33 // Part 2: Compare float and double with same

value

34

35 float piF = 3.141592653589793f;

36 double piD = 3.141592653589793;

37

38 System.out.println("\npiF = " + piF);

39 System.out.println("pid = " + piD);

40 if (piF == piD)

41 System.out.println("piF and piD are equal"

);

42 else

43 System.out.println("piF and piD are not

equal");

44 }

45 }

Instead of using the equality operator to compare
floating-point numbers, it’s better to compare the
absolute value of the difference to a small value,
called a threshold. The value of the threshold should
be the difference we can tolerate and still consider

the numbers equal. Let’s redo Example 5.8. Instead
of using the equality operator, we’ll use the Math.abs
method to compute a difference between the two
numbers and compare the difference to a threshold
value. We’ll set the threshold at .0001, meaning that
if the numbers differ by less than .0001, we’ll
consider them equal. The results of this approach
are shown in Example 5.9 and the output is given in
Figure 5.16.

Figure 5.15
Output from Example 5.8

d1 = 1.0999999999999999

d2 = 1.1

d1 and d2 are not equal

piF = 3.1415927

pid = 3.141592653589793

piF and piD are not equal

EXAMPLE 5.9 Comparing Floating-
Point Numbers Using a Threshold

 1 /* Using a threshold to compare floating-point

numbers

 2 Anderson, Franceschi

 3 */

 4

 5 public class ComparingFloatingPoint

 6 {

 7 public static void main(String [] args)

 8 {

 9 final double THRESHOLD = .0001;

10

11 // Part 1: Compute 11 * .1 two ways

12 double d1 = .0; // add .1 to 0 eleven times

13 d1 += .1; // 1

14 d1 += .1; // 2

15 d1 += .1; // 3

16 d1 += .1; // 4

17 d1 += .1; // 5

18 d1 += .1; // 6

19 d1 += .1; // 7

20 d1 += .1; // 8

21 d1 += .1; // 9

22 d1 += .1; // 10

23 d1 += .1; // 11

24

25 double d2 = .1 * 11; // compute 11 * .1

26

27 System.out.println("d1 = " + d1);

28 System.out.println("d2 = " + d2);

29 if (Math.abs(d1 - d2) < THRESHOLD)

30 System.out.println("d1 and d2 are

considered equal");

31 else

32 System.out.println("d1 and d2 are not

equal");

33

34 // Part 2: Compare float and double with same

value

35 float piF = 3.141592653589793f;

36 double piD = 3.141592653589793;

37

38 System.out.println("\npiF = " + piF);

39 System.out.println("piD = " + piD);

40 if (Math.abs(piF - piD) < THRESHOLD)

41 System.out.println("piF and piD are

considered equal");

42 else

43 System.out.println("piF and piD are not

equal");

44 }

45 }

Figure 5.16
Output of Example 5.9

d1 = 1.0999999999999999

d2 = 1.1

d1 and d2 are considered equal

piF = 3.1415927

pid = 3.141592653589793

piF and piD are considered equal

When we need exact precision in calculations with
decimal numbers, we can use the BigDecimal class
in the Java Class Library. The BigDecimal class,
which is in the java.math package, provides methods
that perform addition, subtraction, multiplication, and
division of BigDecimal objects so that the results are
exact, without the rounding errors caused by floating-
point operations. Table 5.10 shows a constructor of
the BigDecimal class and several useful methods for
performing calculations and comparing BigDecimal
objects.

TABLE 5.10 The BigDecimal Class API
BigDecimal Class Constructor Summary

BigDecimal(String ddd)

creates a BigDecimal object equivalent to the decimal number
expressed as a String

BigDecimal Class Method Summary
Return value Method name and argument list

BigDecimal add(BigDecimal num)

returns a BigDecimal object equal to the
current BigDecimal object plus num

BigDecimal subtract(BigDecimal num)

returns a BigDecimal object equal to the
current BigDecimal object minus num

BigDecimal multiply(BigDecimal num)

returns a BigDecimal object equal to the
current BigDecimal object times num

BigDecimal divide(BigDecimal num)

returns a BigDecimal object equal to the
current BigDecimal object divided by num

int compareTo(BigDecimal num)

returns 0 if the current BigDecimal object is
equal to num; −1 if the current BigDecimal

object is less than num; and 1 if the current
BigDecimal object is greater than num

REFERENCE POINT
You can read more about the BigDecimal class on
Oracle’s Java website
www.oracle.com/technetwork/java.

http://www.oracle.com/technetwork/java

In Example 5.10, we perform the same calculations
as in Example 5.9, but we use BigDecimal objects
instead of doubles. On lines 11 and 12, we
instantiate two BigDecimal objects: d1 will hold the
sum and is initialized to 0.0; pointOne is assigned
the value 0.1 and will be repeatedly added to d1.
Then on lines 16–26, we call the add method to add
0.1 to d1 11 times. We instantiate two more
BigDecimal objects on lines 29 and 30, then call the
multiply method to multiply 0.1 * 11. On line 35, we
compare the resulting BigDecimal objects by calling
the compareTo method, and find that the two results
are in fact equal. The output of Example 5.10 is
shown in Figure 5.17.

Figure 5.17
Output of Example 5.10

d1 = 1.1

d2 = 1.1

d1 and d2 are equal

EXAMPLE 5.10 Comparing
Floating-Point Numbers Using
BigDecimal

 1 /* Using BigDecimal to compute precise decimal

numbers

 2 Anderson, Franceschi

 3 */

 4

 5 import java.math.BigDecimal;

 6

 7 public class UsingBigDecimal

 8 {

 9 public static void main(String [] args)

10 {

11 BigDecimal d1 = new BigDecimal("0.0");

12 BigDecimal pointOne = new BigDecimal("0.1");

13

14 // Compute 11 * .1 two ways

15 // add .1 to d1 eleven times

16 d1 = d1.add(pointOne); // 1

17 d1 = d1.add(pointOne); // 2

18 d1 = d1.add(pointOne); // 3

19 d1 = d1.add(pointOne); // 4

20 d1 = d1.add(pointOne); // 5

21 d1 = d1.add(pointOne); // 6

22 d1 = d1.add(pointOne); // 7

23 d1 = d1.add(pointOne); // 8

24 d1 = d1.add(pointOne); // 9

25 d1 = d1.add(pointOne); // 10

26 d1 = d1.add(pointOne); // 11

27

28 // multiply .1 * 11

29 BigDecimal d2 = new BigDecimal("0.1");

30 BigDecimal eleven = new BigDecimal("11");

31 d2 = d2.multiply(eleven);

32

33 System.out.println("d1 = " + d1);

34 System.out.println("d2 = " + d2);

35 if (d1.compareTo(d2) == 0)

36 System.out.println("d1 and d2 are equal"

);

37 else

38 System.out.println("d1 and d2 are not

equal");

39 }

40 }

5.9 Comparing Objects

5.9.1 The equals Method
Often, we want to compare whether two objects are equal;
typically, we will say that two objects are equal if they have
the same data. If we use the equality operator (==) to
compare object references, however, we are comparing the
value of the object references. In other words, we are
comparing whether the object references point to the same
object, that is, the same memory location. To compare
object data, we need to use the equals method, which all
classes inherit from the Object class. Many classes provide
a custom version of the equals method. The API of the
equals method is the following:

public boolean equals(Object ob)

Typically, the equals method returns true if the data in the
parameter object matches the data in the object for which
the method was called.

The program in Example 5.11 creates the SimpleDate
object references and objects shown in Figure 5.18. The
program compares the object references using the equality
operator and then compares the object data using the
equals method. The output from this program is shown in
Figure 5.19.

Figure 5.18
SimpleDate Objects and References

EXAMPLE 5.11 Comparing Object Data

 1 /* Comparing object references and data

 2 Anderson, Franceschi

 3 */

 4

 5 public class ComparingObjects

 6 {

 7 public static void main(String [] args)

 8 {

 9 // instantiate two SimpleDate objects with

identical data

10 SimpleDate d1 = new SimpleDate(4, 10, 2020);

11 SimpleDate d2 = new SimpleDate(4, 10, 2020);

12

13 // assign object reference d1 to d3

14 SimpleDate d3 = d1; // d3 now points to d1

15

16 // instantiate another object with different data

17 SimpleDate d4 = new SimpleDate(12, 1, 2020);

18

19 // compare references using the equality operator

20 if (d1 == d2)

21 System.out.println("d1 and d2 are equal\n");

22 else

23 System.out.println("d1 and d2 are not equal\n"

);

24

25 if (d1 == d3)

26 System.out.println("d1 and d3 are equal\n");

27 else

28 System.out.println("d1 and d3 are not equal\n"

);

29

30 // compare object data using the equals method

31 if (d1.equals(d2))

32 System.out.println("d1 data and d2 data are

equal\n");

33 else

34 System.out.println("d1 data and d2 data are not

equal\n");

35

36 if (! d1.equals(d4))

37 System.out.println("d1 data and d4 data are not

equal");

38 else

39 System.out.println("d1 data and d4 data are

equal");

40 }

41 }

Figure 5.19
Output from Example 5.11

d1 and d2 are not equal

d1 and d3 are equal

d1 data and d2 data are equal

d1 data and d4 data are not equal

Lines 10 and 11 instantiate two SimpleDate objects with the
same data. Line 14 sets the d3 object reference to point to

the d1 object. Line 17 instantiates the d4 object with
different data.

COMMON ERROR TRAP
Do not use the equality operators to compare object data;
instead, use the equals method.

In line 20, when we compare d1 and d2 using the equality
operator, the result is false, because the object references
d1 and d2 point to two different objects. However, when we
compare d1 and d3 (line 25), the result is true, because d1
and d3 point to the same object. Thus, object references
are equal only when they point to the same object.

We get different results using the equals method. When line
31 compares d1 and d2 using the equals method, the result
is true, because d1 and d2 have identical data. As we
would expect, d1 and d4 are not equal (line 36) because
the objects have different data. Line 36 demonstrates that
we can test for inequality by using the NOT operator (!) to
negate the return value from the equals method.

5.9.2 String Comparison Methods
Because Strings are objects, we can also compare Strings
using the equals method. In addition, the String class
provides two other methods, equalsIgnoreCase and
compareTo, for comparing the values of Strings. These
methods, along with the equals method are summarized in
Table 5.11.

TABLE 5.11 Comparison Methods of the String
Class

String Methods for Comparing String Values
Return
value

Method name and argument list

boolean equals (String str)

compares the value of two Strings. Returns true if the
Strings are equal; false otherwise.

boolean equalsIgnoreCase (String str)

compares the value of two Strings, treating upper and
lowercase characters as equal. Returns true if the Strings

are equal; false otherwise.

int compareTo (String str)

compares the value of the two Strings in lexicographic
order. If the String object is less than the String argument,
str, a negative integer is returned. If the String object is
greater than the String argument, a positive number is
returned; if the two Strings are equal, 0 is returned.

The equalsIgnoreCase method is similar to the equals
method, except that it is insensitive to case. Thus, the
equalsIgnoreCase method returns true if the two String
objects have the same sequence of characters, regardless
of capitalization. For example, the equalsIgnoreCase
method considers ABC, AbC, and abc to be equal.

REFERENCE POINT
The first 128 Unicode values are given in Appendix C.

The compareTo method returns an integer value, rather
than a boolean value. The compareTo method’s return
value represents whether the String object is less than,
equal to, or greater than the String argument passed to the
compareTo method. The compareTo method uses
lexicographic order—the Unicode collating sequence—to
compare the Strings. Using the Unicode collating sequence
means that a character with a lower Unicode numeric value
is considered less than a character with a higher Unicode
numeric value. Thus, an a is lower than a b; an A is lower
than a B; and 0 is lower than 1.

The compareTo method scans the two Strings from left to
right. If it finds different characters in the same position in
the two Strings, it immediately returns an integer value
representing the difference between the Unicode values of
those characters. For example, the distance between a and
c is −2; the distance between K and F is 5.

If the Strings differ in length, but the characters they have in
common are identical, then the compareTo method returns
the difference in the length of the Strings.

In most cases, however, the exact return value is not
important; it is sufficient to know whether the String object is
less than, greater than, or equal to the String argument. In
other words, all that we usually need to know is whether the
return value is positive, negative, or 0.

Example 5.12 demonstrates how these methods can be
used in a Java application to compare Strings. The output
of the program is shown in Figure 5.20.

EXAMPLE 5.12 Comparing Strings

 1 /* Demonstration of the String comparison methods

 2 Anderson, Franceschi

 3 */

 4

 5 public class ComparingStrings

 6 {

 7 public static void main(String [] args)

 8 {

 9 String title1 = "Green Pastures";

10 String title2 = "Green Pastures II";

11 String title3 = "green pastures";

12

13 System.out.print("Using equals: ");

14 if (title1.equals(title3))

15 System.out.println(title1 + " equals " + title3

);

16 else

17 System.out.println(title1 + " is not equal to "

+ title3);

18

19 System.out.print("Using equalsIgnoreCase: ");

20 if (title1.equalsIgnoreCase(title3))

21 System.out.println(title1 + " equals " + title3

);

22 else

23 System.out.println(title1 + " is not equal to "

+ title3);

24

25 System.out.print("Using compareTo: ");

26 if (title1.compareTo(title3) > 0)

27 System.out.println(title1 + " is greater than "

+ title3);

28 else if (title1.compareTo (title3) < 0)

29 System.out.println(title1 + " is less than " +

title3);

30 else

31 System.out.println(title1 + " is equal to " +

title3);

32

33 System.out.print("Using compareTo: ");

34 if (title1.compareTo(title2) > 0)

35 System.out.println(title1 + " is greater than "

+ title2);

36 else if (title1.compareTo(title2) < 0)

37 System.out.println(title1 + " is less than " +

title2);

38 else

39 System.out.println(title1 + " is equal to " +

title2);

40 }

41 }

Figure 5.20
Output from Example 5.12

Using equals: Green Pastures is not equal to green

pastures

Using equalsIgnoreCase: Green Pastures equals green

pastures

Using compareTo: Green Pastures is less than green

pastures

Using compareTo: Green Pastures is less than Green

Pastures II

In Example 5.12, we define three similar Strings: title1
(Green Pastures), title2 (Green Pastures II), and title3
(green pastures). When we compare title1, Green Pastures,
to title3, green pastures, using the equals method (line 14),
the result is false, because the Strings do not match in
case. When we perform the same comparison using the
equalsIgnoreCase method (line 20), however, the result is
true, because except for capitalization, these two Strings
are identical in character sequence and length.

Using the compareTo method (line 34), Green Pastures
evaluates to less than Green Pastures II. Although all the
characters of the first String are found in the second String
in the same order, the first String has fewer characters than
the second String. The reason that Green Pastures
evaluates to less than green pastures (line 26) is not so
obvious—until we look at the Unicode character chart. The

capital letters have lower numeric values than the
lowercase letters, so a capital G is less than a lowercase g.

5.10 The Conditional Operator (?:)
The conditional operator (?:), while not a statement
in itself, can be used in expressions. It evaluates a
condition and contributes one of two values to the
expression based on the value of the condition. The
conditional operator is especially useful for handling
invalid input and for outputting similar messages.
The syntax of the conditional operator is shown here:

(condition ? expression1 : expression2)

The value of an expression containing a conditional
operator is determined by evaluating the condition,
which is any expression that evaluates to true or
false. If the condition evaluates to true, expression1
becomes the value of the expression; if the condition
evaluates to false, expression2 becomes the value of
the expression.

When assigning the result of that expression to a
variable, the statement:

variable = (condition ? expression1 : expression2

);

is equivalent to

if (condition)

 variable = expression1;

else

 variable = expression2;

Some programmers like to use the conditional
operator because it enables them to write compact
code; other programmers feel that an if/else
sequence is more readable.

Suppose we want to determine whether a number is
even or odd. We know that if we divide a number by
2 and the remainder is 0, the number is even. If the
remainder is 1, the number is odd. We could do this
using the following if/else statement:

if (number % 2 == 0)

 System.out.println(number + " is even.");

else

 System.out.println(number + " is odd.");

Notice that the only difference in the output is the last
word.

Example 5.13 shows how we can perform the same
processing using the conditional operator.

EXAMPLE 5.13 Using the
Conditional Operator
 1 /* Using the conditional operator

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class OddOrEven

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12

13 System.out.print("Enter an integer > ");

14 int number = scan.nextInt();

15

16 String outcome = (number % 2 == 0 ? "even." :

"odd.");

17

18 System.out.println(number + " is " + outcome

);

19

20 }

21 }

In lines 13 and 14, we ask the user to input an
integer. In line 16, we use the conditional operator to

determine whether the integer is even or odd,
assigning the result to the String outcome. Then in
line 18, we print the number, the word “ is ” and then
the value of outcome. Figure 5.21 shows the output
from Example 5.13 when the user enters an even
number, and Figure 5.22 shows the output when the
user enters an odd number.

Figure 5.21
Output of Example 5.13 When the Input Is Even

Enter an integer > 12

12 is even.

Figure 5.22
Output of Example 5.13 When the Input Is Odd

Enter an integer > 13

13 is odd.

Table 5.12, Operator Precedence, shows that the
conditional operator is low in precedence, being just
above the assignment operators.

TABLE 5.12 Operator Precedence
Operation
Hierarchy

Order of
Same-
Statement
Evaluation

Operation

() left to right parentheses for explicit grouping

++ , −− right to left shortcut postincrement

++ , −− ,

!

right to left shortcut preincrement, logical
unary NOT

* , / , % left to right multiplication, division, modulus

+ , − left to right addition or String concatenation,
subtraction

< , <= ,

> , >=

left to right relational operators: less than, less
than or equal to, greater than,
greater than or equal to

== , != left to right equality operators: equal to and not
equal to

&& left to right logical AND

|| left to right logical OR

?: left to right conditional operator

= , += ,

−= , *= ,

/=, %=

right to left assignment operator and shortcut
assignment operators

5.11 The switch Statement
The switch statement can be used instead of an if/else if
statement for selection when the condition consists of
comparing the value of an expression to constant integers
(byte, short, or int), characters (char), or Strings. The syntax
of the switch statement is the following:

switch (expression)

{

 case constant1:

 statement1;

 . . .

 break; // optional

 case constant2:

 statement1;

 . . .

 break; // optional

 . . .

 default: // optional

 statement1;

 . . .

}

The expression is first evaluated, then its value is compared
to the case constants in order. When a match is found, the
statements under that case constant are executed in
sequence. The execution of statements continues until either
a break statement is encountered or the end of the switch
block is reached. If other case statements are encountered
before a break statement, then their statements are also

executed. This allows us to execute the same code for
multiple values of the expression.

As we can see in the preceding syntax, the break statements
are optional. Their job is to terminate execution of the switch
statement. The default label and its statements, which are
also optional, are executed when the value of the expression
does not match any of the case constants. The statements
under a case constant are also optional, so multiple case
constants can be written in sequence if identical operations
will be performed for those values. We’ll use this feature in our
examples of the switch statement.

Let’s look at how a switch statement can be used to
implement a simple calculator. We first prompt the user for
two numbers on which they want to perform a calculation, and
then the operation they want to perform. We let them enter
either the words ADD, SUBTRACT, MULTIPLY, or DIVIDE, or
the symbol for the operation (+, -, *, or /). We can use a
switch statement to determine the selected operation and
case constants for each possible operation. Example 5.14
shows the code for our simple calculator.

EXAMPLE 5.14 A Simple Calculator

 1 /* A simple calculator

 2 Anderson, Franceschi

 3 */

 4

 5 import java.text.DecimalFormat;

 6 import java.util.Scanner;

 7

 8 public class Calculator

 9 {

10 public static void main(String [] args)

11 {

12 double fp1, fp2;

13 String operation;

14

15 Scanner scan = new Scanner(System.in);

16

17 // set up the output format of the result

18 DecimalFormat twoDecimals = new DecimalFormat(

"#,###,###.##");

19

20 // print a welcome message

21 System.out.println("Welcome to the Calculator");

22

23 // read the two operands

24 System.out.print("Enter the first operand: ");

25 fp1 = scan.nextDouble();

26 System.out.print("Enter the second operand: ");

27 fp2 = scan.nextDouble();

28

29 // print a menu, then prompt for the operation

30 System.out.println("\nOperations are: "

31 + "\n\t ADD or + for addition"

32 + "\n\t SUBTRACT or - for

subtraction"

33 + "\n\t MULTIPLY or * for

multiplication"

34 + "\n\t DIVIDE or / for division"

);

35 System.out.print("Enter your selection: ");

36 operation = scan.next();

37 operation = operation.toUpperCase();

38

39 //perform the operation and print the result

40 switch (operation)

41 {

42 case "ADD":

43 case "+":

44 System.out.println("The sum is "

45 + twoDecimals.format(fp1 + fp2));

46 break;

47 case "SUBTRACT":

48 case "-":

49 System.out.println("The difference is "

50 + twoDecimals.format(fp1 - fp2));

51 break;

52 case "MULTIPLY":

53 case "*":

54 System.out.println("The product is "

55 + twoDecimals.format(fp1 * fp2));

56 break;

57 case "DIVIDE":

58 case "/":

59 if (fp2 == 0.0)

60 System.out.println("Dividing by 0 is not

allowed");

61 else

62 System.out.println("The quotient is "

63 + twoDecimals.format(fp1 / fp2));

64 break;

65 default:

66 System.out.println(operation + " is not valid."

);

67 }

68 }

69 }

We declared the two numbers on which to perform the
operation as doubles (line 12) and prompt the user using the
nextDouble method of the Scanner class (lines 23–27).
Because a double variable can hold any numeric value equal
to or lower in precision than a double, using doubles for our
calculator allows the user to enter either ints or doubles.
Conversely, if we used int variables and the nextInt method of
the Scanner class, the user would be restricted to entering
integers only.

When the calculator begins, we set up a DecimalFormat
object for outputting the result to a maximum of two decimal
places (line 18).

We print a menu to let the user know what options are
available, using the newline (\n) and tab (\t) escape
characters to format the menu message (lines 29–35). To

read the user’s selection (lines 36–37), we use the next
method of the Scanner class, which returns a String. We
convert the input to uppercase using the toUpperCase
method of the String class. This allows the user to enter the
desired operation in any combination of uppercase or
lowercase letters.

We are now ready to determine which operation the user has
chosen, by using a switch statement with the user’s input as
the switch expression. We determine which operation the user
has selected by providing two case statements for each
possible operation. We can use uppercase words as the case
constants, because we have converted the input to
uppercase. We handle the situation where the user has
entered a mathematical symbol instead of a word by adding a
second case constant to each operation. For example, if the
user enters ADD (in any combination of uppercase and
lowercase letters) or a plus sign (+), the input will match one
of our case constants on lines 42 and 43. We will then
execute the addition and output the result on lines 44 and 45.
When we encounter the break statement on line 46, the
execution of the switch statement ends. The break statement
is important. If we had omitted the break statement, execution
would have continued onto lines 49 and 50, and we would
have performed the subtraction as well.

Figure 5.23
The Calculator Performing Multiplication

Welcome to the Calculator

Enter the first operand: 23.4

Enter the second operand: 3

Operations are:

 ADD or + for addition

 SUBTRACT or - for subtraction

 MULTIPLY or * for multiplication

 DIVIDE or / for division

Enter your selection: multiply

The product is 70.2

Figure 5.24
The Calculator with an Invalid Entry for the Operation

Welcome to the Calculator

Enter the first operand: 52

Enter the second operand: 34.5

Operations are:

 ADD or + for addition

 SUBTRACT or - for subtraction

 MULTIPLY or * for multiplication

 DIVIDE or / for division

Enter your selection: f

f is not valid

Then the break statement on line 51 would have ended the
execution of the switch statement.

What if the user doesn’t enter any of the valid words or
mathematical symbols? This is where the default case comes
in handy, allowing us to write an error message to the user
(lines 65–66).

Figure 5.23 shows the output from Example 5.14 when the
user selects multiplication, and Figure 5.24 shows the output
when the user enters an unsupported operation.

One more note on the calculator: We need to check whether
the divisor is 0 before performing division (line 59). Although
we discussed earlier in the chapter that we should compare
floating-point numbers by comparing the difference between
the two numbers with a threshold value, in this case, we care
only if the second operand is exactly 0, so we can safely
compare its value to 0.0. If the second operand is 0.0, we
print an error message; otherwise, we perform the division.

Let’s look at an example that performs a switch on an integer.
We’ll create a graphical application that simulates rolling a die
and drawing the die corresponding to the roll. Example 5.15
shows the code to do this.

EXAMPLE 5.15 Rolling and Drawing a
Die

 1 /* Rolling and drawing a die

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.scene.paint.Color;

 8 import javafx.scene.text.Font;

 9 import javafx.stage.Stage;

10

11 import java.util.Random;

12

13 public class RollDie extends Application

14 {

15 @Override

16 public void start(Stage stage)

17 {

18 // set up window title and size

19 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

20 stage, "Roll a Die", 700, 400);

21

22 final int START_X = 300, START_Y = 150, ROLL_Y =

125;

23 final int DIE_SIZE = 120, DOT_SIZE = 20;

24 final int DOT_1 = DOT_SIZE / 2,

25 DOT_2 = DIE_SIZE / 2 - DOT_SIZE / 2,

26 DOT_3 = DIE_SIZE - DOT_SIZE / 2 -

DOT_SIZE;

27 Font largeFont = new Font(20);

28 gc.setFont(largeFont);

29

30 // roll the die

31 Random rand = new Random();

32 int roll = rand.nextInt(6) + 1;

33

34 // draw a pink die

35 gc.setFill(Color.PINK);

36 gc.fillRect(START_X, START_Y, DIE_SIZE, DIE_SIZE

);

37

38 // set dot color

39 gc.setFill(Color.BLACK);

40

41 switch (roll)

42 {

43 case 5: // draw upper right and lower left dots

44 gc.fillOval(START_X + DOT_3, START_Y + DOT_1,

45 DOT_SIZE, DOT_SIZE);

46 gc.fillOval(START_X + DOT_1, START_Y + DOT_3,

47 DOT_SIZE, DOT_SIZE);

48 case 3: // draw upper left and lower right dots

49 gc.fillOval(START_X + DOT_1, START_Y + DOT_1,

50 DOT_SIZE, DOT_SIZE);

51 gc.fillOval(START_X + DOT_3, START_Y + DOT_3,

52 DOT_SIZE, DOT_SIZE);

53 case 1: // draw center dot

54 gc.fillOval(START_X + DOT_2, START_Y + DOT_2,

55 DOT_SIZE, DOT_SIZE);

56 break; // stop executing the switch

57

58 case 6: // draw middle left and right dots

59 gc.fillOval(START_X + DOT_1, START_Y + DOT_2,

60 DOT_SIZE, DOT_SIZE);

61 gc.fillOval(START_X + DOT_3, START_Y + DOT_2,

62 DOT_SIZE, DOT_SIZE);

63 case 4: // draw upper right and lower left dots

64 gc.fillOval(START_X + DOT_3, START_Y + DOT_1,

65 DOT_SIZE, DOT_SIZE);

66 gc.fillOval(START_X + DOT_1, START_Y + DOT_3,

67 DOT_SIZE, DOT_SIZE);

68 case 2: // draw upper left and lower right dots

69 gc.fillOval(START_X + DOT_1, START_Y + DOT_1,

70 DOT_SIZE, DOT_SIZE);

71 gc.fillOval(START_X + DOT_3, START_Y + DOT_3,

72 DOT_SIZE, DOT_SIZE);

73 break; // stop executing the switch

74

75 } // end switch

76

77 // display the roll number

78 gc.fillText("The roll is " + roll, START_X, ROLL_Y

);

79

80 }

81

82 public static void main(String [] args)

83 {

84 launch(args);

85 }

86 }

Figure 5.25
Each case Statement Draws Only the Dots That Are Common
in the Succeeding cases.

In Example 5.15, we generate a random number between 1
and 6 to simulate the roll of a die (lines 30–32). We define
constant values that we will use to draw the die, position the
dots, and display the roll (lines 22–26). Then, we set the font
to 20 points for displaying the die roll (lines 27–28). We draw
the die itself as a pink square (lines 34–36). We set the color
to black for drawing the dots (line 39) and we use a switch
statement on roll (lines 41–75) to determine which dots we

should draw. Finally, we display the roll (lines 77–78) to verify
that we are drawing the correct roll.

If we look at a die, we see that many of the rolls cause one or
more of the same dots to be drawn. One advantage to the
switch statement is that once a match is found between the
switch variable and a case constant, all following statements
are executed until a break is encountered.

Using this feature, we can combine the processing for rolls 5,
3, and 1. As shown in Figure 5.25, for case 5, we simply draw
the upper right and lower left dots (lines 30–34), then fall
through to case 3, where we draw the upper left and lower
right dots (lines 35–39), then fall through to case 1, where we
draw the center dot (lines 40–42). At this point, we code the
break (line 43) to stop processing of the switch statement.
Similarly, we combine the processing for rolls 6, 4, and 2.

Figure 5.26
Sample Output from Example 5.15

Note that we don’t need a default case because the random
generator will only generate values from 1 to 6, and we have
provided case statements to handle each of those values. The
output from one roll of the die is shown in Figure 5.26.

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see a step-by-step illustration of using a switch
statement, look for the movie within the online
resources. Click on this chapter’s link to start the
movie.

Skill Practice
with these end-of-chapter questions

5.14.1 Multiple Choice Exercises

Question 9

5.14.2 Reading and Understanding Code

Questions 14,16,17,18,19

5.14.5 Debugging Area

Questions 39,41

5.14.6 Write a Short Program

Questions 44,45,47

5.14.8 Technical Writing

Question 53

5.12 Programming Activity 2: Using the
switch Statement
In this activity, you will write a switch statement that selects a
path depending on an input value. The framework will animate
your code so that you can watch the path that the code takes
in the switch block.

Copy to a folder on your computer all the files in this chapter’s
Programming Activity 2 folder in the supplied code
accompanying this book.

Search for five stars (*****) in the
SelectionPractice2Controller.java source code to find where to
add your code. The five stars are above the method
workWithSwitch (the method header has already been coded
for you).

You should be positioned at the code shown in Example 5.16.

EXAMPLE 5.16 The Student Code
Portion of Programming Activity 2
// ***** 1 student writes this method

public void workWithSwitch(int value)

{

 //

 // Student code starts here

 //

 //

 // Student code ends here

 //

}

// end of workWithSwitch

Where indicated in the code, write a switch statement, as
follows:

In the method header of the method workWithSwitch,
you see (int value). The int variable value
represents the input from the user; the text box that
allows the user to input the score has already been
coded for you. This variable, value, is the value
entered by the user and should be used as the
condition for the switch statement; it is available to
your code as a parameter of the workWithSwitch

method. Do not declare the variable value inside the
method; just use it.

Write case statements for the following integer
constants: 0, 1, 2, 3, 4, as well as a default statement.

Within each case statement, you should do two
things:

Print a message to the screen indicating which
value was input. The message for the default case
should indicate that the input value is not one of
the valid values.

Call the animate method. The API for the animate
method is

void animate(int caseConstant, int value)

The first argument is the case constant; the
second argument is the input variable, value. For
instance, for the statement case 2: , your
animate method call is

animate(2, value);

For the default case, the method call should be

animate(−1, value);

To test your code, compile the
SelectionPractice2Controller.java file and run the
SelectionPractice2Application application. When the program
begins, you will see an empty graphics window with a text box
as shown in Figure 5.27.

To execute your switch statement, enter an integer in the text
box and press the “Test” button. Depending on how you
coded the case statements, the break statements, and the
input value, the window will display (in green) the path of
execution of your code. For example, Figure 5.28
demonstrates the code path when the input value is 3. If the
path is not what you expected, you will need to correct your
code.

Figure 5.27
The Input Box of the Application

Figure 5.28
A Sample Run of the Application

To test your code, enter each integer from 0 to 4, plus some
other integer value into the text box, pressing the “Test” button
each time. To exit the application, close the window.

DISCUSSION QUESTIONS
1. Explain the purpose of the default case in a switch statement.
2. Explain what happens when you omit a break statement in a case

statement.

CHAPTER REVIEW

5.13 Chapter Summary
Java provides equality, relational, and logical
operators to evaluate a condition, and
selection statements to choose which
instructions to execute based on whether a
condition evaluates to true or false.

The equality operators (== , !=) are used
to test whether two operands are equal. The
operands are expressions that evaluate to a
primitive numeric or boolean type or an
object reference.

The relational operators (< , <= , > , >=)
compare the values of two operands that are
expressions that evaluate to a primitive
numeric type.

The logical operators (! , && , and ||)
take boolean expressions as operands. The
logical NOT (!) takes one operand, and
inverts its value, changing true to false and
false to true. The AND operator (&&) takes
two boolean expressions as operands; if
both operands are true, then the result is
true; otherwise, the result is false. The OR
operator (||) also takes two boolean
expressions as operands. If both operands
are false, then the result is false; otherwise,
the result is true.

The logical NOT operator (!) has the
highest precedence of these operators,
followed by the relational operators, then the
equality operators, then the logical AND
(&&), then the logical OR(||).

DeMorgan’s Laws can be used to form
equivalent logical expressions to improve
readability of the code.

The if statement is used to perform certain
operations for one set of data and to do
nothing for all other data.

Curly braces are required when the true or
false block of an if statement consists of
more than one statement.

The if/else statement is used to perform
certain operations for one set of data and
other operations for all other data.

The if/else if statement is appropriate when
the data falls into more than two mutually
exclusive categories and the appropriate
instructions to execute are different for each
category.

if/else statements can be coded sequentially
and can be nested inside other if/else
statements.

When if statements are nested, the compiler
matches any else clause with the most
previous if condition that doesn’t already
have an else clause.

Because rounding errors can be introduced
in floating-point calculations, do not use the
equality operators to compare two floating-
point numbers. Instead, compare the
absolute value of the difference between the
numbers to some threshold value.

When we need exact precision in
calculations with decimal numbers, you can
use the BigDecimal class in the Java Class
Library.

Using the equality operator on object
references compares the values of the
references, not the object data. Two object
references will be equal only if they point to
the same object.

Use the equals method to determine whether
the data in two objects are equal.

In addition to the equals method, two Strings
can also be compared using the
equalsIgnoreCase method and the
compareTo method of the String class.

The conditional operator (?:) is used in
expressions where one of two values should

be used depending on the evaluation of a
condition. The conditional operator is useful
for validating input and for outputting similar
messages.

The switch statement evaluates an integer or
character expression or a String, then
compares the expression’s value to case
constants. When a match is found, it
executes the statements until either a break
statement or the end of the switch block is
encountered.

5.14 Exercises, Problems, and
Projects

5.14.1 Multiple Choice Exercises
 1. Given the following code declaring and initializing two int variables

a and b with respective values 3 and 5, indicate whether the value
of each expression is true or false.

int a = 3;
int b = 5;

 Expression true false
❑ a < b ____ ____

❑ a != b ____ ____

❑ a == 4 ____ ____

❑ (b − a) <= 1 ____ ____

❑ Math .abs (a − b) >= 2 ____ ____

❑ (b % 2 == 1) ____ ____

❑ b <= 5 ____ ____

 2. Given the following code declaring and initializing three boolean
variables a, b, and c, with respective values true, true, and false,
indicate whether the value of each expression is true or false.

boolean a = true;
boolean b = true;
boolean c = false;

 Expression true false
❑ !a ____ ____

❑ a && b ____ ____

❑ a && c ____ ____

❑ a || c ____ ____

❑ ! (a || b) ____ ____

❑ !a || b ____ ____

❑ ! (! (a && c)) ____ ____

❑ a && ! (b || c) ____ ____

 3. Given two boolean variables a and b, are the following
expressions equivalent?

❑ ! (!a)

❑ a

 4. Given two boolean variables a and b, are the following
expressions equivalent?

❑ ! (a && b)

❑ !a || !b

 5. Given two boolean variables a and b, are the following
expressions equivalent?

❑ ! (!a && !b)

❑ a && b

 6. Given two boolean variables a and b, are the following
expressions equivalent?

❑ ! (!a && !b)

❑ a || b

 7. Given the following code declaring and initializing two int variables
a and b with respective values 3 and 5, indicate whether the
operand (b < 10) will be evaluated.

int a = 3;
int b = 5;

 Expression yes no
❑ a < b || b < 10 ____ ____

❑ a != b && b < 10 ____ ____

❑ a == 4 || b < 10 ____ ____

❑ a > b && b < 10 ____ ____

 8. Mark all the valid Java selection keywords.

❑ if
❑ else if

❑ else
❑ elsif

 9. How do we compare the value of two String objects in Java? (Mark
all that apply.)

❑ using the = operator

❑ using the == operator
❑ using the equals method

5.14.2 Reading and Understanding
Code
10. What is the output of this code sequence?

boolean a = true;
System.out.println(a);

11. What is the output of this code sequence?

boolean a = (true && false);
System.out.println(a);

12. What is the output of this code sequence?

 if ((true || false) && (false || true)

)

 System.out.println("Inside true block"

);

 System.out.println("End of sequence");

13. What is the output of this code sequence?

 if (27 % 3 == 0)

 System.out.println("27 is divisible by

3");

 else

 System.out.println("27 is not divisible

by 3");

 System.out.println("End of sequence");

14. What is the output of this code sequence?

 String s = "Hello";

 if (s.equals("hello"))

 System.out.println("String is hello");

 else

 System.out.println("String is not hello"

);

 System.out.println("End of sequence");

15. What is the output of this code sequence?

 int grade = 77;

 if (grade >= 90)

 System.out.println("A");

 else if (grade >= 80)

 System.out.println("B");

 else if (grade >= 70)

 System.out.println("C");

 else

 System.out.println("D or lower");

 System.out.println("Done");

16. What is the output of this code sequence?

 int a = 65;

 boolean b = false;

 if (a >= 70)

 {

 System.out.println("Hello 1");

 if (b == true)

 System.out.println("Hello 2");

 }

 else

 {

 System.out.println("Hello 3");

 if (b == false)

 System.out.println("Hello 4");

 }

 System.out.println("Done");

17. What is the output of this code sequence?

 int season = 3;

 switch (season)

 {

 case 1:

 System.out.println("Season is

Winter");

 break;

 case 2:

 System.out.println("Season is

Spring");

 break;

 case 3:

 System.out.println("Season is

Summer");

 break;

 case 4:

 System.out.println("Season is Fall"

);

 break;

 default:

 System.out.println("Invalid season"

);

 }

18. What is the output of this code sequence?

 char c = 'e';

 switch (c)

 {

 case 'H':

 System.out.println("letter 1");

 break;

 case 'e':

 System.out.println("letter 2");

 break;

 case 'l':

 System.out.println("letters 3 and

4");

 break;

 case 'o':

 System.out.println("letter 5");

 break;

 default:

 System.out.println("letter is not

in Hello");

 }

19. What is the output of this code sequence?

 int n = 3;

 switch (n)

 {

 case 1:

 System.out.println("Number 1");

 case 2:

 System.out.println("Number 2");

 case 3:

 System.out.println("Number 3");

 case 4:

 System.out.println("Number 4");

 default:

 System.out.println("Other number");

 }

5.14.3 Fill In the Code
For Exercises 20 through 30, assume that a boolean
variable named a has been declared and assigned
the value true or false. You should also assume that
two int variables named b and c have been declared
and assigned some integer values.

20. If a is true, increment b by 1.

// your code goes here

21. If a is true, increment b by 2; if a is false, decrement b by 1.

// your code goes here

22. If a is true, change a to false; if a is false, change a to true.

// your code goes here

23. If b is equal to c, then assign true to a.

// your code goes here

24. If b is less than c, increment b by 1; otherwise, leave b unchanged.

// your code goes here

25. If b is a multiple of c, set a to true; otherwise, set a to false.

// your code goes here

26. If c is not equal to 0, assign to b the value of b divided by c.

// your code goes here

27. If the product b times c is greater than or equal to 100, then invert
a (if a is true, a becomes false; if a is false, a becomes true);
otherwise, assign true to a.

// your code goes here

28. If a is true and b is greater than 10, increment c by 1.

// your code goes here

29. If both b and c are less than 10, then assign true to a; otherwise,
assign false to a.

// your code goes here

30. If b or c is greater than 5, then assign true to a; otherwise, assign
false to a.

// your code goes here

5.14.4 Identifying Errors in Code
For Exercises 31 through 38, assume that two
boolean variables named b1 and b2 have been
declared and assigned the value true or false earlier
in the program. You should also assume that two int
variables named a1 and a2 have been declared and
assigned some integer values earlier in the program.

31. Where is the error in this code sequence?

b1 = a1 && a2;

32. Where is the error in this expression?

(b2 == b1) AND (a1 <= a2)

33. Where is the logical error in this code sequence?

if (a1 == 4);
 System.out.println("a1 equals 4");

34. Where is the error in this code sequence?

boolean b1 = true;
if b1
 System.out.println("b1 is true");

35. Where is the error in this code sequence?

if { b2 == true }
 System.out.println("b2 is true");

36. Where is the error in this code sequence?

if (b1 == true)
 System.out.println("b1 is true");
else
 System.out.println("b1 is false");
else if (a1 < 100)
 System.out.println("a1 is <= 100");

37. Is there an error in this code sequence? Explain.

if (b2 == b1)
 System.out.println("b2 and b1 have the
same value");
else if (a1 == a2)
 System.out.println("a1 and a2 have the
same value");
else
 System.out.println("All variables are
different");

38. Is there an error in this code sequence? Explain.

if (b2)
 System.out.println("b2 is true");
else if (a1 <= 10 || a2 > 50)
{
 System.out.print("a1 <= 10 or ");
 System.out.println("a2 > 50");
}
else
 System.out.println("none of the above");

5.14.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
39. You coded the following in class Test.java:

boolean b = true;
if (b)
 System.out.println("Inside true block");
 System.out.println("b was true");
else // line 12
 System.out.println("Inside false block");

At compile time, you get the following error:

Test.java:12: error: 'else' without 'if'
else // line 12
^
1 error

Explain what the problem is and how to fix it.

40. You coded the following in the class Test.java:

int a = 32;
if (a = 31) // line 9
 System.out.println("The value of a is 31"
);
else
 System.out.println("The value of a is not
31");

At compile time, you get the following error:

Test.java:9: error: incompatible types
if (a = 31) // line 9
 ^
1 error

Explain what the problem is and how to fix it.

41. You coded the following in the class Test.java:

boolean b = true;
if (b)
{
 System.out.println("Inside true block");
 System.out.println("b was true");
else // line 13
 System.out.println("Inside false block");
}
System.out.println("Done");

At compile time, you get the following error:

Test.java:13: error: 'else' without 'if'.
else // line 13
^
1 error

Explain what the problem is and how to fix it.

5.14.6 Write a Short Program
42. Write a program that takes two ints as input from the keyboard,

representing the number of hits and the number of at-bats for a
batter. Then calculate the batter’s hitting percentage and check if
the hitting percentage is above .300. If it is, output that the player
is eligible for the All Stars Game; otherwise, output that the player
is not eligible.

43. Write a program that reads a char as an input from the keyboard
and outputs whether it is a valid character to start an identifier.
(Hint: look for a method in the Character class.)

44. Write a program that calculates the area of the following figures:

❑ a square of side 0.666666667
❑ a rectangle of sides 1/9 and 4

Test the two calculated areas for equality; discuss your result.

45. Write a program that reads a sentence from the keyboard.
Depending on the last character of the sentence, print a message
identifying the sentence as declarative (ends with a period),
interrogative (ends with a question mark), exclamatory (ends with
an exclamation point), or other.

46. An email address contains the @ character. Write a program that
takes a word from the keyboard and outputs whether it is an email

address based on the presence of the @ character. Do not worry
about what else is in the word.

47. Write a program that takes two words as input from the keyboard,
representing a password and the same password again. (Often,
websites ask users to type their password twice when they register
to make sure there was no typo the first time around.) Your
program should do the following:

❑ if both passwords match, then output “You are now registered
as a new user”

❑ otherwise, output “Sorry, there is a typo in your password”

48. Write a program that takes a word as input from the keyboard,
representing a user ID. (Often, websites place constraints on user
IDs.) Your program should do the following:

❑ if the user ID contains between 6 and 10 characters inclusive,
then output “Welcome, barbara” (assuming barbara is the
user ID entered)

❑ otherwise, output “Sorry, user ID invalid”

5.14.7 Programming Projects
49. Write a program that reads a web address (for instance,

www.yahoo.com) from the keyboard and outputs whether this web
address is for a government, a university, a business, an
organization, or another entity.

❑ If the web address ends with gov, it is a government web
address.

❑ If the web address ends with edu, it is a university web
address.

❑ If the web address ends with com, it is a business web
address.

❑ If the web address ends with org, it is an organization web
address.

❑ Otherwise, it is a web address for another entity.

50. Write a program that reads a temperature as a whole number from
the keyboard and outputs a “probable” season (winter, spring,
summer, or fall) depending on the temperature.

❑ If the temperature is greater than or equal to 90, it is probably
summer.

❑ If the temperature is greater than or equal to 70 and less than
90, it is probably spring.

❑ If the temperature is greater than or equal to 50 and less than
70, it is probably fall.

❑ If the temperature is less than 50, it is probably winter.
❑ If the temperature is greater than 110 or less than −5, then

you should output that the temperature entered is outside the
valid range.

51. Write a program that takes a String as input from the keyboard,
representing a year. Your program should do the following:

❑ If the year entered has two characters, convert it to an int, add
2000 to it, and output it.

❑ If the year entered has four characters, just convert it to an int
and output it.

❑ If the year entered has neither two nor four characters, output
that the year is not valid.

http://www.yahoo.com/

52. Write a program that takes two words as input from the keyboard,
representing a user ID and a password. Your program should do
the following:

❑ If the user ID and the password match “admin” and “open,”
respectively, then output “Welcome.”

❑ If the user ID matches “admin” and the password does not
match “open,” output “Wrong password.”

❑ If the password matches “open” and the user ID does not
match “admin,” output “Wrong user ID.”

❑ Otherwise, output “Sorry, wrong ID and password.”

5.14.8 Technical Writing
53. When comparing two doubles or floats for equality, programmers

calculate the difference between the two numbers and check if that
difference is sufficiently small. Explain why and give a real-life
example.

54. Look at the following code segment:

int b = 44;
if (b = 23)
 System.out.println("Inside true block");

In Java, this code will generate the following compiler error:

Test.java:9: error: incompatible types
if (b = 23)
 ^
required: boolean
found: int
1 error

In the C++ programming language, the equivalent code will
compile and run and will give you the following output:

Inside true block

Discuss whether Java handles this situation better than C++ and
why.

5.14.9 Group Project (for a group
of 1, 2, or 3 students)
55. We want to build a simple “English language” calculator that does

the following:

❑ takes three inputs from the keyboard, two of them single digits
(0 to 9)

❑ takes a char from the keyboard, representing one of five
operations from the keyboard: + (addition), – (subtraction), *
(multiplication), / (division), and ^ (exponentiation)

❑ outputs the description of the operation in plain English, as
well as the numeric result

For instance, if the two numbers are 5 and 3, and the operation is
*, then the output should be

five multiplied by three is 15

Note that the result is given as a number, not a word.

If the two numbers are 2 and 9, and the operation is –, then the
output should be

two minus nine is -7

If the two numbers are 5 and 2, and the operation is ^, then the
output should be

five to the power two is 25

Hint: to perform the exponentiation, use the pow method of the
Math class.

If the two numbers are 5 and 0, and the operation is /, then the
output should be

Division by zero is not allowed

Here the operation will not be performed.

If the two numbers are 25 and 3, and the operation is +, then the
output should be

Invalid number

because 25 has two digits.

As for the operators, they should be translated into English as
follows:

+ plus

− minus

* multiplied by

/ divided by

^ to the power

You should use the switch … case selection statement to translate
the input values into words.

You need to consider these special situations:

❑ For division, there is a special constraint: you cannot divide by
0, and you should therefore test whether the second number
is 0. If it is 0, then you should output a message saying that
you are not allowed to divide by 0.

❑ The “operator” is not one of the preceding five operators; in
that case, output a message saying that the operator is not a
valid one.

❑ One or two of the numbers is not a valid digit; again, you
should output a message to that effect.

❑ Hint: You can deal with these special situations in the default
statement of the switch block and possibly use some boolean
variables to keep track of this information, as you may need it
later in your program.

CHAPTER 6
Flow of Control, Part 2: Looping

CHAPTER CONTENTS
Introduction
6.1 Event-Controlled Loops Using while

6.2 General Form for while Loops
6.3 Event-Controlled Looping

6.3.1 Reading Data from the User
6.3.2 Reading Data from a Text File

6.4 Looping Techniques
6.4.1 Accumulation
6.4.2 Counting Items
6.4.3 Calculating an Average
6.4.4 Finding Maximum or Minimum Values

6.5 Type-Safe Input Using Scanner

6.6 Constructing Loop Conditions
6.7 Testing Techniques for while Loops
6.8 Event-Controlled Loops Using do/while

6.9 Programming Activity 1: Using while Loops
6.10 Count-Controlled Loops Using for

6.10.1 Basic Structure of for Loops
6.10.2 Constructing for Loops
6.10.3 Testing Techniques for for Loops

6.11 Nested Loops
6.12 Programming Activity 2: Using for Loops
6.13 Chapter Summary
6.14 Exercises, Problems, and Projects

6.14.1 Multiple Choice Exercises
6.14.2 Reading and Understanding Code
6.14.3 Fill In the Code
6.14.4 Identifying Errors in Code

6.14.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM
6.14.6 Write a Short Program
6.14.7 Programming Projects
6.14.8 Technical Writing
6.14.9 Group Project

Introduction
Have you ever watched the cashier at the grocery store? Let’s
call the cashier Jane. Jane’s job is to determine the total cost
of a grocery purchase. To begin, Jane starts with a total cost
of $0.00. She then reaches for the first item and scans it to
record its price, which is added to the total. Then she reaches
for the second item, scans that item to record its price, which
is added to the total, and so on. Jane continues scanning
each item, one at a time, until there are no more items to
scan. Usually, the end of an order is signaled by a divider bar
lying across the conveyor belt. When Jane sees the divider
bar, she knows she is finished. At that point, she tells us the
total cost of the order, collects the money, and gives us a
receipt.

So we see that Jane’s job consists of performing some
preliminary work, processing each item one at a time, and
reporting the result at the end.

In computing, we often perform tasks that follow this same
pattern:

1: initialize values
2: process items one at a time
3: report results

The flow of control that programmers use to complete jobs
with this pattern is called looping, or repetition.

6.1 Event-Controlled Loops Using
while
If we attempt to write pseudocode for the grocery
store cashier, we may start with something like this:

set total to $0.00

reach for first item

if item is not the divider bar

 add price to total

reach for next item

if item is not the divider bar

 add price to total

reach for next item

if item is not the divider bar

 add price to total

… (finally)

reach for next item

item is the divider bar,

 tell the customer the total price

We can see a pattern here. We start with an order
total of $0.00. Then we repeat a set of operations for
each item. We reach for the item and check whether
it’s the divider bar. If the item is not the divider bar,
we add the item’s price to the order total. We reach
for the next item and check whether it’s the divider
bar, and so on. When we reach for the item and find

that it is the divider bar, we know there are no more
items to process, so the total we have at that time is
the total for the whole order. In other words, we don’t
know the number of items that will be placed on the
conveyor belt. We just process the order, item by
item, until we see the divider bar, which we do not
process.

In Java, the while loop is designed for repeating a
set of instructions for each input value when we don’t
know at the beginning how many input values there
will be. We simply process each input value, one at a
time, until a signal—an event—tells us that there is
no more input. This is called event-controlled
looping. In the cashier’s case, the signal for the end
of input was the divider bar. In other tasks, the signal
for the end of the input may be a special value that
the user enters, called a sentinel value, or it may be
that we’ve reached the end of an input file.

6.2 General Form for while Loops
The while loop has this syntax:

// initialize variables

while (condition)

{

 // process data; loop body

}

// process the results

The condition is a boolean expression, that is, any
expression that evaluates to true or false. When the
while loop statement is encountered, the condition is
evaluated; if the value is true, the statements in the
loop body are executed. The condition is then
reevaluated and, if true, the loop body is executed
again. This repetition continues until the loop
condition evaluates to false, at which time, the loop
body is skipped and execution continues at the
instruction following the loop body.

The curly braces are needed only if the loop body
has more than one statement—that is, if more than
one statement should be executed if the condition
evaluates to true.

The scope of any variable defined within the while
loop body extends from its declaration to the end of
the while loop. Thus, any variable that is declared
within a while loop body has block scope and cannot
be referenced after the while loop ends.

The flow of control of a while loop is shown in Figure
6.1.

Each execution of the loop body is called an
iteration of the loop. Thus, if the loop body executes
five times before the condition evaluates to false, we
say there were five iterations of the while loop.

What happens if the loop condition is false the first
time it is evaluated? Because the loop condition is
evaluated before executing the while loop body, and
the loop body is executed only if the condition is true,
it is possible that the while loop body is never
executed. In that case, there would be zero
iterations of the loop.

Using a while loop construct, the pseudocode for the
cashier would look like this:

Figure 6.1
Flow of Control of a while Loop

set total to $0.00

reach for first item

while item is not the divider bar

{

 add price to total

 reach for next item

}

// if we get here, the item is the divider bar

output the total price

It is also possible to construct a while loop whose
condition never evaluates to false. That results in an
endless loop, also known as an infinite loop.
Because the condition always evaluates to true, the
loop body is executed repeatedly, without end. One
symptom of an endless loop is that the program
doesn’t terminate; it appears to “hang.” However, if
the program writes some output in the loop body, we
will see that output spewing out on the Java console.
Normally, the only recourse is for the user to abort
the program.

The way to ensure that the condition will eventually
evaluate to false is to include code, called a loop
update statement, within the loop body that
appropriately changes the variable that is being

tested by the loop condition. If, for example, the loop
condition tests for reading a specific value, the loop
update statement should read the next input value.

COMMON ERROR TRAP
Avoid putting a semicolon after the condition of a
while loop. Doing so creates an empty loop body and
could result in an endless loop.

One common logic error that causes an endless loop
is putting a semicolon after the condition, as in the
following:

while (condition); // semicolon causes endless

loop if condition is true

A semicolon immediately following the condition
indicates an empty loop body. Although some
advanced programming techniques call for the use of
an empty loop body, we will not be using those
techniques in this chapter.

6.3 Event-Controlled Looping
The while loop is used when we don’t know how
many times the loop will execute; that is, when the
loop begins, we don’t know how many iterations of
the loop will be required. We rely on a signal, or
event, to tell us that we have processed all the data.
For example, when the cashier begins checking out
an order, she doesn’t (necessarily) know how many
items are in the grocery cart; she only knows to stop
when she sees the divider bar on the conveyor belt.
We call this an event-controlled loop because we
continue processing data until an event occurs,
which signals the end of the data.

When we’re prompting the user to enter data from
the console, and we don’t know at the beginning of
the loop how much data the user has to be
processed, we can define a special input value,
called the sentinel value. The sentinel value can vary
from task to task and is typically a value that is
outside the normal range of data for that task.

Sometimes the data our program needs are in a text
file. For example, a file could store a company’s
monthly sales for the last five years. We may want to
calculate average monthly sales or perform other
statistical computations on that data. In this case, we

need to read our data from the file, instead of asking
the user to enter the data from the keyboard.
Typically, we use a file when a large amount of data
is involved because it would be impractical for a user
to enter the data manually.

Reading from a file is also an event-controlled loop
because we don’t know at the beginning of the
program how much data is in the file. Thus, we need
some way to determine when we have finished
processing all the data in the file. Java enables us to
test if we have reached the end of the file. Thus, for
input from a file, sensing the end-of-file indication is
the event that signals that there is no more data to
read.

6.3.1 Reading Data from the User
Let’s look at the general form for using a while loop
to process data entered from the user.

initialize variables

read the first data item // priming read

while data item is not the sentinel value

{

 process the data

 read the next data item // update read

}

report the results

After performing any initialization, we attempt to read
the first item. We call this the priming read because,
like priming a pump, we use that value to feed the
condition of the while loop for the first iteration. If the
first item is not the sentinel value, we process it.
Processing may consist of calculating a total,
counting the number of data items, comparing the
data to previously read values, or any number of
operations. Then we read the next data item. This is
called the update read because we update the data
item in preparation for feeding its value into the
condition of the while loop for the next iteration. This
processing, followed by an update read, continues

until we do read the sentinel value, at which time we
do not execute the while loop body. Instead, we skip
to the first instruction following the while loop. Note
that the sentinel value is not meant to be processed.
Like the divider bar for the cashier, it is simply a
signal to stop processing.

We illustrate this pattern in Example 6.1, which
prompts the user for integers and echoes to the
console whatever the user enters. We chose the
sentinel value to be −1; that is, when the user enters
a −1, we stop processing.

EXAMPLE 6.1 Echoing Input from
the User

 1 /* Working with a sentinel value

 2 Anderson, Franceschi

 3 */

 4 import java.util.Scanner;

 5

 6 public class EchoUserInput

 7 {

 8 public static void main(String [] args)

 9 {

10 final int SENTINEL = -1;

11 int number;

12

13 Scanner scan = new Scanner(System.in);

14

15 // priming read

16 System.out.print("Enter an integer, or -1

to stop > ");

17 number = scan.nextInt();

18

19 while (number != SENTINEL)

20 {

21 // processing

22 System.out.println(number);

23

24 // update read

25 System.out.print("Enter an integer, or

-1 to stop > ");

26 number = scan.nextInt();

27 }

28

29 System.out.println("Sentinel value

detected. Goodbye");

30 }

31 }

Figure 6.2 shows the output from this program when
the user enters 23, 47, 100, and −1.

On line 10, we declare the sentinel value, −1, as a
constant because the value of the sentinel will not
change during the execution of the program, and it
lets us clearly state via the while loop condition (line
19) that we want to execute the loop body only if the
input is not the sentinel value.

Figure 6.2
Output from Example 6.1, Using a Sentinel Value

Enter an integer, or −1 to stop > 23

23

Enter an integer, or −1 to stop > 47

47

Enter an integer, or −1 to stop > 100

100

Enter an integer, or −1 to stop > −1

Sentinel value detected. Goodbye

Then on lines 16–17, we perform the priming read.
The while loop condition on line 19 checks for the
sentinel value. If the user enters the sentinel value
first, we skip the while loop altogether and execute
line 29, which prints a message that the sentinel
value was entered, and we exit the program. If the
user enters a number other than the sentinel value,
we execute the body of the while loop (lines 21–26).
In the while loop, we simply echo the user’s input to
the console, then perform the update read. Control
then skips to the while loop condition, where the
value the user entered in the update read is
compared to the sentinel value. If this entry is the
sentinel value, the loop is skipped; otherwise, the
body of the loop is executed: The value is echoed,

then a new value is read. This same processing
continues until the user does enter the sentinel
value. Note that the sentinel value (−1) is not echoed
to the output.

COMMON ERROR TRAP
Omitting the update read may result in an endless
loop.

A common error in constructing while loops is
forgetting the update read. Without the update read,
the while loop continually processes the same data
item, leading to an endless loop.

Another common error is omitting the priming read
and, instead, reading data inside the while loop
before the processing, as in the following
pseudocode:

initialize variables

while data item is not the sentinel value

{

 read the next data

 process the data

}

report the results

COMMON ERROR TRAP
Omitting the priming read leads to incorrect results.

This structure has several problems. The first time
we evaluate the while loop condition, we haven’t
read any data, so the result of that evaluation is
unpredictable. Second, when we do read the sentinel
value, we will process it, leading to incorrect results.

6.3.2 Reading Data from a Text File
The Scanner class enables us to read data easily
from a text file. Java also provides a whole set of
classes in the java.io package to enable
programmers to perform user input and output with a
file.

For the Scanner class, the general form for reading
data from a text file is a little different from reading
the data from the user. First, instead of reading a
value and checking whether it is the sentinel value,
we check whether there is more data in the file, then
read a value. Second, we don’t need to print a
prompt because the user doesn’t enter the data; we
just read the next value from the file. With the
Scanner class, the pseudocode for reading from a
text file is shown here:

initialize variables

while we have not reached end of file

{

 read the next data item

 process the data

}

report the results

Scanner class methods, including a constructor for
reading from a text file, are shown in Table 6.1.
Another class we will use is the File class, which

associates a file name with a file. The constructor for
the File class is shown in Table 6.2.

TABLE 6.1 Selected Methods of the Scanner
Class

Selected Methods of the Scanner Class
Constructor

Scanner(File file)

 creates a Scanner object and associates it with a file

Return
value

Method name and argument list

boolean hasNext()

returns true if there is another token in the input
stream; false, otherwise

byte nextByte()

returns the next input as a byte

short nextShort()

returns the next input as a short

int nextInt()

returns the next input as an int

long nextLong()

returns the next input as a long

float nextFloat()

returns the next input as a float

double nextDouble()

returns the next input as a double

boolean nextBoolean()

returns the next input as a boolean

String next()

returns the next token in the input line as a
String

TABLE 6.2 File Class Constructor
A Constructor for the File Class

File(String pathname)

constructs a File object with the pathname file name so that
the file name is platform independent

The constructor shown in Table 6.1 can be used to
associate a Scanner object with a file. The Scanner
object will tokenize the contents of the file and return
the tokens as we call the next methods. The hasNext
method in the Scanner class returns true if the input
has another token, and false otherwise. Thus, when
the hasNext method returns false, we know we have
reached the end of the file.

Example 6.2 reads integers from a file named
input.txt and echoes the integers to the console. The
contents of input.txt are shown in Figure 6.3 and the
output from the program is shown in Figure 6.4.

Figure 6.3
Contents of input.txt

On line 14 of Example 6.2, we use the constructor of
the File class to convert the file name, input.txt, to a
platform-independent file name. Because we are

specifying the simple file name, the JVM will look for
the file in the same folder as our source file. If the file
is located in another folder, we need to specify the
path as well as the file name. For example, if the file
were located on a flash drive in a Windows system,
we would pass the String “e:\\input.txt” to the
constructor. Notice that we need to use an escape
sequence of two backslashes in order to specify the
pathname, e:\input.txt.

The File class belongs to the java.io package, so we
include an import statement for that class in line 5.

In line 15, we construct a Scanner object associated
with the inputFile object. If the file is not found, the
constructor generates a FileNotFoundException. It is
also possible that an IOException may be generated
if we encounter problems reading the file. Java
requires us to acknowledge that these exceptions
may be generated. One way to do that is to include
the phrase throws IOException in the header for
main (line 10). We also import the IOException class
on line 6.

On line 17, the first time our while loop condition is
evaluated, we check whether there is any data in the
file. If the file is empty, the hasNext method will
return false, and we will skip execution of the loop

body, continuing at line 25, where we print a
message and exit the program.

REFERENCE POINT
You can read more about the Scanner class on
Oracle’s Java website:
www.oracle.com/technetwork/java.

The body of the while loop (lines 19–22) calls the
nextInt method to read the next integer in the file and
echoes that integer to the console. We then
reevaluate the while loop condition (line 17) to
determine if more data is in the file. When no more
integers remain to be read, the hasNext method
returns false, and we skip to line 25, where we print
a message and exit the program.

Notice that we do not use a priming read because
the hasNext method essentially peeks ahead into the
file to see if there is more data. If the hasNext
method returns true, we know that there is another
integer to read, so we perform the read in the first
line of the while loop body (line 20).

http://www.oracle.com/technetwork/java

EXAMPLE 6.2 Echoing Input from
a File

 1 /* Reading a Text File

 2 Anderson, Franceschi

 3 */

 4 import java.util.Scanner;

 5 import java.io.File;

 6 import java.io.IOException;

 7

 8 public class EchoFileData

 9 {

10 public static void main(String [] args)

throws IOException

11 {

12 int number;

13

14 File inputFile = new File("input.txt");

15 Scanner file = new Scanner(inputFile);

16

17 while (file.hasNext())

18 {

19 // read next integer

20 number = file.nextInt();

21 // process the value read

22 System.out.println(number);

23 }

24

25 System.out.println("End of file detected.

Goodbye");

26 }

27 }

Figure 6.4
Output from Example 6.2, Reading from a File

23

47

100

End of file detected. Goodbye

6.4 Looping Techniques
The while loop is an important tool for performing
many common programming operations on a set of
input values. For example, the while loop can be
used to calculate the sum of values, count the
number of values, find the average value, find the
minimum and maximum values, and perform other
operations.

6.4.1 Accumulation
Let’s look at a common programming operation for
which a while loop is useful: calculating the sum of a
set of values. To do this, we will build a simple
calculator that performs one function: addition. We
will prompt the user for numbers one at a time. We’ll
make the sentinel value a 0; that is, when the user
wants to stop, the user will enter a 0. At that point,
we will print the total.

The calculator can be developed using an event-
controlled while loop and a standard computing
technique: accumulation. In the accumulation
operation, we initialize a total variable to 0. Each
time we input a new value, we add that value to the
total. When we reach the end of the input, the
current value of total is the total for all the input.

Here is the pseudocode for the addition calculator:

set total to 0

read a number // priming read

while the number is not the sentinel value

{

 add the number to total

 read the next number // update read

}

output the total

Notice that this operation is almost identical to the
grocery cashier’s job in that we perform a priming
read before the while loop. Inside the while loop, we
process each number one at a time—adding each
number to the total, then we read the next value,
until we see the sentinel value, which is the signal to
stop.

Example 6.3 provides the code for the addition
calculator, and Figure 6.5 shows the output for a
sample execution of the calculator.

EXAMPLE 6.3 An Addition
Calculator

 1 /* Addition Calculator

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class Calculator

 8 {

 9 public static void main(String [] args)

10 {

11 final int SENTINEL = 0;

12 int number;

13 int total = 0;

14

15 Scanner scan = new Scanner(System.in);

16

17 System.out.println("Welcome to the

addition calculator.\n");

18

19 System.out.print("Enter the first number"

20 + " or 0 for the total >

");

21 number = scan.nextInt();

22

23 while (number != SENTINEL)

24 {

25 total += number;

26

27 System.out.print("Enter the next

number"

28 + " or 0 for the

total > ");

29 number = scan.nextInt();

30 }

31

32 System.out.println("The total is " + total

);

33 }

34 }

Figure 6.5
Output from a Sample Run of the Addition Calculator

Welcome to the addition calculator.

Enter the first number or 0 for the total > 34

Enter the next number or 0 for the total > −10

Enter the next number or 0 for the total > 2

Enter the next number or 0 for the total > 5

Enter the next number or 0 for the total > 8

Enter the next number or 0 for the total > 0

The total is 39

COMMON ERROR TRAP
Forgetting to initialize the total to 0 will produce
incorrect results.

Line 13 declares and initializes the total to 0. This is
an important step because the loop body will add
each input value to the total. If the total is not set to 0
before the first input, we will get incorrect results.
Furthermore, if total is declared but not initialized,
our program will not compile.

Lines 19–21 read the first input value (the priming
read). The while loop begins at line 23, and its
condition checks for the sentinel value. The first time
the while loop is encountered, this condition will
check the value of the input from the priming read.

The loop body processes the input (line 25), which
consists of adding the input value to the total. The
final step in the loop body (lines 27–29) is to read the
next input (the update read).

SOFTWARE ENGINEERING TIP
Indent the body of a while loop to clearly illustrate the
logic of the program.

When the end of the loop body is reached, control is
transferred back to line 23, where the loop condition
is again tested with the input value read on line 29. If
the condition is true, that is, if the input just read is
not the sentinel value, then the loop body is
reexecuted and the condition is retested, continuing
until the input is the sentinel value, which causes the
condition to evaluate to false. At that time, the loop
body is skipped and line 32 is executed, which
reports the results by printing the total.

COMMON ERROR TRAP
Choosing the wrong sentinel value may result in
logic errors.

Notice that the body of the while loop is indented and
that the opening and closing curly braces are aligned
in the same column as the w in the while. This style
lets us easily see which statements belong to the
while loop body.

It is important to choose the sentinel value carefully.
Obviously, the sentinel value cannot be a value that
the user might want to be processed. In the addition
calculator, we want to allow the user to enter positive
or negative integers. We chose 0 as the sentinel
value for two reasons. First, adding 0 to a total has
no effect, so it is unlikely that the user will want to

enter that value to be processed. Second, to the
user, it is logical to enter a 0 to signal that there are
no more integers to be added.

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see a step-by-step illustration of a while
loop with a sentinel value, look for the movie
within the online resources. Click on the link to
start the movie.

6.4.2 Counting Items
Counting is used when we need to know how many
items are input or how many input values fit some
criterion, for example, how many items are positive
numbers or how many items are odd numbers.
Counting is similar to accumulation in that we start
with a count of 0 and increment (add 1 to) the count
every time we read a value that meets the criterion.
When there are no more values to read, the count
variable contains the number of items that meet our
criterion.

For example, let’s count the number of students who
passed a test. The pseudocode for this operation is
as follows:

set countPassed to 0

read a test score

while the test score is not the sentinel value

{

 if the test score >= 60

 {

 add 1 to countPassed

 }

 read the next test score

}

output countPassed

The application in Example 6.4 counts the number of
students that passed a test. We also calculate the
percentage of the class that passed the test. To do
this, we maintain a second count: the number of
scores entered. This value will be incremented each
time we read a score, whereas the countPassed
value will be incremented only if the score is greater
than or equal to 60. The sentinel value is −1. A
sample run of this program is shown in Figure 6.6.

EXAMPLE 6.4 Counting Passing
Test Scores

 1 /* Counting passing test scores

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 import java.text.DecimalFormat;

 7

 8 public class CountTestScores

 9 {

10 public static void main(String [] args)

11 {

12 int countPassed = 0;

13 int countScores = 0;

14 int score;

15 final int SENTINEL = -1;

16

17 Scanner scan = new Scanner(System.in);

18

19 System.out.println("This program counts "

20 + "the number of passing test

scores.");

21 System.out.println("Enter a -1 to stop.");

22

23 System.out.print("Enter the first score > "

);

24 score = scan.nextInt();

25

26 while (score != SENTINEL)

27 {

28 if (score >= 60)

29 {

30 countPassed++;

31 }

32

33 countScores++;

34

35 System.out.print("Enter the next score

> ");

36 score = scan.nextInt();

37 }

38

39 System.out.println("You entered " +

countScores + " scores");

40 System.out.println("The number of passing

test scores is "

41 + countPassed);

42 if (countScores != 0)

43 {

44 DecimalFormat percent = new

DecimalFormat("0.0%");

45 System.out.println(

46 percent.format((double) (countPassed

) / countScores)

47 + " of the class passed the test");

48 }

49 }

50 }

COMMON ERROR TRAP
Forgetting to initialize the count variables will
produce a compiler error.

Figure 6.6
Counting Passing Test Scores

This program counts the number of passing test

scores.

Enter a −1 to stop.

Enter the first score > 98

Enter the next score > 75

Enter the next score > 60

Enter the next score > 59

Enter the next score > 45

Enter the next score > 88

Enter the next score > 94

Enter the next score > 96

Enter the next score > 56

Enter the next score > 77

Enter the next score > 82

Enter the next score > 89

Enter the next score > 100

Enter the next score > 78

Enter the next score > 55

Enter the next score > −1

You entered 15 scores

The number of passing test scores is 11

73.3% of the class passed the test

Lines 12 and 13 declare the variables countPassed
and countScores and initialize both to 0. Initializing
these values to 0 is critical; otherwise, we will get the
wrong results or a compiler error. We initialize these
values to 0 because at that point, we have not yet
processed any test scores.

Our while loop framework follows the familiar pattern.
We perform the priming read for the first input (lines
23–24); our while loop condition checks for the
sentinel value (line 26); and the last statements of
the while loop (lines 35–36) read the next value.

In the processing portion of the while loop, line 28
checks if the score just read is a passing score, and
if so, line 30 adds 1 to countPassed. For each score
entered, regardless of whether the student passed,
we increment countScores (line 33).

When the sentinel value is entered, the while loop
condition evaluates to false and control skips to line
39, where we output the number of scores entered
and the number of passing scores. So that we avoid
dividing by 0, note that line 42 checks whether no
scores were entered. Note also that in line 46 we
type cast countPassed to a double to force floating-
point division, rather than integer division, so that the
fractional part of the quotient will be maintained.

6.4.3 Calculating an Average
Calculating an average is a combination of
accumulation and counting. We use accumulation to
calculate the total and we use counting to count the
number of items to average.

Here’s the pseudocode for calculating an average:

set total to 0

set count to 0

read a number

while the number is not the sentinel value

{

 add the number to total

 add 1 to the count

 read the next number

}

set the average to total / count

output the average

Thus, to calculate an average test score for the
class, we need to calculate the total of all the test
scores, then divide by the number of students who
took the test.

average = total / count;

It’s important to remember that if we declare total
and count as integers, then the average will be
calculated using integer division, which truncates the
remainder. To get a floating-point average, we need
to type cast one of the variables (either total or
count) to a double or a float to force the division to
be performed as floating-point.

double average = (double) (total) / count;

Although the parentheses around total are not
required because total is a single value, we include
them here to emphasize that we are type casting
only total to a double before the division is
performed.

The application in Example 6.5 calculates an
average test score for a class of students. The
output is shown in Figure 6.7.

EXAMPLE 6.5 Calculating an
Average Test Score

 1 /* Calculate the average test score

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 import java.text.DecimalFormat;

 7

 8 public class AverageTestScore

 9 {

10 public static void main(String [] args)

11 {

12 int count = 0;

13 int total = 0;

14 final int SENTINEL = -1;

15 int score;

16

17 Scanner scan = new Scanner(System.in);

18

19 System.out.println("To calculate a class

average,");

20 System.out.println("enter each test score."

);

21 System.out.println("When you are finished,

enter a -1");

22

23 System.out.print("Enter the first test score

> ");

24 score = scan.nextInt();

25

26 while (score != SENTINEL)

27 {

28 total += score; // add score to total

29 count++; // add 1 to count of

test scores

30

31 System.out.print("Enter the next test

score > ");

32 score = scan.nextInt();

33 }

34

35 if (count != 0)

36 {

37 DecimalFormat oneDecimalPlace = new

DecimalFormat("0.0");

38 System.out.println("\nThe class average

is "

39 + oneDecimalPlace.format((double) (

total) / count));

40 }

41 else

42 System.out.println("\nNo grades were

entered");

44 }

45 }

Figure 6.7
Calculating the Average Test Score

To calculate a class average,

enter each test score.

When you are finished, enter a −1

Enter the first test score > 88

Enter the next test score > 78

Enter the next test score > 96

Enter the next test score > 75

Enter the next test score > 99

Enter the next test score > 56

Enter the next test score > 78

Enter the next test score > 84

Enter the next test score > 93

Enter the next test score > 79

Enter the next test score > 90

Enter the next test score > 85

Enter the next test score > 79

Enter the next test score > 92

Enter the next test score > 99

Enter the next test score > 94

Enter the next test score > −1

The class average is 85.3

In Example 6.5, lines 12 and 13 declare both count
and total variables as ints and initialize each to 0.

Again, our while loop structure follows the same
pattern. Lines 23–24 read the first input value; the
while loop condition (line 26) checks for the sentinel
value; and the last statements in the while loop (lines
31–32) read the next score. For the processing
portion of the while loop, we add the score to the
total and increment the count of scores (lines 28–
29). When the sentinel value is entered, we stop
executing the while loop and skip to line 35.

COMMON ERROR TRAP
Forgetting to check whether the denominator is 0
before performing division is a logic error.

In line 35, we avoid dividing by 0 by checking
whether count is 0 (that is, if no scores were entered)
before performing the division. If count is 0, we
simply print a message saying that no grades were
entered. If count is not 0, we calculate and print the
average. We first instantiate a DecimalFormat object
(line 37) so that we can output the average to one
decimal place. Remember that we need to type cast
the total to a double (lines 38–39) to force floating-
point division, rather than integer division.

6.4.4 Finding Maximum or
Minimum Values
In previous examples, we calculated a total for a
group of numbers by keeping a running total. We
started with a total of 0, then added each new input
value to the running total. Similarly, we counted the
number of input items by keeping a running count.
We started with a count of 0 and incremented the
count each time we read a new value. We can apply
that same logic to calculating a maximum or
minimum. For example, to find the maximum of a
group of values, we can keep a “running,” or current,
maximum. We start by assuming that the first value
we read is the maximum. In fact, it is the largest
value we have seen so far. Then as we read each
new value, we compare it to our current maximum. If
the new value is greater, we make the new value our
current maximum. When we come to the end of the
input values, the current maximum is the maximum
for all the input values.

Finding the minimum value, of course, uses the
same approach, except that we replace the current
minimum only if the new value is less than the
current minimum.

Here’s the pseudocode for finding a maximum value
in a file:

read a first number and make it the maximum

while there is another number to read

{

 read the next number

 if number > maximum

 {

 set maximum to number

 }

}

output the maximum

Example 6.6 shows the code to find a maximum test
grade in a file. As shown in Figure 6.8, the grades
are stored as integers, one per line, in the file
grades.txt. When this program runs, its output is
shown in Figure 6.9.

Figure 6.8
The Contents of grades.txt

EXAMPLE 6.6 Finding the
Maximum Value

 1 /* Find the maximum test grade

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 import java.io.*;

 7

 8 public class FindMaximumGrade

 9 {

10 public static void main(String [] args)

throws IOException

11 {

12 int maxGrade;

13 int grade;

14

15 Scanner file = new Scanner(new File(

"grades.txt"));

16

17 System.out.println("This program finds the

maximum grade "

18 + "for a class");

19

20 if (! file.hasNext())

21 {

22 System.out.println("No test grades are

in the file");

23 }

24 else

25 {

26 maxGrade = file.nextInt(); // make

first grade the max

27

28 while (file.hasNext())

29 {

30 grade = file.nextInt(); // read next

grade

31

32 if (grade > maxGrade)

33 maxGrade = grade; // save as

current max

34 }

35

36 System.out.println("The maximum grade

is " + maxGrade);

37 }

38 }

39 }

Figure 6.9
Finding the Maximum Value

This program finds the maximum grade for a

class

The maximum grade is 99

In line 20, we call the hasNext method to test
whether the file is empty. If so, we print a message
(line 22) and the program ends. If, however, the file
is not empty, we read the first value and
automatically make it our maximum by storing the
grade in maxGrade (line 26). In line 28, our while
loop condition tests whether we have reached the
end of the file. If not, we execute the body of the
while loop (lines 30–33). We read the next grade and
check whether that grade is greater than the current
maximum. If so, we assign that grade to maxGrade;
otherwise, we leave maxGrade unchanged. Then
control is transferred to line 28 to retest the while
loop condition.

When we do reach the end of the file, the while loop
condition becomes false; control is transferred to line
36, and we output maxGrade as the maximum value.

COMMON ERROR TRAP
Initializing a maximum or a minimum to an arbitrary
value, such as 0 or 100, is a logic error and could
result in incorrect results.

A common error is to initialize the maximum or
minimum to an arbitrary value, such as 0 or 100.
This will not work for all conditions, however. For
example, let’s say we are finding the maximum

number and we initialize the maximum to 0. If the
user enters all negative numbers, then when the end
of data is encountered, the maximum will still be 0,
which is clearly an error. The same principle is true
when finding a minimum value. If we initialize the
minimum to 0, and the user enters all positive
numbers greater than 0, then at the end of our loop,
our minimum value will still be 0, which is also
incorrect.

Skill Practice
with these end-of-chapter questions

6.14.1 Multiple Choice Exercises

Question 1

6.14.2 Reading and Understanding Code

Questions 5, 6, 7, 8, 20

6.14.3 Fill In the Code

Questions 21, 22, 23, 24, 25, 26

6.14.4 Identifying Errors in Code

Questions 30, 31

6.14.5 Debugging Area

Question 37

6.14.6 Write a Short Program

Questions 44, 45

6.14.8 Technical Writing

Questions 70, 71

6.5 Type-Safe Input Using Scanner
One problem with reading input using Scanner is that
if the next token does not match the data type we
expect, an InputMismatchException is generated,
which stops execution of the program. This could be
caused by a simple typo on the user’s part; for
example, the user may type a letter or other
nonnumeric character when our program prompts for
an integer. To illustrate this problem, Example 6.7
shows a small program that prompts the user for an
integer and calls the nextInt method of the Scanner
class to read the integer, and Figure 6.10 shows the
InputMismatchException generated when the user
enters an a instead of an integer. Notice that the
program ends when the exception is generated; we
never execute line 15, which would echo the age to
the console.

EXAMPLE 6.7 Reading an Integer
 1 /* Reading an integer from the user

 2 Anderson, Franceschi

 3 */

 4 import java.util.Scanner;

 5

 6 public class ReadInteger

 7 {

 8 public static void main(String [] args)

 9 {

10 Scanner scan = new Scanner(System.in);

11

12 System.out.print("Enter your age as an

integer > ");

13 int age = scan.nextInt();

14

15 System.out.println("Your age is " + age

);

16 }

17 }

Figure 6.10
Input Failure

Enter your age as an integer > a

Exception in thread "main"

java.util.InputMismatchException

 at

java.base/java.util.Scanner.throwFor(Unknown

Source)

 at java.base/java.util.Scanner.next(Unknown

Source)

 at java.base/java.util.Scanner.nextInt(Unknown

Source)

 at java.base/java.util.Scanner.nextInt(Unknown

Source)

 at ReadInteger.main(ReadInteger.java:13)

We can make our program more robust by checking,
before we read, that the next token matches our
expected input. The Scanner class provides hasNext
methods for doing this, which are shown in Table 6.3.
The hasNext methods return true if the next token
can be read as the data type requested. For
example, if we expect an integer, we can test
whether the user has typed characters that can be
interpreted as an integer by calling the hasNextInt
method. If that method returns true, it is safe to read

the value using the nextInt method. If the next token
is not what we need, that is, if the hasNextInt method
returns false, then reading that value as an int will
generate the InputMismatchException. In that case,
we need to notify the user that the value typed is not
valid and reprompt for new input. But first we need to
clear the invalid input. We can flush the invalid input
by calling the nextLine method of the Scanner class,
which returns any remaining tokens on the input line
as a String. Then we just ignore that String. Example
6.8 shows a revised version of Example 6.7 that is
type-safe, meaning we guarantee we have an
integer to read before reading it.

TABLE 6.3 Scanner Methods for Testing
Tokens

Selected Input Stream Testing Methods of the Scanner Class
Return
value

Method name and argument list

boolean hasNext()

returns true if there is another token in the input
stream; false, otherwise

boolean hasNextByte()

returns true if the token in the input stream can
be read as a byte; false, otherwise

boolean hasNextShort()

returns true if the token in the input stream can
be read as a short; false, otherwise

boolean hasNextInt()

returns true if the token in the input stream can
be read as an int; false, otherwise

boolean hasNextLong()

returns true if the token in the input stream can
be read as a long; false, otherwise

boolean hasNextFloat()

returns true if the token in the input stream can
be read as a float; false, otherwise

boolean hasNextDouble()

returns true if the token in the input stream can
be read as a double; false, otherwise

boolean hasNextBoolean()

returns true if the token in the input stream can
be read as a boolean; false, otherwise

String nextLine()

returns the remainder of the input line as a
String

On line 14 of Example 6.8, we prompt for the integer.
Then on line 15, the while loop condition checks
whether the user has, indeed, typed an integer
value. If not, we ignore whatever the user did type by
calling the nextLine method (line 17). On line 18, we
reprompt the user. The while loop continues
executing until the user does enter an integer and
the hasNextInt method returns true. At that point, we
execute line 20, which reads the integer into the age
variable. Note that we need to use a while loop
rather than an if statement because an if statement
will test only the first invalid input value. Using a
while loop allows us to keep prompting the user as
many times as needed until a valid value is entered.
Figure 6.11 shows the output of this program when
the user enters data other than integers, then finally
enters an integer.

EXAMPLE 6.8 Type-Safe Input
 1 /* Type-Safe Input Using Scanner

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class TypeSafeReadInteger

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12 String garbage;

13

14 System.out.print("Enter your age as an

integer > ");

15 while (! scan.hasNextInt())

16 {

17 garbage = scan.nextLine();

18 System.out.print("\nPlease enter an

integer > ");

19 }

20 int age = scan.nextInt();

21 System.out.println("Your age is " + age

);

22 }

23 }

Figure 6.11
Reprompting Until the User Enters an Integer

Enter your age as an integer > asd

Please enter an integer > 12wg

Please enter an integer > 12.4

Please enter an integer > 23

Your age is 23

6.6 Constructing Loop Conditions
Constructing the correct loop condition may seem a
little counterintuitive. The loop executes as long as
the loop condition evaluates to true. Thus, if we want
our loop to terminate when we read the sentinel
value, then the loop condition should check that the
input value is not the sentinel value. In other words,
the loop continuation condition is the inverse of the
loop termination condition. For a simple sentinel-
controlled loop, the condition normally follows this
pattern:

while (inputValue != sentinel)

In fact, we can see that the loop conditions in many
of the examples in this chapter use this form of while
loop condition.

For some applications, there may be multiple
sentinel values. For example, suppose we provide a
menu for a user with each menu option being a
single character. The user can repeatedly select
options from the menu, with the sentinel value being
S for stop. To allow case-insensitive input, we want
to recognize the sentinel value as either S or s. To do
this, we need a compound loop condition, that is, a

loop condition that uses a logical AND (&&) or
logical OR (||) operator.

Our first inclination might be to form the condition
this way, which is incorrect:

while (option != 'S' || option != 's') //

INCORRECT

With this condition, the loop will execute forever.
Regardless of what the user enters, the loop
condition will be true. If the user types S, the first
expression (option != ‘S’) is false, but the
second expression (option != ‘s’) is true.
Thus, the loop condition evaluates to true and the
while loop body is executed. Similarly, if the user
types s, the first expression (option != ‘S’) is
true, so the loop condition evaluates to true and the
while loop body is executed.

An easy method for constructing a correct while loop
condition consists of three steps:

1. Define the loop termination condition; that is, define the condition

that will make the loop stop executing.

2. Create the loop continuation condition—the condition that will

keep the loop executing—by applying the logical NOT operator

(!) to the loop termination condition.

3. Simplify the loop continuation condition by applying DeMorgan’s

Laws, where possible.

DeMorgan’s Laws are the following:

NOT(A AND B) = (NOT A) OR (NOT B)

and

NOT(A OR B) = (NOT A) AND (NOT B)

Let’s use these three steps to construct the correct
loop condition for the menu program.

1. Define the loop termination condition:

The loop will stop executing when the user enters an S or the

user enters an s. Translating that into Java, we get

(option == 'S' || option == 's')

2. Create the loop continuation condition by applying the ! operator:

! (option == 'S' || option == 's')

3. Simplify by applying DeMorgan’s Laws:

To apply DeMorgan’s Laws, we change the == equality operators

to != and change the logical OR operator (||) to the logical AND

operator (&&), producing an equivalent, but simpler expression:

(option != 'S' && option != 's')

We now have our loop condition.

To illustrate, let’s write an application that calculates
the cost of an order at Bonnie’s Burgers. We provide
a menu with prices, and the user selects items from

the menu one at a time until the user enters S or s to
stop. This is an accumulation operation because we
are accumulating the cost of the user’s order.
Example 6.9 shows the code for this application, and
Figure 6.12 shows the output of a sample run.

EXAMPLE 6.9 A Compound Loop
Condition

 1 /* Order from a menu

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 import java.text.DecimalFormat;

 7

 8 public class BonniesBurgers

 9 {

10 public static void main(String [] args)

11 {

12 String menu = "\tC Cheeseburger: $7.49";

13 menu += "\n\tH Hot dog: $6.99";

14 menu += "\n\tL Lemonade: $2.50";

15 menu += "\n\tT Iced tea: $2.75";

16

17

18 char option;

19 double orderCost = 0;

20

21 DecimalFormat money = new DecimalFormat(

"$#.00");

22 Scanner scan = new Scanner(System.in);

23

24 System.out.println("Welcome to Bonnie's

Burgers. "

25 + "Select from our

menu: ");

26

27 System.out.println(menu); // print the

menu

28 System.out.print("Order an item, "

29 + "or \"S\" to stop > "

);

30 option = scan.next().charAt(0);

31

32 while (option != 'S' && option != 's')

33 {

34 switch (option)

35 {

36 case 'c':

37 case 'C':

38 System.out.print("Cheeseburger

ordered. ");

39 orderCost += 7.49;

40 break;

41 case 'h':

42 case 'H':

43 System.out.print("Hot dog ordered.

");

44 orderCost += 6.99;

45 break;

46 case 'l':

47 case 'L':

48 System.out.print("Lemonade ordered.

");

49 orderCost += 2.50;

50 break;

51 case 't':

52 case 'T':

53 System.out.print("Iced tea ordered.

");

54 orderCost += 2.75;

55 break;

56 default:

57 System.out.println("Unrecognized

menu item.");

58 }

59

60 System.out.println("Subtotal: "

61 + money.format(

orderCost));

62

63 System.out.print("\nOrder another item,

"

64 + "or \"S\" to stop >

");

65 option = scan.next().charAt(0);

66 }

67

68 System.out.println("\nTotal order cost is

"

69 + money.format(

orderCost));

70 }

71 }

Figure 6.12
Ordering from a Menu

Welcome to Bonnie's Burgers. Select from our

menu:

 C Cheeseburger: $7.49

 H Hot dog: $6.99

 L Lemonade: $2.50

 T Iced tea: $2.75

Order an item, or "S" to stop > h

Hot dog ordered. Subtotal: $6.99

Order another item, or "S" to stop > T

Iced tea ordered. Subtotal: $9.74

Order another item, or "S" to stop > s

Total order cost is $9.74

We use the compound condition in the while loop
(line 32). Then within the while loop, we use a switch
statement (lines 34–58) to determine which menu
item the user has chosen. We handle case-
insensitive input by including case constants for both
the lowercase and uppercase versions of each letter
option. After the switch statement, we include the
update read (lines 63–65) to input the user’s next
item.

Note that we don’t provide case statements for the
sentinel values. Instead, we use the while loop
condition to detect when the user enters the sentinel
values.

6.7 Testing Techniques for while
Loops
It’s a good feeling when our code compiles without
errors. Getting a clean compile, however, is only part
of the job for the programmer. The other part of the
job is verifying that the code is correct; that is, that
the program produces accurate results.

It usually isn’t feasible to test a program with all
possible input values, but we can get a reasonable
level of confidence in the accuracy of the program by
concentrating our testing in three areas:

1. Does the program produce correct results with a set of known

inputs?

2. Does the program produce correct results if the sentinel value is

the first and only input?

3. Does the program deal appropriately with invalid input?

Let’s take a look at these three areas in more detail:

1. Does the program produce correct results with known input?

To test the program with known input, we select valid
input values and determine what the results should
be by performing the program’s operation either by
hand or by using a calculator. For example, to test

whether a total or average is computed correctly,
enter some values and compare the program’s
output to a total or average we calculate by entering
those same values into a calculator.

It’s especially important to select input values that
represent boundary conditions, that is, values that
are the lowest or highest expected values. For
example, to test a program that determines whether
a person is old enough to vote in a presidential
election (that is, the person is 18 or older), we should
select test values of 17, 18, and 19. These values
are the boundary conditions for age >= 18 ; the
test values are one integer less, the same value, and
one integer greater than the legal voting age. We
then run the program with the three input values and
verify that the program correctly identifies 17 as an
illegal voting age and 18 and 19 as legal voting ages.

2. Does the program produce correct results if the sentinel value is

the first and only input?

In our while loops, when we find the sentinel value,
the flow of control skips the while loop body and
picks up at the statement following the while loop.
When the sentinel value is the first input value, our
while loop body does not execute at all. We simply
skip to the statement following the while loop. In
cases like this, the highly respected computer

scientist Donald Knuth recommends that we “do
exactly nothing, gracefully.”

In many programs that calculate a total or an
average for the input values, when no value is input,
our program should either report the total or average
as 0 or output a message that no values were
entered. It’s important to write our program so that it
tolerates the only input being the sentinel value;
therefore, we need to test our programs by entering
the sentinel value first.

Let’s revisit the earlier examples in this chapter to
see how they handle the case when only the sentinel
value is entered.

SOFTWARE ENGINEERING TIP
Expect that the user might enter the sentinel value
first. The program needs to handle this special case.

In the addition calculator (Example 6.3), we set the
total to 0 before the while loop and simply report the
value of total after the while loop. So we get the
correct result (0) with only the sentinel value.

In Example 6.4 where we count the percentage of
passing test scores, we handle the sole sentinel
value by performing some additional checking after

the while loop. If only the sentinel value is entered,
the count will be 0. We check for this case and if we
find a count of 0, we skip reporting the percentage so
that we avoid dividing by 0. We use similar code in
Example 6.5, where we calculate the average test
score. If we detect a count of 0, we also skip the
calculation of the average to avoid dividing by 0 and
simply report the class average as 0.

3. Does the program deal appropriately with invalid input?

If the program expects a range of values or certain
discrete values, then it should notify the user when
the input doesn’t fit the expected values.

In Example 6.9, we implemented a menu for ordering
food items. The user could enter c, h, l, or t (or the
corresponding capital letters) representing their
desired options. If the user entered a letter other
than those expected values, we used the default
clause of the switch statement to issue an error
message, “Unrecognized menu item.”

In the next section, we explain how to validate that
user input is within a range of values using a
do/while loop.

6.8 Event-Controlled Loops Using
do/while
Another form of loop that is especially useful for
validating user input is the do/while loop. In the
do/while loop, the loop condition is tested at the end
of the loop (instead of at the beginning, as in the
while loop). Thus the body of the do/while loop is
executed at least once.

The syntax of the do/while loop is the following:

// initialize variables

do

{

 // body of loop

} while (condition);

// process the results

Figure 6.13 shows the flow of control of a do/while
loop.

To use the do/while loop to validate user input, we
insert the prompt for the input inside the body of the
loop, then use the loop condition to test the value of
the input. Like the while loop, the body of the loop
will be reexecuted if the condition is true. Thus, we
need to form the condition so that it’s true when the

user enters invalid values. Be aware that because of
scope, any variable that will be referenced in the
while condition must be defined before the do/while
loop begins.

Figure 6.13
The Flow of Control of a do/while Statement

Example 6.10 implements a do/while loop (lines 14–
18) that prompts the user for an integer between 1
and 10. Figure 6.14 shows the output of the

program. If the user enters a number outside the
valid range, we reprompt the user until the input is
between 1 and 10. Thus, the condition for the
do/while loop (line 18) checks whether the number is
less than 1 or greater than 10. Note also that
because we will be referencing number in the while
condition, we must define number before the
do/while loop begins (line 11).

EXAMPLE 6.10 Validating User
Input
 1 /* Validate input is between 1 and 10

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class ValidateInput

 8 {

 9 public static void main(String [] args)

10 {

11 int number; // input value

12 Scanner scan = new Scanner(System.in);

13

14 do

15 {

16 System.out.print("Enter a number between

1 and 10 > ");

17 number = scan.nextInt();

18 } while (number < 1 || number > 10);

19

20 System.out.println("Thank you!");

21 }

22 }

Figure 6.14
Validating Input

Enter a number between 1 and 10 > 20

Enter a number between 1 and 10 > −1

Enter a number between 1 and 10 > 0

Enter a number between 1 and 10 > 11

Enter a number between 1 and 10 > 5

Thank you!

For validating input, we may be tempted to use an if
statement rather than a do/while loop. For example,
to perform the same validation as Example 6.10 we
may try this incorrect code:

System.out.print("Enter a number between 1 and 10 >

");

number = scan.nextInt();

if (number < 1 || number > 10) // INCORRECT!

{

 System.out.print("Enter a number between 1 and

10 > ");

 number = scan.nextInt();

}

COMMON ERROR TRAP
Do not use an if statement to validate input because
it will catch invalid values entered the first time only.
Use a do/while loop to reprompt the user until the
user enters a valid value.

The problem with this approach is that the if
statement will reprompt the user only once. If the
user enters an invalid value a second time, the
program will not catch it. A do/while loop, however,
will continue to reprompt the user as many times as
needed until the user enters a valid value.

Skill Practice
with these end-of-chapter questions

6.14.2 Reading and Understanding Code

Questions 9, 10

6.14.3 Fill In the Code

Question 28

6.14.4 Identifying Errors in Code

Question 34

6.14.5 Debugging Area

Question 36

6.14.6 Write a Short Program

Question 53

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see two step-by-step illustrations of
do/while loops, look for the movie within the
online resources. Click on the link to start the
movie.

6.9 Programming Activity 1: Using while
Loops
In this activity, you will work with a sentinel-controlled while
loop, performing this activity:

Write a while loop to process the contents of a
grocery cart and calculate the total price of the
items. It is important to understand that, in this
example, we do not know how many items are
in the cart.

The framework will animate your code and display the current
subtotal so that you can check the correctness of your code.
The window will display the various Item objects moving down
a conveyor belt toward a grocery bag. It will also display the
unit price of the item and your current subtotal, as well as the
correct subtotal.

For example, Figure 6.15 demonstrates the animation: We are
currently scanning the first item, a milk carton, with a unit
price of $2.00; thus, the correct subtotal is $2.00.

As the animation will show, Item objects could be milk, cereal,
orange juice, or the divider bar. The number of Item objects in
the cart is determined randomly; as you watch the animation,
sometimes you will find that there are two items in the cart,
sometimes six, sometimes three, sometimes only the divider
bar, and so forth. Scanning the divider bar signals the end of
the items in the cart.

Task Instructions

Figure 6.15
Animation of the Cashier Application

Copy the files in this chapter’s Programming Activity 1 folder
in the source code provided with this text to a folder on your
computer. Searching for five stars (*****) in the
CashierDrawing.java source code will show you where to add
your code. You will add your code inside the checkout method
of the CashierDrawing class (the method header for the
checkout method has already been coded for you). Example
6.11 shows a fragment of the CashierDrawing class, where
you will add your code:

EXAMPLE 6.11 The checkout Method in
CashierDrawing.java

 public void checkout()

 {

 /* ***** Student writes the body of this method ***** */

 //

 // Using a while loop, calculate the total price

 // of the groceries.

 //

 // The getNext method (in this CashierDrawing class)

returns the

 // next item on the conveyor belt, which is an Item object

 // (we do not know which item and we do not know how many

items

 // are in the cart - this is randomly generated).

 // getNext does not take any arguments. Its API is:

 // Item getNext()

 //

 // Right after you update the current subtotal,

 // you should call the animate method.

 // The animate method takes one argument: a double,

 // which is your current subtotal.

 // For example, if the name of your variable representing

 // the current subtotal is total, your call to the animate

 // method should be:

 // animate(total);

 //

 // The instance method getPrice of the Item class

 // returns the price of the Item object.

 // The method getPrice does not take any arguments.

 // Its API is:

 // double getPrice()

 //

 // The cart is empty when the getNext method returns

 // the divider Item.

 // You detect the divider Item because its price

 // is -0.99. So an Item with a price of -0.99

 // is the sentinel value for the loop.

 //

 // After you scan the divider, print the total to the

console.

 // End of student code

}

You can access items in the cart by calling the
getNext method of the CashierDrawing class, which
has the following API:

Item getNext()

The getNext method returns an Item object, which
represents an Item in the cart. As you can see, the
getNext method does not take any arguments. Since
we call the method getNext from inside the
CashierDrawing class, we call the method without an
object reference. For example, a call to getNext could
look like the following:

Item newItem;

newItem = getNext();

The getNext method is already written and contains
code to randomly generate Items. It is written in such
a way that the first Item object on the conveyor belt
may or may not be the divider. (If the first Item is the
divider, the cart is empty.)

After you get a new Item, you can “scan” the item to
get its price by calling the getPrice method of the Item
class. The getPrice method has this API:

double getPrice()

Thus, you would get an item, then get its price using
code like the following:

Item newItem;

double price;

newItem = getNext();

price = newItem.getPrice();

After adding the price of an item to your subtotal, call
the animate method of the CashierDrawing class. This
method will display both your subtotal and the correct
subtotal so that you can verify that your code is
correct.

The animate method has the following API:

void animate(double subtotal)

Thus, if your variable representing the current total is
total, you would call the animate method using the
following code:

animate(total);

You want to exit the loop when the next Item is the
divider. You will know that the Item is the divider
because its price will be –0.99 (negative 0.99); thus,
scanning an Item whose price is –0.99 should be your
condition to exit the while loop.

When your loop ends, verify that your total matches
the correct subtotal displayed.

To test your code, compile CashierDrawing.java and
run the application from the CashierApplication class.

Troubleshooting
If your method implementation does not animate or animates
incorrectly, check these items:

Verify that you have correctly coded the priming read.

Verify that you have correctly coded the condition for
exiting the loop.

Verify that you have correctly coded the body of the
loop.

DISCUSSION QUESTIONS
1. What is the sentinel value of your while loop?
2. Explain the purpose of the priming read.

6.10 Count-Controlled Loops Using
for
Before the loop begins, if we know the number of times
the loop body should execute, we can use a count-
controlled loop. The for loop is designed for count-
controlled loops, that is, when the number of iterations
is determined before the loop begins.

6.10.1 Basic Structure of for Loops
The for loop has this syntax:

for (initialization; loop condition; loop update)

{

 // loop body

}

COMMON ERROR TRAP
Be sure to use semicolons, rather than commas, to
separate the statements in a for loop header.

Notice that the initialization, loop condition, and loop
update in the for loop header are separated by
semicolons (not commas). Notice also that there is no
semicolon after the closing parenthesis in the for loop
header. A semicolon here would indicate an empty for
loop body. Although some advanced programs might
correctly write a for loop with an empty loop body, the
programs we write in this text will have at least one
statement in the for loop body.

The scope of any variable declared within the for loop
header or body extends from the point of declaration to
the end of the for loop body.

COMMON ERROR TRAP
Adding a semicolon after the closing parenthesis in the
for loop header indicates an empty loop body and will
likely cause a logic error.

The flow of control of the for loop is shown in Figure
6.16. When the for loop is encountered, the
initialization statement is executed. Then the loop
condition is evaluated. If the condition is true, the loop
body is executed, then the loop update statement is
executed, and the loop condition is reevaluated. Again,
if the condition is true, the loop body is executed,
followed by the loop update, then the reevaluation of
the condition, and so on, until the condition is false.

Figure 6.16
Flow of Control of the for Loop

The for loop is equivalent to the following while loop:

// initialization

while (loop condition)

{

 // loop body

 // loop update

}

As we can see, while loops can be used for either
event-driven or count-controlled loops. A for loop is
especially useful for count-controlled loops, however.
Because all the loop control is contained in the for loop
header, we can easily see what condition will stop the
loop and how the condition will be updated after each
iteration.

6.10.2 Constructing for Loops
Typically, we use a loop control variable in a for loop;
that control variable is usually used for counting. We
set its initial value in the initialization statement,
increment or decrement its value in the loop update
statement, and check its value in the loop condition.

For example, if we want to find the sum of five integers,
we know the loop body should execute five times—
once for each integer. We set our loop control variable
to 1 in the initialization statement, increment the loop
control variable by 1 in the loop update statement, and
check if its value is less than or equal to 5 in the loop
condition. The pseudocode for this program is the
following:

set total to 0

for i = 1 to 5 by 1

{

 read integer

 add integer to total

}

print the total

With a for loop, we do not need to perform a priming
read because the condition for exiting the loop is
controlled by a counter, not by an input value.

Example 6.12 shows the for loop for calculating the
sum of five integers.

EXAMPLE 6.12 Finding the Sum of
Five Numbers

 1 /* Find the total of 5 numbers

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class Sum5Numbers

 8 {

 9 public static void main(String [] args)

10 {

11 int total = 0; // stores the sum of the 5

numbers

12 int number; // stores the current input

13

14 Scanner scan = new Scanner(System.in);

15

16 for (int i = 1; i <= 5; i++)

17 {

18 System.out.print("Enter an integer > ");

19 number = scan.nextInt();

20

21 total += number; // add input to total

22 }

23

24 // process results by printing the total

25 System.out.println("The total is " + total);

26 }

27 }

In this example, which is a standard accumulation
operation, the for loop initialization statement declares
i, which will be our loop control variable. We start i at 1,
and after each execution of the loop body, we
increment i by 1 in the loop update statement. The loop
condition checks if the value of i is less than or equal to
5; when i reaches 6, we have executed the loop body
five times. Figure 6.17 shows the execution of this for
loop.

Note that because we declare our loop counter variable
i in the for loop header, we cannot reference i after the
for loop ends. Thus, this code would generate a
compiler error, because i is out of scope on line 24:

16 for (int i = 1; i <= 5; i++)

17 {

18 System.out.print("Enter an integer > ");

19 number = scan.nextInt();

20

21 total += number; // add input to total

22 }

23

24 System.out.println("The total for the " + (i

- 1)

25 + " numbers is " + total

); // i is out of scope

Figure 6.17
Finding the Sum of Five Integers

Enter an integer > 12

Enter an integer > 10

Enter an integer > 5

Enter an integer > 7

Enter an integer > 3

The total is 37

Defining a new variable using the same name as a
variable already in scope is invalid and generates a
compiler error. However, a variable name can be
reused when a previously defined variable with the
same name is no longer in scope. In the code above,
the scope of the variable i defined in line 16 is limited to
the for loop on lines 16–22. We cannot define another
variable named i in that for loop; however, as shown
below, we could reuse the name i in a subsequent for
loop (lines 24–29), because the first i is no longer in
scope. In fact, programmers often reuse the variable
name i for the counter variable in their for loops.

16 for (int i = 1; i <= 5; i++)

17 {

18 System.out.print("Enter an integer > ");

19 number = scan.nextInt();

20

21 total += number; // add input to total

22 }

23

24 for (int i = 1; i <= 10; i++)

25 {

26 System.out.print("Enter integer " + i + " >

");

27 number = scan.nextInt();

28 }

If we do want to refer to the loop variable after the loop
ends, we can define the variable before the for loop, as
shown in the following code:

15 int i;

16 for (i = 1; i <= 5; i++)

17 {

18 System.out.print("Enter an integer > ");

19 number = scan.nextInt();

20

21 total += number; // add input to total

22 }

23

24 System.out.println("The total for " + (i - 1

) // i is 6

25 + " numbers is " + total

);

We can also increment the loop control variable by
values other than 1. Example 6.13 shows a for loop
that increments the control variable by 2 to print the
even numbers from 0 to 20.

The pseudocode for this program is the following:

set output to an empty String

for i = 0 to 20 by 2

{

 append i and a space to the output String

}

print the output String

We start with an empty String variable, toPrint, and with
each iteration of the loop we append the next even

number and a space. When the loop completes, we
output toPrint, which prints all numbers on one line, as
shown in Figure 6.18

EXAMPLE 6.13 Printing Even
Numbers
 1 /* Print the even numbers from zero to twenty

 2 Anderson, Franceschi

 3 */

 4

 5 public class PrintEven

 6 {

 7 public static void main(String [] args)

 8 {

 9 String toPrint = ""; // initialize output

String

10

11 for (int i = 0; i <= 20; i += 2)

12 {

13 toPrint += i + " "; // append current number

and a space

14 }

15

16 System.out.println(toPrint); // print results

17 }

18 }

Figure 6.18
Printing Even Numbers from 0 to 20

0 2 4 6 8 10 12 14 16 18 20

In this example, we initialize the loop control variable to
0, then increment i by 2 in the loop update statement
(i += 2) to skip the odd numbers. Notice that we
used the value of the loop control variable i inside the
loop, illustrating that the loop control variable can
perform double duty such as being the counter and the
data.

The loop control variable also can be used in our
prompt to the user. For example, in Example 6.12 we
could have prompted the user for each integer using
this statement:

System.out.print("Enter integer " + i + " > ");

Then the user’s prompt would look like that shown in
Figure 6.19.

Figure 6.19
Adding the Loop Control Variable to the Prompt

Enter integer 1 > 23

Enter integer 2 > 12

Enter integer 3 > 10

Enter integer 4 > 11

Enter integer 5 > 15

The total is 71

A for loop can be especially useful for processing a
String character by character. We define the loop
control variable so that it corresponds to the index of
each character in the String. We initialize the loop
control variable to 0 (the index of the first character in a
String), increment the loop control variable by 1 in the
loop update, and set the condition of the for loop to be
that the loop control variable is less than the length of
the String. In each iteration of the loop, we process one
character of the String by extracting the character at
the loop control variable using the charAt method of the
String class.

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see a step-by-step illustration of a for loop,
look for the movie within the online resources.
Click on the link to start the movie.

Example 6.14 demonstrates this technique. In this
example, we prompt the user for a sentence and count
the number of tokens in the sentence. A token is
defined as a sequence of non-white space characters
delimited by one or more white space characters; that
is, spaces or tabs.

To count the tokens, we look at each character in the
sentence, one at a time. If a character is not a white
space character, then it is part of a token. When we
find a white space character, however, it is a signal that
the token is complete. At that time, we increment our
token count.

Tokens may be separated by more than one white
space character, however, so we need to detect when
we find multiple consecutive white space characters
and ignore all but the first white space character. To do
this, we define a boolean variable, called a flag. We
set the flag to true when we see a white space
character and to false when we see a non-white space
character. If we find a white space character when the
flag is false, it must be the first white space character. If
the flag is set to true, however, we have found an extra
white space character, which we should ignore.

The pseudocode for this example is

read a sentence

remove leading and trailing white space

if sentence is empty

 print message no tokens found

else

 set countTokens = 1

 initialize flag variable to false to indicate that

the current character is not

 white space

 for i = 0 to (sentence length -1) by 1

 {

 get character at position i in sentence

 if (character is a space or tab)

 if flag variable is false

 we have found the end of a token, so

increment countTokens

 set flag variable to true to indicate

that current character is

 white space

 else

 set flag variable to false to indicate that

current character is not

 white space

 }

 print the number of tokens found

Example 6.14 shows our code. We prompt the user for
a sentence using Scanner’s nextLine method, which
reads all characters on the line including leading and
trailing white space. We want to remove those

extraneous white space characters, so we call the trim
method of the String class (line 14), shown in Table
6.4, which will remove any leading and trailing white
space for us.

TABLE 6.4 The trim Method of the String
Class

The trim Method of the String Class
Return
value

Method name and argument list

String trim()

returns a String with leading and trailing white space
characters removed

It is possible that the user pressed the enter key
without entering any characters (or only white space
characters). In that case, the trimmed sentence will be
empty. We check for an empty String on line 16, and if
true, we output a message and do nothing more.

If, however, the user has entered some characters, we
initialize our flag variable, inWhiteSpace, to false (line
22), because we have indeed not processed any
characters and thus have not found white space.

We detect tokens by finding the white space following
the token, but when we finish processing the sentence,
the last character will not be white space because we
trimmed the sentence. Thus we will have one more
token than the number of times we found white space.

To account for that last token, we initialize our
tokenCount variable to 1 (line 23).

Now we are ready for our for loop (lines 25–41), which
processes each character in the sentence looking for
white space and counting tokens. As mentioned, the
loop control variable, i, corresponds to the index of the
current character being processed. We initialize i to 0,
the first index of the String; increment i by 1 in the loop
update; and check that i is less than sentence.length()
in the loop condition (line 25). We extract the character
at i using the charAt method (line 27).

In line 28, we check whether the current character is a
space or a tab. If so, we have detected white space. If
the flag is not set to true (line 30), then this is the first
white space character in a possible sequence of white
space characters, and we count the token, then set the
flag to true so that we ignore any succeeding white
space characters (lines 32–33). If the current character
is not white space, we set the flag to false to indicate
that we are inside a token (line 38).

When the loop ends, we print a message with the
token count (lines 42–43). Figure 6.20 shows the
output when the user enters a sentence with six tokens
separated by spaces and a tab character.

EXAMPLE 6.14 Counting Tokens

 1 /* Count tokens in a sentence

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 public class CountTokens

 7 {

 8 public static void main(String [] args)

 9 {

10 Scanner scan = new Scanner(System.in);

11

12 System.out.println("Enter a sentence:");

13 String sentence = scan.nextLine();

14 sentence = sentence.trim(); // remove

leading/trailing white space

15

16 if (sentence.length() == 0)

17 {

18 System.out.println("The sentence is

empty.");

19 }

20 else

21 {

22 boolean inWhiteSpace = false;

23 int countTokens = 1;

24

25 for (int i = 0; i < sentence.length();

i++)

26 {

27 char c = sentence.charAt(i);

28 if (c == ' ' || c == '\t')

29 {

30 if (! inWhiteSpace)

31 {

32 countTokens++;

33 inWhiteSpace = true;

34 }

35 }

36 else // not a white space character

37 {

38 inWhiteSpace = false;

39 }

40

41 }

42 System.out.println("The sentence contains

" + countTokens

43 + (countTokens == 1 ? "

token." : " tokens."));

44 }

45 }

46 }

We can also decrement the loop control variable.
Example 6.15 shows an application that reads a
sentence entered by the user and prints the sentence
backward.

The pseudocode for this program is the following:

set backwards to an empty String

read a sentence

for i = (length of sentence – 1) to 0 by –1

{

 get character at position i in sentence

 append character to backwards

}

print backwards

Figure 6.20
Output from Example 6.14

Enter a sentence:

Programming is not a spectator sport!

The sentence contains 6 tokens.

To print a sentence backward, we treat the sentence, a
String, like a stream of characters; each iteration of the
loop extracts and processes one character from the
String, using the charAt method of the String class.
Line 12 declares a String, backwards (initialized as an
empty String), to hold the reverse of the user’s
sentence. Lines 14–15 prompt the user for a sentence.
Lines 17 through 20 make up the for loop, whose
purpose is to copy the original sentence into the String
backwards with its characters in reverse order. We do

this by starting the copying at the last character in the
original String and moving backward one character at a
time until we have copied the first character. Thus, we
initialize our loop variable to the position of the last
character in original (original.length() – 1)
and extract one character at a time, appending it to
backwards. The loop update statement (i—-) moves
the loop variable backward by one position, and our
loop condition (i >= 0) checks whether we have
reached the beginning of the String original. Figure
6.21 shows the execution of the program with the user
entering the sentence, “Programming is not a spectator
sport!”

EXAMPLE 6.15 Printing a Sentence
Backwards
 1 /* Print a sentence backwards

 2 Anderson, Franceschi

 3 */

 4 import java.util.Scanner;

 5

 6 public class Backwards

 7 {

 8 public static void main(String [] args)

 9 {

10 Scanner scan = new Scanner(System.in);

11

12 String backwards = "";

13

14 System.out.println("Enter a sentence:");

15 String original = scan.nextLine();

16

17 for (int i = original.length() - 1; i >= 0;

i--)

18 {

19 backwards += original.charAt(i);

20 }

21

22 System.out.println("The sentence backwards is:

\n" + backwards);

23 }

24 }

Figure 6.21
Printing a Sentence Backward

Enter a sentence:

Programming is not a spectator sport!

The sentence backwards is:

!trops rotatceps a ton si gnimmargorP

We can display some interesting graphics using for
loops. The graphical application in Example 6.16 draws
the bull’s-eye target shown in Figure 6.22. To make the
bull’s-eye target, we draw 12 concentric circles (circles
that have the same center point), beginning with the
largest circle and successively drawing a smaller circle
on top of the circles already drawn. Thus, the bull’s-eye
target circles have the same center point, but different
diameters. The pseudocode for this program is

for diameter = 300 to 25 by –25

{

 draw the circle with current diameter

 if color is black

 set color to red

 else

 set color to black

}

Translating the pseudocode into Java, we get the code
shown in Example 6.16.

EXAMPLE 6.16 Drawing a Bull’s Eye

 1 /* Bull's-eye Target

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.canvas.Canvas;

 7 import javafx.scene.canvas.GraphicsContext;

 8 import javafx.scene.paint.Color;

 9 import javafx.stage.Stage;

10

11 public class BullsEye extends Application

12 {

13

14 @Override

15 public void start(Stage stage)

16 {

17 // set up window title and size

18 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

19 stage, "Bull's Eye", 700, 400);

20

21 // center of the bull's eye

22 final int CENTER_X = 350, CENTER_Y = 200;

23

24 // start and end diameter, amount to

decrease diameter

25 final int START_DIAMETER = 300, END_DIAMETER

= 25,

26 DECREMENT = 25;

27

28 // color of first circle

29 Color toggleColor = Color.BLACK;

30 gc.setFill(toggleColor);

31

32 for (int diameter = START_DIAMETER;

diameter >= END_DIAMETER;

33 diameter -= DECREMENT)

34 {

35 // draw circle with current diameter

value

36 gc.fillOval(CENTER_X - diameter / 2,

CENTER_Y - diameter / 2,

37 diameter, diameter);

38 // switch color

39 if (toggleColor.equals(Color.BLACK))

40 toggleColor = Color.RED;

41 else

42 toggleColor = Color.BLACK;

43

44 gc.setFill(toggleColor);

45

46 }

47 }

48

49 public static void main(String [] args)

50 {

51 launch(args);

52 }

53 }

Figure 6.22
Drawing a Bull’s-Eye

Our for loop initialization statement in lines 32–33 sets
up the diameter of the largest circle as 300 pixels and
the loop update statement decreases the diameter of
each circle by 25 pixels. The smallest circle we want to
draw should have a diameter of 25 pixels, so we set
the loop condition to check that the diameter is greater
than or equal to 25. We need to start with the largest
circle rather than the smallest circle so that new circles
we draw don’t hide the previously drawn circles.

Drawing the bull’s-eye target circles illustrates two
common programming techniques: conversion
between units and a toggle variable.

We need to convert between units because the fillOval
method of the GraphicsContext class takes as its
arguments the upper-left (x, y) coordinate and the
width and height of the circle’s bounding rectangle.
However, all our circles have the same center point,
but not the same upper-left x and y coordinates. Given
the diameter and the center point of the circle,
however, we can calculate the (x, y) coordinate of the
upper-left corner. Figure 6.23 shows how we make the
conversion.

The difference between the center point and the upper-
left corner of the bounding rectangle is the radius of the
circle, which is half of the diameter (diameter / 2).
So, the upper-left x value is the x value of the center
point minus half the diameter (centerX – diameter
/ 2). Similarly, the upper-left y value is the y value of
the center point minus half the diameter (centerY –
diameter / 2).

Figure 6.23
Drawing a Bull’s-Eye

Thus, we draw each circle using the following
statement:

gc.fillOval (centerX - diameter / 2,

 centerY - diameter / 2,

 diameter, diameter);

SOFTWARE ENGINEERING TIP
Use a toggle variable when you need to alternate
between two values.

To alternate between red and black circles, we use a
toggle variable, which is a variable whose value
alternates between two values. We use a Color object
for our toggle variable, toggleColor, and initialize it to
Color.BLACK. After drawing each circle, we switch the
color (lines 38–42). If the current color is black, we set
it to red; otherwise, the color must be red, so we set
the color to black.

6.10.3 Testing Techniques for for
Loops
One of the most important tests for for loops is that the
starting and ending values of the loop variable are set
correctly. For example, to execute a for loop five times,
we could set the initial value of the loop variable to 0
and use the condition (i < 5), or we could set the
initial value of the loop variable to 1 and use the
condition (i <= 5). Either of these for loop headers
will cause the loop to execute five times.

Skill Practice
with these end-of-chapter questions

6.14.1 Multiple Choice Exercises

Questions 2, 3, 4

6.14.2 Reading and Understanding Code

Questions 11, 12, 13, 14, 15, 16, 17, 18, 19

6.14.3 Fill In the Code

Questions 27, 29

6.14.4 Identifying Errors in Code

Questions 32, 33, 35

6.14.5 Debugging Area

Questions 38, 39, 40, 41, 42

6.14.6 Write a Short Program

Questions 43, 46, 47, 48, 49, 50, 51, 52

for (int i = 0; i < 5; i++) // executes 5 times

or

for (int i = 1; i <= 5; i++) // executes 5 times

However, the following for loop header is incorrect; the
loop will execute only four times.

for (int i = 1; i < 5; i++) // INCORRECT! executes

only 4 times

Thus, to test the for loop in Example 6.12 that prompts
for five integers, we need to verify that the program
outputs exactly five prompts. To test that we are
prompting the user five times, we can enter the
integers 1, 2, 3, 4, and 5 at the prompts. Another
option, shown in Figure 6.24, is to append a number to
the prompt, which does double duty. Besides keeping
the user informed of the number of integers entered so
far, it also helps to verify that we have the correct
number of prompts.

Like while loops, the body of a for loop may not be
executed at all. If the loop condition is false the first
time it is tested, the body of the for loop is skipped.
Thus, when testing, we want to simulate input that
would cause the loop condition to be false when the for
loop statement is first encountered. For example, in the
Backwards class in Example 6.15, we need to test the

for loop with an empty sentence. In other words, when
the prompt appears to enter a sentence, we simply
press the Enter key. If we try this, we will find that the
application still works, as Figure 6.25 shows.

Figure 6.24
Counting Five Prompts

Enter integer 1 > 23

Enter integer 2 > 12

Enter integer 3 > 10

Enter integer 4 > 11

Enter integer 5 > 15

The total is 71

Figure 6.25
The Backwards Class with an Empty Sentence

Enter a sentence:

The sentence backwards is

The program works correctly with an empty sentence
because the for loop initialization statement is

int i = original.length() – 1;

Because the length of an empty String is 0, this
statement sets i to –1. The loop condition (i >= 0) is
immediately false, so the loop body is never executed.
The flow of control skips to the statement following the
loop,

System.out.println("The sentence backwards is: \n" +

backwards);

which prints an empty String. Although it would be
more user friendly to check whether the sentence is
empty and print a message to that effect, the program
does indeed “do exactly nothing, gracefully.”

6.11 Nested Loops
Loops can be nested inside other loops; that is, the
body of one loop can contain another loop. For
example, a while loop can be nested inside another
while loop or a for loop can be nested inside another
for loop. In fact, the nested loops do not need to be
the same loop type; that is, a for loop can be nested
inside a while loop, and a while loop can be nested
inside a for loop.

Nested loops may be useful if we are performing
multiple operations, each of which has its own count
or sentinel value. Going back to Jane, our grocery
cashier, her workday can be modeled using nested
loops. In Programming Activity 1, we wrote the code
for our cashier to calculate the total cost of the
contents of one customer’s grocery cart. But
cashiers check out multiple customers, one after
another. While the line of people in front of the
cashier is not empty, she will help the next customer.
For each customer, she will set the total order to
$0.00 and start scanning items and add the prices to
the total. While the current customer still has items in
the cart, Jane will scan the next item. When Jane
finishes processing a customer’s cart, she will check
to see if there is a customer waiting in line. If there is

one, she will set the total to $0.00 and start scanning
the next customer’s items.

Thus, the cashier’s job can be described using a
while loop nested inside another while loop. The
pseudocode for these nested loops is shown here:

look for a customer

while there is a customer in line

{

 set total to $0.00

 reach for first item

 while item is not the divider bar

 {

 add price to total

 reach for next item

 }

 // if we get here, the item is the divider bar

 output the total price

 look for another customer

}

The important point to understand with nested loops
is that the inner (or nested) loop executes completely
(executes all its iterations) for each single iteration of
the outer loop.

Let’s look at a simple example that uses nested for
loops. Suppose we want to print five rows of
numbers as shown here:

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

We can see a pattern here. In the first line, we print
one number; in the second line, we print two
numbers, and so on. In other words, the quantity of
numbers we print and the line number are the same.
The pseudocode for this pattern is the following:

for line = 1 to 5 by 1

{

 for number = 1 to line by 1

 {

 print number and a space

 }

 print a new line

}

Translating this pseudocode into nested for loops,
we get the code shown in Example 6.17.

EXAMPLE 6.17 Nested for Loops
 1 /* Printing numbers using nested for loops

 2 Anderson, Franceschi

 3 */

 4

 5 public class NestedForLoops

 6 {

 7 public static void main(String [] args)

 8 {

 9 // outer for loop prints 5 lines

10 for (int line = 1; line <= 5; line++)

11 {

12 // inner for loop prints one line

13 for (int number = 1; number <= line;

number++)

14 {

15 // print the number and a space

16 System.out.print(number + " ");

17 }

18

19 System.out.println(); // print a newline

20 }

21 }

22 }

Notice that the inner for loop (lines 12–17) uses the
value of line, which is set by the outer for loop (lines
9–20). Thus, for the first iteration of the outer loop,

line equals 1, so the inner loop executes once,
printing the number 1 and a space. Then we print a
newline character because line 19 is part of the outer
for loop. The outer loop then sets the value of line to
2, and the inner loop starts again at 1 and executes
two times (until number equals the line number in the
outer loop). Then we again print a newline. This
operation continues until the line exceeds 5, when
the outer loop terminates. The output from Example
6.17 is shown in Figure 6.26.

Note that we needed to use different names for our
for loop control variables. The loop control variable
line is in scope from lines 10 to 20, which includes
the inner for loop.

Let’s look at another example of a nested loop. We’ll
let the user enter positive integers, with a 0 being the
sentinel value. For each number, we’ll find all its
factors; that is, we will find all the integers that are
evenly divisible into the number, except 1 and the
number itself.

Figure 6.26
Output from Example 6.17

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

If a number is evenly divisible by another, the
remainder after division will be 0. The modulus
operator (%) will be useful here, because it
calculates the remainder after integer division. Thus,
to find all the factors of a number, we can test all
integers from 1 up to the number to see if the
remainder after division is 0. But let’s think about
whether that’s a good approach. The number 1 will
be a factor for every number, because every number
is evenly divisible by 1. So we can test integers
beginning at 2. Then, because 2 is the smallest
factor, there’s no need to test integers higher than
number / 2. Thus, our range of integers to test will be
from 2 to number / 2.

For this example, we’ll use a for loop nested inside a
while loop. The pseudocode for this example is

read first number // priming read

while number is not 0

{

 print “The factors for number are ”

 for factor = 2 to (number / 2) by 1

 {

 if number % factor is 0

 print factor and a space

 }

 print a new line

 read next number // update read

}

But what happens if we don’t find any factors for a
number? In that case, the number is a prime number.
We can detect this condition by using a boolean flag
variable. We set the flag to false before starting the
for loop that checks for factors. Inside the for loop,
we set the flag to true when we find a factor. In other
words, we signal (or flag) the fact that we found a
factor. Then, after the for loop terminates, we check
the value of the flag. If it is still false, we did not find
any factors and the number is prime. Our
pseudocode for this program now becomes

read first number // priming read

while number is not 0

{

 print “The factors for number are ”

 set flag to false

 for factor = 2 to (number / 2) by 1

 {

 if number % factor is 0

 {

 print factor and a space

 set flag to true

 }

 }

 if flag is false

 print "number is prime"

 print a new line

 read next number // update read

}

Since we want to read positive numbers only, the
lines “read first number” and “read next number” in
the preceding pseudocode will actually be more
complex than a simple statement. Indeed, we will
prompt the user to enter a positive number until the
user does so. In order to do that, we will use a
do/while loop to validate the input from the user.
Therefore, inside the while loop, we nest not only a

for loop, but also a do/while loop. In the interest of
keeping the pseudocode simple, we did not show
that do/while loop. However, it is included in the code
in Example 6.18 at lines 17–23 and 45–51.

Translating this pseudocode into Java, we get the
code shown in Example 6.18; the output of a sample
run of the program is shown in Figure 6.27.

EXAMPLE 6.18 Finding Factors

 1 /* Factors of integers

 2 with checks for primes

 3 Anderson, Franceschi

 4 */

 5 import java.util.Scanner;

 6

 7 public class Factors

 8 {

 9 public static void main(String [] args)

10 {

11 int number; // positive integer entered by

user

12 final int SENTINEL = 0;

13 boolean factorsFound; // flag signals whether

factors are found

14

15 Scanner scan = new Scanner(System.in);

16

17 // priming read

18 do

19 {

20 System.out.print("Enter a positive integer

"

21 + "or 0 to exit > ");

22 number = scan.nextInt();

23 } while (number < 0);

24

25 while (number != SENTINEL)

26 {

27 System.out.print("Factors of " + number +

": ");

28 factorsFound = false; // reset flag to no

factors

29

30 for (int factor = 2; factor <= number / 2;

factor++)

31 {

32 if (number % factor == 0)

33 {

34 System.out.print(factor + " ");

35 factorsFound = true;

36 }

37 } // end of for loop

38

39 if (! factorsFound)

40 System.out.print("none, " + number + "

is prime");

41

42 System.out.println(); // print a newline

43 System.out.println(); // skip a line

44

45 // read next number

46 do

47 {

48 System.out.print("Enter a positive

integer "

49 + "or 0 to exit > "

);

50 number = scan.nextInt();

51 } while (number < 0);

52 } // end of while loop

53 }

54 }

Figure 6.27
Output of Finding Factors

Enter a positive integer or 0 to exit > 100

Factors of 100: 2 4 5 10 20 25 50

Enter a positive integer or 0 to exit > 25

Factors of 25: 5

Enter a positive integer or 0 to exit > 21

Factors of 21: 3 7

Enter a positive integer or 0 to exit > 13

Factors of 13: none, 13 is prime

Enter a positive integer or 0 to exit > 0

6.12 Programming Activity 2: Using for
Loops
In this activity, you will write a for loop:

For this Programming Activity, you will again
calculate the total cost of the items in a grocery
cart. This time, however, you will write the
program for the Express Lane. In this lane, the
customer is allowed up to 10 items. The user will
be asked for the number of items in the grocery
cart. Your job is to write a for loop to calculate
the total cost of the items in the cart.

Like Programming Activity 1, the framework will animate your
for loop, displaying the items in the cart moving down a
conveyor belt toward a cashier station (a grocery bag). It will
also display the unit price of the item, the correct subtotal, and
your current subtotal. By comparing the correct subtotal to
your subtotal, you will be able to check whether your code is
calculating the correct value.

Figure 6.28 demonstrates the animation. The cart contains
five items. The third item, a carton of milk, is being scanned at
a unit price of $2.00, bringing the correct subtotal for the cart
to $9.00.

Instructions
Copy the files in this chapter’s Programming Activity 2 folder
in the source code provided with this text to a folder on your
computer. Searching for five stars (*****) in the
CashierDrawing.java code will show you where to add your
code. You will add your code inside the checkout method of
the CashierDrawing class (the method header for the
checkout method has already been coded for you). Example
6.19 shows a fragment of the CashierDrawing class, where
you will add your code:

Figure 6.28
Sample Animation

EXAMPLE 6.19 The checkout Method in
the CashierDrawing Class

public void checkout(int numberOfItems)

{

 /* ***** Student writes the body of this method ***** */

 //

 // The parameter of this method, numberOfItems,

 // represents the number of items in the cart. The

 // user will be prompted for this number.

 //

 // Using a for loop, calculate the total price

 // of the groceries in the cart.

 //

 // The getNext method (in this CashierDrawing class)

returns the next

 // item in the cart, which is an Item object (we do not

 // know which item will be returned; this is randomly

generated).

 // getNext does not take any arguments. Its API is

 // Item getNext()

 //

 // As the last statement of the body of your for loop,

 // you should call the animate method.

 // The animate method takes one argument a double,

 // which is your current subtotal.

 // For example, if the name of your variable representing

 // the current subtotal is total, your call to the animate

 // method should be:

 // animate(total);

 //

 // The getPrice method of the Item class

 // returns the price of the Item object as a double.

 // The getPrice method does not take any arguments. Its

API is

 // double getPrice()

 //

 // End of student code

 //

 //

 }

To write the body of your for loop, you can use the following
methods:

You can access items in the cart using the getNext
method of the CashierDrawing class, which has the
following API:

Item getNext()

The getNext method returns an Item object, which
represents an Item in the cart. As you can see, the
getNext method does not take any arguments. Since
we call the method getNext from inside the
CashierDrawing class, we can simply call the method
without an object reference. For example, a call to
getNext could look like the following:

Item newItem;

newItem = getNext();

After you get a new Item, you can “scan” the item to
get its price by calling the getPrice method of the Item
class. The getPrice method has this API:

double getPrice()

Thus, you would get the next item, then get its price
using code like the following:

Item newItem;

double price;

newItem = getNext();

price = newItem.getPrice();

When you have finished writing the code for the checkout
method, compile CashierDrawing.java and run the application
from the CashierApplication class. When the application
finishes executing, verify that your code is correct by:

checking that your subtotal matches the correct
subtotal displayed

checking that you have processed all the items in the
cart by verifying that the current item number matches
the total number of items. For example, if the cart has
five items, check that the message in the top right of
the screen displays: Item # 5 of 5 .

Troubleshooting
If your method implementation does not animate or animates
incorrectly, check these items:

Verify that you have correctly coded the header of
your for loop.

Verify that you have correctly coded the body of the
loop.

DISCUSSION QUESTIONS
1. Explain why a for loop is appropriate for this activity.
2. Explain how you set up your for loop; that is, what initialization

statement did you use, what was your condition, and what was the
loop update statement?

CHAPTER REVIEW

6.13 Chapter Summary
Looping repeats a set of operations for each
input item while a condition is true.

The while loop is especially useful for event-
controlled looping. The while loop executes a
set of operations in the loop body as long as
the loop condition is true. Each execution of
the loop body is an iteration of the loop.

If the loop condition evaluates to false the
first time it is evaluated, the body of the while
loop is never executed.

If the loop condition never evaluates to false,
the result is an infinite loop.

In event-controlled looping, processing of
items continues until the end of input is
signaled either by a sentinel value or by
reaching the end of the file.

A sentinel value is a special input value that
signals the end of the items to be processed.
With a sentinel value, we perform a priming
read before the while loop. The body of the
loop processes the input, then performs an
update read of the next data item.

When reading data from an input file, we can
test whether we have reached the end of the

file by calling a hasNext method of the
Scanner class.

In the accumulation programming technique,
we initialize a total variable to 0 before
starting the loop. In the loop body, we add
each input value to the total. When the loop
completes, the current total is the total for all
processed input values.

In the counting programming technique, we
initialize a count variable to 0 before starting
the loop. In the loop body, we increment the
count variable for each input value that
meets our criteria. When the loop completes,
the count variable contains the number of
items that met our criteria.

To find an average, we combine
accumulation and counting. We add input
values to the total and increment the count.
When the loop completes, we calculate the
average by dividing the total by the count.
Before computing the average, however, we
should verify that the divisor (that is, the
count) is not 0.

To find the maximum or minimum values in a
set of input, we assign the first input to a
running maximum or minimum. In the loop
body, we compare each input value to our

running maximum or minimum. If the input
value is less than the running minimum, we
assign the input value to the running
minimum. Similarly, if the input value is
greater than the running maximum, we
assign the input value to the running
maximum. When the loop completes, the
running value is the maximum or minimum
value of all the input values.

To avoid generating exceptions when the
user types characters other than the data
type expected, use the hasNext methods of
the Scanner class.

To construct a loop condition, construct the
inverse of the loop termination condition.

When testing a program that contains a loop,
test that the program produces correct
results by inputting values and comparing
the results with manual calculations. Also
test that the results are correct if the loop
body never executes. Finally, test the results
with input that is invalid.

The do/while loop checks the loop condition
after executing the loop body. Thus, the body
of a do/while loop always executes at least
once. This type of loop is useful for validating
input.

The for loop is useful for count-controlled
loops, that is, loops for which the number of
iterations is known when the loop begins.

When the for loop is encountered, the
initialization statement is executed. Then the
loop condition is evaluated. If the condition is
true, the loop body is executed. The loop
update statement is then executed and the
loop condition is reevaluated. Again, if the
condition is true, the loop body is executed,
followed by the loop update, then the
reevaluation of the condition, and so on, until
the condition evaluates to false.

Typically, we use a loop control variable in a
for loop. We set its initial value in the
initialization statement, increment or
decrement its value in the loop update
statement, and check its value in the loop
condition.

The loop update statement can increment or
decrement the loop variable by any value.

In a for loop, it is important to test that the
starting and ending values of the loop
variable are correct. Also test with input for
which the for loop body does not execute at
all.

6.14 Exercises, Problems, and
Projects
6.14.1 Multiple Choice Exercises
 1. How do you discover that you have an infinite loop in your code?

❑ The code does not compile.

❑ The code compiles and runs but gives the wrong result.
❑ The code runs forever.

❑ The code compiles, but there is a run-time error.

 2. If you want to execute a loop body at least once, what type of loop
would you use?

❑ for loop
❑ while loop

❑ do/while loop
❑ none of the above

 3. What best describes a for loop?

❑ It is a count-controlled loop.

❑ It is an event-controlled loop.
❑ It is a sentinel-controlled loop.

 4. You can simulate a for loop with a while loop.

❑ true

❑ false

6.14.2 Reading and Understanding
Code
 5. What is the output of this code sequence? (The user successively

enters 3, 5, and –1.)

System.out.print("Enter an int > ");
int i = scan.nextInt();
while (i != -1)
{
 System.out.println("Hello");

 System.out.print("Enter an int > ");
 i = scan.nextInt();
}

 6. What is the output of this code sequence? (The user successively
enters 3, 5, and –1.)

int i = 0;
while (i != -1)
{
 System.out.println("Hello");
 System.out.print("Enter an int > ");
 i = scan.nextInt();
}

 7. What is the output of this code sequence? (The user successively
enters 3, 5, and –1.)

System.out.print("Enter an int > ");
int i = scan.nextInt();
while (i != -1)
{
 System.out.print("Enter an int > ");
 i = scan.nextInt();

 System.out.println("Hello");
}

 8. What are the values of i and sum after this code sequence is
executed?

int sum = 0;
int i = 17;
while (i % 10 != 0)
{
 sum += i;
 i++;
}

 9. What are the values of i and product after this code sequence is
executed?

int i = 6;
int product = 1;
do
{
 product *= i;
 i++;
} while (i < 9);

10. What are the values of i and product after this code sequence is
executed?

int i = 6;
int product = 1;
do
{
 product *= i;
 i++;
} while (product < 9);

11. What is the output of this code sequence?

for (int i = 0; i < 3; i++)
 System.out.println("Hello");
System.out.println("Done");

12. What is the output of this code sequence?

for (int i = 0; i <= 2; i++)
 System.out.println("Hello");
System.out.println("Done");

13. What is the value of i after this code sequence is executed?

int i = 0;
for (i = 0; i <= 2; i++)
 System.out.println("Hello");

14. What is the value of i after this code sequence is executed?

int i = 0;
for (i = 0; i < 2034; i++)
 System.out.println("Hello");

15. What are the values of i and sum after this code sequence is
executed?

int i = 0;
int sum = 0;
for (i = 0; i < 5; i++)
{
 sum += i;
}

16. What are the values of i and sum after this code sequence is
executed?

int i = 0;
int sum = 0;
for (i = 0; i < 40; i++)
{
 if (i % 10 == 0)
 sum += i;
}

17. What is the value of sum after this code sequence is executed?

int sum = 0;
for (int i = 1; i < 10; i++)
{
 i++;
 sum += i;
}

18. What is the value of sum after this code sequence is executed?

int sum = 0;
for (int i = 10; i > 5; i--)
{
 sum += i;
}

19. What is printed when this code sequence is executed?

for (int i = 0; i < 5; i++)
{
 System.out.println(Math.max(i, 3));
}

20. What are the values of i and sum after this code sequence is
executed?

int i = 0;
int sum = 0;
while (i != 7)
{
 sum += i;
 i++;
}

6.14.3 Fill In the Code
21. This while loop generates random integers between 3 and 7 until a

5 is generated and prints all the random integers, excluding 5.

Random random = new Random();
int i = random.nextInt(5) + 3;

22. This while loop takes an integer input from the user, then prompts
for additional integers and prints all integers that are greater than
or equal to the original input until the user enters 20, which is not
printed.

System.out.print("Enter a starting integer > "
);
int start = scan.nextInt();
// your code goes here

23. This while loop takes integer values as input from the user and
finds the sum of those integers until the user types in the value –1
(which is not added).

System.out.print("Enter an integer value, "
 + "enter -1 to stop > ");
int value = scan.nextInt();
// your code goes here

24. This loop calculates the sum of the first four positive multiples of 7
using a while loop (the sum will be equal to 7 + 14 + 21 + 28 = 70).

int sum = 0;
int countMultiplesOf7 = 0;
int count = 1;
// your code goes here

25. This loop takes words as input from the user and concatenates
them until the user types in the word “end” (which is not
concatenated). The code then outputs the concatenated String.

String sentence = "";
String word;
// your code goes here

while (! word.equals("end"))
{
 // and your code goes here

}
System.out.println("The sentence is " + sentence
);

26. This loop reads integers from a file (already associated with the
Scanner object reference file) and computes the sum. We don’t
know how many integers are in the file.

int sum = 0;
// your code goes here

27. Here is a while loop; write the equivalent for loop.

int i = 0;
while (i < 5)
{
 System.out.println("Hi there");
 i++;
}

// your code goes here

28. This loop reads integers from the user until the user enters either 0
or 100. Then it prints the sum of the numbers entered (excluding
the 0 or 100).

// your code goes here

29. This loop calculates the sum of the integers from 1 to 5 using a for
loop.

int sum = 0;
// your code goes here

6.14.4 Identifying Errors in Code
30. Where is the problem with this code sequence (although this code

sequence does compile)?

int i = 0;
while (i < 3)
 System.out.println("Hello");

31. Where is the error in this code sequence that is supposed to read
and echo integers until the user enters –1?

int num;
while (num != -1)
{
 System.out.print("Enter an integer > ");
 num = scan.nextInt();
 System.out.println(num);
}

32. The following code sequence intends to print Hello three times;
however, it prints Hello only once. Where is the problem in this
code sequence?

for (int i = 0; i < 3; i++);
 System.out.println("Hello");

33. Where is the error in this code sequence, which is intended to print
Hello 10 times?

for (int i = 10; i > 0; i++)
 System.out.println("Hello");

34. Where is the problem with this code sequence? The code is
intended to generate random numbers between 1 and 10 until the
number is either a 7 or a 5.

Random random = new Random();
int number = 1 + random.nextInt(10);
while (number != 5 || number != 7)
{
 number = 1 + random.nextInt(10);
}
System.out.println("The number is " + number);

35. Where is the error with this code sequence?

int sum = 0;
for (int i = 1; i < 6; i++)
 sum += i;

System.out.println("The value of i is " + i);

6.14.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
36. You coded the following in the class Test.java:

int i = 0;
int sum = 0;
do
{
 sum += i;
 i++;
} while (i < 3) // line 11

At compile time, you get the following error:

Test.java:11: error: ';' expected
while(i < 3) // line 11
 ^
1 error

Explain what the problem is and how to fix it.

37. You coded the following in the class Test.java:

int i = 0;
while (i < 3)
{
 System.out.println("Hello");
 i--;
}

The code compiles but never terminates.

Explain what the problem is and how to fix it.

38. You coded the following in the class Test.java:

for (int i = 0; i++; i < 3) // line 5
 System.out.println("Hello");

At compile time, you get the following error:

Test.java:5: error: not a statement
for (int i = 0; i++; i < 3) // line 5
 ^
1 error

Explain what the problem is and how to fix it.

39. You coded the following in the class Test.java:

for (int i = 1; i < 3; i++) // line 5
 System.out.println("Hello");

The code compiles and runs, but prints Hello only twice, whereas
we expected to print Hello three times.

Explain what the problem is and how to fix it.

40. You coded the following in the class Test.java:

int product = 1;
for (int i = 1, i < 5, i++) // line 8
 product *= i;
System.out.println("Product is " + product);
// line 10

At compile time, you get the following errors:

Test.java:8: error: ';' expected
 for (int i = 1, i < 5, i++) // line 8
 ^
Test.java:8: error: illegal start of type
 for (int i = 1, i < 5, i++) // line 8
 ^
2 errors

Explain what the problem is and how to fix it.

41. You coded the following in the class Test.java:

for (int i = 0; i < 3; i++)
 System.out.println("Hello");
System.out.println("i = " + i); // line 8

At compile time, you get the following error:

Test.java:8: error: cannot find symbol
 System.out.println("i = " + i); // line
8
 ^
symbol : variable i
location: class Test
1 error

Explain what the problem is and how to fix it.

42. You coded the following in the class Test.java:

int i = 0;
for (int i = 0; i < 3; i++) // line 6
 System.out.println("Hello");

At compile time, you get the following error:

Test.java:6: error: variable i is already defined
in main(String[])
for(int i = 0; i < 3; i++) // line 6
 ^
1 error

Explain what the problem is and how to fix it.

6.14.6 Write a Short Program
43. Write a program that prompts the user for a value greater than 10

as an input (you should loop until the user enters a valid value)
and finds the square root of that number and the square root of the
result, and continues to find the square root of the result until you
reach a number that is smaller than 1.01. The program should
output how many times the square root operation was performed.

44. Write a program that expects a word containing the @ character
as an input. If the word does not contain an @ character, then your
program should keep prompting the user for a word. When the
user types in a word containing an @ character, the program
should simply print the word and terminate.

45. Write a program that reads double values from a file named
input.txt and outputs the average.

46. Write a program that uses a for loop to output the sum of all the
integers between 10 and 20, inclusive, that is, 10 + 11 + 12 + ... +
19 + 20.

47. Write a program that uses a for loop to output the product of all the
integers between 3 and 7, inclusive, that is, 3 * 4 * 5 * 6 * 7.

48. Write a program that uses a for loop to count how many multiples
of 7 are between 33 and 97, inclusive.

49. Write a program that reads a value (say n) from the user and
outputs Hello World n times. Verify that the user has entered an
integer. If the input is 3, the output will be Hello World printed three
times.

50. Write a program that takes a word as an input from the keyboard
and outputs each character in the word, separated by a space.

51. Write a program that takes a value as an input from the keyboard
and outputs the factorial of that number; the factorial of an integer
n is

n * (n − 1) * (n − 2) * … * 3 * 2 * 1. For instance, the factorial of 4 is

4 * 3 * 2 * 1, or 24.

52. Using a loop, write a program that takes 10 integer values from the
keyboard and outputs the minimum value of all the values entered.

53. Alter Example 6.14 that counts the tokens in a sentence so that it
prints each token and counts the number of tokens.

6.14.7 Programming Projects
54. Write a program that inputs a word representing a binary number

(0s and 1s). First, your program should verify that it is indeed a
binary number, that is, the number contains only 0s and 1s. If that
is not the case, your program should print a message that the
number is not a valid binary number. Then, your program should
count how many 1s are in that word and output the count.

55. Perform the same operations as Question 54, with the following
modification: If the word does not represent a valid binary number,
the program should keep prompting the user for a new word until a
word representing a valid binary number is input by the user.

56. Write a program that inputs a word representing a binary number
(0s and 1s). First, your program should check that it is indeed a
binary number, that is, the number contains only 0s and 1s. If that
is not the case, your program should output that the number is not
a valid binary number. If that word contains exactly two 1s, your
program should output that that word is “accepted,” otherwise that
it is “rejected.”

57. Perform the same operations as Question 56, with the following
modification: If the word does not represent a valid binary number,
the program should keep prompting the user for a new word until a
word representing a valid binary number is input by the user.

58. Write a program that inputs a word representing a binary number
(0s and 1s). First, your program should check that it is indeed a
binary number, that is, that it contains only 0s and 1s. If that is not
the case, your program should output that the number is not a
valid binary number. If that word contains at least three
consecutive 1s, your program should output that that word is
“accepted,” otherwise that it is “rejected.”

59. Write a program that inputs 7 double values from a file dja.txt that
represent the Dow Jones Average for 7 days. Your program should
output the lowest value for those 7 days and the number of the day

on which the lowest value occurred. For this program, instead of
setting the initial minimum value to the first value in the file, use the
maximum value for a double. The Java Class Library provides this
value as a constant in the Double wrapper class. Be sure to handle
the case of the file being empty.

60. Write a program that takes website names as keyboard input until
the user types the word stop and counts how many of the website
names are commercial website names (i.e., end with .com), then
outputs that count.

61. Using a loop, write a program that takes 10 values representing
exam grades (between 0 and 100) from the keyboard and outputs
the minimum value, maximum value, and average value of all the
values entered. Your program should not accept values less than 0
or greater than 100.

62. Write a program that takes an email address as an input from the
keyboard and, using a loop, steps through every character looking
for an @ sign. If the email address has exactly one @ character,
then print a message that the email address is valid; otherwise,
print a message that it is invalid.

63. Write a program that takes a user ID as an input from the keyboard
and steps through every character, counting how many digits are
in the user ID; if there are exactly two digits, output that the user ID
is valid, otherwise that it is invalid.

64. Write a program that takes an integer value as an input and
converts that value to its binary representation; for instance, if the
user inputs 17, then the output will be 10001.

65. Write a program that takes a word representing a binary number
(0s and 1s) as an input and converts it to its decimal
representation; for instance, if the user inputs 101, then the output
will be 5; you can assume that the String is guaranteed to contain
only 0s and 1s.

66. Write a program that simulates an XOR operation. The input
should be a word representing a binary number (0s and 1s). Your
program should XOR all the digits from left to right and output the
results as “True” or “False.” In an XOR operation, a XOR b is true
if a or b is true but not both; otherwise, it is false. In this program,
we will consider the character “1” to represent true and a “0” to
represent false. For instance, if the input is 1011, then the output
will be 1 (1 XOR 0 is 1, then 1 XOR 1 is 0, then 0 XOR 1 is 1,
which causes the output to be “True”). You can assume that the
input word is guaranteed to contain only 0s and 1s.

67. Write a program that takes a sentence as an input and checks
whether that sentence is a palindrome. A palindrome is a word,
phrase, or sentence that is symmetrical; that is, it is spelled the
same forward and backward. Examples are “otto,” “mom,” and
“Able was I ere I saw Elba.” Your program should be case
insensitive; that is, “Otto” should also be counted as a palindrome.

68. Write a program that takes an HTML-like sequence as an input
and checks whether that sequence has the same number of
opening brackets (<) and closing brackets (>).

6.14.8 Technical Writing
69. In programming, a programmer can make syntax errors that lead

to a compiler error; these errors can then be corrected. Other
errors can lead to a run-time error; these errors can also be
corrected. Logic errors, however, can lead to an incorrect result or
no result at all. Discuss examples of logic errors that can be made
when coding loops and the consequences of these logic errors.

70. Discuss how you would detect whether you have an infinite loop in
your code.

6.14.9 Group Project (for a group
of 1, 2, or 3 students)
71. Often on a webpage, the user is asked to supply personal

information, such as a telephone number. Your program should
take an input from the keyboard representing a telephone number.
We will consider that the input is a valid telephone number if it
contains exactly 10 digits and any number of dash (-) and
whitespace characters. Keep prompting the user for a telephone
number until the user gives you a valid one. Once you have a valid
telephone number, you should assume that the digits (only the
digits, not the hyphen[s] nor the white space) in the telephone
number may have been encrypted by shifting each number by a
constant value. For instance, if the shift is 2, a 0 becomes a 2, a 1
becomes a 3, a 2 becomes a 4, …, an 8 becomes a 0, and a 9
becomes a 1. However, we know that the user is from New York
where the decrypted area code (after the shift is applied),
represented by the first three digits of the input, is 212. Your
program needs to decrypt the telephone number and output the
decrypted telephone number with the format 212-xxx-xxxx, as well
as the shift value of the encryption. If there was an error in the
input and the area code cannot be decrypted to 212, you should
output that information.

CHAPTER 7
Object-Oriented Programming,
Part 2: User-Defined Classes

CHAPTER CONTENTS
Introduction
7.1 Defining a Class
7.2 Defining Instance Variables
7.3 Writing Class Methods
7.4 Writing Constructors
7.5 Writing Accessor Methods
7.6 Writing Mutator Methods
7.7 Writing Data Manipulation Methods
7.8 Programming Activity 1: Writing a Class Definition,
Part 1
7.9 The Object Reference this

7.10 The toString and equals Methods
7.11 Static Class Members
7.12 Graphical Objects
7.13 Enumeration Types
7.14 Programming Activity 2: Writing a Class Definition,
Part 2
7.15 Creating Packages
7.16 Generating Web-Style Documentation with Javadoc
7.17 Chapter Summary
7.18 Exercises, Problems, and Projects

7.18.1 Multiple Choice Exercises
7.18.2 Reading and Understanding Code
7.18.3 Fill In the Code
7.18.4 Identifying Errors in Code
7.18.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM
7.18.6 Write a Short Program
7.18.7 Programming Projects

7.18.8 Technical Writing
7.18.9 Group Project

Introduction
When you see the title of this chapter, you might say, “Finally,
we get to write our own classes.” Actually, we’ve been writing
classes all along. All Java source code belongs to a class.
The classes we’ve been writing are application classes. Now
it’s time to write some service classes—classes that
encapsulate data and methods for use by applications or
service classes. These are called user-defined classes
because we, rather than the Java authors, create them.

First, let’s take a moment to examine why we want to create
user-defined classes.

We have written a lot of programs using Java’s primitive data
types (boolean, char, int, double, etc.), but the real world
requires manipulation of more complex data than just
individual booleans or ints. For example, if you are the
programmer for an online bookstore, you will need to
manipulate data associated with books. Books typically have
an ISBN, a title, an author, a price, an in-stock quantity, and
perhaps other pieces of data. We can create a Book class so
that each object will hold the data for one book. For example,
the ISBN, the title, and the author can be represented by
Strings, the price by a double, and the in-stock quantity by an
int. If we create this Book class, our program will be able to
store and manipulate all the data of a book as a whole. This is
one of the concepts of object-oriented programming.

By incorporating into the class the methods that work with the
book data, we also are able to hide the details involved with
handling that data. An application can simply call the methods

as needed. Thus, creating your own classes can simplify your
program.

Finally, a well-written class can be reused in other programs.
Thus, user-defined classes speed up development.

7.1 Defining a Class
Classes encapsulate the data and functionality for a
person, place, or thing, or more generally, an object.
For example, a class might be defined to represent a
student, a college, or a course.

To define a class, we use the following syntax:

accessModifier class ClassName

{

 // class definition goes here

}

SOFTWARE ENGINEERING TIP
Use a noun for the class name, and start the class
name with a capital letter.

This syntax should look familiar as the first line in our
programs. You may also notice that the class names
in the Java Class Library are nouns and start with a
capital letter: Scanner, String, Math, for example.
The Java developers encourage programmers to use
these conventions to name their user-defined
classes.

Inside the curly braces we define the data of the
class, called its fields, and the methods. An
important function performed by the class methods is
maintaining the values of the class data for the client
programs, which are the users of the class, in that
the clients create objects and call the methods of the
class. Our programs have been clients of many Java
classes, such as String, DecimalFormat, and Math.
The fields and methods of a class are called the
members of the class.

For each class and for each member of a class, we
need to provide an access modifier that specifies
where the class or member can be used (see Table
7.1). The possible access modifiers are public,
private, and protected, or no modifier at all, which
results in package access. The public access
modifier allows the class or member to be used, or
referenced, by methods of the same or other
classes. The private access modifier specifies that
the class or member can be referenced only by
methods of the same class. Package access
specifies that the class or member can be accessed
by methods in classes that are in the same package
or in the same folder. Later in the chapter, we will
learn how to create our own package.

TABLE 7.1 Access Modifiers
Access
Modifier

Class or Member can Be Referenced by ...

public methods of the same class, as well as methods of
other classes

private methods of the same class only

protected methods in the same class, as well as methods of
subclasses and methods in classes in the same
package

no modifier
(package
access)

methods in the same package or same folder only

Typically, the accessModifier for a class will be
public, and we know that a public class must be
stored in a file named ClassName.java where
ClassName is the name of the class.

Let’s start to define a class that represents an
automobile, which we can use to calculate miles per
gallon. We’ll name the class Auto, and we’ll use the
public access modifier so that any application can
use this class. The class header will look like the
following:

public class Auto

{

}

When we write a class, we will make known the
public method names and their APIs so that a client
program will know how to instantiate objects and call
the methods of the class. We will not publish the
implementation (or code) of the class, however. In
other words, we will publish the APIs of the methods,
but not the method bodies. This is called data
hiding. A client program can use the class without
knowing how the class is implemented, and we, as
class authors, can change the implementation of the
methods as long as we don’t change the interface, or
APIs.

7.2 Defining Instance Variables
The instance variables of a class hold the data for
each object of that class. Thus, we also say that the
instance variables represent the properties of the
object. Each object, or instance of a class, gets its
own copy of the instance variables, each of which
can be given a value appropriate to that object. The
values of the instance variables, therefore, can
represent the state of the object.

Instance variables are defined using the following
syntax:

accessModifier dataType identifierList;

SOFTWARE ENGINEERING TIP
Define instance variables of a class as private so
that only methods of the class will be able to set or
change their values.

The private modifier is typically used for the
nonconstant instance variables of the class. This
permits only methods of the same class to set or
change the values of the instance variables. In this
way, we achieve encapsulation; the class provides a
protective shell around the data.

The data type of an instance variable can be any of
Java’s primitive types or a class type.

The identifierList consists of one or more names for
instance variables of the same data type and can
optionally assign initial values to the instance
variables. If more than one instance variable name is
given, a comma is used as a separator. By
convention, identifier names for instance variables
are nouns and begin with a lowercase letter; internal
words begin with a capital letter. Each instance
variable and class variable must be given a name
that is unique to the class. It is legal to use the same
names for instance variables in different classes, but
within a class, the same name cannot be used for
more than one instance variable or class variable.
Thus, we say that the fields of a class have class
scope.

Optionally, you can declare an instance variable to
be a constant (final).

The following statements are examples of instance
variable definitions:

private String name = ""; // an empty String

private final int PERFECT_SCORE = 100, PASSING_SCORE

= 60;

private int startX, startY, width, height;

What criteria should you use to select the instance
variables of the class? The answer is to select the
data that all objects will have in common. For
example, for a Student class, you might select the
student name, grade point average, and projected
graduation date. For a Calculator class, you might
select two operands, an operator, and a result.

SOFTWARE ENGINEERING TIP
Use nouns for identifier names for instance
variables. Begin the identifier with a lowercase letter
and capitalize internal words.

Thus, for our Auto class, we will define instance
variables to hold the model of the automobile, the
number of miles the auto has been driven, and the
gallons of gas used. As a result, our Auto class
definition now becomes the following:

SOFTWARE ENGINEERING TIP
Define instance variables for the data that all objects
will have in common.

public class Auto

{

 private String model;

 private int milesDriven;

 private double gallonsOfGas;

}

7.3 Writing Class Methods
We declared the instance variables of the Auto class
as private so that only the methods of the Auto class
will be able to access or change the values of the
instance variables directly. Clients of the Auto class
will need to use the methods of the class to access
or change any of the instance variables. We will
therefore need to write some methods.

Methods have this syntax:

accessModifier returnType methodName(parameter list

) // method header

{

 // method body

}

where parameter list is a comma-separated list of
data types and variable names.

SOFTWARE ENGINEERING TIP
Use verbs for method names. Begin the method
name with a lowercase letter and begin internal
words with a capital letter.

The method header syntax should be familiar
because we’ve seen the API for many class
methods. One difference is just a matter of
semantics. The method caller sends arguments, or
actual parameters, to the method; the method
refers to these arguments as its formal parameters.

Because methods provide a function for the class,
typically method names are verbs. Like instance
variables, the method name should begin with a
lowercase letter, with internal words beginning with a
capital letter.

The access modifier for methods that provide
services to the client will be public. Methods that
provide services only to other methods of the class
are typically declared to be private.

SOFTWARE ENGINEERING TIP
Declare methods that provide services to clients as
public. Methods that will be called only by other
methods of the class should be declared private.

The return type of a method is the data type of the
value that the method returns to the caller. The
return type can be any of Java’s primitive data types,
any class type, or void. Methods with a return type of
void do not return a value to the caller.

The body of each method, which consists of the
code that performs the method’s function, is written
between the beginning and ending curly braces.
Unlike if statements and loops, however, these curly
braces are not optional; the curly braces are
required, regardless of the number of statements in
the method body.

Several compiler errors can result from forgetting
one or both of the curly braces. You might receive
either of these messages:

illegal start of expression

or

';' expected

COMMON ERROR TRAP
Forgetting to enclose the body of a method in curly
braces generates one or more compiler errors.

In the method body, a method can declare variables,
call other methods, and use any of the program
structures we’ve discussed: if/else statements, while
loops, for loops, switch statements, and do/while
loops.

All objects of a class share one copy of the class
methods.

We have actually written methods already. For
example, we’ve written the method main. Its
definition looks like this:

public static void main(String [] args)

{

 // application code

}

We know that the static keyword means that the
Java Virtual Machine (JVM) can call main to start the
application running without first instantiating an
object. The return type is void because main does
not return a value. The parameter list expects one
argument, a String array.

We have not previously written a value-returning
method. A value-returning method sends back its
results to the caller using a return statement in the
method body. The syntax for the return statement is

return expression;

As you would expect, the data type of the expression
must match the return type of the method. Recall
that a value-returning method is called from an

expression, and when the method completes its
operation, its return value replaces the method call in
the expression.

If the data type of the method is void, as in main, we
have a choice of using the return statement without
an expression, as in this statement:

return;

or omitting the return statement altogether. Given
that control automatically returns to the caller when
the end of the method is reached, most
programmers omit the return statement in void
methods. Optionally, a return statement can be used
if needed to exit a method before reaching the end of
the method’s code.

7.4 Writing Constructors
A constructor is a special method that is called when
an object is instantiated using the new keyword. A
class can have several constructors. The job of the
class constructors is to initialize the fields of the new
object.

The syntax for a constructor follows:

accessModifier ClassName(parameter list)

{

 // constructor body

}

Notice that a constructor has the same name as the
class and has no return type—not even void.

It’s important to use the public access modifier for
the constructors so that applications can instantiate
objects of the class.

SOFTWARE ENGINEERING TIP
Define constructors to be public so that clients can
instantiate objects of the class.

The constructor can either assign default values to
the instance variables or the constructor can accept
initial values from the client through parameters.

Providing a constructor for a class is optional. If you
don’t write a constructor, the compiler provides a
default constructor, which is a constructor that
takes no arguments. This default constructor assigns
default initial values to all instance variables; this is
called autoinitialization. Numeric variables are
given the value of 0, characters are given the
Unicode null character, boolean variables are given
the value false, and object references are given the
value null. Table 7.2 shows the values the default
constructor assigns to instance variables.

TABLE 7.2 Default Initial Values of Instance
Variables

Data Type Initial Value
byte 0

short 0

int 0

long 0

float 0.0

double 0.0

char null character (‘\u0000’)

boolean false

object reference null

If we do provide a constructor, any instance variables
our constructor does not initialize will still be given
the predefined default value. Also, if we do provide a
constructor, the compiler no longer generates a
default constructor for us.

Example 7.1 shows Version 1 of our Auto class with
two constructors.

EXAMPLE 7.1 The Auto Class,
Version 1

 1 /* Auto class, Version 1

 2 Anderson, Franceschi

 3 */

 4

 5 public class Auto

 6 {

 7 // instance variables

 8 private String model; // model of

auto

 9 private int milesDriven; // number of

miles driven

10 private double gallonsOfGas; // number of

gallons of gas

11

12 // Default constructor:

13 // initializes model to "unknown";

14 // milesDriven is autoinitialized to 0

15 // and gallonsOfGas to 0.0

16 public Auto()

17 {

18 model = "unknown";

19 }

20

21 // Overloaded constructor:

22 // allows client to set beginning values for

23 // model, milesDriven, and gallonsOfGas.

24 public Auto(String startModel,

25 int startMilesDriven,

26 double startGallonsOfGas)

27 {

28 model = startModel;

29

30 // validate startMilesDriven parameter

31 if (startMilesDriven >= 0)

32 milesDriven = startMilesDriven;

33

34 // validate startGallonsOfGas parameter

35 if (startGallonsOfGas >= 0.0)

36 gallonsOfGas = startGallonsOfGas;

37 }

38 }

Our default constructor (lines 12–19) does not set
values for the milesDriven and gallonsOfGas
instance variables. Because ints and doubles are
autoinitialized to 0 and 0.0, respectively, we just
accept those default values.

However, it is necessary for our constructor to set
the model instance variable to a valid String value.
Because Strings are object references, they are
autoinitialized to null. Any attempt to call a method
using the model instance variable with a null value
would generate a NullPointerException.

As mentioned earlier, we can provide multiple
constructors for a class. We provide a second

constructor (lines 21–37) that lets the client set initial
values for all the instance variables. Because the
class is the caretaker of its fields, it is the class’s
responsibility to ensure that the data for each object
is valid. Thus, when the constructor sets initial values
for the instance variables, it should first check
whether its parameters are, indeed, valid values.
What constitutes a valid value for any instance
variable depends in part on the data type of the
variable and in part on the class and is a design
decision. For our Auto class, we have decided that
milesDriven and gallonsOfGas cannot be negative. If
the constructor finds that the startMilesDriven or
startGallonsOfGas parameters are negative, it lets
the instance variables be assigned default values of
0 and 0.0, respectively. Some methods in the Java
Class Library generate an exception when a
parameter value is invalid; others substitute a default
value for the invalid parameter. Again, how your
classes handle invalid argument values is a design
decision.

When we provide multiple constructors, we are
overloading a method. To overload a method, we
provide a method with the same name but with a
different number of parameters, or with the same
number of parameters but with at least one
parameter having a different data type. The name of
the method, along with the number, data types, and

order of its parameters, is called the method’s
signature. Thus, to overload a method, the new
method must have a different signature. Notice that
the return type is not part of the signature.

When a client calls a method that is overloaded,
Java determines which version of the method to
execute by looking at the number, data types, and
order of the arguments in the method call. Example
7.2 shows a client program that instantiates three
Auto objects.

EXAMPLE 7.2 The Auto Client,
Version 1
 1 /* Auto Client, Version 1

 2 Anderson, Franceschi

 3 */

 4

 5 public class AutoClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 System.out.println("Instantiate sedan");

10 Auto sedan = new Auto();

11

12 System.out.println("\nInstantiate suv");

13 Auto suv = new Auto("Trailblazer", 7000,

437.5);

14

15 System.out.println("\nInstantiate mini");

16 // attempt to set invalid value for gallons

of gas

17 Auto mini = new Auto("Mini Cooper", 200,

-1.0);

18 }

19 }

SOFTWARE ENGINEERING TIP
Provide, at the minimum, a default constructor and a
constructor that accepts initial values for all instance
variables.

Line 10 causes the default constructor to be called
because no arguments are passed to the
constructor. Line 13 causes the overloaded
constructor to be called because it passes three
arguments to the constructor. If the client attempted
to instantiate a new object with a number of
parameters other than 0 or 3, the compiler would
generate an error because there is no constructor
that matches those arguments. In general, the
arguments sent to an overloaded method must
match the formal parameters of some version of that
method.

The number of constructors we provide is a design
decision and depends on the class. Providing
multiple constructors gives the client a choice of
ways to create an object. It is good practice to
provide, at minimum, a default constructor. The
reason for this will become clear as we explore
classes in more depth. It is also good practice to
provide another constructor that accepts values for
all the instance variables.

On line 17, we instantiate an Auto object with an
invalid argument for gallons of gas. The object is still
created, but the value of its gallonsOfGas instance
variable is autoinitialized to 0.0. The output of
Example 7.2 is shown in Figure 7.1.

Beware of this common error: declaring a void return
type for a constructor. Remember that constructors
have no return type at all. For example, the following
invalid constructor definition declares a return type of
void:

// Error! void return value specified

public void Auto(String model,

 int startMilesDriven,

 double startGallonsOfGas)

{

 // body of constructor

}

This is a difficult error to find. The class file will
compile without an error because the compiler
doesn’t recognize this method as a constructor.
Instead, the client program will get a compiler error
when it attempts to instantiate an Auto object. For
example, this statement in a client program

Auto gm = new Auto("Prius", 350, 15.5);

Figure 7.1
Output from Auto Client, Version 1

Instantiate sedan

Instantiate suv

Instantiate mini

would generate this compiler error:

AutoClient.java:13: error: constructor Auto in class

Auto cannot be applied to given types;

 Auto gm = new Auto("Prius", 350, 15.5);

 ^

 required: no arguments

 found: String,int,double

 reason: actual and formal argument lists differ in

length

1 error

Notice that both constructors access the instance
variables directly. Remember that instance variables
have class scope, which means that they can be
accessed anywhere in the class. Thus, any method
of the class can access any of the instance variables
directly. In our Auto class, any method can access

the instance variables model, milesDriven, and
gallonsOfGas.

COMMON ERROR TRAP
Specifying a return value for a constructor will cause
a compiler error in the client program when the client
attempts to instantiate an object of that class.

Methods have class scope as well. Any method can
call any of the methods in the class, regardless of
whether the methods have been declared private,
public, or protected.

In addition to accessing the instance variables, a
method can also access its own parameters. When a
method begins executing, its parameters have been
declared and have been given the values of the
arguments sent by the caller of the method.

The parameters have local scope in that a method
can access its parameters directly. We call this local
scope because the parameters can be accessed
only in that method; that is, a method can access its
own parameters, but attempting to access another
method’s parameters generates a compiler error.

Similarly, the method can define variables to be used
within the method. These variables also have local

scope and are accessible from the point of definition
until the end of the method or the end of the block in
which the variable was defined, whichever comes
first.

Table 7.3 summarizes the rules of scope.

TABLE 7.3 Rules of Scope
A method in a class can access

the instance variables of its class

any parameters sent to the method

any variable the method declares within its body from the point
of declaration until the end of the method or until the end of the
block in which the variable was declared, whichever comes first

any methods in the class

Attempting to use an identifier that is not in scope will
generate the following compiler error:

cannot find symbol

When the client in Example 7.2 runs, it instantiates
three objects, but there is nothing more our
application can do with them. To allow our client to
manipulate the Auto objects further, we need to
provide more methods.

Skill Practice
with these end-of-chapter questions

7.18.1 Multiple Choice Exercises

Questions 1, 2, 3, 4, 5, 6, 7

7.18.3 Fill In the Code

Questions 28, 30, 31

7.18.5 Debugging Area

Questions 47, 48, 49

7.18.8 Technical Writing

Question 77

7.5 Writing Accessor Methods
Because clients cannot directly access private
instance variables of a class, classes usually provide
public accessor methods for the instance variables.
These methods have a simple, almost trivial,
standard form:

public returnType getInstanceVariable()

{

 return instanceVariable;

}

The standard name of the method is get, followed by
the instance variable’s name with an initial capital
letter. Because the method names usually start with
“get,” accessor methods are often called getters.
The method takes no arguments and simply returns
the current value of the instance variable. Thus, the
return type is the same data type as the instance
variable.

You can see this simple pattern in the accessor
methods for Version 2 of our Auto class, shown in
Example 7.3 (lines 39–58).

EXAMPLE 7.3 Auto Class, Version
2

 1 /* Auto class, Version 2

 2 Anderson, Franceschi

 3 */

 4

 5 public class Auto

 6 {

 7 // instance variables

 8 private String model; // model of

auto

 9 private int milesDriven; // number of

miles driven

10 private double gallonsOfGas; // number of

gallons of gas

11

12 // Default constructor:

13 // initializes model to "unknown";

14 // milesDriven is autoinitialized to 0

15 // and gallonsOfGas to 0.0

16 public Auto()

17 {

18 model = "unknown";

19 }

20

21 // Overloaded constructor:

22 // allows client to set beginning values for

23 // model, milesDriven, and gallonsOfGas.

24 public Auto(String startModel,

25 int startMilesDriven,

26 double startGallonsOfGas)

27 {

28 model = startModel;

29

30 // validate startMilesDriven parameter

31 if (startMilesDriven >= 0)

32 milesDriven = startMilesDriven;

33

34 // validate startGallonsOfGas parameter

35 if (startGallonsOfGas >= 0.0)

36 gallonsOfGas = startGallonsOfGas;

37 }

38

39 // Accessor method:

40 // returns current value of model

41 public String getModel()

42 {

43 return model;

44 }

45

46 // Accessor method:

47 // returns current value of milesDriven

48 public int getMilesDriven()

49 {

50 return milesDriven;

51 }

52

53 // Accessor method:

54 // returns current value of gallonsOfGas

55 public double getGallonsOfGas()

56 {

57 return gallonsOfGas;

58 }

59 }

In the client code in Example 7.4, we’ve added a few
statements to call the accessor methods for the two
Auto objects we’ve instantiated. Then we print the
values, as shown in Figure 7.2.

EXAMPLE 7.4 Auto Client, Version
2

 1 /* Auto Client, Version 2

 2 Anderson, Franceschi

 3 */

 4

 5 public class AutoClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 Auto sedan = new Auto();

10 String sedanModel = sedan.getModel();

11 int sedanMiles = sedan.getMilesDriven();

12 double sedanGallons =

sedan.getGallonsOfGas();

13 System.out.println("sedan: model is " +

sedanModel

14 + "\n miles driven is " +

sedanMiles

15 + "\n gallons of gas is " +

sedanGallons);

16

17 Auto suv = new Auto("Trailblazer", 7000,

437.5);

18 String suvModel = suv.getModel();

19 int suvMiles = suv.getMilesDriven();

20 double suvGallons = suv.getGallonsOfGas(

);

21 System.out.println("suv: model is " +

suvModel

22 + "\n miles driven is " +

suvMiles

23 + "\n gallons of gas is " +

suvGallons);

24 }

25 }

Figure 7.2
Output from Auto Client, Version 2

sedan: model is unknown

 miles driven is 0

 gallons of gas is 0.0

suv: model is Trailblazer

 miles driven is 7000

 gallons of gas is 437.5

Because the sedan object was instantiated by calling
the default constructor, its model is unknown and the
miles driven and gallons of gas are set to default
values. On the other hand, the suv object data
reflects the values sent to the overloaded constructor
when the suv object was instantiated.

SOFTWARE ENGINEERING TIP
Provide public accessor methods for any instance
variable for which the client should be able to
retrieve the value. Each accessor method returns the
current value of the corresponding instance variable.

Thus, Version 2 of our Auto class lets our clients
instantiate objects and get the values of the instance
variables. But we still need to give the client a way to
change the instance variables. In order to do this, we
provide mutator methods.

7.6 Writing Mutator Methods
As we have discussed, we declare the instance
variables as private to encapsulate the data of the
class. We allow only the class methods to directly set
the values of the instance variables. Thus, it is
customary to provide a public mutator method for
any instance variable that the client will be able to
change. Because the method names usually start
with “set,” mutator methods are often called setters.

The general form of a mutator method is the
following:

public void setInstanceVariable(dataType newValue)

{

 // validate newValue, then assign to the

instance variable

}

SOFTWARE ENGINEERING TIP
Provide a mutator method for any instance variable
that you want to allow the client to change.

We declare mutator methods as public so that client
programs can use the methods to change the values
of the instance variables. We do not return a value,

so we declare the return type as void. By convention,
the name of each mutator method starts with the
lowercase word set followed by the instance variable
name with an initial capital letter. For obvious
reasons, the data type of the method’s parameter
should match the data type of the instance variable
being set.

Whenever possible, the body of your mutator method
should validate the parameter value passed by the
client. If the parameter value is valid, the mutator
assigns that value to the instance variable.

Example 7.5 shows Version 3 of our Auto class.

EXAMPLE 7.5 Auto Class, Version
3

 1 /* Auto class, Version 3

 2 Anderson, Franceschi

 3 */

 4

 5 public class Auto

 6 {

 7 // instance variables

 8 private String model; // model of

auto

 9 private int milesDriven; // number of

miles driven

10 private double gallonsOfGas; // number of

gallons of gas

11

12 // Default constructor:

13 // initializes model to "unknown";

14 // milesDriven is autoinitialized to 0

15 // and gallonsOfGas to 0.0

16 public Auto()

17 {

18 model = "unknown";

19 }

20

21 // Overloaded constructor:

22 // allows client to set beginning values for

23 // model, milesDriven, and gallonsOfGas.

24 public Auto(String startModel,

25 int startMilesDriven,

26 double startGallonsOfGas)

27 {

28 model = startModel;

29 setMilesDriven(startMilesDriven);

30 setGallonsOfGas(startGallonsOfGas);

31 }

32

33 // Accessor method:

34 // returns current value of model

35 public String getModel()

36 {

37 return model;

38 }

39

40 // Accessor method:

41 // returns current value of milesDriven

42 public int getMilesDriven()

43 {

44 return milesDriven;

45 }

46

47 // Accessor method:

48 // returns current value of gallonsOfGas

49 public double getGallonsOfGas()

50 {

51 return gallonsOfGas;

52 }

53

54 // Mutator method:

55 // allows client to set model

56 public void setModel(String newModel)

57 {

58 model = newModel;

59 }

60

61 // Mutator method:

62 // allows client to set value of milesDriven;

63 // if new value is not less than 0

64 public void setMilesDriven(int

newMilesDriven)

65 {

66 if (newMilesDriven >= 0)

67 milesDriven = newMilesDriven;

68 }

69

70 // Mutator method:

71 // allows client to set value of

gallonsOfGas;

72 // if new value is not less than 0.0

73 public void setGallonsOfGas(double

newGallonsOfGas)

74 {

75 if (newGallonsOfGas >= 0.0)

76 gallonsOfGas = newGallonsOfGas;

77 }

78 }

The mutator methods for the milesDriven (lines 61–
68) and gallonsOfGas (lines 70–77) instance
variables validate that the parameter value is greater
than or equal to 0. If the parameter value is less than
0, the methods do not change the value of the
instance variable. In previous versions of our Auto
class, the constructor performed the same validation.
Now that the mutator methods perform this
validation, the constructor can call the mutator
methods (lines 29–30) passing its parameters
through to the mutator methods. In this way, we
eliminate duplicate code; the validation of each
parameter’s value is performed in one place. If later
we decide to impose other restrictions on any
instance variable’s value, we will need to change the
code in only one place. In this way, a client cannot
set invalid values for milesDriven or gallonsOfGas,
either when the object is instantiated or by calling a
mutator method.

EXAMPLE 7.6 Auto Client, Version
3

 1 /* Auto Client, Version 3

 2 Anderson, Franceschi

 3 */

 4

 5 public class AutoClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 Auto suv = new Auto("Trailblazer", 7000,

437.5);

10

11 // print initial values of instance

variables

12 System.out.println("suv: model is " +

suv.getModel()

13 + "\n miles driven is " +

suv.getMilesDriven()

14 + "\n gallons of gas is " +

suv.getGallonsOfGas());

15

16 // call mutator method for each instance

variable

17 suv.setModel("Sportage");

18 suv.setMilesDriven(200);

19 suv.setGallonsOfGas(10.5);

20

21 // print new values of instance variables

22 System.out.println("\nsuv: model is " +

suv.getModel()

23 + "\n miles driven is " +

suv.getMilesDriven()

24 + "\n gallons of gas is " +

suv.getGallonsOfGas());

25

26 // attempt to set invalid value for

milesDriven

27 suv.setMilesDriven(-1);

28 // print current values of instance

variables

29 System.out.println("\nsuv: model is " +

suv.getModel()

30 + "\n miles driven is " +

suv.getMilesDriven()

31 + "\n gallons of gas is " +

suv.getGallonsOfGas());

32 }

33 }

In Example 7.6, our client instantiates one Auto
object, suv (line 9), and prints the values of its
instance variables (lines 11–14). Then we call each
mutator method, setting new values for each
instance variable (lines 16–19). We again print the
values of the instance variables (lines 21–24) to
show that the values have been changed. Then, in
line 27, we attempt to set an invalid value for
milesDriven. As Figure 7.3 shows, the mutator

method does not change the value, which we verify
by again printing the values of the instance variables
(lines 28–31).

SOFTWARE ENGINEERING TIP
Write the validation code for instance variables in
mutator methods and have the constructor call the
mutator methods to set initial values.

Figure 7.3
Output from Auto Client, Version 3

suv: model is Trailblazer

 miles driven is 7000

 gallons of gas is 437.5

suv: model is Sportage

 miles driven is 200

 gallons of gas is 10.5

suv: model is Sportage

 miles driven is 200

 gallons of gas is 10.5

When a method begins executing, the parameters
have been defined and have been assigned the
values sent by the client. When the client calls the

setModel method at line 17, the newModel
parameter has the value Sportage when the method
starts executing.

A common error in writing mutator methods is using
the instance variable name for the parameter name.
When a method parameter has the same name as
an instance variable, the parameter hides the
instance variable. In other words, the parameter has
name precedence, so any reference to that name
refers to the parameter, not to the instance variable.

For example, the intention in this incorrectly coded
method is to set a new value for the model instance
variable:

// Incorrect! parameter hides instance variable

public void setModel(String model)

{

 model = model;

}

Because the parameter, model, has the same
identifier as the model instance variable, the result of
this method is to assign the value of the parameter to
the parameter! This is called a No-op, which stands
for “No operation,” because the statement has no
effect. To avoid this logic error, we can choose a
different name for the parameter. To avoid name

conflicts, we name each parameter using the pattern
newInstanceVariable.

A similar common error is to declare a local variable
with the same name as the instance variable, as
shown in the following incorrectly coded method:

// Incorrect! declared local variable hides instance

variable

public void setModel(String newModel)

{

 String model; // declared variable hides

instance variable

 model = newModel;

}

COMMON ERROR TRAP
Be aware that a method parameter or local variable
that has the same name as an instance variable
hides the instance variable.

Any variable that a method declares is a local
variable because its scope is local to the method.
Thus, the declared variable, model, is a local
variable to the setModel method.

With the preceding code, the model local variable
hides the instance variable with the same name, so

the method assigns the parameter value to the local
variable, not to the instance variable. The result is
that the value of the model instance variable is
unchanged.

COMMON ERROR TRAP
Do not declare the parameters of a method inside
the method body. When the method begins
executing, the parameters exist and have been
assigned the values set by the client in the method
call.

The instance variable, model, is defined already in
the class. Thus, the method should simply assign the
parameter value to the instance variable without
attempting to declare the instance variable (again) in
the method.

Finally, another common error is declaring the
parameter, as shown below:

// Incorrect! Declaring the parameter; parameters

are declared already

public void setModel(String newModel)

{

 String newModel; // local variable has same

name as parameter

 model = newModel;

}

This code generates this compiler error:

variable newModel is already defined in method

setModel(String)

7.7 Writing Data Manipulation
Methods
Now we finally get down to the business of the class.
Usually you will define a class not only to
encapsulate the data, but also to provide some
service. Thus, you would provide one or more
methods that perform the functionality of the class.
These methods might calculate a value based on the
instance variables and/or parameters, or manipulate
the instance variables in some way. The API of these
methods depends on the function being performed. If
a method merely manipulates the instance variables,
it requires no parameters because instance variables
are accessible from any method and, therefore, are
in scope.

For example, in our Auto class, part of the
functionality of our class is to calculate miles per
gallon and the gas cost, so we provide the
milesPerGallon and moneySpentOnGas methods in
our Auto class, Version 4, shown in Example 7.7.

EXAMPLE 7.7 Auto Class, Version
4

 1 /* Auto class, Version 4

 2 Anderson, Franceschi

 3 */

 4

 5 public class Auto

 6 {

 7 // instance variables

 8 private String model; // model of

auto

 9 private int milesDriven; // number of

miles driven

10 private double gallonsOfGas; // number of

gallons of gas

11

12 // Default constructor:

13 // initializes model to "unknown";

14 // milesDriven is autoinitialized to 0

15 // and gallonsOfGas to 0.0

16 public Auto()

17 {

18 model = "unknown";

19 }

20

21 // Overloaded constructor:

22 // allows client to set beginning values for

23 // model, milesDriven, and gallonsOfGas.

24 public Auto(String startModel,

25 int startMilesDriven,

26 double startGallonsOfGas)

27 {

28 model = startModel;

29 setMilesDriven(startMilesDriven);

30 setGallonsOfGas(startGallonsOfGas);

31 }

32

33 // Accessor method:

34 // returns current value of model

35 public String getModel()

36 {

37 return model;

38 }

39

40 // Accessor method:

41 // returns current value of milesDriven

42 public int getMilesDriven()

43 {

44 return milesDriven;

45 }

46

47 // Accessor method:

48 // returns current value of gallonsOfGas

49 public double getGallonsOfGas()

50 {

51 return gallonsOfGas;

52 }

53

54 // Mutator method:

55 // allows client to set model

56 public void setModel(String newModel)

57 {

58 model = newModel;

59 }

60

61 // Mutator method:

62 // allows client to set value of

milesDriven;

63 // if new value is not less than 0

64 public void setMilesDriven(int

newMilesDriven)

65 {

66 if (newMilesDriven >= 0)

67 milesDriven = newMilesDriven;

68 }

69

70 // Mutator method:

71 // allows client to set value of

gallonsOfGas;

72 // if new value is not less than 0.0

73 public void setGallonsOfGas(double

newGallonsOfGas)

74 {

75 if (newGallonsOfGas >= 0.0)

76 gallonsOfGas = newGallonsOfGas;

77 }

78

79 // Calculates miles per gallon.

80 // if no gallons of gas have been used,

returns 0.0;

81 // otherwise, returns miles per gallon

82 // as milesDriven / gallonsOfGas

83 public double milesPerGallon()

84 {

85 if (gallonsOfGas >= 0.0001)

86 return milesDriven / gallonsOfGas;

87 else

88 return 0.0;

89 }

90

91 // Calculates money spent on gas.

92 // returns price per gallon times gallons

of gas

93 public double moneySpentOnGas(double

pricePerGallon)

94 {

95 return pricePerGallon * gallonsOfGas;

96 }

97 }

Our class now provides the method to calculate
mileage and estimate gas cost for an Auto object.
The milesPerGallon method (lines 79–89) needs no
parameters since it accesses only instance variables
of the class, which are in scope. As you can see
from the code, we guard against dividing by 0 by
checking the value of gallonsOfGas before using it

as the divisor. If gallonsOfGas is not equal to zero,
we divide milesDriven by gallonsOfGas and return
the result as a double. Otherwise, we return 0.0.

The moneySpentOnGas method (lines 91–96)
accepts one parameter that represents the average
price of a gallon of gas. It returns the amount of
money spent on gas, calculated by multiplying that
parameter by the gallonsOfGas instance variable.

Notice that we do not format the returned values
from milesPerGallon or moneySpentOnGas.
Returning a double allows the client to use those
values in further calculations. If the client wants to
display the values to the user, the client can format
the values at that time.

Example 7.8 shows a client program that instantiates
an Auto object, calls the milesPerGallon and
moneySpentOnGas methods, and prints their return
value, as shown in Figure 7.4.

Figure 7.4
Output from Auto Client, Version 4

Mileage for suv is 16.0

Gas cost for suv is $1,220.62

EXAMPLE 7.8 Auto Client, Version
4

 1 /* Auto Client, Version 4

 2 Anderson, Franceschi

 3 */

 4

 5 import java.text.DecimalFormat;

 6 import java.text.NumberFormat;

 7

 8 public class AutoClient

 9 {

10 public static void main(String [] args)

11 {

12 Auto suv = new Auto("Trailblazer", 7000,

437.5);

13

14 double mileage = suv.milesPerGallon();

15 DecimalFormat mpgFormat = new DecimalFormat(

"0.0");

16 System.out.println("Mileage for suv is "

17 + mpgFormat.format(

mileage));

18

19 double gasCost = suv.moneySpentOnGas(2.79

);

20 NumberFormat money =

NumberFormat.getCurrencyInstance();

21 System.out.println("Gas cost for suv is "

22 + money.format(gasCost

));

23 }

24 }

Skill Practice
with these end-of-chapter questions

7.18.1 Multiple Choice Exercises

Questions 8, 9, 10, 11, 12, 13

7.18.2 Reading and Understanding Code

Questions 17, 18, 19, 20, 24, 26

7.18.3 Fill In the Code

Questions 32, 33, 36, 37

7.18.4 Identifying Errors in Code

Questions 38, 39, 43, 45

7.18.5 Debugging Area

Question 52

7.8 Programming Activity 1:
Writing a Class Definition, Part 1
In this programming activity, you will write the
methods for an Airport class. Then you will run a
prewritten client program that instantiates several
Airport objects, calls the methods that you have
written, and displays the values of the objects’ data.

The Airport class has two instance variables: the
airport code and the number of gates.

In this chapter’s Programming Activity 1 folder in the
supplied code files, you will find multiple files. Copy
these files to a folder on your computer. Note that all
files should be in the same folder.

Load the Airport.java source file; you’ll notice that the
class already contains some source code. The
method names and APIs are described in comments.
Your job is to define the instance variables and write
the methods. It is important that you define the
method headers exactly as described, including
method name, return value, and parameters,
because our AirportDrawing class will call each
method to test it. Search for five asterisks in a row
(*****). This will position you at the seven places in

the class definition where you will add your code.
The Airport.java code is shown here in Example 7.9.

EXAMPLE 7.9 Airport.java

 1 /* Airport class

 2 Anderson, Franceschi

 3 */

 4

 5 public class Airport

 6 {

 7 // 1. ***** Define the instance variables

 8 // airportCode is a String

 9 // gates is an integer

10

11

12

13 // 2. ***** Write this method *****

14 // Default constructor:

15 // method name: Airport

16 // return value: none

17 // parameters: none

18 // function: sets the airportCode to an empty

String

19

20

21

22 // 3. ***** Write this method *****

23 // Overloaded constructor:

24 // method name: Airport

25 // return value: none

26 // parameters: a String startAirportCode and

an int startGates

27 // function:

28 // calls the setAirportCode method,

29 // passing startAirportCode parameter;

30 // calls the setGates method, passing

startGates parameter

31

32

33

34

35 // 4. ***** Write this method *****

36 // Accessor method for the airportCode

instance variable

37 // method name: getAirportCode

38 // return value: String

39 // parameters: none

40 // function: returns airportCode

41

42

43

44 // 5. ***** Write this method *****

45 // Accessor method for the gates instance

variable

46 // method name: getGates

47 // return value: int

48 // parameters: none

49 // function: returns gates

50

51

52

53 // 6. ***** Write this method *****

54 // Mutator method for the airportCode instance

variable

55 // method name: setAirportCode

56 // return value: void

57 // parameters: String newAirportCode

58 // function: assigns airportCode the value of

the

59 // newAirportCode parameter

60

61

62

63 // 7. ***** Write this method *****

64 // Mutator method for the gates instance

variable

65 // method name: setGates

66 // return value: void

67 // parameters: int newGates

68 // function: validates the newGates parameter.

69 // if newGates is greater than or equal to

0,

70 // sets gates to newGates;

71 // otherwise, does not change the value

of gates

72

73

74

75 } // end of Airport class definition

When you finish writing the methods for the Airport
class, compile the source file. When Airport.java
compiles without errors, load the
AirportPractice1Application.java file. This source file
contains main, so you will execute the application
from this file. When the application begins, you
should see the window shown in Figure 7.5.

Figure 7.5
Programming Activity 1 Opening Window

As you can see, the AirportDrawing has declared two
Airport object references, airport1 and airport2. The
references are null because no Airport objects have
been instantiated.

The client application will instantiate the Airport
objects and call the methods you have written for the
Airport class. As the application does its work, it
displays a status message at the bottom of the
window that indicates which method it has called. It
also displays the current values of both Airport
objects. You can check your work by comparing the
values in the objects with the status message. Figure
7.6 shows the AirportPractice1Application application
when it has finished instantiating Airport objects and
calling Airport methods.

Figure 7.6
AirportPractice1Application When Complete

DISCUSSION QUESTIONS
1. Why does the default constructor need to set a value for

the airport code?
2. Explain the importance of using standard naming

conventions for accessor and mutator methods.

7.9 The Object Reference this
When an object is instantiated, a copy of each of the
instance variables is created. However, all objects of
a class share one copy of the methods. How, then,
does a method know for which object the method
was called? In other words, how does a method
know which object’s data it should get, set, or use to
calculate a value? The answer is the special object
reference named this.

When a method begins executing, the JVM sets the
object reference, this, to refer to the object for which
the method has been called. That object reference is
called the implicit parameter. When a method
references an instance variable, it will access the
instance variable that belongs to the object that the
implicit parameter references. In other words, by
default, any instance variable referred to by a
method is considered to be this.instanceVariable.

Preceding an instance variable name with this is
optional; when just the instance variable name is
used (without any object reference), this is assumed.
Consequently, we usually omit the this reference and
use just the instance variable name.

However, in methods where you need to avoid
ambiguity in variable names, you can precede an
instance variable name with this. That approach
comes in handy as a way to avoid one of the
common errors we discussed earlier in the chapter:
A parameter of a mutator method with the same
name as the instance variable hides the instance
variable. We can eliminate this problem by using the
this reference with the instance variable, which
effectively uncovers the instance variable name.

For example, some programmers would code the
setModel mutator as follows:

public void setModel(String model)

{

 this.model = model;

}

Here we give the parameter, model, the same name
as the instance variable it represents. Then in the
assignment statement, we use the this reference to
distinguish the instance variable from the parameter.
Now it is clear that the parameter value, model,
should be assigned to the instance variable,
this.model.

Furthermore, some programmers, particularly in the
Android community, would code the setModel

mutator so that it returns a reference to this Auto, as
follows:

public Auto setModel(String model)

{

 this.model = model;

 return this;

}

The benefit of returning this is that we can chain
method calls. For example, assuming the
setMilesDriven and setGallonsOfGas mutators also
return this and sporty is an Auto object, we could
chain method calls as follows:

sporty.setGallonsOfGas(3.4).setMilesDriven(67);

Since the . (dot) operator associates left to right, the
above statement is equivalent to:

(sporty.setGallonsOfGas(3.4)).setMilesDriven(67

);

Since the setGallonsOfGas method returns this—
that is, the object reference that called it—it returns
sporty in the above statement. Thus, the expression
sporty.setGallonsOfGas(3.4) evaluates to
sporty, which in turns calls the method
setMilesDriven with argument 67, as shown below:

(sporty).setMilesDriven(67);

Example 7.10 shows Version 5 of our Auto class.
The three mutators (lines 54–60, 62–70, and 72–80)
all use and return the this reference.

EXAMPLE 7.10 Auto Class,
Version 5

 1 /* Auto class, Version 5

 2 Anderson, Franceschi

 3 */

 4

 5 public class Auto

 6 {

 7 // instance variables

 8 private String model; // model of

auto

 9 private int milesDriven; // number of

miles driven

10 private double gallonsOfGas; // number of

gallons of gas

11

12 // Default constructor:

13 // initializes model to "unknown";

14 // milesDriven is autoinitialized to 0

15 // and gallonsOfGas to 0.0

16 public Auto()

17 {

18 model = "unknown";

19 }

20

21 // Overloaded constructor:

22 // allows client to set beginning values for

23 // model, milesDriven, and gallonsOfGas.

24 public Auto(String startModel,

25 int startMilesDriven,

26 double startGallonsOfGas)

27 {

28 model = startModel;

29 setMilesDriven(startMilesDriven);

30 setGallonsOfGas(startGallonsOfGas);

31 }

32

33 // Accessor method:

34 // returns current value of model

35 public String getModel()

36 {

37 return model;

38 }

39

40 // Accessor method:

41 // returns current value of milesDriven

42 public int getMilesDriven()

43 {

44 return milesDriven;

45 }

46

47 // Accessor method:

48 // returns current value of gallonsOfGas

49 public double getGallonsOfGas()

50 {

51 return gallonsOfGas;

52 }

53

54 // Mutator method:

55 // allows client to set model

56 public Auto setModel(String model)

57 {

58 this.model = model;

59 return this;

60 }

61

62 // Mutator method:

63 // allows client to set value of

milesDriven;

64 // if new value is not less than 0

65 public Auto setMilesDriven(int milesDriven

)

66 {

67 if (milesDriven >= 0)

68 this.milesDriven = milesDriven;

69 return this;

70 }

71

72 // Mutator method:

73 // allows client to set value of

gallonsOfGas;

74 // if new value is not less than 0.0

75 public Auto setGallonsOfGas(double

gallonsOfGas)

76 {

77 if (gallonsOfGas >= 0.0)

78 this.gallonsOfGas = gallonsOfGas;

79 return this;

80 }

81

82 // Calculates miles per gallon.

83 // if no gallons of gas have been used,

returns 0.0;

84 // otherwise, returns miles per gallon

85 // as milesDriven / gallonsOfGas

86 public double milesPerGallon()

87 {

88 if (gallonsOfGas >= 0.0001)

89 return milesDriven / gallonsOfGas;

90 else

91 return 0.0;

92 }

93

94 // Calculates money spent on gas.

95 // returns price per gallon times gallons

of gas

96 public double moneySpentOnGas(double

pricePerGallon)

97 {

98 return pricePerGallon * gallonsOfGas;

99 }

100 }

At line 10 of Example 7.11, we demonstrate how we
can chain calls to methods that return the this
reference. Figure 7.7 shows the output of the
program.

Figure 7.7
Output from Auto Client, Version 5

Miles driven is 67

Gallons of gas is 3.4

EXAMPLE 7.11 Auto Client,
Version 5
 1 /* Auto Client, Version 5

 2 Anderson, Franceschi

 3 */

 4

 5 public class AutoClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 Auto sporty = new Auto("Spyder", 0, 0.0);

10 sporty.setGallonsOfGas(3.4

).setMilesDriven(67);

11

12 int sportyMiles = sporty.getMilesDriven();

13 double sportyGallons =

sporty.getGallonsOfGas();

14

15 System.out.println("Miles driven is " +

sportyMiles

16 + "\nGallons of gas is " +

sportyGallons);

17 }

18 }

7.10 The toString and equals
Methods
In addition to constructors, mutator methods, and
accessor methods, a well-designed class usually
implements the toString and equals methods.

The toString method is called automatically when an
object reference is used as a String. For example,
the toString method for an object is called when the
object reference is used with, or as, a parameter to
System.out.println. The function of the toString
method is to return a printable representation of the
object data.

The equals method is designed to compare two
objects for equality; that is, it typically returns true if
the corresponding instance variables in both objects
are equal in value. The equals method takes an
Object reference parameter that is expected to be an
Auto reference and returns true if the values of its
fields are equal to the values of the fields of this Auto
object, false otherwise.

All classes inherit a version of the toString and the
equals methods from the Object class, but these
versions do not provide the functionality we
described earlier. Thus, it is good practice to provide

new versions of these methods. To do that, we use
the same header as the methods in the Object class
but provide a new method body. This is called
overriding a method.

The APIs of the toString and equals methods are the
following:

public String toString()

public boolean equals(Object o)

Example 7.12 shows the code added in Version 6 of
the Auto class with implementations of the toString
method (lines 103–112) and the equals method
(lines 114–132). When overriding a method, a good
programming practice is add the @Override
annotation before the method header (lines 104 and
116). It tells the compiler that the method that follows
is overriding a method inherited from another class.
And in turn, the compiler warns us if our method
header does not in fact override the inherited
method.

EXAMPLE 7.12 Auto Class,
Version 5

 1 /* Auto class, Version 6

 2 Anderson, Franceschi

 3 */

 4

 5 import java.text.DecimalFormat;

 6

 7 public class Auto

 8 {

 9

...

103 // toString: returns a String of instance

variable values

104 @Override

105 public String toString()

106 {

107 DecimalFormat gallonsFormat = new

DecimalFormat("#0.00");

108 return "Model: " + model

109 + "; miles driven: " + milesDriven

110 + "; gallons of gas: "

111 + gallonsFormat.format(

gallonsOfGas);

112 }

113

114 // equals: returns true if fields of

parameter object

115 // are equal to fields in this

object

116 @Override

117 public boolean equals(Object o)

118 {

119 if (! (o instanceof Auto))

120 return false;

121 else

122 {

123 Auto objAuto = (Auto) o;

124 if (model.equals(objAuto.model)

125 && milesDriven ==

objAuto.milesDriven

126 && Math.abs(gallonsOfGas -

objAuto.gallonsOfGas)

127

< 0.0001)

128 return true;

129 else

130 return false;

131 }

132 }

133 }

In the toString method (lines 103–111), we begin by
instantiating a DecimalFormat object for formatting
the gallons of gas as a floating-point number with
one decimal place. Note that gallonsFormat is a local
variable for the toString method; that is, only the
toString method can use the gallonsFormat object.
To use the DecimalFormat class, we import the class

on line 5. We then build the String to return by
concatenating labels for each instance variable with
the values of the instance variables. The toString
method can be used in a client class containing the
main method, for instance, to print Auto objects
using a single statement instead of calling all the
class accessor methods.

To implement our equals method (lines 113–130), we
first need to check that the parameter’s type is Auto.
The instanceof binary operator, whose left operand
is an object reference and right operand is a class,
evaluates to true if the object reference can be cast
to an instance of the class (for example, if it is an
object reference of that class) and false otherwise
(Table 7.4.). We use the instanceof operator at line
117 to determine if the parameter o can be cast to an
Auto object reference (most likely, when sent by a
client, o will be an Auto reference). If it cannot, we
return false; otherwise, we can proceed with
comparing o’s fields and this Auto object’s fields.
Before performing the comparison, we must cast the
Object reference o to an Auto (line 121). Otherwise,
there would be a compiler error when trying to
access the instance variable model with the Object
o, because model is an instance variable of class
Auto and not of class Object.

TABLE 7.4 The instanceof Operator
Operator Syntax Operation
instanceof objectReference

instanceof
ClassName

evaluates to true if
objectReference is of
ClassName type; false otherwise

We compare each instance variable in the parameter
object, objAuto, with the same instance variable in
this object. We return true if the corresponding
instance variables in each object have the same
values; otherwise, we return false.

Notice that line 122 calls the equals method of the
String class to compare the values of model in the
objects because model is a String object reference.
Notice also that because instance variables are in
scope for methods, our equals method is able to
directly access the instance variables of both this
object and the Auto object, objAuto.

Example 7.13 puts Version 6 of the Auto class to
work. We instantiate two objects that differ only in the
model. On line 10, we explicitly call toString to print
the fields of the sporty object. On line 14, we
implicitly call the toString method; toString is called
automatically because the compact object is the
argument sent to the println method. On lines 16–19,
we compare the two objects using the equals

method and print the results. The output is shown in
Figure 7.8.

Figure 7.8
Output from Example 7.13

Model: Spyder; miles driven: 0; gallons of gas:

0.00

Model: Accent; miles driven: 0; gallons of gas:

0.00

sporty and compact are not equal

EXAMPLE 7.13 Auto Client,
Version 6
 1 /* Auto Client, version 6

 2 Anderson, Franceschi

 3 */

 4

 5 public class AutoClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 Auto sporty = new Auto("Spyder", 0, 0.0);

10 System.out.println(sporty.toString());

11

12 Auto compact = new Auto("Accent", 0, 0.0

);

13 System.out.println();

14 System.out.println(compact);

15

16 if (compact.equals(sporty))

17 System.out.println("\nsporty and compact

are equal");

18 else

19 System.out.println("\nsporty and compact

are not equal");

20 }

21 }

Notice that the toString method returns a String. It
does not output the data itself using
System.out.println. By returning the object values as
a String, the class is more reusable. The client can
choose how best to handle the returned values. If the
client is a text application, it may indeed print the
values using System.out.println. But if the client has
a graphics window, it may want to display the data in
a text box or by using the JavaFX fillText method.
Notice also that the equals method does not output a
message stating whether the two objects are equal.
Instead, the equals method returns true or false so
that the client can test the return value and change
its behavior depending on whether the objects are
equal or not equal. For similar reasons, the
accessors return the values of the instance variables
rather than outputting those values.

SOFTWARE ENGINEERING TIP
The class methods should communicate directly with
the client, and the client should handle the
communications with the user.

As a general software engineering principle, class
methods should communicate only with the client.
The client, in turn, communicates with the user. In
particular, the class methods should not output
anything; the decision on what to output should be

left to the client of the class. Thus, the client accepts
requests from the user, calls the class methods and
receives the returned values from the class, and then
communicates those results to the user, as
appropriate. Figure 7.9 illustrates this design
principle.

Figure 7.9
Communication Flow among the User, Client, and
Class

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie with step-by-step illustrations on how to
define a class. Click on the link to start the
movie.

7.11 Static Class Members
As we have mentioned, a separate set of instance
variables is created for each object that is
instantiated. In addition to instance variables,
classes can define class variables, which are
created only once, when the JVM initializes the
class. Thus, class variables exist before any objects
are instantiated, and each class has only one copy of
its class variables.

You can designate a class variable by using the
keyword static in its definition. Also, static variables
that are constants are usually declared to be public
because they typically are provided to make it easier
to use the class. For example, the PI and E static
constants in the Math class are provided so that our
applications do not need to define those commonly
used values. The Color class provides public static
color constants, such as RED, for convenience when
using common colors. Also, the maximum and
minimum values for data types are made available
as the MAX_VALUE and MIN_VALUE public static
constants of the Integer, Double, and Character
wrapper classes.

If, however, you define a static variable for your class
that is not a constant, it is best to define it as private

and provide accessor and mutator methods, as
appropriate, for client access to the static variable.

We finish our Auto class, with Version 7, partially
shown in Example 7.14, by defining a private static
variable to count the number of objects that have
been instantiated during the application. We call this
class variable countAutos and initialize it to 0 (line
14). Because a constructor is called whenever an
object is instantiated, we can update the count by
incrementing the value of countAutos in the class
constructors (lines 24 and 37).

When you define a static variable for your class, its
accessor and mutator methods must be defined as
static methods, also called class methods. To do
this, insert the keyword static in the method headers
after the access modifier. We provide a static
accessor method for the client to get the count of
Auto objects (lines 61–66). We do not provide a
mutator method, however, because clients of the
class should not be able to update the value of
countAutos. The constructors update the count
automatically.

Methods that are defined to be static are subject to
the following important restrictions, which are
summarized in Table 7.5:

static methods can reference only static
variables.

static methods can call only static methods.

static methods cannot use the object
reference this.

TABLE 7.5 Access Restrictions for static
and Non-static Methods

static
Method

Non-static
Method

Access instance variables? no yes

Access static class variables? yes yes

Call static class methods? yes yes

Call non-static instance
methods?

no yes

Use the reference this? no yes

Again, it makes sense that static methods cannot
access instance variables because static methods
are associated with the class, not with any object.
Further, a static method can be called before any
objects are instantiated, so there will be no instance
variables to access. Attempting to access an
instance variable xxx from a static method will
generate this compiler error:

non-static variable xxx cannot be referenced from a

static context

Notice that the getCountAutos method (lines 61–66)
is declared to be static and references only the static
countAutos variable.

A non-static, or instance, method, on the other
hand, can reference both class variables and
instance variables, as well as class methods and
instance methods.

EXAMPLE 7.14 Auto Class,
Version 7

 1 /* Auto class, Version 7

 2 Anderson, Franceschi

 3 */

 4

 5 import java.text.DecimalFormat;

 6

 7 public class Auto

 8 {

 9 // instance variables

10 private String model; // model of

auto

11 private int milesDriven; // number of

miles driven

12 private double gallonsOfGas; // number of

gallons of gas

13

14 private static int countAutos = 0; // static

class variable

15

16 // Constructors:

17 // initializes model to "unknown";

18 // milesDriven is autoinitialized to 0

19 // and gallonsOfGas to 0.0;

20 // increments countAutos

21 public Auto()

22 {

23 model = "unknown";

24 countAutos++; // increment static count

of Auto objects

25 }

26

27 // allows client to set beginning values for

28 // model, milesDriven, and gallonsOfGas;

29 // increments countAutos

30 public Auto(String startModel,

31 int startMilesDriven,

32 double startGallonsOfGas)

33 {

34 model = startModel;

35 setMilesDriven(startMilesDriven);

36 setGallonsOfGas(startGallonsOfGas);

37 countAutos++; // increment static count

of Auto objects

38 }

 ...

61 // Accessor method:

62 // returns countAutos

63 public static int getCountAutos()

64 {

65 return countAutos;

66 }

 ...

145 }

Example 7.15 shows Version 7 of our AutoClient
class. At line 11 we call the getCountAutos method
before instantiating any objects, then in line 17 we

call the getCountAutos method again after
instantiating one object. As Figure 7.10 shows, the
getCountAutos method first returns 0, then 1. Notice
that in both calls to the static method, we use the dot
operator with the class name rather than an object
reference.

Figure 7.10
Output from Example 7.15

Before instantiating an Auto object:

the count of Auto objects is 0

After instantiating an Auto object:

the count of Auto objects is 1

EXAMPLE 7.15 Auto Client,
Version 6
 1 /* Auto Client, Version 7

 2 Anderson, Franceschi

 3 */

 4

 5 public class AutoClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 System.out.println("Before instantiating

an Auto object:"

10 + "\nthe count of Auto

objects is "

11 + Auto.getCountAutos()

);

12

13 Auto sporty = new Auto("Spyder", 0, 0.0);

14

15 System.out.println("\nAfter instantiating

an Auto object:"

16 + "\nthe count of Auto

objects is "

17 + Auto.getCountAutos()

);

18 }

19 }

Well, there it is. We’ve finished defining our Auto
class. Although it’s a large class, we were able to
build the Auto class incrementally using stepwise
refinement.

7.12 Graphical Objects
Now that we know how to design our own classes, we can
separate a graphical object from an application. For example,
we can define a sprite in its own Sprite class and write a client
application that will instantiate and draw Sprite objects. This
will allow us to encapsulate the sprite’s data and the code for
drawing the sprite within the Sprite class. It also promotes
reuse of the Sprite class by other programmers who might
want to create Sprite objects for different applications.

The Sprite class is shown in Example 7.16. We start by
defining the instance variables. We need the starting (x, y)
coordinate to draw the sprite, so we define two int instance
variables to hold those values (lines 9–10). The sX variable is
the leftmost point of the drawing (the upper-left corner of the
rectangle enclosing the body), and sY represents the topmost
point (the top of the sprite’s hat).

In addition, we added one more instance variable, scale (line
11), to allow the client to draw sprites of different sizes. For
example, a scaling factor of 1.0 will draw the sprite at full size,
0.5 will draw the sprite at half size, and 2.0 will draw a double-
sized sprite.

We provide a default constructor (lines 13–19) that
autoinitializes sX and sY to 0 and sets scale to 1. Our
overloaded constructor (lines 21–29) accepts values for the
three instance variables and passes those values to the
appropriate mutator methods.

We provide one mutator method to change both x and y
values (lines 31–40), as well as another mutator to change
the scaling factor (lines 42–49).

We provide a method, draw (lines 51–79), that draws the
sprite on a canvas. Because the sprite is drawn using
methods of the GraphicsContext class, the application client
needs to pass its GraphicsContext object as an argument to
the draw method. In the draw method, we draw the sprite,
multiplying any length measurement by the scaling factor.

We do not provide accessor methods, a toString method, or
an equals method for the Sprite class. For a graphical object,
these methods are less useful, given that the major purpose
of graphical objects is to be drawn.

EXAMPLE 7.16 The Sprite Class

 1 /* Sprite class

 2 Anderson, Franceschi

 3 */

 4 import javafx.scene.canvas.*;

 5 import javafx.scene.paint.*;

 6

 7 public class Sprite

 8 {

 9 private int sX;

10 private int sY;

11 private double scale;

12

13 /** default constructor

14 * sX = sY = 0; scale is set to 1

15 */

16 public Sprite()

17 {

18 scale = 1;

19 }

20

21 /* overloaded constructor

22 accepts values for starting x and y coordinates

23 and scale

24 */

25 public Sprite(int sX, int sY, double scale)

26 {

27 setCoordinates(sX, sY);

28 setScale(scale);

29 }

30

31 /* setCoordinates

32 * accepts new values for starting x and y;

33 * returns a reference to this object

34 */

35 public Sprite setCoordinates(int sX, int sY)

36 {

37 this.sX = sX;

38 this.sY = sY;

39 return this;

40 }

41

42 /* mutator for scale

43 * returns a reference to this object

44 */

45 public Sprite setScale(double scale)

46 {

47 this.scale = (scale > 0 ? scale : this.scale);

48 return this;

49 }

50

51 /* draw method

52 * draws Sprite at current sX and sY

53 * multiplying lengths by scale

54 * accepts GraphicsContext for canvas

55 */

56 public void draw(GraphicsContext gc)

57 {

58 gc.setFill(Color.CORAL); // body

59 gc.fillOval(sX, sY + 15 * scale, 90 * scale, 120 *

scale);

60 gc.setFill(Color.DARKGOLDENROD); // hat

61 gc.fillRect(sX + 23 * scale, sY, 45 * scale, 22 *

scale);

62 gc.setStroke(Color.DARKGOLDENROD); // hat brim

63 gc.setLineWidth(3);

64 gc.strokeLine(sX, sY + 23 * scale,

65 sX + 90 * scale, sY + 23 * scale);

66 gc.setFill(Color.CHOCOLATE); // eye

67 gc.fillOval(sX + 60 * scale, sY + 45 * scale,

68 18 * scale, 12 * scale);

69 gc.setFill(Color.DARKSALMON); // feet

70 gc.setLineWidth(1);

71 gc.fillOval(sX + 45 * scale, sY + 125 * scale,

72 45 * scale, 12 * scale);

73 gc.strokeOval(sX + 45 * scale, sY + 125 * scale,

74 45 * scale, 12 * scale);

75 gc.fillOval(sX + 27 * scale, sY + 127 * scale,

76 45 * scale, 12 * scale);

77 gc.strokeOval(sX + 27 * scale, sY + 127 * scale,

78 45 * scale, 12 * scale);

79 }

80 }

Now we can create the client application, SpriteClient.java,
which is shown in Example 7.17. An advantage to separating
the Sprite class from the SpriteClient class is that we can now
easily draw two or more sprites with different sizes in different
locations. The SpriteClient class defines three Sprite
references as instance variables (line 11). We instantiate
these Sprite objects with different starting coordinates and
scales (lines 18–20). We call the draw method for each Sprite
object (lines 22–24), passing to the draw method the
GraphicsContext object reference gc that was returned by the
JIGraphicsUtility’s setUpGraphics method (lines 16–17). The
application window is shown in Figure 7.11.

Figure 7.11
The SpriteClient Window

EXAMPLE 7.17 The SpriteClient Class

 1 /* A client for the Sprite class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.stage.Stage;

 8

 9 public class SpriteClient extends Application

10 {

11 private Sprite s1, s2, s3;

12

13 @Override

14 public void start(Stage stage)

15 {

16 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

17 stage, "Sprites", 700, 400);

18 s1 = new Sprite(100, 50, .5);

19 s2 = new Sprite(225, 100, 1);

20 s3 = new Sprite().setCoordinates(400, 150

).setScale(1.5);

21

22 s1.draw(gc);

23 s2.draw(gc);

24 s3.draw(gc);

25 }

26

27 public static void main(String [] args)

28 {

29 launch(args);

30 }

31 }

7.13 Enumeration Types
Enumeration types are designed to increase the
readability of programs. The enumeration type enum
is a special kind of class declaration. It allows us to
define a set of named constant objects that can be
used instead of numbers in a program.

Enum types are useful for managing ordered sets
where each member of the set has a name.
Examples are the days of the week, months of the
year, and playing cards. To represent these sets in a
program, we often use numbers, such as 1 through 7
for days of the week or 1 through 12 for months of
the year. The problem is that to input or output these
values, we need to convert between our internal
numeric representation (for example, 1–7) and the
words that users recognize (Sunday, Monday,
Tuesday, etc.). The enum type allows us to
instantiate a constant object for each value in a set.
The set of objects will be ordered so that we can
refer to the objects by name, without the need for
using numbers.

The enum functionality is built into java.lang, so we
can define enum types without using an import
statement.

The syntax for creating a set of enum objects is

enum EnumName { obj1, obj2, . . . };

where obj1, obj2, etc. are names for the constant

objects.

For example, the following statement defines an
enum type to represent the days of the week:

enum Days { Sun, Mon, Tue, Wed, Thur, Fri, Sat };

When that statement is executed, an object is
instantiated for each name in the list. Each name in
the list, therefore, is a reference to an object of the
enum type Days.

COMMON ERROR TRAP
Do not use String literals in the initialization list for
enum types.

Note that the values in the initialization list are object
references (Sun), not String literals (“Sun”).

Each object has an instance variable that holds a
numeric value, which is determined by its position in
the list of enum objects. By default, the first object
has the value 0, the second object has the value 1,
and so on. Because the objects are an ordered set,

for example, the object Thur is higher in value than
Wed. We can use the enum objects, however,
without relying on the specific value of each object.

The enum objects are instantiated as constant
objects, meaning that their values cannot be
changed.

To refer to any of the constant objects in an enum
type, we use the following dot syntax:

enumType.enumObject

Thus, to refer to the Wed object in our Days enum
type, we use this syntax:

Days.Wed

Once we have defined an enum type, we can
declare an object reference of that type. For
example, the following statement defines a Days
object reference d:

Days d;

Like any other object reference, the value of d will be
null initially. To assign a value to the reference d—for
example, Thur—we use the following statement:

d = Days.Thur;

Table 7.6 lists some useful methods that can be
called with enum objects, and Example 7.18
demonstrates the use of these methods.

TABLE 7.6 Useful Methods for enum
Objects

Useful Methods for enum Objects
Return
type

Method name and argument list

int compareTo(Enum eObj)

compares two enum objects and returns a
negative number if this object is less than the
argument, a positive number if this object is
greater than the argument, and 0 if the two
objects are the same

boolean equals(Object eObj)

returns true if this object is equal to the
argument eObj; returns false otherwise

int ordinal()

returns the numeric value of the enum object; by
default, the value of the first object in the list is 0,
the value of the second object is 1, and so on

String toString()

returns the name of the enum constant

enum valueOf(String enumName)

static method that returns the enum object
whose name is the same as the String argument
enumName

EXAMPLE 7.18 A Demonstration of
enum Methods

 1 /* Demonstration of enum

 2 Anderson, Franceschi

 3 */

 4

 5 public class EnumDemo

 6 {

 7 public enum Days { Sun, Mon, Tue, Wed, Thur,

Fri, Sat };

 8

 9 public static void main(String [] args)

10 {

11 Days d1, d2; // declare two Days object

references

12

13 d1 = Days.Wed;

14 d2 = Days.Fri;

15

16 System.out.println("Comparing objects using

equals");

17 if (d1.equals(d2))

18 System.out.println(d1 + " equals " + d2

);

19 else

20 System.out.println(d1 + " does not equal

" + d2);

21

22 System.out.println("\nComparing objects

using compareTo");

23 if (d1.compareTo(d2) > 0)

24 System.out.println(d1 + " is greater than

" + d2);

25 else if (d1.compareTo(d2) < 0)

26 System.out.println(d1 + " is less than "

+ d2);

27 else

28 System.out.println(d1 + " is equal to " +

d2);

29

30 System.out.println("\nGetting the ordinal

value");

31 System.out.println("The value of " + d1 + "

is "

32 + d1.ordinal());

33

34 System.out.println("\nConverting a String

to an object");

35 Days day = Days.valueOf("Mon");

36 System.out.println("The value of day is " +

day);

37 }

38 }

Line 7 defines the enum type Days; this instantiates
the seven constant objects representing the days of
the week. On line 11, we declare two object
references of the Days enum type. Then on lines 13

and 14, we assign d1 a reference to the Wed object,
and we assign d2 a reference to the Fri object.

Line 17 compares d1 and d2 using the equals
method. Because Wed and Fri are different objects,
the equals method returns false. Lines 18 and 20
implicitly call the toString method, which prints the
name of the objects.

Lines 23 and 25 call the compareTo method, which
returns a negative number, indicating that Wed is
lower in value than Fri.

We then retrieve the value of the d1 object by calling
the ordinal method (lines 31–32), which returns 3
because Wed is the fourth object in the enum list.

Finally, line 35 converts from a String to an enum
object using the valueOf method. Notice that the
valueOf method is static, so we call it using our
enum type, Days.

If the String passed to the valueOf method is not a
name in our set of defined enum objects, the valueOf
method generates an IllegalArgumentException.

The output from Example 7.18 is shown in Figure
7.12.

Figure 7.12
Output from Example 7.18

Comparing objects using equals

Wed does not equal Fri

Comparing objects using compareTo

Wed is less than Fri

Getting the ordinal value

The value of Wed is 3

Converting a String to an object

The value of day is Mon

We can use enum objects in switch statements to
make the case constants more meaningful, which in
turn makes the code more readable. Example 7.19
uses our Days enum class to display the daily
specials offered in the cafeteria.

EXAMPLE 7.19 DailySpecials
Class

 1 /** Specials of the Day

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class DailySpecials

 8 {

 9 public enum Days { Sun, Mon, Tue, Wed, Thur,

Fri, Sat };

10

11 public static void main(String [] args)

12 {

13 Scanner scan = new Scanner(System.in);

14

15 System.out.print("Enter a day\n"

16 + "(Sun, Mon, Tue, Wed,

Thur, Fri, Sat) > ");

17 String inputDay = scan.next();

18 Days day = Days.valueOf(inputDay);

19

20 switch (day)

21 {

22 case Mon:

23 System.out.println("The special for

"

24 + day + " is

barbeque chicken.");

25 break;

26

27 case Tue:

28 System.out.println("The special for

"

29 + day + " is

tacos");

30 break;

31

32 case Wed:

33 System.out.println("The special for

"

34 + day + " is

chef's salad");

35 break;

36

37 case Thur:

38 System.out.println("The special for

"

39 + day + " is a

cheeseburger");

40 break;

41

42 case Fri:

43 System.out.println("The special for

"

44 + day + " is

fish fillet");

45 break;

46

47 default: // if day is Sat or Sun

48 System.out.println("Sorry, we're

closed on "

49 + day);

50 }

51 }

52 }

Figure 7.13 shows the output from Example 7.19
when the user enters Fri.

Figure 7.13
Output from DailySpecials

Enter a day

(Sun, Mon, Tue, Wed, Thur, Fri, Sat) > Fri

The special for Fri is fish fillet

In the DailySpecials program, we prompt the user for
a day (lines 15–17), then read the String entered by
the user and attempt to convert it to an enum object
by calling the valueOf method at line 18.

Once we have a valid enum value, we can use it as
a switch variable (line 20).

Notice that we use each enum object name in a case
label without qualifying it with the Days type.
Including the enum type in a switch statement
generates the following compiler error:

an enum switch case label must be the unqualified

name of an enumeration constant

Notice also that if the user enters a String that does
not match one of the seven valid day values, the call
to the valueOf method at line 18 will cause an
IllegalArgumentException to occur at run time.

Skill Practice
with these end-of-chapter questions

7.18.1 Multiple Choice Exercises

Questions 14, 15, 16

7.18.2 Reading and Understanding Code

Questions 21, 22, 23, 25, 27

7.18.3 Fill In the Code

Questions 29, 34, 35

7.18.4 Identifying Errors in Code

Questions 40, 41, 42, 44, 46

7.18.5 Debugging Area

Questions 50, 51, 53, 54

7.18.6 Write a Short Program

Questions 55, 56, 57, 58, 59, 60, 61, 62,
63, 64

7.18.8 Technical Writing

Question 76

7.14 Programming Activity 2:
Writing a Class Definition, Part 2
In this programming activity, you will complete the
definition of the Airport class. Then you will run a
prewritten client program that instantiates several
Airport objects, calls the methods that you have
written, and displays the values of the objects’ data.

Copy into a folder on your computer all the files from
this chapter’s Programming Activity 2 folder in the
supplied code files. Note that all files should be in the
same folder.

Load the Airport.java source file; you’ll notice that the
class already contains the class definition from
Programming Activity 1. Your job is to complete the
class definition by adding a static class variable (and
its supporting code) and writing the toString and
equals methods. It is important to define the static
class variable and the methods exactly as described
in the comments, because the AirportDrawing class
will call each method to test its implementation.
Searching for five asterisks in a row (*****) will
position you at the six places in the class definition
where you will add your code. The Airport.java code
is shown here in Example 7.20:

EXAMPLE 7.20 The Airport.java
File

 1 /* Airport class

 2 Anderson, Franceschi

 3 */

 4

 5 public class Airport

 6 {

 7

 8 // instance variables

 9 private String airportCode;

10 private int gates;

11

12 // 1. ***** Add a static class variable *****

13 // countAirports is an int

14 // assign an initial value of 0

15

16

17 // 2. ***** Modify this method *****

18 // Default constructor:

19 // method name: Airport

20 // return value: none

21 // parameters: none

22 // function: sets the airportCode to an empty

String

23 // ***** add 1 to countAirports class

variable

24 public Airport()

25 {

26 airportCode = "";

27

28 }

29

30 // 3. ***** Modify this method *****

31 // Overloaded constructor:

32 // method name: Airport

33 // return value: none

34 // parameters: a String airport code and an

int startGates

35 // function: assigns airportCode the value of

the

36 // startAirportCode parameter;

37 // calls the setGates method,

38 // passing the startGates parameter

39 // ***** add 1 to countAirports class

variable

40 public Airport(String startAirportCode, int

startGates)

41 {

42 airportCode = startAirportCode;

43 setGates(startGates);

44

45 }

46

47 // Accessor method for the airportCode instance

variable

48 // method name: getAirportCode

49 // return value: String

50 // parameters: none

51 // function: returns airportCode

52 public String getAirportCode()

53 {

54 return airportCode;

55 }

56

57 // Accessor method for the gates instance

variable

58 // method name: getGates

59 // return value: int

60 // parameters: none

61 // function: returns gates

62 public int getGates()

63 {

64 return gates;

65 }

66

67 // 4. ***** Write this method *****

68 // Accessor method for the countAirports class

variable

69 // method name: getCountAirports

70 // return value: int

71 // parameters: none

72 // function: returns countAirports

73

74

75

76

77 // Mutator method for the airportCode instance

variable

78 // method name: setAirportCode

79 // return value: Airport

80 // parameters: String airportCode

81 // function: assigns airportCode the value of

the

82 // airportCode parameter

83 public Airport setAirportCode(String

airportCode)

84 {

85 this.airportCode = airportCode;

86 return this;

87 }

88

89 // Mutator method for the gates instance

variable

90 // method name: setGates

91 // return value: Airport

92 // parameters: int gates

93 // function: validates the gates parameter.

94 // if gates is greater than 0, sets gates to

gates;

95 // otherwise, does not change value of gates

96 public Airport setGates(int gates)

97 {

98 if (gates >= 0)

99 this.gates = gates;

100 return this;

101 }

102

103 // 5. ***** Write this method *****

104 // method name: toString

105 // return value: String

106 // parameters: none

107 // function: returns a String that contains

the airportCode

108 // and gates

109

110

111

112

113

114

115 // 6. ***** Write this method *****

116 // method name: equals

117 // return value: boolean

118 // parameter: Airport object

119 // function: returns true if airportCode

120 // and gates in this object

121 // are equal to those in the parameter

object;

122 // returns false otherwise

123

124

125

126

127

128

129

130 } // end of Airport class definition

When you finish modifying the Airport class, compile
the source file. When Airport.java compiles without
any errors, load and compile the
AirportPractice2Application.java file. This source file
contains main, so you will execute the application
from this file. When the application begins, you
should see the window shown in Figure 7.14.

Figure 7.14
AirportPractice2Application Opening Window

As you can see, the client class has declared two
Airport object references, airport1 and airport2. The
references are null because no Airport objects have
been instantiated. Note also that the value of the
countAirports class variable is displayed.

The client class will call methods of the Airport class
to instantiate the two Airport objects, call the toString

and equals methods, and get the value of the static
class variable, countAirports. As the application does
its work, it displays a status message at the bottom
of the window indicating which method has been
called, and it also displays the current state of the
Airport objects. You can check your work by
comparing the state of the objects with the status
message.

DISCUSSION QUESTIONS
1. Explain why the countAirports class variable has a value

of 0 before any Airport objects have been instantiated.
2. How does a client call the getCountAirports method?
3. Explain why when directly comparing the object

references airport1 and airport2 using the following if
statement:

if (airport1 == airport2)

the condition evaluates to false?

7.15 Creating Packages
As we have mentioned, one of the advantages of a
well-written class is that it can be reused. Ideally, as
you write programs, you will look for functionality that
is common to many programs. It is a good practice to
encapsulate this functionality into a class so that you
can reuse that code in future programs. Java
provides the concept of a package for easily reusing
classes.

A package is a collection of related classes that can
be imported into programs. We have imported
classes from multiple Java packages: java.util,
java.text, and others. We can also create our own
packages, which allows us to reuse a class without
needing to physically store that class in the same
folder as our other source files. Instead, we create
the package and import the class from that package
into our source file. For instructions on how to create
a package, please see our additional resources
online.

7.16 Generating Web-Style
Documentation with Javadoc
In most corporations and organizations, programmers share
code and frequently use classes developed by another
programmer. If the class is well designed and well
documented, it will be easy for others to use that class. After
all, that is essentially what we have been doing by using
existing Java classes. It has been easy to understand what
functions these existing classes perform, what they
encapsulate, how the constructors work, what the methods
do, and how to use the classes. The reason that these
classes are easy to understand and use is not only that they
are well designed and written, but also that the available
documentation, particularly on Oracle’s Java website, is clear,
easy to understand, complete, and represents these classes
well.

We, too, will learn how to produce HTML-based
documentation similar to the documentation available on
Oracle’s Java website.

There is a tool called Javadoc, provided in the Java
Development Kit (JDK), to do just that. Javadoc is an
executable program (actually javadoc.exe) located in the bin
folder. It is invoked much the same way as the javac compiler,
except that instead of creating .class files, it creates .html files
that document the class.

For instance, to generate documentation for our Auto class,
we would type the following at the command line:

javadoc Auto.java

If we want to generate documentation for all the source files in
the directory, we would type:

javadoc *.java

Your IDE may provide easy access to Javadoc through its
menus.

Table 7.7 shows the files generated for the Auto class.

TABLE 7.7 HTML Files Generated by Javadoc
File Name Short Description
Auto.html Auto class documentation (without frames)

allclasses-frame.html List of the classes with links (with frames)

allclasses-noframe.html List of the classes with links (without frames)

constant-values.html Constants of the class with links

index.html Auto class documentation (with frames)

package-frame.html Frame for this package

package-list List of packages

package-summary.html Class hierarchy

script Javascript file

stylesheet.css Style sheet

If you double-click on index.html, you will open a webpage
with the same look as the ones on Oracle’s Java website.

REFERENCE POINT
The full documentation for using Javadoc can be found at
www.oracle.com/technetwork/java.

http://www.oracle.com/technetwork/java

We will review a few basic Javadoc features here. Full
documentation on Javadoc is available on Oracle’s website.

To write comments that will be included in the Javadoc
documentation, we use a special form of block comment
ahead of any class, field, constructor, or method. The syntax
for including Javadoc comments follows.

/**

Javadoc comment here

*/

As we already know, the syntax for a Java block comment is

/*

Java block comment here

*/

A Javadoc comment is just a special Java block comment.
The javac compiler will simply ignore it, but the Javadoc
executable will look for it and generate the appropriate
documentation. Javadoc discards all white space characters
and the * at the beginning of each line until a character other
than white space or * is encountered. The industry convention
is to start every line of a Javadoc comment with an *.
Therefore, we recommend the following syntax:

/**

* A Javadoc comment here

* A second Javadoc comment here

*

*/

SOFTWARE ENGINEERING TIP
When coding a documentation block, use an * at the
beginning of each line to indicate that this is a documentation
comment.

Class documentation comprises two parts:

A description section

A tag section

Javadoc recognizes two types of tags: block tags and inline
tags. We will discuss block tags only.

Block tags start with the character @. Table 7.8 lists two block
tags, @param and @return, along with an explanation of
each.

TABLE 7.8 Selected Javadoc Tags
Tag Most Common Syntax Explanation
@param @param variableName

description

Adds a parameter to the
parameter section

@return @return text Adds a description for the
return type

In the description section and inside the tag section, the text
should be written in HTML; therefore, HTML tags such as

 (break) or (bold) can be used. The tag

inserts a new line; the tag will change the text style
to bold until the end tag is encountered. Starting
with Java 9, Javadoc supports HTML5.

Example 7.21 shows a simplified version of our Auto class
incorporating some documentation comments:

EXAMPLE 7.21 The SimplifiedAuto Class

 1 /** Simplified Auto Class with Javadoc comments

 2 Anderson, Franceschi

 3 */

 4

 5 public class SimplifiedAuto

 6 {

 7 private String model;

 8 private int milesDriven;

 9 private double gallonsOfGas;

10

11 /**

12 * Default constructor:

13 * initializes model to "unknown"

14 * milesDriven are autoinitialized to 0, and gallonsOfGas

to 0.0

15 */

16 public SimplifiedAuto()

17 {

18 model = "unknown";

19 }

20

21 /**

22 * Mutator method:

23 * Allows client to set value of milesDriven

24 * setMilesDriven does not change the

value

25 * of milesDriven if newMilesDriven has

negative value

26 * @param milesDriven the new number of miles driven

27 * @return a reference to this object

28 */

29 public Auto setMilesDriven(int milesDriven)

30 {

31 if (milesDriven > 0)

32 this.milesDriven = newMilesDriven;

33 return this;

34 }

35

36 /**

37 * Accessor method for milesDriven:

38 * @return an int, the value of milesDriven

39 */

40 public int getMilesDriven()

41 {

42 return milesDriven;

43 }

44 }

SOFTWARE ENGINEERING TIP
When you write a class, add a few documentation comments
and generate the web-style documentation. Show the
webpages to friends or colleagues and ask them if they fully
understand what the class encapsulates and what it is about.
Ask them a few questions about the constructor and the
methods. This is a good way to check if your class is well
designed and ready for reuse.

Figure 7.15 shows part of the generated index.html file, and
Figure 7.16 shows the generated documentation for the
setMilesDriven and getMilesDriven methods.

Figure 7.15
SimplifiedAuto Class Web-Style Documentation

Figure 7.16
Web-Style Documentation for the Mutator and Accessor
Methods

CHAPTER REVIEW

7.17 Chapter Summary
The members of a Java class include its
instance variables, class variables, and
methods.

One copy of each instance variable is
created for every object instantiated from the
class. One copy of each class variable and
method is shared by all objects of the class.

By convention, class names are nouns and
begin with a capital letter; all internal words
begin with a capital letter, and other letters
are lowercase. Method names are verbs and
begin with a lowercase letter; internal words
begin with a capital letter, and all other letters
are lowercase. Nonconstant instance
variables are nouns and follow the same
capitalization rules as methods. Constant
fields have all capital letters with internal
words separated by an underscore.

The public access modifier allows the class
or member to be accessed by other classes.
The private access modifier specifies that the
class or member can be accessed only by
other members of the same class. Package
access allows other classes in the same
package or folder to access the class or
class members.

Classes, constructors, final class variables,
and class methods typically are declared as
public, and instance variables typically are
declared as private.

Instance variables reflect the properties that
all objects will have in common. Instance
variables are defined by specifying an
access modifier, data type, identifier, and,
optionally, an initial value. Instance variables
can be declared to be final.

A method is defined by providing a method
header, which specifies the access modifier,
a return type, the method name, and a
parameter list. The method body is enclosed
in curly braces. Value-returning methods
return the result of the method using one or
more return statements. A method with a
void return type does not return a value.

Instance variables and methods have class
scope in that they can be accessed
anywhere in the class.

A method can reference the instance
variables of its class, the parameters sent to
the method, and local variables declared by
the method, and it can call other methods of
its class.

A method can be overloaded by defining
another method with the same name but a
different signature; that is, with a different
number of parameters or with parameters of
different data types.

Constructors are responsible for initializing
the instance variables of the class.

If we don’t provide a constructor, the
compiler provides a default constructor,
which is a constructor that takes no
arguments. This default constructor assigns
default initial values to all the instance
variables. Numeric variables are given the
value of 0, characters are given the value of
the Unicode null character, boolean variables
are given the value of false, and object
references are given the value of null. Local
variables declared in methods are not given
initial values automatically.

Accessor methods are named getIV, where
IV is an instance variable name; the return
data type is the same as the instance
variable, and the body of the method simply
returns the value of the instance variable.

Mutator methods are named setIV, where IV
is an instance variable name; the return data
type is void or a reference to this object, and

the method takes one argument, which is the
same data type as the instance variable and
contains the new value for the instance
variable. The body of the method should
validate the new value and, if the new value
is valid, assign the new value to the instance
variable.

When a method begins executing, the JVM
sets the object reference this to refer to the
object for which the method has been called.

The toString method is called automatically
when an object reference is used as a String,
and its job is to provide a printable
representation of the object data.

The equals method compares two objects for
equality; that is, it should return true only if
the corresponding instance variables in both
objects are equal in value, and false
otherwise.

Static class variables are created when the
class is initialized. Thus, class variables exist
before any objects are instantiated, and each
class has only one copy of the class
variables. Static variables that are constants
are usually declared to be public because
they typically are provided to allow the client

to set preferences for the operations of a
class.

Static class methods can reference only
static variables, can call only static methods,
and cannot use the object reference this.

A non-static, or instance, method can
reference both class and instance variables,
as well as class and instance methods, and
the reference this.

A graphical object usually has instance
variables for the starting (x, y) coordinate. It
also provides a draw method that takes a
GraphicsContext object as a parameter and
includes the code to draw the graphical
object.

Enumeration types can be defined to give
meaning to ordered sets that are
represented in a program by numbers. For
each name in an enum type initialization list,
a constant object is created with an instance
variable having a sequential numeric value.
References can be defined of the enum type.
Objects of the enum type can be compared,
printed, and requested to return their
numeric value.

Javadoc, which is part of the JDK, generates
documentation for classes. To use Javadoc,

you enclose a description of each class,
method, and field in a block comment
beginning with /** and ending with */. In
addition, you can describe each parameter
using the @param tag and return value using
the @return tag.

7.18 Exercises, Problems, and
Projects

7.18.1 Multiple Choice Exercises
 1. What can you say about the name of a class?

❑ It must start with an uppercase letter.

❑ The convention is to start with an uppercase letter.

 2. What can you say about the name of constructors?

❑ They must be the same name as the class name.
❑ They can be any name, just like other methods.

 3. What is a constructor’s return type?

❑ void

❑ Object

❑ The class name

❑ A constructor does not have a return type.

 4. It is legal to have more than one constructor in a given class.

❑ true
❑ false

 5. In a class, if a field is private,

❑ it can be accessed directly from any class.

❑ it can be accessed directly only from inside its class.

 6. In a typical class, what is the general recommendation for access
modifiers?

❑ Instance variables are private and methods are private.
❑ Instance variables are private and methods are public.

❑ Instance variables are public and methods are private.
❑ Instance variables are public and methods are public.

 7. In a class, fields

❑ can only be basic data types.

❑ can only be basic data types or existing Java types (from
existing classes).

❑ can be basic data types, existing Java types, or user-defined
types (from user-defined classes).

 8. Accessors and mutators are

❑ instance variables of a class.

❑ used to access and modify field variables of a class from
outside the class.

❑ constructor methods.

 9. Accessor methods typically take

❑ no parameter.

❑ one parameter, of the same type as the corresponding field.

10. Mutator methods typically take

❑ no parameter.
❑ one parameter, of the same type as the corresponding field.

11. Accessor methods typically

❑ are void methods.

❑ return the same type as the corresponding field.

12. To enable method chaining, mutator methods

❑ return a reference to this object.
❑ return the same type as the corresponding field.

13. When coding a method that performs calculations on fields of that
class,

❑ these fields must be passed as parameters to the method.

❑ these fields do not need to be passed as parameters to the
methods because the class methods have direct access to
them.

14. What is the keyword used for declaring a constant?

❑ static

❑ final

❑ constant

15. What is the keyword used for declaring a class variable or
method?

❑ static

❑ final

❑ class

16. What can you say about enum?

❑ It is part of the package java.lang.

❑ It can be used for self-documentation, improving the
readability of your code.

❑ An enum object is a constant object.

❑ All of the above.

7.18.2 Reading and Understanding
Code
For Questions 17 and 18, consider that inside the
class Sky, we have already coded the following:

public class Sky

{

 private Color color;

 public Sky(Color c)

 {

 color = c;

 }

}

17. Consider the following method header:

public Color getColor()

Is this method a constructor, mutator, or accessor?

18. Consider the following method header:

public void setColor(Color c)

Is this method a constructor, mutator, or accessor?

For Questions 19 through 24, consider that the class
Airplane has two methods with the following method
headers; we also have a default constructor already
coded.

public static double foo1(String s)

public String foo2(char c)

19. What is the return type of method foo1?

20. What is the return type of method foo2?

21. Is method foo1 a class or instance method? Explain.

22. Is method foo2 a class or instance method? Explain.

23. Write a line or two of code to call method foo1 from a client class.

24. Write a line or two of code to call method foo2 from a client class.
Assume we have instantiated an object named a1.

25. Inside method main, we see code like

Airplane.foo3(34.6);

From this, reconstruct the header of method foo3 (which belongs
to the class Airplane); make appropriate assumptions if necessary.

26. Inside method main, we see code like

Airplane a = new Airplane();
int n = a.foo4("Hello");

From this, reconstruct the header of method foo4 (which belongs
to class Airplane).

27. If you have defined the following enum constants

enum Seasons { Winter, Spring, Summer, Fall };

what is the output of the following code sequence?

System.out.println(Seasons.Spring.ordinal());

7.18.3 Fill In the Code
28. Declare two instance variables: grade, which is an integer, and

letterGrade, which is a char.

// declare grade here
// declare letterGrade here

29. Declare a class field for a federal tax rate, a constant, with value
.07.

// declare federal tax rate constant; value is
0.07

For Questions 30 through 37, we will assume that
class TelevisionChannel has three fields: name, a
String; number, an integer; and cable, a boolean,
which represents whether the channel is a cable
channel.

30. Code a default constructor for that class: initialize the fields to an
empty string, 0, and false, respectively.

// your default constructor code goes here

31. Code a constructor for that class that takes three parameters.

// your constructor code goes here

32. Code the three accessors for that class.

// your code goes here

33. Code the three mutators for that class.

// your code goes here

34. Code the toString method.

// your code goes here

35. Code the equals method.

// your code goes here

36. Code a method returning the number of digits in the channel
number. For instance, if the channel number is 21, the method
returns 2; if the channel number is 412, the method returns 3.

// your code goes here

37. Code a method returning the word cable if the current object
represents a cable channel and returning the word network if the
current object does not represent a cable channel.

// your code goes here

7.18.4 Identifying Errors in Code
For Questions 38 through 45, consider that inside
the class Gift, we have already coded the following:

public class Gift

{

 private String description;

 private double price;

 private String occasion;

 private boolean taxable;

 public static final double TAX_RATE = 0.05;

 public Gift(String d, double p, String o,

boolean t)

 {

 description = d;

 price = p;

 occasion = o;

 taxable = t;

 }

 public void setPrice(double p)

 {

 price = p;

 }

 public void setTaxable(boolean t)

 {

 taxable = t;

 }

}

38. We are coding the following inside the class Gift; where is the
error?

public void getPrice()
{
 return price;
}

39. We are coding the following inside the class Gift; where is the
error?

public void setOccasion(String occasion)
{
 occasion = occasion;
}

40. We are coding the following inside the class Gift; where is the
error?

public String toString()
{
 System.out.println("description = " +
description);
 System.out.println("price = " + price);
 System.out.println("occasion = " + occasion);
 System.out.println("taxable = " + taxable);
}

41. We are coding the following inside the class Gift; where is the
error?

public boolean equals(Object g)
{
 return (this == g);
}

42. We are coding the following inside the class Gift; where is the
error?

public void setTaxRate(double newTaxRate)
{
 TAX_RATE = newTaxRate;
}

43. We are coding the following inside the class Gift; where is the
error?

public double calcTax(TAX_RATE)
{
 return (TAX_RATE * price);
}

44. We are coding the following in the main method inside the class
GiftClient; where is the error?

Gift g = new Gift("radio", 59.99, "Birthday",
false);
Gift.setPrice(99.99);

45. We are coding the following in the main method inside the class
GiftClient; where is the error?

Gift g = new Gift("radio", 59.99, "Birthday",
false);
g.setTaxable() = true;

46. Where are the errors in the following statement?

enum Months = { "January", "February", "March" };

7.18.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
For Questions 47 and 48, consider the following
class Grade:

public class Grade

{

 private char letterGrade;

 public Grade(char lg)

 {

 letterGrade = lg;

 }

 public char getLetterGrade()

 {

 return letterGrade;

 }

 public void setLetterGrade(char lg)

 {

 letterGrade = lg;

 }

}

47. In the main method of the class GradeClient, you have coded

Grade g = new Grade('B');
g.letterGrade = 'A'; // line 10

When you compile, you get the following message:

GradeClient.java:10: error: letterGrade has
private access in Grade
g.letterGrade = 'A'; // line 10
 ^
1 error

Explain what the problem is and how to fix it.

48. In the main method of the class GradeClient, you have coded

Grade g = new Grade("A"); // line 10

When you compile, you get the following message:

GradeClient.java:10: error: incompatible types:
String cannot be converted to char
Grade g = new Grade ("A"); // line 10
 ^
Note: Some messages have been simplified;
recompile with -Xdiags:verbose to get full output
1 error

Explain what the problem is and how to fix it.

49. You coded the following definition for the class Grade:

public class Grade
{
 private char letterGrade;
 public char Grade(char startLetter)
 {
 letterGrade = startLetter;
 } // line 8
}

When you compile, you get the following message:

Grade.java:8: error: missing return statement
 } // line 8
 ^
1 error

Explain what the problem is and how to fix it.

50. You coded the following definition for the class Grade:

public class Grade
{
 private char letterGrade;
 public Grade(char lg)
 {
 letterGrade = lg;
 }
 public String toString() // line 10
 { // line 11
 return letterGrade; // line 12
 } // line 13
}

When you compile, you get the following message:

Grade.java:12: error: incompatible types: char
cannot be converted to String
return letterGrade; // line 12
 ^
1 error

Explain what the problem is and how to fix it.

51. You coded the following definition for the Grade class:

public class Grade
{
 private char letterGrade;
 public Grade(char lg)
 {
 letterGrade = lg;
 }
 public String toString() // line 10
 { // line 11
 return lg; // line 12
 } // line 13
}

When you compile, you get the following message:

Grade.java:12: error: cannot find symbol
 return lg; // line 12
 ^
 symbol : variable lg
 location: class Grade
1 error

Explain what the problem is and how to fix it.

52. You coded the following definition for the Grade class:

public class Grade
{
 private int numberGrade;
 public Grade(int numberGrade)
 {
 numberGrade = numberGrade;
 }
 public int getGrade()
 {
 return numberGrade;
 }
}

In the main method of the GradeClient class, you have coded:

Grade g1 = new Grade(95);
System.out.println(g1.getGrade());

The code compiles properly and runs, but the result is not what
you expected.

The client’s output is 0, not 95.

Explain what the problem is and how to fix it.

53. You have defined the following enum constants:

enum Seasons { Winter, Spring, Summer, Fall };

In the main method of the class Test, you have coded:

Seasons s = Seasons.Spring;
if (s.equals(Winter)) // line 10
 System.out.println("It is cold");
else
 System.out.println("The weather is fine"
);

When you compile, you get the following message:

Test.java:10: error: cannot find symbol
 if (s.equals(Winter)) // line 10
 ^
 symbol : variable Winter
 location: class Test
1 error

Explain what the problem is and how to fix it.

54. You have defined the following enum constants:

enum Seasons { Winter, Spring, Summer, Fall };

In the main method of the class Test, you have coded

Seasons.Fall = Autumn; // line 10

When you compile, you get the following message:

Test.java:10: error: cannot assign a value to
final variable Fall
 Seasons.Fall = Autumn; // line 10
 ^
Test.java:10: cannot find symbol
 Seasons.Fall = Autumn; // line 10
 ^
 symbol : variable Autumn
 location: class Test
2 errors

Explain what the problem is and how to fix it.

7.18.6 Write a Short Program
55. Write a class encapsulating the concept of a team (for example,

“Orioles”), assuming a team has only one attribute: the team
name. Include a constructor, the accessor and mutator, and
methods toString and equals. Write a client class to test all the
methods in your class.

56. Write a class encapsulating the concept of a television set,
assuming a television set has the following attributes: a brand and
a price. Include a constructor, the accessors and mutators, and
methods toString and equals. Write a client class to test all the
methods in your class.

57. Write a class encapsulating the concept of a course grade,
assuming a course grade has the following attributes: a course
name and a letter grade. Include a constructor, the accessors and
mutators, and methods toString and equals. Write a client class to
test all the methods in your class.

58. Write a class encapsulating the concept of a course, assuming a
course has the following attributes: a code (for instance, CS1), a
description, and a number of credits (for instance, 3). Include a
constructor, the accessors and mutators, and methods toString
and equals. Write a client class to test all the methods in your
class.

59. Write a class encapsulating the concept of a student, assuming a
student has the following attributes: a name, a Social Security
number, and a GPA (for instance, 3.5). Include a constructor, the
accessors and mutators, and methods toString and equals. Write a
client class to test all the methods in your class.

60. Write a class encapsulating the concept of website statistics,
assuming website statistics have the following attributes: number
of visitors and type of site (commercial, government, etc.). Include
a constructor, the accessors and mutators, and methods toString

and equals. Write a client class to test all the methods in your
class.

61. Write a class encapsulating the concept of a corporate name (for
example, “IBM”), assuming a corporate name has only one
attribute: the corporate name itself. Include a constructor, the
accessors and mutators, and methods toString and equals. Also
include a method returning a potential domain name by adding
www. at the beginning and .com at the end of the corporate name
(for instance, if the corporate name is IBM, that method should
return www.ibm.com). Write a client class to test all the methods in
your class.

62. Write a class encapsulating the concept of a file, assuming a file
has only a single attribute: the name of the file. Include a
constructor, the accessors and mutators, and methods toString
and equals. Also, code a method returning the extension of the file;
that is, the letters after the last dot in the file (for instance, if the file
name is Test.java, then the method should return java); if there is
no dot in the file name, then the method should return “unknown
extension.” Write a client class to test all the methods in your
class.

63. Writing System.out.println every time we want to output a message
is annoying. Write a class that enables us to write S.pln(“Hello
world”) instead. Test your class in a client.

64. Write a class that enables us to write code like:

int number = Utility.getInt("Enter an int", '>'
);

to replace something like:

System.out.println("Enter an int > ");
Scanner scan = new Scanner(System.in);
int number = scan.nextInt();

Test your class in a client.

http://www.ibm.com/

7.18.7 Programming Projects
65. Write a class encapsulating the concept of the weather forecast,

assuming that it has the following attributes: the temperature and
the sky conditions, which could be sunny, snowy, cloudy, or rainy.
Include a constructor, the accessors and mutators, and methods
toString and equals. Temperature, in Fahrenheit, should be
between –50 and +150; the default value is 70, if needed. The
default sky condition is sunny. Include a method that converts
Fahrenheit to Celsius. Celsius temperature = (Fahrenheit
temperature – 32) * 5 / 9. Also include a method that checks
whether the weather attributes are consistent (there are two cases
where they are not consistent: when the temperature is above 32
and it is snowy, and when the temperature is below 32 and it is
rainy). Write a client class to test all the methods in your class.

66. Write a class encapsulating the concept of a domain name,
assuming a domain name has a single attribute: the domain name
itself (for instance, www.yahoo.com). Include a constructor, the
accessors and mutators, and methods toString and equals. Also
include the following methods: one returning whether the domain
name starts with www; another returning the extension of the
domain name (i.e., the letters after the last dot, for instance com,
gov, or edu; if there is no dot in the domain name, then you should
return “unknown”); and another returning the name itself (which will
be the characters between www and the extension; for instance,
yahoo if the domain is www.yahoo.com—if there are fewer than
two dots in the domain name, then your method should return
“unknown”). Write a client class to test all the methods in your
class.

67. Write a class encapsulating the concept of an HTML page,
assuming an HTML statement has only a single attribute: the
HTML code for the page. Include a constructor, the accessors and
mutators, and methods toString and equals. Include the following
methods: one checking that there is a > character following each <
character, one counting how many images are on the page (i.e.,

http://www.yahoo.com/
http://www.yahoo.com/

the number of img tags), and one counting how many links are on
the page (i.e., the number of times we have “a href”). Write a client
class to test all the methods in your class.

68. Write a class encapsulating the concept of coins, assuming that
coins have the following attributes: a number of quarters, a number
of dimes, a number of nickels, and a number of pennies. Include a
constructor, the accessors and mutators, and methods toString
and equals. Also code the following methods: one returning the
total amount of money in dollar notation with two significant digits
after the decimal point, and others returning the money in quarters
(for instance, 0.75 if there are three quarters), in dimes, in nickels,
and in pennies. Write a client class to test all the methods in your
class.

69. Write a class encapsulating the concept of a user-defined double,
assuming a user-defined double has only a single attribute: a
double. Include a constructor, the accessor and mutator, and
methods toString and equals. Add a method, taking one parameter
specifying how many significant digits we want to have, and
returning a double representing the original double truncated so
that it includes the specified number of significant digits after the
decimal point (for instance, if the original double is 6.9872 and the
argument of the method is 2, this method will return 6.98). Write a
client class to test all the methods in your class.

70. Write a class encapsulating the concept of a circle, assuming a
circle has the following attributes: a Point representing the center
of the circle, and an integer, the radius of the circle. Include a
constructor, the accessors and mutators, and methods toString
and equals. Also include methods returning the perimeter (2 * π *
radius) and area (π * radius) of the circle. Write a client class to
test all the methods in your class.

71. Write a class encapsulating the concept of a rational number,
assuming a rational number has the following attributes: an integer
representing the numerator of the rational number, and another

2

integer representing the denominator of the rational number.
Include a constructor, the accessors and mutators, and methods
toString and equals. You should not allow the denominator to be
equal to 0; you should give it the default value 1 in case the
corresponding argument of the constructor or a method is 0. Also
include methods performing multiplication of a rational number by
another and addition of a rational number to another, returning the
resulting rational number in both cases. Write a client class to test
all the methods in your class.

72. Write a class encapsulating the concept of an investment,
assuming the investment has the following attributes: the amount
of the investment and the interest rate at which the investment will
be compounded. Include a constructor, the accessors and
mutators, and methods toString and equals. Also include a method
returning the future value of the investment depending on how
many years we hold it before selling it, which can be calculated
using the following formula:

future value = investment (1 + interest rate
)

We will assume that the interest rate is compounded annually.
Write a client class to test all the methods in your class.

73. Write a class encapsulating the concept of a telephone number,
assuming a telephone number has only a single attribute: a String
representing the telephone number. Include a constructor, the
accessor and mutator, and methods toString and equals. Also
include methods returning the area code (the first three
digits/characters of the phone number; if there are fewer than three
characters in the phone number or if the first three characters are
not digits, then this method should return “unknown area code”).
Write a client class to test all the methods in your class. Look up
the getClass method in the Object class and the getName method
in the Class class and use them in your client.

numberOfYears

74. Write a class that encapsulates the concept of a tennis match
score (best of 3 sets). It has the following instance variables: two
ints for the score in the first set, two ints for the score in the second
set, two ints for the score in the third set, and two Strings for the
score in the current game. You do not need to keep track of who is
serving. Your score should comply with basic tennis rules (a game
score for a given player is either LOVE, 15, 30, 40, or AD). A set
must be won by 2 (there is no tie breaker in this format). Write the
following methods: a default constructor, toString, a method to
update the score (when a player wins a point), and a method to
check if the game is over. The method that updates the score
takes one parameter, a boolean; if it is true, the first player won the
point, if it is false, the second player won the point. Furthermore, if
the game is over, the score should not be changed. The method
that checks if the game is over returns 0 if the game is not over, 1
if the first player won, and 2 if the second player won. Write a client
that enables the user to play.

75. Write a class that encapsulates an icon for your favorite TV
channel or Internet website. Your icon should be made of a
minimum of three colors and three shapes. It should be scalable
by specifying the value of one instance variable, and the client
should be able to change the colors easily. Your class should
include a constructor, a draw method, and mutators to enable the
user to change the scale, to change the colors in the icon, and to
change the top-left coordinates of the icon.

7.18.8 Technical Writing
76. An advantage of object-oriented programming is code reuse, not

just by the programmer who wrote the class, but by other
programmers. Describe the importance of proper documentation
and how you would document a class so that other programmers
can use it easily.

77. Java has a number of naming conventions for classes, methods,
and field variables. Is this important? Why is it good to respect
these conventions?

7.18.9 Group Project (for a group
of 1, 2, or 3 students)
78. Write a program that solves a quadratic equation in all cases,

including when both roots are complex numbers. For this, you
need to set up the following classes:

Complex, which encapsulates a complex number

ComplexPair, which encapsulates a pair of complex numbers

Quadratic, which encapsulates a quadratic equation

SolveEquation, which contains the main method

Along with the usual constructors, accessors, and mutators, you
will need to code additional methods:

In the Complex class, a method that determines whether a
complex object is real

In the ComplexPair class, a method that determines whether
both complex numbers are identical

In the Quadratic class, a method to solve the quadratic equation
and return a ComplexPair object

Additionally, you need to include code in the main method to solve
several examples of quadratic equations input from the keyboard.
Your output should make comments as to what type of roots we
get (double real root, distinct real roots, distinct complex roots).
You should check that your code works in all four basic cases:

❑ The quadratic equation is actually a linear equation.

❑ Both roots are complex.
❑ There is a double real root.

❑ There are two distinct real roots.

CHAPTER 8
Single-Dimensional Arrays

CHAPTER CONTENTS
Introduction
8.1 Declaring and Instantiating Arrays

8.1.1 Declaring Arrays
8.1.2 Instantiating Arrays
8.1.3 Combining the Declaration and Instantiation of
Arrays
8.1.4 Assigning Initial Values to Arrays

8.2 Accessing Array Elements
8.3 Aggregate Array Operations

8.3.1 Printing Array Elements
8.3.2 Reading Data into an Array
8.3.3 Summing the Elements of an Array
8.3.4 Finding Maximum or Minimum Values
8.3.5 Copying Arrays
8.3.6 Changing the Size of an Array
8.3.7 Comparing Arrays for Equality
8.3.8 Displaying Array Data as a Bar Chart

8.4 Programming Activity 1: Working with Arrays
8.5 Using Arrays in Classes

8.5.1 Using Arrays in User-Defined Classes
8.5.2 Retrieving Command Line Arguments

8.6 Searching and Sorting Arrays
8.6.1 Sequential Search of an Unsorted Array
8.6.2 Selection Sort
8.6.3 Insertion Sort
8.6.4 Sorting Arrays of Objects
8.6.5 Sequential Search of a Sorted Array
8.6.6 Binary Search of a Sorted Array

8.7 Programming Activity 2: Searching and Sorting
Arrays
8.8 Using Arrays as Counters
8.9 Methods Accepting a Variable Number of Arguments
8.10 Chapter Summary
8.11 Exercises, Problems, and Projects

8.11.1 Multiple Choice Exercises
8.11.2 Reading and Understanding Code
8.11.3 Fill In the Code
8.11.4 Identifying Errors in Code
8.11.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM
8.11.6 Write a Short Program
8.11.7 Programming Projects
8.11.8 Technical Writing
8.11.9 Group Project

Introduction
Up to this point, we have been working with individual, or
scalar, variables; that is, each variable has held one value at a
time. To process a group of variables of the same type—for
example, counting the number of odd integers entered by the
user—we used a while loop or a for loop.

Thus, to find the average high temperature for the last year,
we would use a for loop:

double dailyTemp;

double total = 0.0;

for (int i = 1; i <= 365; i++)

{

 System.out.print("Enter a temperature");

 dailyTemp = scan.nextDouble();

 total += dailyTemp;

}

double average = total / 365;

We defined one variable, dailyTemp, to hold the data. We
read each temperature into our dailyTemp variable, added the
temperature to our total, then read the next value into the
dailyTemp variable, added that temperature to the total, and
so on, until we finished reading and processing all the
temperatures. Each time we read a new temperature, it
overwrote the previous temperature, so that at the end of the
loop, we had access to the last temperature only.

But suppose we want to perform multiple operations on those
temperatures. Perhaps we want to find the highest or lowest
temperature or find the median. Or suppose we don’t know

what operations we will perform, or in what order, until the
user chooses them from a menu. In those cases, one scalar
variable, dailyTemp, won’t work; we want to store all the
temperatures in memory at the same time. An array allows us
to do just that without declaring 365 variables individually.

An array is a sequence of variables of the same data type.
The data type could be any Java primitive data type, such as
int, float, double, byte, boolean, char, short, or long, or it could
be a class. Each variable in the array, called an element, is
accessed using the array name and a subscript, called an
index, which refers to the element’s position in the array.

Arrays are useful for many applications: for example,
calculating statistics on a group of data values or processing
data stored in tables, such as matrices or game boards.

8.1 Declaring and Instantiating
Arrays
In Java, arrays are implemented as objects, so
creating an array takes two steps:

1. Declaring the object reference for the array.

2. Instantiating the array.

In arrays of primitive types, each element in the array
contains a value of that type. For example, in an
array of doubles, each element contains a double
value. In arrays of objects, each element is an object
reference, which stores the location of an object.

8.1.1 Declaring Arrays
To declare an array, we specify the name of the array
and the data type, as we would for any other
variable. Adding an empty set of brackets ([])
indicates that the variable is an array.

Here is the syntax for declaring an array:

datatype [] arrayName;

For example, the following statement creates a
reference to an array that will hold daily high
temperatures:

double [] dailyTemps; // each element is a double

The brackets can be placed before or after the array
name. So the following syntax is also valid:

datatype arrayName [];

Thus, we could have declared the preceding array
using the following statement:

double dailyTemps [];

Although Java code can be written using either
syntax, we prefer the first format with the brackets

right after the data type, because it’s easier to read
as “a double array.”

To declare an array to hold the titles of all tracks on a
CD, we might declare it this way:

String [] cdTracks; // each element is a String

object reference

Similarly, this statement declares an array to hold the
answers to a true/false test:

boolean [] answers; // each element is a boolean

value

Assuming we have written an Auto class, this
statement declares an array to hold Auto objects:

Auto [] cars; // each element is an Auto object

reference

We can declare multiple arrays of the same data
type in one statement by inserting a comma after
each array name, using this syntax:

datatype [] arrayName1, arrayName2;

For example, the following statement will declare
three integer arrays to hold quiz scores for current

courses:

int [] cs101, bio201, hist102; // all elements are

int values

COMMON ERROR TRAP
Putting the size of the array inside the brackets in the
array declaration will generate a compiler error.

Note that an array declaration does not specify how
many elements the arrays will have. The declaration
simply specifies an object reference for the array and
the data type of the elements. Thus, declaring an
array does not allocate memory for the array.

8.1.2 Instantiating Arrays
As we mentioned earlier, Java arrays are objects, so
to allocate memory for an array, we need to
instantiate the array using the new keyword. Here is
the syntax for instantiating an array:

arrayName = new datatype [size];

 where size is an expression that evaluates to

an integer and

 specifies the number of elements in the array.

The following statements will instantiate the arrays
declared earlier:

dailyTemps = new double [365]; // dailyTemps has 365

elements

cdTracks = new String [15]; // cdTracks has 15

elements

int numberOfQuestions = 30;

answers = new boolean [numberOfQuestions]; //

answers has 30 elements

cars = new Auto [3]; // cars has 3

elements

cs101 = new int [5]; // cs101 has 5

elements

bio201 = new int [4]; // bio201 has 4

elements

hist102 = new int [6]; // hist102 has 6

elements

When an array is instantiated, the elements are
given initial values automatically.

Numeric elements are set to 0, boolean elements are
set to false, char elements are set to the Unicode
null character, and object references are set to null,
as shown in Table 8.1.

TABLE 8.1 Default Initial Values of Array
Elements

Element Data Type Initial Value
double 0.0

float 0.0

int, long, short, byte 0

char null character (‘\u0000’)

boolean false

object reference null

Thus, all the elements in the dailyTemps array are
given an initial value of 0.0; the elements in the
cs101, bio201, and hist102 arrays are given an initial
value of 0; the elements of the answers array are
given an initial value of false; and the elements of the
cdTracks and cars arrays are given an initial value of
null.

8.1.3 Combining the Declaration
and Instantiation of Arrays
Arrays also can be instantiated when they are
declared. To combine the declaration and
instantiation of an array, we use this syntax:

datatype [] arrayName = new datatype [size];

 where size is an expression that evaluates to

an integer and

 specifies the number of elements in the

array.

Thus, this statement:

double [] dailyTemps = new double [365];

is equivalent to:

double [] dailyTemps;

dailyTemps = new double [365];

Similarly, this statement:

String [] cdTracks = new String [15];

is equivalent to:

String [] cdTracks;

cdTracks = new String [15];

8.1.4 Assigning Initial Values to
Arrays
COMMON ERROR TRAP
An initialization list can be given only when the array
is declared. Attempting to assign values to an array
using an initialization list after the array is
instantiated will generate a compiler error.

Java also allows us to instantiate an array by
assigning initial values when the array is declared.
To do this, we specify the initial values using a
comma-separated list within curly braces:

datatype [] arrayName = { value0, value1, value2,

... };

 where valueN is an expression that evaluates

to the data type

 of the array and is the value to assign to the

element at index N.

Note that we do not use the new keyword and we do
not specify a size for the array. The number of
elements in the array is determined by the number of
values in the initialization list.

For example, this statement declares and
instantiates an array of odd numbers:

int nine = 9;

int [] oddNumbers = { 1, 3, 5, 7, nine, nine + 2,

13, 15, 17, 19 };

COMMON ERROR TRAP
The new keyword is not used when an array is
instantiated using an initialization list. No size is
given; the number of values in the list specifies the
size of the array.

Because 10 values are given in the initialization list,
this array has 10 elements. Notice that the values
can be an expression, for example, nine and nine +
2.

Similarly, we can declare and instantiate an array of
objects by providing objects in the list, as shown
next. The cars array of Auto objects has three
elements.

Auto sportsCar = new Auto("Ferrari", 0, 0.0);

Auto [] cars = { new Auto("BMW", 100, 15.0),

sportsCar, new Auto() };

8.2 Accessing Array Elements
Elements of an array are accessed using this syntax:

arrayName[exp]

 where exp is an expression that evaluates to an

integer.

Exp is the element’s position, or index, within the
array. The index of the first element in the array is
always 0; the index of the last element is always 1
less than the number of elements.

Arrays have a read-only, integer instance variable,
length, which holds the number of elements in the
array. To access the number of elements in an array
named arrayName, use this syntax:

arrayName.length

Thus, to access the last element of an array, use this
syntax:

arrayName[arrayName.length - 1]

Note that regardless of the data type of the elements
in an array, the length of an array is always an

integer, because length represents the number of
elements in the array.

Table 8.2 summarizes the syntax for accessing
elements of an array.

TABLE 8.2 Accessing Array Elements
Element Syntax
Element 0 arrayName[0]

Element i array-Name[i]

Last element arrayName[arrayName.length − 1]

For example, suppose we want to analyze our
monthly cell phone bills for the past six months. We
want to calculate the average bill, the total payments
for the six months, and the lowest and highest bills.
We can use an array of doubles with six elements,
as shown in Example 8.1.

COMMON ERROR TRAP
Note that for an array, length—with no parentheses
—is an instance variable, whereas for Strings,
length()—with parentheses—is a method. Note also
that the instance variable is named length, rather
than size.

EXAMPLE 8.1 The cellBills Array

 1 /* Array of Cell Phone Bills

 2 Anderson, Franceschi

 3 */

 4

 5 public class Cell-Bills

 6 {

 7 public static void main(String [] args)

 8 {

 9 // declare and instantiate the array

10 double [] cell-Bills = new double [6];

11

12 // assign values to array elements

13 cellBills[0] = 45.24;

14 cellBills[1] = 54.67;

15 cellBills[2] = 42.55;

16 cellBills[3] = 44.61;

17 cellBills[4] = 65.29;

18 cellBills[5] = 49.75;

19

20 System.out.println("The first monthly cell

bill is "

21 + cellBills[0]);

22 System.out.println("The last monthly cell

bill is "

23 +

cellBills[cellBills.length - 1]);

24 }

25 }

In lines 9–10, we declare and instantiate the cellBills
array. Because the elements of cellBills are doubles,
instantiating the array also initializes each element to
0.0 and sets the value of cellBills.length to 6. Thus,
Figure 8.1 represents the cellBills array after line 10
is executed.

Figure 8.1
The cellBills Array After Instantiation

Lines 12–18 store values into each element of the
array. The element at index i of the array is
cellBills[i]. Remember that the first element of an
array is always at index 0. Thus, the last element is
cellBills[5], or equivalently, cellBills[cellBills.length –
1]. Figure 8.2 shows how the cellBills array looks
after lines 13–18 are executed.

Figure 8.2
The cellBills Array After Assigning Values

Lines 20–21 print the value of the first element, and
lines 22–23 print the value of the last element. The
output of Example 8.1 is shown in Figure 8.3.

Figure 8.3
Output of Example 8.1

The first monthly cell bill is 45.24

The last monthly cell bill is 49.75

Array indexes must be between 0 and array-
Name.length – 1. Attempting to access an element of
an array using an index less than 0 or greater than
arrayName.length – 1 will compile without errors, but
will generate an ArrayIndexOutOfBoundsException

at run time. By default, this exception halts execution
of the program.

For example, all the following expressions are
invalid:

COMMON ERROR TRAP
Attempting to access an element of an array using
an index less than 0 or an index greater than
arrayName. length − 1 will generate an ArrayIndex-
OutOfBounds-Exception at run time.

// invalid indexes for the cellBills array!!

cellBills[-1] // the lowest valid

index is 0

cellBills[cellBills.length] // the highest valid

index is

 // cellBills.length -

1

cellBills[150] // the highest valid

index is 5

Instantiating an array with a class data type involves
two steps:

1. Instantiate the array.

2. Instantiate the objects.

Remember that the elements of an array with a class
data type are object references. When the array is
instantiated, all elements are set to null. Thus, the
second step needs to be instantiating each object
and assigning its reference to an array element.

Example 8.2 illustrates how to work with an array of
objects. In this example, we use an Auto class
whose API is shown in Table 8.3.

TABLE 8.3 The Auto Class API
Auto Class Constructor Summary

Auto()

creates an Auto object with initial default values of “unknown,”
0, and 0.0.

Auto(String model, int milesDriven, double

gallonsOfGas)

creates an Auto object with the initial values of model,
milesDriven, and gallonsOfGas

Auto Class Method Summary
Return
value

Method name and argument list

String getModel()

returns the value of model

int getMilesDriven()

returns the value of milesDriven

double getGallonsOfGas()

returns the value of gallonsOfGas

Auto setModel(String model)

mutator for model

Auto setMilesDriven(int milesDriven)

mutator for milesDriven

Auto setGallonsOfGas(double gallonsOfGas

)

mutator for gallonsOfGas

double milesPerGallon()

returns the gas mileage for this Auto object

String toString()

returns a String representation of this object

boolean equals(Object obj)

compares this Auto object to another object

EXAMPLE 8.2 Working with an
Array of Objects

 1 /* Working with an Array of Objects

 2 Anderson, Franceschi

 3 */

 4

 5 public class AutoArray

 6 {

 7 public static void main(String [] args)

 8 {

 9 // 1. instantiate cars array

10 Auto [] cars = new Auto [3];

11

12 // 2. instantiate Auto objects

13 Auto sportsCar = new Auto("Ferrari", 100,

15.0);

14 cars[0] = sportsCar; // assign sportsCar

to element 0

15 cars[1] = new Auto(); // default Auto

object

16 // cars[2] has not been instantiated and is

null

17

18 // call Auto methods

19 System.out.println("cars[0] is a " +

cars[0].getModel());

20

21 Auto myCar = cars[1];

22 System.out.println("myCar has used " +

myCar.getGallonsOfGas()

23 + " gallons of gas");

24

25 // attempt to call method when Auto object is

not instantiated

26 System.out.println("cars[2] is a " +

cars[2].getModel());

27 }

28 }

At lines 9–10, we declare and instantiate cars, an
array of three Auto objects. At this point, each
element has the value of null. Thus, our second step
is to instantiate objects of the Auto class and assign
their references to the array elements.

COMMON ERROR TRAP
With an array of objects, be sure that an array
element points to an instantiated object before
attempting to use that element to call a method of
the class. Otherwise, a NullPointer-Exception will be
generated.

At lines 13–14, we instantiate the Auto object
sportsCar and assign the sportsCar reference to
element 0. At line 15, we instantiate a default Auto
object and assign its reference to element 1. We do
not instantiate an object for element 2, which
remains null.

We then call methods of the Auto class. Because the
array elements are object references, to call a
method for an object in an array, we use the array
name and index, along with the dot notation. This is
illustrated in line 19, where we print the model of
element 0 by calling the getModel method. In lines
21–23, we assign element 1 to the Auto reference
myCar, then call the getGallonsOfGas method using
the myCar reference.

Finally, line 26 attempts to retrieve the model of
element 2; however, because cars[2] is null, a
NullPointerException is generated. Figure 8.4 shows
the output of this program.

Figure 8.4
Output of Example 8.2

cars[0] is a Ferrari

myCar has used 0.0 gallons of gas

Exception in thread "main"

java.lang.NullPointerException

 at AutoArray.main(AutoArray.java:26)

Skill Practice
with these end-of-chapter questions

8.11.1 Multiple Choice Exercises

Questions 1, 2, 3, 4, 5, 7, 8

8.11.2 Reading and Understanding Code

Questions 13,14,15

8.11.4 Identifying Errors in Code

Questions 36, 37, 38, 40, 42,44

8.11.5 Debugging Area

Question 45

8.11.8 Technical Writing

Questions 73, 75

8.3 Aggregate Array Operations
Once the array is declared and instantiated, it would be
convenient if we could just use the array name to perform
operations on the whole array, such as printing the array,
copying the array to another array, inputting values to the
array, and so on. Unfortunately, Java does not support these
aggregate operations on arrays.

For example, attempting to print the array using the array
name will not print all the elements of the array. Instead, this
statement:

System.out.println(cellBills); // incorrect attempt to

print array!

calls the toString method of the Array class, which simply
prints the name of the object’s class and the hash code of the
array name, for example, [D@310d42 .

8.3.1 Printing Array Elements
To print all elements of an array, we need to use a loop that
prints each element individually. A for loop is custom made for
processing all elements of an array in order. In fact, the
following for loop header is a standard way to process all
array elements with the loop control variable representing
each index in the array:

for (int i = 0; i < arrayName.length; i++)

Note that the initialization statement:

int i = 0;

sets i to the index of the first element of the array.

The loop update

i++

increments i to the next index so that we process each
element in order.

The loop condition:

i < arrayName.length

COMMON ERROR TRAP
In a for loop, using the condition:

i <= arrayName.length

will generate an ArrayIndex-OutOfBounds-Exception because
the index of the last element of an array is arrayName.length
– 1.

continues execution of the loop as long as the index is less
than the length of the array.

Note that we use the less than operator (<) in the condition.
Using the less than or equal to operator (<=) would cause us
to attempt to reference an element with an index of
arrayName.length, which is beyond the end of the array.

Inside the for loop, we refer to the current element being
processed as

arrayName[i]

Example 8.3, whose output is shown in Figure 8.5,
demonstrates how to print each element in an array.

Figure 8.5
Output of Example 8.3

Element Value

0 45.24

1 54.67

2 42.55

3 44.61

4 65.29

5 49.75

EXAMPLE 8.3 Printing All Elements of
an Array
 1 /* Printing Array Elements

 2 Anderson, Franceschi

 3 */

 4

 5 public class PrintingArrayElements

 6 {

 7 public static void main(String [] args)

 8 {

 9 double [] cellBills = new double [6];

10 cellBills[0] = 45.24;

11 cellBills[1] = 54.67;

12 cellBills[2] = 42.55;

13 cellBills[3] = 44.61;

14 cellBills[4] = 65.29;

15 cellBills[5] = 49.75;

16

17 System.out.println("Element\tValue");

18 for (int i = 0; i < cellBills.length; i++)

19 {

20 System.out.println(i + "\t" + cellBills[i]);

21 }

22 }

23 }

In lines 9–15, we instantiate the cellBills array and assign
values to its six elements. In line 18, we use the standard for
loop header. Inside the for loop (line 20), we print each
element’s index and value.

8.3.2 Reading Data into an Array
Similarly, we can use the standard for loop to input data into
an array. In Example 8.4, we use a for loop to prompt the user
for each monthly cell phone bill and to assign the input value
to the appropriate array elements.

EXAMPLE 8.4 Reading Data from the
Keyboard into an Array
 1 /* Reading data into an array

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class ReadingDataIntoAnArray

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12

13 double [] cellBills = new double[6];

14 for (int i = 0; i < cellBills.length; i++)

15 {

16 System.out.print("Enter bill amount for month "

17 + (i + 1) + "\t");

18 cellBills[i] = scan.nextDouble(); // read current

bill

19 }

20 }

21 }

At lines 14–19, our for loop prompts the user for a value for
each element in the cellBills array. Note that our prompt uses
the expression (i + 1) for the month number. Although array
indexes start at 0, people start counting at 1. If we used the
array index in the prompt, we would ask the user for the bills
for months 0 to 5. By adding 1 to the array index, we are able
to prompt the user for months 1 through 6, which are the
month numbers that the user expects.

The output of Example 8.4 is shown in Figure 8.6.

Figure 8.6
Reading Data into an Array

Enter bill amount for month 1 63.33

Enter bill amount for month 2 54.27

Enter bill amount for month 3 71.19

Enter bill amount for month 4 59.03

Enter bill amount for month 5 62.65

Enter bill amount for month 6 65.08

SOFTWARE ENGINEERING TIP
Prompt for data in terms the user understands.

8.3.3 Summing the Elements of an Array
To sum the elements of the array, we again use the standard
for loop, as shown in Example 8.5.

EXAMPLE 8.5 Summing the Elements of
an Array

1 /* Summing Array Elements

2 Anderson, Franceschi

3 */

4

 5 importjava.text.NumberFormat;

6

7 public classSummingArrayElements

8 {

9 public static voidmain(String []args)

10 {

11 double []cellBills = new double [6];

12 cellBills[0]= 45.24;

13 cellBills[1]= 54.67;

14 cellBills[2]= 42.55;

15 cellBills[3]= 44.61;

16 cellBills[4]= 65.29;

17 cellBills[5]= 49.75;

18

19 doubletotalBills = 0.0; // initialize total

20 for (int i = 0; i < cellBills.length; i++)

21 {

22 totalBills += cellBills[i];

23 }

24

25 NumberFormatpriceFormat =

NumberFormat.getCurrencyInstance();

26 System.out.println("Total for the bills: "

27 + priceFormat.format(totalBills)

);

28 }

29 }

We fill the cellBills array with values at lines 12–17. We
declare the double variable totalBills and initialize it to 0.0 at
line 19. The for loop, at lines 20–23, adds each element of the
array to totalBills. We use the NumberFormat class to format
the value of totalBills as currency for output (lines 25–27). The
output of Example 8.5 is shown in Figure 8.7.

Figure 8.7
Calculating the Total of All Elements

Total for the bills: $302.11

8.3.4 Finding Maximum or Minimum
Values
Suppose we want to find the month that has the lowest bill.
That would require finding a minimum value in the array and
noting its index. Similarly, to find a month with the highest bill,
we would need to find a maximum value in the array and note
its index.

To find a maximum or minimum value in an array, we use a
variation of the standard for loop. Example 8.6 finds the
highest array value and its array index for our cellBills array of
monthly cell bills.

EXAMPLE 8.6 Finding a Maximum Value
in an Array

 1 /* Finding the maximum array value

 2 Anderson, Franceschi

 3 */

 4

 5 import java.text.NumberFormat;

 6

 7 public class MaxArrayValue

 8 {

 9 public static void main(String [] args)

10 {

11 double [] cellBills = new double [6];

12 cellBills[0] = 45.24;

13 cellBills[1] = 54.67;

14 cellBills[2] = 42.55;

15 cellBills[3] = 44.61;

16 cellBills[4] = 65.29;

17 cellBills[5] = 49.75;

18

19 int maxIndex = 0; // initialize to index of first

element

20 for (int i = 1; i < cellBills.length; i++)

21 {

22 if (cellBills[i] > cellBills[maxIndex])

23 maxIndex = i; // save index of maximum value

24 }

25

26 NumberFormat priceFormat =

NumberFormat.getCurrencyInstance();

27 System.out.println ("The highest bill, "

28 + priceFormat.format(

cellBills[maxIndex])

29 + ", was found at index " +

maxIndex);

30 }

31 }

We start by assuming that the first element is a maximum
value. So we initialize an integer variable, maxIndex, to 0, at
line 19. Then, at lines 20–24, starting at element 1, we step
through the array, comparing the value of each element with
the element at maxIndex. Whenever we find a value higher
than the current maximum, we assign its index to maxIndex
(line 23). When the for loop completes, maxIndex holds the
index of the array element with a highest value. We then print
both that index and the corresponding array value at lines 26–
29. The output is shown in Figure 8.8.

Figure 8.8
Output of Example 8.6

The highest bill, $65.29, was found at index 4

What happens if the array has only one value? Will we still get
the correct result? The answer is yes, because the single
element will be at index 0. We start by assigning 0 to
maxIndex. Then the for loop body will not execute because
the condition will evaluate to false. So maxIndex will not be
changed and remains set to 0.

What happens if more than one element holds the highest
value? We find the index of the first element only, because our

condition requires that the element value must be greater than
the current maximum to change maxIndex.

8.3.5 Copying Arrays
Suppose we create a second array to hold a copy of our cell
phone bills, as shown in the following statement:

double [] billsBackup = new double [6];

At this point, all elements of the billsBackup array are
initialized automatically to 0.0. Figure 8.9 shows the current
state of the cellBills and billsBackup arrays.

Figure 8.9
The cellBills and billsBackup Arrays

Then, if we want to copy the elements of the cellBills array to
the corresponding elements of the billsBackup array, we might
be tempted to use the assignment operator:

billsBackup = cellBills; // incorrect attempt to copy array

elements!

This won’t work. Because arrays are objects, the assignment
operator copies the cellBills object reference to the
billsBackup object reference. Both cellBills and billsBackup
now point to the same object. The array data was not copied.
In fact, we just lost the original billsBackup array. With no
object reference pointing to it, the array is a candidate for
garbage collection, as shown in Figure 8.10.

Figure 8.10
Assigning cellBills to billsBackup

If we were to assign a new value to an element in the
billsBackup array, we would in fact change the element in the
cellBills array, because they are now the same array.

This statement:

billsBackup[4] = 38.00;

has the effect shown in Figure 8.11.

Figure 8.11
Altering billsBackup Altes cellBills Array

Example 8.7 shows how to copy the elements in one array to
another array.

EXAMPLE 8.7 Copying Array Elements
into Another Array

 1 /* Copying Array Elements to Another Array

 2 Anderson, Franceschi

 3 */

 4

 5 public class CopyingArrayElements

 6 {

 7 public static void main(String [] args)

 8 {

 9 double [] cellBills = { 45.24, 54.67, 42.55, 44.61,

65.29, 49.75 };

10

11 double billsBackup [] = new double [cellBills.length];

12 for (int i = 0; i < cellBills.length; i++)

13 {

14 billsBackup[i] = cellBills[i]; // copy each element

15 }

16

17 billsBackup[4] = 38.00; // change value in billsBackup

18

19 System.out.println("cellBills\nElement\tValue ");

20 for (int i = 0; i < cellBills.length; i++)

21 {

22 System.out.println (i + "\t" + cellBills[i]);

23 }

24

25 System.out.println("\nbillsBackup\nElement\tValue ");

26 for (int i = 0; i < billsBackup.length; i++)

27 {

28 System.out.println (i + "\t" + billsBackup[i]);

29 }

30 }

31 }

At line 9, we instantiate the array cellBills using an
initialization list. At line 11, we declare and instantiate the
array billsBackup to have the same size as the original array
cellBills. At lines 12–15, we use a standard for loop to copy
one element at a time from the cellBills array to the
corresponding element in the billsBackup array.

Now the billsBackup array and the cellBills array are separate
arrays with their own copies of the element values, as shown
in Figure 8.12. Changing an element in one array will have no
effect on the value of the corresponding element in the other
array.

Figure 8.12
Arrays After Copying Each Element

We illustrate this by assigning a new value to an element in
the array billsBackup (line 17). Finally, we use two for loops to
print the contents of both arrays. As Figure 8.13 shows, the
value for element 4 is changed only in the array billsBackup.

Figure 8.13
Output of Example 8.7

cellBills

Element Value

0 45.24

1 54.67

2 42.55

3 44.61

4 65.29

5 49.75

billsBackup

Element Value

0 45.24

1 54.67

2 42.55

3 44.61

4 38.0

5 49.75

Be aware, however, that when we copy an array whose
elements are objects, even using the for loop structure, we
are copying object references. The result is that the
corresponding elements of each array will point to the same
object. If an object’s data in one array is changed, that change
will be reflected in the other array as well.

8.3.6 Changing the Size of an Array
Arrays are assigned a length when they are instantiated, and
the length of an array becomes a constant value. But what if
we want to change the number of elements in an array after it
has been instantiated?

For example, our cellBills array contains six elements, holding
six months’ worth of cell phone bills. If we decide to collect a
year’s worth of cell phone bills, we would need an array with
12 elements. We could instantiate a new version of the
cellBills array with 12 elements, using this statement:

cellBills = new double [12];

That statement instantiates a new array of doubles all
initialized to 0.0. But what happened to the original array of six
elements? Since the cellBills reference now refers to the new,
12-element array, the 6-element array has no object reference
pointing to it, so there is no way we can access the array’s
values. That is not the result we intended!

To expand the size of an array while maintaining the values of
the original array, we can use the following technique:

1. Instantiate an array with the new size, giving the new array a temporary

reference.

2. Copy the elements from the original array to the new array.

3. Point the original array reference to the new array.

4. Assign a null value to the temporary array reference.

Thus, instead of immediately pointing cellBills to the new
array, we should instantiate a 12-element array using a

temporary array name, copy the six elements from the
cellBills array into the 12-element array, assign the cellBills
reference to the new array, and assign null to the temporary
array reference. The following code will do that:

double [] temp = new double [12]; //instantiate new array

// copy all elements from cellBills to temp

for (int i = 0; i < cellBills.length; i++)

{

 temp[i] = cellBills[i]; // copy each element

}

cellBills = temp; // assign temp to cellBills

temp = null; // temp no longer points to cellBills

The last statement sets temp to null so that we don’t have two
references to the cellBills array.

8.3.7 Comparing Arrays for Equality
To compare whether two arrays are equal, first determine if
they are equal in length, and then use a for loop to compare
the corresponding elements in each array. That is, compare
element 0 in the first array to element 0 in the second array;
compare element 1 in the first array to element 1 in the
second array; and so on. If all elements in the first array are
equal to the corresponding elements in the second array, then
the arrays are equal. Example 8.8 compares two arrays of
doubles, a primitive data type.

EXAMPLE 8.8 Comparing Arrays of
Primitive Data Types

 1 /* Comparing Arrays of primitive data types

 2 Anderson, Franceschi

 3 */

 4

 5 public class ComparingArrays

 6 {

 7 public static void main(String [] args)

 8 {

 9 double [] cellBills1 = { 45.24, 54.67, 42.55, 44.61,

65.29, 49.75 };

10 double [] cellBills2 = { 45.24, 54.67, 41.99, 44.61,

65.29, 49.75 };

11

12 boolean isEqual = true;

13 if (cellBills1.length != cellBills2.length)

14 {

15 isEqual = false; // arrays are not the same size

16 }

17 else

18 {

19 for (int i = 0; i < cellBills1.length && isEqual; i++

)

20 {

21 if (Math.abs(cellBills1[i] - cellBills2[i]) >

0.001)

22 {

23 isEqual = false; // elements are not equal

24 }

25 }

26 }

27

28 if (isEqual)

29 System.out.println("cellBills1 and cellBills2 are

equal");

30 else

31 System.out.println("cellBills1 and cellBills2 are not

equal");

32 }

33 }

Before we begin the for loop, we declare at line 12 a boolean
variable, isEqual, and set it to true. In this way, we assume
the arrays are equal. Then, our first step is to compare
whether the two arrays have the same length (line 13). If they
are not the same size, the arrays cannot be equal, so we set
isEqual to false and execution skips to line 28. If the two
arrays are the same size, we use a for loop at lines 19–25 to
test whether the corresponding elements in each array are
equal. Note that we have added a second test to the for loop
condition (isEqual). If any corresponding elements are not
equal, we set isEqual to false at line 23. This will cause the
condition of the for loop to evaluate to false, and we exit the
for loop. Thus, when the for loop finishes executing, if any
corresponding elements did not match, isEqual will be false. If
both arrays are the same size and all corresponding elements
are equal, we never change the value of isEqual, so it
remains true. The output from this example is shown in Figure
8.14.

Figure 8.14
Output of Example 8.8

cellBills1 and cellBills2 are not equal

Naturally, if the elements of the arrays are ints, booleans, or
chars, we would use the equality operator (!=) at line 21 as in:

if (intArray1[i] != intArray2[i])

assuming the two arrays we are comparing have names
intArray1 and intArray2.

If the elements of the arrays are objects, our for loop should
call the equals method of the objects’ class. Thus, to compare
two arrays of Auto objects, named cars1 and cars2, we would
use the following code instead of the condition at line 21:

if (! cars1[i].equals(cars2[i]))

COMMON ERROR TRAP
Because arrays are objects, attempting to compare two arrays
using the equality operator (==) will compare whether the two
array references point to the same array in memory, not
whether the data in the two arrays are equal. Calling the
equals method inherited from the Object class yields similar
results.

A pitfall to avoid is attempting to test whether two arrays are
equal using the equality operator (==). This code:

if (cellBills == billsBackup)

will not compare the data of the two arrays. It will compare
whether the cellBills and billsBackup object references are
equal; that is, whether they point to the same array.

Similarly, the equals method inherited from Object also returns
the wrong results.

This code:

if (cellBills.equals(billsBackup))

will return true only if both object references point to the same
array.

8.3.8 Displaying Array Data as a Bar
Chart
One way to display array data is graphically, by drawing a bar
chart. For example, the bar chart in Figure 8.15 displays the
data in the cellBills array.

Figure 8.15
The cellBills Array as a Bar Chart

Each bar is simply a rectangle. Example 8.9 shows the code
to generate Figure 8.15.

EXAMPLE 8.9 Displaying Array Values
as a Bar Chart

 1 /* A bar chart application

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.stage.Stage;

 7 import javafx.scene.canvas.GraphicsContext;

 8 import javafx.scene.paint.Color;

 9

10 public class BarChartApplication extends Application

11 {

12 final int LEFT_MARGIN = 35; // starting x

coordinate

13 final int BASE_Y_BAR = 150; // bottom of the bars

14 final int BASE_Y_VALUE = 175; // bottom of the

values

15 final int BAR_WIDTH = 30; // width of each bar

16 final int SPACE_BETWEEN_BARS = 10; // pixels between

bars

17

18 private double [] cellBills

19 = { 45.24, 54.67, 42.55, 44.61, 65.29, 49.75 };

20 private String [] months

21 = { "March", "April", "May", "June", "July",

"August" };

22

23 @Override

24 public void start(Stage stage)

25 {

26 // set up window title and size

27 GraphicsContext gc = JIGraphicsUtility.setUpGraphics(

28 stage, "Bar Chart", 600, 200);

29

30 gc.setFill(Color.BLUE); // bars will be blue

31 int xStart = LEFT_MARGIN; // x value for first

bar

32

33 for (int i = 0; i < cellBills.length; i++)

34 {

35 gc.fillRect(xStart, BASE_Y_BAR - cellBills[i],

36 BAR_WIDTH, cellBills[i]);

37

38 gc.fillText(Double.toString(cellBills[i]),

39 xStart, BASE_Y_VALUE);

40

41 // move to starting x value for next bar

42 xStart += BAR_WIDTH + SPACE_BETWEEN_BARS;

43 }

44 }

45

46 public static void main(String [] args)

47 {

48 launch(args);

49 }

50 }

To create the bar chart, we use our standard for loop at lines
31–41 in the start method and call the fillRect method of the
GraphicsContext class to draw a rectangle for each element
(lines 33–34). We use the fillText method at lines 36–37 to
display the value of each element.

The fillRect method takes four arguments: the upper-left x
value, the upper-left y value, the rectangle’s width, and the
rectangle’s height.

We can determine the argument values for the fillRect method
for each element using the following approach, as illustrated
in Figure 8.16:

Figure 8.16
Arguments for Drawing Each Bar

Width: The width of the bar is a constant value. For
our bar chart, we chose a width of 30 pixels; the
constant BAR_WIDTH stores that value (line 15).

Height: The height for each bar is the value of the
array element being charted. Thus, in the fillRect
method call (lines 35–36), we represent the height of
a bar as:

cellBills[i]

Upper-left y value: Similarly, the upper-left y value will
be the height of the bar subtracted from the base y
value for all the bars; the base y value for all the bars
is the constant BASE_Y_BAR defined in line 13. We
subtract the value of the element from the base of the
bar because y values increase from the top of the
window to the bottom. Thus, in our fillRect method
call, we represent the upper-left y value of a bar as:

BASE_Y_BAR - cellBills[i]

Upper-left x value: We’ll start the first bar at the left
side of the window, plus a left margin value,
represented by the constant LEFT_MARGIN (line 12).
After we draw each bar, our for loop needs to move
the starting x value to the position of the next bar. To
do this, at line 42, we increment the starting x value
by the width of the bar, BAR_WIDTH (defined on line
15), plus the space between bars,
SPACE_BETWEEN_BARS (defined on line 16).

The arguments to the fillText method of the GraphicsContext
class are the String to display and the base x and y values. At
line 36, we convert the cellBills element to a String using the
toString method of the Double wrapper class. The base x
value is the same as the starting x value for the element’s bar,
and the base y coordinate, BASE_Y_VALUE, is the base
position for printing the array values (defined on line 14).

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a movie with
step-by-step illustrations of working with arrays. Click
on the link for this chapter to start the movie.

Skill Practice
with these end-of-chapter questions

8.11.1 Multiple Choice Exercises

Questions 6, 9,10

8.11.2 Reading and Understanding Code

Questions 16, 17, 18, 19, 20, 21

8.11.3 Fill In the Code

Questions 27, 28, 29, 30, 31

8.11.4 Identifying Errors in Code

Questions 39, 41, 43

8.11.5 Debugging Area

Questions 46, 47, 48

8.11.8 Technical Writing

Question 76

8.4 Programming Activity 1:
Working with Arrays
In this activity, you will work with a 15-element
integer array. Specifically, you will write the code to
perform the following operations:

1. fill the array with random numbers between 30 and 99

2. print the array

3. set every array element to a specified value

4. count the number of elements with a specified value

5. find the minimum value in the array

The framework for this Programming Activity will
animate your algorithm so that you can check the
accuracy of your code. For example, Figure 8.17
shows the application counting the elements having
the value 73.

Figure 8.17
Animation of the Programming Activity

At this point, the application has found the value 73
in element 0 and is comparing the value 73 with the
value 69 in element 4.

Instructions
In this chapter’s Programming Activity 1 folder in the
supplied code files, you will find the source files
needed to complete this activity. Copy all the files to
a folder on your computer. Note that all files should
be in the same folder.

Open the ArrayPractice1Controller.java source file.
Searching for five asterisks (*****) in the source code
will position you at the sample method and the four
other locations where you will add your code. We
have provided the sample code for task number 1,
which you can use as a model for completing the
other tasks. In every task, you will fill in the code for
a method that will manipulate an existing array of 15
integers. You should not instantiate the array; we
have done that for you. Example 8.10 shows the
section of the ArrayPractice1Controller source code
where you will add your code.

Note that for the countFrequency and findMinimum
methods, we provide a dummy return statement
(return 0;) We do this so that the source code will
compile. In this way, you can write and test each
method separately, using stepwise refinement. When
you are ready to write the countFrequency and
findMinimum methods, just replace the dummy
return statements with the appropriate return
statement for that method.

EXAMPLE 8.10 Location of
Student Code in
ArrayPractice1Controller

// ***** 1. The first method has been coded as an

example

/** Fills the array with random numbers between 50

and 80.

* The instance variable arr is the integer array

* to be filled with values

*/

public void fillValues ()

{

 Random rand = new Random() ;

 for (int i = 0; i < arr.length; i++)

 {

 arr [i] = rand.nextInt (31) + 50;

 animate (i, arr[i]) ; // needed to create

visual feedback

 }

}

// end of fillValues method

// ***** 2. student writes this method

/** Prints the array to the console with elements

separated

* by a space

* The instance variable arr is the integer array

to be printed

*/

public void printArray ()

{

 // Note: to animate the algorithm, put this method

call as the

 // last statement in your for loop:

 // animate(i, arr[i]);

 // where i is the index of the current array

element

 // Write your code here:

} // end of printArray method

// ***** 3. student writes this method

/** Sets all the elements in the array to parameter

value

* The instance variable arr is the integer array

to be processed

* @param value the value to which to set the

array elements

*/

public void setValues (int value)

{

 // Note: to animate the algorithm, put this method

call as the

 // last statement in your for loop

 // animate(i arr[i]);

 // where i is the index of the current array

element

 // Write your code here:

} // end of setValues method

// ***** 4. student writes this method

/** Counts number of elements equal to parameter

value

* The instance variable arr is the integer array

to be processed

* @param value the value to count

* @return the number of elements equal to value

*/

public int countFrequency (int value)

{

 // Note: to animate the algorithm, put this method

call as the

 // last statement in your for loop

 // animate(i, count);

 // where i is the index of the current

array element

 // count is the variable holding

the frequency

 // Write your code here:

 return 0; // replace this line with your return

statement

} // end of countFrequency method

// ***** 5. student writes this method

/** Finds and returns the minimum value in arr

* The instance variable arr is the integer array

to be processed

* @return the minimum value found in arr

*/

public int findMinimum()

{

 // Note: to animate the algorithm, put this method

call as the

 // last statement in your for loop

 // animate(i, minimum);

 // where i is the index of the current

array element

 // minimum is the variable holding

the minimum

 // Write your code here:

 return 0; // replace this line with your return

statement

} // end of findMinimum method

// End of student code

Our framework will animate your algorithm so that
you can watch your code work. For this to happen,
be sure that your for loop calls the animate method.
The arguments that you send to animate will differ

depending on the task you are coding. Detailed
instructions for each task are included in the code.

To test your code, compile
ArrayPractice1Controller.java and run the
ArrayPractice1Application source code. Figure 8.18
shows the graphics window when the program
begins. Because the values of the array are
randomly generated, the values will be different each
time the program runs. To test any method, click the
appropriate button.

Figure 8.18
The Graphics Window When the Application Begins

Troubleshooting
If your method implementation does not animate,
follow these tips:

Verify that the last statement in your for loop
is a call to the animate method and that you
passed the appropriate arguments to the
animate method.

Verify that your for loop has curly braces. For
example, the animate method call is outside
the body of this for loop:

for (int i = 0; i< arr.length; i++)

 System.out.println (arr [i]);

 animate(i); // this statement is

outside the for loop

Remember that without curly braces, the for
loop body consists of only the first statement
following the for loop header. Enclosing both
statements within curly braces will make the
animate method call part of the for loop body.

for (int i = 0; i < arr.length; i++)

{

 System.out.println (arr [i]);

 animate(i);

}

Verify that you did not instantiate a new
array. Perform all operations on the instance
variable array named arr.

DISCUSSION QUESTIONS
1. Could you use the following for loop header in every

method? Explain why or why not.

for (int i = 0; i < arr.length; i++)

2. How would you modify the findMinimum method to
return the index of the minimum value?

8.5 Using Arrays in Classes

8.5.1 Using Arrays in User-Defined
Classes
An array can be used inside a user-defined class just
like any other variable. In particular,

an array can be an instance variable.

an array can be a parameter to a method.

a method can return an array.

an array can be a local variable inside a
method.

To define a method that takes an array as a
parameter, use this syntax:

accessModifier returnType methodName(dataType []

arrayName)

The syntax for a method header that returns an array
is

accessModifier dataType [] methodName(

parameterList)

To pass an array as an argument to a method, just
use the array name without brackets as the
argument value:

COMMON ERROR TRAP
If we think of the brackets as being part of the data
type of the array, then it’s easy to remember that the
brackets are included in the method header—where
the data types of parameters are given—but that
brackets are not included in method calls, where the
data itself is given.

methodName(arrayName)

In Example 8.11, we define a class named
CellPhone that illustrates the use of arrays in a class.

EXAMPLE 8.11 The CellPhone
Class

 1 /** CellPhone class

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.text.DecimalFormat;

 6

 7 public class CellPhone

 8 {

 9 public final int MONTHS = 6; // default number

of months

10 private String phoneNumber;

11 private double [] cellBills;

12

13 /** Default constructor

14 * creates cellBills with MONTHS elements

15 */

16 public CellPhone()

17 {

18 phoneNumber = "";

19 cellBills = new double [MONTHS];

20 }

21

22 /** Constructor

23 * @param phoneNumber cell phone number

24 * @param cellBills array of monthly bills

25 */

26 public CellPhone(String phoneNumber, double [

] cellBills)

27 {

28 this.phoneNumber = phoneNumber;

29

30 // instantiate array with same length as

parameter

31 this.cellBills = new double

[cellBills.length];

32

33 // copy parameter array to cellBills array

34 for (int i = 0; i < cellBills.length; i++)

35 {

36 this.cellBills[i] = cellBills[i];

37 }

38 }

39

40 /** Accessor for the phone number

41 * @return the phone number

42 */

43 public String getPhoneNumber()

44 {

45 return phoneNumber;

46 }

47

48 /** Accessor for the cell phone bills

49 * @return copy of cellBills array

50 */

51 public double [] getCellBills()

52 {

53 double [] temp = new double

[cellBills.length];

54 for (int i = 0; i < cellBills.length; i ++)

55 {

56 temp[i] = cellBills[i];

57 }

58 return temp;

59 }

60

61 /** Calculates total of all cell phone bills

62 * @return total of all elements in cellBills

array

63 */

64 public double calcTotalBills()

65 {

66 double total = 0.0; // initialize total to

0.0

67

68 for (int i = 0; i < cellBills.length; i++)

69 {

70 total += cellBills[i]; // add current

element to total

71 }

72 return total;

73 }

74

75 /** Finds a maximum bill

76 * @return largest value in cellBills array

77 */

78 public double findMaximumBill()

79 {

80 double max = cellBills[0]; // assume first

element is max

81

82 for (int i = 1; i < cellBills.length; i++)

83 {

84 if (cellBills[i] > max)

85 max = cellBills[i]; // save new

maximum

86 }

87 return max;

88 }

89

90 /** Returns printable version of CellPhone

object

91 * @return phone number plus each month's

bill

92 */

93 @Override

94 public String toString()

95 {

96 String returnValue = phoneNumber + "\n";

97 DecimalFormat money = new DecimalFormat(

"$##0.00");

98 for (int i = 0; i < cellBills.length; i++)

99 {

100 returnValue += money.format(

cellBills[i]) + "\t";

101 }

102 returnValue += "\n";

103

104 return returnValue;

105 }

106

107 /** Compares two CellPhone objects for

equality

108 * @param c CellPhone object

109 * @return true if objects are equal; false,

otherwise

110 */

111 @Override

112 public boolean equals(Object c)

113 {

114 if (!(c instanceof CellPhone))

115 return false;

116 else

117 {

118 CellPhone objCP = (CellPhone) c;

119 if (!(phoneNumber.equals(

objCP.phoneNumber)))

120 return false;

121

122 if (cellBills.length !=

objCP.cellBills.length)

123 return false; // arrays are not the

same length

124

125 for (int i = 0; i < cellBills.length;

i++)

126 {

127 if (cellBills[i] !=

objCP.cellBills[i])

128 return false;

129 }

130 return true;

131 }

132 }

133 }

Our CellPhone class defines three instance variables
in lines 9–11: the phone number (a String named
phoneNumber), monthly bills (an array of doubles
named cellBills), and a constant named MONTHS,
whose value, 6, represents the number of monthly
cell bills, and therefore the length of the cellBills
array if a CellPhone object is instantiated using the
default constructor. Note that since MONTHS is a
constant, we made it public.

When our class has instance variables that are
arrays, we need to take a little extra care to ensure
that encapsulation is not violated.

Let’s start with initialization of the array. The
overloaded constructor of the Cell-Phone class,
whose method header is at line 26, includes an array
parameter. With parameters of primitive types, the

constructor can simply assign the value of the
parameter to the instance variable. As we have
seen, however, the name of an array is an object
reference, which contains the location of the array in
memory. If the constructor merely assigns the array
parameter, cellBills, to our array instance variable,
cellBills, as in the following code:

this.cellBills = cellBills; // incorrect! Client

still has reference!

then the parameter cellBills and the instance variable
cellBills would point to the same array. That means
that the client still has a reference to the array, and
the client can change the array values without going
through the mutator methods of the class. For
example, if the client executes this statement:

bills[2] = 75.00;

then cellBills[2] also gets the value 75.00, because
they are the same array. This is clearly a violation of
encapsulation, which means that a client should be
able to change the private fields of a class only by
calling the mutator methods of the class.

SOFTWARE ENGINEERING TIP
Sharing array references with the client violates
encapsulation. To return an array from a method,
copy the elements of the instance variable array to a
temporary array and return a reference to the
temporary array. Similarly, to accept an array as a
parameter to a method, instantiate a new array and
copy the elements of the parameter array to the new
array.

To avoid this problem, our constructor instantiates a
new cellBills array that is the same size as the array
passed as a parameter, and then copies the
elements of the parameter array into the new cellBills
array (lines 30–37).

There are similar considerations in implementing the
accessor method of an array instance variable. With
instance variables of primitive types, the accessor
methods simply return the value of the instance
variable. Our accessor for cellBills (lines 48–59) has
an array as a return value. If we return the cellBills
reference, however, we run into the same problem
with encapsulation; that is, if our accessor for the
cellBills instance variable uses this statement:

return cellBills; // incorrect! Client has reference

to instance variable

we give the client a reference to the cellBills array,
and the client can directly change the values of the
array without calling the mutator methods of the
class. Just as the constructor instantiated a new
array and copied the parameter array’s value to the
new array, the accessor method should instantiate a
new array, copy the cellBills array to it, and return a
reference to the new array. Thus, at line 53, we
declare and instantiate a local array variable named
temp. At lines 54–57, we copy the contents of
cellBills into temp, and return temp at line 58.

We also provide a method calcTotalBills (lines 61–
73) that calculates the total of the monthly bills using
the accumulation technique discussed earlier in the
chapter and a findMaximumBill method (lines 75–
88), which finds a maximum value in the cell-Bills
array, also using techniques discussed earlier in the
chapter.

Our toString method (lines 90–105) builds up a
String named returnValue by first including
phoneNumber, then formatting each bill using a
DecimalFormat pattern for money and concatenating
that value, plus a tab, to returnValue.

The equals method (lines 107–132) compares the
phone number and each element of the cellBills
array in the object with the phone number and
corresponding element in the cellBills array in the
parameter object.

We can test our CellPhone class with the client class
shown in Example 8.12. The output is shown in
Figure 8.19.

Figure 8.19
Output from the CellPhoneClient Class

c1 =

$0.00 $0.00 $0.00 $0.00 $0.00 $0.00

c2 = 555–555–5555

$24.60 $48.75 $62.50

The highest bill is $62.50

The total of all bills is $135.85

c2 and c3 are equal

after client changes original array

c2 = 555–555–5555

$24.60 $48.75 $62.50

after client changes returned array

c2 = 555–555–5555

$24.60 $48.75 $62.50

EXAMPLE 8.12 The
CellPhoneClient Class

 1 /** Client to exercise the CellPhone class

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.text.DecimalFormat;

 6

 7 public class CellPhoneClient

 8 {

 9 public static void main(String [] args)

10 {

11 double [] bills = new double[3]; // array

of cell phone bills

12 bills[0] = 24.60; // assign values

13 bills[1] = 48.75;

14 bills[2] = 62.50;

15

16 // instantiate CellPhone object using

default constructor

17 CellPhone c1 = new CellPhone();

18

19 // instantiate two identical CellPhone

objects

20 CellPhone c2 = new CellPhone("555-555-

5555", bills);

21 CellPhone c3 = new CellPhone("555-555-

5555", bills);

22

23 // print data from c1 and c2

24 System.out.println("c1 = " + c1.toString()

);

25 System.out.println("c2 = " + c2.toString()

);

26

27 // find and print maximum bill

28 DecimalFormat money = new DecimalFormat(

"$##0.00");

29 System.out.println("\nThe highest bill is "

30 + money.format(

c2.findMaximumBill()));

31

32 // find and print total of all bills

33 System.out.println("\nThe total of all

bills is "

34 + money.format(

c2.calcTotalBills()));

35

36 System.out.println(); // print blank line

37 // call equals method

38 if (c2.equals(c3))

39 System.out.println("c2 and c3 are

equal");

40 else

41 System.out.println("c2 and c3 are not

equal");

42

43 // test encapsulation

44 // set new value in original array

45 bills[2] = 100.00;

46 // print c2 to show value in object not

changed

47 System.out.println("\nafter client changes

original array\n"

48 + "c2 = " +

c2.toString());

49

50 // test encapsulation further

51 // get array of cell bills and store in new

array

52 double [] billsCopy = c2.getCellBills();

53

54 billsCopy[1] = 50.00; // change value of one

element

55 // print c2 to show value in object not

changed

56 System.out.println("\nafter client changes

returned array\n"

57 + "c2 = " + c2.toString(

));

58 }

59 }

In the CellPhoneClient, we instantiate three
CellPhone objects. We instantiate c1 using the
default constructor (line 17), giving it an empty phone
number and six months of bills initialized to 0.00, as
shown in line 24, when we use the toString method

to print c1’s data. We set up a bills array with three
values (lines 11–14) and pass bills to the overloaded
constructor (lines 20–21) to instantiate c2 and c3
with identical data. We then use toString to print c2’s
data (line 25).

We then call the findMaximumBill method and print
its return value (lines 27–30). Next, we call the
calcTotalBills method and print its return value (lines
32–34).

A call to the equals method to compare c2 and c3
(lines 37–41) returns a value of true, because the
two objects have the same data.

Finally, we test encapsulation two ways. First, we
change a value in the bills array, then print c2 again
to verify that its data has not changed (lines 43–48).
Second, we call the accessor method for the cellBills
array and change a value in the array returned from
the method call. We again print c2 to verify that its
data is unchanged (lines 50–57). Testing the
CellPhone class with such an example is helpful in
checking that we have correctly implemented the
class.

8.5.2 Retrieving Command Line
Arguments
The syntax of an array parameter for a method might
look familiar to you. We’ve seen it repeatedly in Java
applications in the header for the main method:

public static void main(String [] args)

As we can see, main receives a String array as a
parameter. That array of Strings holds the
arguments, if any, that the user sends to the program
from the command line. An argument might be the
name of a file for the program to read or some
configuration parameters that specify preferences in
how the application should perform its function.

The sample program in Example 8.13 demonstrates
how to retrieve the parameters sent to a Java
application. Because args is a String array, we can
use the length field to get the number of parameters
(lines 8–9), and we use our standard for loop format
(lines 10–13) to retrieve and print each parameter, as
shown in Figure 8.20.

Figure 8.20
Output from Example 8.13

The number of parameters is 2

args[0]: input.txt

args[1]: output.txt

EXAMPLE 8.13 Retrieving
Command Line Arguments
 1 /** Print Command Line arguments

 2 * Anderson, Franceschi

 3 */

 4 public class CommandLineArguments

 5 {

 6 public static void main(String [] args)

 7 {

 8 System.out.println("The number of parameters

is "

 9 + args.length);

10 for (int i = 0; i < args.length; i ++)

11 {

12 System.out.println("args[" + i + "]: " +

args[i]);

13 }

14 }

15 }

Figure 8.20 shows the output produced when we
invoke the program as

java CommandLineArguments input.txt output.txt

Skill Practice
with these end-of-chapter questions

8.11.1 Multiple Choice Exercises

Question 11

8.11.2 Reading and Understanding Code

Questions 22, 23, 24, 25, 26

8.11.3 Fill In the Code

Questions 32, 33, 34, 35

8.11.6 Write a Short Program

Questions 49, 50, 51, 52, 53, 54, 55, 56,
58, 59, 60, 61

8.6 Searching and Sorting Arrays
Arrays are great instruments for storing a large number of
related values. As seen earlier in this chapter, we can use
arrays to store daily temperatures, CD titles, telephone bills,
quiz grades, and other sets of related values. Once the data is
stored in an array, we will want to manipulate that data. A very
common operation is searching an array for a specific value.

8.6.1 Sequential Search of an Unsorted
Array
Let’s assume we manage a movie theater. We give each
customer a frequent moviegoer card with a unique member
ID. We have decided to pick four member IDs at random and
give those members a free gift the next time they visit the
theater. So we set up a MovieWinners class with two array
instance variables:

An array of ints that holds the member IDs of the
winners

An array of Strings that holds the corresponding
prizes

Note that both arrays have four elements and that there is a
one-to-one correspondence between the two arrays. Winner
#1 will receive prize #1, winner #2 will receive prize #2, and
so on. This programming technique is called using parallel
arrays.

We fill the winners array with member IDs chosen randomly.
We fill the prizes array with Strings representing prize
descriptions. When a member buys a movie ticket, we look
through the winners array for the member’s ID. If the
member’s ID is in the winners array, we use its index to
retrieve the corresponding prize from the prizes array that the
member won. If the member ID is not found in the array, we
know the member is not a winner.

The MovieWinners class is shown in Example 8.14.

EXAMPLE 8.14 The MovieWinners Class

 1 /** Winners of Free Movies and Other Prizes

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.util.Random;

 6

 7 public class MovieWinners

 8 {

 9 public final int MEMBERS = 5000;

10 // array to hold winning member numbers chosen at

random

11 private int [] winners;

12 // parallel array that holds prizes

13 private String [] prizes = { "2 free movie tickets!",

14 "1 free movie ticket!"

15 "free popcorn!",

16 "free box of candy!" };

17 /** Default constructor instantiates winners array

18 * and randomly generates winning member IDs

19 */

20 public MovieWinners()

21 {

22 winners = new int [prizes.length];

23 fillWinners(); // generate winner member IDs

24 }

25

26 /** Utility method generates winner member IDs

27 * and stores them in the winners array

28 */

29 private void fillWinners()

30 {

31 Random rand = new Random();

32 for (int i = 0; i < winners.length; i++)

33 {

34 winners[i] = rand.nextInt(MEMBERS) + 1;

35 }

36 }

37

38 /** Calls indexOfWinner with the member number

39 * then translates return value into the prize won

40 * @param memberNumber value to find

41 * @return prize

42 */

43 public String getPrize(int memberNumber)

44 {

45 int prizeIndex = indexOfWinner(memberNumber);

46 if (prizeIndex == -1)

47 return "Sorry, member is not a winner.";

48 else

49 return "You win " + prizes[prizeIndex];

50 }

51

52 /** Performs sequential search of winners array

53 * @param key member ID to find in winners array

54 * @return index of key if found, -1 if not found

55 */

56 private int indexOfWinner(int key)

57 {

58 for (int i = 0; i < winners.length; i++)

59 {

60 if (winners[i] == key)

61 return i;

62 }

63 return -1;

64 }

65

66 /** Returns printable version of MovieWinners object

67 * @return winning numbers separated by a tab

68 */

69 @Override

70 public String toString()

71 {

72 String returnValue = "";

73 for (int i = 0; i < winners.length; i++)

74 {

75 returnValue += winners[i] + "\t";

76 }

77 return returnValue;

78 }

79 }

The constructor randomly generates values to fill the array by
calling the utility method, fillWinners (lines 26–36). In the
interest of keeping things simple, we have coded the
fillWinners method in such a way that it does not necessarily
generate different numbers; however, the likelihood of two
winning numbers being equal is very small. We declare the
fillWinners method as private because it is designed to be
called only by the methods of this class.

Our indexOfWinner method (lines 52–64) performs a
Sequential Search, which compares the member ID to each
element in the array one by one. The indexOfWinner method
accepts a parameter, key, which is the member ID to search
for in the array. If key is found, indexOfWinner returns the

index of that array element. If key is not found, that is, if none
of the elements in the array matches the value of key,
indexOfWinner returns −1. Since −1 is not a valid array index,
it’s a good value to use to indicate that the search was
unsuccessful.

Notice that if the current array element matches the key, the
indexOfWinner method returns immediately to the caller (line
61); that is, the method stops executing. The return value is
the index of the element that matched the key. If, however,
the method finishes executing all iterations of the for loop,
then the method has looked at every element in the array
without finding a match. In that case, the method returns −1
(line 63), indicating that the key was not found.

Our getPrize method (lines 38–50) calls indexOfWinner to
check if its member-Number parameter is a winning number; if
it is, it uses the array index returned by indexOfWinner to
return the corresponding element in the array prizes (line 49).

Example 8.15 shows a client application that uses our
MovieWinners class.

EXAMPLE 8.15 Client Application for the
MovieWinners Class

 1 /** Client for the MovieWinners class

 2 Anderson, Franceschi

 3 */

 4 import java.util.Scanner;

 5

 6 public class MovieWinnersClient

 7 {

 8 public static void main(String [] args)

 9 {

10 // instantiate the winningIDs array

11 MovieWinners winningIDs = new MovieWinners();

12

13 // prompt for the member ID

14 Scanner scan = new Scanner(System.in);

15 System.out.print("Enter the member's ID "

16 + "or 0 to stop > ");

17 int searchID = scan.nextInt();

18

19 while (searchID != 0)

20 {

21 // determine whether member is a winner

22 System.out.println(winningIDs.getPrize(searchID)

);

23

24 System.out.print("\nEnter the next member's ID "

25 + "or 0 to stop > ");

26 searchID = scan.nextInt();

27 }

28

29 System.out.println("\nThe winners were "

30 + winningIDs.toString()

);

31 }

32 }

SOFTWARE ENGINEERING TIP
When you write a class that uses corresponding lists of items
with different data types, consider using parallel arrays.

We instantiate a MovieWinners object reference named
winningIDs (lines 10–11). We then prompt for a member ID
(lines 15–17) and call the getPrize method (line 22) in order to
output any prize that may have been won by the current
member. Figure 8.21 shows a possible output of running the
MovieWinnersClient application.

Figure 8.21
Output of Example 8.15

Enter the member's ID or 0 to stop > 1234

Sorry, member is not a winner.

Enter the next member's ID or 0 to stop > 3980

You win free popcorn!

Enter the next member's ID or 0 to stop > 0

The winners were 619 4510 3980 4004

8.6.2 Selection Sort
The member IDs in the preceding winners array were in
random order, so when a member was not a winner, our
findWinners method needed to look at every element in the
array before discovering that the ID we were looking for was
not in the array. This is not efficient, since most members are
not winners. The larger the array, the more inefficient a
sequential search becomes. We could simplify the search by
arranging the elements in numeric order, which is called
sorting the array. Once the array is sorted, we can use
various algorithms to speed up a search. Later in this chapter,
we discuss how to search a sorted array.

In this chapter, we present two basic sorting algorithms,
Selection Sort and Insertion Sort.

Selection Sort derives its name from the algorithm used to
sort the array. We select a largest element in the array and
place it at the end of the array. Then we select a next-largest
element and put it in the next-to-last position in the array. To
do this, we consider the unsorted portion of the array as a
subarray. We repeatedly select a largest value in the current
subarray and move it to the end of the subarray, then consider
a new subarray by eliminating the elements that are in their
sorted locations, until the subarray has only one element. At
that time, the array is sorted.

In more formal terms, we can state the Selection Sort
algorithm, presented here in pseudocode, in this way:

To sort an array with n elements in ascending order:

1. Consider m elements as a subarray with m = n elements.

2. Find the index of a largest value in this subarray.

3. Swap the values of the element with the largest value and

the element in the

 last position in the subarray.

4. Consider a new subarray of m = m – 1 elements by

eliminating the last element in

 the previous subarray.

5. Repeat steps 2 through 4 until m = 1.

For example, let’s walk through a Selection Sort on the
following array. At the beginning, the entire array is the
subarray (shown here with shading).

We begin by considering the entire array as an unsorted
subarray. We find that the largest element is 26 at index 1.

Next we move element 1 to the last element by swapping the
values of the elements at indexes 1 and 3.

The value 26 is now in the right place, and we consider
elements 0 through 2 as the unsorted subarray.

The largest element in the new subarray is 17 at index 0. So
we move element 0 to the last index of the subarray (index 2)
by swapping the elements at indexes 0 and 2.

The value 17 is now in the right place, and we consider
elements 0 and 1 as the new unsorted subarray.

The largest element in the new subarray is 5 at index 0. We
move element 0 to the last index of the subarray (index 1) by
swapping the elements at indexes 0 and 1.

The value 5 is now in the right place, and we consider
element 0 as the new subarray. But because there is only one
element in the subarray, the subarray is sorted. Thus the
whole array is sorted, and our job is done.

A critical operation in a Selection Sort is swapping two array
elements. Before going further, let’s examine the algorithm for
swapping two array elements.

To swap two values, we need to define a temporary variable
that is of the same data type as the values being swapped.
This variable will temporarily hold the value of one of the
elements, so that we don’t lose the value during the swap.

The algorithm, presented here in pseudocode, involves three
steps:

To swap elements a and b:

1. Assign the value of element a to the temporary variable.

2. Assign the value of element b to element a.

3. Assign the value in the temporary variable to element b.

For instance, if an array named array has int elements, and
we want to swap the element at index 3 with the element at
index 6, we will use the following code:

int temp = array[3]; // line 1

array[3] = array[6]; // line 2

array[6] = temp; // line 3

The order of these operations is critical; changing the order
might result in loss of data and erroneous data stored in the
array.

The following illustrates line by line what happens during the
swap:

Before line 1 is executed, our array looks like this:

Line 1 assigns the value of element 3 to temp. After line 1 is
executed, the value of temp is 33. The array is unchanged.

Line 2 assigns the value of element 6 (82) to element 3. After
line 2 is executed, both element 6 and element 3 have the
same value. But that’s OK, because we saved the value of
element 3 in temp.

Line 3 assigns the value we saved in temp to element 6. After
line 3 is executed, the values of elements 3 and 6 have been
successfully swapped.

COMMON ERROR TRAP
When swapping elements, be sure to save a value before
replacing it with another value to avoid losing data.

Example 8.16 shows the Sorter class, which provides a static
selectionSort method for an integer array.

EXAMPLE 8.16 The Sorter Class

 1 /* Sort Utility Class

 2 * Anderson, Franceschi

 3 */

 4

 5 public class Sorter

 6 {

 7 /** Uses Selection Sort to sort

 8 * an integer array in ascending order

 9 * @param array the array to sort

10 */

11 public static void selectionSort(int [] array)

12 {

13 int temp; // temporary location for swap

14 int max; // index of maximum value in subarray

15

16 for (int i = 0; i < array.length - 1; i++)

17 {

18 find index of largest value in subarray

19 max = indexOfLargestElement(array, array.length - i

);

20

21 // swap array[max] and array[array.length - i - 1]

22 temp = array[max];

23 array[max] = array[array.length - i - 1];

24 array[array.length - i - 1] = temp;

25 }

26 }

27

28 /** Finds index of largest element

29 * @param size the size of the subarray

30 * @param array the array to search

31 * @return the index of the largest element in the

subarray

32 */

33 private static int indexOfLargestElement(int [] array,

int size)

34 {

35 int index = 0;

36 for (int i = 1; i < size; i++)

37 {

38 if (array[i] > array[index])

39 index = i;

40 }

41 return index;

42 }

43 }

Part of the Selection Sort algorithm is finding the index of the
largest element in a subarray, so we implement the Selection
Sort with two methods. At lines 7–26 is the selectionSort
method, which implements the Selection Sort algorithm. To
perform its work, the selectionSort method calls the utility
method, indexOfLargestElement (lines 28–42), which returns
the index of the largest element in a subarray. This method
uses the algorithm discussed earlier in the chapter for finding
a maximum value in an array. We declare this method private
because its only function is to provide a service to the
selectionSort method. The indexOfLargestElement method
must also be declared as static because the selectionSort
method is static, and thus can call only static methods.

In Example 8.17, the client code instantiates an integer array
and prints the array before and after the Selection Sort is

performed. Because selectionSort is a static method, we call it
using the Sorter class name. The output of a sample run is
shown in Figure 8.22.

Figure 8.22
Using Selection Sort

Before Selection Sort, the array is

3394 279 1181 2471 3660 221

After Selection Sort, the array is

221 279 1181 2471 3394 3660

EXAMPLE 8.17 Using Selection Sort

 1 /** Client for Selection Sort

 2 * Anderson, Franceschi

 3 */

 4 import java.util.Random;

 5

 6 public class SelectionSortClient

 7 {

 8 public static void main(String [] args)

 9 {

10 // instantiate an array and fill with random values

11 int [] numbers = new int [6];

12 Random rand = new Random();

13 for (int i = 0; i < numbers.length; i++)

14 {

15 numbers[i] = rand.nextInt(5000) + 1;

16 }

17

18 System.out.println("Before Selection Sort, the array

is");

19 for (int i = 0; i < numbers.length; i++)

20 System.out.print(numbers[i] + "\t");

21 System.out.println();

22

23 Sorter.selectionSort(numbers); // sort the array

24

25 System.out.println("\nAfter Selection Sort, the array

is");

26 for (int i = 0; i < numbers.length; i++)

27 System.out.print(numbers[i] + "\t");

28 System.out.println();

29 }

30 }

8.6.3 Insertion Sort
Like Selection Sort, Insertion Sort derives its name from the
algorithm used to sort the array. The basic approach to an
Insertion Sort is to sort elements much like a card player
arranges the cards in sorted order in his or her hand. The
player inserts cards one at a time in such a way that the cards
on the left side of his or her hand are sorted at all times; the
cards on the right side of his or her hand have not yet been
inserted into the sorted part of the hand. As Figure 8.23a
shows, the three yellow cards on the left (3, 5, and 9) are
already arranged in sorted order, and the white cards on the
right (4, 2, and 8) have yet to be inserted into their correct
location. Note that the “sorted” yellow cards on the left side
are not necessarily in their final position yet. We will now
insert the 4. We first compare it to the 9; since 4 is smaller
than 9, we shift the 9 to the right (Figure 8.23b). We then
compare the 4 to the 5; since 4 is smaller than 5, we shift the
5 to the right (Figure 8.23c). We then compare the 4 to the 3;
since 4 is larger than 3, the 3 stays in place and we insert the
4 in the empty slot (Figure 8.23d). We are now ready to insert
the next card, the 2.

Figure 8.23a
The next card to insert is a 4

Figure 8.23b
9 is shifted to the right

Figure 8.23c
5 is shifted to the right

Figure 8.23d
4 is inserted

To sort an array of n elements in ascending order, Insertion
Sort implements a double loop:

The outer loop executes n – 1 times and iterates
through the array elements from indexes 1 through n
– 1. If the variable i represents the counter of the
outer loop, the array can be thought of as made of
three parts:

a sorted subarray (although the elements may not
be in their final position yet) from index 0 to i – 1,

the array element (at index i) that we are currently
inserting, and

a subarray (from index i + 1 to n – 1) of elements
that have not yet been inserted.

At each iteration of the outer loop, we insert the
current array element at its proper place within the
sorted subarray. The inner loop compares the current
array element to the elements of the sorted array from
right to left and shifts these elements to the right until
it finds the proper insert location.

After all elements have been inserted, the array is
sorted.

The pseudocode for the Insertion Sort is

for i = 1 to last array index by 1

 j = i

 temp = element at index i

 while (j != 0 and value of element at index j – 1 >

temp)

 shift element at index j – 1 to the right

 decrement j by 1

 assign value stored in temp to element at index j

For example, let’s walk through an Insertion Sort on the
following array. At the beginning, the unsorted array is

The first element of the array, 17, is automatically in the
correct position when we consider the subarray as consisting
of that element only. The value of the outer loop counter (i) is
1, and we will now insert the second array element, 26, into
the left subarray. First, we save the value of the element to be
inserted by storing it in temp. We need to save the value
because it is possible that we will shift other values, in which
case we would overwrite that element. The value of the inner
loop counter (j) is set to the value of the outer loop counter (i),
i.e., 1. We compare elements 26 (index j = 1) and 17 (index j
– 1 = 0). Since 26 is larger than 17, we exit the inner loop
(and therefore we do not shift 17 to the right). We then assign
the value of the current element, 26, stored in temp, to the
element at index j = 1; in this case, there is no change to the
array. The value 26 has been inserted.

The outer loop counter (i) is incremented, and its value is 2.
We will now insert the third array element, 5, into the left
subarray (at this point comprised of the two inserted
elements, 17 and 26).

The value of the inner loop counter (j) is set to the value of
the outer loop counter (i), i.e., 2. We compare the current
element, 5, stored in temp, and 26 (index j – 1 = 1). Since 5 is
smaller than 26, we shift 26 to the right and decrement j by 1;
j now has the value 1.

We then compare the current element, 5, stored in temp, and
17 (index j – 1 = 0). Since 5 is smaller than 17, we shift 17 to
the right and decrement j by 1; j now has the value 0.

Since j is 0, we exit the inner loop and assign the value of the
current element, 5, stored in temp, to the array element at
index j = 0. The value 5 has now been inserted.

The outer loop counter (i) is incremented, and its value is 3.
We will now insert the fourth array element, 12, into the left
subarray (at this point comprising the three inserted elements,
5, 17, and 26).

The value of the inner loop counter (j) is set to the value of the
outer loop counter (i), i.e., 3. We compare the current
element, 12, stored in temp, and 26 (index j – 1 = 2). Since 12
is smaller than 26, we shift 26 to the right and decrement j by
1; j now has the value 2.

We then compare the current element, 12, stored in temp,
and 17 (index j – 1 = 1). Since 12 is smaller than 17, we shift
17 to the right and decrement j by 1; j now has the value 1.

We then compare the current element, 12, stored in temp,
and 5 (index j – 1 = 0). Since 12 is not smaller than 5, we exit
the inner loop; we then assign the value of the current
element, stored in temp, to the element at index j = 1; the
value 12 has been inserted.

COMMON ERROR TRAP
When looping through an array, be careful not to access an
element outside the bounds of the array. Your code will
compile, but will generate an ArrayIndexOut- OfBounds-
Exception at run time.

The outer loop counter (i) is incremented, and its value is 4,
which causes the outer loop to terminate. All the elements
have been inserted; the array is now sorted.

Example 8.18 shows our Sorter class with the Insertion Sort
algorithm implemented in lines 43–63.

EXAMPLE 8.18 Sorter Class with
Insertion Sort

 1 /* Sort Utility Class

 2 Anderson, Franceschi

 3 */

 4

 5 public class Sorter

 6 {

 7 /** Performs a Selection Sort on

 8 * an integer array

 9 * @param the array to sort

10 */

11 public static void selectionSort(int [] array)

12 {

13 int temp; // temporary location for swap

14 int max; // index of maximum value in subarray

15

16 for (int i = 0; i < array.length - 1; i++)

17 {

18 // find index of largest value in subarray

19 max = indexOfLargestElement(array, array.length - i

);

20

21 // swap array[max] and array[array.length - i - 1]

22 temp = array[max];

23 array[max] = array[array.length - i - 1];

24 array[array.length - i - 1] = temp;

25 }

26 }

27

28 /** Finds index of largest element

29 * @param size the size of the subarray

30 * @return the index of the largest element in the

subarray

31 */

32 private static int indexOfLargestElement(int [] array,

int size)

33 {

34 int index = 0;

35 for (int i = 1; i < size; i++)

36 {

37 if (array[i] > array[index])

38 index = i;

39 }

40 return index;

41 }

42

43 /** Performs an Insertion Sort on an integer array

44 * @param array array to sort

45 */

46 public static void insertionSort(int [] array)

47 {

48 int j, temp;

49

50 for (int i = 1; i < array.length; i++)

51 {

52 j = i;

53 temp = array[i];

54

55 while (j != 0 && array[j - 1] > temp)

56 {

57 array[j] = array[j - 1];

58 j--;

59 }

60

61 array[j] = temp;

62 }

63 }

64 }

Example 8.19 shows a client program that instantiates an
integer array, fills it with random values, and then prints the
array before and after performing the Insertion Sort. Figure
8.24. shows a sample run, using the Insertion Sort algorithm
to sort an array of integers.

Figure 8.24
Using Insertion Sort

Before Insertion Sort, the array is

2856 2384 3979 3088 1176 284

After Insertion Sort, the array is

284 1176 2384 2856 3088 3979

EXAMPLE 8.19 Using Insertion Sort

 1 /** Client for Insertion Sort

 2 * Anderson, Franceschi

 3 */

 4 import java.util.Random;

 5

 6 public class InsertionSortClient

 7 {

 8 public static void main(String [] args)

 9 {

10 // instantiate an array and fill with random values

11 int [] numbers = new int [6];

12 Random rand = new Random();

13 for (int i = 0; i < numbers.length; i++)

14 {

15 numbers[i] = rand.nextInt(5000) + 1;

16 }

17

18 System.out.println("Before Insertion Sort, the array

is");

19 for (int i = 0; i < numbers.length; i++)

20 System.out.print(numbers[i] + "\t");

21 System.out.println();

22

23 Sorter.insertionSort(numbers); // sort the array

24

25 System.out.println("\nAfter Insertion Sort, the array

is");

26 for (int i = 0; i < numbers.length; i++)

27 System.out.print(numbers[i] + "\t");

28 System.out.println();

29 }

30 }

8.6.4 Sorting Arrays of Objects
We saw earlier in the chapter that data items to be sorted can
be primitive data types, such as integers or doubles. But they
can also be objects. With an array of objects, it is important to
understand that we need to sort the objects themselves, not
the array elements, which are merely the object references, or
memory locations of the objects.

Arrays of objects are sorted using a sort key, which is one or
more of the instance variables of the objects. For instance, if
we have email objects, they can be sorted by date received,
by author, by subject, and so on. It is important to note that
when we sort objects, the integrity of the objects must be
respected; for instance, when we sort a collection of email
objects by sender, we sort a collection of email objects, not a
collection of senders.

Thus, to perform the Insertion Sort on the cars array of Auto
objects, we need to decide which field (or fields) of the Auto
object determines the order of the objects. If we say that the
model is the sort field, then the comparison statement would
compare the models in two objects, that is, two Strings. The
compareTo method of the String class compares the values of
two Strings. It returns a positive number if the String for which
the method is invoked is greater than the String passed as an
argument.

To sort the cars array using an Insertion Sort, we would need
to make several revisions to the InsertionSort method. First,
the data type of the array must be declared as an Auto in the
parameter list. Second, temp needs to be defined as an Auto

reference, and finally, we need to substitute the compareTo
method in the condition that compares array elements.

The revised Insertion Sort code becomes:

/* * Insertion sorts an array of Autos

* @param arr an array of Autos

*/

public static void insertionSort(Auto [] arr)

{

 Auto temp;

 int j;

 for (int i = 1; i < arr.length; i++)

 {

 j = i;

 temp = arr[i];

 while (j != 0 && (temp.getModel()).compareTo(

 arr[j - 1].getModel()) < 0)

 {

 arr[j] = arr[j - 1];

 j--;

 } // end while loop

 arr[j] = temp;

 } // end for loop

} // end InsertionSort method

8.6.5 Sequential Search of a Sorted
Array
Earlier in the chapter, the MovieWinners class sequentially
searched an array. The algorithm assumed the elements were
not in order. If we sort the array, a Sequential Search can be
implemented more efficiently for the case when the search
key is not present in the array. Instead of searching the entire
array before discovering that the search key is not in the
array, we can stop as soon as we pass the location where that
element would be if it were in the array. In other words, if the
array is sorted in ascending order, we can recognize an
unsuccessful search when we find an element in the array
that is greater than the search key. Because the array is
sorted in ascending order, all the elements after that array
element are larger than that element, and therefore are also
larger than the search key.

To implement this algorithm, we can add another test to the
for loop condition, so that we exit the loop as soon as we find
an element that is greater than the search key. The improved
algorithm shown next could be used to replace the
indexOfWinner method shown in Example 8.14 for Sequential
Search of a sorted winners array:

public int indexOfWinner(int key)

{

 for (int i = 0; i < winners.length && winners[i] <= key;

i++)

 {

 if (winners[i] == key)

 return i;

 }

 return -1; // end of array reached without finding key

 // or an element larger than the key was found

}

In fact, if the array is sorted, it can be searched even more
efficiently using an algorithm called Binary Search, which we
explain in the next section.

8.6.6 Binary Search of a Sorted Array
If you’ve played the “Guess a Number” game, you probably
have used the concept of a Binary Search. In this game,
someone asks you to guess a secret number between 1 and
100. For each number you guess, they tell you whether the
secret number is larger or smaller than your guess. A good
strategy is to guess the number in the middle, which in this
example is 50. Whether the secret number is larger or smaller
than 50, you will have eliminated half of the possible values. If
the secret number is greater than 50, then you know your next
guess should be 75 (halfway between 50 and 100). If the
secret number is less than 50, your next guess should be 25
(halfway between 1 and 50). If you continue eliminating half
the possible numbers with each guess, you will quickly guess
the secret number. This approach works because we are
“searching” a sorted set of numbers (1 to 100).

Similarly, a Binary Search of a sorted array works by
eliminating half the remaining elements with each
comparison. First, we look at the middle element of the array.
If the value of that element is the search key, we return its
index. If, however, the value of the middle element is greater
than the search key, then the search key cannot be found in
elements with array indexes higher than that element.
Therefore, we will search the left half of the array only.
Similarly, if the value of the middle element is lower than the
search key, then the search key cannot be found in elements
with array indexes lower than the middle element. Therefore,
we will search in the right half of the array only. As we keep
searching, the subarray we search keeps shrinking in size. In
fact, the size of the subarray we search is cut in half at every
iteration.

If the search key is not in the array, the subarray we search
will eventually become empty. At that point, we know that we
will not find our search key, and we return –1.

Example 8.20 shows our Binary Search algorithm.

EXAMPLE 8.20 Binary Search of a
Sorted Array

 1 /** Binary Search

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class BinarySearcher

 8 {

 9 public static void main(String [] args)

10 {

11 // define an array sorted in ascending order

12 int [] numbers = { 3, 6, 7, 8, 12, 15, 22, 36, 45,

13 48, 51, 53, 64, 69, 72, 89, 95 };

14

15 Scanner scan = new Scanner(System.in);

16 System.out.print("Enter a value to search for > ");

17 int key = scan.nextInt();

18

19 int index = binarySearch(numbers, key);

20 if (index != -1)

21 System.out.println(key + " found at index " +

index);

22 else

23 System.out.println(key + " not found");

24 }

25

26 public static int binarySearch(int [] arr, int key)

27 {

28 int start = 0;

29 int end = arr.length - 1;

30 int middle;

31

32 while (end >= start)

33 {

34 middle = (start + end) / 2; // element in middle

of array

35

36 if (arr[middle] == key)

37 {

38 return middle; // key found at middle

39 }

40 else if (arr[middle] > key)

41 {

42 end = middle - 1; // search left side of array

43 }

44 else

45 {

46 start = middle + 1; // search right side of

array

47 }

48 }

49 return -1;

50 }

51 }

We start by declaring and initializing an integer array with 17
sorted elements (lines 12–13). We then prompt the user for a
search key and call the binarySearch method (lines 16–19).

The binarySearch method is coded at lines 26–50. The local
variables start and end store the first and last index of the
subarray to search. Because we begin by searching the entire
array, we initialize these to the indexes of the first and last

element of the array that was passed as a parameter. The
local variable middle, declared at line 30, will store the index
of the middle element in the subarray to search.

The search is performed in a while loop (lines 32–48), whose
condition determines whether the subarray is empty. If the
subarray is not empty, we calculate the value for middle by
adding the indexes of the first and last elements and dividing
by 2 (line 34). Next we test whether the value at the middle
index is equal to the key. If so, we have found the key and we
return its index, which is middle (lines 36–39). If not, we test
whether the value in the middle of the subarray is greater than
the key. If so, if the key is in the array, it will be found in the
left half of the array. Thus, we reduce the subarray to the
elements with indexes less than middle (lines 40–43) and
greater than or equal to start. If the value in the middle of the
subarray is less than the key, then if the key is in the array, it
will be found in the right half of the array. Thus, we reduce the
subarray to the elements with indexes greater than middle
(lines 44–47) and smaller than or equal to end.

When the while loop continues, we continue making our
comparisons and either returning the index of the search key
or reducing the size of the subarray. If the search key is not in
the array, the subarray eventually becomes empty, and we
exit the while loop and return –1 (line 49). Figure 8.25 shows
the output when the search key is found.

Figure 8.25
Output from Example 8.20

Enter a value to search for > 64

64 found at index 12

Let’s run through the Binary Search algorithm on the key 7 to
illustrate how the algorithm works when the key is found in the
array. Here is the array numbers:

When the binarySearch method is called, it sets start to 0 and
end to arr.length – 1, which is 16. Thus, the value of middle is
8.

The element at index 8 (45) is greater than 7, so we set end
to 7 (middle – 1), and we will now search the left subarray,
highlighted next. The value of middle is now 3 ((0 + 7) / 2).

The element at index 3 (8) is greater than 7, so we set end to
2 (middle – 1) and keep searching in the left subarray,
highlighted next. The value of middle is now 1 ((0 + 2) / 2).

The element at index 1 (6) is smaller than 7, so we set start to
2 (middle + 1) and search in the right subarray, highlighted
next. The value of middle is now 2 ((2 + 2) / 2).

The element at index 2 (7) is equal to 7. We have found the
value and return its index, 2.

Let’s now run the preceding example on the key 34 to
illustrate how the algorithm works when the key is not found in
the array.

Here is the array numbers again:

Again, when the binarySearch method is called, it sets start to
0 and end to arr.length – 1, which is 16. Thus, middle is
assigned the value 8 for the first comparison.

The element at index 8 (45) is greater than 34, so we set end
to 7 (middle – 1), and keep searching in the left subarray. The
value of middle becomes 3 for the next comparison.

The element at index 3 (8) is smaller than 34, so we search in
the right subarray highlighted below. The value of middle is
now 5.

The element at index 5 (15) is smaller than 34, so we search
in the right subarray. The value of middle is now 6.

The element at index 6 (22) is smaller than 34, so we search
in the right subarray. The value of middle is now 7.

At this point, start, end, and middle all have the value 7. The
element at index 7 (36) is larger than 34, so we assign end
the value middle – 1, which is 6. This makes end less than
start and consequently makes the while loop condition
evaluate to false. We have not found 34, so we return –1.

8.7 Programming Activity 2: Searching
and Sorting Arrays
In this activity, you will work again with a 15-element integer
array, performing these activities:

1. Write a method to perform a Sequential Search of an array.

2. Write a method to implement the Bubble Sort algorithm to sort an array.

The basic approach to a Bubble Sort is to make multiple
passes through the array. In each pass, we compare adjacent
elements. If any two adjacent elements are out of order, we
put them in order by swapping their values.

To sort an array of n elements in ascending order, Bubble Sort
implements a double loop:

The outer loop executes n – 1 times.

For each iteration of the outer loop, the inner loop
steps through all the unsorted elements of the array
and does the following:

Compares the current element with the next
element in the array.

If the next element is smaller, it swaps the two
elements.

At this point, n – 1 elements have been moved to their correct
positions. That leaves only the element at index 0, which is
therefore automatically at the correct position within the array.
The array is now sorted.

As the outer loop counter goes from 0 to n – 2, it iterates n – 1
times.

Outer
loop
counter

Indexes of
element(s) at the
sorted position

0 n – 1

1 n – 2, n – 1

2 n – 3, n – 2, n – 1

… …

n – 3 2, 3, 4, …, n – 3, n

– 2, n– 1

n – 2 1, 2, 3, 4, …, n – 3,

n – 2, n – 1

The pseudocode for the Bubble Sort is

for i = 0 to last array index – 1 by 1

 for j = 0 to (last array index – i –1) by 1

 if (2 consecutive elements are in the wrong order)

 swap them

For example, let’s walk through a Bubble Sort on the following
array. At the beginning, the unsorted array is

The value of the outer loop counter (i) is 0, and the value of
the inner loop counter (j) is also 0. We compare elements 17
(index j = 0) and 26 (index j + 1 = 1). Since 17 is smaller than
26, we do not swap them.

The inner loop counter (j) is incremented, and its value is now
1.

We compare elements 26 (index j = 1) and 5 (index j + 1 = 2).
Since 26 is larger than 5, we swap them. The inner loop
counter (j) is incremented, and its value is now 2.

We compare elements 26 (index j = 2) and 2 (index j + 1 = 3).
Since 26 is larger than 2, we swap them.

The inner loop counter (j) is incremented, and its value is now
3; therefore, we exit the inner loop. (We have reached the end
of the unsorted subarray, which at this point is the whole
array.) At the end of one execution of the inner loop, the value
26 has “bubbled up” to its correct position within the array.

We now go back to the outer loop, and the outer loop counter
(i) is incremented; its value is now 1. We reenter the inner
loop, and the value of the inner loop counter (j) is reinitialized
to 0.

We compare elements 17 (index j = 0) and 5 (index j + 1 = 1).
Since 17 is larger than 5, we swap them. The inner loop
counter (j) is incremented, and its value is now 1.

We compare elements 17 (index j = 1) and 2 (index j + 1 = 2).
Since 17 is larger than 2, we swap them.

The inner loop counter (j) is incremented, and its value is now
2; therefore, we exit the inner loop. (We have reached the end
of the unsorted subarray.) At this point, the element 17 has
“bubbled up” to its correct position within the array.

We go back to the outer loop, and the outer loop counter (i) is
incremented; its value is now 2, and this will be the last
iteration of the outer loop. We reenter the inner loop, and the
value of the inner loop counter (j) is reinitialized to 0.

We compare elements 5 (index j = 0) and 2 (index j + 1 = 1).
Since 2 is smaller than 5, we swap them.

The inner loop counter (j) is incremented, and its value is now
1; therefore, we exit the inner loop. (We have reached the end
of the unsorted subarray.) At this point, the element 5 has
“bubbled up” to its correct position within the array.

We go back to the outer loop, and the outer loop counter (i) is
incremented; its value is now 3, and therefore, we exit the
outer loop. For the four elements in the array, we executed
the outer loop three times.

The array is now sorted.

The framework for this Programming Activity will animate your
algorithm so that you can watch your algorithm work and
check the accuracy of your code. For example, Figure 8.26
demonstrates the Bubble Sort at work. At this point, the
program has completed four passes through the array and
just finished comparing the values of elements 3 and 4.

Figure 8.26
The Bubble Sort at Work

Instructions
In this chapter’s Programming Activity 2 folder in the supplied
code files, you will find the source files needed to complete
this activity. Copy all the files to a folder on your computer.
Note that all files should be in the same folder.

Open the ArrayPractice2Controller.java source file. Searching
for five asterisks (*****) in the source code will position you at
the two locations where you will add your code. Your first task
is to complete the sequentialSearch method, which searches
the arr array, an instance variable of the
ArrayPractice2Controller class. The array arr has already
been instantiated for you and filled with random values. The
second task is to complete the bubbleSort method. Example
8.21 shows the section of the ArrayPractice2Controller source
code where you will add your code. Note that in each method,
you are asked to call the animate method so that your method
code can be animated as it works. Note also that for the
sequentialSearch method, we provide a dummy return
statement (return 0;). We do this so that the source code will
compile. In this way, you can write and test each method
separately, using stepwise refinement. When you are ready to
write the sequentialSearch method, just replace the dummy
return statement with the appropriate return statement for that
method.

EXAMPLE 8.21 Student Section of
ArrayPractice2Controller

// 1. ***** student writes this method

/** Searches for key in integer array named arr

// arr is an instance variable of the class and has been

// instantiated and filled with random values.

// @param key value to search for

// @return if key is found, the index of the first element

// in array whose value is key; if key is not found,

// the method returns -1

*/

public int sequentialSearch(int key)

{

 // Note: To animate the algorithm, put this method call as

the

 // first statement in your for loop

 // animate(i);

 // where i is the index of the current array element

 return 0; // replace this statement with your return

statement

} // end of sequentialSearch

// 2. ***** student writes this method

/** Sorts arr in ascending order using the bubble sort

algorithm

*/

public void bubbleSort()

{

 // Note: To animate the algorithm, put this method call as

the

 // last statement in your innermost for loop

 // animate(i, j);

 // where i is the value of the outer loop counter

 // and j is the value of the inner loop counter,

 // or the index of the current array element

} // end of bubbleSort

When you have finished writing your code, compile
ArrayPractice2Controller.java and run
ArrayPractice2Application. Figure 8.27 shows the graphics
window when the application begins. To test any method, click
on the appropriate button.

Figure 8.27
Opening Window of ArrayPractice2-Application

Troubleshooting
If your method implementation does not animate, consider
these tips:

Verify that your for loop calls the animate method as
instructed in the method comments.

Verify that you did not instantiate a new array. Perform
all operations on the instance variable array named
arr.

 DISCUSSION QUESTIONS
1. The sequential search finds only the first occurrence of the

parameter key. How would you modify the sequentialSearch
method to count the occurrences of key?

2. It is possible that the array might be completely sorted before all
the passes have been completed. How would you modify your
code so that you exit the bubbleSort method as soon as possible?

8.8 Using Arrays as Counters
In some circumstances, it is useful to use an array of
integers as an ordered group of accumulators, or
counters. For example, suppose we are analyzing a
survey that has four possible answers, 0 through 3.
We want to count how many people selected each
answer. We could set up four counters and use an
if/else statement to increment the appropriate
counter. The pseudocode would be:

read first survey

while (not end of surveys)

{

 if answer is 0

 increment counter0

 else if answer is 1

 increment counter1

 else if answer is 2

 increment counter2

 else if answer is 3

 increment counter3

 read next survey

}

That would work if we have only a few possible
answers, but what if we had 100 or more answers?

We would end up writing a very long if/else
statement.
Instead, we could set up an array of counters and let
the counter for answer 0 be array[0], the counter for
answer 1 be array[1], and so on. This approach—
using an array of counters—is simpler to code and
saves processing time.

As another example, suppose we want to throw a die
500 times and count the number of times each
outcome occurs; that is, we want to count the
number of ones, twos, threes, fours, fives, and sixes
that are rolled. To do this, we set up a simple Die
class shown in Example 8.22, with a method for
rolling a value. Then we set up the client class,
DieCount, shown in Example 8.23, that has an array
with six integer elements; each element will hold the
number of times a particular roll occurs.

EXAMPLE 8.22 The Die Class
 1 /** Die class

 2 * Anderson, Franceschi

 3 */

 4 import java.util.Random;

 5

 6 public class Die

 7 {

 8 public final int SIDES = 6;

 9 private Random rand;

10

11 /** default constructor

12 * instantiates the Random object

13 */

14 public Die()

15 {

16 rand = new Random();

17 }

18

19 /** rolls the die

20 * @return the value of the roll

21 */

22 public int roll()

23 {

24 return rand.nextInt(SIDES) + 1;

25 }

26 }

EXAMPLE 8.23 The DieCount
Class

 1 /** DieCount Class

 2 * Anderson, Franceschi

 3 */

 4

 5 public class DieCount

 6 {

 7 public static void main(String [] args)

 8 {

 9 final int FACES = 6, NUMBER_OF_ROLLS = 500;

10

11 // instantiate the counter array

12 // which sets initial values to 0

13 int [] rollCount = new int [FACES];

14

15 // instantiate the Die

16 Die d1 = new Die();

17

18 // roll the die 500 times

19 for (int i = 1; i <= NUMBER_OF_ROLLS; i++)

20 {

21 int myRoll = d1.roll();

22 rollCount[myRoll - 1]++; // increment the

counter for roll

23 }

24

25 // print count for each roll

26 System.out.println("Roll\tCount");

27 for (int i = 0; i < rollCount.length; i++)

28 {

29 System.out.println((i + 1) + "\t" +

rollCount[i]);

30 }

31 }

32 }

In the Die class constructor, we instantiate the
Random object rand, which will be used by the roll
method (lines 19–25), which in turn generates a
random number between 1 and 6 to simulate the roll
of a die.

In the DieCount class, we instantiate our array of six
counters, rollCount, on line 13, which autoinitializes
each element to 0—exactly what we want for
counters.

To count the number of times each roll occurs, we
use a for loop that iterates 500 times, with each
iteration calling the roll method of the Die class. We
then need to count each roll. That’s where our array
of counters, rollCount, comes in.

Since the rollCount array has six elements, the index
of the first element is 0, and the index of the last
element is 5. We will use rollCount[0] to hold the
number of times we rolled a 1, rollCount[1] to hold
the number of times we rolled a 2, and continue that

way until we use rollCount[5] to hold the number of
times we rolled a 6. Thus, to get the index of the
appropriate counter, we need to decrement the roll
by 1. So our statement to increment the count for a
roll (line 22) becomes

rollCount[myRoll - 1]++;

After rolling the die 500 times and counting each roll,
we print the total times each roll occurred (lines 25–
30). Note that we increment the loop variable to
convert between our counter index and the roll
number. The output from a sample run of this
program is shown in Figure 8.28. Because the
program generates the rolls randomly, your output
may be slightly different.

Figure 8.28
Output from DieCount

Roll Count

1 81

2 82

3 89

4 78

5 87

6 83

Our algorithm is not ideal, however. We need to
subtract 1 from the index in order to increment the
counter, and we need to add 1 to the index to print
the outcome.

A better approach would be to create the array with
seven elements. Then we can use elements 1
through 6 as the counters for the rolls 1 through 6.
The index and the roll number will be the same.
What happens to element 0? Nothing. We just ignore
it.

The revised DieCount2 class is shown in Example
8.24.

EXAMPLE 8.24 The DieCount2
Class

 1 /** DieCount2 Class

 2 * Anderson, Franceschi

 3 */

 4

 5 public class DieCount2

 6 {

 7 public static void main(String [] args)

 8 {

 9 final int FACES = 7, NUMBER_OF_ROLLS = 500;

10

11 // instantiate the counter array

12 // which sets initial values to 0

13 int [] rollCount = new int [FACES];

14

15 // instantiate the Die

16 Die d1 = new Die();

17

18 // roll the die 500 times

19 for (int i = 1; i <= NUMBER_OF_ROLLS; i++)

20 {

21 int myRoll = d1.roll();

22 rollCount[myRoll]++; // increment the

counter for roll

23 }

24

25 // print count for each roll

26 System.out.println("Roll\tCount");

27 for (int i = 1; i < rollCount.length; i++)

28 {

29 System.out.println(i + "\t" +

rollCount[i]);

30 }

31 }

32 }

Notice the changes to the code in this example. First,
we set FACES to 7 (line 9), so we will instantiate an
array with seven elements. Then we can use the roll
of the die as the index into the counter array to
increment the appropriate count (line 22). One last
change is that when we loop through the rollCount
array to print the counters, we initialize our loop
counter to 1 (line 27), since we are not using element
0 as a counter and we simply use i as the roll
number.

Skill Practice
with these end-of-chapter questions

8.11.1 Multiple Choice Exercises

Question 12

8.11.4 Identifying Errors in Code

Question 44

8.11.6 Write a Short Program

Question 57

8.11.8 Technical Writing

Question 74

It’s true that we’re allocating an extra integer (four
bytes of memory) that is never used, but we’re
eliminating 500 subtract operations and 6 addition
operations! The program is more efficient, easier to
write, and easier to read.

8.9 Methods Accepting a Variable
Number of Arguments
Sometimes, the number of arguments to be sent to a
method cannot be determined until run time. For
example, we may have a method that validates
inputs for other methods. The number of inputs may
vary from one method call to the next.

In these cases, we can use a feature in the Java
language named varargs. We specify in the method
header that the method will accept a variable number
of arguments by typing three dots immediately after
the data type of the last parameter.

The syntax is the following:

accessModifier returnType methodName((0 to many

parameters,)

 dataType...

lastParameter)

Note that there is no space between the data type
and the three dots.

A parameter that a method specifies using the
varargs syntax must be the last parameter listed in
the method header.

When the method starts executing, the varargs
parameters are available to the method as if the
client had passed the arguments as an array. Thus,
the method treats the parameter as an array.

When calling a method that accepts a variable
number of arguments, we can pass a single
argument, several arguments, an array of
arguments, or we can pass no arguments.

Example 8.25 shows a Seller class with a method
that accepts a variable number of arguments, and
Example 8.26 shows a client program that calls the
method. In this example, we are updating the
average rating a seller receives on an auction
website. Each seller could have a different number of
new ratings, so we specify the new ratings as a
variable number of arguments.

EXAMPLE 8.25 The Seller Class

 1 /** Seller class

 2 * Anderson, Franceschi

 3 */

 4 import java.text.DecimalFormat;

 5

 6 public class Seller

 7 {

 8 private String sellerName;

 9 private double rating;

10 private int numberOfRatings;

11 private static final DecimalFormat ONE_PLACE

12 = new DecimalFormat(

"0.0");

13

14 /** constructor

15 * @param sellerName seller name

16 */

17 public Seller(String sellerName)

18 {

19 this.sellerName = sellerName;

20 }

21

22 /** calcRating method

23 * @param newRatings 0 to many new ratings

24 * updates rating and numberOfRatings instance

variables

25 */

26 public void calcRating(int... newRatings)

27 {

28 if (newRatings != null && newRatings.length

> 0)

29 {

30 int totalNewRatings = 0;

31 for (int i = 0; i < newRatings.length; i++

)

32 totalNewRatings += newRatings[i];

33

34 rating = ((rating * numberOfRatings) +

totalNewRatings)

35 / (newRatings.length +

numberOfRatings);

36 numberOfRatings += newRatings.length;

37 }

38 // else, no new ratings, so no change to

instance variables

39 }

40

41 /** toString method

42 * @return the seller name

43 * and rating (formatted to 1 decimal place)

44 */

45 @Override

46 public String toString()

47 {

48 return sellerName + ": rating " +

ONE_PLACE.format(rating);

49 }

50 }

In the Seller class, we define three instance
variables representing the seller name, the current
average rating, and the number of ratings the seller
has received (lines 8–10). We also define a static
constant ONE_PLACE that the toString method
(lines 41–49) uses to format the average rating.

The calcRating method (lines 22–39) accepts one
varargs parameter, newRatings. Note that if the
method accepted other parameters, the newRatings
parameter would need to be listed last. When the
method starts executing, the arguments sent to the
method by the caller have been assembled into an
int array with the parameter’s name, newRatings.
Thus, newRatings.length will hold the number of
arguments actually sent to the method. In the
calcRating method we first check that the array
reference is not null and that the array is not empty
(line 28). We then use a for loop to calculate the total
of the new ratings (lines 30–32). Finally, we calculate
the new average rating and update the instance
variables rating and numberOfRatings. If the varargs
parameter is null or the array is empty, we do
nothing.

In the client program, SellerRatings, we instantiate a
Seller object (line 9), then successively call the

calcRating method with one argument, two
arguments, an array, and no arguments. After each
method call, we output the new rating by implicitly
calling the toString method in the Seller class (lines
11–22). Figure 8.29 shows the output from Example
8.25.

Figure 8.29
Output from the SellerRatings Application

Mary: rating 4.0

Mary: rating 4.7

Mary: rating 4.5

Mary: rating 4.5

EXAMPLE 8.26 The SellerRatings
Class
 1 /** SellerRatings - client for Seller

 2 * Anderson, Franceschi

 3 */

 4

 5 public class SellerRatings

 6 {

 7 public static void main(String [] args)

 8 {

 9 Seller seller = new Seller("Mary");

10

11 seller.calcRating(4); // one value

12 System.out.println(seller);

13

14 seller.calcRating(5, 5); // two values

15 System.out.println(seller);

16

17 int [] arrayOfRatings = { 4, 4, 5 };

18 seller.calcRating(arrayOfRatings); // array

19 System.out.println(seller);

20

21 seller.calcRating(); // no values

22 System.out.println(seller);

23 }

24 }

CHAPTER REVIEW

8.10 Chapter Summary
An array is a sequence of variables of the
same data type. The data type can be any
Java primitive data type, such as int, float,
double, byte, short, long, boolean, or char, or
it can be a class.

Each element in the array is accessed using
the array name and an index, which refers to
the element’s position in the array.

Arrays are implemented as objects. Creating
an array consists of declaring an object
reference for the array and instantiating the
array. The size of the array is given when the
array is instantiated.

In arrays of primitive types, each element of
the array contains a value of that type. In
arrays of objects, each element is an object
reference.

When an array is instantiated, the elements
are given initial values automatically,
depending on the data type. Numeric types
are set to 0; boolean types are set to false;
char types are set to the Unicode null
character; and object references are set to
null.

Instantiating an array of object references
involves two steps: instantiating the array

and instantiating the objects.

Arrays can be instantiated when they are
declared by assigning initial values in a
comma-separated list within curly braces.
The number of values in the initialization list
determines the number of elements in the
array.

Array elements are accessed using the array
name and an index. The first element’s index
is 0 and the last element’s index is the size of
the array –1.

Arrays have an integer instance variable,
length, which holds the number of elements
in the array.

Attempting to access an element of an array
using an index less than 0 or greater than
arrayName.length – 1 will generate an
ArrayIndexOutOfBoundsException at run
time.

Aggregate array operations, such as printing
and copying arrays, are not supported for
arrays. Using a for loop, we can process
each array element individually.

To change the size of an array, instantiate an
array of the desired size with a temporary
name, copy the appropriate elements from
the original array to the new array, and

assign the new array reference to the original
array. Assign null to the temporary array
name.

Arrays can be passed as arguments to
methods and can also be the return type of
methods.

When an array is an instance variable of a
class, the constructor should instantiate a
new array and copy the elements of the
parameter array into the new array.

A Sequential Search determines whether a
particular value, the search key, is in an array
by comparing the search key to each
element in the array.

A Selection Sort arranges elements in the
array in order by value by reducing the array
into successively smaller subarrays and
placing the largest element in each subarray
into the last position of the subarray.

An Insertion Sort arranges elements of an
array much like a card player arranges cards
in sorted order in his or her hand. The
elements are inserted one at a time in
ascending order into the left side of the array.

To sort an array of objects, we can use the
class method provided to compare objects’
values.

A sorted array can be searched more
efficiently using a Binary Search, which
successively reduces the number of
elements to search by half.

Arrays of integers can be used as an ordered
group of counters.

Methods can accept a variable number of
parameters using the varargs … syntax.

8.11 Exercises, Problems, and
Projects

8.11.1 Multiple Choice Exercises
 1. What are the valid ways to declare an integer array named a?

(Check all that apply.)

❑ int [] a;

❑ int a[];

❑ array int a;

❑ int array a;

 2. What is the index of the first element of an array?

❑ –1
❑ 0

❑ 1

 3. An array a has 30 elements; what is the index of its last element?

❑ 29
❑ 30

❑ 31

 4. What is the default value of the elements in an array of ints after
declaration and instantiation of the array?

❑ 0
❑ null

❑ undefined

 5. How do you access the element of array a located at index 6?

❑ a{6}

❑ a(6)

❑ a[6]

 6. Which of the following assertions is true?

❑ An array cannot be sized dynamically.
❑ An array can be sized dynamically, but cannot be resized

without instantiating it again.

❑ An array can be sized dynamically and can also be resized
without instantiating it again.

 7. How do you retrieve the number of elements in an array a?

❑ a . length()

❑ a . length

❑ a . size()

❑ a . size

 8. All the elements of an array must be of the same data type.

❑ true
❑ false

 9. 9. Array aggregate assignment is possible in Java.

❑ true

❑ false

10. Aggregate comparison of arrays is possible in Java.

❑ true
❑ false

11. An array can be returned by a method.

❑ true

❑ false

12. A Sequential Search on a sorted array can be written more
efficiently than a Sequential Search on an unsorted array.

❑ true
❑ false

8.11.2 Reading and Understanding
Code
13. What is the output of this code sequence?

double [] a = { 12.5, 48.3, 65.0 };
System.out.println(a[1]);

14. What is the output of this code sequence?

int [] a = new int [6];
System.out.println(a[4]);

15. What is the output of this code sequence?

double [] a = { 12.5, 48.3, 65.0 };
System.out.println(a.length);

16. What is the output of this code sequence?

int [] a = { 12, 48, 65 };

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

17. What is the output of this code sequence?

int [] a = { 12, 48, 65 };

for (int i = 0; i < a.length; i++)
 System.out.println("a[" + i + "] = " + a[i]
);

18. What is the output of this code sequence?

int s = 0;
int [] a = { 12, 48, 65 };

for (int i = 0; i < a.length; i++)
 s += a[i];
System.out.println("s = " + s);

19. What is the output of this code sequence?

int [] a = new int[10];

for (int i = 0; i < a.length; i++)
 a[i] = i + 10;

System.out.println(a[4]);

20. What is the output of this code sequence?

double [] a = { 12.3, 99.6, 48.2, 65.8 };
double temp = a[0];

for (int i = 1; i < a.length; i++)
{
 if (a[i] > temp)
 temp = a[i];
}
System.out.println(temp);

21. What is the output of this code sequence?

int [] a = { 12, 48, 65, 23 };
int temp = a[1];
a[1] = a[3];
a[3] = temp;

for (int i = 0; i < a.length; i++)
 System.out.print(a[i] + " ");

22. What does this method do?

public int foo(int [] a)
{
 int temp = 0;

 for (int i = 0; i < a.length; i++)
 {
 if (a[i] == 5)
 temp++;
 }
 return temp;
}

23. What does this method do?

public int foo(int [] a)
{
 for (int i = 0; i < a.length; i++)
 {
 if (a[i] == 10)
 return i;
 }
 return -1;
}

24. What does this method do?

public boolean foo(int [] a)
{
 for (int i = 0; i < a.length; i++)
 {
 if (a[i] < 0)
 return false;
 }
 return true;
}

25. What does this method do?

public String [] foo(String [] a)
{
 String [] temp = new String[a.length];
 for (int i = 0; i < a.length; i++)
 {
 temp[i] = a[i].toLowerCase();
 }
 return temp;
}

26. What does this method do?

public boolean [] foo(String [] a)
{
 boolean [] temp = new boolean[a.length];

 for (int i = 0; i < a.length; i++)
 {
 if (a[i].indexOf("@") != -1)
 temp[i] = true;
 else
 temp[i] = false;
 }
 return temp;
}

8.11.3 Fill In the Code
27. This code assigns the value 10 to all the elements of an array a.

int [] a = new int[25];
for (int i = 0; i < a.length; i++)
{
 // your code goes here
}

28. This code prints all the elements of array a that have a value
greater than 20.

double [] a = { 45.2, 13.1, 12.8, 87.4, 99.0,
100.1, 43.8, 2.4 };

for (int i = 0; i < a.length; i++)
{
 // your code goes here
}

29. This code prints the average of the elements of array a.

int [] a = { 45, 13, 12, 87, 99, 100, 43, 2 };

double average = 0.0;
for (int i = 0; i < a.length; i++)
{
 // your code goes here
}
// ... and your code continues here

30. This code calculates and prints the dot product of two arrays (Σ a[i]
* b[i]).

int [] a = { 3, 7, 9 };
int [] b = { 2, 9, 4 };
int dotProduct = 0;

for (int i = 0; i < a.length; i++)
{
 // your code goes here
}

31. This code prints the following three lines:

a[0] = 3
a[1] = 6
a[2] = 10

int [] a = { 3, 6, 10 };
for (int i = 0; i < a.length; i++)
{
 // your code goes here
}

32. This method returns true if an element in an array of Strings
passed as a parameter contains the substring IBM; otherwise, it
returns false.

public boolean foo(String [] a)
{
 // your code goes here
}

33. This method returns the number of elements in an array passed as
a parameter that are multiples of 7.

public int foo(int [] a)
{
 // your code goes here
}

34. This method returns true if the first two elements of the array
passed as a parameter have the same value; otherwise, it returns
false.

public boolean foo(String [] a)
{
 // your code goes here
}

35. This method takes an array of ints as a parameter and returns an
array of booleans. For each element in the parameter array whose
value is 0, the corresponding element of the array returned will be
assigned false; otherwise, the element will be assigned true.

public boolean [] foo(int [] a)
{
 // your code goes here
}

8.11.4 Identifying Errors in Code
36. Where is the error in this code sequence?

double [] a = { 3.3, 26.0, 48.4 };
a[4] = 2.5;

37. Where is the error in this code sequence?

double [] a = { 3.3, 26.0, 48.4 };
System.out.println(a[-1]);

38. Where is the error in this code sequence?

double [] a = { 3.3, 26.0, 48.4 };
System.out.println(a{1});

39. Where is the error in this code sequence?

double [] a = { 3.3, 26.0, 48.4 };
for (int i = 0; i <= a.length; i++)
 System.out.println(a[i]);

40. Where is the error in this code sequence?

double a[3] = { 3.3, 26.0, 48.4 };

41. Where is the error (although this code will compile and run) in this
code sequence?

int a[] = { 3, 26, 48, 5 };
int b[] = { 3, 26, 48, 5 };

if (a != b)
 System.out.println("Array elements are NOT
identical");

42. Where is the error in this code sequence?

int [] a = { 3, 26, 48, 5 };
a.length = 10;

43. Where is the logic error in this code sequence?

int [] a = { 3, 26, 48, 5 };
System.out.println("The array elements are " + a
);

44. Where is the error in this code sequence?

Integer i1 = 10;
Integer i2 = 15;
Double d1 = 3.4;
String s = new String("Hello");
Integer [] a = { i1, i2, d1, s };

8.11.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
45. You coded the following on line 26 of the class Test.java:

int a[6] = { 2, 7, 8, 9, 11, 16 }; // line 26

When you compile, you get the following messages:

Test.java:26: error: ']' expected
 int a[6] = { 2, 7, 8, 9, 11, 16}; // line
26
 ^
Test.java:26: error: not a statement
 int a[6] = { 2, 7, 8, 9, 11, 16}; // line
26
 ^
Test.java:26: error: ';' expected
 int a[6] = { 2, 7, 8, 9, 11, 16}; // line
26
 ^
3 errors

Explain what the problem is and how to fix it.

46. You coded the following on lines 26, 27, and 28 of the class
Test.java:

int [] a = { 2, 7, 8, 9, 11, 16 }; // line 26 of
class Test.java
for (int i = 0; i <= a.length; i++) // line 27
of class Test.java
 System.out.println(a[i]); // line 28 of
class Test.java

The code compiles properly, but when you run, you get the
following output:

2
7
8
9
11
16
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 6
at Test.main(Test46.java:28)

Explain what the problem is and how to fix it.

47. You coded the following in the class Test.java:

int [] a = { 1, 2, 3 };
int [] b = { 1, 2, 3 };
if (a == b)
 System.out.println("Arrays are equal");
else
 System.out.println("Arrays are NOT equal"
);

The code compiles properly and runs, but the result is not what
you expected; the output is

Arrays are NOT equal

Explain what the problem is and how to fix it.

48. You coded the following in the class Test.java:

int [] a = { 1, 2, 3 };
System.out.println(a);

The code compiles properly and runs, but the result is not what
you expected; instead of 1 2 3, the output is similar to the
following:

[I@f0326267

Explain what the problem is and how to fix it.

8.11.6 Write a Short Program
49. Write a value-returning method that returns the number of

elements in an integer array.

50. Write a value-returning method that returns the product of all the
elements in an integer array.

51. Write a void method that sets to 0 all the elements of an integer
array.

52. Write a void method that multiplies by 2 all the elements of an
array of floats.

53. Write a method that returns the percentage of elements greater
than or equal to 90 in an array of ints.

54. Write a method that returns the difference between the largest and
smallest elements in an array of doubles.

55. Write a method that returns the sum of all the elements of an array
of ints that have an odd index.

56. Write a method that returns the percentage of the number of
elements that have the value true in an array of booleans.

57. Write a method that returns true if an array of Strings contains the
String “Hello”; false otherwise.

58. Write a method that prints all the elements of an array of chars in
reverse order.

59. Write a method that returns an array composed of all the elements
in an array of chars in reverse order.

60. Write an array-returning method that takes a String as a parameter
and returns the corresponding array of chars.

61. Code an array-returning method that takes an array of ints as a
parameter and returns an array of booleans, assigning true for any

element of the parameter array greater than or equal to 100; and
false otherwise.

8.11.7 Programming Projects
62. Write a class encapsulating the concept of statistics for a baseball

team, which has the following attributes: a number of players, a list
of number of hits for each player, a list of number of at-bats for
each player.

Write the following methods:

❑ A constuctor with two equal-length arrays as parameters, the
number of hits per player, and the number of at-bats per
player.

❑ Accessors, mutators, toString, and equals methods.

❑ Generate and return an array of batting averages based on
the attributes given.

❑ Calculate and return the total number of hits for the team.

❑ Calculate and return the number of players with a batting
average greater than .300.

❑ A method returning an array holding the number of hits,
sorted in ascending order.

Write a client class to test all the methods in your class.

63. Write a class encapsulating the concept of student grades on a
test, assuming student grades are composed of a list of integers
between 0 and 100.

Write the following methods:

❑ A constructor with just one parameter, the number of
students; all grades can be randomly generated

❑ Accessor, mutator, toString, and equals methods

❑ A method returning an array of the grades sorted in
ascending order

❑ A method returning the highest grade

❑ A method returning the average grade
❑ A method returning the median grade (Hint: The median

grade will be located in the middle of the sorted array of
grades.)

❑ A method returning the mode (the grade that occurs most
often) (Hint: Create an array of counters; count how many

times each grade occurs; then pick the maximum in the array
of counters; the array index is the mode.)

Write a client class to test all the methods in your class.

64. Write a class encapsulating the concept of daily temperatures for a
week.

Write the following methods:

❑ A constructor accepting an array of seven temperatures as a
parameter

❑ Accessor, mutator, toString, and equals methods

❑ A method returning how many temperatures were below
freezing

❑ A method returning an array of temperatures above 100
degrees

❑ A method returning the largest change in temperature
between any two consecutive days

❑ A method returning an array of daily temperatures, sorted in
descending order

Write a client class to test all the methods in your class.

65. Write a class encapsulating the concept of a tic-tac-toe game as
follows:

Two players will be playing, player 1 and player 2.

The board is represented by an array of 9 integer elements:
elements at indexes 0, 1, and 2 represent the first row; elements at
indexes 3, 4, and 5 represent the second row; elements at indexes
6, 7, and 8 represent the third row.

The value 0 in the array indicates that this space is available; the
value 1 indicates the space is occupied by player 1; and the value
2 indicates that this space is occupied by player 2.

In the main method of your client class, your program will simulate
a tic-tac-toe game from the command line, doing the following:

❑ Create a TicTacToe object and instantiate it.

❑ In a loop, prompt for plays, as ints, from the user. At each
iteration of the loop, you will need to call methods of the
TicTacToe class to update the TicTacToe object. You need to
keep track of who is playing (player 1 or 2), enforce the rules,
check if either player has won the game. It is clear that if
anyone has won the game, it is the last player who played.

❑ If a player wins, you will need to exit the loop and present the
result of the game. If the game ends in a tie, you should
output that result.

In your TicTacToe class, you will need to code the following
methods:

❑ A default constructor instantiating the array representing the
board.

❑ A method that allows a player to make a move; it takes two
arguments: the player number and the position played on the
board.

❑ A method checking if a play is legal.
❑ A method checking if a player has won the game; you can

break up that method into several methods if you like (for
instance, check if a player has won the game by claiming an
entire horizontal row).

❑ A method that checks whether the game is a tie (if no player
has won and all squares have been played, the game is tied).

❑ A method that displays the results of the game (“Player 1
won,” “Player 2 won,” or “Tie game”).

Write a client class, where the main method is located, to test all
the methods in your class and enable the user to play.

66. When a new user logs in for the first time on a website, the user
has to submit personal information, such as user_id, password,
name, email address, telephone number, and so forth. Typically,
there are two fields for passwords, requiring the user to enter the
password twice, to ensure that the user did not make a typo in the
first password field.

Write a class encapsulating the concept of processing a form with
the following elements:

User_id

Password

Reenter password

Email address

Name

Street address

City

State

Zip

Telephone

In your class, write the following methods:

❑ A constructor with one parameter, a sequence of 10 words in
an array of Strings, your only instance variable.

❑ Accessor, mutator, toString, and equals methods.
❑ A method checking that no Strings in the array are empty. (All

fields are mandatory.) If at least one is empty, it returns false;
otherwise, it returns true.

❑ A method returning the number of characters in the user_id.
❑ A method checking if the two Strings representing the

passwords (representing the password typed in twice) are
identical. If they are, it returns true; if not, it returns false.

❑ A method checking if the String representing the email
address actually “looks like” an email address; to simplify, we
can assume that an email address contains one and only one
@ character and contains one or more periods after the @
character. If it does “look like” an email address, then the
method returns true; otherwise, it returns false.

❑ A method checking if the String representing the state has
exactly two characters. If it does, it returns true; otherwise, it
returns false.

Write a client class to test all the methods in your class.

67. We want to write a program that performs some syntax checking
on HTML code; for simplicity reasons, we will assume that the
HTML code is syntactically correct if the number of < characters in
any word is the same as the number of > characters in that word.
We will also assume that the syntax is correct if the first word is
<html> and the last word is </html>.

Write a class encapsulating that concept, including the following
methods:

❑ A constructor with one parameter, an array of the words in the
HTML sentence, your only instance variable. Your constructor
should then get user input from the console for that same
number of words and store them in an array of Strings, your
only data member.

❑ Accessor, mutator, toString, and equals methods.

❑ A method returning how many words are in the array.

❑ A method returning true if the first word is <html> and the last
word is </html>; false otherwise.

❑ A method checking if each array element contains the same
number of < characters as > characters. If that is the case, the
method returns true; otherwise, it returns false. For this, we
suggest the following method to help you:

❑ Write an int-returning method that takes a String and a char
as parameters and returns how many times that char
appears in the String; you can convert the String to an
array of chars and loop through it, or use another strategy
of your choice.

❑ A method counting and returning the number of img tags
overall.

Write a client class to test all the methods in your class.

68. Write a class encapsulating the concept of converting integer
grades to letter grades (A, B, C, D, or F), assuming grades are
composed of a list of integers between 0 and 100.

Write the following methods:

❑ A constructor with just one parameter, the number of
students; all grades can be randomly generated.

❑ Accessor, mutator, toString, and equals methods.
❑ A method returning an array of chars corresponding to the

integer grades (90 or above should be converted to A, 80 or
above to B, 70 or above to C, 60 or above to D, and 59 or less
to F).

❑ A method returning the number of A’s.
❑ A method returning an array of ints counting how many A’s,

B’s, C’s, D’s, and F’s were received.

Write a client class to test all the methods in your class.

69. Write a class that includes a method that converts two parallel
arrays of Strings to a Hashtable (look up the Hashtable class in the
Java Class Library) such that the keys of the Hashtable are the
elements of the first array and its corresponding values are the
elements of the second array. Test your method with a client
program.

70. Write a class encapsulating the concept of a team of baseball
players, assuming a baseball player has the following attributes: a
name, a position, and a batting percentage. In addition to that
class, you will need to design and code a Player class to
encapsulate the concept of a baseball player.

In your class encapsulating the team, you should write the
following methods:

❑ A constructor taking an array of Player objects as its only
parameter and assigning that array to the array data member
of the class, its only instance variable. In your client class,
when you test all your methods, you can hard-code nine
baseball Player objects.

❑ Accessor, mutator, toString, and equals methods.
❑ A method checking that all positions are different, returning

true if they are, false if they are not.

❑ A method returning the batting percentage of the team.
❑ A method checking that we have a pitcher (that is, the name

of the position) on the team. If we do not have any, it returns
false; otherwise, it returns true.

❑ A method returning the array of Player objects sorted in
ascending order using the batting percentage as the sorting
key.

❑ A method checking if a certain person (a parameter of the
method) is on the team, based on the name of that person. If
the person is on the team, the method returns true; otherwise,
it returns false.

❑ A method returning an array of Player objects, sorted in
ascending order based on batting percentages.

Write a client class to test all the methods in your class.

71. Write a class encapsulating a similar concept to the one used in
the die counting problem of Section 8.8. Here, we want to roll two
dice; the total of the numbers rolled will be between 2 and 12. We
want to keep track of how many times each possible total was
rolled.

Write the following methods:

❑ A constructor with no parameter; it randomly generates two
numbers between 1 and 6, representing the dice.

❑ Accessor, mutator, toString, and equals methods.

❑ A method returning the total of the two dice.
❑ A method checking if the two dice have identical values. If

they do, it returns true; otherwise, it returns false.

The number of times we roll the dice should be an input from the
user at the command line (not inside the program). Your program
should output the total for each possible roll (from 2 to 12), as well
as the number of times the two dice had identical values.

Write a client class to test all the methods in your class.

72. Write a graphical application that creates two Die objects and rolls
the two dice 5,000 times. Display the results showing the
frequency of each possible total in a bar chart. Pick a scale that is
appropriate for the maximum height of your bar chart.

8.11.8 Technical Writing
73. What do you think are advantages and disadvantages of arrays?

74. Write the pseudocode to perform a Selection Sort on an array of
Auto objects based on the instance variable model.

75. When you try to use an array index that is out of bounds, your
code will compile, but you will generate a run-time exception.
Discuss whether this is an advantage or a disadvantage, and why.

76. When instantiating an array, you can assign the number of
elements in the array dynamically, using a variable (as opposed to
using a constant). Discuss a situation where that would be useful.

8.11.9 Group Project (for a group
of 1, 2, or 3 students)
77. Security is an important feature of information systems. Often, text

is encrypted before being sent, and then decrypted upon receipt.
We want to build a class (or several classes) encapsulating the
concept of encryption. You will need to test that class with a client
program where the main method is located.

For this project, encrypting consists of translating each character
into another character. For instance, if we consider the English
alphabet, including characters a through z, each character is
randomly encrypted into another, which could be the same
character. (If you like, you can design your program so that no
character is encrypted into itself.) To represent this concept, we
can have an array of characters for the original alphabet, and
another array of characters for the encrypted alphabet. For
example, we could have

Original alphabet Encrypted alphabet
a u

b p

c h

d a

e s

f x

g z

h b

i j

.
To encrypt a word, each letter in the word is replaced by the
corresponding letter in the encryted alphabet. For example, the
word caged would be encrypted into huzsa. To decrypt a word, the
letters in the encrypted word are replaced by the corresponding
letter in the original alphabet. For example, the encrypted word
xssa would be decrypted as feed.

If we have 26 different characters in the original alphabet, then we
will have 26 different characters in the encrypted alphabet.
Furthermore, the encrypted alphabet should be randomly
generated.

In your main method, you should prompt the user for a sentence.
Your program should encrypt the sentence, output the encrypted
sentence, then decrypt it, and output the decrypted sentence,
which should be identical to the original sentence that was input by
the user.

For extra credit, use an array to keep track of the number of
occurrences of each character. Convert these occurrences to
percentages, and then use these percentages to attempt to
decrypt a large, encrypted message.

CHAPTER 9
Multidimensional Arrays and the
ArrayList Class

CHAPTER CONTENTS
Introduction
9.1 Declaring and Instantiating Multidimensional Arrays

9.1.1 Declaring Multidimensional Arrays
9.1.2 Instantiating Multidimensional Arrays
9.1.3 Combining the Declaration and Instantiation of
Multidimensional Arrays
9.1.4 Assigning Initial Values to Multidimensional Arrays

9.2 Accessing Multidimensional Array Elements
9.3 Aggregate Two-Dimensional Array Operations

9.3.1 Processing All the Elements of a Two-Dimensional
Array
9.3.2 Processing a Given Row of a Two-Dimensional
Array
9.3.3 Processing a Given Column of a Two-Dimensional
Array
9.3.4 Processing a Two-Dimensional Array One Row at
a Time
9.3.5 Processing a Two-Dimensional Array One Column
at a Time
9.3.6 Displaying Two-Dimensional Array Data as a Bar
Chart

9.4 Two-Dimensional Arrays Passed to and Returned from
Methods
9.5 Programming Activity 1: Working with Two-
Dimensional Arrays
9.6 Other Multidimensional Arrays
9.7 The ArrayList Class

9.7.1 Declaring and Instantiating ArrayList Objects
9.7.2 Methods of the ArrayList Class
9.7.3 Looping Through an ArrayList Using an Enhanced
for Loop

9.7.4 Using the ArrayList Class in a Program
9.8 Programming Activity 2: Working with the ArrayList
Class
9.9 Chapter Summary
9.10 Exercises, Problems, and Projects

9.10.1 Multiple Choice Exercises
9.10.2 Reading and Understanding Code
9.10.3 Fill In the Code
9.10.4 Identifying Errors in Code
9.10.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM
9.10.6 Write a Short Program
9.10.7 Programming Projects
9.10.8 Technical Writing
9.10.9 Group Project

Introduction
Arrays can be useful when we have a lot of data to store in
memory. If we write a program to perform statistics on last
year’s temperatures, it is convenient to set up an array of
doubles of size 365 to store the daily temperature data.

But what if in addition to analyzing daily temperatures, we
want to analyze temperatures by the week, or by a particular
day of the week? For instance, if we sail on weekends, we
could want to know how many times the temperature was
above 65 degrees on Saturdays and Sundays. If we are
considering investing in air conditioning at home, we might be
interested in knowing how many weeks had temperatures
above 90 degrees. If we are avid skiers, we could be
interested in the number of weeks with temperatures lower
than 32 degrees.

In this situation, we would want to organize our data along two
dimensions: weeks and days of the week. If we were to
visualize the data as a table, we could imagine a table made
up of 52 rows, each row representing a week. Each row would
have seven columns, representing the days of the week. This
table is shown in Figure 9.1. Or we could imagine a table of
seven rows, each row representing a day of the week, and 52
columns, each column representing a week of the year. In
either case, we can represent the rows and columns of our
temperature table using a two-dimensional array. More
generally, multidimensional arrays allow us to represent data
organized along n dimensions with a single array.

Figure 9.1
Temperature Data for the Previous 52 Weeks

9.1 Declaring and Instantiating
Multidimensional Arrays
Just like single-dimensional arrays, multidimensional arrays
are implemented as objects, so creating a multidimensional
array takes the same two steps as creating a single-
dimensional array:

1. declaring the object reference for the array

2. instantiating the array

In arrays with elements of primitive types, each element of
the array contains a value of that type. For example, in an
array of doubles, each element contains a double value. In
arrays with a class data type, each element is an object
reference, which points to the location of an object of that
class.

9.1.1 Declaring Multidimensional
Arrays
To declare a multidimensional array, we use the same
syntax as for a single-dimensional array, except that we
include an empty set of brackets for each dimension.

Here is the syntax for declaring a two-dimensional array:

datatype [][] arrayName;

Here is the syntax for declaring a three-dimensional array:

datatype [][][] arrayName;

In order to keep things simple, we will concentrate on two-
dimensional arrays at this point. We will discuss three- and
four-dimensional arrays later in the chapter.

The following statement declares an array that we can use
to hold the daily high temperatures for the last 52 weeks:

double [][] dailyTemps;

The brackets can be placed before or after the array name.
So the following syntax for declaring a two-dimensional
array is also valid:

datatype arrayName [][];

We prefer to put the brackets right after the data type,
because it’s easier to read.

To store quiz grades for students, we could declare a two-
dimensional array, where each row will store the quiz
grades for a particular student and each column will store
the grades for a particular quiz:

char [][] quizzes; // each element is a char

The syntax is the same whether we declare arrays with
basic data types or class types.

Imagine that we are interested in keeping track of a fleet of
cars within a multinational corporation. The corporation
operates in various countries, and in each of these
countries, some employees have a company car. For this
situation, we can declare a two-dimensional array where
the first dimension will represent the country and the
second dimension will represent the employee. Assuming
we have an Auto class, the following statement declares
this two-dimensional array to hold Auto objects:

Auto [][] cars;

We can also declare multiple multidimensional arrays of the
same data type in one statement by inserting a comma
after each array name, using this syntax:

datatype [][] arrayName1, arrayName2;

For example, the following statement will declare two
integer arrays to hold the number of stolen bases for two
baseball players for each game in their career:

int [][] brian, jon;

The first dimension represents the games (per season),
and the second dimension represents the season.

Notice that when we declare a multidimensional array, we
do not specify how many elements the array will have.
Declaring a multidimensional array does not allocate
memory for the array; this is done in step 2, when we
instantiate the array.

For example, this code:

double [7][52] dailyTemps;

will generate compiler errors.

COMMON ERROR TRAP
Specifying the size of any of the dimensions of a
multidimensional array in the declaration will generate a
compiler error.

9.1.2 Instantiating Multidimensional
Arrays
Just like instantiating single-dimensional arrays, we
instantiate a multidimensional array using the new
keyword. Here is the syntax for instantiating a two-
dimensional array:

arrayName = new datatype [exp1][exp2];

 where exp1 and exp2 are expressions that evaluate to

integers and specify,

 respectively, the number of rows and the number of

columns in the array.

This statement allocates memory for the array. The number
of elements in a two-dimensional array is equal to the sum
of the number of elements in each row. When all the rows
have the same number of columns, the number of
elements in the array is equal to the number of rows
multiplied by the number of columns.

For example, if we instantiate the following dailyTemps
array with 52 rows and 7 columns, the array will have 52 *
7, or 364, elements:

dailyTemps = new double [52][7]; // dailyTemps has 52 rows

 // and 7 columns,

 // for a total of 364

elements

These statements will instantiate the other arrays declared
above:

int numberOfStudents = 25;

int numberOfQuizzes = 10;

quizzes = new char [numberOfStudents][numberOfQuizzes];

// quizzes has 25 rows and 10 columns

// for a total of 250 elements

cars = new Auto [5][50];

// cars has 5 rows and 50 columns

// cars will store 250 Auto objects

brian = new int [80][20];

// brian has 80 rows and 20 columns

// there are 80 games per season

// brian played baseball for 20 seasons

jon = new int [80][10];

// jon has 80 rows and 10 columns

// jon played baseball for 10 seasons

When a multidimensional array is instantiated, the
elements are given initial values automatically. Elements of
arrays with numeric types are initialized to 0, elements of
char type are initialized to the Unicode null character,
elements of boolean type are initialized to false, and
elements of class types are initialized to null.

9.1.3 Combining the Declaration and
Instantiation of Multidimensional
Arrays
Multidimensional arrays, like single-dimensional arrays, can
also be instantiated when they are declared. To combine
the declaration and instantiation of a two-dimensional array,
use this syntax:

datatype [][] arrayName = new datatype [exp1][exp2];

 where exp1 and exp2 are expressions that evaluate to

integers and specify,

 respectively, the number of rows and columns in the

array.

Thus, this statement:

double [][] dailyTemps = new double [52][7];

is equivalent to:

double [][] dailyTemps;

dailyTemps = new double [52][7];

Similarly, this statement:

char [][] quizzes = new char [25][10];

is equivalent to:

char [][] quizzes;

quizzes = new char [25][10];

9.1.4 Assigning Initial Values to
Multidimensional Arrays
We can instantiate a two-dimensional array by assigning
initial values when the array is declared. To do this, we
specify the initial values using comma-separated lists,
enclosed in an outer set of curly braces:

datatype [][] arrayName =

 { { value00, value01, ... }, { value10, value11, },

... };

 where valueMN is an expression that evaluates to the

data type of the array and

 is the value to assign to the element at row M and

column N.

The list contains a number of sublists, separated by
commas. The number of these sublists determines the
number of rows in the array. For each row, the number of
values in the corresponding sublist determines the number
of columns in the row. Thus, Java allows a two-dimensional
array to have a different number of columns in each row.
For example, in our Auto array, each country (row) could
have a different number of employees (columns) with
company cars.

Indeed, a two-dimensional array is an array of arrays. The
first dimension of a two-dimensional array consists of an
array of array references, with each reference pointing to a
single-dimensional array. Thus, a two-dimensional array is

composed of an array of rows, where each row is a single-
dimensional array.

For example, this statement declares and instantiates a
two-dimensional array of integers:

int [][] numbersList1 = { { 0, 5, 10 },

 { 0, 3, 6, 9 } };

Because two sublists are given, this two-dimensional array
has two rows. The first sublist specifies three values, and
therefore, the first row will have three columns; the second
sublist specifies four values, and therefore, the second row
will have four columns.

Figure 9.2 shows the numbersList1 array after the
preceding statement is executed.

Figure 9.2
The numbersList1 Array After Instantiation

An initialization list can be given only when the array is
declared. If a two-dimensional array has already been
instantiated, attempting to assign values to an array using
an initialization list will generate a compiler error. For
example, this code:

int [][] grades = new int [2][3];

grades = { { 89, 73, 98 },

 { 88, 65, 92 } };

will generate compiler errors.

We can declare and instantiate an array of objects by
providing object references in the list:

Auto sportsCar = new Auto("Ferrari", 0, 0.0);

Auto sedan1 = new Auto("BMW", 0, 0.0);

Auto sedan2 = new Auto("BMW", 100, 15.0);

Auto sedan3 = new Auto("Toyota", 0, 0.0);

Auto rv1 = new Auto("Jeep", 0, 0.0);

Auto [][] cars = { { sportsCar, sedan1 },

 { rv1, new Auto() },

 { sedan2, sedan3 } };

This array of Auto objects has three rows with two columns
in each row. The elements of the array cars are object
references to Auto objects.

COMMON ERROR TRAP
An initialization list can be given only when the two-
dimensional array is declared. Attempting to assign values
to an array using an initialization list after the array is
instantiated will generate a compiler error.

In most situations, the number of columns will be the same
for each row. However, there are situations where it is
useful to have a different number of columns for each row.

For instance, Dr. Smith, a college professor, keeps track of
grades using a two-dimensional array. The rows represent
the courses she teaches and the columns represent the
grades for the students in those sections. Grades are A, B,
C, D, or F, so she declares the array with char elements.
Dr. Smith teaches four courses: CS1, CS2, Database
Management, and Operating Systems. Thus, she has four
rows in the array. But in each course, Dr. Smith has a
different number of students: There are 23 students in CS1,
16 in CS2, 12 in Database Management, and 28 in
Operating Systems. So the first row will have 23 columns,
the second row 16 columns, the third row 12 columns, and
the fourth and last row will have 28 columns.

Using an initialization list, it is easy to instantiate a two-
dimensional array with a different number of columns for
every row. But sometimes the data is retrieved dynamically
—read from a file, for example—and it is not possible to
use an initialization list.

To instantiate a two-dimensional array with a different
number of columns for each row, we can do the following:

First, instantiate the two-dimensional array.

Second, instantiate each row as a single-
dimensional array.

For the preceding example, we can use the following code:

char [][] grades; // declare the array

grades = new char [4][]; // instantiate the array

 // grades has 4 null array

elements

grades[0] = new char [23]; // instantiate row 0; 23 char

elements

grades[1] = new char [16]; // instantiate row 1; 16 char

elements

grades[2] = new char [12]; // instantiate row 2; 12 char

elements

grades[3] = new char [28]; // instantiate row 3; 28 char

elements

The second statement:

grades = new char [4][];

instantiates the two-dimensional array grades as an array
having four rows, none of which has been instantiated yet.
Because a two-dimensional array is an array of arrays,
each element of the first dimension of the grades array is
an array reference. Thus, before being instantiated, each
element of the first dimension of the grades array has the
value null.

As explained earlier, in a two-dimensional array, each row
is a single-dimensional array. The last four statements
instantiate each row, grades[0], grades[1], grades[2], and
grades[3], each row having a different number of elements,
or columns. The elements in these arrays are chars,
initialized to the Unicode null character.

Later in this chapter, we will define a general pattern for
processing two-dimensional array elements so that it
applies to all situations: an identical number of columns for
each row, or a different number of columns for each row.

9.2 Accessing Multidimensional Array
Elements
Elements of a two-dimensional array are accessed using
this syntax:

arrayName[exp1][exp2]

 where exp1 and exp2 are expressions that evaluate to

integers.

Exp1 is the element’s row position, or row index, within the
two-dimensional array. Exp2 is the element’s column
position, or column index, within the two-dimensional
array. The row index of the first row is always 0; the row
index of the last row is always 1 less than the number of
rows. The column index of the first column is always 0. The
column index of the last column is always 1 fewer than the
number of columns in that row.

Because a two-dimensional array is an array of arrays, the
length of a two-dimensional array is its number of arrays, or
rows. We access the number of rows in a two-dimensional
array using the following syntax:

arrayName.length

Similarly, the length of each row is the number of columns
(or elements) in that row’s array. To access the number of
columns in row i of a two-dimensional array named
arrayName, we use this syntax:

arrayName[i].length

Table 9.1 summarizes the syntax for accessing elements of
a two-dimensional array.

TABLE 9.1 Accessing Two-Dimensional Array
Elements

Array Element Syntax
Row 0,
column j

arrayName[0][j]

Row i, column
j

arrayName[i][j]

Last row,
column j

arrayName[arrayName.length - 1][j]

Last row, last
column

arrayName[arrayName.length - 1]

[arrayName[arrayName.length - 1].length -

1]

Number of
rows in the
array

arrayName.length

Number of
columns in
row i

arrayName[i].length

Suppose we want to analyze the monthly cell phone bills
for the past three months for a family of four persons. The
parents, Joe and Jane, each have a cell phone, and so do
the children, Mike and Sarah. We want to calculate the
average monthly bill for each person, the total payments for
the three months, and determine which family member had
the lowest and highest bills. We could use a two-
dimensional array of doubles with three rows and four
columns. The rows will represent the months and the

columns will represent the family members. For example,
we could have the following mapping for the row and
column indexes:

row 0 : July
row 1 : August
row 2 : September

column 0 : Joe
column 1 : Jane
column 2 : Mike
column 3 : Sarah

We could visualize our two-dimensional array as the table
shown in Table 9.2.

TABLE 9.2 Visualizing a Two-Dimensional Array
Joe Jane Mike Sarah

July 45.24 54.67 32.55 25.61

August 65.29 49.75 32.08 26.11

September 75.24 54.53 34.55 28.16

We’ll name the array familyCellBills. Each element in the
array will be referenced as familyCellBills[i][j], where i is the
index of the row (the month), and j is the index of the
column (the person). Remember that the first element in a
row or column is at index 0, so the first element in the first
row is at index [0][0].

In lines 13–15 of Example 9.1, we declare and instantiate
the familyCellBills array. Because the elements of
familyCellBills are doubles, instantiating the array also
initializes each element to 0.0. Lines 18–31 store values
into each element of the array. Figure 9.3 shows how the
familyCellBills array looks after lines 18–31 are executed.

Figure 9.3
The familyCellBills Array After Assigning Values

EXAMPLE 9.1 The familyCellBills Array

 1 /* Two-Dimensional Array of Cell Phone Bills

 2 Anderson, Franceschi

 3 */

 4

 5 public class FamilyCellBills

 6 {

 7 public static void main(String [] args)

 8 {

 9 // declare constants for the number of rows and

columns

10 final int NUMBER_OF_MONTHS = 3;

11 final int NUMBER_OF_PERSONS = 4;

12

13 // declare and instantiate the array

14 double [][] familyCellBills =

15 new double [NUMBER_OF_MONTHS][NUMBER_OF_PERSONS];

16

17 // assign values to array elements

18 familyCellBills[0][0] = 45.24; // row 0

19 familyCellBills[0][1] = 54.67;

20 familyCellBills[0][2] = 32.55;

21 familyCellBills[0][3] = 25.61;

22

23 familyCellBills[1][0] = 65.29; // row 1

24 familyCellBills[1][1] = 49.75;

25 familyCellBills[1][2] = 32.08;

26 familyCellBills[1][3] = 26.11;

27

28 familyCellBills[2][0] = 75.24; // row 2

29 familyCellBills[2][1] = 54.53;

30 familyCellBills[2][2] = 34.55;

31 familyCellBills[2][3] = 28.16;

32

33 System.out.println("The first monthly cell bill for

the first "

34 + "family member is\n"

35 + familyCellBills[0][0]);

36 System.out.println("The last monthly cell bill for

the last "

37 + "family member is\n"

38 + familyCellBills[NUMBER_OF_MONTHS - 1]

[NUMBER_OF_PERSONS - 1]);

39

40 int numRows = familyCellBills.length;

41 System.out.println("\nThe number of rows is " +

numRows);

42

43 for (int i = 0; i < numRows; i++)

44 {

45 System.out.print("The number of columns in row " +

i + " is ");

46 System.out.println(familyCellBills[i].length);

47 }

48 }

49 }

Note that the last element is familyCellBills[2][3], with a row
index that is 1 less than familyCellBills.length, and a
column index that is 1 less than familyCellBills[2].length,
which is the number of columns in the last row. More

generally, for a two-dimensional array named arr, the last
element is:

arr[arr.length - 1][arr[arr.length - 1].length - 1]

COMMON ERROR TRAP
Attempting to access an element of a two-dimensional
array using a row index less than 0 or greater than
arrayName.length – 1 will generate an ArrayIndex-
OutOfBounds-Exception at run time. Similarly, attempting
to access an element of row i of a two-dimensional array
using a column index less than 0 or greater than
arrayName[i].length – 1 also will generate an
ArrayIndexOut-OfBounds-Exception.

Lines 33–38 output the first and last element of the array
familyCellBills.

Line 40 assigns the number of rows in the familyCellBills
array to the int variable numRows. The variable numRows
now has the value 3 and is output at line 41.

At lines 43–47, a for loop outputs the number of columns in
each row of familyCellBills. Figure 9.4 shows the output of
this example.

Figure 9.4
Output of Example 9.1

The first monthly cell bill for the first family

member is 45.24

The last monthly cell bill for the last family member

is 28.16

The number of rows is 3

The number of columns in row 0 is 4

The number of columns in row 1 is 4

The number of columns in row 2 is 4

Row indexes of a two-dimensional array must be between
0 and arrayName.length – 1. Attempting to access an
element of an array using a row index less than 0 or
greater than arrayName.length – 1 will compile without
errors, but will generate an
ArrayIndexOutOfBoundsException at run time. By default,
this exception halts execution of the program.

For example, all the following expressions are invalid:

// invalid row indexes for the familycellBills array!!

familyCellBills[-1][2]

// the lowest valid row index is 0

familyCellBills[cellBills.length][2]

// the highest valid row index is familyCellBills.length -

1

Similarly, column indexes of a two-dimensional array must
be between 0 and arrayName[i].length – 1, where i is the
row index. Attempting to access an element of row i in a
two-dimensional array using a column index less than 0 or
greater than arrayName[i].length – 1 will compile without
errors, but will generate an
ArrayIndexOutOfBoundsException at run time.

For example, all the following expressions are invalid:

// invalid column indexes for the familyCellBills array!!

familyCellBills[1][-1]

// the lowest valid column index is 0

familyCellBills[1][familyCellBills[1].length]

// the highest valid column index of row i is

// familyCellBills[i].length - 1

Example 9.2 illustrates how to work with an array of
objects. In this example, we use an Auto class that has
three instance variables; model, a String; milesDriven, an

int; and gallonsOfGas, a double. At lines 17–20, we declare
and initialize cars, a two-dimensional array of Auto objects.
Before using an element of cars, that Auto element has to
be instantiated; failure to do so could generate a
NullPointerException at run time.

There are three rows in cars: the first row has three
columns, and the second and third rows have two columns
each. Line 22 retrieves the array element at row 1 and
column 0—here sportsCar—and assigns it to the Auto
object reference retrievedCar, which is then printed at lines
25–26, where toString is called implicitly. Figure 9.5 shows
the output of this example.

Figure 9.5
Output of Example 9.2

cars[1][0]'s description is:

Model: Ferrari; miles driven; 0; gallons of gas: 0.0

EXAMPLE 9.2 Two-Dimensional Array
of Auto Objects

 1 /* Working with a Two-Dimensional Array of Objects

 2 Anderson, Franceschi

 3 */

 4

 5 public class TwoDimAutoArray

 6 {

 7 public static void main(String [] args)

 8 {

 9 // instantiate several Auto object references

10 Auto sedan1 = new Auto("BMW", 0, 0.0);

11 Auto sedan2 = new Auto("BMW", 100, 15.0);

12 Auto sedan3 = new Auto("Toyota", 0, 0.0);

13 Auto sportsCar = new Auto("Ferrari", 0, 0.0);

14 Auto rv1 = new Auto("Jeep", 0, 0.0);

15 Auto rv2 = new Auto("Ford", 200, 30.0);

16

17 // declare and initialize two-dimensional array of

Autos

18 Auto [][] cars = { { sedan1, sedan2, sedan3 },

19 { sportsCar, new Auto() },

20 { rv1, rv2 } };

21

22 Auto retrievedCar = cars[1][0];

23 // retrievedCar gets the sportsCar object reference

24

25 System.out.println("cars[1][0]'s description is:\n"

26 + retrievedCar);

27 }

28 }

Skill Practice
with these end-of-chapter questions

9.10.1 Multiple Choice Exercises

Questions 1, 2, 3, 4, 5, 6, 7, 8

9.10.2 Reading and Understanding Code

Questions 14, 15, 16, 17, 18

9.10.3 Fill In the Code

Questions 33, 34

9.10.4 Identifying Errors in Code

Questions 50, 51, 52, 53

9.10.5 Debugging Area

Question 59

9.10.6 Write a Short Program

Question 65

9.10.8 Technical Writing

Question 97

9.3 Aggregate Two-Dimensional
Array Operations
As with single-dimensional arrays, Java does not
support aggregate operations on multidimensional
arrays. For example, we cannot print the contents of
an array using only the array name. Instead, we
need to process each element individually.

9.3.1 Processing All the Elements
of a Two-Dimensional Array
To process all the elements of a two-dimensional
array, we use nested for loops that access and
process each element individually. Often, the most
logical way to process all elements is in row order,
and within each row, in column order. We could also
process elements one column at a time if that is
more logical for the problem at hand.

In our nested for loops, the outer for loop will process
the rows and the inner for loop will process the
columns within each row. We will use i for the row
index and j for the column index.

For the outer for loop, we can use the same header
as we use to process single-dimensional arrays:

for (int i = 0; i < arrayName.length; i++)

Note that the initialization statement of the outer
loop:

int i = 0;

sets i to the index of the first row of the two-
dimensional array. Then the outer loop update
statement increments i, so that we process each row
in order.

The outer loop condition:

i < arrayName.length

continues execution of the outer loop as long as the
row index is less than the length of the two-
dimensional array, which represents the number of
rows. Note that we use the less than operator (<)
instead of the less than or equal to operator (<=).
Using the less than or equal to operator would cause
us to illegally attempt to reference an element with a
row index of arrayName.length.

The for loop header for the inner loop, which
processes the columns of the current row, is as
follows:

for (int j = 0; j < arrayName[i].length; j++)

The initialization statement of the inner loop:

int j = 0;

sets j to the index of the first column of the current
row. Then the inner loop update statement
increments j to the next column index, so that we
process each column of the current row in order.

The inner loop condition:

COMMON ERROR TRAP
In the outer for loop, using the following condition:

i <= arrayName.length

will generate an ArrayIndex-OutOfBounds- Exception
because the last row of a two-dimensional array is
arrayName.length – 1.

Similarly, in the inner for loop, using the condition:

j <= arrayName[i].length

will generate an ArrayIndex-OutOfBounds-Exception
because the last column of row i in a two-
dimensional array is

arrayName[i].length – 1.

j < arrayName[i].length

continues execution of the inner loop as long as the
column index is less than the length of the current
row (row i). Given that each row can have a different
number of columns, this will ensure that we do not
attempt to access an element beyond the last
column index of the current row.

Note, again, that we use the less than operator (<),
not the less than or equal to operator (<=), which

would cause us to illegally attempt to reference an
element with a column index of arrayName[i].length.

Inside the inner for loop, we refer to the current
element being processed as:

arrayName[i][j]

Thus, the general pattern for processing the
elements of a two-dimensional array called
arrayName in row-first, column-second order using
nested for loops is:

for (int i = 0; i < arrayName.length; i++)

{

 for (int j = 0; j < arrayName[i].length; j++)

 {

 // process element arrayName[i][j]

 }

}

Example 9.3 illustrates how to print all the elements
of the two-dimensional array familyCellBills in row
order. The array is declared and initialized at lines
10–12. At lines 16–23, the nested for loops, using
the standard pattern described earlier, print all the
elements of the array. Figure 9.6 shows the output of
the program.

Figure 9.6
Output of Example 9.3

 Data for family cell bills

row 0: 45.24 54.67 32.55 25.61

row 1: 65.29 49.75 32.08 26.11

row 2: 75.24 54.53 34.55 28.16

EXAMPLE 9.3 Two-Dimensional
Array Processing

 1 /* Processing a Two-Dimensional Array of Cell

Phone Bills

 2 Anderson, Franceschi

 3 */

 4

 5 public class OutputFamilyCellBills

 6 {

 7 public static void main(String [] args)

 8 {

 9 // declare and initialize the array

10 double [][] familyCellBills = { {45.24,

54.67, 32.55, 25.61},

11 {65.29,

49.75, 32.08, 26.11},

12 {75.24,

54.53, 34.55, 28.16} };

13

14 System.out.println("\tData for family cell

bills");

15

16 for (int i = 0; i < familyCellBills.length;

i++)

17 {

18 System.out.print("\nrow " + i + ":\t");

19 for (int j = 0; j <

familyCellBills[i].length; j++)

20 {

21 System.out.print(familyCellBills[i][j] +

"\t");

22 }

23 }

24 System.out.println();

25 }

26 }

9.3.2 Processing a Given Row of a
Two-Dimensional Array
What if we want to process just one row of a two-
dimensional array? For instance, we could be
interested in calculating the sum of the cell bills for
the whole family for a particular month, or identifying
who had the highest cell bill in a particular month.

The general pattern for processing the elements of
row i of a two-dimensional array called arrayName
uses a single for loop:

for (int j = 0; j < arrayName[i].length; j++)

{

 // process element arrayName[i][j]

}

Example 9.4 shows how to sum all the elements of a
particular row of the two-dimensional array
familyCellBills.

EXAMPLE 9.4 Processing One
Row in a Two-Dimensional Array

 1 /* Processing One Row of a Two-Dimensional Array

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 import java.text.NumberFormat;

 7

 8 public class SumARowFamilyCellBills

 9 {

10 public static void main(String [] args)

11 {

12 // declare and initialize the array

13 double [][] familyCellBills = { {45.24,

54.67, 32.55, 25.61},

14 {65.29,

49.75, 32.08, 26.11},

15 {75.24,

54.53, 34.55, 28.16} };

16

17 String [] months = { "July", "August",

"September" };

18 for (int i = 0; i < months.length; i++)

19 System.out.println("Month " + i + " : " +

months[i]);

20

21 Scanner scan = new Scanner(System.in);

22 int currentMonth;

23 do

24 {

25 System.out.print("Enter a month number

between 0 and 2 > ");

26 currentMonth = scan.nextInt();

27 } while (currentMonth < 0 || currentMonth > 2

);

28

29 double monthlyFamilyBills = 0.0;

30 for (int j = 0; j <

familyCellBills[currentMonth].length; j++)

31 {

32 // add current family member bill to total

33 monthlyFamilyBills +=

familyCellBills[currentMonth][j];

34 }

35

36 NumberFormat priceFormat =

NumberFormat.getCurrencyInstance();

37 System.out.println("\nThe total family cell

bills during "

38 + months[currentMonth] + "

is "

39 + priceFormat.format(

monthlyFamilyBills));

40 }

41 }

Since the rows correspond to the months, we
declare and initialize at line 17 a single-dimensional

String array named months in order to make our
prompt more user-friendly. At lines 18–19, we print a
menu for the user, providing month names and the
corresponding indexes. At lines 23–27, we use a
do/while loop to prompt the user for a month index
until the user enters a valid value between 0 and 2.

To calculate the total of the family cell bills for the
month index that the user inputs, we first initialize the
variable monthlyFamilyBills to 0.0 at line 29. We then
use a single for loop at lines 30–34, following the
pattern described earlier, to sum all the family
member bills for the month chosen by the user. We
then format and output the total at lines 36–39.
Figure 9.7 shows the output of the program when the
user chooses 1 for the month.

Figure 9.7
Output of Example 9.4

Month 0 : July

Month 1 : August

Month 2 : September

Enter a month number between 0 and 2 > 1

The total family cell bills during August is

$173.23

9.3.3 Processing a Given Column
of a Two-Dimensional Array
If we want to determine the highest cell bill for Mike
or calculate the average cell bill for Sarah, we will
need to process just one column of the two-
dimensional array.

The general pattern for processing the elements of
column j of a two-dimensional array called
arrayName uses a single for loop:

for (int i = 0; i < arrayName.length; i++)

{

 if (j < arrayName[i].length)

 // process element arrayName[i][j]

}

Because rows may have a different number of
columns, a given row i may not have a column j.
Thus, we need to check that the current column
number is less than arrayName[i].length before we
attempt to access arrayName[i][j].

Because our two-dimensional array familyCellBills
has the same number of columns (4) in every row,
no extra precaution is necessary here. It is a good
software engineering practice, however, to verify that
the column index is valid before attempting to
process the array element.

Example 9.5 shows how to find the maximum value
of all the elements of a particular column.

SOFTWARE ENGINEERING
Before processing an element in a column, check
whether the current row contains an element in that
column. Doing so will avoid an ArrayIndexOut-
OfBounds- Exception.

EXAMPLE 9.5 Processing a
Column in a Two-Dimensional
Array

 1 /* Processing One Column of a Two-Dimensional

Array

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 import java.text.NumberFormat;

 7

 8 public class MaxMemberBill

 9 {

10 public static void main(String [] args)

11 {

12 // declare and initialize the array

13 double [][] familyCellBills = { {45.24,

54.67, 32.55, 25.61},

14 {65.29,

49.75, 32.08, 26.11},

15 {75.24,

54.53, 34.55, 28.16} };

16

17 String [] familyMembers = { "Joe", "Jane",

"Mike", "Sarah" };

18 for (int i = 0; i < familyMembers.length; i++

)

19 System.out.println("Family member " + i

+ " : "

20 + familyMembers[i]

);

21

22 Scanner scan = new Scanner(System.in);

23 int currentMember;

24 do

25 {

26 System.out.print("Enter a family member

between 0 and 3 > ");

27 currentMember = scan.nextInt();

28 } while (currentMember < 0 || currentMember >

3);

29

30 double memberMaxBill = familyCellBills[0]

[currentMember];

31 for (int i = 1; i < familyCellBills.length;

i++)

32 {

33 if (currentMember < familyCellBills[i].length

)

34 {

35 // update memberMaxBill if necessary

36 if (familyCellBills[i][currentMember] >

memberMaxBill)

37 memberMaxBill = familyCellBills[i]

[currentMember];

38 }

39 }

40

41 NumberFormat priceFormat =

NumberFormat.getCurrencyInstance();

42 System.out.println ("\nThe max cell bill for "

43 +

familyMembers[currentMember] + " is "

44 + priceFormat.format(

memberMaxBill));

45 }

46 }

At line 17, we declare and initialize a single-
dimensional String array named familyMembers to
make our prompt more user-friendly. At lines 24–28,
we again use a do/while loop to prompt the user for a
valid family member index.

To calculate the maximum value of the family
member cell bills, we first initialize the variable
memberMaxBill to the first element in the column
(familyCellBills[0][currentMember]) at line 30. We
then use a standard for loop at lines 31–39, following
the pattern described earlier to update the value of
memberMaxBill as necessary. There is one minor
difference; we do not need to start the row at index 0
because we initialized memberMaxBill to the value of
the element in row 0 of the column currentMember.
Note that we assume that there is an element at
column 0 of each row; that is, each row has been
instantiated. The value of the variable
memberMaxBill is then formatted and printed at lines
41–44. Figure 9.8 shows the output of the program.

Figure 9.8
Output of Example 9.5

Family member 0 : Joe

Family member 1 : Jane

Family member 2 : Mike

Family member 3 : Sarah

Enter a family member between 0 and 3 > 2

The max cell bill for Mike is $34.55

9.3.4 Processing a Two-
Dimensional Array One Row at a
Time
Earlier, we calculated the sum of the elements of a
given row of a two-dimensional array. But what if we
are interested in calculating that sum for each row?
In this case, we need to initialize our total variable
before we process each row and print the results
after we process each row.

The general pattern for processing each row of a
two-dimensional array called arrayName using
nested for loops is

for (int i = 0; i < arrayName.length; i++)

{

 // initialize processing variables for row i

 for (int j = 0; j < arrayName[i].length; j++)

 {

 // process element arrayName[i][j]

 }

 // finish the processing of row i

}

There are two important additions to the general
pattern for processing all elements of the array:

Before processing each row, that is, before
the inner loop, we need to initialize the

processing variables for the current row. If
we are summing elements, we initialize the
total variable to 0. If we are calculating a
minimum or maximum value, we initialize the
current minimum or maximum to the value of
the first element of the current row.

When we reach the end of each row, that is,
after each completion of the inner loop, we
finish processing the current row. For
instance, we may want to print the sum or
maximum value for that row.

Example 9.6 shows how to sum the elements of
each row of the two-dimensional array
familyCellBills.

EXAMPLE 9.6 Processing Each
Row in a Two-Dimensional Array

 1 /* Processing Each Row of a Two-Dimensional Array

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 import java.text.NumberFormat;

 7

 8 public class SumEachRowFamilyCellBills

 9 {

10 public static void main(String [] args)

11 {

12 // declare and initialize the array

13 double [][] familyCellBills = { {45.24,

54.67, 32.55, 25.61},

14 {65.29,

49.75, 32.08, 26.11},

15 {75.24,

54.53, 34.55, 28.16} };

16

17 String [] months = { "July", "August",

"September" };

18

19 NumberFormat priceFormat =

NumberFormat.getCurrencyInstance();

20 double currentMonthTotal;

21 for (int i = 0; i < familyCellBills.length;

i++)

22 {

23 currentMonthTotal = 0.0; // initialize total

for row

24 for (int j = 0; j <

familyCellBills[i].length; j++)

25 {

26 // add current family member bill to current

monthly total

27 currentMonthTotal += familyCellBills[i][j];

28 }

29 // print total for row

30 System.out.println("The total for " +

months[i] + " is "

31 + priceFormat.format(

currentMonthTotal));

32 }

33 }

34 }

Again, the rows correspond to the months, and we
declare and initialize at line 17 a String array named
months in order to make the output user-friendly.

To calculate the total of the family cell bills for each
month, we use nested for loops at lines 21–32,
following the pattern described earlier.

Inside the outer for loop, we initialize the
currentMonthTotal at line 23 before processing each
row. Without this statement, the variable

currentMonthTotal would continue to accumulate, as
if we were summing all the elements of the array
instead of calculating a separate sum for each row.

After the inner loop finishes, we complete the
processing of row i by printing the value of
currentMonthTotal at lines 29–31. Figure 9.9 shows
the output of the program.

COMMON ERROR TRAP
Failing to initialize the row processing variables
before each row is a logic error and will generate
incorrect results.

Figure 9.9
Output of Example 9.6

The total for July is $158.07

The total for August is $173.23

The total for September is $192.48

9.3.5 Processing a Two-
Dimensional Array One Column at
a Time
Processing each column of a two-dimensional array
requires a little extra checking. If the number of
columns in each row differs, we must be careful not
to attempt to access an element with an out-of-
bounds column index. Generally, we will need to
determine the number of columns in the largest row
in the array before coding the outer loop header.

For example, suppose we are keeping track of our
test grades in three classes: Intro to Java, Database
Management, and English Composition. We have
two test grades in Intro to Java, four in Database
Management, and three in English Composition. We
can use a two-dimensional array to store these test
grades as follows:

int [][] grades = { { 89, 75 },

 { 84, 76, 92, 96 },

 { 80, 88, 95 } };

There are three rows in the array grades. The
maximum number of columns in any row is four;
therefore, in order to process all the columns, our
outer loop should loop from column index 0 to
column index 3. Our inner loop should check that the

current column number exists in the row before
attempting to process the element.

Let’s assume, at this point, that we stored the
maximum number of columns in an int variable
called maxNumberOfColumns. The general pattern
for processing elements of a two-dimensional array,
arrayName, one column at a time is:

// maxNumberOfColumns holds the number of columns

// in the largest row of familyCellBills

for (int j = 0; j < maxNumberOfColumns; j++)

{

 for (int i = 0; i < arrayName.length; i++)

 {

 if (j < arrayName[i].length)

 {

 // process element arrayName[i][j]

 }

 }

}

The outer loop condition:

j < maxNumberOfColumns

continues execution of the outer loop as long as the
column index is less than the maximum number of
columns of the two-dimensional array, which has

been computed and assigned to the variable
maxNumberOfColumns.

The inner loop condition:

i < arrayName.length

continues execution of the inner loop as long as the
row index is less than the number of rows.

Again, because each row may have a different
number of columns, a given row i may not have a
column j. Thus, using the following if condition, we
check that an element in column j exists—j is less
than arrayName[i].length—before we attempt to
access arrayName[i][j]:

if (j < arrayName[i].length)

Example 9.7 shows how this pattern can be
implemented in a program.

EXAMPLE 9.7 Processing a Two-
Dimensional Array in Column
Order

 1 /* Processing Each Column in a Two-Dimensional

Array

 2 Anderson, Franceschi

 3 */

 4

 5 public class GradesProcessing

 6 {

 7 public static void main(String [] args)

 8 {

 9 int [][] grades = { { 89, 75 },

10 { 84, 76, 92, 96 },

11 { 80, 88, 95 } };

12

13 // compute the maximum number of columns

14 int maxNumberOfColumns = grades[0].length;

15 for (int i = 1; i < grades.length; i++)

16 {

17 if (grades[i].length > maxNumberOfColumns)

18 maxNumberOfColumns = grades[i].length;

19 }

20 System.out.println("The maximum number of

columns in grades is "

21 + maxNumberOfColumns);

22

23 for (int j = 0; j < maxNumberOfColumns; j++)

24 {

25 System.out.print("\nColumn " + j + ": ");

26 for (int i = 0; i < grades.length; i++)

27 {

28 if (j < grades[i].length)

29 System.out.print(grades[i][j]);

30 System.out.print("\t");

31 }

32 }

33 System.out.println();

34 }

35 }

The array grades is declared and initialized at lines
9–11. Lines 13–19 compute the maximum number of
columns in a row and store the value in the int
variable maxNumberOfColumns. First, we initialize
maxNumberOfColumns to the number of columns of
row 0 at line 14. At lines 15 to 19, we loop through
each remaining row in grades and update
maxNumberOfColumns if we find that the current
row has more columns than maxNumberOfColumns.

At lines 23–32, we use nested loops to print all the
elements of grades in column order, following the
general pattern described earlier. The output of the
program is shown in Figure 9.10.

Figure 9.10
The Output of Example 9.7

The maximum number of columns in grades is 4

Column 0: 89 84 80

Column 1: 75 76 88

Column 2: 92 95

Column 3: 96

9.3.6 Displaying Two-Dimensional
Array Data as a Bar Chart
Another way to display two-dimensional array data is
graphically, by drawing a bar chart. For example, the
bar chart in Figure 9.11 displays the data in the
familyCellBills array.

Figure 9.11
The familyCellBills Array as a Bar Chart

Each bar is a rectangle. In order to draw a rectangle,
we need to provide four arguments to the fillRect
method of the GraphicsContext class: the x and y

coordinate of the upper-left corner of the rectangle
and the width and height of the rectangle. We use
the variables xStart and yStartBar, adjusted by the
value of the array element, for the x and y
coordinates of the rectangle. We use a constant,
BAR_WIDTH, for the width of each rectangle, and
the value of the array element for its height.

So to create a bar chart, we use our standard nested
for loops, and call the fillRect method of the
GraphicsContext class to draw a rectangle for each
element. We use the fillText method to display the
value of each element. To change colors for each
row, we set up an array of Color objects, and loop
through the array to set the current color for each
row iteration. Furthermore, each time we process a
row, we must reset the (x, y) coordinates of the first
bar for the next row.

Example 9.8 shows the code that displays the bar
chart shown in Figure 9.11.

EXAMPLE 9.8 Displaying a Two-
Dimensional Array as a Bar Chart

 1 /* A two-dimensional bar chart application

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.stage.Stage;

 7 import javafx.scene.canvas.GraphicsContext;

 8 import javafx.scene.paint.Color;

 9

10 public class FamilyBarChartApplication extends

Application

11 {

12 final int LEFT_MARGIN = 80; // starting

x coordinate

13 final int BASE_Y_BAR = 100; // bottom

of the bars

14 final int BASE_Y_VALUE = 125; // bottom

of the values

15 final int BAR_WIDTH = 30; // width of

each bar

16 final int SPACE_BETWEEN_BARS = 10; // pixels

between bars

17 final int ROW_HEIGHT = 110; // pixels

between rows

18

19 double [][] familyCellBills = { {45.24,

54.67, 32.55, 25.61},

20 {65.29,

49.75, 32.08, 26.11},

21 {75.24,

54.53, 34.55, 28.16} };

22

23 String [] months = { "July", "August",

"September" };

24 Color [] colors = { Color.RED, Color.BLUE,

Color.MAGENTA };

25

26 @Override

27 public void start(Stage stage)

28 {

29 // set up window title and size

30 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

31 stage, "Family Bar Chart", 275,

375);

32

33 int xStart = LEFT_MARGIN; // x value for

1st column (bars)

34 int yStart = BASE_Y_VALUE; // y value for

1st row (data)

35 int yStartBar = BASE_Y_BAR; // y value for

1st row (bars)

36

37 for (int i = 0; i < familyCellBills.length;

i++)

38 {

39 gc.setFill(colors[i]); // set color for

current row

40 gc.fillText(months[i], xStart -

LEFT_MARGIN + 10,

41 yStart - .3 *

ROW_HEIGHT);

42

43 for (int j = 0; j <

familyCellBills[i].length; j++)

44 {

45 gc.fillRect(xStart, yStartBar -

familyCellBills[i][j],

46 BAR_WIDTH,

familyCellBills[i][j]);

47

48 gc.fillText(Double.toString(

familyCellBills[i][j]),

49 xStart, yStart);

50

51 // move to starting x value for next bar

52 xStart += BAR_WIDTH + SPACE_BETWEEN_BARS;

53 }

54

55 // new row: increase yStart and yStartBar

56 yStart += ROW_HEIGHT;

57 yStartBar += ROW_HEIGHT;

58 xStart = LEFT_MARGIN;

59 }

60 }

61

62 public static void main(String [] args)

63 {

64 launch(args);

65 }

66 }

The Color single-dimensional array colors that we
use to determine the color of each row of bars is
declared and initialized at line 24. The first row of
bars will be displayed in red, the second row in blue,
and the third row in magenta. We use a String single-
dimensional array, months, to label each row. Both
arrays have the same number of rows as
familyCellBills.

In the start method, at the beginning of the outer loop
and before the inner loop, we set the color for the
current row (line 39) by using the row number as an
index into the colors array. At lines 40–41, we display
the month.

In the body of the inner loop (lines 45–52), we draw
the rectangle for the element value at row i and
column j of familyCellBills, then display a String
representing the same value. We then increment
xStart to the location of the next bar to draw.

After the inner loop and before restarting the outer
loop, we update the values of yStart, yStartBar, and

xStart (lines 55–58) so that they are properly set for
processing the next row. Earlier, we said that
initializing variable values for the next row is usually
done at the beginning of the outer loop body before
entering the inner loop, but it also can be done after
the inner loop and before re-entering the outer loop,
as shown here.

© Hemera Technologies/ Photos.com/Thinkstock

CODE IN ACTION
To see a step-by-step illustration showing how
to use two-dimensional arrays, look for the
movie within the online resources. Click on the
link to this chapter to start the movie.

Skill Practice
with these end-of-chapter questions

9.10.2 Reading and Understanding Code

Questions 19, 20, 21, 22, 23, 24, 25, 26,
27, 28

9.10.3 Fill In the Code

Questions 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45

9.10.4 Identifying Errors in Code

Question 54

9.10.5 Debugging Area

Questions 60, 61, 62

9.10.6 Write a Short Program

Questions 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79

9.4 Two-Dimensional Arrays
Passed to and Returned from
Methods
Writing methods that take two-dimensional arrays as
parameters and/or return two-dimensional arrays is
similar to working with single-dimensional arrays.

The syntax for a method that accepts a two-
dimensional array as a parameter is the following:

returnType methodName(arrayType [][]

arrayParameterName)

The syntax for a method that returns a two-
dimensional array is the following:

returnArrayType [][] methodName(parameterList)

The caller of the method passes the argument list
and assigns the return value to a reference to a two-
dimensional array of the appropriate data type.

Combining both possibilities, the syntax for a method
that accepts a two-dimensional array as a parameter
and whose return value is a two-dimensional array is
the following:

returnArrayType [][] methodName(arrayType [][]

arrayParameterName)

The caller of the method simply passes the name of
the array without any brackets and assigns the return
value to a reference to a two-dimensional array of
the appropriate data type.

For example, suppose we want to tally votes in an
election. We have four candidates running in six
districts. We want to know how many votes each
candidate received and how many votes were cast in
each district. Thus, we can set up a two-dimensional
array with each row representing a district and each
column representing a candidate, with the values in
each element representing the votes a candidate
received in that district. We need to compute the sum
of each row to find the number of votes per district
and the sum of each column to find the number of
votes per candidate.

To do this, we create a class, Tally, that has a two-
dimensional array instance variable, voteData,
storing the votes. The Tally class also has a method,
arrayTally, that will compute the sums for each
column and row of voteData. The sums will be
returned from the method as a two-dimensional array
with two rows. The first row will hold the totals for

each column of voteData, and the second row will
hold the totals for each row of voteData.

Example 9.9 shows the Tally class.

EXAMPLE 9.9 The Tally Class

 1 /** Two-Dimensional Arrays as Method Parameters

 2 * and Return Values: the Tally class

 3 * Anderson, Franceschi

 4 */

 5

 6 public class Tally

 7 {

 8 int [][] voteData;

 9

10 /** constructor

11 * @param voteData a 2-D array of vote

counts

12 */

13 public Tally(int [][] voteData)

14 {

15 this.voteData = new int [voteData.length][];

16 for (int i = 0; i < voteData.length; i++)

17 this.voteData[i] = new int

[voteData[i].length];

18

19 for (int i = 0; i < voteData.length; i++)

20 {

21 for (int j = 0; j < voteData[i].length;

j++)

22 {

23 this.voteData[i][j] = voteData[i][j];

24 }

25 }

26 }

27

28 /** arrayTally method

29 * @return a two-dimensional array of votes

30 */

31 public int [][] arrayTally()

32 {

33 // create array of tallies, all elements are

0

34 int [][] returnTally = new int [2][];

35 returnTally[0] = new int

[voteData[0].length];

36 returnTally[1] = new int [voteData.length];

37

38 for (int i = 0; i < voteData.length; i++)

39 {

40 for (int j = 0; j < voteData[i].length;

j++)

41 {

42 returnTally[0][j] += voteData[i][j]; //

add to column sum

43 returnTally[1][i] += voteData[i][j]; //

add to row sum

44 }

45 }

46 return returnTally;

47 }

48 }

The constructor, coded at lines 10–26, receives the
two-dimensional array argument voteData. After
instantiating the instance variable voteData at line
15, we copy the parameter voteData into the
instance variable voteData one element at a time at
lines 19–25.

We coded the arrayTally method at lines 28–47. Our
first job is to instantiate the returnArray, which is the
array the method will return to the caller. We know
that the array will have two rows, one holding the
sums of the columns and one holding the sums of
the rows. Because each row in the returnArray will
have a different number of columns, we instantiate
the array with two rows, but do not give a value for
the number of columns (line 34). We then instantiate
each row with the appropriate number of columns
(lines 35–36). Row 0, the sums of the columns, will
have the same number of columns as the voteData
array. In the interest of keeping this example simple,
we have assumed that voteData has the same
number of columns in every row, that is, each
candidate was on the ballot in each district. Thus,
that number is therefore equal to the number of
columns in the first row, voteData[0].length (line 35).
Row 1, the sum of the rows, will have the same
number of columns as the number of rows in the
voteData array.

In lines 38–45, we loop through the voteData array,
computing the sums. We add each element’s value
to the sum for its column (line 42) and the sum for its
row (line 43). When we finish, we return the
returnTally array to the caller (line 46).

Example 9.10 shows a client program that
instantiates a Tally object reference and calls the
arrayTally method.

EXAMPLE 9.10 The VoteTally
Class

 1 /** Tally votes: the VoteTally class

 2 * Anderson, Franceschi

 3 */

 4

 5 public class VoteTally

 6 {

 7 public static void main(String [] args)

 8 {

 9 // votes are for 4 candidates in 6 districts.

10 int [][] votes = { { 150, 253, 125, 345 },

11 { 250, 750, 234, 721 },

12 { 243, 600, 212, 101 },

13 { 234, 243, 143, 276 },

14 { 555, 343, 297, 990 },

15 { 111, 426, 834, 101 }

};

16 // candidate names

17 String [] candidates = { "Smith", "Jones",

18 "Berry", "Chase" };

19

20 // instantiate a Tally object reference

21 Tally tally = new Tally(votes);

22

23 // call arrayTally method to count the votes

24 int [][] voteCounts = tally.arrayTally();

25

26 // print totals for candidates

27 System.out.println("Total votes per

candidate");

28 for (int i = 0; i < candidates.length; i++)

29 System.out.print(candidates[i] + "\t");

30 System.out.println();

31 for (int j = 0; j < voteCounts[0].length;

j++)

32 System.out.print(voteCounts[0][j] + "\t"

);

33 System.out.println();

34

35 // print totals for districts

36 System.out.println("\nTotal votes per

district");

37 for (int i = 0; i < voteCounts[1].length;

i++)

38 System.out.print((i + 1) + "\t\t");

39 System.out.println();

40 for (int i = 0; i < voteCounts[1].length;

i++)

41 System.out.print(voteCounts[1][i] + "\t"

);

42 System.out.println();

43 }

44 }

We start by defining our two-dimensional array,
votes, which holds the votes for each candidate for
each district (lines 9–15). Most likely, we would read
these values from a file, but for simplicity, we hard-

coded the values in the initialization list. We also
define a single-dimensional array of Strings,
candidates, which holds the candidates’ names
(lines 16–18). Each name in the candidates array
corresponds to the column in the votes array that
holds that candidate’s votes.

On lines 20–21, we instantiate the Tally object tally,
passing the two-dimensional array votes to the Tally
constructor. Notice that for the argument, we use
only the array name, votes, without brackets.

On line 24, we call the arrayTally method, assigning
the return value to a two-dimensional array reference
named voteCounts.

Lines 26–33 print the totals per candidate by printing
the elements in row 0 of the returned array, and lines
35–42 print the totals per district by printing the
elements in row 1 of the returned array. The output is
shown in Figure 9.12.

Figure 9.12
Output from Example 9.10

Total votes per candidate

Smith Jones Berry Chase

1543 2615 1845 2534

Total votes per district

1 2 3 4 5 6

873 1955 1156 896 2185 1472

9.5 Programming Activity 1:
Working with Two-Dimensional
Arrays
In this activity, you will work with a 4-row, 20-column,
two-dimensional array of integers. Specifically, you
will write methods to perform the following
operations:

1. Fill the array with random numbers between 50 and 80.

2. Print the array.

3. Set every array element of a given row to a specified value. The

value is a parameter of a method.

4. Find the minimum value in a given column of the array. The

column is a parameter of a method.

5. Count the number of elements of the array having a specified

value. The value is a parameter of a method.

The framework for this Programming Activity will
animate your algorithm so that you can check the
accuracy of your code. For example, Figure 9.13
shows the application counting the elements having
the value 61.

Figure 9.13
Animation of the Programming Activity

At this point, the application has found the value 61
in four array elements.

Instructions
In this chapter’s Programming Activity 1 folder in the
supplied code files, you will find the source files
needed to complete this activity. Copy all the files to
a folder on your computer. Note that all files should
be in the same folder.

Open the TwoDimArrayPracticeController.java
source file. Searching for five asterisks (*****) in the
source code will position you at the sample method
and the four other locations where you will add your
code. We have provided the sample code for task
number 1, which you can use as a model for
completing the other tasks. In every task, you will fill
in the code for a method that will manipulate an
existing array of 4 rows and 20 columns. You should
not instantiate the array; we have done that for you.
Example 9.11 shows the section of the
TwoDimArrayPracticeController source code where
you will add your code.

Note that for the countFound and findMinimum
methods, we provide a dummy return statement:
(return 0;). We do this so that the source code will
compile. In this way, you can write and test each
method separately, using step-wise refinement.
When you are ready to write the countFound and
findMinimum methods, just replace the dummy

return statements with the appropriate return
statement for that method.

EXAMPLE 9.11 Location of
Student Code in
TwoDimArrayPracticeController

// ***** 1. This method has been coded as an

example

/** Fills the array with random numbers between 50

and 80

* The instance variable named intArray is the

integer array to be

* filled with values

*/

public void fillValues()

{

 Random rand = new Random();

 for (int row = 0; row < intArray.length; row++)

 {

 System.out.print(row + "\t");

 for (int column = 0; j < intArray[row].length;

column++)

 {

 intArray[row][column] = rand.nextInt(31) +

50;

 animate(row, column, -1); // needed for

visual feedback

 }

 System.out.println();

 }

} // end of fillValues method

// ***** 2. Student writes this method

/** Prints array to the console, elements are

separated by a space

* The instance variable named intArray is the

integer array to be

* printed

*/

public void printArray()

{

 // Note: To animate the algorithm, put this method

call as the

 // last statement in your inner for loop

 // animate(row, column, -1);

 // where row is the index of the array's

current row

 // and column is the index of the array's current

column

 // Write your code here:

} // end of printArray method

// ***** 3. Student writes this method

/** Sets all the elements in the specified row to

the specified value * The instance variable named

intArray is the integer array

* @param value the value to assign to the

element of the row

* @param row the row in which to set the

elements to value

*/

public void setValues(int value, int row)

{

 // Note: To animate the algorithm, put this

method call as the

 // last statement in your for loop

 // animate(row, column, -1);

 // where row is the index of the array's

current row

 // where column is the index of the array's

current column

 // Write your code here:

} // end of setValues method

// ***** 4. Student writes this method

/** Finds minimum value in the specified column

* The instance variable named intArray is the

integer array

* @param column the column to search

* @return the minimum value found in the

column

*/

public int findMinimum(int column)

{

 // Note: To animate the algorithm, put this

method call as the

 // last statement in your for loop

 // animate(row, column, minimum);

 // where row is the index of the array's current

row

 // column is the index of the array's

current column

 // minimum is the variable storing the

current minimum

 // Write your code here:

 return 0; // replace this line with your return

statement

} // end of findMinimumn method

// ***** 5. Student writes this method

/** Finds the number of times value is found in the

array

* The instance variable named intArray is the

integer array

* @param value the value to count

* @return the number of times value was

found

*/

public int countFound(int value)

{

 // Note: To animate the algorithm, put this

method call as the

 // last statement in your inner for loop

 // animate(row, column, num);

 // where row is the index of the array's current

row

 // column is the index of the array's

current column

 // num is the local variable storing the

current frequency

 // count

 // Write your code here:

 return 0; // replace this line with your return

statement

}

// end of countFound method

The framework will animate your algorithm so that
you can watch your code work. For this to happen,
be sure that your single or nested for loops call the
method animate. The arguments that you send to
animate are not always the same and the location of
the call to animate will differ depending on the task
you are coding. Detailed instructions for each task
are included in the code.

To test your code, compile
TwoDimArrayPracticeController.java and run the
TwoDimArrayPracticeApplication source code.
Figure 9.14 shows the graphics window when the
program begins. Because the values of the array are
randomly generated, the values will be different each
time the program runs. To test any method, click on
the appropriate button.

Figure 9.14
The Graphics Window When the Application Begins

Troubleshooting
If your method implementation does not animate,
check these tips:

Verify that the last statement in your single
for loop or inner for loop is a call to the
animate method and that you passed the
appropriate arguments. For example:

animate(row, column);

Verify that your exit conditions for your for
loops are correct. Sometimes the exit
condition depends on the length of the array
(i.e., the number of rows in the array), and
sometimes it depends on the number of
columns in the current row of the array.

DISCUSSION QUESTIONS
1. With a two-dimensional array, for which operations

would you use nested for loops and for which
operations would you use a single for loop?

2. When performing an operation on a given row, which
index is fixed and which index is used as the looping
variable? When performing an operation on a given
column, which index is fixed and which index is used as
the looping variable?

9.6 Other Multidimensional Arrays
Sometimes we might need an array with more than
two dimensions. For example, we might be
interested in keeping track of sales on a per-year,
per-week, and per-day basis. In this case, we would
use a three-dimensional array as follows:

1 dimension: year
2 dimension: week
3 dimension: day of the week

Earlier in this chapter, we explained that a two-
dimensional array is an array of single-dimensional
arrays. Similarly, a three-dimensional array is an
array of two- dimensional arrays. And a four-
dimensional array is an array of three-dimensional
arrays. More generally, an n-dimensional array is an
array of (n – 1)-dimensional arrays.

Table 9.3 shows how an n-dimensional array is
structured dimension by dimension; i , i , ..., i are
used as generic indexes for the first dimension,
second dimension, ..., and n dimensions.

st

nd

rd

1 2 n

th

TABLE 9.3 Structure of an n-Dimensional
Array

Dimension Array Element
first arrayName[i] is an (n 2 1)-dimensional

array

second arrayName[i][i] is an (n – 2)-

dimensional array

k arrayName[i][i][i][..][i] is an (n –

k) multi-dimensional array

(n – 2) arrayName[i][i][i][..][i] is a

two-dimensional array

(n – 1) arrayName[i][i][i][..][i] is a

single-dimensional array

n arrayName[i][i][i][..][i][i] is an

array element

If we keep track of sales over a period of 10 years,
then we would have a 10-by-52-by-7 array. The
principles discussed for a two-dimensional array still
apply; we just have three dimensions instead of two.
The following code sequence illustrates how to
declare, instantiate, and access elements of this
three-dimensional array:

1

1 2

th
1 2 3 k

th
1 2 3 n-2

th
1 2 3 n-1

th
1 2 3 n-1 n

double [][][] Sales; // declare a

four-dimensional array

Sales = new double [10][52][7]; // instantiate

the array

Sales[0][0][0] = 638.50; // access the

first element

sales[4][22][3] = 928.30; // access

another element

sales[9][51][6] = 1234.90; // access the

last element

To process elements of a single-dimensional array,
we use a simple for loop; for a two-dimensional
array, we use a double for loop. For a three-
dimensional array, we use a triple for loop.

The general pattern for processing elements in a
three-dimensional array is

for (int i = 0; i < arrayName.length; i++)

{

 for (int j = 0; j < arrayName[i].length; j++)

 {

 for (int k = 0; k < arrayName[i][j].length;

k++)

 {

 // access and process the element

arrayName[i][j][k]

 }

 }

}

The following code sequence will print the elements
of the three-dimensional array sales:

 for (int i = 0; i < sales.length; i++)

 {

 for (int j = 0; j < sales[i].length; j++)

 {

 for (int k = 0; k < sales[i][j].length;

k++)

 {

 // access the element at sales[i][j][k]

 System.out.println(sales[i][j][k] + "\t"

);

 }

 // skip a line when second dimension index

changes

 System.out.println();

 }

 // skip a line when first dimension index

changes

 System.out.println();

 }

If we are interested in keeping track of sales on a
state-by-state basis, we can use a four-dimensional
array as follows:

1 dimension: state
2 dimension: year
3 dimension: week
4 dimension: day of the week

st

nd

rd

th

The following code sequence illustrates how to
declare, instantiate, and access the elements of such
a four-dimensional array:

double [][][][] stateSales; //

declare a four-dimensional

 // array

stateSales = new double [50][10][52][7]; //

instantiate the array

stateSales[0][0][0][0] = 58.50; // access

the first element

sales[34][4][22][3] = 98.30; // access

another element

sales[49][9][51][6] = 137.70; // access

the last element

To process elements of a four-dimensional array, we
use a quadruple for loop. That quadruple for loop
pattern parallels the ones for the two-dimensional
and three-dimensional arrays. For a four-dimensional
array called arrayName, it is:

for (int i = 0; i < arrayName.length; i++)

{

 for (int j = 0; j < arrayName[i].length; j++)

 {

 for (int k = 0; k < arrayName[i][j].length;

k++)

 {

 for (int l = 0; l < arrayName[i][j]

[k].length; l++)

 {

 // process element arrayName[i][j][k]

[l]

 }

 }

 }

}

9.7 The ArrayList Class
As we have seen, single-dimensional and
multidimensional arrays are useful in many
situations. However, they have limitations.

Let’s say we are designing a search engine for a
large website, for example, an online bookstore. The
user will type a word in a text field box, our code will
access a database, retrieve all the books with titles
that contain this word, and return them to the user.

We could store the book information in an array of
books. One problem, however, is that we don’t know
how many books we will have. There could be 3, 32,
500, or 5,000 books, or maybe even more. Without
knowing the number of books, we do not know what
size to make the array. The safest bet would be to
create the array with the maximum possible number
of elements, that is, the maximum number of books
that we anticipate. If we actually have fewer books
than we anticipated, however, we will waste space.

And if we end up with more books than we
anticipated, we would need to increase the size of
the array. Because the size of an array is fixed when
it is instantiated, changing the size of an array is a
tedious process. We have to instantiate a new array

and copy the elements of the original array to the
new array.

The ArrayList class, in the java.util package, solves
these problems. An ArrayList object automatically
expands its capacity as needed. The ArrayList class
uses generics. Generics are parameterized types,
meaning that the data type will be defined at the time
a client class declares and instantiates an object of
the class. Generics allow programmers to design
and code classes that use objects without specifying
the class—or data type—of the object.

Thus, for example, we could have an ArrayList of
Book objects, an ArrayList of Auto objects, or an
ArrayList of Strings. The specified type must be a
class, not a primitive type. If we want to store
primitive data types in an ArrayList, then we need to
use one of the wrapper classes such as Integer,
Double, or Character.

The ArrayList class, and more generally a class
using generics, can be used for many purposes. This
is another facet of object-oriented programming that
allows programmers to reuse code.

Because the ArrayList class is in the java.util
package, programs using an ArrayList object will
need to provide the following import statement:

import java.util.ArrayList;

9.7.1 Declaring and Instantiating
ArrayList Objects
Here is the syntax for declaring an ArrayList of
objects:

ArrayList<ClassName> arrayListName;

Inside the brackets, we declare the class type of the
objects that will be stored in the ArrayList. A space is
optional between the ArrayList class name and the
opening bracket.

For example, these two statements declare an
ArrayList of Strings and an ArrayList of Auto objects:

ArrayList<String> listOfStrings;

ArrayList<Auto> listOfCars;

If we try to declare an ArrayList object reference
using a primitive data type instead of a class type, as
in

ArrayList<int> listOfInts;

we will get this compiler error:

Test.java:7: error: unexpected type

 ArrayList<int> listOfInts;

 ^

required: reference

found: int

1 error

Two constructors of the ArrayList class are shown in
Table 9.4.

TABLE 9.4 ArrayList Constructors
ArrayList Constructors Summary
Constructor name and argument list
ArrayList<ClassName>()

 constructs an ArrayList object of ClassName type with an
initial capacity of 10

ArrayList<ClassName>(int initialCapacity)

 constructs an ArrayList object of ClassName type with the
specified initial capacity

If we know how many elements we will store in the
ArrayList object, we can use the overloaded
constructor to specify the initial capacity; otherwise,
we can simply use the default constructor. As we add
elements to the ArrayList object, its capacity will
increase automatically, as needed.

Here is the syntax for instantiating an ArrayList using
the default constructor:

arrayListName = new ArrayList<ClassName>();

 where ClassName is the class type of the objects

that will be stored

 in the ArrayList and arrayListName has been

declared previously as an

 ArrayList reference for that class.

These statements will instantiate the ArrayList
objects declared earlier, with an initial capacity of 10:

listOfStrings = new ArrayList<String>();

listOfCars = new ArrayList<Auto>();

If we try to instantiate an ArrayList object without
specifying the object type, as in

listOfCars = new ArrayList();

we get the following warnings from the compiler
(using Xlint):

Test.java:11: warning: [rawtypes] found raw type:

ArrayList

 listOfCars = new ArrayList();

 ^

 missing type arguments for generic class

ArrayList<E>

 where E is a type-variable:

 E extends Object declared in class ArrayList

Test.java:11: warning: [unchecked] unchecked

conversion

 listOfCars = new ArrayList();

 ^

 required: ArrayList<Auto>

 found: ArrayList

2 warnings

In ArrayLists, there is a distinction between capacity
and size. The capacity of an ArrayList is the number
of elements allocated to the list. The size is the
number of those elements that are filled with objects.
Thus, when we instantiate an ArrayList using the
default constructor, its capacity is 10, but its size is 0.
In other words, the ArrayList has room for 10 objects,
but no objects are currently stored in the list.

These statements will declare, then instantiate, an
ArrayList of String objects with an initial capacity of
5, using the overloaded constructor:

ArrayList<String> listOfStrings1;

listOfStrings1 = new ArrayList<String>(5);

In this case, the capacity of listOf Strings1 is 5 and
its size is 0.

We can also combine the declaration and
instantiation of an ArrayList object into one
statement. Here is the syntax using the default
constructor:

ArrayList<ClassName> arrayListName = new

ArrayList<ClassName>();

These statements will declare and instantiate two
ArrayList objects of Integers and Strings,
respectively:

ArrayList<Integer> listOfInts = new

ArrayList<Integer>();

ArrayList<String> listOfStrings2 = new

ArrayList<String>();

9.7.2 Methods of the ArrayList
Class
Like arrays, the ArrayList class uses indexes to refer
to elements. Among others, it provides methods that
provide the following functions:

add an item at the end of the list

replace an item at a given index

remove an item at a given index

remove all the items in the list

search the list for a specific item

retrieve an item at a given index

retrieve the index of a given item

check to see if the list is empty

return the number of items in the list, that is,
its size

optimize the capacity of the list by setting its
capacity to the number of items in the list

Some of the most useful methods are shown in Table
9.5. Note that some of the method headers include E
as their return type or parameter data type (as
opposed to a class name or simply the Object class).
E represents the data type of the ArrayList. Thus, for
an ArrayList of Integer objects, E is an Integer; and

the get method, for example, returns an Integer
object. Similarly, for an ArrayList of Auto objects, E is
an Auto object. In this case, the get method returns
an Auto object.

TABLE 9.5 ArrayList Methods
Useful Methods of the ArrayList Class

Return
value

Method name and argument list

boolean add(E element)

appends the specified element to the end of the
list

E remove(int index)

removes and returns the element at the
specified index position in the list

void clear()

removes all the elements from this list

E get(int index)

returns the element at the specified index

position in the list; the element is not removed
from the list

E set(int index, E element)

replaces the element at the specified index

position in this list with the specified element

int size()

returns the number of elements in this list

void trimToSize()

sets the capacity to the list’s current size

9.7.3 Looping Through an
ArrayList Using an Enhanced for
Loop
The general pattern for processing elements of an
ArrayList of ClassName objects called
arrayListName using a for loop is

ClassName currentObject;

for (int i = 0; i < arrayListName.size(); i++)

{

 currentObject = arrayListName.get(i);

 // process currentObject

}

For instance, to process elements of an ArrayList of
String object references called listOfStrings using a
standard for loop, the general pattern is:

String currentString;

for (int i = 0; i < listOfStrings.size(); i++)

{

 currentString = listOfStrings.get(i);

 // process currentString

}

Java provides a simplified way to process the
elements of an ArrayList, called the enhanced forf
loop. The general pattern for processing elements of

an ArrayList of ClassName objects called
arrayListName using the enhanced for loop is:

for (ClassName currentObject : arrayListName)

{

 // process currentObject

}

A variable of the class type of the objects stored in
the ArrayList is declared in the enhanced for loop
header, followed by a colon and name of the
ArrayList. The enhanced for loop enables looping
through the ArrayList objects automatically. Your
code does not call the get method; inside the body of
the loop, currentObject is directly available for
processing.

For example, to process elements of an ArrayList of
Strings called names using the enhanced for loop,
the general pattern is:

for (String currentString : names)

{

 // process currentString

}

Example 9.12 shows how to create and use an
ArrayList of Integers. Line 11 declares and
instantiates the ArrayList object reference list using

the default constructor. Three elements are added to
list using the add method at lines 12–14. As the
arguments to the add method, we use ints. The
autoboxing feature of Java automatically converts an
int to an Integer object when an int variable is used
where an Integer object is expected.

After an ArrayList object has been declared and
instantiated as being of a certain class type, you
cannot add an object of a different class type. For
example, you could not add a Double value to an
ArrayList of Integers.

At lines 17–18, we print the elements of list using a
traditional for loop, using the get method to retrieve
the element at the current index. At lines 22–23, we
use the enhanced for loop to print the elements. At
lines 27–28, we also use the enhanced for loop to
print the elements; but this time, we use an int as the
looping variable, using the unboxing feature of Java,
which converts Integer objects to int values, as
needed. At line 31, we use the set method to change
the value of the element at index 1 to 100, also using
autoboxing. At line 37, we use the remove method to
delete the element at index 0 and assign it to the
variable removed, using unboxing again.

EXAMPLE 9.12 Using ArrayList
Methods

 1 /* A Simple ArrayList of Integers

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.ArrayList;

 6

 7 public class ArrayListOfIntegers

 8 {

 9 public static void main(String [] args)

10 {

11 ArrayList<Integer> list = new

ArrayList<Integer>();

12 list.add(34); // autoboxing

13 list.add(89); // autoboxing

14 list.add(65); // autoboxing

15

16 System.out.println("Using the traditional for

loop:");

17 for (int i = 0; i < list.size(); i++)

18 System.out.print(list.get(i) + "\t");

19 System.out.println();

20

21 System.out.println("\nUsing the enhanced for

loop:");

22 for (Integer currentInteger : list)

23 System.out.print(currentInteger + "\t");

24 System.out.println();

25

26 System.out.println("\nUsing unboxing and

enhanced for loop:");

27 for (int currentInt : list) // unboxing

28 System.out.print(currentInt + "\t");

29 System.out.println();

30

31 list.set(1, 100);

32 System.out.println("\nAfter calling set(1,

100):");

33 for (int currentInt : list) // unboxing

34 System.out.print(currentInt + "\t");

35 System.out.println();

36

37 int removed = list.remove(0);

38 System.out.println("\nAt index 0, " + removed

+ " was removed");

39 System.out.println("\nAfter removing the

element at index 0:");

40 for (int currentInt : list) // unboxing

41 System.out.print(currentInt + "\t");

42 System.out.println();

43 }

44 }

The output of this example is shown in Figure 9.15.

Figure 9.15
Output of Example 9.12

Using the traditional for loop:

34 89 65

Using the enhanced for loop:

34 89 65

Using unboxing and enhanced for loop:

34 89 65

After calling set(1, 100):

34 100 65

At index 0, 34 was removed

After removing the element at index 0:

100 65

9.7.4 Using the ArrayList Class in
a Program
Now let’s see how we can use the ArrayList class in
a Java program. Going back to our example of a
bookstore and a search engine, we want to design
and code a simple program that enables users to
search for books.

We will have three classes in this program:

a Book class, encapsulating the concept of a
book

a BookStore class, encapsulating the
concept of a bookstore

a BookSearchEngine class, including the
main method, which provides the user
interface

In the interest of keeping things simple, our Book
class will contain only three instance variables: the
book title, which is a String; the book’s author, which
is also a String; and the book price, which is a
double.

Example 9.13 shows a simplified Book class with
constructors, accessor methods, and a toString
method.

EXAMPLE 9.13 The Book Class

 1 /* Book class

 2 Anderson, Franceschi

 3 */

 4

 5 public class Book

 6 {

 7 private String title;

 8 private String author;

 9 private double price;

10

11 /** default constructor

12 */

13 public Book()

14 {

15 title = "";

16 author = "";

17 price = 0.0;

18 }

19

20 /** overloaded constructor

21 * @param title the value to assign to title

22 * @param author the value to assign to author

23 * @param price the value to assign to price

24 */

25 public Book(String title, String author, double

price)

26 {

27 this.title = title;

28 this.author = author;

29 this.price = price;

30 }

31

32 /** getTitle method

33 * @return the title

34 */

35 public String getTitle()

36 {

37 return title;

38 }

39

40 /** getAuthor method

41 * @return the author

42 */

43 public String getAuthor()

44 {

45 return author;

46 }

47

48 /** getPrice method

49 * @return the price

50 */

51 public double getPrice()

52 {

53 return price;

54 }

55

56 /** toString

57 * @return title, author, and price

58 */

59 @Override

60 public String toString()

61 {

62 return ("title: " + title + "\t"

63 + "author: " + author + "\t"

64 + "price: " + price);

65 }

66 }

Our BookStore class, shown in Example 9.14, will
simply have one instance variable: an ArrayList of
Book objects, representing the collection of books in
the bookstore, which we name library.

In most cases, when an ArrayList is filled with data,
that data will come from a database or a file. In the
interest of focusing on the ArrayList class and its
methods, we have hard-coded the objects for the
ArrayList library in the BookStore class, rather than
reading them from a database or a file.

In the default constructor (lines 11 to 24), we
instantiate the library instance variable, then add six
Book objects to library using the add method from
the ArrayList class. At line 23, we call the trimToSize
method to set the capacity of library to its current

size, which is 6, in order to minimize the memory
resources used.

The toString method is coded from lines 26 to 38. It
generates and returns a String representing all the
books in library, one book per line. In order to do
that, we use an enhanced for loop from lines 33 to
36. The header of that loop, at line 33, follows the
general pattern of the enhanced for loop header by
declaring a Book variable named tempBook,
followed by a colon, followed by library, the ArrayList
object to loop through.

The searchForTitle method, coded from lines 40 to
54, performs the task of searching for a keyword
within the title of each Book object stored in library.
The keyword, a String, is the parameter of the
method and is named searchString. This method
returns an ArrayList containing the Book objects that
have the keyword in their title. We create that
ArrayList of Books, which we name searchResult at
line 46 and loop through library using an enhanced
for loop from lines 47 to 51. Inside the body of the
loop, we use the indexOf method of the String class
to test if the current Book object contains the
keyword searchString in its title. If it does, we add
that Book object to searchResult. Finally, we call the
method trimToSize to set the capacity of

searchResult to the current number of elements,
then return the ArrayList to the caller.

EXAMPLE 9.14 The BookStore
Class

 1 /* BookStore class

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.ArrayList;

 6

 7 public class BookStore

 8 {

 9 private ArrayList<Book> library;

10

11 /** default constructor

12 * instantiates ArrayList of Books

13 */

14 public BookStore()

15 {

16 library = new ArrayList<Book>();

17 library.add(new Book("Intro to Java",

"James", 56.99));

18 library.add(new Book("Advanced Java",

"Green", 65.99));

19 library.add(new Book("Java Servlets",

"Brown", 75.99));

20 library.add(new Book("Intro to HTML",

"James", 29.49));

21 library.add(new Book("Intro to Flash",

"James", 34.99));

22 library.add(new Book("Advanced HTML",

"Green", 56.99));

23 library.trimToSize();

24 }

25

26 /** toString

27 * @return each book in library, one per line

28 */

29 @Override

30 public String toString()

31 {

32 String result = "";

33 for (Book tempBook : library)

34 {

35 result += tempBook.toString() + "\n";

36 }

37 return result;

38 }

39

40 /** Generates list of books containing

searchString

41 * @param searchString the keyword to

search for

42 * @return the ArrayList of books

containing the keyword

43 */

44 public ArrayList<Book> searchForTitle(String

searchString)

45 {

46 ArrayList<Book> searchResult = new

ArrayList<Book>();

47 for (Book currentBook : library)

48 {

49 if (currentBook.getTitle().indexOf(

searchString) != -1)

50 searchResult.add(currentBook);

51 }

52 searchResult.trimToSize();

53 return searchResult;

54 }

55 }

Our BookSearchEngine class, shown in Example
9.15, contains the main method: it creates a
BookStore object, asks the user for a keyword, and
searches for partial matches in our BookStore object.

A BookStore object, bs, is declared and instantiated
at line 11. At lines 13–15, the user is then prompted
for a keyword that will be used to search for books
whose title contains that keyword. Lines 16 and 17
simply output the collection of Books in the
BookStore object bs; later, when the search results
are output, we can compare that output to the
original list of Books to check our results. At line 19,
we call the searchForTitle method with keyword as
its argument; the ArrayList of Book objects returned
is assigned to the variable results. At lines 23–24, we
loop through results and output its contents, again
using the enhanced for loop. Figure 9.16 shows a

run of the program with the user searching for books
containing the word “Java.”

Figure 9.16
Results of a Search for the Keyword “Java”

Enter a keyword > Java

Our book collection is:

title: Intro to Java author: James

price: 56.99

title: Advanced Java author: Green

price: 65.99

title: Java Servlets author: Brown

price: 75.99

title: Intro to HTML author: James

price: 29.49

title: Intro to Flash author: James

price: 34.99

title: Advanced HTML author: Green

price: 56.99

The search results for Java are:

title: Intro to Java author: James

price: 56.99

title: Advanced Java author: Green

price: 65.99

title: Java Servlets author: Brown

price: 75.99

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
To see a step-by-step illustration showing how
to use the ArrayList class, look for the movie
within the online resources. Click on the link to
start the movie.

EXAMPLE 9.15 A Search Engine
for Books

 1 /* BookSearchEngine class

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.*;

 6

 7 public class BookSearchEngine

 8 {

 9 public static void main(String [] args)

10 {

11 BookStore bs = new BookStore();

12

13 Scanner scan = new Scanner(System.in);

14 System.out.print("Enter a keyword > ");

15 String keyword = scan.next();

16 System.out.println("Our book collection is:"

);

17 System.out.println(bs.toString());

18

19 ArrayList<Book> results = bs.searchForTitle(

keyword);

20

21 System.out.println("The search results for " +

keyword

22 + " are:");

23 for (Book tempBook : results)

24 System.out.println(tempBook.toString()

);

25 }

26 }

9.8 Programming Activity 2: Working
with the ArrayList Class
In this activity, you will work with an ArrayList object.
Specifically, you will write the code to perform the following
operations:

1. Fill the ArrayList object with Auto elements.

2. Print the Auto elements contained in the ArrayList object.

3. Set the model instance variable of every Auto element in the ArrayList object

to a specified model.

4. Find the maximum number of miles of all Auto elements contained in the

ArrayList object.

5. Count the number of Auto elements in the ArrayList with a specified model.

Table 9.6 provides the API for the Auto class.

TABLE 9.6 Constructors and Some Methods of the
Auto Class

Auto Class Constructor Summary
Auto()

creates an Auto object with initial default values of “unknown,” 0, and 0.0.

Auto(String model, int milesDriven, double gallonsOfGas

)

creates an Auto object with the initial values of model, milesDriven, and
gallonsOfGas.

Auto Class Method Summary
Return value Method name and argument list

String getModel()

 returns the value of model

int getMilesDriven()

 returns the value of milesDriven

double getGallonsOfGas()

 returns the value of gallonsOfGas

Auto setModel(String model)

 mutator for model

Auto setMilesDriven(int milesDriven)

 mutator for milesDriven

Auto setGallonsOfGas(double gallonsOfGas)

 mutator for gallonsOfGas

double milesPerGallon()

 returns the gas mileage for this Auto object

String toString()

 returns a String representation of this object

boolean equals(Object obj)

 compares this Auto object to another object

The framework for this Programming Activity will animate your
algorithm so that you can check the accuracy of your code.
For example, Figure 9.17 shows the application counting the
number of Auto elements in the ArrayList object having a
model value equal to “Ferrari.” The application accesses each

element in the ArrayList in order, checking the model for the
desired value, “Ferrari.” At this point, the current element
being accessed is a BMW and the application has found two
Auto elements with the model value, “Ferrari.”

Figure 9.17
Animation of the Programming Activity

Instructions
In this chapter’s Programming Activity 2 folder in the supplied
code files, you will find the source files needed to complete
this activity. Copy all the files to a folder on your computer.
Note that all files should be in the same folder.

Open the ArrayListController.java source file. Searching for
five asterisks (*****) will position you at the sample method
and the four other locations where you will add your code. We
have provided the sample code for task number 1. In every
task, you will fill in the code for a method that will manipulate
an existing ArrayList of Auto elements. You should not
instantiate the ArrayList object; we have done that for you.
Example 9.16 shows the section of the ArrayListController
source code where you will add your code.

Note that for the countFound and findMaximumMilesDriven
methods, we provide a dummy return statement (return 0;).
We do this so that the source code will compile. In this way,
you can write and test each method separately, using step-
wise refinement. When you are ready to write the countFound
and findMaximumMilesDriven methods, just replace the
dummy return statements with the appropriate return
statement for that method.

EXAMPLE 9.16 Location of Student
Code in ArrayListController

// ***** 1. This method has been coded as an example

/** Fills the carList with hard-coded Auto objects

* The instance variable carList is the ArrayList

* to be filled with Auto objects

*/

public void fillWithCars()

{

 // clear carList before adding cars

 carList.clear();

 // Reset the number of Autos to 0

 // This is needed so that the animation feedback works

correctly

 Auto.clearNumberAutos();

 Auto car1 = new Auto("BMW", 0, 0.0);

 Auto car2 = new Auto("Ferrari", 100, 500.0);

 Auto car3 = new Auto("Jeep", 1000, 90.0);

 Auto car4 = new Auto("Ferrari", 10, 3.0);

 Auto car5 = new Auto("BMW", 4000, 200.0);

 Auto car6 = new Auto("Ferrari", 1000, 50.0);

 carList.add(car1);

 animate(car1);

 carList.add(car2);

 animate(car2);

 carList.add(car3);

 animate(car3);

 carList.add(car4);

 animate(car4);

 carList.add(car5);

 animate(car5);

 carList.add(car6);

 animate(car6);

}

// end of fillWithCars method

// ***** 2. Student writes this method

/** Prints carList to console, elements are separated by a

space

* The instance variable carList is the ArrayList to be

printed

*/

public void printAutoList()

{

 // Note: To animate the algorithm, put this method call as

the

 // last statement in your for loop

 // animate(car);

 // where car is the variable name for the current Auto

object

 // as you loop through the ArrayList object

 // Write your code here:

}

// end of printAutoList method

// ***** 3. Student writes this method

/** Sets the model of all the elements in carList to

parameter value

* The instance variable carList is the ArrayList to be

modified

* @param model the model to assign to all Auto objects in

carList

*/

public void setModelValues(String model)

{

 // Note: To animate the algorithm, put this method call as

the

 // last statement in your for loop

 // animate(car);

 // where car is the variable name for the current Auto

object

 // as you loop through the ArrayList object

 // Write your code here:

}

// end of setModelValues method

// ***** 4. Student writes this method

/** Finds maximum number of miles driven

* Instance variable carList is the ArrayList to search

* @return the maximum miles driven by all the Auto

objects

*/

public int findMaximumMilesDriven()

{

 // Note: To animate the algorithm, put this method call as

the

 // last statement in your for loop

 // animate(car, maximum);

 // where car is the variable name for the current Auto

object

 // and maximum is the int variable storing the current

maximum

 // number of miles for all Auto elements you have already

tested

 // as you loop through the ArrayList object

 // Write your code here:

 return 0; // replace this statement with your return

statement

}

// end of findMaximumMilesDriven method

// ***** 5. Student writes this method

/** Finds number of times parameter model is found in the

carList

* Instance variable carList is the ArrayList in which we

search

* @param model the model to count

* @return the number of times m odel was found

*/

public int countFound(String model)

{

 // Note: To animate the algorithm, put this method call as

the

 // last statement in your for loop

 // animate(car, num);

 // where car is the variable name for the current Auto

object

 // and num is the int variable storing the current number

of

 // Auto elements whose model is equal to the method's

parameter

 // as you loop through the ArrayList object

 // Write your code here:

 return 0;// replace this statement with your return

statement

}

// end of countFound method

The framework will animate your code so that you can watch
it work. For this to happen, be sure that your for loops call the

animate method. The arguments that you send to animate are
not always the same, but the location of the call to animate is
always the same, that is, the last statement of your for loop.
Detailed instructions for each task are included in the code.

To test your code, compile ArrayListController.java and run
the ArrayListApplication source code. Figure 9.18 shows the
graphics window when the program begins. Because the Auto
elements of the ArrayList object are hard-coded, the values
will be the same each time the program runs. Click on the “Fill
Cars” button first. To test any method, click on the appropriate
button.

Figure 9.18
The Graphics Window When the Application Begins

Troubleshooting
If your method implementation does not animate, check these
tips:

Verify that the last statement in your for loop is a call
to the animate method and that you passed the loop
variable(s) as the argument(s), as in the following:

animate(car); // or

animate(car, maximum); // or

animate(car, num);

Verify that the headers of your for loops are correct.
They should all be the same.

Verify that you update the variables maximum and
num correctly.

DISCUSSION QUESTIONS
1. Change the code in the fillWithCars method so that there are more

or fewer Auto objects in the ArrayList. How does the number of
Auto objects impact how the other methods are coded? Explain.

2. Explain how looping through an ArrayList is different from looping
through an array.

Skill Practice
with these end-of-chapter questions

9.10.1 Multiple Choice Exercises

Questions 9, 10, 11, 12, 13

9.10.2 Reading and Understanding Code

Questions 29, 30, 31, 32

9.10.3 Fill In the Code

Questions 46, 47, 48, 49

9.10.4 Identifying Errors in Code

Questions 55, 56, 57, 58

9.10.5 Debugging Area

Questions 63, 64

9.10.6 Write a Short Program

Questions 80, 81, 82

9.10.8 Technical Writing

Question 98

CHAPTER REVIEW

9.9 Chapter Summary
Arrays can be single-dimensional, two-
dimensional, three-dimensional, or more
generally, n-dimensional.

In a two-dimensional array, each row is an
array.

Each element in a two-dimensional array is
accessed using the array name with a row
index and column index that refer to the
element’s position in the array.

Concepts such as declaration, instantiation,
initial values, indexing, and aggregate
operations from single-dimensional arrays
also apply to two-dimensional arrays.

Two-dimensional arrays can be instantiated
by assigning initial values in a comma-
separated list of comma-separated lists at
the declaration.

Each row in a two-dimensional array can
have a different number of columns.

A two-dimensional array has an instance
variable, length, which holds the number of
rows in the array.

Each row of a two-dimensional array has an
instance variable, length, which holds the
number of elements in that row.

The ArrayList class implements generics and
is part of the java.util package.

An ArrayList can be thought of as an
expandable single-dimensional array of
objects.

To define an ArrayList to hold elements of
primitive data types, use the wrapper
classes.

An ArrayList object expands automatically as
objects are added.

We access an element of an ArrayList via its
index.

We can process each element in an
ArrayList using the enhanced for loop.

9.10 Exercises, Problems, and
Projects

9.10.1 Multiple Choice Exercises
 1. What is/are the valid way(s) to declare a two-dimensional integer

array named a? (Check all that apply.)

❑ int [][] a;

❑ int a [][];
❑ array [] int a;

❑ int array [] a;

 2. A two-dimensional array is an array of arrays.

❑ true
❑ false

 3. In a two-dimensional array, every row must have the same number
of columns.

❑ true

❑ false

 4. What is the default value of the elements of a two-dimensional
array of booleans after declaration and instantiation of the array?

❑ true

❑ false

❑ undefined

 5. How do you access the element of array a located at row 2 and
column 4?

❑ a{2}{4}
❑ a(2,4)

❑ a[2][4]
❑ a[4][2]

 6. How do you retrieve the number of rows in a two-dimensional
array a?

❑ a.rows

❑ a.length

❑ a.rows()

❑ a.size

 7. How do you retrieve the number of columns in row 2 in a two-
dimensional array a?

❑ a.length
❑ a[2].length

❑ a.size
❑ a[2].size

8. All the elements of a two-dimensional array must be of the same
type.

❑ true

❑ false

 9. An ArrayList can be returned by a method.

❑ true
❑ false

10. It is possible to declare and instantiate an ArrayList of a user-
defined class type.

❑ true

❑ false

11. As we add objects to an ArrayList, how can we be sure it has
enough capacity?

❑ Use the setCapacity method.
❑ Use the trimToSize method.

❑ We don’t need to do anything; capacity expands automatically
as needed.

12. Where does the add method of the ArrayList class add an object?

❑ at the beginning of the list
❑ at the end of the list

13. To what package does the class ArrayList belong?

❑ java.io

❑ java.util

❑ java.array

❑ java.list

9.10.2 Reading and Understanding
Code
For Questions 14 to 24, consider the following two-
dimensional array declaration and initialization:

String [][] cities = { { "New York", "LA", "San

Francisco", "Chicago" },

 { "Munich", "Stuttgart",

"Berlin", "Bonn" },

 { "Paris", "Ajaccio",

"Lyon" },

 { "Montreal", "Ottawa",

"Vancouver" } };

14. How many rows are in the array cities?

15. What is the value of the expression cities[2][1]?

16. What is the index of the last row in the array cities?

17. What are the row and column indexes of Chicago in the array
cities?

18. What is the output of this code sequence?

System.out.println(cities[3][2]);

19. What is the output of this code sequence?

for (int j = 0; j < cities[1].length; j++)
 System.out.println(cities[1][j]);

20. What is the output of this code sequence?

for (int i = 0; i < cities.length; i++)
 System.out.println(cities[i][1]);

21. What is the output of this code sequence?

for (int i = 0; i < cities.length; i++)
{
 for (int j = 0; j < cities[i].length; j++)
 System.out.print(cities[i][j] + "\t");
 System.out.println();
}

22. What is the output of this code sequence?

for (int i = 0; i < cities.length; i++)
{
 for (int j = 0; j < cities[i].length; j++)
 {
 if (cities[i][j].length() == 6)
 System.out.println(cities[i][j]
);
 }
}

23. What is the output of this code sequence?

int count = 0;
for (int i = 0; i < cities.length; i++)
{
 for (int j = 0; j < cities[i].length; j++)
 {
 if (cities[i][j].length() == 7)
 count++;
 }
}
System.out.println("count is " + count);

24. What is the output of this code sequence?

for (int i = 0; i < cities.length; i++)
{
 for (int j = 0; j < cities[i].length; j++
)
 {
 if (cities[i][j].charAt(0) == 'S'
)
 System.out.println(cities[i]
[j]);
 }
}

25. What does this method do?

public static int foo(double [][] a)
{
 int b = 0;
 for (int i = 0; i < a.length; i++)
 {
 for (int j = 0; j < a[i].length; j++)
 b++;
 }
 return b;
}

26. What does this method do?

public static boolean foo(char [][] a)
{
 int b = a[0].length;
 for (int i = 1; i < a.length; i++)
 {
 if (a[i].length != b)
 return false;
 }
 return true;
}

27. What does this method do?

public static int foo(String [][] a)
{
 int b = 0;
 for (int i = 0; i < a.length; i++)
 b++;
 return b;
}

28. What does this method do?

public static int [] foo(float [][] a)
{
 int [] temp = new int [a.length];
 for (int i = 0; i < a.length; i++)
 temp[i] = a[i].length;
 return temp;
}

29. What does this method do?

public static int foo(ArrayList<Integer> a)
{
 int b = 0;
 for (Integer i : a)
 b++;
 return b;
}

30. After the following code sequence is executed, what are the
contents and index of each element of a?

ArrayList<Integer> a = new ArrayList<Integer>();
a.add(7);
a.add(4);
a.add(21);

31. After the following code sequence is executed, what are the
contents and index of each element of a?

ArrayList<Integer> a = new ArrayList<Integer>();
a.add(7);
a.add(4);
a.add(21);
a.set(1, 45);

32. After the following code sequence is executed, what are the
contents and index of each element of a?

ArrayList<Integer> a = new ArrayList<Integer>();
a.add(7);
a.add(4);
a.add(21);
a.add(1, 45);

9.10.3 Fill In the Code
For Questions 33 to 37, consider the following
statement:

String [][] geo = { { "MD", "NY", "NJ", "MA",

"ME", "CA", "MI", "OR" },

 { "Detroit",

"Newark", "Boston", "Seattle" } };

33. This code prints the element at row index 1 and column index 2 of
the two-dimensional array geo.

// your code goes here

34. This code prints the element of the array geo whose value is “CA.”

// your code goes here

35. This code prints all the states (i.e., the first row) that start with an
M in the array geo.

for (int j = 0; j < geo[0].length; j++)
{
 // your code goes here
}

36. This code prints all the cities (i.e., the second row) in the array
geo.

for (int j = 0; j < geo[1].length; j++)
{
 // your code goes here
}

37. This code prints all the elements of the array geo.

for (int i = 0; i < geo.length; i++)
{
 // your code goes here
}

For Questions 38 to 41, consider the following
statement:

int [][] a = { { 9, 6, 8, 10, 5 },

 { 7, 6, 8, 9, 6 },

 { 4, 8, 10, 6, 6 } };

38. This code calculates and prints the sum of all the elements in the
array a.

int sum = 0;
for (int i = 0; i < a.length; i++)
{
 // your code goes here
}
System.out.println("sum is " + sum);

39. This code counts and prints the number of times the value 8
appears in the array a.

int count = 0;
for (int i = 0; i < a.length; i++)
{
 // your code goes here
}
System.out.println("# of 8s in a: " + count);

40. This code counts and prints the number of times the value 6
appears in the second row (i.e., the row whose index is 1) of array
a.

int count = 0;

// your code for the for loop header goes here
{
 if (a[1][j] == 6)
 count++;
}
System.out.println("# of 6s in the 2nd row: " +
count);

41. This code calculates the sum of the elements in the second
column (i.e, the column with index 1) of array a.

int sum = 0;
for (int i = 0; i < a.length; i++)
{
 // your code goes here

}
System.out.println("sum is " + sum);

42. This method returns true if an element in an array of Strings is
equal to “Java”; otherwise, it returns false.

public static boolean foo(String [][] a)
{
 // your code goes here
}

43. This method returns the product of all the elements in an array.

public static int foo(int [][] a)
{
 // your code goes here
}

44. This method returns true if there is at least one row in the array
that has exactly five columns; otherwise, it returns false.

public static boolean foo(char [][] a)
{
 // your code goes here
}

45. This method takes an array of ints as a parameter and returns a
single-dimensional array of booleans. The length of the array

returned should be equal to the number of rows in the two-
dimensional array parameter. The element at index i of the
returned array will be true if there is a 0 in the corresponding row
of the parameter array; otherwise, it will be false. Assume that
every row in a has the same number of columns.

public static boolean [] foo(int [][] a)
{
 // your code goes here
 // every row has the same number of columns
}

For Questions 46 to 49, consider the following
statements:

ArrayList<String> languages = new

ArrayList<String>();

languages.add("SQL");

languages.add("Java");

languages.add("HTML");

languages.add("PHP");

languages.add("Perl");

46. This code prints the number of elements in languages.

// your code goes here

47. This code retrieves the String “HTML” from languages (without
deleting it) and assigns it to the String variable webLanguage.

// your code goes here

48. This code replaces “HTML” with “C++” in languages.

// your code goes here

49. This code prints all the elements of languages that start with the
letter P.

for (String s : languages)
{
 // your code goes here
}

9.10.4 Identifying Errors in Code
50. Where is the error in this code sequence?

double [][] a = { 3.3, 26.0, 48.4 };

51. Where is the error in this code sequence?

int [][] a = { { 3, 26, 4 }, { 14, 87 } };
System.out.println(a[1][2]);

52. Where is the error in this code sequence?

double [][] a = new double [][10];

53. Where is the error in this code sequence?

int [][] a = { { 1, 2 },
 { 10.1, 10.2 } };

54. Where is the error in this code sequence? (This code compiles
and runs, but does not output the array values.)

int [][] a = { { 3, 26, 48 }, { 5, 2, 9 } };
System.out.println("The array elements are " + a
);

55. Where is the error in this code sequence?

ArrayList<double> al;

56. Where is the error in this code sequence?

ArrayList<Float> a1 = new ArrayList()<Float>;

57. Where is the error in this code sequence? (The compiler may ask
you to recompile.)

ArrayList<Double> a;
a = new ArrayList<Float>();

58. Where is the error in this code sequence?

// a is an ArrayList of Strings
// a has already been declared and instantiated
a.size() = 10;

9.10.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
59. You coded the following on line 14 of the Test.java class:

int a[2][] = { { 2, 7 }, { 9, 2 } }; // line 14

When you compile, you get the following message:

Test.java:14: error: ']' expected
 int a[2][] = { { 2, 7 }, { 9, 2 } }; //
line 14
 ^
Test.java:14: error: not a statement
 int a[2][] = { { 2, 7 }, { 9, 2 } }; //
line 14
 ^
Test.java:14: error: ';' expected
 int a[2][] = { { 2, 7 }, { 9, 2 } }; //
line 14
 ^
Test.java:14: error: illegal start of expression
 int a[2][] = { { 2, 7 }, { 9, 2 } }; //
line 14
 ^
Test.java:14: error: not a statement
 int a[2][] = { { 2, 7 }, { 9, 2 } }; //
line 14
 ^
Test.java:14: error: ';' expected
 int a[2][] = { { 2, 7 }, { 9, 2 } }; //
line 14
 ^
6 errors

Explain what the problem is and how to fix it.

60. You coded the following in the Test.java class:

int [][] a = { { 1, 2, 3, 4 },
 { 10, 20, 30 } };
for (int i = 0; i < a.length; i++)
{
 for (int j = 0; j < a[0].length; j++)
 {
 System.out.println(a[i][j]); //
line 14
 }
}

The code compiles properly but when you run, you get the
following output:

 1
 2
 3
 4
10
20
30
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 3
 at Test.main(Test.java: 14)

Explain what the problem is and how to fix it.

61. You coded the following in the Test.java class in order to output the
smallest element in the array a:

int [][] a = { { 9, 8, 7, 6 },
 { 10, 20, 30, 40 } };
int min = a[0][0];
for (int i = 1; i < a.length; i++)
{
 for (int j = 0; j < a[i].length; j++)
 {
 if (a[i][j] < min)
 min = a[i][j];
 }
}
System.out.println("The minimum is " + min);

The code compiles properly, but when you run, you get the
following output:

The minimum is 9

You expected the value of min to be 6. Explain what the problem is
and how to fix it.

62. You coded the following in file Test.java:

int [][] a = { { 9, 8, 7, 6 },
 { 10, 20, 30, 40 } };
for (int j = 0; j <= a[1].length; j++)
{
 if (a[1][j] == 20) // line 14
 {
 System.out.println("Found 20 at column
index " + j
 + " of second row");
 }
}

The code compiles properly, but when you run, you get the
following output:

Found 20 at column index 1 of second row
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 4
 at Test.main(Test.java:14)

Explain what the problem is and how to fix it.

63. You coded the following in the Test.java class:

 // cars is an ArrayList of Auto objects
 // cars has already been declared and
instantiated
 for (Auto a ; cars) // line 12
 {
 System.out.println(a.toString());
 } // line 15

When you compile, you get the following message :

Test.java:12: error: ';' expected
 for (Auto a ; cars) // line 12
 ^
1 error

Explain what the problems are and how to fix them.

64. You coded the following in the Test.java class:

ArrayList<String> a = new ArrayList<String>();
a.add("Cloudy");
a.add("Snowy");
a.add("Cloudy");
System.out.println("Weather is " + a.get(3));
// line 14

The code compiles properly, but when you run, you get the
following output:

Exception in thread "main"
java.lang.IndexOutOfBoundsException: Index 3 out-
of-bounds for length 3

Explain what the problem is and how to fix it.

65. You coded the following in the file Test.java:

ArrayList<Integer> a = new ArrayList();

When you compile (using Xlint), you get the following warning
message:

Test.java:10: warning: [rawtypes] found raw type:
ArrayList
 ArrayList<Integer> a = new ArrayList();
 ^
 missing type arguments for generic class
ArrayList<E>
 where E is a type-variable:
 E extends Object declared in class ArrayList

Test.java:10: warning: [unchecked] unchecked
conversion
 ArrayList<Integer> a = new ArrayList();
 ^
 required: ArrayList<Integer>
 found: ArrayList
2 warnings

Explain what the problem is and how to fix it.

66. You coded the following in the file Test.java:

ArrayList<Double> a = new ArrayList<Double>();
a.add(2.3);
a.add(8.4);
a.add(5); // line 11

When you compile, you get the following message:

Test.java:11: error: no suitable method found for
add(int)
 a.add(5); // line 11
 ^

Explain what the problem is and how to fix it.

67. You coded the following in the file Test.java:

ArrayList<Character> a = new ArrayList<Character>
();
a.add('X');
a.add('A');
a.add('V');
a.add('A');
a.set(1, 'J');
for (Character c : a)
 System.out.print(c + " ");

The code compiles properly, but when you run, you get the
following output:

X J V A

when you expected:

J A V A

Explain what the problem is and how to fix it.

9.10.6 Write a Short Program
68. Write a value-returning method that returns the number of rows in

a two-dimensional array of doubles. Include code to test your
method.

69. Write a value-returning method that returns the number of
elements in a two-dimensional array of floats. Include code to test
your method.

70. Write a value-returning method that returns the number of columns
that have two elements in a two-dimensional array of booleans.
Include code to test your method.

71. Write a value-returning method that returns the number of columns
with n elements in a two-dimensional array of chars, where n is a
parameter of the method. Include code to test your method.

72. Write a value-returning method that returns the sum of all the
elements in a two-dimensional array of floats. Include code to test
your method.

73. Write a method with a void return value that sets to 0 all the
elements of the even-numbered rows and sets to 1 all the
elements of odd-numbered rows of a two-dimensional array of ints.
Include code to test your method.

74. Write a value-returning method that returns the sum of the
elements in the last column of each row in a two-dimensional array
of ints. Include code to test your method.

75. Write a method with a void return value that inverts all the
elements of a two-dimensional array of booleans (true becomes
false and false becomes true). Include code to test your method.

76. Write a method that returns the number of elements having the
value true in a two-dimensional array of booleans. Include code to
test your method.

77. Write a method that returns the percentage of elements having the
value false in a two-dimensional array of booleans. Include code to
test your method.

78. Write a method that returns the average of all elements in a two-
dimensional array of ints. Include code to test your method.

79. Write a method that returns the String “regular” if all the rows of a
two-dimensional array of floats have the same number of columns;
otherwise, it returns “irregular.” Include code to test your method.

80. Write a method that returns the concatenation of all elements in a
two-dimensional array of Strings. Include code to test your method.

81. Write an array-returning method that takes a two-dimensional
array of chars as a parameter and returns a single-dimensional
array of Strings as follows: The array returned should have a
number of elements equal to the number of rows in the parameter
array; every element of the array returned should be the
concatenation of all the column elements of the corresponding row
in the parameter array. Include code to test your method.

82. Write a method that takes as parameters two ArrayLists of Strings
of the same size. The method returns a Hashtable (look up the
Hashtable class in the Java Class Library) such that the
Hashtable’s keys are the elements of the first ArrayList, and the
Hashtable’s values are the elements of the second ArrayList. Test
your method in a program using an ArrayList of state codes and an
ArrayList of state names.

83. Write a method that returns the sum of all the elements of an
ArrayList of Integer objects. Include code to test your method.

84. Write a method that returns the String “odd” or “even” if the
number of elements of an ArrayList of Strings is odd or even.
Include code to test your method.

85. Write a method that takes an ArrayList of Integer objects and
returns an ArrayList of Character objects of the same size. The
returned elements of the ArrayList are assigned a letter grade
corresponding to the integer grade of the same index element of
the ArrayList parameter (A if 90 or above, ..., F if less than 60).
Include code to test your method.

9.10.7 Programming Projects
86. Write a class (and a client class to test it) that encapsulates

statistics for summer job salaries for a group of people over
several years. Your only instance variable should be a two-
dimensional array of values representing salaries. Dimension 1
represents the people and dimension 2 represents the year of the
summer job. Your constructor can simply take two integers
representing the number of people and the number of years, then
randomly generate the salaries and fill the array. You should
include the following methods:

❑ a method returning the index of the person having made the
most money over the years

❑ a method returning the year when the highest salary was
earned

❑ a method returning the total amount of money made by all the
people over the years

87. Write a class (and a client class to test it) that encapsulates the
evolution of the passwords of three students over four months.
Your only instance variable should be a two-dimensional array of
values representing the passwords. Dimension 1 represents the
student and dimension 2 represents the month. (Since we are
concerned about security, we are assuming that people change
their password once a month; we only care about the value of the
password at the end of a given month.) Your constructor can
simply take a single-dimensional array of words representing the
12 passwords; they can be assigned to the two-dimensional array
elements one at a time, starting with the first row. You should
include the following methods:

❑ a method returning the index of the person who changed his
or her password the most times

❑ a method returning the longest password
❑ a method changing all the passwords to “unlock”

❑ a method returning true if at least one person had a given
word—the method’s parameter—as his/her password in at
least one month; false otherwise

88. Write a class (and a client class to test it) that encapsulates the
evolution of the sales tax rates in the 50 U.S. states over the last
10 years. Your only instance variable should be a two-dimensional
array of values representing the sales tax rates. Dimension 1
represents the state and dimension 2 represents the year. Your
constructor can simply be a default constructor, randomly
generating the sales tax rates, which should be between 0 and
0.06. You should include the following methods:

❑ a method returning the index of the state that has the biggest
average tax rate over the years

❑ a method returning an array of indexes of the states that have
had at least one year with a tax rate less than 0.001

❑ a method returning the highest sales tax rate over the years
for a given state (which will be a parameter)

89. Write a class (and a client class to test it) that encapsulates the
evolution of the quality ratings of various hotels over the years.
Hotel ratings are represented by a number of stars, which can vary
from one star (lowest quality) to five stars (highest quality). Your
only instance variable should be a two-dimensional array of values
representing the quality ratings. Dimension 1 represents the hotel
and dimension 2 represents the year. Your constructor can take
two parameters representing the number of hotels and the number
of years. The ratings can simply be generated randomly. You
should include the following methods:

❑ a method returning an array of indexes of the hotels that have
earned five stars at least once over the years

❑ a method returning the average rating of all the hotels over
the years

❑ a method printing the indexes of the hotels that have earned
five stars every year

❑ a method returning true if at least one hotel earned five stars
for at least one year; false otherwise

90. Write a class (and a client class to test it) that encapsulates the
value of the 26 letters of the English alphabet in the game of

Scrabble in 10 countries. You should have three instance
variables:

❑ a two-dimensional array of integers representing the point
values of the letters in the various countries

❑ a single-dimensional array representing the alphabet from a
to z

❑ another single-dimensional array representing 10 countries

For the two-dimensional array, dimension 1 represents the letter
and dimension 2 represents the country. Your constructor can
simply be a default constructor, randomly generating the values
between 1 and 10. You should include the following methods:

❑ a method returning an array of letters with their highest point
value in any country

❑ a method printing the names of the countries that have at
least one letter with a point value of 10

❑ a method taking a String as a parameter and printing the
score of the word represented by that String in every country

91. Write a class (and a client class to test it) that encapsulates the
numbers of the various chessboard pieces in a chess game. You
should have two instance variables:

❑ a two-dimensional array of integers; each array element
represents how many of a particular chess piece of a
particular color are on the board. In order to set it up, consider
the following:

The first dimension represents the color of the pieces. On
a chessboard, there are white and black pieces.

The second dimension represents the pieces themselves.
On a chessboard, we have on each side: one king, one
queen, two bishops, two knights, two rooks, and eight
pawns.

❑ a single-dimensional array describing the pieces (king, queen,
etc.)

Your constructor can simply be a default constructor, declaring and
instantiating the two arrays to match the preceding information.
You should include the following methods:

❑ a method with a void return value, called
playerATakesPlayerB, updating the array based on a piece
being taken by the opponent. It takes two parameters:

a boolean parameter representing whether “white takes
black” or “black takes white”

an int parameter representing which piece gets taken

❑ a method returning how many of a particular piece are on the
board (this method takes a parameter representing the piece)

❑ a method taking a boolean as a parameter, representing a
color and returning the value of the board for that particular
color. You can consider that a king is worth 0 points, a queen
is worth 6 points, a rook is worth 4 points, a knight and a
bishop are each worth 3 points, and a pawn is worth 1 point

92. Write a class (and a client class to test it) that encapsulates a deck
of cards. A deck of cards is made up of 52 cards. You should have
three instance variables:

❑ a two-dimensional array of values representing the cards
❑ a single-dimensional array describing the suit: spades, hearts,

diamonds, and clubs

❑ an instance variable representing the trump suit

For the two-dimensional array, dimension 1 represents the suit and
dimension 2 represents the type of card (ace, two, three, ..., jack,
queen, king). Your constructor should take one parameter, which
will represent the suit of the trump. Based on that, the cards should
be given the following values:

❑ Non-trump from 2 to 10: 1 point

❑ Non-trump jack = 2
❑ Non-trump queen = 3

❑ Non-trump king = 4
❑ Non-trump ace = 5

❑ Any trump card = Non-trump value + 1

You should include the following methods:

❑ a method returning the trump suit, by name

❑ a method printing the whole deck of cards, suit by suit, with
the value for each card

❑ a method taking a String as a parameter representing a suit,
and returning the total value of the cards of that suit

93. Write a class (and a client class to test it) that encapsulates a tic-
tac-toe board. A tic-tac-toe board looks like a table of three rows

and three columns partially or completely filled with the characters
X and O. At any point, a cell of that table could be empty or could
contain an X or an O. You should have one instance variable, a
two-dimensional array of values representing the tic- tac-toe board.

Your default constructor should instantiate the array so that it
represents an empty board.

You should include the following methods:

❑ a method, returning a boolean, simulating a play with three
parameters as follows: If the first parameter is true, then X is
playing; otherwise, O is playing. The other two parameters
represent what cell on the board is being played. If the play is
legal, that is, the cell is a legal cell on the board and is empty,
then the method should update the array and return true;
otherwise, the array should not be updated and the method
should return false

❑ a method returning how many valid plays have been made so
far

❑ a method checking if a player has won based on the contents
of the board; this method takes no parameter. It returns X if
the “X player” has won, O if the “O player” has won, T if the
game was a tie. A player wins if he or she has placed an X (or
an O) in all cells in a row, all cells in a column, or all cells in
one of the two diagonals

94. Modify the BookStore and BookSearchEngine classes from the
chapter.

You should include the following additional methods and test them:

❑ a method returning the book with the lowest price in the
library

❑ a method searching the library for Books of a given author
and returning an ArrayList of such Books

❑ a method returning an ArrayList of Books whose price is less
than a given number

95. Write a Garage class (and a client class to test it) with one
instance variable: an ArrayList of Autos (you can use the Auto
class from this chapter).

You should include the following methods:

❑ a method returning the average number of miles of all cars in
the garage

❑ a method returning “full” if the garage has 100 cars or more,
“below minimum” if the garage has fewer than 25 cars, and
“normal load” if the garage has between 25 and 100 cars in it

❑ a method returning the total number of gallons of gas used by
all cars in the garage

96. Write a ComputerPart class and a ComputerKit class (and a client
class to test them).

The ComputerPart class has two instance variables: a String
representing an item (for instance, “cpu” or “disk drive”), and a
double representing the price of that item. The ComputerKit class
has just one instance variable: an ArrayList of ComputerPart
objects (they make up a computer) representing the list of parts for
the computer kit.

You should include the following methods:

❑ a method returning “expensive” if the total of the prices of the
ComputerPart objects is greater than 1,000, “cheap” if it is
less than 250, “normal” if it is between 250 and 1,000

❑ a method returning true if a certain item is included in the list
of parts; false otherwise

❑ a method returning how many times a particular item (for
instance, “cpu,” or “memory”) is found in the list of parts

9.10.8 Technical Writing
97. A two-dimensional array can have a different number of columns in

every row. Do you see that as an advantage or a disadvantage?
Discuss.

98. Discuss the pros and cons of using an array vs. using an ArrayList.

9.10.9 Group Project (for a group
of 1, 2, or 3 students)
99. Design and code a program including the following classes, as

well as a client class to test all the methods coded:

A Passenger class, encapsulating a passenger. A passenger has
two attributes: a name, and a class of service, which will be 1 or 2.

A Train class, encapsulating a train of passengers. A train of
passengers has one attribute: a list of passengers, which must be
represented with an ArrayList. Your constructor will build the list of
passengers by reading data from a file called passengers.txt. You
can assume that passengers.txt has the following format:

<name1> <class1>

<name2> <class2>

...

For instance, the file could contain:

James 1

Ben 2

Suri 1

Sarah 1

Jane 2

...

You should include the following methods in your Train class:

❑ a method returning the percentage of passengers traveling in
first class

❑ a method taking two parameters representing the price of
traveling in first and second class and returning the total
revenue for the train

❑ a method checking if a certain person is on the train; if he/she
is, the method returns true; otherwise, it returns false

CHAPTER 10
Object-Oriented Programming,
Part 3: Inheritance,
Polymorphism, and Interfaces

CHAPTER CONTENTS
Introduction
10.1 Inheritance
10.2 Inheritance Design

10.2.1 Inherited Members of a Class
10.2.2 Subclass Constructors
10.2.3 Adding Specialization to the Subclass
10.2.4 Overriding Inherited Methods

10.3 The protected Access Modifier
10.4 Programming Activity 1: Using Inheritance
10.5 Abstract Classes and Methods
10.6 Polymorphism
10.7 Programming Activity 2: Using Polymorphism
10.8 Interfaces
10.9 Chapter Summary
10.10 Exercises, Problems, and Projects

10.10.1 Multiple Choice Exercises
10.10.2 Reading and Understanding Code
10.10.3 Fill In the Code
10.10.4 Identifying Errors in Code
10.10.5 Debugging Area—Using Messages from the

Java Compiler and Java JVM
10.10.6 Write a Short Program
10.10.7 Programming Projects
10.10.8 Technical Writing
10.10.9 Group Project

Introduction
One of the most common ways to reuse a class is through
inheritance. Inheritance helps us to organize related classes
into hierarchies, or ordered levels of functionality. To set up a
hierarchy, we begin by defining a class that contains methods
and fields (instance variables and class variables) that are
common to all classes in the hierarchy. Then we define new
classes at the next lower level of the hierarchy, which inherit
the behavior and fields of the original class. In the new
classes, we define additional fields and more specific
methods. The original class is called the superclass, and the
new classes that inherit from the superclass are called
subclasses. Some OOP developers call a superclass the
base class and call a subclass the derived class.

As in life, a superclass (parent) can have multiple subclasses
(children), and each subclass can be a superclass (parent) of
other subclasses (children) and so on. Thus, a class can be
both a subclass (child) and a superclass (parent). In contrast
to life, however, Java subclasses inherit directly from only one
superclass.

A subclass can add fields and methods, some of which may
override, or hide, a field or method inherited from a
superclass.

Let’s look at an example. To represent a hierarchy of vehicle
types, we define a Vehicle class as a superclass. We then
define an Automobile class that inherits from Vehicle. We also
define a Truck class, which also inherits from Vehicle. We
further refine our classes by defining a Pickup class and a
TractorTrailer class, both of which inherit from the Truck class.

Figure 10.1 depicts our hierarchy using a UML (Unified
Modeling Language) diagram. Arrows pointing from a
subclass to a superclass indicate that the subclass refers to
the superclass for some of its methods and fields. The boxes
below the class name are available for specifying instance
variables and methods for each class. For simplicity, we leave
those boxes blank. Later in the chapter, we will illustrate UML
diagrams complete with fields and methods.

Figure 10.1
Vehicle Class Hierarchy

The Java Class Library contains many class hierarchies. At
the root of all Java class hierarchies is the Object class, the
superclass for all classes. Thus, all classes inherit from the
Object class.

The most important advantage to inheritance is that in a
hierarchy of classes, we write the common code only once.
After the common code has been tested, we can reuse it with
confidence by inheriting it into the subclasses. And when that
common code needs revision, we need to revise the code in
only one place.

10.1 Inheritance
The syntax for defining a subclass class that inherits
from another class is to add an extends clause in the
class header:

accessModifier class SubclassName extends

SuperclassName

{

 // class definition

}

The extends keyword specifies that the subclass
inherits members of the superclass. That means that
the subclass begins with a set of predefined methods
and fields inherited from its hierarchy of
superclasses.

For example, if we want to code a class named
DrawASprite, we extend the Application class, and
we use the following header:

public class DrawASprite extends Application

This means that the DrawASprite class inherits from
the Application class.

The DrawASprite class hierarchy is shown in Figure
10.2. At the top of the hierarchy is the Object class. It
defines 11 methods. The Application class extends
the Object class, so it inherits those 11 methods. In
turn, the Application class defines two fields and 10
additional methods. So when our DrawASprite class
extends Application, the DrawASprite class inherits
21 methods and two fields. All along the hierarchy,
subclasses inherit methods and fields. True, not
every class has a use for all the inherited methods
and fields, but they are available if needed, and the
benefit is that we don’t need to write these methods
or define these fields in our classes. Thus, we can
build classes with a minimum of effort.

As we can see from Figure 10.2, our DrawASprite
class has two superclasses. The class that a
subclass refers to in the extends clause of the class
definition is called its direct superclass. Thus,
Application is the direct superclass of DrawASprite.
Similarly, the class that extends the superclass is
called the direct subclass of the superclass, so
DrawASprite is a direct subclass of the Application
class. A class can have multiple direct subclasses,
but only one direct superclass.

Figure 10.2
The DrawASprite Class Hierarchy

10.2 Inheritance Design
We say that an “is a” relationship exists between a
subclass and a superclass; that is, a subclass object
“is a” superclass object. For example, we could
define a student class hierarchy with a Student
superclass and derive a GraduateStudent subclass.
A graduate student “is a” student, but actually a
special type of student. We could also define an
employee class hierarchy with an Employee
superclass and derive Faculty and Staff subclasses,
because faculty and staff are both special types of
employees.

To design classes for inheritance, our superclass
should define fields and methods that will be
common to all classes in the hierarchy. Each
subclass will provide specialization by adding
methods and fields. Where appropriate, subclasses
can also provide new versions of inherited methods,
which is called overriding methods.

SOFTWARE ENGINEERING TIP
The superclasses in a class hierarchy should contain
fields and methods common to all subclasses. The
subclasses should add specialized fields and
methods.

Let’s build a bank account class hierarchy. We start
by defining a generic BankAccount superclass. The
BankAccount class will contain the fields and
methods that are common to all bank accounts.
Then we will define a CheckingAccount class that
inherits from the BankAccount class. The
CheckingAccount class will add instance variables
and methods that specifically support checking
accounts. Our class hierarchy is shown in the UML
diagram in Figure 10.3. In this diagram, we display
the instance variables in the box immediately below
the class name and the methods in the next lower
box. A “+” preceding a class member indicates that
the member is public, while a “–” indicates that the
member is private. Each method’s signature is given
with each parameter’s type within parentheses and
the return type following a colon. The Object class
has more methods than we indicate on the UML
diagram. However, the toString method is the only
method of Object that we will deal with in this
hierarchy, so we have omitted the other methods of
Object on the diagram and indicate that other
methods exist (+...()).

Figure 10.3
The BankAccount Class Hierarchy

10.2.1 Inherited Members of a
Class
As shown in Example 10.1, our BankAccount class
has two instance variables, the balance, which is a
double (line 11), and a constant DecimalFormat
object that we will use for formatting the balance as
money (lines 9–10). We provide two constructors.
The default constructor (lines 13–19) sets the
balance instance variable to 0.0. The overloaded
constructor (lines 21–27) takes a starting balance
and passes that parameter to the deposit method
(lines 37–48), which adds any non-negative amount
to the balance. Otherwise, it leaves balance
unchanged.

The withdraw method (lines 50–62) validates that the
amount parameter is not less than 0.0 and is not
greater than the balance. If amount is valid, the
withdraw method subtracts amount from balance;
otherwise, it leaves balance unchanged.

Other methods of the BankAccount class include the
balance accessor (lines 29–35) and the toString
method (lines 64–71), which uses the
DecimalFormat object, MONEY, to return the
balance formatted as money. Note that we write
@Override before the header of the toString method.
We are replacing the version of toString that is in the
Object class, that is, we are overriding the Object

version of the toString method. To replace a method,
we must write our method header exactly the same
as the method we are overriding. By using the
@Override annotation, we signal to the compiler that
our intention is to override the method. If our method
header is not coded correctly, the compiler will
generate an error. Thus, it is a way to check our
work.

EXAMPLE 10.1 BankAccount
Class, Version 1

 1 /** BankAccount class, version 1

 2 * Anderson, Franceschi

 3 * Represents a generic bank account

 4 */

 5 import java.text.DecimalFormat;

 6

 7 public class BankAccount

 8 {

 9 public final DecimalFormat MONEY

10 = new DecimalFormat(

"$#,##0.00");

11 private double balance;

12

13 /** default constructor

14 * sets balance to 0.0

15 */

16 public BankAccount()

17 {

18 balance = 0.0;

19 }

20

21 /** overloaded constructor

22 * @param balance beginning balance

23 */

24 public BankAccount(double balance)

25 {

26 deposit(balance);

27 }

28

29 /** accessor for balance

30 * @return current account balance

31 */

32 public double getBalance()

33 {

34 return balance;

35 }

36

37 /** deposit amount to account

38 * @param amount amount to deposit;

39 * amount must be >= 0.0

40 * @return a reference to this object

41 */

42 public BankAccount deposit(double amount)

43 {

44 if (amount >= 0.0)

45 balance += amount;

46

47 return this;

48 }

49

50 /** withdraw amount from account

51 * @param amount amount to withdraw;

52 * amount must be >= 0.0

53 * amount must be <= balance

54 * @return a reference to this object

55 */

56 public BankAccount withdraw(double amount)

57 {

58 if (amount >= 0.0 && amount <= balance)

59 balance -= amount;

60

61 return this;

62 }

63

64 /** toString

65 * @return the balance formatted as money

66 */

67 @Override

68 public String toString()

69 {

70 return "balance is " + MONEY.format(balance

);

71 }

72 }

Now we can derive our CheckingAccount subclass.
Example 10.2 shows Version 1 of our
CheckingAccount class. For this initial version, we
simply define the CheckingAccount class as
extending BankAccount (line 5). The body of our
class is empty for now, so we can demonstrate the
fields and methods that a subclass inherits from its
superclass.

EXAMPLE 10.2 CheckingAccount
Class, Version 1
 1 /* CheckingAccount class, Version 1

 2 Anderson, Franceschi

 3 */

 4

 5 public class CheckingAccount extends BankAccount

 6 { }

When a class extends a superclass, all the public
fields and methods of the superclass (excluding
constructors) are inherited. That means that the
CheckingAccount class inherits the MONEY instance
variable and the getBalance, deposit, withdraw, and
toString methods from the BankAccount class. An
inherited field is directly accessible from the
subclass, and an inherited method can be called by
the other methods of the subclass. In addition, public
inherited methods can be called by a client
application using a subclass object reference.

Any fields and methods that are declared private are
not inherited, and therefore are not directly
accessible by the subclass. Nevertheless, the private
fields are still part of the subclass object. Remember
that a CheckingAccount object “is a” BankAccount
object, so a CheckingAccount object has a balance
instance variable. However, the balance is declared

to be private in the BankAccount class, so the
CheckingAccount methods cannot directly access
the balance. The CheckingAccount methods must
call the accessor and mutator methods of the
BankAccount class to access or change the value of
balance.

Calling methods to retrieve and change values of an
instance variable may seem a little tedious, but it
enforces encapsulation. Allowing the
CheckingAccount class to set the value of balance
directly would complicate the maintenance of the
program. The CheckingAccount class would need to
be responsible for maintaining a valid value for
balance, which means that the CheckingAccount
class would need to know all the validation rules for
balance that the BankAccount class enforces. If
these rules change, then the CheckingAccount class
would also need to change. As long as the
BankAccount class ensures the validity of balance,
there is no reason for the CheckingAccount class to
duplicate that code.

Java provides the protected access modifier so that
fields and methods can be inherited by subclasses
(like public fields and methods), while still being
hidden from client classes (like private fields and
methods). In addition, any class in the same
package as the superclass can directly access a

protected field, even if that class is not a subclass.
Because more than one class can directly access a
protected field, protected access compromises
encapsulation and complicates the maintenance of a
program. For that reason, we prefer to use private,
rather than protected, for our instance variables. We
will discuss the difference between private and
protected in greater detail later in the chapter.

Table 10.1 summarizes the fields and methods that
are inherited by a subclass. We will add to this table
as we explain more about inheritance.

TABLE 10.1 Inheritance Rules
Superclass
Members

Inherited
by
Subclass?

Directly Accessible
by Subclass?

Directly
Accessible by
Client of
Subclass?

public

fields
yes yes, by using field

name
yes

public

methods
yes yes, by calling

method from other
subclass methods

yes

protected

fields
yes yes, by using field

name
no, must use
accessors and
mutators

protected

methods
yes yes, by calling

method from
subclass methods

no

private

fields
no no, must use

accessors and
mutators

no, must use
accessors and
mutators

private

methods
no no no

Example 10.3 shows a client for the
CheckingAccount class. In line 9, we instantiate an
object of the CheckingAccount class. After
instantiation, the c1 object has two fields (balance
and MONEY), and it has inherited four methods
(getBalance, deposit, withdraw, and toString) from
BankAccount.

We illustrate this by using the c1 object reference to
call the deposit method in line 12 and the withdraw
method in line 15, and to call the toString method
implicitly in lines 13 and 16. Figure 10.4 shows the
output from this program.

Figure 10.4
Output from CheckingAccount- Client, Version 1

New checking account: balance is $0.00

After depositing $350.75: balance is $350.75

After withdrawing $200.25: balance is $150.50

EXAMPLE 10.3
CheckingAccountClient, Version 1
 1 /* CheckingAccount Client, Version 1

 2 Anderson, Franceschi

 3 */

 4

 5 public class CheckingAccountClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 CheckingAccount c1 = new CheckingAccount();

10 System.out.println("New checking account: " +

c1);

11

12 c1.deposit(350.75);

13 System.out.println("\nAfter depositing

$350.75: " + c1);

14

15 c1.withdraw(200.25);

16 System.out.println("\nAfter withdrawing

$200.25: " + c1);

17 }

18 }

10.2.2 Subclass Constructors
Although constructors are public, they are not
inherited by subclasses. However, to initialize the
private instance variables of the superclass, a
subclass constructor can call a superclass
constructor either implicitly or explicitly.

When a class extends another class, the default
constructor of the subclass automatically calls the
default constructor of the superclass. This is called
implicit invocation. Athough we did not code any
constructors in our CheckingAccount class in
Example 10.2, we were able to instantiate a
CheckingAccount object (with a 0.0 balance)
because the Java compiler provided a default
constructor for the CheckingAccount class, which
implicitly called the default constructor of the
BankAccount class.

To explicitly call the constructor of the direct
superclass, the subclass constructor uses the
following syntax:

super(argument list);

Thus, if we want to instantiate a CheckingAccount
object with a starting balance other than 0.0, we
need to provide an overloaded constructor for the
CheckingAccount class. That constructor will take

the starting balance as a parameter and pass that
starting balance to the overloaded constructor in the
BankAccount class.

This call to the direct superclass constructor, if used,
must be the first statement in the subclass
constructor. Otherwise, the following compiler error is
generated:

COMMON ERROR TRAP
In a constructor, the call to the direct superclass
constructor, if used, must be the first statement.

call to super must be first statement in constructor

Example 10.4 shows Version 2 of the BankAccount
class, which, for simplicity and to help us focus on
constructors, has only a default and overloaded
constructor and the toString method. To illustrate the
order in which the constructors execute, we print a
message in each constructor (lines 21 and 33),
indicating that it has been called.

EXAMPLE 10.4 BankAccount
Class, Version 2

 1 /** BankAccount class, Version 2

 2 * Constructors and toString method only

 3 * Anderson, Franceschi

 4 * Represents a generic bank account

 5 */

 6

 7 import java.text.DecimalFormat;

 8

 9 public class BankAccount

10 {

11 public final DecimalFormat MONEY

12 = new DecimalFormat(

"$#,##0.00");

13 private double balance;

14

15 /** default constructor

16 * sets balance to 0.0

17 */

18 public BankAccount()

19 {

20 balance = 0.0;

21 System.out.println("In BankAccount default

constructor");

22 }

23

24 /** overloaded constructor

25 * @param balance beginning balance

26 */

27 public BankAccount(double balance)

28 {

29 if (balance >= 0.0)

30 this.balance = balance;

31 else

32 this.balance = 0.0;

33 System.out.println("In BankAccount

overloaded constructor");

34 }

35

36 /** toString

37 * @return the balance formatted as money

38 */

39 @Override

40 public String toString()

41 {

42 return "balance is " + MONEY.format(balance

);

43 }

44 }

Example 10.5 shows Version 2 of the
CheckingAccount class, which has both a default
constructor and an overloaded constructor. Again,
we have inserted messages (lines 13–14 and 24–25)
to indicate when a constructor is called.

EXAMPLE 10.5 CheckingAccount
Class, Version 2

 1 /* CheckingAccount class, Version 2

 2 Anderson, Franceschi

 3 */

 4

 5 public class CheckingAccount extends BankAccount

 6 {

 7 /** default constructor

 8 * explicitly calls the BankAccount default

constructor

 9 */

10 public CheckingAccount()

11 {

12 super(); // optional, call BankAccount

constructor

13 System.out.println("In CheckingAccount "

14 + "default

constructor");

15 }

16

17 /** overloaded constructor

18 * calls BankAccount overloaded constructor

19 * @param balance starting balance

20 */

21 public CheckingAccount(double balance)

22 {

23 super(balance); // call BankAccount

constructor

24 System.out.println("In CheckingAccount "

25 + "overloaded

constructor");

26 }

27 }

In the CheckingAccount default constructor, we
explicitly call the default constructor of the
BankAccount class (line 12). This statement is
optional; without it, the BankAccount default
constructor is still called implicitly.

COMMON ERROR TRAP
An attempt by a subclass to directly access a private
field or call a private method defined in a superclass
will generate a compiler error. To set initial values for
private variables, call the appropriate constructor of
the direct superclass.

In the CheckingAccount overloaded constructor, we
pass the balance parameter to the BankAccount
constructor (line 23) to initialize the balance instance
variable. Because the balance instance variable has
private access in the BankAccount class, our
CheckingAccount class cannot access the balance
instance variable directly. If we attempted to initialize
the balance directly using the following statement:

this.balance = balance;

the compiler would generate the following error:

balance has private access in BankAccount

We might be tempted to call the deposit method
instead of super to initialize the balance. Although
this would work in this case, we don’t always know
what operations a constructor is performing. Perhaps
the constructor also assigns an account number, in
which case, calling the deposit method would cause
us to skip that step. Thus, it is always a good
practice to call the constructor of the superclass so
that the superclass data will be correctly initialized.

SOFTWARE ENGINEERING TIP
Overloaded constructors in a subclass should
explicitly call the direct superclass constructor to
initialize the fields in its superclasses.

Example 10.6 shows Version 2 of our
CheckingAccount client. On line 10, we instantiate a
CheckingAccount object using the default
constructor and print the balance by implicitly calling
the toString method on line 11. Then on line 14, we
instantiate a second CheckingAccount object with a

starting balance of $100.00. Again we verify the
result by printing the balance (line 15).

EXAMPLE 10.6
CheckingAccountClient, Version 2
 1 /* CheckingAccount Client, Version 2

 2 Anderson, Franceschi

 3 */

 4

 5 public class CheckingAccountClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 // use default constructor

10 CheckingAccount c1 = new CheckingAccount();

11 System.out.println("New checking account: "

+ c1 + "\n");

12

13 // use overloaded constructor

14 CheckingAccount c2 = new CheckingAccount(

100.00);

15 System.out.println("New checking account: "

+ c2);

16 }

17 }

Figure 10.5 shows the output from this program. As
we can see, when we construct the c1 object, the

BankAccount default constructor runs. When it
finishes, the CheckingAccount default constructor
runs. Similarly, when we construct the c2 object, the
BankAccount overloaded constructor runs, then the
CheckingAccount overloaded constructor runs.

Figure 10.5
Output from Example 10.6

In BankAccount default constructor

In CheckingAccount default constructor

New checking account: balance is $0.00

In BankAccount overloaded constructor

In CheckingAccount overloaded constructor

New checking account: balance is $100.00

Table 10.2 summarizes the inheritance rules for
constructors.

TABLE 10.2 Inheritance Rules for
Constructors

Superclass
Members

Inherited
by
Subclass?

Directly
Accessible
by
Subclass?

Directly Accessible by
Client of Subclass
Using a Subclass
Reference?

constructors no yes, using
super(

arg list

)

in a
subclass
constructor

no

10.2.3 Adding Specialization to the
Subclass
At this point, our CheckingAccount class provides no
more functionality than the BankAccount class. But
our purpose for defining a CheckingAccount class
was to provide support for a specialized type of bank
account. To add specialization to our
CheckingAccount subclass, we define new fields and
methods. For example, we can define a monthlyFee
instance variable, as well as an accessor and
mutator method for the monthly fee and a method to
charge the monthly fee to the account.

Example 10.7 shows Version 3 of the
CheckingAccount class with the specialization
added. This version extends the complete
BankAccount class shown in Example 10.1. We
added the monthlyFee instance variable on line 8, as
well as a constant default value for the monthly fee
(line 7). Our default constructor (lines 10–18) still
calls the default constructor of the BankAccount
class to initialize the balance, but it also initializes the
monthlyFee to the default value.

Similarly, the overloaded constructor (lines 20–30)
passes the balance parameter to the overloaded
constructor of the BankAccount class and adds a
monthlyFee parameter to accept an initial value for

the monthlyFee, which it passes to the
setMonthlyFee mutator method (lines 50–60).

The applyMonthlyFee method (lines 32–40), which
charges the monthly fee to the checking account,
calls the withdraw method inherited from the
BankAccount class to access the balance instance
variable, which is declared private in the
BankAccount class.

EXAMPLE 10.7
CheckingAccountClient, Version 3

 1 /* CheckingAccount class, version 3

 2 Anderson, Franceschi

 3 */

 4

 5 public class CheckingAccount extends BankAccount

 6 {

 7 public final double DEFAULT_FEE = 5.00;

 8 private double monthlyFee;

 9

10 /** default constructor

11 * explicitly calls the BankAccount default

constructor

12 * sets monthlyFee to default value

13 */

14 public CheckingAccount()

15 {

16 super(); // optional

17 monthlyFee = DEFAULT_FEE;

18 }

19

20 /** overloaded constructor

21 * calls BankAccount overloaded constructor

22 * @param balance starting balance

23 * @param monthlyFee starting monthly fee

24 */

25 public CheckingAccount(double balance,

26 double monthlyFee)

27 {

28 super(balance); // call BankAccount

constructor

29 setMonthlyFee(monthlyFee);

30 }

31

32 /** applyMonthlyFee method

33 * charges the monthly fee to the account

34 * @return a reference to this object

35 */

36 public CheckingAccount applyMonthlyFee()

37 {

38 withdraw(monthlyFee);

39 return this;

40 }

41

42 /** accessor method for monthlyFee

43 * @return monthlyFee

44 */

45 public double getMonthlyFee()

46 {

47 return monthlyFee;

48 }

49

50 /** mutator method for monthlyFee

51 * @param monthlyFee new value for monthlyFee

52 * @return a reference to this object

53 */

54 public CheckingAccount setMonthlyFee(double

monthlyFee)

55 {

56 if (monthlyFee >= 0.0)

57 this.monthlyFee = monthlyFee;

58

59 return this;

60 }

61 }

Example 10.8 shows Version 3 of our client program,
which instantiates a CheckingAccount object and
charges the monthly fee. The output is shown in
Figure 10.6.

Figure 10.6
Output from CheckingAccount- Client, Version 3

New checking account:

balance is $100.00; monthly fee is $7.50

After charging monthly fee:

balance is $92.50; monthly fee is $7.50

EXAMPLE 10.8
CheckingAccountClient, Version 3

 1 /* CheckingAccount Client, Version 3

 2 Anderson, Franceschi

 3 */

 4

 5 public class CheckingAccountClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 CheckingAccount c3 = new CheckingAccount(

100.00, 7.50);

10 System.out.println("New checking

account:\n"

11 + c3.toString()

12 + "; monthly fee is "

13 + c3.getMonthlyFee()

);

14

15 c3.applyMonthlyFee(); // charge the fee to

the account

16 System.out.println("\nAfter charging

monthly fee:\n"

17 + c3.toString()

18 + "; monthly fee is "

19 + c3.getMonthlyFee()

);

20 }

21 }

10.2.4 Overriding Inherited
Methods
When the methods our subclass inherits do not fulfill
the functions we need, we can override the inherited
methods by providing new versions of those
methods.

To override an inherited method, we provide a new
method with the same header as the inherited
method; that is, the new method must have the same
name, the same number and type of parameters,
and the same return type. Overriding a method
makes the inherited version of the method invisible
to the client of the subclass. We say that the
overridden method is hidden from the client. When
the client calls the method using a subclass object
reference, the subclass version of the method is
invoked.

Methods in a subclass can still access the inherited
version of the method by preceding the method call
with the super object reference as in the following
syntax:

super.methodName(argument list)

In our CheckingAccount class, we inherited the
toString method from the BankAccount class. But
this method returns only the balance. In Example

10.8, we needed to call the CheckingAccount
method getMonthlyFee to print the value of
monthlyFee. Furthermore, as Figure 10.6 shows, the
balance value is formatted and the monthlyFee value
is not. Instead, the toString method in the
CheckingAccount class should return formatted
versions of both the balance and the monthlyFee.
We can accomplish this by overriding the inherited
toString method.

Example 10.9 shows Version 4 of the
CheckingAccount class with the new toString method
(lines 62–71). To format the balance, we call the
toString method of the BankAccount class (line 69),
then add the formatted value of monthlyFee to the
String being returned. Again, we used the @Override
annotation so that the compiler will alert us if we do
not correctly code the header of the method. Notice
that we didn’t need to instantiate a new
DecimalFormat object in order to format the
monthlyFee instance variable. Because the MONEY
object is declared to be public in the BankAccount
class, we inherited the MONEY object, so we can
simply call the format method using the MONEY
object reference. An advantage to making the
MONEY object public is that both the balance and
the monthly fee will be printed using the same
formatting rules. Another advantage is that if we
want to change the formatting for printing the data,

we need to make only one change: We redefine the
value of the MONEY constant in the BankAccount
class.

EXAMPLE 10.9 CheckingAccount
Class, Version 4

 1 /* CheckingAccount class, version 4

 2 Anderson, Franceschi

 3 */

 4

 5 public class CheckingAccount extends BankAccount

 6 {

 7 public final double DEFAULT_FEE = 5.00;

 8 private double monthlyFee;

 9

10 /** default constructor

11 * explicitly calls the BankAccount default

constructor

12 * sets monthlyFee to default value

13 */

14 public CheckingAccount()

15 {

16 super(); // call BankAccount constructor

17 monthlyFee = DEFAULT_FEE;

18 }

19

20 /** overloaded constructor

21 * calls BankAccount overloaded constructor

22 * @param balance starting balance

23 * @param monthlyFee starting monthly fee

24 */

25 public CheckingAccount(double balance,

26 double monthlyFee)

27 {

28 super(balance); // call BankAccount

constructor

29 setMonthlyFee(monthlyFee);

30 }

31

32 /** applyMonthlyFee method

33 * charges the monthly fee to the account

34 * @return a reference to this object

35 */

36 public CheckingAccount applyMonthlyFee()

37 {

38 withdraw(monthlyFee);

39 return this;

40 }

41

42 /** accessor method for monthlyFee

43 * @return monthlyFee

44 */

45 public double getMonthlyFee()

46 {

47 return monthlyFee;

48 }

49

50 /** mutator method for monthlyFee

51 * @param monthlyFee new value for monthlyFee

52 * @return a reference to this object

53 */

54 public CheckingAccount setMonthlyFee(double

monthlyFee)

55 {

56 if (monthlyFee >= 0.0)

57 this.monthlyFee = monthlyFee;

58

59 return this;

60 }

61

62 /* toString method

63 * @return String containing formatted

balance and monthlyFee

64 * invokes superclass toString to format

balance

65 */

66 @Override

67 public String toString()

68 {

69 return super.toString()

70 + "; monthly fee is " +

MONEY.format(monthlyFee);

71 }

72 }

Example 10.10 shows Version 4 of the
CheckingAccountClient class. In this class, we again
instantiate a CheckingAccount object with an initial
balance of $100.00 and a monthly fee of $7.50 (line
9), then implicitly invoke the toString method to print
the data of the object (line 10). This time, we invoke
the toString method of the CheckingAccount class,

which returns both the balance and monthlyFee
values, formatted as money, as shown in Figure
10.7.

COMMON ERROR TRAP
Do not confuse overriding a method with overloading
a method. A subclass overriding a method provides
a new version of that method, which hides the
superclass version. A class overloading a method
adds a version of that method, which varies in the
number and/or type of parameters.

Figure 10.7
Output from Checking- AccountClient, Version 4

New checking account:

balance is $100.00; monthly fee is $7.50

EXAMPLE 10.10
CheckingAccountClient, Version 4
 1 /* CheckingAccount Client, Version 4

 2 Anderson, Franceschi

 3 */

 4

 5 public class CheckingAccountClient

 6 {

 7 public static void main(String [] args)

 8 {

 9 CheckingAccount c4 = new CheckingAccount(

100.00, 7.50);

10 System.out.println("New checking

account:\n" + c4);

11 }

12 }

Table 10.3 summarizes the inheritance rules for
inherited methods that have been overridden.

TABLE 10.3 Inheritance Rules for
Overridden Methods

Superclass
Members

Inherited
by
Subclass?

Directly Accessible by
Subclass?

Directly
Accessible
by Client of
Subclass
Using a
Subclass
Reference?

public or
protected

inherited
methods that
have been
overridden in
the subclass

no yes, using
super.methodName

(arg list)

no

When we override a method, the method signature
must be identical to the inherited method. However,
wherever the overridden method specifies a class as
a parameter or return type, we can substitute a
subclass for that parameter or return type.

This is possible because a subclass object is a
superclass object, so a subclass object reference
can be substituted for any superclass object
reference. If two methods of a class have the same
name but different signatures (that is, if the number,
order, or type of parameters is different), then the
method is overloaded, not overridden.

For example, if we were to write the toString method
in the CheckingAccount class with the following
header that specifies an int parameter:

public String toString(int a)

SOFTWARE ENGINEERING TIP
Methods that override inherited methods should
explicitly call the direct superclass method whenever
appropriate.

then our toString method would have a different
signature from the toString method we inherited from
the BankAccount class, which does not take any
parameters. In this case, we are overloading the
toString method, not overriding it. In other words, we
are providing an additional version of the toString
method. The inherited version is still visible and
available to be called.

Table 10.4 illustrates the differences between
overriding public methods and overloading public
methods.

TABLE 10.4 Overriding vs. Overloading
Methods

Method
Names

Argument
Lists

Return
Types

Directly
Accessible
by Subclass
Client Using
a Subclass
Object
Reference?

Overriding
a public

Method

identical identical identical only the
subclass
version can
be called

Overloading
a public

Method

identical different in
number or
type of
parameters

identical all versions
of the
overloaded
method can
be called

Skill Practice
with these end-of-chapter questions

10.10.1 Multiple Choice Exercises

Questions 1, 2, 4, 8, 9

10.10.3 Fill In the Code

Questions 21, 22, 23, 24

10.10.5 Debugging Area

Questions 32, 34, 35

10.10.6 Write a Short Program

Questions 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46

10.10.8 Technical Writing

Question 56

10.3 The protected Access
Modifier
We have seen that the subclass does not inherit
constructors or private members of the superclass.
However, the superclass constructors are still
available to be called from the subclass and the
private fields of the superclass are implemented as
fields of the subclass.

Although private fields preserve encapsulation, there
is additional processing overhead involved with
calling methods. Whenever a method is called, the
JVM saves the return address and makes copies of
the arguments. Then when a value-returning method
completes, the JVM makes a copy of the return
value available to the caller. The protected access
modifier was designed to avoid this processing
overhead and to facilitate coding by allowing the
subclass to access any protected field without calling
its accessor or mutator method.

Be aware, however, that protected fields and
methods also can be accessed directly by other
classes in the same package, even if the classes are
not within the same inheritance hierarchy.

To classes outside the package, a protected member
of a class has the same restrictions as a private
member. In other words, a class outside the package
in which the protected member is declared may not
call any protected methods and must access any
protected fields through public accessor or mutator
methods.

The protected access modifier has tradeoffs. As we
mentioned, any fields declared as protected can be
accessed directly by subclasses. Doing so, however,
compromises encapsulation because multiple
classes can set the value of a protected instance
variable defined in another class.

Thus, maintaining classes that define or use
protected members becomes more difficult. For
example, we need to verify that any class that has
access to the protected instance variable either does
not set the variable’s value, or if the class does
change the value, that the new value is valid.
Because of this added maintenance complexity, we
recommend that protected access be used only
when high performance is essential.

SOFTWARE ENGINEERING TIP
Unless high performance is a critical requirement,
avoid using the protected access modifier because
doing so compromises encapsulation and
complicates the maintenance of a program. Where
possible, call superclass methods to change the
values of protected instance variables.

We also recommend that subclass methods avoid
directly setting the value of a protected instance
variable. Instead, wherever possible, call superclass
methods when values of protected variables need to
be changed.

To illustrate how protected access can be used in
class hierarchies, let’s look closely at our
CheckingAccount class. We have been calling the
withdraw method inherited from the BankAccount
class to apply the monthly fee. However, the
withdraw method leaves the balance unchanged if
the withdrawal amount is greater than the balance.
Thus, if the account does not have sufficient funds,
the monthly fee is not charged. We would like the
CheckingAccount class to be able to charge the
monthly fee to the account and let the balance
become negative.

To accomplish this, we declare the balance instance
variable to be protected instead of private. This
allows us to directly access balance inside the
applyMonthlyFee method of the CheckingAccount
class, because balance is now inherited by
CheckingAccount.

Example 10.11 shows the BankAccount class,
Version 3. The only change, compared to Version 1
(Example 10.1), is that the balance instance variable
is declared as protected, rather than private (line 11).

EXAMPLE 10.11 BankAccount
Class, Version 3

 1 /** BankAccount class, version 1

 2 * Anderson, Franceschi

 3 * Represents a generic bank account

 4 */

 5 import java.text.DecimalFormat;

 6

 7 public class BankAccount

 8 {

 9 public final DecimalFormat MONEY

10 = new DecimalFormat(

"$#,##0.00");

11 protected double balance;

12

13 /** default constructor

14 * sets balance to 0.0

15 */

16 public BankAccount()

17 {

18 balance = 0.0;

19 }

20

21 /** overloaded constructor

22 * @param balance beginning balance

23 */

24 public BankAccount(double balance)

25 {

26 deposit(balance);

27 }

28

29 /** accessor for balance

30 * @return current account balance

31 */

32 public double getBalance()

33 {

34 return balance;

35 }

36

 37 /** deposit amount to account

38 * @param amount amount to deposit;

39 * amount must be >= 0.0

40 * @return a reference to this object

41 */

42 public BankAccount deposit(double amount)

43 {

44 if (amount >= 0.0)

45 balance += amount;

46

47 return this;

48 }

49

50 /** withdraw amount from account

51 * @param amount amount to withdraw;

52 * amount must be >= 0.0

53 * amount must be <= balance

54 * @return a reference to this object

55 */

56 public BankAccount withdraw(double amount)

57 {

58 if (amount >= 0.0 && amount <= balance)

59 balance -= amount;

60

61 return this;

62 }

63

64 /** toString

65 * @return the balance formatted as money

66 */

67 @Override

68 public String toString()

69 {

70 return "balance is " + MONEY.format(balance

);

71 }

72 }

Example 10.12 shows Version 5 of the
CheckingAccount class, which inherits from the
BankAccount class in Example 10.11 that declares
the balance as protected. The CheckingAccount
class now inherits balance, and our
CheckingAccount methods can access the balance
variable directly. Nevertheless, in the default and
overloaded constructors, we still call the superclass
constructor to set the value of balance (lines 16 and
28). Otherwise, to avoid setting balance to an invalid
initial value, we would need to know the validation

rules for balance in BankAccount and unnecessarily
duplicate that code.

Also, in the toString method (lines 63–72), we call
the toString method of the BankAccount class.
Again, we do this to be consistent with the
superclass functionality, which formats the balance,
and to avoid duplicating code.

In the applyMonthlyFee method (lines 32–41),
however, we access balance directly. For this
checking account, our bank will charge the monthly
fee even if it results in a negative balance for the
account, so we subtract monthlyFee from balance,
which allows the balance to be negative. Notice that
we change the value of balance directly instead of
calling the withdraw method, which does not allow
the balance to become negative.

EXAMPLE 10.12 CheckingAccount
Class, Version 5

 1 /* CheckingAccount class, version 5

 2 Anderson, Franceschi

 3 */

 4

 5 public class CheckingAccount extends BankAccount

 6 {

 7 public final double DEFAULT_FEE = 5.00;

 8 private double monthlyFee;

 9

10 /** default constructor

11 * explicitly calls the BankAccount default

constructor

12 * set monthlyFee to default value

13 */

14 public CheckingAccount()

15 {

16 super(); // call BankAccount constructor

17 monthlyFee = DEFAULT_FEE;

18 }

19

20 /** overloaded constructor

21 * calls BankAccount overloaded constructor

22 * @param balance starting balance

23 * @param monthlyFee starting monthly fee

24 */

25 public CheckingAccount(double balance,

26 double monthlyFee)

27 {

28 super(balance); // call BankAccount

constructor

29 setMonthlyFee(monthlyFee);

30 }

31

32 /** applyMonthlyFee method

33 * charges the monthly fee to the account

34 * @return a reference to this object

35 */

36 public CheckingAccount applyMonthlyFee()

37 {

38 balance -= monthlyFee;

39

40 return this;

41 }

42

43 /** accessor method for monthlyFee

44 * @return monthlyFee

45 */

46 public double getMonthlyFee()

47 {

48 return monthlyFee;

49 }

50

51 /** mutator method for monthlyFee

52 * @param monthlyFee new value for monthlyFee

53 * @return a reference to this object

54 */

55 public CheckingAccount setMonthlyFee(double

monthlyFee)

56 {

57 if (monthlyFee >= 0.0)

58 this.monthlyFee = monthlyFee;

59

60 return this;

61 }

62

63 /* toString method

64 * @return String containing formatted balance

and monthlyFee

65 * invokes superclass toString to format

balance

66 */

67 @Override

68 public String toString()

69 {

70 return super.toString()

71 + "; monthly fee is " + MONEY.format(

monthlyFee);

72 }

73 }

Example 10.13 shows Version 5 of the
CheckingAccountClient class. In this class, we again
instantiate a CheckingAccount object with an initial
balance of $100.00 and a monthly fee of $7.50 (line
9). We then call withdraw (line 12), so that the
resulting balance is less than the monthly fee. Next

we call the applyMonthlyFee method (line 16). We
then check whether the balance is negative (line 17).
If so, we output a warning message that the account
is overdrawn (line 18). In any case, we output the
new balance (line 19). The output of Example 10.13
is shown in Figure 10.8.

Figure 10.8
Output from Checking- AccountClient, Version 5

New checking account:

balance is $100.00; monthly fee is $7.50

After withdrawing $95:

balance is $5.00; monthly fee is $7.50

Applying the monthly fee:

Warning: account is overdrawn!

balance is −$2.50; monthly fee is $7.50

EXAMPLE 10.13
CheckingAccountClient Class,
Version 5

1 /* CheckingAccount Client, Version 5

2 Anderson, Franceschi

3 */

4

5 public class CheckingAccountClient

6 {

7 public static void main(String [] args)

8 {

9 CheckingAccount c5 = new CheckingAccount(

100.00, 7.50);

10 System.out.println("New checking account:\n"

+ c5);

11

12 c5.withdraw(95);

13 System.out.println("\nAfter withdrawing

$95:\n" + c5);

14

15 System.out.println("\nApplying the monthly

fee:");

16 c5.applyMonthlyFee();

17 if (c5.getBalance() < 0.0)

18 System.out.println("Warning: account is

overdrawn!");

19 System.out.println(c5);

20 }

21}

Table 10.5 compiles all the inheritance rules we have
discussed.

TABLE 10.5 Inheritance Rules

Superclass
Members

Inherited
by
Subclass?

Directly Accessible by
Subclass?

Directly
Accessible
by Client
of
Subclass?

public fields yes yes, by using field
name

yes

public

methods
yes yes, by calling method

from other subclass
methods

yes, by
calling
method
using a
subclass
object
reference

protected

fields
yes yes, by using field

name
no, must
use
accessors
and
mutators

protected

methods
yes yes, by calling method

from subclass
methods

no

private fields no no, must use
accessors and
mutators

no, must
use
accessors
and
mutators

private

methods
no no no

constructors no yes, using
super(arg list

)

in a subclass
constructor

no

Superclass
Members

Inherited
by
Subclass?

Directly Accessible by
Subclass?

Directly
Accessible
by Client
of
Subclass?

public or
protected

inherited
methods that
have been
overridden in
the subclass

no yes, using
super.methodName

(arg list)

no

Skill Practice
with these end-of-chapter questions

10.10.2 Reading and Understanding Code

Questions 12, 13, 14, 15, 16, 17, 18, 19,
20

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie with a step-by-step illustration of the
use of inheritance in a program. Click on the
link to start the movie.

10.4 Programming Activity 1: Using
Inheritance
For this Programming Activity, you will create the
SavingsAccount class, which inherits directly from the
BankAccount class. The SavingsAccount class is similar to
the CheckingAccount class in that both classes inherit from
BankAccount. Figure 10.9 shows the resulting hierarchy.

Figure 10.9
Bank Account Hierarchy

The SavingsAccount class inherits from the version of the
BankAccount class in which the balance is declared to be
private. The SavingsAccount subclass adds an annual
interestRate instance variable, as well as supporting methods
to access, change, and apply the interest rate to the account
balance.

Instructions
Copy the source files in the Programming Activity 1 folder for
this chapter to a folder on your computer. Load the
SavingsAccount.java source file and search for five asterisks
in a row (*****). This will position you to the six locations in the
file where you will add code to complete the SavingsAccount
class. The SavingsAccount.java file is shown in Example
10.14.

EXAMPLE 10.14 SavingsAccount.java

 1 /* SavingsAccount class

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.text.DecimalFormat;

 6

 7 // 1. ***** indicate that SavingsAccount inherits

 8 // from BankAccount

 9 public class SavingsAccount

10 {

11 public final double DEFAULT_RATE = .03;

12 // 2. ****** define the private interestRate instance

variable

13 // interestRate, a double, represents an annual rate

14

15

16 // 3 ***** write the default constructor

17 /** default constructor

18 * explicitly calls the BankAccount default

constructor

19 * set interestRate to default value DEFAULT_RATE

20 * print a message to System.out indicating that the

21 * constructor is called

22 */

23

24

25 // 4 ***** write the overloaded constructor

26 /** overloaded constructor

27 * explicitly calls BankAccount overloaded constructor

28 * call setInterestRate method, passing interestRate

29 * print a message to System.out indicating that

30 * constructor is called

31 * @param balance starting balance

32 * @param interestRate starting interest rate

33 */

34

35

36 // 5 ****** write this method:

37 /** applyInterest method, no parameters.

38 * call the deposit method, passing a month's worth of

interest

39 * remember that the interestRate instance variable is

annual rate

40 *

41 * @return a reference to this object

42 */

43

44

45 /** accessor method for interestRate

46 * @return interestRate

47 */

48 public double getInterestRate()

49 {

50 return interestRate;

51 } 52

53 /** mutator method for interestRate

54 * @param interestRate new value for interestRate

55 * interestRate must be >= 0.0

56 * if not, do not change the value

57 * stores interestRate as input value / 100

58 * that is, 3.5 is stored as .035

59 * @return a reference to this object

60 */

61 public SavingsAccount setInterestRate(double

interestRate)

62 {

63 if (interestRate >= 0.0)

64 this.interestRate = interestRate / 100;

65

66 return this;

67 }

68

69 // 6 ***** write this method

70 /* toString method

71 * @return a String containing formatted balance and

interestRate

72 * invokes superclass toString to format balance

73 * formats interestRate as percent using a

DecimalFormat object

74 * To create a DecimalFormat object for formatting

percentages

75 * use this pattern in the constructor: "0.00%"

76 */

77

78 }

When you have completed the six tasks, load, compile, and
run the Teller application (Teller.java), which you will use to
test your SavingsAccount class. When the Teller application
begins, you will be prompted with a dialog box for a starting
balance. If you press “Enter” or the “OK” button without
entering a balance, the Teller application will use the default
constructor to instantiate a SavingsAccount object. If you
enter a starting balance, the Teller application will prompt you
for an interest rate and will instantiate a SavingsAccount

object using the overloaded constructor. Once the
SavingsAccount object has been instantiated, the Teller
application will open the window shown in Figure 10.10, which
provides buttons for calling the SavingsAccount methods to
test your code.

Figure 10.10
The Teller Window

Below the buttons is a ledger that displays the current state of
the savings account. As you click on the various buttons, the
ledger will display the operation performed and the values of

the balance and the interest rate when that operation is
complete.

The operations performed by each button are already coded
for you and are the following:

Change interest rate—prompts for a new interest rate
and calls your setInterestRate method

Apply interest—calls your applyInterest method

Deposit—prompts for the deposit amount and calls
the deposit method inherited from BankAccount

Withdraw—prompts for the withdrawal amount and
calls the withdraw method inherited from
BankAccount

Display account information—calls your toString
method and displays the result in a dialog box

Exit—exits the program

Figure 10.11 shows the Teller window after several operations
have been performed.

DISCUSSION QUESTIONS
1. Explain why the Teller application can call the withdraw and deposit

methods using a SavingsAccount object reference, even though
you did not define these methods in the SavingsAccount class.

2. Explain why your applyInterest method in the SavingsAccount
class needs to call the deposit method of the BankAccount class.

Figure 10.11
Sample Teller Window After Performing Several Operations

10.5 Abstract Classes and Methods
In our Bank Account hierarchy, we could instantiate
BankAccount objects, CheckingAccount objects, and
SavingsAccount objects. In some situations, however, we will
design a class hierarchy where one or more classes at the top
of the hierarchy are not intended to be instantiated. Rather,
they typically specify patterns for methods that subclasses in
the hierarchy must implement. Often, the superclasses do not
implement these methods. In these situations, we do not
intend that these superclasses will be used to instantiate
objects, and we define the superclasses as abstract.

An abstract class is a class that is intended to be extended,
rather than instantiated. Usually, an abstract class contains at
least one abstract method, that is, a method that specifies
an API that subclasses should implement, but does not
provide an implementation for the method.

An abstract class cannot be used to instantiate objects. An
abstract class can be extended, however, so that its
subclasses can complete the implementation of the abstract
methods and the subclasses can be instantiated.

A class is declared to be abstract by including the abstract
keyword in the class header, as shown in the following syntax:

accessModifier abstract class ClassName

An abstract method is defined by including the abstract
keyword in the method header and by using a semicolon to

indicate that there is no code for the method, as shown in the
following syntax:

accessModifier abstract returnType methodName(argument list

);

Note that we do not include opening and closing curly braces
for the method body—just a semicolon to indicate that the
abstract method does not have a body.

Java imposes a few restrictions on abstract methods:
constructors cannot be defined as abstract; and an abstract
method cannot be declared as private or static.

For example, to draw figures, we can set up the hierarchy
shown in Figure 10.12. The root superclass under Object is
the abstract Figure class, and we derive two concrete (non-
abstract) subclasses: Circle and Square. In the UML diagram,
the name of the Figure class is set in italics to indicate that it
is an abstract class.

Figure 10.12
The Figure Hierarchy

All figures will have an (x, y) coordinate and a color, so the
Figure class defines three fields: two ints, x and y, and a Color
object named color.

We want all classes in the hierarchy to provide a draw method
to render the figure; however, the Figure class has nothing but
a point to draw, so its draw method has nothing to do. Thus,
we do not provide an implementation of the draw method in
the Figure class; instead, we define the draw method as an
abstract method. Like the abstract class name, we indicate
that the draw method is abstract by setting it in italics in the
UML.

Let’s look at the code for the Figure hierarchy in detail.
Example 10.15 shows the abstract Figure class. We define
the class as abstract in the class header (line 7). The
constructors (lines 13–22 and lines 24–34) initialize the x and
y values and instantiate the Color object that all figures will
have in common. The Figure class also provides accessor
and mutator methods for its instance variables. The abstract
draw method (lines 94–97) provides the API for the draw
method, but no implementation—just a semicolon. The Circle
and Square subclasses of the Figure class will provide
appropriate implementations of the draw method.

EXAMPLE 10.15 The abstract Figure
Class

 1 /** abstract Figure superclass for drawing shapes

 2 * Anderson, Franceschi

 3 */

 4 import javafx.scene.canvas.GraphicsContext;

 5 import javafx.scene.paint.Color;

 6

 7 public abstract class Figure

 8 {

 9 private int x;

10 private int y;

11 private Color color;

12

13 /** default constructor

14 * sets x and y to 0

15 * sets color to black

16 */

17 public Figure()

18 {

19 x = 0;

20 y = 0;

21 color = Color.BLACK;

22 }

23

24 /** overloaded constructor

25 * @param x starting x coordinate for figure

26 * @param y starting y coordinate for figure

27 * @param color figure color

28 */

29 public Figure(int x, int y, Color color)

30 {

31 this.x = x;

32 this.y = y;

33 this.color = color;

34 }

35

36 /** accessor method for color

37 * @return current figure color

38 */

39 public Color getColor()

40 {

41

42 return color;

43 }

44

45 /** mutator method for color

46 * @param color new color for figure

47 * @return a reference to this object

48 */

49 public Figure setColor(Color color)

50 {

51 this.color = color;

52

53 return this;

54 }

55

56 /** accessor method for x

57 * @return current x value

58 */

59 public int getX()

60 {

61 return x;

62 }

63

64 /** mutator method for x

65 * @param x new value for x

66 * @return a reference to this object

67 */

68 public Figure setX(int x)

69 {

70 this.x = x;

71

72 return this;

73 }

74

75 /** accessor method for y

76 * @return current y value

77 */

78 public int getY()

79 {

80 return y;

81 }

82

83 /** mutator method for y

84 * @param y new y value

85 * @return a reference to this object

86 */

87 public Figure setY(int y)

88 {

89 this.y = y;

90

91 return this;

92 }

93

94 /** abstract draw method

95 * @param gc GraphicsContext for drawing figure

96 */

97 public abstract void draw(GraphicsContext gc);

98 }

COMMON ERROR TRAP
Do not include opening and closing curly braces in the
definition of an abstract method. Including them would mean
that the method is implemented, but does nothing. Instead,
indicate an unimplemented method by using only a
semicolon.

When a subclass inherits from an abstract class, it can
provide implementations for any, all, or none of the abstract
methods. If the subclass does not completely implement all
the abstract methods of the superclass, then the subclass
must also be declared abstract. If, however, the subclass
implements all the abstract methods in the superclass, and
the subclass is not declared abstract, then the class is not
abstract and we can instantiate objects of that subclass.

COMMON ERROR TRAP
Attempting to instantiate an object of an abstract class will
generate the following compiler error: className is
abstract; cannot be instantiated where
className is the name of the abstract class.

Example 10.16 shows the Circle class, which inherits from the
Figure class and adds a radius instance variable, as well as a
constant for the minimum radius. In the overloaded
constructor, we pass the x, y, and color parameters to the
constructor of the Figure class (line 35). On lines 61–71, the

Circle class implements the draw method. We get the (x, y)
coordinate and the color for the circle by calling the accessor
methods of the Figure class because the x, y, and color
instance variables are declared private.

EXAMPLE 10.16 The Circle Class

 1 /* Circle class

 2 * inherits from abstract Figure class

 3 * Anderson, Franceschi

 4 */

 5

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.scene.paint.Color;

 8

 9 public class Circle extends Figure

10 {

11 private final int MIN_RADIUS = 15;

12 private int radius;

13

14 /** default constructor

15 * calls default constructor of Figure class

16 * sets radius to minimum value

17 */

18 public Circle()

19 {

20 super();

21 radius = MIN_RADIUS;

22 }

23

24 /** overloaded constructor

25 * sends x, y, color parameters to Figure constructor

26 * sends radius to setRadius method

27 * @param x starting x coordinate

28 * @param y starting y coordinate

29 * @param color color for circle

30 * @param radius radius of circle

31 */

32 public Circle(int x, int y, Color color,

33 int radius)

34 {

35 super(x, y, color);

36 setRadius(radius);

37 }

38

39 /** mutator method for radius

40 * @param radius new value for radius

41 * @return a reference to this object

42 */

43 public Circle setRadius(int radius)

44 {

45 if (radius > MIN_RADIUS)

46 this.radius = radius;

47 else

48 this.radius = MIN_RADIUS;

49

50 return this;

51 }

52

53 /** accessor method for radius

54 * @return radius

55 */

56 public int getRadius()

57 {

58 return radius;

59 }

60

61 /** draw method

62 * sets color and draws a circle

63 * @param gc GraphicsContext for drawing the circle

64 */

65 @Override

66 public void draw(GraphicsContext gc)

67 {

68 gc.setFill(getColor());

69 gc.fillOval (getX(), getY(),

70 radius * 2, radius * 2);

71 }

72 }

Similarly, Example 10.17 shows the Square class, which also
inherits from the Figure class. The Square class adds a length
instance variable, as well as a constant for the minimum
length, and uses code similar to the Circle class to call the
constructors of the Figure class (lines 20 and 35) and to
implement its own version of the draw method (lines 61–71).

EXAMPLE 10.17 The Square Class

 1 /* Square class

 2 * inherits from abstract Figure class

 3 * Anderson, Franceschi

 4 */

 5

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.scene.paint.Color;

 8

 9 public class Square extends Figure

10 {

11 private final int MIN_LENGTH = 10;

12 private int length;

13

14 /** default constructor

15 * calls default constructor of Figure class

16 * sets length to minimum value

17 */

18 public Square()

19 {

20 super();

21 length = MIN_LENGTH;

22 }

23

24 /** overloaded constructor

25 * sends x, y, and color parameters to Figure

constructor

26 * sends length to setLength method

27 * @param x starting x coordinate

28 * @param y starting y coordinate

29 * @param color color for square

30 * @param length length of square

31 */

32 public Square(int x, int y, Color color,

33 int length)

34 {

35 super(x, y, color);

36 setLength(length);

37 }

38

39 /** mutator method for length

40 * @param length new value for length

41 * @return a reference to this object

42 */

43 public Square setLength(int length)

44 {

45 if (length > MIN_LENGTH)

46 this.length = length;

47 else

48 this.length = MIN_LENGTH;

49

50 return this;

51 }

52

53 /** accessor method for length

54 * @return length

55 */

56 public int getLength()

57 {

58 return length;

59 }

60

61 /** draw method

62 * sets color and draws a square

63 * @param gc GraphicsContext for drawing the square

64 */

65 @Override

66 public void draw(GraphicsContext gc)

67 {

68 gc.setFill(getColor());

69 gc.fillRect(getX(), getY(),

70 length, length);

71 }

72 }

Because we want to instantiate Circle and Square objects, we
do not declare these classes abstract and they are forced to
implement the draw method. Example 10.18 shows a
graphical application, TrafficLight, which paints a traffic light,
shown in Figure 10.13. On lines 13 and 14, we declare two
ArrayLists, one to hold Circle objects and one to hold Square
objects. In the start method, we instantiate both ArrayLists
and add three Square objects to squaresList and three Circle
objects to circlesList (lines 26–40). Then, we create the traffic
light by calling the draw methods for all the Squares in the
squaresList (lines 42–43), then calling the draw method for all
the Circles in the circlesList (lines 45–46).

Figure 10.13
The TrafficLight Application

EXAMPLE 10.18 The TrafficLight
Application

 1 /* Figure Hierarchy Client

 2 * Anderson, Franceschi

 3 */

 4 import javafx.application.Application;

 5 import javafx.scene.canvas.GraphicsContext;

 6 import javafx.scene.paint.Color;

 7 import javafx.stage.Stage;

 8

 9 import java.util.ArrayList;

10

11 public class TrafficLight extends Application

12 {

13 private ArrayList<Square> squaresList;

14 private ArrayList<Circle> circlesList;

15

16 @Override

17 public void start(Stage stage)

18 {

19 GraphicsContext gc = JIGraphicsUtility.setUpGraphics(

20 stage, "Traffic Light", 700,

400);

21

22 final int SQUARE_SIZE = 80, CIRCLE_RADIUS = 20;

23 final int SQUARE_X = 300, CIRCLE_X = SQUARE_X + 20;

24 final int SQUARE_Y = 100, CIRCLE_Y = SQUARE_Y + 20;

25

26 squaresList = new ArrayList<Square>();

27 squaresList.add(new Square(SQUARE_X, SQUARE_Y,

28 Color.BLACK, SQUARE_SIZE

));

29 squaresList.add(new Square(SQUARE_X, SQUARE_Y +

SQUARE_SIZE,

30 Color.BLACK, SQUARE_SIZE

));

31 squaresList.add(new Square(SQUARE_X, SQUARE_Y + (

SQUARE_SIZE * 2),

32 Color.BLACK, SQUARE_SIZE

));

33

34 circlesList = new ArrayList<Circle>();

35 circlesList.add(new Circle(CIRCLE_X, CIRCLE_Y,

36 Color.RED, CIRCLE_RADIUS

));

37 circlesList.add(new Circle(CIRCLE_X, CIRCLE_Y +

SQUARE_SIZE,

38 Color.YELLOW,

CIRCLE_RADIUS));

39 circlesList.add(new Circle(CIRCLE_X, CIRCLE_Y + (

SQUARE_SIZE * 2),

40 Color.GREEN,

CIRCLE_RADIUS));

41

42 for (Square s : squaresList)

43 s.draw(gc);

44

45 for (Circle c : circlesList)

46 c.draw(gc);

47 }

48

49 public static void main(String [] args)

50 {

51 launch(args); 52 }

53 }

Java’s restrictions on declaring and using abstract classes
and methods are summarized in Table 10.6.

TABLE 10.6 Restrictions for abstract Classes and
abstract Methods Within Classes

abstract classes Classes must be declared abstract if the class
contains any abstract methods.
abstract classes can be extended.
abstract classes cannot be used to instantiate
objects.

abstract methods
within classes

abstract methods cannot be declared within a
non-abstract class.
An abstract method must consist of a method
header followed by a semicolon.
abstract methods cannot be declared as
private or static.
A constructor cannot be declared abstract.

10.6 Polymorphism
An important concept in inheritance is that an object
of a class is also an object of any of its superclasses.
That concept, “is a”, is the basis for an important
OOP feature, called polymorphism, which simplifies
the processing of various objects in the same class
hierarchy. The word polymorphism, which is derived
from the word fragment poly and the word morpho in
the Greek language, literally means “multiple forms.”

Polymorphism allows us to use the same method call
for any object in the hierarchy. We make the method
call using an object reference of the superclass. At
run time, the JVM determines to which class in the
hierarchy the object actually belongs and calls the
version of the method implemented for that class.

To use polymorphism in our application, the following
conditions must be true:

The classes are in the same hierarchy.

The subclasses override the same method.

A subclass object reference is assigned to a
superclass object reference (that is, a
subclass object is referenced by a
superclass reference).

The superclass object reference is used to
call the method.

For example, we can take advantage of
polymorphism in our traffic light graphical application
by calling the draw method for either a Circle or
Square object using a Figure object reference.
Although we cannot instantiate an object from an
abstract class, Java allows us to define object
references of an abstract class.

Example 10.19 shows the rewritten traffic light
graphical application. Instead of using separate
ArrayLists for Circle and Square objects, we can
declare and instantiate only one ArrayList of Figure
references (lines 13 and 25). As each Circle and
Square object is instantiated, we add its object
reference to the ArrayList of Figure references (lines
27–39).

This greatly simplifies drawing the traffic light
because we step through just one ArrayList,
figuresList, calling the draw method for each element
(lines 41-42). For the method call, it doesn’t matter
whether the object reference in figuresList is a Circle
or Square reference. We just call the draw method
using that reference. At run time, the JVM
determines whether the object is a Circle or a

Square and calls the appropriate draw method for
the object type. Because the ArrayList is composed
of Figure references, any element can be either a
Circle or a Square—because a Circle and a Square
are both Figures. The output of this application is
identical to that of Example 10.18, as shown in
Figure 10.13.

EXAMPLE 10.19 Traffic Light
Application Using Polymorphism

 1 /* Figure hierarchy Client

 2 * Anderson, Franceschi

 3 */

 4 import javafx.application.Application;

 5 import javafx.scene.canvas.GraphicsContext;

 6 import javafx.scene.paint.Color;

 7 import javafx.stage.Stage;

 8

 9 import java.util.ArrayList;

10

11 public class TrafficLightPolymorphism extends

Application

12 {

13 private ArrayList<Figure> figuresList;

14

15 @Override

16 public void start(Stage stage)

17 {

18 GraphicsContext gc =

JIGraphicsUtility.setUpGraphics(

19 stage, "Traffic Light",

700, 400);

20

21 final int SQUARE_SIZE = 80, CIRCLE_RADIUS =

20;

22 final int SQUARE_X = 300, CIRCLE_X =

SQUARE_X + 20;

23 final int SQUARE_Y = 100, CIRCLE_Y =

SQUARE_Y + 20;

24

25 figuresList = new ArrayList<Figure>();

26

27 figuresList.add(new Square(SQUARE_X,

SQUARE_Y,

28 Color.BLACK,

SQUARE_SIZE));

29 figuresList.add(new Square(SQUARE_X,

SQUARE_Y + SQUARE_SIZE,

30 Color.BLACK,

SQUARE_SIZE));

31 figuresList.add(new Square(SQUARE_X,

SQUARE_Y + (SQUARE_SIZE * 2),

32 Color.BLACK,

SQUARE_SIZE));

33

34 figuresList.add(new Circle(CIRCLE_X,

CIRCLE_Y,

35 Color.RED,

CIRCLE_RADIUS));

36 figuresList.add(new Circle(CIRCLE_X,

CIRCLE_Y + SQUARE_SIZE,

37 Color.YELLOW,

CIRCLE_RADIUS));

38 figuresList.add(new Circle(CIRCLE_X,

CIRCLE_Y + (SQUARE_SIZE * 2),

39 Color.GREEN,

CIRCLE_RADIUS));

40

41 for (Figure f : figuresList)

42 f.draw(gc);

43

44 }

45

46 public static void main(String [] args)

47 {

48 launch(args);

49 }

50 }

Skill Practice
with these end-of-chapter questions

10.10.1 Multiple Choice Exercises

Questions 7,10,11

10.10.4 Identifying Errors in Code

Question 31

10.10.5 Debugging Area

Questions 33, 34, 35

10.7 Programming Activity 2: Using
Polymorphism
In this Programming Activity, you will complete the
implementation of the Tortoise and the Hare race. The
Tortoise runs a slow and steady race, while the Hare runs in
spurts with rests in between. Figure 10.14 shows a sample
run of the race. In this figure, we show only one tortoise and
one hare; however, using polymorphism we can easily run the
race with any number and combination of tortoises and hares.

Figure 10.14
A Sample Run of the Tortoise and the Hare Race

The class hierarchy for this Programming Activity is shown in
Figure 10.15.

Figure 10.15
Racer Hierarchy

The code for the Racer class, which is the superclass of the
Tortoise and Hare classes, is shown in Example 10.20. The
Racer class has three instance variables (lines 10–12): a
String ID, which identifies the type of racer; and x and y
positions, both of which are ints. The class has the usual
constructors, as well as accessor and mutator methods for the
x and y positions and ID. These instance variables and
methods are common to all racers, so we define them in the
Racer class. Individual racers, however, will differ in the way
they move and in the way they are drawn. Thus, in line 8, we
declare the Racer class to be abstract, and in lines 78–85, we

define two abstract methods, move and draw. Classes that
inherit from the Racer class will need to provide
implementations of these two methods (or be declared
abstract as well).

EXAMPLE 10.20 The abstract Racer
Class

 1 /** Racer class

 2 * Abstract class intended for racer hierarchy

 3 * Anderson, Franceschi

 4 */

 5

 6 import javafx.scene.canvas.GraphicsContext;

 7

 8 public abstract class Racer

 9 {

10 private String ID; // racer ID

11 private int x; // x position

12 private int y; // y position

13

14 /** default constructor

15 * Sets ID to blank

16 */

17 public Racer()

18 {

19 ID = "";

20 }

21

22 /** constructor

23 * @param ID racer ID

24 * @param x x position

25 * @param y y position

26 */

27 public Racer(String ID, int x, int y)

28 {

29 this.ID = ID;

30 this.x = x;

31 this.y = y;

32 }

33

34 /** accessor for ID

35 * @return ID

36 */

37 public String getID()

38 {

39 return ID;

40 }

41

42 /** accessor for x

43 * @return current x value

44 */

45 public int getX()

46 {

47 return x;

48 }

49

50 /** accessor for y

51 * @return current y value

52 */

53 public int getY()

54 {

55 return y;

56 }

57

58 /** mutator for x

59 * @param x new value for x

60 * @return a reference to this object

61 */

62 public Racer setX(int x)

63 {

64 this.x = x;

65 return this;

66 }

67

68 /** mutator for y

69 * @param y new value for y

70 * @return a reference to this object

71 */

72 public Racer setY(int y)

73 {

74 this.y = y;

75 return this;

76 }

77

78 /** abstract method for Racer's move

79 */

80 public abstract void move();

81

82 /** abstract method for drawing Racer

83 * @param gc GraphicsContext

84 */

85 public abstract void draw(GraphicsContext gc);

86 }

The Tortoise and Hare classes inherit from the Racer class.
Their only job is to pass constructor arguments to the Racer
class and implement the draw and move methods. For this
Programming Activity, we have provided the Tortoise and
Hare classes with the draw and move methods already
written.

Your job is to add Tortoise and Hare objects to an ArrayList of
Racer objects, as specified by the user. Then you will add
code to run the race by stepping through the ArrayList, calling
move and draw for each Racer object.

Instructions
Copy the source files in the Programming Activity folder for
this chapter to a folder on your computer. Open the
PolymorphismController.java file.

1. Write the code to determine which racers will run the race. Search for five

asterisks in a row (*****). This will position you inside the prepareToRace

method.

/** prepareToRace method

* @param input racer type entered by the user

* racer types are 't' or 'T' for

Tortoise,

* 'h' or 'H' for Hare

*/

private void prepareToRace(char input)

{

 final int START_LINE = 60;

// x position of start of race

 final int RACER_SPACE = 50;

// spacing between racers

 /** 1. ***** Student writes this switch statement

 * input parameter contains the racer type

 * entered by the user

 * If input is 'T' or 't',

 * add a Tortoise object to the ArrayList named

racerList,

 * which is an instance variable of this

class

 * The API of the Tortoise constructor is:

 * Tortoise(String ID, int x, int y)

 * a sample call to the constructor is

 * new Tortoise("Tortoise", START_LINE, yPos

)

 * where START_LINE is a constant local

variable

 * representing the starting x position for

the race

 * and yPos is an instance variable

representing

 * the racer's y position

 *

 * If input is 'H' or 'h',

 * add a Hare object to the ArrayList named

racerList

 * The API of the Hare constructor is:

 * Hare(String ID, int x, int y)

 * a sample call to the constructor is

 * new Hare("Hare", START_LINE, yPos)

 * where START_LINE is a constant local

variable

 * representing the starting x position for

the race

 * and yPos is an instance variable

representing

 * the racer's y position

 *

 * After adding a racer to the ArrayList racerList,

 * increment yPos by the value of

 * the constant local variable RACER_SPACE

 *

 * if input is anything other than 'T', 't',

 * 'H' or 'h', do nothing

 */

 // write your switch statement here

 /** end of student code, part 1 */

} // end prepareToRace

2. Next, write the code to display the racers at the starting position. Again,

search for five asterisks (*****). This will position you inside the getReady

method, which is called whenever a new Racer is added. The method draws

the finish line and displays the racers at the starting position. The code to

display the finish line is already written. For this task, you will write code to

loop through the ArrayList of Racers, calling the draw method for each racer.

The portion of the getReady method where you will add your code is shown

below.

/** getReady method

 * @param gc GraphicsContext context

 * draws the finish line and draws the racers

 */

 protected void getReady(GraphicsContext gc)

 {

 // draw the finish line

 finishX = (int) canvas.getWidth() - 20;

 gc.setStroke(Color.BLUE);

 gc.strokeLine(finishX, 0, finishX, canvas.getHeight(

));

 // display racers before race begins

 /* 2. ***** student writes this code

 * loop through instance variable ArrayList racerList,

 * which contains Racer object references,

 * calling draw for each element. (Do not call

move!)

 * The API for draw is:

 * void draw(GraphicsContext gc)

 * where gc is the graphics context

 * passed to this getReady method

 */

 // student code goes here

 /** end of student code, part 2 */

} // end getReady

3. Finally, write the code to run the race. Again, search for five asterisks (*****);

this will position you inside the runRace method, which is called when the

user presses the “Start Race” button. Task 3 is similar to task 2 in that you

will loop through the ArrayList of Racers. In this task, however, you will call

both the move and draw methods. The portion of the runRace method where

you will add your code is shown below.

/** runRace method

 * @param gc GraphicsContext context

 * moves and draws racers

 */

 public void runRace(GraphicsContext gc)

 {

 gc.setStroke(Color.BLUE);

 gc.strokeLine(finishX, 0, finishX,

canvas.getHeight());

 /* 3. ***** student writes this code

 * loop through instance variable ArrayList

racerList,

 * which contains Racer object references,

 * calling move, then draw for each element

 * The API for move is:

 * void move()

 * The API for draw is:

 * void draw(GraphicsContext gc)

 * where gc is the GraphicsContext object

 * passed to this runRace method

 */

 // student code goes here

 /** end of student code, part 3 */

} // end runRace

When you have finished writing the code, compile the source
code and run the PolymorphismApplication file. Try several
runs of the race with a different number of racers and with a

different combination of Tortoises and Hares. Figure 10.16
shows the race with four Tortoises and three Hares.

Figure 10.16
Another Run of the Race

DISCUSSION QUESTIONS
1. Explain how polymorphism simplifies this application.
2. If you wanted to add another racer, for example, an aardvark,

explain what code you would need to write and what existing code,
if any, you would need to change.

10.8 Interfaces
In Java, a class can inherit directly from only one class; that
is, a class can extend only one class. To allow a class to
inherit behavior from multiple sources, Java provides the
interface. Interfaces are often used to provide a specification
for performing common tasks. They can also be used to
promote code reusability.

An interface typically specifies behavior that a class will
implement.

Interface members can be any of the following:

constants

methods

classes

other interfaces

To define an interface, we use the following syntax:

accessModifier interface InterfaceName

{

 // body of interface

}

Like classes, the Java convention is to name interfaces
starting with a capital letter and capitalizing internal words.

SOFTWARE ENGINEERING TIP
When naming interfaces, start with a capital letter and
capitalize any internal words.

All interfaces are abstract; thus, they cannot be instantiated.
The abstract keyword, however, is usually omitted from the
interface definition. If the interface’s access modifier is public,
its members are implicitly public as well.

Any field defined in a public interface is implicitly public, static,
and final. These keywords can be specified, but typically we
omit them because they are implicit. When we define a
constant in the interface, we must also assign a value to that
field. Note that because all fields are static, interfaces cannot
have instance variables.

We can define various types of methods in interfaces:

public abstract methods
public default methods
public or private static methods
private methods

To define an abstract method, we provide only the method
header followed by a semicolon. We do not provide a body for
the method.

For the other method types, we do provide a method body;
that is, default, static, and private methods are not abstract.

Private methods, introduced in Java version 9, allow us to
define methods that provide a service to another method in

the interface. For example, several methods in the interface
may contain common code. By putting that common code into
a private method, we can eliminate duplication of code. Each
method can simply call the private method to access the
needed functionality.

To inherit from an interface, our class declares that it
implements the interface, using the following syntax:

accessModifier class ClassName extends SuperclassName

 implements Interface1,

Interface2, ...

The extends clause is optional if our class inherits only from
the Object class. A class can implement 0, 1, or more
interfaces. If our class implements more than one interface,
the interfaces are specified in a comma-separated list of
interface names.

When our class implements an interface, we inherit any
default and public static methods, but we must provide
method bodies for all the abstract methods.

Default methods, introduced in Java version 8, are public
methods with a method body that all classes implementing the
interface inherit. Default methods solve a problem: how can
we add a new method to an existing interface? For example,
assume we have defined an interface that specifies three
abstract methods. Any class that implements our interface
must provide method bodies for those three methods. Then
suppose we want to add new functionality to the interface that
would require adding a fourth method. If we add that fourth

method as abstract, any existing class that implements the
interface will no longer compile. We don’t want to break
existing code!

So we have two options. The first option is to define a new
interface that extends our original interface, that is, the new
interface would inherit the original three abstract methods,
and we would add the fourth method to the new interface as
an abstract method. If existing classes want to take
advantage of the new functionality, those classes would need
to change their code to implement the new interface and thus
add a body for the fourth method. The second simpler option
is to add the fourth method to the original interface as a
default method that provides some basic functionality. In this
way, classes that already implement the original interface
would automatically inherit the new functionality without
needing to change their code. In addition, a class that
implements an interface can optionally override any default
methods. Thus, if the basic functionality is not appropriate, the
implementing class can provide their own custom version of
the method by overriding the default method.

Let’s consider the general problem of parsing a string of
characters. We could have two applications: determining
whether a password contains required characters, and
converting a String containing hexadecimal digits to a decimal
number. In each application, we need to parse (analyze) a
String character by character. In the second application, we
also need to validate the String.

Figure 10.17 shows the interfaces and classes used in these
two applications. In this figure, we introduce the <<interface>>

notation and a new UML symbol, the dotted line, which
indicates a class that implements an interface.

Figure 10.17
UML for String Parsing Interfaces and Classes

Each application needs to process the characters of the
String, determining whether each character of the String is a
digit, a letter, or another character (neither a digit nor a letter).
But each application handles digits, letters, and other
characters differently. We create an interface, StringHandler,
shown in Example 10.21, that allows the implementing class
to define a strategy for processing a String, one character at a
time. The StringHandler interface specifies three abstract
methods, and a default parse method that iterates through the
String determining the type of each character, and calling the
appropriate method. Any class that implements the
StringHandler interface automatically inherits the parse
method, and must implement the processLetter, processDigit,
and processOther methods.

EXAMPLE 10.21 The StringHandler
Interface
 1 /* StringHandler interface

 2 * Anderson, Franceschi

 3 */

 4

 5 public interface StringHandler

 6 {

 7 // abstract methods to implement

 8 void processLetter(char c);

 9 void processDigit(char c);

10 void processOther(char c);

11

12 /** default parse method

13 * @param s the String to parse

14 */

15 default void parse(String s)

16 {

17 for (int i = 0; i < s.length(); i++)

18 {

19 char c = s.charAt(i);

20 if (Character.isDigit(c))

21 processDigit(c);

22 else if (Character.isLetter(c))

23 processLetter(c);

24 else

25 processOther(c);

26 }

27 }

28 }

The parse method, at lines 12–27, takes the String to parse
as a parameter and walks through the String, a character at a
time, determining the type of character, and calling the
appropriate method of the StringHandler interface. In order to
determine whether a character is a digit or a letter, the parse
method calls two static methods of the Character wrapper
class, isDigit and isLetter, shown in Table 10.7. Any class that
implements the StringHandler interface must provide fully
implemented versions of the three abstract methods:
processDigit, processLetter, and processOther. Additionally, if
the implementing class needs to process the String in a
different order, perhaps from the last letter to the first, that
class can write its own version of the parse method that
overrides the parse method in the interface.

TABLE 10.7 Some Static Methods of the Character
Wrapper Class

Useful Static Methods of the Character Class
Return
value

Method name and argument list

boolean isDigit(char ch)

returns true if ch represents a digit from ’0’ to ‘9’; false

otherwise.

boolean isLetter(char ch)

returns true if ch represents a letter from ‘a’ to ‘z’ or ‘A’ to ‘Z’;
false otherwise.

int getNumericValue(char ch)

returns the integer value of the specified Unicode character
ch.

We are now ready to design a specialized class that
implements the StringHandler interface to parse the string
with a particular objective in mind. In our example, the first
application processes a password to determine its strength. A

strong password must contain at least eight characters, at
least one digit, and at least one special character. A password
containing fewer than six characters is considered weak;
otherwise, we consider that the password security level is
medium.

The PasswordSecurityHandler class, shown in Example
10.22, implements the StringHandler interface (line 9); thus, it
provides implementations of the processLetter, processDigit,
and processOther methods. The default parse method meets
this application’s needs, so we do not override the default
implementation of the parse method.

We define three instance variables (lines 11–13): length to
hold the number of characters in the password and two flag
variables, digit and otherCharacter, which will indicate
whether a digit and a special character were found in the
password. The constructor (lines 15–23) initializes length to 0
and the flag variables to false. The processLetter method
(lines 25–33) simply increments the length variable. The
processDigit method (lines 35–44) increments length and also
sets the digit flag to true to indicate that at least one digit has
been found. Similarly, the processOther method (lines 46–56)
increments length and sets the otherCharacter flag to true to
indicate that at least one special character has been found.

The securityLevel method (lines 58–73) tests the strength of
the password based on its length and the digit and
otherCharacter flags that were set as the password was
processed and returns either “weak,” “medium,” or “strong.”

EXAMPLE 10.22 The
PasswordSecurityHandler Class

 1 /* PasswordSecurityHandler class

 2 * Implements methods of the StringHandler interface

 3 * to parse a String containing a password.

 4 *

 5 * Anderson, Franceschi

 6 */

 7

 8 public class PasswordSecurityHandler

 9 implements StringHandler

10 {

11 private int length;

12 private boolean digit;

13 private boolean otherCharacter;

14

15 /** default constructor

16 * sets length to 0, digit and otherCharacter flags to

false

17 */

18 public PasswordSecurityHandler()

19 {

20 length = 0;

21 digit = false;

22 otherCharacter = false;

23 }

24

25 /** processLetter method

26 * @param c character to process

27 * adds 1 to length

28 */

29 @Override

30 public void processLetter(char c)

31 {

32 length++;

33 }

34

35 /** processDigit method

36 * @param c character to process

37 * adds 1 to length, sets digit flag to true

38 */

39 @Override

40 public void processDigit(char c)

41 {

42 length++;

43 digit = true;

44 }

45

46 /** processOther method

47 * @param c character to process

48 * adds 1 to length,

49 * sets otherCharacter flag to true

50 */

51 @Override

52 public void processOther(char c)

53 {

54 length++;

55 otherCharacter = true;

56 }

57

58 /** securityLevel method

59 * @return "weak" if password contains fewer than 6

characters

60 * "strong" if password has at least 8

characters, at least

61 * one digit, and at least one other

character

62 * that is neither a letter nor a digit

63 * "medium" otherwise

64 */

65 public String securityLevel()

66 {

67 if (length < 6)

68 return "weak";

69 else if (length >= 8 && digit && otherCharacter)

70 return "strong";

71 else

72 return "medium";

73 }

74 }

Example 10.23 shows a client program for parsing a
password. We ask the user to enter a password at lines 12–
16. At line 18, we instantiate a PasswordSecurityHandler
object. We then call the parse method (line 19), passing the
password entered by the user. After the password has been
parsed, we call the securityLevel method of the
PasswordSecurityHandler class and output the strength of the
password (lines 21–22). Figure 10.18 shows the output of
Example 10.23 when the user enters the password
open@jbc.

Figure 10.18
Output from Example 10.23

A strong password has at least 8

characters and contains at least one digit

and one special character.

Enter a password > open@jbc

open@jbc's security is medium.

EXAMPLE 10.23 The
PasswordSecurityHandlerClient Class
 1 /* PasswordSecurityHandlerClient

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class PasswordSecurityHandlerClient

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12 System.out.println("A strong password has at least 8

\n"

13 + "characters and contains at least one digit

\n"

14 + "and one special character.");

15 System.out.print("Enter a password > ");

16 String password = scan.next();

17

18 PasswordSecurityHandler psh = new

PasswordSecurityHandler();

19 psh.parse(password);

20

21 System.out.println(password + "'s security is "

22 + psh.securityLevel());

23 }

24 }

For the second application, where we analyze a String
representing a hexadecimal number, we reuse the
StringHandler interface. This application determines whether
the String contains only valid hexadecimal characters and
calculates the decimal equivalent of the hex value
represented by the String.

As we discussed earlier, a class can implement several
interfaces. We now define another interface, Validator, shown
in Example 10.24, which specifies one abstract method to
implement: isValid. We created the Validator interface
because determining whether a string is valid is a generic
operation and not necessarily specific to parsing a
hexadecimal number. Thus, other classes can also implement
the Validator interface.

EXAMPLE 10.24 The Validator Interface
 1 /** Validator interface

 2 * Anderson, Franceschi

 3 */

 4

 5 @FunctionalInterface

 6 public interface Validator

 7 {

 8 // abstract method to implement

 9 boolean isValid();

10 }

If the interface has only one abstract method to implement,
the interface is called a functional interface and can be used
with lambda expressions. We cover lambda expressions

later in the text. To ensure that the interface we are defining
is, in fact, a functional interface, we can precede the
definition with the @FunctionalInterface annotation. Because
Validator has only one method to implement and is thus a
functional interface, we precede its definition with the above
annotation (line 5).

The HexStringHandler class, shown in Example 10.25,
implements both the StringHandler and the Validator
interfaces (line 11). Again, the default parse method meets
our needs, so we do not override that method. Our
HexStringHandler class has two instance variables (lines 13–
14): a flag variable, validHex, which will indicate whether the
string being parsed contains only valid hex characters, and
number, which will hold the decimal equivalent of the hex
value. The default constructor (lines 16–24) initializes these
variables to true and 0, respectively. The decimal equivalent
of the hex number is calculated as each character of the
String is parsed in the processLetter method (providing that
the letter is a valid hex digit) and the processDigit method.
The processLetter and processDigit methods use the static
getNumericValue method of the Character wrapper class, also
shown in Table 10.7, to retrieve the numeric equivalent of the
character being processed. If the processLetter method (lines
26–40) finds that the letter is not valid or if the processOther
method (lines 53–62) is called—indicating that the character
is neither a letter nor a digit—the validHex flag is set to false.

At lines 64–72, the isValid method returns true if the parsed
string represents a valid hexadecimal number, and false
otherwise. At lines 74–84, the getNumber method returns the

decimal number if the String parsed contains only
hexadecimal digits, and –1 otherwise.

EXAMPLE 10.25 HexStringHandler Class

 1 /* HexStringHandler class

 2 * Implements the StringHandler interface

 3 * to parse a String that contains a hex number

 4 * into its decimal equivalent

 5 * Implements the Validator interface to determine

 6 * validity of String

 7 * Anderson, Franceschi

 8 */

 9

10 public class HexStringHandler

11 implements StringHandler, Validator

12 {

13 private boolean validHex;

14 private int number;

15

16 /** default constructor

17 * initializes number to 0

18 * and validHex to true

19 */

20 public HexStringHandler()

21 {

22 validHex = true;

23 number = 0;

24 }

25

26 /** processLetter method

27 * @param c the character to process

28 * if c is between 10 and 15 (hex A through F),

29 * uses its value to update the decimal value (number)

30 * otherwise, character is invalid letter

31 */

32 @Override

33 public void processLetter(char c)

34 {

35 int n = Character.getNumericValue(c);

36 if (n >= 10 && n <= 15) // valid hex character?

37 number = 16 * number + n; // update number

38 else // invalid hex character

39 validHex = false;

40 }

41

42 /** processDigit method

43 * @param c the character to process

44 * uses numeric value of c to update the decimal value

(number)

45 */

46 @Override

47 public void processDigit(char c)

48 {

49 int n = Character.getNumericValue(c);

50 number = 16 * number + n; // update number

51 }

52

53 /** processOther method

54 * @param c the character to process

55 * character is not a valid hex digit

56 */

57 @Override

58 public void processOther(char c)

59 {

60 // c is an invalid hex character

61 validHex = false;

62 }

63

64 /** isValid method

65 * @return true if all characters

66 * in String are valid hex characters,

67 * else returns false

68 */

69 public boolean isValid()

70 {

71 return validHex;

72 }

73

74 /** getNumber method

75 * @return if valid, returns the calculated decimal value

76 * else, returns -1

77 */

78 public int getNumber()

79 {

80 if (isValid())

81 return number;

82 else

83 return -1;

84 }

85 }

Example 10.26 shows a similar client program for the hex
conversion application. We ask the user to enter a
hexadecimal number at lines 12–13. At lines 15–16, we
instantiate a HexStringHandler. At line 16, we call the parse
method, passing it the hex String entered by the user. After
parsing the String, we test if the String entered by the user is
a valid hexadecimal number by calling the isValid method of
the HexStringHandler class (line 18). If it is valid, we call the

getNumber method of the HexStringHandler class to output
the decimal equivalent of that number (line 19); otherwise, we
output a message that the hex number was not valid (line 21).
Figure 10.19 shows the output of Example 10.26 when the
user enters the valid hex number A56E.

Figure 10.19
Output from Example 10.26

Enter a hexadecimal number > A56E

A56E = 42350

EXAMPLE 10.26 The
HexStringHandlerClient Class
 1 /* HexStringHandlerClient class

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class HexStringHandlerClient

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12 System.out.print("Enter a hexadecimal number > ");

13 String hex = scan.next();

14

15 HexStringHandler hsh = new HexStringHandler();

16 hsh.parse(hex);

17

18 if (hsh.isValid())

19 System.out.println(hex + " = " + hsh.getNumber()

);

20 else

21 System.out.println(hex + " is not a valid hex

number.");

22 }

23 }

Polymorphism can also be used with interfaces. Although
interfaces cannot be instantiated, we can assign an object of

a class that implements an interface to an interface reference,
and we use that reference to call the methods of the interface.

To illustrate polymorphism with interfaces, let’s assume that
we are a company that needs to calculate shipping costs for
items our customers purchase. We have decided to offer
three different pricing strategies based on the weight of the
item. With flat-rate shipping, we charge a fixed fee per pound.
For standard shipping, we charge a base rate for the first 5
pounds, then a fixed rate for each additional pound. And for
express shipping, we add a fixed fee to the standard shipping
charge.

Note that in each case, we are calculating a price based on
weight. To handle this situation, we can create a ShippingCost
interface and derive three classes that implement the
ShippingCost interface, each performing its appropriate
shipping cost calculation. The UML for this application is
shown in Figure 10.20.

Figure 10.20
UML for the Shipping Strategy

The ShippingCost interface is shown in Example 10.27. This
interface has one abstract method, calculateShipping, that
accepts the weight as a parameter and returns the shipping
cost (line 9).

EXAMPLE 10.27 The ShippingCost
Interface
 1 /** Shipping Cost

 2 * Anderson, Franceschi

 3 */

 4

 5 @FunctionalInterface

 6 public interface ShippingCost

 7 {

 9 double calculateShipping(double weight);

10 }

We can now define three classes that implement the
ShippingCost interface: FlatRateShipping, StandardShipping,
and ExpressShipping, with each providing a custom version of
the calculateShipping method.

Example 10.28 shows the FlatRateShipping class. In line 6,
we specify that this class implements the ShippingCost
interface, and in lines 10–14 we provide the calculateShipping
method, which simply returns the weight multiplied by a
constant rate.

EXAMPLE 10.28 The FlatRateShipping
Class
 1 /** FlatRateShipping

 2 * cost is .50/pound

 3 * Anderson, Franceschi

 4 */

 5

 6 public class FlatRateShipping implements ShippingCost

 7 {

 8 private final double RATE_PER_POUND = .50;

 9

10 @Override

11 public double calculateShipping(double weight)

12 {

13 return RATE_PER_POUND * weight;

14 }

15 }

Example 10.29 shows the StandardShipping class, which also
implements the ShippingCost interface (line 7). Its

calculateShipping method (lines 13–21) computes a fixed
charge for the first 5 pounds, plus a dollar for each additional
pound.

EXAMPLE 10.29 The StandardShipping
Class
 1 /** StandardShipping

 2 * cost is $2.50 for the first 5 pounds,

 3 * and $1 for each additonal pound

 4 * Anderson, Franceschi

 5 */

 6

 7 public class StandardShipping implements ShippingCost

 8 {

 9 private final double BASE_WEIGHT = 5;

10 private final double BASE_CHARGE = 2.5;

11 private final double EXTRA_POUND_RATE = 1.00;

12

13 @Override

14 public double calculateShipping(double weight)

15 {

16 if (weight > BASE_WEIGHT)

17 return BASE_CHARGE

18 + ((weight - BASE_WEIGHT) *

EXTRA_POUND_RATE);

19 else

20 return BASE_CHARGE;

21 }

22 }

Because for express shipping we charge the standard rate
plus a fixed fee, we want to use the same calculation as the
standard shipping and just add the fixed fee. Rather than
repeat the code for the standard shipping calculation, we can
define the ExpressShipping class as extending the
StandardShipping class. Example 10.30 shows the
ExpressShipping class. In line 6, we specify that
ExpressShipping inherits from StandardShipping. Note that
we don’t need to specify that this class implements the
ShippingCost interface because StandardShipping already
does that. Any subclass automatically implements any
interfaces implemented by the superclass. In lines 10–14, we
override the calculateShipping method defined in the
StandardShipping superclass. Inside our method, we call the
version of the calculateShipping method in the
StandardShipping class to determine the standard fee (line
13) and add the express fixed fee to the returned value.

EXAMPLE 10.30 The ExpressShipping
Class
 1 /** ExpressShipping

 2 * cost is $10, in addition to standard shipping

 3 * Anderson, Franceschi

 4 */

 5

 6 public class ExpressShipping extends StandardShipping

 7 {

 8 private final double EXPRESS_SURCHARGE = 10;

 9

10 @Override

11 public double calculateShipping(double weight)

12 {

13 return EXPRESS_SURCHARGE + super.calculateShipping(

weight);

14 }

15 }

Putting all this together, Example 10.31 shows a client class,
ShippingCalculator, that allows a user to select a shipping
option and then calculates the shipping cost for an item. In
line 14, we define a reference to the ShippingCost interface
named shippingCost, which we initialize to null. Remember
that we cannot instantiate an interface, but we can define a
reference to an interface. In lines 16–24, we prompt the user
for the weight of the item and provide a menu from which the
user can select a shipping option. Then using a switch
statement (lines 27–40), we instantiate an object of the
appropriate class and assign that object to the shippingCost
reference (lines 30, 33, and 36). If the user selects a valid

option, we call the calculateShipping method using the
shippingCost reference (lines 43–44). As a result, the correct
method for the selected pricing strategy is called at runtime.
Figure 10.21 shows the output of the program when the user
selects express shipping for an item that weighs 6.5 pounds.

Figure 10.21
Output from Example 10.31

What is the weight of the item? 6.5

Our shipping options are:

 1 Express shipping: 1–2 business days

 2 Standard shipping: 3–5 business days

 3 Flat Rate: 6–8 business days

Select your shipping option > 1

Your shipping cost is $14.00

This application meets the four requirements for
polymorphism. All classes are in the same hierarchy; the
subclasses override the same method; we assign subclasses
to a superclass/interface reference; and we use the
superclass/interface reference to call the method.

EXAMPLE 10.31 The ShippingCalculator
Class

 1 /** ShippingCalculator

 2 * Anderson, Franceschi

 3 */

 4 import java.util.Scanner;

 5 import java.text.NumberFormat;

 6

 7 public class ShippingCalculator

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12 NumberFormat money =

NumberFormat.getCurrencyInstance();

13

14 ShippingCost shippingCost = null;

15

16 System.out.print("What is the weight of the item? "

);

17 double weight = scan.nextDouble();

18

19 System.out.println("Our shipping options are: "

20 + "\n\t1 Express shipping: 1-2

business days"

21 + "\n\t2 Standard shipping: 3-5

business days"

22 + "\n\t3 Flat Rate: 6-8 business

days");

23 System.out.print("Select your shipping option > ");

24 int option = scan.nextInt();

25

26 double cost = 0.0;

27 switch (option)

28 {

29 case1:

30 shippingCost = new ExpressShipping();

31 break;

32 case 2:

33 shippingCost = new StandardShipping();

34 break;

35 case 3:

36 shippingCost = new FlatRateShipping();

37 break;

38 default:

39 System.out.println("Invalid selection.");

40 }

41

42 if (shippingCost != null)

43 System.out.println("Your shipping cost is "

44 + money.format(

shippingCost.calculateShipping(weight)));

45 else

46 System.out.println("No valid shipping option

selected.");

47 }

48 }

Skill Practice
with these end-of-chapter questions

10.10.1 Multiple Choice Exercises

Questions 3, 5, 6

10.10.3 Fill In the Code

Question 25

10.10.4 Identifying Errors in Code

Questions 26, 27, 28, 29, 30

10.10.8 Technical Writing

Questions 56, 57

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a movie with a
step-by-step illustration of the use of abstract classes
and interfaces in a program. Click on the link to start
the movie.

CHAPTER REVIEW

10.9 Chapter Summary
Inheritance lets us organize related classes
into ordered levels of functionality, called
hierarchies. The advantage is that we write
the common code only once and reuse it in
multiple classes.

A subclass inherits methods and fields of its
superclass. A subclass can have only one
direct superclass, but many subclasses can
inherit from a common superclass.

Inheritance implements the “is a” relationship
between classes. Any object of a subclass is
also an object of the superclass.

All classes inherit from the Object class.

To specify that a subclass inherits from a
superclass, the subclass uses the extends
keyword in the class definition, as in the
following syntax:

accessModifier class ClassName extends

SuperclassName

A subclass does not inherit constructors or
private members of the superclass. However,
the superclass constructors are still available
to be called from the subclass, and the
private fields of the superclass are
implemented as fields of the subclass object.

To access private fields of the superclass,
the subclass needs to call the accessor and
mutator methods provided by the superclass.

To call the constructor of the superclass, the
subclass constructor uses the following
syntax:

super(argument list);

If used, this statement must be the first
statement in the subclass constructor.

A subclass can override an inherited method
by providing a new version of the method.
The new method’s API must be identical to
the inherited method. To call the inherited
version of the method, the subclass uses the
super object reference using the following
syntax:

super.methodName(argument list)

Any field declared using the protected
access modifier is inherited by the subclass.
As such, the subclass can directly access
the field without calling its accessor or
mutator method.

An abstract class can be used to specify
APIs for methods that subclasses should
implement. An abstract class cannot be used

to instantiate objects. A class is declared to
be abstract by including the abstract keyword
in the class header.

An abstract class typically has one or more
abstract methods. An abstract method
specifies the API of the method, but does not
provide an implementation. The API of an
abstract method is followed by a semicolon.

When a subclass inherits from an abstract
class, it can provide implementations for any,
all, or none of the abstract methods. If the
subclass does not implement all the abstract
methods of the superclass, then the subclass
must also be declared as abstract. If,
however, the subclass implements all the
abstract methods in the superclass and is
not declared abstract, then the class is not
abstract and we can instantiate objects of
that subclass.

Polymorphism simplifies the processing of
various objects in a hierarchy by allowing us
to use the same method call for any object in
the hierarchy. We assign an object reference
of a subclass to a superclass reference, then
make the method call using the superclass
object reference. At run time, the JVM
determines to which class in the hierarchy
the object actually belongs and calls the

appropriate version of the method for that
class.

Interfaces allow a class to inherit behavior
from multiple sources. Interface members
can be classes, constants, abstract methods,
default methods, private or public non-
abstract static methods, private non-static
non-abstract methods, or other interfaces.

To define an interface, use the following
syntax:

accessModifier interface InterfaceName

{

 // body of interface

}

To use an interface, a class header includes
the implements keyword and the name of the
interface, as in the following syntax:

accessModifier class ClassName implements

InterfaceName

A class that implements an interface must
provide full implementations of any abstract
methods, and can either accept or override
any default methods.

To specify that a subclass both inherits from
a superclass and uses an interface, a class

header includes both the extends and the
implements keywords as in the syntax that
follows:

accessModifier class ClassName extends

SuperclassName

 implements

Interface1, Interface2, ...

10.10 Exercises, Problems, and
Projects

10.10.1 Multiple Choice Exercises
 1. The extends keyword applies to

❑ a class inheriting from another class.

❑ a variable.
❑ a method.

❑ an expression.

 2. A Java class can inherit from two or more classes.

❑ true
❑ false

 3. In Java, multiple inheritance is implemented using the concept of

❑ an interface.

❑ an abstract class.
❑ a private class.

 4. Which of the following is inherited by a subclass?

❑ all instance variables and methods

❑ public instance variables and methods only
❑ protected instance variables and methods only

❑ protected and public instance variables and methods

 5. What Java keyword is used in a class header when a class is
defined as inheriting from an interface?

❑ inherits

❑ includes

❑ extends

❑ implements

 6. A Java class can implement one or more interfaces.

❑ true

❑ false

 7. How do you instantiate an object from an abstract class?

❑ With any constructor.

❑ With the default constructor only.
❑ You cannot instantiate an object from an abstract class.

 8. When a class overrides a method, what object reference is used to
call the method inherited from the superclass?

❑ inherited

❑ super

❑ class

❑ methodName

 9. Where should the following statement be located in the body of a
subclass constructor?

super();

❑ It should be the last statement.

❑ It should be the first statement.
❑ It can be anywhere.

10. If a class contains an abstract method, then

❑ the class must be declared abstract.

❑ the class is not abstract.
❑ the class may or may not be abstract.

❑ all of the above

11. What can you tell about the following method?

public void myMethod()
{
}

❑ This method is abstract.

❑ This method is not abstract.

10.10.2 Reading and
Understanding Code
For Questions 12 to 20, consider the following three
classes:

public class A

{

 private int number;

 protected String name;

 public double price;

 public A()

 {

 System.out.println("A() called");

 }

 private void foo1()

 {

 System.out.println("A version of foo1()

called");

 }

 protected int foo2()

 {

 System.out.println("A version of foo2()

called");

 return number;

 }

 public String foo3()

 {

 System.out.println("A version of foo3()

called");

 return "Hi";

 }

}

public class B extends A

{

 private char service;

 public B()

 {

 super();

 System.out.println("B() called");

 }

 public void foo1()

 {

 System.out.println("B version of foo1()

called");

 }

 protected int foo2()

 {

 int n = super.foo2();

 System.out.println("B version of foo2()

called");

 return (n + 5);

 }

 public String foo3()

 {

 String temp = super.foo3();

 System.out.println("B version of foo3()");

 return (temp + " foo3");

 }

}

public class C extends B

{

 public C()

 {

 super();

 System.out.println("C() called");

 }

 public void foo1()

 {

 System.out.println("C version of foo1()

called");

 }

}

12. Draw the UML diagram for the class hierarchy.

13. What fields and methods are inherited by which class?

14. What fields and methods are not inherited?

15. What is the output of the following code sequence?

B b1 = new B();

16. What is the output of the following code sequence?

B b2 = new B();
b2.foo1();

17. What is the output of the following code sequence?

B b3 = new B();
int n = b3.foo2();

18. What is the output of the following code sequence?

// b4 is a B object reference
System.out.println(b4.foo3());

19. What is the output of the following code sequence?

C c1 = new C();

20. What is the output of the following code sequence?

// c2 is a C object reference
c2.foo1();

10.10.3 Fill In the Code
For Questions 21 to 25, consider the following class
F and the interface I:

public class F

{

 private String first;

 protected String name;

 public F()

 { }

 public F(String first, String name)

 {

 this.first = first;

 this.name = name;

 }

 public String getFirst()

 {

 return first;

 }

 public String getName()

 {

 return name;

 }

 public String toString()

 {

 return "first: " + first + "\tname: " + name

;

 }

 public boolean equals(Object f)

 {

 if (! (f instanceof F))

 return false;

 else

 {

 F objF = (F) f;

 return(first.equals(objF.first) &&

name.equals(objF.name));

 }

 }

}

 public interface I

 {

 String TYPE = "human";

 int age();

 }

21. The G class inherits from the F class. Code the class header of the
G class.

// your code goes here

22. Inside the G class, which inherits from the F class, declare a
private instance variable for the middle initial and code a
constructor with three parameters, calling the constructor of the F
class and assigning the third parameter, a char, to the new
instance variable.

// your code goes here

23. Inside the G class, which inherits from the F class, code the
toString method, which returns a printable representation of a G
object reference.

// your code goes here

24. Inside the G class, which inherits from the F class, code the equals
method, which compares two G objects and returns true if they
have identical instance variables; false otherwise.

// your code goes here

25. The K class inherits from the F class and the I interface; code the
class header of the K class.

// your code goes here

10.10.4 Identifying Errors in Code
For Questions 26 to 31, consider the following two
classes, C and D, and interface I:

public abstract class C

{

 private void foo1()

 {

 System.out.println("Hello foo1()");

 }

 public abstract void foo2();

 public abstract int foo3();

}

public class D extends C

{

 public void foo2()

 {

 System.out.println("Hello foo2()");

 }

 public int foo3()

 {

 return 10;

 }

 private void foo4()

 {

 System.out.println("Hello foo4()");

 }

}

public interface I

{

 double PI = 3.14;

}

26. Where is the error in this code sequence?

C c1 = new C();

27. Where is the error in this code sequence?

D d1 = new D();
d1.foo1();

28. Is there an error in this code sequence? Why or why not?

C c2;
c2 = new D();

29. Where is the error in this new class?

public class E extends D
{
 public void foo4()
 {
 super.foo4();
 System.out.println("Hello E foo4()");
 }
}

30. Where is the error in this class?

public class J extends I
{
}

31. Where is the error in this class?

public class K
{
 public void foo();
}

10.10.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
For questions 32-35, explain what the problem is and
how to fix it.

32. You coded the following class:

public class N extends String, Integer
{
}

When you compile, you get the following message:

N.java:1: error: '{' expected
public class N extends String, Integer
 ^
1 error

Explain what the problem is and how to fix it.

For Exercises 33 to 35, consider the following class:

public abstract class M

{

 private int n;

 protected double p;

 public abstract void foo1();

}

33. You coded the following class:

public class P extends M
{
}

When you compile, you get the following message:

P.java:1: error: P is not abstract and does not
override abstract method foo1()
in M
public class P extends M
 ^
1 error

34. You coded the following class:

public class P extends M
{
 public void foo1()
 {
 System.out.println("n is: " + n);
 }
}

When you compile, you get the following message:

P.java:5: error: n has private access in M
 System.out.println("n is: " + n);
 ^
1 error

35. You coded the following classes:

public class P extends M
{
 public P(double newP)
 {
 p = newP;
 }
 public void foo1()
 {
 }
}
public class Q extends P
{
 private int z;
 public Q(double newP, int z)
 {
 this.z = z;
 super(newP); // line 7
 }
}

When you compile, you get the following message:

Q.java:5: error: constructor P in class P cannot
be applied to given types
 {
 ^
 required: double
 found: no arguments
 reason: actual and formal argument lists differ
in length
Q.java:7: call to super must be first statement
in constructor
 super(newP); // line 7
 ^
2 errors

10.10.6 Write a Short Program
For Exercises 36 to 40, consider the following class:

public class Game

{

 private String description;

 public Game(String description)

 {

 setDescription(description);

 }

 public String getDescription()

 {

 return description;

 }

 public void setDescription(String description

)

 {

 this.description = description;

 }

 public String toString()

 {

 return "description: " + description ;

 }

}

36. Write a class encapsulating a PC-based game, which inherits from
Game. A PC-based game has the following additional attributes:
the minimum megabytes of RAM needed to play the game, the

number of megabytes needed on the hard drive to install the
game, and the minimum GHz performance of the CPU. Code the
constructor and the toString method of the new class. You also
need to include a client class to test your code.

37. Write a class encapsulating a board game, which inherits from
Game. A board game has the following additional attributes: the
number of players and whether the game can end in a tie. Code
the constructor and the toString method of the new class. You also
need to include a client class to test your code.

38. Write a class encapsulating a sports game, which inherits from
Game. A sports game has the following additional attributes:
whether the game is a team or individual game, and whether the
game can end in a tie. Code the constructor and the toString
method of the new class. You also need to include a client class to
test your code.

39. Write a class encapsulating a trivia game, which inherits from
Game. A trivia game has the following additional attributes: the
ultimate money prize and the number of questions that must be
answered to win the ultimate money. Code the constructor and the
toString method of the new class. You also need to include a client
class to test your code.

40. Write a class encapsulating a board game, which inherits from
Game. A board game has the following additional attributes: the
minimum number of players, the maximum number of players, and
whether there is a time limit to finish the game. Code the
constructor and the toString method of the new class. You also
need to include a client class to test your code.

For Exercises 41 to 45, consider the following class:

public class Store

{

 public final double SALES_TAX_RATE = 0.06;

 private String name;

 public Store(String name)

 {

 setName(name);

 }

 public String getName()

 {

 return name;

 }

 public void setName(String name)

 {

 this.name = name;

 }

 public String toString()

 {

 return ("name: " + name);

 }

}

41. Write a class encapsulating a web store, which inherits from Store.
A web store has the following additional attributes: an Internet
address and the programming language in which the website was
written. Code the constructor and the toString method of the new
class. You also need to include a client class to test your code.

42. Write a class encapsulating a music store, which inherits from
Store. A music store has the following additional attributes: the

number of titles it offers and its address. Code the constructor and
the toString method of the new class. You also need to include a
client class to test your code.

43. Write a class encapsulating a bike store, which inherits from Store.
A bike store has the following additional attributes: the number of
bicycle brands that it carries and whether it sponsors a bike club.
Code the constructor and the toString method of the new class.
You also need to include a client class to test your code.

44. Write a class encapsulating a grocery store, which inherits from
Store. A grocery store has the following additional attributes:
annual revenues and whether it is an independent store or part of
a chain. Code the constructor and the toString method of the new
class; also code a method returning the annual taxes paid by the
store. You also need to include a client class to test your code.

45. Write a class encapsulating a restaurant, which inherits from Store.
A restaurant has the following additional attributes: how many
people are served every year and the average price per person.
Code the constructor and the toString method of the new class;
also code a method returning the average taxes per year. You also
need to include a client class to test your code.

10.10.7 Programming Projects
46. Write a superclass encapsulating a rectangle. A rectangle has two

attributes representing the width and the height of the rectangle. It
has methods returning the perimeter and the area of the rectangle.
This class has a subclass, encapsulating a parallelepiped, or box.
A parallelepiped has a rectangle as its base, and another attribute,
its length; it has two methods that calculate and return its area and
volume. You also need to include a client class to test these two
classes.

47. Write a superclass encapsulating a circle; this class has one
attribute representing the radius of the circle. It has methods
returning the perimeter and the area of the circle. This class has a
subclass, encapsulating a cylinder. A cylinder has a circle as its
base, and another attribute, its length; it has two methods,
calculating and returning its area and volume. You also need to
include a client class to test these two classes.

48. Write an abstract superclass encapsulating a shape: A shape has
two abstract methods: one returning the perimeter of the shape,
another returning the area of the shape. It also has a constant field
named PI. This class has two non-abstract subclasses: one
encapsulating a circle, and the other encapsulating a rectangle. A
circle has one additional attribute, its radius. A rectangle has two
additional attributes, its width and height. You also need to include
a client class to test these two classes.

49. Write an abstract superclass encapsulating a vehicle: A vehicle
has two attributes: its owner’s name and its number of wheels.
This class has two non-abstract subclasses: one encapsulating a
bicycle, and the other encapsulating a motorized vehicle. A
motorized vehicle has the following additional attributes: its engine
volume displacement, in liters; and a method computing and
returning a measure of horsepower—the number of liters times the
number of wheels. You also need to include a client class to test
these two classes.

50. Write an abstract superclass encapsulating some food; it has two
attributes: its description and the number of calories per serving. It
also has an abstract method taking a number of servings as a
parameter and returning the number of calories. This class has two
non-abstract subclasses: one encapsulating a liquid food (such as
a drink, for instance), and the other encapsulating a fruit. A liquid
food has an additional attribute: its viscosity. A fruit has an
additional attribute: its season. You also need to include a client
class to test these two classes.

51. Write an abstract superclass encapsulating a college applicant: A
college applicant has two attributes: the applicant’s name and the
college the applicant is applying to. This class has two non-
abstract subclasses: one encapsulating an applicant for
undergraduate school, and the other encapsulating an applicant
for graduate school. An applicant for undergraduate school has
two additional attributes: an SAT score and a GPA. An applicant
for graduate school has one additional attribute: the college of
origin. It also has a method that returns “from inside” if the college
of origin is the same as the college applied to; otherwise, it returns
“from outside.” You also need to include a class to test these two
classes.

52. Write an abstract superclass encapsulating a vacation: A vacation
has two attributes: a budget and a destination. It has an abstract
method returning by how much the vacation is over or under
budget. This class has two non-abstract subclasses: one
encapsulating an all-inclusive vacation, and the other
encapsulating a vacation bought piecemeal. An all-inclusive
vacation has three additional attributes: a brand (for instance
ClubMed®); a rating, expressed as a number of stars; and a price.
A piecemeal vacation has two additional attributes: a set of items
(hotel, meal, airfare, …), and a set of corresponding costs. You
also need to include a class to test these two classes.

53. Write an abstract superclass encapsulating a part, with two
attributes: the part number, and a budget cost for it. This class has

two non-abstract subclasses: one encapsulating a self-
manufactured part, and the other encapsulating an outsourced
part. A self-manufactured part has a cost and a drawing number; it
also has a method returning whether it is over budget or under
budget. An outsourced part has a set of suppliers, each with a
price for the part. It also has a method to retrieve the lowest-cost
supplier for a part and the corresponding cost. You also need to
include a class to test these two classes.

54. Write an abstract superclass encapsulating a number; this class
has one abstract void method: square. This class has two non-
abstract subclasses: one encapsulating a rational number, and the
other encapsulating a complex number. A rational number is
represented by two integers, the numerator and the denominator
of the rational number. A complex number is represented by two
real numbers, the real part and the complex part of the complex
number. You also need to include a class to test these two classes.

55. Define an abstract UtilityCustomer class that has one instance
variable, an account number, and an abstract method,
calculateBill, that returns the bill amount as a double. Also define
the constructor, accessors, mutators, and a toString method that
outputs the account number. Define a GasCustomer class that
inherits from the UtilityCustomer class, and adds an instance
variable cubicMetersUsed and a constant for the price of gas per
cubic meter. Also define an ElectricCustomer class that also
inherits from the UtilityCustomer class and adds a kWattHourUsed
instance variable along with two constants for the price of
electricity per kilowatt hour, plus a flat power delivery fee ($30) that
is added to every bill. For each subclass, define the constructor,
accessor, and mutator for its instance variable, a toString method,
which calls the toString method of the UtilityCustomer class, and
an implementation for the calculateBill method. Create a client that
instantiates several GasCustomer and ElectricCustomer objects,
adds them to an ArrayList of UtilityCustomer objects, and then
using polymorphism, steps through the ArrayList, calling the

calculateBill method and outputting the bill amount for each
customer.

10.10.8 Technical Writing
56. In a large organization, programmers develop a library of classes

as they work on various projects. Discuss, in such an environment,
how inheritance can be helpful in reusing code and therefore
saving time.

57. Other programming languages allow multiple inheritance; that is, a
class can inherit from several classes. In Java, a class can extend
only one class, but can implement several interfaces. Discuss
potential problems that can arise in other programming languages
that allow inheritance from multiple classes.

10.10.9 Group Project (for a group
of 1, 2, or 3 students)
58. Design and code a program that allows the user to select a

drawing style for a graphics program. The styles should be black
and white, grayscale, or inverted color. To do this, define a
DrawingStyle interface with these methods: setColor and
setOutline. Both methods accept a GraphicsContext object and a
Color, convert the color appropriately, and call the
GraphicsContext methods setFill or setStroke, respectively, with
the new color value.

For each style, define the following classes that implement the
DrawingStyle interface: BlackAndWhite, Grayscale, and
InvertColor.

In the client class, define a DrawingStyle instance variable. Prompt
the user for the desired style, and assign a reference to an object
of the appropriate class that implements the DrawingStyle
interface. The application should then call setColor and setOutline
to set the fill or stroke color using a reference to the DrawingStyle
object. Make a drawing of your choice using the selected drawing
style.

Hint: Look up the grayscale and invert methods of the Color class.
The BlackAndWhite class can simply convert any color whose
average value for the red, green, and blue components is >= .0.5
to white; otherwise, it converts the color to black.

CHAPTER 11
Exceptions and Input/Output
Operations

CHAPTER CONTENTS
Introduction
11.1 Simple Exception Handling
11.2 Catching Multiple Exceptions
11.3 Reading Text Files Using Scanner

11.4 The java.io Package
11.5 Recovering from an Exception
11.6 Writing and Appending to Text Files

11.6.1 Writing to Text Files
11.6.2 Appending to Text Files

11.7 Reading Structured Text Files
11.7.1 Parsing a String Using Scanner

11.7.2 Reading Structured Data Using Scanner

11.8 Programming Activity 1: Reading from a Structured
Text File
11.9 Streams
11.10 Reading Formatted Open Data from a Remote
Location

11.10.1 Accessing Remote Data
11.10.2 JSON Formatting and Parsing
11.10.3 Reading, Parsing, Streaming, and

Processing Remote Data
11.11 Reading and Writing Objects to a File

11.11.1 Writing Objects to Files
11.11.2 Reading Objects from Files

11.12 Programming Activity 2: Reading Objects from a
File
11.13 User-Defined Exceptions
11.14 Chapter Summary
11.15 Exercises, Problems, and Projects

11.15.1 Multiple Choice Exercises
11.15.2 Reading and Understanding Code
11.15.3 Fill In the Code
11.15.4 Identifying Errors in Code
11.15.5 Debugging Area—Using Messages from the

Java Compiler and Java JVM
11.15.6 Write a Short Program
11.15.7 Programming Projects
11.15.8 Technical Writing
11.15.9 Group Project

Introduction
Programs often use existing data accumulated by an
organization, such as a university, a government, or a
corporation. Typically, the volume of data is significant,
making data entry through the keyboard impractical.

Furthermore, these large amounts of data typically reside in
two types of storage:

disk files

databases

Working with databases is beyond the scope of this book. In
most of this chapter, we concentrate on reading from and
writing to files.

But there is a prerequisite to all this: understanding the
concept of exceptions, their associated classes, and
exception handling.

11.1 Simple Exception Handling
By now we have discovered that sometimes our program
doesn’t work, even though we didn’t get any compiler errors.
At run time, logic errors can surface. For example, we might
attempt to divide an integer by 0 or try to access the 11th
element in a 10-element array. Java is a robust language and
does not allow these “illegal” operations to occur unnoticed.

These illegal operations generate exceptions. Some
exceptions are generated by the Java Virtual Machine, while
others are generated by constructors or other methods. For
example, a method might generate an exception when it
detects an attempted illegal operation or an illegal parameter.

By default, when an exception is generated in an application
that does not have a graphical user interface, the program will
terminate. In many cases, however, we can attempt to recover
from the exception and continue running the program. This is
called handling the exception. For the programmer to
handle an exception, Java provides two tools:

exception classes

the try, catch, and finally blocks

The Exception class is the superclass of all exception classes,
which encapsulate specific exceptions such as integer
division by 0, attempting to access an out-of-bounds array
index, unsuccessfully converting a String to a number, using a
null object reference to call a method, trying to open a file that
does not exist, and others.

Figure 11.1 is an inheritance hierarchy showing only a few of
the Java exception classes. The Exception class and
RuntimeException and its subclasses are in the java.lang
package. The IOException class and its subclass,
FileNotFoundException, are in the java.io package.

Figure 11.1
Inheritance Hierarchy for Various Exception Classes

We want to avoid situations when an exception occurs and
abruptly terminates the execution of our program. Java
provides try and catch blocks to allow us to handle exceptions
so that our code can continue to run. We put the code that
might generate an exception inside the try block, and we put

the code to recover from the exception inside a catch block. If
an exception is thrown by the code inside the try block, then
execution will jump to the catch block, where we provide code
to handle that exception. If nothing illegal happens in the try
block, the code in the catch block will be skipped.

The minimum syntax for a try and catch block is as follows:

try

{

 // code that might generate an exception

}

catch (ExceptionClass exceptionObjRef)

{

 // code to recover from the exception

}

COMMON ERROR TRAP
Omitting curly braces around the try and catch blocks will
generate a compiler error. A catch clause listing several
Exception classes as parameters will also generate a
compiler error. Use multiple catch blocks instead.

The curly braces are required for both the try body and the
catch body even if the bodies have only one statement, or
even no statements.

Any variable defined within the try block is local to that block;
that is, the variable cannot be referenced after the try block,
not even in the catch block. Note that the ExceptionClass
parameter of the catch clause specifies one and only one

ExceptionClass. Listing zero or two or more ExceptionClasses
in the catch clause will generate a compiler error.

Java distinguishes between two types of exceptions:

unchecked, those that are subclasses of Error or
RuntimeException

checked, any other exception class

An unchecked exception, such as an ArithmeticException
caused by attempting integer division by 0, a
NumberFormatException, or a NullPointerException, does not
have to be handled with a try and catch block. In other words,
if we omit the try and catch blocks, our code will compile
without an error. If one of these unchecked exceptions is
generated at run time, however, the JVM will catch it and print
output similar to that shown in Figure 11.2.

Figure 11.2
Output of Example 11.1

Message: data.txt (The system cannot find the file

specified)

toString(): java.io.FileNotFoundException: data.txt

(The system cannot find

the file specified)

java.io.FileNotFoundException: data.txt (The system

cannot find the

file specified)

 at

java.base/java.io.FileInputStream.open0(Native Method)

 at

java.base/java.io.FileInputStream.open(Unknown Source)

 at java.base/java.io.FileInputStream.<init>

(Unknown Source)

 at java.base/java.util.Scanner.<init>(Unknown

Source)

 at EchoFileData.main(EchoFileData.java:16)

Code that could generate a checked exception, such as an
IOException, must be coded within a try block. Optionally, the
method header can acknowledge that the checked exception
could occur by using a throws clause. This is required;
otherwise, the program will not compile. Thus, when we
perform I/O on a file, our code must deal with a potential
IOException.

In the catch block, we can use the Exception parameter as an
object reference to get more information about what caused
the exception. Table 11.1 shows three methods inherited by
the Exception classes.

TABLE 11.1 Useful Methods of Exception Classes
Methods of Exception Classes
Return
value

Method name and argument list

String getMessage()

returns a message indicating the cause of the exception

String toString()

returns a String containing the exception class name and a
message indicating the cause of the exception

void printStackTrace()

prints the line number of the code that caused the exception,
along with the sequence of method calls leading up to the
exception

We demonstrate these three methods, as well as how to use
try and catch blocks to detect and handle an exception if it
occurs, in Example 11.1. When we want to read data from a
file, we first must open the file for reading. At line 15, we
declare and instantiate a File object for a file named data.txt
located in the current folder. At line 16, we declare and
instantiate a Scanner object so we can read from the input
stream represented by that File object. The Scanner
constructor, whose API is shown below, throws a
FileNotFoundException if the file is not found.

public Scanner(File source) throws FileNotFoundException

The FileNotFoundException is a checked exception. Thus, we
need to place the code that can generate that exception (line

16) inside a try block (lines 13–23). At lines 24–29, we use a
catch block to handle the exception if it occurs. Note that
there are other exceptions that can be thrown in this program.
The File constructor, as well the hasNextInt and nextInt
methods of the Scanner class, can throw exceptions;
however, all those exceptions are unchecked exceptions and
do not require the use of try/catch blocks.

When the program runs, if there is no file named data.txt in
the current folder, the try block stops executing at line 16.
Next, the catch block is executed, and we print the values
from the getMessage, toString, and printStackTrace methods
of the FileNotFoundException class. Figure 11.2 shows the
output of Example 11.1 when there is no file named data.txt in
the current folder. As we can see, the only difference between
the return values from the getMessage and toString methods
is that the toString method returns the exception class name,
as well as the message. The output of the printStackTrace
method may look familiar. It is similar to a message that the
JVM prints when an ArithmeticException,
StringIndexOutOfBoundsException, or
ArrayIndexOutOfBoundsException occurs when we do not
have try and catch blocks.

EXAMPLE 11.1 Using try and catch
blocks

 1 /* Reading a Text File

 2 Anderson, Franceschi

 3 */

 4

 5 import java.io.File;

 6 import java.io.FileNotFoundException;

 7 import java.util.Scanner;

 8

 9 public class EchoFileData

10 {

11 public static void main(String [] args)

12 {

13 try

14 {

15 File inputFile = new File("data.txt");

16 Scanner file = new Scanner(inputFile);

17

18 while (file.hasNextInt())

19 {

20 int number = file.nextInt();

21 System.out.println(number);

22 }

23 }

24 catch (FileNotFoundException fnfe)

25 {

26 System.out.println("Message: " + fnfe.getMessage()

);

27 System.out.println("\ntoString(): " + fnfe + "\n"

);

28 fnfe.printStackTrace();

29 }

30 }

31 }

11.2 Catching Multiple Exceptions
If the code in the try block might generate multiple
types of exceptions, we can provide multiple catch
blocks, one for each possible exception. When an
exception is generated, the JVM searches the catch
blocks in order. The first catch block with a
parameter that matches the exception thrown will
execute; any remaining catch blocks will be skipped.

SOFTWARE ENGINEERING TIP
Arrange catch blocks to handle the more specialized
exceptions first, followed by more general
exceptions.

Remember that subclass objects are also objects of
their superclasses, so an exception will match any
catch block for an exception that names any of its
superclasses. For example, a
NumberFormatException will match a catch block
with a RuntimeException parameter, and all
exceptions will match a catch block with an
Exception parameter. Therefore, when coding
several catch blocks, put the catch blocks for the
specialized exceptions first, followed by more
general exceptions.

Furthermore, after a try block and its associated
catch blocks, we may optionally add a finally block,
which will always be executed, whether an exception
occurred or not. In the finally block, we can include
some clean-up code. We will demonstrate a finally
block when we read from a file later in this chapter.

Here is the syntax for using a try block, several catch
blocks, and a finally block:

try

{

 // code that might generate an exception

}

catch (Exception1Class e1)

{

 // code to handle an Exception1Class exception

}

...

catch (ExceptionNClass eN)

{

 // code to handle an ExceptionNClass exception

}

finally

{

 // code to execute regardless of whether an

exception occurs

}

Again, the curly braces around the various blocks
are required, whether these blocks contain zero,
one, or more statements.

SOFTWARE ENGINEERING TIP
Whenever possible, use a simple if/else statement to
detect an unchecked exception, rather than try and
catch blocks. This will improve the performance of
your code.

Having provided several examples of exceptions, we
must also consider this: Not every problem needs to
be addressed by generating an exception. As a
matter of fact, generating and handling exceptions
considerably slows down execution of our code due
to the processing overhead. Often, for example when
using Java’s I/O classes, we will have no choice but
to use try and catch blocks. Sometimes, however, we
can use a simple if/else statement instead of try and
catch blocks. For example, we can test if the value of
the divisor is not zero before attempting a division,
rather than placing the code in a try block and
catching an ArithmeticException.

How do we know if a constructor or a method throws
an exception and what type of exception it throws?
As always, our best source of information is the Java
Class Library on Oracle’s Java website. After we

have identified a constructor or a method that we
would like to use, we simply look at its description in
order to determine whether it throws any exceptions,
and, if so, which ones.

REFERENCE POINT
Consult the Oracle Java Class Library to see if a
constructor or a method throws an exception and, if
so, what type of exception.

11.3 Reading Text Files Using
Scanner
Java supports two file types, text and binary. In text
files, data is stored as characters; in binary files, data
is stored as raw bytes. Different classes are used for
writing and reading each file type. The type of a file
is determined when the file is written and depends
on which classes were used to write to the file. Thus,
to read from an existing file, we must know the file’s
type in order to select the appropriate classes.

In this section, we concentrate on text files.

As we have seen from Example 11.1, the Scanner
class can be used to read from a text file. If the file is
not found, the Scanner constructor throws a
FileNotFoundException. More exceptions can be
thrown by Scanner methods while reading the file.

Table 11.2 shows some constructors of the Scanner
and File classes and methods of the Scanner class
for reading from a file, as well as the exceptions that
each method can throw.

TABLE 11.2 Useful Methods of the Scanner
and File Classes for Reading from a File

File Constructor Exceptions thrown

File(String pathname)

constructs a File object with
the pathname file name so
that the file name is
platform-independent.

NullPointerException

Scanner Constructor and
Methods

Exceptions thrown

Scanner(File file)

constructs a Scanner object
for reading from a file.

FileNotFoundException

Return
value

Method name and
argument list

Exceptions thrown

boolean hasNext()

returns true if
there is
another token
in the input
stream

Both methods throw an

IllegalStateException

boolean hasNextLine(

)

returns true if
there is
another line or
line separator
in the input
stream

boolean

boolean

boolean

hasNextlnt()

hasNextDouble(

)

hasNextFloat(

)

…

All these methods

throw an

IllegalStateException

returns true if
there is
another token
in the input
stream of the
specified data
type

String

String

next()

returns the
next token in
the input
stream as a
String

nextLine()

returns the
remainder of
the line as a
String.
Positions the
pointer to the
next line.

Both methods throw

NoSuchElementException,

IllegalStateException

int

double

float

nextInt()

nextDouble()

nextFloat()

. . .
returns the
next token in
the input
stream as the
specified data
type

All these methods

throw

InputMismatchException,

NoSuchElementException,

IllegalStateException

void close()

releases the
resources

None

associated
with an open
input stream

In Example 11.2, we read a text file named
movies.txt, which contains titles of classic movies
and the movies’ running times in minutes. Each
movie occupies two lines in the file: the title on one
line and the running time on the following line. Each
line in the file, including the last line, is terminated by
a newline character. In this example, we simply read
the movie titles and running times and echo them to
the console. However, we could read this file to find
the longest or shortest movie, or to instantiate Movie
objects to be stored in an ArrayList or other data
structure for further processing.

EXAMPLE 11.2 Reading from a
Text File

 1 /** Classic Movies - Reading from a text file

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 import java.io.File;

 7 import java.util.NoSuchElementException;

 8 import java.io.FileNotFoundException;

 9

10 public class ClassicMovies

11 {

12 public static void main(String [] args)

13 {

14 try (Scanner file = new Scanner(new File(

"movies.txt")))

15 {

16 while (file.hasNext()) // test for the

end of the file

17 {

18 String movieTitle = file.nextLine();

19

20 if (! file.hasNextInt())

21 {

22 System.out.println("Invalid file

format");

23 String invalidData = file.nextLine();

// skip the line

24 }

25 else

26 {

27 int runningTime = file.nextInt();

28 String newLine = file.nextLine(); //

read newline character

29 System.out.println(movieTitle + ", "

30 + runningTime + "

minutes");

31 }

32 }

33 }

34

35 catch (FileNotFoundException fnfe)

36 {

37 System.out.println("Unable to find

movies.txt, exiting");

38 }

39

40 catch (NoSuchElementException nsee)

41 {

42 System.out.println("Attempt to read past

the end of the file");

43 }

44 }

45 }

Lines 7–8 import the NoSuchElementException and
FileNotFoundException classes. The
IllegalStateException class does not need to be

imported because it is in the java.lang package. Line
14 instantiates a Scanner object from a File object,
passing the name of the file to be read, movies.txt,
as the argument to the File constructor.

The File object is used only as the argument of the
Scanner constructor; it is not used anywhere else in
the program. In this case, instead of creating a File
object reference, many programmers prefer to use
an anonymous File object as the argument of the
Scanner constructor. In other words, instead of
writing the following two statements:

File f = new File("movies.txt");

Scanner file = new Scanner(f);

we use the following single statement:

Scanner file = new Scanner(new File("movies.txt")

);

It is a matter of preference as to which code we use.

SOFTWARE ENGINEERING TIP
Either use a try-with-resources statement or close
files when you have finished processing their data.
Do not close the standard input, output, or error
devices.

When we associate a file with an input stream or
output stream, we are opening the file. As we read
the data in a file, a file pointer keeps track of the
next data to read. When we open the file, the file
pointer is set to the beginning of the file. When we
are finished with a file, we can call the close method
(shown in Table 11.2) to release the resources
associated with the file. Calling the close method is
optional. When the program finishes executing, all of
its resources are released, including the resources of
any unclosed files. Nevertheless, it is good practice,
in general, to call the close method, especially if we
will be opening a number of files (or opening the
same file multiple times). In contrast, the standard
input stream (System.in), the standard output stream
(System.out), and the standard error stream
(System.err) are open when the program begins.
They are intended to stay open and should not be
closed.

At lines 14–33, we use a try-with-resources
statement. A resource is an object reference, for
example a Scanner, that should be closed after we
no longer need it. A try-with-resources is a statement
that declares one or more resources. Using a try-
with-resources statement guarantees that the
resource will be automatically closed at the end of
the try block. If we did not use a try-with-resources
statement at line 14, we would need to close the

Scanner in the finally block to guarantee that it is
closed. Closing the Scanner as the last statement of
the try block would not guarantee that the Scanner is
closed because if an exception occurs, the try block
will not finish executing.

Thus, the following code:

try (Scanner file = new Scanner(new File(

"movies.txt")))

{

 ..

}

catch (..)

{

 ..

}

is equivalent to:

Scanner file;

try

{

 file = new Scanner(new File("movies.txt"));

 ..

}

catch (..)

{

 ..

} finally

{

 file.close();

}

The Scanner constructor throws a
FileNotFoundException if the file does not exist. We
catch this exception at lines 35–38. Since the
program cannot continue without the file being open,
we print a message to the user that we were not able
to find the file and that the program is exiting. Thus,
instead of facing a FileNotFoundException with a
stack trace, the user now sees a friendly message
explaining the problem.

If no exception is thrown, we begin to read the file.
The while loop condition, at line 16, uses the
Scanner hasNext method to test whether the file
pointer has reached the end of the file. If not,
hasNext returns true, and we execute the while loop

body. Since the movie title could contain more than
one word, we use the nextLine method to read the
entire line (line 18).

We then test whether the next token in the file is an
int (line 20). If not, then the running time is not a
whole number. We output a message that the file
format is invalid, then skip the line by using the
nextLine method to read whatever data is on that line
into the String invalidData (lines 22–23). Another
option is to use a try/catch block to read the running
time. With that option, calling the nextInt method to
read the invalid data would generate an
InputMismatchException, which we would need to
handle. Given that exception handling results in
additional processing overhead, our using the
hasNextInt method of the Scanner class to test
whether the file format is valid makes the code more
efficient.

If the next token is an int, we read the running time
using the nextInt method (line 27). At this point, it is
worthwhile to discuss the difference between the
nextLine method and the other Scanner next…
methods (such as next/nextInt/nextDouble, etc.). The
nextLine method reads any part of the line that has
not already been read, including leading and trailing
white space (spaces, tabs, and the newline
character) and moves the file pointer to the next line.

The nextLine method does not include the newline
character in its returned String. In contrast, the
nextInt method and its next…. method counterparts
skip leading white space, then read the next token
on the line, stopping when trailing white space is
encountered. That means that after we have read
the running time using the nextInt method, the
newline character is still in the input stream. If we
then attempt to read the next movie title using the
nextLine method, the nextLine method would instead
read just the newline character that follows the
running time and return an empty String. So on line
28, we insert an additional call to the nextLine
method to remove that newline character from the
input stream.

On lines 29–30, we echo the title and running time to
the console.

We continue looping through the file until there is no
more data to read.

An attempt to access a file after it has been closed
generates an IllegalStateException. Because we use
a try-with-resources statement, the Scanner will be
closed after the last catch block. Thus, we cannot
access the file after it has been closed and do not
need to catch an IllegalStateException. If we attempt
to read beyond the end of the file, the nextLine or

nextInt methods will throw a
NoSuchElementException. We catch this exception
on lines 40–43, and output a message explaining the
cause of the exception.

Let’s assume the file movies.txt contains the data
shown in Figure 11.3. When the program in Example
11.2 runs, it will produce the output shown in Figure
11.4 if the file is found, and the output in Figure 11.5
if the file is not found.

Figure 11.3
Contents of movies.txt

The Matrix

136

Finding Nemo

100

Titanic

194

Casablanca

102

Gone With the Wind

220

Figure 11.4
Output of Example 11.2 When File Is Found

The Matrix, 136 minutes

Finding Nemo, 100 minutes

Titanic, 194 minutes

Casablanca, 102 minutes

Gone With the Wind, 220 minutes

Figure 11.5
Output of Example 11.2 When File Is Not Found

Unable to find movies.txt, exiting

11.4 The java.io Package
In addition to the Scanner class in the java.util package, Java
provides a number of classes in the java.io package for
reading from files and for writing to files. We will use only a
few of those classes here. Table 11.3 describes a group of
classes designed for data input.

Figure 11.6 shows an inheritance hierarchy for the Java
classes described in Table 11.3.

Figure 11.6
The Inheritance Hierarchy for Input Classes

TABLE 11.3 Selected Input Classes
Input Classes

Class Description

Scanner Class to read and parse characters in text files

InputStream Abstract superclass representing an input stream of
raw bytes

FilelnputStream Input stream to read raw bytes of data from files

ObjectlnputStream Class to read/recover objects from a file written
using ObjectOutputStream

Table 11.4 describes a group of classes designed for data
output, and Figure 11.7 shows an inheritance hierarchy for
Java output classes in Table 11.4.

TABLE 11.4 Selected Output Classes
Output Classes

Class Description

Writer Abstract superclass for writing characters to
output streams

OutputStream Abstract superclass representing an output stream
of raw bytes

FileWriter Convenience class for writing characters to files

PrintWriter Convenience class to output basic data types,
Strings, and objects

FileOutputStream Output stream to write raw bytes of data to files

ObjectOutputStream Class to write objects to a file

Figure 11.7
The Inheritance Hierarchy for Output Classes

11.5 Recovering from an Exception
In the next example, we read data from a file and use that
data to draw a flag. Figure 11.8 shows the contents of the
HungarianFlag.txt file. We also show how to catch and
recover from an exception; that is, how to enable our program
to continue to run when an exception occurs. The data is
organized in a similar manner, but it is simpler than what is
used by the GIF run-length encoding algorithm:

Figure 11.8
The HungarianFlag.-txt File

300

15000 1.0 0.0 0.0

15000 1.0 1.0 1.0

15000 0.0 1.0 0.0

The first line is an integer storing the width of the flag.

Each line thereafter contains four numbers. The first
number, an integer, stores the number of consecutive
pixels (as we go left to right on the flag image) of the
same color; the next three numbers store the red,
green, and blue coefficients of that color as doubles
between 0 and 1.

The width of the Hungarian flag represented by our file is 300,
it has 15,000 consecutive red pixels (i.e., 15,000 divided by
300, which is equal to 50, red lines), then 15,000 consecutive

white pixels (i.e., 50 white lines), and 15,000 consecutive
green pixels (i.e., 50 green lines).

Example 11.3 shows the GIFDecoding class. Its constructor
accepts an already instantiated Scanner parameter and reads
the data in the associated file into three instance variables:
width, an int; lengthList, an ArrayList of Integers; and
colorList, an ArrayList of Color references. The lengthList and
colorList are parallel ArrayLists; that is, the color stored at a
given index in colorList applies to the number of pixels stored
in lengthList at that same index.

Inside the try block, we first read the width of the flag at line
33 and assign it to width. At lines 37–46, we loop through the
remaining lines of the file, reading the number of pixels (line
39) and their three color components (lines 42–44). With the
three color components, we create a Color object and add it
to colorList at line 45; we add the number of consecutive
pixels of that color to lengthList at line 40.

We catch an InputMismatchException at lines 48–51, in case
the data inside the file is not what we expect, and exit. A
NoSuchElementException and an IllegalStateException can
also be thrown by the nextInt and nextDouble methods. We
catch them both in the generic Exception catch block at lines
52–55. We close the Scanner in the finally block (lines 56–
59).

The drawGIF method (lines 62–94) accepts a
GraphicsContext parameter and uses it to draw the GIF. The
upper-left coordinates of the GIF are defined by the x and y
parameters passed to drawGIF. At lines 74–93, we loop

through all the lengths stored in lengthList. At line 76, we
retrieve the corresponding color for the current pixels and set
the stroke color of the GraphicsContext to that color at line 77.
Because the number of consecutive pixels of the same color
can be larger than the width of the drawing, several
consecutive lines could have the same color. Thus, we draw
the GIF one line at a time using a while loop (lines 79–86).
After the loop, we draw a line with the current color if there are
pixels left over (lines 88–89).

EXAMPLE 11.3 The GIFDecoding Class

 1 /* GIF decoding class

 2 Anderson, Franceschi

 3 */

 4

 5 import java.io.*;

 6 import java.util.*;

 7 import javafx.scene.canvas.GraphicsContext;

 8 import javafx.scene.paint.Color;

 9

10 public class GIFDecoding

11 {

12 private int width; // the width of the GIF

13

14 // ArrayList instance variables:

15 // colorList stores Color references

16 // lengthList stores integers, the length of each run

17 private ArrayList<Color> colorList;

18 private ArrayList<Integer> lengthList;

19

20 /* GIFDecoding constructor

21 * @param file a Scanner, already open for reading a GIF

file

22 * initializes width with the first int in file

23 * fills the two ArrayLists with the

24 * ints and colors stored in file

25 */

26 public GIFDecoding(Scanner file)

27 {

28 colorList = new ArrayList<Color>();

29 lengthList = new ArrayList<Integer>();

30

31 try

32 {

33 width = file.nextInt();

34 int length;

35 double red, green, blue;

36

37 while (file.hasNext())

38 {

39 length = file.nextInt();

40 lengthList.add(length);

41

42 red = file.nextDouble();

43 green = file.nextDouble();

44 blue = file.nextDouble();

45 colorList.add(Color.color(red, green, blue));

46 }

47 }

48 catch (InputMismatchException ime)

49 {

50 System.out.println("Invalid file format; exiting"

);

51 }

52 catch (Exception e)

53 {

54 System.out.println(e.getMessage());

55 }

56 finally

57 {

58 file.close();

59 }

60 }

61

62 /*

63 * drawGIF method

64 * @param gc a GraphicsContext reference, the graphics

context

65 * @param x an int, the drawing's upper left corner x

coordinate

66 * @param y an int, the drawing's upper left corner y

coordinate

67 */

68 public void drawGIF(GraphicsContext gc, int x, int y)

69 {

70 // draw the gif

71 Color currentColor;

72 int index = 0;

73 int deltaX = 0;

74 for (int length : lengthList)

75 {

76 currentColor = colorList.get(index);

77 gc.setStroke(currentColor);

78

79 // draw one or more lines using length pixels with

currentColor

80 while (length >= width - deltaX)

81 {

82 gc.strokeLine(x + deltaX, y, x + width, y);

83 y++;

84 length = length - (width - deltaX);

85 deltaX = 0;

86 }

87

88 if (length > 0)

89 gc.strokeLine(x + deltaX, y, x + deltaX + length,

y);

90

91 deltaX = deltaX + length;

92 index++;

93 }

94 }

95 }

In Example 11.4, we ask the user to input a file name,
instantiate a Scanner to read the file, create and instantiate a
GIFDecoding object, then call the drawGIF method to draw
the flag. If there is no file in the current folder with the name
entered by the user or if the user mistypes the file name, a
FileNotFoundException is thrown. Instead of terminating the
program, we use the try and catch blocks to recover from
erroneous user input. We use a do/while loop at lines 25–40
that keeps asking the user for a file name as long as no file
with that name can be found in the current folder. At line 23,
we declare a boolean variable, fileFound, initialized to false.
As long as fileFound is false (line 40), we keep entering the
loop and asking the user for a file name. If the user enters an
invalid file name, our code instantiating the Scanner file (line
33) will throw a FileNotFoundException. We will then skip line
34 and execute the catch block (lines 36–39). Thus, fileFound
will remain false and our loop condition will remain true. When
the user enters a valid file name, file will be successfully
instantiated and no exception will be thrown. Line 34 will
execute, changing fileFound to true and we will then exit the
loop.

Notice that we declare and initialize the variables file and
filename at lines 21 and 22 before we enter the try block. If we

do not initialize them and then try to access them in the catch
block or after the try/catch blocks, we will receive the following
compiler error (shown for filename):

variable filename might not have been initialized

At lines 42–46, we create a GraphicsContext, instantiate a
GIFDecoding object using file at line 48, and draw the flag at
line 49.

COMMON ERROR TRAP
Failing to initialize a variable that is assigned a value in a try
block, then accessed after the try block, will generate a
compiler error.

When we run and enter HungarianFlag.txt at the prompt, the
window shown in Figure 11. 9 appears.

Figure 11.9
Output of Example 11.4

EXAMPLE 11.4 Reading a File and
Drawing the Corresponding GIF

 1 /* Drawing a GIF

 2 Anderson, Franceschi

 3 */

 4

 5 import java.io.*;

 6 import java.util.Scanner;

 7 import javafx.application.Application;

 8 import javafx.scene.canvas.GraphicsContext;

 9 import javafx.scene.paint.Color;

10 import javafx.stage.Stage;

11

12 public class DrawAGIF extends Application

13 {

14 final int WIDTH = 500;

15 final int HEIGHT = 300;

16

17 @Override

18 public void start(Stage stage)

19 {

20 Scanner scan = new Scanner(System.in);

21 Scanner file = null;

22 String filename = "";

23 boolean fileFound = false;

24

25 do

26 {

27 try

28 {

29 System.out.print("Enter the name of the file > "

);

30 filename = scan.next();

31

32 File inputFile = new File(filename);

33 file = new Scanner(inputFile);

34 fileFound = true;

35 }

36 catch (FileNotFoundException fnf)

37 {

38 System.out.println("Unable to find " + filename

);

39 }

40 } while (!fileFound);

41

42 // set up window title and size

43 GraphicsContext gc = JIGraphicsUtility.setUpGraphics(

44 stage, "Draw a flag", WIDTH, HEIGHT);

45 gc.setFill(Color.LIGHTSKYBLUE);

46 gc.fillRect(0, 0, WIDTH, HEIGHT);

47

48 GIFDecoding flag = new GIFDecoding(file);

49 flag.drawGIF(gc, 50, 50);

50 }

51

52 public static void main(String [] args)

53 {

54 launch(args);

55 }

56 }

SOFTWARE ENGINEERING TIP
Write code to catch and handle exceptions generated by
invalid user input. Although the methods of the Exception
class are good debugging tools, they are not necessarily
appropriate to use in the final version of a program. Try to
write user-friendly error messages.

11.6 Writing and Appending to
Text Files
In the previous sections, we learned how to read
data from a text file. But how did the data get into the
file in the first place? It could be that someone put
the data into the file using a text editor, such as
Notepad in Windows, or TextEdit in MacOS. Typing
data into a file is convenient when the amount of
data is small. But very often files contain a significant
amount of data, typically written to the file by a
computer program. For instance, a web server writes
to log files to keep track of the visitors accessing the
website, how the visitors got to the website, the time
they arrived, etc. If the web server comes under
attack from a hacker, these log files can be consulted
to determine where the hacker came from, who the
hacker was, and other information.

In this section, we will learn how to write to a text file.
But before going into the details, we must distinguish
among several situations:

Creating/writing to a new file, that is, the file
does not exist.

Writing to an existing file and replacing the
contents of the file with new data.

Writing to an existing file, but keeping the
contents of the file and adding data at the
end of the file. This is called appending to
the file.

Java provides us with the necessary tools to perform
all the preceding actions. Table 11.5 summarizes
what will happen, depending on the action we
perform and whether the file already exists.

TABLE 11.5 Writing or Appending to an
Existing or New File

Operation If the file exists … If the file does not
exist …

write the current contents of the file
are deleted, and writing starts
at the beginning of the file

the file is created
and writing starts at
the beginning of the
file

append data is added to the end of
the file, keeping the existing
contents

the file is created
and writing starts at
the beginning of the
file

11.6.1 Writing to Text Files
The data that we write to files can be primitive data
types, such as ints, doubles, or booleans, or even
objects, such as Strings.

FileWriter, a subclass of the Writer class, is designed
to write characters to a file. It has several
constructors, one of which takes a file name and a
mode as its two arguments. The boolean mode
variable specifies whether we are writing (false) or
appending (true) to the file.

The PrintWriter class is designed for converting
basic data types to characters and writing them to a
text file. The PrintWriter class provides print and
println methods for all primitive data types, as well as
for Strings and objects, that is, it calls the toString
method of the object’s class. The print method writes
the argument value to the file, whereas the println
method writes the argument value to the file followed
by a newline character. The constructors and method
APIs are shown in Table 11.6.

TABLE 11.6 Useful Classes, Constructors,
and Methods for Writing to a Text File

Classes, Constructors, and Methods for Writing to a Text File
Class Constructors Exceptions

thrown

FileWriter FileWriter(String

filename, boolean

mode)

IOException

constructs a FileWriter

object from a String

representing the name
of a file; if mode is
false, we will write to
the file; if mode is true,
we will append to the
file

PrintWriter PrintWriter(Writer

wr)

None

constructs a PrintWriter

object from the Writer

object wr

Method APIs

Classes, Constructors, and Methods for Writing to a Text File
PrintWriter void print(int i)

void print(double d

)

void print(char c)

void print(boolean

b)

.. .

void println(int i

)

void println(double

d)

.. .

writes the argument to
a text file

None

PrintWriter void close() None

releases the resources
associated with the
PrintWriter object

Example 11.5 shows how we can use the FileWriter
and PrintWriter classes to write Strings and primitive
data types to a text file named ItalianFlag.txt. We
write data for the Italian flag that can later be read
and drawn using the DrawAGIF example.

EXAMPLE 11.5 Writing Strings and
Primitive Data Types to a Text File

 1 /* Writes a GIF encoding to a file

 2 Anderson, Franceschi

 3 */

 4

 5 import java.io.*;

 6

 7 public class WriteFlagToFile

 8 {

 9 private static final int HEIGHT = 10;

10

11 public static void main(String [] args)

12 {

13 try

14 {

15 FileWriter fw = new FileWriter(

"ItalianFlag.txt", false);

16 PrintWriter pw = new PrintWriter(fw);

17 pw.println(30); // width of GIF

18 // write HEIGHT lines of color and pixels

data

19 for (int i = 0; i < HEIGHT; i++)

20 {

21 pw.print(10); // 10 green pixels

22 pw.print(' '); // white space character

23 pw.print(0.0); // red color component

24 pw.println(" 1.0 0.0"); // green and

blue color components

25

26 pw.println("10 1.0 1.0 1.0"); // 10

white pixels

27 pw.println("10 1.0 0.0 0.0"); // 10 red

pixels

28 }

29

30 pw.close();

31 }

32

33 catch (IOException ioe)

34 {

35 System.out.println(ioe.getMessage());

36 }

37 }

38 }

Line 15 instantiates a FileWriter object to write to the
file ItalianFlag.txt. The FileWriter constructor could
throw an IOException. Our code catches that
exception at lines 33–36. This is the only catch block
because the methods of the PrintWriter class do not
throw exceptions.

Line 16 instantiates a PrintWriter object, which we
will use to write to the file. At lines 17–28, using the
PrintWriter object pw, we call the methods print and
println, passing various String and primitive data type
arguments (int, char, and double) to be written to the

file. When we want a newline character appended to
the output, we call println, rather than print.

On line 30, we close the file. Although calling the
close method is optional when we are reading a file,
it is essential to call the close method when we are
writing to a file. Closing the file flushes any buffered
data to the output file. If we omit calling the close
method, we may find that the file is empty when the
program ends.

After this program is executed, the file ItalianFlag.txt
will contain the data shown in Figure 11.10. Because
we wrote all the output to the file ItalianFlag.txt, there
is no output to the console.

Figure 11.10
The ItalianFlag.txt file after running Example 11.5

30

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

10 0.0 1.0 0.0

10 1.0 1.0 1.0

10 1.0 0.0 0.0

11.6.2 Appending to Text Files
Appending text to a file is similar to writing text; the
only difference is that the second argument of the
FileWriter constructor is true, instead of false.

Example 11.6 shows how the FileWriter and
PrintWriter classes can be used in a Java program to
append text to our file named ItalianFlag.txt.

EXAMPLE 11.6 Appending to a
Text File

 1 /* Appends to a file

 2 Anderson, Franceschi

 3 */

 4

 5 import java.io.*;

 6 import java.util.*;

 7

 8 public class AppendToFlagFile

 9 {

10 static final int PIXELS = 10;

11

12 public static void main(String [] args)

13 {

14 int lines = 0;

15 Scanner scan = new Scanner(System.in);

16 boolean goodInput = false;

17

18 do

19 {

20 try

21 {

22 // prompt for input; expected value is an

int

23 System.out.print("Enter a number of

lines (20 to 50) "

24 + "to append > ");

25 lines = scan.nextInt();

26 if (lines >= 20 && lines <=50)

27 goodInput = true;

28 }

29

30 catch (InputMismatchException ime)

31 {

32 // consume invalid data left in input

stream

33 String garbage = scan.nextLine();

34 System.out.print("You did not enter an

integer; "

35 + "please enter an

integer > ");

36 }

37 } while (!goodInput);

38

39 try

40 {

41 FileWriter fw = new FileWriter(

"ItalianFlag.txt", true);

42 PrintWriter pw = new PrintWriter(fw);

43 // append lines of color and pixels data

for this flag

44 for (int i = 0; i < lines; i++)

45 {

46 pw.println(PIXELS + " 0.0 1.0 0.0"); //

PIXELS green pixels

47 pw.println(PIXELS + " 1.0 1.0 1.0"); //

PIXELS white pixels

48 pw.println(PIXELS + " 1.0 0.0 0.0"); //

PIXELS red pixels

49 }

50 pw.close();

51 }

52

53 catch (IOException ioe)

54 {

55 System.out.println(ioe.getMessage());

56 }

57 }

58 }

COMMON ERROR TRAP
Opening a file for writing will cause the existing file
data to be deleted. If you intend to add new data to a
file while maintaining the original contents, open the
file for appending.

Example 11.6 is similar to Example 11.5. The major
difference is that when we instantiate the FileWriter
object (line 41), the second argument is true, which
means that we will append to the file ItalianFlag.txt. If
the file ItalianFlag.txt exists, we will start writing at
the end of its current contents, whereas if the file
does not exist, it will be created. In this program, we
ask the user how many lines he or she wants to
append to the file. At lines 18–37, we loop until the
user inputs an integer whose value is between 20

and 50, inclusive. We use a boolean variable,
goodInput, to monitor the validity of the value
entered by the user. As long as goodInput is false
(line 37), we keep asking the user for a new value. If
the user does not enter an integer, we execute the
catch block and flush the input stream (lines 32–33).
If we instead leave the invalid user input in the input
stream, we would attempt to read that invalid user
input again at line 25 at the next iteration of the loop.
If the user enters an integer, we test that the value is
between 20 and 50 at line 26. If the input is valid, we
change goodInput to true and exit the loop.

If the ItalianFlag.txt file is the one that was created
by Example 11.5, we can use two approaches to
check if we did append to the file when we ran this
program: We can open the file in Notepad and check
that it contains the extra lines. We can also run
Example 11.4 again, using the newly created file,
and we can verify that the drawing is larger than
before.

11.7 Reading Structured Text Files
Sometimes a text file is organized so that each line
represents data related to a particular record or
object. For instance, an airline company could have
data stored in a file where each line represents a
flight segment, with the following comma-separated
data:

flight number

origin airport

destination airport

number of passengers

average ticket price

Such a file could contain the following data:

AA123,BWI,SFO,235,239.5

AA200,BOS,JFK,150,89.3

AA900,LAX,CHI,201,201.8

...

As we read the file, we should parse each line, that
is, separate the line into the individual pieces of data
(flight number, origin airport, etc.), called tokens. In
this case, the comma is the delimiter; that is, a

comma separates one token from the next. We will
store the tokens from each line into a corresponding
FlightRecord object.

11.7.1 Parsing a String Using
Scanner
In addition to accepting input from the console and
text files, Scanner can also be used to parse Strings,
that is, to separate Strings into tokens.

A constructor of the Scanner class, which takes a
String to parse, is shown in Table 11.7.

TABLE 11.7 Useful Constructor and Method
of the Scanner Class for Parsing a String

Constructor Exceptions
thrown

Scanner(String source) None

constructs a Scanner object that produces
tokens from the specified String

Method API

Return
value

Method name and argument list

Scanner useDelimiter(String

pattern)

None

sets this Scanner object’s delimiters based on
the specified pattern

Scanner’s default delimiters are the white space
characters. We can specify different delimiters
through the useDelimiter method (also shown in
Table 11.7), which accepts as its argument a String
representing a regular expression. Regular
expressions allow us to specify a pattern against

which to match sequences of characters using
standard characters as well as meta-characters,
which have special meanings. Further discussion of
regular expressions is outside the scope of this book.
For our purposes, we can specify a delimiter
consisting of a single or multiple specific characters
as a simple String argument for the useDelimiter
method. For example, to parse a String like
AA123,BWI,SFO,235,239.5, we call the useDelimiter
method and pass a comma as its argument.

Example 11.7 shows how the Scanner class can be
used in a Java program to parse a String.

EXAMPLE 11.7 Demonstrating
How to Parse a String with the
Scanner Class

 1 /* Demonstrating how to parse a String with the

Scanner class

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6 import java.util.InputMismatchException;

 7 import java.util.NoSuchElementException;

 8

 9 public class UsingScannerToParseAString

10 {

11 public static void main(String [] args)

12 {

13 String flightRecord1 =

"AA123,BWI,SFO,235,239.5";

14

15 try (Scanner parse = new Scanner(

flightRecord1))

16 {

17 // set the delimiter to a comma

18 parse.useDelimiter(",");

19

20 System.out.println(parse.next()); //

flight number

21 System.out.println(parse.next()); //

origin airport

22 System.out.println(parse.next()); //

destination airport

23 System.out.println(parse.nextInt()); //

number of passengers

24 System.out.println(parse.nextDouble());

// average ticket price

25 }

26

27 catch (InputMismatchException ime)

28 {

29 System.out.println("Error in data format"

);

30 }

31

32 catch (NoSuchElementException nse)

33 {

34 System.out.println("No more tokens");

35 }

36

37 catch (IllegalStateException ise)

38 {

39 ise.printStackTrace ();

40 }

41 }

42 }

At line 15, the Scanner object parse is instantiated
using the constructor with a String argument,
flightRecord1, the String that we want to tokenize
(See line 13). At lines 17–18, we call the
useDelimiter method to set the delimiter to a comma.

At lines 20–24, we call the next, nextInt, and
nextDouble methods to retrieve the five tokens of
flightRecord1 and process them, echoing them to the
console. Since we know the format of the String
flightRecord1, we can call the appropriate method
based on the data type we expect to find at that
position in the String. Although these methods throw
exceptions, these exceptions are unchecked
exceptions and thus the try and catch blocks are not
mandatory. The nextInt, nextDouble, … methods will
throw an InputMismatchException if the token
retrieved cannot be converted to the expected data
type. They will throw a NoSuchElementException if
there are no more tokens to retrieve. Finally, they will
throw an IllegalStateException if the Scanner object
has been closed. We catch all these exceptions at
lines 27–40, from the most specific to the most
general and in the order in which they are most likely
to be thrown.

REFERENCE POINT
You can read more about the Scanner class at
www.oracle.com/technetwork/java.

When the program in Example 11.7 runs, it will
produce the output shown in Figure 11.11.

http://www.oracle.com/technetwork/java

If we want to process all the tokens as Strings with a
loop construct, we can call the hasNext method to
check if there are more tokens to process as in the
following:

while (parse.hasNext())

 System.out.println(parse.next());

Eventually, when all tokens have been retrieved, the
hasNext method returns false, which causes us to
exit the while loop.

11.7.2 Reading Structured Data
Using Scanner
Let’s say that we have a file named flights.txt
containing many flight records, and we want to read
the data into variables. Suppose that each line in the
file is in the same format as the flightRecord1 String
in Section 11.7.1; that is, the file looks like the
following:

AA123,BWI,SFO,235,239.5

AA200,BOS,JFK,150,89.3

AA900,LAX,CHI,201,201.8

...

where each line represents a flight segment with the
following comma-separated data: flight number,
origin airport, destination airport, number of
passengers, and average ticket price.

Figure 11.11
Output from Example 11.7

AA123

BWI

SFO

235

239.5

First, we build a class called FlightRecord,
encapsulating a flight record as reflected by the data
in the file. Each line read from the file will be parsed
and used to instantiate a FlightRecord object. Since
we do not know how many lines (i.e., how many
flight records) are in the file, we place all the flight
records into an ArrayList object as opposed to a
fixed-length array.

Our simplified FlightRecord class is shown in
Example 11.8. It has only a constructor (lines 17–35)
and the toString method (lines 37–49).

EXAMPLE 11.8 The FlightRecord
Class

 1 /* The FlightRecord class

 2 Anderson, Franceschi

 3 */

 4

 5 import java.text.DecimalFormat;

 6

 7 public class FlightRecord

 8 {

 9 public static final DecimalFormat MONEY

10 = new DecimalFormat(

"$###.00");

11 private String flightNumber; // ex. = AA123

12 private String origin; // origin

airport; ex. = BWI

13 private String destination; // destination

airport; ex. = SFO

14 private int numPassengers; // number of

passengers

15 private double avgTicketPrice; // average

ticket price

16

17 /** Constructor

18 * @param flightNumber flight number

19 * @param origin origin airport

20 * @param destination destination airport

21 * @param numPassengers number of passengers

22 * @param avgTicketPrice average ticket price

23 */

24 public FlightRecord(String flightNumber,

25 String origin,

26 String destination,

27 int numPassengers,

28 double avgTicketPrice)

29 {

30 this.flightNumber = flightNumber;

31 this.origin = origin;

32 this.destination = destination;

33 this.numPassengers = numPassengers;

34 this.avgTicketPrice = avgTicketPrice;

35 }

36

37 /** toString

38 * @return flight number, origin, destination,

39 * number of passengers, and average

ticket price

40 */

41 @Override

42 public String toString()

43 {

44 return "Flight " + flightNumber

45 + ": from " + origin

46 + " to " + destination

47 + "\n\t" + numPassengers + "

passengers"

48 + "; average ticket price: "

49 + MONEY.format(avgTicketPrice);

50 }

51 // accessors, mutators, and other methods ...

52 }

Example 11.9 shows our client class, which reads
the file flights.txt, parses each line using Scanner,
then instantiates a FlightRecord object and adds it to
the ArrayList named listFlightRecords.

EXAMPLE 11.9 Demonstrating
How to Read Structured Data from
a File

 1 /* Reading structured data from a text file

 2 Anderson, Franceschi

 3 */

 4

 5 import java.io.File;

 6 import java.io.FileNotFoundException;

 7 import java.util.Scanner;

 8 import java.util.InputMismatchException;

 9 import java.util.ArrayList;

10

11 public class ReadFlights

12 {

13 public static void main(String [] args)

14 {

15 // instantiate ArrayList to hold

FlightRecord objects

16 ArrayList<FlightRecord> listFlightRecords =

17 new

ArrayList<FlightRecord>();

18

19 try

20 {

21 Scanner file = new Scanner(new File(

"flights.txt"));

22

23 while (file.hasNext()) // test for the

end of the file

24 {

25 // read a line

26 String stringRead = file.nextLine();

27

28 // process the line read

29 Scanner parse = new Scanner(stringRead

);

30 parse.useDelimiter(",");

31 String flightNumber = parse.next();

32 String origin = parse.next();

33 String destination = parse.next();

34

35 try

36 {

37 int numPassengers = parse.nextInt(

);

38 double avgTicketPrice =

parse.nextDouble();

39

40 FlightRecord frTemp = new

FlightRecord(

41 flightNumber, origin,

destination,

42 numPassengers,

avgTicketPrice);

43

44 // add FlightRecord obj to

listFlightRecords

45 listFlightRecords.add(frTemp);

46 }

47

48 catch (InputMismatchException ime)

49 {

50 System.out.println("Error in flight

record: "

51 + stringRead + "; record

ignored");

52 }

53 }

54

55 // release resources associated with

flights.txt

56 file.close();

57 }

58

59 catch (FileNotFoundException fnfe)

60 {

61 System.out.println("Unable to find

flights.txt");

62 }

63

64 catch (Exception ioe)

65 {

66 ioe.printStackTrace();

67 }

68

69 // print the FlightRecords read

70 for (FlightRecord flight :

listFlightRecords)

71 System.out.println(flight);

72 }

73 }

Lines 5–9 import the classes needed for input,
parsing, and exception handling, as well as
ArrayList. The FlightRecord class is also used in this
program, but is assumed to be in the same folder as
the ReadFlights class.

In this example, we instantiate two Scanner objects:
one to read the lines from the file into a String and a
second Scanner object to parse the String.

With the first Scanner object (instantiated on line 21),
we use the nextLine method to read one line at a
time (line 26). We provide catch blocks for both
FileNotFoundException (lines 59–62) and Exception
(lines 64–67). The Scanner constructor can throw a
FileNotFoundException and the File constructor can
throw a NullPointerException. Both
FileNotFoundException and NullPointerException
are subclasses of Exception. Remember that when
an exception occurs, the catch blocks are scanned,
in order, for a match between the catch block
parameter and the type of exception that occurred.
Because the FileNotFoundException is a subclass of
Exception, a FileNotFoundException will also match
a catch block for an Exception. Therefore, we need

to put the catch block for the FileNotFoundException
before the catch block for Exception. This way, if the
file does not exist, the exception will match the first
catch block, which handles the
FileNotFoundException, and we will be able to
output a meaningful message for the user. If the File
constructor throws a NullPointerException, which we
don’t expect to happen, that will match the catch
block for Exception and we print the stack trace.

As we read each line from the file, we instantiate a
second Scanner object (line 29) and pass the data
we extract as our arguments to the FlightRecord
constructor to instantiate a FlightRecord object (lines
40–42).

The FlightRecord object is then added to the
ArrayList listFlightRecords at lines 44–45. The
ArrayList listFlightRecords is declared and
instantiated at lines 15–17, before the try block so
that listFlightRecords is available for printing the
FlightRecord objects at lines 69–71, after we finish
reading the file. If the flights.txt file contains the data
shown in Figure 11.12, the program will produce the
output shown in Figure 11.13.

Figure 11.12
Contents of flights.txt

AA123,BWI,SFO,235,239.5

AA200,BOS,JFK,150,89.3

AA900,LAX,CHI,201,201.8

Figure 11.13
Output from ReadFlights.java

Flight AA123: from BWI to SFO

235 passengers; average ticket price: $239.50

Flight AA200: from BOS to JFK

150 passengers; average ticket price: $89.30

Flight AA900: from LAX to CHI

201 passengers; average ticket price: $201.80

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie with a step-by-step illustration of
reading from and writing to a text file. Click on
the link to start the movie.

Skill Practice
with these end-of-chapter questions

11.15.1 Multiple Choice Exercises

Questions 1, 2, 4, 5, 6, 7, 8, 9

11.15.2 Reading and Understanding Code

Questions 12, 13, 14, 15, 17, 18, 19, 20,
21, 22, 23

11.15.3 Fill In the Code

Questions 24, 25, 26, 28, 29, 30, 31, 32,
33

11.15.4 Identifying Errors in Code

Questions 34, 35, 36

11.15.5 Debugging Area

Questions 37, 38, 39, 40, 41, 42

11.15.6 Write a Short Program

Questions 43, 44, 45, 46, 47, 48, 50, 51

11.8 Programming Activity 1:
Reading from a Structured Text
File
In this activity, you will read from a text file using an
end-of-file controlled while loop performing this
activity:

Read a text file containing transaction
items for a bank account. Loop through
all the transaction items and calculate
the new balance of the bank account.
Assume that we do not know the
number of transaction items (i.e., lines)
in the file.

The framework will display the current transaction
and current balance so that you can check the
correctness of your code as the program executes.

Figure 11.14
Animation Showing a $200 Check and the New
Balance

For example, Figure 11.14 demonstrates the
animation: We are currently scanning a check for the
amount of $200.00. The original balance was $0.00
and the new balance is −$200.00. Ideally, this is not
your bank account.

Instructions
In this chapter’s folder in the supplied code, you will
find the Programming Activity 1 folder. Copy the
contents of the folder onto a folder on your disk.

Open the file transactions.txt with a text
editor. You will see that each line contains a
transaction name and transaction amount
separated by a colon, as shown in Figure
11.15.

Figure 11.15
Contents of the transactions.txt File

Check # 13 :-200.00

Check # 14 :-100.00

Withdrawal June 12 :-200.00

Withdrawal June 17 :-400.00

Withdrawal June 23 :-100.00

Deposit :4000.00

Deposit :100.00

Something else :-1000.00

Check # 16 :-500.00

Check # 15 :-100.00

Note that the transaction amounts are
positive or negative. For instance:

A check or a withdrawal has a negative
amount.

A deposit has a positive amount.

An unknown transaction has either a
positive or negative amount.

Now open the AccountingDrawing.java
file. Search for five asterisks (*****) to find
the balanceCheckBook method where
you will add your code. The method
header has already been coded for you.
Write the code to read all the transactions
from the file transactions.txt, process
each transaction against the account, and
calculate the balance after all the
transactions in that file have been
processed.

The code for the balanceCheckBook
method is shown in Example 11.10.

EXAMPLE 11.10 The
balanceCheckBook Method in
Accounting Drawing.java

 public void balanceCheckBook()

 {

 // ***** Write the body of this method *****

 //

 // Using a while loop, read the file

transactions.txt

 // The file transactions.txt contains money

 // transactions between you and your bank

 //

 // You will need to call the method animate

inside

 // the body of the loop reading the file contents

 //

 // The animate method takes 3 arguments:

 // a String, representing the type of

transaction

 // a double, representing the transaction

money amount

 // a double, representing the new checkbook

balance

 // So if these 3 variables are:

 // transactionName, currentAmount, and

balance,

 // then the call to animate will be:

 //

 // animate(transactionName, currentAmount,

balance);

 //

 // You should make that call in the body of your

while

 // loop, after you have updated the checkbook

balance

 //

 //

 // end of student code

 //

 }

Begin with a checkbook balance of 0.00.

To process the transactions, you will need to
read one line at a time from the
transactions.txt file and parse the String that
you retrieve. You can use the Scanner class
for this. The delimiter will be a colon. Then
process the transaction; you do not need to
check the type of transaction. Just add the
amount of the transaction to the checkbook
balance. Adding a negative transaction
amount will decrease the balance, as
expected. Be sure to use try/catch blocks
where appropriate.

After you have processed each transaction,
call the animate method. This method
belongs to the AccountingDrawing class, so
you will call animate without using an object

reference. The API of the animate method is
the following:

public void animate(String

currentTransaction,

 double currentAmount,

 double currentBalance)

As you can see, the animate method takes
three arguments: currentTransaction is the
transaction name (“Deposit,” for example),
currentAmount is the amount of the
transaction (-45.00, for example), and
currentBalance is the current balance of the
checkbook. Assuming that you have a String
variable called transactionName, a double
variable called amount, and another double
called balance, a call to animate will look like
the following:

animate(transactionName, amount, balance);

When you call animate, the window will
display the current transaction graphically. It
will also display the transaction amount (red
if negative, blue if positive), and the current
checkbook balance (in black). By adding the
previous checkbook balance to the current
transaction amount, you will be able to

determine if your program is working
correctly.

When you reach the end of the file, print the
final balance and write it to a file named
balance.txt.

To test your code, compile and run the
AccountingApplication.java application file.

If you have time …

Modify the file transactions.txt by deleting or
adding transactions manually with a text
editor. Run the program again and check that
your code still gives the correct result.

Using a text editor, modify the file
transactions.txt by entering a positive
amount to all transactions. Change your
balanceCheckBook method so that it
determines which transactions are positive
and which are negative. Run the program
again and check that your code still gives the
correct result.

Troubleshooting
If your method implementation does not animate or
animates incorrectly, check these items:

Verify that you coded the call to animate at
the proper time.

Verify that you coded the condition for exiting
the loop correctly.

Verify that you coded the body of the loop
correctly.

DISCUSSION QUESTIONS
1. What exceptions can occur during this program?
2. Explain why we use the Scanner class.

11.9 Streams
Streams were introduced with Java 8 to support
aggregate sequential and parallel operations on a
collection of elements. The Stream interface
(java.util.stream package) specifies functionality to
perform those operations on a collection of objects. It
uses generics, so we need to specify the type of
object that a Stream will be working on. The java.util
.stream package includes more specialized stream
interfaces such as IntStream, DoubleStream, or
LongStream. Streams cannot directly access
individual elements and thus are designed for
performing computations on all or a subset of their
elements.

A Stream computation goes through a stream
pipeline. A stream pipeline includes a source of
elements that is first converted into a Stream; then
zero or more operations are performed on those
elements, for example filtering or selecting, resulting
in another Stream. A final operation, for example
counting or summing, is then performed, producing a
result. Table 11.8 lists some of the methods of the
Stream interface.

TABLE 11.8 Selected Methods of the Stream
Interface

Return value Method and description

long count()

returns the number of elements in this
Stream

Stream filter(Predicate<? super T>

predicate)

returns a Stream made of the elements of
this Stream that satisfy predicate

Optional min(Comparator<? super T>

comparator)

returns the minimum element of this
Stream using the comparator

Optional max(Comparator<? super T>

comparator)

returns the maximum element of this
Stream using the comparator

DoubleStream mapToDouble(ToDoubleFunction <?

super T > mapper)

returns a DoubleStream made up of the
elements resulting from applying mapper

to the Stream elements; mapToInt and
mapToLong are similar methods

Let’s take a closer look at how we can use these
methods, for example the filter method. If we want to
process only the data in the Stream that meets some
condition, we can use the Predicate interface in the
java.util.function package. The Predicate interface
uses generics and allows us to test if the data meets

a condition. The filter method accepts a parameter of
type Predicate<? super T>. That means the data
type of the Stream being tested can be of class T or
a superclass of T. Thus, if cityPredicate tests if a
String meets some condition and cityStream is an
existing Stream of type String, we can call the filter
method as follows:

cityStream = cityStream.filter(cityPredicate);

The Predicate interface has only one abstract
method, test. Table 11.9 shows the test method as
well as the abstract methods of the DoublePredicate,
Comparator, and ToDoubleFunction functional
interfaces. Note that except for DoublePredicate, all
these functional interfaces use generics. If we want
cityPredicate to filter Strings that start with the letter
B, we can implement the test method of the
Predicate interface as shown in Example 11.11.

TABLE 11.9 Methods of the Predicate,
DoublePredicate, Comparator, and
ToDoubleFunction Interfaces

Interface Abstract method
Predicate boolean test(T t)

tests t and returns true or false.

DoublePredicate boolean test(double d)

tests d and returns true or false.

Comparator int compare(T t1, T t2)

compares t1 and t2 for order.

ToDoubleFunction double applyAsDouble(T t)

converts t to a double and returns
that value.

EXAMPLE 11.11 Implementing the
Predicate Interface
 1 /* Predicate testing whether a String starts

with B

 2 Anderson, Franceschi

 3 */

 4 import java.util.function.*;

 5

 6 public class StartWithBPredicate<T> implements

Predicate<T>

 7 {

 8 public boolean test(T t)

 9 {

10 if (!(t instanceof String))

11 return false;

12 else

13 {

14 String s = (String) t;

15 return s.charAt(0) == 'B';

16 }

17 }

18 }

Below is how we can use the StartWithBPredicate
test method to filter our Stream:

StartWithBPredicate<String> cityPredicate

 = new StartWithBPredicate<String>();

cityStream = cityStream.filter(cityPredicate);

Because the Predicate interface contains only one
abstract method that must be implemented, it is a
functional interface. Thus, we can use a lambda
expression to replace the code above, as well as
the code in Example 11.11, in a single statement as
follows:

cityStream = cityStream.filter(city -> city.charAt(

0) == 'B');

Lambda expressions, introduced in Java version 8,
can be used only with functional interfaces, which
are interfaces that have only one abstract method to
implement. A lambda expression contains the
following elements:

A comma-separated list of parameters
enclosed in parentheses

The data types of the parameters may be
omitted. The parentheses may also be
omitted if there is only one parameter (in the
above example, city is the parameter).

The arrow token, ->

A method body, which can be a single
expression or a block enclosed in curly
braces

If the body of the method consists of a single
expression, the JVM evaluates the
expression and returns its value (in the
above example, the JVM returns the value of
the expression city.charAt(0) ==
‘B’) . As an alternative, we can use a return
statement, but that requires curly braces.

After we have filtered the Stream, we may want to
perform a final operation, such as counting. In this
example, we count how many cities in the cities.txt
file start with the letter B. After filtering the Stream,
we call the count method, which returns a result, as
follows:

long count = cityStream.count();

Because the filter method returns a Stream
reference, we can chain the method calls as follows:

long count = cityStream.filter(city -> city.charAt(

0) == 'B') .count();

Before processing a Stream, we need to create one.
Table 11.10 shows some classes and methods that

can be used for that purpose. The stream method of
the ArrayList class, inherited from the Collection
interface, returns a Stream consisting of the
elements in the ArrayList. To create a Stream from
the contents of a file, we can call the static lines
method of the Files class and pass a Path argument
for that file. The Path interface and the Paths and
Files classes are all in the java.nio.file package. A
Path can be obtained for a file by calling the static
get method of the Paths class. As shown, the get
method accepts a variable number of arguments for
specifying folders in the path to the filename; if the
file is located in the current folder, we just pass the
name of the file. We can combine the two method
calls in one statement as follows:

COMMON ERROR TRAP
Do not confuse the Path interface with the Paths
class. They work together but are different.

TABLE 11.10 Useful Classes and Methods
for Creating a Stream

Class Method Exceptions thrown
Paths static Path

get(String

first, String…

more)

InvalidPathException

returns a Path

constructed
with the String

parameters.

Files static

Stream<String>

lines(Path p

)

IOException,

SecurityException

reads all the
lines from p
and returns
them as a
Stream.

ArrayList Stream

stream()

returns a
Stream

consisting of
the elements
in this
ArrayList.

Stream<String> cityStream = Files.lines(Paths.get(

"cities.txt));

Example 11.12 shows how we can use Streams to
perform some aggregate operations on the contents
of two files, cities.txt and expenses.txt, shown in
Figures 11.16 and 11.17.

We count the number of cities that begin with B in
cities.txt and calculate the total of the values that are
greater than 0.0 in expenses.txt.

Figure 11.16
The cities.txt File

Paris

Baltimore

Seattle

San Francisco

Boston

Los Angeles

Madrid

Barcelona

Buenos Aires

Figure 11.17
The expenses.txt File

1100.50

-100.48

200.39

150.00

At lines 19–21, we build a Stream using the contents
of the cities.txt file. At lines 22–24, we compute how
many cities start with the letter B. We output that
count at line 25.

At lines 27–29, we build a Stream using the contents
of the expenses.txt file. At lines 30–34, we select the
positive doubles from that Stream and calculate a
sum. We output that total using a currency format at
line 35. At line 32, we call the mapToDouble method
in order to convert the Stream of Strings to a
DoubleStream. Since ToDoubleFunction is a
functional interface, we use the lambda expression

data -> Double.parseDouble(data)

as the argument of mapToDouble. We then call the
filter method of the DoubleStream interface at line
33, which accepts a DoublePredicate parameter. Our
predicate test determines whether the cost is greater

than 0.0. Since DoublePredicate is also a functional
interface, we use the lambda expression

cost -> cost > 0.0

as the argument of filter. At line 34, we call the sum
method with the filtered DoubleStream in order to
sum all its elements. Both the filter and sum methods
are shown in Table 11.11.

TABLE 11.11 The filter and sum Methods of
the DoubleStream Interface

Return value Method and description
DoubleStream filter(DoublePredicate predicate

)

returns a DoubleStream made of the
elements of this DoubleStream that
satisfy predicate.

double sum()

returns the sum of the elements in this
DoubleStream.

EXAMPLE 11.12 Processing
Streams

 1 /* Reading file data into a Stream and

processing it

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.io.IOException;

 6 import java.nio.file.*;

 7 import java.text.NumberFormat;

 8 import java.util.stream.Stream;

 9

10 public class FilterAndProcessStream

11 {

12 public static void main(String [] args)

13 {

14 NumberFormat money =

NumberFormat.getCurrencyInstance();

15 String cityFile = "cities.txt";

16 String expenseFile = "expenses.txt";

17 try

18 {

19 // build a Stream using cities.txt

20 Stream<String> cityStream =

21 Files.lines(Paths.get(cityFile));

22 // select cities starting with a B and count

them

23 long count = cityStream.filter(city ->

city.charAt(0) == 'B')

24 .count();

25 System.out.println("Number of cities

starting with B: " + count);

26

27 // build a Stream using expenses.txt

28 Stream<String> numberStream =

29 Files.lines(Paths.get(expenseFile));

30 // select positive costs and add them up

31 double sum =

32 numberStream.mapToDouble(data ->

Double.parseDouble(data))

33 .filter(cost -> cost > 0.0)

34 .sum();

35 System.out.println("\nTotal expenses are "

+ money.format(sum));

36 }

37

38 catch (InvalidPathException ipe)

39 {

40 System.out.println(ipe.getMessage());

41 }

42

43 catch (IOException ioe)

44 {

45 System.out.println("Could not find file: "

+ ioe.getMessage());

46 }

47

48 catch (SecurityException se)

49 {

50 System.out.println(se.getMessage());

51 }

52 }

53 }

Figure 11.18 shows the output of Example 11.12.

Figure 11.18
Output of Example 11.12

There are 4 cities starting with B

Total expenses are $1,450.89

11.10 Reading Formatted Open
Data from a Remote Location
More and more organizations open their data to the
general public, and to programmers in particular. In
this section, we show how to access data located on
a remote server, parse the data, convert the data to
a Stream, and process the Stream.

11.10.1 Accessing Remote Data
The city of Baltimore, Maryland, opens a lot of its
data to the public. For this example, we have chosen
to retrieve and process data on polling places. The
data is located at the following Uniform Record
Locator (URL):

https://data.baltimorecity.gov/api/views/u7bw-

gha5/rows.json?accessType=DOWNLOAD

In order to access the data, we use the URL and
Scanner classes. Some of their constructors and
methods are listed in Table 11.12. The code
sequence below shows how we can access and read
the data. The String resource stores the name of the
URL where the data source we want to process is
located. We first create and instantiate a URL object
using the URL of the resource that we want to
access. If the resource’s URL does not have proper
syntax, the URL constructor throws a
URLMalformedException. With the URL reference,
we then call the openStream method, which returns
an InputStream reference and will throw an
IOException if there is no resource at that URL. We
catch both exceptions. We now can read data from
the remote resource with the Scanner named
dataSource.

TABLE 11.12 Useful Classes, Constructors,
and Methods for Accessing Remote Data

Class Constructor or
method

Exceptions thrown

URL URL(String

url)

constructs a
URL object.

MalformedURLException

will be thrown if url is not
a properly formed URL.

URL InputStream

openStream()

creates and
returns an
InputStream for
this URL

IOException

Scanner Scanner(

InputStream is

)

constructs a
Scanner object
that can read
from the
InputStream is

.

String resource =

"https://data.baltimorecity.gov/api/views/"

 + "u7bw-gha5/rows.json?

accessType=DOWNLOAD";

try

{

 URL url = new URL(resource);

 InputStream is = url.openStream();

 Scanner dataSource = new Scanner(is);

 ..

}

catch (MalformedURLException murle)

{

 ..

}

catch(IOException ioe)

{

 ..

}

11.10.2 JSON Formatting and
Parsing
Many open data files are formatted in XML or JSON.
XML stands for eXtended Markup Language. It is
similar to HTML except that tags are user-defined
instead of predefined. JSON stands for JavaScript
Object Notation and is based on JavaScript syntax.
JavaScript is an interpreted language that typically
runs inside a browser. The JSON format is often the
format of choice for transferring data over the
Internet between a client and a server. The file that
we access in Example 11.13 is a JSON-formatted
file. A JSON string includes two data structures:

A JSON array

A JSON object, representing a mapping of
key/value pairs

Those two data structures can be nested. A JSON
array is a list of comma-separated values enclosed
in square brackets. A JSON object is enclosed in
curly braces and includes a comma-separated list of
key/value pairs. A colon separates a key from its
associated value. Keys are strings enclosed in
quotes. Values can be strings, numbers, true, false,
null, an object, or an array.

Here are some examples of valid JSON strings:

{ "email":"jane45@gmail.com", "age": 21 }

{ "states": { "MD":"Maryland", "NY":"New York",

"CA":"California" } }

["New York", "London", "Buenos Aires"]

{ "countries": ["USA", "China", "Brazil"] }

The first JSON string is a JSON object that contains
two key/value pairs.

The second JSON string is a JSON object that
contains one key/value pair. The key

states maps to a value that is a JSON object itself,
containing three key/value pairs.

The third JSON string is a JSON array that contains
three values.

The fourth JSON string is a JSON object that
contains one key/value pair. The key

countries maps to a JSON array that contains three
values.

In order to parse a JSON string, we can use the
JSONObject and JSONArray classes of the org.json
package. Some of their constructors and methods
are listed in Table 11.13. The org.json package does
not come as part of the standard JDK distribution

and needs to be downloaded. After you download
the org.json package, either place it in the folder
where the example is located, or, preferably, update
the CLASSPATH environment variable to include the
folder where the package is located.

TABLE 11.13 Useful Classes, Constructors,
and Methods for Parsing a JSON String

Class Constructor or
method

Exceptions thrown

JSONObject JSONObject(

String json)

constructs a
URL

JSONException

will be thrown if json

cannot be parsed
into a JSONObject

.

JSONArray JSONArray

getJSONArray(

String key)

gets and
returns the
JSONArray for
key

JSONException

will be thrown if the
mapping for key

does not exist or
does not result in a
JSONArray.

int length()

returns the
number of
values in this
JSONArray

JSONArray

getJSONArray(

int index)

returns the
JSONArray at
index

JSONException

will be thrown if
index is invalid or
there is no
JSONArray at that
index.

dataType

getDataType(

int index)

returns the
value at that
index. The data
type can be a

JSONException

will be thrown if
index is invalid or
the value at index is
not compatible with
the expected return
value.

primitive data
type or String.

Figure 11.19 shows sample contents of the data at
the above URL. The JSON string contains the keys
meta and data. The meta values describe the data
and contain some aggregated values. We will use
the value mapped to the key data, which is a JSON
array that itself contains 291 JSON arrays (shown in
red). The zip codes of the polling places, located at
index 11 of those arrays, are shown in green.
Assuming that we have read the entire data set into
a String named json, we can use the following code
sequence to retrieve the zip code of the polling place
at index i within the array of polling places:

Figure 11.19
Sample JSON Content Listing Polling Places for
Baltimore

{

 "meta" : {

 ...

 },

 "data" : [[1, "6F093AEC-7C4C-4E6C-BCB1-

56982E1DACA2", 1,

1323860520, "393202", 1323860520, "393202", "

{\n}", "Hampstead

Hill Academy", "School No. 47", "1", "21224",

"46", "3",

"8", "6", "1", "1", "Primary", ["

{\"address\":\"500 Linwood

Avenue\",\"city\":\"Baltimore\",\"state\":\"MD\

",\"zip\":\"\"}",

"39.28596538", "-76.5758974", null, false]]

, [2, "697EBA1A-E68F-47B0-9A84-1005F2F89204",

2, 1323860520,

"393202", 1323860520, "393202", "{\n}", "Engine

House No.

5", "Engine House No. 5", "2", "21231", "46",

"3", "8",

"6", "1", "1", "Primary", ["

{\"address\":\"2120 Eastern

Avenue\",\"city\":\"Baltimore\",\"state\":\"MD\

",\"zip\":\"\"}",

"39.28596212", "-76.58637911", null, false]]

...

, [291, "BC775625-F29F-4B7C-8453-

9DB0F53057FC", 291, 1323860520,

"393202", 1323860520, "393202", "{\n}", "St.

Leo's Church

Hall", "St. Leo's Church Hall", "3", "21202",

"46", "3",

"8", "6", "1", "1", "Primary", ["

{\"address\":\"225 Exeter

Street\",\"city\":\"Baltimore\",\"state\":\"MD\

",\"zip\":\"\"}",

"39.2873401", "-76.60104623", null, false]]

]

}

// json is a String that contains the data in Figure

11.19

JSONObject jsonObject = new JSONObject(json);

JSONArray dataJsonArray = jsonObject.getJSONArray(

"data");

// get the JSONArray at index i

JSONArray pollPlaceJsonArray =

dataJsonArray.getJSONArray(i);

// retrieve the zip code of the current polling

place

String currentZipCode =

pollPlaceJsonArray.getString(11);

First, we create and instantiate a JSONObject using
the String json. With it, we call the getJSONArray
method, passing the key data. The resulting
JSONArray, dataJsonArray, is a JSONArray of 291
JSONArrays. We retrieve the JSONArray at index i
by calling the getJSONArray method and passing i.
The resulting JSONArray, pollPlaceJsonArray,
contains the data for that polling place. The zip code
for that polling place is located at index 11 and is
stored as a String. We call the getString method,
passing 11 to retrieve the zip code.

11.10.3 Reading, Parsing,
Streaming, and Processing
Remote Data
Example 11.13 shows how we can read remote data,
then parse it and process it. At lines 11–12, we
declare a String storing the URL resource that we
want to access. At lines 16–18, we create a URL for
that String, an InputStream for the URL, and a
Scanner ready to read from that InputStream. At
lines 21–25, we read all the lines from the data
source and accumulate them into a String named
json. At lines 27–28, we convert json to a
JSONObject and retrieve the value mapped to the
key data, which is a JSONArray containing 291
JSONArrays. Because one JSONArray is used to
describe each polling place in Baltimore, calling the
length method of the JSONArray class at line 29
gives us the number of polling places in Baltimore.

At lines 32–43, we loop through the JSONArray
dataJsonArray collecting the zip code into the
zipCodes ArrayList of Strings, which we declare and
instantiate at line 33. At line 36, we retrieve the
JSONArray for the current polling place. At line 38,
we retrieve its zip code, which is located at index 11
in the JSONArray. Sometimes open data contains
erroneous or invalid data, and we want to process
only valid data. Thus, we test if the zip code is invalid
(not five characters) at line 39 and add it to the

ArrayList at line 42 only if it is valid. This is called
cleaning the data.

At lines 45–51, we convert the ArrayList to a Stream
and compute the lowest and highest zip codes using
the compareTo method of the String class, assigning
those values to minZip and maxZip.

The min and max methods of the Stream interface
(previously shown in Table 11.8) accept a parameter
of a class that implements the Comparator interface.
As shown in Table 11.9, the only abstract method of
Comparator, which uses generics, is:

int compare(T t1, T t2)

Inside the compare method, we specify how two
elements are compared. The min and max methods
use that specification to compute the minimum and
the maximum of a list of elements. We retrieve the
zip codes as Strings, so we want to specify that the
min and max methods should use the compareTo
method of the String class to compare the zip codes.

Comparator is a functional interface, so we can use
the following lambda expression as the argument of
min and max:

(t1, t2) -> ((String) t1).compareTo((String

) t2)

The min and max methods return an Optional
reference. Optional is a class that uses generics. An
Optional object may or may not contain a non-null
value. We can use the isPresent method to test if
there is a non-null value and the get method to
retrieve the value if it exists; both methods are
shown in Table 11.14. Using the above lambda
expression, we could retrieve the maximum zip code
as follows:

TABLE 11.14 Useful Methods of the
Optional Class
boolean isPresent()

returns true if there is a value present, false otherwise.

T get()

returns the value in this Optional; if there is no value, throws a
NoSuchElementException.

Optional maxZipOptional = zipCodes.stream().max(

 (t1, t2) -> ((String) t1).compareTo((

String) t2));

String maxZip = (String) maxZipOptional.get();

Note that in order to keep this example simple, we
do not call the isPresent method before we call the

get method. Calling isPresent would make the code
more robust, however.

When we want to implement the Comparator
interface and specify the method of another class,
we can use the following double colon notation in
place of a lambda expression:

ClassName::methodName

Because we want to use the compareTo method of
the String class, we write:

String::compareTo

Thus, in order to retrieve the highest zip code, we
write the following statement at lines 49–51:

String maxZip = zipCodes.stream()

 .max(String::compareTo)

 .get();

After we have collected the zip codes, we ask the
user to enter a zip code that is between the lowest
and highest zip codes at lines 53–57. At lines 59–64,
we compute and output the number of polling places
in that zip code.

EXAMPLE 11.13 Reading, Parsing,
and Processing Remote Data

 1 import java.io.*;

 2 import java.net.*;

 3 import java.util.*;

 4 import org.json.*;

 5

 6 public class PollingPlaces

 7 {

 8 public static void main(String [] args)

 9 {

10 final int ZIP_CODE_DIGITS = 5;

11 String resource =

"https://data.baltimorecity.gov/api/views/"

12 + "u7bw-gha5/rows.json?

accessType=DOWNLOAD";

13

14 try

15 {

16 URL url = new URL(resource) ;

17 InputStream is = url.openStream();

18 Scanner dataSource = new Scanner(is);

19 String json = "";

20 String s = null;

21 while (dataSource.hasNext())

22 {

23 s = dataSource.nextLine();

24 json += s;

25 }

26

27 JSONObject jsonObject = new JSONObject(

json);

28 JSONArray dataJsonArray =

jsonObject.getJSONArray("data");

29 System.out.println("There are " +

dataJsonArray.length()

30 + " polling places in

Baltimore");

31

32 // Build ArrayList of zip codes

33 ArrayList<String> zipCodes = new

ArrayList<String>();

34 for (int i = 0; i < dataJsonArray.length(

); i++)

35 {

36 JSONArray pollPlaceJsonArray =

dataJsonArray.getJSONArray(i);

37 // Clean up data, discard bad zip codes

38 String currentZip =

pollPlaceJsonArray.getString(11);

39 if (currentZip.length() !=

ZIP_CODE_DIGITS)

40 System.out.println("Discarding invalid

code " + currentZip);

41 else

42 zipCodes.add(currentZip);

43 }

44

45 // Retrieve min and max zip codes

46 String minZip = zipCodes.stream()

47 .min(

String::compareTo)

48 .get();

49 String maxZip = zipCodes.stream()

50 .max(

String::compareTo)

51 .get();

52

53 // Ask user to enter a valid zip code

54 Scanner scan = new Scanner(System.in);

55 System.out.print("\nPlease enter a zip

code between "

56 + minZip + " and " +

maxZip + " > ");

57 String zip = scan.next();

58

59 // Retrieve number of polling places in

that zip code

60 long count = zipCodes.stream()

61 .filter(zipCode ->

zipCode.equals(zip))

62 .count();

63 System.out.println("There are " + count

64 + " polling places in the " + zip + "

zip code");

65 }

66

67 catch (MalformedURLException murle)

68 {

69 System.out.println(murle.getMessage());

70 }

71

72 catch (IOException ioe)

73 {

74 System.out.println(ioe.getMessage());

75 }

76

77 catch (JSONException e)

78 {

79 System.out.println(e.getMessage());

80 }

81 }

82 }

Figure 11.20 shows the output of Example 11.13
when the user enters the zip code 21218.

Figure 11.20
Output of Example 11.13

There are 291 polling places in Baltimore

Discarding invalid code

Discarding invalid code

Discarding invalid code

Discarding invalid code

Discarding invalid code

Discarding invalid code

Discarding invalid code

Please enter a zip code between 21201 and 21239

> 21218

There are 28 polling places in the 21218 zip

code

11.11 Reading and Writing Objects to a
File
Throughout this text, we have emphasized the benefits of
object-oriented programming. Just as we can write text and
primitive data types to a file and subsequently read them from
the file, we can also write objects to a file and subsequently
read them as objects. This is convenient for two reasons:

We can write these objects directly to a file without
having to convert the objects to primitive data types or
Strings.

We can read the objects directly from a file, without
having to read Strings and convert these Strings to
primitive data types in order to instantiate objects.

To read objects from a file, the contents of the file must have
been written as objects. So our first order of business should be
to learn how to write objects to a file.

11.11.1 Writing Objects to Files
The ObjectOutputStream class, coupled with the
FileOutputStream class, provides the functionality to write
objects to a file. The FileOutputStream class, a subclass of
OutputStream, is used to write raw data, rather than characters,
to a file.

The ObjectOutputStream class, also a subclass of
OutputStream, provides a convenient way to write objects to a
file. Its writeObject method takes one argument—the object to
be written.

The classes, constructors, and methods we will use are shown
in Table 11.15.

TABLE 11.15 Useful Classes, Constructors, and
Methods for Writing Objects to a File

Classes, Constructors, and Methods for Writing Objects to a File
Class Constructor Exceptions thrown

FileOutputStream FileOutputStream(

String

filename, boolean

mode)

constructs a
FileOutputStream

object from a String

representing the
name of a file; if
mode is false, we will
write to the file; if
mode is true, we will
append to the file

FileNotFoundException

ObjectOutputStream ObjectOutputStream(

OutputStream

out)

creates an
ObjectOutputStream

that writes to the
OutputStream out

IOException

Method API

ObjectOutputStream void writeObject(

Object o)

writes the object
argument to a file.
That object must be
an instance of a class
that implements the
Serializable interface.
Otherwise, a run-time
exception will be
generated

IOException,

NotSerializableException,

InvalidClassException

We will use the FlightRecord class developed earlier in the
chapter. However, in order for an object to be written to a file
(and later to be read using the ObjectInputStream class), that
object must implement the Serializable interface. When an
object implements the Serializable interface, its state can be
converted to a byte stream to be written to a file, such that this
byte stream can be converted back into a copy of the object
when read from the file. Therefore, our modified FlightRecord2
class will implement Serializable, which is in the java.io
package.

The Serializable interface has no methods to implement. As a
result, the only things we have to worry about when writing a
class implementing Serializable are the following:

the import statement

the class header showing the class implements
Serializable

Example 11.14 shows the FlightRecord2 class. This class is
identical to the FlightRecord class except that it imports
Serializable (line 5), implements the Serializable interface (line
8), and includes accessors for the origin and numPassengers
instance variables (we use these accessors when we read
objects from the file and process the results).

EXAMPLE 11.14 The FlightRecord2 Class

 1 /* The FlightRecord2 class

 2 Anderson, Franceschi

 3 */

 4

 5 import java.io.Serializable;

 6 import java.text.DecimalFormat;

 7

 8 public class FlightRecord2 implements Serializable

 9 {

10 public static final DecimalFormat MONEY

11 = new DecimalFormat("$###.00");

12 private String flightNumber; // ex. = AA123

13 private String origin; // origin airport; ex. =

BWI

14 private String destination; // destination airport;

ex. = SFO

15 private int numPassengers; // number of passengers

16 private double avgTicketPrice; // average ticket price

17

18 /** Constructor

19 * @param flightNumber flight number

20 * @param origin origin airport

21 * @param destination destination airport

22 * @param numPassengers number of passengers

23 * @param avgTicketPrice average ticket price

24 */

25 public FlightRecord2(String flightNumber,

26 String origin,

27 String destination,

28 int numPassengers,

29 double avgTicketPrice)

30 {

31 this.flightNumber = flightNumber;

32 this.origin = origin;

33 this.destination = destination;

34 this.numPassengers = numPassengers;

35 this.avgTicketPrice = avgTicketPrice;

36 }

37

38 /** toString

39 * @return flight number, origin, destination,

40 * number of passengers, and average ticket price

41 */

42 @Override

43 public String toString()

44 {

45 return "Flight " + flightNumber

46 + ": from " + origin

47 + " to " + destination

48 + "\n\t" + numPassengers + " passengers"

49 + "; average ticket price: "

50 + MONEY.format(avgTicketPrice);

51 }

52

53 /** getOrigin method

54 * @return origin

55 */

56 public String getOrigin()

57 {

58 return origin;

59 }

60

61 /** getNumPassengers method

62 * @return numPassengers

63 */

64 public int getNumPassengers()

65 {

66 return numPassengers;

67 }

68

69 // other accessors, mutators, and other methods …

70 }

Example 11.15 shows how the FileOutputStream and
ObjectOutputStream classes can be used in a Java program to
write FlightRecord2 objects to a file named objects.

EXAMPLE 11.15 Writing Objects to a File

 1 /* Demonstrating how to write objects to a file

 2 Anderson, Franceschi

 3 */

 4

 5 import java.io.FileOutputStream;

 6 import java.io.ObjectOutputStream;

 7 import java.io.FileNotFoundException;

 8 import java.io.IOException;

 9

10 public class WritingObjects

11 {

12 public static void main(String [] args)

13 {

14 // instantiate the objects

15 FlightRecord2 fr1 = new FlightRecord2("AA31", "BWI",

"SFO",

16 200, 235.9);

17 FlightRecord2 fr2 = new FlightRecord2("CO25", "LAX",

"JFK",

18 225, 419.9);

19 FlightRecord2 fr3 = new FlightRecord2("US57", "IAD",

"DEN",

20 175, 179.5);

21

22 try

23 {

24 FileOutputStream fos = new FileOutputStream

25 ("objects", false);

26 // false means we will write to objects

27

28 ObjectOutputStream oos = new ObjectOutputStream(fos);

29

30 // write the objects to the file

31 oos.writeObject(fr1);

32 oos.writeObject(fr2);

33 oos.writeObject(fr3);

34

35 // release resources associated with the objects file

36 oos.close();

37 }

38

39 catch (FileNotFoundException fnfe)

40 {

41 System.out.println("Unable to write to objects");

42 }

43

44 catch (IOException ioe)

45 {

46 ioe.printStackTrace();

47 }

48 }

49 }

Lines 14–20 declare and instantiate three FlightRecord2
objects that we will write to the objects file.

Lines 24 and 25 instantiate a FileOutputStream object for
writing to the objects file, then line 28 instantiates an
ObjectOutputStream object, which we will use to write the
FlightRecord2 objects to the file.

At lines 30–33, using the ObjectOutputStream object oos, we
call the writeObject method, passing the three FlightRecord2
objects we instantiated. The writeObject method takes a
Serializable object as its parameter, here a FlightRecord2

object, and writes it to the file in such a way that the stream of
bytes can be read using the readObject method from the
ObjectInputStream class. Both the ObjectOutputStream
constructor and the writeObject method can throw an
IOException, which will be caught at line 44.

After this program is executed, the objects file will contain a
representation of the three FlightRecord2 objects.

One more note about writing objects to files: A file containing
objects can be quite large. Not only does the object data get
written to the file, but also the name of the class, a description
of each data field, and other information needed to reconstruct
the objects when the file is subsequently read.

The writeObject method, however, does not write any static
class variables to the file. Thus, we may consider declaring any
constants as static, if appropriate. For example, the object file
we create in Example 11.15 by writing three FlightRecord
objects is 240 bytes long. If we had not declared the constant
DecimalFormat object MONEY as static in the FlightRecord2
class, the size of the object file would be 2,137 bytes!

Similarly, the writeObject method does not write to the file any
instance variable that is declared to be transient. Thus, we can
also save space in the file by declaring an instance variable as
transient. An instance variable is a good candidate to be
declared transient if we can easily reproduce its value, or if the
variable has a value of 0 at the time the file is created. For
example, suppose our FlightRecord had an additional instance
variable named totalRevenue, which stored a value we
calculated by multiplying avgTicketPrice by numPassengers.
Because we can easily recalculate the value for totalRevenue,

we can declare it as transient; then, that instance variable will
not be written to the object file.

We declare an instance variable as transient by inserting the
keyword transient between the access modifier and the data
type of the instance variable, as in the following syntax:

accessModifier transient dataType instanceVariableName

Thus, the following declaration would declare the totalRevenue
instance variable as transient:

SOFTWARE ENGINEERING TIP
To save disk space when writing to an object file, declare the
class data as static or transient where appropriate.

private transient double totalRevenue;

11.11.2 Reading Objects from Files
Reading objects from a file somewhat parallels writing objects
to a file.

The class ObjectInputStream, a subclass of InputStream,
coupled with FileInputStream, provides the functionality we
need. The FileInputStream class is used to read streams of
binary data from a file.

ObjectInputStream is designed to read objects from a file. The
readObject method, which does not take any arguments, reads
the next object from the file and returns it. Because the
readObject method returns a generic Object, we must type cast
the returned object to the appropriate class. When the end of
the file is reached, the readObject method throws an
EOFException. This is in contrast to the Scanner class, which
provides the hasNext method to test whether the end of the file
has been reached.

The classes, constructors, and methods discussed previously
are shown in Table 11.16.

TABLE 11.16 Useful Classes, Constructors, and
Methods for Reading Objects from a File

Classes, Constructors, and Methods for Reading Objects from a File
Class Constructors Exceptions thrown

FileInputStream FilelnputStream(

String filename)

FileNotFoundException

constructs a
FilelnputStream

object from a String

representing the
name of a file

ObjectInputStream ObjectlnputStream(

InputStream in)

IOException

constructs an
ObjectlnputStream

from the
InputStream in

Method API

ObjectInputStream Object readObject(

)

reads the next
object and returns
it. The object must
be an instance of a
class that
implements the
Serializable

interface. When the
end of the file is
reached, an
EOFException is
thrown

IOException,

ClassNotFoundException,

EOFException

Example 11.16 shows how these FileInputStream and
ObjectInputStream classes can be used in a Java program to
read objects from a file. We assume that the file objects

contains FlightRecord2 objects, as written in the previous
section.

EXAMPLE 11.16 Reading, Filtering, and
Processing Objects

 1 /* Demonstrating how to read objects from a file

 2 Anderson, Franceschi

 3 */

 4

 5 import java.io.*;

 6 import java.util.ArrayList;

 7

 8 public class ReadingObjectsIntoStream

 9 {

10 public static void main(String [] args)

11 {

12 ArrayList<FlightRecord2> flights = new

ArrayList<FlightRecord2>();

13 try

14 {

15 FileInputStream fis = new FileInputStream ("objects"

);

16 ObjectInputStream ois = new ObjectInputStream (fis

);

17

18 try

19 {

20 while (true)

21 {

22 // read object, type cast returned object to

FlightRecord2

23 FlightRecord2 temp = (FlightRecord2)

ois.readObject();

24

25 // add the FlightRecord2 object read to flights

26 flights.add(temp);

27 }

28 } // end inner try block

29

30 catch (EOFException eofe)

31 {

32 System.out.println("End of the file reached");

33 }

34

35 catch (ClassNotFoundException cnfe)

36 {

37 System.out.println(cnfe.getMessage());

38 }

39

40 finally

41 {

42 System.out.println("Closing file");

43 ois.close();

44 }

45 } // end outer try block

46

47 catch (FileNotFoundException fnfe)

48 {

49 System.out.println("Unable to find objects");

50 }

51

52 catch (IOException ioe)

53 {

54 ioe.printStackTrace();

55 }

56

57 // calculate number of flights originating from BWI

58 long count =

59 flights.stream()

60 .filter(flight -> flight.getOrigin().equals(

"BWI"))

61 .count();

62 System.out.println("There are " + count + " flights

from BWI");

63

64 // calculate average number of passengers on all

flights

65 double avgNumPassengers =

66 flights.stream()

67 .mapToInt(FlightRecord2::getNumPassengers)

68 .average()

69 .getAsDouble();

70 System.out.println("Average number of passengers: "

71 + avgNumPassengers);

72 }

73 }

Lines 5–6 import the needed classes from the java.io and
java.util package. The ClassNotFoundException class is part of
the java.lang package and does not need to be imported.

Line 15 associates a FileInputStream object with the objects
file, and line 16 instantiates an ObjectInputStream object for
reading the objects from the file.

The while loop, from lines 20 to 27, reads and adds each object
in the file to the ArrayList flights, declared and instantiated at
line 12. We continue reading until the readObject method
throws an EOFException, which transfers control to the catch
block (lines 30–33). Thus, our condition for the while loop is

while (true)

In that catch block, we print a message that the end of the file
was detected. Given this while loop construction, we do not
need a priming read. Inside the while loop, we read an object,
then print it. When the end of the file is detected, the statement
adding the current object to flights (line 26) will not be executed.

On line 23, we read an object from the file and assign it to the
FlightRecord2 object reference temp. Because the readObject
method returns an Object, we need to type cast the return value
to a FlightRecord2 object. The readObject method can also
throw a ClassNotFoundException or an IOException, which will
be caught at lines 35 or 52, respectively.

Because an EOFException will occur when the end of the file is
reached, the EOFException catch block will always execute in a
normal program run. Thus, any code following the while loop in
the try block will not execute. To close the objects file, we use
nested try/catch blocks. The inner try block (lines 18–28)
encloses the while loop; its associated catch blocks handle the
EOFException and ClassNotFoundException. The outer try
block (lines 13–45) encloses the instantiations of the
FileInputStream and ObjectInputStream objects, the inner try
block, and the finally block where we close the file (line 43). We
can close the file in the finally block because the ois object
reference, declared in the outer try block, is visible (that is, in
scope) inside the finally block.

The catch blocks following the outer try block handle any
FileNotFoundException and any other IOExceptions that occur
in the inner or outer try blocks.

It is important to place the catch clause with the EOFException
ahead of the catch clause with the IOException; otherwise, the

EOFException catch block will never be reached because
EOFException is a subclass of IOException, and therefore will
match an IOException catch block.

Figure 11.21 shows the console output when this program is
executed. Note that after we read the last object in the file and
we try to read another object, the code executes the catch
block for the EOFException, then the finally block.

Figure 11.21
Output of Example 11.16

End of the file reached

Closing file

There are 2 flights from BWI

Average number of passengers: 200.0

At lines 57–62, we chain several method calls to compute and
output the number of flights originating from BWI. After creating
a Stream from flights at line 59, we filter the Stream and keep
only the objects whose origin airport is BWI. The call to the filter
method at line 60 is similar to the ones in Example 11.12.
Again, we can use a lambda expression because Predicate, the
parameter of the filter method, is a functional interface. This
time, each element of the Stream is a FlightRecord2 reference
rather than a String. With the flight reference, we call the
getOrigin method and compare the returned value to BWI as
our filtering criteria. At line 61, we call the count method to
retrieve the number of elements in the Stream resulting from
the filtering operation.

At lines 64–71, we again chain several method calls to compute
and output the average number of passengers for all flights.
The call to the mapToInt method at line 67 is similar to the call
to mapToDouble in Example 11.12. We define each element in
the resulting Stream as the result of the call to the
getNumPassengers, using the same syntax as in Example
11.13 when we call the min and max methods. We then
calculate the average of that resulting Stream at line 68 and
retrieve the result as a double at line 69.

Skill Practice
with these end-of-chapter questions

11.15.1 Multiple Choice Exercises

Questions 10, 11

11.15.2 Reading and Understanding Code

Question 16

11.15.3 Fill In the Code

Question 27

11.15.6 Write a Short Program

Questions 49

11.15.8 Technical Writing

Question 63

11.12 Programming Activity 2:
Reading Objects from a File
In this activity, you will read objects from a file and
perform this activity:

Read an object file containing bank
account transaction objects. Loop
through all the objects and calculate
the new balance of the bank account.
Assume that we do not know the
number of transaction items, that is,
objects, in the file.

Notice that this activity is identical to Programming
Activity 1, except that the transactions you will read
are stored in the file as objects.

The framework will display the current transaction
and current balance so that you can check the
correctness of your code as the program executes.

For example, Figure 11.22 demonstrates the
animation: We are currently scanning a check
transaction for the amount of $500.00. The original
balance was $0.00 and the new balance is now –
$500.00.

Figure 11.22
Animation of a $500 Check and the New Balance

Task Instructions: Reading from the
transactions.obj File
In this chapter’s folder in the supplied code, you will
find a Programming Activity 2 folder. Copy the
contents of the folder onto a folder on your computer.

Open the AccountingDrawing.java file.
Search for five asterisks (*****) to find the
balanceCheckBook method where you will
add your code. The method header has been
coded for you. Write the code to read the
transactions from the transactions.obj file,
and calculate the balance after all the
transactions in that file have been executed.
This program first writes Transaction objects
to the file transactions.obj; that code is
provided. You need to code the body of the
balanceCheckBook method in order to read
that file. Example 11.17 shows the student
code section of the AccountingDrawing.java
file.

EXAMPLE 11.17 The
balanceCheckBook Method

public void balanceCheckBook()

{

 //

 // ***** Student writes the body of this method

 //

 // Using a while loop, read the file

transactions.obj

 // The file transactions.obj contains transaction

objects

 //

 // You will need to call the animate method inside

 // the body of the loop that reads the objects

 //

 // The animate method takes 2 arguments:

 // a Transaction object, representing the

transaction

 // a double, representing the new checkbook

balance

 // So if these two variables are transaction and

balance,

 // then the call to animate will be:

 //

 // animate(transaction, balance);

 //

 // You should make that call in the body of your

while

 // loop, after you have updated the checkbook

balance

 //

 //

 //

 //

 // end of student code

 //

}

Begin with a checkbook balance of 0.00.

To process the transactions, you will need to
read one Transaction object at a time from
the transactions.obj file; you will retrieve the
transaction amount using the getAmount
method of the Transaction class. The API for
that method is:

public double getAmount()

Then process the transaction; you do not
need to check the type of transaction. Just
add the amount to the checkbook balance.

After you have processed each transaction,
call the animate method. This method
belongs to the Accounting class, so you will
call animate without using an object
reference. The API of the animate method is
the following:

public void animate(Transaction

currentTransaction,

 double currentBalance)

As you can see, the animate method takes
two arguments:

currentTransaction is the current
Transaction object

currentBalance is the current balance of
the checkbook

Assuming that you have a Transaction object
reference called transactionObject and a
double called balance, a call to animate will
look like the following:

animate(transactionObject, balance);

When you call animate, the window will
display the current transaction graphically. It
will also display the transaction amount (red
if negative, blue if positive) and the current
checkbook balance (in black). By adding the
previous checkbook balance to the current
transaction amount, you will be able to
compute the current checkbook balance and
check that your program is correct.

Stop reading from the file when you reach
the end of the file. You will need to set up a

catch block to handle the EOFException that
occurs when the end of the file is reached.

To test your code, compile and run the
AccountingApplication.java application file.

If you have time …

Modify the initialize method of the
AccountingController class, adding another
transaction. Run the program again and
verify that your code still yields the correct
result. To add another transaction, you could,
for instance, write this code:

Withdrawal w2 = new Withdrawal(-200.00);

transactionList.add(w2);

You can add a transaction of type Check,
Withdrawal, Deposit, or UnknownTransaction
(all of which are subclasses of the abstract
class Transaction).

Troubleshooting
If your method implementation does not animate or
animates incorrectly, check these items:

Verify that you have coded the call to
animate at the proper time.

Verify that you have coded the condition for
exiting the loop correctly.

Verify that you have coded the body of the
loop correctly.

DISCUSSION QUESTIONS
1. Explain why we cannot simply read the transactions.obj

file as a text file.
2. Explain why we need to type cast each object that we

read from the file.

11.13 User-Defined Exceptions
There will be times when we want to design our own
exception class because the predefined Java
exception classes do not fit our needs.

Suppose we are interested in designing a class
encapsulating email addresses. We will call that
class EmailAddress. To keep things simple, we will
say that a legal email address is a String containing
the @ character. In order to prevent instantiation of
objects with illegal email addresses, we will design
our EmailAddress constructor so that it throws an
exception if its argument, a String, does not contain
the @ character.

To do that, we first design an exception class that
encapsulates an illegal email exception. We call our
class IllegalEmailException and we will throw an
exception when the argument to the EmailAddress
constructor does not contain the @ character. Oracle
recommends that user-defined exceptions be
checked exceptions.

More generally, when a user-defined exception class
is defined as a subclass of an existing Java
exception class, such as Exception, IOException, or
FileNotFoundException, our class inherits the

functionality of the existing exception class, which
simplifies coding the new class. We extend the
Exception class so that our exception is checked and
we can associate a specific error message with the
exception. We need to code only the constructor,
and the constructor’s job is to pass our message to
the constructor of the superclass.

Thus, the general pattern of a user-defined exception
class is:

public class ExceptionName extends

ExistingExceptionClassName

{

 public ExceptionName(String message)

 {

 super(message);

 }

}

Example 11.18 shows our IllegalEmailException
class.

EXAMPLE 11.18 The
IllegalEmailException Class
 1 /* The IllegalEmailException class

 2 Anderson, Franceschi

 3 */

 4

 5 public class IllegalEmailException extends

Exception

 6 {

 7 public IllegalEmailException(String message)

 8 {

 9 super(message);

10 }

11 }

The constructor for the class is coded at lines 7 to
10; it takes a String parameter and simply passes it
to the superclass constructor.

The pattern for a method that throws a user-defined
exception is:

accessModifier dataType methodName(parameter list)

 throws ExceptionName

{

 if (parameter list is legal)

 // process the parameter list

 else

 throw new ExceptionName("Some message here"

);

}

The message we pass to the ExceptionName
constructor will identify the type of error we detected.
When a client program catches the exception, the
client can call the getMessage method of the
exception class in order to retrieve that message.

Example 11.19 shows our EmailAddress class.

EXAMPLE 11.19 The EmailAddress
Class

 1 /* The EmailAddress class

 2 Anderson, Franceschi

 3 */

 4

 5 public class EmailAddress

 6 {

 7 public static final char AT_SIGN = '@';

 8 private String email;

 9

10 public EmailAddress(String email)

11 throws IllegalEmailException

12 {

13 if (email.indexOf(AT_SIGN) != - 1)

14 this.email = email;

15 else

16 throw new IllegalEmailException

17 ("Email address does not contain

" + AT_SIGN);

18 }

19

20 public String getHost()

21 {

22 int index = email.indexOf(AT_SIGN);

23 return email.substring(index + 1,

email.length());

24 }

25 }

We coded the constructor at lines 10–18. We test if
the constructor’s parameter, email, contains the
character AT_SIGN (a constant equal to the @
character) at line 13. If it does, we proceed normally
and initialize the instance variable email at line 14. If
it does not, we throw an IllegalEmailException with
the appropriate message at lines 16–17. In addition
to the constructor, we coded the getHost method at
lines 20–24. The getHost method returns the
substring comprising the characters of email after
AT_SIGN. Thus, for an email address of
myEmailAddress@yahoo.com, the getHost method
will return yahoo.com.

Now that we have built our own exception class and
a class including a method that throws that
exception, we are ready to use them in a client
program. This is identical to using a predefined Java
exception. Example 11.20 shows our EmailChecker
class.

mailto:myEmailAddress@yahoo.com
http://yahoo.com/

EXAMPLE 11.20 The EmailChecker
Class

 1 /* The EmailChecker class

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class EmailChecker

 8 {

 9 public static void main(String [] args)

10 {

11 Scanner scan = new Scanner(System.in);

12 System.out.print("Enter your email address >

");

13 String myEmail = scan.next();

14 try

15 {

16 EmailAddress address = new EmailAddress(

myEmail);

17 System.out.println("Your host is " +

address.getHost());

18 }

19 catch (IllegalEmailException iee)

20 {

21 System.out.println(iee.getMessage());

22 }

23 }

24 }

We ask the user to input an email address, myEmail,
at lines 12–13. We then try to instantiate the
EmailAddress object address at line 16, passing
myEmail to the constructor. If myEmail does not
contain the @ character, our EmailAddress
constructor throws an IllegalEmailException, which
we catch at line 19. In this catch block, we print the
message the EmailAddress constructor sent to the
IllegalEmailException constructor. If myEmail
contains the @ character, we continue executing
inside the try block. Figure 11.23 shows two runs of
this example; the first generates the exception, the
second completes without generating an exception.

Figure 11.23
Two Sample Runs of Example 11.20

Enter your email address > mary.jb.com

Email address does not contain @

Enter your email address > john@jb.com

Your host is jb.com

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie with a step-by-step illustration of try and
catch blocks. Click on the link to start the
movie.

Skill Practice
with these end-of-chapter questions

11.15.1 Multiple Choice Exercises

Question 3

11.15.8 Technical Writing

Question 62

CHAPTER REVIEW

11.14 Chapter Summary
Java provides exception classes so that
unexpected, illegal operations at run time
can be trapped and handled. This provides
the programmer with a tool to keep the
program running instead of terminating.

When calling a constructor or method that
throws a checked exception, we must use try
and catch blocks; otherwise, the code will not
compile.

For calls to a constructor or method that
throws an unchecked exception try and catch
blocks are optional. If try and catch blocks
are not used, the exception will be caught at
run time by the Java Virtual Machine.

When a try block assigns a value to a
variable and that variable is used after the
try/catch block, the variable must be
initialized before the try block is entered.

A variable defined inside a try block is local
to that block.

The java.io package contains classes for
input and output operations.

In order to read from a file, that file must
exist; otherwise, a FileNotFoundException
will be thrown.

When we open a file for writing, the file is
created if it does not exist. If the file already
exists, the contents of the file are deleted.

When we open a file for appending, the file is
created if it does not exist. If the file already
exists, we start writing at the end of the file.

The Scanner class in the java.util package is
helpful in parsing a String consisting of fields
separated by one or more delimiters.

The FileWriter and PrintWriter classes
provide functionality to write primitive data
types to a text file.

The Stream interface includes functionality to
perform aggregate sequential and parallel
operations on a collection of elements.

We can use the Path and Files classes to
convert file contents to a Stream. An
ArrayList can also be converted to a Stream.

Many methods of the Stream interface
accept one parameter whose type is from a
functional interface. In this case, we can use
a lambda expression when calling such a
method.

We can use the URL, InputStream, and
Scanner classes in order to read data from a
remote resource.

Data in remote sites are often formatted
using XML or JSON. The org.json package
includes classes, such as JSONObject and
JSONArray, that provide the functionality to
parse a JSON string.

Objects can be written to a file; they must be
instantiated from a class that implements the
Serializable interface.

The Serializable interface has no methods;
therefore, no additional methods need to be
implemented in a class that implements the
Serializable interface.

The FileOutputStream and
ObjectOutputStream classes provide
functionality to write objects to a file.

To avoid writing class data to a file of objects,
declare the data as static or transient, where
appropriate.

The FileInputStream and ObjectInputStream
classes provide the functionality to read
objects from a file.

The readObject method returns the object
read as an Object class reference. That
object reference must be type cast to the
appropriate class.

To define our own exception, we create a
class that extends an existing exception
class. This class will consist of a constructor
that accepts a message and passes the
message to the superclass constructor.

The method that will generate the exception
includes the throws clause in the method
header. If the invalid condition is detected,
the method throws a new object of the user-
defined exception.

11.15 Exercises, Problems, and
Projects

11.15.1 Multiple Choice Exercises
 1. Why are try/catch blocks useful?

❑ They can replace selection statements, thus saving CPU
time.

❑ try/catch blocks enable programmers to attempt to recover
from illegal situations and continue running the program.

 2. Some methods that throw an exception require try and catch
blocks, while some do not.

❑ true
❑ false

 3. What keyword is found in the header of a method that could detect
an error and generate an appropriate exception?

❑ throw

❑ throws

❑ exception

❑ exceptions

 4. When coding a try and catch block, it is mandatory to code a finally
block.

❑ true
❑ false

 5. Most input- and output-related classes can be found in the
package

❑ java.file

❑ java.inputoutput

❑ java.io

❑ java.readwrite

 6. If we open a file for reading and the file does not exist,

❑ there is a compiler error.
❑ an exception is thrown.

❑ the file will be created automatically.

 7. When we open a file for writing,

❑ we will be adding data at the end of the file.

❑ the contents of the file, if any, will be deleted.
❑ there is a run-time error if the file does not exist.

 8. When we open a file for appending,

❑ we will be adding data at the end of the file.

❑ the contents of the file, if any, will be deleted.
❑ there is a run-time error if the file does not exist.

9. In the following code located inside a try block:

Scanner file = new Scanner(
 new File("data.txt"));

❑ the code will not compile.
❑ the argument to the Scanner constructor is an anonymous

object.

❑ there will be a run-time error, even if the file data.txt exists.

10. What method can we use to convert an ArrayList to a Stream?

❑ convert

❑ stream

❑ toStream

11. Which interface must be implemented by a class whose objects
will be written to a file directly?

❑ none
❑ Serializable

❑ IO
❑ Object

11.15.2 Reading and
Understanding Code
12. Assuming the file words.txt holds the following data:

CS1 Java Illuminated

what is the output of this code sequence:

a. if the file is found?
b. if the file is not found?

try
{
 Scanner file = new Scanner(new File(
"words.txt"));

 String result = "";

 while (file.hasNext())
 {
 String s = file.next();

 result += s;
 result += " AND ";
 }
 System.out.println("result is " + result);
 file.close();

}
catch (FileNotFoundException fnfe)
{
 System.out.println("Unable to find words.txt"
);
}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

13. What is the output of this code sequence?

Scanner parse = new Scanner("A B C D");
while (parse.hasNext())
 System.out.print(parse.next());

14. What is the output of this code sequence?

Scanner parse = new Scanner("AA:BB:CC");
parse.useDelimiter(":");
while (parse.hasNext())
 System.out.println(parse.next());

15. What is the output of this code sequence?

Scanner parse = new Scanner(
"oneANDtwoANDthreeANDfour");
parse.useDelimiter("AND");
while (parse.hasNext())
 System.out.println(parse.next());

For Questions 16, 17, 18, and 19, you should
assume that the file data.txt contains the following
text:

A

B

C

A

B

A

16. What is the output of this code sequence?

try
{
 Stream<String> dataStream = Files.lines(
Paths.get("data.txt"));
 long count = dataStream.filter(letter ->
letter.charAt(0) == 'A')
 .count();
 System.out.println("count = " + count);
}

catch (InvalidPathException ipe)
{
 System.out.println(ipe.getMessage());
}
catch (IOException ioe)
{
 System.out.println(ioe.getMessage());
}
catch (SecurityException se)
{
 System.out.println(se.getMessage());
}

17. What is the output of this code sequence?

try
{
 Scanner file = new Scanner(new File("data.txt"
));

 int n = 0;
 while (file.hasNext())
 {
 String s = file.nextLine();

 if (s.equals("A"))
 n++;
 }

 System.out.println("The value of n is " + n);
 file.close();
}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

18. What is the output of this code sequence?

try
{
 Scanner file = new Scanner(new File(
"data.txt"));

 while (file.hasNext())
 {
 String s = file.nextLine();
 if (s.equals("A"))
 System.out.println("Excellent");
 else if (s.equals("B"))
 System.out.println("Good");
 else
 System.out.println("Try to do better"
);
 }
 file.close();
}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

19. What is the output of this code sequence?

try
{
 Scanner file = new Scanner(new File("data.txt"
));

 String s = "";
 while (file.hasNext())
 {
 s = file.nextLine();
 }

 if (s.equals("A"))
 System.out.println("Nice finish");

 file.close();
}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

20. The file data.txt contains the following text:

CS1

What does the file data.txt contain after this code sequence is
executed?

try
{
 FileWriter fw = new FileWriter("data.txt", true
);
 PrintWriter pw = new PrintWriter(fw);

 pw.println("Java Illuminated");

 pw.close();
}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

21. The file data.txt contains the following text:

CS1

What does the file data.txt contain after this code sequenced is
executed?

 try
 {
 FileWriter fw = new FileWriter("data.txt",
false);
 PrintWriter pw = new PrintWriter(fw);

 String s = "ABCDEFGH";

 for (int i = 0; i < s.length(); i++)
 {
 if (i % 2 == 0)
 pw.print(s.charAt(i));
 }
 pw.println();
 pw.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }

22. The file data.txt contains the following text:

CS1

What does the file contain after the following code sequence is
executed?

try
{
 FileWriter fw = new FileWriter("data.txt", true
);
 PrintWriter pw = new PrintWriter(fw);

 for (int i = 0; i < 5; i++)
 pw.println(i);
 pw.close();
}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

23. What does the file data.txt contain after the following code
sequence is executed?

try
{
 FileWriter fw = new FileWriter("data.txt",
false);
 PrintWriter pw = new PrintWriter(fw);

 int s = 0;
 for (int i = 0; i < 5; i++)
 {
 s += i;
 }
 pw.print("The result is ");
 pw.print(s);
 pw.close();
}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

11.15.3 Fill In the Code
24. This code segment reads a file named data.txt that contains one

data item per line, and outputs only the data items that are
integers. Hint: You may need to use nested try and catch blocks.

String s = "";
int n = 0;
try
{
 Scanner file = new Scanner(new File(
"data.txt"));
 while (file.hasNext())
 {
 s = file.nextLine();
 // your code goes here
 }
}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

25. This code retrieves the “C ” in the string “A-B-C-D” using Scanner
and outputs it:

Scanner parse = new Scanner("A-B-C-D");
parse.useDelimiter("-");
String s = "";
// your code goes here

System.out.println(s);

For Questions 26–29, you should assume that the
file data.txt contains the following:

Java

Illuminated:

Programming

Is Not A

Spectator

Sport

26. This code sequence reads the first two lines of the file data.txt and
outputs them to the console.

try
{
 Scanner file = new Scanner(new File(
"data.txt"));
 // your code goes here

27. This code sequence reads the file data.txt and outputs the lowest
String in lexicographic order to the console. Assume that data.txt
contains one word per line.

try
{
 Stream<String> dataStream = Files.lines(
Paths.get("data.txt"));
 // your code goes here

}
catch (InvalidPathException ipe)
{
 System.out.println(ipe.getMessage());
}
catch (IOException ioe)
{
 System.out.println(ioe.getMessage());
}
catch (SecurityException se)
{
 System.out.println(se.getMessage());
}

28. This code sequence reads the file data.txt, concatenates all the
lines with a space between them, and outputs them as:

Java Illuminated: Programming Is Not A Spectator
Sport
try
{
 Scanner file = new Scanner(new File(
"data.txt"));

 String result = "";
 // your code goes here

}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

29. This code sequence reads the file data.txt and outputs only the
lines that start with the String “Sp”. Assume that we do not know
the contents of the file before reading it.

For the current example, the output will be:

Spectator
Sport
try
{
 Scanner file = new Scanner(new File(
"data.txt"));

 String result = "";
 // your code goes here

}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

30. This code sequence loops through the array grades and writes all
its elements to the file data.txt, one per line:

int [] grades = { 98, 76, 82, 90, 100, 75 };
try
{
 FileWriter fw = new FileWriter("data.txt",
false);
 // your code goes here

}
// and your code continues here

31. This code sequence loops through the array grades, calculates the
average, and writes the average to the file data.txt:

int [] grades = { 98, 76, 82, 90, 100, 75 };
double average = 0.0;
for (int i = 0; i < grades.length; i++)
{
 // some of your code goes here

}
// and more code goes here
try
{
 FileWriter fw = new FileWriter("data.txt",
false);
 PrintWriter pw = new PrintWriter(fw);
 // and more code goes here

}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

32. This code sequence writes the values of the variables i and d to
the file data.txt, one line at a time.

int i = 45;
double d = 6.7;
try
{
 FileWriter fw = new FileWriter("data.txt",
false);
 PrintWriter pw = new PrintWriter(fw);
 // your code goes here

}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

33. This code sequence appends the value of the variable f to the file
data.txt:

float f = 13.5f;
try
{
 // your code goes here

11.15.4 Identifying Errors in Code
34. Where is the error in this code sequence?

Scanner parse = new Scanner("1 2 3");
int i = parse.next();

35. Where is the error in this code sequence?

try
{
 Scanner file = new Scanner(new File(
"data.txt"));
 String s = file.nextLine();
}
catch (ArithmeticException ae)
{
 System.out.println(ae.getMessage());
}

36. Where is the error in this code sequence?

try
{
 Scanner file = new Scanner(new File(
"data.txt"));
 file.write("Hello");
}
catch (IOException ioe)
{
 ioe.printStackTrace();
}

11.15.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
37. You coded the following in the class Test.java:

import java.io.IOException;
import java.io.File;
import java.util.Scanner;
public class Test
{
 public static void main(String [] args)
 {
 try // line 9
 {
 Scanner file = new Scanner(new
File("data.txt"));

 String stringRead = file.nextLine(
);
 System.out.println(stringRead);
 }
 }
}

At compile time, you get the following error:

Test.java:9: error: 'try' without 'catch',
'finally' or resource
declarations
 try // line 9
 ^
1 error

Explain what the problem is and how to fix it.

38. You coded the following in the class Test.java:

import java.io.IOException;
import java.io.File;
import java.util.Scanner;

public class Test
{
 public static void main(String [] args)
 {
 try
 {
 Scanner file = new Scanner(new File(
"data.txt"));

 String stringRead = file.nextLine();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 System.out.println("string read: " +
stringRead);
 // line above is 19
 }
}

At compile time, you get the following error:

Test.java:19: error: cannot find symbol
 System.out.println("string read: " +
stringRead);
 ^
symbol: variable stringRead
location: class Test
1 error

Explain what the problem is and how to fix it.

39. You coded the following in the class Test.java:

import java.io.IOException;
import java.io.File;
import java.util.Scanner;

public class Test
{
 public static void main(String [] args)
 {
 String stringRead;
 try
 {
 Scanner file = new Scanner(new
File("data.txt"));

 stringRead = file.nextLine();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 System.out.println("string read: " +
stringRead);
 // line above is line 21
 }
}

At compile time, you get the following error:

Test.java:21: error: variable stringRead might
not have been
initialized
System.out.println("string read: " + stringRead
);

^
1 error

Explain what the problem is and how to fix it.

40. You coded the following in the class Test.java:

Scanner parse = new Scanner("1 3.5 6");
try
{
 while (parse.hasNext())
 {
 int number = parse.nextInt();
 System.out.println(number);
 }
}
catch (InputMismatchException e)
{
 System.out.println("In catch block");
}

The code compiles and runs, but the result is:

1
In catch block

Explain why the catch block executes and change the data so that
all the numbers are processed.

41. In order to read from the file data.txt, you coded the following in
the Test.java class:

try
{
 Scanner file = new Scanner(new File("datatxt"
));

 String s = file.nextLine();
 System.out.println("Line read is " + s);
}
catch (IOException ioe)
{
 System.out.println(ioe.getMessage());
}

The code compiles and runs, but here is the output:

datatxt (The system cannot find the file
specified)

Explain what the problem is and how to fix it.

42. You coded the following in the class Test.java:

import java.io.*;
 public class Test
{
 public static void main(String [] args)
 {
 FileWriter fw = new FileWriter("data.txt",
false);
 PrintWriter pw = new PrintWriter(fw);

 pw.println("hi");
 pw.close();
 }
}

At compile time, you get the following error:

Test.java:7: error: unreported exception
IOException; must be
caught or declared to be thrown
 FileWriter fw = new FileWriter ("data.txt",
false);
 ^
1 error

Explain what the problem is and how to fix it.

11.15.6 Write a Short Program
43. Write a program that reads a file and writes a copy of the file to

another file with line numbers inserted.

44. In Internet programming, programmers receive parameters via a
query string, which looks like a String with fields separated by the
“&” character. Each field typically has a metadata part that
identifies the data followed by an equals sign and then the data.
An example of a query string is:

first=Mike&last=Jones&id=mike1&password=hello

Using Scanner at least once, parse a query string and output each
field on a different line after replacing the equal sign with a colon
followed by a space. For example, for the preceding sample query
string, the output should be:

first: Mike
last: Jones
id: mike1
password: hello

45. Write a program that reads a file that contains only one line; output
all the characters, one character per line.

46. Write a program that reads a file and counts how many lines it
contains.

47. Write a program that reads a text file that contains a grade (for
instance, 87) on each line. Calculate and print the average of the
grades.

48. Write a program that reads a text file and writes to a file every line
of the file separated by a blank line.

49. Modify Example 11.13 and output to the console the number of
polling places that are in schools. We can assume that we will find
that information in the String that is located two indexes before the
zip code in the same array as the zip code. If that String has the
word School in it, then we will assume that the polling place is in a
school.

50. Often websites display the visitor count (“You are visitor number
5246”). Write a program that reads a file that holds the visitor
count, outputs it, and updates the file, incrementing the visitor
count by 1.

51. Often on websites, the beginning of an article is displayed followed
by the word more and several dots (as in more…). Write a
graphical application that reads the first two lines of a file, and
displays them inside a window, adding the word more in blue
followed by three dots.

11.15.7 Programming Projects
52. Design a class that checks if a String is made of tokens of the

same data type (for this, you may only consider four data types:
boolean, int, double, or char). This class has two instance
variables: the String of data and its delimiter. Other than the
constructor, you should include a method, checkTokens, that takes
one parameter, representing the data type expected (for example,
0 could represent boolean, 1 could represent int, 2 could represent
double, and 3 could represent char). The method returns true if all
the tokens in the String are of the specified data type; otherwise, it
returns false.

53. We are interested in checking the number of times a given word
(for example, the word secret) appears in a file. You should
assume that lines do not wrap, that is, a line does not continue on
the next line. Warning: You could have letters arranged like
secsecret. Design a class that encapsulates that idea. Test it with a
client program.

54. Design a class that checks if the contents of two text files are
identical and, if not, determines how many lines are different. Lines
are different if they differ in one or more characters. Test your class
with a client program.

55. Design a class that encapsulates the contents of a text file. Include
the following methods in your class: numberOfLinesInFile,
longestLineInFile (the line number of the line containing the
maximum number of characters), shortestLineInFile, and
averageNumberOfCharactersPerLine. Test your class with a client
program.

56. Alter Example 11.7 so that Scanner will use a comma and
semicolon as delimiters. Hint: you will need to use a Pattern.

57. A file contains web addresses, one on each line. Design a class
that encapsulates the concept of counting the number of college
addresses (contains .edu), government addresses (contains .gov),
business addresses (contains .com), organization addresses
(contains .org), or other addresses. Test your class with a client
program.

58. In cryptograms, each character is encoded into another. If the text
is long enough, one can, as a strategy, use the frequency of
occurrence of each character. The most frequently occurring
character will likely be the code for an e, because e is the most
frequently used letter of the English alphabet. Design a class that
attempts to determine the relative frequency of each letter by
reading a file and keeping track of the number of times each of the
26 English alphabet characters appears. Also provide methods,
such as highestFrequencyCharacter and
lowestFrequencyCharacter. Test your class with a client program.

59. Design a class that calculates statistics on data in a file. We expect
the file to contain grades represented by integer values, one per
line. If you encounter a value that is not an integer, you should
throw an exception, print a message to the console, skip that
value, and continue processing. Store the grades that you read in
an ArrayList so that all the grades are available for retrieval. You
should also have, as a minimum, methods that return the grade
average, the highest grade, the lowest grade, and ones that return

all the grades as an array of letter grades. Test your class with a
client class.

60. Write a class encapsulating the concept of a home, assuming that
it has the following attributes: the number of rooms, the square
footage, and whether it has a basement. Write a client program
that creates five Home objects, writes them to a file as objects,
then reads them from the file as objects, outputs a description of
each object using the toString method (which the Home class
should override), and outputs the number of Home objects. When
reading the objects, you should assume that you do not know the
number of objects in the file.

61. Using Streams, output the number of the following in a Java file:
constructors, public variables or methods, private variables or
methods, static variables or methods. Assume that the words
public, private, and static can appear at most once per line. Also
output if the number of opening curly braces is equal to the
number of closing curly braces. Also assume that there can be
only one opening or closing curly brace per line at the most.

11.15.8 Technical Writing
62. Are exceptions a good thing or a bad thing? Argue both sides.

63. With respect to writing objects to and reading objects from a file,
discuss the importance of documenting your code well.

11.15.9 Group Project (for groups
of 2, 3, or more students)
64. A friend of yours owns two houses at Football City, the site of the

next Super Bowl. Your friend wants to rent those two houses for
the Friday, Saturday, and Sunday of the Super Bowl weekend.
House #1 has 3BR (3 bedrooms), 3BA (3 baths), and house #2
has 1BR, 1BA.

For this project, concurrency is not an issue; you should assume
that two customers will never access your system at exactly the
same time. You should also assume that the management-side
software and the customer-side software will never run at the
same time. We can assume that we run the management-side
software first, then the customer-side software.

This friend has asked you to build a file-based reservation system
enabling the following:

A. Management-side software:
Your friend controls the rental price and may change it every
day. He/she sends you a change file every day; this file may be
empty, in which case there are no pricing changes. If the file is
not empty, pricing has changed (for one or more houses, or for
one or more days). You are in charge of this project, and
therefore, you are in charge of specifying the file format;
however, this must be a simple text file because your friend is
not a computer person.

You do not have to simulate the act of sending the file by your
friend; you should assume that the file is a text file in your directory
and that you only need to read the data.

Your management-side software needs to read this file and update
a different file, with which you control the reservation system. You
can create your own design for the structure of that file. Of course,
prices for existing reservations cannot be changed.

Finally, your management-side software should write to a file the
status of the reservations; that is, which house is rented to whom,
when, and for what price.

B. Customer-side software:

The customer-side software allows a customer to make a
reservation. You should prompt the customer for a possible
reservation, offering whatever house is available, when, and at
what price. Do not offer a customer a house that is already
rented.
In this simple version, a customer makes and pays for the
reservation at the same time. Also, a reservation cannot be
cancelled. When a reservation is made, the customer-side
software automatically updates the file controlling the
reservations.

CHAPTER 12
Graphical User Interfaces Using
JavaFX

CHAPTER CONTENTS
Introduction
12.1 The Structure of a JavaFX Application
12.2 GUI Controls
12.3 A Simple Control: Label

12.4 Event Handling: Managing User Interactions
12.5 Text Fields and Command Buttons
12.6 Radio Buttons and Checkboxes
12.7 Programming Activity 1: Working with Buttons
12.8 Combo Boxes
12.9 Sliders
12.10 Building a GUI Programmatically
12.11 Layout Containers: Dynamically Setting Up the GUI
Using GridPane

12.12 BorderPane Layout, Animations, Sounds, and
Lambda Expressions
12.13 Nesting Components
12.14 Mouse and Touch Events
12.15 Using a List to Display a Pie Chart
12.16 Using a List to Display a Dynamic Bar Chart
12.17 Using a Style Sheet to Style the View
12.18 Programming Activity 2: Working with Layout
Containers
12.19 Chapter Summary
12.20 Exercises, Problems, and Projects

12.20.1 Multiple Choice Exercises
12.20.2 Reading and Understanding Code
12.20.3 Fill In the Code
12.20.4 Identifying Errors in Code

12.20.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM

12.20.6 Write a Short Program
12.20.7 Programming Projects
12.20.8 Technical Writing
12.20.9 Group Project

Introduction
Many applications we use every day have a Graphical User
Interface, or GUI (pronounced Goo-ey). These GUIs allow the
user to communicate to the application by entering text into
boxes; pressing buttons; or selecting items from a list, a set of
radio buttons, or checkboxes.

GUIs allow the user to drive the application by selecting the
next function to be performed, entering the needed data, or
setting program preferences, such as colors or fonts.
Applications with GUIs are usually easier to learn and use
because the interface is familiar to the user.

One way to create a GUI is to use the Swing components.
Recently, Oracle introduced JavaFX, a new approach to
making GUIs. All the classes needed to create a JavaFX
application are automatically included with Java SE; nothing
more needs to be downloaded. In this chapter, we present
some of the many JavaFX classes, along with the main
concepts associated with developing a JavaFX application.

12.1 The Structure of a JavaFX
Application
The top-level structure in a JavaFX application is the
stage, which corresponds to a window. A stage can
have one or more scenes, which are top-level
containers for nodes that make up the window
contents. A node can be a user interface control,
such as a button or a drop-down list; a layout; an
image or other media; a graphical shape; a web
browser; a chart; or a group. In this chapter, we
concentrate on user interface controls, layouts,
charts, and images.

To create a JavaFX GUI, we add nodes to a scene.
These nodes are arranged in a hierarchy, called a
scene graph, in which some nodes are children of
other nodes. The top node is called the root.

JavaFX applications can be built in several ways. If
we know which controls our interface needs and how
they should be arranged, we can use FXML, a
scripting language based on XML (Extensible
Markup Language). In this case, we create an
FXML file where we specify the layout container and
nodes and their properties. For dynamic GUIs where
the number or types of controls are determined at
runtime, we can define the number, type, properties,

and positioning of controls programmatically (that is,
through Java code).

In this chapter, we start by using FXML and use Java
code later. By defining our GUI using FXML, we
separate the GUI from the logic of the code. Also,
FXML allows nonprogrammers to contribute to a
team by defining the GUI without knowledge of
programming.

Examples 12.1 and 12.2 show the basic structure of
a JavaFX application that uses FXML.

REFERENCE POINT
You can get more information about the JavaFX
classes at Oracle’s Java website:
www.oracle.com/technetwork /java.

EXAMPLE 12.1 A JavaFX Shell
Application

 1 /* JavaFX Shell Application

 2 Anderson, Franceschi

 3 */

 4

 5 import java.net.URL;

 6 import javafx.application.Application;

 7 import javafx.fxml.FXMLLoader;

 8 import javafx.scene.layout.HBox;

 9 import javafx.scene.Scene;

10 import javafx.stage.Stage;

11

12 public class FXShellApplication extends

Application

13 {

14 @Override

15 // start is main entry point for the

application.

16 // It receives a Stage object – the main window

for the

17 // GUI application

18 public void start(Stage stage) // throws

Exception

19 {

20 try

21 {

22 // Locate the FXML resource

23 URL url

24 = getClass().getResource(

"fxml_shell.fxml");

25

26 // Load the FXML resource, instantiate root

Node;

27 // use appropriate layout class for root

Node;

28 // here we use HBox

29 HBox root = FXMLLoader.load(url);

30

31 // create a scene associated with the root

32 // and set its width and height

33 Scene scene = new Scene(root, 300, 275);

34

35 // assign the scene to the stage object

36 stage.setScene(scene);

37

38 // set title of stage (optional)

39 stage.setTitle("JavaFX Shell");

40

41 // make the stage visible

42 stage.show();

43 }

44 // The FXMLLoader load method throws an

exception if

45 // the FXML file is invalid or the URL was

not found

46 catch (Exception e)

47 {

48 e.printStackTrace();

49 }

50 }

51

52 public static void main(String [] args)

53 {

54 launch(args);

55 }

56 }

Lines 5 through 10 import the classes we need in
most applications. Notice that the JavaFX classes
are stored in packages having the prefix of javafx.

At line 12, we define our class as inheriting from the
abstract Application class, which is the entry point for
all JavaFX applications. When a JavaFX application
is launched, the runtime first calls the init method,
and then start. When the application closes its last
window or if it calls the Platform.exit method, the
runtime calls the stop method. The Application class
provides concrete implementations of the init and
stop methods, so overriding init and stop is optional.
The Application class defines the start method as
abstract, however, so we must override the start
method. Table 12.1 shows some methods of the
Application class.

Lines 14 through 50 define the start method. In line
14, we use the @Override annotation. It is good

practice to use this annotation whenever we intend
to override an inherited method. Using the
annotation causes the compiler to alert us if our
method header does not correctly override the
method in the superclass.

A lot is happening in lines 22 through 29. The FXML
file contains the definitions for our GUI components.
In order to associate the FXML file with the
application, we need to create a URL object
containing the file’s location; then we load the file as
an application resource. We inherit the getClass
method from the Object class. It returns the Class
object associated with our application. We then use
that object reference to call the getResource method
in the Class class, shown in Table 12.2.

SOFTWARE ENGINEERING TIP
Using the @Override annotation whenever you
intend to override an inherited method reduces
errors because the compiler alerts you if your
method header is not correct.

Once we have a URL for the FXML file, we call the
static load method of the FXMLLoader class, shown
in Table 12.3, to instantiate the layout and
components that we defined in our FXML file. This
method throws an IOException if the format of the

FXML file is invalid. In this example, the top-level
node is an HBox layout object, which arranges its
child nodes horizontally across the window. The root
and its children make up the scene graph. The return
value from the load method is a reference to the top-
level, or root, node in the FXML file.

TABLE 12.1 Some Methods of the
Application Class

Package javafx.application

Return value Method name and argument list
void init()

called by the JavaFX
runtime when the
application is launched.
Overriding this method is
optional.

void launch(String ...

args)

static method that launches
the application. Passes any
command-line arguments to
the application.

Application.Parameters getParameters()

returns any command-line
arguments as an
Application.Parameters

object.

void start(Stage

primaryStage)

the main entry point for
JavaFX applications. The
application places its scene
onto the primaryStage. This
abstract method needs to
be implemented.

void stop()

called when the application
signals that it is ready to
end. Overriding this method
is optional.

TABLE 12.2 The getResource Method of the
Class<T> Class

Package java.lang

Return
value

Method name and argument list

URL getResource(String resource)

returns a URL object representing the location of
the resource, or null if the resource is not found

TABLE 12.3 The load Method of the
FXMLLoader Class

Package javafx.fxml

Return
value

Method name and argument list

<T>

T

load(URL location)

static method that instantiates the nodes defined in
the FXML file specified by location and returns a
reference to the root node

After we have the resources loaded, we instantiate a
Scene object (line 33), which is the container for our
GUI content. Table 12.4 shows a constructor of the
Scene class. Some of the other Scene constructors
do not require width and height parameters. With
those constructors, the scene is sized to fit its
contents. For this scene, we specify the layout node
returned from the load method as the root, and we
size the scene to be 300 pixels wide and 275 pixels
high.

Now we are ready to set the stage, literally. Notice
that the start method receives a Stage object as a
parameter (line 18). This corresponds to the top-level
window. At line 36, we allocate our newly created
scene to the stage object. At line 39, we set the text
to appear in the title bar, and at line 42, we make the
window visible. Table 12.5 shows some useful
methods of the Stage class.

TABLE 12.4 A Constructor of the Scene
Class

Package javafx.scene
Scene(Parent root, double width, double height

)

instantiates the Scene with a top-level node of root and sets
the width and height to the pixel values specified

TABLE 12.5 Useful Methods of the Stage
Class

Package javafx.stage

Return
value

Method name and argument list

void setScene(Scene scene)

specifies the scene to be hosted by the Stage.

void setTitle(String title)

sets the text to appear in the window title bar.

void show()

makes the window visible. By default, windows
are not visible.

COMMON ERROR TRAP
Windows are hidden by default. Be sure to call the
show method at the end of the start method.
Otherwise, the window will not appear.

We placed most of the code in the start method into
a try block because several exceptions can occur. If
the getResource method of the Class class does not
find the FXML file, it returns null. This causes a
NullPointerException when the FXMLLoader load
method tries to access the file. The load method also
throws an IOException if the FXML file format is
invalid. To simplify the examples in this chapter, we
use one catch block (lines 44–49) that specifies
Exception, which is a superclass of both IOException
and NullPointerException. In the catch block, we
print the stack trace to help with debugging errors in
our applications. It is good software engineering
practice, however, in the final application to catch
each exception separately and output a meaningful
message to the user.

SOFTWARE ENGINEERING TIP
Catch each possible exception separately. If
recovering from the exception is not possible, output
a meaningful message to the user.

At lines 52 through 55, we include the main method.
Its only job is to start the application by calling the
launch method of the Application class, passing any
parameters that have been sent to the application.
An application may access these parameters using
the getParameters method.

In Example 12.2, we show a shell FXML file. In this
file, we use FXML to define the layouts and controls
that make up the GUI.

EXAMPLE 12.2 Shell FXML file:
fxml_shell.fxml
 1 <?xml version="1.0" encoding="UTF-8"?>

 2

 3 <!-- import classes -->

 4 <?import javafx.scene.layout.HBox ?>

 5

 6 <!-- use appropriate layout manager -->

 7 <HBox xmlns:fx="http://javafx.com/fxml" >

 8 <!-- define GUI components here -->

 9 </HBox>

Line 1 is the header. Like other lines that do not
specify XML elements, it begins with <? and ends
with ?>. It defines the XML version as 1.0 and the
encoding to be UTF-8, which is essentially Unicode,
except that the first 128 characters are stored as 8

bits. Lines 3, 6, and 8 are comments, which use the
same syntax as an HTML comment; that is, they
begin with <!-- and end with -->. These comments
can span more than one line.

REFERENCE POINT
You can get more information about FXML at
http://docs.oracle.com/javafx/2/get_started/jfxpub-
get_started.htm. For more information about XML,
visit http://www.w3.org/XML

At line 4 we import the HBox class because it is the
root element defined in this sample file. Similarly, we
need to import any classes referenced in the FXML
file.

At line 7, we have chosen the HBox layout class as
an example. In other applications, we put the
appropriate top-level layout class here, which
becomes the root node for our layout. Lines 7
through 9 illustrate the syntax of an element, which
we use to define the components of the GUI.

Elements begin with a start tag with the element’s
name enclosed in angle brackets (< >). Some
elements, such as the HBox definition here, have
closing tags, which are simply the element’s name
preceded by a forward slash (/), also enclosed in

http://docs.oracle.com/javafx/2/get_started/jfxpub-get_started.htm
http://www.w3.org/XML

angle brackets (line 9). Some tags, illustrated later in
this chapter, have an empty closing tag and end with
/>.

COMMON ERROR TRAP
Be sure to include an import statement for any
controls or layout containers referenced in the FXML
file. Omitting an import statement will generate an
exception when the FXML Loader loads the file.

Elements can have attributes, which further define
the element or set properties of the element.
Attribute definitions are inserted between the
element’s name and its closing tag.

The syntax for a JavaFX attribute is

attributeName = "value"

or

attributeName = 'value'

At line 7, we define an attribute for the root layout:

COMMON ERROR TRAP
Be sure to enclose attribute values in single or
double quotes. Omitting one or both quotes will
generate an exception when the FXML Loader loads
the file.

xmlns:fx="http://javafx.com/fxml"

This attribute defines the namespace for FXML
elements. A namespace prevents duplication of
variable names, called name collisions, by defining a
scope for variable names.

Figure 12.1 shows the window created when we run
FXShellApplication.java. Note that the text in the title
bar is "JavaFX Shell" as set in Example 12.1, line 39.
The window is empty because we have not added
any controls. We add some content to a window in
the next section.

FIGURE 12-1
The Window Created by FXShellApplication

12.2 GUI Controls
JavaFX provides an extensive set of classes that can be used
to add a GUI to our applications. A GUI control performs at
least one of these functions:

Displays information

Collects data from the user

Allows the user to initiate program functions

Table 12.6 lists some JavaFX classes that encapsulate GUI
controls. All classes listed in Table 12.6 belong to the package
javafx.scene.control.

Figure 12.2 shows the hierarchy of some JavaFX controls.
Recall that because of the “is a” relationship in inheritance, a
subclass object is also an object of each of its superclasses.
Thus, all the controls are a Node (an element of the scene), a
Parent (a Node that can have children controls), a Region (a
resizable container that can be styled), and a Control (a GUI
component). Along the hierarchy, each control has gained
methods and properties from its superclasses.

In our applications, we place the controls into the scene by
using layout containers, which organize the controls according
to each layout’s rules. Some of these layout containers are
shown in Table 12.7. These classes are in the
javafx.scene.layout package.

TABLE 12.6 Selected GUI Controls and Their
JavaFX Classes

Package javafx.scene.control

JavaFX
Class

Purpose

Label Displays an image or read-only text. Labels are often used to
identify the contents of TextFields.

TextField A single-line text box for accepting user input.

Button Command button that the user clicks to signal that an operation
should be performed.

RadioButton Toggle button that the user clicks to select one option in a
group.

CheckBox Toggle button that the user clicks to select or deselect 0, 1, or
more options in a group.

ComboBox List of options from which the user selects one item.

Slider Displays a set of continuous values along a horizontal or
vertical line. The user can select a value by moving the knob,
or thumb.

Figure 12.2
The Hierarchy of Some JavaFX Controls

TABLE 12.7 Commonly Used JavaFX Layout
Classes

Package javafx.scene.layout

Layout
Container

Lays out its children nodes . . .

HBox In a single horizontal row.

VBox In a single vertical column.

BorderPane With at most one child in its top, left, right, bottom, and center
positions.

GridPane In a grid of rows and columns. A child can span more than one
row or column.

StackPane In a front-to-back stack.

The hierarchy of the layout classes is shown in Figure 12.3.
Like the controls, the layout classes also inherit from Node,
Parent, and Region. Instead of inheriting from Control,
however, these classes inherit from Pane, which provides a
method for accessing all the children in the scene graph. We
use that method later in this chapter.

Figure 12.3
The Layout Classes Hierarchy

In the examples in this chapter, we set the root node of our
scenes to be one of these layouts and add controls, images,
and even other layouts as child nodes. We show how to nest
layouts in later examples in this chapter.

12.3 A Simple Control: Label
Starting with our shell JavaFX application, let’s add a
simple control to the window, a Label, and an image,
which we display through an ImageView node.
Example 12.3 shows the application code. Notice
that the code is almost identical to Example 12.1,
except for the name of the FXML file (line 22), the
title bar text (line 32), and that the root node is a
VBox layout (line 24).

EXAMPLE 12.3 Dinner.java

 1 /* Displaying a Label and image

 2 Anderson, Franceschi

 3 */

 4

 5 import java.net.URL;

 6 import javafx.application.Application;

 7 import javafx.fxml.FXMLLoader;

 8 import javafx.scene.layout.VBox;

 9 import javafx.scene.Scene;

10 import javafx.stage.Stage;

11

12 public class Dinner extends Application

13 {

14

15 @Override

16 public void start(Stage stage)

17 {

18 try

19 {

20 // find the XML resource

21 URL url

22 = getClass().getResource(

"fxml_dinner.fxml");

23 // load the XML resource and instantiate

the root node

24 VBox root = FXMLLoader.load(url);

25

26 // create a scene

27 Scene scene = new Scene(root, 350, 275);

28

29 // set the scene

30 stage.setScene(scene);

31 // set title of stage

32 stage.setTitle("What's for dinner?");

33 // show the stage

34 stage.show();

35 }

36 catch (Exception e)

37 {

38 e.printStackTrace();

39 }

40 }

41

42 public static void main(String [] args)

43 {

44 launch(args);

45 }

46 }

Again, we have an accompanying FXML file, shown
in Example 12.4. We begin this file like the shell
FXML file, with the definition of the FXML version
and encoding scheme (line 1); then we import all the
classes we reference (lines 3–5). In this file, we
define the layout to be a VBox (lines 7–12). We use
attributes to assign values to properties of the VBox
layout (line 7); we set the alignment property to

center the child nodes in the window and the spacing
property to insert 25 pixels between the nodes in the
layout.

EXAMPLE 12.4 The
fxml_dinner.fxml File
 1 <?xml version="1.0" encoding="UTF-8"?>

 2

 3 <?import javafx.scene.control.*?>

 4 <?import javafx.scene.image.*?>

 5 <?import javafx.scene.layout.*?>

 6

 7 <VBox id="root" alignment="CENTER" spacing="25" >

 8 <Label text="Sushi tonight?" textFill="BLUE" />

 9 <ImageView>

10 <Image url="@sushi.jpg" />

11 </ImageView>

12 </VBox>

At line 8, we define a Label control and use attributes
to set its text to “Sushi tonight?” and its text color
(textFill) to blue. All attribute values must be plain
text, enclosed in double quotes. If an object or
primitive value is needed, the FXML Loader performs
any necessary conversion. Thus for the text color,
we specify the attribute value as “BLUE,” and the
FXML Loader converts the text to the object
Color.BLUE.

REFERENCE POINT
To find the properties that can be set for any layout
or control, see the JavaFX class documentation.
Remember also that controls inherit properties from
their superclasses.

At lines 9 through 11, we define a second child node
as an ImageView element. We set the Image
property of the ImageView to the file “sushi.jpg” (line
10). We preface the filename with “@” to indicate
that we are specifying the filename relative to the
current folder. Thus, the file sushi.jpg is stored in the
same folder as the .java file. When this application
runs, we see the window shown in Figure 12.4.

Figure 12.4
The Window Produced by Examples 12.3 and 12.4

Skill Practice
with these end-of-chapter questions

12.20.1 Multiple Choice Exercises

Questions 1, 2, 3, 4, 5

12.20.4 Identifying Errors in Code

Question 53

12.20.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM

Questions 59, 60, 62

12.4 Event Handling: Managing
User Interactions
Now we know how to open a window in an
application, and we know how to display a label and
an image. The user, however, cannot yet interact
with our application. We need to add some
interesting GUI controls, such as text entry fields and
a button. By interacting with those controls, the user
can enter data and initiate operations in our
programs.

GUI programming uses an event-driven model, as
opposed to the procedural model of programming
that we have used thus far. By event-driven, we
mean that by using a GUI, we put the user in control
of what happens next. For example, we might
display some text entry fields, some buttons, and a
selectable list of items. Then our program “sits back”
and waits for the user to interact with the controls.
When the user presses a button or selects an item
from the list, our application responds by performing
the operation the user requested. Then the
application sits back again and waits for the user to
press another button or select another item from the
list. These user actions generate events. Thus, the
processing of our application consists of responding

to events caused by the user interacting with our GUI
controls.

When the user interacts with a GUI control, the
control fires an event. To handle that event, we
register our application’s interest in being notified
when a particular event occurs, and we provide code
—an event handler, also called a listener—to
execute when the event occurs.

JavaFX supports and encourages the Model-View-
Controller architecture for writing GUI applications.
In this architecture,

The Model manages the data of the
application and its state.

The View presents the user interface.

The Controller handles events generated by
the user and communicates those changes
to the Model, which updates its state
accordingly and communicates any changes
back to the Controller. The Controller then
updates the View to reflect those changes.

These three components can be placed in the same
or in different files.

12.5 Text Fields and Command
Buttons
Let’s illustrate event handling and the Model-View-
Controller architecture with an example that allows a
user to square or cube a number. We provide a
TextField for entering the number; two Buttons, one
for squaring the number and the other for cubing the
number; and Labels for displaying a prompt and for
displaying the squared or cubed result.

The interface we want to create is shown in Figure
12.5A. Figure 12.5B shows the window after the user
entered “3” into the TextField and clicked the “Cube”
button.

For this application, our Model, shown in Example
12.5, is minimal. It provides two static methods,
square (lines 7–14) and cube (lines 16–23), to
perform the calculations.

Figure 12.5
(A) The Initial Window (B) The Window After User
Interaction

EXAMPLE 12.5 The Model,
SimpleMath.java
 1 /* Simple Math Class

 2 Anderson, Franceschi

 3 */

 4

 5 public class SimpleMath

 6 {

 7 /** square method

 8 * @param operand number to square

 9 * @return the square of operand

10 */

11 public static double square(double operand)

12 {

13 return operand * operand;

14 }

15

16 /** cube method

17 * @param operand number to cube

18 * @return the cube of operand

19 */

20 public static double cube(double operand)

21 {

22 return operand * operand * operand;

23 }

24 }

The controls and their layout are defined in the
FXML file, shown in Example 12.6, which acts as our
View. Because we want to respond to the user
clicking either button, we define a controller at line 6
using the fx:controller attribute of the layout container
with its value set to the class name of the Java file
that contains our controller. Thus, in this case, the
controller is SimpleMathController.java.

The two buttons are defined at lines 12 through 15.
The text attribute specifies the wording to appear on
the button. The onAction attribute specifies a method
in the controller that should be executed when the
user clicks the button. Thus, our controller must
define a method named calculate. Usually, we code
the method as accepting an ActionEvent object, as
shown below, although this is not required.

void calculate (ActionEvent event)

The ActionEvent object is automatically created
when the user clicks a button, selects an item from a
list or a menu, or presses the Enter key in a
TextField. The Action-Event object contains data we
can query, such as which control fired the event.

The calculate method is our event handler or listener,
and by setting the onAction attribute for a control, we
register the event handler on our control: our

buttons, in this example. Thus, when the user clicks
on either of the buttons, the calculate method
executes.

We have also used the fx:id attribute to define a
name for all the controls that the controller needs to
access. Assigning an fx:id to a control puts the
control in the fx namespace, making the control
accessible outside the file in which the control is
defined. This allows the Controller to access controls
using their fx:id value.

EXAMPLE 12.6 The View,
fxml_simple_math.fxml
 1 <?xml version="1.0" encoding="UTF-8"?>

 2

 3 <?import javafx.scene.control.*?>

 4 <?import javafx.scene.layout.*?>

 5

 6 <VBox fx:controller="SimpleMathController"

 7 xmlns:fx="http://javafx.com/fxml"

 8 alignment="center" spacing="10" >

 9

10 <Label text="Enter a number" />

11 <TextField fx:id="operand" maxWidth="100" />

12 <Button fx:id="square" text="Square"

13 onAction="#calculate" />

14 <Button fx:id="cube" text="Cube"

15 onAction="#calculate" />

16 <Label text="Result" />

17 <Label fx:id="result" />

18

19 </VBox>

Our controller is shown in Example 12.7. It defines
as instance variables all the controls it needs to
access using their fx:id names that we defined in the
FXML file (lines 7–10). We use the @FXML
annotation in front of the instance variable definitions

to indicate that these controls, although defined as
private, are also accessible to FXML.

The calculate method is defined at lines 12–27. We
also precede the method header with the @FXML
annotation, again to give FXML access to this
protected method. The calculate method takes as a
parameter an ActionEvent object. As mentioned, this
object is created when the user clicks on the button
and contains information about the event that
occurred.

At line 16, we use the getText method to extract the
text that the user typed into the operand TextField.
The getText method is shown along with its
companion setText method in Table 12.8. Because
the getText method returns a String, we call the static
parseDouble method of the Double wrapper class to
convert the String to a double. We enclose this
operation in a try/catch block (lines 14–26) because
the parseDouble method throws a
NumberFormatException if the text the user entered
cannot be converted to a double.

TABLE 12.8 Useful Methods of the TextField
Class

Package javafx.scene.control

Return value Method name and argument list
String getText()

returns the text typed into the TextField

void setText(String newText)

sets the text in the TextField to newText

TABLE 12.9 The getSource Method of the
ActionEvent Class

Package javafx.event

Return
value

Method name and argument list

Object getSource()

returns the object on which the event was
triggered

If the conversion goes well, we then determine which
button the user pressed. The ActionEvent class
provides a useful method, getSource, shown in Table
12.9, which we can use to determine which button
the user actually clicked. At line 17, we test whether
the user clicked the square button. If so, we call the
static square method in our SimpleMath Model,
passing the converted number and setting the result
Label to the return value. Because the setText
method requires a String argument, we call the static

valueOf method of the String class to convert the
return value to a String.

Similarly, at lines 19 and 20, we test whether the
user clicked the cube Button; if so, we call the static
cube method of the SimpleMath class and set the
result Label to the return value.

EXAMPLE 12.7 The Controller,
SimpleMathController.java

 1 import javafx.event.ActionEvent;

 2 import javafx.fxml.FXML;

 3 import javafx.scene.control.*;

 4

 5 public class SimpleMathController

 6 {

 7 @FXML private TextField operand;

 8 @FXML private Label result;

 9 @FXML private Button square;

10 @FXML private Button cube;

11

12 @FXML protected void calculate(ActionEvent

event)

13 {

14 try

15 {

16 double op = Double.parseDouble(

operand.getText());

17 if (event.getSource() == square)

18 result.setText(String.valueOf(

SimpleMath.square(op)));

19 else if (event.getSource() == cube)

20 result.setText(String.valueOf(

SimpleMath.cube(op)));

21 }

22 catch (NumberFormatException nfe)

23 {

24 operand.setText("");

25 result.setText("???");

26 }

27 }

28 }

Finally, SimpleMathPractice, the launch class, shown
in Example 12.8, performs the usual operations of
loading the fxml_simple_math.fxml file, setting the
scene and stage parameters, and displaying the
prepared window.

EXAMPLE 12.8
SimpleMathPractice.java

 1 /* Simple Math Operations Using Buttons

 2 Anderson, Franceschi

 3 */

 4

 5 import java.net.URL;

 6 import javafx.application.Application;

 7 import javafx.fxml.FXMLLoader;

 8 import javafx.scene.layout.VBox;

 9 import javafx.scene.Scene;

10 import javafx.stage.Stage;

11

12 public class SimpleMathPractice extends

Application

13 {

14 @Override

15 public void start(Stage stage) // throws

Exception

16 {

17 try

18 {

19 URL url =

20 getClass().getResource(

"fxml_simple_math.fxml");

21 VBox root = FXMLLoader.load(url);

22 Scene scene = new Scene(root, 300, 275);

23 stage.setTitle("Simple Math");

24 stage.setScene(scene);

25 stage.show();

26 }

27 catch (Exception e)

28 {

29 e.printStackTrace();

30 }

31 }

32

33 public static void main(String [] args)

34 {

35 launch(args);

36 }

37 }

12.6 Radio Buttons and
Checkboxes
If you have ever completed a survey on the web, you
are probably familiar with radio buttons and
checkboxes.

Radio buttons prompt the user to select one of
several mutually exclusive options. Clicking on any
radio button deselects any previously selected radio
button. Thus, in a group of radio buttons, a user can
select only one option at a time.

Checkboxes are often associated with the instruction
“check all that apply”; that is, the user is asked to
select 0, 1, or more options. A checkbox is a toggle
button in that if the option is not currently selected,
clicking on a checkbox selects the option; if the
option is currently selected, clicking on the checkbox
deselects the option.

We present two similar examples to illustrate how to
use the RadioButton and CheckBox classes and how
they differ. Both examples allow the user to select
the background color for a label. We display three
color options: red, green, and blue. Using radio
buttons, only one color can be selected at a time.
Thus, by clicking on a radio button, the user causes

the background of the label to be displayed in one of
three colors. Using checkboxes, the user can select
any combination of the three color options, so the
label color can be set to any of eight possible
combinations.

We start with the example using radio buttons. The
window when the application starts running is shown
in Figure 12.6.

Figure 12.6
The GUI for the ChangingColors Application

We begin with the Model, ColorSelector.java, shown
in Example 12.9. Again, this model is minimal,
having only one static method, colorToHexString
(lines 11–25). For convenience in passing
parameters, we define three public static constants
at lines 7 through 9. The controller uses these

constants as arguments for the colorToHexString
method.

EXAMPLE 12.9 The Model,
ColorSelector.java

 1 /* ColorSelector class

 2 Anderson, Franceschi

 3 */

 4

 5 public class ColorSelector

 6 {

 7 public static final int RED = 0;

 8 public static final int GREEN = 1;

 9 public static final int BLUE = 2;

10

11 /** colorToHexString method

12 * @param selection the selected color

13 * @return the hex representation of the

selected color

14 */

15 public static String colorToHexString(int

selection)

16 {

17 String result = "#";

18 if (selection == RED)

19 result += "FF0000";

20 else if (selection == GREEN)

21 result += "00FF00";

22 else if (selection == BLUE)

23 result += "0000FF";

24 return result;

25 }

26 }

Next, we look at the View, the FXML file that defines
the layout and the controls for the GUI, which is
shown in Example 12.10. For this application, we
use an HBox layout (lines 6–28), which arranges
controls horizontally. We set attributes (line 8) to
specify that the controls should be centered with 10
pixels between each control. We also specify the
class of the Controller that handles the events
caused by the user selecting a radio button, as
ChangingColorsController (line 6).

In order for the radio buttons to be mutually exclusive
(i.e., selecting one radio button deselects any
previously selected radio button), we define a
ToggleGroup (lines 10–12). We use the <fx:define>
element to create objects, such as this ToggleGroup,
that are not in the scene graph but need to be
referenced by a control. In the definition of each
radio button (lines 14–22), we add the radio button to
the group by setting its toggleGroup property to the
id of the ToggleGroup. We preface the id with “$” to
indicate that colorGroup is a variable, rather than a
predefined property value.

For each radio button, we also use the onAction
property to specify that the colorChosen method in
the ChangingColorsController should be executed
when the user clicks the radio button.

At line 14, we set the red radio button’s selected
property to true. This automatically sets the radio
button as selected when the program starts.

Finally, we define the label whose background we
color as the user clicks on the radio buttons (lines
24–26). Here we introduce style definitions. If you
are familiar with Cascading Style Sheets (CSS) used
with HTML pages, this should look familiar to you.
We explain how to use CSS at the end of this
chapter. The background-color property sets the
background color of a control. Its value can be either
a CSS named constant (such as red) or the RGB
hexadecimal value of the color preceded by a “#”
(such as #FF0000).

We set the label’s background to the color red
(#FF0000) to be consistent with the red radio button
being selected when the application starts.

REFERENCE POINT
To learn more about using CSS for styling controls,
read the JavaFX CSS Reference Guide at
https://docs.oracle.com/javafx/2/api/javafx/scene/doc
-files/cssref.html

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

EXAMPLE 12.10
fxml_changing_colors.fxml

 1 <?xml version="1.0" encoding="UTF-8"?>

 2

 3 <?import javafx.scene.control.*?>

 4 <?import javafx.scene.layout.*?>

 5

 6 <HBox fx:controller="ChangingColorsController"

 7 xmlns:fx="http://javafx.com/fxml"

 8 alignment="center" spacing="10" >

 9

10 <fx:define>

11 <ToggleGroup fx:id="colorGroup" />

12 </fx:define>

13

14 <RadioButton fx:id="red" text="red"

selected="true"

15 toggleGroup="$colorGroup"

16 onAction="#colorChosen" />

17 <RadioButton fx:id="green" text="green"

18 toggleGroup="$colorGroup"

19 onAction="#colorChosen" />

20 <RadioButton fx:id="blue" text="blue"

21 toggleGroup="$colorGroup"

22 onAction="#colorChosen" />

23

24 <Label fx:id="label" text="Watch my background"

25 textFill="WHITE"

26 style="-fx-background-color:#FF0000" />

27

28 </HBox>

Table 12.10 summarizes the special FXML language
elements that we have used.

TABLE 12.10 FXML Language Elements and
Their Meaning

FXML
Element

Meaning

fx:define Used to create objects not in the scene graph that
need to be referenced later

FXML
Attributes

Meaning

fx:id Defines a name that can be referenced across the
FXML application

fx:controller Defines a class that contains event handling code
for one or more controls

onAction Defines a method name (preceded by “#”) in the
controller that should be executed when the user
interacts with the control

FXML
Annotation

Meaning

@FXML Allows FXML to access a private or protected class,
method, or data

FXML
Prefixes

Meaning

-fx- Used to distinguish a JavaFX style attribute from a
CSS attribute

$ Used as a prefix to a variable name when the
variable is used as a property value

@ Used as a prefix for a URI to specify that the path of
the URI starts with the current folder

The Controller, ChangingColorsController.java, is
shown in Example 12.11. At lines 11 through 14, we
define instance variables for all the controls, using
the fx:id values we defined in the FXML file. The
colorChosen event handler method, defined at lines
16 through 31, takes as a parameter the ActionEvent
that is generated when the user clicks on a radio
button. We want to set the background color of the
label to correspond with the radio button that was
clicked. Thus, we set the style property of the label.
We start by setting a String to characters that are
common for any color selected (line 18). We then
use the getSource method of the ActionEvent to
determine which radio button was clicked and call
the colorToHexString method in our Model, passing
as a parameter one of the public static constants
(RED, GREEN, or BLUE) defined in the Model. We
then append the returned hexadecimal String to
style. At line 30, we call the setStyle method of the
Label class, passing it the completed String. Note
that for any property that can be set using attributes
in the FXML file, JavaFX usually also provides
accessor and mutator methods in the GUI control’s
class for setting or getting the property
programmatically.

EXAMPLE 12.11 The Controller,
ChangingColorsController.java

 1 /* ChangingColorsController class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.event.ActionEvent;

 6 import javafx.fxml.FXML;

 7 import javafx.scene.control.*;

 8

 9 public class ChangingColorsController

10 {

11 @FXML private RadioButton red;

12 @FXML private RadioButton green;

13 @FXML private RadioButton blue;

14 @FXML private Label label;

15

16 @FXML protected void colorChosen(ActionEvent

event)

17 {

18 String style = "-fx-background-color: ";

19

20 if (event.getSource() == red)

21 style +=

22 ColorSelector.colorToHexString(

ColorSelector.RED);

23 else if (event.getSource() == green)

24 style +=

25 ColorSelector.colorToHexString(

ColorSelector.GREEN);

26 else if (event.getSource() == blue)

27 style +=

28 ColorSelector.colorToHexString(

ColorSelector.BLUE);

29

30 label.setStyle(style);

31 }

32 }

SOFTWARE ENGINEERING TIP
Ensure that the initial state of the GUI controls
represents the state of the Model.

The last part of the application is ChangingColors,
the launching class, shown in Example 12.12. It
follows the format of the previous application
launching classes.

EXAMPLE 12.12 The Application
Launcher: ChangingColors.java

 1 /* Select a Color Using RadioButtons

 2 Anderson, Franceschi

 3 */

 4

 5 import java.net.URL;

 6 import javafx.application.Application;

 7 import javafx.fxml.FXMLLoader;

 8 import javafx.scene.layout.HBox;

 9 import javafx.scene.Scene;

10 import javafx.stage.Stage;

11

12 public class ChangingColors extends Application

13 {

14 @Override

15 public void start(Stage stage)

16 {

17 try

18 {

19 URL url =

20 getClass().getResource(

"fxml_changing_colors.fxml");

21 HBox root = FXMLLoader.load(url);

22 Scene scene = new Scene(root, 400, 200);

23 stage.setTitle("Selecting a color");

24 stage.setScene(scene);

25 stage.show();

26 }

27 catch (Exception e)

28 {

29 e.printStackTrace();

30 }

31 }

32

33 public static void main(String [] args)

34 {

35 launch(args);

36 }

37 }

Figure 12.7
The GUI for the MixingColors Application

We now demonstrate a similar application using
CheckBoxes. For this example, we create the
interface shown in Figure 12.7.

Example 12.13 shows the Model, ColorMixer.java.
The Model’s job is to manage the color mixing based
on which colors are selected or deselected. As in our
RadioButton example, the ColorMixer also provides
public static constants (lines 7–9) for the controller’s
convenience in passing parameters. To manage
which colors are selected, the ColorMixer defines an
array of three boolean values (line 11), with each
element representing whether the corresponding
color is selected (true) or deselected (false).

The constructor (lines 13–23) instantiates the array
and sets all elements to true, representing the color
white (all colors selected). The RED, GREEN, and
BLUE constants also come in handy here as logical
names for the array indexes.

The toggleColor method (lines 25–32) alternates the
state of a color between true and false. This is
consistent with the behavior of CheckBoxes, where
each click of the CheckBox changes its state
between selected and deselected.

Finally, the hexStringColor method (lines 34–47)
composes a String containing the hexadecimal
equivalent of the current color. Using the conditional
operator, we set each color’s contribution to the
String as either "FF" (full color) if selected or "00" (no
color) if deselected.

EXAMPLE 12.13 The Model,
ColorMixer.java

 1 /* ColorMixer class

 2 Anderson, Franceschi

 3 */

 4

 5 public class ColorMixer

 6 {

 7 public static final int RED = 0;

 8 public static final int GREEN = 1;

 9 public static final int BLUE = 2;

10

11 private boolean [] rgb;

12

13 /** default constructor

14 * sets all elements in the rgb array to true

15 * to represent the color white

16 */

17 public ColorMixer()

18 {

19 rgb = new boolean[3];

20 rgb[RED] = true;

21 rgb[GREEN] = true;

22 rgb[BLUE] = true;

23 }

24

25 /** toggleColor method

26 * toggles the color on/off

27 * @param color the color to be toggled

28 */

29 public void toggleColor(int color)

30 {

31 rgb[color] = !rgb[color];

32 }

33

34 /** hexStringColor

35 * @return the hexadecimal representation

36 * of the color mix

37 */

38 public String hexStringColor()

39 {

40 String result = "#";

41

42 result += (rgb[RED] ? "FF" : "00");

43 result += (rgb[GREEN] ? "FF" : "00");

44 result += (rgb[BLUE] ? "FF" : "00");

45

46 return result;

47 }

48 }

Next, the FXML file, fxml_mixing_colors.fxml, shown
in Example 12.14, defines the GUI. At lines 11
through 16, we define the three CheckBoxes to
represent the red, green, and blue color
components. We also preselect each CheckBox and
set the Label background to white (line 19) to be
consistent with the original state of the Model.

Our controller for this application,
MixingColorsController, is named at line 6, and we
specify that the mix method in the controller is the
handler for a user selecting or deselecting any of the
CheckBoxes (lines 12, 14, and 16).

EXAMPLE 12.14
fxml_mixing_colors.fxml
 1 <?xml version="1.0" encoding="UTF-8"?>

 2

 3 <?import javafx.scene.control.*?>

 4 <?import javafx.scene.layout.*?>

 5

 6 <HBox fx:controller="MixingColorsController"

 7 xmlns:fx="http://javafx.com/fxml"

 8 alignment="center" spacing="10"

 9 style="-fx-background-color:#CCCCCC" >

10

11 <CheckBox fx:id="red" selected="true"

12 text="red" onAction="#mix" />

13 <CheckBox fx:id="green" selected="true"

14 text="green" onAction="#mix" />

15 <CheckBox fx:id="blue" selected="true"

16 text="blue" onAction="#mix" />

17

18 <Label fx:id="label" text="Watch my background"

19 style="-fx-background-color:#FFFFFF" />

20

21 </HBox>

The controller, MixingColorsController.java, is shown
in Example 12.15. The methods in this Model are not
static, so we define an instance variable, mixer,
representing the Model (line 11) and the controller

instantiates the Model in the constructor (lines 18–
21). The mix event handler method (lines 23–35)
calls the getSource method of the ActionEvent object
to determine which CheckBox was clicked. It calls
the toggleColor method in the Model to invert the
state of the color in the rgb array. In this way, we do
not need to check whether the CheckBox was just
selected or deselected. Once the clicked color
component is updated, we compose the new color
String by calling the hexStringColor method of the
model (line 33); then we use that String to set the
label’s background color.

EXAMPLE 12.15 The Controller,
MixingColorsController.java

 1 /* MixingColorsController class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.event.ActionEvent;

 6 import javafx.fxml.FXML;

 7 import javafx.scene.control.*;

 8

 9 public class MixingColorsController

10 {

11 private ColorMixer mixer;

12

13 @FXML private CheckBox red;

14 @FXML private CheckBox green;

15 @FXML private CheckBox blue;

16 @FXML private Label label;

17

18 public MixingColorsController()

19 {

20 mixer = new ColorMixer();

21 }

22

23 @FXML protected void mix(ActionEvent event)

24 {

25 if (event.getSource() == red)

26 mixer.toggleColor(ColorMixer.RED);

27 else if (event.getSource() == green)

28 mixer.toggleColor(ColorMixer.GREEN);

29 else if (event.getSource() == blue)

30 mixer.toggleColor(ColorMixer.BLUE);

31

32 String style = "-fx-background-color: ";

33 style += mixer.hexStringColor();

34 label.setStyle(style);

35 }

36 }

The final piece to this application is the standard
launch class, shown in Example 12.16.

EXAMPLE 12.16 The Launch
Class, MixingColors.java

 1 /* Mixing Colors Using CheckBoxes

 2 Anderson, Franceschi

 3 */

 4

 5 import java.net.URL;

 6 import javafx.application.Application;

 7 import javafx.fxml.FXMLLoader;

 8 import javafx.scene.layout.HBox;

 9 import javafx.scene.Scene;

10 import javafx.stage.Stage;

11

12 public class MixingColors extends Application

13 {

14 @Override

15 public void start(Stage stage)

16 {

17 try

18 {

19 URL url =

20 getClass().getResource(

"fxml_mixing_colors.fxml");

21 HBox root = FXMLLoader.load(url);

22 Scene scene = new Scene(root, 400, 200);

23 stage.setTitle("Mixing colors");

24 stage.setScene(scene);

25 stage.show();

26 }

27 catch (Exception e)

28 {

29 e.printStackTrace();

30 }

31 }

32

33 public static void main(String [] args)

34 {

35 launch(args);

36 }

37 }

12.7 Programming Activity 1:
Working with Buttons
In this activity, you will work with two Buttons that
control a simulated electrical switch. Specifically, you
will write the code to perform the following
operations:

1. If the user clicks on the “OPEN” button, open the switch.

2. If the user clicks on the “CLOSE” button, close the switch.

The framework for this Programming Activity will
animate your code so that you can check its
accuracy. Figures 12.8 and 12.9 show the
application after the user has clicked the button
labeled “OPEN” and the button labeled “CLOSE,”
respectively.

Figure 12.8
User Clicked “OPEN”

Figure 12.9
User Clicked “CLOSE”

Instructions
Copy the source files in the Programming Activity 1
folder for this chapter to a folder on your computer.
Note that all files should be in the same folder.

Open the fxml_button_practice.fxml file. Searching
for five asterisks (*****) in the source code will
position you to the first code section and then to the
second location where you will add your code. In
task 1, you will specify the name of the controller as
ButtonPracticeController. In task 2, you will define an
HBox layout with the two buttons. Example 12.17
shows the section of the fxml_button_practice.fxml
file where you will add your code.

EXAMPLE 12.17 Location of
Student Code in
fxml_button_practice.fxml

 1 <?xml version="1.0" encoding="UTF-8"?>

 2

 3 <?import javafx.scene.*?>

 4 <?import javafx.scene.control.*?>

 5 <?import javafx.scene.layout.*?>

 6

 7 <!-- ***** 1. Student code starts here -->

 8 <!-- add the code to this element definition to

specify

 9 the controller as ButtonPracticeController -

->

10 <BorderPane fx:id="bp"

11 xmlns:fx="http://javafx.com/fxml" >

12

13 <top>

14 <!-- ***** 2. Student code restarts here -->

15 <!-- add code to define an HBox layout that

is centered

16 with an id of hBox and 10 pixels between

controls.

17 Inside the HBox, add 2 Buttons, with

text OPEN and

18 CLOSE, and ids of open and close.

Clicking on either

19 button triggers a call to the event

handler flip

20 method -->

21

22

23

24 </top>

25

26 </BorderPane>

Note that we define an HBox layout container inside
a BorderPane layout container, illustrating that
layouts can be nested. We demonstrate nested
layouts again later in the chapter.

Next, open ButtonPracticeController.java and search
for five asterisks (*****). This will position you at the
third and final task for this Programming Activity,
writing the event handler for the buttons. Example
12.18 shows the section of the source code where
you will add your code.

EXAMPLE 12.18 Location of
Student Code in
ButtonPracticeController.java
48 // ***** 3. Student code restarts here

49 // Code the flip method.

50 // To open the switch, call the open method

51 // with circuit, the object reference of the

52 // Circuit object.

53 // The open method does not take any

parameters.

54 // To close the switch, call the close method

55 // with circuit.

56 // The close method does not take any

parameters.

57 // The last statement of the method should be

58 // animate();

Our framework will animate your code so that you
can watch your code work. For this to happen, be
sure that you call the animate method as the last
statement in the flip method.

Troubleshooting
If your flip method does not animate, check these
tips:

Verify that the last statement in your flip
method is:

animate();

Verify that your listener is registered on the
buttons (onAction).

Verify that you have correctly identified the
button that fired the event using the
getSource method.

DISCUSSION QUESTIONS
1. Explain why the getSource method is useful here.

2. Could you implement this application with RadioButtons
instead of Buttons? What definition would you need to
add to the FXML file? How would the flip method
change, if at all?

3. Which class is the Model?

12.8 Combo Boxes
A ComboBox implements a drop-down list. When the
combo box appears, either no item or one item is
displayed, along with a down arrow icon. When the
user presses on the down arrow, the combo box
“drops” open and displays a list of items, with a scroll
bar for viewing more items. The user can select one
item from the list. When the user selects an item, the
list closes and only the selected item is displayed.

In this example, we allow the user to select a country
from a combo box, and in response, we display an
image of a typical food from the selected country.
Figure 12.10 shows the window when our application
begins.

Figure 12.10
The Food Sampling Application

We begin as usual with the Model,
FoodSampler.java, shown in Example 12.19. Lines 9
through 16 define two arrays. The countryList array
contains the country names to be displayed in the
ComboBox, and the foods array contains the
corresponding images of food stored in the same
order as the country names. The instance variable
selectedIndex, defined at line 17, holds the index of
the selected country. We use this index to retrieve
the appropriate food image to display. With
selectedIndex set to 0, the Model’s initial state is that
the country name “France” is selected and
cheese.jpg is the corresponding image.

The remainder of the Model consists of accessor
methods for the countryList array (lines 19–25) and
selectedIndex (lines 27–33), a mutator method for
selectedIndex (lines 35–41), and an accessor for the
image corresponding to selectedIndex (lines 43–50).

EXAMPLE 12.19 The Model,
FoodSampler.java

 1 /* FoodSampler class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.scene.image.Image;

 6

 7 public class FoodSampler

 8 {

 9 private String [] countryList =

10 { "France", "Greece", "Italy", "Japan",

"USA" };

11 private Image [] foods =

12 { new Image("cheese.jpg"),

13 new Image("fetasalad.jpg"),

14 new Image("pizza.jpg"),

15 new Image("sushi.jpg"),

16 new Image("hamburger.jpg") };

17 private int selectedIndex = 0;

18

19 /** getCountryList method

20 * @return a reference to the countryList array

21 */

22 public String [] getCountryList()

23 {

24 return countryList;

25 }

26

27 /** the accessor for selectedIndex

28 * @return the index selected

29 */

30 public int getSelectedIndex()

31 {

32 return selectedIndex;

33 }

34

35 /** the mutator for selectedIndex

36 * @param selection the new value for

selectedIndex

37 */

38 public void updateSelection(int selection)

39 {

40 selectedIndex = selection;

41 }

42

43 /** the accessor for the image to display

44 * @return the image from the Image array

45 * using the index selectedIndex

46 */

47 public Image getImageSelected()

48 {

49 return foods[selectedIndex];

50 }

51 }

Next we look at the FXML file,
fxml_food_samplings.fxml, shown in Example 12.20.
At line 7, we identify the Controller as

FoodSamplingsController.java. Lines 11 through 13
define our ComboBox control and that the
itemSelected method in the Controller class will
handle the event fired by a user selecting an item
from the ComboBox drop-down list. We also set the
visibleRowCount property to 3, specifying that when
the user opens the ComboBox, three items should
be displayed along with a scrollbar for viewing the
other hidden items. The default value for the
visibleRowCount property is 10. If the list contains
fewer items than specified in the visibleRowCount
property, the ComboBox displays all the items in the
list.

At lines 15 and 16 we also define an ImageView
control to display the appropriate food image. We do
not specify the initial image here; we let the
Controller get the appropriate image from the Model.

EXAMPLE 12.20 The
fxml_food_samplings.fxml File
 1 <?xml version="1.0" encoding="UTF-8"?>

 2

 3 <?import javafx.scene.control.*?>

 4 <?import javafx.scene.image.*?>

 5 <?import javafx.scene.layout.*?>

 6

 7 <HBox fx:controller="FoodSamplingsController"

 8 xmlns:fx="http://javafx.com/fxml"

 9 alignment="center" spacing="10" >

10

11 <ComboBox fx:id="countries" visibleRowCount="3"

12 onAction="#itemSelected" >

13 </ComboBox>

14

15 <ImageView fx:id="foodImage">

16 </ImageView>

17

18 </HBox>

We turn now to the Controller,
FoodSamplingsController.java, shown in Example
12.21. New to this Controller is the initialize method,
which is called after the scene graph has been
created, and can be used to add items to the scene
graph that could not be fully defined in the FXML file.
Because the Model stores the list of countries and

corresponding images, we cannot specify the items
for ComboBox in the FXML file. However, this
approach also has some advantages: By adding the
items to the ComboBox at runtime, we can easily
handle changes in the list without needing to change
our Controller or FXML code, and we can use this
application with another Model that has a different
set of items and images.

A ComboBox control is a generic class, so when the
Controller defines the ComboBox (line 14), we need
to specify the class type of the items to be displayed;
in this example, we are displaying Strings.

A ComboBox, like other controls that allow users to
select items, uses a SelectionModel to handle the
user’s interactions with the control. The ComboBox
uses the SingleSelectionModel, which is a subclass
of SelectionModel, to restrict the user to a choice of
only one item from the list. The
SingleSelectionModel class is also a generic class;
thus, we specify the class type to be String in line 16.
Table 12.11 shows some useful methods of the
SingleSelectionModel class for setting and getting
the user’s selection.

In order for our Controller event handler method,
itemSelected, to be notified when the user selects an
item, we need to put our items into an

ObservableList object. Table 12.12 shows the
getItems method of the ComboBox, which returns an
ObservableList. The addAll method of the
ObservableList class, shown in Table 12.13, can be
used to insert items into the list. The addAll method
uses the varargs syntax to accept a variable number
of arguments.

Putting this all together, in the initialize method, we
instantiate the Model (line 20), and then call the
getItems method, which returns an empty
ObservableList. Next, we call the addAll method of
the ObservableList class to insert into the ComboBox
the array of country names returned by the Model’s
getCountryList method (lines 22–23).

TABLE 12.11 Useful Methods of the
SingleSelectionModel Class

Package javafx.scene.control

Return
value

Method name and argument list

int getSelectedIndex()

returns the index of the currently selected item.

T getSelectedItem()

returns the currently selected item.

void select(int index)

selects the item at index. Any previously selected
item is deselected.

TABLE 12.12 A Useful Method of the
ComboBox<T> Class

Package javafx.scene.control

Return value Method name and argument list
ObservableList getItems()

returns the values of the items in the
ComboBox as an ObservableList

TABLE 12.13 A Useful Method of the
ObservableList<E> Interface

Package javafx.collections

Return value Method name and argument list
boolean addAll(E... elements)

adds the elements to the list

At line 26, we get a reference to the
SingleSelectionModel; we then use that reference to
select the item using the index returned from the
Model’s getSelectedIndex method (line 29). At this
point, the value returned will be 0, because in the
Model, we initialize the selectedIndex instance
variable to 0. We then set the image for our
foodImage ImageView to the filename returned by
the Model’s getImageSelected method (line 30).
Thus, when the window first appears, the country
France is selected and we display the cheese.jpg
image.

The itemSelected event handler, which executes
whenever the user selects a new item from the
ComboBox (lines 33–41), retrieves the index of the
selected item by calling the getSelectedIndex
method, using the selectionModel reference. Using
that index, we notify the model that the user has
changed the selection. Then we determine which
new image to display by calling the Model’s
getImageSelected method.

EXAMPLE 12.21 The Controller,
FoodSamplingsController.java

 1 /* FoodSamplingsController class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.event.ActionEvent;

 6 import javafx.fxml.FXML;

 7 import javafx.scene.control.*;

 8 import javafx.scene.image.*;

 9

10 public class FoodSamplingsController

11 {

12 private FoodSampler sampler;

13

14 @FXML private ComboBox<String> countries;

15 @FXML private ImageView foodImage;

16 private SingleSelectionModel<String>

selectionModel;

17

18 public void initialize()

19 {

20 sampler = new FoodSampler();

21

22 // populate combobox with data from the Model

23 countries.getItems().addAll(

sampler.getCountryList());

24

25 // get a reference to the SingleSelectionModel

26 selectionModel = countries.getSelectionModel(

);

27

28 // initialize View with initial data from

Model

29 selectionModel.select(

sampler.getSelectedIndex());

30 foodImage.setImage(sampler.getImageSelected(

));

31 }

32

33 @FXML protected void itemSelected(ActionEvent

event)

34 {

35 // retrieve index of country selected

36 int index = selectionModel.getSelectedIndex(

);

37 // update the Model

38 sampler.updateSelection(index);

39 // update the View with Image from the Model

40 foodImage.setImage(sampler.getImageSelected(

));

41 }

42 }

The last piece of the application is the launch class,
shown in Example 12.22.

EXAMPLE 12.22
FoodSamplings.java

 1 /* Using ComboBox to show a sampling of

international foods

 2 Anderson, Franceschi

 3 */

 4

 5 import java.net.URL;

 6 import javafx.application.Application;

 7 import javafx.fxml.FXMLLoader;

 8 import javafx.scene.layout.HBox;

 9 import javafx.scene.Scene;

10 import javafx.scene.Stage;

11

12 public class FoodSamplings extends Application

13 {

14 @Override

15 public void start(Stage stage)

16 {

17 try

18 {

19 URL url =

20 getClass().getResource(

"fxml_food_samplings.fxml");

21 HBox root = FXMLLoader.load(url);

22 Scene scene = new Scene(root, 450, 200);

23 stage.setTitle("Food samplings of various

countries");

24 stage.setScene(scene);

25 stage.show();

26 }

27 catch (Exception e)

28 {

29 e.printStackTrace();

30 }

31 }

32

33 public static void main(String [] args)

34 {

35 launch(args);

36 }

37 }

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie with a step-by-step illustration of
working with GUI components. Click on the
link to start the movie.

12.9 Sliders
The Slider control is capable of displaying a set of
continuous values along a horizontal or vertical line,
called a track. The user "slides" the knob, called the
thumb, along the track to select a value from the set.
To illustrate the Slider control, we create an
application that allows the user to control the level of
gray in a photo. A gray color is created when the red,
green, and blue components have the same value.
Each color component’s value can range from 0.0 to
1.0.

Figure 12.11 shows the GUI when the application
begins. The top photo is the original version of the
image; this may look familiar as the sushi.jpg photo
from the ComboBox example in the last section. The
lower photo has been converted to a middle level of
gray. As the user slides the knob left, we darken the
photo; as the user slides the knob to the right, we
lighten the photo. The vertical lines and numbers
shown under the slider are tick marks and tick
values. The values represent a multiplier we use to
convert the red, green, and blue color values of the
photo to a new level of gray.

We define the Slider control in the FXML file, shown
in Example 12.23. At lines 20 through 23, we specify

the minimum multiplier value as 0, the maximum as
.33, and the initial value in the middle of that range
as .165. We set properties to show the tick marks
and tick labels and to display the tick marks at
intervals of .055 units. In line 10, we add a style
property to define padding values for the VBox. We
add 10 pixels of padding on the left and right sides of
the VBox, but no padding on the top and bottom.

Figure 12.11
The Photo Graying GUI

The Label control defined at line 18 aids the user by
showing that moving the thumb to the left will darken
the image and moving the thumb to the right will
lighten the image. Because angle brackets have
syntactic meaning in FXML, we use the special
character encoding sequences < and > to
represent the left and right angle brackets,
respectively. Table 12.14 shows the encoding
sequences for the XML and FXML special
characters. The five XML encoding sequences start
with an ampersand and end with a semicolon. In
addition, FXML adds three special characters; the
encoding sequences for these FXML special
characters consist simply of a leading backslash
followed by the special character. These encoding
sequences are useful whenever a control’s text value
contains any of these special characters as data.

SOFTWARE ENGINEERING TIP
Labels can help guide the user through the interface.

TABLE 12.14 XML and FXML Special
Characters

Character XML Encoding Sequence
< <

> >

& &

" "

' '

Character FXML Encoding Sequence
@ \@

$ \$

% \%

COMMON ERROR TRAP
Be sure to use the XML and FXML encoding
sequences when specifying text values that contain
characters having syntactic meaning in XML and
FXML. Otherwise, the FXML Loader will generate an
error.

EXAMPLE 12.23 The View,
fxml_photo_grayer.fxml
 1 <?xml version="1.0" encoding="UTF-8"?>

 2

 3 <?import javafx.scene.control.*?>

 4 <?import javafx.scene.image.*?>

 5 <?import javafx.scene.layout.*?>

 6

 7 <VBox fx:controller="PhotoGrayerController"

 8 xmlns:fx="http://javafx.com/fxml"

 9 alignment="center" spacing="10"

10 style="-fx-padding:0 10 0 10;" >

11

12 <ImageView fx:id="originalImageView" >

13 <Image url = "Sushi.jpg" />

14 </ImageView>

15

16 <ImageView fx:id="grayImageView" />

17

18 <Label text="<-darker lighter ->" />

19

20 <Slider fx:id="slider" min="0" max=".33"

21 value=".165" showTickMarks="true"

22 showTickLabels="true"

majorTickUnit="0.055" />

23

24 </VBox>

By looking at the Model (Example 12.24), we can
see how the Slider’s multiplier values are used to
adjust the image’s color. The Model,
PhotoGrayer.java, extends the Image class, which is
used to load graphical images (GIF, BMP, JPG, and
PNG) from a URL. In our constructor (lines 13–21),
we pass the image filename to the constructor of the
Image superclass, shown in Table 12.15.

The purpose of the gray method (lines 23–50) is to
create an image composed of varying levels of gray.
The gray level of each pixel in the new image is
computed by multiplying the red, green, and blue
components of the corresponding pixel in the orginal
image by the parameter coeff.

Let’s look at the gray method in detail. To get the
size of the image, we call the getWidth and
getHeight methods, shown in Table 12.15, which we
have inherited from the Image class. Using this
information, we create an empty WritableImage
object of the same size. A WritableImage object can
be used to create an image from pixels. Table 12.16
shows the constructor and useful methods of the
WritableImage class, which also inherits from the
Image class.

TABLE 12.15 A Constructor and Useful
Methods of the Image Class

Package javafx.scene.image
Constructor
Image(String URL)

constructs an Image from the file named in URL

Return value Method name and argument list
PixelReader getPixelReader()

returns a PixelReader object for accessing
the pixels in the Image

double getHeight()

returns the height of the image in pixels

double getWidth()

returns the width of the image in pixels

We then use the getPixelWriter factory method (line
34) to obtain a PixelWriter object to write pixel data
into the WritableImage.

At line 35, we call the getPixelReader factory method
to get a PixelReader object to read pixel data from
the original image. A PixelReader object provides
access to each pixel in the original image (see Table
12.17), while a PixelWriter object allows us to set the
color of each pixel in the WritableImage (see Table
12.18).

TABLE 12.16 A Constructor and a Useful
Method of the WritableImage Class

Package javafx.scene.image

Constructor
WritableImage(int width, int height)

constructs an empty WritableImage of the
specified width and height

Return value Method name and argument list
PixelWriter getPixelWriter()

returns a PixelWriter object for writing the
pixels in the Image

TABLE 12.17 A Method of the PixelReader
Interface

Package javafx.scene.image

Return
value

Method name and argument list

Color getColor(int x, int y)

returns the Color of the pixel at coordinate (x, y)
in the image

TABLE 12.18 A Method of the PixelWriter
Interface

Package javafx.scene.image

Return value Method name and argument list
void setColor(int x, int y, Color c)

sets the pixel at coordinate (x, y) to the color c

TABLE 12.19 Useful Methods of the Color
Class

Package javafx.scene.paint

Return
value

Method name and argument list

double getRed()

returns the red component of the color in the
range 0.0–1.0

double getGreen()

returns the green component of the color in the
range 0.0–1.0

double getBlue()

returns the blue component of the color in the
range 0.0–1.0

Color gray(double value)

returns a Color object where the red, green, and
blue components are set to value, which can
range from 0.0 to 1.0

Using a nested for loop (lines 37–48), we use that
PixelReader reference to move through each pixel in
the original image. We first retrieve the color of each
pixel by calling the getColor method of the
PixelReader, passing it the current x and y values
(lines 40–41).

Using the current color of the original image, we then
multiply the sum of the red, green, and blue
components by the coeff parameter (lines 42–44)
and pass the resulting value to the gray method of

the Color class (line 45); this returns a Color object
where the red, green, and blue components have the
grayValue parameter’s value. The methods of the
Color class that we use in this example are shown in
Table 12.19. Finally, we use the PixelWriter to set the
color of the corresponding pixel within the
WritableImage (line 46) to the newly computed gray
color.

We return the new image at line 49.

EXAMPLE 12.24 The Model,
PhotoGrayer.java

 1 /* Adjusts the gray value of an image

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.scene.image.Image;

 6 import javafx.scene.image.PixelReader;

 7 import javafx.scene.image.PixelWriter;

 8 import javafx.scene.image.WritableImage;

 9 import javafx.scene.paint.Color;

10

11 public class PhotoGrayer extends Image

12 {

13 /** constructor

14 * @param file filename of the image

15 * passes the filename to the Image class

16 * constructor

17 */

18 public PhotoGrayer(String file)

19 {

20 super(file);

21 }

22

23 /** gray method

24 * @param coeff the multipler to determine the

25 * color for each pixel

26 * @return a WritableImage

27 */

28 public WritableImage gray(double coeff)

29 {

30 int width = (int) getWidth();

31 int height = (int) getHeight();

32 WritableImage grayImage

33 = new WritableImage(width, height);

34 PixelWriter pw = grayImage.getPixelWriter();

35 PixelReader pr = getPixelReader();

36

37 for (int x = 0; x < width; x++)

38 {

39 for (int y = 0; y < height; y++)

40 {

41 Color currentColor = pr.getColor(x, y);

42 double grayValue = coeff *

43 (currentColor.getRed() +

currentColor.getGreen()

44 + currentColor.getBlue());

45 currentColor = Color.gray(grayValue);

46 pw.setColor(x, y, currentColor);

47 }

48 }

49 return grayImage;

50 }

51 }

The Controller, PhotoGrayerController.java, shown in
Example 12.25, handles any changes to the Slider’s
value made by the user dragging the thumb in either
direction. In the initialize method (lines 14–25), we

instantiate the Model (line 16), sending the filename
of the photo to the constructor.

EXAMPLE 12.25 The Controller,
PhotoGrayerController.java

 1 import javafx.beans.value.*;

 2 import javafx.event.*;

 3 import javafx.fxml.FXML;

 4 import javafx.scene.control.*;

 5 import javafx.scene.image.*;

 6

 7 public class PhotoGrayerController

 8 {

 9 private PhotoGrayer photoGrayer;

10

11 @FXML private ImageView grayImageView;

12 @FXML private Slider slider;

13

14 public void initialize()

15 {

16 photoGrayer = new PhotoGrayer("sushi.jpg");

17

18 // initialize grayImageView

19 Image grayImage = photoGrayer.gray(

slider.getValue());

20 grayImageView.setImage(grayImage);

21

22 // set up event handling for slider

23 SliderHandler sh = new SliderHandler();

24 slider.valueProperty().addListener(sh);

25 }

26

27 private class SliderHandler

28 implements

ChangeListener<Number>

29 {

30 @Override

31 public void changed(ObservableValue<?

extends Number> o,

32 Number oldValue, Number

newValue)

33 {

34 // update grayImageView

35 grayImageView.setImage(

36 photoGrayer.gray(

newValue.doubleValue()));

37 }

38 }

39 }

At lines 18 through 20, we initialize the second photo
by calling the gray method in the Model, sending it
the current slider value by calling the getValue
method of the Slider class, as shown in Table 12.20.

The final initialization task is to register the event
handler for the Slider control. Before we cover that,
let’s look at lines 27 through 38, where we define the
event handler as a private inner class named
SliderHandler. A private inner class is defined inside
a public class and has access to all the members of
the public class. Thus, declaring our event handler

as a private inner class simplifies our code by giving
the event handler direct access to our application’s
GUI components.

Similar to the ComboBox, for which we set up an
ObservableList, the slider value is an
ObservableValue, meaning that we can register an
event handler that will be notified when the value
changes. The SliderHandler class implements the
ChangeListener interface, which has one method
that we must override, shown in Table 12.21 and
here:

void changed(ObservableValue<? extends T>

observable,

 T oldValue, T newValue)

TABLE 12.20 Some Useful Methods of the
Slider Class

Package javafx.scene.control

Return value Method name and argument list
double getValue()

returns the current value of the Slider

as a double

DoubleProperty valueProperty()

returns the current value of the Slider

as a DoubleProperty, which is a
Property wrapper class for a double,
and implements the
ObservableValue<Number> interface

TABLE 12.21 The Method of the
ChangeListener<T> Interface

Package javafx.beans.value

Return
value

Method name and argument list

void changed(ObservableValue<? extends T>

observable, T oldValue, T newValue)

The ChangeListener must implement this method
to handle changes to the ObservableValue

The syntax <? extends T> means that the
observable value can be of any type that is a
subclass of the generic type T or the type T itself. At
lines 30 through 37, where we override the method
above, we specify the T parameter to be Number (in
java.lang), which is an abstract superclass extended

by Java’s numeric wrapper classes: Byte, Short,
Integer, Long, Float, and Double. This works
because our observable value is a Double.

Inside the method, we set the new color for the
ImageView grayImageView by calling the gray
method of the Model and sending it the new value of
the Slider, obtained by calling the doubleValue
method of the Double class, shown in Table 12.22.

TABLE 12.22 A Useful Method of the Double
Class

Package java.lang

Return
value

Method name and argument list

double doubleValue()

abstract method in the Number class overridden
by the Double class; it returns the value of a
Double object as a double.

TABLE 12.23 The Methods of the
ObservableValue<T> Interface

Package javafx.beans.value

Return
value

Method name and argument list

void addListener(ChangeListener<? super T>

listener)

adds a ChangeListener whose code will execute
whenever the value of the ObservableValue

changes

T getValue()

returns the current value of the ObservableValue

object

void removeListener(ChangeListener<? super T>

listener)

removes the listener so that it is no longer notified
of changes to the value of the ObservableValue

Now we’re ready to look at lines 23 and 24. At line
23, we instantiate an object of the SliderHandler
inner class. At line 24, we call the valueProperty
method of the Slider class (shown in Table 12.20),
which returns the value of the Slider as a
DoubleProperty object. Because the DoubleProperty
class implements the ObservableValue interface, we
can call the addListener method of that class to
register our event handler. The ObservableValue
interface, shown in Table 12.23, is also generic. The
syntax <? super T> means that the observable value

can be of any type that is a superclass of the generic
type T or the type T itself.

The last piece of the application is the launch class,
shown in Example 12.26.

EXAMPLE 12.26
PhotoGraying.java

 1 /* Slider demo

 2 Anderson, Franceschi

 3 */

 4

 5 import java.net.URL;

 6 import javafx.application.Application;

 7 import javafx.fxml.FXMLLoader;

 8 import javafx.scene.layout.VBox;

 9 import javafx.scene.Scene;

10 import javafx.stage.Stage;

11

12 public class PhotoGraying extends Application

13 {

14 @Override

15 public void start(Stage stage)

16 {

17 try

18 {

19 URL url =

20 getClass().getResource(

"fxml_photo_grayer.fxml");

21 VBox root = FXMLLoader.load(url);

22 Scene scene = new Scene(root, 350, 320);

23 stage.setTitle("Graying a photo");

24 stage.setScene(scene);

25 stage.show();

26 }

27 catch (Exception e)

28 {

29 e.printStackTrace();

30 }

31 }

32

33 public static void main(String [] args)

34 {

35 launch(args);

36 }

37 }

Skill Practice
with these end-of-chapter questions

12.20.1 Multiple Choice Exercises

Questions 6, 7, 8, 9

12.20.2 Reading and Understanding Code

Questions 21, 22, 23, 24, 25, 26, 27, 28,
29

12.20.3 Fill In the Code

Questions 33, 34, 35

12.20.4 Identifying Errors in Code

Question 52

12.20.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM

Question 61

12.20.6 Write a Short Program

Questions 64, 65, 66, 68, 69, 70, 71, 72,
75

12.10 Building a GUI
Programmatically
We have been defining GUIs using FXML, which
works well when we know the number and type of
controls in our GUI. Sometimes, however, the GUI is
dynamic and because we may not know how many
buttons or other controls we need until runtime, we
must define the GUI, that is, instantiate the controls
and set their properties, programmatically. For
example, the GUI may include buttons that represent
URL links stored in a file or on a web server. In that
case, the number of buttons can vary each time we
run our application. In other applications, it may be
more convenient to build the GUI by code rather than
with FXML. For example, if the GUI represents a tic-
tac-toe game or a chessboard, it is convenient to
represent the GUI as a two-dimensional array of
buttons, which we define and instantiate
programmatically.

We illustrate this approach with an example where
we build a chessboard and reveal the position of a
square as its column letter and row number when the
user clicks on it. Figure 12.12 shows the application
running after the user has clicked on several buttons.

Figure 12.12
Running the Chessboard Example

Before defining the View and the Controller, we
define our Model, the BoardGame class, shown in
Example 12.27. We define a board with an array of
chars representing the column letters and an array of
ints representing the row numbers. We declare two
instance variables for these arrays at lines 12 and
13. We include an array of colors (line 14) so that
clients of this class can use custom colors for the
board. The getSquareText method (lines 29–37)

returns a String representation of a square on the
board as the concatenation of the letter and digit at
the row and column indexes requested by the two
parameters.

The getSquareColor method (lines 39–49) returns a
hexadecimal representation of the color of the
square on the board given its row and column
numbers, which are sent as parameters to the
method. This method can be used to color the board
with alternating colors retrieved from the array
colors.

We provide accessors for the number of rows and
the number of columns (lines 81–87 and 89–95).

EXAMPLE 12.27 The BoardGame
Class

 1 /* BoardGame class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.scene.paint.Color;

 6

 7 public class BoardGame

 8 {

 9 private static char [] hexDigits =

10 { '0', '1', '2', '3', '4', '5', '6',

'7', '8', '9',

11 'A', 'B', 'C', 'D', 'E', 'F' };

12 private int [] rows;

13 private char [] columns;

14 private Color [] colors; // to color the rows

and columns

15

16 /** Overloaded Constructor

17 * @param newRows the row numbers

18 * @param newColumns the column letters

19 * @param newColors the colors

20 */

21 public BoardGame(int [] newRows, char []

newColumns,

22 Color [] newColors)

23 {

24 rows = newRows;

25 columns = newColumns;

26 colors = newColors;

27 }

28

29 /** getSquareText method

30 * @param row the row index

31 * @param column the column index

32 * @return a String, a concatenation of

columns[column] and rows[row]

33 */

34 public String getSquareText(int row, int

column)

35 {

36 return String.valueOf(columns[column]) +

rows[row];

37 }

38

39 /** getSquareColor method

40 * @param row the row index

41 * @param column the column index

42 * @return a String, a hex representation of

43 * colors[(row + col) %

colors.length]

44 */

45 public String getSquareColor(int row, int col

)

46 {

47 Color squareColor = colors[(row + col) %

colors.length];

48 return toHexString(squareColor);

49 }

50

51 /** toHex utility method

52 * @param colorIntensity a double between 0

and 1 inclusive

53 * @return a String, the hex representation of

colorIntensity times 255

54 */

55 public String toHex(double colorIntensity)

56 {

57 int colorIntensityAsInt = (int) (

colorIntensity * 255);

58 if (colorIntensityAsInt > 255)

59 colorIntensityAsInt = 255;

60 else if (colorIntensityAsInt < 0)

61 colorIntensityAsInt = 0;

62

63 int firstDigit = colorIntensityAsInt / 16;

64 int secondDigit = colorIntensityAsInt % 16;

65

66 return String.valueOf(hexDigits[firstDigit]

) + hexDigits[secondDigit];

67 }

68

69 /** toHexString method

70 * @param color a Color

71 * @return a String, a hex representation of

color

72 */

73 public String toHexString(Color color)

74 {

75 String colorText = "#" + toHex(color.getRed(

))

76 + toHex(

color.getGreen())

77 + toHex(

color.getBlue());

78 return colorText;

79 }

80

81 /** getNumberOfRows method

82 * @return the number of rows

83 */

84 public int getNumberOfRows()

85 {

86 return rows.length;

87 }

88

89 /** getNumberOfColumns method

90 * @return the number of columns

91 */

92 public int getNumberOfColumns()

93 {

94 return columns.length;

95 }

96 }

Even though we are defining the GUI by code, it is
possible to separate the View class from the
Controller class, as in the previous examples.
However, in order to keep this example simple, we
put the View and the Controller in the same class.

Regardless of the layout container used, the
constructor of our application needs to perform the
following operations:

Instantiate components

Add components to the layout container

For this example, we use a GridPane layout
container that allows us to arrange components in a
grid. We can visualize a GridPane as a table made
up of cells in rows and columns. Each cell can
contain one component. These cells can have
different sizes. In this application, as in many,
however, each cell has the same size. Components
are placed on the grid at a specified column and row
using one of the add methods of the GridPane class,
such as the one shown in Table 12.24. Note that the
column parameter is given before the row parameter.

By default, the rows and columns in the grid are
sized to their preferred size, which is based on the
content of each cell and independent of the size of

the GridPane. A GridPane maintains lists of row and
column constraints that it uses to size each cell in
the grid. There are no row or column constraints
when a GridPane is first instantiated, so these two
lists are originally empty. If we want to control the
height of each row in the grid, we add as many row
constraints as there are rows in the grid; similarly, if
we want to control the width of each column in the
grid, we add as many column constraints as there
are columns in the grid. In this example, we want all
the rows to have the same height and all the
columns to have the same width. We also want all
the cells to fill the space in the GridPane.

The getRowConstraints and getColumnConstraints
methods of the GridPane class, shown in Table
12.24, retrieve the list of row and column constraints,
respectively.

We use the add method of the ObservableList
interface, inherited from the List interface, to add a
row or a column constraint to the appropriate list.
When we add a constraint to the list of row or column
constraints, it is automatically added to the list of
constraints in the GridPane. This method is shown in
Table 12.25.

The RowConstraints and ColumnConstraints classes
can be used to define the height of a row and width

of a column in a GridPane, respectively. Often, we
want to set the dimensions of a row or column as a
percentage of the available space within the
GridPane. We do this with the setPercentHeight and
setPercentWidth methods of the RowConstraints and
ColumnConstraints classes. These methods are
shown in Tables 12.26 and 12.27.

TABLE 12.24 Useful Methods of the
GridPane Class

Package javafx.scene.layout

Return value Method name and argument
list

void add(Node child, int

columnIndex, int

rowIndex)

adds child to this
GridPane at row
rowIndex and column
columnIndex

ObservableList<RowConstraints> getRowConstraints()

returns a list of row
constraints for this
GridPane

ObservableList<ColumnConstraints> getColumnConstraints(

)

returns a list of column
constraints for this
GridPane

TABLE 12.25 The add and clear Methods of
the List Interface

Package java.util

Return value Method name and argument list
boolean add(E e)

appends e to the end of the list

void clear()

removes all the elements from the list

TABLE 12.26 The setPercentHeight Method
of the RowConstraints

Package javafx.scene.layout

Return
value

Method name and argument list

void setPercentHeight(double value)

sets the height of a row as a percentage of the total
height of the GridPane

TABLE 12.27 The setPercentWidth Method
of the ColumnConstraints Class

Package javafx.scene.layout

Return
value

Method name and argument list

void setPercentWidth(double value)

sets the width of a column as a percentage of the
total width of the GridPane

Example 12.28 shows how to define a GUI by code
using a GridPane to display a chessboard. Each
position on a chessboard is identified by a letter (a –

h) and a number (1–8). From the standpoint of the
white player, the lower left square is a1, and from the
standpoint of the black player, the lower left square is
h8. When the user clicks on a square on the
chessboard, our application displays its position.

The BoardView class, shown in Example 12.28,
extends GridPane. In this way, we can set a
BoardView object as the root of the scene that we
place on the stage.

A two-dimensional array of Buttons, named squares
(line 13), makes up the chessboard. We declare an
instance variable of type BoardGame, our Model, at
line 12. The constructor (lines 15–57) defines the
GUI and sets up event handling. We call the
constructor of GridPane at line 17 and retrieve the
number of rows and columns from the Model at lines
20 through 22. At lines 23 through 30, we define and
add row and column constraints. After instantiating a
RowConstraints object at line 23, we set its
percentage height to 100%, divided by the number of
rows. We then add that row constraint to the list of
row constraints as many times as there are rows
(lines 27–28). In this way, each row has the same
height. We define the column constraints similarly, so
that each column has the same width.

At line 33, we declare and instantiate the listener bh,
a ButtonHandler object reference. Because we are
interested in events related to buttons, our
ButtonHandler private inner class implements the
EventHandler interface and overrides the handle
method. At line 32, we instantiate the two-
dimensional array squares. We have a two-
dimensional array of Buttons, so we use nested for
loops at lines 35 through 56 to instantiate the
Buttons, add them to the GridPane, and register the
listener on all the buttons. Using FXML, to include a
Button in a layout container, we define a Button
element and specify attributes for that Button
element in an .fxml file. To create and define a
Button programmatically, we instantiate the Button
using a constructor and call various methods to set
its properties. These setter methods typically accept
a parameter that represents the new value for the
Button property. Some of these methods are shown
in Table 12.28. Remember from Figure 12.2 that the
Button class is a subclass of ButtonBase, Labeled,
Control, Region, Parent, Node, and Object, and
inherits some properties from its superclasses.

At lines 42 through 44, we color the squares
according to the coloring pattern and colors set in the
Model. In order to do this, we call the setStyle
method of the Button class, inherited from Node, and
also shown in Table 12.28. The setStyle method

accepts a CSS-like String parameter composed of a
semicolon-separated list of attribute-value pairs, with
each attribute and value separated by a colon (:).
The format of the CSS-style String parameter is as
follows:

"styleAttribute1:value1;styleAttribute2:value2;style

Attribute3:value3; ..."

For example, if we want to set the background color
to blue and the text’s font size to 25, we could use
the following String as the parameter to the setStyle
method:

"-fx-background-color:blue;-fx-font-size:25"

REFERENCE POINT
For a complete listing of JavaFX style attributes, see
https://docs.oracle.com/javafx/2/api/javafx/scene/doc
-files/cssref.html

At lines 49 through 51, we ensure that each Button
will fill the available space within the GridPane by
setting its maximum width and height to the
maximum possible value by calling the setMaxWidth
and setMaxHeight methods (see Table 12.28), using
the static constant of the Double wrapper class
(Double.MAX_VALUE) that represents the maximum

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

value that a double data type can hold. If we remove
these statements, the Buttons will be sized to their
default size, which is based on their contents: in this
case, the button’s text and the font size of that text.
At lines 53 and 54, we call the setOnAction method
(see Table 12.28) to register the ButtonHandler bh
on each Button.

TABLE 12.28 Selected Methods of and
Inherited by the Button Class

Package javafx.scene.control
Constructor
Button()

creates an empty Button

Return
value

Method name and argument list

void setStyle(String style)

sets the value of the style property of this Button to
style, which is expected to be a CSS-like String.
This method is inherited from Node.

void setMaxWidth(double value)

sets the value of the maxWidth property of this
Button to value. This method is inherited from
Region.

void setMaxHeight(double value)

sets the value of the maxHeight property of this
Button to value. This method is inherited from
Region.

void setOnAction(EventHandler<ActionEvent>

handler)

registers handler as the event handler for this
Button. When the button is clicked, the handle

method of handler’s class will be called
automatically. This method is inherited from
ButtonBase.

In the handle method, we use nested for loops at
lines 65 through 75 to identify the source of the
event, that is, which button the user clicked. We then
set the text of that button to its board position (line

71), retrieving the corresponding value from the
Model. Having found the source of the event, we
then exit the event handler via the return statement
(line 72) to interrupt the for loops and thus avoid
unnecessary processing.

EXAMPLE 12.28 The BoardView
Class

 1 /* Using GridPane to organize our window

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.event.ActionEvent;

 6 import javafx.event.EventHandler;

 7 import javafx.scene.control.Button;

 8 import javafx.scene.layout.*;

 9

10 public class BoardView extends GridPane

11 {

12 private BoardGame game;

13 private Button [][] squares;

14

15 public BoardView(BoardGame newGame)

16 {

17 super();

18 game = newGame;

19

20 // set up grid according to Model

21 int rows = game.getNumberOfRows();

22 int columns = game.getNumberOfColumns();

23 RowConstraints row = new RowConstraints();

24 row.setPercentHeight(100.0 / rows);

25 ColumnConstraints col = new

ColumnConstraints();

26 col.setPercentWidth(100.0 / columns);

27 for (int i = 0; i < rows; i++)

28 getRowConstraints().add(row);

29 for (int j = 0; j < columns; j++)

30 getColumnConstraints().add(col);

31

32 squares = new Button[rows][columns];

33 ButtonHandler bh = new ButtonHandler();

34

35 for (int i = 0; i < rows; i++)

36 {

37 for (int j = 0; j < columns; j++)

38 {

39 // instantiate the button with no text

40 squares[i][j] = new Button();

41

42 // color the button

43 squares[i][j].setStyle("-fx-background-

color:"

44 + game.getSquareColor(i, j));

45

46 // add the button

47 add(squares[i][j], j, i);

48

49 // make button fill up available width

and height

50 squares[i][j].setMaxWidth(

Double.MAX_VALUE);

51 squares[i][j].setMaxHeight(

Double.MAX_VALUE);

52

53 // register listener on button

54 squares[i][j].setOnAction(bh);

55 }

56 }

57 }

58

59 // private inner class event handler

60 private class ButtonHandler implements

EventHandler<ActionEvent>

61 {

62 @Override

63 public void handle(ActionEvent event)

64 {

65 for (int i = 0; i < squares.length; i++)

66 {

67 for (int j = 0; j < squares[i].length;

j++)

68 {

69 if (event.getSource() == squares[i]

[j])

70 {

71 squares[i][j].setText(

game.getSquareText(i, j));

72 return;

73 }

74 }

75 }

76 }

77 }

78 }

Finally, the ChessBoard class, shown in Example
12.29, includes the main and start methods to create
a BoardView showing a BoardGame game. The
letters, digits, and boardColors arrays (lines 14–16)
define the board. Try changing either the letters,
digits, or boardColors array and running the
application again. The grid will be resized correctly
and with new colors, showing the reusability of our
classes.

EXAMPLE 12.29 The ChessBoard
Class

 1 /* ChessBoard class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.paint.Color;

 7 import javafx.scene.Scene;

 8 import javafx.stage.Stage;

 9

10 public class ChessBoard extends Application

11 {

12 public void start(Stage stage)

13 {

14 char [] letters = { 'a', 'b', 'c', 'd', 'e',

'f', 'g', 'h' };

15 int [] digits = { 8, 7, 6, 5, 4, 3, 2, 1 };

16 Color [] boardColors = { Color.WHITE,

Color.RED };

17

18 BoardGame game = new BoardGame(digits,

letters, boardColors);

19 BoardView view = new BoardView(game);

20

21 Scene scene = new Scene(view, 450, 450);

22 stage.setScene(scene);

23 stage.setTitle("Click a square to reveal its

position");

24 stage.show();

25 }

26

27 public static void main(String [] args)

28 {

29 launch(args);

30 }

31 }

Figure 12.13 shows the application if we eliminate
the row and column constraints by commenting out
lines 23 through 30 of Example 12.28. Similarly, we
will have the same result if we comment out lines 49
through 51, because the buttons will have their
computed preferred size, which is based on their
content. As we see, the cells do not fill up the width
and height of the GridPane; the buttons have their
default minimum size because they are empty. When
we click on a button, it expands in width to display its
new text, and the width of the whole column
increases accordingly.

Figure 12.13
Running the Chessboard Example Without Row and
Column Constraints

12.11 Layout Containers: Dynamically
Setting Up the GUI Using GridPane
Layout managers can be set dynamically, based on user
input. For example, the user could enter the number of rows
or columns of the grid. Based on user input, we can also
rearrange the components using another layout container,
such as HBox. The user could also instruct us to remove
components and add others. Our next example, the Tile
Puzzle game, will illustrate some of these capabilities.

In the Tile Puzzle game, eight tiles displaying the digits 1
through 8 are scrambled on a 3-by-3 grid, leaving one cell
empty. Any tile adjacent to the empty cell can be moved to the
empty cell by clicking on the numbered tile. The goal is to
rearrange the tiles so that the numbers are in the correct
order, as shown in Figure 12.14.

The Tile Puzzle game can also be played on a 4-by-4, 5-by-5,
and more generally, n-by-n grid. In this example, we set up a
3-by-3 grid for the first game and then randomly select a 3-by-
3, 4-by-4, 5-by-5, or 6-by-6 grid for subsequent games. Later,
we can modify this example to allow the user to specify the
size of the grid.

Figure 12.14
The Winning Position of a 3-by-3 Tile Puzzle Game

Before designing the GUI class, we first code the Model, a
class to encapsulate the functionality of the tile puzzle game;
the TilePuzzle class (Example 12.30) handles the creation of
a game of a given size, enables play, and enforces the rules
of the game.

The instance variable tiles (line 7), a two-dimensional array of
Strings, stores the state of the puzzle. Each element of tiles
represents a cell in the puzzle grid. The instance variable
side, declared at line 8, holds the size of the grid. The
instance variables emptyRow and emptyCol, declared at lines
9 and 10, identify the empty cell in the puzzle grid.

The constructor (lines 12–18) calls the setUpGame method
(lines 20–44), passing the size of the grid (newSide) as an
argument. The controller also calls the setUpGame method
before starting each new game.

Inside the setUpGame method, we assign newSide to side.
Rather than randomly generating each tile label, which would
complicate this example, we assign the labels to the tiles in
descending order using nested for loops (lines 33–41). We set
the empty cell to the last cell in the grid (lines 42 and 43).

The tryToPlay method (lines 71–89) first checks if the play is
legal by calling the possibleToPlay method (line 77). The play
is legal if the tile the user clicked is next to the empty tile. If
the possibleToPlay method returns true, we proceed with the
play and return true; otherwise, we return false. Playing
means swapping the values of the empty cell (emptyRow,
emptyCol) and the cell that was just played, represented by
the two parameters of the tryToPlay method, row and col.

The possibleToPlay method is coded at lines 91 through 101.
If the play is legal—that is, if the tile played is within one cell
of the empty cell—the method returns true; otherwise, the
method returns false.

The won method (lines 103–119) checks if the tiles are in
order. If so, the won method returns true; otherwise, the
method returns false.

EXAMPLE 12.30 The TilePuzzle Class

 1 /** TilePuzzle class

 2 * Anderson, Franceschi

 3 */

 4

 5 public class TilePuzzle

 6 {

 7 private String [][] tiles;

 8 private int side; // grid size

 9 private int emptyRow;

 10 private int emptyCol;

 11

 12 /** constructor

 13 * @param newSide grid size

 14 */

 15 public TilePuzzle(int newSide)

 16 {

 17 setUpGame(newSide);

 18 }

 19

 20 /** setUpGame

 21 * @param newSide grid size

 22 */

 23 public void setUpGame(int newSide)

 24 {

 25 if (newSide < 3)

 26 side = 3;

 27 else

 28 side = newSide;

 29 emptyRow = side - 1;

 30 emptyCol = side - 1;

 31 tiles = new String[side][side];

 32

 33 // initialize tiles

 34 for (int i = 0; i < side; i++)

 35 {

 36 for (int j = 0; j < side; j++)

 37 {

 38 tiles[i][j] = String.valueOf((side * side)

 39 - (side * i + j + 1));

 40 }

 41 }

 42 // set empty cell label to blank

 43 tiles[side - 1][side - 1] = "";

 44 }

 45

 46 /** getSide

 47 * @return side

 48 */

 49 public int getSide()

 50 {

 51 return side;

 52 }

 53

 54 /** getTiles

 55 * @return a copy of tiles

 56 */

 57 public String[][] getTiles()

 58 {

 59 String[][] copyOfTiles = new String[side][side];

 60

 61 for (int i = 0; i < side; i++)

 62 {

 63 for (int j = 0; j < side; j++)

 64 {

 65 copyOfTiles[i][j] = tiles[i][j];

 66 }

 67 }

 68 return copyOfTiles;

 69 }

 70

 71 /** tryToPlay

 72 * enable play if play is legal

 73 * @return true if the play is legal, false otherwise

 74 */

 75 public boolean tryToPlay(int row, int col)

 76 {

 77 if (possibleToPlay(row, col))

 78 {

 79 // play: switch empty String and tile label at row,

col

 80 tiles[emptyRow][emptyCol] = tiles[row][col];

 81 tiles[row][col] = "";

 82 // update emptyRow and emptyCol

 83 emptyRow = row;

 84 emptyCol = col;

 85 return true;

 86 }

 87 else

 88 return false;

 89 }

 90

 91 /** possibleToPlay

 92 * @return true if the play is legal, false otherwise

 93 */

 94 public boolean possibleToPlay(int row, int col)

 95 {

 96 if ((col == emptyCol && Math.abs(row - emptyRow) ==

1)

 97 || (row == emptyRow && Math.abs(col - emptyCol

) == 1))

 98 return true;

 99 else

100 return false;

101 }

102

103 /** won

104 * @return true if correct tile order, false otherwise

105 */

106 public boolean won()

107 {

108 for (int i = 0; i < side ; i++)

109 {

110 for (int j = 0; j < side; j++)

111 {

112 if (!(tiles[i][j].equals(

113 String.valueOf(i * side + j + 1)))

114 && (i != side - 1 || j != side - 1))

115 return false;

116 }

117 }

118 return true;

119 }

120 }

As in the chessboard example, when the user clicks on a
button, we need to identify the row and the column of that
button. In order to avoid looping through all the buttons, we

create a class that extends the Button class and we add two
instance variables for the row and column indexes. In this
way, when a button belonging to a two-dimensional array of
buttons is clicked, we can access its row and column instance
variables in order to identify which button was clicked.

Example 12.31 shows the GridButton class, which extends
the Button class and adds two instance variables, row and
column (lines 9–10). The constructor at lines 12 through 22
allows the client to create a GridButton object with a specified
text, row, and column. Note that this class is not specific to the
tile puzzle application and can be reused for other
applications involving an array of buttons placed on a grid.

EXAMPLE 12.31 The GridButton Class

 1 /** GridButton class

 2 * Anderson, Franceschi

 3 */

 4

 5 import javafx.scene.control.Button;

 6

 7 public class GridButton extends Button

 8 {

 9 private int row;

10 private int column;

11

12 /** Constructor

13 * @param title text for button

14 * @param newRow row

15 * @param newColumn column

16 */

17 public GridButton(String title, int newRow, int

newColumn)

18 {

19 super(title);

20 setRow(newRow);

21 setColumn(newColumn);

22 }

23

24 /** getRow method, accessor for row

25 * @return row

26 */

27 public int getRow()

28 {

29 return row;

30 }

31

32 /** getColumn method, accessor for column

33 * @return column

34 */

35 public int getColumn()

36 {

37 return column;

38 }

39

40 /** setRow method, mutator for row

41 * @param row, new value for row

42 */

43 public void setRow(int row)

44 {

45 if (row >= 0)

46 this.row = row;

47 }

48

49 /** setColumn method

50 * @param column, new value for column

51 */

52 public void setColumn(int column)

53 {

54 if (column >= 0)

55 this.column = column;

56 }

57 }

Figure 12.15 shows the UML diagram for the TilePuzzle and
TilePuzzleViewController classes.

Example 12.32 shows the TilePuzzleViewController class; as
in the BoardView class in the previous example, it is a
subclass of GridPane (line 12) and combines the View and
the Controller.

Figure 12.15
The UML Diagram for TilePuzzle and TilePuzzleView-
Controller

Each tile in the game is a GridButton. The instance variable
squares (line 14) holds a two-dimensional array of
GridButtons so that each element of squares is a cell in the
game grid. The TilePuzzle instance variable game, declared
at line 15, represents the Model. When the user plays, we call
the various methods of the TilePuzzle class to enforce the
rules of the game.

The constructor (lines 17–22) calls the constructor of
GridPane, instantiates game, and calls the setUpGameGUI
method. The constructor and the setUpGameGUI method
define the View. The private inner class ButtonHandler (lines
90–100) and the update method (lines 63–78) make up the
Controller.

The setUpGameGUI method (lines 24–61) displays the game
in its starting position. We first remove all the components and
the row and column constraints from this GridPane (lines 26–
29). In order to access the children of this GridPane, we call
the getChildren method inherited from Pane and shown in
Table 12.29. It returns an ObservableList of Nodes that are
the children of this GridPane. With it, we call the clear method
that ObservableList inherits from the List interface. That
removes all the Buttons from this GridPane. Because the next
game may be 3-by-3, 4-by-4, or 5-by-5 grids, we also need to
remove the current row and column constraints of this
GridPane. We access them using the getRowConstraints and
getColumnConstraints methods of the GridPane class, shown
earlier in Table 12.24. They also return a list of Observable
objects, RowConstraints, and ColumnConstraints,
respectively. We remove these constraints by calling the clear
method, shown in Table 12.25. We then reset the row and

column constraints of this GridPane layout container at lines
31 through 39. We instantiate the squares array and our event
handler at lines 41 and 42. After that, we use nested for loops
(lines 44–60) to instantiate each button, add it to the
container, force the button to fill the available width and
height, and register the event handler. The squares array
parallels the tiles array of the TilePuzzle class; the squares
buttons are labeled with the values of tiles.

TABLE 12.29 The getChildren Method of the
GridPane Class Inherited from the Pane Class

Package javafx.scene.layout

Return value Method name and argument list
ObservableList<Node> getChildren()

returns the children of this pane as an
ObservableList of Nodes

When a button is clicked, our ButtonHandler handle method is
executed. To determine which button was clicked, we call the
getSource method using the ActionEvent event object that
was sent to the method (line 96). Because the getSource
method returns an Object, we need to type cast the return
value to a GridButton. We then need to determine whether the
button clicked was a legal play. To do this, we call the
tryToPlay method at line 97 with the row and column instance
variable values of the button. If that method returns true, the
play was legal and the model has changed (i.e., a tile has
been moved). We then call the update method to make the
view (i.e., the buttons) reflect the model (line 98).

The update method first updates the squares button array
(lines 65–67). We then test if the current move solved the
puzzle by calling the won method (line 69) of the TilePuzzle

class. If the won method returns true, we congratulate the
user by popping up a dialog box at lines 71 and 72.

TABLE 12.30 Constructor and Useful Methods of
the Alert Class

Package javafx.scene.control

Constructor
Alert(Alert.AlertType type)

constructs an Alert of type type.

Return value Method name and argument list
void setTitle(String title)

sets the title of this dialog box.

void setHeaderText(String message)

sets the text to display in the header of this dialog box.
If message is the empty String, no space is allocated
for the header and the dialog box will be smaller.

void setContentText(String message)

sets the text to display inside dialog box.

Optional<R> showAndWait()

shows this dialog box and waits for the user’s
response.

The Alert class, part of the javafx.scene.control package,
enables us to display one of many predefined dialog boxes. A
constructor and several methods are shown in Table 12.30.
Most methods of Alert are inherited from its superclass,
Dialog. The constructor accepts an Alert.AlertType parameter
that defines the type of dialog box that we want to display.
Alert.AlertType, a static inner class of Alert, is an enum that
defines several constants that can be used to configure the
icon and style of the dialog box. The INFORMATION type is
used to configure the dialog box so that it just informs the user
of something. Other types are CONFIRMATION, ERROR,
WARNING, and NONE. At line 82 of the showMessageDialog

method (lines 80–87), we instantiate a dialog box using the
INFORMATION type. We then set the contents of the dialog
box at lines 83–85. Note that if we did not set the header text
of the dialog box to an empty String at line 84, the dialog box
would be bigger and look a bit awkward. Finally, we display
the dialog box at line 86 by calling the showAndWait method.

We then randomly generate a grid size between three and six
(lines 73–74) for the next game and call the setUpGame
method (line 75) and the setUpGameGUI method (line 76) to
begin a new game with the new grid size.

EXAMPLE 12.32 The
TilePuzzleViewController Class

 1 /* Using GridPane dynamically

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Random;

 6 import javafx.event.ActionEvent;

 7 import javafx.event.EventHandler;

 8 import javafx.scene.control.Alert.AlertType;

 9 import javafx.scene.control.*;

 10 import javafx.scene.layout.*;

 11

 12 public class TilePuzzleViewController extends GridPane

 13 {

 14 private GridButton [][] squares;

 15 private TilePuzzle game; // the tile puzzle game

 16

 17 public TilePuzzleViewController(TilePuzzle newGame)

 18 {

 19 super();

 20 game = newGame;

 21 setUpGameGUI();

 22 }

 23

 24 public void setUpGameGUI()

 25 {

 26 // remove all components and constraints

 27 getChildren().clear();

 28 getRowConstraints().clear();

 29 getColumnConstraints().clear();

 30

 31 // set up grid constraints

 32 RowConstraints row = new RowConstraints();

 33 row.setPercentHeight(100.0 / game.getSide());

 34 ColumnConstraints col = new ColumnConstraints();

 35 col.setPercentWidth(100.0 / game.getSide());

 36 for (int i = 0; i < game.getSide(); i++)

 37 getRowConstraints().add(row);

 38 for (int j = 0; j < game.getSide(); j++)

 39 getColumnConstraints().addAll(col);

 40

 41 squares = new GridButton [game.getSide()]

[game.getSide()];

 42 ButtonHandler bh = new ButtonHandler();

 43

 44 for (int i = 0; i < game.getSide(); i++)

 45 {

 46 for (int j = 0; j < game.getSide(); j++)

 47 {

 48 squares[i][j] = new GridButton(game.getTiles()

[i][j], i, j);

 49

 50 // add the button

 51 add(squares[i][j], j, i);

 52

 53 // make button fill up available width and height

 54 squares[i][j].setMaxWidth(Double.MAX_VALUE);

 55 squares[i][j].setMaxHeight(Double.MAX_VALUE);

 56

 57 // register listener on button

 58 squares[i][j].setOnAction(bh);

 59 }

 60 }

 61 }

 62

 63 public void update()

 64 {

 65 for (int i = 0; i < game.getSide(); i++)

 66 for (int j = 0; j < game.getSide(); j++)

 67 squares[i][j].setText(game.getTiles()[i][j]);

 68

 69 if (game.won())

 70 {

 71 showMessageDialog("Congratulations",

 72 "You won\nSetting up a new game"

);

 73 Random random = new Random();

 74 int sideOfPuzzle = 3 + random.nextInt(4);

 75 game.setUpGame(sideOfPuzzle);

 76 setUpGameGUI();

 77 }

 78 }

 79

 80 public void showMessageDialog(String title, String

message)

 81 {

 82 Alert alert = new Alert(AlertType.INFORMATION);

 83 alert.setTitle(title);

 84 alert.setHeaderText("");

 85 alert.setContentText(message);

 86 alert.showAndWait();

 87 }

 88

 89 // private inner class event handler

 90 private class ButtonHandler implements

EventHandler<ActionEvent>

 91 {

 92 @Override

 93 public void handle(ActionEvent event)

 94 {

 95 GridButton button = (GridButton) event.getSource(

);

 96 if (game.tryToPlay(button.getRow(),

button.getColumn()))

 97 update();

 98 }

 99 }

100 }

Finally, the PlayTilePuzzle class, shown in Example 12.33,
includes the main and start methods to create a
TilePuzzleViewController application showing a TilePuzzle
game. Figure 12.16 shows a run of this game after the user
has moved some tiles.

Figure 12.16
The Tile Puzzle Game in Progress

EXAMPLE 12.33 The PlayTilePuzzle
Class
 1 /* PlayTilePuzzle class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.Scene;

 7 import javafx.stage.Stage;

 8

 9 public class PlayTilePuzzle extends Application

10 {

11

12 @Override

13 public void start(Stage stage)

14 {

15 TilePuzzle puzzle= new TilePuzzle(3);

16 TilePuzzleViewController root

17 = new TilePuzzleViewController(puzzle);

18

19 Scene scene = new Scene(root, 350, 350);

20 stage.setTitle("The tile puzzle game");

21 stage.setScene(scene);

22 stage.show();

23 }

24

25 public static void main(String [] args)

26 {

27 launch(args);

28 }

29 }

12.12 BorderPane Layout, Animations,
Sounds, and Lambda Expressions
We have a lot to talk about in this section. We introduce a new
layout class, BorderPane. We demonstrate animating nodes
with some accompanying sound. And we explain using
lambda expressions for event handlers.

A BorderPane layout container organizes its nodes into five
positions: top, bottom, left, right, and center, with each
position holding, at most, one node. The size of each position
expands or contracts depending on the size of the node in
that position, the sizes of the nodes in the other positions, and
whether the other positions contain a node. The center
position expands to fill any remaining space; if not enough
space is allocated, some positions may overlap other
positions. Thus, for each position, we can add zero or one
node. In contrast to the previously discussed layout
containers, we can define the positions and nodes for a
BorderPane in any order. Figure 12.17 shows the five
possible positions in a BorderPane layout.

Figure 12.17
The Five Positions of the BorderPane Layout

To illustrate the BorderPane layout, we will write an
application that animates a Sprite defined in Example 12.34.
We’ve made some changes to the Sprite class. Because we
want to animate the Sprite, we define the class as extending
the Canvas class. The default constructor (lines 15–22) calls
the constructor of the Canvas class, setting the width and
height of the canvas to be the width and height of the Sprite.
The overloaded constructor is similar (lines 24–35), except
that it sets the canvas size to the Sprite’s width and height
multiplied by the validated scale. Figure 12.18 shows the
window when the AnimationSampler application begins, and
Example 12.35 shows the FXML file we use to define the
layout and nodes.

Figure 12.18
The Animation Sampler Window

EXAMPLE 12.34 The Sprite.java File

 1 /* Sprite class

 2 Anderson, Franceschi

 3 */

 4 import javafx.scene.canvas.*;

 5 import javafx.scene.paint.*;

 6

 7 public class Sprite extends Canvas

 8 {

 9

10 private static final int WIDTH = 95, HEIGHT = 138;

11 private int sX;

12 private int sY;

13 private double scale;

14

15 /** default constructor

16 * sX = sY = 0; scale is set to 1

17 */

18 public Sprite()

19 {

20 super(WIDTH, HEIGHT);

21 scale = 1;

22 }

23

24 /* overloaded constructor

25 * accepts values for starting x and y coordinates

26 * and scale

27 */

28 public Sprite(int sX, int sY, double scale)

29 {

30 super();

31 setCoordinates(sX, sY);

32 this.scale = (scale > 0.0 ? scale : 1);

33 setWidth(this.scale * WIDTH);

34 setHeight(this.scale * HEIGHT);

35 }

36

37 /* setCoordinates

38 * accepts new values for starting x and y;

39 * returns a reference to this object

40 */

41 public Sprite setCoordinates(int sX, int sY)

42 {

43 this.sX = sX;

44 this.sY = sY;

45 return this;

46 }

47

48 /* mutator for scale

49 * returns a reference to this object

50 */

51 public Sprite setScale(double scale)

52 {

53 this.scale = (scale > 0.0 ? scale : this.scale);

54 return this;55 }

56

57 /* draw method

58 * draws Sprite at current sX and sY

59 * multiplying lengths by scale

60 * accepts the GraphicsContext of the canvas

61 */

62 public void draw(GraphicsContext gc)

63 {

64 gc.setFill(Color.CORAL); // body

65 gc.fillOval(sX, sY + 15 * scale, 90 * scale, 120 *

scale);

66 gc.setFill(Color.DARKGOLDENROD); // hat

67 gc.fillRect(sX + 23 * scale, sY, 45 * scale, 22 *

scale);

68 gc.setStroke(Color.DARKGOLDENROD); // hat brim

69 gc.setLineWidth(3);

70 gc.strokeLine(sX, sY + 23 * scale,

71 sX + 90 * scale, sY + 23 * scale);

72 gc.setFill(Color.CHOCOLATE); // eye

73 gc.fillOval(sX + 60 * scale, sY + 45 * scale,

74 18 * scale, 12 * scale);

75 gc.setFill(Color.DARKSALMON); // feet

76 gc.setLineWidth(1);

77 gc.fillOval(sX + 45 * scale, sY + 125 * scale,

78 45 * scale, 12 * scale);

79 gc.strokeOval(sX + 45 * scale, sY + 125 * scale,

80 45 * scale, 12 * scale);

81 gc.fillOval(sX + 27 * scale, sY + 127 * scale,

82 45 * scale, 12 * scale);

83 gc.strokeOval(sX + 27 * scale, sY + 127 * scale,

84 45 * scale, 12 * scale);

85 }

86 }

EXAMPLE 12.35 The
fxml_animation.fxml File
 1 <?xml version="1.0" encoding="UTF-8"?>

 2 <?import javafx.scene.control.*?>

 3 <?import javafx.scene.layout.*?>

 4

 5 <BorderPane xmlns:fx="http://javafx.com/fxml"

 6 fx:controller="AnimationController">

 7 <center>

 8 <VBox fx:id="canvasContainer" alignment="center"

 9 style="-fx-border-color:navy;-fx-border-width:1"/>

10 </center>

11 <left>

12 <VBox spacing="10" alignment="center"

13 style="-fx-border-color:navy;-fx-border-width:1;-fx-

padding:8">

14

15 <Button text="Fade" fx:id="fadeButton" />

16 <Button text="Rotate" fx:id="rotateButton" />

17 <Button text="Scale" fx:id="scaleButton" />

18 <Button text="Combine Animations"

fx:id="combineButton" />

19 <Button text="Start Translate"

fx:id="startTranslateButton" />

20 <Button text="Stop Translate"

fx:id="stopTranslateButton" />

21 </VBox>

22 </left>

23 </BorderPane>

In Example 12.35, we define the top-level layout as a
BorderPane (lines 5–6 and 23). We specify the BorderPane
positions using FXML elements. In the center position, we
place an empty VBox (lines 7–10). In the controller’s initialize
method, we will add the Sprite to this VBox and draw it. In the
left position, we place the VBox containing the buttons (lines
11–22). Because at most one node can be placed into each
position, we place multiple nodes into the VBox layout and
place the VBox layout as the single node in the left position.
We do not define any nodes for the top, right, or bottom
positions. Thus, the left position is sized to fit the buttons, and
the center position expands to fill the window. We define navy
borders around the VBoxes (lines 9 and 13) so we can see
their relative sizes and placement.

JavaFX supports two kinds of animations: transitions and
timeline animations. Animations vary the properties of nodes,
such as the opacity, position, or size, over a specified time
period. In timeline animations, we can define custom
variations of properties over time. In this chapter, we
concentrate on predefined transitions.

Transitions use a technique called tweening, which gives the
illusion of a property varying “between” two states by creating
and displaying a series of intermediate frames over time. We
can define individual transitions or combine multiple
transitions to be played sequentially or in parallel.

JavaFX’s abstract Transition class inherits from the abstract
Animation class. Each type of transition is a concrete
subclass of the Transition class. All these classes are in the
javafx.animation package.

To create an animation, we instantiate an object of the
appropriate Transition subclass, tie the animation to a node,
and specify the beginning and ending states of a property and
the time period over which to vary the property. When ready,
we play the transition. JavaFX automatically handles the
variation of the property over time by creating intermediate
frames. By default, the property varies from the start state to
the end state at a constant rate.

In our AnimationSampler application, we demonstrate several
kinds of transitions:

FadeTransition, which varies the opacity of a node so
that it fades in or out

RotateTransition, which rotates a node a specified
number of degrees

ScaleTransition, which varies the size of a node

TranslateTransition, which moves a node by varying
its x or y coordinate, or both

SequentialTransition, which plays a series of
transitions one after the other

ParallelTransition, which plays multiple transitions
simultaneously

Some methods that all transitions inherit from the Animation
class are shown in Table 12.31. The setCycleCount method
allows us to specify how many times to run the animation. If
we set the autoReverse property to true, the animation will
play in reverse every other cycle. When we call the play
method, the JavaFX platform manages the playing of the

transition. We cannot alter the properties of the transition
while it is playing. The only method that affects a running
animation is stop. The setOnFinished method allows us to
define an event handler to execute when the animation
finishes. In addition, each transition has properties and
methods specific to its animation.

TABLE 12.31 Some Methods Common to Animation
Subclasses

Package javafx.animation

Common Methods of Animation Subclasses

Return
value

Method name and argument list

void play()

plays the animation from its current position

void setAutoReverse(boolean value)

if value is true, animation reverses on alternate cycles; if false,
animation repeats from start position on each cycle

void setCycleCount(int value)

sets the animation to execute value times; if set to
Animation.INDEFINITE, animation will run until stopped

void setOnFinished(EventHandler<ActionEvent> handler

)

registers event handler’s code to run when the animation
finishes

void stop()

stops the animation, if playing

We manage all the animations for our application in the
controller, shown in Example 12.36. In the initialize method,
we create our Sprite, which is a Canvas, and add it to the
VBox we placed in the center position of the BorderPane
(lines 34–37).

EXAMPLE 12.36
AnimationController.java

 1 /* Animation Controller

 2 Anderson, Franceschi

 3 */

 4 import java.net.URL;

 5

 6 import javafx.animation.*;

 7 import javafx.event.*;

 8 import javafx.fxml.*;

 9 import javafx.scene.canvas.*;

10 import javafx.scene.control.*;

11 import javafx.scene.layout.*;

12 import javafx.scene.media.AudioClip;

13 import javafx.util.Duration;

14

15 public class AnimationController

16 {

17 @FXML private Button fadeButton, rotateButton,

18 scaleButton, combineButton,

19 startTranslateButton,

stopTranslateButton;

20 @FXML private VBox canvasContainer;

21

22 private FadeTransition ftFade;

23 private RotateTransition rtHalf, rtFull;

24 private TranslateTransition ttStraight, ttDiagonal;

25 private ScaleTransition stLarger, stSmaller, stSqueeze;

26 private SequentialTransition sequential;

27 private ParallelTransition parallel;

28

29 private AudioClip sound;

30

31 @FXML public void initialize()

32 {

33 // Sprite extends Canvas

34 Sprite sprite = new Sprite(0, 0, 1);

35 GraphicsContext gc = sprite.getGraphicsContext2D();

36 sprite.draw(gc);

37 canvasContainer.getChildren().add(sprite);

38

39 // fade for 3 seconds, then reverse

40 ftFade = new FadeTransition(Duration.seconds(3),

sprite);

41 ftFade.setFromValue(1.0);

42 ftFade.setToValue(0.1);

43 ftFade.setCycleCount(2);

44 ftFade.setAutoReverse(true);

45 fadeButton.setOnAction(event -> runTransition(ftFade

));

46

47 // sound effect

48 URL resource = getClass().getResource("whoosh.m4a"

);

49 sound = new AudioClip(resource.toString());

50 sound.setCycleCount(2);

51

52 // rotate 180 degrees and back

53 rtHalf = new RotateTransition(Duration.millis(3000

), sprite);

54 rtHalf.setFromAngle(0);

55 rtHalf.setToAngle(180);

56 rtHalf.setCycleCount(2);

57 rtHalf.setAutoReverse(true);

58 rotateButton.setOnAction(event ->

59 {

60 runTransition(rtHalf);

61 sound.play();

62 }

63);

64

65 // reduce size to 1/2, return to start size

66 stSmaller = new ScaleTransition(Duration.millis(1500

), sprite);

67 stSmaller.setToX(0.5f);

68 stSmaller.setToY(0.5f);

69 stSmaller.setCycleCount(2);

70 stSmaller.setAutoReverse(true);

71

72 // reduce x size to 1/2, return to start size

73 stSqueeze = new ScaleTransition(Duration.millis(1500

), sprite);

74 stSqueeze.setToX(0.5f);

75 stSqueeze.setCycleCount(2);

76 stSqueeze.setAutoReverse(true);

77

78 sequential = new SequentialTransition(stSmaller,

stSqueeze);

79 scaleButton.setOnAction(event -> runTransition(

sequential));

80

81 // move right 80 pixels, then return to start

82 ttStraight = new TranslateTransition(

Duration.seconds(3), sprite);

83 ttStraight.setFromX(0);

84 ttStraight.setToX(80);

85 ttStraight.setCycleCount(2);

86 ttStraight.setAutoReverse(true);

87

88 // rotate 360 degrees

89 rtFull = new RotateTransition(Duration.millis(3000

), sprite);

90 rtFull.setByAngle(360);

91

92 // increase size by half, return to start size

93 stLarger = new ScaleTransition(Duration.millis(1500

), sprite);

94 stLarger.setToX(1.5f);

95 stLarger.setToY(1.5f);

96 stLarger.setCycleCount(2);

97 stLarger.setAutoReverse(true);

98

99 parallel = new ParallelTransition(ttStraight, rtFull,

stLarger);

100 combineButton.setOnAction(event -> runTransition(

parallel));

101

102 // move diagonally up 100 pixels, then return to start

103 ttDiagonal = new TranslateTransition(Duration.millis(

1500), sprite);

104 ttDiagonal.setFromX(0);

105 ttDiagonal.setToX(100);

106 ttDiagonal.setFromY(0);

107 ttDiagonal.setToY(-100);

108 ttDiagonal.setCycleCount(Animation.INDEFINITE);

109 ttDiagonal.setAutoReverse(true);

110 stopTranslateButton.setDisable(true);

111 startTranslateButton.setOnAction(event ->

112 {

113 stopTranslateButton.setDisable(false);

114 runTransition(ttDiagonal);

115 });

116

117 stopTranslateButton.setOnAction(event ->

118 {

119 stopTranslateButton.setDisable(true

);

120 ttDiagonal.stop();

121 disableButtons(false);

122 });

123 }

124

125 /**

126 * runTransition

127 * @param t, the transition to run

128 * disables buttons, sets animation finished event

handler

129 * plays the animation

130 */

131 public void runTransition(Transition t)

132 {

133 disableButtons(true);

134 t.setOnFinished(event -> disableButtons(false));

135 t.play();

136 }

137

138 /** disableButtons

139 * @param mode true to disable, false to enable

140 */

141 public void disableButtons(boolean mode)

142 {

143 fadeButton.setDisable(mode);

144 startTranslateButton.setDisable(mode);

145 rotateButton.setDisable(mode);

146 scaleButton.setDisable(mode);

147 combineButton.setDisable(mode);

148 }

149 }

In the initialize method, we define the animations, but we play
them only in response to the user pressing a button. Our first
transition is a FadeTransition that will fade the Sprite out, then
in. A constructor for this transition and several useful methods
are shown in Table 12.32.

At line 40, we instantiate our FadeTransition object. The first
argument to the constructor is the length of time the animation
should run, specified as a Duration object. The Duration class
(in the java.util package) supplies several static factory
methods to create Duration objects in units of milliseconds,
seconds, minutes, or hours. These methods are shown in
Table 12.33. Here we use the static factory method seconds
to specify the length of the animation to be 3 seconds. The
second argument of the constructor is the node we are
animating, which is the Sprite we created.

TABLE 12.32 A Constructor and Method of the
FadeTransition Class

Package javafx.animation

A FadeTransition Constructor
FadeTransition(Duration time, Node node)

creates a FadeTransition that will animate node for a duration of
time

Selected Methods of the FadeTransition Class
Return
value

Method name and argument list

void setFromValue(double opacity)

sets the beginning opacity of the animation; the opacity can
range from 1.0 (fully opaque) to 0.0 (fully transparent)

void setToValue(double opacity)

sets the ending opacity of the animation; the opacity can range
from 1.0 (fully opaque) to 0.0 (fully transparent)

TABLE 12.33 Several static Factory Methods of the
Duration Class

Package java.util

Selected static Factory Methods of the Duration Class

Return value Method name and argument list
Duration millis(double ms)

creates a Duration object for ms milliseconds

Duration seconds(double secs)

creates a Duration object for secs seconds

Duration minutes(double mins)

creates a Duration object for mins minutes

Duration hours(double hrs)

creates a Duration object for hrs hours

At lines 41–44, we define the properties of the transition. We
set the opacity to vary from fully opaque (1.0) to almost
transparent (0.1). We then set the cycle count to 2 so that the

animation will repeat once. And we set autoReverse to true so
that on the repeat cycle, the animation will reverse and the
opacity will vary from almost transparent to fully visible. The
result is that when this transition plays, the Sprite will appear
to fade out for 3 seconds, then fade in for 3 seconds.

For running all our animations, we define a method,
runTransition (lines 125–136), that accepts as a parameter
the transition to play. This method calls the disableButtons
method defined on lines 138–148 so that the user cannot
attempt to start another transition while the current transition
is running. The method then registers an onFinished event
handler that re-enables the buttons when the transition ends,
and then plays the transition.

Line 134 registers the onFinished event handler using a
lambda expression.

In the examples in this chapter so far, we have defined event
handlers in two ways: as protected methods that are
referenced in the FXML file as the onAction property for a
node, and as private inner classes in the controller. When an
event handler is dedicated to only one control, a third option is
to define the event handler as an anonymous class, that is,
a class that we define inline without giving the class a name.
Using this option, we can define and register the event
handler at the same time. Let’s explore this option with the
event handler for the onFinished event handler. The only
action for our event handler is to call the disableButtons
method to enable the buttons when the animation finishes.

We can register our event handler using the setOnFinished
method of the Transition class (inherited from the Animation
class). To do this, we define a class that implements the
EventHandler<ActionEvent> interface. To implement this
class, we need to define one method, handle, shown in Table
12.34.

TABLE 12.34 The handle Method of the
EventHandler<T extends Event> Interface

Package javafx.event
Return
value

Method name and argument list

void handle(T event)

provides code to run when event occurs on a registered
control

In the runTransition method, we could register and define our
event handler as an anonymous class that implements the
EventHandler interface using this code:

 t.setOnFinished(newEventHandler<ActionEvent>()

 {

 @Override

 public void handle(ActionEvent event)

 {

 disableButtons(false);

 }

 }

);

Thus, the argument we send to the setOnFinished method is
an object reference of the class that implements the
EventHandler<ActionEvent> interface. We instantiate the

object using new and define the class by providing the body of
the handle method inline. Although this code is compact,
misplacing a curly brace, parenthesis, or semicolon can
generate errors that are difficult to debug. To write this code in
a more readable form, we can use lambda expressions,
introduced in Java Version 8.

Lambda expressions can be used only with functional
interfaces, which are interfaces that have only one abstract
method that the class implementing that interface must define.
Thus, the EventHandler interface is a functional interface.

A lambda expression contains the following elements:

A comma-separated list of parameters enclosed in
parentheses. The data types of the parameters may
be omitted. The parentheses may also be omitted if
there is only one parameter.

The arrow token, ->

A method body, which can be a single expression or a
block enclosed in curly braces

If the body of the method consists of a single
expression, then the JVM evaluates the
expression and returns its value. As an
alternative, we can use a return statement,
but that requires curly braces.

Given this syntax for lambda expressions, we can replace the
code above with this single statement:

t.setOnFinished(event -> disableButtons(false));

In fact, this is line 134 in Example 12.36. When the animation
finishes, we execute the disableButtons method to re-enable
the buttons.

We have another opportunity to use lambda expressions in
our button handlers. For example, we want the FadeTransition
to play when the user presses the “Fade” button. This is the
only action we want to register for the “Fade” button, and the
setOnAction method takes an EventHandler object, so we are
also able to set up an event handler for the button using a
lambda expression. Following the syntax explained above,
creating and registering the event handler for the “Fade”
button is accomplished on line 45. The event handler calls the
runTransition method passing the name of our FadeTransition
(ftFade) as an argument.

We gain several advantages by using lambda expressions.
The code is even more compact than defining an anonymous
class; the code is more readable; and, by defining a separate
event handler for each button, we avoid calling the getSource
method from the event handler to determine which button the
user clicked.

Our next animation is a RotateTransition that rotates the
Sprite 180 degrees clockwise, then reverses to its original
orientation while playing a sound effect.

The AudioClip class, in the javafx.scene.media package, is
useful for playing short sounds, such as sound effects. When
an AudioClip object is instantiated, the sound file is loaded

entirely into memory. Thus, this class is intended for playing
relatively short sounds. For longer sounds, we would use the
Media class. You can read more about the Media class on
Oracle’s Java website.

Table 12.35 shows the constructor and the play and stop
methods of the AudioClip class. The constructor accepts a
String representing a URL for the sound. In this case, we use
a locally stored sound, although we could load a sound from
the Internet.

In addition to the methods shown in Table 12.35, the
AudioClip class also provides methods for setting the rate and
volume at which the sound is played and other properties.
Like animations, we need to set all the properties of the sound
before calling the play method. Once a sound is playing, the
only method that affects it is stop.

At line 48, we instantiate a URL object for our sound file,
whoosh.m4a. On line 49, we instantiate the AudioClip object.
Because the AudioClip constructor accepts a String
argument, we need to call the toString method on the URL
object. We set the cycle count to 2 at line 50 so that the sound
will play twice.

TABLE 12.35 A Constructor and Selected Methods
of the AudioClip Class

Package javafx.scene.media

AudioClip Constructor
AudioClip(String source)

loads an audio clip from the URL represented by source

Selected Methods of the AudioClip Class
Return value Method name and argument list

void setCycleCount(int count)

count is the number of times to play the sound

void play()

plays the sound

void stop()

stops the sound, if playing

Now we’re ready to set up the rotation animation. A
constructor for the RotateTransition class and several useful
methods are shown in Table 12.36. When calling those
methods, we specify angle values in degrees.

On lines 52–57, we instantiate the transition and set the
rotation for 180 degrees, to repeat in reverse.

When the user presses the Rotate button, we want both to
start the animation and to play the sound. That means that
our event handler (lines 58–63) consists of more than one
statement, so, using a lambda expression, we need to place
the two statements inside curly braces. Otherwise, the syntax
is the same as for the fade animation.

Our next animation is actually two animations that we play
sequentially. Using ScaleTransitions, we decrease, then
“squeeze” the size of the Sprite. A constructor for the

ScaleTransition class and several useful methods are shown
in Table 12.37. When calling those methods, we specify
relative, not absolute, values.

At lines 65–70, we instantiate a ScaleTransition and decrease
the size of the Sprite by setting its x and y scales to 50%. The
x scale determines how large the node is horizontally, and the
y scale determines how large the node is vertically. At lines
72–76, we create another ScaleTransition that decreases only
the x scale by 50%. Because we are not changing the y scale,
when this animation plays, the Sprite appears to be squeezed
horizontally.

We want to play these two animations one after the other, so
we create a Sequential-Transition and add both animations as
children (line 78). The SequentialTransition constructor shown
in Table 12.38 accepts children as a varargs argument, so we
can add as many animations as desired. When the user
presses the “Scale” button, we start the SequentialTransition
(line 79), which plays the stSmaller animation to completion,
then automatically plays the stSqueeze animation.

Another way to combine animations is to define a
ParallelTransition, which plays multiple animations
simultaneously. For this, we create three animations: moving
the Sprite horizontally, rotating the Sprite, and changing its
scale.

TABLE 12.36 A Constructor and Methods of the
RotateTransition Class

Package javafx.animation

A RotateTransition Constructor
RotateTransition(Duration time, Node node)

creates a RotateTransition that will animate node for a duration of time

Selected Methods of the RotateTransition Class
Return value Method name and argument list

void setFromAngle(double startAngle)

sets the angle from which to begin the rotation

void setToAngle(double endAngle)

sets the angle at which to end the rotation

void setByAngle(double angle)

sets the angle relative to the start at which to stop

TABLE 12.37 A Constructor and Method of the
ScaleTransition Class

Package javafx.animation

A ScaleTransition Constructor
ScaleTransition(Duration time, Node node)

creates a ScaleTransition that will animate node for a
duration of time

Selected Methods of the ScaleTransition Class
Return
value

Method name and argument list

void setToX(double value)

sets the x scale at which to stop

void setToY(double value)

sets the y scale at which to stop

To move the Sprite horizontally, we define a
TranslateTransition, which allows us to change the x or y
coordinate of a node. A constructor for the TranslateTransition
class and several useful methods are shown in Table 12.39.

We define the TranslateTransition at lines 81–86. We move
the Sprite right by increasing the x coordinate by 80 pixels.
Then, because we have two cycles and we have set
autoReverse to true, the Sprite returns to its starting position.

We define the second animation in our set to rotate the Sprite
360 degrees (lines 88–90). We do not set a cycle count or
autoReverse, so these properties default to one cycle and no
autoReverse. As a result, the animation will run once.

Our final animation in this set scales the Sprite to 1.5 times
and then back to the original size (lines 92–97).

TABLE 12.38 A Constructor of the
SequentialTransition Class

Package javafx.animation
SequentialTransition(Animation… children)

creates a SequentialTransition that will play all children animations in sequence

TABLE 12.39 A Constructor and Method of the
TranslateTransition Class

Package javafx.animation

A TranslateTransition Constructor
TranslateTransition(Duration time, Node node)

creates a TranslateTransition that will animate node for a duration of time

Selected Methods of the TranslateTransition Class
Return value Method name and argument list

void setFromX(double value)

sets the starting x value

void setToX(double value)

sets the ending x value

void setFromY(double value)

sets the starting y value

void setToY(double value)

sets the ending y value

TABLE 12.40 A Constructor of the
ParallelTransition Class

Package javafx.animation
ParallelTransition(Animation… children)

creates a ParallelTransition that will play all children animations simultaneously

Using the constructor in Table 12.40, we now create a
ParallelTransition, adding our three animations (line 99).
When the user presses the “Combine Animations” button, we
set the listener to play the parallel animation (line 100), which
starts all three animations simultaneously. Notice that not all
animations in the set need to have the same duration. For the
first 1.5 seconds, the Sprite rotates 180 degrees, moves right
40 pixels, and scales to 1.5 times its size. For the next 1.5
seconds, the Sprite completes its move right, rotates the
remaining 180 degrees, and scales back to its original size.

For the last 3 seconds, the Sprite moves left to its starting
position.

For the final animation, we define a TranslateTransition that
alters both the x and y values so that the Sprite moves
diagonally up to the right (lines 104–111). Note that we set a
cycle count of Animation.INDEFINITE, which specifies that
the animation should keep running until the stop method is
called. When the user presses the “Start Translate” button, we
start the animation, and when the user presses the “Stop
Translate” button, we stop the animation. Because the “Stop
Translate” button should be enabled only while the animation
is running, we set its initial state as disabled (line 110). In the
event handler for the “Start Translate” button, we enable the
“Stop Translate” button, then start the animation (lines 111–
115). In the event handler for the “Stop Translate” button, we
disable the “Stop Translate” button, call the stop method, then
re-enable the rest of the buttons (lines 117–122).

As an animation plays, a play head keeps track of the current
frame. When we call the stop method, the animation stops
playing, and its play head is reset to the beginning of the
animation. The node, however, remains in the state at which it
was stopped. When we again press the “Start Translate”
button, we see that because the play head has been reset,
the Sprite returns to the start position before beginning the
animation.

Example 12.37 shows the AnimationSampler code that
launches the application.

EXAMPLE 12.37 AnimationSampler.java

 1 /* Animation Sampler

 2 demonstrates various animations

 3 Anderson, Franceschi

 4 */

 5

 6 import java.net.URL;

 7 import javafx.application.*;

 8 import javafx.fxml.*;

 9 import javafx.scene.layout.*;

10 import javafx.scene.*;

11 import javafx.stage.*;

12

13 public class AnimationSampler extends Application

14 {

15 @Override

16 public void start(Stage stage) // throws Exception

17 {

18 try

19 {

20 URL url =

21 getClass().getResource("fxml_animation.fxml");

22 BorderPane root = FXMLLoader.load(url);

23 Scene scene = new Scene(root, 800, 600);

24 stage.setTitle("Animation Sampler");

25 stage.setScene(scene);

26 stage.show();

27 }

28 catch (Exception e)

29 {

30 e.printStackTrace();

31 }

32 }

33

34 public static void main(String [] args)

35 {

36 launch(args);

37 }

38 }

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a movie with a
step-by-step illustration of working with layout
containers and animation. Click on the link to start the
movie.

12.13 Nesting Components
Components can be nested. Indeed, because the layout
containers are subclasses of Parent, itself a subclass of
Node, layout containers are both containers and components.
As such, they can contain other layout containers, which in
turn can contain components. We can use this feature to
achieve more precise layouts.

When nesting components, we usually place several
components into a layout container and place that layout
container into another layout container. Each layout container
can be different so that components can be arranged in many
ways. We can even have multiple levels of nesting, as
needed.

We illustrate nesting of components in an example where,
using three colors (red, green, and blue), we randomly
generate an 8-by-8 grid of colors. The user tries to guess the
most frequently occurring color by clicking on one of the
buttons.

Figure 12.19
(A) The Color Frequency Game (B) The Underlying Nested
Layout

Figure 12.19A shows our window when the application
begins, and Figure 12.19B shows the underlying layout of the
window. We use a BorderPane overall, with a VBox
containing the three buttons on the left side of the
BorderPane, and a GridPane with eight rows and eight

columns containing the 64 colored labels in the center
position of the BorderPane; thus, the two positions we are
using, left and center, adjust to fill the space.

Again, we use the MVC architecture and design our classes
for reusability. This time, we also code the Controller so that it
is reusable under certain conditions. Inside the Controller
class, instead of using a class for the Model, we use an
interface. Thus, the Controller is now reusable, along with the
same View, with any Model that implements that interface.
Note that we could also make the View an interface, but in
order to keep this example relatively simple, we do not. To
achieve reusability for the Controller, we use the following
pattern for the Controller class:

public class Controller

{

 private ModelInterface model; // ModelInterface is an

interface

 private View view;

 ...

}

The ModelInterface specifies several methods to be
implemented that the Controller will call to manage the game.
The Model class uses this pattern:

public class Model implements ModelInterface

{

 // Implements ModelInterface methods

 ...

}

We want the Controller class to be reusable with any class
whose functionality is based on the user clicking buttons on
the left panel with a grid of labels in the center position. We
could use this class in an application where the user tries to
guess the most frequent color, or the least frequent color, or
with a different color system (e.g., HSL—Hue, Saturation and
Lightness).

Thus, we design an interface to support this type of
application that has buttons on the left and a grid of labels in
the center. Example 12.38 shows the ColorGridGame
interface. It specifies methods to retrieve the title for the grid,
its size, its number of colors, the label of a color, and the color
index of a label. (It is implied that the colors used in the grid of
colors will come from an array of colors, and that there will be
an array of Strings [labels] that parallels that array of colors.)
It also specifies methods to test if an answer is the correct
answer, as well as to access each color in the grid. We call
these methods from the Controller class with the Model
instance variable in order to manage the game. The UML
diagram for this example is shown in Figure 12.20.

Figure 12.20
The UML Diagram for the Color Frequency Game Application

EXAMPLE 12.38 The ColorGridGame
Interface
 1 /* ColorGridGame interface

 2 * Anderson, Franceschi

 3 */

 4

 5 import javafx.scene.paint.Color;

 6

 7 public interface ColorGridGame

 8 {

 9 public String getTitle();

10 public int getSize();

11 public int getNumberOfColors();

12 public String getLabel(int index);

13 public int getIndex(String label);

14 public boolean isCorrect(int index);

15 public String getGridHexColor(int row, int col);

16 }

We now code our Model for the color frequency game. In this
application, we generate colors for our grid of labels. Example
12.39 shows the ColorFrequencyGame class, which
implements ColorGridGame (line 8). At lines 10 through 12,
we declare a char array storing hexadecimal digits. We use
this array to convert an integer to its hexadecimal equivalent
String. Its gridColors instance variable (line 15) stores a two-
dimensional array, or grid, of colors. The coloringColors and
counts arrays (lines 16–17) are parallel arrays: coloringColors
stores the colors used for coloring the grid, and counts stores
the frequency of each color. The instance variable labels (line
19) is an array of Strings that is meant to be labels for the

buttons. The labels array also parallels the coloringColors
array.

The constructor (lines 21–36) instantiates all three arrays and
calls the fillGridWithColors method at line 34. The
fillGridWithColors method (lines 38–53) fills the colorGrid
array with colors randomly generated from the coloringColors
array and keeps track of their respective frequency in the
counts array (line 50).

The getGridHexColor method (lines 71–83) returns a
hexadecimal representation of the color stored at a specified
row and column within the array gridColors. It uses the utility
method toHex (lines 85–98), which converts an integer whose
value is between 0 and 255 to its hexadecimal equivalent
String.

To determine whether the user has chosen the correct color,
we provide the isCorrect method (lines 114–122), which takes
as a parameter the index of the selected color. It returns true if
the value in counts at that index is maximal, false otherwise.
The highestCount method (lines 100–112) calculates and
returns the maximum value in the counts array. Note that if
multiple colors appear with the highest count of labels—
essentially a tie, then picking any of those colors will result in
a winning selection.

The getTitle method (lines 124–130) returns a String that can
be used as the title of a GUI whose Model is the
ColorFrequencyGame class. The getLabel method (lines
132–139) returns the element of the array labels at a specified
index, sent as the parameter of the method; that is, the label

is to be used with a color located at that index within the array
coloringColors. The getIndex method (lines 141–153) is the
opposite method: It returns the index within the array labels of
a String, sent as the parameter of the method; the color
corresponding to that label is the element in the array
coloringColors at that index.

EXAMPLE 12.39 The
ColorFrequencyGame Class

 1 /** ColorFrequencyGame class

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Random;

 6 import javafx.scene.paint.Color;

 7

 8 public class ColorFrequencyGame implements ColorGridGame

 9 {

10 private static char [] hexDigits =

11 { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

12 'A', 'B', 'C', 'D', 'E', 'F' };

13

14 private final int DEFAULT_SIZE = 8;

15 private Color [][] gridColors;

16 private Color [] coloringColors;

17 private int [] counts; // color frequencies in

gridColors

18

19 private String [] labels;

20

21 /** Constructor

22 * @param size number of rows and columns in gridColors

23 * @param colors array of colors

24 * @param labels the starting labels

25 */

26 public ColorFrequencyGame(int size, Color [] colors,

27 String [] labels)

28 {

29 if (size <= 0)

30 size = DEFAULT_SIZE;

31 gridColors = new Color[size][size];

32 coloringColors = colors;

33 counts = new int[coloringColors.length];

34 fillGridWithColors();

35 this.labels = labels;

36 }

37

38 /** fillGridWithColors method

39 * randomly fills gridColors with colors from

coloringColors

40 */

41 public void fillGridWithColors()

42 {

43 Random random = new Random();

44 for (int i = 0; i < gridColors.length; i++)

45 {

46 for (int j = 0; j < gridColors[i].length; j++)

47 {

48 int colorIndex = random.nextInt(coloringColors.length

);

49 gridColors[i][j] = coloringColors[colorIndex];

50 counts[colorIndex] += 1;

51 }

52 }

53 }

54

55 /** getSize method

56 * @return length of gridColors

57 */

58 public int getSize()

59 {

60 return gridColors.length;

61 }

62

63 /** getNumberOfColors method

64 * @return length of coloringColors

65 */

66 public int getNumberOfColors()

67 {

68 return coloringColors.length;

69 }

70

71 /** getGridHexColor method

72 * @param row, an int, the row index

73 * @param col, an int, the column index

74 * @return a String, the hex equivalent of gridColor[row]

[col]

75 */

76 public String getGridHexColor(int row, int col)

77 {

78 String colorText = "#"

79 + toHex((int) (255 * gridColors[row][col].getRed(

)))

80 + toHex((int) (255 * gridColors[row]

[col].getGreen()))

81 + toHex((int) (255 * gridColors[row][col].getBlue(

)));

82 return colorText;

83 }

84

85 /** toHex method

86 * @return a String, the Hex equivalent of colorIntensity

87 */

88 public String toHex(int colorIntensity)

89 {

90 if (colorIntensity > 255)

91 colorIntensity = 255;

92 else if (colorIntensity < 0)

93 colorIntensity = 0;

94

95 int firstDigit = colorIntensity / 16;

96 int secondDigit = colorIntensity % 16;

97 return String.valueOf(hexDigits[firstDigit]) +

hexDigits[secondDigit];

98 }

99

100 /** highestCount method

101 * @return the highest color frequency in the grid

102 */

103 public int highestCount()

104 {

105 int max = counts[0];

106 for (int i = 1; i < counts.length; i++)

107 {

108 if (counts[i] > max)

109 max = counts[i];

110 }

111 return max;

112 }

113

114 /** isCorrect method

115 * @param index, the index in the coloringColors array to

check

116 * @return true if the frequency of the color for index

117 * is the highest, false otherwise

118 */

119 public boolean isCorrect(int index)

120 {

121 return counts[index] == highestCount();

122 }

123

124 /** getTitle method

125 * @return a String representing a title for this object

126 */

127 public String getTitle()

128 {

129 return "What is the most frequent color?";

130 }

131

132 /** getLabel method

133 * @param index, the index of the Color name

134 * @return the color name

135 */

136 public String getLabel(int index)

137 {

138 return labels[index];

139 }

140

141 /** getIndex method

142 * @param label, a color name in the labels array

143 * @return index of the color name in the labels array

144 */

145 public int getIndex(String label)

146 {

147 for (int i = 0; i < labels.length; i++)

148 {

149 if (labels[i].equals(label))

150 return i;

151 }

152 return -1;

153 }

154 }

Example 12.40 shows the BorderedLabelGridView class. It is
a layout container class that extends BorderPane (line 16). At
its left position, it contains an array of buttons arranged
vertically. At its center position, it contains a grid of labels.

Thus, our instance variables are a VBox (line 18), which
contains an array of Buttons (line 19), and a GridPane (line
20), which contains a two-dimensional array of Labels (line
21). We place the VBox in the left position and the GridPane
in the center position. The other positions within the
BorderPane are not used.

The constructor (lines 23–67) defines a GUI consisting of an
array of buttons on the left, arranged vertically, and a grid of
labels in the center, assumed to be a square. Its two
parameters represent the number of buttons and the size of
the grid. For simplicity, we are not validating these
parameters, but both parameters must be greater than 0. The
grid of labels is defined at lines 27 through 50 inside the
GridPane. The array of buttons is defined at lines 52 through
63 inside the VBox. At lines 65 and 66, we add the VBox and
the GridPane to this BorderPane in the left and center
positions, respectively. The BorderPane class provides similar
methods (setCenter, setLeft, setRight, setTop, and setBottom)
for adding a component to each of its five positions.

We instantiate grid, the GridPane instance variable, at line 27.
At lines 29 through 37, we define row and column constraints
so that all the rows in the grid have the same height, all the
columns have the same width, and the rows and columns
take all the available space in the grid. At lines 39 through 50,
we instantiate the labels and add them to the grid, making
sure that each label fills the available width and height (lines
45–47).

We instantiate buttonPanel, the VBox instance variable, at
line 52. At lines 54 through 63, we instantiate the buttons and
add them to buttonPanel, also making sure that each label fills
the available width and height (lines 58–61). It is important to
set not only the maximum height of the buttons to a high value
(line 60), but also their maximum width (line 59). If we do not,
the buttons will have uneven width because their text contents
are different. It is also important to call the setVgrow method
(line 61), shown in Table 12.41, so that the buttons are
expanded vertically in order to fill the available space within
the VBox to which they belong. The setVgrow method sets
the priority level for expanding the height of a node that is
contained in the VBox container. The setVgrow method is
static, so there is no reference to a specific VBox when we
call this method; thus, it is assumed that the node is or will be
contained in a VBox. If we do not call setVgrow, the heights of
the buttons are not expanded. Priority is an enum with three
possible values: ALWAYS, NEVER, and SOMETIMES. The
ALWAYS value ensures that the node grows in order to fill the
available space in the VBox container. We specify the same
priority level for all of the buttons so that they grow equally.

TABLE 12.41 The setVgrow Method of the VBox
Class

Package javafx.scene.layout

Return
value

Method name and argument list

void setVgrow(Node child, Priority value)

static method that sets the vertical grow priority of child, assuming
that child is contained in a VBox. If set, the VBox will allocate
additional space for child if space is available.

Finally, we provide methods so that the text of each button
and the background color of each label can be set from
outside the class (lines 69–72 and 79–82). We also provide a
method (lines 74–77) to set an EventHandler for each button
in the array buttons. By calling these methods, the Controller
can set up event handling and update this View.

EXAMPLE 12.40 The
BorderedLabelGridView Class

 1 /** BorderedLabelGridView class

 2 * Reusable generic layout using a BorderPane's

 3 * left and center positions.

 4 * The left VBox is made up of a vertical array of buttons.

 5 * The center position is made up of a grid of labels.

 6 * Accessors are provided so that a Controller can access

 7 * the array of buttons and the 2-dim array (grid) of

labels.

 8 * Anderson, Franceschi

 9 */

10

11 import javafx.event.*;

12 import javafx.scene.control.*;

13 import javafx.scene.layout.*;

14 import javafx.scene.paint.Color;

15

16 public class BorderedLabelGridView extends BorderPane

17 {

18 private VBox buttonPanel; // left, holds array of buttons

19 private Button [] buttons;

20 private GridPane grid; // center, holds grid of labels

21 private Label [][] labels; // grid of labels

22

23 // numberOfButtons and gridSize must be greater than 0

24 public BorderedLabelGridView(int numberOfButtons, int

gridSize)

25 {

26 super();

27 grid = new GridPane();

28

29 // set up grid as gridSize by gridSize

30 RowConstraints row = new RowConstraints();

31 row.setPercentHeight(100.0 / gridSize);

32 ColumnConstraints col = new ColumnConstraints();

33 col.setPercentWidth(100.0 / gridSize);

34 for (int i = 0; i < gridSize; i++)

35 grid.getRowConstraints().add(row);

36 for (int j = 0; j < gridSize; j++)

37 grid.getColumnConstraints().addAll(col);

38

39 labels = new Label[gridSize][gridSize];

40 for (int i = 0; i < labels.length; i++)

41 {

42 for (int j = 0; j < labels[i].length; j++)

43 {

44 labels[i][j] = new Label();

45 // make label fill up available width and height

46 labels[i][j].setMaxWidth(Double.MAX_VALUE);

47 labels[i][j].setMaxHeight(Double.MAX_VALUE);

48 grid.add(labels[i][j], j, i);

49 }

50 }

51

52 buttonPanel = new VBox();

53

54 buttons = new Button[numberOfButtons];

55 for (int i = 0; i < buttons.length; i++)

56 {

57 buttons[i] = new Button();

58 // make button fill up available width and height

59 buttons[i].setMaxWidth(Double.MAX_VALUE);

60 buttons[i].setMaxHeight(Double.MAX_VALUE);

61 VBox.setVgrow(buttons[i], Priority.ALWAYS);

62 buttonPanel.getChildren().add(buttons[i]);

63 }

64

65 setLeft(buttonPanel);

66 setCenter(grid);

67 }

68

69 public void setButtonText(int row, String text)

70 {

71 buttons[row].setText(text);

72 }

73

74 public void setButtonListener(int row,

EventHandler<ActionEvent> eh)

75 {

76 buttons[row].setOnAction(eh);

77 }

78

79 public void setLabelBackground(int row, int col, String

hexColor)

80 {

81 labels[row][col].setStyle("-fx-background-color: " +

hexColor);

82 }

83 }

Example 12.41 shows the ColorGridGameController class. At
lines 13 and 14, we declare our two instance variables: (1)
model, a ColorGridGame; and (2) view, a
BorderedLabelGridView. These instance variables enable us
to get user input from the View, call the appropriate methods
of the Model, and update the View accordingly.

The constructor (lines 16–22) accepts two parameters that it
assigns to model and view, and it calls the setUpGame
method at line 21. The setUpGame method (lines 24–28) calls
the setUpLabels and setUpButtons methods.

The setUpLabels method (lines 30–35) uses a nested loop to
color the grid of labels in the View based on the grid of colors
in the Model. At line 34, we set the background color of the
current label by calling the View’s setLabelBackground
method, passing the row index, column index, and
background color that we retrieve from the Model by calling
the getGridHexColor method.

The setUpButtons method (lines 37–44) places a label on
each button in the View based on the label data in the Model
and sets up event handling using a single loop. At line 41, we
set the text for the current button, passing its index and the
label that we retrieve from the Model by calling the getLabel
method. At line 42, we register this object (i.e., this controller,
which implements EventHandler) on the current button.

We handle the events for the buttons in the handle method at
lines 46 through 56. We first retrieve the button that originated
the event by calling getSource at line 48. The getSource
method returns an Object, so we need to type cast the return
value to a Button. We then retrieve the index of that button’s
corresponding label by calling the Model’s getIndex method,
passing the text of the button. Next, we check whether the
user won or lost by calling the Model’s isCorrect method,
passing that index. Depending on the result, we pop up a
dialog box indicating whether the user has won or lost (lines
51–54). The showMessageDialog method (lines 58–65) is

identical to the one in the puzzle game. After the game is won
or lost, we should disable the buttons. This is left as an
exercise.

EXAMPLE 12.41 The
ColorGridGameController Class

 1 /** ColorGridGameController class

 2 * Anderson, Franceschi

 3 */

 4

 5 import javafx.event.*;

 6 import javafx.scene.control.Alert.AlertType;

 7 import javafx.scene.control.*;

 8 import javafx.scene.layout.*;

 9 import javafx.scene.paint.Color;

10

11 public class ColorGridGameController implements

EventHandler<ActionEvent>

12 {

13 private ColorGridGame model;

14 private BorderedLabelGridView view;

15

16 public ColorGridGameController(ColorGridGame model,

17 BorderedLabelGridView

view)

18 {

19 this.model = model;

20 this.view = view;

21 setUpGame();

22 }

23

24 public void setUpGame()

25 {

26 setUpLabels();

27 setUpButtons();

28 }

29

30 public void setUpLabels()

31 {

32 for (int i = 0; i < model.getSize(); i++)

33 for (int j = 0; j < model.getSize(); j++)

34 view.setLabelBackground(i, j, model.getGridHexColor(

i, j));

35 }

36

37 public void setUpButtons()

38 {

39 for (int i = 0; i < model.getNumberOfColors(); i++)

40 {

41 view.setButtonText(i, model.getLabel(i));

42 view.setButtonListener(i, this);

43 }

44 }

45

46 public void handle(ActionEvent event)

47 {

48 Button button = (Button) event.getSource();

49 int index = model.getIndex(button.getText());

50

51 if (model.isCorrect(index))

52 showMessageDialog("Congratulations", "You won");

53 else

54 showMessageDialog("Sorry", "You lost");

55 // disable buttons here

56 }

57

58 public void showMessageDialog(String title, String

message)

59 {

60 Alert alert = new Alert (AlertType.INFORMATION);

61 alert.setTitle(title);

62 alert.setHeaderText("");

63 alert.setHeaderText(message);

64 alert.showAndWait();

65 }

66 }

Finally, the PlayColorCount class, shown in Example 12.42,
includes the main and start methods to create a color count
application. We declare an array of three Colors at line 16 and
a parallel array of Strings at line 17, and pass these arrays to
the constructor of the ColorFrequencyGame at lines 19
through 20. We then create the BorderedLabelGridView
object root at lines 22 and 23. Using game and root, we
create a ColorGridGameController at lines 25 and 26. At line
29, we retrieve and set the title of the window. Note that game
“is a” ColorGridGame object because ColorFrequencyGame
inherits from ColorGridGame. Figure 12.21 shows a run of
this example after the user has clicked on the button
“GREEN.” To play the game with more colors, we could
simply add more colors and labels to the colors and labels
array.

Figure 12.21
The User Clicked on the Button GREEN

EXAMPLE 12.42 The PlayColorCount
Class

 1 /** PlayColorCount class

 2 * Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.paint.Color;

 7 import javafx.scene.Scene;

 8 import javafx.stage.Stage;

 9

10 public class PlayColorCount extends Application

11 {

12

13 @Override

14 public void start(Stage stage)

15 {

16 Color [] colors = { Color.RED, Color.GREEN,

Color.BLUE };

17 String [] labels = { "RED", "GREEN", "BLUE" };

18

19 ColorFrequencyGame game

20 = new ColorFrequencyGame(8, colors, labels);

21

22 BorderedLabelGridView root

23 = new BorderedLabelGridView(colors.length,

game.getSize());

24

25 ColorGridGameController controller

26 = new ColorGridGameController(game, root);

27

28 Scene scene = new Scene(root, 450, 425);

29 stage.setTitle(game.getTitle());

30 stage.setScene(scene);

31 stage.show();

32 }

33

34 public static void main(String [] args)

35 {

36 launch(args);

37 }

38 }

Skill Practice
with these end-of-chapter questions

12.20.1 Multiple Choice Exercises

Questions 10, 11, 12, 13, 14, 15, 16, 17, 18

12.20.2 Reading and Understanding Code

Questions 30, 31, 32

12.20.3 Fill In the Code

Questions 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49

12.20.4 Identifying Errors in Code

Questions 54, 55, 56

12.20.5 Debugging Area—Using Messages from the Java
Compiler and Java JVM

Question 63

12.20.6 Write a Short Program

Questions 67, 73, 74, 76, 78, 79, 80

12.14 Mouse and Touch Events
A truly interactive application allows the user to point and click
using the mouse or to touch the screen. Any mouse activity
(clicking, moving, or dragging) by the user generates a
MouseEvent. Any touch activity by the user generates a
TouchEvent. When any mouse or touch activity occurs, we will
be interested in determining where it happened on the
window. To determine the (x, y) coordinate of a mouse event,
we can call two methods of the MouseEvent class, getSceneX
and getSceneY, which are described in Table 12.42. To
determine the (x, y) coordinate of a touch event, we can first
call the getTouchPoint method of the TouchEvent class, which
returns a TouchPoint, and then call the getSceneX and
getSceneY methods of the TouchPoint class. These methods
are also shown in Table 12.42.

TABLE 12.42 Useful Classes and Methods for
Mouse and Touch Events

Package javafx.scene.input

Methods of the MouseEvent Class

Return
value

Method name and argument list

double getSceneX()

returns the x coordinate of this MouseEvent in the Scene

where it occurs

double getSceneY()

returns the y coordinate of this MouseEvent in the Scene

where it occurs

double getX()

returns the x coordinate of the MouseEvent relative to the
node on which the mouse listener is registered

double getY()

returns the y coordinate of the MouseEvent relative to the
node on which the mouse listener is registered

Method of the TouchEvent Class

Return
value

Method name and argument list

TouchPoint getTouchPoint()

returns the touch point for this TouchEvent

Methods of the TouchPoint Class

Return
value

Method name and argument list

double getSceneX()

returns the x coordinate of this TouchPoint in the Scene in
which it occurs

double getSceneY()

returns the y coordinate of this TouchPoint in the Scene in
which it occurs

double getX()

returns the x coordinate of the TouchPoint relative to the
node on which the touch listener is registered

double getY()

returns the y coordinate of the TouchPoint relative to the
node on which the touch listener is registered

Our application will implement the EventHandler interface.
The EventHandler interface uses generics. We specify the
event type that it uses depending on the type of event that we
want to handle. It includes only one method, handle,
described in Table 12.43. Thus, the EventHandler interface is
a functional interface, and we can use lambda expressions
when implementing it.

TABLE 12.43 The handle Method of the
EventHandler<T extends Event> Interface
void handle(T event)

This method is called when an event occurs for which this handler is
registered.

The Node class includes many methods to set up event
handling for mouse and touch events, as well as key events.
Some of these methods are shown in Table 12.44. All the
layout container classes, like VBox for example, inherit these
methods from Node. The mouse-related methods accept a
parameter of type EventHandler <? super MouseEvent>.
EventHandler is an interface that uses generics. The syntax
<? super MouseEvent> means that the type of event should
be a MouseEvent or a superclass of the MouseEvent class.
Similarly, the event handler for touch events accepts an event
that is a TouchEvent or a superclass of TouchEvent.

TABLE 12.44 Useful Methods of the Node Class for
Mouse and Touch Events

Methods of the Node Class

Return
value

Method name and argument list

void setOnMousePressed(EventHandler<? super

MouseEvent> handler)

registers handler as the listener to execute when the user
presses the mouse. A parameter of null removes any previously
registered handler.

void setOnMouseMoved(EventHandler<? super MouseEvent>

handler)

registers handler as the listener to execute when the user moves
the mouse. A parameter of null removes any previously
registered handler.

void setOnTouchPressed(EventHandler<? super

TouchEvent> handler)

registers handler as the listener to execute when the user
touches the screen. A parameter of null removes any previously
registered handler.

void setOnTouchMoved(EventHandler<? super TouchEvent>

handler)

registers handler as the listener to execute when the user moves
the touch point on the screen. A parameter of null removes any
previously registered handler.

To illustrate mouse and touch events, we will build a simple
submarine hunt game. A submarine is hidden somewhere in
the window, and the user will try to sink the submarine by
clicking the mouse or touching the screen at various locations
in the window, simulating the dropping of a depth charge.
Each time the user clicks the mouse or touches the screen,
we will indicate how close that location is to the submarine. If
the user’s click or touch is too far from the submarine, we will
display “In the water” in the title bar and draw a blue circle at

the corresponding location. If the user’s click or touch is close
to the submarine, we will display “Close …” in the title bar.
Finally, if the submarine is hit, we will change the title bar to
“Sunk!”, display the submarine, and remove the listeners so
the game ends.

Figure 12.22 shows the UML diagram for this application. We
first code our Model, the SubHunt class (Example 12.43). It
encapsulates the submarine hunt game and enables us to
create a game of a given size, enable play, and enforce the
rules of the game.

Figure 12.22
UML Diagram for the Sub Hunt Game

EXAMPLE 12.43 The SubHunt Class

 1 /* SubHunt class

 2 * Anderson, Franceschi

 3 */

 4

 5 import javafx.scene.canvas.GraphicsContext;

 6 import javafx.scene.paint.Color;

 7 import java.util.Random;

 8

 9 public class SubHunt

 10 {

 11 public static int DEFAULT_GAME_SIZE = 300;

 12 public static int SIDE = 36; // size of submarine

 13

 14 private int gameSize;

 15 private int xCtr; // x coordinate of center of

submarine

 16 private int yCtr; // y coordinate of center of

submarine

 17 private String status = "";

 18 private boolean hit;

 19

 20 /** Constructor

 21 * @param gameSize the game size

 22 */

 23 public SubHunt(int gameSize)

 24 {

 25 if (gameSize > SIDE)

 26 this.gameSize = gameSize;

 27 else

 28 this.gameSize = DEFAULT_GAME_SIZE;

 29 // generate submarine center

 30 Random random = new Random();

 31 xCtr = SIDE / 2 + random.nextInt(this.gameSize -

SIDE);

 32 yCtr = SIDE / 2 + random.nextInt(this.gameSize -

SIDE);

 33 hit = false;

 34 }

 35

 36 /** getStatus Accessor

 37 * @return status

 38 */

 39 public String getStatus()

 40 {

 41 return status; 42 }

 43

 44 /** getGameSize Accessor

 45 * @return gameSize

 46 */

 47 public int getGameSize()

 48 {

 49 return gameSize;

 50 }

 51

 52 /** isHit method

 53 * @return hit, which indicates whether the sub has been

hit

 54 */

 55 public boolean isHit()

 56 {

 57 return hit;

 58 }

 59

 60 /** play method

 61 * @param x the x coordinate of the play

 62 * @param y the y coordinate of the play

 63 */

 64 public void play(int x, int y)

 65 {

 66 // is click within the submarine?

 67 if (Math.abs(x - xCtr) < SIDE / 2

 68 && Math.abs(y - yCtr) < SIDE / 2)

 69 {

 70 status = "Sunk!";

 71 hit = true;

 72 }

 73 // is click close?

 74 else if (Math.abs(x - xCtr) < 2 * SIDE

 75 && Math.abs(y - yCtr) < 2 * SIDE)

 76 status = "Close ...";

 77 // click is too far from submarine

 78 else

 79 status = "In the water";

 80 }

 81

 82 /** draw method

 83 * @param gc a GraphicsContext object

 84 * @param x the x coordinate of the play

 85 * @param y the y coordinate of the play

 86 */

 87 public void draw(GraphicsContext gc, int x, int y)

 88 {

 89 if (status.equals("Sunk!"))

 90 {

 91 // draw sunken submarine

 92 gc.setFill(Color.BLACK);

 93 gc.fillRoundRect(xCtr - SIDE/2, yCtr - SIDE/2,

 94 SIDE/2, SIDE, SIDE/2, SIDE/2);

 95

 96 gc.fillRoundRect(xCtr - SIDE/4, yCtr - SIDE/3,

 97 SIDE/2, SIDE/2, SIDE/4, SIDE/4);

 98

 99 gc.strokeLine(xCtr + SIDE/4, yCtr - SIDE/9,

100 xCtr + SIDE/2, yCtr - SIDE/9);

101

102 // draw red depth charge

103 gc.setFill(Color.RED);

104 gc.fillOval(x - SIDE/2, y - SIDE/2, SIDE, SIDE);

105 }

106 else if (status.equals("In the water")) // draw

blue circle

107 {

108 gc.setFill(Color.BLUE);

109 gc.fillOval(x - SIDE/2, y - SIDE/2, SIDE, SIDE);

110 }

111 // else Close ... , do not draw

112 }

113 }

Example 12.44 shows the SubHuntViewController class,
which extends VBox (line 11). It combines the View and the
Controller. At lines 13–15, we declare our instance variables.
The SubHunt instance variable sub (line 13) represents the
Model, the submarine hunt game that we display inside the
window. At line 14, we include the instance variable stage, a
reference to the Stage. We use stage to call the setTitle
method (line 64) to update the title of the window each time

the user plays. In the next example, we will show how to
retrieve a reference to the Stage from the Controller class.

The constructor receives SubHunt and Stage references as
parameters, which we store in the sub and stage instance
variables at lines 26–27. When the user plays, we use the sub
reference to call the various methods of the SubHunt class to
enable play and enforce the rules of the game. When the user
interacts with the View by clicking on the window, the
Controller captures that information, calls the appropriate
method of the SubHunt class, and updates the View
accordingly. The constructor (lines 17–34) defines and
displays the original View. It sets up event handling at lines
32–33 for mouse clicks and touch presses. At line 32, we use
a lambda expression to define the listener for mouse events,
which will execute the handleMouseEvent method.

The handleMouseEvent method (lines 36–44) retrieves the x
and y coordinates of the mouse event (lines 41–42) and calls
the play method (line 43) to enable play. On line 33, we again
use a lambda expression to define the listener for touch
events, which will execute the handleTouchEvent method
(lines 46–54), which performs equivalent operations for a
touch event.

Inside the play method (lines 56–70), we call the play method
of the SubHunt model (line 62) to process the user’s action,
passing its location. Next, we update the View by drawing the
current play (line 63). Then we update the title of the window
by getting the updated status, and we display that status in
the window title bar by calling the setTitle method (line 64).
Finally, if the game is over (line 65), we disable event handling

(lines 67–68) by passing a null argument to the
setOnMouseClicked and setOnTouchPressed methods.

EXAMPLE 12.44 The
SubHuntViewController Class

 1 /* SubHuntViewController class

 2 * Anderson, Franceschi

 3 */

 4

 5 import javafx.scene.layout.*;

 6 import javafx.scene.input.*;

 7 import javafx.scene.canvas.Canvas;

 8 import javafx.scene.canvas.GraphicsContext;

 9 import javafx.stage.Stage;

10

11 public class SubHuntViewController extends VBox

12 {

13 private SubHunt sub; // submarine

14 private Stage stage;

15 private GraphicsContext gc;

16

17 /** Constructor

18 * @param sub the Model reference for this game

19 * @param stage the Stage for this game

20 * @param width the width of the Canvas rendering the

game

21 * @param height the height of the Canvas rendering the

game

22 */

23 public SubHuntViewController(SubHunt sub,

24 Stage stage, int width,

int height)

25 {

26 this.sub = sub;

27 this.stage = stage;

28 Canvas canvas = new Canvas(width, height);

29 getChildren().add(canvas);

30 gc = canvas.getGraphicsContext2D();

31

32 this.setOnMouseClicked(event -> handleMouseEvent(

event));

33 this.setOnTouchPressed(event -> handleTouchEvent(

event));

34 }

35

36 /** handleMouseEvent method

37 * @param event the MouseEvent generated by the user

38 */

39 public void handleMouseEvent(MouseEvent event)

40 {

41 int x = (int) event.getSceneX();

42 int y = (int) event.getSceneY();

43 play(x, y);

44 }

45

46 /** handleTouchEvent method

47 * @param event the TouchEvent generated by the user

48 */

49 public void handleTouchEvent(TouchEvent event)

50 {

51 int x = (int) event.getTouchPoint().getSceneX();

52 int y = (int) event.getTouchPoint().getSceneY();

53 play(x, y);

54 }

55

56 /** play method

57 * @param x the x coordinate of the play

58 * @param y the y coordinate of the play

59 */

60 public void play(int x, int y)

61 {

62 sub.play(x, y);

63 sub.draw(gc, x, y);

64 stage.setTitle(sub.getStatus());

65 if (sub.isHit())

66 {

67 this.setOnMouseClicked(null);

68 this.setOnTouchPressed(null);

69 }

70 }

71 }

The PlaySubHunt class, shown in Example 12.45, instantiates
a SubHunt object (line 16). It then instantiates a
SubHuntViewController passing the SubHunt object we just
instantiated as an argument, along with the stage and the
game size. The controller extends VBox, so we set the
controller as the root node for our Scene. Figure 12.23 shows
a run of this game. At this point, the user has sunk the
submarine.

Figure 12.23
A Run of the SubHunt Game

EXAMPLE 12.45 The PlaySubHunt Class

 1 /* PlaySubHunt class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application. Application;

 6 import javafx.scene.Scene;

 7 import javafx.stage.Stage;

 8

 9 public class PlaySubHunt extends Application

10 {

11 private final int GAME_SIZE = 500;

12

13 @Override

14 public void start(Stage stage)

15 {

16 SubHunt sub = new SubHunt(GAME_SIZE);

17 SubHuntViewController root =

18 new SubHuntViewController(sub, stage, GAME_SIZE,

GAME_SIZE);

19

20 Scene scene = new Scene(root, 500, 500);

21 stage.setTitle("Play !!");

22 stage.setScene(scene);

23 stage.show();

24 }

25

26 public static void main(String [] args)

27 {

28 launch(args);

29 }

30 }

In the sub hunt game, we handled mouse click and touches.
But we didn’t handle mouse movements or touch movements.
To illustrate how to handle mouse and touch movements, we
build a simple treasure hunt game that is similar to the
submarine hunt game. A treasure is hidden somewhere in the
window, and the user will try to find it by moving either the
mouse or his or her finger inside the window. Depending on
how close the mouse or touch is to the treasure, we display a
message at the mouse or touch location so the user can
eventually find the treasure and win the game. Figure 12.24
shows the UML diagram for the treasure hunt game.

Figure 12.24
UML Diagram for the Treasure Hunt Game

Again, we first code the Model, a class that encapsulates the
functionality of our treasure hunt game (Example 12.46). It

enables us to create a game of a given size, handle plays,
determine when the game is over, and display the status of
the game.

The status (line 18) instance variable, a String, stores the
state of the player’s position compared to the location of the
treasure. We also define a boolean flag variable, gameOver,
which is initially false (line 19); when the user finds the
treasure, we will change its value to true.

In the constructor, we randomly generate the (x, y) coordinate
for the center of the treasure and store the generated values
in the xCtr and yCtr instance variables (lines 30–33). The play
method (lines 52–79) sets the value of status. If the player is
far from the treasure, we set the value of status to “Cold.” As
the user moves closer and closer to the treasure, the value
becomes “Lukewarm,” then “Warm,” and then “Hot,” and
finally “Found” when the player finds the treasure. If the
treasure is found, we set the value of gameOver to true (line
62).

Like the sub hunt game, the draw method (lines 81–101)
draws what is happening in the game. We first test if the value
of status is “Found” (line 91). If it is, the treasure has been
found and we reveal its location by drawing it (lines 93–97). If
the treasure has not been found, we display status at the
current mouse or touch location (line 100), determined by the
parameters x and y sent to the draw method.

EXAMPLE 12.46 The TreasureHunt Class

 1 /* TreasureHunt class

 2 * Anderson, Franceschi

 3 */

 4

 5 import java.util.Random;

 6 import javafx.scene.canvas.GraphicsContext;

 7 import javafx.scene.paint.Color;

 8 import javafx.scene.text.Font;

 9

 10 public class TreasureHunt

 11 {

 12 public static int DEFAULT_GAME_SIZE = 300; // side of

window

 13 public static int SIDE = 40; // side of treasure

 14

 15 private int gameSize;

 16 private int xCtr; // x coordinate of center of treasure

 17 private int yCtr; // y coordinate of center of treasure

 18 private String status = ""; // message

 19 private boolean gameOver = false;

 20

 21 /** Constructor

 22 * @param gameSize the size of the game

 23 */

 24 public TreasureHunt(int gameSize)

 25 {

 26 if (gameSize > SIDE)

 27 this.gameSize = gameSize;

 28 else

 29 this.gameSize = DEFAULT_GAME_SIZE;

 30 // generate treasure center

 31 Random random = new Random();

 32 xCtr = SIDE / 2 + random.nextInt(this.gameSize - SIDE

);

 33 yCtr = SIDE / 2 + random.nextInt(this.gameSize - SIDE

);

 34 }

 35

 36 /** getGameSize accessor

 37 * @return gameSize

 38 */

 39 public int getGameSize()

 40 {

 41 return gameSize;

 42 }

 43

 44 /** isGameOver method

 45 * @return gameOver

 46 */

 47 public boolean isGameOver()

 48 {

 49 return gameOver;

 50 }

 51

 52 /** play method

 53 * @param x the x coordinate of the play

 54 * @param y the y coordinate of the play

 55 */

 56 public void play(int x, int y)

 57 {

 58 // is mouse within treasure?

 59 if (Math.abs(x - xCtr) < SIDE / 2

 60 && Math.abs(y - yCtr) < SIDE / 2)

 61 {

 62 gameOver = true;

 63 status = "Found";

 64 }

 65 // is mouse within half-length of the treasure?

 66 else if (Math.abs(x - xCtr) < (1.5 * SIDE)

 67 && Math.abs(y - yCtr) < (1.5 * SIDE))

 68 status = "Hot";

 69 // is mouse within 1 length of the treasure?

 70 else if (Math.abs(x - xCtr) < (2 * SIDE)

 71 && Math.abs(y - yCtr) < (2 * SIDE))

 72 status = "Warm";

 73 // is mouse within 2 lengths of the treasure?

 74 else if (Math.abs(x - xCtr) < (3 * SIDE)

 75 && Math.abs(y - yCtr) < (3 * SIDE))

 76 status = "Lukewarm";

 77 else // mouse is not near treasure

 78 status = "Cold";

 79 }

 80

 81 /** draw method

 82 * @param gc a GraphicsContext reference

 83 * @param x the x coordinate of the play

 84 * @param y the y coordinate of the play

 85 */

 86 public void draw(GraphicsContext gc, int x, int y)

 87 {

 88 gc.setFill(Color.BLUE);

 89 gc.setFont(new Font(24));

 90 gc.clearRect(0, 0, gameSize, gameSize);

 91 if (status.equals("Found")) // if found, draw

treasure

 92 {

 93 gc.setFont(new Font(16));

 94 gc.setFill(Color.RED);

 95 gc.fillRect(xCtr - SIDE / 2, yCtr - SIDE / 2, SIDE,

SIDE);

 96 gc.setFill(Color.GREEN);

 97 gc.fillText("$$$", xCtr - SIDE / 3, yCtr + SIDE / 6

);

 98 }

 99 else

100 gc.fillText(status, x, y); // display current status

101 }

102 }

Example 12.47 shows the TreasureHuntViewController class.
Like the sub hunt example, it combines the View and the
Controller. The constructor (lines 19–35) defines and displays
the View in a Canvas (lines 29–30). The Model is represented
by the instance variable hunt (line 16), which stores the
TreasureHunt object sent to the constructor from the start
method (line 26). In this application, instead of coding the
event handler as a private inner class, we define our
application class as implementing the EventHandler interface.
As a result, our application is a listener, and we register the
listener on itself. Thus, in our class definition, we include the
clause implements EventHandler<InputEvent> (line 13). We
choose the InputEvent class because it is a superclass of
both MouseEvent and TouchEvent, and thus we can register
both mouse and touch events on our
TreasureHuntViewController. At lines 33–34, we register this
TreasureHuntViewController object on itself as an
EventHandler for both mouse and touch movements.

In this game, the events we want to handle are the user
moving the mouse or his or her finger on the screen. Because
TreasureHuntViewController implements the EventHandler
interface, we must provide a handle method, which we do at
lines 37–66. Because the ways we retrieve the x and y
coordinates of a mouse event and a touch event are different,
we first test if the event is a mouse event (line 43) or a touch
event (line 49) by calling the getEventType method, inherited
from the Event class. We compare the return value to the
appropriate constant of either the MouseEvent class or the
TouchEvent class. Both constants are shown in Table 12.45.
We type cast the event to the appropriate event at lines 45
and 51, then retrieve the x and y coordinates of the mouse or
touch movement.

TABLE 12.45 Useful EventType Constants of the
MouseEvent and TouchEvent Classes

Class Constant
MouseEvent MOUSE_MOVED

constant identifying a mouse move event

TouchEvent TOUCH_MOVED

constant identifying a touch move event

Then we call the play method of the TreasureHunt model (line
56) to process the play. Next, we display the result of the
current move (line 58) by calling the draw method of
TreasureHunt, passing the GraphicsContext reference gc and
the mouse or touch location. If the game is over (i.e., the
treasure has been found), we remove this object, the current
TreasureHuntViewController, as a listener (lines 61–62) for
both mouse and touch moving events.

At lines 63–64, we update the title of the window to reflect the
fact that the user has found the treasure and the game is
over. In order to do that, we need a reference to the Stage of
this VBox, so we can call the setTitle method. The getScene
method, inherited by VBox from the Node class, returns the
Scene containing this Node, the TreasureHuntViewController.
With it, we call the getWindow method in order to get a
reference to the window, which represents the stage. Stage is
a subclass of Window, so we cast the return value of
getWindow to a Stage in order to get a reference to the stage.
Table 12.46 shows the getScene and getWindow methods.

TABLE 12.46 Useful Classes and Methods to
Retrieve the Stage

Class Method
Node Scene getScene()

returns the Scene containing this Node

Scene Window getWindow()

returns the window for this Scene

EXAMPLE 12.47 The
TreasureHuntViewController Class

 1 /* TreasureHuntViewController class

 2 * Anderson, Franceschi

 3 */

 4

 5 import javafx.event.*;

 6 import javafx.scene.layout.*;

 7 import javafx.scene.input.*;

 8 import javafx.scene.canvas.Canvas;

 9 import javafx.scene.canvas.GraphicsContext;

10 import javafx.stage.Stage;

11

12 public class TreasureHuntViewController extends VBox

13 implements EventHandler<InputEvent>

14 {

15 private int width, height;

16 private TreasureHunt hunt;

17 private GraphicsContext gc;

18

19 /** Constructor

20 * @param hunt the model reference

21 * @param width the width of the Canvas rendering the

game

22 * @param height the height of the Canvas rendering the

game

23 */

24 public TreasureHuntViewController(TreasureHunt hunt,

int width, int height)

25 {

26 this.hunt = hunt;

27 this.width = width;

28 this.height = height;

29 Canvas canvas = new Canvas(width, height);

30 getChildren().add(canvas);

31 gc = canvas.getGraphicsContext2D();

32

33 this.setOnMouseMoved(this);

34 this.setOnTouchMoved(this);

35 }

36

37 /** handle method

38 * @param event the InputEvent generated by the user

39 */

40 public void handle(InputEvent event)

41 {

42 int x = -100, y = -100;

43 if (event.getEventType() == MouseEvent.MOUSE_MOVED)

44 {

45 MouseEvent mEvent = (MouseEvent) event ;

46 x = (int) mEvent.getSceneX();

47 y = (int) mEvent.getSceneY();

48 }

49 else if (event.getEventType() ==

TouchEvent.TOUCH_MOVED)

50 {

51 TouchEvent tEvent = (TouchEvent) event ;

52 x = (int) tEvent.getTouchPoint().getSceneX();

53 y = (int) tEvent.getTouchPoint().getSceneY();

54 }

55

56 hunt.play(x, y);

57

58 hunt.draw(gc, x , y);

59 if (hunt.isGameOver())

60 {

61 this.setOnMouseMoved(null);

62 this.setOnTouchMoved(null);

63 Stage stage = (Stage) getScene().getWindow();

64 stage.setTitle("Thank you for playing");

65 }

66 }

67 }

Finally, the PlayTreasureHunt class, shown in Example 12.48,
includes the main method to create a
TreasureHuntViewController application showing a
TreasureHunt game. Figures 12.25 and 12.26 show the
program running. In Figure 12.25, the user is getting close to
the treasure, and in Figure 12.26, the user has found the
treasure.

Figure 12.25
The User Is Getting Close to the Treasure

Figure 12.26
The User Has Found the Treasure

EXAMPLE 12.48 The PlayTreasureHunt
Class

 1 /* PlayTreasureHunt class

 2 Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.Scene;

 7 import javafx.stage.Stage;

 8

 9 public class PlayTreasureHunt extends Application

10 {

11 private final int GAME_SIZE = 500;

12

13 @Override

14 public void start(Stage stage)

15 {

16 TreasureHunt th = new TreasureHunt(GAME_SIZE);

17 TreasureHuntViewController root =

18 new TreasureHuntViewController(th, GAME_SIZE,

GAME_SIZE);

19

20 Scene scene = new Scene(root, GAME_SIZE, GAME_SIZE);

21 stage.setTitle("Play !!");

22 stage.setScene(scene);

23 stage.show();

24 }

25

26 public static void main(String [] args)

27 {

28 launch(args);

29 }

30 }

In both the sub hunt and treasure hunt examples, the Model is
reusable in another application. However, the View and the
Controller are combined in the same class and are not
reusable. Later in the chapter, we will make the View reusable
too.

12.15 Using a List to Display a Pie
Chart
JavaFX includes classes that make it easy to display
various types of charts, including line charts, pie charts,
and bar charts. To display a chart, we first create a list
that stores the data we want to display. We then assign
that data to the appropriate chart object. After we include
the chart object in a scene, the chart draws itself
automatically. The ObservableList interface, from the
javafx.collections package, is a list that can be linked to a
GUI component, such as a ComboBox. Whenever the
values in the list change, the associated GUI component
is automatically updated to reflect those changes.
Several chart classes, such as PieChart and BarChart,
can be constructed by linking their data to an
ObservableList.

In this example, we use the PieChart class to display a
pie chart, a filled circle composed of colored slices,
where each slice represents a percentage of the whole
pie. The PieChart constructor, listed in Table 12.47,
accepts an ObservableList of PieChart.Data as its only
parameter. PieChart.Data is an inner class of PieChart
and each object represents one slice of the pie chart. A
slice is defined by its label and its value. The
PieChart.Data constructor shown in Table 12.47 accepts
a String parameter for the label and a double parameter
for the value.

TABLE 12.47 PieChart.Data and PieChart
Constructors

Package javafx.scene.chart

PieChart.Data and PieChart Constructors
PieChart.Data(String name, double value)

creates a PieChart.Data, a slice of a PieChart; the slice value is
value and its label is name

PieChart(ObservableList<PieChart.Data> data)

creates a PieChart using data as its data for all its slices

To display a pie chart, we do the following:

Create a list of PieChart.Data objects.

Convert that list to an ObservableList.

Create a PieChart associated with that
ObservableList.

Create a Scene with that PieChart.

Example 12.49 creates a pie chart displaying the various
parts of a monthly budget so we can visualize the
percentage of the total for each category. At lines 11–14,
we declare two arrays, categories and expenses, which
hold the labels and the corresponding values for the pie
chart slices. At lines 19–22, we create and fill list, an
ArrayList of PieChart.Data. Each PieChart.Data is
defined with a label from the categories array and a
value from the expenses array (line 22). At lines 23–24,
we call the observableList method of the FXCollections
class, shown in Table 12.48, to construct the
ObservableList pieChartData from that ArrayList. The

ArrayList class implements the List interface, and thus an
ArrayList can be used as an argument of the
observableList method.

TABLE 12.48 The observableList Method of the
FXCollections Class

The observableList static Method of the FXCollections Class

Return value Method name and argument list
ObservableList<E> observableList(List<E> list)

constructs and returns an
ObservableList composed of elements
of type E from list. Changes to that
ObservableList will be reflected in
components that are registered on that
ObservableList.

At lines 26–28, we construct the PieChart chart with
pieChartData and set its title. At lines 30–34, we
construct a Scene with the PieChart (line 31) and set the
Stage with that Scene. The PieChart class inherits from
the Parent class, and thus a PieChart can be used to
construct a scene. Figure 12.27 shows the pie chart.

Figure 12.27
Displaying a Pie Chart for a Monthly Budget

EXAMPLE 12.49 An Application to
Display a Pie Chart

 1 import java.util.ArrayList;

 2 import javafx.application.Application;

 3 import javafx.collections.FXCollections;

 4 import javafx.collections.ObservableList;

 5 import javafx.scene.chart.*;

 6 import javafx.scene.Scene;

 7 import javafx.stage.Stage;

 8

 9 public class MonthlyBudgetPieChart extends

Application

10 {

11 private String [] categories

12 = { "Rent", "Food", "Phone", "Entertainment",

"Utilities" };

13 private double [] expenses

14 = { 800, 450, 72.50, 200, 90 };

15

16 @Override

17 public void start(Stage stage)

18 {

19 // Create a PieChart.Data of monthly expenses

20 ArrayList<PieChart.Data> list = new

ArrayList<PieChart.Data>();

21 for (int i = 0; i < expenses.length; i++)

22 list.add(new PieChart.Data(categories[i],

expenses[i]));

23 ObservableList<PieChart.Data> pieChartData

24 = FXCollections.observableList(list);

25

26 // Create a PieChart with pieChartData

27 PieChart chart = new PieChart(pieChartData);

28 chart.setTitle("Monthly Budget");

29

30 // Define the scene and stage

31 Scene scene = new Scene(chart, 500, 400);

32 stage.setScene(scene);

33 stage.setTitle("Pie Chart for Monthly Expenses"

);

34 stage.show();

35 }

36

37 public static void main(String [] args)

38 {

39 launch(args);

40 }

41 }

In the next example, we show how a graphical
component redraws itself automatically when the
observable list that it is bound to changes.

12.16 Using a List to Display a
Dynamic Bar Chart
In this example, we display a bar chart that displays
projected values of stocks and bonds over 4 years
for an initial investment of $100. The BarChart class
can be used to create a two-dimensional bar chart. A
BarChart is defined using a horizontal axis, a vertical
axis, and a list consisting of one or two series of
data, each series representing a single-dimensional
list of data. Thus, if we use only one series in that
list, we can define a one-dimensional bar chart as a
special case of a two-dimensional bar chart. Our
example uses two series of data, one for stocks and
one for bonds. The projected values of the bonds are
fixed, but the projected values of the stocks toggle
between two sets of values, depending on what
growth rate we use. The user can toggle between
the two sets of values by clicking on a button. The
BarChart is bound to an ObservableList. When the
user clicks on the button, we change the data inside
the ObservableList to the alternate set of values.
Because the BarChart is bound to the
ObservableList, it is automatically updated. Figures
12.28 and 12.29 show both states of the BarChart.

Figure 12.28
The Stocks and Bonds Using the First Set of Values
for Stocks

Figure 12.29
The Stocks and Bonds Using the Second Set of
Values for Stocks

Before explaining how we can create and draw a bar
chart, we define our Model. It includes three classes:

Investment, an abstract superclass: An
Investment has a type (Stocks or Bonds), an
original amount, a growth rate, and the
number of years over which to compute the

value of the original amount as we apply the
growth rate.

Bonds, a subclass of Investment: The growth
rate is constant.

Stocks, a subclass of Investment: The
growth rate toggles between two constant
values.

Examples 12.50, 12.51, and 12.52 show these three
classes. The updateAmounts method (lines 76–83)
of the Investment class updates the instance variable
amounts based on the growth rate. Investment
specifies the update method as abstract. It is meant
to update the growth rate and then update the
resulting cash flow. In this example, a Bonds has a
constant growth rate; thus, its update method (lines
19–25 of Example 12.51) does nothing, that is, it
leaves the growth rate unchanged. The update
method of the Stocks class (lines 20–31 of Example
12.52) makes the growth rate of a Stocks investment
toggle between two constant values (lines 7–8).

EXAMPLE 12.50 The Investment
Class

 1 /** abstract Investment class

 2 * Anderson, Franceschi

 3 */

 4

 5 public abstract class Investment

 6 {

 7 public static final int DEFAULT_YEARS = 4;

 8 public static final double BEGIN_INVEST_AMOUNT

= 100;

 9 private double [] amounts;

10 private int years;

11 private double growthRate;

12 private String type;

13

14 /* Constructor

15 * @param years, an int, the new value of years

16 * @param type, a String, the new value for the

investment type

17 */

18 public Investment(int years, String type)

19 {

20 if (years < 1)

21 this.years = DEFAULT_YEARS;

22 else

23 this.years = years;

24

25 amounts = new double[this.years];

26 amounts[0] = BEGIN_INVEST_AMOUNT;

27

28 this.type = type;

29 }

30

31 /* getAmounts method

32 * @return a copy of amounts, a double []

33 */

34 public double [] getAmounts()

35 {

36 double [] temp = new double[amounts.length];

37 for (int i = 0; i < amounts.length; i++)

38 temp[i] = amounts[i];

39 return temp;

40 }

41

42 /* Accessor method for years

43 * @return number of years

44 */

45 public int getYears()

46 {

47 return years;

48 }

49

50 /* Accessor method for type

51 * @return investment type

52 */

53 public String getType()

54 {

55 return type;

56 }

57

58 /* Accessor method for growthRate

59 * @return growthRate

60 */

61 public double getGrowthRate()

62 {

63 return growthRate;

64 }

65

66 /* Mutator method for growthRate

67 * @param growthRate, the new value for

growthRate

68 * @return a reference to this object

69 */

70 public Investment setGrowthRate(double

growthRate)

71 {

72 this.growthRate = growthRate;

73 return this;

74 }

75

76 /* updateAmounts method

77 * updates amounts based on growthRate

78 */

79 public void updateAmounts()

80 {

81 for (int i = 1; i < amounts.length; i++)

82 amounts[i] = amounts[i-1] * (1 +

growthRate);

83 }

84

85 /* update abstract method

86 */

87 public abstract void update();

88 }

EXAMPLE 12.51 The Bonds Class
 1 /** Bonds class

 2 * Anderson, Franceschi

 3 */

 4

 5 public class Bonds extends Investment

 6 {

 7 private final double BOND_GROWTH_RATE = .03;

 8

 9 /* Constructor

10 * @param years the new number of years

11 */

12 public Bonds(int years)

13 {

14 super(years, "Bonds");

15 setGrowthRate(BOND_GROWTH_RATE);

16 updateAmounts();

17 }

18

19 /* update method

20 * do nothing method: Leaves the growth rate

unchanged

21 */

22 public void update()

23 {

24 // growth rate does not change

25 }

26 }

EXAMPLE 12.52 The Stocks Class

 1 /** Stocks class

 2 * Anderson, Franceschi

 3 */

 4

 5 public class Stocks extends Investment

 6 {

 7 private static final double SLOW_GROWTH_RATE =

.02;

 8 private static final double FAST_GROWTH_RATE =

.07;

 9

10 /* Constructor

11 * @param years the new number of years

12 */

13 public Stocks(int years)

14 {

15 super(years, "Stocks");

16 setGrowthRate(SLOW_GROWTH_RATE);

17 updateAmounts();

18 }

19

20 /* update method

21 * toggles the growth rate and updates amounts

accordingly

22 */

23 public void update()

24 {

25 if (Math.abs(getGrowthRate() -

SLOW_GROWTH_RATE) < 0.0001)

26 setGrowthRate(FAST_GROWTH_RATE);

27 else

28 setGrowthRate(SLOW_GROWTH_RATE);

29

30 updateAmounts();

31 }

32 }

The XYChart class, which uses generics, is the base
class for charts involving two axes. XYChart is the
direct superclass of BarChart. The XYChart class
provides the functionality to draw the two axes and
the contents of the chart. It contains two inner
classes:

XYChart.Data, which encapsulates a single
data item to be used in two-axis charts

XYChart.Series, a series, or list, of
XYChart.Data items

XYChart, BarChart, XYChart.Data, and
XYChart.Series all use two types of objects; the first
object serves as a label for the second. Thus, often,
the first type is String and the second type is
Number. The Number class is the superclass for all
numeric wrapper classes (Integer, Double, ..) and
thus can be used with all primitive integer data types

since Java supports both autoboxing (automatic
conversion from a primitive type to a wrapper type)
and unboxing (automatic conversion from a wrapper
type to a primitive type).

Typically, the observable list bound to a bar chart is a
list of lists, that is, it is a two-dimensional data
structure. In our example, the observable list
contains a list of XYChart.Series items. Each
XYChart.Series is a list of XYChart.Data items. Each
XYChart.Data item contains two elements: the year,
which is a String; and the value, which is a double.
The String serves as a label for the value. For
example, our initial two XYChart.Series contain the
following data:

Bonds series: “2020”,100.0 “2021”,103.0
“2022”,106.09 “2023”,109.2727

Stocks series: “2020”,100.0 “2021”,107.0
“2022”,114.49 “2023”,122.5043

The first series is the bonds series, which contains
four data items; each data item includes a year and a
value. The second series is the stocks series and
also contains four data items. Both series are parallel
to each other; not only do the two series contain the
same number of items, four, but the value of the year
for two corresponding data items is the same. In this

way, the bar chart not only displays the values, but
also enables a quick visual comparison between the
two series.

Example 12.53 shows our BarChartView class. It
extends BorderPane and contains a BarChart in its
center and a button at the bottom. The BarChart bc
and the ArrayList series are defined at lines 20 and
22. The addBarChart method (lines 40–71), called by
the constructor at line 37, creates the bar chart and
places it in the center position of the BorderPane.
Inside the addBarChart method, we do the following:

1. Instantiate an empty BarChart with an x axis and a y axis (lines

42–48).

2. Create an ArrayList of XYChart.Series objects (lines 50–67).

3. Access the data of the BarChart and add the ArrayList to it (lines

68–69).

4. Place the BarChart at the center of the BorderPane (line 70).

Table 12.49 lists one of the BarChart constructors.
Since the constructor accepts two Axis parameters,
we first need to create two axes for our bar chart.
The CategoryAxis and NumberAxis classes are
subclasses of the abstract Axis class:

TABLE 12.49 A Constructor of the BarChart
Class

Package javafx.scene.chart
BarChart(Axis<X> xAxis, Axis<Y> yAxis)

creates a BarChart with the two axes. One of the axes should
be a CategoryAxis, the other one a ValueAxis. Their order
determines if the bar chart is horizontal or vertical.

CategoryAxis encapsulates an axis that
displays categories where each value
represents a unique category (tick mark)
along the axis. In this example, we use a
CategoryAxis to show the years.

NumberAxis encapsulates an axis that plots
a range of numbers with major tick marks
every “tickUnit”. We can use any Number
type with this axis, Integer, Double, etc … In
this example, we use a NumberAxis for the
values.

At lines 42–44, we create the two axes and the
BarChart. We set the title of the bar chart at line 46
and the labels of the axis at lines 47–48.

Next, we instantiate series (line 51), an ArrayList of
XYChart.Series<String, Number>. For each
Investment reference in investments, we create an
XYChart.Series and add it to series. Table 12.50
shows an XYChart.Series constructor, as well as an

XYChart. Data constructor. There are only two
elements in investments in this example, one Bonds
object and one Stocks object. At lines 55–56, we
instantiate an XYChart.Series<String, Number>
named currentInvestmentSeries. At line 57, we set
the name that will be displayed for this
currentInvestmentSeries to the type of investment of
the current Investment element. To do this, we call
the setName method shown in Table 12.51. Next, we
set the values in currentInvestmentSeries to the
values in the current Investment element. After we
retrieve the array of values for the current Investment
element and assign it to the array currentAmounts,
we loop through currentAmounts at lines 60–65 and
create an XYChart.Data item for each value in
currentAmounts (lines 63–64). We set the label of
each XYChart.Data item to the current year and its
value to the current amount. We compute the current
year by adding the counting index of the loop, j, to
startingYear. After the loop, we add
currentInvestmentSeries to the series ArrayList at
line 66. At line 69, we call getData to retrieve the
ObservableList associated with bc. At this point, the
observable list is empty, so we call the addAll
method to set the observable list to series. When we
add bc to the center of the BorderPane at line 70, the
bar chart is displayed.

TABLE 12.50 XYChart.Series and
XYChart.Data Constructors

Package javafx.scene.chart
XYChart.Series()

creates an XYChart.Series that will contain XYChart.Data

items
XYChart.Data(X xValue, Y yValue)

creates data for the two axes of the chart; the X and Y types
should match the X and Y types for the x and y axes

TABLE 12.51 The getData and setName
Methods of the XYChart.Series Class

Return value Method name and
argument list

ObservableList<XYChart.Data<X,Y>> getData()

returns the
ObservableList

of data items
that make up
this series

void setName(

String value)

sets the name
to be
displayed for
this series

The update method (lines 73–99) is called by the
controller when the view needs to be updated
because the user updated the data in the model. The
update method updates the data inside the ArrayList

series based on the state of the model. Since the
BarChart bc is bound to series, the bar chart will be
updated automatically. Since bond values do not
change, we only update the data for investments that
are not bonds (line 79) when we loop through
investments at lines 76–98. We first retrieve the
current XYChart.Series at lines 81–83 and assign it
to the reference currentInvestmentSeries. Because
we add new XYChart.Data items storing the updated
data to currentInvestmentSeries (lines 90–92), we
first need to empty currentInvestmentSeries by
calling the clear method (line 86). If we do not, we
would be adding new XYChart.Data items to the
existing ones. At lines 95–96, we update the current
element of series.

The setButtonListener method (lines 101–104),
meant to be called by the controller, sets up event
handling for the button.

EXAMPLE 12.53 A View Class
Displaying a Bar Chart

 1 /** BarChartView class

 2 * Layout using a BorderPane's

 3 * bottom and center positions.

 4 * The bottom HBox is made up of one button.

 5 * The center position is made up of a BarChart.

 6 * Anderson, Franceschi

 7 */

 8

 9 import java.util.ArrayList;

10 import javafx.event.*;

11 import javafx.geometry.Pos;

12 import javafx.scene.control.*;

13 import javafx.scene.layout.*;

14 import javafx.scene.chart.*; 15

16 public class BarChartView extends BorderPane

17 {

18 private HBox buttonPanel; // bottom, holds

button

19 private Button button;

20 private BarChart<String, Number> bc; // center,

holds chart

21

22 ArrayList<XYChart.Series<String, Number>>

series;

23 private int startingYear;

24

25 public BarChartView(int startingYear,

Investment [] investments)

26 {

27 super();

28 this.startingYear = startingYear;

29

30 buttonPanel = new HBox();

31 button = new Button();

32 button.setText("NEXT SCENARIO");

33 buttonPanel.setAlignment(Pos.CENTER);

34 buttonPanel.getChildren().add(button);

35 setBottom(buttonPanel);

36

37 addBarChart(investments);

38 }

39

40 public void addBarChart(Investment []

investments)

41 {

42 // Create a BarChart for investment

43 CategoryAxis xAxis = new CategoryAxis();

44 NumberAxis yAxis = new NumberAxis();

45 bc = new BarChart<String, Number>(xAxis,

yAxis);

46 bc.setTitle("Investment Scenarios");

47 xAxis.setLabel("Year");

48 yAxis.setLabel("Value");

49

50 // Create an ArrayList of XYChart.Series

using investments data

51 series = new ArrayList<XYChart.Series<String,

Number>>();

52

53 for (int i = 0; i < investments.length; i++

)

54 {

55 XYChart.Series<String, Number>

currentInvestmentSeries

56 = new XYChart.Series<String, Number>();

57 currentInvestmentSeries.setName(

investments[i].getType());

58

59 double [] currentAmounts =

investments[i].getAmounts();

60 for (int j = 0; j < currentAmounts.length;

j++)

61 {

62 currentInvestmentSeries.getData().add(

63 new XYChart.Data<String, Number>(

64 String.valueOf(startingYear + j),

currentAmounts[j]));

65 }

66 series.add(currentInvestmentSeries);

67 }

68 // Fill BarChart with XYChart.Series array

69 bc.getData().addAll(series);

70 setCenter(bc);

71 }

72

73 public void update(Investment [] investments

)

74 {

75 // update investments

76 for (int i = 0; i < investments.length; i++

)

77 {

78 // do not update bonds series

79 if (! investments[i].getType().equals(

"Bonds"))

80 {

81 // retrieve series

82 XYChart.Series<String, Number>

currentInvestmentSeries

83 = series.get(i);

84

85 // change data of series

86 currentInvestmentSeries.getData().clear(

);

87 double [] currentAmounts =

investments[i].getAmounts();

88 for (int j = 0; j <

currentAmounts.length; j++)

89 {

90 currentInvestmentSeries.getData(

).add(

91 new XYChart.Data<String, Number>(""

92 + (startingYear + j),

currentAmounts[j]));

93 }

94

95 // update series

96 series.set(i, currentInvestmentSeries);

97 }

98 }

99 }

100

101 public void setButtonListener(

EventHandler<ActionEvent> eh)

102 {

103 button.setOnAction(eh);

104 }

105 }

Example 12.54 shows the BarChartViewController
class, the controller for our bar chart application. It
includes the instance variables investments and view
(lines 10–11), which represent the View and the
Model for the application, respectively. The
BarChartViewController class implements
EventHandler and is its own event handler. We set
up event handling at line 18 and handle the event in
the handle method (lines 21–28) by first updating the
Model (lines 23–25) and then updating the View
(lines 26–27).

EXAMPLE 12.54 The Controller for
the Bar Chart Application

 1 /** BarChartViewController class

 2 * Anderson, Franceschi

 3 */

 4

 5 import javafx.event.*;

 6 import javafx.scene.control.*;

 7

 8 public class BarChartViewController implements

EventHandler<ActionEvent>

 9 {

10 private BarChartView view;

11 private Investment [] investments;

12

13 public BarChartViewController(BarChartView

view,

14 Investment []

investments)

15 {

16 this.investments = investments;

17 this.view = view;

18 (this.view).setButtonListener(this);

19 }

20

21 public void handle(ActionEvent event)

22 {

23 // update the model

24 for (int i = 0; i < investments.length; i++

)

25 investments[i].update();

26 // update the view

27 view.update(investments);

28 }

29 }

Example 12.55 shows the InvestmentApplication
class. We create an array of two Investment objects
at lines 14–18, create the View for the app at line 19,
and create the Controller for the application at lines
27–28. We specify that 2020 is the starting year for
our data (line 19).

EXAMPLE 12.55 The
InvestmentApplication.java File

 1 /** InvestmentApplication class

 2 * Anderson, Franceschi

 3 */

 4

 5 import javafx.application.Application;

 6 import javafx.scene.Scene;

 7 import javafx.stage.Stage;

 8

 9 public class InvestmentApplication extends

Application

10 {

11 @Override

12 public void start(Stage stage)

13 {

14 int years = 4;

15 Stocks stocks = new Stocks(years);

16 Bonds bonds = new Bonds(years);

17 Investment [] investments = { bonds, stocks

};

18

19 BarChartView root = new BarChartView(2020,

investments);

20

21 Scene scene = new Scene(root, 540, 510);

22 stage.setTitle("Financial Projections");

23 stage.setScene(scene);

24 stage.show();

25

26 BarChartViewController controller

27 = new BarChartViewController(root,

investments);

28 }

29

30 public static void main(String [] args)

31 {

32 launch(args);

33 }

34 }

12.17 Using a Style Sheet to Style
the View
GUI components come with a default style. For
example, the background color is white and the text
is black. Labels have a rectangular shape, and
buttons have a rectangular shape with rounded
corners. We can create our own style and customize
the look and feel of our application. It is typical to
define a style in a separate file, thus separating the
contents of the GUI from its style. In this way, it is
easier to edit and separately maintain the contents of
the GUI and its style; we can modify the style file,
also called a style sheet, and the new style is
automatically applied to the app.

Earlier in the chapter we introduced CSS. JavaFX
supports Cascading Style Sheets (CSS), a
language that describes how a document should be
styled. CSS is often used with web pages, and the
JavaFX version of CSS is similar to the CSS used
with web pages.

The general syntax to style a GUI component in a
style sheet is:

selector

{

 attribute1: value1;

 attribute2: value2;

 …

}

The selector can be a GUI component, such as a
Label, but it can also be something identifying a
group of components or a specific component.
Attributes are prefixed with –fx-.

To illustrate this, we add styles to our Simple Math
application, shown previously in Examples 12.5
through 12.8. Example 12.56 shows a style sheet for
the Simple Math application. At lines 6–10, we style
all the labels so their background color is
deepskyblue and their foreground color is blue. If we
want to give a specific style to a single component,
we can give it an id in the FXML file and style that id
in the style sheet. In Example 12.6, we gave the id
result to the bottom label, which displays the result of
the Math operation. To style that label differently from
the other labels, we define a style for its id. A
selector for an id starts with the # sign followed by
the id. At lines 12–16, we style the component with id
result so that its background color is aqua (line 14)
and its text is bold (line 15). Note that the
background color of the bottom label is styled twice:

once at line 8 where all the labels are styled, and
another time at line 14 where the id result is styled.
The id’s style prevails over the component’s general
style. Thus, the background color of the bottom label
is aqua. However, because the id’s style does not
redefine the foreground color, the foreground color
defined for all the labels at line 9 applies to the
bottom label.

Finally, at lines 18–21, we define the background
color of the buttons when the mouse hovers over
them as green.

EXAMPLE 12.56 A JavaFX Style
Sheet for the Simple Math
Application
 1 VBox

 2 {

 3 -fx-background-color: skyblue;

 4 }

 5

 6 Label

 7 {

 8 -fx-background-color: deepskyblue;

 9 -fx-text-fill: blue;

10 }

11

12 #result

13 {

14 -fx-background-color: aqua;

15 -fx-font-weight: bold;

16 }

17

18 Button:hover

19 {

20 -fx-background-color: #00FF00;

21 }

To apply our style sheet to our application, we link
the style sheet to the scene. Example 12.57 shows
the modified SimpleMathPractice class. We link the

style sheet at line 23 by calling the getStylesheets
method of the Scene class. If we have more than
one style sheet, we can add as many as desired
using this method.

EXAMPLE 12.57 Importing a Style
Sheet

 1 /* Simple Math Operations Using Buttons

 2 Anderson, Franceschi

 3 */

 4

 5 import java.net.URL;

 6 import javafx.application.Application;

 7 import javafx.fxml.FXMLLoader;

 8 import javafx.scene.layout.VBox;

 9 import javafx.scene.Scene;

10 import javafx.stage.Stage;

11

12 public class SimpleMathPractice extends

Application

13 {

14 @Override

15 public void start(Stage stage) // throws

Exception

16 {

17 try

18 {

19 URL url =

20 getClass().getResource(

"fxml_simple_math.fxml");

21 VBox root = FXMLLoader.load(url);

22 Scene scene = new Scene(root, 300, 275);

23 scene.getStylesheets().add(

"simple_math.css");

24 stage.setTitle("Simple Math");

25 stage.setScene(scene);

26 stage.show();

27 }

28 catch (Exception e)

29 {

30 e.printStackTrace();

31 }

32 }

33

34 public static void main(String [] args)

35 {

36 launch(args);

37 }

38 }

Figures 12.30 and 12.31 show the application
running as the user first hovers over the “Cube”
button and then clicks on it.

Figure 12.30
The “Cube” Button Changes Color as the Mouse
Hovers Over It

Figure 12.31
The User entered 3 and Clicked on “Cube”

12.18 Programming Activity 2:
Working with Layout Containers
In this Programming Activity, you will complete the
implementation of a version of the Tile Puzzle game
using a more complex GUI. As it stands now, the
application compiles and runs, but it is missing a lot
of code. Figure 12.32 shows the window that will
open when you run the application without adding
your code. Once you have completed the five tasks
of this Programming Activity, you should see the
window in Figure 12.33 when you run your program
and click on the “3-by-3” button. When you click on
one of the buttons labeled “3-by-3,” “4-by-4,” or “5-
by-5,” the tile puzzle will reset to a grid of that size.

Figure 12.32
The Starting Window When Running the Prewritten
Code

Figure 12.33
The Starting Window When the Activity Is Completed

In addition to the TilePuzzle class, we provide you
with a prewritten GameView class, which
encapsulates a View for the Tile Puzzle game. We
have imple mented the GameView class as a
GridPane container, so you can add it to another
layout container, such as a BorderPane. It has two
important methods, shown in Table 12.52. Thus, your
job in this Programming Activity is not to write the
game code, but to organize components in a
window.

TABLE 12.52 The GameView Class API
Constructor
GameView(int nSides)

instantiates a tile puzzle View having an nSides-by-nSides grid

Return value Method name and argument list
void setUpGame(int nSides)

resets the grid as an nSides-by-nSides grid

You need to edit the NestedLayoutPractice class,
which extends BorderPane. Your job is to:

1. Declare an HBox named top and three Buttons that will be added

to the top position of the BorderPane.

2. Set the layout containers for the center and top positions.

3. Add the top and the gameView layout containers to the

BorderPane.

4. Code an appropriate private listener class.

5. Instantiate the listener and register it on the appropriate

components.

Instructions
Copy the source files in the Programming Activity 2
folder for this chapter to a folder on your computer.

1. Write the code to declare the needed instance variables. Load

the NestedLayoutPractice.java source file and search for five

asterisks in a row (*****). This will position you at the instance

variables declaration.

 // ***** Task 1: declare an HBox named top

 // also declare three Button instance variables

 // that will be added to the HBox top.

 // These buttons will determine the grid size

of the game:

 // 3-by-3, 4-by-4, or 5-by-5

 // task 1 ends here

2. Next, write the code to set the layout manager of the window and

add the component gameView in the center position of the

window. In the NestedLayoutPractice.java source file, search

again for five asterisks in a row (*****). This will position you

inside the constructor.

// ***** Task 2: student code starts here

// instantiate the GameView object

// add gameView to the center of this BorderPane

// task 2 ends here

3. Next, write the code to instantiate the HBox top component,

instantiate the buttons from task 1, add them to top, and finally

add top at the top position of our BorderPane. In the

NestedLayoutPractice.java source file, search again for five

asterisks in a row (*****). This will position you inside the

constructor.

// ***** Task 3: Student code restarts here

// instantiate the HBox component named top

// instantiate the Buttons that determine the

grid size

// add the buttons to HBox top

// make them take all the available space

// add HBox top to this BorderPane as its top

component

// task 3 ends here

4. Next, write the code for the private inner class that implements

the appropriate listener. In the NestedLayoutPractice.java source

file, search again for five asterisks in a row (*****). This will

position you between the constructor and the end of the class.

// ***** Task 4: Student code restarts here

// create a private inner class that implements

EventHandler

// your method should identify which of the 3

buttons

// was the source of the event

// depending on which button was pressed,

// call the setUpGame method of the GameView

class

// with arguments 3, 4, or 5

// the API of that method is:

// public void setUpGame(int nSides)

// task 4 ends here

5. Next, write the code to declare and instantiate a listener, and

register it on the appropriate components. In the

NestedLayoutPractice.java source file, search again for five

asterisks in a row (*****). This will position you inside the

constructor.

// ***** Task 5: Student code restarts here

// Note: search for and complete Task 4 before

performing this task

// declare and instantiate an EventHandler

// register the handler on the 3 buttons

// that you declared in Task 1

// task 5 ends here

After completing each task, compile your code.

When you have finished writing all of the code,
compile the source code and run
NestedLayoutPracticeApplication. Try clicking on the
three buttons that you added.

DISCUSSION QUESTIONS
1. Identify the various layout containers you used and the

screen positions they occupy.

2. Explain why the left and right positions are not shown
on the window.

CHAPTER REVIEW

12.19 Chapter Summary
A Graphical User Interface (GUI) allows the
user to enter data and initiate actions for an
application by entering text into boxes;
pressing buttons; moving the thumb of a
slider; or selecting items from a list, a set of
radio buttons, or checkboxes.

Applications with GUIs are usually easier to
learn and use because the interface is
familiar to the user.

JavaFX is a set of classes included with Java
SE for creating GUIs.

The top-level structure in a JavaFX
application is the stage, which corresponds
to a window. A stage can have one or more
scenes, which are top-level containers for
nodes that make up the window contents. A
node can be a user interface control, such as
a button or drop-down list; a layout container;
an image or other media; a graphical shape;
a web browser; a chart; or a group.

JavaFX applications can be built in several
ways. If we know which controls our interface
needs and how they should be arranged, we
can specify the layout, controls, and their
properties using FXML, a scripting language
based on XML. For more complicated GUIs

or for dynamic GUIs where the number or
type of control is determined at runtime, we
can control the number, type, properties, and
positioning of controls programmatically.

A JavaFX application extends the Application
class and, at minimum, implements the start
method.

Some JavaFX GUI controls are Label,
TextField, Button, RadioButton, CheckBox,
ComboBox, and Slider. These controls
inherit from the Node class.

Controls can be arranged in a window using
layout containers, such as HBox, VBox,
BorderPane, GridPane, or StackPane.
Layout containers can be nested.

GUI applications use an event-driven model,
where the user determines which functions
are performed by interacting with the
application controls, consequently firing
events. To handle an event, we register our
interest in being notified of the event and
provide code: an event handler or listener, to
be executed when the event occurs.

JavaFX supports and encourages the Model-
View-Controller architecture in GUI
applications. The Model manages the data of
the application and its state. The View

presents the user interface. The Controller
handles events generated by the user and
communicates those changes to the Model,
which updates its state accordingly and
communicates any changes back to the
Controller. The Controller then updates the
View to reflect those changes.

FXML can be used to define not only the
application’s layout containers, GUI controls,
and their properties, but also the controller
class and the method to be executed when
an event fires.

An ActionEvent object is created when the
user clicks a button, selects an item from a
list or a menu, or presses the Enter key in a
TextField. The getSource method of the
ActionEvent object returns a reference to the
control that fired the event.

To make RadioButtons mutually exclusive,
we define a ToggleGroup and then set each
RadioButton’s toggleGroup property
accordingly.

A Controller can have an initialize method,
which is called after the scene graph has
been created. The initialize method can be
used to add nodes and set properties that
could not be fully defined in the FXML file. In

the initialize method, we also can retrieve
initial values from the Model and update the
View accordingly so that the View reflects the
initial state of the Model when the application
starts.

We put ComboBox items into an
ObservableList and use the
SingleSectionModel to manage the selection
of items.

The Slider control is capable of displaying a
set of continuous values along a horizontal
or vertical line called a track. The user
“slides” the knob, called the thumb, along the
track to select a value. We can set properties
of a Slider to display tick marks and tick
values.

An event handler for a Slider control needs
to implement the ChangeListener<T>
interface.

Defining our application’s GUI components,
properties, and event handlers
programmatically is useful for dynamic GUIs
where the number or type of controls is not
known until run time, or when we have an
array of controls that are handled similarly.

A VBox is a layout container that arranges its
components vertically.

An HBox is a layout container that arranges
its components horizontally.

A GridPane can be visualized as a table
made up of cells in rows and columns. Each
cell can contain one component. These cells
can have different sizes, which we specify
using row and column constraints.

The Alert class enables us to construct and
display dialog boxes.

A BorderPane layout container organizes its
nodes into five positions—top, bottom, left,
right, and center—with each position holding
one node at most.

Lambda expressions can be used to simplify
the definition of an event handler as an
anonymous class that implements a
functional interface, that is, an interface that
requires only one method to be
implemented.

A lambda expression contains (1) a comma-
separated list of parameters enclosed in
parentheses—the data types of the
parameters may be omitted, and the
parentheses can also be omitted if there is
only one parameter; (2) the arrow token, ->;
and (3) a method body, which can be a
single expression or a block enclosed in

curly braces. If the body of the method
consists of a single expression, then the JVM
evaluates the expression and returns its
value. We can also use a return statement,
but that requires curly braces.

JavaFX includes many classes that allow us
to animate a node on a scene.
FadeTransition, RotateTransition,
TranslateTransition, and ScaleTransition are
examples of such classes.

Each transition class typically provides
methods to play the animation, set the
number of types it repeats, play the
animation in reverse, and execute some
code after it finishes.

A mouse activity generates a MouseEvent. A
touch activity generates a TouchEvent.

To handle a mouse or touch event, we
implement the EventHandler interface and
implement its handle method.

The getScene method from the Node class
allows us to get a reference to the Scene
that a Node is in. The getWindow method
from the Scene class allows us to get a
reference to the Stage that the scene is in.

JavaFX includes classes that make it easy to
display various types of charts, including line

charts, pie charts, and bar charts.

The ObservableList interface is a list that can
be linked to a GUI component that displays a
list of values. Whenever the values in the list
change, the GUI component is automatically
updated to reflect those changes.

PieChart and BarChart are examples of
classes that can be bound to an
ObservableList.

12.20 Exercises, Problems, and
Projects

12.20.1 Multiple Choice Exercises
 1. An example of a GUI component class is

❑ FXML

❑ controller

❑ TextField

❑ Stage

 2. What are the primary uses of GUI components? (Check all that
apply.)

❑ Display information
❑ Facilitate the coding of methods

❑ Let the user control the program
❑ Collect information from the user

 3. In what package do you find the Button, TextField, and ComboBox
classes?

❑ javafx.scene

❑ javafx.scene.control

❑ java.scene

❑ java.awt

❑ java.io

 4. V Box is a

❑ Label

❑ Layout container that arranges components vertically
❑ Layout container that arranges components horizontally

❑ Scene

 5. The property of a Label element that specifies the text inside the
label is

❑ Label

❑ Word

❑ Phrase

❑ text

 6. The property that specifies the name of the Controller class for the
View defined in the FXML document is

❑ control

❑ fx:control

❑ controller

❑ fx:controller

 7. The property of a Button element that specifies the method called
when the user clicks the button is

❑ action

❑ press

❑ onAction

❑ onPress

 8. What attribute and annotation do we use with an instance variable
of the Controller to reference a GUI component defined in an
FXML document?

❑ id and FXML

❑ id and @FXML

❑ fx:id and FXML

❑ fx:id and @FXML

 9. Assume that we have correctly defined the FXML attribute of a
Button element that specifies the method to call when the user
clicks on that button. What is the return type of that method?

❑ Button

❑ void

❑ boolean

❑ onAction

10. With JavaFX, a user interface must be defined using FXML; it
cannot be defined programmatically.

❑ True

❑ False

11. We want to set up event handling programmatically when the user
clicks on a button. What should the programmer do? (Check all
that apply.)

❑ Code a class that implements the
EventHandler<ActionEvent> interface.

❑ Declare and instantiate an object reference (a listener) of the
class above.

❑ Call the handle method.

❑ Register the listener on the button.

12. Assuming everything has been coded correctly in the previous
question, what happens when the user clicks a button?

❑ The handle method executes.
❑ The Button constructor executes.

❑ The start method executes.

13. We want to build a class that implements an interface that listens
to key events. What interface should we implement?

❑ EventHandler<ActionEvent>

❑ EventHandler<KeyEvent>

❑ EventHandler<MouseEvent>

❑ KeyHandler<Event>

14. We are designing a GUI programmatically with three buttons; a
different action will be taken depending on which button the user

clicks. We want to code only one private class implementing the
EventHandler<ActionEvent> interface. Inside the handle method,
which method do we call to determine which button was clicked?

❑ getButton

❑ getSource

❑ getOrigin

15. NewLayout is a layout container.

❑ True

❑ False

16. What is the maximum number of top-level controls that a
BorderPane can manage?

❑ 2
❑ 3

❑ 4
❑ 5

❑ 6

17. FXML elements can be nested.

❑ True
❑ False

18. Which one is not a transition class?

❑ FadeTransition

❑ SequentialTransition

❑ ParallelTransition

❑ Scale

19. What class encapsulates a touch event?

❑ Touch

❑ TouchEvent

❑ EventTouch

20. What does the getData method of XYChart.Series return?

❑ An XYChart.Data items

❑ An ObservableList of XYChart.Data items
❑ A double

❑ A Series

12.20.2 Reading and
Understanding Code
For Questions 21 to 25, consider the following FXML
file representing the View for the application:

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.*?>

<?import javafx.scene.layout.*?>

<HBox fx:controller="MyController"

 xmlns:fx="http://javafx.com/fxml"

 alignment="center" spacing="10" >

 <Button fx:id="button1" text="Button 1"

 onAction="#go" />

 <Button fx:id="button2" text="Button 2"

 onAction="#go" />

 <Label fx:id="result" />

 <Button fx:id="button3" text="Button 3"

 onAction="#go" />

 <Button fx:id="button4" text="Button 4"

 onAction="#go" />

</HBox>

21. How many buttons will be displayed in the window?

22. How are the buttons and the label organized in the window?

23. What class should we code in order to process clicks on the
buttons by the user?

24. What method will execute when the user clicks on one of the
buttons?

25. What is the return type of that method?

For Questions 26 through 29, consider the following code (and
assume that the FXML file defines the text for cb1, cb2, and cb3 as
“Choice 1,” “Choice 2,” and “Choice 3”):

/* Controller class
* Anderson, Franceschi
*/
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.scene.control.*;

public class Controller
{
 @FXML private CheckBox cb1;
 @FXML private CheckBox cb2;
 @FXML private CheckBox cb3;
 @FXML private Label label;
 private int read, write, execute;
 @FXML protected void mix(ActionEvent event)
 {
 CheckBox cb = (CheckBox) event.getSource();
 if (cb == cb1)
 read = (cb.isSelected() ? 4 : 0);
 else if (cb == cb2)
 write = (cb.isSelected() ? 2 : 0);
 else if (cb == cb3)
 execute = (cb.isSelected() ? 1 : 0);
 int mode = read + write + execute;
 label.setText("mode: " + mode);
 }
}

26. What happens when the user checks “Choice 1” only?

27. What happens when the user checks “Choice 1” and then checks
“Choice 2”?

28. What happens when the user checks “Choice 1,” then “Choice 2,”
and then “Choice 3”?

29. What happens when the user checks “Choice 3,” then “Choice 2,”
and then “Choice 2” again?

For Questions 30 through 32, consider the following code (and
assume that the class extending Application exists and is correctly

coded):

import javafx.event.*;
import javafx.scene.control.Button;
import javafx.scene.layout.*;
public class BoardView extends GridPane
{
 private Button [] [] buttons;

 public BoardView()
 {
 super();

 ColumnConstraints col = new
ColumnConstraints();
 col.setPercentWidth(25);
 RowConstraints row = new RowConstraints();
 row.setPercentHeight(20);

 for (int i = 0; i < 5; i++)
 getRowConstraints().add(row);
 for (int j = 0; j < 4; j++)
 getColumnConstraints().add(col);
 buttons = new Button[5][4[];
 ButtonHandler bh = new ButtonHandler();
 for (int i = 0; i < 5; i++)
 {
 for (int j = 0; j < 4; j++)
 {
 // instantiate the buttons
 buttons[i][j] = new Button();
 buttons[i][j].setMaxWidth(
Double.MAX_VALUE);
 buttons[i][j].setMaxHeight(
Double.MAX_VALUE);
 add(buttons[i][j], j, i);
 buttons[i][j].setOnAction(bh);
 }
 }
 }
 private class ButtonHandler implements
EventHandler<ActionEvent>
 {
 public void handle(ActionEvent event)
 {
 for (int i = 0; i < buttons.length; i++)
 for (int j = 0; j < buttons[i].length;
j++)
 if (event.getSource() == buttons[i]
[j])

 buttons[i][j].setText("" +
String.valueOf (i + j));
 }
 }
}

30. How many rows and columns are in the grid?

31. What happens when the user clicks on the Button located at the
top left of the grid?

32. What happens when the user clicks on the Button located at the
bottom right of the grid?

12.20.3 Fill In the Code
For Questions 33 through 35, consider the following
FXML document representing a GUI :

 <?xml version="1.0" encoding="UTF-8"?>

 <?import javafx.scene.control.*?>

 <?import javafx.scene.layout.*?>

 <BorderPane fx:controller="MyController"

 xmlns:fx="http://javafx.com/fxml"

>

 <top>

 <HBox alignment="center">

 <Button fx:id="button1" text="INSERT" />

 </HBox>

 </top>

 <left>

 <HBox alignment="center">

 <Button fx:id="button2" text="UPDATE"

onAction="#go"/>

 </HBox>

 </left>

 <!-- answer to questions 33 to 35 go here -->

 </BorderPane>

33. Add a VBox element that contains a button at the right position
within the BorderPane. The text of the button should say DELETE;
when the user clicks on it, the test method of the MyController
class should execute. The id of the button should be button3.

34. Add an HBox element that contains a label at the center position of
the BorderPane. The text of the label should be SELECT. The id of
the label should be label1.

35. Add a VBox element that contains a button at the bottom position
within the BorderPane. The text of the button should be CREATE;
when the user clicks on it, the table method of the MyController
class should execute. The id of the button should be button4.

For Questions 36 through 40, consider the following class:

import javafx.event.*;
import javafx.scene.control.*;
import javafx.scene.layout.*;
public class A extends HBox
{
 private Button b;
 private Label l;
}

36. Inside the constructor, this code instantiates the button b with the
text “Button.

// your code goes here

37. Inside the constructor, this code instantiates the label l with the text
“Hello.

// your code goes here

38. Inside the constructor, this code adds b and l to this HBox so that b
is on the right and l is on the left:

// your code goes here

39. Inside the constructor, this code registers the listener mh on the
button b:

// the MyHandler class is a private class
implementing EventHandler MyHandler mh = new
MyHandler ();
// your code goes here

40. Inside the handle method of a private inner class implementing the
EventHandler interface, this code changes the text of l to “Button
clicked” if the button b was clicked:

public void handle(ActionEvent ae)
{
 // your code goes here
}

For Questions 41 through 46, consider the following class:

import javafx.scene.control.*;
import javafx.scene.layout.*;

public class B extends BorderPane
{
 private VBox left;
 private HBox top;
 private Button [] buttons; // length 4
 private TextField [] textfields; // length 3
 private Label label1;
 private Label label2;

}

Also, assume that none of the instance variables have been
instantiated and you are coding inside the constructor.

41. This code instantiates top and left.

// your code goes here

42. This code instantiates the text fields with text TF0, TF1, and TF2,
and it places them in that order inside top. They should fill the
whole available width of top.

// your code goes here

43. This code instantiates the buttons with text Button 0, Button 1,
Button 2, and Button 3, and it places them in that order inside left.
They should fill the whole available height of left.

// your code goes here

44. This code adds left and top at the left and top positions of the
BorderPane, respectively.

// your code goes here

45. This code instantiates labe11 and label2 with the text CENTER
and BOTTOM, respectively.

// your code goes here

46. This code adds label1 and label2 at the center and bottom
positions within the BorderPane, respectively.

// your code goes here

47. Replace the anonymous class definition for a Button event handler
with a lambda expression.

quit.setOnAction(new EventHandler<ActionEvent>(
)
 {
 @Override
 public void handle(ActionEvent
event)
 {
 System.exit(0);
 }
 }
);

48. We have a reference named myCanvas to a Canvas. Define a
rotation animation that will take place on myCanvas as follows: it
should last 2.5 seconds, repeat five times, and go from a 45-
degree angle to a 135-degree angle.

49. A sound file named music.wav is located in the current folder.
Write code to play the sound three times in a row.

50. We have a reference named myEvent to a touch event that just
happened. Retrieve and output the x and y coordinates of where
the touch event happened.

51. We have already defined an ArrayList of PieChart.Data named
myList. Create an ObservableList with it, and create a PieChart
using that ObservableList.

12.20.4 Identifying Errors in Code
52. Where is the error in this code sequence?

<?xml version="1.0" encoding="UTF-8"?>
<HBox xmlns:fx="http://javafx.com/fxml"
alignment="center" spacing="10" >
 <Button text="Button 1" />
</HBox>

53. Where is the error in this code sequence?

<?xml version="1.0" encoding="UTF-8"?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<HBox>
 <Label text=result />
</HBox>

54. Where is the error in this code sequence?

import java.scene.layout.*;
public class MyGame extends GridPane
{
}

55. Where is the error in this code sequence?

import javafx.event.*;
import javafx.scene.control.Button;
import javafx.scene.layout.*;
public class MyGame extends GridPane
{
 // some code here
 private class MyHandler extends
EventHandler<ActionEvent>
 {
 public void handle(ActionEvent ae)
 { }
 }
}

56. Where is the error in this code sequence?

import javafx.event.*;
import javafx.scene.control.Button;
import javafx.scene.layout.*;
public class MyGame extends GridPane
{
 // some code here
 private class MyHandler implements EventHandler
 {
 public void handle(ActionEvent ae)
 { }
 }
}

57. Where is the error in this code sequence?

XYChart.Series<String, Number> series
 = new XYChart.Series<String, Number>();
series.add(new XYChart.Data<String, Number>(
"HI", 2.0));

58. Where is the error in this code sequence?

// bc is a BarChart and has been instantiated
ArrayList<XYChart.Series<String, Number>> series
 = new ArrayList<XYChart.Series<String,
Number>>();
// fill in series here
bc.addAll(series);

12.20.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
59. You coded the following class:

import java.net.URL;
import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.layout.VBox;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class Test59 extends Application
{
 @Override
 public void start(Stage stage)
 {
 try
 {
 URL url = getClass().getResource(
"fxml_ex1.fxml");
 VBox root = FXMLLoader.load(url);
 Scene scene = new Scene (root, 300, 275);
 stage.setTitle("Test");
 stage.setScene(scene);
 stage.show();
 }
 catch (Exception e)
 {
 System.out.println(e.getMessage());
 }
 }

 public static void main(String [] args)
 {
 launch(args);
 }
}

The code compiles; when you run, the window does not open and
you get the following message:

Location is required

What do think the problem is?

60. You coded the following FXML file, whose name is fxml_ex60.fxml:

<?xml version="1.0" encoding="UTF-8"?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<VBox xmlns:fx="http://javafx.com/fxml"
 alignment="center" spacing="20" >
 <Label text=Welcome />
 <Label text="FXML Test" />
</VBox>

Assume that the Application class is correctly coded. When you
run, the window does not open and you get a LoadException with
this message:

fxml_ex60.fxml:6

Explain what the problem is and how to fix it.

61. You coded the following FXML file (fxml_ex61.fxml) and
Controller61 class:

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<VBox fx:controller="Controller61"
 xmlns:fx="http://javafx.com/fxml"
 alignment="center" spacing="10" >
 <Button fx:id="button" text="GO"
 onAction="#go" />
</VBox>

import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.scene.control.*;

public class Controller61
{
 protected void go(ActionEvent event)
 {
 System.out.println("Inside go");
 }
}

Assume that the Application class is correctly coded. The code
compiles but when you run, the window does not open and you get

a message starting with:

javafx.fxml.LoadException: Error resolving
onAction='#go', either the event handler is not
in the Namespace or there is an error in the
script

Explain what the problem is and how to fix it.

62. You coded the following in the file Test62.java:

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.stage.Stage;
public class Test62 extends Application
{
 public void start(Stage stage)
 {
 Ex62 root = new Ex62();
 Scene scene = new Scene(root, 300, 275);
 stage.setTitle("Test");
 stage.setScene(scene);
 }
 public static void main(String [] args)
 {
 launch(args);
 }
}

Assume that the Ex62 class is correctly coded. The code compiles
and runs, but the window does not show. Explain what the problem
is and how to fix it.

63. You coded the following in the Ex63.java file:

import javafx.scene.control.*;
import javafx.scene.layout.*;
import javafx.event.*;
public class Ex63 extends VBox
{
 private Button button;
 private Label label;

 public Ex63()
 {
 super();
 label = new Label("HI");
 button = new Button("GO");
 getChildren().add(label);
 getChildren().add(button);
 }
 private class ButtonHandler implements
EventHandler<ActionEvent>
 {
 public void handle(ActionEvent ae)
 {
 label.setText("Hello");
 }
 }
}

Assume that the Application class has been correctly coded. The
code compiles and runs. However, when you click the button, the
text in the label does not change. Explain what the problem is and
how to fix it.

12.20.6 Write a Short Program
64. Write a program that displays a text field and two buttons labeled

“uppercase” and “lowercase.” When the user clicks on the
uppercase button, the text changes to uppercase; when the user
clicks on the lowercase button, the text changes to lowercase. Use
FXML for the GUI and to set up event handling; include a Model.
Be sure that the initial state of the View matches the initial state of
the Model.

65. Write a program with two radio buttons and a text field. When the
user clicks on one radio button, the text changes to lowercase;
when the user clicks on the other radio button, the text changes to
uppercase. Use FXML for the GUI and to set up event handling;
include a Model. Be sure that the initial state of the View matches
the initial state of the Model.

66. Same as 65, except create the GUI programmatically, not using
FXML.

67. Write a program with three checkboxes that allows a user to select
toppings for a pizza order: extra cheese, sausage, and anchovies.
As the user selects/deselects each checkbox, display the current
order in a label.

68. Write a program that simulates a multiple choice question of your
choice; the question should be a “check all that apply” type of
question. There should be at least four possible answers, each
using a checkbox. When the user selects any checkbox, your
program should process the user’s answer and show whether the
answer is true (all checkbox selections are correct) or false (at
least one checkbox selection is incorrect) in a label. Use FXML for
the GUI and to set up event handling; include a Model.

69. Same as 68, but include a button to process the answer; do not
process the answer when the user selects checkboxes.

70. Write a program that simulates a guessing game in a GUI
program. Ask the user for a number between 1 and 6 in a text field,
and then roll a die randomly and indicate whether or not the user
won. Write the program in such a way that any invalid user input
(i.e., not an integer between 1 and 6) is rejected and the user is
asked again for input. Use FXML for the layout but generate and
handle the checkboxes programmatically; include a Model. Be
sure that the initial state of the View matches the initial state of the
Model.

71. Write a program that simulates a guessing game in a GUI
program. Generate a secret random number between 1 and 100;
that number is hidden from the user. Ask the user to guess a
number between 1 and 100 in a text field, and then tell the user
whether the number is too high, too low, or is the correct number.
Let the user continue to guess until the correct number is guessed.
Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the initial
state of the Model.

72. Modify the ComboBox example in this chapter to use ListView
instead.

73. Write a program that displays a 4-by-6 grid of buttons, each with
some unique text. One button is the “winning” button, which your
model determines randomly. When the user clicks on the winning

button, change its text to “Won.” If the user clicks on any other
button, change its text to “No.” Use code for the GUI and to set up
event handling; include a Model.

74. Same as Exercise 73 with the following additions: Keep track of
how many times the user clicks on buttons. If the user has not won
after five clicks, the text on the last button clicked should be
changed to “Lost.” Once the user has lost or won, you should
disable the game; that is, the buttons should no longer respond to
clicks from the user.

75. Write a program that displays a combo box and a label. The
combo box displays five U.S. states using two letters for each state
(e.g., CA, MD). When the user selects a state from the combo box,
the label is populated with the full name of the state (e.g., if the
user selects MD, the label is populated with Maryland). Use FXML
for the GUI and to set up event handling; include a Model. Be sure
that the initial state of the View matches the initial state of the
Model.

76. Same as 75, except use code for the GUI instead of FXML.

77. Write a program that counts and displays how many times the user
touches the screen and plays a short sound every time the user
touches the screen. The count should be displayed and
incremented each time the user touches the screen.

78. Write a program that plays the same greeting in three languages.
Provide a button for each language. When the user presses a
button, play the greeting in that language. Use code for the GUI
and use lambda expressions to define the listener for each button.

79. Write a program that shows a ball bouncing on the ground. When
the user touches the screen, the ball drops and bounces on the
ground. The touch event should be disabled after that. The ball
bounces down and up five times; each time it bounces up, it
travels half the previous distance.

80. Write a program that shows a ball at the center of a BorderPane.
Include a button at the bottom of the BorderPane. When the user
clicks on the button, animate the ball so that it travels in a square.
Disable the button while the animation is running and enable the
button when the animation stops.

12.20.7 Programming Projects
81. Write a GUI-based tic-tac-toe game for two players. Use code for

the GUI and to set up event handling; include a Model.

82. Write a GUI-based program that analyzes a word. The user will
type the word in a text field. Provide buttons for the following:

❑ One button, when clicked, displays the length of the word.

❑ Another button, when clicked, displays the number of vowels
in the word.

❑ Another button, when clicked, displays the number of
uppercase letters in the word.

Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the
initial state of the Model.

83. Write a GUI-based program that analyzes a soccer game. The
user will type the names of two teams and the score of the game in
four text fields. You should add appropriate labels and create
buttons for the following:

❑ One button, when clicked, displays which team won the
game.

❑ Another button, when clicked, displays the game score.

❑ Another button, when clicked, displays by how many goals
the winning team won.

Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the
initial state of the Model.

84. Same as 83, except use code for the GUI, not FXML.

85. Write a GUI-based program that analyzes a round of golf. You will
retrieve the data for 18 holes from a text file. Each line in the file
will include the par for that hole (3, 4, or 5) and your score for that
hole. Your program should read the file and display a combo box
listing the 18 holes. When the user selects a hole, the score for
that hole should be displayed in a label. Provide buttons for the
following:

❑ One button, when clicked, displays whether your overall score
was over par, under par, or par.

❑ Another button, when clicked, displays the number of holes
for which you made par.

❑ Another button, when clicked, displays how many birdies you
scored. (A birdie on a hole is 1 under par.)

Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the initial
state of the Model.

86. Same as 85, except use code for the GUI, not FXML.

87. Write a GUI-based program that analyzes statistics for tennis
players. You will retrieve the data from a text file. Each line in the
file will list the name of a player, the player’s number of wins for
the year, and the player’s number of losses for the year. Your
program should read the file and display the list of players. When
the user selects a player, the winning percentage of the player
should be displayed in a label. Provide buttons for the scenarios
that follow:

❑ One button, when clicked, displays which player had the most
wins for the year.

❑ Another button, when clicked, displays which player had the
highest winning percentage for the year.

❑ Another button, when clicked, displays how many players had
a winning record for the year.

Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the
initial state of the Model.

88. Write a GUI-based program that simulates the selection of a
basketball team. You will retrieve the data from a text file
containing 10 lines. Each line will list the name of a player. Your
program needs to read the file and display 10 checkboxes
representing the 10 players. A text area will display the team,
made up of the players being selected. A basketball team has five
players. Your program should not allow the user to change his or
her selection after the team has five players. Every time the user

checks or unchecks a checkbox, the team in the text area should
be updated accordingly. Provide buttons for the following:

❑ One button, when clicked, displays how many players are
currently on the team.

❑ Another button, when clicked, displays how many players
remain unselected.

Use code for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the initial
state of the Model.

89. Write a GUI-based program that enables the user to choose a file
containing an image. Your application then displays that image in a
label. Your GUI should include a button and a label. When the user
clicks on the button, open a file-choosing dialog box to enable the
user to select a file. (Hint: look up the FileChooser class in the
Java Class Library.) The dialog box should show the files in the
current directory with an extension of either jpg or gif.

Use FXML for the GUI and to set up event handling; include a
Model.

90. Write a GUI-based program that displays a team on a soccer field.
You will retrieve data from a text file containing 11 lines. Each line
will contain the name of a player. Your program should read the file
and display the following window when it starts. (You can assume
that the players in the file are not in any particular order.) Each cell

is a button; when the user clicks on a button, the button replaces
its text with the name of the player.

Left wing
(11)

Striker (9) Right
wing (7)

Left
midfielder
(6)

Midfielder (10) Right
midfielder
(8)

Left
defender
(3)

Stopper
(4)
Sweeper
(5)

Right
defender
(2)

 Goalie (1)

Use FXML for the GUI and to set up event handling; include a
Model.

91. Write a program that displays a color on canvas and allows the
user to change the color by changing its red, green, and blue
components. Provide three sliders, with each slider representing a
coefficient between 0 and 1 for the red, green, and blue amount,
respectively. As the user manipulates each slider, change the color
displayed on the canvas. Hint: use the fillRect method to create a
rectangle the same size as the canvas.

Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the initial
state of the Model.

92. Same as 91, but create the GUI programmatically instead.

93. Write a GUI-based program that includes three sliders and a label.
The sliders are used to define the red, green, and blue
components of a color that you should use for the background
color of the label. Each slider represents a coefficient between 0
and 255 for the red, green, and blue amount, respectively. As the
user moves a slider, the background color of the label changes.

Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the initial

state of the Model.

94. Same as 93, but create the GUI programmatically instead.

95. Write a GUI-based program that generates a UNIX permission
command; the UNIX permission command format is :

chmod xyz filename

where x, y, and z have values between 0 and 7

Provide the following:

❑ Three combo boxes for the permission level for all, the group,
and the owner of a file. In each combo box, the user can
choose the permission level, a number between 0 and 7

❑ One text field, where the user enters the name of a file.

❑ A label that displays the permission command for that file
based on the values of the three combo boxes. Every time the
user interacts with one of the combo boxes, the label should
be updated.

Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the initial
state of the Model.

96. Same as 95, except that you should update the label every time
the user updates the name of the file.

97. Same as 95, but create the GUI programmatically instead of with
FXML.

98. Write a GUI-based program that simulates entering the destination
in a car’s GPS system. The user can enter a destination by typing
it in a text field or by choosing a destination from a drop-down list
of previous destinations. The list of previous destinations is sorted
as follows: the most recent destination is at the top and the least
recent is at the bottom of the list. If the user enters a destination in
a text field, the user needs to click a button to validate it. A label
displays the destination selected. When a destination is either
entered or selected by the user, the list of previous destinations
should be updated; the current destination goes to the top of the
list. There should not be any duplicate destinations in the list. In

this version, the list is empty when we start the program. Data are
not persistent: Every time we start the program, the list of previous
destinations is empty.

Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the initial
state of the Model.

99. Same as 98, but the list of previous destinations should be
persistent. It can be stored in a file and the drop-down list can be
populated by the contents of the file.

100. Write a program that manages and displays a list of your friends’
names and phone numbers. The list of names and phone numbers
is displayed in a ListView component. Your program should allow
the user to add and delete names and phone numbers one at a
time. Furthermore, the data should be persistent and stored in a
file. When the program starts, the contents of the file are displayed
in the ListView. Every time a name and phone number are added
or deleted, the file should be updated.

101. Write a drawing program. A BorderPane divides the screen into
two parts: on the right, the drawing takes place. On the left are four
buttons that enable the user to change the drawing color to any of
three colors and to clear the drawing on the right side of the
screen. The user draws by touching and moving his or her finger
on the screen. The drawing is made with the selected color.

102. Write a program that displays a pie chart on the left and its
equivalent bar chart on the right. Both charts are dynamic and
reflect four values that are input by the user at the bottom of the
screen. You can use default values when the program starts.

12.20.8 Technical Writing
103. You are part of a team writing a complex program that includes a

GUI. Our team is made up of programmers, as well as one artist
and one HTML/XML developer who do not know programming but
could learn some basic things quickly. We know that the GUI uses
many different components and does not lend itself to using simple
data structures like arrays. We know that the GUI is well defined
and that the initial data in all its components are always the same.
Would you define the GUI with FXML or programmatically?
Discuss the pros and cons.

12.20.9 Group Project (for a group
of 1, 2, or 3 students)
104. Design and code a program that simulates an auction. You

should consider the following:

A file contains a list of items to be auctioned. You can decide on
the format of this file and its contents. For example, the file could
look like this:

Oldsmobile,oldsmobile.gif,100
 World Cup soccer ticket,soccerTickets.gif,50
 Trip for 2 to Rome,trip.gif,100

In the preceding file sample, each line represents an item as
follows: The first field is the item’s description, the second field is
the name of a file containing an image of the item, and the third
field is the minimum bid. You can assume that each item’s
description is unique.

Items are offered via an online-like auction. (You do not need to
include any network programming; your program is a single-
computer program.) Users of the program can choose which item
to bid on from a list or combo box. Along with displaying the
description of the item, your program should show a picture of the
item and the current highest bid. (At the beginning, the current
highest bid is the minimum bid.) Users bid on an item by selecting
the item, typing a name (you can assume a different name), and
entering a price for the item. Each time a bid is made, the item’s
highest bid, displayed on the screen, should be updated if
necessary.

Use FXML for the GUI and to set up event handling; include a
Model. Be sure that the initial state of the View matches the initial
state of the Model.

CHAPTER 13
Recursion
CHAPTER CONTENTS
Introduction
13.1 Simple Recursion: Identifying the General and Base
Cases
13.2 Recursion with a Return Value

13.2.1 Computing the Factorial of a Number
13.2.2 Computing the Greatest Common Divisor

13.3 Recursion with Two Base Cases
13.4 Programming Activity 1: Checking for a Palindrome
13.5 Binary Search: A Recursive Solution
13.6 Programming Activity 2: The Towers of Hanoi
13.7 Recursion Versus Iteration
13.8 Chapter Summary
13.9 Exercises, Problems, and Projects

13.9.1 Multiple Choice Exercises
13.9.2 Reading and Understanding Code
13.9.3 Fill In the Code
13.9.4 Identifying Errors in Code
13.9.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM
13.9.6 Write a Short Program
13.9.7 Programming Projects
13.9.8 Technical Writing
13.9.9 Group Projects

Introduction
Small problems are easier to solve than big ones, with or
without the help of a computer. For example, it is easy to see
that 14 is a multiple of 7, but determining if 12,348 is a
multiple of 7 requires some thinking . . . or a well-programmed
computer.

If we knew that 12,341 is a multiple of 7, then it would be easy
to determine that 12,348 is also a multiple of 7, because
12,348 is simply 12,341 + 7. But then, it is not that easy to
determine that 12,341 is a multiple of 7. But again, if we knew
that 12,334 is a multiple of 7, then it would be easy to
determine that 12,341 is also a multiple of 7, because 12,341
is simply 12,334 + 7. Well, if we keep subtracting 7 from the
current number, eventually, either we will arrive at 0, which
means that 12,348 is a multiple of 7, or we will arrive at a
number less than 7 but not 0, which means that 12,348 is not
a multiple of 7. Thus, we have reduced a large problem to a
small problem that is easy to solve.

The idea of recursion is to reduce the size of a problem at
each step so that we eventually arrive at a very small, easy-
to-solve problem. That easy-to-solve problem is called the
base case. The formula that reduces the size of the problem
is called the general case. The general case takes us from
solving a bigger problem to solving a smaller problem.

A method that uses recursion calls itself. In other words, in the
body of a recursive method, there is a call to the method
itself. The arguments passed are smaller in value (that is, they
get us closer to the base case) than the original arguments.
The recursive method will keep calling itself with arguments

that are smaller and smaller in value, until eventually we
reach the base case.

Any problem that can be solved recursively can also be
solved using a loop, or iteration. Often, however, a recursive
solution to a problem provides simpler, more elegant, and
more compact code than its iterative counterpart.

13.1 Simple Recursion: Identifying the
General and Base Cases
When designing a recursive solution for a problem, we need
to do two things:

define the base case

define the rule for the general case

For example, if we want to print “Hello World” 100 times, we
can do the following:

print “Hello World” once

print “Hello World” 99 times

Note that we do two things: First, we print “Hello World” once,
which is easy to do. Then we reduce the size of the remaining
problem to printing “Hello World” 99 times. In order to print
“Hello World” 99 times, we print “Hello World” once, then we
print “Hello World” 98 times. Continuing the same approach,
to print “Hello World” 98 times, we print “Hello World” once,
then we print “Hello World” 97 times, and so on. Eventually,
we will reach a point where we print “Hello World” once, then
print “Hello World” 0 times. Printing “Hello World” 0 times is an
easy-to-solve problem; we simply do nothing. That is our base
case for this problem.

Thus, our general approach to printing “Hello World” n times
(where n is greater than 0) is to print “Hello World” once, and
then print “Hello World” n − 1 times. As we reduce the number

of times we print “Hello World,” we will eventually reach 0, the
base case. This condition is easy to detect. Thus, we can
solve the large problem by reducing the problem to smaller
and smaller problems until we find a problem that we know
how to solve.

The following pseudocode illustrates the approach for our
recursive method.

void printHelloWorldNTimes(int n)

{

 if (n is greater than 0)

 {

 print "Hello World"

 printHelloWorldNTimes(n – 1)

 }

 // else do nothing

}

When n is greater than 0, we will execute the body of the if
statement, printing “Hello World” once, then printing it n − 1
times. This is the general case for this problem. We can see
that we are going from a problem of size n (print “Hello World”
n times) to a problem of size (n − 1) (print “Hello World” n − 1
times).

When n is 0 (or less), we do nothing; that is, the call to
printHelloWorldNTimes with an argument of 0 does not
generate any action. This is the base case, and this is when
the recursive calls will end.

Example 13.1 shows this method.

EXAMPLE 13.1 Recursively Printing
“Hello World” n Times
 1 /* Printing Hello World n times using recursion

 2 Anderson, Franceschi

 3 */

 4

 5 public class RecursiveHelloWorld

 6 {

 7 public static void main(String [] args)

 8 {

 9 // print "Hello World" 5 times using our recursive

method

10 printHelloWorldNTimes(5);

11 }

12

13 // the recursive method

14 public static void printHelloWorldNTimes(int n)

15 {

16 if (n > 0)

17 {

18 // print "Hello World" once

19 System.out.println("Hello World");

20

21 // now print "Hello World" (n - 1) times

22 printHelloWorldNTimes(n - 1);

23 }

24 // if n is 0 or less, do nothing

25 }

26 }

We coded the printHelloWorldNTimes method from line 13 to
line 25. That method prints “Hello World” n times, where n is
an int, the only parameter of the method. We test at line 16 for
the general case: n is greater than 0. There is no else clause:
if n is 0 or less, we have reached the base case and the
method does nothing.

The code for the general case is executed at lines 18–22. At
line 19, we print “Hello World” once. At line 22, we make a
recursive call to the printHelloWorldNTimes method in order
to print “Hello World” (n − 1) times. The method calls itself, but
with an argument that is 1 less than its argument n.

On line 10, we call the printHelloWorldNTimes method,
passing the argument 5. Because main is static, it can call
only static methods; therefore, we need to define our
printHelloWorldNTimes method as static. In general, recursive
methods can be defined as static or nonstatic.

SOFTWARE ENGINEERING TIP
If the method does nothing in the base case, it is important to
document that fact to show when the recursive calls will end.

Figure 13.1 shows the output of Example 13.1. As we can
see, “Hello World” is indeed printed five times. Figure 13.2
illustrates how the recursive calls are executed and the output
resulting from the calls.

Figure 13.1
Output of Example 13.1

Hello World

Hello World

Hello World

Hello World

Hello World

Figure 13.2
Recursive Method Calls

Skill Practice
with these end-of-chapter questions

13.9.1 Multiple Choice Exercises

Questions 1, 3, 4, 5

13.9.2 Reading and Understanding Code

Questions 16, 17, 18, 19

13.9.6 Write a Short Program

Questions 39, 40, 41, 44

13.2 Recursion with a Return Value
In the preceding example, we coded a very simple
method. Now let’s look at some examples that are a
little more complex, with recursive methods that
return a value.

In a value-returning method, the return statement
can include a call to another value-returning method,
as in:

public static int multiplyAbsoluteValueBy3(int n)

{

 return (3 * Math.abs(n));

}

In this case, the multiplyAbsoluteValueBy3 method
cannot return its value until the abs method returns a
value, allowing the expression in the return
statement to be fully evaluated.

The same principle applies to a value-returning
method that is recursive. The return value of the
recursive method often consists of an expression
that includes a call to the method itself.

Thus, in the general case of the method, we could
see code like:

return (expression including a recursive call to

the method);

Each execution of the recursive method must wait to
return its value until its recursive call to the method
returns a value. When the base case is reached, the
method simply returns a value without making
another recursive call. At that point, the method that
invoked the method with the base case argument
receives its return value, which allows that method to
return a value to its caller, and so on, until the
method is able to return a value to the initial caller. In
this way, the return values unravel up to the initial
caller.

To see how this works, let’s look at an example of a
recursive method that returns a value.

13.2.1 Computing the Factorial of a
Number
We will define a recursive method to compute and
return the factorial of a positive integer.

The factorial of a positive number is defined as
follows:

factorial(n) = n ! = n * (n − 1) * (n − 2) * (n − 3)
* . . . * 2 * 1

The factorial of a negative number is not defined.
The factorial of 0, by convention is 1.

factorial(0) = 0 ! = 1

Let’s define the base case and the general case for
computing the factorial of a number.

In order to define the rule for the general case, we
need to find a relationship between the problem at
hand (computing the factorial of a number n), and a
smaller, similar problem, involving, for example, (n −
1), (n − 2), or other smaller values of n. So, here we
will try to establish a relationship between factorial(n)
and factorial(n − 1), factorial(n − 2), and so on.

Let’s first examine what the value of factorial(n − 1)
is. Applying the preceding formula, we get:

factorial(n − 1) = (n − 1) ! = (n − 1) * (n − 2) * (n
− 3) * . . . * 2 * 1

As we can see from the preceding formulas, there is
a very simple relationship between factorial(n) and
factorial(n − 1):

factorial(n) = n * factorial(n − 1)

This is the relationship we will use for the formulation
of the general case.

Using this formula, at each step we reduce the size
of the problem (measured by the value of the input n)
from n to (n − 1). In order to compute factorial(n), we
will call the factorial method with the argument (n −
1) and multiply the returned value by n. The call to
the factorial method with the argument (n − 1) will
generate a recursive call to the factorial method with
argument (n − 2), until eventually we generate a
recursive call to the factorial method with the
argument 0. We know how to compute factorial (0):
by convention, it is 1. That is our base case and we
have reached it. We will return 1, which will allow the
unraveling of the recursive method calls until we
solve the original problem, factorial(n).

Example 13.2 shows the code for calculating a
factorial recursively. In order to keep things simple,
we will also return 1 if the argument sent to the
method is negative. However, we are careful in

documenting our method to emphasize that the
argument should be greater than or equal to 0. If we
do not want to return anything when a negative
argument is passed to the method, we would need to
throw an exception, because the method is a value-
returning method.

Here is how our factorial(int n) method will work:

Base case: if n is negative or 0, the method
returns 1

General case: if n is greater than 0, the
method returns n * factorial(n – 1)

EXAMPLE 13.2 Computing a
Factorial Using Recursion
 1 /* Computing the factorial of a number using

recursion

 2 Anderson, Franceschi

 3 */

 4

 5 public class RecursiveFactorial

 6 {

 7 public static void main(String [] args)

 8 {

 9 // compute factorial of 5 and output it

10 System.out.println("Factorial(5) is "

11 + factorial(5));

12 }

13

14 /** recursive factorial method

15 * @param n a positive integer

16 * @return the factorial of n

17 */

18 public static int factorial(int n)

19 {

20 if (n <= 0) // base case

21 return 1;

22 else // general case

23 return (n * factorial(n - 1));

24 }

25 }

At lines 10–11, we make the initial call to the factorial
method and print the result. We simply compute the
factorial of 5. We can modify the example to prompt
the user for another value.

We coded the factorial method at lines 14–24. The
factorial method takes an int parameter named n,
and returns the factorial of n as an int. At line 20, we
test if n is less than or equal to 0. If that is true, we
have reached the base case, and the factorial
method returns 1. If n is greater than 0, the code
skips to line 23, where we have coded the general
case. We make a recursive call to the factorial
method with an argument of (n − 1). The value
returned by that recursive call is then multiplied by n
and the result is returned.

Figure 13.3 shows the output of Example 13.2.

Figure 13.3
Output of Example 13.2

Factorial(5) is 120

We can verify that factorial(5) is 120. Indeed,

5 ! = 5 * 4 * 3 * 2 * 1 = 120

To illustrate how recursive method calls are
processed and their values are returned, let’s modify
Example 13.2 to include some output statements
inside the factorial method. In this way, we can trace
the recursive calls.

The JVM manages method calls using a stack.
When a method is called, the JVM places the
method’s arguments and the caller’s return address
in a frame on the stack in a last-in, first-out order.
Each method invocation adds another frame to the
top of the stack. When a method completes and
returns to the caller, its frame is removed from the
top of the stack and is discarded. To help us trace
the processing of recursive calls, we will use the
StackWalker class, introduced in Java 9, which
allows us to display the current contents of the stack
at each invocation of the recursive method.

Example 13.3 is similar to Example 13.2 except that
we have added statements to trace these features.

each call to the factorial method and its
argument

the detection of the base case and the value
returned at that point

the expression that evaluates to the return
value

the current stack at each method invocation

The factorial method is coded at lines 17–57.

When the method begins executing, we capture the
current state of the stack into a List of
StackWalker.StackFrame elements at lines 23–24.
We get the current stack by calling the getInstance
method of the StackWalker class. We then call the
walk method, also in the StackWalker class, which
creates a stream of stack frames. Streams,
introduced in Java 8, are sequences of elements to
which aggregate functions can be applied. The walk
method, using a lambda expression, then traverses
the stream, calling the Stream collect method, which
calls on the Collectors’ static toList method to
accumulate the stack frames into a list. We skip the
first frame, (skip(1)), because the first frame
represents the method call to create the list.

The StackWalker class is in java.lang, so we do not
need an import statement. On lines 5–6, we import
the List interface and the Collectors class from
java.util and java.util.stream, respectively.

At line 26, we output a message indicating that the
factorial method has been called, along with the
parameter value. When the base case is detected,

we output a message indicating that the method has
reached the base case and report its return value
(lines 34–36). For the general case, we output the
expression that will be returned by the method (lines
48–49). At each of these places, we also output the
current state of the stack, displaying for each stack
frame the line number from which the method was
called and the name of the method. On lines 27–30
we output the stack when the factorial method starts
executing. On lines 37–40 we output the stack when
the method has detected the base case and is
returning a known value (1), and on lines 50–53 we
output the stack after the method makes a recursive
call in the general case.

Figure 13.4 shows the output of Example 13.3. We
can see the recursive calls to the factorial method
with the value of the argument being reduced by 1
until the base case, 0, is reached. At that point, each
recursively called method, in turn, returns a value to
its caller until the initial invocation of the method
returns the value 120. We also see that each time we
detect the general case, another invocation of the
factorial method is added to the stack. Once the
base case is reached, the factorial methods on the
stack start returning their value, and as they
complete, the frame for their method invocation is
removed from the stack.

Figure 13.4
The Trace of the factorial Method

factorial(5) called

 Current Stack

 14 main

factorial(4) called

 Current Stack

 52 factorial

 14 main

factorial(3) called

 Current Stack

 52 factorial

 52 factorial

 14 main

factorial(2) called

 Current Stack

 52 factorial

 52 factorial

 52 factorial

 14 main

factorial(1) called

 Current Stack

 52 factorial

 52 factorial

 52 factorial

 52 factorial

 14 main

factorial(0) called

 Current Stack

 52 factorial

 52 factorial

 52 factorial

 52 factorial

 52 factorial

 14 main

Base case detected

factorial(0) returning 1

 Current Stack

 52 factorial

 52 factorial

 52 factorial

 52 factorial

 52 factorial

 14 main

factorial(1) returning 1 * 1

 Current Stack

 52 factorial

 52 factorial

 52 factorial

 52 factorial

 14 main

factorial(2) returning 2 * 1

 Current Stack

 52 factorial

 52 factorial

 52 factorial

 14 main

factorial(3) returning 3 * 2

 Current Stack

 52 factorial

 52 factorial

 14 main

factorial(4) returning 4 * 6

 Current Stack

 52 factorial

 14 main

factorial(5) returning 5 * 24

 Current Stack

 14 main

Factorial(5) is 120

EXAMPLE 13.3 Tracing Recursive
Calls of the factorial Method

 1 /* Tracing the calculation of the factorial

 2 of a number using recursion

 3 Anderson, Franceschi

 4 */

 5 import java.util.List;

 6 import java.util.stream.Collectors;

 7

 8 public class RecursiveFactorialWithStackTrace

 9 {

 10 public static void main(String [] args)

 11 {

 12 // compute factorial of 5 and output it

 13 System.out.println("\nFactorial(5) is "

 14 + factorial(5));

 15 }

 16

 17 /** recursive factorial method

 18 * @param n a positive integer

 19 * @return the factorial of n

 20 */

 21 public static int factorial(int n)

 22 {

 23 List<StackWalker.StackFrame> stack =

StackWalker.getInstance()

 24 .walk(s -> s.skip(1).collect(

Collectors.toList()));

 25

 26 System.out.println("factorial(" + n + ")

called");

 27 System.out.println("\tCurrent Stack");

 28 for (StackWalker.StackFrame f : stack)

 29 System.out.println("\t\t" +

f.getLineNumber() + " "

 30 +

f.getMethodName());

 31

 32 if (n == 0) // base case

 33 {

 34 System.out.println("\nBase case

detected\n");

 35

 36 System.out.println("factorial(" + n + "

) returning 1");

 37 System.out.println("\tCurrent Stack");

 38 for (StackWalker.StackFrame f : stack)

 39 System.out.println("\t\t" +

f.getLineNumber() + " "

 40 +

f.getMethodName());

 41

 42 return 1;

 43 }

 44 else // general case

 45 {

 46 int factorialNMinus1 = factorial(n - 1);

 47

 48 System.out.println("factorial(" + n + "

) returning "

 49 + n + " * " +

factorialNMinus1);

 50 System.out.println("\tCurrent Stack");

 51 for (StackWalker.StackFrame f : stack)

 52 System.out.println("\t\t" +

f.getLineNumber() + " "

 53 +

f.getMethodName());

 54

 55 return (n * factorialNMinus1);

 56 }

 57 }

 58 }

COMMON ERROR TRAP
Failure to code the base case will result in a run-time
error.

Identifying the base case is critical. If a recursive
method never reaches a base case, the method
continues calling itself indefinitely, causing the JVM
to continue placing frames on the stack until memory
for the stack is full. At this time, the JVM generates a
StackOverflowError, which terminates the program.

For example, if we did not code the base case in our
factorial method, the method would look like the
following:

public static int factorial(int n)

{

 // n must be a positive integer

 return (n * factorial (n - 1));

}

When the method is called, the recursive calls keep
being made because the base case is never
reached. This eventually generates a
StackOverflowError. Figure 13.5 shows the first few
lines of output from a run of Example 13.2 (the
RecursiveFactorial class) with lines 20 to 22
commented out.

Figure 13.5
The First Few Lines of a Run of Example 13.2 if the
Base Case Is Not Coded

Exception in thread "main"

java.lang.StackOverflowError

 at

RecursiveFactorial.factorial(RecursiveFactorial

.java:23)

 at

RecursiveFactorial.factorial(RecursiveFactorial

.java:23)

 at

RecursiveFactorial.factorial(RecursiveFactorial

.java:23)

 at

RecursiveFactorial.factorial(RecursiveFactorial

.java:23)

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie with a step-by-step illustration of
computing a factorial using recursion. Click on
the link to start the movie.

13.2.2 Computing the Greatest
Common Divisor
A common algebra problem is to calculate the
greatest common divisor, or gcd, of two positive
integers. The gcd is the greatest positive integer that
divides evenly into both numbers.

For example, consider 50 and 20. We can figure in
our head that 5 divides evenly into both numbers, but
so does 10. Since we can’t find a number greater
than 10 that divides evenly into both numbers, 10 is
the gcd of 50 and 20.

It is easy to guess the gcd of two small numbers, but
it is more difficult to guess the gcd of two large
numbers, such as 474 and 162. The following
Euclidian algorithm finds the gcd of two positive
integers a and b. This algorithm derives from the fact
that the gcd of two integers a and b (with a > b) is the
same as the gcd of b and the remainder of a / b.

Step 1:

 r0 = a % b

 if (r0 is equal to 0)

 gcd (a, b) = b

 stop

 else

 go to step 2

Step 2:

 repeat step 1 with b and r0, instead of a and b.

Let’s run the algorithm on our first example, 50 and
20. We substitute 50 for a and 20 for b.

Step 1:

 r0 = 50 % 20 = 10

 is 10 equal to 0 ? no, go to Step 2.

Step 2:

 r0 = 20 / 10 = 0

 is 0 equal to 0 ?

 yes. gcd(50, 20) = 10

 stop

Therefore, the gcd of 50 and 20 is 10.

Let’s now run the algorithm on our second example,
474 and 162.

The remainder of 474 divided by 162 is 150

150 is not equal to 0
so we take the remainder of 162 divided
by 150, which is 12

12 is not equal to 0
so we take the remainder of
150 divided by 12, which is
6

6 is not equal to 0
so we take the
remainder of 12
divided by 6,
which is 0

0 is equal
to 0

so
the
gcd
of
474
and
162
is 6

Let’s go back to our algorithm and look at Step 1 as
a method taking two parameters, a and b. Step 2 is a
method call to Step 1 with two different parameters,
b and r 0. It is very simple to calculate r 0, since r 0 is
the remainder of the division of a by b. Using the
modulus operator, r 0 is a % b. Therefore, this

algorithm can easily be coded as a recursive
method.

Let’s call the two parameters of the method, dividend
and divisor, in that order.

When the remainder of the division of dividend by
divisor is 0, we have reached the base case and the
method returns divisor. The general case is when the
remainder of the division of dividend by divisor is not
0. The method then calls itself with divisor and the
remainder of the division of dividend by divisor.

Example 13.4 shows the code for the recursive
implementation of the greatest common divisor
solution.

EXAMPLE 13.4 Computing the
GCD of Two Integers Using
Recursion

 1 /* Computing the greatest common divisor using

recursion

 2 Anderson, Franceschi

 3 */

 4

 5 public class RecursiveGCD

 6 {

 7 public static void main(String [] args)

 8 {

 9 // compute and output gcd of 474 and 162

10 System.out.println("The GCD of " + 474 + "

and "

11 + 162 + " is " + gcd(

474, 162));

12 }

13

14 /** recursive gcd method

15 * @param dividend the first strictly

positive integer

16 * @param divisor the second strictly

positive integer

17 * @return the gcd of dividend and

divisor

18 */

19 public static int gcd(int dividend, int

divisor)

20 {

21 if (dividend % divisor == 0) // base

case

22 return divisor;

23 else // general

case

24 return (gcd (divisor, dividend % divisor

));

25 }

26 }

We make the call to the gcd method at lines 10–11
with arguments 474 and 162 and output the result.

The gcd method is coded from lines 14–25. The
method header shows that the gcd method takes two
int parameters named dividend and divisor, and
returns an int, the greatest common divisor of
dividend and divisor. At line 21, we check for the
base case by testing if the remainder of the integer
division of dividend by divisor is 0. If so, the gcd
method returns divisor without making another
recursive call.

If the remainder is not 0, we are in the general case,
so we make a recursive call at line 24 with the
arguments divisor and the remainder of the division
(dividend % divisor). We return the value returned by
that call.

Figure 13.6 shows the output of Example 13.4.

Figure 13.6
Output of Example 13.4

The GCD of 474 and 162 is 6

As we did with the recursive factorial method, let’s
modify Example 13.4 to include some output
statements inside the gcd method in order to trace
the recursive calls.

The gcd method in Example 13.5 (lines 16–60) is the
same as the gcd method in Example 13.4, except
that each time the method is called, we print the
parameter values and result of the modulus
operation (lines 27–29) to verify that the method is
correctly detecting the general and base cases. We
also print a message when the base case is reached
(lines 37–38). At lines 49–51, we output the value
returned by the method in the general case. As in
Example 13.3, at each of these places, we also
output the current state of the stack (lines 30–33,
39–42, and 53–56), displaying for each stack frame
the line number from which the method was called
and the name of the method.

Figure 13.7 shows the output of Example 13.5. We
can see the recursive calls all the way to the base

case, and the return value from each recursive call.
We also see that each time we detect the general
case, we call the gcd method recursively, and the
current method is added to the stack because the
current method cannot complete until the invoked
method returns. Once the base case is reached, the
gcd methods on the stack start returning their value.
One by one each method completes and its stack
frame is removed from the stack. Note that the return
value stays the same throughout the process. Such
a recursive method is called tail recursive because
the method does no further processing when the
recursive call returns.

Figure 13.7
The Trace of the gcd Method

gcd(474, 162) 474 % 162 = 150

 Current stack

 13 main

gcd(162, 150) 162 % 150 = 12

 Current stack

 48 gcd

 13 main

gcd(150, 12) 150 % 12 = 6

 Current stack

 48 gcd

 48 gcd

 13 main

gcd(12, 6) 12 % 6 = 0

 Current stack

 48 gcd

 48 gcd

 48 gcd

 13 main

base case reached, returning 6

 Current stack

 48 gcd

 48 gcd

 48 gcd

 13 main

gcd(12,6 } returning 6

 Current stack

 48 gcd

 48 gcd

 13 main

gcd(150,12 } returning 6

 Current stack

 48 gcd

 13 main

gcd(162,150 } returning 6

 Current stack

 13 main

The GCD of 474 and 162 is 6

EXAMPLE 13.5 Tracing the
Recursive Calls of the gcd Method

 1 /* Computing the greatest common divisor using

recursion

 2 Anderson, Franceschi

 3 */

 4 import java.util.List;

 5 import java.util.stream.Collectors;

 6

 7 public class RecursiveGCDWithStackTrace

 8 {

 9 public static void main(String [] args)

 10 {

 11 // compute gcd of 123450 and 60378 and

output it

 12 System.out.println("\nThe GCD of " + 474 +

" and "

 13 + 162 + " is " + gcd(

474, 162));

 14 }

 15

 16 /** recursive gcd method with trace

 17 * @param dividend the first strictly

positive integer

 18 * @param divisor the second strictly

positive integer

 19 * @return the gcd of dividend

and divisor

 20 */

 21 public static int gcd(int dividend, int

divisor)

 22 {

 23 List<StackWalker.StackFrame> stack =

StackWalker.getInstance()

 24 .walk(s -> s.skip(1).collect(

Collectors.toList()));

 25

 26

 27 System.out.print("gcd(" + dividend + ", "

+ divisor + ")");

 28 System.out.println(" " + dividend + " % "

+ divisor + " = "

 29 + (dividend % divisor

));

 30 System.out.println("\tCurrent stack");

 31 for (StackWalker.StackFrame f : stack)

 32 System.out.println("\t\t" +

f.getLineNumber()

 33 + " " +

f.getMethodName());

 34

 35 if (dividend % divisor == 0) // base case

 36 {

 37 System.out.println("\nbase case reached,

returning "

 38 + divisor);

 39 System.out.println("\tCurrent stack");

 40 for (StackWalker.StackFrame f : stack)

 41 System.out.println("\t\t" +

f.getLineNumber()

 42 + " " +

f.getMethodName());

 43

 44 return divisor;

 45 }

 46 else // general

case

 47 {

 48 int temp = gcd(divisor, dividend %

divisor);

 49 System.out.println("gcd(" + divisor + ",

"

 50 + (dividend % divisor

)

 51 + ") returning " +

temp);

 52

 53 System.out.println("\tCurrent stack");

 54 for (StackWalker.StackFrame f : stack)

 55 System.out.println("\t\t" +

f.getLineNumber()

 56 + " " +

f.getMethodName());

 57

 58 return temp;

 59 }

 60 }

 61 }

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie with a step-by-step illustration of
computing a GCD and various other recursive
methods. Click on the link to start the movie.

13.3 Recursion with Two Base
Cases
Recursive formulations can be more complex than
the examples we have discussed. The general case
can involve more than one recursive call, with
different arguments. This, in turn, means that we can
have more than one base case.

Suppose we are playing a networked video game
online. There are n players who would like to play.
Unfortunately, that game can be played with only p
players. We will make the assumption that p is an
integer between 0 and n (for instance, n could be
100 and p could be 8). Otherwise, we simply cannot
play the game.

Our problem is to determine how many different
ways we can choose p players from among n
players. We will call that number Combinations(n, p).

The math formula for Combinations(n, p) is:

Combinations(n, p) = n! / ((n – p)! * p!)

Our goal here is to come up with a recursive solution
to the problem and thus to code Combinations(n, p)
recursively.

There are some obvious cases to consider. If we
have the same number of players as the number
who can play the game, then p equals n, and we pick
all the players. There is only one way to do that, so
Combinations(n, n) = 1.

If the game requires no players, then p equals 0, and
we do not pick any players. Again, there is only one
way to do that, so Combinations(n, 0) = 1.

But what is the answer in the general case where the
value of Combinations(n, p) may not be so obvious?

One way to look at that problem is as follows:

Among these n potential players, let’s focus on one
player in particular. We will call that player Louis. We
can either pick Louis or not pick Louis. Therefore, the
total number of possibilities of picking p players
among n potential players is equal to the sum of the
following two numbers:

the number of possibilites of picking p
players, including picking Louis, among n

the number of possibilities of picking p
players, without picking Louis, among n

If we pick Louis, then we will have to choose (p − 1)
more players. But we cannot pick Louis again, so
there are only (n − 1) potential players left. The
number of such possibilities is Combinations(n – 1, p
– 1).

If we do not pick Louis, then we still have to choose
p players. But since we are not picking Louis, there
are only (n − 1) potential players left. The number of
such possibilities is Combinations(n – 1, p).

Therefore, we can write the following recursive
formula:

Combinations(n, p) = Combinations(n – 1, p – 1)

 + Combinations(n – 1, p)

If we look at the two terms on the right side of the
preceding formula, we can see that:

In the first term, both parameters, n and p,
have been decreased by 1.

In the second term, one parameter, n, has
been decreased by 1, while p is unchanged.

Therefore, solving the problem of computing
Combinations(n, p) using this formula translates into

solving two similar, but smaller, problems. That is our
general case.

Our next concern is to decide what the base case or
cases are. In other words, as we apply the preceding
formula repeatedly, when will we reach an easy-to-
solve problem? Since we have two recursive terms
on the right side of the formula, we will have two
base cases.

Let’s look at the first term, Combinations(n – 1, p –
1). We can see that both n and p decrease by 1 at
the same time. When we start, p is greater than or
equal to 0 and less than or equal to n. Therefore, as
we keep applying the formula and concentrate on the
first term, we can see that p will eventually reach 0,
and that p will reach 0 before n does. As discussed
earlier, Combinations(n, 0) = 1, because there is only
one way to pick 0 players from a set of n players—do
not pick any. This is one base case.

Let’s now look at the second term, Combinations(n −
1, p). We can see that n decreases by 1 while p is
unchanged. We know that p must be less than or
equal to n (we cannot pick more than n players
among n players). As n decreases and p does not, n
will eventually reach p. As discussed earlier,
Combinations(n, n) = 1, because there is only one

way to pick n players among n players—pick them
all. This is our other base case.

Example 13.6 shows the code for this example.

EXAMPLE 13.6 Computing
Combinations Recursively

 1 /* Computing the number of combinations

 2 of picking p objects among n, using recursion

 3 Anderson, Franceschi

 4 */

 5

 6 public class RecursiveCombinations

 7 {

 8 public static void main(String [] args)

 9 {

10 // compute and output number of combinations

11 System.out.println("C(5, 2) = "

12 + combinations(5, 2)

);

13 }

14

15 /** recursive combinations method

16 * @param n a positive number

17 * @param p a positive number, less than or

equal to n

18 * @return the number of combinations of

choosing p among n

19 */

20 public static int combinations(int n, int p)

21 {

22 if (p == 0) // base case # 1

23 return 1;

24 else if (n == p) // base case # 2

25 return 1;

26 else // general case

27 return (combinations(n - 1, p - 1)

28 + combinations(n - 1, p));

29 }

30 }

In this example, we use the combinations method to
compute the number of ways of picking 2 players
from among 5.

We call the combinations method with arguments, 5
and 2, and output the returned value at lines 11–12.

The combinations method is coded at lines 15–29.
The method header, at line 20, shows that the
combinations method takes two int parameters, the
number of players (n) and the number of players to
select (p). The return value, an int, is the number of
combinations of picking p players among n.

At line 22, we test for the first base case (p == 0). If
true, we return 1. If p is not equal to 0, we test for the
second base case (n is equal to p). If that is true, we
return 1. If p is not equal to 0 and n is not equal to p,
then we are in the general case and the code skips
to lines 27–28. We make two recursive calls to the
combinations method. The first recursive call is with
arguments n − 1 and p − 1. The second recursive
call is with arguments n − 1 and p. We add the

values returned by these two recursive calls and
return the result.

The output of Example 13.6 is shown in Figure 13.8.

Figure 13.8
Output of Example 13.6

C(5, 2) = 10

We can verify that our algorithm is correct. As
discussed earlier,

Combinations(n, p) = n! / ((n – p)! * p!)

Thus,

Combinations(5, 2) = 5! / (3! * 2!) = 10

Those of us with a mathematics background can
verify that

Combinations(n, p) = Combinations(n – 1, p – 1)

+

 Combinations(n – 1, p)

that is,

n! / ((n – p)! * p!) = (n – 1)! / ((n – p)!

* (p – 1)!)

 + (n – 1)! / ((n – 1

– p)! * p!)

What happens if we code for only one base case
when there are two or more base cases?

When the method is called, the recursive calls will
continue to be made, because the missing base
cases will never be detected. This will eventually
generate a StackOverflowError.

COMMON ERROR TRAP
There can be more than one base case. Failing to
take into account all base cases can result in a
StackOverflow-Error at run time.

13.4 Programming Activity 1:
Checking for a Palindrome
In this activity, you will work with recursion to perform
this function:

Code a recursive method to determine if a
String is a palindrome.

A palindrome is a word, phrase, or sentence that is
symmetrical; that is, it is spelled the same forward
and backward. Examples are “otto,” “mom,”
“madam,” and “able was I ere I saw elba.”

How can we determine, using recursion, whether a
String is a palindrome?

If the String has two or more characters, we can
check if the first and last characters are identical. If
they are not identical, then the String is not a
palindrome. That is a base case.

If the first and last characters are identical, then we
need to check if the substring comprised of all the
characters between the first and last characters is a
palindrome. That is the general case.

If the String is a palindrome, each recursive call will
reduce the size of the argument—that is, the number
of characters in the argument String—by 2.
Eventually, the recursive calls will result in a String
argument consisting of 0 or 1 character. Both are
trivial palindromes. That is our second base case.
Note that we will reach this base case only if the
String is a palindrome. Indeed, if the String is not a
palindrome, the recursive calls will detect the first
base case as soon as the first and last characters of
the String argument are different, and the recursive
method will return false.

For example, to check if “madam” is a palindrome,
we take the following steps.

Here is the original String :

We compare the first and last characters.

They are equal, so we now check the substring
comprised of the characters between the first and
last characters. Again, we compare the first and last
characters of this substring.

They are equal, so we now check the substring
comprised of the characters between the first and
last characters.

There is only one character in this substring, so we
have reached our second base case. The String
“madam” is a palindrome.

Let’s now check if “modem” is a palindrome.

Here is the original String:

We compare the first and last characters.

They are equal, so we now check the substring
comprised of the characters between the first and
last characters. Again, we check the first and last
characters.

They are not equal, so we have reached the first
base case. The String “modem” is not a palindrome.

Instructions
In this chapter’s Programming Activity 1 folder, you
will find the source files needed to complete this
activity. Copy all of the files to a folder on your
computer. Note that all files should be in the same
folder.

Open the PalindromeDrawing.java source file.
Searching for five asterisks (*****) in the source code
will position you to the location where you will add
your code. In this task, you will fill in the code inside
the recursivePalindrome method to determine if a
String representing a word or a sentence is a
palindrome. The method returns true if the String is a
palindrome, false if the String is not a palindrome.
Example 13.7 shows the section of the
PalindromeDrawing source code where you will add
your code.

EXAMPLE 13.7 Location of
Student Code in
PalindromeDrawing

public boolean recursivePalindrome(String pal)

{

 // ***** Student writes the body of this method

 // Using recursion, determine if a String

representing

 // a word or a sentence is a palindrome

 // If it is, return true, otherwise return false

 // We call the animate method inside the body of

this method

 // The call to animate is already coded below

 animate(pal);

 //

 // Student code starts here

 //

 return true; // replace this dummy return

statement

 //

 // End of student code - PA 1

 //

}

The framework will animate your code so that you
get some feedback on the correctness of your code.
It will display the argument String passed to the
recursive method at each recursive call of that
method. Your result will be displayed in red and the
correct result will be displayed in green.

To test your code, compile PalindromeDrawing.java
and run PalindromeApplication. When the program
begins, you will see a text box in which to enter a
word or a sentence, as shown in Figure 13.9.

Figure 13.9
Opening Window

Click “check” to animate your code.

If you enter an empty String or a String with more
than 26 characters, the text box will display “enter 1–
26 characters”. This part is already coded for you.

Figure 13.10 shows the output if you enter “able was
I ere I saw elba.” We can see the argument String of
our recursive method shrinking by two characters at
each recursive call until we reach a base case.

Figure 13.10
Sample Final Screen for Programming Activity 1
When a Palindrome Is Found

If you insert an extra “h” into the preceding phrase,
and enter “able was I here I saw elba,” which is not a
palindrome, the final result of your animation is
shown in Figure 13.11. When the argument String of
our recursive method becomes “here,” the recursive
calls stop and the method returns false.

Figure 13.11
Sample Final Screen for Programming Activity 1
When a Palindrome Is Not Found

Task Instructions
Inside the method recursivePalindrome of class
PalindromeDrawing write the code to solve the
palindrome problem:

The recursivePalindrome method header has
already been coded for you. Write the code
to check if the parameter of the method, pal,
is a palindrome. Return true if it is, false if it
is not. Your method should be recursive; that
is, it should call itself. We have provided a
dummy return statement so that the code will
compile. You should replace the dummy
statement with your appropriate return
statement.

Be sure your code ignores case differences;
that is, Otto and Racecar are indeed
palindromes.

The call to the animate method has already
been written for you. It should be the first
statement in the body of the method and is
simply:

animate(pal);

Troubleshooting
If your method implementation does not animate or
animates incorrectly, check these items:

Check the feedback on the output to see if
your code gives the correct result.

Verify that you coded the base cases
correctly.

Verify that you coded the general case and
its corresponding recursive call correctly.

DISCUSSION QUESTIONS
1. What are the base cases for this method?

2. Is this method tail recursive?

3. What happens if you do not code one of the base
cases?

13.5 Binary Search: A Recursive
Solution
We can use a binary search algorithm to search a
sorted array for a given value.

Let’s look at how we can define a recursive solution
to this problem. We will assume that the array is
sorted in ascending order.

Again, we need to define the base cases and the
general case, and the general case must reduce the
size of the problem.

When searching for a value in an array, we have two
possible outcomes:

We find the value and return its array index.

We do not find the value and return −1.

Overall, our strategy is this. First, we will look at the
middle element of the array. If the value of the middle
element is the value we are looking for, we will return
its index. That is our first base case.

If the value of the middle element is greater than the
value we are looking for, then the value we are

looking for cannot be found in elements with array
indexes higher than the index of the middle element.
Therefore, we will continue our search in the lower
half of the array only. We will do that by making a
recursive call to our search method, specifying the
lower half of the original array as the subarray to
search.

Similarly, if the value of the middle element is lower
than the value we are looking for, then the value we
are looking for cannot be found in elements with array
indexes lower than the index of the middle element.
Therefore, we will continue our search in the upper
half of the array only. We will do that by making a
recursive call to our search method, specifying the
upper half of the original array as the subarray to
search. That is our formulation for the general case.

As we continue searching, the size of the subarray
that we search will shrink with every recursive call.
Indeed, every recursive call cuts the size of the
subarray we search in half. In this recursive
algorithm, not only does the size of the problem
decrease with each recursive call, but it also
decreases by a large amount.

If the value we are looking for is not in the array, the
part of the array that we are searching will continue
shrinking until it is empty. At that point, we know that

we will not find our value in the array. We have
reached our other base case, and we return –1.

Example 13.8 shows the code for a recursive binary
search.

EXAMPLE 13.8 Searching an Array
Sorted in Ascending Order

 1 /* Searching a sorted array using recursion

 2 Anderson, Franceschi

 3 */

 4

 5 import java.util.Scanner;

 6

 7 public class RecursiveBinarySearch

 8 {

 9 public static void main(String [] args)

10 {

11 // define an array sorted in ascending order

12 int [] numbers = { 3, 6, 7, 8, 12, 15, 22,

36, 45,

13 48, 51, 53, 64, 69, 72,

89, 95 };

14

15 Scanner scan = new Scanner(System.in);

16 System.out.print("Enter a value to search

for > ");

17 int value = scan.nextInt();

18

19 int index = recursiveBinarySearch

20 (numbers, value, 0,

numbers.length - 1);

21 if (index != -1)

22 System.out.println(value + " found at

index " + index);

23 else

24 System.out.println(value + " not found");

25 }

26

27 /** recursiveBinarySearch method

28 * @param arr the array sorted in

ascending order

29 * @param key the value to search for in

the subarray

30 * @param start the subarray's first index

31 * @param end the subarray's last index

32 * @return the array index at which key was

found,

33 * or -1 if key was not found

34 */

35 public static int recursiveBinarySearch

36 (int [] arr, int key, int start,

int end)

37 {

38 if (start <= end)

39 {

40 // look at the middle element of the

subarray

41 int middle = (start + end) / 2;

42

43 if (arr[middle] == key) // found

key, base case

44 return middle;

45 else if (arr[middle] > key) // look

lower

46 return recursiveBinarySearch(arr, key,

start, middle - 1);

47 else // look

higher

48 return recursiveBinarySearch(arr, key,

middle + 1, end);

49 }

50 else // key not

found, base case

51 return -1;

52 }

53 }

We coded the recursiveBinarySearch method at lines
27–52. That method takes four parameters: arr, the
array we are searching; key, the value we are
searching for; and start and end, which represent,
respectively, the first and last index of the subarray of
arr that we should search.

At line 38, we test if the subarray we are searching
contains at least one element. If it does not, we have
reached a base case and we know that we will not
find key. Thus, we return −1 in the else clause at line
51. If the subarray has at least one element, we
assign the index of the middle element of the
subarray to middle at line 41. We then compare the
array element at index middle to key at line 43. If they

are equal, we have reached the other base case (we
have found key) so we return middle at line 44.

If the array element at index middle is greater than
key, we call the recursiveBinarySearch method with
the subarray consisting of all elements with values
lower than middle (from start to middle − 1) at line 46.
If the array element at index middle is smaller than
key, then we call the recursiveBinarySearch method
with the subarray consisting of all elements with
values higher than middle (from middle + 1 to end) at
line 48. In both cases, whatever is returned by the
recursive call is returned by the method.

In main, we begin by instantiating our array to search.
Note that the values are in ascending order (lines 12–
13). We then prompt the user for the search key and
make the call to the recursive binary search method,
passing the entire array as the subarray to search
(lines 19–20). We output the result of our search at
lines 21–24.

Figure 13.12 shows the output from Example 13.8
when the key value is found, and when the key value
is not found.

Figure 13.12
Two Runs of Example 13.8

Enter a value to search for > 7

7 found at index 2

Enter a value to search for > 34

34 not found

Let’s run the preceding example on the value 7 in
order to illustrate the various recursive calls and the
case where the value is found.

Here is the array numbers, sorted in ascending order:

We calculate the index middle by adding the indexes
start and end, then dividing by 2. Thus, when the
recursiveBinarySearch method is first called, middle
is 8.

The element at index 8 (45) is greater than 7, so we
call the recursiveBinarySearch method, searching the
left subarray, highlighted here.

The index middle is now calculated to be 3 ((0 + 7)/2).

The element at index 3 (8) is greater than 7, so we
call the recursiveBinarySearch method, searching the
left subarray, highlighted here.

The index middle is now calculated to be 1 ((0 + 2)/2).

The element at index 1 (6) is smaller than 7, so we
call the recursiveBinarySearch method, searching the
right subarray, highlighted here.

The index middle is now calculated to be 2 ((2 + 2)/2).

The element at index 2 (7), is equal to 7. We have
found the value and return its index, 2.

Let’s now run the preceding example on the value 34
in order to illustrate the various recursive calls and
the base case when the value is not found.

Here is the array numbers again:

The index middle when the recursiveBinarySearch
method is first called is 8 ((0 + 16)/2).

The element at index 8 (45) is greater than 34, so we
call the recursiveBinarySearch method, searching the
left subarray highlighted here.

The index middle is now calculated to be 3 ((0 + 7)/2).

The element at index 3 (8) is smaller than 34, so we
call the recursiveBinarySearch method, searching the
right subarray, highlighted here.

The index middle is now calculated to be 5 ((4 + 7)/2).

The element at index 5 (15) is smaller than 34, so we
call the recursiveBinarySearch method, searching the
right subarray, highlighted here.

The index middle is now calculated to be 6 ((6 + 7)/2).

The element at index 6 (22) is smaller than 34, so we
call the recursiveBinarySearch method, searching the
right subarray, highlighted here.

The index middle is now calculated to be 7 ((7 + 7)/2).

The element at index 7 (36) is larger than 34, so we
call the recursiveBinarySearch method, searching the
left subarray. However, that left subarray is empty. We
have not found 34, so we return −1.

Skill Practice
with these end-of-chapter questions

13.9.1 Multiple Choice Exercises

Questions 2, 6, 7, 8

13.9.2 Reading and Understanding Code

Questions 9, 10, 11, 12, 13, 14, 15, 20,
21, 22, 23

13.9.3 Fill In the Code

Questions 24, 25, 26, 27, 28

13.9.4 Identifying Errors in Code

Questions 29, 30, 31, 32

13.9.5 Debugging Area

Questions 33, 34, 35, 36, 37, 38

13.9.6 Write a Short Program

Questions 42, 43, 45, 46, 47

13.9.8 Technical Writing

Question 63

13.6 Programming Activity 2: The
Towers of Hanoi
A well-known problem that lends itself to an elegant
recursive formulation is the Towers of Hanoi. Here it
is:

There are three towers, which we can
represent as the source tower, the temporary
tower, and the destination tower.

We have a stack of n disks piled on the
source tower; all the disks have a different
diameter. The largest disk is at the bottom
and the smallest disk is at the top.

The goal is to transfer all the disks, one at a
time, to the destination tower using all three
towers for help. No larger disk can be placed
on top of a smaller one.

The recursive solution to the problem for the general
case (n >= 1) is as follows:

1. Transfer the top (n − 1) disks from the source tower to the

temporary tower.

2. Transfer the one remaining disk (the largest) from the source

tower to the destination tower.

3. Transfer the (n − 1) disks from the the temporary tower to the

destination tower.

The base case, when n = 0 (there are 0 disks to
transfer), is to do nothing.

The first and third operations are simply recursive
calls using a smaller number of disks (n − 1) than the
original problem.

In the case of n = 5, Figures 13.13–13.16 illustrate
the recursive solution and formulation. In the figures,
the left, middle, and right towers represent the
source, temporary, and destination towers,
respectively.

Figure 13.13
Starting Position with Five Disks

Figure 13.14
Position After Step 1

Figure 13.15
Position After Step 2

Figure 13.16
Position After Step 3

In this activity, you will work with recursion to perform
the following function:

Code a recursive method to solve the Towers of
Hanoi problem

Instructions
In this chapter’s Programming Activity 2 folder, you
will find the source files needed to complete this
activity. Copy all of the files to a folder on your
computer. Note that all files should be in the same
folder.

Open the HanoiDrawing.java source file. Searching
for five asterisks (*****) in the source code will
position you to the code section where you will add
your code. In this task, you will fill in the code inside
the recursiveTOfH method to solve the Towers of
Hanoi problem. Example 13.9 shows the section of
the HanoiDrawing source code where you will add
your code.

EXAMPLE 13.9 Location of Student
Code in HanoiDrawing

public void recursiveTOfH(int numDisks, int

fromTower,

 int toTower, int useTower

)

{

 // ***** Student writes the body of this method

 //

 // Using recursion, transfer numDisks disks from

the tower

 // fromTower to the tower toTower using the tower

 // useTower

 // The disks are numbered as follows: if we

started with n disks,

 // the disk at the top is disk # 1

 // and the disk at the bottom is disk # n

 // We call the moveDisk method inside the body of

this method

 // The moveDisk method moves one disk and takes 3

arguments:

 // an int, representing the disk number to be

moved

 // an int, representing the tower to move the

disk from

 // an int, representing the tower to move the

disk to

 // So if these three variables are:

 // diskNumber, fromTower, and toTower

 // then the call to moveDisks will be:

 // moveDisk(diskNumber, fromTower, toTower);

 if (numDisks > 0)

 {

 // Student code starts here

 // 1. Move (numDisks - 1) disks from fromTower

 // to useTower using toTower

 // 2. Move one disk from fromTower to toTower

 // Print a message to the screen, then

 // call moveDisk in order to animate.

 // 3. Move (numDisks - 1) disks from useTower

to toTower

 // using fromTower

 }

 // Base case: 0 disks to move ==> do nothing

 //

 // end of student code

 //

 }

The framework will animate your code so that you get
some feedback on the correctness of your code. It will

display the disks being moved from one tower to
another until the whole set of disks has been moved
from the left tower to the right tower. Code to enforce
the rules has already been written.

To test your code, compile HanoiDrawing.java and
run HanoiApplication; when the program begins, a
text box will allow you to enter the number of disks as
shown in Figure 13.17.

Figure 13.17
Opening Window

Click “run” to animate your code.

If you enter an integer less than 1 or greater than 9,
the program will use a default value of 4. If you enter

5, as shown in Figure 13.17, the first screen will be as
shown in Figure 13.13.

Figure 13.18
An Intermediate Position in the Animation

Task Instructions
In the file HanoiDrawing.java the
recursiveTOfH method header is:

public void recursiveTOfH(int numDisks, int

fromTower,

 int toTower, int

useTower)

This method takes four parameters:
numDisks, representing the number of disks
to be moved, and 3 ints representing the
tower to move the disks from, the tower to
move the disks to, and the tower to use to
accomplish that task of moving numDisks
disks from tower fromTower to tower toTower.
For instance, with five disks, our method call
in the main method is:

recursiveTOfH(5, 0, 2, 1);

The preceding method call is interpreted as:
move 5 disks from tower 0 to tower 2, using
tower 1 as a temporary holding tower.

Your code goes in three places, all of them
inside the if statement.

1. First, you need to move all the disks except the bottom one

from the fromTower (source tower, “left tower” on the

figures) to the useTower (temporary tower, “middle tower”

on the figures) using the toTower (“destination tower, right

tower” on the figures). You do this by calling recursiveTOfH

with the appropriate arguments.

2. Then, you need to move the bottom disk from the

fromTower (source tower, “left tower” on the figures) to the

toTower (destination tower, “right tower” on the figures). To

track your progress, output the move to the command line

(“Move disk x from tower y to tower z”). You also need to

call the moveDisk method so that the code animates. The

API of moveDisk is explained in Example 13.9.

3. Finally, you need to move all the disks from the useTower

(temporary tower, “middle tower” on the figures) to the

toTower (destination tower, “right tower” on the figures).

Again, you call recursiveTOfH.

For example, if you run your program with three
disks, and assuming the towers are labeled 0, 1, and
2 from left to right, the command line output of your
method should read something like:

Move disk 1 from tower 0 to tower 2
Move disk 2 from tower 0 to tower 1
Move disk 1 from tower 2 to tower 1
Move disk 3 from tower 0 to tower 2
Move disk 1 from tower 1 to tower 0
Move disk 2 from tower 1 to tower 2
Move disk 1 from tower 0 to tower 2

Troubleshooting
If your method implementation does not animate or
animates incorrectly, check these items:

Check the feedback on the output to see if
your code violates the rules.

Verify that you coded the first recursive call
correctly.

Verify that you coded the second recursive
call correctly.

DISCUSSION QUESTIONS
1. What is the base case for the method?

2. As the number of disks increases, what happens to the
time it takes for the method to run?

13.7 Recursion Versus Iteration
Recursion and iteration are different approaches to
solving a problem.

A recursive function is implemented using
decision constructs (e.g., if/else statements)
and repeatedly calls itself.

An iterative function is implemented with
looping constructs (e.g., while or for
statements) and repeatedly executes the
loop.

Most programmers would not use recursion to print
“Hello World” n times; they would simply use the
following for loop:

for (int i = 0; i < n; i++)

 System.out.println("Hello World");

Similarly, a factorial method can easily be coded
using iteration.

SOFTWARE ENGINEERING TIP
Readability and maintenance are important
considerations when coding a method. If running
times are equivalent and a recursive implementation
is easier to understand than the equivalent iterative
implementation, choose recursion over iteration;
otherwise, iteration is generally preferred.

However, other problems, such as the Towers of
Hanoi and the binary search, are more easily coded
using recursion rather than iteration.

Often, the recursive solution to a problem is more
elegant and easier to understand than an equivalent
iterative solution. The main difficulty in coding a
recursive method is the problem-solving part. The
implementation, using Java or any other
programming language, is easier than the equivalent
code that uses iteration.

Another consideration when deciding to use
recursion or iteration is the efficiency of the method
at execution time. This is called the running time of
the method, and is often measured in order of
magnitude as a function of the size of the input.

For instance, for the Hello World example, the input
is n. Using iteration, we will execute the loop n times,

and the test condition of the for statement will be
executed (n + 1) times. When the running time of a
method can be expressed as n multiplied by a
constant value (n 3 c), we say that the order of
magnitude of its running time is n; we say it is “big-
Oh” of n or O(n).

Using recursion, and considering Example 13.1, the
printHelloWorldNTimes method will call itself n times
before reaching the base case (n = 0), for which the
method does nothing. At each recursive call, the
method performs a small and finite number of
operations: it tests for n being greater than 0, and
then prints “Hello World” once before calling itself; so
it performs two operations before calling itself. Since
it calls itself n times overall, the approximate running
time of the method is 2 * n, and therefore the order of
magnitude of its running time is also O(n) (orders of
magnitude ignore constant factors).

So in this case, the running times of iteration and
recursion are of the same order of magnitude.
However, the overhead associated with all the
recursive method calls will add to the running time.
That will make recursion slower than iteration, which
is often the case.

CHAPTER REVIEW

13.8 Chapter Summary
The idea of recursion is to convert or reduce
a bigger problem to a smaller, similar
problem. The relationship between the
bigger problem and the smaller problem is
called the general case.

By reducing the size of a problem to a
smaller problem recursively, we eventually
arrive at a small problem that is easy to
solve. That small problem is called the base
case.

Solving a problem using recursion typically
involves coding a recursive method.

A recursive method

can be a static method or an instance
method,

can take 0, 1, or more parameters, and

can be a void or a value-returning method.

A recursive method calls itself.

Problem solving using recursion involves two
steps: generating a recursive formulation of
the problem for the general case, and solving
the base case(s).

There can be one or more base cases.

Most base cases are simple, but some can
be more complex.

Most general cases are simple, but some
can be more complex.

A recursive method calls itself repeatedly
until a base case is reached.

A recursive method typically includes an
if/else statement that tests for the base case.

If the recursive method does not test for the
base case, calling the method will typically
result in a stack overflow run-time error.

Recursion is typically an alternative to
iteration. The coding of a recursive method is
typically compact and elegant. However, a
recursive method may not be as efficient as
its iterative equivalent.

13.9 Exercises, Problems, and
Projects

13.9.1 Multiple Choice Exercises
 1. A recursive method

❑ is always a static method.

❑ is never a static method.
❑ may or may not be static.

 2. A recursive method

❑ is always a method with a void return value.

❑ is always a value-returning method.
❑ can be either of the above.

 3. When formulating a recursive solution, what should we consider?

❑ base cases and general case

❑ base cases only
❑ general case only

 4. A recursive method

❑ is a method containing a loop.

❑ calls itself.
❑ is part of the java.recursion package.

 5. When coding a class that includes a recursive method, we need to
import the java.recursion package.

❑ true

❑ false

 6. If the base case of a recursive method is not taken into account
when coding the method, the likely outcome is

❑ a compiler error.
❑ a run-time error.

❑ no error.

 7. If there are several base cases in a recursive method, omitting the
code for one of them will result in

❑ a compiler error.

❑ a run-time error.
❑ no error.

 8. If a recursive method makes a recursive call with the same
argument that it was passed, the likely outcome is

❑ a compiler error.

❑ a run-time error.
❑ no error.

13.9.2 Reading and Understanding
Code
For Questions 9 to 11, consider the following
method:

public static int foo1(int n)

{

 if (n == 0)

 return 0;

 else if (n > 0)

 return foo1(n – 1);

 else

 return foo1(n + 1);

}

 9. What is the value of i after the following code is executed?

int i = foo1(0);

10. What is the value of i after the following code is executed?

int i = foo1(4);

11. What does the foo1 method do?

For Questions 12 to 15, consider the following
method:

public static int foo2(int n)

{

 // n is guaranteed to be >= 0

 if (n < 10)

 return n;

 else

 return foo2(n – 10);

}

12. What is the value of i after the following code is executed?

int i = foo2(7);

13. What is the value of i after the following code is executed?

int i = foo2(13);

14. What is the value of i after the following code is executed?

int i = foo2(65);

15. What does the foo2 method return when the argument is a positive
integer?

For Questions 16 to 19, consider the following
method:

public static void foo3(String s)

{

 if (s.length() > 0)

 {

 System.out.print(s.charAt(s.length() – 1)

);

 foo3(s.substring(0, s.length() – 1));

 }

}

16. What is the output of the following code?

foo3("");

17. What is the output of the following code?

foo3("Hi");

18. What is the output of the following code?

foo3("Hello");

19. What does the foo3 method do?

For Questions 20 to 23, consider the following
method:

public static int foo4(int n, int p)

{

 // p is guaranteed to be >= 0

 if (p == 0)

 return 1;

 else

 return (n * foo4(n, p – 1));

}

20. What is the value of i after the following code is executed?

int i = foo4(6, 0);

21. What is the value of i after the following code is executed?

int i = foo4(5, 1);

22. What is the value of i after the following code is executed?

int i = foo4(4, 3);

23. What does the foo4 method return as a function of its two
parameters, n and p?

13.9.3 Fill In the Code
24. This recursive method returns the number of times a given

character is found in a String.

public static int foo(String s, char c)
{
 if (s.length() == 0)
 return 0;
 else
 {
 // your code goes here

 }
}

25. This recursive method returns “even” if the length of a given String
is even, and “odd” if the length of the String is odd.

public static String foo(String s)
{
 if (s.length() == 0)
 return "even";
 else if (s.length() == 1)
 return "odd";
 else
 // your code goes here
}

26. This recursive method returns the sum of all the integers from 0 to
a given number.

public static int foo(int n)
{
 // n is guaranteed to be >= 0
 if (n == 0)
 return 0;
 else
 {
 // your code goes here

 }
}

27. This recursive method returns true if its String parameter contains
the characters A and B in consecutive locations; otherwise, it

returns false.

public static boolean foo(String s)
{
 if () // base case # 1

 else if () // base case # 2

 else // general case
 return foo(s.substring(1, s.length()));
}

28. This recursive method squares a number until the result is greater
than or equal to 1000, then returns the result. For instance, foo(10
) returns 10000, foo(6) returns 1296, and foo(1233) returns
1233.

public static int foo(int n)
{
 // n is guaranteed to be greater than 1
 if (n >= 1000) // base case

 else // general case

}

13.9.4 Identifying Errors in Code
29. You coded the following in the file Test.java. Where is the error?

int p = foo(4);
// more code here

public static int foo(int n)
{
 int p = foo(n – 1);
 if (n == 0)
 return 1;
 else
 return (n * p);
}

30. You coded the following method. Where is the error?

public static double foo(int n)
{
 if (n == 0)
 return 1.0;
 else if (n < 0)
 return foo(n – 1);
 else
 return foo(n + 1);
}

31. You coded the following method. Where is the error?

public static boolean foo(int n)
{
 // n is guaranteed to be >= 0
 if (n == 0)
 return true;
 else
 foo(n – 1);
}

32. You coded the following method. Where is the error?

public static boolean foo(int n)
{
 // n is guaranteed to be >= 0
 if (n == 0)
 return true;
 else
 return foo(n);
}

13.9.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
33. You coded the following in the file Test.java:

// inside main
System.out.println(foo(5));
// more code here

public static int foo(int n)
{
 return (n * foo(n – 1)); // line 15
}

The code compiles, but when it runs, you get the following output:

Exception in thread "main"
java.lang.StackOverflowError
at Test.foo(Test.java:15)
at Test.foo(Test.java:15)
at Test.foo(Test.java:15)
....

Explain what the problem is and how to fix it.

34. You coded the following in the file Test.java:

// inside main
System.out.println(foo(5));
// more code here

public static int foo(int n)
{
 if (n == 0)
 return foo(0); // line 15
 else
 return (n * foo(n – 1));
}

The code compiles, but when it runs, you get the following output:

Exception in thread "main"
java.lang.StackOverflowError
at Test.foo(Test.java:15)
at Test.foo(Test.java:15)
at Test.foo(Test.java:15)
....

Explain what the problem is and how to fix it.

35. You coded the following in the file Test.java:

// inside main
System.out.println(foo(5));
// more code here

public static int foo(int n) // line 9
{
 if (n == 0)
 return 1;
 else
 System.out.println(n * foo(n - 1));
} // line 15

At compile time, you get the following error:

Test.java:15: error: missing return statement
} // line 15
^
1 error

Explain what the problem is and how to fix it.

36. You coded the following in the file Test.java:

// inside main
System.out.println(foo(5));
// more code here

public static int foo(int n)
{
 if (n == 0)
 return 1;
 else
 return (foo(n) * (n - 1));
}

The code compiles, but when it runs, you get the following
message, repeated many times, before finally stopping:

Exception in thread "main"
java.lang.StackOverflowError
 at Test.foo(Test.java:15)
 at Test.foo(Test.java:15)
 at Test.foo(Test.java:15)

Explain what the problem is and how to fix it.

37. You coded the following in the file Test.java:

// inside main
System.out.println(foo("Hello")); // line 6
// more code here

public static int foo(String s) // line 9
{
 if (s.length() == 0)
 return 0;
 else
 return (1 +
 foo(s.substring(0, s.length() - 2)));
// line 15
}

The code compiles, but when it runs, you get the following output:

Exception in thread "main"
java.lang.StringIndexOutOfBoundsException: begin
0,
end -1, length 1
 at
java.base/java.lang.String.checkBoundsBeginEnd(Un
known source)
 at
java.base/java.lang.String.substring(Unknown
source)
 at Test.foo(Test.java:15)
 at Test.foo(Test.java:15)
 at Test.foo(Test.java:15)
 at Test.main(Test.java:6)

Explain what the problem is and how it happens.

38. You coded the following in the file Test.java:

// inside main
System.out.println(foo("Hello")); // line 6
// more code here

public static int foo(String s) // line 9
{
 if (s.length() == 0) // line 11
 return 0;
 else
 {
 String temp = null;
 if (s.length() > 1)
 temp = s.substring(0, s.length() – 1
);
 return (1 + foo(temp)); // line 18
 }
}

The code compiles, but when it runs, you get the following output:

Exception in thread "main"
java.lang.NullPointerException
 at Test.foo(Test.java:11)
 at Test.foo(Test.java:18)
 at Test.foo(Test.java:18)
 at Test.foo(Test.java:18)
 at Test.foo(Test.java:18)
 at Test.foo(Test.java:18)
 at Test.main(Test.java:6)

Explain what the problem is and how to fix it.

13.9.6 Write a Short Program
39. Using recursion, write a program that takes a word as an input and

outputs that word backward.

40. Using recursion, write a program that keeps prompting the user for
a word containing a $ character. As soon as the user inputs a word
containing the $ character, you should output that word and your
program will terminate.

41. Using recursion, write a program that takes a word as an input and
outputs that word with all characters separated by a space.

42. Using recursion, write a program that takes a word as an input and
outputs the number of times the letter a is found in that word.

43. Using recursion, write a program that takes an integer value as an
input and outputs the Fibonacci value for that number. The
Fibonacci value of a number is defined as follows:

Fib(1) = 1
Fib(2) = 1
Fib(n) = Fib (n – 1) + Fib(n – 2) for n >=
3

44. Using recursion, write a program that takes a positive number as
an input and keeps dividing that number by 3 until the result is less
than 1, at which time output that result.

45. Using recursion, write a program that takes 10 numbers as inputs
and outputs the minimum of these numbers.

46. Using recursion, write a program that takes 10 words representing
Internet addresses as inputs and outputs the number of words
containing .edu.

47. Rewrite Example 13.8, RecursiveBinarySearch, using an array
sorted in descending order.

13.9.7 Programming Projects
48. Write a class with just one instance variable, a String representing

a binary number. Write a recursive method taking only one
parameter that converts that binary number to its decimal
equivalent. Your program should include a client class to test your
class.

49. Write a class with just one instance variable, an int. Your
constructor should take an int as its only parameter. Write a
recursive method that checks if that int is a multiple of 5. Your
program should include a client class to test your class.

50. Write a class with just one instance variable, a String representing
some HTML code. Your constructor should take a file name as its
only parameter (you will need to make up some sample HTML files
to test your program). Write a recursive method returning the
number of occurrences of a specified character in the HTML
String. Your program should include a client class to test your
class. In particular, call the recursive method to check whether the
sample files contain an equal number of < and > characters.

51. Write a class with just one instance variable, a String representing
a password. Write a recursive method to check if the password
contains at least one character that is a digit (0 to 9). Your program
should include a client class to test your class.

52. Write a class with two instance variables, representing the same
password. Write a recursive method that checks if both passwords
are equal. Your program should include a client class to test your
class.

53. Write a class with two instance variables, representing an old
password and a new password. Write a recursive method that
returns the number of places where the two passwords have
different characters. The passwords can have different lengths.
Write another, nonrecursive method returning whether the two
passwords are sufficiently different. The method takes an int

parameter indicating the minimum number of differences that
qualify the passwords as being sufficiently different. Your program
should include a client class to test your class.

54. Write a class with just one instance variable, an integer array. Your
constructor should take an integer array as its only parameter.
Write a recursive method that returns the sum of all elements in
the array. Your program should include a client class to test your
class.

55. Write a class with just one instance variable, an integer array. Your
constructor should take an integer array as its only parameter.
Write a recursive method that returns the maximum value of all the
elements in the array. Your program should include a client class to
test your class.

56. Write a class with the functionality of checking a list of names to
determine whether the same name is present in two consecutive
locations; you can assume that the list contains fewer than 100
names. The method solving that problem should be recursive.
Your program should include a client class to test your class.

57. A professor has a policy to give at least one A in his or her class.
Write a class that encapsulates that idea, including a recursive
method checking for at least one A in a set of grades. You can
assume that there are 30 students. Your program should include a
client class to test your class.

58. Write a class with just one instance variable, an array representing
grades between 0 and 100. You can assume that there are 15
grades. Your constructor should take an array as its only
parameter. Write a recursive method that returns the average of all
grades. Your program should include a client class to test your
class.

59. Write a class with just one instance variable, an int. Your
constructor should take an int as its only parameter. Write a
recursive method that converts that int to a String representing that

number in binary. Your program should include a client class to test
your class.

60. Write a class potentially representing a String of binary digits (0s
and 1s). Your constructor should take a String as its only
parameter (that String may contain only 0s and 1s, or it may not).
Write a recursive method that checks whether that String contains
0s and 1s only. Write another recursive method that converts that
String to its decimal equivalent. Your method should be different
from the one in Exercise 48: it should take two parameters, the
String representing the binary number, and an int representing an
exponent. Your program should include a client class to test your
class.

61. Write a class with an int array as its only instance variable. Write a
recursive method that uses the following recursive strategy in
order to sort the array:

❑ Sort the left half of the array (this is a recursive call).

❑ Sort the right half of the array (this is another recursive call).
❑ Merge the two sorted halves of the array so that the array is

sorted (there is no recursive call here).

62. Write a class that includes a recursive method that converts a
prefix arithmetic expression to an infix arithmetic expression. You
should assume that a prefix arithmetic expression uses this syntax:

operator integerl integer2 integer3 …

The corresponding infix arithmetic expression is:

integer1 operator integer2 operator integer3 …
The operator can be +, −, *, or /.

For example, with this prefix arithmetic expression:

− 6 123 45
your method should return the following infix arithmetic expression:

6 − 123 − 45
And for this prefix arithmetic expression:

+ 76543 12 4 5 6 7

Your method should return the following infix arithmetic
expression:

76543 + 12 + 4 + 5 + 6 + 7

For simplicity, assume that there is just one space between the
operator and the first integer and between the integers. Look up
the documentation for the Matcher and Pattern classes and regular
expressions. Your program should include a client class to test
your program.

13.9.8 Technical Writing
63. Think of an example of a problem, different from the chapter

problems, which can be solved by an iterative formulation and a
recursive formulation. Discuss which one you would prefer to code
and why.

13.9.9 Group Projects (for a group
of 1, 2, or 3 students)
64. Consider a rectangular grid of integers. We are interested in

computing recursively the largest sum of any path from a top
position to a bottom position. A valid path is defined as follows:

❑ It should start at a number in the top row and end at a number
in the bottom row.

❑ It should include a number in every row.
❑ From row i to row (i + 1), a valid path can be created:

down vertically (in the same column)

down diagonally one column to the left (if possible)

down diagonally one column to the right (if possible)

For instance, let’s assume we have the following rectangle of
numbers:

2 5 17 12 3

15 8 4 11 10

9 18 6 20 16

14 13 12 1 7

Note: Your program should accept any positive number at any spot
within the rectangle.

Examples of valid paths are:

2 → 8 → 18 → 14

17 → 4 → 18 → 14

5 → 4 → 20 → 12

In this example, the path generating the largest sum is:

17 → 11 → 20 → 12 for a total of 17 + 11 + 20 + 12 = 60

Your program should accept from the user a rectangle of integers;
to keep it simple, you can limit the size of the rectangle to a
maximum of 10 columns by 20 rows. Your program should,
recursively, compute and output the path that generates the largest
sum.

65. Write a class with an int array as its only instance variable. Write a
recursive method that uses the following Merge Sort algorithm in
order to sort the array.

❑ If the array has only 1 element, then the array is already
sorted and there is nothing to do; otherwise:

Sort the left half of the array by calling the method (this is a
recursive call).

Sort the right half of the array by calling the method (this is
another recursive call).

Merge the two sorted half arrays into one so that the
resulting array is sorted.

Because of the recursive nature of this method, you need to think
about what parameters that method should have, in addition to the
array itself. In fact, at each recursive call, the method sorts a
subarray of the original array; so your parameters should define a
subarray within the original array.

To merge the two sorted half arrays into one resulting sorted array,
you can loop through both half arrays and compare each pair of
elements, and place the smaller of the two in the resulting array.
The following is an example of what an array would look like
before and after the various steps of the algorithm.

The unsorted array, before applying the algorithm:

The array, after the first recursive call. The left half array, from
index 0 to index 3, is sorted.

The array, after the second recursive call and before the merging
step. The left half array, from index 0 to index 3, and the right half

array, from index 4 to index 7, are sorted.

The array after the merge step. The array is now sorted.

Here is an example of what the array and resulting array would
look like during the merge step: The elements 9, 12, and 20 have
been processed and placed at their correct place in the resulting
array. We are now processing 25 from the left half array and 24
from the right half array. Note that during the merge step, we need
a separate array to store the sorted elements.

The array:

The resulting array:

For tracing purposes, add a statement as you enter the method to
out-put that the method is called; include the starting and ending
indexes delimiting the subarray on which the method is called.
Also, add a counter to track how many times the method is called

as the recursive calls unfold. In your client program, use arrays
with 4, 8, 16, 32, and 64 elements. How many recursive calls are
made in each case? More generally, if the array contains 2
elements, how many recursive calls are made?

n

CHAPTER 14
An Introduction to Data
Structures

CHAPTER CONTENTS
Introduction
14.1 Linked Lists

14.1.1 Linked-List Concepts and Structure
14.1.2 Linked-List Basics
14.1.3 Methods of a Linked List
14.1.4 Testing a Linked-List Class

14.2 Linked Lists of Objects
14.2.1 A Linked-List Shell
14.2.2 Generating an Exception
14.2.3 Other Methods of a Linked List
14.2.4 Testing a Linked-List Class

14.3 Implementing a Stack Using a Linked List
14.4 Implementing a Queue Using a Linked List
14.5 Array Representation of Stacks
14.6 Programming Activity 1: Writing Methods for a
Stack Class
14.7 Array Representation of Queues
14.8 Sorted Linked Lists
14.9 Programming Activity 2: Writing Insert and Delete
Methods for a Sorted Linked List
14.10 Doubly Linked Lists
14.11 Linked Lists Using Generic Types
14.12 Recursively Defined Linked Lists
14.13 Chapter Summary
14.14 Exercises, Problems, and Projects

14.14.1 Multiple Choice Exercises
14.14.2 Reading and Understanding Code
14.14.3 Fill In the Code

14.14.4 Identifying Errors in Code
14.14.5 Debugging Area—Using Messages from the

Java Compiler and Java JVM
14.14.6 Write a Short Program
14.14.7 Programming Projects
14.14.8 Technical Writing
14.14.9 Group Project

Introduction
As our programs execute, we often need a means to organize
data in memory. Arrays are a convenient method to store
multiple variables of the same data type. ArrayLists improve
on arrays by dynamically expanding, as needed.

In fact, arrays and ArrayLists are just two examples of data
structures, which are methodologies a program uses to store
its data in memory.

An ArrayList dynamically adjusts its size by increasing its
capacity whenever it runs out of space. In fact, in many cases,
the capacity exceeds the space needed to hold our elements.
Then memory is allocated but not used. Obviously, this is not
an efficient use of memory space.

However, ArrayLists are useful in some situations, such as
reading data from a file, where we don’t know in advance how
many items we will need to store in memory. Once the data is
read, we know that the size of the ArrayList will not change
further, so we can trim the capacity of the ArrayList to its
current size using the trimToSize method, thus releasing the
unused memory.

In other situations, however, the number of data items may
dynamically increase or decrease as the program executes.
For these cases, we need a data structure that efficiently
grows and shrinks as items are added and removed.

A new data structure that we will illustrate in this chapter is the
linked list, which can expand (or shrink) one object at a time,
keeping the size of the list to a minimum at all times. An

advantage, then, of linked lists is that they do not consume
unnecessary memory.

14.1 Linked Lists

14.1.1 Linked-List Concepts and
Structure
A linked list can be thought of as a chain of linked nodes.

A node is an object with two attributes:

data—The data can be a primitive data type (for
example, an int), or it can be a reference to an object
of a specified class.

the location of the next node in the chain—We say
that a node “points to” or “refers to” the next node.

Figure 14.1 shows how we can visualize a node containing
the integer value 5. The arrow points to the next node in the
list.

Figure 14.1
A Node

In the last node of the list, the location of the next node
contains the value null, to indicate that there are no more
nodes in the list.

Figure 14.2 illustrates a linked list of four video game players.
The object data stored at each node has the following
attributes: the player’s ID, the player’s name, and the name of
the player’s favorite game.

Figure 14.2
A Linked List

From the standpoint of program design, this linked list can be
implemented using three classes:

a Player class, encapsulating a player

a PlayerNode class, encapsulating a node

a PlayerLinkedList class, encapsulating the linked list

In the Player class, we will have three instance variables:

an int storing the user ID of the player

a String storing the name of the player

a String storing the name of the player’s favorite game

Often, a node class is designed in a general manner to store
a generic Object. Implementing a list of generic Objects has
the advantage of reusability; indeed, we could instantiate the
list with any type of Object we want. In this chapter, we will
first implement a linked list of the primitive type, int, then a
linked list of Player objects, and then a linked list of generic
Objects.

In the IntegerNode class, we have two instance variables:

an int

an IntegerNode object reference, representing the
next node

Thus, the IntegerNode class is defined using an object
reference of its own type. Indeed, one of its instance variables
is an IntegerNode object reference.

We define our two instance variables using the following
statements:

private int data;

private IntegerNode next;

Based on this definition of the IntegerNode class, we need
only one instance variable in the linked-list class, a reference
to the first node, which we call the head of the linked list.
Indeed, the first node will give us access to the second node,
which in turn will give us access to the third node, and so on,
until we reach the last node. We will know when we have
reached the end of the linked list, because the reference to
the next IntegerNode will have the value null.

SOFTWARE ENGINEERING TIP
Include an instance variable in the linked-list class to store the
number of items in the list for quick and direct access to that
information as needed.

Often, linked-list classes have another instance variable that
holds the number of items in the linked list. Although the
number of items can be calculated by looping through and
counting all the nodes in the linked list, it is convenient to

store the number of items as an instance variable. So our
IntegerLinkedList class, encapsulating the linked list, will have
two instance variables:

an IntegerNode object reference, named head,
representing the first node of the linked list

an int, named numberOfItems, representing the
number of items in the linked list

14.1.2 Linked-List Basics
Example 14.1 shows our IntegerNode class:

EXAMPLE 14.1 The IntegerNode Class

 1 /* The IntegerNode class

 2 Anderson, Franceschi

 3 */

 4

 5 public class IntegerNode

 6 {

 7 private int data;

 8 private IntegerNode next;

 9

10 /** default constructor

11 * sets data to 0, and next to null

12 */

13 public IntegerNode()

14 {

15 data = 0;

16 next = null;

17 }

18

19 /** overloaded constructor

20 * @param data data value

21 */

22 public IntegerNode(int data)

23 {

24 setData (data);

25 next = null;

26 }

27

28 /** accessor for data

29 * @return the value of the node

30 */

31 public int getData()

32 {

33 return data;

34 }

35

36 /** accessor for next

37 * @return the reference to the next node

38 */

39 public IntegerNode getNext()

40 {

41 return next;

42 }

43

44 /** mutator for data

45 * @param data the new value for the node

46 * @return a reference to this object

47 */

48 public IntegerNode setData(int data)

49 {

50 this.data = data;

51 return this;

52 }

53

54 /** mutator for next

55 * @param next the new value for next

56 * @return a reference to this object

57 */

58 public IntegerNode setNext(IntegerNode next)

59 {

60 this.next = next;

61 return this;

62 }

63 }

The code for this class is straightforward. We code two
constructors at lines 10 to 26. Both of these constructors set
the value of next to null. This will be the desired action when a
node is created. However, to allow a client (which will be the
linked-list class) to reset the value of next as the list expands
and shrinks, we provide the setNext method.

14.1.3 Methods of a Linked List
For our class encapsulating a linked list, we need to consider
the following issues:

We do not want client programs to change the head
node of our list. Thus, we will not provide an accessor
or a mutator for the head node.

Client programs should not be able to change the
number of items in the list. Only the methods of the
class should update the number of items as we insert
or delete items in the list. Thus, we will provide an
accessor for the number of items in the list so that the
client can view the number of items, but no mutator.

With a linked list, there is some basic functionality that we
need to provide, such as

insert an item,

delete an item, and

list, in order, all the items in the list, and return that list
as a String.

Table 14.1 shows the APIs of the insert, delete, and toString
methods.

TABLE 14.1 IntegerLinkedList Methods
Methods of the IntegerLinkedList Class

Return
value

Method name and argument list

void insert(int value)

inserts value at the beginning of the list.

boolean delete(int value)

removes the first item on the list that is equal to value and
returns true. If there is no such item on the list, the method
returns false.

String toString()

returns a String representation of the list.

In our linked list of ints, we do not store the ints in any
predetermined order. Thus, there are only two logical places
to insert a node: at the beginning and at the end of the list.
Inserting at the end will consume CPU time, since we will
have to loop through all nodes in the list to find the end. So
we have decided to insert at the beginning of the linked list
because it is easier and faster. Unless we run out of memory,
it will always be possible to insert a new node at the beginning
of a list, so our insert method has a void return value.

Other options for implementing a linked list include providing
methods to insert at the end of the list, or at a specified
position in the list, or at a position before or after a node
containing a specified value or object.

When inserting a new int, our insert method performs the
following steps:

1. Instantiate a new node containing the int to be inserted.

2. Attach that node at the beginning of the list; that is, make that node point to

the previous head node. If the list originally was empty, that is, head has the

value null, then the next field of the new node is given the value null.

3. Indicate that the new node is now the head of the list; that is, make head

point to the new node.

4. Increase the number of items in the list by 1.

Figures 14.3a to 14.3d illustrate the first three steps.

Figure 14.3a
Inserting: Our Original Linked List

Figure 14.3b
Step 1: The New Node Is Instantiated

Figure 14.3c
Step 2: The New Node Has Been Attached to the Beginning
of the List

Figure 14.3d
Step 3: head Now Points to the New Node

There are many alternatives for deleting an item from a linked
list. We can delete the first element or the last item, or delete
an item based on specified criteria. Such a criterion can be
the value of the item, or it can be the position of an item in the
list. We will implement one delete method only: one that
deletes an item based on its value.

In order to delete an item, we will traverse the list searching
for an item whose value matches a specified value passed as
the argument of the delete method. Traversing a list means
looping through the nodes in the list, one after the other,
starting at the first node. If we find such an item, we will
remove it from the list and return true. If we do not find the
item, we will return false.

There are three possible outcomes when searching for such
an item:

1. Such an item can be found and is located somewhere after the head node.

2. Such an item can be found and is located at the head node. Special care

must be taken here. There will be a change in the head node of the list and

our code will need to handle that.

3. Such an item cannot be found. In this case, no deletion can take place, and

we will return false.

In the first case, when the node to delete is located after the
first node in the list, we need to connect the node before the
deleted node (the “previous” node) to the node after the
deleted node. To do this, we replace the previous node’s next
field with the next field of the deleted node. Thus, as we
traverse the list, we need to keep track of the previous node,
as well as the current node. To do this, we maintain two node
references, previous and current.

Once we have located the node to delete and it is not the first
node of the list, we perform the following steps:

1. Set the next field in the previous node to the next field in the node to be

deleted (current).

2. Decrease the number of items in the list by 1.

The current node becomes unreachable and is therefore a
candidate for garbage collection.

Figures 14.4a and 14.4b illustrate deleting a node with the
value 8, which is located somewhere in the middle of the list.

Figure 14.4a
The List Before Deleting the Item Whose Value Is 8

Figure 14.4b
The previous Node is Connected to the Node After current,
Deleting the Item Whose Value Is 8

When the node to delete is the head node, we need to make
the node pointed to by the deleted node the new head of the
list. Thus, we perform the following steps:

1. Assign the next field of the current node to head.

2. Decrease the number of items in the list by 1.

Figures 14.5a and 14.5b illustrate deleting the first node in the
list.

Figure 14.5a
Before Deleting the Item Whose Value Is 7

Figure 14.5b
After Updating head, the First Node in the List Is Deleted

Example 14.2 shows our IntegerLinkedList class.

EXAMPLE 14.2 The IntegerLinkedList
Class

 1 /* The IntegerLinkedList class

 2 Anderson, Franceschi

 3 */

 4

 5 public class IntegerLinkedList

 6 {

 7 private IntegerNode head;

 8 private int numberOfItems;

 9

10 /** default constructor

11 * constructs an empty list

12 */

13 public IntegerLinkedList()

14 {

15 head = null;

16 numberOfItems = 0;

17 }

18

19 /** accessor for numberOfItems

20 * @return numberOfItems

21 */

22 public int getNumberOfItems()

23 {

24 return numberOfItems;

25 }

26

27 /** insert method

28 * @param value data to insert

29 * inserts node at head

30 */

31 public void insert(int value)

32 {

33 IntegerNode nd = new IntegerNode(value);

34 nd.setNext(head);

35 head = nd;

36 numberOfItems++;

37 }

38

39 /** delete method

40 * @param value the value to delete

41 * @return true if value was deleted from the list,

false otherwise

42 */

43 public boolean delete(int value)

44 {

45 IntegerNode current = head;

46 IntegerNode previous = null;

47 while (current != null

48 && current.getData() != value)

49 {

50 previous = current;

51 current = current.getNext();

52 }

53

54 if (current == null) // not found

55 return false;

56 else

57 {

58 if (current == head)

59 head = head.getNext(); // delete head

60 else

61 previous.setNext(current.getNext());

62

63 numberOfItems--;

64 return true;

65 }

66 }

67

68 /** toString

69 * @return values in list separated by a space

70 */

71 @Override

72 public String toString()

73 {

74 String listString = "";

75 IntegerNode current = head;

76 for (int i = 0; i < numberOfItems; i++)

77 {

78 listString += current.getData() + " ";

79 current = current.getNext();

80 }

81 return listString;

82 }

83 }

The default constructor (lines 10–17) initializes the head and
numberOfItems instance variables to null and 0, respectively.
The insert method, coded from lines 27 to 37, inserts a node
containing its parameter value at the beginning of the list. At
line 33, we create a new node, nd, with the data value. At line
34, we connect nd to the first node in the list by setting its next
field to the current head of the list. At line 35, we assign the
new node, nd, to head, making it the first node in the linked
list. Figures 14.3a to 14.3d illustrate the impact on the list of

lines 33–35. At line 36, we increment numberOfItems to
reflect the addition of a node to the list.

The delete method, coded from lines 39 to 66, returns true if
the deletion is successful and false if the deletion is not
successful.

Using a while loop at lines 47–52, we walk through, or
traverse, the list searching for a node containing value, our
delete method’s parameter. At lines 45 and 46, we declare
and initialize two IntegerNode references, which we will use to
track the current and previous nodes as we traverse the list.
Because each node points only to the next node in the list, we
can traverse the list in a forward direction only. Once we have
reached a node, we do not have a way to backtrack to the
previous node. Thus, as we traverse the list, we must
remember the previous node because we will need to change
the value of its next node. We update previous and current at
lines 50–51 by assigning current to previous, then moving
current to the next node in the list by calling the getNext
method.

Once we find value, we will connect previous to the
IntegerNode after current. If we have reached the end of the
list—that is, current is null (line 47)—or if we have found value
(line 48), we are ready to either return false or delete the node
by updating the links in our list. At that point, we exit the while
loop and skip to line 54.

Note that the order of the expressions in the while loop
condition is critical. Expressions in a compound condition are
evaluated left to right, so (current != null) is evaluated first. If

this expression is false (that is, current is null), then the whole
while loop condition cannot evaluate to true, so the second
expression is not evaluated. This is important because the
second expression uses current to call the getData method. If
current is null, the evaluation of the second expression would
generate a NullPointerException. In this way, we are taking
advantage of Java’s short-circuit evaluation of logical AND
operations.

Thus, if we reversed the order of the expressions in the while
loop condition, as shown here,

COMMON ERROR TRAP
When traversing a list, always test if a node reference is null
before calling a method using that reference. Failure to do so
might result in a NullPointer-Exception at run time. More
generally, when coding a linked-list method, always pay
attention to the possibility of an object reference being null
before using that reference to call a method.

// incorrect ordering of expressions!

while (current.getData() != value

 && current != null)

reaching the end of the list would always generate a
NullPointerException.

At line 54, we test whether current is null, because a null
value indicates that we exited the while loop because the list
is empty or we reached the end of the list without finding
value. Either way, the deletion is unsuccessful and we return
false at line 55.

If current is not null, we have found value. We update the list
and return true at lines 58–64. If current is the head node, we
found value at the beginning of the list, so we need to update
the head instance variable. In this case, we assign the node
after head to head at line 59. Note that if there was only one
element in the list before the deletion, head becomes null (at
this point the list will be empty). Figures 14.5a and 14.5b
show the impact of executing line 59 on the list (before and
after).

If current is not the head node, we skip to line 61 where we
set the node pointed to by previous to be the node after
current. At this point, current is no longer part of the linked list.

At line 63, we decrement numberOfItems, to reflect that we
now have one fewer item in the list. Finally, at line 64, we
return true. Figures 14.4a and 14.4b show the impact of
executing line 61 on the list (before and after).

Our last method, toString, is at lines 68–82. Our toString
method traverses the list and returns a String containing the
data from each item in the list. A toString method traversing
the list is especially useful at the debugging stage, when we
want to verify that we have properly added or deleted an
element. We can test our code by calling toString before and
after such operations.

14.1.4 Testing a Linked-List Class
SOFTWARE ENGINEERING TIP
There are many ways to code the deletion of a node in the
list. Try to write code that is easy to read and maintain.

Like any class that we design, we want to test the class
before using it in a program. In particular, we should test two
important methods: insert and delete. Furthermore, we want
to test all possible scenarios.

Considering our insert method, which always inserts at the
head of the list, we want to test a minimum of two situations:

inserting into an empty list

inserting into a nonempty list

As we will see later in the chapter, there are other types of
linked lists and their insert methods may require more test
cases than the ones previously mentioned.

After each insertion, we can use the toString method to verify
that the items were inserted correctly.

For the delete method, we should test the following scenarios:

attempting to delete from an empty list

deleting an item in the middle of the list

deleting an item stored in the head node

deleting an item stored in the last node in the list

attempting to delete an item not in the list

After each deletion, we can use the toString method to check
that the items were deleted correctly.

Example 14.3 shows a client program that tests the
IntegerLinkedList class.

EXAMPLE 14.3 The
IntegerLinkedListTest Class

 1 /* The IntegerLinkedListTest class

 2 Anderson, Franceschi

 3 */

 4

 5 public class IntegerLinkedListTest

 6 {

 7 public static void main(String [] args)

 8 {

 9 // construct empty IntegerLinkedList

10 IntegerLinkedList numbers = new IntegerLinkedList();

11 System.out.println("Number of items in the list: "

12 + numbers.getNumberOfItems() + "\n" +

numbers.toString());

13

14 numbers.insert(7); // insert in empty list

15 System.out.println ("Number of items in the list: "

16 + numbers.getNumberOfItems() + "\n" +

numbers.toString());

17

18 numbers.insert(2); // insert in list with one item

19 System.out.println("Number of items in the list: "

20 + numbers.getNumberOfItems() + "\n" +

numbers.toString());

21

22 numbers.insert(5); // insert in list with two items

23 System.out.println("Number of items in the list: "

24 + numbers.getNumberOfItems() + "\n" +

numbers.toString());

25

26 if (! numbers.delete(8)) // unsuccessful - not

in list

27 System.out.println("8 could not be deleted:");

28

29 if (numbers.delete(2)) // successful

30 System.out.println("2 was successfully deleted:"

);

31 System.out.println("Number of items in the list: "

32 + numbers.getNumberOfItems() + "\n" +

numbers.toString());

33

34 if (numbers.delete(7)) // successful

35 System.out.println("7 was successfully deleted:"

);

36 System.out.println("Number of items in the list: "

37 + numbers.getNumberOfItems() + "\n" +

numbers.toString());

38

39 if (numbers.delete(5)) // successful

40 System.out.println("5 was successfully deleted:"

);

41 System.out.println("Number of items in the list: "

42 + numbers.getNumberOfItems() + "\n" +

numbers.toString ());

43

44 if (! numbers.delete(8)) // unsuccessful -

empty list

45 System.out.println("8 could not be deleted:");

46 System.out.println("Number of items in the list: "

47 + numbers.getNumberOfItems() + "\n" +

numbers.toString ());

48 }

49 }

SOFTWARE ENGINEERING TIP
Testing all the methods in a linked list is critical to avoid errors
at run time. Try to test all possible scenarios of all methods.

In this example, we instantiate the IntegerLinkedList numbers
object at line 10, then traverse the empty list at lines 11–12.

We successively insert 7, 2, and 5 and traverse numbers after
each insertion at lines 14–24.

After that, we test our delete method. At line 26, we attempt to
delete the value 8; we know this will fail, as the output in
Figure 14.6 shows.

We then delete in the middle of the list at line 29, at the end of
the list at line 34, and at the beginning of the list (actually the
only item left at that point) at line 39. Another attempt to
delete is made at line 44, but at that time the list is empty,
which causes us to execute line 45, as shown in Figure 14.6.

Figure 14.6
Output of Example 14.3

Number of items in the list: 0

Number of items in the list: 1

7

Number of items in the list: 2

2 7

Number of items in the list: 3

5 2 7

8 could not be deleted:

2 was successfully deleted:

Number of items in the list: 2

5 7

7 was successfully deleted:

Number of items in the list: 1

5

5 was successfully deleted:

Number of items in the list: 0

8 could not be deleted:

Number of items in the list: 0

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a movie with a
step-by-step illustration of linked-list methods. Click on
the link to start the movie.

14.2 Linked Lists of Objects
Our next step is to design and code a linked list of
objects, for example, Player objects, described
earlier in the chapter.

Since each node in our list will store a Player
reference, we start by defining our Player class,
shown in Example 14.4.

EXAMPLE 14.4 The Player Class

 1 /* The Player Class

 2 Anderson, Franceschi

 3 */

 4

 5 public class Player

 6 {

 7 private int id;

 8 private String name;

 9 private String game;

 10

 11 /** constructor

 12 * @param id player's id

 13 * @param name player's name

 14 * @param game player's game

 15 */

 16 public Player(int id, String name, String game

)

 17 {

 18 setID(id);

 19 setName(name);

 20 setGame(game);

 21 }

 22

 23 /** accessor for id

 24 * @return id

 25 */

 26 public int getID()

 27 {

 28 return id;

 29 }

 30

 31 /** accessor for name

 32 * @return name

 33 */

 34 public String getName()

 35 {

 36 return name;

 37 }

 38

 39 /** accessor for game

 40 * @return game

 41 */

 42 public String getGame()

 43 {

 44 return game;

 45 }

 46

 47 /** mutator for Id

 48 * @param id new value for id

 49 * @return a reference to this object

 50 */

 51 public Player setID(int id)

 52 {

 53 this.id = id;

 54 return this;

 55 }

 56

 57 /** mutator for name

 58 * @param name new value for name

 59 * @return a reference to this object

 60 */

 61 public Player setName(String name)

 62 {

 63 this.name = name;

 64 return this;

 65 }

 66

 67 /** mutator for game

 68 * @param game new value for game

 69 * @return a reference to this object

 70 */

 71 public Player setGame(String game)

 72 {

 73 this.game = game;

 74 return this;

 75 }

 76

 77 /** equals method

 78 * @param o reference to object to compare to

this object

 79 * @return true if o is a Player object

 80 * and id, name, and game are equal in both

objects; false otherwise

 81 */

 82 @Override

 83 public boolean equals(Object o)

 84 {

 85 if (! (o instanceof Player))

 86 return false;

 87 else

 88 {

 89 Player objPlayer = (Player) o;

 90 return (id == objPlayer.id &&

name.equals(objPlayer.name)

 91 && game.equals(objPlayer.game)

);

 92 }

 93 }

 94

 95 /** toString method

 96 * @return String representation of Player

object

 97 */

 98 @Override

 99 public String toString()

100 {

101 return ("id: " + id + "\tname: "

102 + name + "\tgame: " + game);

103 }

104 }

The code for this class is straightforward. We
declared the three instance variables, along with a
constructor, accessors and mutators, and the
standard equals and toString methods.

Example 14.5 shows our PlayerNode class:

EXAMPLE 14.5 The PlayerNode
Class

 1 /* The PlayerNode class

 2 Anderson, Franceschi

 3 */

 4

 5 public class PlayerNode

 6 {

 7 private Player player;

 8 private PlayerNode next;

 9 /** default constructor

10 * initializes player and next references to null

11 */

12 public PlayerNode()

13 {

14 player = null;

15 next = null;

16 }

17

18 /** overloaded constructor

19 * @param player

20 * initializes player reference to player

reference to Player object

21 */

22 public PlayerNode(Player player)

23 {

24 setPlayer(player);

25 next = null;

26 }

27

28 /** accessor for player

29 * @return player

30 */

31 public Player getPlayer()

32 {

33 return player;

34 }

35

36 /** accessor for next

37 * @return next

38 */

39 public PlayerNode getNext()

40 {

41 return next;

42 }

43

44 /** mutator for player

45 * @param player new Player reference

46 * @return a reference to this object

47 */

48 public PlayerNode setPlayer(Player player)

49 {

50 this.player = player;

51 return this;

52 }

53

54 /** mutator for next

55 * @param next new reference to next

PlayerNode

56 * @return a reference to this object

57 */

58 public PlayerNode setNext(PlayerNode next)

59 {

60 this.next = next;

61 return this;

62 }

63 }

The code for this class is similar to the code of the
IntegerNode class. The overloaded constructor
allows the client to set the Player object, while the
default constructor sets the reference for the Player
object to null.

14.2.1 A Linked-List Shell
For our class encapsulating a linked list of Player
objects, we need to consider the following issues:

We anticipate having many linked-list
classes. Therefore, it makes sense to set up
a linked-list superclass from which our more
specialized linked-list classes will inherit.

We provide some basic utility methods, but
we omit methods to insert or delete nodes in
the list, because those methods will have
different names and implementations,
depending on the functionality of a given
subclass.

We do not intend to instantiate objects from
our superclass; thus, we declare our
superclass abstract.

Example 14.6 shows our abstract ShellLinkedList
class. This class defines methods that will be
common to all subclasses. For example, in addition
to the default constructor and the accessor for the
number of items in the list, we provide a method to
determine whether the list is empty and a toString
method that can be used to print each node in the
list. We declare both instance variables as protected
so that our linked-list subclasses inherit the head and
number of items in the list.

SOFTWARE ENGINEERING TIP
Do not include a mutator method for the number of
items. Only the linked-list class should alter the
number of items as items are inserted or deleted.
Including a mutator method for the number of items
could allow the client to corrupt its value.

EXAMPLE 14.6 The
ShellLinkedList Class

 1 /* The ShellLinkedList class

 2 Anderson, Franceschi

 3 */

 4

 5 public abstract class ShellLinkedList

 6 {

 7 protected PlayerNode head;

 8 protected int numberOfItems;

 9

10 /** constructor

11 * sets head to null and numberOfItems to 0

12 */

13 public ShellLinkedList()

14 {

15 head = null;

16 numberOfItems = 0;

17 }

18

19 /** accessor for numberOfItems

20 * @return numberOfItems

21 */

22 public int getNumberOfItems()

23 {

24 return numberOfItems;

25 }

26

27 /** isEmpty method

28 * @return true if no items in list; false

otherwise

29 */

30 public boolean isEmpty()

31 {

32 return (numberOfItems == 0);

33 }

34

35 /** toString method

36 * @return the contents of the list

37 */

38 @Override

39 public String toString()

40 {

41 String listString = "";

42 PlayerNode current = head;

43 while (current != null)

44 {

45 listString += current.getPlayer(

).toString() + "\n";

46 current = current.getNext();

47 }

48 return listString;

49 }

50 }

SOFTWARE ENGINEERING TIP
Do not provide an accessor or mutator for the head
node instance variable of the linked list. This will
protect the head node from being accessed or
changed outside the class.

SOFTWARE ENGINEERING TIP
Choose names for instance variables and methods
that illustrate their function within the data structure.
Your class will be easier for others and yourself to
understand at maintenance time.

SOFTWARE ENGINEERING TIP
Provide a toString method that traverses the list. This
is helpful in testing the other methods of the class. In
particular, traversing the list after calling the insert or
delete methods can verify that an item was correctly
added or removed.

We coded the method isEmpty at lines 27 to 33. It
returns true if the list is empty, false otherwise.

The toString method, at lines 35–49, traverses the
linked list until it reaches the end of the list, where
current will be null.

14.2.2 Generating an Exception
Now that we have a shell class for a linked list, we
want to add some methods to perform operations on
the linked list, such as inserting or deleting elements.

An issue may arise with the return value of the delete
method. When deleting a node, we want to return the
item that we are deleting. Indeed, we want to be able
to delete a node based on the value of one or more
of the fields of the object stored at that node, that is,
the value of one or more of the instance variables of
the Player class. For example, if the client wants to
delete the first Player on the list with an ID of 5, we
would then return that Player object to the client. If
the list is empty or we cannot find a Player with ID 5,
we do not want to return null because the client likely
will attempt to use the returned object reference,
which would generate a NullPointerException. A
solution to this problem is to throw an exception
when we are unable to delete the requested node.
To do this, we create our own exception class,
DataStructureException, which we use throughout
this chapter.

TABLE 14.2 ShellLinkedList Constructor
and Methods.

Constructor and Methods of the abstract ShellLinkedList Class
Class Constructor and argument list

ShellLinkedList ShellLinkedList()

constructs an empty list

Return value Method name and argument list

int getNumberOfItems()

returns the number of items in the list

boolean isEmpty()

returns true if the list contains 0
items, false otherwise

String toString()

returns the contents of every node in
the list

It is good practice to define our own exception class
as a subclass of another exception class. This way,
our class inherits the existing functionality of the
exception class, which simplifies coding the new
class: we need to code only the constructor.

Example 14.7 shows our DataStructureException
class, which extends the NoSuchElementException
class, which is in the java.util package.

EXAMPLE 14.7 The
DataStructureException Class
 1 /* The DataStructureException Class

 2 Anderson, Franceschi

 3 */

 4 import java.util.NoSuchElementException;

 5

 6 public class DataStructureException extends

NoSuchElementException

 7 {

 8 /** constructor

 9 * @param s error message

10 */

11 public DataStructureException(String s)

12 {

13 super(s);

14 }

15 }

The constructor for the class is coded at lines 8 to
14; it simply takes a String parameter and passes it
to the superclass constructor. When one of our
methods detects an error situation, such as an
attempt to delete from an empty list, we will throw the
exception using a statement like the following:

throw new DataStructureException("Some error

message here");

The message we pass to the constructor will identify
the type of error we detected.

The header of any method that throws the
DataStructureException will add a throws clause, as
in the following template:

accessModifier dataType methodName(parameter list)

 throws

DataStructureException

The NoSuchElementException class inherits from
RuntimeException, and thus is not a checked
exception. This means that the client does not need
to use try/catch blocks when invoking any method
that could throw a DataStructureException.
Nevertheless, we will always use try/catch blocks so
that when a DataStructureException occurs, the
client will see our custom message and can better
understand the source of the problem.

Now we are ready to expand our shell linked-list
class with more meaningful methods.

14.2.3 Other Methods of a Linked
List
In addition to our insert and delete methods, we also
provide the functionality to retrieve, or peek at, the
contents of a node, without deleting it.

Table 14.3 shows the APIs of the insert, delete, and
peek methods.

TABLE 14.3 PlayerLinkedList Methods
Methods of the PlayerLinkedList Class

Return
value

Method name and argument list

void insert(Player p)

inserts Player p at the beginning of the list.

Player delete(int searchID)

returns and removes the first Player in the list with
an ID equal to searchID. If there is no such Player

in the list, the method throws a
DataStructureException.

Player peek(int searchID)

returns the first Player on the list whose ID is
equal to searchID. If there is no such Player in the
list, the method throws a DataStructureException.

Again, we will insert at the beginning of the list and
our insert method has a void return value; our insert
method works in the same manner as the insert
method for a list of ints.

Our delete method will also delete a node based on
specific criteria. With our list of ints, the criterion was
simply the value of an item; here, the criterion can be
the value of one (or several) instance variables of an
item. We will implement one delete method only: one
that deletes an item based on a specified value of its
id field. The implementation of a delete method that
deletes an item based on a specified value of its
name or game field is similar.

If we find such an item, we will remove it from the list
and return a reference to that item. When deleting
from a list of ints, it made sense to return a boolean
value rather than the value of the item, because we
already knew the value of the item since it was
passed as a parameter to the method. Here, we
delete a node based on the value of the id field of an
object, so we do not know the values of the other
fields of that object. Thus, it makes sense to return
an object reference rather than just true or false. If
the item cannot be found, we will throw a
DataStructureException.

Otherwise, the mechanics of deleting a node within
the list, whether that node is the head node or is in
the middle of the list, are exactly the same as with
our linked list of ints.

Example 14.8 shows our PlayerLinkedList class.
This class extends and inherits the functionality of
our ShellLinkedList class; thus head and
numberOfItems are inherited instance variables.

EXAMPLE 14.8 The
PlayerLinkedList Class

 1 /* The PlayerLinkedList class

 2 Anderson, Franceschi

 3 */

 4

 5 public class PlayerLinkedList extends

ShellLinkedList

 6 {

 7

 8 /** default constructor

 9 * calls constructor of ShellLinkedList class

10 */

11 public PlayerLinkedList()

12 {

13 super();

14 }

15

16 /** insert method

17 * @param p Player object to insert

18 */

19 public void insert(Player p)

20 {

21 // insert as head

22 PlayerNode pn = new PlayerNode(p);

23 pn.setNext(head);

24 head = pn;

25 numberOfItems++;

26 }

27

28 /** delete method

29 * @param searchID id of Player to

delete

30 * @return the Player deleted

31 */

32 public Player delete(int searchID)

33 throws

DataStructureException

34 {

35 PlayerNode current = head;

36 PlayerNode previous = null;

37 while (current != null

38 && current.getPlayer().getID() !=

searchID)

39 {

40 previous = current;

41 current = current.getNext();

42 }

43

44 if (current == null) // not found

45 throw new DataStructureException(

searchID

46 + " not found: cannot be

deleted");

47 else

48 {

49 if (current == head)

50 head = head.getNext(); // delete head

51 else

52 previous.setNext(current.getNext());

53

54 numberOfItems--;

55 return current.getPlayer();

56 }

57 }

58

59 /** peek method

60 * @param searchID id of Player to

search for

61 * @return the Player found

62 */

63 public Player peek(int searchID)

64 throws DataStructureException

65 {

66 PlayerNode current = head;

67 while (current != null

68 && current.getPlayer().getID() !=

searchID)

69 {

70 current = current.getNext();

71 }

72

73 if (current == null) // not found

74 throw new DataStructureException(searchID

75 + " not found: cannot be

deleted");

76 else

77 {

78 return current.getPlayer();

79 }

80 }

81 }

The default constructor (lines 8–14) calls the
constructor of the superclass to initialize the head
and numberOfItems instance variables. The insert
method, coded from lines 16 to 26, is similar to our
insert method for a linked list of ints, except that it
inserts a Player object instead of an int.

The delete method, coded from lines 28 to 57,
returns the Player deleted if the deletion was
successful and throws a DataStructureException if
the deletion was not successful.

The while loop at lines 37–42 is very similar to the
delete method for our linked list of ints. We first
traverse the list searching for a node containing a
Player object whose id has the same value as
searchID, our delete method’s parameter.

Once we find a Player whose id field matches
searchID, we will connect previous to the
PlayerNode after current. If we have reached the end
of the list, that is, current is null (line 37), or if we
have found a Player whose id value is searchID (line
38), we are ready to either throw an exception or

delete the node by updating the links in our list. At
that point, we exit the while loop and skip to line 44.

At line 44, we test whether current is null, because a
null value indicates that we exited the while loop
because the list is empty or we reached the end of
the list (without finding a Player whose id is
searchID). If the deletion is unsuccessful, we throw a
DataStructureException with an appropriate
message at lines 45–46.

If current is not null, that means that we have found a
Player whose id is searchID. We update the list and
return the deleted Player at lines 49–55.

The peek method is coded at lines 59–80. We
traverse the list in the same way as the delete
method, except that because we will not delete a
node, we do not need to mark the node before
current.

If we do not find a node containing a Player whose id
is searchID, we throw an exception at lines 74–75. If
we find one, we return that Player object. In this way,
the client can directly update the objects in the list.

14.2.4 Testing a Linked-List Class
Again, we want to test the class before using it in a
program, and we want to test all possible scenarios,
similarly to what we did with our linked list of ints.

After each insertion and deletion, we use the toString
method to verify that the items were inserted and
deleted correctly.

Example 14.9 shows a client program that tests the
PlayerLinkedList class.

EXAMPLE 14.9 The
PlayerLinkedListTest Class

 1 /* The PlayerLinkedListTest class

 2 Anderson, Franceschi

 3 */

 4

 5 public class PlayerLinkedListTest

 6 {

 7 public static void main(String [] args)

 8 {

 9 Player p1 = new Player(7,"Sarah","Mario");

10 Player p2 = new Player(2,"Jin","Golf");

11 Player p3 = new Player(5,"Ajay","Sonic");

12

13 // construct empty PlayerLinkedList

14 PlayerLinkedList players = new

PlayerLinkedList();

15 System.out.println("Number of items in the

list: "

16 + players.getNumberOfItems() + "\n" +

players.toString());

17

18 players.insert(p1); // insert in empty

list

19 System.out.println("Number of items in the

list: "

20 + players.getNumberOfItems() + "\n" +

players.toString());

21

22 players.insert(p2); // insert in list of

one item

23 System.out.println("Number of items in the

list: "

24 + players.getNumberOfItems() + "\n" +

players.toString ());

25

26 players.insert(p3); // insert in list of

two items

27 System.out.println("Number of items in the

list: "

28 + players.getNumberOfItems() + "\n" +

players.toString());

29

30 Player temp; // will be assigned the

deleted item

31

32 try

33 {

34 temp = players.delete(8); //

unsuccessful

35 System.out.println("Player deleted: " +

temp);

36 }

37 catch (DataStructureException dse1)

38 {

39 System.out.println(dse1.getMessage() +

"\n");

40 }

41

42 try

43 {

44 temp = players.peek(2); //

test peek

45 System.out.println("Player retrieved: " +

temp);

46 System.out.println("Number of items in the

list: "

47 + players.getNumberOfItems() + "\n" +

players.toString());

48

49 temp = players.delete(2); //

delete in the middle

50 System.out.println("Player deleted: " +

temp);

51 System.out.println("Number of items in the

list: "

52 + players.getNumberOfItems() + "\n" +

players.toString());

53

54 temp = players.delete(7); //

delete the last item

55 System.out.println("Player deleted: " +

temp);

56 System.out.println("Number of items in the

list: "

57 + players.getNumberOfItems() + "\n" +

players.toString());

58

59 temp = players.delete(5); //

delete the first item

60 System.out.println("Player deleted: " +

temp);

61 System.out.println("Number of items in the

list: "

62 + players.getNumberOfItems() + "\n" +

players.toString());

63

64 temp = players.delete(7); //

delete from empty list

65 System.out.println("Player deleted: " +

temp);

66 System.out.println("Number of items in the

list: "

67 + players.getNumberOfItems() + "\n" +

players.toString());

68 }

69 catch (DataStructureException dse2)

70 {

71 System.out.println(dse2.getMessage());

72 }

73 }

74 }

In this example, we instantiate three Player object
references p1, p2, and p3 at lines 9, 10, and 11. We
instantiate the PlayerLinkedList players object

reference at line 14, then traverse the empty list
players at lines 15–16.

We successively insert p1, p2, and p3 and traverse
players after each insertion at lines 18–28.

After that, we test our delete method. Because our
delete method throws a DataStructureException, we
use try and catch blocks when calling that method.

At line 34, we attempt to delete an item in the list
whose id is 8; we know this will fail, and as the
output shows in Figure 14.7, we execute the catch
block at lines 37–40.

In the next try block, at line 44, we call the peek
method to see if there is a Player whose id is 2. We
traverse the list at lines 46–47 and can verify that the
list has not been modified by the call to peek.

We then delete in the middle of the list at line 49, at
the end of the list at line 54, and at the beginning of
the list (actually the only item left at that point) at line
59. Another attempt to delete is made at line 64, but
at that time the list is empty. This causes us to
execute the second catch block at lines 69–72, as
shown in Figure 14.7.

Figure 14.7
Output of Example 14.9

Number of items in the list: 0

Number of items in the list: 1

id: 7 name: Sarah game: Mario

Number of items in the list: 2

id: 2 name: Jin game: Golf

id: 7 name: Sarah game: Mario

Number of items in the list: 3

id: 5 name: Ajay game: Sonic

id: 2 name: Jin game: Golf

id: 7 name: Sarah game: Mario

8 not found: cannot be deleted

Player retrieved: id: 2 name: Jin game:

Golf

Number of items in the 1ist: 3

id: 5 name: Ajay game: Sonic

id: 2 name: Jin game: Golf

id: 7 name: Sarah game: Mario

Player deleted: id: 2 name: Jin game:

Golf

Number of items in the list: 2

id: 5 name: Ajay game: Sonic

id: 7 name: Sarah game: Mario

Player deleted: id: 7 name: Sarah game:

Mario

Number of items in the list: 1

id: 5 name: Ajay game: Sonic

Player deleted: id: 5 name: Ajay game:

Sonic

Number of items in the list: 0

7 not found: cannot be deleted

Skill Practice
with these end-of-chapter questions

14.14.2 Reading and Understanding Code

Questions 14, 15, 16, 17, 18, 19, 20, 21

14.14.3 Fill In the Code

Questions 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32

14.14.4 Identifying Errors in Code

Questions 33, 34

14.14.5 Debugging Area—Using Messages from the
Java Compiler and Java JVM

Questions 39, 40, 41, 42

14.14.6 Write a Short Program

Questions 43, 44, 45, 46, 48, 50

14.14.8 Technical Writing

Question 72

14.3 Implementing a Stack Using a
Linked List
Imagine a group of college students on a spring
break, sharing an apartment. After they eat, they
typically pile up the dirty dishes in the kitchen sink.
Another meal is consumed, and more dirty dishes
are piled on top of the existing ones. At the top of the
pile is the dirty dish that was placed there last. Soon
the students run out of clean dishes, and somebody
will have to start cleaning them. He or she will start
by cleaning the dish at the top of the pile, that is, the
last dish placed on the pile. That approach is called
last in, first out, or LIFO.

A stack is a linear data structure that organizes
items in a last in, first out manner. Figure 14.8 shows
a stack of trays. The tray at the top of the stack was
put on the stack last, but will be taken off the stack
first.

A stack can be represented by a linked list. In a
linked list representing a stack:

we insert, or push, at the beginning of the
list

we delete, or pop, the item at the beginning
of the list

Since we insert and delete at the beginning of the
list, the item deleted is the last one that was inserted,
reflecting the LIFO pattern.

Table 14.4 shows the APIs of the push, pop, and
peek methods.

The push method is identical to the insert method of
the PlayerLinkedList class discussed earlier, and is
illustrated in Figures 14.3a to 14.3d.

The pop method is different from the delete method
we coded earlier in our PlayerLinkedList class. In a
stack, we always delete the first item in the list.
Therefore, in a linked list implementing a stack, we
do not delete an item based on the value of one of its
instance variables. The pop method for our stack
returns a Player object, the one stored at the head of
the linked list. If our stack is empty, our pop method
will throw a DataStructureException in order to avoid
returning a null object reference.

The steps required to pop the first item are identical
to the steps for deleting the first node in the

PlayerLinkedList. That is illustrated in Figures 14.5a
and 14.5b.

Figure 14.8
A Stack of Trays

TABLE 14.4 PlayerStackLinkedList Methods
Methods of the PlayerStackLinkedList Class

Return
value

Method name and argument list

void push(Player p)

inserts Player p at the top of the stack.

Player pop()

returns and removes the first Player of the list. If
the list is empty, the method throws a
DataStructureException.

Player peek()

returns the first Player on the list without deleting
it. If the list is empty, the method throws a
DataStructureException.

Example 14.10 shows our PlayerStackLinkedList
class. This class also extends and inherits the
functionality of our ShellLinkedList class.

EXAMPLE 14.10 The
PlayerStackLinkedList Class

 1 /* The PlayerStackLinkedList class

 2 Anderson, Franceschi

 3 */

 4

 5 public class PlayerStackLinkedList extends

ShellLinkedList

 6 {

 7 // head and numberOfItems are inherited

instance variables

 8

 9 public PlayerStackLinkedList()

10 {

11 super();

12 }

13

14 /** push method

15 * @param p Player object to insert

16 */

17 public void push(Player p)

18 {

19 PlayerNode pn = new PlayerNode(p);

20 pn.setNext(head);

21 head = pn;

22 numberOfItems++;

23 }

24

25 /** pop method

26 * @return the Player object deleted

27 */

28 public Player pop() throws

DataStructureException

29 {

30 if (isEmpty())

31 throw new DataStructureException

32 ("empty stack: cannot be

popped");

33 else

34 {

35 Player deleted = head.getPlayer();

36 head = head.getNext();

37 numberOfItems--;

38 return deleted;

39 }

40 }

41

42 /** peek method

43 * @return the Player object retrieved

44 */

45 public Player peek() throws

DataStructureException

46 {

47 if (isEmpty())

48 throw new DataStructureException

49 ("empty stack: cannot peek"

);

50 else

51 {

52 return head.getPlayer();

53 }

54 }

55 }

The push method, coded from lines 14 to 23, is
identical to the insert method in the PlayerLinkedList
class (Example 14.8).

In the pop method (lines 25–40), we first test if the
stack is empty at line 30. If it is empty, we throw a
DataStructureException with the appropriate
argument at lines 31–32. If the stack is not empty, we
delete the first item in the stack and return it. We call
the getPlayer method from the PlayerNode class to
get the Player stored at the head of the stack, and
assign it to the Player reference deleted (line 35).
The deleted reference is then returned at line 38. At
lines 36 and 37, we perform the bookkeeping on the
stack to reflect the deletion. We update head at line
36 and decrement numberOfItems at line 37.

The peek method is coded at lines 42–54. If the list
is empty, we throw an exception at lines 48–49. If the
list is not empty, we return the Player at the head of
the list at line 52.

Like our previous linked-list implementation, it is very
important to test if the stack is empty before trying to

delete a node; failure to do so will generate a
NullPointerException at run time.

A similar program to Example 14.9 can be coded to
test all possible scenarios when using the methods
of the PlayerStackLinkedList class. This is proposed
in the short program section of the exercises.

COMMON ERROR TRAP
Before popping an item from a linked list
representing a stack, always check if the linked list is
empty. Not doing so results in a NullPointerException
at run time.

14.4 Implementing a Queue Using a
Linked List
Imagine a line of people at an automated teller machine, or
ATM, waiting to withdraw cash. The person at the front of the
line is using the ATM. When a new customer arrives, the
customer goes to the back of the line. As customers use the
ATM, they exit the line, and the next customer moves to the
front of the line. Thus, customers use the ATM in the order of
their arrival times. We call this pattern “first in, first out,” or
FIFO.

A queue is a linear data structure that organizes items in a
first in, first out manner.

Figure 14.9 shows a queue of people at an ATM. The person
at the front of the queue arrived first and will use the ATM first.
The person at the back arrived last and will use the ATM last.
The next person to arrive will stand after the person currently
at the back of the queue. That newly arrived person will
become the new back of the line.

Figure 14.9
A Queue of People Waiting at the ATM

A queue can be represented by a linked list by providing the
following operations:

we insert, or enqueue, an item at the end of the list

we delete, or dequeue, the item at the beginning of
the list

we peek at the item at the beginning of the list

Table 14.5 shows the APIs of the enqueue, dequeue, and
peek methods.

TABLE 14.5 PlayerQueueLinkedList Methods
Methods of the PlayerQueueLinkedList Class

Return
value

Method name and argument list

void enqueue(Player p)

inserts Player p at the end of the list.

Player dequeue()

returns and removes the first Player from the list. If the list is
empty, the method throws a DataStructureException.

Player peek()

returns the first Player on the list, but does not delete the
Player. If the list is empty, the method throws a
DataStructureException.

We can implement a queue using a linked list; however, we
will make an important change. Because a queue inserts
items at the end of the list, we will add an instance variable
that represents the last node of the linked list. We call this the
tail reference.

This way we will have direct access to the last node, without
having to traverse the list. We will call that instance variable

representing the last node in the list tail.

When inserting a new Player, our enqueue method will
perform the following operations:

1. Instantiate a new node containing the Player to be inserted.

2. Attach that new node at the end of the list, i.e., make the last node in the list,

tail, point to that new node.

3. Mark the new node so that it is the last node of the list, i.e., assign that node

to tail.

4. Increase the number of items by 1.

Figure 14.10a to Figure 14.10d illustrate the enqueue
operation.

Figure 14.10a
Enqueueing: Our Original Queue

Figure 14.10b
Enqueueing: Our Queue and the New Node

Figure 14.10c
Enqueueing: The New Node Has Been Attached at the End of
the Queue

Figure 14.10d
Enqueueing: tail Has Been Updated

Example 14.11 shows our PlayerQueueLinkedList class. This
class also extends and inherits the functionality of our
ShellLinkedList class.

EXAMPLE 14.11 The
PlayerQueueLinkedList Class

 1 /* The PlayerQueueLinkedList class

 2 Anderson, Franceschi

 3 */

 4

 5 public class PlayerQueueLinkedList extends ShellLinkedList

 6 {

 7 // head and numberOfItems are inherited instance

variables

 8 private PlayerNode tail; // last node

 9

10 public PlayerQueueLinkedList()

11 {

12 super();

13 tail = null;

14 }

15

16 /** enqueue method

17 * @param p Player object to insert

18 */

19 public void enqueue(Player p)

20 {

21 // insert as tail

22 PlayerNode pn = new PlayerNode(p);

23 if (isEmpty())

24 {

25 tail = pn;

26 head = pn;

27 }

28 else

29 {

30 tail.setNext(pn);

31 tail = pn;

32 }

33 numberOfItems++;

34 }

35

36 /** dequeue method

37 * @return a reference to the Player object deleted

38 */

39 public Player dequeue() throws DataStructureException

40 {

41 if (isEmpty())

42 throw new DataStructureException

43 ("empty queue: cannot dequeue");

44 else

45 {

46 Player deleted = head.getPlayer();

47 head = head.getNext();

48 if (--numberOfItems == 0)

49 tail = null;

50 return deleted;

51 }

52 }

53

54 /** peek method

55 * @return a reference to the Player object

retrieved

56 */

57 public Player peek() throws DataStructureException

58 {

59 if (isEmpty())

60 throw new DataStructureException

61 ("empty queue: cannot peek");

62 else

63 {

64 return head.getPlayer();

65 }

66 }

67 }

The constructor, from lines 10 to 14, calls the constructor of
the superclass, and because it constructs an empty list, sets
tail to null. The peek method is identical to the peek method of
our PlayerStackLinkedList class, except for the message
passed to the DataStructureException constructor.

The enqueue method, which we coded at lines 16–34, inserts
an item at the end of the list. We first instantiate a PlayerNode
object reference named pn at line 22, using the parameter
Player p of the enqueue method.

Because we insert at the end of the list, we must properly
handle the case when the queue is empty, in which case tail is
null. We test if the queue is empty at line 23. If it is, we assign
pn to head and tail at lines 25 and 26. After we execute these
two lines, the queue contains one element, and that element
is both the first and last item in the queue.

If the list is not empty, control skips to line 30, where we
attach pn at the end of the list by setting the next instance
variable of tail to pn. We then assign pn to tail in order to
reflect that pn is now the last node of the list. Finally, and in all
cases (empty list or not), we increment numberOfItems by 1
at line 33.

Figures 14.10a to 14.10d show the impact on the list of
executing lines 22, 30, and 31 step by step.

It is important to test if a queue is empty when coding the
enqueue method. Indeed, if the queue is empty, then both
head and tail are null. The code

tail.setNext(pn)

at line 30 would, in this case, generate a
NullPointerException.

COMMON ERROR TRAP
Before inserting or deleting an item in a linked list
representing a queue, always check if the linked list is empty.
Not doing so results in a NullPointerException at run time.

The dequeue method, lines 36–52, is identical to the pop
method of a linked list implementing a stack, except for lines
48 and 49. After decrementing numberOfItems, we check
whether the list is empty. If so, we set tail to null.

A similar program to Example 14.9 can be coded to test all
possible scenarios when using the methods of the
PlayerQueueLinkedList class. This is proposed in the short
program section of the exercises.

Skill Practice
with these end-of-chapter questions

14.14.1 Multiple Choice Exercises

Questions 2, 3, 4, 5, 6, 7

14.14.6 Write a Short Program

Questions 52, 53

14.14.8 Technical Writing

Question 73

14.5 Array Representation of
Stacks
Earlier in this chapter, we discussed how a stack can
be represented by a linked list. Since a stack is a last
in, first out data structure, we coded the push (insert)
and pop (delete) methods of the linked list to insert
or delete at the beginning of the list. Linked lists offer
the advantage of being expandable one object at a
time, so we do not have to worry about running out
of capacity.

However, if we know in advance that the number of
objects on a stack will always be less than some
maximum number, we can represent the stack using
an array, which is easier to implement.

Table 14.6 shows the APIs of the push, pop, and
peek methods for a stack implemented using an
array.

To match the LIFO functionality of a stack, we
instantiate the array with the maximum number of
elements. We add items to the stack starting at index
0, storing the items in adjacent locations in the array.
To keep track of the array index of the last element
inserted, we maintain an index top, short for “top of

the stack.” We always remove (pop) the item at the
top of the stack.

To push an item onto the stack, we increment the
value of top by 1 and store the element at the new
top index. To pop an item from the stack, we return
the item at index top and decrement the value of top
by 1.

TABLE 14.6 ArrayStack Methods
Methods of the ArrayStack Class

Return
value

Method name and argument list

boolean push(Player p)

inserts Player p at the top of the stack, if the
stack is not full. Returns true if the insertion was
successful; false otherwise.

Player pop()

removes and returns the Player at the top of the
stack, if the stack is not empty. If the stack is
empty, the method throws a
DataStructureException.

Player peek()

returns the Player at the top of the stack if the
stack is not empty. If the stack is empty, the
method throws a DataStructureException.

Figure 14.11a shows how we can visualize a stack of
Players. Figure 14.11b and 14.11c show the stack
after pushing a Player (6, Steve, NFL) and then
popping one element. Figure 14.11c shows that the

array element at index 3 is still Player (6, Steve,
NFL), but that is irrelevant. Since top has the value
2, the element at index 3 is not on the stack. When
the next item is pushed onto the stack, we will reuse
that element.

Figure 14.11a
Our Original Stack

Figure 14.11b
Our Stack After Pushing Player (6, Steve, NFL)

Figure 14.11c
Our Stack After Popping Once

One disadvantage of implementing a stack with an
array is that the array has a fixed size, and it is
possible that the array can be filled completely with
elements of the stack. Thus, our push method needs

to test if the array is full before pushing an element
onto the stack. Similarly, our pop method needs to
test if the array is empty before popping an element
from the stack.

Example 14.12 shows our ArrayStack class.

EXAMPLE 14.12 The ArrayStack
Class

 1 /* The ArrayStack class

 2 Anderson, Franceschi

 3 */

 4

 5 public class ArrayStack

 6 {

 7 private static final int STACK_SIZE = 100; //

maximum array size

 8 private Player [] stack; // array

of Player objects

 9 private int top; // last used

index; top of the stack

10

11 public ArrayStack()

12 {

13 stack = new Player[STACK_SIZE];

14 top = -1; // stack is empty

15 }

16

17 /** push method

18 * @param p Player object to insert

19 * @return true if insertion was successful

false otherwise

20 */

21 public boolean push(Player p)

22 {

23 if (!isFull()) // is there room to

insert?

24 {

25 stack[++top] = p;

26 return true;

27 }

28 else

29 return false;

30 }

31

32 /** pop method

33 * @return the Player deleted

34 */

35 public Player pop() throws

DataStructureException

36 {

37 if (!isEmpty()) // is there an item to

delete?

38 return stack[top--];

39 else

40 throw new DataStructureException

41 ("Stack empty: cannot pop");

42 }

43

44 /** peek method

45 * @return the Player at the top of the

stack

46 */

47 public Player peek() throws

DataStructureException

48 {

49 if (!isEmpty()) // stack is not empty

50 return stack[top];

51 else

52 throw new DataStructureException

53 ("Stack empty: cannot peek");

54 }

55

56 /** isEmpty method

57 * @return true if stack is empty, false

otherwise

58 */

59 public boolean isEmpty()

60 {

61 return (top == -1);

62 }

63

64 /** isFull method

65 * @return true if stack is full, false

otherwise

66 */

67 public boolean isFull()

68 {

69 return (top == (STACK_SIZE - 1));

70 }

71

72 /** toString method

73 * @return the stack elements starting at top

74 */

75 @Override

76 public String toString()

77 {

78 String stackString = "";

79 for (int i = top; i >= 0; i--)

80 stackString += (i + ": " + stack[i] + "\n"

);

81 return stackString;

82 }

83 }

We declare STACK_SIZE, stack, and top, our three
fields at lines 7–9.

Stack is an array of Players. STACK_SIZE is the size
of the array stack. Top represents the index of the
element of the array stack that is at the top of the
stack. The value of top will vary from –1 (when the
stack is empty) to STACK_SIZE – 1 (when the stack
is full).

In the default constructor, coded at lines 11–15, we
instantiate stack and then set top to −1, which
indicates that the stack is empty. When a client
program pushes the first Player onto the stack, top
will be incremented, so that the top of the stack will
be the array element at index 0.

We coded the push method at lines 17–30. The push
method returns true (line 26) if the stack is not full

before we insert, and false (line 29) if it is, in which
case we cannot insert. We test if the stack is not full
at line 23. If it is not full, we use the prefix auto-
increment operator to combine two operations at line
25: first increment top by 1, then assign p, the Player
parameter of the push method, to the element at
index top.

We coded the pop method at lines 32–42. The pop
method attempts to delete and return a Player object
from the top of the stack. The method throws a
DataStructureException at lines 40–41 if the stack is
empty, in which case we cannot pop. If it is not
empty, we use the postfix auto-decrement operator
to combine two operations at line 38: first return the
Player stored at index top in the array stack, then
decrement top by 1.

We have also coded a few other methods in this
class. The peek method (lines 44–54) is similar to
pop, except that it does not delete from the stack and
it returns the element at the top of the stack. Again,
this enables the client to directly update that object in
the stack. The isEmpty and isFull methods are coded
at lines 56–62 and 64–70, respectively. And the
toString method, coded at lines 72–82, returns a
String representation of the contents of the stack.
Note that in that method, we loop from top to 0, not
from STACK_SIZE – 1 to 0.

COMMON ERROR TRAP
Do not confuse the top of the stack with the last
index in the array. Array elements with an index
higher than top are not on the stack.

As before, a program similar to Example 14.9 can be
coded to test all possible scenarios on the methods
of the ArrayStack class. This is proposed in the short
program section of the exercises.

14.6 Programming Activity 1:
Writing Methods for a Stack Class
In this activity, you will work with a stack represented
by an array, performing this activity:

Code the push and pop methods to insert onto and delete from a
stack represented by an array of ints.

The framework will animate your code to give you
feedback on the correctness of your code. It will
display the state of the stack at all times. The result
of your operation will be displayed, reflecting the
value returned by your push or pop method. The
items in the stack will be displayed in black while the
array elements that are not part of the stack will be
displayed in red.

Instructions
Copy the contents of the Programming Activity 1
folder for this chapter from the companion website
for this text onto a folder on your computer. Open the
StackArray.java source file. Searching for five
asterisks (*****) in the source code will position you
to the code section where you will add your code.

In this task, you will fill in the code inside the
methods push and pop to insert onto and delete from
a stack. Example 14.13 shows the section of the
StackArray source code where you will add your
code. This example is different from the one in the
chapter. The stack is an array of ints, not Players.
The isFull and isEmpty methods have not been
provided; you can code them or not, depending on
how you want to implement the push and pop
methods.

EXAMPLE 14.13 Location of
Student Code in StackArray Class

 /** push method

 * @param value value to be pushed onto the

stack

 * @return true if successful, false if

unsuccessful

 */

 public boolean push(int value)

 {

 // ***** 1. Student code starts here *****

 // stack is an int array instance variable

representing

 // the array that stores our stack

 // top is an instance variable representing

 // the index of the top of the stack

 // CAPACITY is a static constant representing

 // the size of the array stack

 // The push method adds the argument value

 // to the top of the stack, if it is possible

 // code the push method here

 // end of student code, part 1

 }

 /** pop method

 * @return the value of the top element of the

stack, if

 * successful

 */

 public int pop() throws DataStructureException

 {

 // ***** 2. Student code restarts here *****

 // stack is an int array instance variable

representing

 // the array that stores our stack

 // top is an instance variable representing

 // the index of the top of the stack

 // CAPACITY is a static constant representing

 // the size of the array stack

 // The pop method deletes the element

 // at the top of the stack, if it is possible

 // code the pop method here

 // end of student code, part 2

 }

To test your code, compile StackArray.java and run
the StackPracticeApplication class, which contains
the main method. When the program begins, a
window will display the state of the stack, along with
two buttons labeled “push” and “pop,” as shown in
Figure 14.12.

Enter a value into the text box, then click on the
“push” button to insert onto the stack. Click on the
“pop” button to delete from the stack. Close the
window to exit the program.

If you successively push 34, 56, 12, and 98 onto the
stack, then pop once, the window will look like the
one shown in Figure 14.13.

Figure 14.12
Opening Window

Troubleshooting
If your method implementation does not animate or
animates incorrectly, check these items:

Check the feedback in the window to see if
your code gives the correct result.

Verify that you updated the value of top
correctly.

Verify that you correctly coded the cases
where the stack is full (push method) and the
stack is empty (pop method).

Figure 14.13
Sample Window After Performing Some Stack
Operations

DISCUSSION QUESTIONS
1. Explain how the array elements above the index top can

have assigned values, but are still irrelevant.

2. Explain what happens if you do not test whether the
stack is empty in the pop method or full in the push
method.

14.7 Array Representation of
Queues
Earlier in this chapter, we also saw how a queue can
be represented by a linked list. Again, if we know in
advance that the number of objects in a queue will
always be less than some maximum number, we can
also use an array to represent the queue.

To match the FIFO functionality of a queue, we will
need to keep track of two things:

1. the location of the back of the queue. This is the index of the last

element enqueued or added to the queue. We will call the index

of that element back.

2. the location of the front of the queue. That is the index of the

element that will be dequeued or retrieved next. We will call the

index of that element front.

The queue will be comprised of the elements whose
indexes are between back and front, inclusive.

To dequeue, or delete from the queue, we will return
the item at index front and increase the value of front
by one. To enqueue, or insert an element in the
queue, we will increment the value of back by one,
and insert the element at the array index back.

There is one important problem in representing a
queue with a standard array: the number of available
elements for the queue in the array will shrink over
time as we enqueue and dequeue, since enqueueing
and dequeueing both advance their indexes toward
the end of the array.

To illustrate this point, let’s consider a queue
represented by an array of eight elements. We start
by enqueueing five players in this order: (5, Ajay,
Sonic), (2, Jin, Golf), (7, Sarah, Mario), (8, Gino,
Diablo), and (6, Steve, NFL). Since (5, Ajay, Sonic)
was the first to be inserted in the queue, that Player
is now at the front of the queue. (6, Steve, NFL),
inserted last, is at the back of the queue. Thus, (5,
Ajay, Sonic) will be stored at index 0 and (6, Steve,
NFL) will be stored at index 4, as shown in Figure
14.14a. Suppose now that we dequeue once. Front
now has the value 1, as shown in Figure 14.14b. The
array element at index 0 is no longer in the queue
and its value is irrelevant. Since we insert at the
back, the array element at index 0 can no longer be
used for the queue. If we dequeue again, front will
have the value 2, and we will no longer be able to
use the array element at index 1. As we keep
enqueueing and dequeueing, the values of back and
front keep increasing and we have less and less
usable space in the array. Indeed, when back

reaches 7, we will no longer be able to enqueue at
all.

Figure 14.14a
Our Queue After Enqueueing the First Five Elements

Figure 14.14b
Our Queue After Dequeueing Once

SOFTWARE ENGINEERING TIP
When implementing a queue as an array, think of it
as a circular array.

There is a solution to this problem: deal with the
array as if it were circular. After back reaches the last
index of the array, we start enqueueing again at
index 0. Thus, in a circular array, the next index after
the last array index is 0. Let’s say that at one point
the back marker reaches 7 and the front marker is at
5. When we enqueue a new object, we will store that
object at index 0, which is the “next” index after 7 if
we imagine that the array is circular. In this way, our
useful array capacity never shrinks and is always 8.

How do we know that we have reached the last array
index and that the next index should be 0? We
simply add 1 to the value of back, and then take that
number modulo the size of the array, which we call
QUEUE_SIZE.

Table 14.7 shows the APIs of the enqueue and
dequeue methods.

TABLE 14.7 ArrayQueue Methods
Methods of the ArrayQueue Class

Return
value

Method name and argument list

boolean enqueue(Player p)

inserts Player p at the back of the queue if the
queue is not full. Returns true if the insertion was
successful, false otherwise.

Player dequeue()

returns and removes the Player at the front of
the queue. If the queue is empty, the method
throws a DataStructureException.

Player peek()

returns the Player at the front of the queue. If the
queue is empty, the method throws a
DataStructureException.

Figure 14.15 illustrates a sequence of insertions and
deletions in a queue of Players implemented as a
circular array. When we begin, the queue is empty.
The value of front is 0 and the value of back is

QUEUE_SIZE – 1. When we enqueue the first item,
that element is placed at index

Figure 14.15
Starting with an Empty Queue, Four Successive
Enqueues Followed by Two Dequeues

(back + 1) % QUEUE_SIZE

which is now 0, and back will be given the value 0. If
we enqueue again, the new element will be placed at
index 1 and back will be given the value 1. If we
enqueue two more items, they will be placed at
indexes 2 and 3, respectively, and back will be given
the value 3. If we then dequeue, we will return the
item at index 0, and front will become 1. If we
dequeue again, we will return the item at index 1,
and front will become 2.

When we enqueue, we first need to check if the
queue is full. When the queue is full, the relationship

between back and front is:

(back + 1 – front) % QUEUE_SIZE == 0

For example, in a full queue with 8 elements, the
values of front and back could be 0 and 7,
respectively, or they could be 5 and 4 or any other
pair of values for which the expression above is true.

When we dequeue, we first need to check if the
queue is empty. When the queue is empty, the
relationship between front and back is the same as
when the queue is full:

(back + 1 – front) % QUEUE_SIZE == 0

COMMON ERROR TRAP
Do not confuse array indexes 0 and QUEUE_SIZE –
1 with front and back. In a queue represented by a
circular array, the indexes 0 and QUEUE_SIZE – 1
are irrelevant.

Indeed, when there is only one item in the queue,
back and front have the same index value. When we
dequeue that last item from the queue, front will
increase by 1 modulo QUEUE_SIZE, resulting in the
preceding relationship between front and back.

Figure 14.16 shows an example of an empty queue
and a full queue.

So, how do we know if the queue is full or empty? In
order to distinguish a full queue from an empty
queue, we must add another instance variable to our
class. We will keep track of the number of elements
in the queue: if the number of elements is 0, then the
queue is empty; if the number of elements is equal to
the size of the array, then the queue is full.

Figure 14.16
An Empty Queue and a Full Queue

Example 14.14 shows our ArrayQueue class.

EXAMPLE 14.14 The ArrayQueue
Class

 1 /* The ArrayQueue class

 2 Anderson, Franceschi

 3 */

 4

 5 public class ArrayQueue

 6 {

 7 private static final int QUEUE_SIZE = 8;

 8 private Player [] queue;

 9 private int front;

10 private int back;

11 private int numberOfItems;

12

13 public ArrayQueue()

14 {

15 queue = new Player[QUEUE_SIZE];

16 front = 0;

17 back = QUEUE_SIZE - 1;

18 numberOfItems = 0;

19 }

20

21 public boolean isFull()

22 {

23 return (numberOfItems == QUEUE_SIZE);

24 }

25

26 public boolean isEmpty()

27 {

28 return (numberOfItems == 0);

29 }

30

31 /** enqueue method

32 * @param p the Player to insert

33 * @return true if list is not full, false

otherwise

34 */

35 public boolean enqueue(Player p)

36 {

37 if (!isFull())

38 {

39 queue[(back + 1) % QUEUE_SIZE] = p;

40 back = (back + 1) % QUEUE_SIZE;

41 numberOfItems++;

42 return true;

43 }

44 else

45 return false;

46 }

47

48 /** dequeue method

49 * @return the Player deleted

50 */

51 public Player dequeue() throws

DataStructureException

52 {

53 if (!isEmpty())

54 {

55 front = (front + 1) % QUEUE_SIZE;

56 numberOfItems--;

57 return queue[(QUEUE_SIZE + front - 1) %

QUEUE_SIZE];

58 }

59 else

60 throw new DataStructureException

61 ("Queue empty: cannot dequeue"

);

62 }

63

64 /** toString method

65 * @return a front-to-back String

representation of the queue

66 */

67 @Override

68 public String toString()

69 {

70 String queueString = "";

71 for (int i = front; i < front +

numberOfItems; i++)

72 queueString += queue[i %

QUEUE_SIZE].toString() + "\n";

73 return queueString;

74 }

75 }

In the constructor, coded at lines 13–19, we
instantiate the array queue, set front to 0, back to
QUEUE_SIZE – 1, and numberOfItems to 0. When

the first element is inserted in the queue, back will be
increased by 1 modulo QUEUE_SIZE and its value
will become 0.

The isFull and isEmpty methods, coded at lines 21–
24 and 26–29, enable a client program to check if
the queue is full or empty before enqueueing or
dequeueing a Player. Our enqueue, dequeue, and
toString methods also call these methods.

In the enqueue method, coded at lines 31–46, we
attempt to insert a Player into the queue. The
enqueue method returns false if the queue is full (line
45) to indicate that we cannot insert. If the queue is
not full, we place the Player at the back of the queue,
update back accordingly, increment the number of
items, and return true (lines 39–42).

In the dequeue method, coded at lines 48–62, we
attempt to delete and return a Player from the front
of the queue. The method throws a Data
StructureException at lines 60–61 if the queue is
empty, in which case there are no Players to delete.
If the queue is not empty, we update front,
decrement the number of items, and return the
Player that was at the front of the queue (lines 55–
57). Note that we add QUEUE_SIZE to the
expression front + 1 to guarantee that it will be
nonnegative.

We could also code a peek method. It would be
similar to the peek method we coded for the
StackArray class, except that top would be replaced
by front. Coding the peek method is included as an
exercise at the end of the chapter.

The toString method, coded at lines 64–74, is slightly
different from the toString methods we have written
so far. Since we know that there are numberOfItems
items in the queue and that the first item is at index
front, we can simply start at front and loop
numberOfItems times to build our String
representation of the queue. Depending on how
many items are in the queue and the value of front,
the looping variable could get larger than
QUEUE_SIZE − 1, so we use the modulus operator
(line 72) to make sure we have a valid index.

As before, a very similar program to Example 14.9
can be coded to test all possible scenarios on the
methods of the ArrayQueue class. This is proposed
in the short program section of the exercises.

As we have demonstrated, a stack or queue can be
implemented using either an array or a linked list.
Each implementation has advantages and
disadvantages. Arrays are easier to code and every
item in the stack or queue can be accessed directly
through its index. Linked lists are easily expanded

one item at a time. To expand an array, we would
need to instantiate a new, larger array and copy the
elements of the existing stack or queue to the new
array, which is quite tedious.

Table 14.8 summarizes these trade-offs.

TABLE 14.8 Array Versus Linked-List
Implementation of a Stack or a Queue

Array Linked List
Easily expanded No Yes

Direct access to every item Yes No

Easy to code Yes No

14.8 Sorted Linked Lists
Let’s go back to our linked list of video game players. If we
want to display that list on a website so that all the players
can see it, we might want to display the list in ascending (or
descending) order by id number, or in alphabetical order by
name or game. If we store the items in the list in sorted order,
we can display the list by simply calling the toString method.

The items can be sorted based on the values of one of their
instance variables. Often, but not always, a class is designed
so that one of the instance variables uniquely identifies an
object: that instance variable is called a key. For the Player
class, it is reasonable to assign a different id value to every
Player object, and designate the id instance variable as the
key. If items do not include an instance variable as a natural
key, we should provide a method that enables us to compare
two items.

A linked list that stores its nodes in ascending order (or
descending order) according to a criterion is called a sorted
linked list. Without loss of generality, we will consider a linked
list sorted in ascending order.

Table 14.9 shows the APIs of the insert and delete methods
for a sorted linked list. The only difference in this API from that
of our unsorted list is that the location for inserting an element
is dependent on the key value, rather than always inserting at
the beginning of the list.

TABLE 14.9 PlayerSortedLinkedList Methods
Methods of the PlayerSortedLinkedList Class

Return
value

Method name and argument list

void insert(Player p)

inserts Player p in a location that keeps the list sorted in
ascending order.

Player delete(int searchID)

returns and removes the first Player of the list with an id equal
to searchID. If there is no such Player on the list, the method
throws a DataStructureException.

By default, an empty list is sorted, so a newly instantiated list
is sorted. As we add elements, we need to maintain the
sorted order of the list. Thus, the insert method must locate
the proper position for inserting each element so that the
inserted element’s id is greater than the id of the previous
element (if any) and less than or equal to the id of the next
element (if any). We will find that proper place by traversing
the list, comparing the value of the id of the new Player with
the values of the ids of the Players stored at the various
nodes in the list.

If the value of the item to insert will place it at the beginning of
the list, then we will insert it in the same manner as we did in
our earlier examples.

When inserting a new Player in the middle or at the end of the
list, our insert method will do the following:

1. Instantiate a new node containing the Player to be inserted.

2. Traverse the list to identify the location to insert the new node. We will call

the node before the insertion point previous, and the node after the insertion

point current.

3. Attach the new node to current; that is, make the new node point to current.

4. Attach previous to the new node; that is, make previous point to the new

node.

5. Increase the number of items in the list by 1.

Figures 14.17a to 14.17d illustrate inserting a node
somewhere in the middle of the sorted list.

Figure 14.17a
Our Original Sorted List Before Inserting Player (6, Steve,
NFL)

Figure 14.17b
Step 1: Instantiate the New Node

Figure 14.17c
Steps 2 and 3: Insert Occurs Between previous and current.
Attach the New Node to current

Figure 14.17d
Step 4: Attach previous to the New Node

The insertion code corresponding to Figures 14.17c and
14.17d is shown in Example 14.15 at lines 38–39.

Keeping the list in sorted order also impacts our delete
method. If the item we are looking for is not in the list, we may
be able to determine that fact without traversing the entire list.

As soon as we visit an item with a value greater than the key
value, we know that the item we are looking for is not in the
list. Because the list is sorted in ascending order, all the
Players stored after that node must have an id value greater
than the key. Thus, we will be able to exit our delete method
at this point, saving processing time.

Example 14.15 shows our PlayerSortedLinkedList class. This
class also extends and inherits the functionality of our
ShellLinkedList class. The list is sorted in ascending order
according to the value of each Player’s id.

EXAMPLE 14.15 The
PlayerSortedLinkedList Class

 1 /* The PlayerSortedLinkedList class

 2 Anderson, Franceschi

 3 */

 4

 5 public class PlayerSortedLinkedList extends

ShellLinkedList

 6 {

 7 // head and numberOfItems are inherited instance

variables

 8

 9 public PlayerSortedLinkedList()

10 {

11 super();

12 }

13

14 /** insert method

15 * @param p Player object to insert

16 */

17 public void insert(Player p)

18 {

19 PlayerNode pn = new PlayerNode(p);

20

21 // we will insert after previous and before current

22 PlayerNode current = head;

23 PlayerNode previous = null;

24 while (current != null

25 && current.getPlayer().getID() < p.getID())

26 {

27 previous = current;

28 current = current.getNext();

29 }

30

31 if (previous == null) // insert as head

32 {

33 pn.setNext (head);

34 head = pn;

35 }

36 else

37 {

38 pn.setNext (current);

39 previous.setNext (pn);

40 }

41 numberOfItems++;

42 }

43

44 /** delete method

45 * @param searchID id of Player to delete

46 * @return the Player deleted

47 */

48 public Player delete(int searchID)

49 throws DataStructureException

50 {

51 PlayerNode current = head;

52 PlayerNode previous = null;

53 while (current != null

54 && current.getPlayer().getID() != searchID)

55 {

56 if (current.getPlayer().getID() > searchID)

57 throw new DataStructureException

58 (searchID + " not found: cannot be

deleted");

59 previous = current;

60 current = current.getNext();

61 }

62

63 if (current == null) // not found

64 throw new DataStructureException

65 (searchID + " not found: cannot be deleted"

);

66 else // searchID found at Player at node current

67 {

68 if (current == head)

69 head = head.getNext(); // delete head

70 else

71 previous.setNext (current.getNext ());

72

73 numberOfItems--;

74 return current.getPlayer();

75 }

76 }

77 }

The insert method, which we coded at lines 14 to 42, inserts a
node containing its Player parameter p. Line 19 declares and
instantiates a PlayerNode object, called pn, which we will
insert in the linked list. To get ready to search for the insertion
point for the new Player, we declare two PlayerNode object
references, current and previous, at lines 22–23, and assign
them head and null. We use current to traverse the list, going
just past the point of insertion, and we use previous to track
the node just before current. We will insert pn between
previous and current. From lines 24 to 29, we use a while loop
to traverse the list. We construct our while loop condition so
that we will exit the loop if the list is empty or if we have
reached the end of the list (we test if current is null at line 24),

or if we are visiting a node containing a Player whose id is
larger than or equal to the id value of p, the Player parameter
of the insert method (line 25).

As mentioned earlier, there are two different cases for
insertion: either we insert at the beginning of the list, or we
insert in the middle or at the end of the list. At line 31 we test if
previous is null, in which case we never entered the while
loop because the list is empty or because the head node
contains a Player whose id value is greater than p’s id. Either
way, we insert at the beginning of the list at lines 33 and 34.

If previous is not null, we will insert in the middle of the list or
at the end of the list. To insert the node pn between previous
and current, we connect pn to current at line 38, and previous
to pn at line 39. Figures 14.17a to 14.17d show the step-by-
step impact of lines 19, 38, and 39 on the sorted linked list.

The delete method (lines 44–76) is very similar to the delete
method of the PlayerLinkedList class. The only difference is at
lines 56–58. We first test at line 56 if the id of the Player at
current is greater than searchID. If that is true, we have no
chance of finding a Player object with an id of searchID since
the list is sorted in ascending order. Therefore, we throw a
DataStructureException with an appropriate message, and we
exit the method.

Let’s test our PlayerSortedLinkedList class. In order to keep
things simple, we will test the insert method only, because the
delete method is, as discussed, almost identical to the delete
method of the PlayerLinkedList class.

We want to test the following cases:

insert in an empty list

insert at the beginning of the list

insert in the middle of the list

insert at the end of the list

We traverse the list after each insertion to check that the
Player was inserted at the correct location in the sorted linked
list.

Example 14.16 shows how to use the
PlayerSortedLinkedListTest class and how to test its methods.

EXAMPLE 14.16 The
PlayerSortedLinkedListTest Class

 1 /* The PlayerSortedLinkedListTest class

 2 Anderson, Franceschi

 3 */

 4

 5 public class PlayerSortedLinkedListTest

 6 {

 7 public static void main(String [] args)

 8 {

 9 Player p1 = new Player(7, "Sarah","Mario");

10 Player p2 = new Player(2, "Jin","Golf");

11 Player p3 = new Player(5, "Ajay","Sonic");

12 Player p4 = new Player(8, "Gino","Diablo");

13

14 // construct empty PlayerSortedLinkedList

15 PlayerSortedLinkedList players =

16 new PlayerSortedLinkedList();

17

18 System.out.println("Number of items in the list: "

19 + players.getNumberOfItems() + "\n" +

players.toString());

20

21 System.out.println("inserting " + p1);

22 players.insert(p1); // insert in empty list

23 System.out.println("Number of items in the list: "

24 + players.getNumberOfItems() + "\n" +

players.toString());

25

26 System.out.println("inserting " + p2);

27 players.insert(p2); // insert at the beginning

of the list

28 System.out.println("Number of items in the list: "

29 + players.getNumberOfItems() + "\n" +

players.toString());

30

31 System.out.println("inserting " + p3);

32 players.insert(p3); // insert in the middle of the

list

33 System.out.println("Number of items in the list: "

34 + players.getNumberOfItems() + "\n" +

players.toString());

35

36 System.out.println("inserting " + p4);

37 players.insert(p4); // insert at the end of the

list

38 System.out.println("Number of items in the list: "

39 + players.getNumberOfItems() + "\n" +

players.toString());

40 }

41 }

In Example 14.16, we instantiate our usual four Player objects
p1, p2, p3, and p4 at lines 9–12. We choose the id values so
that our four test cases will be covered when we successively
insert the Player objects. We instantiate the
PlayerSortedLinkedList players object at lines 14–16.

We first traverse the empty list at lines 18–19. Then, we
successively insert p1, p2, p3, and p4, traversing the list after
each insertion (lines 21–39). Figure 14.18 shows the output of
Example 14.16. As we can see, players remains sorted in
ascending order after each insertion.

Figure 14.18
Output of Example 14.16

Number of items in the list: 0

inserting id: 7 name: Sarah game: Mario

Number of items in the list: 1

id: 7 name: Sarah game: Mario

inserting id: 2 name: Jin game: Golf

Number of items in the list: 2

id: 2 name: Jin game: Golf

id: 7 name: Sarah game: Mario

inserting id: 5 name: Ajay game: Sonic

Number of items in the list: 3

id: 2 name: Jin game: Golf

id: 5 name: Ajay game: Sonic

id: 7 name: Sarah game: Mario

inserting id: 8 name: Gino game: Diablo

Number of items in the list: 4

id: 2 name: Jin game: Golf

id: 5 name: Ajay game: Sonic

id: 7 name: Sarah game: Mario

id: 8 name: Gino game: Diablo

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a movie with a
step-by-step illustration of sorted linked-list methods.
Click on the link to start the movie.

14.9 Programming Activity 2:
Writing Insert and Delete Methods
for a Sorted Linked List
In this activity, you will work with a sorted linked list of
integers, performing the following activity:

Code the insert and delete methods to insert and delete nodes in a
sorted linked list of ints.

The framework will animate your code to give you
feedback on the correctness of your code. It will
display the state of the sorted linked list at all times.

Instructions
Copy the contents of the Programming Activity 2
folder for this chapter from the companion website for
this text onto a folder on your computer. Open the
LinkedList.java source file. Searching for five
asterisks (*****) in the source code will position you to
the code section where you will add your code.

In this task, you will fill in the code inside the insert
and delete methods for a sorted linked list of integers.
Example 14.17 shows the section of the LinkedList
source code where you will add your code. This
example is different from the one presented earlier in
the chapter. The nodes of the linked list contain ints,
not Players. The delete method returns a boolean
value to indicate whether the deletion was successful.
Because the client has already provided the int value
to delete, there is no reason to return the value to the
client.

You can first code the insert method and run the
application. Once the insert method works properly,
you can code the delete method and run the
application again. We have provided a dummy return
statement in the delete method so that the
LinkedList.java file will compile if only the insert
method is coded. When you write the delete method,
modify the dummy return statement to return the
appropriate value.

EXAMPLE 14.17 Location of
Student Code in LinkedList

 public void insert(int value)

 {

 // ***** Student writes the body of this

method *****

 // code the insert method of a linked list of

ints

 // the int to insert in the linked list is

value

 //

 // Student code starts here

 //

 //

 // End of student code, part 1

 //

 }

 public boolean delete(int value)

 {

 // ***** Student writes the body of this

method *****

 // code the delete method of a linked list of

ints

 // the int to delete in the linked list is

value

 // if deletion is successful, return true

 // otherwise, return false

 //

 // Student code starts here

 //

 return true; // replace this return

statement

 //

 // End of student code, part 2

 //

 }

When coding the insert and delete methods, you will
need to use constructors and methods of the Node
class. The API of the Node class is shown in Table
14.10.

TABLE 14.10 API of the Node Class
Constructors and Methods of the Node Class

Constructors

Class Constructor and argument list

Node Node(int data)

constructs a new Node object whose data instance
variable is data. The pointer to the next node is set
to the value null.

Node Node(int data, Node nextNode)

constructs a new Node object whose data instance
variable is data. The Node points to nextNode.

Methods

Return
value

Method name and argument list

Node setNext(Node nextNode)

sets the Node object reference pointed to by this
Node to nextNode.

Node setData(int data)

sets the data instance variable to data

Node getNext()

returns an object reference to the Node pointed to by
this Node.

int getData()

returns the data stored in this Node.

To test your code, compile and run the
LinkedListPractice.java file, which contains the main
method. When the program begins, a window will
display the state of the linked list (the list is empty
when we start), along with various buttons labeled
“insert,” “delete,” “toString,” “count,” and “clear,” as
shown in Figure 14.19.

To insert or delete a value, type the integer into the
text field labeled “Node Data,” then click on the
“insert” or “delete” button. The application only
accepts integers greater than or equal to 0 and less
than or equal to 9999; it will not let you enter
characters that are not digits. The main panel will
visually represent the sorted linked list. The text area
at the bottom will give you feedback on your
operations. Close the window to exit the program.

Figure 14.20 shows the application after successively
inserting 45, 67, and 78, traversing the list, then
deleting 67.

Figure 14.19
Opening Window

Troubleshooting
If your method implementation does not animate or
animates incorrectly, check these items:

Check the feedback in the window to see if
your code gives the correct result.

Verify that you correctly coded both cases of
the insert method: insert at the beginning and
insert in the middle of the list.

Verify that you correctly coded all the cases of
the delete method: fail to delete, delete at the
beginning, and delete in the middle or at the
end of the list.

DISCUSSION QUESTIONS
1. Explain why it is important to update head when

inserting at the beginning of a list.

2. Explain the difference between deleting in a nonsorted
list and deleting in a sorted list.

14.10 Doubly Linked Lists
So far, when traversing a linked list and looking for a node
containing a particular value, we have used two nodes,
which we called previous and current. We kept track of the
previous node because we had no way to go backward in
the list from the current node.

This problem can be solved by using a doubly linked list,
which provides two links between nodes, one forward and
one backward. Using the backward link, we can now
backtrack from current if needed. The backward link is also
represented by a node object reference.

Figure 14.21 shows how we can visualize such a node.
The data in the node is 5, Ajay, and Sonic. The right arrow
points to the next node and the left arrow points to the
previous node.

Figure 14.20
Sample Window After Performing Some Operations

Figure 14.21
A Node with Two Links

In order to implement a doubly linked list, we need to
modify our Player Node class by adding a previous
instance variable along with its accessor and mutator
methods. Example 14.18 shows a summary of our revised
PlayerNode class.

EXAMPLE 14.18 Summary of the
PlayerNode Class for a Doubly Linked
List
 1 /* The PlayerNode class

 2 Anderson, Franceschi

 3 */

 4

 5 public class PlayerNode

 6 {

 7 private Player player; // the player at

that node

 8 private PlayerNode next; // the next

PlayerNode

 9 private PlayerNode previous; // the previous

PlayerNode

10

11 // constructors

12 // accessors are getPlayer, getNext, getPrevious

13 // mutators are setPlayer, setNext, setPrevious

14 }

When inserting a node, we need to reset both forward and
backward links, i.e., the next and previous instance
variables. Suppose, for example, that we insert a node
containing Player p before a node named current. We will
illustrate only the general case, when current is in the
middle or at the end of the doubly linked list; that is, current
is neither head nor null.

The steps we need to perform are the following:

1. Instantiate the new node.

2. Attach the new node to current by setting its next field to current.

3. Attach the node before current to the new node by setting its next field to

the new node.

4. Set previous in the new node to point to the node before current.

5. Set previous in current to point to the new node.

6. Add 1 to the number of items in the list.

Steps 2 and 3 set the forward links, and Steps 4 and 5 set
the backward links.

Figures 14.22a to 14.22f provide a step-by-step illustration
for inserting a node in the middle of a doubly linked list.
Note that we no longer need to keep a previous object
reference, because we can get the location of the previous
node from the current node.

Figure 14.22a
Our Original Doubly Linked List

Figure 14.22b
Step 1: Instantiate a New Node

Figure 14.22c
Step 2: Set next in the New Node to current

Figure 14.22d
Step 3: Set next in the Node Before current to the New
Node

Figure 14.22e
Step 4: Set previous in the New Node to the Node Before
current

Figure 14.22f
Step 5: Set previous in current to the New Node

Our code updating the links inside the insert method of the
doubly linked list class will be the following:

PlayerNode pn = new PlayerNode(p); // Step 1

pn.setNext(current); // Step 2

current.getPrevious().setNext(pn); // Step 3

pn.setPrevious(current.getPrevious()); // Step 4

current.setPrevious(pn); // Step 5

numberOfItems++; // Step 6

The order in which these statements are executed is
important. Indeed, if Step 5 were executed immediately
after Step 1, we would overwrite the reference to the
previous node. Then we could not access the node before
current, and we would be unable to properly reset the links
between the nodes.

Note that if current is either head (insert at the beginning)
or null (insert at the end), the preceding code needs to be
modified; that is proposed in the group project.

When deleting a node, we also need to reset all the
appropriate forward and backward links. Suppose, for
example, that we delete a node named current. We will
illustrate only the general case, when current is in the
middle of the doubly linked list. In this case, current is
neither the head nor the last node in the list (since we are
deleting current, we are assuming that current is not null);
that is, there is a node after current in the list.

To delete a node, current, from the middle of a doubly
linked list, we need to perform the following steps.

1. Set next in the node before current to the node after current.

2. Set previous in the node after current to the node before current.

3. Decrease the number of items by 1.

Figures 14.23a to 14.23c give a step-by-step illustration of
deleting a node.

Figure 14.23a
Our Original Linked List

Figure 14.23b
Step 1: Set next in the Node Before current to the Node
After current

Figure 14.23c
Step 2: Set previous in the Node After current to the Node
Before current

Our code updating the links inside the delete method of the
doubly linked list class is:

current.getPrevious().setNext(current.getNext());

// Step 1

current.getNext().setPrevious(current.getPrevious());

// Step 2

numberOfItems--;

// Step 3

Again, note that if current is either head or the last node in
the list, the previous code would need to be modified; that
is also proposed in the group project at the end of the
chapter, which builds a sorted, doubly linked list.

14.11 Linked Lists Using Generic
Types
Many classes in the Java Class Library, such as the
ArrayList class, implement generics, meaning that
the data type for the data of the class can be
specified by the client. User-defined classes can also
implement generic types. In this section, we will build
a linked list class that implements generic types, so
that the client can specify the class type of the data
stored in our linked list. In a linked list, the data of the
item is stored in the node; thus, the data in our Node
class will be a generic object.

The basic syntax for the header of a class that
implements generics is:

accessModifier class

ClassName<IdentifierForGenericClass>

For the identifier for our generic class, we will use
the uppercase letter T. Thus, for our Node class, the
header will be:

public class Node<T>

Inside the class, we can then use that identifier, here
T, as we would use an existing or user-defined class.

For example, to declare an instance variable named
data of class T, we write:

private T data;

In order to use an object reference of a class
implementing generics, we use the following syntax:

ClassName<IdentifierForGenericClass>

Thus, in order to declare an object reference of the
Node class as a return type or a parameter for a
method, we use the notation Node<T>.

Example 14.19 shows our Node<T> class.

EXAMPLE 14.19 The Node Class
Using Generics

 1 /** The Node class

 2 * Anderson, Franceschi

 3 */

 4

 5 public class Node<T>

 6 {

 7 private T data;

 8 private Node<T> next;

 9

10 /** default constructor

11 * sets data and next to null

12 */

13 public Node()

14 {

15 data = null;

16 next = null;

17 }

18

19 /** constructor

20 * @param data reference to data

21 * sets next to null

22 */

23 public Node(T data)

24 {

25 setData(data);

26 next = null;

27 }

28

29 /** accessor for data

30 * @return reference to data item

31 */

32 public T getData()

33 {

34 return data;

35 }

36

37 /** accessor for next

38 * @return next

39 */

40 public Node<T> getNext()

41 {

42 return next;

43 }

44

45 /** mutator for data

46 * @param data reference to new data item

47 * @return reference to this object

48 */

49 public Node setData(T data)

50 {

51 this.data = data;

52 return next;

53 }

54

55 /** mutator for next

56 * @param reference to next Node

57 * @return reference to this object

58 */

59 public Node setNext(Node<T> next)

60 {

61 this.next = next;

62 return this;

63 }

64 }

Example 14.20 shows our ShellLinkedList<T> class.

EXAMPLE 14.20 The
ShellLinkedList Class Using
Generics

 1 /* The ShellLinkedList class

 2 Anderson, Franceschi

 3 */

 4

 5 public abstract class ShellLinkedList<T>

 6 {

 7 protected Node<T> head;

 8 protected int numberOfItems;

 9

10 /** constructor

11 * sets head to null and numberOfItems to 0

12 */

13 public ShellLinkedList()

14 {

15 head = null;

16 numberOfItems = 0;

17 }

18

19 /** accessor for numberOfItems

20 * @return numberOfItems

21 */

22 public int getNumberOfItems()

23 {

24 return numberOfItems;

25 }

26

27 /** isEmpty method

28 * @return true if no items in list; false

otherwise

29 */

30 public boolean isEmpty()

31 {

32 return (numberOfItems == 0);

33 }

34

35 /** toString method

36 * @return all items in the list

37 */

38 @Override

39 public String toString()

40 {

41 String listString = "";

42 Node<T> current = head;

43 for (int i = 0; i < numberOfItems; i++)

44 {

45 listString += current.getData().toString (

) + "\n";

46 current = current.getNext();

47 }

48 return listString;

49 }

50 }

Our GenericLinkedList class, shown in Example
14.21, implements the same methods as our
PlayerLinkedList from earlier in the chapter. The only

differences in the code are the class header and the
declaration and instantiation of Node variables.

EXAMPLE 14.21 The
GenericLinkedList Class with
Generics

 1 /* The GenericLinkedList class

 2 Anderson, Franceschi

 3 */

 4

 5 public class GenericLinkedList<T> extends

ShellLinkedList<T>

 6 {

 7 // head and numberOfItems are inherited

instance variables

 8

 9 /** constructor

10 * calls constructor of ShellLinkedList

11 */

12 public GenericLinkedList()

13 {

14 super();

15 }

16

17 /** insert method

18 * @param item T object to insert

19 */

20 public void insert(T item)

21 {

22 // insert as head

23 Node<T> nd = new Node<T>(item);

24 nd.setNext(head);

25 head = nd;

26 numberOfItems++;

27 }

28

29 /** delete method

30 * @param item T object to delete

31 * @return true if the deletion was

successful, false otherwise

32 */

33 public boolean delete(T item)

34 {

35 Node<T> current = head;

36 Node<T> previous = null;

37 while (current != null

38 && ! (item.equals (

current.getData())))

39 {

40 previous = current;

41 current = current.getNext();

42 }

43

44 if (current == null) // not found

45 return false;

46 else

47 {

48 if (current == head)

49 head = head.getNext(); // delete head

50 else

51 previous.setNext (current.getNext());

52

53 numberOfItems--;

54 return true;

55 }

56 }

57 }

Our GenericLinkedList class, shown in Example
14.21, implements the same methods as our
PlayerLinkedList

The insert method, coded at lines 17–27, is very
similar to the insert method of the PlayerLinkedList
class. Instead of a Player reference, its parameter
item is a T reference, where T is a generic class. It
also inserts item at the beginning of the list. At line
23, we declare and instantiate a Node<T> object
reference, which is then connected to the list. The
rest of the insert method is identical to the code in
our insert method of a nongeneric linked-list class.

Because we do not know in advance what type of
object our class will be instantiated with, we
implemented our delete method differently. We
cannot delete an item based on the value of one of
its fields because we do not know what the fields of
that item are, since that item is a generic object.
Thus, the parameter of our delete method is a
generic object of the same type as the items in the
list. There is no need to return an item if we find it
and can delete it because we already have that item

as the parameter of the method. For that reason, our
delete method returns a boolean value: true if we
were able to delete the parameter item, false
otherwise. In order to compare item with the items in
the list, we call the equals method at line 38,
inherited by any class from the Object class, and
which will need to be overwritten in the class the
client specifies as the type for the linked list.

Now that we have defined and implemented our
linked list class storing generic objects, how do we
use it in a client class? We use the same syntax as
we would using an existing Java class implementing
generics. In fact, in the GenericLinkedList class, we
used the Node class, which implements generics.

Example 14.22 shows a client class using the
GenericLinkedList class.

EXAMPLE 14.22 The
LinkedListTest Class

 1 /* The LinkedListTest class

 2 Anderson, Franceschi

 3 */

 4

 5 public class LinkedListTest

 6 {

 7 public static void main(String [] args)

 8 {

 9 Player p1 = new Player(7,"Sarah","Mario");

10 Player p2 = new Player(2,"Jin","Golf");

11 Player p3 = new Player(5,"Ajay","Sonic");

12

13 // construct empty LinkedList of Player

objects

14 GenericLinkedList<Player>players = new

GenericLinkedList<Player>();

15 System.out.println("Number of items in the

list: "

16 + players.getNumberOfItems() + "\n" +

players.toString());

17

18 players.insert(p1); // insert in empty list

19 System.out.println("Number of items in the

list: "

20 + players.getNumberOfItems() + "\n" +

players.toString());

21

22 players.insert(p2); // insert in list of

one item

23 System.out.println("Number of items in the

list: "

24 + players.getNumberOfItems() + "\n" +

players.toString());

25

26 players.insert(p3); // insert in list of

two items

27 System.out.println("Number of items in the

list: "

28 + players.getNumberOfItems() + "\n" +

players.toString());

29

30 if (players.delete(p2)) // delete in the

middle

31 System.out.println("Player successfully

deleted: ");

32 System.out.println("Number of items in the

list: "

33 + players.getNumberOfItems() + "\n" +

players.toString());

34

35 if (players.delete(p3)) // delete at the

beginning

36 System.out.println("player successfully

deleted: ");

37 System.out.println("Number of items in the

list: "

38 + players.getNumberOfItems() + "\n" +

players.toString());

39 }

40 }

The only statement that is specific to the generic
character of the GenericLinkedList is at line 14 when
we declare and instantiate an object reference of
GenericLinkedList. If we wanted to declare and
instantiate a list containing Integer objects, we would
have written:

GenericLinkedList<Integer> numbers = new

GenericLinkedList<Integer>();

Figure 14.24 shows the output of Example 14.22.

Figure 14.24
Output of Example 14.22

Number of items in the list: 0

Number of items in the list: 1

id: 7 name: Sarah game: Mario

Number of items in the list: 2

id: 2 name: Jin game: Golf

id: 7 name: Sarah game: Mario

Number of items in the list: 3

id: 5 name: Ajay game: Sonic

id: 2 name: Jin game: Golf

id: 7 name: Sarah game: Mario

Player successfully deleted:

Number of items in the list: 2

id: 5 name: Ajay game: Sonic

id: 7 name: Sarah game: Mario

Player successfully deleted:

Number of items in the list: 1

id: 7 name: Sarah game: Mario

14.12 Recursively Defined Linked Lists
A linked list can be defined recursively. A recursively defined
linked list is made up of two items:

first, an item, which is the first item in the linked list

rest, a linked list, which consists of the rest of the
linked list

Figure 14.25 shows a representation of a recursively defined
linked list.

In our recursively defined linked list, we have two instance
variables: the item first and the linked list rest. Because we
can access the rest of the list through the rest instance
variable, we do not need a node class.

In designing our class encapsulating a recursive linked list of
generic objects, we will limit ourselves to an unsorted linked
list. We will insert at the beginning of the list. When we delete,
we will attempt to delete and return an object that matches a
parameter object. When we cannot delete, we will return
false.

Table 14.11 shows the APIs of the insert and delete methods.

Figure 14.25
A Recursively Defined Linked List

TABLE 14.11 RecursiveLinkedList Methods
Methods of the RecursiveLinkedList Class

Return
value

Method name and argument list

void insert(T item)

inserts item at the beginning of the list.

boolean delete(T item)

removes the first object of the list that matches item and
returns true. If there is no such object in the list, the method
returns false.

After we insert, first will hold the item inserted, and rest will
hold the original list. Figures 14.26a and 14.26b show a
recursively defined linked list before and after inserting a
Player named p. In the figures, p1 represents the current first
item, and r1 represents the rest of the list before the insertion.
The insert method is not recursive.

Figure 14.26a
The List Before Inserting Player p

Figure 14.26b
The List After Inserting Player p

The delete method is recursive. We have three base cases:

The list is empty.

The element to delete is the first item of the list.

The element to delete is not the first item of the list
and the rest of the list is empty.

In the general case, we try to delete the element from the rest
of the list.

If the list is empty (the first base case), we will return false. If
the list is not empty, we will look at first and check to see if it
matches the parameter item. If it does (the second base
case), we will delete first, and rest will become our list. If it
does not, then we will attempt to delete inside rest. If rest is
null, we cannot delete (the third base case) and we will return
false. If rest is not null, we will make a recursive call to the
delete method with rest (the general case).

More generally, we want to do the following:

If the list is empty (base case #1), the method returns.

Process first, that is, the first element in the list (base
case #2); the method may or may not return at that
point.

If rest is null—that is, the list has only 1 item (base
case #3)—the method returns.

If rest is not null, make a recursive call on rest.

Example 14.23 shows our RecursiveLinkedList class.
Because of its recursive design, the RecursiveLinkedList
class does not extend the ShellLinkedList class.

EXAMPLE 14.23 The
RecursiveLinkedList Class

 1 /* The RecursiveLinkedList class

 2 Anderson, Franceschi

 3 */

 4

 5 public class RecursiveLinkedList<T>

 6 {

 7 private T first;

 8 private RecursiveLinkedList<T> rest;

 9

10 public RecursiveLinkedList()

11 {

12 first = null;

13 rest = null;

14 }

15

16 /** insert method

17 * @param item object to insert at beginning of list

18 */

19 public void insert(T item)

20 {

21 if (isEmpty ()) // is list empty?

22 first = item;

23 else

24 {

25 RecursiveLinkedList<T> tempList =

26 new RecursiveLinkedList<T>();

27 tempList.first = first;

28 tempList.rest = rest;

29 first = item;

30 rest = tempList;

31 }

32 }

33

34 /** delete method

35 * @param item the T object to delete

36 * @return true if item is deleted, false otherwise

37 */

38 public boolean delete(T item)

39 {

40 if (isEmpty()) // is list empty?

41 return false;

42 else if (first.equals(item)) // found it

43 {

44 T temp = first;

45 if (rest == null)

46 first = null;

47 else // rest not null

48 {

49 first = rest.first;

50 rest = rest.rest;

51 }

52 return true;

53 }

54 else if (rest == null)

55 return false;

56 else // try to delete in rest

57 return rest.delete(item);

58 }

59

60 /** isEmpty method

61 * @return true if the list has no elements;

62 * false, otherwise

63 */

64 public boolean isEmpty()

65 {

66 return (first == null);

67 }

68

69 /** toString method

70 * @return a String listing the elements in the list

71 */

72 @Override

73 public String toString()

74 {

75 String listString = "";

76 if (first != null)

77 {

78 listString = first.toString() + "\n";

79 if (rest != null)

80 listString += rest.toString();

81 }

82 return listString;

83 }

84 }

We declare the two instance variables at lines 7–8: first
represents the first T object in the list, and rest represents the
rest of the list, which is a RecursiveLinkedList object
reference itself. We coded the default constructor, which
constructs an empty list, at lines 10–14.

We coded the insert method at lines 16–32. After insertion,
first will be the method’s T parameter item, and rest will be the
list before we inserted item. We begin by testing if the list is
empty by calling the isEmpty method (defined at lines 60 to

67), which returns true if first is null. If the list is empty, we
assign item to first at line 22. If first is not null, we copy the
current list into a new list at lines 25–28. We instantiate a
temporary list, tempList. We then assign first to the first
instance variable of tempList and rest to the rest instance
variable of tempList. At that point, we have copied the current
list into tempList. Now we can insert the new item into the first
position (line 29) and make tempList the rest of the list (line
30).

The recursive delete method (lines 34–58) takes the T
parameter item. If the list is empty (line 40), we return false. If
the list is not empty, then first is not null, and we can call the
equals method on first. More generally, when processing a
recursively designed list, not testing for all the base case
conditions could result in a NullPointerException.

If the list is not empty and first is equal to item (line 42), we do
the necessary bookkeeping on the list to delete the first
element at lines 44–51 before returning true at line 52. In
order to delete the first element of the list, we need to update
first and rest. First will be assigned the first element of rest.
However, rest could be null, in which case rest does not have
a first element. Thus, we test if rest is null at line 45. If it is, the
list is now empty, so we assign null to first at line 46. If rest is
not null, we assign the first element of rest to first at line 49,
and we assign the rest of rest to rest at line 50.

Figures 14.27a to 14.27c show the list before deleting Player
p, after line 49 is executed, and after line 50 is executed,
when Player p has been deleted from the list.

Finally, if the list is not null and the first is not equal to item,
we skip to line 54, where we test if rest is null. If it is, we
cannot delete and return false. If rest is not null, we make the
recursive call to try to delete from rest at line 57.

Figure 14.27a
The List Before Deleting Player p

Figure 14.27b
The List After first Is Assigned first of rest

Figure 14.27c
The List After Rest of rest Is Assigned to rest; Player p Has
Been Deleted

We coded our toString method at lines 69–83. This method is
also recursive. If the list is empty, it returns the empty String. If
the list is not empty, we assign the contents of first to the
temporary variable listString at line 78. Note that the class the
client specifies as the type of the RecursiveLinkedList will
need to provide an overriding toString method. We then need
to traverse rest in order to add its contents to listString. But

rest could be null, in which case we are finished traversing the
list. So if rest is not null (line 79), we traverse rest at line 80 by
making the recursive call:

rest.toString()

That recursive call returns a String representing the contents
of rest; we concatenate that String to listString at line 80
before returning listString at line 82.

Example 14.24 shows how to use our RecursiveLinkedList
class in a client program.

EXAMPLE 14.24 The
RecursiveLinkedListTest Class

 1 /* The RecursiveLinkedListTest class

 2 Anderson, Franceschi

 3 */

 4

 5 public class RecursiveLinkedListTest

 6 {

 7 public static void main(String [] args)

 8 {

 9 Player p1 = new Player(7,"Sarah","Mario");

10 Player p2 = new Player(2,"Jin","Golf");

11 Player p3 = new Player(5,"Ajay","Sonic");

12

13 RecursiveLinkedList<Player> players =

14 new RecursiveLinkedList<Player>();

15 System.out.println("The list is\n"

16 + (players.isEmpty() ? "empty\n" :

players.toString()));

17

18 players.insert(p1);

19 System.out.println("Inserting " + p1);

20 System.out.println("The list is\n"

21 + (players.isEmpty() ? "empty\n" :

players.toString()));

22

23 players.insert(p2);

24 System.out.println("Inserting " + p2);

25 System.out.println("The list is\n"

26 + (players.isEmpty() ? "empty\n" :

players.toString()));

27

28 players.insert(p3);

29 System.out.println("Inserting " + p3);

30 System.out.println("The list is\n"

31 + (players.isEmpty() ? "empty\n" :

players.toString()));

32

33 if (players.delete(p2)) // delete in middle of

list

34 System.out.println("Player deleted: " + p2);

35 System.out.println("The list is\n"

36 + (players.isEmpty() ? "empty\n" :

players.toString()));

37

38 if (players.delete(p1)) // delete at end of the

list

39 System.out.println("Player deleted: " + p1);

40 System.out.println("The list is\n"

41 + (players.isEmpty() ? "empty\n" :

players.toString()));

42

43 if (players.delete(p1)) // attempt to delete

will fail

44 System.out.println("The list deleted: " + p1);

45 System.out.println("The list is\n"

46 + (players.isEmpty() ? "empty\n" :

players.toString()));

47

48 if (players.delete(p3)) // delete only Player in

list

49 System.out.println("Player deleted: " + p3);

50 System.out.println("The list is\n"

51 + (players.isEmpty() ? "empty\n" :

players.toString()));

52

53 if (players.delete(p3)) // try to delete from

empty list

54 System.out.println("Player deleted: " + p3);

55 System.out.println("The list is\n"

56 + (players.isEmpty() ? "empty\n" :

players.toString()));

57 }

58 }

COMMON ERROR TRAP
When processing a recursively defined list, not testing for all
the base case conditions can eventually result in a
NullPointer-Exception at run time.

SOFTWARE ENGINEERING TIP
When a class is defined recursively, think in terms of
implementing recursive methods.

In Example 14.24, we again instantiate our usual three Player
object references p1, p2, and p3 at lines 9–11. We instantiate
the RecursiveLinkedList players at lines 13–14. This example
tests the following operations:

inserting in an empty list (line 18)

inserting in a list of one element (line 23)

inserting in a list of two elements (line 28)

deleting an element in the middle of the list (line 33)

deleting an element at the end of the list (line 38)

failing to delete from a non-empty list (line 43)

deleting the only element in the list (line 48)

failing to delete from an empty list (line 53)

Figure 14.28 shows the output of Example 14.24.

Figure 14.28
Output of Example 14.24

The list is

empty

Inserting id: 7 name: Sarah game: Mario

The list is

id: 7 name: Sarah game: Mario

Inserting id: 2 name: Jin game: Golf

The list is

id: 2 name: Jin game: Golf

id: 7 name: Sarah game: Mario

Inserting id: 5 name: Ajay game: Sonic

The list is

id: 5 name: Ajay game: Sonic

id: 2 name: Jin game: Golf

id: 7 name: Sarah game: Mario

Player deleted: id: 2 name: Jin game: Golf

The list is

id: 5 name: Ajay game: Sonic

id: 7 name: Sarah game: Mario

Player deleted: id: 7 name: Sarah game: Mario

The list is

id: 5 name: Ajay game: Sonic

The list is

id: 5 name: Ajay game: Sonic

Player deleted: id: 5 name: Ajay game: Sonic

The list is

empty

The list is

empty

Skill Practice
with these end-of-chapter questions

14.14.1 Multiple Choice Exercises

Questions 1, 8, 9, 10, 11, 12, 13

14.14.4 Identifying Errors in Code

Questions 35, 36, 37, 38

14.14.6 Write a Short Program

Questions 47, 49, 51, 54, 55, 56, 57, 58

14.14.8 Technical Writing

Question 72

CHAPTER REVIEW

14.13 Chapter Summary
A data structure is a mechanism for
organizing the data a program stores in
memory.

A linked list is a data structure consisting of
nodes linked together like a chain.

Typical instance variables for a node are an
object reference to the data stored at the
node, and a node reference, which points to
the next node in the list.

Because each node has a reference to the
next node as an instance variable, a linked
list needs only one instance variable, its first
node, which is usually called head. Often, for
convenience, we also include an instance
variable representing the number of items in
the list.

A linked list can be expanded one node at a
time, therefore optimizing memory use.

A stack is a data structure organized as last
in, first out.

A queue is a data structure organized as first
in, first out.

A linked list can be used to represent a
stack. In that case, we push onto the stack
by inserting an item at the beginning of the

list. We pop by deleting the first item of the
list.

A linked list can also be used to represent a
queue. In that case, we enqueue by inserting
at the end of the list. We dequeue by deleting
the first item of the list. Because we insert at
the end of the list, it is useful to have an
instance variable representing the last node
in the list, often called tail.

A stack can also be represented by an array,
if we know in advance the maximum number
of items that will be stored on the stack at
one time. An instance variable called top
represents the index of the last array
element pushed onto the stack. We pop, or
delete, that element, unless the stack is
empty. We push, or insert, onto the stack a
new element at index (top + 1), unless the
stack is full.

A queue can also be represented by an
array, if we know in advance the maximum
number of items that will be stored in the
queue at one time. A circular array is usually
implemented for the queue. Two instance
variables called front and back represent the
indexes of the first and last element inserted
in the queue. We dequeue, or delete, the
element at index front unless the queue is

empty. We enqueue, or insert, a new
element at index (back + 1% QUEUE_SIZE),
unless the queue is full.

In a class encapsulating a data structure, a
method returning an object can throw an
exception if we cannot return or cannot find
the object. Indeed, when the object we are
looking for is not found, it is preferable to
throw an exception rather than to return null.

A linked list can be sorted in ascending or
descending order. One of the instance
variables of the list objects is used as the key
to sort the list elements. The insert method
finds the appropriate location to insert an
item so that the list remains sorted.

A variation of the linked list includes a doubly
linked list. In this case, each node contains
three instance variables: an object
representing the data, a node reference
representing the next node, and another
node reference representing the previous
node. The latter enables us to backtrack in
the list, if we need to, whereas in a singly
linked list, we can traverse the list in a
forward direction only. However,
implementing such a list is more difficult;
each method, in particular insert and delete,

involves more operations to maintain these
double links between nodes.

Linked lists can implement generic types;
when such a linked list is instantiated, the
client specifies the class of the items for the
list.

Linked lists can also be recursively defined.
A recursively defined linked list is made up of
two elements: first, which is the first item in
the linked list, and rest, a linked list that
consists of the rest of the linked list.

14.14 Exercises, Problems, and
Projects

14.14.1 Multiple Choice Exercises
 1. What is an advantage of linked lists over arrays?

❑ Linked lists are easily expanded.

❑ Linked lists are limited in size.
❑ Linked lists can store objects, whereas arrays are limited to

primitive data types.

 2. How is a stack organized?

❑ FIFO

❑ LIFO
❑ Items are sorted in ascending order.

❑ Items are sorted in descending order.

 3. How is a queue organized?

❑ FIFO
❑ LIFO

❑ Items are sorted in ascending order.
❑ Items are sorted in descending order.

 4. The following linked list represents a stack. If we pop once from
the stack, what item is popped?

(7, Ajay, NFL) → (3, Sarah, Mario) → (9, Jin, Golf)
 head
→ (5, Joe, Sonic) → null

❑ (7, Ajay, NFL)
❑ (3, Sarah, Mario)

❑ (9, Jin, Golf)
❑ (5, Joe, Sonic)

 5. The linked list that follows represents a stack. After we push the
player (5, Joe, Sonic) onto the stack, what are the first and last
items on the stack?

 (7, Ajay, NFL) → (3, Sarah, Mario) → (9, Jin, Golf) → null
 head

❑ (7, Ajay, NFL) and (9, Jin, Golf)

❑ (5, Joe, Sonic) and (9, Jin, Golf)
❑ (3, Sarah, Mario) and (5, Joe, Sonic)

❑ (7, Ajay, NFL) and (5, Joe, Sonic)

 6. The linked list that follows represents a queue. If we dequeue
once, what item is dequeued?

 (7, Ajay, NFL) → (3, Sarah, Mario) → (9, Jin, Golf) →
 head
 (5, Joe, Sonic) → null
 tail

❑ (7, Ajay, NFL)

❑ (3, Sarah, Mario)
❑ (9, Jin, Golf)

❑ (5, Joe, Sonic)

 7. The linked list that follows represents a queue. After we enqueue
the player (5, Joe, Sonic), what are now the first and last items on
the queue?

 (7, Ajay, NFL) → (3, Sarah, Mario) → (9, Jin, Golf) → null
 head tail

❑ (7, Ajay, NFL) and (9, Jin, Golf)

❑ (5, Joe, Sonic) and (9, Jin, Golf)
❑ (3, Sarah, Mario) and (5, Joe, Sonic)

❑ (7, Ajay, NFL) and (5, Joe, Sonic)

 8. The diagram that follows shows the current state of a stack
represented by an array of 50 integers. After pushing 36 and 62
onto the stack and then popping once, what will be the value of
top, and what element will be stored at index top?

Index Item
stored

47
(top)

28

46 98

… …

3 17

2 12

1 20

0 45

❑ top is 47 and the element at index top is 28
❑ top is 49 and the element at index top is 62

❑ top is 48 and the element at index top is 36
❑ top is 49 and the element at index top is 20

 9. The diagram that follows shows the current state of a stack
represented by an array of 50 integers. After pushing 36, 88, and
62 onto the stack and popping three times from the stack, what will
be the value of top and what element will be stored at index top?

Index Item
stored

47
(top)

28

46 98

… …

3 17

2 12

1 20

0 45

❑ top is 49 and the element at index top is 62
❑ top is 47 and the element at index top is 28

❑ top is 46 and the element at index top is 98
❑ top is 50 and the element at index top is 17

10. The diagram that follows shows the current state of a queue
represented by a circular array of 8 integers. After enqueuing 36
and 62, and dequeuing once, what are the values of front and
back, and what elements are stored at indexes front and back?

Index Item
stored

7

6
(back)

28

5 97

4 25

3 54

2
(front)

12

1

0

❑ front = 0, stores 62; back = 5, stores 97
❑ front = 3, stores 54; back = 0, stores 62

❑ front = 3, stores 54; back = 8, stores 62
❑ front = 1, stores 36; back = 6, stores 28

11. The diagram that follows shows the current state of a queue
represented by a circular array of 8 integers. After enqueuing 36,
100, 83, 77, and 62, what are the values of front and back, and
what elements are stored at indexes front and back?

Index Item
stored

7

6
(back)

28

5 97

4 25

3 54

2
(front)

12

1

0

❑ front = 2, stores 12; back = 11, stores 62
❑ front = 2, stores 12; back = 3, stores 62

❑ front = 3, stores 62; back = 6, stores 28
❑ front = 2, stores 12; back = 1, stores 83

12. The diagram that follows shows the current state of a queue
represented by a circular array of 8 integers. After dequeuing 5
times, what are the values of front and back, and what elements
are stored at indexes front and back?

Index Item
stored

6
(back)

28

5 97

4 25

3 54

2
(front)

12

1

0

❑ front = 7; back = 6; the queue is empty

❑ front = 2; back = 1; the queue is empty

❑ front = 2; back = 6; the queue is empty

13. The diagram that follows shows the current state of a queue
represented by a circular array of 8 integers. After dequeuing 8
times, what are the values of front and back, and what elements
are stored at indexes front and back?

Index Item
stored

7

6
(back)

28

5 97

4 25

3 54

2
(front)

12

1

0

❑ front = 7; back = 6; the queue is empty

❑ front = 2; back = 1; the queue is empty
❑ front = 2; back = 6; the queue is empty

❑ front = 6; back = 2; the queue is empty

14.14.2 Reading and
Understanding Code
For Questions 14 to 21, consider the following
classes from this chapter: Player, PlayerNode, and
PlayerLinkedList.

14. What does this method of the PlayerLinkedList class do?

public void foo1(Player p, Player q)
{
 insert(p);
 insert(q);
}

15. What does this method of the PlayerLinkedList class do?

public int foo2()
{
 PlayerNode nd = head;
 int i = 0;
 while (nd != null)
 {
 i++;
 nd = nd.getNext();
 }
 return i;

}

16. What does this method of the PlayerLinkedList class do?

public boolean foo3()
{
 if (numberOfItems > 0)
 {
 head = null;
 numberOfItems = 0;
 return true;
 }
 else
 return false;
}

17. What does this method of the PlayerLinkedList class do?

public int foo4()
{
 PlayerNode nd = head;
 int i = 0;
 while (nd != null)
 {
 if (nd.getPlayer().getGame().equals("Sonic"
))
 i++;
 nd = nd.getNext();
 }
 return i;
}

18. What does this method of the PlayerLinkedList class do?

public boolean foo5(int i)
{
 PlayerNode nd = head;
 while (nd != null)
 {
 if (nd.getPlayer().getID() == i)
 return true;
 nd = nd.getNext();
 }
 return false;
}

19. What does this method of the PlayerLinkedList class do?

public void foo6()
{
 PlayerNode nd = head;
 while (nd != null)
 {
 if (nd.getPlayer().getGame().equals(
"Diablo"))
 System.out.println(nd.getPlayer(
).toString());
 nd = nd.getNext();
 }
}

20. What does this method of the PlayerLinkedList class do?

public void foo7(Player p)
{
 if (numberOfItems == 0)
 System.out.println("Do nothing");
 else
 {
 PlayerNode pn = new PlayerNode(p);
 pn.setNext(head.getNext());
 head.setNext(pn);
 numberOfItems++;
 }
}

21. What does this method of the PlayerLinkedList class do?

public boolean foo8()
{
 if (numberOfItems <= 2)
 return false;
 else
 {
 head.setNext((head.getNext()).getNext()
);
 numberOfItems--;
 return true;
 }
}

14.14.3 Fill In the Code
22. Consider the following state of a linked list of Player items.

→ (7, Ajay, NFL) → (3, Sarah, Mario) → (9, Jin, Golf) → (5,
Joe, Sonic)
 previous

As indicated, previous is the PlayerNode whose player is (7, Ajay,
NFL). Write the code to modify the list so that (9, Jin, Golf) has
been deleted.

→ (7, Ajay, NFL) → (3, Sarah, Mario) → (5, Joe, Sonic) →

// your code goes here

23. Consider the following state of a linked list of Player items.

→ (7, Ajay, NFL) → (3, Sarah, Mario) → (9, Jin, Golf) → (5,
Joe, Sonic)
 previous

As indicated, previous is the PlayerNode whose player is (7, Ajay,
NFL).

Write the code to modify the list so that the two items in the middle
have been deleted.

→ (7, Ajay, NFL) → (5, Joe, Sonic) →

// your code goes here

24. Consider the following state of a linked list of Player items.

→ (7, Ajay, NFL) → (3, Sarah, Mario) → (9, Jin, Golf) → (5,
Joe, Sonic)
 previous current

As indicated, previous is the PlayerNode whose player is (7, Ajay,
NFL) and current is the PlayerNode whose player is (3, Sarah,
Mario). Write the code to modify the list so that the two nodes in
the middle have been swapped as shown here. (You need to swap
the actual nodes, rather than modify their respective data.)

→ (7, Ajay, NFL) → (9, Jin, Golf) → (3, Sarah, Mario) → (5,
Joe, Sonic)

// your code goes here

For Questions 25 to 28, consider the LLNode class
that follows, representing a node with a char
instance variable, representing a grade (A, B, C, D,
or F):

public class LLNode

{

 private char grade;

 private LLNode next;

 // constructors and methods here

}

25. Code the overloaded constructor with one parameter, a char.

// your code goes here

26. Code the overloaded constructor with two parameters.

// your code goes here

27. Code the accessors for the class.

// your code goes here

28. Code the mutators for the class.

// your code goes here

For Questions 29 to 31, consider the following
DifferentLinkedList class, using the LLNode class
from Questions 25 to 28 (assume that the LLNode
class has all appropriate accessors, mutators, and
other methods).

public class DifferentLinkedList

{

 private LLNode head;

 // there is no instance variable for

 // the number of items in the list

 // constructors and methods here

}

29. Code a method that returns true if the list is empty; false
otherwise.

// your code goes here

30. Code a method that returns true if the list contains at least one
item; false otherwise.

// your code goes here

31. Code a method that returns the number of items in the list.

// your code goes here

32. Consider a method of class PlayerLinkedList with the following
header:

public Player retrieveMe(int index)

Write a few statements showing how you would call that method
from a client program.

// your code goes here

14.14.4 Identifying Errors in Code
33. What would happen if you execute the following code just before

traversing a linked list?

head.setNext(head);

34. Suppose we have coded the following method in the
PlayerLinkedList class. Where is the error?

public int getHeadID()
{
 return head.getID();
}

35. Suppose we modify the code of the push method in the StackArray
class as follows (that is, without incrementing top). What type of
problem could that method create?

public boolean push(Player p)
{
 if (!isFull()) // is there room to insert?
 {
 stack[top] = p;
 return true;
 }
 else
 return false;
}

36. Suppose we modify the code of the pop method in the StackArray
class as follows (that is, without decrementing top). What type of
problem could that method create?

public Player pop() throws
DataStructureException
{
 if (!isEmpty()) // is there an item to
delete?
 return (stack[top]);
 else
 throw new DataStructureException
 ("Stack empty: cannot pop");
}

37. Suppose we modify the code of the enqueue method in the
QueueArray class as follows (that is, without incrementing the
number of items). What type of problem could that method create?

public boolean enqueue(Player p)
{
 if (!isFull())
 {
 queue[(back + 1) % QUEUE_SIZE] = p;
 back = (back + 1) % QUEUE_SIZE;
 return true;
 }
 else
 return false;
}

38. Suppose we modify the code of the dequeue method in the
QueueArray class as follows (that is, with a change in the
expression computing the index in the return statement). Where is
the error?

public Player dequeue() throws
DataStructureException
{
 if (!isEmpty())
 {
 front = (front + 1) % QUEUE_SIZE;
 numberOfItems--;
 return queue[(front - 1) % QUEUE_SIZE];
 }
 else
 throw new DataStructureException
 ("Queue empty: cannot dequeue"
);
}

14.14.5 Debugging Area—Using
Messages from the Java Compiler
and Java JVM
39. You coded the following inside the main method of the Test class,

using the Player and PlayerNode classes.

PlayerNode pn = new PlayerNode();
Player p = pn.getPlayer();
p.setID(10); // line 10

The code compiles, but at run time you get a NullPointerException
at line 10.

Exception in thread "main"
java.lang.NullPointerException
 at Test.main(Test.java:10)

Explain what the problem is and how to fix it.

40. You coded the following in the main method of the Test class,
using the Player and PlayerLinkedList classes.

Player p = new Player(5,"Ajay","Mario");
PlayerLinkedList pll = new PlayerLinkedList();
pll.insert(p);
PlayerNode temp = pll.getHead(); //
line 10
System.out.println("head is " + temp.toString()
);

At compile time, you get the following error:

Test.java:10: error: cannot find symbol
 PlayerNode temp = pll.getHead(); // line 10
 ^
 symbol : method getHead ()
 location: variable pll of type
PlayerLinkedList
1 error

Explain what the problem is and how to fix it.

41. You coded the following in the main method of the Test class,
using the Player and PlayerLinkedList classes.

Player p = new Player(5,"Ajay","Mario");
PlayerLinkedList pll = new PlayerLinkedList();
pll.insert(p);
if (pll.delete(5)) // line 10
 System.out.println("Successful deletion"
);

At compile time, you get the following error:

Test.java:10: error: incompatible types: Player
cannot be
converted to boolean
 if (pll.delete(5)) // line 10
 ^
1 error

Explain what the problem is and how to fix it.

42. You coded the following inside the foo method of the
PlayerLinkedList class.

PlayerNode current = head; // line 9
while (current.getPlayer().getID() != 99)
 current = current.getNext();
// more code here but no problem

The code compiles, but when you call foo inside main, you get a
NullPointerException at run time at line 10.

Exception in thread "main"
java.lang.NullPointerException
 at
PlayerLinkedList.foo(PlayerLinkedList.java:10)
 at Test.main(Test.java:24)

What would be a possible scenario that may have caused this
error? Explain how to fix this problem.

14.14.6 Write a Short Program
43. Modify the PlayerLinkedList class to include one more method:

that method inserts a new player in the third position of the list,
head being the first position. If the list is empty, the method will
insert the new player as the head of the list. Be sure to test your
method with the appropriate client code.

44. Modify the PlayerLinkedList class to include one more method:
that method inserts a new player in the next-to-last position of the
list. If the list is empty, the method will insert the new player as the
head of the list. Be sure to test your method with the appropriate
client code.

45. Modify the PlayerLinkedList class to include one more method:
that method inserts a new player in the last position of the list. For
this, you cannot use the tail instance variable. Be sure to test your
method with the appropriate client code.

46. Modify the PlayerLinkedList class to include one more method:
that method deletes the second node of the list, if there is one. Be
sure to test your method with the appropriate client code.

47. Modify the GenericLinkedList class to include one more method:
that method inserts a new item at a given position (a parameter of
the method). If the list is empty, the method will insert the new item
as the head of the list. If the value of the parameter is greater than
the number of items in the list, then the method inserts at the end
of the list. You should consider that head is at position 1 in the list.
Be sure to test your method with the appropriate client code.

48. Modify the GenericLinkedList class to include one more method:
that method deletes an item at a given position (a parameter of the
method). If the value of the parameter is greater than the number
of elements in the list, then no item is deleted and an exception is
thrown. Your method should return the item deleted, if any. You
should consider that the first node is at position 1 in the list. Be
sure to test your method with the appropriate client code.

49. Modify the PlayerLinkedList class to include one more method:
that method takes a parameter that represents a game. The
method inserts a new player at a position just after the first Player
of the list with a game instance variable equal to that game. If
there is no such node, then your method should insert at the end
of the list. Be sure to test your method with the appropriate client
code.

50. Modify the PlayerLinkedList class to include one more method: a
traversal that outputs the players in the list until we reach a player
with a given id; that player’s data should not be output. Be sure to
test your method with the appropriate client code.

51. Modify the GenericLinkedList class to include one more method: a
method that returns the nth item on the list (n is a parameter of the
method). If there is no nth item on the list, the method should throw
an exception. Test your method with a client that traverses the list
by requesting each item in position order.

52. Modify the PlayerStackLinkedList class to include one more
method: a method that returns the ID of the last player on the
stack. Be sure to test your method with the appropriate client code.

53. Modify the PlayerQueueLinkedList class to include one more
method: a method that outputs every other player in the queue;
that is, it outputs the first player, skips the second, outputs the third
player, skips the fourth, and so on. Be sure to test your method
with the appropriate client code.

54. Modify the RecursiveLinkedList class to include one more method:
one that inserts at the end of the list. Be sure to test your method
with the appropriate client code.

55. Modify the RecursiveLinkedList class to include one more method:
one that deletes at the end of the list. Be sure to test your method
with the appropriate client code.

56. Modify the RecursiveLinkedList class to include one more method:
one that deletes at the beginning of the list. Be sure to test your

method with the appropriate client code.

57. Code a class encapsulating a stack of doubles using an array of
10 elements. Be sure to test your methods with the appropriate
client code.

58. Code a class encapsulating a queue of chars using a circular array
of 10 elements. Be sure to test your methods with the appropriate
client code.

14.14.7 Programming Projects
59. Modify the PlayerLinkedList to include two more methods: one that

returns the Player with the minimum id, and one that returns all the
games played by players with a given id. You also need to include
the appropriate client code to test your classes.

60. Modify the PlayerLinkedList to include two more methods: one that
returns the Player with the first name in alphabetical order, and
one that returns all of the ids of the players playing a given game.
You also need to include the appropriate client code to test your
classes.

61. Code a class encapsulating a singly linked list of website objects.
A website has two attributes: a URL address (a String, you do not
need to use the existing URL Java class) and 10 or fewer
keywords describing the topic of the website. In addition to insert,
delete, peek, and toString, add one more method: a method that,
based on a keyword, returns all URL addresses in the list
containing that keyword. Your delete method should delete an item
based on the value of its URL. You also need to include the
appropriate client code to test your classes.

62. Code a class encapsulating a singly linked list of football teams. A
football team has three attributes: its nickname, its number of wins,
and its number of losses (assume there are no tied games). In
addition to insert, delete, peek, and toString, add two more
methods: a method that returns the nicknames of the teams with
the most wins, and another method that returns the five best teams
based on winning percentages (if multiple teams have the same
winning percentage, you can return the first five such teams in the
list). You also need to include the appropriate client code to test
your classes.

63. Code a class encapsulating a singly linked list of HTML tags. We
will define a valid HTML tag as a string of characters starting with
< and ending with >. In addition to insert, delete, peek, and
toString, add two more methods: a method that returns true or

false, checking if the list contains valid HTML tags only (as
previously defined), and another that counts how many items in
the list contain the slash (/) character in them. You also need to
include the appropriate client code to test your classes.

64. Code a class encapsulating a singly linked list of stocks. A stock is
defined by the following attributes: its ticker symbol (a short word,
for instance AMD), its price (for example 54.35), and the
company’s earnings per share (for example 3.25). In addition to
insert, delete, peek, and toString, add two more methods: a
method that returns the list of all the tickers for the penny stocks (a
penny stock is a stock whose price is $1.00 or less), and another
method that, given a number representing a price earnings ratio
(the price earnings ratio of a stock, also known as P/E ratio, is the
price of the stock divided by the earnings per share), returns all the
tickers with a price earnings ratio less than or equal to that
number. You also need to include the appropriate client code to
test your classes.

65. Code a class encapsulating a singly linked list of books. A book is
defined by the following attributes: its title, its author, its price, and
how many are in stock. In addition to insert, delete, peek, and
toString, add two more methods: a method that, based on a word,
returns all the book titles in the list containing that word, and
another returning the list of book titles that are out of stock (i.e.,
there are quantity 0 in stock). You also need to include the
appropriate client code to test your classes.

66. Code a class encapsulating a stack of clothes using an array. A
clothing item has the following attributes: its name, its color, and
whether it can be washed at high temperature. We will limit our
stack to 100 clothing items. In addition to push, pop, peek, and
toString, add two more methods: a method that returns all the
clothing items of a given color, and another method that returns
how many clothing items in the stack can be washed at high
temperature. You also need to include the appropriate client code
to test your classes.

67. Code a class encapsulating a queue of foods using a circular
array. A food has the following attributes: its name, the number of
calories per serving, and the number of servings per container. We
will limit our queue to 100 foods. In addition to enqueue, dequeue,
peek, and toString, add two more methods: a method that returns
the average calories per serving of all the foods in the queue, and
another method that returns the food item with the highest “total
calories” (i.e., calories per serving times number of servings). You
also need to include the appropriate client code to test your
classes.

68. Code a class encapsulating a sorted linked list of foods; a Food
class is defined in question 67. Your list should be sorted in
ascending order using the name of the food as the key. In addition
to insert, delete, peek, and toString, add two more methods: a
method that returns all the Food objects in the list that have a
number of calories per serving lower than a given value, and
another method that returns all the Food objects in the list that are
located after a given food name. You also need to include the
appropriate client code to test your classes.

69. Look at the documentation of the LinkedList class in the java.util
package. Create a class of your choice and code a client class to
test the LinkedList class; in particular use the addFirst, add, and
addLast methods to build a linked list. Also test the set and get
methods. Do you have access to a toString method that returns a
String representation of the linked list? In this implementation,
what is the index of the first element in the list? Do the get and
element methods return a copy of an element of the list or a
reference to it?

70. Code a stack class using a generic type; the stack should be
represented by an array. You should include push, pop, and
toString methods. You also need to include the appropriate client
code to test your class. In the client class, you should declare and
instantiate stacks using at least two different class types.

71. Code a queue class using generics; the queue should be
represented by a circular array. You should include enqueue,
dequeue, and toString methods. You also need to include the
appropriate client code to test your class. In the client class, you
should declare and instantiate queues using at least two different
class types.

14.14.8 Technical Writing
72. In this chapter, we coded a linked-list class with just two instance

variables: the head node and the number of items in the list. We
also said that we did not really need the number of items in the list.
Explain how we can traverse the whole list if the class has only
one instance variable, head.

73. Consider the PlayerQueueLinkedList class presented in this
chapter, which includes an instance variable called tail, in addition
to head. We want to make the list circular; that is, tail “points to”
head. If you made the method call tail.getNext(), it would return
head. Describe why and how you would need to modify the
toString method of the class (assume you do not know the number
of items in the list).

14.14.9 Group Project (for a group
of 1, 2, or 3 students)
74. Code a doubly linked, sorted list (in ascending order). Each item of

the list will just store an int.

You need to code three classes: Node, SortedList, and
GroupProject.

The Node class has three instance variables, all private:

❑ an int, representing the value stored inside the Node

❑ a Node (next)
❑ another Node (previous)

The methods to code are: constructor (at least one), accessors,
mutators.

The SortedList class is a doubly linked list, sorted in ascending
order.

It has two instance variables, both private:

❑ an int, representing the number of items in the list
❑ a Node, representing the head node in the list

The methods to code are:

❑ insert: this method takes one parameter, an int; it has a void
return value.

❑ delete: this method takes one parameter, an int; it returns a
boolean value. If we were successful in deleting the item (i.e.,
the value of the parameter was found in the list), then we
return true; if we were not successful, then we want to output
a message that the value was not found, and therefore, not
deleted, and return false.

❑ toString: this method takes no parameters and returns a
String representation of the list.

❑ constructor (at least one), and accessors and mutators as
appropriate.

All methods should keep the list sorted in ascending order.

The GroupProject class contains the main method; it should do the
following:

❑ create a SortedList object reference

❑ insert successively the values 25, 17, 12, 21, 78, and 47 in
the sorted list

❑ output the contents of the sorted list using the toString
method

❑ delete from the sorted list the value 30, using the delete
method (obviously, 30 will not be found)

❑ output the contents of the sorted list using the toString
method

❑ delete from the sorted list the value 21, using the delete
method

❑ output the contents of the sorted list using the toString
method

Your insert and delete methods should work properly in all possible
scenarios: inserting in an empty list, inserting at the beginning of a
list, inserting in the middle of a list, inserting at the end of a list,
deleting from an empty list (cannot delete), deleting an item not in
the list (cannot delete), deleting the first item in a list, deleting in
the middle of a list, deleting the last item in a list.

CHAPTER 15
Running Time Analysis
CHAPTER CONTENTS
Introduction
15.1 Orders of Magnitude and Big-Oh Notation
15.2 Running Time Analysis of Algorithms: Counting
Statements
15.3 Running Time Analysis of Algorithms and Impact of
Coding: Evaluating Recursive Methods
15.4 Programming Activity: Tracking How Many
Statements Are Executed by a Method
15.5 Running Time Analysis of Searching and Sorting
Algorithms
15.6 Chapter Summary
15.7 Exercises, Problems, and Projects

15.7.1 Multiple Choice Exercises
15.7.2 Compute the Running Time of a Method
15.7.3 Programming Projects
15.7.4 Technical Writing
15.7.5 Group Project

Introduction
Today’s Internet websites have millions of users. The
databases storing data on the web servers have grown in size
dramatically to accommodate both the growing number of
users and the growing volume of data that is posted by these
users.

Scientific applications have also experienced a data
explosion. Sensors used in these scientific applications, such
as meteorology or fluid mechanics, are becoming more
precise while at the same time they are getting cheaper. More
and more sensors are being used, and application programs
have to manage more and more data.

Programs that handle and manipulate this ever-increasing
amount of Big Data need to use algorithms that are well-
designed and efficient so that they minimize waiting time for
users. Two programs that solve the same problem using
different algorithms can result in completely different levels of
performance—everything else, in particular the hardware
platform, being equal. For example, two search engines
performing the same search could run at different speeds:
one could return its results in tenths of a second while the
other could take several seconds to return results.

Many programmers tend to disregard speed and space
(memory utilization) issues when writing code. They rely on
increasing hardware performance to solve speed problems
and the decreasing cost of memory to solve space problems.
However, with the Big Data explosion and the resulting data
processing issues that we are experiencing today across
many industries, designing efficient algorithms has become

more and more important. In this chapter, we will focus on
algorithms’ speed performance.

When we measure the performance of an algorithm, we use
the expression running time. We cannot predict a single,
precise running time for many algorithms, because the
amount of processing depends in large part on the number of
inputs and the values of those inputs. So we express the
running time of an algorithm as a mathematical function of its
inputs. This allows us to compare the relative performance of
multiple algorithms. For example, the running time for
computing the factorial of an integer varies according to the
integer value. Factorials of larger numbers require more
processing to compute than factorials of smaller numbers. If
we can express the running time of multiple algorithms that
compute a factorial as a function of their input, then we can
compare the relative efficiency of each algorithm. In other
cases, such as sorting an array of integers, the running time
depends on the number of array elements. Similarly, if we
express the running time as a function of the number of
elements in the array, we can compare the relative efficiency
of multiple sorting algorithms.

The input value or number of inputs for an algorithm
represents the size of the problem for which we are trying to
compute the running time. We will call that number n. We are
interested in relative time, independent of the hardware
platform, not absolute time. Furthermore, we are typically
interested in the order of magnitude of the algorithm, rather
than a precise mathematical expression as a function of n.
Indeed, if n is very large (for example, 1 million or more),

performance does not vary noticeably if the algorithm takes n
steps or n + 17 steps to complete.

However, if an algorithm has a running time expressed as n ,
then the number of inputs has a big impact on performance.
For example, we can predict that 10 inputs will require the
execution of 100 statements and 1,000 inputs will require the
execution of 1 million statements.

The objectives of this chapter are:

To be able to evaluate the running time of a given
algorithm through various methodologies

To understand that how we code an algorithm directly
impacts its running time

2

15.1 Orders of Magnitude and Big-
Oh Notation
Table 15.1 shows examples of various orders of
magnitude for an algorithm as a function of the
number of inputs n, along with the corresponding
number of statement executions for different values
of n.

TABLE 15.1 Comparisons of Various
Functions Representing Running Times

Order of
Magnitude

Number of
Statements
Executed

n =
10

n = 20 n =
1,000

n = 1
million

log n 2.23 3.23 Approx.
10

Approx.
20

n 10 20 1,000 10

n log n 22.3 64.6 Approx.
10,000

Approx.
20* 10

n 100 400 10 10

n 1,000 8,000 10 10

2 1,024 Approx. 10 Approx.
10

Approx.
10

Let’s look at an example to see how we can use
these values. As we will demonstrate later in the
chapter, Sequential Search has a running time of n,

6

6

2 6 12

3 9 18

n 6

300 300000

and Binary Search has a running time of log n. Thus,
if we are searching an array of 1 million users for a
particular user name, a Sequential Search will take,
on average, the execution of an order of 1 million
statements, while a Binary Search will require the
execution of only 20 statements. Remember,
however, that for a Binary Search to work, the array
must already be sorted. Later in this chapter, we will
discuss how to compute these running times.

As we can see from the table, algorithms that have a
running time where n is the exponent of the function,
such as 2 , take a very large number of statement
executions and are very slow; they should be used
only if no better algorithm can be found.

Running times of algorithms are often represented
using the Big-Oh or the Big-Theta notation, as in
O(n) or Θ(n), for example. The mathematical
definition of Big-Theta is as follows:

A function f (n) is Big-Theta of another function g(n),
or Θ(g(n)), if and only if:

1. f (n) is Big-Omega of g(n), or Ω(g(n)), i.e., there exist two

positive constants, n1 and c1, such that for any n >= n1, f (n) >=

c1 * g(n).

n

2

In other words, for n sufficiently big, g(n) is a lower bound of f (n);

that is, g(n) is smaller than f (n), if we ignore the constants.

and

2. f (n) is Big-Oh of g(n), or O(g(n)), i.e., there exist two positive

constants, n2 and c2, such that for any n >= n2, f (n) <= c2 *

g(n).

In other words, for n sufficiently big, g(n) is an upper bound of f

(n); that is, g(n) is bigger than f (n), if we ignore the constants.

It has become common in the industry to say Big-Oh
instead of Big-Theta. Indeed, we are really interested
in an upper bound running time (Big-Oh), and as
tight an upper bound as possible (Big-Theta).

Although the preceding definition may sound a bit
complex, when trying to estimate the Big-Oh of a
particular function representing a running time, the
following rules can be used:

Keep only the dominant term, i.e., the term
that grows the fastest as n grows.

Ignore the coefficient of the dominant term.

Table 15.2 shows a few examples illustrating these
rules.

TABLE 15.2 Examples of Functions
Representing Running Times and Their
Respective Big-Oh

f (n) Dominant Term Big-Oh
2 * n + 19 2 * n O(n)

3 * n + 6 * n + 12 3 * n O(n)

n + 9 * n + 5 * n + 2 n O(n)

3 * 2 + 5 * n + 3 * n + 7 3 * 2 O(2)

n + 7 * log n n O(n)

2 * n * log n + 8 * n + log n + 8 2 * n * log n O(n * log n)

3 * log n + 35 3 * log n O(log n)

As an example, we will show that the function f (n) =
3 * n + 6 * n + 12 is Θ (n).

First we show that f (n) is Ω (n):

For n >= 0,
f (n) = 3 * n + 6 * n + 12 >= 3 * n

So if we choose n1 = 0 and c1 = 3, we just proved by
definition that f (n) is Ω (n).

Now we show that the same function f (n) is O(n).

For n >= 1, we can rewrite f (n) as

f (n) = n * (3 + 6 / n + 12 / n)

2 2 2

3 2 3 3

n 3 n n

2 2

2

2 2

2

2

2 2

For n >= 6, we have

6 / n <= 1 and 12 / n < 1

therefore,

f (n) <= n * (3 + 1 + 1) = 5 * n

So if we choose n2 = 6 and c2 = 5, we just proved by
definition that f (n) is O(n).

Since f (n) is both Big-Omega(n) and Big-Oh(n),
then f (n) is Big-Theta(n).

To show that a polynomial function is Big-Oh of its
most dominant term, we simply factor by the most
dominant term as follows:

For n > 0,
f (n) = a n + a n + … + a n + a n +
a , where a is strictly positive
f (n) = a n (1 + (a / a) 1 / n + … + (a / a)
1 / n + (a / a) 1 / n + (a / a) 1 / n)
f (n) <= a n (1 + |(a / a)| 1 / n + … + |(a /
a)| 1 / n + |(a / a)| 1 / n + | (a / a)| 1 /
n)

All a ’s are constants; let M be the maximum of all |(a
/ a)|.

2

2 2

2

2 2

2

p p p–1 p–1 2 2 1

0 p

p p p–1 p 2 p
p–2 1 p p–1 p 0 p

p p p–1 p 2

p p–2 1 p p–1 p 0
p

i i

p

Thus,

f (n) <= a n (1 + M 1 / n + … + M 1 / n + M
1 / n + M 1 / n)
f (n) <= a n (1 + M (1 / n + … + 1 / n + 1 /
n + 1 / n))
f (n) <= a n (1 + M (–1 + 1 + 1 / n + … + 1 /
n + 1 / n + 1 / n))

since we know mathematically that

1 + a + a + … + a = Σ a from i = 0 to p is
equal to (1 – a) / (1 – a) for a different from
1.

Using a = 1/n and n >=2, we get

f (n) <= a n (1 + M (–1 + (1 – 1 / n) / (1 – 1
/ n)))
f (n) <= a n (1 + M (–1 + (1 – 1 / n) * (n / (n
– 1))))

Thus,

f (n) <= a n (1 + M (–1 + (n / (n – 1))))
f (n) <= a n (1 + M ((–n + 1 + n) / (n – 1)))
f (n) <= a n (1 + M (1 / (n – 1)))

Thus,

p p p–2

p–1 p

p p p–2

p–1 p

p p

p–2 p–1 p

2 p i

p+1

p p p+1

p p p+1

p p

p p

p p

f (n) <= a n (1 + M) for n >= 2

choosing n = 2 and c = a (1 + M).

For n >= n , we have

f (n) <= c n

and therefore,

f (n) is O(n), i.e., f (n) is Big-Oh of its most
dominant term.

p p

0 0 p

0

0 p

p

15.2 Running Time Analysis of
Algorithms: Counting Statements
One simple method to analyze the running time of a
code sequence or a method is simply to count the
number of times each statement is executed and to
calculate a total count of statement executions.

Example 15.1 is a method that calculates the total
value of all the elements of an array of size n and
returns the sum.

EXAMPLE 15.1 A Single Loop
public static int addElements(int [] arr)

{

 int sum = 0; // (1)

 int i = 0; // (2)

 while (i < arr.length) // (3)

 {

 sum += arr[i]; // (4)

 i++; // (5)

 }

 return sum; // (6)

}

Let’s count how many times each statement is
executed.

Assuming the array has n elements, we can develop
the following analysis:

Statement # Times
Executed

(1) 1

(2) 1

(3) n + 1

(4) n

(5) n

(6) 1

Note that the loop condition, i < arr.length, is
executed one more time than each statement of the
loop body: when i is equal to arr.length, we evaluate
the loop condition, but we exit the loop and thus do
not execute the two statements in the loop body.
Thus, the total number of statements executed, T(n),
is equal to:

So we can say that the running time of the
addElements method is O(n). Note that in the end,
we do not need an exact count of the statements
executed, since we are really interested in the Big-
Oh running time of the function.

Example 15.2 is a method that determines the
maximum value in a two-dimensional array of ints.

EXAMPLE 15.2 A Double Loop
public static int calculateMaximum(int [][] arr)

{

 int maximum = arr[0][0]; // (

1)

 for (int i = 0; i < arr.length; i++) // (

2)

 {

 for (int j = 0; j < arr[i].length; j++) // (

3)

 {

 if (maximum < arr[i][j]) // (

4)

 maximum = arr[i][j]; // (

5)

 }

 }

 return maximum; // (

6)

}

Let’s count how many times each statement is
executed. In order to keep things simple, we assume
that the array has n rows and each row has n

columns. We can then develop the following
analysis:

Statement # Times
Executed

(1) 1

(2) 1 + (n +
1) + n = 2
* n + 2

(3) n * (1 + (n
+ 1) + n)
= 2 * n +
2 * n

(4) n * n = n

(5) between
0 and n *
n

(6) 1

Statement (2) actually contains three statements: int
i = 0 is executed 1 time, i < arr.length is executed (n
+ 1) times as i goes from 0 to n, and i++ is executed
n times as i is incremented n times.

In evaluating the number of times statements (3), (4),
and (5) will be executed, we first note that we will
enter the outer loop n times. Statement (3) also
contains three statements: int j = 0 is executed each
time we enter the outer loop, or n times; j <
arr.length[i] is executed (n + 1) times each time we
enter the outer loop, or n * (n + 1) times, as j goes

2

2

from 0 to n; and j++ is executed n times each time
we enter the outer loop, or n * n times.

Since we enter the outer loop n times and for each
outer loop iteration, we enter the inner loop n times,
statement (4) will be executed n * n times. As for
statement (5), it will be executed once each time the
Boolean expression maximum < arr[i][j] evaluates to
true. We cannot tell how many times that will
happen, but we can tell that it will happen no more
than n * n times. We will call this unknown value x.

Thus, the total number of statements executed, T(n),
is equal to:

with x <= n * n

Furthermore, since the value of x is between 0 and
n ,

3 * n + 4 * n + 4 <= T(n) <= 3 * n + 4 * n + 4
+ n
3 * n + 4 * n + 4 <= T(n) <= 4 * n + 4 * n + 4

since T(n) has both lower and upper bounds that are
O(n), T(n) is O(n).

2

2 2

2

2 2

2 2

For our third example, let’s compute the running time
of a Sequential Search, implemented by the code
shown in Example 15.3.

EXAMPLE 15.3 Sequential Search
Algorithm
public static int sequentialSearch(int [] array,

int key)

{

 for (int i = 0; i < array.length; i++) // (1

)

 if (array[i] == key) // (2

)

 return i; // (3

)

 return -1; // (4

)

}

Let’s count how many times each statement is
executed. Assuming the array has n elements, we
can develop the following analysis:

Statement # Times
Executed

(1) 1 +
(between
1 and (n
+ 1)) +
(between
0 and n)

(2) between
1 and n

(3) 0 or 1

(4) 1 or 0

Thus, if T(n) represents the total number of
statements executed, we can say that

T(n) <= 3n + 3 shows that T(n) is O(n).

However, we cannot really tell, from the coding of the
function, how many statements will be executed as a
function of n. In these situations, it is interesting to
consider three running times:

the worst-case running time

the best-case running time

the average-case running time

In the worst case, where the search key is not found
in the array or it is found in the last element, T(n) =
3n + 3, and therefore T(n) is O(n), as mentioned
earlier.

In the best case, the element we are looking for is at
index 0 of the array, and only four statements will be
executed, independently of the value of n. Thus, the
best-case running time is O(1) since we do not take
the multiplying constant into consideration when we
compute a Big-Oh.

In the average case, we find the element we are
looking for in the middle of the array, and the value of
T(n) will be

15.3 Running Time Analysis of
Algorithms and Impact of Coding:
Evaluating Recursive Methods
In this section, we will learn how to compute the
running time of a recursive method. We will also look
at how coding a method has a direct impact on its
running time.

Consider coding a recursive method that takes one
parameter, n, and returns 2 . There are several ways
to code that method, and we will consider two of
them here so that we can assess which algorithm is
more efficient.

Our first method, powerOf2A, is designed using this
approach:

when n = 0, 2 = 1. This is our base case.

For our general case, we use this
calculation: 2 = 2 * 2

This first problem formulation results in the method
shown in Example 15.4.

n

0

n n – 1

EXAMPLE 15.4 First Recursive
Formulation of 2
public static int powerOf2A(int n) // n >= 0

{

 if (n == 0)

 return 1;

 else

 return 2 * powerOf2A(n - 1);

}

Our second method, powerOf2B, is designed using
this approach:

when n = 0, 2 = 1. This is our base case.

For our general case, we use this
calculation: 2 = 2 + 2

This second problem formulation results in the
method shown in Example 15.5.

n

0

n n – 1 n – 1

EXAMPLE 15.5 Second Recursive
Formulation of 2
public static int powerOf2B(int n) // n >= 0

{

 if (n == 0)

 return 1;

 else

 return powerOf2B(n - 1) + powerOf2B(n - 1

);

}

Let’s compute the running time of powerOf2A as a
function of the input n; we will call it T1(n).

In the base case (n is equal to 0), powerOf2A makes
only one comparison and returns 1. Thus,

T1(0) = 1

Generally, since it takes T1(n) to compute and return
powerOf2A(n), then it takes T1(n – 1) to compute
and return powerOf2A(n – 1).

Thus, in the general case, the comparison in the if
statement will cost us 1 instruction; computing and
returning powerOf2A(n – 1) will cost us T1(n – 1);
and multiplying that result by 2 will cost us 1

n

instruction. Thus, the total time T1(n) can be
expressed as follows:

The preceding equation, which we will call Equation
15.1, is called a recurrence relation between T1(n)
and T1(n – 1) because T1(n) is expressed as a
function of T1(n – 1).

From there, we can use a number of techniques to
compute the value of T1(n) as a function of n.

Handwaving Method
This method is called handwaving because it is more
an estimation method, rather than a method based
on strict mathematics.

From the preceding recurrence relation, we can say
that it costs us two instructions to go down one step
(from n to n – 1). Therefore, to go down n steps will
cost us 2 * n instructions. We then add one
instruction for T(0), and get

T1(n) = 2 * n + 1

Iterative Method
This method involves iterating several times, starting
with the recurrence relation until we can identify a
pattern. In general, we can say that

T1(x) = T1(x – 1) + 2, where x is some integer
// Equation 15.2

We call this Equation 15.2, which is the same as
Equation 15.1, except that x has been substituted for
n.

We now want to express T(n) as a function of T(n –
2); thus, we want to replace T(n – 1) in Equation 15.1
by an expression using T(n – 2).

Substituting n – 1 for x in Equation 15.2, we get

T1(n – 1) = T1(n – 2) + 2

Plugging the value of T1(n – 1) into Equation 15.1,
we get

Note that in Equation 15.3, we do not simplify 2 * 2.
In this way, we are trying to let a pattern develop so
we can easily identify it.

SOFTWARE ENGINEERING TIP
When trying to develop and identify a pattern using
iteration, do not precisely compute all the terms.
Instead, leave them as patterns.

Using x = n – 2 in Equation 15.2, we get

T1(n – 2) = T1(n – 3) + 2

Plugging the value of T1(n – 2) into Equation 15.3,
we get

Using x = n – 3 in Equation 15.2, we get

T1(n – 3) = T1(n – 4) + 2

Plugging the value of T1(n – 3) into Equation 15.4,
we get

Now we can see the pattern as follows:

T1(n) = T1(n – k) + 2 * k, where k is an integer
between 1 and n // Equation 15.5

Plugging k = n in Equation 15.5 in order to reach the
base case of T1(0), we get

T1(n) = T1(0) + 2 * n = 1 + 2 * n = 2 * n + 1

Proof by Induction Method
If we can guess the value of T1(n) as a function of n,
then we can use a proof by induction in order to
prove that our guess is correct. We can use the
preceding iteration method to come up with a guess
for T1(n).

Generally, a proof by induction works as follows:

Verify that our statement (equation in this
case) is true for a base case.

Assume that out statement is true up to n.

Prove that it is true for n + 1.

Let’s go through the induction steps with our guess
that T1(n) = 2 * n + 1, which we may have generated
from our iterative or handwaving method.

Step 1: Verify that the value that our guess gives to
T1(0) is correct.

Thus, our guess is correct for T1(0).

Step 2: Assume that T1(n) = 2 * n + 1.

Step 3: Prove that T1(n + 1) = 2 * (n + 1) + 1.

Plugging x = n + 1 in Equation 15.2, we get
T1(n + 1) = T1(n) + 2

Then, using our assumption and replacing T1(n) by 2
* n + 1, we get

Thus, we just proved, by induction, that our guess
T1(n) = 2 * n + 1 is correct.

Other Methods
When applicable, another method is to use the
Master Theorem, but that is beyond the scope of this
text.

So the running time of powerOf2A(n) is 2 * n + 1, or
O(n).

Let’s now compute the running time of powerOf2B as
a function of the input n. We will call it T2(n).

In the base case (n is equal to 0), powerOf2B takes
only one comparison to return 1. Thus,

T2(0) = 1

Generally, since it takes T2(n) to compute and return
powerOf2B(n), then it takes T2(n – 1) to compute
and return powerOf2B(n – 1). Thus, in the general
case, the comparison in the if statement will cost us
one instruction; computing and returning
powerOf2B(n – 1) will cost us T2(n – 1); doing it a
second time will cost us another T2(n – 1); and
adding the two and returning the sum as the result
will cost us one instruction. Thus, the total time T2(n)
can be expressed as follows:

From there, we will use the iteration method in order
to compute the value of T2(n) as a function of n.

Substituting x for n, we can rewrite Equation 15.6 as
follows:

T2(x) = 2 * T2(x – 1) + 2 // Equation 15.7

Using x = n – 1 in Equation 15.7, we get

T2(n – 1) = 2 * T2(n – 2) + 2

Plugging the value of T2(n – 1) into Equation 15.6,
we get

Again, we leave 2 + 2 as an expression to try to let
a pattern develop.

Using x = n – 2 in Equation 15.7, we get

T2(n – 2) = 2 * T2(n – 3) + 2

2

Plugging the value of T2(n – 2) into Equation 15.8,
we get

Using x = n – 3 in Equation 15.7, we get

T2(n – 3) = 2 * T2(n – 4) + 2

Plugging the value of T2(n – 3) into Equation 15.9,
we get

Now we can see the pattern as follows:

T2(n) = 2 * T2(n – k) + 2 + 2 + … + 2 + 2,
where k is an integer between 1 and n //
Equation 15.11

Noting that

Equation 15.11 becomes

k k k–1 2

T2(n) = 2 * T2(n – k) + 2 – 2, where k is an
integer between 1 and n // Equation 15.12

Plugging k = n in Equation 15.12 in order to reach
the base case of T2(0), we get

Thus, powerOf2A runs in O(n) while powerOf2B runs
in O(2), although they perform the same function.

As a result, computing 2 using powerOf2A will cost
20 statement executions, while computing 2 using
powerOf2B will cost 1 million statement executions.

This simple example shows that how we code a
method can have a significant impact on its running
time.

k k+1

n

20

20

15.4 Programming Activity: Tracking
How Many Statements Are Executed
by a Method
In this activity, you will work with a variable-size integer
array. Specifically, you will perform the following operations:

1. Write code to keep track of the number of statement executions during a

selection sort.

2. Run a simulation to compute the number of statements executed as a

function of the number of elements in the array.

3. Estimate the running time of Selection Sort as a function of n, the number

of elements in the array being sorted.

The framework for this Programming Activity will animate
your algorithm so that you can perform a simulation on the
number of statement executions inside the selectionSort
method compared to the number of elements in the array
that is sorted. For example, Figure 15.1 shows the current
number of statement executions for an array of 15
elements.

Figure 15.1
Animation of the Programming Activity

At this point, the application has executed 47 statements.

Instructions
In this chapter’s Programming Activity folder, you will find
the source files needed to complete this activity. Copy all
the files to a folder on your computer. Note that all files
should be in the same folder.

Open the RunningTimePracticeController.java source file.
Searching for five asterisks (*****) in the source code will
position you at the sample method where you will add your
code. In this task, you will fill in the code for the
selectionSort method in order to keep track of the number
of statement executions needed to sort an array using the
Selection Sort algorithm. You should not instantiate the
array; we have done that for you. Example 15.6 shows the
section of the RunningTimePracticeController source code
where you will add your code.

Note that we provide a dummy return statement (return 0;).
We do this so that the source code will compile. Just
replace the dummy return statement with the appropriate
return statement for the method.

EXAMPLE 15.6 Location of Student
Code in
RunningTimePracticeController

// 1. ***** student writes this method

/** Sorts arr in ascending order using the selection sort

algorithm

* Adds a counter to count the number of statement

executions

*/

public int selectionSort()

{

 // Note: To count the number of statement executions,

use a counter

 // The variable counter has been declared and initialized

for you

 // at the beginning of this method

 // Inside the body of the inner loop, increment the

counter

 // Replace the return statement so that this method

returns the value of

 // the counter. To slow down or accelerate the animation,

modify the

 // argument of Pause.wait in the handle method of the

ArrayAnimationTimer inner class

 int counter = 0;

 int temp, indexOfMax;

 for (int i = 0; i < arr.length – 1; i++)

 {

 // find index of largest value in the subarray

 indexOfMax = 0;

 animate(i, 0, 0, counter);

 for (int j = 1; j < arr.length – i; j++)

 {

 if (arr[j] > arr[indexOfMax])

 indexOfMax = j;

 animate(i, j, indexOfMax, counter);

 }

 // swap arr[indexOfMax] and arr[arr.length - i - 1]

 temp = arr[indexOfMax];

 arr[indexOfMax] = arr[arr.length – i – 1];

 arr[arr.length – i – 1] = temp;

 }

 animate(arr.length – 1, 0, 0, counter);

 return 0;

} // end of selectionSort

Our framework will animate your algorithm so that you can
watch your code work. If you want to accelerate or slow
down the animation, modify the argument of Pause.wait in
the handle method of the ArrayAnimationTimer inner class.

To test your code, compile RunningTimeController.java and
run the RunningTimePracticeApplication. When the
program begins, you will see a text box. Enter the number
of elements for the array, and press the “Show Array”
button to populate the array. Then press the “Selection
Sort” button to execute your selection sort code. Because
the values of the array are randomly generated, the values
will be different each time the program runs.

Troubleshooting
If the animation is incorrect, and you think your method
does return a correct value for the counter, verify that you
correctly incremented the counter inside the inner loop.

In order to derive a closed-end expression for the number
of statement executions as a function of the size of the
array, follow these tips:

If n is the size of the array, compare n, n , n , n ,
…, 2 , to the value of the counter.

When doing the preceding, divide n, n , n , n , …,
2 by the number of statements executed.

DISCUSSION QUESTIONS
1. What is the value of the counter with the following array sizes:

5, 10, 15, 20, 25?

2. In relation to n, the size of the array, what is the value of the
counter?

3. What is the running time of Selection Sort in Big-Oh notation?

4. If the array is already sorted in either the correct or opposite
order, does that make a difference in the number of statement
executions? What can you say about the worst-case and best-
case running times?

2 3 4

n

2 3 4

n

15.5 Running Time Analysis of
Searching and Sorting Algorithms
In studying the running time of various searching and
sorting algorithms, we will look at the following
scenarios:

best case

worst case

average case

Some methods have a very efficient running time.
We mentioned earlier that the running time of Binary
Search was log n. Thus, searching a sorted array of
1 billion items using Binary Search will take only 30
statement executions since log (1 billion) is
approximately 30.

Example 15.7 shows the code for a recursive binary
search.

EXAMPLE 15.7 Recursive Binary
Search
public static int recursiveBinarySearch

 (int [] arr, int key, int start,

int end)

{

 if (start <= end)

 {

 // look at the middle element of the subarray

 int middle = (start + end) / 2;

 if (arr[middle] == key) // found key, base

case

 return middle;

 else if (arr[middle] > key) // look lower

 return recursiveBinarySearch(arr, key, start,

middle - 1);

 else // look higher

 return recursiveBinarySearch(arr, key, middle

+ 1, end);

 }

 else // key not found,

base case

 return -1;

}

In the best-case scenario, we will find the search
value exactly in the middle of the array, at the array
index we check first. Thus, the best-case running

time of Binary Search is O(1). In the worst-case
scenario, we will not find the search value in the
array. Let’s compute the running time of the worst-
case scenario.

In the general case, the comparison of the first if
statement will cost us one instruction; the
assignment statement will cost us two instructions;
the comparison in the second if statement will cost
us one instruction; the comparison in the else/if
statement will also cost us one instruction;
computing and returning recursiveBinarySearch(arr,
key, start, middle – 1) or recursiveBinarySearch(arr,
key, middle + 1, end) will cost us T(n/2 – 1) or T(n/2)
instructions. Note that only one recursive call will be
made. Thus, the total time T(n) can be expressed as
follows:

In the base case (n is equal to 1),
recursiveBinarySearch makes only the first
comparison, one addition, one division, the second
comparison, and then returns the index of the found
element or –1. Thus,

T(1) = 5.

From there, we will use the iteration method in order
to compute the value of T2(n) as a function of n.

Substituting x for n, we can rewrite Equation 15.13
as follows:

T(x) = T(x / 2) + 5 // Equation 15.14

Using x = n / 2 in Equation 15.14, we get

Plugging the value of T(n / 2) into Equation 15.13,
we get

Using x = n / 2 in Equation 15.14, we get

Plugging the value of T(n / 2) into Equation 15.15,
we get

2

2

Using x = n / 2 in Equation 15.14, we get

Plugging the value of T(n / 2) into Equation 15.16,
we get

Now we can see the pattern as follows:

T(n) = T(n / 2) + 5 * k,
where k is an integer between 1 and n //
Equation 15.18

We now want to choose k such that n / 2 is equal to
1 in order to reach our base case. If n / 2 = 1, then n
= 2 , and taking the log of each side:

3

3

k

k

k

k

Plugging k = log n in Equation 15.18, we get

Thus, Binary Search is O(log n) in the worst case.
Note that the value of the original constant, here 5,
does not impact the order of magnitude of the
running time.

In the average case, we will find the search value
after performing half the number of comparisons as
in the worst-case scenario. Thus, the average
running time of binary search is also O(log n).

Now, let’s calculate the running time of Insertion Sort
as a function of n, the number of elements in the
array. The code for an Insertion Sort is shown in
Example 15.8.

EXAMPLE 15.8 Insertion Sort
 /** Performs an Insertion Sort on an

integer array

 * @param array array to sort

 */

 public static void insertionSort(int []

array)

 {

 int j, temp;

 for (int i = 1; i < array.length; i++)

 {

 j = i;

 temp = array[i];

 while (j != 0 && array[j – 1] > temp)

 {

 array[j] = array[j – 1];

 j--;

 }

 array[j] = temp;

 }

 }

The for loop header will execute n times. We will
execute the body of the for loop n – 1 times.

In the best case, the array is already sorted. In this
case, the while loop condition will always evaluate to
false, and we will never execute the while loop body.

So inside the for loop, the three statements and the
loop condition will each execute once for each
iteration of the for loop, thus executing a total of 4 *
(n – 1) times. Therefore, the best-case running time
is O(n).

In the worst case, the array is sorted in the opposite
order. In this case, the while loop condition will
always be true for its first evaluation, and we will
enter the while loop every time we iterate the for
loop. Thus, the two statements inside the while loop
will each execute (1 + 2 + 3 + 4 + … + (n – 1)) times.
Since (1 + 2 + 3 + 4 + … + (n – 1)) = n * (n – 1) / 2,
the worst-case running time of insertion sort is O(n).

In the average case, we will enter the while loop half
the times we try. The average case is still O(n).

Bubble Sort, like Insertion Sort, is implemented with
a double loop and also is O(n).

Merge Sort and Quick Sort are two sorting
algorithms implemented recursively.

The pseudocode for Merge Sort is as follows:

If the array has only one element, it is
already sorted, thus do nothing; otherwise:

2

2

2

Merge sort the left half of the array.

Merge sort the right half of the array.

Merge the two sorted half arrays into one
so that the resulting array is sorted.

The last operation involves looping through all the
elements of the two half-arrays; it takes O(n); thus,
we can derive the following recursive formulation for
its running time of Merge Sort:

Using derivation, we get

Continuing to iterate,

Thus, we identify the general pattern

T(n) = 2 T(n / 2) + kn

Choosing k so that n / 2 = 1 in order to reach the
base case, i.e., n = 2 , k = log n, we get

So Merge Sort is O(n log n), which is better than
Insertion Sort, Bubble Sort, and Selection Sort. It is
the same for best-case, worst-case, and average-
case scenarios.

The analysis of the running time of Quick Sort is the
subject of the Group Project for this chapter.

k k

k

k

© Hemera Technologies/Photos.com/Thinkstock

CODE IN ACTION
Within the online resources, you will find a
movie with a step-by-step illustration of how to
compute running times for various methods.
Click on the link to start the movie.

Skill Practice
with these end-of-chapter questions

15.7.1 Multiple Choice Exercises

Questions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

15.7.2 Compute the Running Time of a Method

Questions 11, 12, 13, 14, 15, 16, 17, 18

15.7.4 Technical Writing

Question 27

CHAPTER REVIEW

15.6 Chapter Summary
The running time of an algorithm is
expressed as a function of its inputs or its
number of inputs.

Orders of magnitude are, in increasing order
of execution time: constant, log, polynomial,
and exponential. Exponential running times
are undesirable.

Big-Oh notation is the industry standard
notation for running times.

Considering a mathematical function that
represents a running time of an algorithm,
that function is Big-Oh of its most dominant
term, and we ignore the coefficient of that
term..

The coding of a method directly impacts its
running time.

15.7 Exercises, Problems, and
Projects

15.7.1 Multiple Choice Exercises
 1. What is the Big-Oh of this function:

T(n) = n - 2 n + 99

❑ O(n)

❑ O(99)

❑ O(n)
❑ O(1)

 2. What is the Big-Oh of this function:

T(n) = n + 10 n + 20 n + 30

❑ O(n)

❑ O(n)

❑ O(n)
❑ O(1)

 3. What is the Big-Oh of this function:

T(n) = n + n * log n + 12 n + 5

❑ O(n * log n)
❑ O(n)

❑ OO(n)
❑ O(1)

 4. We have the following recurrence relation representing the running
time of a function; what is the running time of that function?

T(n) = T(n - 1) + 1

❑ O(2)

❑ O(n * log n)

❑ O(n)

❑ O(n)

 5. Which of these running times is the worst?

❑ O(n)

❑ O(2n)

2

2

3 2

3

2

2

2

n

2

5

❑ O(n * log n)

❑ O(n)

 6. Look at the following method:

public static int foo1(int n)
{
 if (n > 1)
 return (2 * foo1(n / 4));
 else
 return 1;
}

What recurrence formulation best illustrates the running time of the
preceding method?

❑ T(n) = T(n * 4) + 3
❑ T(n) = T(n / 4) + 3

❑ T(n) = T(n – 4) + 3
❑ T(n) = T(n + 4) + 3

 7. What is Σ i for i = 1 to n equal to?

❑ n

❑ n * (n + 1) / 2
❑ 2n

❑ n

 8. What is Σ 1 for i = 1 to n equal to?

❑ n

❑ n

❑ n * (n + 1) / 2
❑ i

 9. What is the running time of the foo2 method?

2

2

public static void foo2(int n)
{
 for (int i = n; i > 0; i— —)
 {
 for (int j = 0; j < n; j++)
 System.out.println("Hello");
 }
}

❑ O(n)

❑ O(n)

❑ O(n)

❑ O(n)

10. What is the running time of the foo3 method?

public static void foo3(int n)
{
 for (int i = 0; i < n; i++)
 {
 for (int j = 0; j < i; j++)
 System.out.println("Hello");
 }
}

❑ O(n)

❑ O(n)

❑ O(n)

❑ O(n)

4

3

2

4

3

2

15.7.2 Compute the Running Time
of a Method
11. What is the running time of the foo4 method (assume that the

parameter arr is a two-dimensional array of n rows and n
columns)?

public static void foo4(int [][] arr)
{
 for (int i = 0; i < arr.length; i++)
 {
 for (int j = arr[i].length - 1; j >= 0; j— —
)
 System.out.println("Hello world");
 }
}

12. What is the running time of the foo5 method (assume that the
parameter arr is a three-dimensional array where each dimension
has exactly n elements)?

public static void foo5(int [][][] arr)
{
 for (int i = 0; i < arr.length; i++)
 {
 for (int j = 0; j < arr[i].length; j++)
 {
 for (int k = 0; k < arr[i][j].length; k++)
 System.out.println("Hello world");
 }
 }
}

13. What is the running time of the foo6 method?

public static void foo6(int n)
{
 if (n <= 0)
 System.out.println("Hello world");
 else
 foo6(n - 1);
}

14. What is the running time of the foo7 method?

public static int foo7(int n)
{
 // n is guaranteed to be >= 0
 if (n == 0)
 return 0;
 else
 return (n + foo7(n - 1));
}

15. What is the running time of the foo8 method?

public static int foo8(int n)
{
 // n is guaranteed to be >= 1
 if (n == 1 || n == 2)
 return 1;
 else
 return (foo8(n - 1) + foo8(n - 2));
}

Hint: Note that T(n –2) <= T(n – 1).

16. What is the running time of the foo9 method?

public static void foo9(int n)
{
 // n is guaranteed to be >= 0
 if (n == 0)
 System.out.println("done");
 else
 foo9(n / 2);
}

17. What is the running time of the foo10 method as a function of n
and p?

public static void foo10(int n, int p)
{
 // n and p are guaranteed to be >= 1
 if (p >= n)
 System.out.println("done");
 else
 foo10(n, 2 * p);
}

18. What is the running time of the foo11 method?

public static void foo11(int n)
{
 // n is guaranteed to be >= 0
 if (n == 0)
 return 0;
 else
 return (5 + 2 * foo11(n - 1));
}

15.7.3 Programming Projects
19. Write a program that includes a method taking a single-

dimensional array of ints as its only parameter, and returning the
average of all the elements of the array. Add the necessary code
to count how many statements are executed in the innermost loop.
Run several simulations depending on the number of elements in
the parameter integer array. What is the running time of that
method as a function of the number of elements of the parameter
array?

20. Write a program that includes a method converting a two-
dimensional array of ints to a two-dimensional array of boolean
values. If the integer value is greater than or equal to 0, then the
corresponding boolean value is true; otherwise it is false. Add the
necessary code to count how many statements are executed in the
innermost loop. Run several simulations depending on the number
of rows and columns in the argument integer array. What is the
running time of that method as a function of the number of rows
and columns of the parameter array? (You should assume that
each row has the same number of columns.)

21. Write a program that includes a method computing the largest
element of a given column (represented by a parameter of the
method) of a two-dimensional array of ints. Add the necessary
code to count how many statements are executed in the innermost
loop. Run several simulations depending on the number of rows
and columns in the parameter integer array, as well as the index of
the column for which the method calculates the largest element.
Does the running time of the method depend on the column index?
the number of rows? the number of columns? What is the running
time of that method as a function of the number of rows and
columns of the parameter array and the column index? (You
should assume that each row has the same number of columns.)

22. Write a program that includes a method taking a two-dimensional
array of ints as its only parameter, and returning a single

dimensional array of ints such that each element of the returned
array is the sum of the corresponding row in the parameter array.
Add the necessary code to count how many statements are
executed in the innermost loop. Run several simulations
depending on the number of rows and columns in the parameter
integer array. What is the running time of that method as a function
of the number of rows and columns of the parameter array? (You
should assume that each row has the same number of columns.)

23. Write a program that implements a recursive Binary Search, and
add the necessary code to count how many times
binarySearchRecursive is being called. Run several simulations on
arrays of 32, 64, and 128 elements. How many times is the
method called in the best-case scenario and worst-case scenario?
Does that match our analysis in the chapter?

24. Write a program that implements a recursive method to compute
the factorial of a number and add the necessary code to count how
many times the method is being called. Run several simulations
depending on the value of n. How many times is the method
called? What is the running time of this method?

25. Write a program that includes a method converting a String of 0s
and 1s to its equivalent decimal number and add the necessary
code to count how many times the method is being called. Run
several simulations depending on the length of the input String.
How many times is the method called? What is the running time of
that method?

26. Write a program that implements Counting Sort to sort an array of
integers. Research how Counting Sort works before you
implement it. What is the main difference between Counting Sort
and other sorting algorithms such as Selection Sort, Bubble Sort,
and Insertion Sort? In what situations would Counting Sort be
efficient or inefficient to sort an array of integers?

15.7.4 Technical Writing
27. Explain why it is important to consider running time when coding

algorithms. Use an example to illustrate your point. Your example,
web-based or not, should deal with a lot of data.

15.7.5 Group Project (for a group
of 1, 2, or 3 students)
28. Write a class with an int array as its only instance variable. Write a

recursive method that uses the Quick Sort algorithm in order to
sort the array. (Quick Sort is explained below.) You will then add
the appropriate code and perform the appropriate simulations to
evaluate the running time of the method as a function of the
number of elements in the array.

Here is how Quick Sort works:

❑ Partition the array so that all the elements to the left of a
certain index are smaller than the element at that index and
all the elements to the right of that index are greater than or
equal to the element at that index. You should code a
separate method to partition the array. (See explanation that
follows.)

❑ Sort the left part of the array using Quick Sort (this is a
recursive call).

❑ Sort the right part of the array using Quick Sort (this is
another recursive call).

To partition the array elements in the manner previously explained,
you should code another method (this one nonrecursive) as
explained in the following:

❑ Choose an element of the array (for example, the first
element). We call this element the pivot.

❑ This method partitions the array elements so that all the
elements left of the pivot are less than the pivot, and all the
element right of the pivot are greater than or equal to the
pivot.

❑ This method returns an int representing the array index of the
pivot (after the elements have been partitioned in the order
described previously).

❑ In order to rearrange the array elements as previously
described, implement the following pseudocode.

The following is pseudocode to partition a subarray whose lower
index is low and higher index is high:

Assign element at index low to the pivot
Initialize j to low
Loop from (low + 1) to high with variable i
 If (array element at index i is smaller than
pivot)
 Increase j by 1
 Swap array elements at indexes i and j
Swap array elements at index low and j
Return j

Using a counter, keep track of the number of statement executions
performed when using Quick Sort to sort an array of n elements. In
particular, you should run simulation runs on these two situations:

❑ The array is not sorted

❑ The array is presorted in the correct order

You should perform a mathematical analysis of the running time of
Quick Sort in the average case based on its recursive formulation
(using iteration, as we did in the chapter examples).

APPENDIX A
Java Reserved Words and
Keywords
These words have contextual meaning for the Java language
and cannot be used as identifiers.

abstract default goto package synchronized
assert do if private this
boolean double implements protected throw
break else import public throws
byte enum instanceof return transient
case extends int short true
catch false interface static try
char final long strictfp void
class finally native super volatile
const float new switch while
continue for null _

The words true, false, and null are literals. The remainder of
the words are Java keywords, although const and goto are
not currently used in the Java language.

APPENDIX B
Operator Precedence
These rules of operator precedence are followed when
expressions are evaluated. Operators in a higher level in the
hierarchy—defined by their row position in the table—are
evaluated before operators in a lower level. Thus, an
expression in parentheses is evaluated before a shortcut
postincrement is performed, and so on with the operators in
each level. When two or more operators on the same level
appear in an expression, the evaluation of the expression
follows the corresponding rule for same-statement evaluation
shown in the second column.

Operators Order of Same-
Statement
Evaluation

Operation

() left to right parentheses for explicit grouping

++ – – right to left shortcut postincrement and postdecrement

++ – – ! right to left shortcut preincrement and predecrement,
logical unary NOT

* / % left to right multiplication, division, modulus

+ - left to right addition or String concatenation, subtraction

< <= >
>=
instance
of

left to right relational operators: less than, less than or
equal to, greater than, greater than or equal to;
instanceof

== != left to right equality operators: equal to and not equal to

&& left to right logical AND

|| left to right logical OR

?: left to right conditional operator

= += −=
*= /= %=

right to left assignment operator and shortcut assignment
operators

APPENDIX C
The Unicode Character Set
Java characters are encoded using the Unicode Character
Set, which is designed to support international alphabets,
punctuation, and mathematical and technical symbols. Each
character is stored as 16 bits, so as many as 65,536
characters are supported.

The American Standard Code for Information Interchange
(ASCII) character set is supported by the first 128 Unicode
characters from 0000 to 007F, which are called the controls
and Basic Latin characters, as shown on the next page.

Any character from the Unicode set can be specified as a
char literal in a Java program by using the following syntax:
‘\uNNNN’ where NNNN are the four hexadecimal digits that
specify the Unicode encoding for the character.

For more information on the Unicode character set, visit the
Unicode Consortium’s website: www.unicode.org.

http://www.unicode.org/

Controls and Basic Latin Characters
Copyright © 1991–2010 Unicode, Inc. All rights reserved. Reproduced with

permission of Unicode, Inc.

APPENDIX D
Representing Negative Integers
The industry standard method for representing negative
integers is called two’s complement. Here is how it works:

For an integer represented using 16 bits, the leftmost bit is
reserved for the sign bit. If the sign bit is 0, then the integer is
positive; if the sign bit is 1, then the integer is negative.

For example, let’s consider two numbers, one positive and
one negative.

0000 0101 0111 1001 is a positive integer, which we call a.

1111 1111 1101 1010 is a negative integer, which we will
call b.

Using the methodology presented in Chapter 1 for converting
a binary number to a decimal number, we can convert the
binary number, a, to its decimal equivalent. Hence, the value
of a is calculated as follows:

In contrast, b, the negative number, is represented in binary
using the two’s complement method. The leftmost bit, which is
the sign bit, is a 1, indicating that b is negative. To calculate
the value of a negative number, we first calculate its two’s
complement. The two’s complement of any binary number is
another binary number, which, when added to the original
number, will yield a sum consisting of all 0s and a carry bit of
1 at the end.

To calculate the two’s complement of a binary number, n,
subtract n from 2 , where d is the number of binary digits in n.
The following formula summarizes that rule:

Two's complement of n = 2d − n

Knowing that 2 − 1 is always a binary number containing all
1s, we can simplify our calculations by first subtracting 1 from
2 , then adding a 1 at the end.

Two's complement of n = 2 − 1 − n + 1

d

d

d

d

So to calculate the two’s complement of b, which has 16
digits, we subtract b from a binary number consisting of 16 1s,
then add 1, as shown here.

Thus, the two’s complement of b, which we will call c, is 0000
0000 0010 0110.

Another, simpler, way to calculate a two’s complement is to
invert each bit, then add 1. Inverting bits means to change all
0s to 1s and to change all 1s to 0s. Using this method, we get

We can verify that the two’s complement of b is correct by
calculating the sum of b and c.

Converting c to decimal will give us the value of our original
number b, which, as we remember, is negative. We have

Because a leftmost bit of 0 indicates that the number is
positive, using 16 bits, the largest positive number (we will call
it max) that we can represent is

0111 1111 1111 1111

max = (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
+ 2 + 2 + 2 + 2)

This is equivalent to 2 − 1, which is 32,768 − 1, or 32,767.

Using 16 bits, then, the smallest negative number (we will call
it min) that we can represent is

1000 0000 0000 0000

The two’s complement of min is min itself. If we invert the bits
and add 1, we get the same value we started with:

and therefore min is −2 or −32,768.

Thus, using 16 bits, we can represent integers between
−32,768 and 32,767.

14 13 12 11 10 9 8 7 6 5 4

3 2 1 0

15

15

APPENDIX E
Representing Floating-Point
Numbers
IEEE 754, a specification accepted worldwide and used by
the Java language, defines how to represent floating-point
numbers in binary numbers. Single-precision floating-point
numbers use 32 bits of memory, and double-precision
floating-point numbers use 64 bits.

Here is how single- and double-precision floating-point
numbers are represented:

The leftmost bit stores the sign of the floating-point number; a
0 indicates a positive number, while a 1 indicates a negative
number.

To represent the exponent of the number, which can be
positive or negative, each representation stores a positive,
biased exponent, calculated by adding a fixed bias, or scaling
factor, to the real exponent of the number. The purpose of the
bias is to be able to represent both extremely large and
extremely small numbers. The bias is equal to

2 – 1

Thus, for single precision, the bias is

2 − 1 = 2 − 1 = 127

In single-precision, the 8-bit biased exponent can store 256
positive values (0 to 255). Thus, with a bias of 127, we can
represent floating-point numbers with real exponents from
−127 to 128, as shown here:

(# of bits of the biased exponent−1)

(8–1) 7

Real exponent −127 −126 ... 0 ... 127 128

 + Bias 127 127 ... 127 ... 127 127

Biased exponent 0 1 ... 127 ... 254 255

Conversely, to find the real exponent from the biased
exponent, we subtract the bias. For example, if the biased
exponent is 150, then the real exponent is 150 − 127, which is
23. Similarly, if the biased exponent is 3, the actual exponent
is 3 − 127, which is −124.

For double precision, the bias is

2 − 1 = 2 − 1 = 1023

A floating-point number is considered to be in the form

(−1) (1 + significand) * 2

By definition, the significand is of the form 0 followed by a dot
followed by a string of 0s and 1s, for example, 0.1101. That
string of 0s and 1s is known as the mantissa.

For example, if the significand is 0.1101, then the mantissa is
110100…0

As an example, let’s convert a single-precision binary number
to a decimal floating-point number. We will convert the
following single-precision IEEE 754 floating-point number:

0 10000111 11010000 . . . 0

The leftmost digit, 0, tells us that the number is positive. The
biased exponent is 10000111, which converted to decimal, is

= 2 + 2 + 2 + 2

(11−1) 10

sign* (biased exponent−bias)

7 2 1 0

= 128 + 4 + 2 + 1
= 135

The bias for single-precision floating-point numbers is 127, so
the number is

= (−1) * (1 + .1101) * 2
= 1.1101 * 2
= 1 1101 0000

In decimal, the number is

= 2 + 2 + 2 + 2
= 256 + 128 + 64 + 16
= 464

Given that .1 is ½1 or ½ in decimal, and .01 is ½2 or ¼, and
.0001 is ½4 or in decimal, we also could have calculated

the number using this method:

Now, let’s convert a decimal floating-point number into single-
precision, binary format. Here, we will convert the number
25.375, which we’ll call y. First we convert the whole number
portion (5) to binary, getting 101:

5 = 101

Then we convert the fractional part to binary:

0 (135 − 127)

8

8 7 6 4

Thus, .375 as represented in binary is .011.

Therefore, y can be represented in binary as

We now can deduce the sign, the biased exponent, and the
mantissa. The sign is 1 because the number is negative. The
significand is 1.01011, and therefore the mantissa is
01011000 … 00. The exponent is 2, so the biased exponent is
129 (2 plus the bias for single-precision numbers, which is
127):

Converting 129 to binary, we get

129 = 1000 0001

Therefore, the IEEE 754 single-precision value of the number
y is

1 10000001 010110000...0

APPENDIX F
Solutions to Selected Exercises

1.7 Exercises, Problems, and Projects
1.7.1 Multiple Choice Exercises:
 1. Java
 4. servers.
 7. is a multiple of 4.
10. C
13. javac Hello.java

1.7.2 Converting Numbers
16. 0110 0001 1100
19. 0x15

1.7.3 General Questions
22. 2.5 billion
25. red = 51; green = 171; blue = 18
28. javac

2.6 Exercises, Problems, and Projects
2.6.1 Multiple Choice Exercises
 1. int a;

2.6.2 Reading and Understanding Code
 4. 12.5
 7. 2.0
10. 4
13. 5
16. 2.4
19. 5
22. 0

2.6.3 Fill In the Code
25.
boolean a;

a = false;

28.
double avg = (double) (a + b) / 2;

System.out.println("The average is " + avg);

31. a *= 3;

2.6.4 Identifying Errors in Code
34. Cannot assign a double to a float variable (possible loss of

precision).
37. There should not be a space between – and =.

2.6.5 Debugging Area—Using Messages
from the Java Compiler and Java JVM
40. Cannot assign a double to an int variable (possible loss of

precision). Change to: int a = 26;
43. =+ is different from += (shortcut operator). Here, a is

assigned the value + 3. To add 3 to a, change the second
statement to: a += 3;

3.18 Exercises, Problems, and Projects
3.18.1 Multiple Choice Exercises
 1. import
 4. new
 7. It is a class method.
10. double
13. Math.E;

3.18.2 Reading and Understanding Code
16. hello
19. 3.141592653589793
22. 8

3.18.3 Fill In the Code
25. System.out.println(s.length());
28.
System.out.print("Welcome ");

System.out.print("to ");

System.out.print("Java ");

System.out.print("Illuminated\n");

31.
// code below assumes we have imported Scanner

Scanner scan = new Scanner(System.in);

System.out.print("Enter two integers > ");

int i = scan.nextInt();

int j = scan.nextInt();

int min = Math.min(i, j);

System.out.println("min of " + i + " and " + j + " is "

+ min);

34.
// code below assumes we have imported Scanner

Scanner scan = new Scanner(System.in);

System.out.print("Enter a double > ");

double number = scan.nextDouble();

double square = Math.pow(number, 2);

System.out.println(number + " squared = " + square);

3.18.4 Identifying Errors in Code
37. The System class begins with a capital S. It should be

System, not system.
40. The round method of the Math class returns a long; a long

cannot be assigned to a short variable due to a potential
loss of precision.

43. The char ‘H’ cannot be assigned to the String s. The two
data types are not compatible.

3.18.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
46. Java is case sensitive. The Math class needs to be

spelled with an uppercase M.
49. In the output statement, we are just printing the value of

grade without any formatting. To format grade as a
percentage, the output statement should be:
System.out.println("Your grade is " +

percent.format(grade));

4.7 Exercises, Problems, and Projects
4.7.1 Multiple Choice Exercises
 1. javafx.scene.canvas
 4. true
 7. the (x, y) coordinate of the upper-left corner of the

rectangle we are drawing
10. 256

4.7.2 Reading and Understanding Code
13. 250 pixels

4.7.3 Fill In the Code
16. gc.setFill(Color.RED);

gc.setStroke(Color.GREEN);

19. gc.fillRect(50, 30, 50, 270);

4.7.4 Identifying Errors in Code
22. There should be double quotes around the literal Find a

bug, not single quotes. Single quotes are used for a char,
not a String.

25. There is no public color instance variable in the
GraphicsContext class. The setFill or setStroke method
should be used to set the current color.

4.7.5 Debugging Area—Using Messages
from the Java Compiler and Java JVM
28. The rectangle is being drawn outside the bounds of the

window. The largest visible x coordinate is 699.

5.14 Exercises, Problems, and Projects
5.14.1 Multiple Choice Exercises
 1.

❑ a < b true

❑ a != b true

❑ a == 4 false

❑ (b – a) <= 1 false

❑ Math.abs(a – b) >= 2 true

❑ (b % 2 == 1) true

❑ b <= 5 true

 4. yes
 7.

❑ a < b || b < 10 no

❑ a != b && b < 10 yes

❑ a == 4 || b < 10 yes

❑ a > b && b < 10 no

5.14.2 Reading and Understanding Code
10. true
13. 27 is divisible by 3

End of sequence
16. Hello 3

Hello 4
Done

19. Number 3
Number 4
Other number

5.14.3 Fill In the Code
22.
if (a)

 a = false;

else

 a = true;

25.
if (b % c == 0)

 a = true;

else

 a = false;

28.
if (a && b > 10)

 c++;

5.14.4 Identifying Errors in Code
31. The && operator cannot be applied to two int operands

(a1 and a2).
34. We need a set of parentheses around b1.
37. There is no syntax error.

5.14.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
40. The expression a = 31 evaluates to an int, 31. The if

condition requires a boolean expression. To fix the
problem, replace a = 31 with a == 31 .

6.14 Exercises, Problems, and Projects
6.14.1 Multiple Choice Exercises
 1. The code runs forever.
 4. true

6.14.2 Reading and Understanding Code
 7. Enter an int > 3

Enter an int > 5
Hello
Enter an int > –1
Hello

10. i is 8 and product is 42
13. 3
16. i is 40 and sum is 60
19. 3

3
3
3
4

6.14.3 Fill In the Code
22.
 System.out.print("Enter an integer > ");

int value = scan.nextInt();

while (value != 20)

{

 if (value >= start)

 System.out.println(value);

 System.out.print("Enter an integer > ");

 value = scan.nextInt();

}

25.
 Scanner scan = new Scanner(System.in);

System.out.print("Enter a word > ");

word = scan.next();

while (! word.equals("end"))

{

 sentence += word + " ";

 System.out.print("Enter a word > ");

 word = scan.next();

}

28.

 Scanner scan = new Scanner(System.in);

int sum = 0;

System.out.println("Enter an integer > ");

int value = scan.nextInt();

while (value != 0 && value != 100)

{

 sum += value;

 System.out.println("Enter an integer > ");

 value = scan.nextInt();

}

System.out.println("sum is " + sum);

6.14.4 Identifying Errors in Code
31. The variable num needs to be initialized after it is

declared, and a priming read is needed.
34. The loop is infinite; number is always different from 5 or

different from 7. The logical OR (||) should be changed
to a logical AND (&&).

6.14.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
37. It is an infinite loop; i should be incremented, not

decremented, inside the body of the while loop so that the
loop eventually terminates.

40. In the for loop header, the loop initialization statement, the
loop condition, and the loop update statement should be
separated by semicolons (;), not commas(,).

7.18 Exercises, Problems, and Projects
7.18.1 Multiple Choice Exercises
 1. The convention is to start with an uppercase letter.
 4. true
 7. can be basic data types, existing Java types, or user-

defined types (from user-defined classes).
10. one parameter, of the same type as the corresponding

field.
13. these fields do not need to be passed as parameters to

the methods because the class methods have direct
access to them.

16. All of the above.

7.18.2 Reading and Understanding Code
19. double
22. an instance method (keyword static not used)
25. public static void foo3(double d)

7.18.3 Fill In the Code
28.
 private int grade;

private char letterGrade;

31.
 public TelevisionChannel(String newName, int newNumber,

 boolean newCable)

{

 name = newName;

 number = newNumber;

 cable = newCable;

}

34.
 public String toString()

{

 return ("name: " + name + "\tnumber: "

 + number + "\tcable: " + cable);

}

37.
 public String typeOfChannel()

{

 if (cable)

 return "cable";

 else

 return "network";

}

7.18.4 Identifying Errors in Code
40. The toString method needs to return a String, not output

data.
43. The method header is incorrect; it should be public

double calcTax()

46. There are two errors: The assignment operator = should
not be used when declaring an enum set. And the enum
constant objects should not be String literals but
identifiers. The statement should be:
enum Months { January, February, March };

7.18.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
49. The compiler understands that Grade is a method since

its header says it returns a char. It looks as if it is intended
to be a constructor so the keyword char should be deleted
from the constructor header.

52. The constructor assigns the parameter numberGrade to
itself, therefore not changing the value of the instance
variable numberGrade, which by default is 0. The
constructor could be recoded as follows:

 public Grade(int newGrade)

{

 numberGrade = newGrade;

}

8.11 Exercises, Problems, and Projects
8.11.1 Multiple Choice Exercises:
 1. int [] a; and int a[];
 4. 0
 7. a.length
10. false

8.11.2 Reading and Understanding Code
13. 48.3
16. 12

48
65

19. 14
22. It counts and returns how many elements in the argument

array have the value 5.
25. It returns an array of Strings identical to the argument

array except that the Strings are all in lowercase.

8.11.3 Fill In the Code
28.
 if (a[i] > 20)

 System.out.println(a[i]);

31. System.out.println(“a[” + i + “] = “ +
a[i]);

34.
 if (a.length < 2)

 return false;

else if (a[0].equals(a[1]))

 return true;

else

 return false;

8.11.4 Identifying Errors in Code
37. Index –1 is out of bounds; the statement

System.out.println(a[-1]); will generate an
ArrayIndexOutOfBoundsException at run time.

40. When declaring an array, the square brackets should be
empty. Replace a[3] with a[] .

43. Although the code compiles, it outputs the hash code of
the array a. To output the elements of the array, we need
to loop through the array elements and output them one
by one.

8.11.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
46. Index a.length is out of bounds; when i is equal to

a.length , the expression a[i] will generate a run-
time exception. Replace <= with < in the loop condition.

9.10 Exercises, Problems, and Projects
9.10.1 Multiple Choice Exercises
 1. int[][] a; and int a[][];
 4. false
 7. a[2].length
10. true
13. java.util

9.10.2 Reading and Understanding Code
16. 3
19. Munich

Stuttgart
Berlin
Bonn

22. Munich
Berlin
Ottawa

25. It counts and returns the number of elements in the
parameter array a.

28. It returns an int array of the same length as the length of
the parameter array a. Each element of the returned array
stores the number of columns of the corresponding row in
a.

31. 7 (at index 0) 45 (at index 1) 21 (at index 2)

9.10.3 Fill In the Code
34. System.out.println(geo[0][5]);
37.
 for (int i = 0; i < geo.length; i++)

{

 for (int j = 0; j < geo[i].length; j++)

 System.out.println(geo[i][j]);

}

40.
 int count = 0;

for (int j = 0; j < a[1].length; j++)

{

 if (a[1][j] == 6)

 count++;

}

System.out.println("# of 6s in the 2nd row: " + count);

43. This method returns the product of all the elements in an
array.

 public static int foo(int [][] a)

{

 int product = 1;

 for (int i = 0; i < a.length; i++)

 {

 for (int j = 0; j < a[i].length; j++)

 {

 product *= a[i][j];

 }

 }

 return product;

 }

46. System.out.println(languages.size());
49.
 for (String s : languages)

{

 if (s.charAt(0) == 'P')

 System.out.println(s);

}

9.10.4 Identifying Errors in Code
52. Array dimension missing in new double [][10]

Example of correct code: double [][] a = new
double [4][10];

55. Cannot declare an ArrayList of a primitive data type; the
type needs to be a class (for example: Double)

58. Correct syntax is variable = expression . Because
a.size() is not a variable, we cannot assign a value
to it.

9.10.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
61. Other than a[0][0] , the first row is not taken into

account because i is initialized to 1 in the outer loop. It
should be int i = 0; not int i = 1 .

64. Index 3 is out of bounds. There are only 3 elements in a;
the last index is 2.

67. Because ArrayList elements begin at index 0, the
statement
a.set(1, 'J');

sets the value of the second element of the ArrayList. To
set the value of the first element, use this statement:
a.set(0, 'J');

10.10 Exercises, Problems, and Projects
10.10.1 Multiple Choice Exercises
 1. a class inheriting from another class.
 4. protected and public instance variables and methods
 7. You cannot instantiate an object from an abstract class.
10. the class must be declared abstract.

10.10.2 Reading and Understanding
Code
13. B inherits from A: name, price (foo2 and foo3 are

overridden)
C inherits from B: name, price, foo2, and foo3 (foo1 is
overridden)

16.
 A() called

B() called

B version of foo1() called

19.
 A() called

B() called

C() called

10.10.3 Fill In the Code
22.
 private char middle;

public G(String f, String n, char middle)

{

 super(f, n);

 this.middle = middle;

}

25. public class K extends F implements I

10.10.4 Identifying Errors in Code
28. There is no error. new D() returns a D object

reference. D inherits from C; therefore a D object
reference “is a” C object reference. Thus, it can be
assigned to c2. Although a C object cannot be
instantiated, a subclass object reference can be assigned
to a superclass reference.

31. The foo method does not have a method body; it must be
declared abstract. The K class must be declared abstract
as well.

10.10.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
34. The instance variable n of class M is private, and is not

inherited by P. Therefore, n is not visible inside class P.

11.15 Exercises, Problems, and Projects
11.15.1 Multiple Choice Exercises
 1. try/catch blocks enable programmers to attempt to recover

from illegal situations and continue running the program.
 4. false
 7. the contents of the file, if any, will be deleted.
10. the stream method

11.15.2 Reading and Understanding
Code
13. ABCD
16. count = 3
19. Nice finish
22. CS1

0
1
2
3
4

11.15.3 Fill In the Code
25.
 while (parse.hasNext())

{

 s = parse.next();

 if (s.equals("C"))

 break;

}

28.
 while (file.hasNext())

{

 result += file.nextLine() + " ";

}

file.close();

System.out.println(result);

31.
 average += grades[i];

. . .

average /= grades.length;

. . .

pw.println(average);

pw.close();

11.15.4 Identifying Errors in Code
34. The next method returns a String; the return value cannot

be assigned to an int variable. Use nextInt instead.

11.15.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
37. The catch block is missing; you need to add it after the try

block as follows:
 catch (IOException ioe)

{

 ioe.printStackTrace();

}

40. When we try to read 3.5 as an int, the method generates
an InputMismatchException and we execute the catch
block. To fix the problem, replace 3.5 with 3, for example,
or use the nextDouble method and change number to a
double.

12.20 Exercises, Problems, and Projects
12.20.1 Multiple Choice Exercises
 1. TextField.
 4. Layout container that arranges components vertically
 7. onAction
10. false
13. EventHandler<KeyEvent>
16. 5
19. TouchEvent

12.20.2 Reading and Understanding
Code
22. In a horizontal line left to right
25. void
28. The label displays “mode: 7”
31. That button’s text is set to 0

12.20.3 Fill in the Code
34.
 <center>

 <Label fx:id="label1" text="SELECT" />

</center>

37. l = new Label(“Hello”);
40.
 l.setText("Button clicked"); // listener is registered

only on

 // the button, so

getSource is

 // not needed

43.
 buttons = new Button[4];

for (int i = 0; i < buttons.length; i++)

{

 buttons[i] = new Button("Button " + i);

 VBox.setVgrow(buttons[i], Priority.ALWAYS);

 buttons[i].setMaxHeight(Double.MAX_VALUE);

 left.getChildren().add(buttons[i]);

}

46.
 setCenter(label1);

setBottom(label2);

49.

 URL resource = getClass().getResource("music.wav");

AudioClip music = new AudioClip(resource.toString());

music.setCycleCount(5);

music.play();

51.
 ObservableList<PieChart.Data> pieChartData

 = FXCollections.observableList(myList

);

PieChart chart = new PieChart(pieChartData);

12.20.4 Identifying Errors in Code
54. The import statement should be import

javafx.scene.layout.*;

57. We need to get the series data before adding a new set of
data: series.getData().add(new
XYChart.Data<. . .

12.20.5 Debugging Area – Using
Messages from the Java Compiler and
Java JVM
60. On line 6, Welcome needs to be enclosed in quotes:

<Label text=”Welcome” />

63. The ButtonHandler event handler is not registered on the
button. In the constructor, we need to instantiate an
instance of ButtonHandler and set that object as the
listener for the button:

 ButtonHandler bh = new ButtonHandler();

button.setOnAction(bh);

13.9 Exercises, Problems, and Projects
13.9.1 Multiple Choice Exercises
 1. may or may not be static.
 4. calls itself.
 7. a run-time error.

13.9.2 Reading and Understanding Code
10. 0
13. 3
16. There is no output
19. foo3 outputs the parameter String in reverse
22. 64

13.9.3 Fill In the Code
25. return foo(s.substring(2, s.length())

);

28.
 if (n >= 1000) // base case

 return n;

else // general case

 return foo(n * n);

13.9.4 Identifying Errors in Code
31. In the else clause, the return keyword is missing.

13.9.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
34. The base case is not coded properly; it needs to return a

value, not make another recursive call. Instead of return
foo(0), you can code return 1.

37. In the general case, the method makes the recursive call
with the original String less the last two characters as the
argument. Therefore, there should be two base cases:
when the String has 0 characters (that is, an empty String)
and when the String has one character. Assuming this
method counts the number of characters in the String
argument, we can add the following code after the first
base case:

 else if (s.length() == 1)

 return 1;

14.14 Exercises, Problems, and Projects
14.14.1 Multiple Choice Exercises
 1. Linked lists are easily expanded.
 4. (7, Ajay, NFL)
 7. (7, Ajay, NFL) and (5, Joe, Sonic)
10. front = 3, stores 54; back = 0, stores 62
13. front = 7; back = 6; the list is empty

14.14.2 Reading and Understanding
Code
16. If the list is not empty, it resets it to empty and returns true.

Otherwise, it returns false.
19. It outputs all the Player objects in the list whose game

field is Diablo.

14.14.3 Fill In the Code
22.
 previous.getNext().setNext(

 previous.getNext().getNext(

).getNext());

25.
 public LLNode(char newGrade)

{

 grade = newGrade;

 next = null;

}

28.
 public LLNode setGrade(char grade)

{

 this.grade = grade;

 return this;

}

public LLNode setNext(LLNode next)

{

 this.next = next;

 return this;

}

31.

 public int numberOfItems()

{

 int count = 0;

 LLNode current = head;

 while (current != null)

 {

 count++;

 current = current.getNext();

 }

 return count;

}

14.14.4 Identifying Errors in Code
34. The getID method belongs to the Player class and cannot

be called using head, a PlayerNode object reference. The
code should be
return head.getPlayer().getID();

37. The number of items in the queue would never increase
and we would always be able to insert into that queue,
eventually overwriting items that are in the queue. This is
a logic error. Furthermore, the queue would always be
considered empty since the number of items always has
the value 0. We would never be able to delete an item
from the queue.

14.14.5 Debugging Area—Using
Messages from the Java Compiler and
Java JVM
40. There is no getHead method in the PlayerLinkedList class.

In order to get a copy of the Player object stored at the
first node of the list, we can code a method returning the
Player.

15.7 Exercises, Problems, and Projects
15.7.1 Multiple Choice Exercises
 1. O (n)
 4. O (n)
 7. n * (n + 1) / 2
10. O (n)

15.7.2 Compute the Running Time of a
Method
13. O (n)
16. O (log n)

2

2

Index
Note: Page numbers followed by f or t indicate material in
figures or tables respectively.

SYMBOLS
&& (ampersands) for AND operator, 199, 200t, 248,
289–292
< > (angle brackets)

declaring ArrayList objects, 564–566
defining classes with generic types, 1078–1085
greater than operator (>), 198t, 236t
greater than or equal to operator (>=), 198t, 236t
less than operator (<), 198t, 433, 537–538
less than or equal to operator (<=), 198t, 433,
537–538

* (asterisk)
multiplication operator (*), 62
shortcut multiplication operator (*=), 73

@ (at sign), for Javadoc block tags, 399–400, 399t
in HTML tags, 400

@FXML annotation, 803t
@Override annotation, 169, 610, 783
[] (brackets) for declaring arrays, 423–426, 525–530
, (comma)

assigning initial values to arrays, 503, 528–530
in DecimalFormat class patterns, 117, 118t
declaring variables, 46, 528
method arguments (parameters), 92

?: (conditional operator), 234–236
{ } (curly braces), 265

assigning initial values to arrays, 426, 503, 528–
530
blocks in selection statements, 204–206, 215,
248
class definition, 342
loop body, 265–266, 438, 454

method definition, 42, 345, 638
try/catch blocks, 693, 694

$ (dollar sign)
in DecimalFormat class patterns, 117, 118t
FXML prefixes, 803t
in identifiers, 41

= (equal sign)
assignment operator (=), 62t, 75t, 197, 200t,
236t, 438
equality operator (==), 197t, 200t, 224–226, 229,
236t, 446

! (exclamation point)
not equal operator (!=), 197t, 200t, 236t
NOT operator (!), 198, 199t, 203, 203t, 236t

-fx- (FXML prefixes), 803t, 919
- (hyphen)

decrement operator (--), 199t, 236t
shortcut subtraction operator (-=), 73, 199t, 236t
subtraction operator (-), 60t, 199t, 236t

() (parentheses), 62t, 75t, 95, 199t, 236t, 609
% (percent sign)

in DecimalFormat class patterns, 117, 118t
modulus operator (%), 60t, 62t, 199t, 236t, 319–
320
shortcut modulus operator (%=), 200t, 236t

. (period)
in DecimalFormat class patterns, 118t
dot notation (dot operator), 95

+ (plus)
addition operator, 60, 106, 199t, 236t
increment operator (++), 71–72, 75t, 199t, 236t

shortcut addition/String concatenation operator
(+=), 73–74, 106, 200t, 236t
String concatenation operator (+), 199t, 236t

(pound sign), in DecimalFormat class patterns,
118t
; (semicolon)

in abstract methods, 638, 641
after conditions (error), 206
in for loops, 301
after statements, 42

/ (slash)
/* */ for block comments, 42, 78
// for line comments, 78
division operator (/), 60, 199t, 236t
shortcut division operator (/=), 75t

_ (underscore), in identifiers, 41
|| (vertical pipe) for OR operator, 199, 200t, 236t,
289–290

A
abs method (Math class), 130, 135t, 225
abstract Axis class, 913
abstract classes and methods, 637–647, 664, 731
abstract ShellLinkedList class, 1028, 1030t
Abstract Window Toolkit (AWT), 167
access modifiers, 342–343, 343t, 345, 346

inheritance and, 612, 626–632
interfaces and, 656

accessor methods, 95, 131, 804, 814
writing, 353–356

accumulation, 22, 274–277
average, calculating, 280–282
for loop for, 304
summing array elements, 436

ActionEvent class, 796, 797–798
actual parameters, 345
add method

ArrayList class, 567t
BigDecimal class, 227–229
GridPane class, 835t
List interface, 835t

addAll (ObservableList interface), 817t
addAll method, 817, 914
addBarChart method, 913
addition calculator, 275–276. See also accumulation;
counting
addition operator (+), 60, 106, 199t, 236t
addListener (ObservableValue interface), 828t
aggregate array operations

comparing arrays for equality, 444–446
copying arrays, 438–442, 442f

displaying data as bar chart, 446–449, 448f,
449f, 547–551
maximum/minimum values

finding, 437–438
processing columns sequentially, 545–547

method parameters and return values, 551–555
multidimensional arrays, 537–551
printing array elements, 433–434
processing given column, 541–543
processing given row, 539–541
processing rows sequentially, 543–545
reading data into arrays, 434–435, 435f
searching. See searching arrays
single-dimensional arrays, 432–450
sorting. See sorting arrays
summing array elements, 436

AirportDrawing class, 366
Alert class, 849
algorithms, 23, 32
alignment property, 792
ALU. See arithmetic logic unit
American Standard Code for Information Interchange
(ASCII), 1151

character set, 15
anchor point, 183
AND operator (&&), 199, 200t, 248, 289–292
angle brackets < >

declaring ArrayList objects, 564–566
defining classes with generic types, 1078–1085
greater than operator (>), 198, 198t
greater than or equal to operator (>=), 198, 198t,
236t

less than operator (<), 198, 198t, 236t, 433,
537–538
less than or equal to operator (<=), 198, 198t,
204t, 236t, 433, 537–538

animate method, 300, 454, 728, 755
animation, 323f
Animation class, 857, 858t
AnimationController, 859–862
AnimationSampler application, 854, 858
anonymous class, 863
API. See application programming interface
appending to file, 712, 712t, 715–717
applets, 19

with graphics. See graphics
Application class, 607, 783, 785t
application programming interface (API), 90, 92

of Node class, 1072t
application software, 7
applications, Java, 19

debugging, 26–28. See also exceptions; testing
applications
example of (programming activity), 25–29
executing, 25
structure of, 40–44

argument(s), 21
lists for methods, 92
methods accepting variable number of, 499–502
passing arrays as, 551–555
retrieving command-line arguments, 462–463
user-defined methods, 345

arithmetic logic unit (ALU), 4

arithmetic operators, 60–61, 60t. See also
precedence, operator
ArrayIndexOutOfBoundsException exception, 534–
535
ArrayList class, 563–575, 733t, 905, 1078

declaring and instantiating, 564–566
example of (programming activity), 575–581
looping with enhanced for loop, 567–570
methods of, 566–567
programming with, 570–575

ArrayList constructors, 565, 565t
ArrayList methods, 566–567, 567t, 569
ArrayListController, 580–581
ArrayPractice2Controller class, 453, 492–494, 494f
ArrayQueue class, 1057t, 1060–1061
arrays, 422–504, 524–582

queues, representing, 1055–1063
stacks, representing, 1048–1052

arrays, multidimensional, 524–582
accessing array elements, 531–536
aggregate array operations, 537–551, 560–561
declaring and instantiating, 525–530
displaying data as bar chart, 547–551
printing array elements, 538–539
processing columns sequentially, 545–547
processing given row, 539–541
processing rows sequentially, 543–545
sorting elements of

arrays of objects, 482–483
Insertion Sort algorithm, 474–482
Selection Sort algorithm, 469–474

in user-defined classes, 455–462

arrays, single-dimensional, 422–504
aggregate array operations, 432–450
comparing arrays for equality, 444–446
copying arrays, 438–442, 442f
as counters, 495–499
declaring and instantiating, 423–426
displaying data as bar chart, 446–449, 448f,
449f
maximum/minimum values, finding, 437–438
printing array elements, 433–434
reading data into arrays, 434–435, 435f
searching

binary search, 484–488
recursive binary search, 978–983, 1132–
1137

sequential search, 464–468, 483–484
sorting elements of

arrays of objects, 482–483
Insertion Sort algorithm, 474–482
Selection Sort algorithm, 469–474

summing array elements, 436
in user-defined classes, 455–462

ArrayStack class, 1048t, 1050–1051
ASCII. See American Standard Code for Information
Interchange
assembly languages, 16–18
assignment operator (=), 49, 58–60, 75t, 98, 200t,
236t, 438
assigns, 197
asterisk (*)

multiplication operator (*), 44
shortcut multiplication operator (*=), 73

at sign (@) for Javadoc block tags, 399–400
attributes, 788
AudioClip class, 864, 866t
Auto class API, 430t, 576, 576t
autoboxing, 142, 568–569
autoinitialization, 347
autoReverse, 868
averages, calculating, 70, 280–282, 282f
AWT. See Abstract Window Toolkit

B
background-color property, 170–171, 802
Backwards class, 316, 316f
balanceCheckBook method, 729, 754–755
bang (!)

not equal operator (!=), 197t, 200t, 236t
NOT operator (!), 198, 199t, 203, 203t, 236t

bar chart, 166, 907–919
array data as, 446–449, 448f, 449f, 547–551

BarChart class, 904, 907, 913t
BarChartView class, 913, 915–917
BarChartViewController class, 917–918
base case (recursion), 954. See also recursion

identifying, 954–957
recursion with two, 971–974

base classes. See inheritance; superclasses
beginPath (GraphicsContext class), 183, 184t
Big-Oh, 994, 1117–1120, 1117t
Big-Omega, 1118, 1119
Big-Theta notation, 1118, 1119
BigDecimal class, 227–229
billsBackup array, 438–439, 439–440f
binary files, 698. See also files
binary operators, 60. See also precedence, operator
binary representation, 11–14

hexadecimal numbers for, 14
binary search of sorted arrays

recursive approach to, 978–983
single-dimensional arrays, 484–488

bits, 5
block, 42
block comments, 42

including in Javadoc documentation, 398
block scope, 209
BoardGame class, 831, 832–833
BoardView class, 836, 838–839
Bonds class, 908, 911
Book class, 570, 572–574
BookSearchEngine class, 570, 575
BookStore class, 572, 573–574, 574–575
boolean data type, 45, 48–49, 49t, 50t
boolean expression, 265
Boolean logic operators. See logical operators
boolean variables (flags), 307, 320
Boolean wrapper class, 142t
booting the operating system, 6
boots, 6
BorderedLabelGridView class, 878, 880–881
BorderPane (JavaFX layout class), 790t, 853–854,
854f, 878
boundary conditions, 28
braces, 42

assigning initial values to arrays, 426, 503, 528–
530
blocks in selection statements, 204–206, 215,
248
class definition, 342
loop body, 265–266, 438, 454
method definition, 345, 638, 641
try/catch blocks, 693, 694, 697

brackets < >
declaring ArrayList objects, 564–566
defining classes with generic types, 1078–1085
greater than operator (>), 198, 198t, 200t, 236t

greater than or equal to operator (>=), 198, 198t,
200t, 204t, 236t
less than operator (<), 198, 198t, 200t, 204t,
236t, 433, 537–538
less than or equal to operator (<=), 198, 198t,
200t, 204t, 236t, 433, 537–538

brackets [] for declaring arrays, 423–426, 525–530
break statement. See switch statements
Bubble Sort algorithm, 489–495, 1135
bulls-eye target, drawing, 312–314, 313f
buttons

components (JavaFX class), 789t
example of (programming activity), 810–813

byte data type, 45, 50t, 69t, 78
Byte wrapper class, 142t
bytes, 5

C
calcRating method, 501
calculate method, 797
calling methods, 21, 94–98, 94f

array elements of objects, 431
dot notation, 95
implicit vs. explicit invocation, 614
processing overhead, 626
in same class, 103
static methods, 130–131

capacity of ArrayList objects, 565
capitalization of identifiers, 25

classes, 89, 342
methods, 89
variables, 46, 344

carriage return character, 127t
Cascading Style Sheets (CSS), 802, 919
case clause. See switch statements
case sensitivity, 25, 41
cashier application, animation of, 298f
Cashier class, 299, 300, 323

checkout method in, 323–324
CashierDrawing class, 299, 300
Cashier.java code, 323

checkout method in, 299
catch blocks, 693–703, 724
catching multiple exceptions, 696–698
CategoryAxis class, 913
cellBills array, 427–428, 428f, 429f, 436, 438, 439f,
440f

as bar chart, 448f
CellPhone class, 461–462

CellPhoneClient class, 460–461, 462f
central processing unit (CPU), 3
changed (ChangeListener interface), 827t
ChangeListener interface, 827, 827t
ChangingColorsController.java, 802, 804–805

application launcher, 805
char data type, 48, 48t, 50t
character class methods, 660t
Character wrapper class, 142t
characters. See also strings

ASCII character set, 15
Java letters, 41
Unicode character set, 15, 16t, 127t
white space characters, as token delimiters,
127–128, 718

charAt method (String class), 109t, 111, 307
charting array data, 446–449, 448f, 449f, 547–551
checkboxes, 800–810

JavaFX class, 789t
checked exception, 694
checkout method in Cashier class, 323–324
ChessBoard class, 840
Circle class, 314

in Figure hierarchy, 641–643
circle coordinates, conversion, 314, 314f
.class files, 23
class members, 89, 343. See also instance
variables; methods; objects
class methods, 130, 377, 379
class scope, 344
class variables, 378

classes, 18, 87–152. See also interfaces; specific
class by name

abstract, 637–647
basics and benefits, 88–90
encapsulation, 89, 344, 459, 462, 612, 626
enumerations, 386–392
generic, 1078–1085
graphical objects, 382–385
inheritance and, 606–674
Java Class Library, 104–105
packages of. See packages
polymorphism, 647–649
reusability, 89
scope, 344, 352
static members, 130–131, 378–382, 379t, 647t
user-defined, 342–404
wrapper classes, 104–105

ClassNotFoundException exception, 749t
cleaning the data, 740
clear (List interface), 835t
clear method (ArrayList class), 567t, 848, 915
clearRect (GraphicsContext class), 174t
client programs, 343
clients

of classes, 88
in computer networks, 7

close method, 701
ObjectInputStream class, 748
PrintWriter class, 712–716
Scanner class, 718–720

closePath (GraphicsContext class), 183, 184t
closing tag, 788

code format
comments. See comments
if and if/else statements, 206
indentation of program code, 22

code reusability, 2
Color class, 172t
Color constants, 172t
color object, 315
colorChosen event handler method, 804
ColorFrequencyGame class, 874–878
ColorGridGame interface, 873
ColorGridGameController class, 882–883
ColorMixer.java, 806
colorToHexString method, 801
column index (multidimensional arrays), 531
columns of two-dimensional arrays

processing sequentially, 545–547
processing single column, 541–543

combo boxes, 813–820
JavaFX class, 789t

comma (,)
assigning initial values to arrays, 503, 528–530
in DecimalFormat class patterns, 117, 118t
declaring variables, 344, 528
method arguments (parameters), 92, 345
multiple interfaces, 657

command buttons. See JavaFX class
command-line arguments, retrieving, 462–463
comments, 42

block comments, 78
for Javadoc documentation, 398
line comments, 78

Comparator interface, 730t
compareTo method, 741

BigDecimal class, 227–229
for enum objects, 387t, 389
String class, 231–234, 482

comparing. See also conditions
arrays (for equality), 444–446
floating-point numbers, 224–229
objects, 229–234
strings, 231–234

compiler(s), 17, 19, 23–24
errors, 26–28, 29t, 32
javac, 23, 398, 399

components, GUI
BorderPane (JavaFX layout class), 790t
button components (JavaFX class), 789t
checkboxes (JavaFX class), 789t
combo boxes (JavaFX class), 789t
GridPane (JavaFX layout class), 790t
HBox (JavaFX layout class), 790t
labels (JavaFX class), 789t
radio buttons (JavaFX class), 789t
slider (JavaFX class), 789t
StackPane (JavaFX layout class), 790t
text fields (JavaFX class), 789t
VBox (JavaFX layout class), 790t

components, nesting, 870–885
composition, 648
compound loop condition, 292
computer basics, 3–10
computer networks, 7
computer programming, about, 2–3

concatenating strings, 75t, 106, 199t
concatenation operator (+), 54, 106, 199t, 236t
conditional operator (?:), 234–236
conditional statements. See looping; selection
(program flow control)
conditions, 196–204. See also comparing; flow of
control
console input, 123–129
constants, 56–58. See also variables

enumerations, 386–387
constructors, 90–94

inheritance rules, 613t, 618, 618t
for subclasses, 614–618
for user-defined classes, 347–353

control flow, 20
controls

and Basic Latin characters, 1151, 1152
GUI, 789

coordinate system (graphics), and color, 170–172
copying arrays, 438–442, 442f
count-controlled loops using for loop, 301–317
count method, 732
counters in loops. See loop control variables
counting, 277–280

arrays as counters, 495–499
counting statements, 1120–1124

running time analysis, 1120–1124
CPU. See central processing unit
curly braces { }

assigning initial values to arrays, 503
class definition, 342
method definition, 345, 638

currency, formatting, 140

D
dailyTemp variable, 422
dangling else clauses, 216
dash (-)

decrement operator (--), 71–72, 199t, 236t
shortcut subtraction operator (-=), 73, 200t, 236t
subtraction operator (-), 199t, 236t

data, 40
input. See input
node, 1010
output. See output

data hiding, 344
data manipulation methods, writing, 361–365
data structures, 1010–1095

defined, 1010
linked lists, 1010–1047, 1011f

doubly linked lists, 1074–1078
exceptions for, 1030–1031
of generic types, 1078–1085
implementing queues with, 1042–1047
implementing stacks with, 1039–1042
methods of, 1014–1021, 1032–1035
nodes, 1010–1012, 1011f, 1022, 1026–
1028
of objects, 1024–1038
of primitive types, 1010, 1011
recursively defined, 1085–1093, 1085f
sorted, 1063–1070
testing, 1021–1023, 1035–1038

queues
array representation of, 1055–1063
implemented as linked lists, 1042–1047

stacks
array representation of, 1048–1052
implemented as linked lists, 1039–1042

data types, 45. See also variables
arrays of. See arrays
for assignment, 53t
enumeration types, 386–392

DataStructureException exception, 1030–1031
debugging applications, 26–28. See also exceptions;
testing applications
decimal representation, converting to binary, 11–12
DecimalFormat class, 104, 117–121, 282
declaring (defining)

abstract classes and methods, 637–643
ArrayList objects, 564–566
arrays

multidimensional, 525–526, 560–561
single-dimensional, 423–426

classes, 342–344
enumerated types, 386
generic classes, 1078–1085
interfaces, 656
object references, 90
subclasses, 612
user-defined exceptions, 756
variable, 46, 51

decrement operator (--), 71–72, 199t, 236t
decrementing loop control variable, 310
default case. See switch statements
default constructors, 92, 347
defining. See declaring
deleting objects, 100

delimiters, input, 127, 718
DeMorgan’s Laws, 202–203, 290
dequeuing items from queues, 1043, 1056–1059,
1058–1059f, 1062
derived class, 606. See also inheritance; subclasses
designing programs

inheritance, 608–625
iteration vs. recursion, 990–991
pseudocode, 20–23
recursion, 954–957, 1085–1093

binary search, 978–983
identifying base and general cases, 954–
957
linked lists defined by, 1085–1093

with return values, 957–970
two base cases, 971–974

deterministic computing, 121
Die class, 495
DieCount class, 496–497
DieCount2 class, 498–499
direct super- and subclasses, 608, 614, 616, 617
disableButtons method, 863, 864
divide method (BigDecimal class), 227
division by zero, 67–68
division operator (/), 199t, 236t
do/while loops, 321

event-controlled looping using, 294–297
nesting, 321–322

documentation with Javadoc utility, 397–401, 399t
dollar sign ($)

in DecimalFormat class patterns, 117, 118t
in identifiers, 41

dot. See period (.)
dot notation, 95, 131, 431
Double class, 828t
double data type, 44, 50t

comparing floating-point numbers, 224–229
double-precision floating-point numbers, 1157
Double wrapper class, 142–147, 142t, 144t, 797
DoublePredicate interface, 730t
DoubleStream interface, 729, 735t
doubleValue (Double class), 828t
doubly linked lists, 1074–1078, 1075–1077f
DRAM. See dynamic random access memory
draw method (graphical objects), 382–385, 896, 899
DrawASprite class, 607–608
drawGIF method, 706, 707
drawing. See also graphics

custom shapes, 183–186
shapes and text, 173–183

drop-down lists. See combo boxes
dynamic random access memory (DRAM), 6

E
E constant (Math class), 134, 134t, 378
element, 787

arrays, 422. See also arrays
EmailAddress constructor, 757, 759
empty String, 107
encapsulation, 89, 344, 789

arrays as instance variables, 459, 462
inheritance and, 612, 626

endIndex argument, 112
endless loop, 267
enhanced for loops, 567–570
enqueuing items into queues, 1043, 1044f, 1045f,
1056–1059, 1058–1059f, 1062
enumeration (enum) types, 386–392
EOFException exception, 749–752
equal sign (=)

assignment operator (=), 197t, 200t, 224–226,
229, 236t
equality operator (==), 197t, 200t, 224–226, 229,
236t, 446

equality of arrays, determining, 444–446
equality operator (==), 197t, 200t, 224–226, 229,
236t, 446
equals method, 377, 446, 460, 576t

comparing objects, 229–231
for enum objects, 388t, 389
String class, 229–231
user-defined classes, 374–377

equalsIgnoreCase method (String class), 231–234
errors. See also exceptions; testing applications

cannot find symbol, 26, 209, 352

case sensitivity in identifiers, 27, 41
compiler errors, 26–28, 29t
dangling else clauses, 216
logic errors, 28, 29t, 32, 361
null object reference, 100–101
return type for constructors, 351
run-time errors, 28, 29t, 100, 116
stack overflow, 964–965

escape sequences, 55, 55t
even numbers, printing, 305–306
event-controlled looping, 264–265, 267–274

text file, reading data from, 271–274
user, reading data from, 268–271
using do/while, 294–297
using while loop, 264–265

event-driven model, 794
event handling, 794–795
EventHandler interface, 864t, 888t
events, 268, 794
EventType constants, 899
Exception class, 692–693, 694, 695t
exceptions, 100, 692, 724. See also specific
exception by name

catching multiple (finally blocks), 696–698
checked and unchecked, 695
generating an, 1030–1031
handling, 692
and input/output operations, 691–763
recovering from, 705–711
try/catch blocks, 693–703
user-defined, 756–760

exclamation point (!)

not equal operator (!=), 197t, 200t, 236t
NOT operator (!), 198, 199t, 203, 203t, 236t, 290

executing applications, 23
expanding arrays, 443
explicit type casting, 70
exponent, 137
expressions, 58–59

conditional operator (?:), 234–236
ExpressShipping class, 670
eXtended Markup Language, 737
extends clause, 608, 657. See also inheritance

F
factorials, calculating, 958–965, 1116
factoring numbers, 319–320
factory methods, 140
FadeTransition, 858, 862, 865
false (reserved word), 41
familyCellBills Array, 532–535
Fetch-Decode-Execute Cycle, 4
fields, of a class, 88, 343
FIFO. See first in, first out
File class, 271, 272t, 694, 733t
FileInputStream class, 704t, 712–716, 749
FileNotFoundException exception, 693, 693f, 701,
702, 724, 744, 744t, 749t, 757
FileOutputStream class, 705t, 744t

writing data, 744–749
writing objects, 744–749

files, 711–725, 743–753. See also input; output
appending to text files, 712–717
closing, 701
opening, 701
pointer, 701
reading data from text files, 698–703
reading objects from files, 749–753
writing data to text files, 712–715
writing objects to files, 744–749

FileWriter class, 705t, 712, 713t, 715
fill (GraphicsContext class), 183, 184t
fill color, 170–171
fillGridWithColors method, 874
fillOval (GraphicsContext class), 174t, 177
fillRect (GraphicsContext class), 174t, 547–548

bar charts of array data, 446–449, 448f, 449f
fillText (GraphicsContext class), 174t, 178
filter method, 729–730, 732
finally blocks, 692, 697, 752
finding factors, output of, 322
fires event, 794
first in, first out (FIFO), 1043
flags (boolean variables), 307, 320
FlatRateShipping class, 669
float data type, 50t
Float wrapper class, 142t
floating-point data types, 47–48, 48t

comparing floating-point numbers, 224–229
floating-point numbers, representing, 1157–1160
floating point unit (FPU), 4, 66
flow of control, 20, 22, 40, 196–247

looping (iteration)
do/while loop, 294–297
for loops, 301–317
while loops, 264–294

selection, 22
conditional operator (?:), 234–236
if/else if statements, 210–213
if/else statements, 206–210
if statements, 204–206
sequential if/else statements, 210–213
switch statements, 236–244

sequential processing, 20
Font constructor, 181t
FoodSamplingsController.java, 818–819
for loops, 301–317, 307, 502

ArrayList objects, looping through, 567–570

basic structure of, 301–302
constructing, 303–315
enhanced for loop, 567–570
example of (programming activity), 323–325
multidimensional array operations, 537–551
nesting, 317–322
single-dimensional array operations, 432–450
testing techniques for, 315–317

foreground colors, 170–171
form feed character (f), 127t
formal parameters, 345, 351
format method

DecimalFormat class, 117t, 119–120
NumberFormat class, 140–141, 140t

format of programming code
comments. See comments
indentation of program code, 22

FPU. See floating point unit
frame, 960
functional interfaces, 664, 731, 864
functions. See methods
fx:controller (FXML attributes), 796–797, 803t
fx:define (FXML element), 803t
fx:id (FXML attributes), 796, 803t
FXCollections class, 905t
FXML, 782, 783

special characters, 821t
FXShellApplication, 788f

G
garbage collector, 99, 1017
gcd method, 965–970
general case (recursion), 954–957, 971–978, 984
generic classes (parameterized types), 563–564,
1078–1085
generic Object, 1011
generics, 563
GenericLinkedList class with, 1081–1084
get method (ArrayList class), 566–568, 567t, 732,
740
get methods (accessor methods), 95, 131, 353–356
getAmount method, 755
getBlue (Color class), 824t
getChildren (Pane class), 848t
getClass method, 784
getColor (PixelReader interface), 823t
getColumnConstraints (GridPane class), 835t
getCurrencyInstance method (NumberFormat class),
140–141, 140t
getData (XYChart.series class), 914t
getEventType method, 899
getGallonsOfGas method (Auto class API), 576t
getGreen (Color class), 824t
getGridHexColor method, 874, 881
getHeight (Image class), 822t
getHost method, 759
getImageSelected method, 818
getIndex method, 874, 882
getItems (ComboBox class), 817t
getLabel method, 874, 882
getMessage method (exception classes), 695t, 758t

getMilesDriven method (Auto class API), 576t
getModel method (Auto class API), 576t
getNext method, 300

of Cashier class, 324–325
getNumber method, 664
getParameters (Application class), 785t, 787
getPercentInstance method (NumberFormat class),
140–141, 140t
getPixelReader (Image class), 822t
getPixelWriter (WritableImage class), 823t
getPrice method, 300

of Cashier class, 325
getReady method, 654
getRed (Color class), 824t
getResource method, 784, 785t, 787
getRowConstraints (GridPane class), 835t
getScene method, 899–900, 929
getSceneX (TouchPoint class), 887t
getSceneX method (MouseEvent class), 886, 887t
getSceneY (TouchPoint class), 887t
getSceneY method (MouseEvent class), 886, 887t
getSelectedIndex (SingleSelectionModel class),
817t, 818
getSelectedItem (SingleSelectionModel class), 817t
getSource method (ActionEvent class), 798t, 804,
848, 882, 928
getSquareColor method, 831
getSquareText method, 831
getString method, 739
getStylesheets method, 921
getters, 95, 131, 151, 354
getText method, 797

getTitle method, 874
getTouchPoint method (TouchEvent class), 886, 887t
getValue (Slider class), 826, 827t
getValue (ObservableValue interface), 828t
getWidth (Image class), 822t
getWindow method, 900, 929
getX (MouseEvent class), 887t
getX (TouchPoint class), 887t
getY (MouseEvent class), 887t
getY (TouchPoint class), 887t
GIFDecoding class, 706, 707–709
graphical user interfaces (GUIs)

building programmatically, 830–841
controls, 789–791
event handling, 794–795
layout containers, 841–853
using GridPane, 841–853
using JavaFX, 781–929

graphics, 166–189
coordinate system and color, 170–172
drawing shapes, 183–186, 241–244

bar charts, 446–449, 448f, 449f, 547–551
bullseye, 312–314
ovals (circle), 314–315

example of (programming activity), 187
JavaFX application structure, 167–170
and text, 173–183

GraphicsContext class, 170, 171t, 173–174t, 314,
382, 385, 448, 547–548, 706, 707, 899
gray (Color class), 822, 824t, 825
greater than operator (>), 198, 198t, 200t, 236t

greater than or equal to operator (>=), 198, 198t,
200t, 236t
greatest common divisor (gcd) calculating, 965–970
GridButton class, 845–847
GridPane (JavaFX layout class), 790t, 834, 841–853,
878
GUIs. See graphical user interfaces

H
handle (EventHandler interface), 864t
handle method, 882, 886, 899, 929
handleMouseEvent method, 892
handling events, 794–795
handling exceptions, 692–696

catching multiple (finally blocks), 696–698
checked and unchecked, 694
try/catch blocks, 694–697
user-defined, 756–760

handwaving method, 1125
hardware, 3–6

system configuration, 8–10
hasNext method (Scanner class), 271, 272t, 273,
284, 287, 287t, 702, 720, 749
hasNextBoolean method (Scanner class), 287t
hasNextByte method (Scanner class), 287t
hasNextDouble method (Scanner class), 287t
hasNextFloat method (Scanner class), 287t
hasNextInt method (Scanner class), 287, 287t, 694
hasNextLong method (Scanner class), 287t
hasNextShort method (Scanner class), 287t
HBox (JavaFX layout class), 786, 787, 790t
head of linked list, 1012
hexadecimal numbers, 11, 14
hexStringColor method, 806, 808
HexStringHandler class, 664, 666–667
hierarchies, 606
high-level programming languages, 16–18
highestCount method, 874
hours (Duration class), 863t
hyphen (-)

decrement operator (--), 71–72, 199t, 236t
shortcut subtraction operator (-=), 200t, 236t
subtraction operator (-), 199t, 236t

I
identifiers (names), 41

classes, 90, 342–343
generic class, 1079
naming conventions, 89, 342–343, 356
reserved words, 41
rules for, 42t
scope of. See scope

IEEE 754, 1161
if/else if statements, 210–213

dangling else clauses, 216
if/else statements, 206–213, 495

conditional operator (?:) vs., 234
dangling else clauses, 216
sequential and nested, 210–213
testing techniques for, 219–220

if statements, 204–206, 296, 297
IllegalEmailException exception, 757, 758, 759
IllegalStateException exception, 701, 703, 706, 720
Image class, 822t
ImageView control, 793, 816
implicit invocation

of superclass constructor, 614
of toString method, 376

implicit parameter (this), 369
implicit type casting, 69
import statement, 105
incorrect statement, 206
increment operator (++), 71–72, 199t, 236t
indentation of program code, 22

if and if/else statements, 206
index, array, 422, 426, 531

indexOf method (String class), 109t, 111–112, 113
induction, proof by, 1127
inequality. See not equal operator (!=); relational
operators
infinite loop, 267
infinity value, 68
inheritance, 606–674, 790, 848

abstract classes and methods, 637–647
designing, 608–625
example of (programming activity), 633–637
exceptions, 693, 704
inherited members of a class, 609–614
interfaces, 656–672
overriding methods, 621–625
polymorphism, 647–649
protected access modifier, 626–632
subclasses, 607–608

constructors, 614–618
specialization, 618–621

superclasses, 607–608
syntax (extends), 607

init (Application class), 785t
initial values, 49

arrays, 425t, 426, 525, 528–530
instance variables, 344

initialize method, 816, 825, 859, 928
inner class, 826
input

class, 704t
reading from Java console, 123–129
reading from text files, 698–703
reading objects from files, 749–753

retrieving command-line arguments, 462–463
type-safe input, 286–289

InputMismatchException exception, 128, 286, 693f,
720
InputStream class, 124t, 704t, 712
Insertion Sort, 474–482, 1134–1136
instance method, 380
instance of the class, 88. See also objects
instance variables, 88

access modifiers, 344–345, 612, 626–632
arrays as, 459, 462
default initial values for, 344, 348t
defining, 344–345
inherited, 609–614, 613t, 626–632
protected (access modifier), 626–632
transient, 748

instanceof operator, 376, 376t
instantiation, 18

of arrays, 423–426, 526–528
of objects, 18, 40–41, 88, 92, 93f
using constructors, 90–94

instruction pointer register (program counter), 4
Instruction Register, 4
instructions (programming steps), 2, 20–21, 40
integer, reading, 286–287
Integer class, 142–147, 142t, 144t
integer data types, 46–47, 47t, 50t
integer division, 65–67
integer unit (IU), 4
IntegerLinkedList class, 1014t, 1019
IntegerLinkedListTest class, 1022–1023
IntegerNode class, 1011–1013

Integrated Development Environment (IDE), 24, 27,
32, 41
interfaces, 656–672
Internet, 3, 7–8, 18–19

browsers, 7–8, 19
interpreted languages, 17–18
IntStream interface, 729
invalid, 59
Investment class, 908, 909–910
InvestmentApplication class, 918–919
IOException exception, 129f, 273, 693, 694, 744t,
749t, 786
IP addresses, 8
“is a” relationships, 608
isCorrect method, 874, 882
isEmpty method (ShellLinkedList class), 1029
isPresent method, 740–741
itemSelected method, 815
iteration, 22, 266, 1126
IU. See integer unit

J
Java, applications structure, 40–44
JAR file, making, 29–30
Java applets, 14, 19
Java characters, 1151
Java Class Library, 104–105
Java compiler (javac), 23
Java console, reading from, 123–129
Java Development Kit (JDK), 23, 24, 397
Java escape sequences, 55t
.java files, 23
Java identifiers, 41, 42t
Java language, 18–20
Java letters, 41
Java packages, 104, 105t

user-defined, 397
Java reserved words and keywords, 1147
Java servlets, 19
Java Virtual Machine (JVM), 18, 19

exception handling, 67, 692, 694, 696
executing Java code, 23, 94, 196
invoking, 24, 26
memory allocation, 93
method calls and recursion, 964
polymorphism, 647–648

javac (Java compiler), 23, 398, 399
Javadoc utility, 397–401, 399t
JavaFX class

application structure, 167–170, 782–788
coordinate system and color, 170–172
drawing custom shapes, 183–186
drawing shapes and text, 173–183

graphical user interfaces (GUIs) using, 781–929
hierarchy of controls, 790f
style sheet for SimpleMathPractice class, 920

JavaFX layout class
BorderPane class, 790t, 878
GUI components, 786, 787, 790t, 878
StackPane class, 790t
VBox class, 790t, 792, 857

java.io package, 105t, 131, 693, 704–705, 712–715,
745
java.lang package, 105t, 131, 151, 386, 693, 751
java.nio.file package, 732
JavaScript Object Notation (JSON), 737
java.text package, 105t, 117
java.util package, 105t, 121, 151, 563–564, 704,
863t
JDK. See Java Development Kit
jGRASP, 44
JIGraphicsUtility class, 167, 168
jshell utility, 44
JSON string, parsing, 738t
JSONArray class, 738t
JSONObject class, 738t
Just-in-Time (JIT) compilers, 19
JVM. See Java Virtual Machine

K
keywords

Java, 26, 42
Java reserved words and, 1147

L
L1 cache, 4f, 6, 7t
L2 cache, 4f, 5–6, 7t
labels (JavaFX class), 789t
lambda expressions, 664, 731, 740, 863
last in, first out (LIFO), 1039
launch (Application class), 169, 785t
layout containers, 841–853

example of (programming activity), 923–926
length method (String class), 109t, 110
length of arrays, 427, 531–532
less than operator (<), 198, 198t, 236t
less than or equal to operator (<=), 198, 198t, 236t
LIFO. See last in, first out
line feed character, 127t
lines method, 732
lineTo (GraphicsContext class), 183, 184t
linked lists, 1010–1047, 1011f

defined, 1010
doubly linked lists, 1074–1078
generic types, 1078–1085
implemented queues with, 1042–1047
implementing stacks with, 1039–1042
methods of, 1014–1021, 1032–1035
nodes, 1010–1012
of objects, 1024–1038
recursively defined, 1085–1093, 1085f
sorted, 1063–1070

example of (programming activity), 1070–
1074

testing, 1021–1023, 1035–1038
LinkedListTest class, 1083–1084

Linux systems, 6
listener, 794
literal formats, for Java data types, 50t
literal values, 49
load method (FXMLLoader class), 785t
loading the operating system, 6
local scope, 352
log method (Math class), 135t
logic errors, 28, 32, 206, 267, 361, 692

No-op effect, 360
logical operators, 198–204

DeMorgan’s Laws, 202–203, 290
loop conditions, constructing, 289–292

long data type, 50t
Long wrapper class, 142t
LongStream interface, 729
loop body, 265–266
loop continuation condition, 290
loop control variables, 303, 306, 307f, 310

decrementing, 310
scope of, 304

loop termination condition, 290
loop update statements, 267

for loops, 301–304
looping, 22, 264–327

array operations
multidimensional arrays, 537–551
single-dimensional arrays, 432–450

through ArrayList objects, 567–570
constructing conditions for, 289–292
count-controlled loops using for loop, 301–317
do/while loop, 294–297

endless loop (infinite loop), nesting, 317–322
event-controlled

text file, reading data from, 271–274
user, reading data from, 268–271
using do/while, 294–297

for loops, 264–274, 301–317
example of (programming activity), 323–325
single-dimensional array operations, 432–
450
testing techniques for, 315–317
two-dimensional array operations, 537–551

nested loops, 317–322
recursion vs., 990–991
Scanner, type-safe input using, 286–289
techniques for

accumulation, 22, 274–277
average, 280–282
counting, 277–280, 490–494
finding maximum/minimum values, 282–284

while loops
example of (programming activity), 298–301
testing techniques for, 293–294

low-level programming languages, 16–18

M
machine language, 16–18
mantissa, 1158
mapToDouble method, 733
Math class, 105, 130, 134–139, 134t, 135t
max method (Math class), 135t, 138–139, 1154
maximum values, finding, 214–215, 282–284

among array elements, 437–438
members of classes, 89, 343. See also instance
variables; methods; objects

inherited, 609–614
interface members, 656
protected (access modifier), 626–632
static, 378–382, 379t

memory, 3–6
meta-characters, 718
methods, 20, 21, 41, 89

abstract, 637–647
arrays as parameters, 551–555
calling, 21, 89, 94–98, 94f

constructors, 614–618
example of (programming activity), 101–103
implicit vs. explicit invocation, 614
in same class, 103

implicit parameter (this), 369–373
inherited, 609–614
overloading, 350, 623, 624, 625t. See also
inheritance

overriding vs., 623, 624, 625t
overriding, 374, 609–610, 621–625

overloading vs., 623, 624, 625t
protected (access modifier), 342–343, 343t, 612

public vs. private, 95
user-defined, 345–347

accessor methods, 353–356
constructors, 347–353
data manipulation methods, 361–365
exceptions, 756–760
mutator methods, 356–361, 370
toString and equals methods, 374–377

milesPerGallon method (Auto class API), 576t
millis (Duration class), 863t
min method (Math class), 135t, 138–139, 1155
minimum values, finding, 214–215, 282–284

among array elements, 437–438
minus (-)

decrement operator (--), 71–72
shortcut subtraction operator (-=), 73

minutes (Duration class), 863t
mix method, 808
mixed-type arithmetic, 68–71
MixingColorsController controller, 808–809
Model-View-Controller architecture, 795
modulus operator (%), 65–67
mouse events, 886–903
MouseEvent class, 886
moveTo (GraphicsContext class), 183, 184t
MovieWinners class, 464
msinfo32.exe program, 9
multidimensional arrays, 524–582

accessing elements of, 531–536
aggregate operations, 537–551

displaying data as bar chart, 547–551
printing array elements, 538–539

processing all elements, 537–539
processing columns sequentially, 545–547
processing given column, 541–543
processing given row, 539–541
processing rows sequentially, 543–545

assigning initial values, 528–530
declaring and instantiating, 525–530
example of (programming activity), 555–560

multiplication operator (*), 44
multiply method (BigDecimal class), 228
mutator methods, 96, 131, 804, 814

public, 356
writing, 356–361

N
n-dimensional array, structure of, 561, 561t
name collisions, 788
name precedence, 360
namespace, 788
NaN. See Not a Number
negative integers, representing, 1153–1155
nested loops, 317–322
nesting

if/else statements, 215–219
loops, 317–322
processing multidimensional arrays, 537–551

networks, 3, 7–8
new keyword

instantiating ArrayList objects, 565–566
instantiating arrays, 423–426
instantiating objects, 92

newline character, 127
newRatings parameter, 502
next method (Scanner class), 123–129, 272t
nextBoolean method (Scanner class), 124t, 272t
nextByte method (Scanner class), 124t, 272t
nextDouble method (Scanner class), 124t, 272t
nextFloat method (Scanner class), 124t, 272t
nextInt method (Scanner class), 124t, 694, 702, 703
nextInt method (Random class), 176, 272t, 273
nextLine method (Scanner class), 124t, 128, 287t,
288, 308, 702, 703
nextLong method (Scanner class), 124t, 272t
nextShort method (Scanner class), 124t, 272t
No-op effect, 360
Node class, 782, 789, 870, 888

using generics, 1079–1080
NoSuchElementException exception, 701, 703, 706,
720
Not a Number (NaN), 68
not equal operator (!=), 197t, 200t, 236t
NOT operator (!), 198, 199t, 236t
null object references, 100–101, 347, 368, 425t, 429
NullPointerException exception, 100–101, 349, 431,
432f, 535, 693f, 694, 724, 787, 1020, 1042, 1047
Number class, 912
NumberAxis class, 913
NumberFormat class, 104, 140–141, 140t
NumberFormatException exception, 693f, 696–697,
798

O
Object class, 229, 374, 446, 566–567, 607, 609, 657,
1083
object-oriented programming (OOP), 18, 88
object references, 88, 90–94, 95, 98–101, 98f

null object references. See null object
references
this reference, 369–373

ObjectInputStream class, 704t, 749
ObjectOutputStream class, 705t, 744–749, 744t
objects, 18

arrays of, 423, 426, 525–530
sorting, 482–483

comparing, 229–231
Strings, 231–234

creating
with constructors, 90–94
with factory methods, 140

deleting, 100
generic, 1011
keys for, 1063
reading and writing to files, 743–753

example of (programming activity), 753–756
this reference, 369–373

observableList (FXCollections class), 905
ObservableList method, 904–905, 907, 929
ObservableValue interface, 828t
offsets, 183
onAction (FXML attributes), 796, 803t
OOP. See object-oriented programming
opening file, 701

operating systems (OS), 7
configuration, 8–10

operators, 1149
arithmetic operators, 60–61
assignment operator (=), 58–60
conditional operator (?:), 234–236
equality operators, 196–197
instanceof operator, 376, 376t
logical operators, 198–204
precedence of, 61–63, 62t, 75t, 109, 1149
relational operators, 198, 198t

optional class, 740t
OR operator (||), 199–200
order of magnitude, 991, 1117–1120, 1117t
order of precedence, 61–63
ordinal method, for enum objects, 388t, 389
org.json package, 737
OS. See operating systems
output

class, 705t
formatting numbers, using

DecimalFormat class, 117–121
System.out, 131–134, 132t
writing objects to files, 744–749
writing to text files, 744–749

appending to text files, 712–717
OutputStream class, 705t, 744
overloading methods, 350, 623, 624, 625t. See also
inheritance

overriding vs., 623, 624, 624t, 625t
overriding methods, 374, 608, 609–610, 621–625

inheritance and, 621–625

overloading vs., 623, 624, 624t, 625t

P
packages, 104, 105t

user-defined, 397
palindrome search (example), 974–978
Pane class, 848t
parallel arrays, 464
ParallelTransition, 858, 867, 869t
parameterized types, 563–564, 1078–1085
Parent, 789, 870
parentheses (), 62t, 75t, 95, 199t, 236t, 609

calling methods, 95
parse, 718–720
parseDouble method (Double class), 143, 144t, 797–
798
parseInt method (Double class), 143, 144t
parsing a String using Scanner, 718–720
passing an argument to method. See argument(s)
passing test scores, counting, 278–279, 279f
PasswordSecurityHandler class, 662
PasswordSecurityHandlerClient class, 663
Paths class, 732, 733t
percent sign (%)

in DecimalFormat class patterns, 117, 118t
modulus operator (%), 65–67
shortcut modulus operator (%=), 73

percentages, formatting, 117, 118t
performance

CPU, 5–6
iteration vs. recursion, 990–991
memory, 6
protected access modifier, 626

period (.)

in DecimalFormat class patterns, 118t
dot notation, 95

with static class members, 381
PI constant (Math class), 134, 134t, 378
PieChart class, 904–906, 905f
PixelReader interface, 823t
PixelWriter interface, 823t
play (AudioClip class), 866t
play head, 869
play method, 858t, 892, 896, 899
PlayColorCount class, 884–885
Player class, 1011, 1024–1026
PlayerLinkedList class, 1032t, 1033–1034
PlayerLinkedListTest class, 1035–1038
PlayerNode class, 1026–1028

for doubly linked list, 1074–1075
PlayerQueueLinkedList class, 1043t, 1045–1047
PlayerSortedLinkedList class, 1064, 1064t, 1066–
1067
PlayerSortedLinkedListTest class, 1068–1069
PlayerStackLinkedList class, 1040t, 1041–1042
PlaySubHunt class, 894
PlayTilePuzzle class, 853
PlayTreasureHunt class, 901–903
plus (+)

concatenation operator for Strings (+), 108
shortcut addition operator (+=), 73–74
shortcut concatenation operator (+=), 108
shortcut increment operator (++), 71–75

polymorphism, 647–649
example of (programming activity), 649–656

popping items from stacks, 1039–1042, 1048–1052

possibleToPlay method, 842
postfix operators, 72–73
pound sign (#) for DecimalFormat class patterns,
118t
pow method (Math class), 135t, 136–137
precedence

name, 360
operator, 61–63, 62t, 75t, 109

predefined classes, 104
example of (programming activity), 147–149

Predicate interface, 730t, 731
prefix operators, 72–73
priming read, 268–270, 275
primitive data types, 45
print method, PrintStream class, 131–134, 132t
printHelloWorldNTimes method, 955–956
printing array elements, 433–434
println method

PrintStream class, 131
PrintWriter class, 712–716

printStackTrace method (exception classes), 695
PrintStream class, 131–134, 132t
PrintWriter class, 705t, 712–716, 713t, 715
private (access modifier), 343, 343t

inheritance and, 612
UML diagrams (indicating on), 609

processDigit method, 660
processing, string, 113–116
processLetter method, 660
processOther method, 660
Program Counter, 4
program design

inheritance, 608–625
pseudocode, 20–23
recursion, 954
UML diagrams, 608, 609

programming basics, 20
programming languages, 16–18
promotion of operands, 69, 69t
proof by induction, 1127
protected (access modifier), 343, 343t, 626–632

rules for, 631–632t
pseudocode, 20–23
pseudorandom numbers, 121
public (access modifier), 343, 343t, 344

inheritance and, 612, 631t
interfaces, 657
UML diagrams (indicating on), 609

public mutator method, 356
pushing items into stacks, 1039–1042, 1048–1052

Q
question mark for conditional operator (?:), 234–236
queues

array representation of, 1055–1063
defined, 1043, 1043f
implemented with linked lists, 1042–1047

R
radio buttons, 800–810

JavaFX class, 789t
RAM. See Random access memory
Random access memory (RAM), 3, 6
Random class, 104, 121–122
random numbers, 121–122
readObject method (ObjectInputStream class), 749–
753
recursion, 954–994

binary search, 978–983
identifying base and general cases, 954–957
iteration vs., 990–991
linked lists defined by, 1085–1093, 1085f
palindrome search (example), 974–978
with return values, 957–970

calculating factorials, 958–965
calculating greatest common divisor, 965–
970

Towers of Hanoi (example), 984–990
two base cases, 971–974

recursive method, 954
recursiveBinarySearch method, 981
RecursiveLinkedList class, 1086t, 1087–1089
RecursiveLinkedListTest class, 1090–1091
recursivePalindrome method, 976
recursiveTOfH method, 987, 988
referenced, 209

access modifiers, 343
Region, 789
register, 796
regular expression, 718

relational operators, 198, 198t
remote server, reading formatted open data from

accessing remote data, 735–736
JSON formatting and parsing, 737–739
reading, parsing, streaming, and processing
remote data, 739–743

remove method (ArrayList class), 567t
removeListener (ObservableValue interface), 828t
repetition, 264
reserved words, 41
resources, 701
return statement, 347

in recursion methods, 957
return values (methods), 21, 95

arrays as, 459, 461, 551–555
for constructors (error), 351
recursion with, 957–970

reusability of code, 89
generic classes, 563–564
through interfaces, 656

rollCount array, 497, 499
RotateTransition, 858, 865–866, 867t
round method (Math class), 135t, 137–138
rounding errors, 224, 227
routers, 8
row index (multidimensional arrays), 531
rows of multidimensional arrays

processing rows sequentially, 543–545
processing single row, 539–541

run-time errors, 28, 29t, 100, 116
running applications, 24
running time analysis, 1115–1138, 1117t

counting statements, 1120–1124
evaluating recursive methods, 1124–1129
of searching and sorting algorithms, 1132–1137

runTransition method, 864

S
ScaleTransition, 858, 866, 867t
Scanner class, 104, 287–288, 308, 694, 698, 698–
699t, 704t, 718t, 736t

hasNext method, 702
methods for testing tokens, 287t
parsing a String, 718–720
reading data from text files, 271–274, 717–725
reading user input from the Java console, 123–
129
selected methods of, 272t

Scene class, 782, 786, 786t
scene graph, 782
scope

block scope, 209
of loop control variable, 303, 304

class scope, 344
local scope, 352
rules of, 353t

searching arrays, 483–488
binary search, 484–488
example of (programming activity), 450–455,
489–495
recursive binary search, 978–983, 1132–1137
sequential search, 464–468, 483–484

seconds (Duration class), 863t
securityLevel method, 661
select (SingleSelectionModel class), 817t
selection (program flow control), 22, 196

conditional operator (?:), 234–236
vs. if/else, 234

dangling else clauses, 216

example of (programming activity), 220–223
if/else if statements, 210–213
if/else statements, 206–210
if statements, 204–206
sequential if/else statements, 214–215

nested if/else statements, 215–219
testing techniques for, 219–220

Selection Sort (arrays), 468–474, 1131
Seller class, 500, 502
SellerRatings class, 502
semicolon (;)

abstract method definition, 657
in abstract methods, 638
after conditions (error), 206, 301
for loops, 301

sentence backward, printing, 310–312
sentinel value, 265, 268–270, 270f, 274, 276, 277,
280, 289, 293, 294
sequential if/else statements, 214–215
sequential processing, 20
sequential search, 464–468

of sorted arrays, 483–484
Sequential Search algorithm, 1123
sequentialSearch method, 492–493
SequentialTransition, 858, 866–867, 868t
Serializable interface, 744, 745, 749t
servers, 8
servlets, 19
set method (ArrayList class), 567t
set methods (mutator methods), 96, 131, 356–361,
370
setAutoReverse (Animation subclasses), 858t

setButtonListener method, 915
setByAngle (RotateTransition class), 867t
setColor (PixelWriter interface), 823t
setContentText (Alert class), 849t
setCycleCount (Animation subclasses), 858t
setCycleCount (AudioClip class), 866t
setFill (GraphicsContext class), 171t
setFont (GraphicsContext class), 174t
setFromAngle (RotateTransition class), 867t
setFromValue (FadeTransition class), 862t
setFromX (TranslateTransition class), 868t
setFromY (TranslateTransition class), 868t
setGallonsOfGas method (Auto class API), 576t
setHeaderText (Alert class), 849t
setLabelBackground method, 881
setLineWidth (GraphicsContext class), 174t, 176
setMaxHeight (Button class), 837t
setMaxWidth (Button class), 837t
setMilesDriven method (Auto class API), 576t
setModel method (Auto class API), 576t
setName (XYChart.series class), 914t
setOnAction (Button class), 837t
setOnFinished (Animation subclasses), 858t, 864
setOnMouseMoved (Node class), 888t
setOnMousePressed (Node class), 888t
setOnTouchMoved (Node class), 888t
setOnTouchPressed (Node class), 888t, 892
setPercentHeight (RowConstraints class), 835t
setPercentWidth (ColumnConstraints class), 835t
setScene (Stage class), 786t
setStroke (GraphicsContext class), 171t
setStyle method (Button class), 836–837, 837t

setStyle method (Label class), 804
setters, 96, 131, 151, 356
setText method, 797
setTitle (Stage class), 786t, 891–892, 899
setTitle (Alert class), 849t
setToAngle (RotateTransition class), 867t
setToValue (FadeTransition class), 862t
setToX (ScaleTransition class), 867t
setToX (TranslateTransition class), 868t
setToY (ScaleTransition class), 867t
setToY (TranslateTransition class), 868t
setUpButtons method, 882
setUpGame method, 842, 881
setUpGameGUI method, 848
setUpGraphics method, 167t, 175
setUpLabels method, 881
setVgrow method, 879
ShellApplication, 41
ShellGraphicsApplication class, 167, 168–169, 187
ShellLinkedList class, 1028–1029, 1030t

using generics, 1080–1081
ShippingCalculator class, 671–672
ShippingCost interface, 668
short-circuit evaluation, 201, 1020
Short class, 142t
short data type, 50t
shortcut operators, 71–75, 75t
show (Stage class), 786t
showAndWait (Alert class), 849t
showMessageDialog method, 882
signature, method, 350

overloading, 350

overriding, 624
UML, 609

simple sentinel-controlled loop, 289
SimpleMathController class, 795–796, 798–799
SimpleMathPractice class

JavaFX style sheet for, 920
single-dimensional arrays, 422–504

accessing elements of, 426–432
aggregate operations, 432–450

comparing arrays for equality, 444–446
copying arrays, 438–442, 442f
displaying data as bar chart, 446–449, 448f,
449f
equality of arrays, determining, 444–446
examples of (programming activity), 450–
455

as counters, 495–499
declaring and instantiating, 423–426
maximum/minimum values, finding, 437–438
printing array elements, 433–434
queues, representing, 1055–1063
reading data into arrays, 434–435, 435f
searching, 483–488

binary search, 484–488
example of (programming activity), 489–495
sequential search, 483–484

sorting elements of
arrays of objects, 482–483
Bubble Sort algorithm, 489–495
Insertion Sort algorithm, 474–482
Selection Sort (arrays), 468–474

stacks, representing, 1048–1052

summing array elements, 436
in user-defined classes, 455–462

single-precision floating-point numbers, 1157–1160
SingleSelectionModel class, 816
size method (ArrayList class), 567t
size of ArrayList objects, 564–566
size of arrays, changing, 442–444
slash (/), shortcut division operator (/=), 73
slider (JavaFX class), 789t
SliderHandler class, 826
sliders, 820–829
Smalltalk language, 18
sorted linked lists, 1063–1070

example of (programming activity), 1070–1074
Sorter class, 472–473
sorting arrays, 464–488

arrays of objects, 482–483
Bubble Sort algorithm, 489–495
Insertion Sort, 474–482
Selection Sort, 468–474

space character, 127t
speed, CPU, 4–6
sprite class, 181–183, 382
sqrt method (Math class), 135t
square brackets [] for declaring arrays, 423–426,
525–526
Square class, in Figure hierarchy, 643–645
stack, 960, 964
StackOverflowError error, 964–965
StackPane (JavaFX layout class), 790t
stacks

array representation of, 1048–1052, 1049f

defined, 1039, 1040f
example of (programming activity), 1052–1055
implemented with linked lists, 1039–1042

StackWalker class, 960–961
Stage class, 782, 786t
standalone statements, 96
standard output device, 131
StandardShipping class, 669
start (Application class), 785t
start method, 783, 899
start tag, 788
StartWithBPredicate test method, 731
statements, 42
static class members, 378–382

calling static methods, 95, 130–131
interface members, 656

static class variables, 130–131
static data, 130
static factory method, 172t
static keyword, 130, 378, 379
static methods, 130–131, 379
Stocks class, 908, 909, 911–912
stop (Application class), 785t
stop (Animation subclasses), 858t, 869
stop (AudioClip class), 866t
storage devices, 5
Stream, 729–735, 730t, 733t, 961
stream pipeline, 729
String class, 104–116, 306, 307, 308t, 311

string literal, 53–56
string processing, 113–116
StringHandler interface, 658–660

StringIndexOutOfBoundsException exception, 116,
693f
strings, 912

comparing, 231–234
concatenation operator, 54
interfaces and classes, 658, 659f
palindrome search (example), 974–978
parsing with Scanner, 718–720
printing backwards, 310–312
toString methods, 133, 374–377

stroke (GraphicsContext class), 183, 184t
stroke color, 170–171
strokeLine (GraphicsContext class), 173t, 176
strokeOval (GraphicsContext class), 174t, 177
strokeRect (GraphicsContext class), 174t, 177
strokeText (GraphicsContext class), 174t, 180
strongly typed language, 45
structured text files, 717, 726–729

example of (programming activity), 726–729
parsing string using scanner, 718–720
reading structured data using scanner, 720–725

style sheet, 919, 920, 921
subarrays, 469. See also sorting arrays
subclasses, 607–608. See also inheritance

constructors for, 614–618, 618t
inheritance rules, 613t, 624t, 631–632t
inheriting from abstract classes, 637–647
overriding inherited methods, 621–625
specialization, adding, 618–621
UML diagrams, 609

SubHunt class, 889–891
UML diagram, 889f

SubHuntViewController class, 892–894
substring method (String class), 109t, 112, 114
subtract method (BigDecimal class), 227
summing array elements, 436, 539–541, 543–545
super keyword, 621

calling superclass methods, 621–623
superclasses, 607–608. See also inheritance
switch statements, 236–244, 292, 294

example of (programming activity), 245–247
syntax, 2, 40

arrays
accessing elements, 426–432, 531–532
declaring and instantiating, 423–426, 525–
527
method parameter, 551
method return value, 551

assignment operator, 58
conditional operator, 234
declaring variables, 92
defining classes, 342–343, 607, 638, 657
defining interfaces, 657
do/while loop, 294–295
enum objects, 386
explicit type casting, 70
for loops, 301
if statements, 204, 210
javadoc comments, 399
for JavaFX attribute, 788
methods

calling, 95, 614, 621
writing, 130, 345

return statement, 347

styling GUI using CSS, 919
switch statements, 236–244
try/catch block, 697
variable number of arguments, 500
while loops, 265

syntax errors, 26, 27
System class, 131–134, 132t

System.err method, 701
System.exit method, 26, 131–134, 132t
System.in method, 123, 131–134, 132t, 701
System.out, 701

system configuration, 8–10

T
tab character, 127t
tag section, Javadoc comments, 399, 399t
tail recursive methods, 968
tail references (queue), 1044
Tally class, 552, 553–554
testing applications, 28. See also debugging
applications

for loops, 315–317
if/else statements, 219–220
linked lists, 1021–1023
while loops, 293–294

text attribute, 796
text fields (JavaFX class), 789t, 798t
text files, 711–717. See also files

appending data, 712–717
opening, 701
reading data from, 271–274, 717–725
reading structured files, 717–725
structured files, 726–729
writing and appending to, 711–717
writing data to, 744–749
writing objects to, 744–749

this reference, 369–373
thresholds for floating-point number comparison, 225
throw, 694
thumb, 820
tick marks, 820
tick values, 820
TilePuzzle class, 841, 843–845

UML diagram, 847f
TilePuzzleViewController class, 850–852

ToDoubleFunction interface, 730t
toggle variable, 315
toggleColor method, 806, 808
toggleGroup property, 802
toHex method, 874
tokens, 307, 718

input, 127
scanner methods for testing, 287t

toLowerCase method (String class), 109t, 110–111,
115
toString method, 133, 502, 535, 576t, 695, 864,
1021, 1063

enum objects, 388t, 389
exception classes, 695
ShellLinkedList class, 1028–1029
user-defined classes, 374–377

touch events, 886–903
TouchPoint class, 886
toUpperCase method (String class), 109t, 110–111,
115
Towers of Hanoi (example), 984–990
track, 820
transient variables, 748
Transition class, 857
TranslateTransition, 858, 868
traversing linked lists, 1016
TreasureHunt class, 896–898
TreasureHuntViewController class, 898–901
trim method (String class), 308t
trimToSize method (ArrayList class), 567t, 572–573,
1010
try/catch blocks, 693–703

catching multiple exceptions, 696–698
try-with-resources, 701
tryToPlay method, 842
tweening, 857
two-dimensional arrays, 537–560

accessing elements of, 531–539
aggregate operations, 537–551

displaying data as bar chart, 547–551
example of (programming activity), 555–560
printing array elements, 538–539
processing all elements, 537–539
processing columns sequentially, 545–547
processing given column, 541–543
processing given row, 539–541
processing rows sequentially, 543–545

assigning initial values, 528–530
declaring and instantiating, 525–530
elements, accessing, 531–539, 531t
method parameters and return values, 551–555
processing, 539–541
visualizing, 532, 532t

two’s complement, 1153
type casting, 69–71

U
unboxing, 143
unchecked exception, 694, 720
underscore (_) in identifiers, 41
Unicode character set, 15, 16t, 42, 127t, 234, 1151–
1152
Unified Modeling Language (UML), 608, 609, 639

for SubHunt class, 889f
for TilePuzzle and TilePuzzleViewController
classes, 847f

uniform resource identifier (URI), 8
uniform resource locators (URL), 8

class, 736t
unsorted arrays, searching, 464–468
update method, 908, 915
update read, 268, 270
updateAmounts method, 908
URL. See uniform resource locators
URLMalformedException exception, 736
useDelimiter method (Scanner class), 718, 718t, 719
user-defined classes, 342–404

accessor methods, 353–356
arrays in, 455–462
constructors, 347–353
data manipulation methods, 361–365
enumeration types, 386–392
examples of (programming activity), 361–365,
392–397
graphical objects, 382–385
instance variables, defining, 344–345
Javadoc utility, 397–401, 399t
methods, 345–347

mutator methods, 356–361
packages, 397
static class members, 378–382
this reference, 369–373
toString and equals methods, 374–377

user-defined exceptions, 756–760
user, reading data from, 268–271

V
validating input, with do/while loop, 294–295
Validator interface, 663–664
value-returning methods, 95, 346–347
valueOf method

Double class, 143, 144t
enum objects, 388t, 389, 391

valueProperty (Slider class), 827t
varargs, 500
variable number of arguments, methods accepting,
499–502
variables, 45. See also constants; data types

flags (boolean variables), 307, 320
instance variables, 88

default initial values for, 344, 348t, 424,
425t
defining, 344–345
object keys, 1063
protected, 626–632

loop control variable, 303, 306, 307f, 310
toggle variables, 315
transient, 748

VBox (JavaFX layout class), 790t, 792, 857
void keyword, as method return type, 95, 346
VoteTally class, 554–555

W
while loops, 264–274, 293, 316

event-controlled, 267–274
example of (programming activity), 298–301
nesting, 317
testing techniques for, 293–294

white space characters, 42, 127–128, 127t
won method, 843, 849
wrapper class, 142–147, 142t, 144t
WritableImage class, 823t
writeObject method (ObjectOutputStream class),
744t, 748
Writer class, 705t
writing, methods, 345–347

X
XML (Extensible Markup Language), 737, 782

special characters, 821t
XYChart class, 912
XYChart.data constructors, 914t
XYChart.series class, 914t

Z
zero, division by, 67–68
zero-iteration loops, 266

	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Turing’s Craft CodeLab Student Registration Instructions
	Acknowledgments
	Chapter 1 Introduction to Programming and the Java Language
	1.1 Basic Computer Concepts
	1.1.1 Hardware
	1.1.2 Operating Systems
	1.1.3 Application Software
	1.1.4 Computer Networks and the Internet

	1.2 Practice Activity: Displaying System Configuration
	1.2.1 Displaying Windows Configuration Information
	1.2.2 Displaying Mac OS Configuration Information

	1.3 Data Representation
	1.3.1 Binary Numbers
	1.3.2 Using Hexadecimal Numbers to Represent Binary Numbers
	1.3.3 Representing Characters with the Unicode Character Set

	1.4 Programming Languages
	1.4.1 High- and Low-Level Languages
	1.4.2 An Introduction to Object-Oriented Programming
	1.4.3 The Java Language

	1.5 An Introduction to Programming
	1.5.1 Programming Basics
	1.5.2 Program Design with Pseudocode
	1.5.3 Developing a Java Application
	1.5.4 Programming Activity 1: Writing a First Java Application
	Debugging Techniques
	Testing Techniques

	1.5.5 Making a JAR File

	1.6 Chapter Summary
	1.7 Exercises, Problems, and Projects
	1.7.1 Multiple Choice Exercises
	1.7.2 Converting Numbers
	1.7.3 General Questions
	1.7.4 Technical Writing
	1.7.5 Group Project (for a group of 1, 2, or 3 students)

	Chapter 2 Programming Building Blocks—Java Basics
	2.1 Java Application Structure
	2.2 Data Types, Variables, and Constants
	2.2.1 Declaring Variables
	2.2.2 Integer Data Types
	2.2.3 Floating-Point Data Types
	2.2.4 Character Data Type
	2.2.5 Boolean Data Type
	2.2.6 The Assignment Operator, Initial Values, and Literals
	2.2.7 String Literals and Escape Sequences
	2.2.8 Constants

	2.3 Expressions and Arithmetic Operators
	2.3.1 The Assignment Operator and Expressions
	2.3.2 Arithmetic Operators
	2.3.3 Operator Precedence
	2.3.4 Programming Activity 1: Converting Inches to Centimeters
	2.3.5 Integer Division and Modulus
	2.3.6 Division by Zero
	2.3.7 Mixed-Type Arithmetic and Type Casting
	2.3.8 Shortcut Operators

	2.4 Programming Activity 2: Temperature Conversion
	2.5 Chapter Summary
	2.6 Exercises, Problems, and Projects
	2.6.1 Multiple Choice Exercises
	2.6.2 Reading and Understanding Code
	2.6.3 Fill In the Code
	2.6.4 Identifying Errors in Code
	2.6.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	2.6.6 Write a Short Program
	2.6.7 Programming Projects
	2.6.8 Technical Writing

	Chapter 3 Object-Oriented Programming, Part 1: Using Classes
	3.1 Class Basics and Benefits
	3.2 Creating Objects Using Constructors
	3.3 Calling Methods
	3.4 Using Object References
	3.5 Programming Activity 1: Calling Methods
	3.6 The Java Class Library
	3.7 The String Class
	The length Method
	The toUpperCase and toLowerCase Methods
	The charAt Method
	The indexOf Methods
	The substring Methods
	String Processing

	3.8 Formatting Output with the DecimalFormat Class
	3.9 Generating Random Numbers with the Random Class
	3.10 Input from the Console Using the Scanner Class
	3.11 Calling Static Methods and Using Static Class Variables
	3.12 Using System.in and System.out
	3.13 The Math Class
	The pow Method
	The round Method
	The min and max Methods

	3.14 Formatting Output with the NumberFormat Class
	3.15 The Integer, Double, Character, and Other Wrapper Classes
	3.16 Programming Activity 2: Using Predefined Classes
	3.17 Chapter Summary
	3.18 Exercises, Problems, and Projects
	3.18.1 Multiple Choice Exercises
	3.18.2 Reading and Understanding Code
	3.18.3 Fill In the Code
	3.18.4 Identifying Errors in Code
	3.18.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	3.18.6 Write a Short Program
	3.18.7 Programming Projects
	3.18.8 Technical Writing
	3.18.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 4 Introduction to Graphical Applications
	4.1 JavaFX Application Structure
	4.2 The Graphics Coordinate System and Color
	4.3 Drawing Shapes and Text
	4.4 Drawing Custom Shapes
	4.5 Programming Activity 1: Writing an Application with Graphics
	4.6 Chapter Summary
	4.7 Exercises, Problems, and Projects
	4.7.1 Multiple Choice Exercises
	4.7.2 Reading and Understanding Code
	4.7.3 Fill In the Code
	4.7.4 Identifying Errors in Code
	4.7.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	4.7.6 Write a Short Program
	4.7.7 Programming Projects
	4.7.8 Technical Writing
	4.7.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 5 Flow of Control, Part 1: Selection
	5.1 Forming Conditions
	5.1.1 Equality Operators
	5.1.2 Relational Operators
	5.1.3 Logical Operators
	DeMorgan’s Laws

	5.2 Simple Selection with if
	5.3 Selection Using if/else
	Block Scope

	5.4 Selection Using if/else if
	5.5 Sequential and Nested if/else Statements
	5.5.1 Sequential if/else Statements
	Finding the Minimum or Maximum Values

	5.5.2 Nested if/else Statements
	Dangling else

	5.6 Testing Techniques for if/else Statements
	5.7 Programming Activity 1: Working with if/else
	5.8 Comparing Floating-Point Numbers
	5.9 Comparing Objects
	5.9.1 The equals Method
	5.9.2 String Comparison Methods

	5.10 The Conditional Operator (?:)
	5.11 The switch Statement
	5.12 Programming Activity 2: Using the switch Statement
	5.13 Chapter Summary
	5.14 Exercises, Problems, and Projects
	5.14.1 Multiple Choice Exercises
	5.14.2 Reading and Understanding Code
	5.14.3 Fill In the Code
	5.14.4 Identifying Errors in Code
	5.14.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	5.14.6 Write a Short Program
	5.14.7 Programming Projects
	5.14.8 Technical Writing
	5.14.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 6 Flow of Control, Part 2: Looping
	6.1 Event-Controlled Loops Using while
	6.2 General Form for while Loops
	6.3 Event-Controlled Looping
	6.3.1 Reading Data from the User
	6.3.2 Reading Data from a Text File

	6.4 Looping Techniques
	6.4.1 Accumulation
	6.4.2 Counting Items
	6.4.3 Calculating an Average
	6.4.4 Finding Maximum or Minimum Values

	6.5 Type-Safe Input Using Scanner
	6.6 Constructing Loop Conditions
	6.7 Testing Techniques for while Loops
	6.8 Event-Controlled Loops Using do/while
	6.9 Programming Activity 1: Using while Loops
	Task Instructions
	Troubleshooting

	6.10 Count-Controlled Loops Using for
	6.10.1 Basic Structure of for Loops
	6.10.2 Constructing for Loops
	6.10.3 Testing Techniques for for Loops

	6.11 Nested Loops
	6.12 Programming Activity 2: Using for Loops
	Instructions
	Troubleshooting

	6.13 Chapter Summary
	6.14 Exercises, Problems, and Projects
	6.14.1 Multiple Choice Exercises
	6.14.2 Reading and Understanding Code
	6.14.3 Fill In the Code
	6.14.4 Identifying Errors in Code
	6.14.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	6.14.6 Write a Short Program
	6.14.7 Programming Projects
	6.14.8 Technical Writing
	6.14.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 7 Object-Oriented Programming, Part 2: User-Defined Classes
	7.1 Defining a Class
	7.2 Defining Instance Variables
	7.3 Writing Class Methods
	7.4 Writing Constructors
	7.5 Writing Accessor Methods
	7.6 Writing Mutator Methods
	7.7 Writing Data Manipulation Methods
	7.8 Programming Activity 1: Writing a Class Definition, Part 1
	7.9 The Object Reference this
	7.10 The toString and equals Methods
	7.11 Static Class Members
	7.12 Graphical Objects
	7.13 Enumeration Types
	7.14 Programming Activity 2: Writing a Class Definition, Part 2
	7.15 Creating Packages
	7.16 Generating Web-Style Documentation with Javadoc
	7.17 Chapter Summary
	7.18 Exercises, Problems, and Projects
	7.18.1 Multiple Choice Exercises
	7.18.2 Reading and Understanding Code
	7.18.3 Fill In the Code
	7.18.4 Identifying Errors in Code
	7.18.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	7.18.6 Write a Short Program
	7.18.7 Programming Projects
	7.18.8 Technical Writing
	7.18.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 8 Single-Dimensional Arrays
	8.1 Declaring and Instantiating Arrays
	8.1.1 Declaring Arrays
	8.1.2 Instantiating Arrays
	8.1.3 Combining the Declaration and Instantiation of Arrays
	8.1.4 Assigning Initial Values to Arrays

	8.2 Accessing Array Elements
	8.3 Aggregate Array Operations
	8.3.1 Printing Array Elements
	8.3.2 Reading Data into an Array
	8.3.3 Summing the Elements of an Array
	8.3.4 Finding Maximum or Minimum Values
	8.3.5 Copying Arrays
	8.3.6 Changing the Size of an Array
	8.3.7 Comparing Arrays for Equality
	8.3.8 Displaying Array Data as a Bar Chart

	8.4 Programming Activity 1: Working with Arrays
	Instructions
	Troubleshooting

	8.5 Using Arrays in Classes
	8.5.1 Using Arrays in User-Defined Classes
	8.5.2 Retrieving Command Line Arguments

	8.6 Searching and Sorting Arrays
	8.6.1 Sequential Search of an Unsorted Array
	8.6.2 Selection Sort
	8.6.3 Insertion Sort
	8.6.4 Sorting Arrays of Objects
	8.6.5 Sequential Search of a Sorted Array
	8.6.6 Binary Search of a Sorted Array

	8.7 Programming Activity 2: Searching and Sorting Arrays
	Instructions
	Troubleshooting

	8.8 Using Arrays as Counters
	8.9 Methods Accepting a Variable Number of Arguments
	8.10 Chapter Summary
	8.11 Exercises, Problems, and Projects
	8.11.1 Multiple Choice Exercises
	8.11.2 Reading and Understanding Code
	8.11.3 Fill In the Code
	8.11.4 Identifying Errors in Code
	8.11.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	8.11.6 Write a Short Program
	8.11.7 Programming Projects
	8.11.8 Technical Writing
	8.11.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 9 Multidimensional Arrays and the ArrayList Class
	9.1 Declaring and Instantiating Multidimensional Arrays
	9.1.1 Declaring Multidimensional Arrays
	9.1.2 Instantiating Multidimensional Arrays
	9.1.3 Combining the Declaration and Instantiation of Multidimensional Arrays
	9.1.4 Assigning Initial Values to Multidimensional Arrays

	9.2 Accessing Multidimensional Array Elements
	9.3 Aggregate Two-Dimensional Array Operations
	9.3.1 Processing All the Elements of a Two-Dimensional Array
	9.3.2 Processing a Given Row of a Two-Dimensional Array
	9.3.3 Processing a Given Column of a Two-Dimensional Array
	9.3.4 Processing a Two-Dimensional Array One Row at a Time
	9.3.5 Processing a Two-Dimensional Array One Column at a Time
	9.3.6 Displaying Two-Dimensional Array Data as a Bar Chart

	9.4 Two-Dimensional Arrays Passed to and Returned from Methods
	9.5 Programming Activity 1: Working with Two-Dimensional Arrays
	Instructions
	Troubleshooting

	9.6 Other Multidimensional Arrays
	9.7 The ArrayList Class
	9.7.1 Declaring and Instantiating ArrayList Objects
	9.7.2 Methods of the ArrayList Class
	9.7.3 Looping Through an ArrayList Using an Enhanced for Loop
	9.7.4 Using the ArrayList Class in a Program

	9.8 Programming Activity 2: Working with the ArrayList Class
	Instructions
	Troubleshooting

	9.9 Chapter Summary
	9.10 Exercises, Problems, and Projects
	9.10.1 Multiple Choice Exercises
	9.10.2 Reading and Understanding Code
	9.10.3 Fill In the Code
	9.10.4 Identifying Errors in Code
	9.10.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	9.10.6 Write a Short Program
	9.10.7 Programming Projects
	9.10.8 Technical Writing
	9.10.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 10 Object-Oriented Programming, Part 3: Inheritance, Polymorphism, and Interfaces
	10.1 Inheritance
	10.2 Inheritance Design
	10.2.1 Inherited Members of a Class
	10.2.2 Subclass Constructors
	10.2.3 Adding Specialization to the Subclass
	10.2.4 Overriding Inherited Methods

	10.3 The protected Access Modifier
	10.4 Programming Activity 1: Using Inheritance
	Instructions

	10.5 Abstract Classes and Methods
	10.6 Polymorphism
	10.7 Programming Activity 2: Using Polymorphism
	Instructions

	10.8 Interfaces
	10.9 Chapter Summary
	10.10 Exercises, Problems, and Projects
	10.10.1 Multiple Choice Exercises
	10.10.2 Reading and Understanding Code
	10.10.3 Fill In the Code
	10.10.4 Identifying Errors in Code
	10.10.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	10.10.6 Write a Short Program
	10.10.7 Programming Projects
	10.10.8 Technical Writing
	10.10.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 11 Exceptions and Input/Output Operations
	11.1 Simple Exception Handling
	11.2 Catching Multiple Exceptions
	11.3 Reading Text Files Using Scanner
	11.4 The java.io Package
	11.5 Recovering from an Exception
	11.6 Writing and Appending to Text Files
	11.6.1 Writing to Text Files
	11.6.2 Appending to Text Files

	11.7 Reading Structured Text Files
	11.7.1 Parsing a String Using Scanner
	11.7.2 Reading Structured Data Using Scanner

	11.8 Programming Activity 1: Reading from a Structured Text File
	Instructions
	If you have time …
	Troubleshooting

	11.9 Streams
	11.10 Reading Formatted Open Data from a Remote Location
	11.10.1 Accessing Remote Data
	11.10.2 JSON Formatting and Parsing
	11.10.3 Reading, Parsing, Streaming, and Processing Remote Data

	11.11 Reading and Writing Objects to a File
	11.11.1 Writing Objects to Files
	11.11.2 Reading Objects from Files

	11.12 Programming Activity 2: Reading Objects from a File
	Task Instructions: Reading from the transactions.obj File
	If you have time …
	Troubleshooting

	11.13 User-Defined Exceptions
	11.14 Chapter Summary
	11.15 Exercises, Problems, and Projects
	11.15.1 Multiple Choice Exercises
	11.15.2 Reading and Understanding Code
	11.15.3 Fill In the Code
	11.15.4 Identifying Errors in Code
	11.15.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	11.15.6 Write a Short Program
	11.15.7 Programming Projects
	11.15.8 Technical Writing
	11.15.9 Group Project (for groups of 2, 3, or more students)

	Chapter 12 Graphical User Interfaces Using JavaFX
	12.1 The Structure of a JavaFX Application
	12.2 GUI Controls
	12.3 A Simple Control: Label
	12.4 Event Handling: Managing User Interactions
	12.5 Text Fields and Command Buttons
	12.6 Radio Buttons and Checkboxes
	12.7 Programming Activity 1: Working with Buttons
	Instructions
	Troubleshooting

	12.8 Combo Boxes
	12.9 Sliders
	12.10 Building a GUI Programmatically
	12.11 Layout Containers: Dynamically Setting Up the GUI Using GridPane
	12.12 BorderPane Layout, Animations, Sounds, and Lambda Expressions
	12.13 Nesting Components
	12.14 Mouse and Touch Events
	12.15 Using a List to Display a Pie Chart
	12.16 Using a List to Display a Dynamic Bar Chart
	12.17 Using a Style Sheet to Style the View
	12.18 Programming Activity 2: Working with Layout Containers
	Instructions

	12.19 Chapter Summary
	12.20 Exercises, Problems, and Projects
	12.20.1 Multiple Choice Exercises
	12.20.2 Reading and Understanding Code
	12.20.3 Fill In the Code
	12.20.4 Identifying Errors in Code
	12.20.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	12.20.6 Write a Short Program
	12.20.7 Programming Projects
	12.20.8 Technical Writing
	12.20.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 13 Recursion
	13.1 Simple Recursion: Identifying the General and Base Cases
	13.2 Recursion with a Return Value
	13.2.1 Computing the Factorial of a Number
	13.2.2 Computing the Greatest Common Divisor

	13.3 Recursion with Two Base Cases
	13.4 Programming Activity 1: Checking for a Palindrome
	Instructions
	Task Instructions
	Troubleshooting

	13.5 Binary Search: A Recursive Solution
	13.6 Programming Activity 2: The Towers of Hanoi
	Instructions
	Task Instructions
	Troubleshooting

	13.7 Recursion Versus Iteration
	13.8 Chapter Summary
	13.9 Exercises, Problems, and Projects
	13.9.1 Multiple Choice Exercises
	13.9.2 Reading and Understanding Code
	13.9.3 Fill In the Code
	13.9.4 Identifying Errors in Code
	13.9.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	13.9.6 Write a Short Program
	13.9.7 Programming Projects
	13.9.8 Technical Writing
	13.9.9 Group Projects (for a group of 1, 2, or 3 students)

	Chapter 14 An Introduction to Data Structures
	14.1 Linked Lists
	14.1.1 Linked-List Concepts and Structure
	14.1.2 Linked-List Basics
	14.1.3 Methods of a Linked List
	14.1.4 Testing a Linked-List Class

	14.2 Linked Lists of Objects
	14.2.1 A Linked-List Shell
	14.2.2 Generating an Exception
	14.2.3 Other Methods of a Linked List
	14.2.4 Testing a Linked-List Class

	14.3 Implementing a Stack Using a Linked List
	14.4 Implementing a Queue Using a Linked List
	14.5 Array Representation of Stacks
	14.6 Programming Activity 1: Writing Methods for a Stack Class
	Instructions
	Troubleshooting

	14.7 Array Representation of Queues
	14.8 Sorted Linked Lists
	14.9 Programming Activity 2: Writing Insert and Delete Methods for a Sorted Linked List
	Instructions
	Troubleshooting

	14.10 Doubly Linked Lists
	14.11 Linked Lists Using Generic Types
	14.12 Recursively Defined Linked Lists
	14.13 Chapter Summary
	14.14 Exercises, Problems, and Projects
	14.14.1 Multiple Choice Exercises
	14.14.2 Reading and Understanding Code
	14.14.3 Fill In the Code
	14.14.4 Identifying Errors in Code
	14.14.5 Debugging Area—Using Messages from the Java Compiler and Java JVM
	14.14.6 Write a Short Program
	14.14.7 Programming Projects
	14.14.8 Technical Writing
	14.14.9 Group Project (for a group of 1, 2, or 3 students)

	Chapter 15 Running Time Analysis
	15.1 Orders of Magnitude and Big-Oh Notation
	15.2 Running Time Analysis of Algorithms: Counting Statements
	15.3 Running Time Analysis of Algorithms and Impact of Coding: Evaluating Recursive Methods
	Handwaving Method
	Iterative Method
	Proof by Induction Method
	Other Methods

	15.4 Programming Activity: Tracking How Many Statements Are Executed by a Method
	Instructions
	Troubleshooting

	15.5 Running Time Analysis of Searching and Sorting Algorithms
	15.6 Chapter Summary
	15.7 Exercises, Problems, and Projects
	15.7.1 Multiple Choice Exercises
	15.7.2 Compute the Running Time of a Method
	15.7.3 Programming Projects
	15.7.4 Technical Writing
	15.7.5 Group Project (for a group of 1, 2, or 3 students)

	Appendix A Java Reserved Words and Keywords
	Appendix B Operator Precedence
	Appendix C The Unicode Character Set
	Appendix D Representing Negative Integers
	Appendix E Representing Floating-Point Numbers
	Appendix F Solutions to Selected Exercises
	Index

