
Beginning
Modern Unix

Learn to Live Comfortably in a Modern
Unix Environment
—
Manish Jain

Beginning Modern Unix
Learn to Live Comfortably in a

Modern Unix Environment

Manish Jain

Manish Jain
Jaipur, Rajasthan, India

Beginning Modern Unix

ISBN-13 (pbk): 978-1-4842-3527-0  		  ISBN-13 (electronic): 978-1-4842-3528-7
https://doi.org/10.1007/978-1-4842-3528-7

Library of Congress Control Number: 2018950445

Copyright © 2018 by Manish Jain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484235270. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3528-7

This book is dedicated very humbly to the Regents of the
University of California, Berkeley.

v

About the Author��xvii

About the Technical Reviewer���xix

Preface��xxi

Table of Contents

Part 1: �Preparing for Part I�� 1

Chapter 1: �Editing Text with Vim and Joe�� 5

1.1 ��A Brief History of Unix Text Editors��� 5

1.2 ��Important Terms��� 6

1.2.1 ��Line�� 6

1.2.2 ��Regular Expressions: What You Need To Know Right Now�� 7

1.2.3 ��Remaining Terms of Endearment�� 11

1.3 ��Vi IMproved (Vim)��� 11

1.3.1 ��Moving Around in the Buffer�� 16

1.3.2 ��Registers and Clipboard Integration�� 17

1.3.3 ��Marks�� 18

1.3.4 ��Find and Replace��� 18

1.3.5 ��Visual Selection Modes�� 19

1.3.6 ��Recording and Playing Macros�� 21

1.3.7 ��Vim Utilities�� 24

1.3.8 ��Vim Configuration�� 25

1.3.9 ��Vim Abbreviations and Auto-Completion Framework�� 27

1.3.10 ��Installing Vim��� 28

1.4 ��Joe’s Own Editor (Joe)��� 29

1.4.1 ��Installing Joe��� 32

1.5 ��Summary��� 33

vi

Chapter 2: �Essential Unix Commands and Terminology�� 35

2.1 ��Kernel, Shell, and Filesystem��� 35

2.2 ��Files and Special Files��� 36

2.2.1 ��The Null Device�� 37

2.2.2 ��Standard Input��� 37

2.2.3 ��Standard Output�� 38

2.2.4 ��Standard Error��� 39

2.2.5 ��The Pipe��� 40

2.2.6 ��Console�� 40

2.3 ��Essential Unix Commands�� 40

2.3.1 ��echo <string>�� 40

2.3.2 ��cd <path>��� 41

2.3.3 ��pwd�� 41

2.3.4 ��ls <path>��� 41

2.3.5 ��mkdir <path>�� 41

2.3.6 ��cp <source> <destination>�� 42

2.3.7 ��mv <source> <destination>��� 42

2.3.8 ��rm <path>��� 42

2.3.9 ��ln [-s] <path> <additional>�� 42

2.3.10 ��cat <file>��� 43

2.3.11 ��test <condition>�� 43

2.3.12 ��expr��� 44

2.3.13 ��dd�� 45

2.3.14 ��grep <regex> [<file>]��� 46

2.3.15 ��awk [<file>]�� 47

2.3.16 ��sed [<file>]��� 48

2.3.17 ��file <path>�� 49

2.3.18 ��find�� 49

2.3.19 ��updatedb��� 49

2.3.20 ��locate <name>�� 49

Table of Contents

vii

2.3.21 ��basename <string>��� 50

2.3.22 ��dirname <string>�� 50

2.3.23 ��realpath <path>�� 50

2.3.24 ��head [<file>]��� 51

2.3.25 ��tail [<file>]�� 51

2.3.26 ��rev [<file>]�� 51

2.3.27 ��cut [<file>]�� 52

2.3.28 ��tr�� 52

2.3.29 ��read <arg>�� 52

2.3.30 ��date��� 53

2.3.31 ��type <executable>�� 54

2.3.32 ��wc [<file>]�� 54

2.3.33 ��less [<file>]��� 54

2.3.34 ��man <topic>�� 55

2.3.35 ��set�� 55

2.3.36 ��uname��� 56

2.3.37 ��who�� 56

2.3.38 ��cmp <file1> <file2>�� 56

2.3.39 ��diff <file1> <file2>��� 56

2.3.40 ��ps��� 57

2.3.41 ��kill [<sig>] <pid>�� 57

2.3.42 ��sleep <n>�� 58

2.3.43 ��sort [<file>]��� 58

2.3.44 ��uniq [<file>]�� 58

2.3.45 ��chmod <mode> <file>�� 59

2.3.46 ��chown <user> <file>�� 60

2.3.47 ��chsh [<user>]��� 61

2.3.48 ��passwd [<user>]��� 61

2.3.49 ��touch <file>��� 61

2.3.50 ��tar�� 61

Table of Contents

viii

2.3.51 ��gzip�� 62

2.3.52 ��xz��� 63

2.3.53 ��source <file>��� 63

2.3.54 ��wget�� 63

2.3.55 ��md5[sum] <file>��� 64

2.3.56 ��sha256[sum] <file>��� 64

2.4 ��Summary��� 64

Chapter 3: �Bourne Shell Scripting��� 65

3.1 ��Inside Our First Shell Script��� 65

3.2 ��Variable Assignment��� 66

3.3 ��Arithmetic and Boolean Operations��� 69

3.4 ��Command Chaining and Grouping��� 70

3.5 ��Meta-Character Expansion�� 71

3.6 ��Quoting: Single, Double, and Back��� 72

3.7 ��Setting the Shell Prompt�� 73

3.8 ��Dealing with Whitespace in Filenames�� 74

3.9 ��Shell Functions�� 76

3.10 ��Special Variables�� 77

3.11 ��Branching and Looping�� 79

3.12 ��The shift Command�� 82

3.13 ��Sourcing, Aliasing, and Exporting��� 83

3.14 ��Putting It All Together��� 85

3.15 ��Summary��� 85

Part 2: �Preparing for Part II��� 87

Chapter 4: �PC Hardware for Unix��� 89

4.1 ��A Shopping List�� 89

4.2 ��Preparatory Notes�� 90

4.3 ��CPU (Central Processing Unit)�� 91

4.4 ��System Board/Motherboard��� 92

Table of Contents

ix

4.5 ��RAM (Random Access Memory)��� 95

4.6 ��Hard Disk��� 96

4.7 ��SMPS (Switched Mode Power Supply)��� 97

4.8 ��Cabinet��� 98

4.9 ��Graphics Card��� 99

4.10 ��Optical Drive (CD/DVD Reader and Writer)��� 102

4.11 ��CPU Cooler��� 103

4.12 ��Printer/Scanner�� 105

4.12.1 ��Buying an HP Printer��� 105

4.12.2 ��Buying an Epson Printer�� 106

4.13 ��Summary��� 107

Chapter 5: �Installing and Configuring FreeBSD/Linux��� 109

5.1 ��Disk Partitioning��� 109

5.1.1 ��MBR (Master Boot Record)�� 110

5.1.2 ��GPT (GUID Partition Table)�� 111

5.2 ��Do We Have Enough Disk Space?�� 112

5.3 ��The Default Partitioning Scheme��� 113

5.4 ��Preparing the Computer’s CMOS for Unix�� 114

5.5 ��Downloading and Burning Installation Media�� 116

5.6 ��Our Example Hard Disk�� 117

5.7 ��Installing FreeBSD�� 118

5.8 ��Installing and Configuring Linux�� 125

5.9 ��Post-Install Configuration of FreeBSD�� 130

5.9.1 ��Networking�� 131

5.9.2 ��Software Packaging Subsystem�� 131

5.9.3 ��A Friendlier Shell��� 131

5.9.4��X Server�� 132

5.9.5 ��NVIDIA Graphics Driver Addition�� 133

5.9.6 ��NVIDIA and ATI Radeon Graphics Configuration��� 133

5.9.7 ��User Accounts�� 134

Table of Contents

x

5.9.8 ��Graphical Desktop Environment�� 135

5.9.9 ��Making Things Easier: A Simpler Way to Configure FreeBSD�������������������������������������� 135

5.10 ��Dual-Booting FreeBSD and Linux on a GPT Disk�� 136

5.11 ��Summary��� 138

Chapter 6: �Basic System Administration��� 139

6.1 ��Being Root�� 139

6.2 ��Local Filesystems�� 140

6.3 ��Partition Management��� 144

6.4 ��Console Configuration�� 146

6.5 ��Internet Connectivity�� 146

6.6 ��Sound Configuration�� 150

6.7 ��X Configuration�� 151

6.8 ��Running X Applications as Root��� 153

6.9 ��Finding Local Files Quickly�� 154

6.10 ��Configuring the Printer��� 155

6.11 ��Using the Scanner�� 157

6.12 ��Using an APC Powerchute UPS to Shut the System Down��� 158

6.13 ��Building Stuff from Sources��� 159

6.14 ��Unix Virtual Filesystems��� 160

6.15 ��Additional Commands to Administer Your Desktop�� 162

6.15.1 ��df��� 162

6.15.2 ��du�� 162

6.15.3 ��at��� 163

6.15.4 ��cdrecord�� 164

6.15.5 ��Loop Device Configuration��� 165

6.15.6 ��smtp-cli��� 165

6.15.7 ��rsync�� 166

6.16 ��Mitigating the Need for Backups��� 168

6.17 ��Summary��� 172

Table of Contents

xi

Chapter 7: �The Best of the Graphical Unix��� 173

7.1 ��X Is a Client-Server System��� 173

7.2 ��Desktop Environments��� 175

7.3 ��Window Managers��� 177

7.4 ��Starting X and the Desktop Environment��� 180

7.5 ��Applications in the Desktop Environment�� 181

7.5.1 ��Terminal Emulators�� 181

7.5.2 ��Web Browsers�� 182

7.5.3 ��Email Clients�� 184

7.5.4 ��Accessing and Downloading Remote Data�� 187

7.5.5 ��Playing Multimedia Content��� 191

7.5.6 ��Paint Programs�� 196

7.5.7 ��LibreOffice: The New and Better Office��� 199

7.5.8 ��PDF Viewers��� 200

7.5.9 ��PDF Creation�� 201

7.5.10 ��CD/DVD Writing Frontends��� 202

7.5.11 ��Internet Messaging and Chat Clients��� 203

7.5.12 ��Multimedia Editing Software��� 205

7.5.13 ��Fun Stuff: Games and Blogging��� 206

7.5.14 ��The Question of a Graphical Integrated Development Environment�������������������������� 209

7.6 ��Summary��� 211

Chapter 8: �Emulation Layers: Wine and Linuxulator�� 213

8.1 ��Wine HQ: Attacking Redmond�� 213

8.2 ��Installing Wine�� 215

8.3 ��The Filesystem Hierarchy of Wine�� 216

8.4 ��Running Windows Applications Under Wine��� 217

8.5 ��Running Pinta as a Windows Application��� 218

8.6 ��Maintaining Your Wine Environment�� 219

8.7 ��Wine Patches��� 222

8.8 ��Version Mimicking Under Wine�� 222

Table of Contents

xii

8.9 ��Wine Libraries (DLLs)��� 224

8.10 ��Tweaking Wine Still Further��� 226

8.11 ��Wine Uses a Client-Server Model Too�� 226

8.12 ��Graphical Tools for Wine Administration�� 228

8.13 ��Developing Applications for Wine��� 231

8.14 ��The 64-Bit Mess��� 232

8.15 ��Yet Another Imitation Game: Linuxulator�� 234

8.15.1 ��Using c6 Linuxulator�� 236

8.15.2 ��Using c7 Linuxulator�� 239

8.15.3 ��Installing Linux ABI Applications via rpm��� 243

8.16 ��Summary��� 244

Chapter 9: �Virtualization: The New Buzzword��� 245

9.1 ��What Is Virtualization (And Why Is It Important)?��� 245

9.2 ��Storage for Virtual Machines�� 247

9.3 ��Running an Anonymous FTP Server Under FreeBSD/Linux�� 247

9.4 ��VirtualBox��� 250

9.4.1 ��Installing VirtualBox��� 250

9.4.2 ��Hosting Your First VirtualBox Virtual Machine�� 253

9.4.3 ��Exchanging Files with the VirtualBox Host�� 261

9.4.4 ��VirtualBox Extensions�� 261

9.5 ��KVM�� 266

9.6 ��BHyVe��� 270

9.7 ��Summary��� 279

Part 3: �Preparing for Part III�� 281

Chapter 10: �Advanced Techniques in Shell Scripting�� 283

10.1 ��The here-doc Tool��� 283

10.2 ��Variable Type Modifiers: Readonly/Local�� 286

10.3 ��Bit-Wise Operations��� 288

10.4 ��Trapping Signals��� 290

Table of Contents

xiii

10.5 ��Mixed Quotes��� 290

10.6 ��Recursion��� 292

10.7 ��Special Shell Variables: LINENO and IFS�� 293

10.8 ��The Magic of eval��� 294

10.9 ��Non-POSIX Scripting�� 296

10.10 ��Scripting with ncurses��� 298

10.10.1 ��Message Box��� 299

10.10.2 ��YesNo box�� 299

10.10.3 ��Input Box��� 300

10.10.4 ��Range Box��� 301

10.10.5 ��Text Box��� 301

10.10.6 ��Program Box�� 302

10.10.7 ��Menu Box��� 303

10.10.8 ��Radio List��� 303

10.10.9 ��Progress Gauge��� 304

10.10.10 ��Check List�� 305

10.10.11 ��Time Box�� 307

10.10.12 ��Calendar Box��� 307

10.10.13 ��File Selection Box�� 308

10.10.14 ��And There Are Many More��� 309

10.11 ��Scripting with GTK��� 310

10.12 ��Summary��� 311

Chapter 11: �Unix Programming with C and Vala��� 313

11.1 ��Systems Programming with C��� 315

11.1.1 ��The C Compilation Process�� 317

11.1.2 ��Data Types in C�� 318

11.1.3 ��int�� 319

11.1.4 ��char��� 320

11.1.5 ��bool�� 323

11.1.6 ��Pointers��� 323

Table of Contents

xiv

11.1.7 ��Arrays�� 327

11.1.8 ��Differentiating Between Stack and Heap�� 329

11.1.9 ��Strings in C�� 331

11.1.10 ��Signature of main()�� 335

11.1.11 ��Branching and Looping�� 336

11.1.12 ��Arithmetic and Logical Operations�� 337

11.1.13 ��Functions��� 338

11.1.14 ��Declarations and Definitions��� 340

11.1.15 ��Structs��� 341

11.1.16 ��Preprocessor��� 345

11.1.17 ��Variable Argument Lists��� 346

11.1.18 ��Input/Output�� 348

11.1.19 ��Using System Calls for I/O��� 349

11.1.20 ��Multithreading with pthreads�� 355

11.1.21 ��Socket Programming��� 359

11.1.22 ��Addressing the Makefile�� 373

11.2 ��Graphical Application Development with Vala�� 373

11.2.1 ��The Bare Essentials of OOP��� 374

11.2.2 ��Charter of OO Terminology��� 381

11.2.3 ��Benefits and Drawbacks of OO Programming��� 382

11.2.4 ��The World of Vala��� 383

11.2.5 ��Vala Documentation��� 387

11.2.6 ��The BMI Tool Written in Vala�� 387

11.2.7 ��Vala Is Not Just GUI Development!�� 395

11.3 ��Summary��� 399

�Appendix: The Last Frontier��� 401

�A.1 Solution to the Difficult Step in Chapter 1��� 401

�A.2 Sources for the Shell Script tcase from Chapter 3�� 402

�A.3 Sources for the Shell Script extract.sh from Chapter 3��� 403

Table of Contents

xv

�A.4 Setting Up a Swap Partition Shared by FreeBSD and Linux from Chapter 5������������������������ 404

�A.5 Sources for halt.c from Chapter 8�� 406

�A.6 GNUmakefile for Creating an Executable from Chapter 11�� 411

�Index�� 413

Table of Contents

xvii

About the Author

Manish Jain studied Mechanical Engineering at the Indian Institute of Technology,

Kharagpur, graduating in 1992. In 1998, he switched to computer programming of his

own volition, and of his own education.

Following an intense period of learning, during which Manish acquired expertise

in Unix and C/C++, he went on to work as a software programmer for some illustrious

organizations: IBM, Pitney Bowes, and Cognizant. This was between 2002 and 2014.

Medical issues, some dating back to his childhood, then forced Manish to stay at

home and do the other thing he loves: write. Between 2015 and 2017, he wrote for a

variety of outlets on a freelance basis.

Beginning Modern Unix is Manish Jain's first book.

xix

About the Technical Reviewer

Massimo Nardone has more than 23 years of experience

in security, web/mobile development, and cloud and IT

architecture. His true IT passions are security and Android.

He has been programming and teaching others how to

program with Android, Perl, PHP, Java, VB, Python, C/C++,

and MySQL for more than 20 years.

He holds a Master of Science degree in Computing

Science from the University of Salerno, Italy.

He has worked as a project manager, software engineer,

research engineer, chief security architect, information security manager, PCI/SCADA

auditor, and senior lead IT security/cloud/SCADA architect for many years.

His technical skills include security, Android, cloud, Java, MySQL, Drupal, Cobol,

Perl, Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,

Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as a visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (in the PKI, SIP, SAML, and Proxy areas).

He currently works as the Chief Information Security Office (CISO) for Cargotec Oyj

and is member of ISACA Finland Chapter Board.

Massimo has reviewed more than 40 IT books for different publishing companies

and is the coauthor of Pro Android Games (Apress, 2015).

xxi

Preface
What is Unix? It’s an evolving question that is as old as the Unix operating system itself.

In the beginning, there was a clear answer—Unix was what AT&T, its creator, shipped

to customers and developers beginning around 1970. Its chief architects then were Ken

Thompson and Dennis Ritchie.

One of the participating developers was the University of California, Berkeley. Early

into its Unix journey, UCB introduced a number of fundamental improvements, which

were made available open source to the rest of the world as BSD (Berkeley Software

Distribution) Unix.

The AT&T line is now defunct. BSD Unix lives on as FreeBSD, and the question,

"What is Unix?", lives on in its original form with not-so-clear answers.

The answer de jure is an operating system that meets two criteria:

•	 Largely complies in its behavior with the standards mandated by

POSIX, an overseer committee

•	 Has paid the POSIX committee for Unix certification

While the first stipulation is readily agreeable, the second one is not. Linux, quite

rightly as well as righteously, refused to pay the token US$1 solicited by POSIX for formal

certification. I am of the humble (but well-considered) opinion that the second norm

must be this and this only:

An operating system, the base (kernel and essential binaries shipped by the
operating system’s maker) of which is fully open source.

Note that this norm permits vendors to provide closed-source drivers, which is

what happens, for instance, with nVidia graphics cards and many Epson printers. If the

operating system installer prepackages any such closed-source drivers, this must be

transparent to the end user.

xxii

There are two principal operating systems today that are POSIX-compliant as well as

open source at the base level:

•	 Linux, which belongs to the GNU family.

•	 FreeBSD, primarily a part of the BSD family, and secondarily of the

GNU family. (The BSD family has more players: OpenBSD/NetBSD/

DragonFly.)

So this is what Unix is per the definition this book considers relevant for the day:

GNU/Linux and BSD/FreeBSD. Any POSIX-compliant system, Apple’s MacOS X for

instance, that is not open source in its base qualifies as Unix-like.

Once you begin to agree with the proposed definition of Unix, you can readily

appreciate why this book has been given its pithy title: Beginning Modern Unix. I do hope

the book does justice to its title.

If you have any comments or suggestions for the book’s improvement, feel free to

email me. I have an email address that no one else has.

—Manish Jain
bourne.identity@hotmail.com

Preface

PART 1

Preparing for Part I

This book has deliberately been structured to begin with a section (Part I that follows)

that does not require Unix installation. The structure is intended to make things simple

for Windows users planning to migrate to FreeBSD/Linux. If you already are on a

FreeBSD/Linux box, you can skip this foreword and proceed directly to Chapter 1.

From this point on, this foreword assumes you are on a Windows box.

Windows users can flag off their Unix essay while remaining within Windows. This is

possible because of Cygwin, a Unix-emulation suite for Windows that works remarkably

well. You can use Cygwin to bone up on text-editing and Unix command-line skills.

By the time you finish with Part I, you will have sufficient acumen to work with a full-

fledged Unix system, which happens in Part II.

You should have at least 1GB free disk space to host a midsized Cygwin installation.

Windows 7 and Windows 10 users can download the 64-bit Cygwin installer (about 1MB)

using the URL: http://www.cygwin.com/setup-x86_64.exe.

Run the installer and select a mirror to download Cygwin packages. When you reach

the Select Packages page, set the View (top-left) option to Category.

The only packages pre-selected by default are those under Base. Use the following

guidelines to select a few more:

	 1.	 Click the circle between of the category Admin and its installation

mode, Default, a few times, until its installation mode changes

to Install. This will install everything under the Admin category:

equivalent to Admin/*.

http://www.cygwin.com/setup-x86_64.exe

2

	 2.	 The two packages you must toggle on are Editors/vim and

Editors/joe—just click the circle to the left of Skip for each to set

the installation mode to Install.

	 3.	 Another couple of important packages are under the Web

category: Web/wget and Web/wput. Toggle those on too.

This is a fairly lean-and-mean set of packages. If there is any other package that

interests you, toggle it on too. You can try the list of add-ons underneath: Archive/zip,

Archive/unzip, Archive/xz, Devel/gcc-g++, Devel/git, Devel/vala, Interpreters/

dialog, Mail/email, Net/ncftp, and System/e2fsprogs.

When your selection is made, click Next to begin the download and installation

process. Go through and finish the rest of the installation.

At this point, you have the Cygwin emulator in your system, which can be accessed

from the Start menu or from its desktop icon. If you double-click the Cygwin icon, you

will be face-to-face with the Cywgin terminal using Bash as the login shell, with a large

chunk of the Unix arsenal on tap.

If you later want to add more packages to your Cygwin installation, just re-run setup,

select additional packages, and go through the installation regimen again.

For Windows XP users, I suggest not using mainstream Cygwin (which no longer

supports Windows XP). You can instead use the Cygwin fork Babun, available for

download at the URL http://projects.reficio.org/babun/download.

Babun is an all-in-one package. Unzip the download and open a command prompt

window. Use cd to set your path to the unzipped directory and run install.bat.

Babun uses Zsh (not Bash) as the default login shell. Adding a package to Babun is as

simple as running the command 'pact install <package>'.

Part 1  Preparing for Part I

http://projects.reficio.org/babun/download

3

Note T he stage is now set for us to wade in to Unix. There is one term that you
must first understand, process. A process is an instance of a running program (an
executable). 

Let’s open C:\cygwin64\etc in Windows Explorer. Then follow these steps: 

	1.	R ight-click the plain text file fstab and open it with Notepad.

	2.	R ight-click the plain text file shells and open it with Notepad too.

You now have two editor (Notepad) processes running.

	3.	 Close both the Notepad windows.

	4.	I t is possible for a single editor process to open up both files. Open a shell

(Cygwin Bash or Babun Zsh).

	5.	 Use the shell to run the command 'vim /etc/hosts'.

	6.	I nside the vim window, issue the following vim command

:split /etc/shells.

You now have one single editor (vim) process looking into two files.

	7.	 Close the vim session with the vim command :qa

Every time a new process is launched, the operating system has to set aside quite
a few dedicated resources for the process. At the very least, it sets aside a thread
(corridor for instructions to be fed to the CPU), memory, file handles, and a process ID.

Part 1  Preparing for Part I

5
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_1

CHAPTER 1

Editing Text with
Vim and Joe
In the world of Unix, there is—quite happily for everyone—just one type of document:

plain text.

It makes sense that any Unix quest should begin with acquisition of skills for editing

text. While graphical text editors (of which there is an entire slew) make very good

scratchpads when X is around, expertise with console-mode text editing is what gives

you the ability to ease into Unix.

This is such an important aspect that I opine that one should acquire text editing

skills first and any Unix-specific skills later—not the other way round. It does not help

if you are working with an operating system (Unix in particular) under which you have

no idea how to insert or delete a line of text in a plain-text file. Before you can get to the

web browser to Google how to use the text editor, you will likely need to get into the text

editor itself—possibly with no graphical environment around yet.

I therefore begin this book with this particular chapter, which you can use to leverage

editing skills under Windows very easily as well. Both Vim and Joe, the venerable Unix

text editors that I discuss, are available as Windows applications.

1.1  �A Brief History of Unix Text Editors
In retrospect, it is hard to believe that when AT&T first shipped Unix circa 1970, for all its

might and goods, it did not have a text editor. The only “editor” that shipped with Unix

in those days was the ed command, which was so supremely unfriendly—designed as it

was for a pure teletype interface—that it contributed a good deal to the “Unix is difficult”

impression that goes around to this day.

6

It fell to the mantle of the University of California, Berkeley (where BSD Unix—

now known as FreeBSD—was born) to set Unix right. UCB pioneered three major

components that revolutionized Unix and computing:

•	 The C shell: A significant improvement over the Bourne shell in terms

of user interaction (but not in terms as a scripting environment).

•	 Berkeley sockets: These are the sockets that everyone uses for

networking all over the world (Microsoft® Windows® included).

•	 The vi editor: This was the first full-screen Unix text editor.

The vi editor, created by the cheery-named Bill Joy—a graduate student at UCB—was

a major step. vi, short for visual, permitted users to visually edit text files. Although still

not particularly user-friendly by modern-day standards, it permitted users something

in the nature of a WYSIWYG (what you see is what you get) experience when editing text

files (and their family members: source code).

The vi editor still exists in its original form in FreeBSD. If there is no other editor

around, the good, old vi command would still be there.

Whether you are working with the pristine vi or with the latest generation of editors,

there are a few terms common to all editors that you need to understand.

1.2  �Important Terms

1.2.1  �Line
I’ll make this absolutely clear once and then you must always remember this: a line is

not a line, and what is not a line is a line. I hope that’s clear.

Since I suspect there would be a few grumbles in the backbenches, I will try to shed

some light on this delicate matter.

For an example, this is a pretty well-recognized statement you would have seen

sometime or the other:

<<<

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS AS IS AND

ANY EXPRESS OR IMPLIED WARRANTIES ARE DISCLAIMED. IN NO EVENT SHALL

THE CONTRIBUTORS BE LIABLE FOR ANY DAMAGES.

>>>

Chapter 1 Editing Text with Vim and Joe

7

Question of the day: How many lines can you count between the opening <<< and

the closing >>>? (The <<< and >>> are placeholders for carriage return/linefeed

generated with the Enter button, of which there are none in the main body of the text.)

Unless you are poor at counting, you would be able to make out that the text wraps

around two times, stopping roughly three-quarters to the end in its last track.

So the answer is a simple one: 2.5+ (almost three).

That answer is wrong. Those of the linguistic bend would immediately spot that the

period after DISCLAIMED splits the text in the middle—so there are not 2.5+ lines, but

precisely two.

The fight between the mathematically gifted and the linguistic experts is not an easy

one. Particularly when both are wrong.

In the world of text editing, there is just one line in that text, spread over two

sentences and three rows. What counts as a line in text is all that goes between two

consecutive newlines: carriage-returns (CR) and/or linefeeds (LF). While editing text, a

newline is what you get when you press Enter .

The opening line of a text file is an exception. That line has no leading CR/LF, but

does have a trailing one.

The closing line of a text file is not an exception. That has a leading CR/LF, and must

have a trailing one too. If you forget to append the trailing newline, most editors will save

the day for you by appending one automatically. If the editor does not, the last line is

technically orphaned. If you pass the file to a line-count algorithm (wc, for instance), the

algorithm will likely miss the last line.

DOS (and consequently Windows) uses CR (ASCII code 13) and LF (ASCII code 10)

to denote a newline, while Unix uses LF only. There are a few tools, like unix2dos and

flip, that can do conversion between the two formats.

We now have one rudimentary idea in the bag. The next idea is not rudimentary, but

is crucial for your bag, so that you can work smart with the editor and the Unix shell.

1.2.2  �Regular Expressions: What You Need
To Know Right Now

Quite frankly, I would have liked to skip the discussion of regular expressions until a later

point in this book. But, after due consideration, there really is no way I can elucidate

console-mode text editing without first making sure you understand regular expressions.

Chapter 1 Editing Text with Vim and Joe

8

We’ll initiate the understanding with a fundamental truth about Tinkerbell, my cat:

"i love TinkerbeLL 24*7"

If you ignore the enclosing double quotes, you will agree:

•	 The text starts with a lowercase letter (i)

•	 The text has one punctuation character (*) followed by a closing

digit (7)

With this agreement in place, you might wonder whether there is a computing

engine that can spot such easy-to-spot patterns in text?

The answer is yes. That engine is called regular expressions and is implemented by

grep (pattern searcher) as well as by every single text editor available in Unix.

This might sound like a good, cool deal—and it is. Let’s try to match our example text

for regular expressions with grep, one match for each of the two patterns we agreed upon:

echo "i love TinkerbeLL 24*7" | grep '^[[:lower:]]'

The vertical bar (the pipe) in the middle says, “Let the side on the right use the

output (result) of the left side”. And on the left side, we have the echo command, which

just prints whatever it is given.

The pattern to be matched here by the grep command asks (under single quotes) for

a couple of tokens:

^ is the token that matches the beginning of a line.

[[:lower:]] asks for a lowercase alphabetic character.

We could have relaxed things a bit by using [[:alpha:]] in place of [[:lower:]].

That would not have affected the outcome because [[:alpha:]] just means an alphabetic

character, with both [[:upper:]] (uppercase) and [[:lower:]] (lowercase) permitted.

Since both conditions have been met, grep will echo the string "i love TinkerbeLL

24*7" on your output device (monitor), which is confirmation that the pattern matched.

echo "i love TinkerbeLL 24*7" | grep '[[:punct:]][[:digit:]]$'

This pattern says three things need to be matched:

•	 Any punctuation character

•	 A numeric character

Chapter 1 Editing Text with Vim and Joe

9

•	 The dollar sign at the end demands that the combination of the

punctuation and numeric characters is needed at the end of the line

Since every requirement is again met, grep will again print the string "i love

TinkerbeLL 24*7" on your display.

While we looked at a few character classes (a deserved nomenclature for those

[[:XYZ:]] creatures), one has missed our attention, and that’s the [[:space:]] class.

Anything that is whitespace (space or tab) qualifies as [[:space:]]. Note that a single

tab character can also be denoted with the regular expression \t.

There are a few RE (regular expression) builders that you need to know at this stage.

•	 The . character lets you search for exactly one character as a fill-in.

echo "i love TinkerbeLL 24*7" | grep 'T.n'

This asks "Is there exactly one character between 'T' and 'n'" => SUCCESS

Note  Since any character matches for . (the period character), you match for
a literal period using \. Use of backslash to match a character literal is called an
escape sequence. As you might have already induced, to match a literal backslash,
one can use \\

•	 The * character lets you ask for zero or more occurrences of the previous

character’s class (not necessarily the same character, just its type).

echo "i love TinkerbeLL 24*7" | grep 'T..*n'

This asks "Is there at least one character between 'T' and 'n'" => SUCCESS

Matching for a specific number of occurrences is facilitated by the syntax \{N\} - as

illustrated in this next example:

echo "i love TinkerbeLL 24*7" | grep 'T.\{2\}n'

Are there exactly two characters between T and n ? => FAILURE

When grep fails to match the requested pattern, there is no output. This is different

from an error condition: if grep were to run into an error condition parsing your RE, it

would throw a fit at the console - quite legitimately too.

If you are now beginning to get the hang of regular expressions, let’s next try to find

out whether any character in our text is repeated (i.e., occurs twice in succession).

Chapter 1 Editing Text with Vim and Joe

10

This is made possible by back-references. You can store a token for reference later by

using the technology \(TOKEN\), and then refer to it later as \1 (which means get a TOKEN

here too).

echo "i love TinkerbeLL 24*7" | grep '\(.\)\(\1\)'

Since there are two consecutive L characters in the string, this pattern matches too.

You will often need to match for words. For instance, our example text has the string

"Tinker", but not as a word. The law of word boundaries states that a word must have

whitespace (or special characters) on both sides. Since "Tinker" is followed by a regular

character (b), it does not qualify as a word. Of course, "TinkerbeLL" does.

We can confirm this hypothesis with a few quick examples that illustrate two

different (and equivalent) ways to check for word boundaries:

echo "i love TinkerbeLL 24*7" | grep -w 'Tinker'

This asks "Is Tinker a word in the text" => FAILURE

echo "i love TinkerbeLL 24*7" | grep '\<TinkerbeLL\>'

This asks "Is TinkerbeLL a word in the text" => SUCCESS

You can make the match case-insensitive with the -i option:

echo "i love TinkerbeLL 24*7" | grep -i '\<tinkerbell\>'

This asks "Is tinkerbell a case-insensitive word in the text" => SUCCESS

The question now is not whether I love Tinkerbell, but whether are you are falling in

love with regular expressions. If your answer is no, you are perhaps reading the wrong

book at the wrong time. Otherwise, here’s a small exercise for you (with no Googling

permitted; using grep --help and man grep are permitted though).

Using the grep command, print the portion of our example text ("i love

TinkerbeLL 24*7") that is purely a sequence of numeric or punctuation characters.

Stated another way, get the 24*7 part, and nothing else.

Hints:

•	 The -o option of grep lets you print only the matching portion.

•	 The double square brackets of the character class notation [[:XYZ:]]

exist for a reason. Multiple character classes can be clubbed as

[[:class1:][:class2:]], with any of the club being character

literals.

Chapter 1 Editing Text with Vim and Joe

11

Here’s an example:

ˆ[aeiou[:upper:]]

This asks for any text that begins with a lowercase vowel or an uppercase letter. Both

“i am” and “He is” would match, but “we are” won’t.

If you are alive and kicking in our RE discourse, you’ll get the answer—it might get

printed one character per line or in a single line, either of which is acceptable.

We now quickly discuss the other terms of immediate interest in editing jargon.

1.2.3  �Remaining Terms of Endearment
One term in text editing lingo is buffer, which denotes the working copy (hosted in

memory) of a file. This is what the text editor uses as a playground for text manipulation,

and it holds your current goods - which can be vastly different from what lies in the disk

file. When you save the file, the buffer gets mirrored to storage. The contents of the buffer

and file are then exactly the same, until you make the next change in the buffer.

Another term is window. That means the portion of the buffer that is currently being

displayed by the editor. If the buffer holds 1000 lines, don’t expect all of them to show up

on the display device. Only the portion that can fit in the editor’s current view is deemed

the window’s text, and this will dynamically change as you scroll the text.

Occasionally, all this can get a mite confusing. If so, just tag the context.

We are now ready to invade the world of text editors. Both the sections that follow

(Vim and Joe) have installation notes tucked in at the end.

1.3  �Vi IMproved (Vim)
In the world of text editors, Vim is God, even if you are an atheist. Created by Bram

Moolenaar, a Dutch gentleman devoted to charities for Uganda, Vim builds on the

vi editor by adding a whole lot of user-friendliness, as well as bells and whistles that

vi lacks. The bells and whistles in Vim derive not from vi, but from a wagonload of

libraries (81 on my system, compared to just three that vi links to).

Vim is what is called a modal editor. This means that when it’s opened, it is ready not

for text input, but for you to execute commands, much like a shell. That mode is called

Command (or Normal) mode.

Chapter 1 Editing Text with Vim and Joe

12

If you are using Vim for the first time, you probably want to get into Insert (or input)

mode to put something in a file. The command for Insert/Input mode is i.

When you’re done inserting text, you need to save it, which is a two-step operation:

	 1.	 Press the Escape key Esc to return to Command mode.

	 2.	 Use :w <file_name> to save the text as <file_name>.

If you would like to exit Vim, use the :q command.

At this stage, I suggest that you put the following in your ~/.vimrc configuration file:

set laststatus=2

set ruler

set showmode

Here are the commands to do that:

echo "set laststatus=2" >> ~/.vimrc

echo "set ruler" >> ~/.vimrc

echo "set showmode" >> ~/.vimrc

That configuration renders a nifty status line near the bottom of Vim’s window, which:

•	 Gets you the best of late-breaking news (name of file, cursor position,

and current operational mode)

•	 Yields a split between the text zone and the command entry section

at the bottom

While you now know the first steps in Vim, you’ll do yourself an immense favor by

invoking the vimtutor command, which does an excellent job of explaining text editing

under Vim. While Unix and Cygwin have the vimtutor command if Vim is installed,

installing gvim (graphical Vim) under Windows (via its setup executable) lends you

access to the tutor through the Start menu also.

Before you proceed to the material, be sure you have gone through the graduation

accorded by vimtutor at least once, perhaps a couple of times, hopefully thrice. I’ll

confirm your tryst with the tutor with a few questions. Each time you fail to answer, you

must go through the tutor exercise again. No other help is permitted.

Chapter 1 Editing Text with Vim and Joe

13

A few points that may not be covered in vimtutor but are needed for our quiz are

mentioned here:

•	 When operating on words with actions like copy (y) and delete (d),

a denotes the start-of-word, while e denotes the end-of-word.

•	 Edit operations that act on (or to the right of) the cursor position can

often be made to go left using the command’s uppercase. So P pastes

to the cursor’s left, and X deletes a character to the left.

•	 fx searches the current line in the forward direction for the character

x, while Fx searches backward.

Figure 1-1 holds the sentences for our Vim quiz. You need to work with the primary

sentence (until prompted to use the secondary sentence too).

If you want to copy sentences to your Vim buffer, use the following:

BETA GAMMA KAPPA OMEGA

rome paris delhi miami

Copy the text (which is space-separated), press i in Vim, right-click, and choose

paste. Move the cursor until the current character is the first M of GAMMA.

Figure 1-1.  Vim quiz sentences

Chapter 1 Editing Text with Vim and Joe

14

Note I nstructions to follow each time you carry out a command: 

	1.	 Undo the last change (if any). If you are wondering how to undo the last change,

run the command vimtutor.

	2.	R eturn (if needed) to command mode, with the cursor placed on the first M of

GAMMA again.

Tip to remember for the quiz that follows: a vowel can be matched as a regular expression using
the character group [aAeEiIoOuU].

I will now start the Vim quiz, with questions you will need to answer right until the

end of this section. Each such question I call a “step”.

Enter Command (Normal) mode and then follow these steps:

	 1.	 Move the cursor to the beginning of the next word.

	 2.	 Move the cursor to the end of the line.

	 3.	 Delete the current character (which should be the first M of GAMMA).

	 4.	 Delete the current character along with one on its left and the one

on its right.

	 5.	 Replace the current character with m.

	 6.	 Change the case of the current character without using r in your

command.

	 7.	 Delete the current word (from cursor position to end-of-word)

without touching the trailing whitespace.

	 8.	 Paste the current word (from cursor position to end-of-word) at

the beginning of the next word.

	 9.	 Delete the current word from start-of-word to end-of-word (along

with trailing whitespace).

	 10.	 Insert the contents of the /etc/fstab file between the two lines.

	 11.	 Change all the text to start-of-line to 1234.

	 12.	 Change all the text to end-of-line to 789.

	 13.	 Change the entire line to 567.

Chapter 1 Editing Text with Vim and Joe

15

	 14.	 Move the current (entire) line one line below (i.e., delete the

current line and paste it underneath itself).

	 15.	 Change three characters forward (current character and the next

two) to 1234 (on-screen character counting not permitted).

	 16.	 Change three characters backward (current character and

the previous two) to 1234 (on-screen character counting not

permitted).

	 17.	 Insert 1234 at the beginning of the line.

	 18.	 Append 789 at the end of the line.

	 19.	 Replace all M characters in the line with n.

	 20.	 Item 20 in first enumeration removed to make way for new item# 2

in second enumeration.

	 21.	 Insert the output of the ls command between the two lines.

You will now need to use the secondary sentence as well:

	 1.	 Delete both lines using d in your command a maximum of twice.

	 2.	 Copy and paste both lines at the bottom of the buffer.

	 3.	 Change all the vowels in the two lines to h using a single s

command.

	 4.	 Move the cursor to the start of the first line and then traverse

(jump through) all the A characters in the line without using /.

	 5.	 Move the cursor to the end of the second line and then traverse

(jump through) all the vowels from end-of-second-line to start-of-

first-line.

If you scored 25/25, continue reading.

There are a few points that you might have already grasped, but I do not like to leave

it to wishful thinking:

•	 You can use ˆ to move the cursor to the first non-blank character in

the current line, or 0 to move to the first character in the line.

•	 The . command in Vim repeats the last change.

•	 In Vim, <motion> means the amount of text being manipulated.

Chapter 1 Editing Text with Vim and Joe

16

Here are a few <motion> entities and their meanings:

ˆ	 To the beginning of line

e	 To the end-of-word without whitespace

w	 To the end-of-word with whitespace

b	 To the start-of-word without whitespace

$	 To the end of line

We’ll continue with material and steps as needed, with self-monitoring only from

now on.

1.3.1  �Moving Around in the Buffer
Moving the cursor in the Vim buffer is easy:

h	 Left : Moves left one character

j	 Down : Moves one character south

k	 Up : Moves one character north

l	 Right : Moves one character right

You can make larger jumps with Page Up or Ctrl + B , and Page Down or Ctrl + F .

While keyboard shortcuts are set up with Vim with no extra effort, you should still

remember the hjkl navigation toolbox mentioned here. When nothing else works

(while, for example, recording a Vim macro), those keys still will.

There are other ways to obtain big jumps. A couple of often-needed jumps are to the

buffer’s first and last lines.

The nG command moves the cursor to the buffer’s line number n. G by itself moves

to the the last line, whereas gg moves to the first line.

There is an alternative way to move to top and bottom of the buffer:

:1 # move to the first line

:$ # move to the last line

If you want to move the cursor around in the window, there are window-specific

commands too:

H # move the cursor to the top line in the window

L # move the cursor to the bottom line in the window

zt # make the current line the top line in the window

zb # make the current line the bottom line in the window

Chapter 1 Editing Text with Vim and Joe

17

1.3.2  �Registers and Clipboard Integration
While it is very easy to yank (copy) text with (y<motion>) to and paste (p) it from Vim’s

own scratchpad (an anonymous register), this is not the only Vim facility for yanking text

around.

Vim has named registers too—26 of them, one for each letter of the English alphabet.

Not surprisingly, those registers are named a through z.

To yank the current line into register a, you can tell Vim this:

"ayy # that is a double-quote followed by ayy

To paste the contents of register a, you can later issue "ap

One masterful idea in Vim is the process of appending to the registers. If you yank

something into register A (the uppercase of a), Vim will append the yanked text to the

existing contents of register a. If the user then pastes the text residing in the register,

(s)he will collect the original yank plus the appendage.

Vim integrates nicely with the system’s clipboard too, which permits text exchange

with other applications (and, of course, itself as well).

Vim denotes the clipboard as a register with the + character. So to copy text to the

clipboard, you use:

"+y<motion>

To paste the contents of the clipboard, you use:

"+p

Here are a couple of steps for you:

	 1.	 Copy the first line (primary sentence in Figure 1-1) to the system’s

clipboard.

	 2.	 Paste the contents of the system’s clipboard below the first line.

Note T o paste clipboard contents inside a Vim buffer using a mouse, right-click

and then press i in Vim (to get yourself into Insert mode) before pasting.

Chapter 1 Editing Text with Vim and Joe

18

1.3.3  �Marks
One cool way to navigate text in your file’s buffer is with Vim marks, which simulate

bookmarks.

The mq command places the mark q on the current line.

To get to this position from anywhere in the file, you use 'q

The " command (that’s two single quotes) lets you jump between marks (as well as

previously recorded locations).

Here are a few very easy steps to ensure you remember marks:

	 1.	 Place mark x in the primary sentence and mark y in secondary sentence.

	 2.	 Use the marks to jump between the sentences.

	 3.	 Repeat the jumps by using ".

1.3.4  �Find and Replace
By now, I suppose you are aware that the Normal command fq searches ahead in the

current line for character q, whereas Fq searches backward.

Searching forward for the text xyz is done with /xyz

To search backward, use ?xyz

You can repeat a search in the same direction with n (or in the reverse direction with N).

One particularly handy search is the * command, which searches for the word under

the cursor in the forward direction. The # command searches backward.

Substitution operations work with the s command, which supports ranges.

Use the :[range]s/abc/xyz/[modifiers] command to substitute the string abc with

xyz. A few often-used modifiers include:

i:	 Ignore case-sensitivity

g:	 Substitute for each occurrence; not just the first one in the line

e:	 Do not treat it as error if no substitution was made

c:	 Prompt for confirmation with each substitution being made

If no [range] is specified, substitutions will take place on the current line only. When

you’re specifying [range], you need to give two line numbers separated by a comma (,):

1	 represents the number of the first line in the file

.	 represents the current line number

$	 represents the number of the last line in the file

The % character represents all the lines in the file - a short form for 1,$

Chapter 1 Editing Text with Vim and Joe

19

This is the nuts and bolts of find and replace. But the one feature you are bound

to start using as you work with Vim (or any other Unix text editor) is using regular

expressions for find and replace.

This feature is a very welcome one. We are dealing with just two sentences. But see how

easy it makes life if you decide to replace all the whitespace sequences with one tab each:

:%s/[[:space:]][[:space:]]*/\t/g

You can imagine what it would be like to manually make those changes in a file that

is one million lines!

So here’s one of those steps to get your Vim and RE world zooming. This is a tough

one, but if you have been picking up my regular expression wisdoms, you’ll get it:

	 1.	 Using regular expression-based find and replace, remove the

hearts in the eight words in our two sentences, meaning:

BETA => BA; GAMMA => GA; KAPPA => KA; OMEGA => OA

rome => re; paris => ps; delhi => di; miami => mi

A solution is available in the appendix, but you should try it on your own first.

1.3.5  �Visual Selection Modes
Visual selection, briefly touched on in vimtutor, is one of the most powerful features

in Vim. While not a distinct mode by itself, it exists as a sub-mode of Normal mode and

lets you move the cursor around to make a selection bigger or smaller, getting visual

feedback in real-time about the text you are playing with.

There are three distinct ways you can enter Visual selection:

v for character-based selection

V for line-based selection
Ctrl + v for block-based selection

You will need to use these commands by yourself in your buffer to get familiar with

how the selection expands and contracts with keystrokes.

Once you are familiar, continue with these steps:

	 1.	 Delete both lines using d in your command just once.

	 2.	 With the cursor placed on the first A of GAMMA, delete the hearts of

GAMMA (leaving GA) and paris (leaving ps) with a single command.

Leave all the other words untouched.

Chapter 1 Editing Text with Vim and Joe

20

Visual selection makes indenting a range of lines very easy:

•	 To indent a range of lines, use V to define your range, and then press >

•	 To un-indent a range of lines, use V to define your range, and then

press <

Commenting a range is a mite trickier, but still a walk in the park. I should mention at

this point what constitutes a comment sequence is environment-defined:

•	 C and Vala use //

•	 Shell scripts use #

•	 Latex uses %

Interestingly, Vim’s own configuration file (~/.vimrc) uses ".

(That’s one double-quote character).

It’s a mad world, but let’s use the # commenting character.

To comment a range of lines, place your cursor on the top-left character, and then

follow these steps:

	 1.	 Press Ctrl + v and travel south to define your range.

	 2.	 Press I (must be uppercase).

	 3.	 Insert #.

	 4.	 Escape to Command mode.

Your commenting will magically pop up for the whole selected range.

Uncommenting follows a similar approach. To uncomment a range of lines, place

your cursor on the top-left commenting character, and then

	 1.	 Press Ctrl + v and travel south/southeast to select the block that

hosts the commenting characters.

	 2.	 Press x (or d ; both are equally good).

	 3.	 Original manuscript error. Step 3 is entirely unneeded.

You would be mighty disappointed if find and replace didn’t work in a Visual

selection. Bram Moolenaar’s brainchild leaves you nothing to fret about, with full-

fledged support of regular expressions to boot.

Chapter 1 Editing Text with Vim and Joe

21

Let’s say you want to change all words ending with i in the secondary sentence to

end with I.

There are multiple ways to do this. Here is a game plan that uses Visual selection.

Move down into the secondary sentence and press V to start line-based Visual

selection. Then use the following command:

:'<,'>s/\<\(..*\)i\>/\1I/g

That converts delhi to delhI and miami to miamI.

You don’t need to bother about the :'<,'> at the beginning of the command. Vim

will fill that portion automatically when you press : with a Visual selection underway.

'<,'> is Vim’s way of referring to the selection made.

There are still more things you can do with Visual selections:

:'<,'>w <file>

Writes the selected range to <file>

:'<,'>w>> <file>

Appends the selected range to <file>, which must already exist

One final point shows how context-specific Vim commands can be. You might

remember from your vimtutor wheeling and dealing that “u is for undo”. That’s true,

but not across the board. With a Visual selection made, the u command changes the

selection to lowercase (while U changes it to uppercase).

1.3.6  �Recording and Playing Macros
Unix console-mode text editors try to stick close to the philosophy of “Do it once”. If you

need to do it again, let the system repeat “it” whenever and wherever needed.

Snuggled right in the heart of that tenet is the concept of macros. If you need to carry

out a complex series of operations at multiple locations in a large file, do it carefully the

first time and let Vim record your keystrokes. The next time around, don’t operate; just

tell Vim to replay the recording.

As an example of how powerful Vim macros are, we’ll use a small trick up the

publisher’s alley, where the numerals 1-10 should be represented as words, but 11 and

up are written as numbers: 1 should be one, 2 should be two, 3 should be three, but 11 is

written as 11.

Chapter 1 Editing Text with Vim and Joe

22

This is what we will play with (three newline-terminated sentences):

<<<

I have 2 bananas which I shall eat 1 by 1.

3 is company, but more than 3 is a crowd.

At times, 11 is a team.

>>>

This is what we want in the end:

<<<

I have two bananas which I shall eat one by one.

Three is company, but more than three is a crowd.

At times, 11 is a team.

>>>

To achieve the transformation, we can use a Vim macro, of which Vim permits 26 to

the user, each one named as a letter of the English alphabet. We will record our macro as

macro a.

To start the recording, we use the q command, qa, which starts the recording

stored in register a. (Note the close connection between macros and registers.) When

the recording starts, Vim will display the "recording @a" diagnostic message in the

command entry window.

The following macro forces three substitutions in the top line:

:s/\<1\>/one/ge

:s/\<2\>/two/ge

:s/\<3\>/three/ge

We now stop the recording with the q command, and our macro at this stage looks

like this:

:s/\<1\>/one/ge^M:s/\<2\>/two/ge^M:s/\<3\>/three/ge^M

The ˆM in the macro stands for a carriage return, which can be simulated in plain text

inside a Vim buffer with Ctrl + v followed by Ctrl + M .

Note that you need to be in Insert mode when you type in the sequence. Ctrl + v

asks Vim to insert the next character literally, while Ctrl + M is the equivalent of a

carriage return (ASCII 13).

Chapter 1 Editing Text with Vim and Joe

23

If you want to see the contents of a macro, it is incredibly easy. If the macro name is

z, just paste the contents of the register z somewhere, which essentially means use the

Vim command "zp

We now cycle the cursor through each of the next two lines and issue the command

@a, which means we are asking Vim to execute the macro named a on this line too. (Note

the nifty @@ shortcut. It can be used to repeat the last macro executed. So you can execute

@a on the middle line, and then @@ on the bottom line.)

By the time we finish these operations on the text, it looks like this:

I have two bananas which I shall eat one by one.

three is company, but more than three is a crowd.

At times, 11 is a team.

That’s a pretty decent result, but we won’t rest in peace until we capitalize the “three

is company” line. So we hop on to the top line again and restart the recording, but this

time we don’t record in a new register. Instead we record in register A, which is a way

saying, “Append this recording to the contents of register a”. The command for this

purpose would be qA.

:s/^\<one\>/One/e

:s/^\<two\>/Two/e

:s/^\<three\>/Three/e

The commands result in the following appended to register a:

:s/^\<one\>/One/e^M:s/^\<two\>/Two/e^M:s/^\<three\>/Three/e^M

That looks a bit scary, but all it is doing is asking for one/two/three to be capitalized

if the string is at the beginning of a line.

When recording finishes, we can ask Vim to invoke @a upon each of the other two

sentences, fetching us the transformed text.

You might not guess it, but one of the beauties of a Vim macro is that it may never

actually be recorded, and yet be available for execution.

Let’s return to the first of our macros:

:s/\<1\>/one/ge^M:s/\<2\>/two/ge^M:s/\<3\>/three/ge^M

If you copy the macro text to register b, you can treat b as a macro and execute it

directly with @b. It goes without saying that, unless you are Bram Moolenaar, this is one

practice you need not make a standard way of life.

Chapter 1 Editing Text with Vim and Joe

24

1.3.7  �Vim Utilities
Vim has a fair number of utilities built into it too.

We’ll have a quick look at some important ones.

	 1)	 When editing a file, you might come across a character that’s not

part of the ASCII character set, although it might look like one.

Funny things like those occur every once in a while.

While there is no way the editor can block out “funny” characters,

you can at your leisure check the contents of your file with the

Vim command ga. That command displays the ASCII value of the

character under the cursor.

If the ga command (short for Get ASCII) of Vim prints a decimal

value greater than 127 for any character in the file, it would

suggest that this is not a good, plain ASCII text file.

	 2)	 The gf command (Goto File) is a quick way to open a file in an

existing Vim session. If your cursor is placed on a file path that you

need opened, you can use gf to look into that text file.

	 3)	 Vim has a built-in encryption facility. If you invoke Vim with the

-x argument, it will prompt you for an encryption key, which then

becomes the password needed to access the contents of the file.

The user can return to unencrypted mode by using the Vim

command:

:set key=

While Vim’s encryption is weak, it is a good, easy way to keep out

the casual sniffer and prowler. It will not deter the expert hacker

with plenty of time to spare.

	 4)	 If you want to print the current file, use :ha! (short for hardcopy).

Chapter 1 Editing Text with Vim and Joe

25

1.3.8  �Vim Configuration
As you might expect, a supremely flexible and power-packed editor like Vim has a

humongous range of configuration options. The following line in my Vim configuration

file ~/.vimrc, for instance, ensures that there is no visible bell each time I go past the top

or bottom of the buffer:

set vb t_vb=

Settings can be conveyed to Vim as part of the configuration in ~/.vimrc, or on a per-

session basis by passing the setting in as a Normal mode command.

set ruler in ~/.vimrc switches on the ruler that shows the cursor position. If, at

runtime, you pass in the command :set noruler to Vim, the ruler disappears.

You can even query existing Vim settings, typically by using the ? character in place

of = (and everything after it).

For instance, if you want to find out whether the option showmode is on, you can use this:

:set showmode?

If the setting is on, Vim will print showmode and if it is off, Vim will print noshowmode.

If you were to query for a numeric setting such as laststatus, Vim will print

laststatus=2.

I won’t delve into each Vim setting. I’ll leave it you to look them up when the time

is right. Here are a few settings you can get detailed online help about with the Vim

command :help <topic>:

autoindent

nohlsearch

nonumber

ruler

linebreak

wrap

laststatus

tabstop

shiftwidth

noexpandtab

showmode

nocompatible

Chapter 1 Editing Text with Vim and Joe

26

vb

syntax

ignorecase

textwidth

nomodeline

Many editors (including Vim) have the questionable habit of creating backups when

writing to a file. This is not particularly heartening since it pollutes the filesystem with

wanton backup files.

Luckily, putting the following in ~/.vimrc takes care of the pollution:

set nobackup

set nowritebackup

set noundofile

With this configured, Vim will studiously work with the text file only, nothing else.

(Vim will still create a hidden swap file, but that does not persist—when you exit Vim, the

swap file gets deleted automatically.)

Since you can now start browsing help for common Vim settings, we’ll move on to a

nicety that is a little bit more than a setting to turn on/off: key mapping.

Vim permits keyboard keys to be mapped to functions.

If, for example, you are working with a mixture of DOS and Unix files, you might like

to change every file to the same format. So you can set up a keyboard-mapped function

in your ~/.vimrc:

:map <F11> :set fileformat=unix<CR>:w<CR>

If you now press F11 while editing a file in Vim, the file will be converted to Unix

format and saved as such.

<CR>, as you might have guessed, denotes a carriage return. Note that this mapping

does not just convert the format, but also saves the converted file, right down to the

second <CR>.

Of course, you can chain as many Vim commands in a key mapping as suits you. And

you need not set up the map in ~/.vimrc: you can do so on a per-session basis through

Normal mode commands just as well.

I suggest a small exercise for the reader: map the F12 key to toggle on/off syntax

highlighting.

Chapter 1 Editing Text with Vim and Joe

27

1.3.9  �Vim Abbreviations and Auto-Completion
Framework

Vim caters to the stenographer inside you with a couple of distinct enterprises:

abbreviations and auto-completion.

The editor supports abbreviations established via ~/.vimrc as well as Normal mode

commands. If you want Vim to auto-complete #i as #include, try this in a Vim session:

:iab #i #include

When you start working, let’s say, on some C source code in Vim, just type in #i

followed by a space. Vim will expand it as #include.

Auto-completion is the programmer’s dream, whereby long words are typed by the

system itself, under the radar control of the user.

Let’s say you are typing a document in Vim in which there is just one line: “As of

today, most motherboards are manufactured in Taiwan”.

If later in the document, you again start writing about motherboards, it might

start itching and irking your ergonomic wholesomeness having to type in such a long

word again and again. The solution is to type in a few lead characters and then press

Control+P while still in Insert mode:

Ctrlmot + P

When you press Control+P, Vim will search backward for all words beginning with

the lead “mot”. Since “motherboards” is the only candidate, you can accept Vim’s only

suggestion for auto-completing the word.

Of course, you could have invoked the auto-completion framework with a smaller

cue. If you type this:

Ctrlmo + P

Vim will find two words (“most” and “motherboards”) that match the cue. In such

case, Vim will present you with a menu of suggestions, and you can select one.

Just as Control+P makes Vim search backward, Control+N searches forward.

We now know Vim well enough to work comfortably with the editor. The foregoing

discussion assumes you already have Vim installed. It might still be handy to have Vim

installation commands for the various Unix and Unix-emulation platforms readily

available for reference.

Chapter 1 Editing Text with Vim and Joe

28

1.3.10  �Installing Vim
Note that a graphical Vim (gvim) installation automatically installs a console version

(vim) too.

	 1.	 In Windows:

There are two distinct ways to install Vim under Windows. One is

via its setup executable, which you can download at http://www.

vim.org/.

The other way is to install Vim is as part of Cygwin, which makes

Vim available under the Editors category in its setup executable.

If you are using the Cygwin fork Babun, Vim is likely there already

as part of the base distribution. If it is missing, you can install it

with:

pact install vim

	 2.	 In Linux:

Linux distributions provide a number of Vim packages.

For Ubuntu-flavored distributions, you can get the graphical

version of Vim with:

% sudo apt-get install vim-gnome

-OR-

% sudo apt-get install vim-gtk3

If you need just the console-mode Vim, use:

% sudo apt-get install vim-nox

Arch-based Linux distributions can use: ROOT# pacman -S vim

	 3.	 In FreeBSD:

For console-mode Vim, use: ROOT# pkg install vim-lite

For graphical Vim, use: ROOT# pkg install vim

Chapter 1 Editing Text with Vim and Joe

http://www.vim.org/
http://www.vim.org/

29

1.4  �Joe’s Own Editor (Joe)
The one editor Vim most often gets compared to is Joe’s Own Editor (called Joe). It’s

perhaps the most user-friendly console-mode text editor ever made.

If you were to perform a statistical analysis of text editing jobs that consume most of

your time with the editor, the tasks would be:

•	 Inserting new text

•	 Moving/copying existing text

•	 Deleting existing text

A bit further down the line would be stuff like finding/replacing, as well as complex,

repetitive tasks that you would ideally want to do just once and let the editor perform the

repetitions.

Given this scenario, you might like to ask if there is someone who can get this done

with significantly less effort compared to Vi IMproved. Answers will vary depending on

whom you ask, but my vote would be for Joe.

The creation of Joseph H. Allen, this funky little editor packs a fair punch that

amounts to what I like to classify as 50% of Vim with 10% of the learning curve—if even

that much.

Unlike Vim, Joe is a non-modal editor, which gets it a thumbs up from folks who

dislike the idea of having to switch between operational modes. Joe starts off in text input

mode and remains that way. If you need to carry out a command, you need to use the

Control modifier key (or sometimes the Escape modifier) to feed your command to the

editor.

Note that Joe uses ˆ to refer to the Control key, which is what we too will do for the

remaining chapter.

While everything in Joe has been designed for ease of use, the standout feature

that makes Joe very easy to work with is its online help system. Online here does not

refer to any Internet-backed facility. Rather, it is a secondary window that Joe opens

automatically when invoked with the –helpon argument. The extra window illustrated in

Figure 1-2 lists the shortcut keys for every major editing operation available in Joe.

Chapter 1 Editing Text with Vim and Joe

30

Looking at Figure 1-2, you will likely note that you do not need to know Joe

beforehand or remember anything about how to work with your text in Joe—except to

use -helpon when invoking Joe or use ^KH to toggle the help menu on. The help menu is

largely self-illustrating.

A few distributions use -help, not -helpon as the switch for the online help system.

Since Joe’s online help elucidates everything, it leaves very little to explain. Still, we

will go through some of the elementary paces.

Probably the first thing to keep in mind is that there are two ways to save your file:

^KX saves and exits, while ^KD (followed by a carriage return) saves and keeps the Joe

window open.

Editing with Joe tends to be heavily block-oriented. You define a region of text and

then operate on that region with a copy/move/delete command.

There are two ways to define a block. You must first move the cursor to the block’s

starting character, which is the northwest corner.

The traditional way to mark the block is to press ^KB and then travel to the last

character of your intended block, where you then press ^KK. That defines (highlights)

your block.

Figure 1-2.  Joe’s online help system

Chapter 1 Editing Text with Vim and Joe

31

There is a newer and easier way too. When at the starting character, hold down the
Ctrl key and use the keyboard’s arrow keys to navigate to the ending character. Your

block gets defined as you move the cursor.

With a block defined, you can press ^KY to delete it. Or else, move to another position

in your buffer, where you can press ^KC to copy it there, or ^KM to move the block there.

Missing from the online help is the indentation system. ^K, unindents the block

(pushes the text to the left), whereas ^K. indents the block (pushes the text to the right).

A lot of people find it irksome to have the block remain highlighted when it has been

operated on. Luckily, there is a fairly straightforward remedy. Press Ctrl + C , the

standard way to cancel an operation in Joe, to undefine the block. If you want the

“undefine” to happen automatically, pass in the argument -lightoff when invoking Joe.

The one most heavily needed editing operation I seem to encounter is deleting the

current line. The command to delete a current line is ^Y

^KF is the interface to find and replace, for which Joe supports a homebrewed

implementation of regular expressions. That brew uses \. to match any single character,

while * matches zero-plus occurrences of the previous token. Word- boundaries are

matched with \< and \>, just as under GNU. Character classes (of the [[:class:]] form)

are not supported.

Joe is an excellent playground for macros too. ^K[(followed by a number between

0 and 9) starts recording a macro tagged as the digit chosen, and ^K] stops the recording.

When you need to play the macro, just press ^K followed by its tag digit.

Joe has a hook into spell checking too. For this, you need to have a spell application

like aspell installed in the backend. To spell check a Joe buffer, press Esc + L .

One fantastic capability of Joe is to filter a block of text through any external

command using the ^K/ command. This has particular significance because Joe does not

have an internal command to comment/uncomment a block.

If you need to comment or uncomment a block, you can work around it by creating a

couple of shell scripts as explained here.

Put the following in $HOME/bin/comment.sh and make it executable (chmod +x

<file>):

#!/bin/sh

commenteer='#'

sed 's/^.*$/'"$commenteer"'&/'

exit $?

Chapter 1 Editing Text with Vim and Joe

32

Put the following in $HOME/bin/uncomment.sh and make it executable:

#!/bin/sh

commenteer='#'

sed 's/^\('"$commenteer"'\)\(.*\)$/\2/'

exit $?

You can now filter blocks of code through comment.sh and uncomment.sh by invoking

the respective script with ^K/. Note that these scripts assume that the commenting

character is #. If you need to use something else (for instance, //), modify the string

assigned to commenteer in the scripts accordingly.

Joe throws in a few more kicks for enhanced user-friendliness—command history,

find-and-replace history, and tab-based completion (for filenames). Those are better

experienced than explained.

One Joe peculiarity worth noting is Ctrl key release in Control-based commands.

Consider ^KX to illustrate the point. That command works with k and then x pressed

while the Control key is still not released. It also works if x is pressed with the Control

key released after pressing k . There are a few commands though, ^K/ for instance, that

work only with the Control key released before pressing the Command key (which is /

in our example). It’s simply a matter of getting used to this.

I will close this section with a word about Joe’s rich heritage. While a single editor

in itself, Joe derives its base from multiple families—Emacs, Pico, and WordStar. A Joe

installation usually installs additional links that let Joe emulate Emacs keybindings

(if invoked as jmacs), Pico (jpico), or WordStar (jstar). WordStar is deemed the chief

inspiration behind Joe, and WordStar lovers almost immediately light up when a

discussion about Joe breaks out within hearing distance.

1.4.1  �Installing Joe
Follow these steps to install Joe:

	 1.	 In Windows:

Both Cygwin and Babun provide Joe as a package. For Cygwin,

you can select Joe under the Editors category in Cygwin’s setup

executable. For Babun, you can use: pact install joe

Chapter 1 Editing Text with Vim and Joe

33

To install Joe as a standalone application under a recent version

of Windows (7 or later), you can download joewin.msi at the

following URL: https://sourceforge.net/projects/joe-

editor/files/JOE%20for%20Windows/

Windows XP users can use the portable version of Joe available at:

https://www.mirbsd.org/MirOS/dist/jupp/JWIN31V.ZIP

	 2.	 In Linux:

For Ubuntu, use: % sudo apt-get install joe

For Arch, use: ROOT# pacman -S joe

	 3.	 In FreeBSD, use:

ROOT# pkg install joe

1.5  �Summary
Now that you are familiar with the two major console-mode text editors, your Unix love

affair is bound to succeed.

People soon start developing preferences when using text editors. You will likely

develop a fancy for one over the other, or for other over the one. This is not a cardinal sin

by any means. Just be aware that inclinations in the early stages tend to leave a distinct

mark on one’s evolution in the Unix world.

Chapter 1 Editing Text with Vim and Joe

https://sourceforge.net/projects/joe-editor/files/JOE for Windows/
https://sourceforge.net/projects/joe-editor/files/JOE for Windows/
http://www.mirbsd.org/MirOS/dist/jupp/JWIN31V.ZIP

35
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_2

CHAPTER 2

Essential Unix Commands
and Terminology
I am told by reliable sources that, despite ongoing research from the best minds on this

planet, scientists are unable to define basic terms like “life” and “time”. Fortunately for

computer users, computer programming is an easier concept—we can define essential

terms. Before we embark on our Unix journey, we’ll therefore first define some of the

most fundamental terms.

2.1	 �Kernel, Shell, and Filesystem
The kernel is the operating system’s core, without which everything else becomes

meaningless. Every single operation you carry out under an operating system has

to be executed indirectly by the kernel, which also does many other jobs (memory

management, process management, device management, and input-output

management) in the background.

Unix kernels in the past tended to be monolithic (with every capability packed into

one single file). But modern kernels are modular. Only critical, inseparable capabilities

get packed into the kernel, while other capabilities get compiled as modules that can

be loaded and unloaded at runtime. Communicating with the kernel is not easy—the

kernel does not yet understand the English language and needs special communication

procedures known as system calls. This is why Unix creators bundled into the operating

system a very helpful application known as the shell.

36

The shell (originally the Bourne shell) is the command interpreter—on one side, it

accepts from the user commands typed in a derivative subset of plain English; and on

the other side, it uses system calls to communicate with the kernel, get your commands

executed, and report results back to you. The two most widely used shells today are bash

(Bourne Again Shell) and zsh (Z Shell).

That leaves us with one last term—the filesystem. You must have come across that

term sometime or the other. So what does it mean? A filesystem is the logical, hierarchical

representation of electronic data in a disk partition. That sounds a touch abstruse, so let’s

take the case of a hard disk with one single Windows NTFS partition spanning the disk.

When the disk is booted, you get to see C: drive as the top level in My Computer.

C: in turn hosts a few subdirectories and files, and then those subdirectories contain

still more goods.

So far so good. But the disk partition itself physically is nothing but a huge cluster

of 0s and 1s: computers are, after all, binary machines. Translation of the 0s and 1s

to present the user with a navigable hierarchy of files and directories is what the term

filesystem means. With its NTFS driver, Windows interprets the 0s and 1s in a way such

that the operating system gets to see files and directories in a hierarchy rooted under the

C: drive. The moral of the story is this: A disk partition is a physical entity; a filesystem is

the logical representation of the physical entity.

Every operating system uses a filesystem-specific driver to read from and/or write

to a partition. The most widely used native filesystem types in Unix are ext2 (Linux)

and UFS (FreeBSD), although I should mention that both Linux and FreeBSD offer

alternatives: btrfs (Linux) and ZFS (FreeBSD). Further, modern Unix systems can easily

access data under non-native filesystems too (such as FAT and NTFS).

2.2	 �Files and Special Files
The two most common entities in any filesystem are files and directories. So, before

moving ahead to discuss special files, we’ll spare a little energy to come up with

reasonable, working definitions for both terms.

A file is one complete, named unit of digital information, that may be physically

contiguous in its storage or spread across a chain of fragments. By complete, what is

meant is that you cannot tell the system to delete half of a file.

Chapter 2 Essential Unix Commands and Terminology

37

Directories, on the other hand, are special files that do not contain any data

themselves—they are just containers that list names of contained (“immediate child”)

files and subdirectories. If you want to explore what lies in the directory file, you can

open a directory in a text editor (!), just to be sure that it indeed is this way.

Besides directories, there are a few other filesystem entities that do not qualify as

regular files, notably symbolic links and device nodes.

Now that we have a reasonable definition of the term file, we can talk about four

special ones and then a couple of related terms.

2.2.1  �The Null Device
/dev/null is like one big black hole into which you can pump as much data as you want.

Everything goes in immediately and nothing ever comes out. In other words, a perfect

dustbin.

USER> echo "Hello World" > /dev/null

The shell does not say "Hello World".

2.2.2  �Standard Input
This is where input comes from. This normally means the keyboard, but it can be

redirected to come from a regular disk file using the < operator. Modern Unix systems

have the device node /dev/stdin that serves to represent standard input, which the shell

denotes as a nameless file with the numeric identifier 0.

We thus can determine how many lines there are in the file /etc/fstab using either

of the following:

USER> wc -l < /etc/fstab

or

USER> wc -l 0< /etc/fstab

Note: There is no space between 0 and <.

Chapter 2 Essential Unix Commands and Terminology

38

Note M ost Unix commands (e.g., wc, grep, and sed) that accept a file as
command-line argument also accept input passed in via shell redirection or over a
pipe, and vice versa. The wc command shown here could also have been crafted
as wc -l /etc/fstab (i.e., no redirection).

Note the difference in wc output when the command is fed a file path, rather than
having it process standard input. In the latter case, wc has no idea how the data in
its standard input came into being.

2.2.3  �Standard Output
This is where output goes. This normally means your monitor, but it can be redirected

to a regular disk file using the > operator. Modern Unix systems have the device node /

dev/stdout, which serves to represent standard output, which the shell denotes as a

nameless file with the numeric identifier 1.

We thus can fetch the listing of the home directory with:

USER> ls -l $HOME

This displays the list on the PC’s monitor.

USER> ls -l $HOME > /tmp/home.list

This command creates the /tmp/home.list file and then saves output in that file.

USER> ls -l $HOME 1>> /tmp/home.list

It appends the list to /tmp/home.list using a numeric ID of stdout.

Note O utput redirection to a disk file with > writes the output to a new file. If the
file already exists, it will first be truncated to zero-length. 

Redirection with >> appends to an existing file. If the file does not already exist, it
will be created.

Chapter 2 Essential Unix Commands and Terminology

39

2.2.4  �Standard Error
This is where diagnostic and error messages go. This normally means your monitor, but

it can be redirected to a regular disk file using the 2> operator. Modern Unix systems

have the device node /dev/stderr, which serves to represent standard error, which the

shell denotes as a nameless file with the numeric identifier 2.

We can now discard error messages we are not interested in.

USER> ls -l HOME

Error: 'HOME' should (presumably) have been '$HOME'

USER> ls -l HOME 2> /dev/null

No error message: ls quietly returns code to shell indicating failure

If needed, standard output and standard error can be merged into a single stream.

The following commands do just that.

USER> ls -l $HOME 2>&1

The previous command delivers error messages, if any, to standard output.

USER> ls -l $HOME 1> /tmp/home.list 2>&1

This command merges output and error streams in the disk /tmp/home.list file.

Figure 2-1 depicts the way the standard input/output/error devices connect the user

to a Unix shell.

Figure 2-1.  User interaction with Unix

Chapter 2 Essential Unix Commands and Terminology

40

2.2.5  �The Pipe
At this stage, there is one Unix facility that we need to understand: the pipe. The pipe

is a way for joining two commands such that the standard output of the first command

becomes the standard input of the second.

As an example, let’s say we have a string that we need to print in reverse ('xyz123'

becomes '321zyx').

The following command does the job nicely with a pipe:

USER> echo "xyz123" | rev

The return value of this command is that the rightmost command in the pipeline

returns to the shell. Remember that commands return 0 upon successful completion and

some other number when a failure happens.

2.2.6  �Console
The last Unix term we discuss is console, which can mean one of two things depending

on the context. One definition of console is the combination of the keyboard and

monitor (i.e., input and output). When used in the qualifier console-mode, it refers to

your system running in plain-text mode (i.e., with X not running).

2.3	 �Essential Unix Commands
We are now ready to delve into the world of Unix commands.

Note  Commands return 0 upon success, and some other integer upon failure.

2.3.1  �echo <string>
Prints <string> on standard output.

Unless -n is used, shell will append a newline.

Unless -e is used, (ba)sh will not honor escape sequences like \t or \n.

Chapter 2 Essential Unix Commands and Terminology

41

2.3.2  �cd <path>
Changes the current (working) directory to <path>.

If <path> is not given, cd will change to your home directory.

If <path> is – (a single dash), cd will change to your previous directory.

If <path> is .. (two periods), cd will change to the parent of the current directory.

2.3.3  �pwd
Prints the path of the working directory. Not needed often in interactive mode, because

most users like to set the shell prompt to the current directory.

2.3.4  �ls <path>
Gets the directory listing for <path>.

If <path> is not given, ls will get you a listing of the current directory. If <path> is a

file, ls <path> will print the complete path of the file. If <path> is a directory, ls <path>

will get a listing of that directory.

Important switches for ls are:

-a	 Lists names of hidden items (which start with a period)

-l	 Gets a long (multi-column) listing

-d	� Prints information about <path> itself, rather than listing its

contents (applies to directories)

To get colorized output from ls, use --color=auto under Linux/Cygwin, and –G

under FreeBSD.

Under Linux/Cygwin, ls likes to put quotation marks around entities with

embedded whitespace. To avoid the quotes, use:

ls -1 --quoting-style=literal <path>

2.3.5  �mkdir <path>
Creates the <path> directory. If the new directory is being created under a location

(parent directory) that does not exist, mkdir will fail unless the -p switch is used.

USER> mkdir /abc/xyz

Chapter 2 Essential Unix Commands and Terminology

42

This fails if /abc is not an existing directory.

USER> mkdir -p /abc/xyz

This works; mkdir first creates /abc, if it does not already exist, and then creates the

subdirectory xyz.

2.3.6  �cp <source> <destination>
Copies <source> to <destination>.

If <source> is a directory, cp will fail unless -R is applied.

If <source> ends with a slash, cp behaves differently. Under Linux/Cygwin,

the trailing slash is removed. FreeBSD interprets the command as cp <source>/*

<destination>.

2.3.7  �mv <source> <destination>
Moves/renames <source> to <destination>.

Unlike cp, mv is built as automatically recursive if <source> is a directory. The trailing

slash in <source> is removed under Linux/Cygwin as well as FreeBSD.

2.3.8  �rm <path>
Deletes <path>.

If <path> is a directory, rm will fail unless -R is applied. A related command is rmdir,

which can delete an empty directory.

2.3.9  �ln [-s] <path> <additional>
Creates an additional link in the filesystem.

Data in physical storage shows up (gets linked) exactly once in the filesystem. The

ln command lets you create additional links. By default, the additional link is hard

(meaning the new link is simply another name for the original). If you use -s with ln,

you get a symbolic link (meaning the new link is a pointer to the original entity).

USER> ln /etc/fstab link.hard

Chapter 2 Essential Unix Commands and Terminology

43

This creates an additional hard link for /etc/fstab.

USER> ln -s /etc/fstab link.sym

This creates a symbolic link to /etc/fstab.

Note A hard link must reside in the same filesystem as the target. Creating a
hard link for a directory is such a bad idea that nobody, not even root, is permitted
to do it.

2.3.10  �cat <file>
Prints the contents of <file> on standard output. If you need the contents to be line-

numbered, use -b or -n.

2.3.11  �test <condition>
Tests a <condition> as true or false.

A strange command—possibly the most heavily used shell script command—but is

almost never seen anywhere, because users prefer its synonymous cousin:

[<condition>].

Note N egating a test is done with the ! operator. For example, if !
[ -f /boot/grub/grub.cfg ] tests whether /boot/grub/grub.cfg is not an
existing regular file.

A few conditions that you can check for:

[-f <file>]	 True if <file> is an existing regular file

[-d <file>]	 True if <file> is an existing directory

[-n <string>]	 True if <string> has at least one character

[-z <string>]	 True if <string> is empty

[s1 = s2] 	 True if the strings s1 and s2 are identical

Chapter 2 Essential Unix Commands and Terminology

44

[s1 != s2]	 True if the strings s1 and s2 are different

[n1 -eq n2]	 True if the integers n1 and n2 are equal

[n1 -ne n2]	 True if the integers n1 and n2 are not equal

[n1 -gt n2]	 True if integer n1 is greater than n2

[n1 -ge n2]	 True if integer n1 is greater than or equal to n2

[n1 -lt n2]	 True if integer n1 is less than n2

[n1 -le n2]	 True if integer n1 is less than or equal to n2

If you want to concatenate the conditions to be tested, that is done with -a (and)

and -o (or).

[<condition1> -a <condition2>]

Both must be true.

[<condition1> -o <condition2>]

Either must be true.

Note N ote that whitespace is necessary: 

	1.	A fter [

	2.	 Before]

	3.	O n both sides of = as well as !=

2.3.12  �expr
Evaluates an expression.

If we assign an integer to a shell variable (for example n), we can perform some

elementary mathematics with it:

USER> n=7

USER> expr $n + 1

Chapter 2 Essential Unix Commands and Terminology

45

This prints 8 on the console; n remains 7.

USER> expr $n * $n

This prints 49 on the console; n remains 7.

GNU expr has some functionality for strings too, which FreeBSD expr does not:

USER> sz="hello"

USER> expr length $sz

This prints 5 if expr is GNU; it prints an error message if expr is FreeBSD.

Note T o get the length of string sz under FreeBSD, you can use ${#sz} (this
portably works under FreeBSD as well as Linux/Cygwin). 

You can use GNU expr under FreeBSD too—just install the port sysutils/
coreutils, after which GNU expr will be available as /usr/local/bin/gexpr.

2.3.13  �dd
Copies raw data in images and block (storage) devices.

This can be used for special copy and USB-burning operations. This is the only

command in this chapter that needs a real Unix system to be fully functional. Since

Windows does not have device nodes, Cygwin cannot facilitate the examples 2, 3, and 4.

	 1.	 This command copies the first 100 bytes of /etc/hosts:

USER> dd if=/etc/hosts of=∼/partial.copy bs=100 count=1

	 2.	 This creates an ISO image of a bootable CD attached as /dev/cdrom:

USER> dd if=/dev/cdrom of=cd9660.iso bs=2048

	 3.	 This saves your disk’s master boot record in a file on FreeBSD:

USER> dd if=/dev/ada0 of=∼/mbr.copy bs=512 count=1

Chapter 2 Essential Unix Commands and Terminology

46

On Linux, use the corresponding device name /dev/sda:

USER> dd if=/dev/sda of=∼/mbr.copy bs=512 count=1

	 4.	 This “burns” an image file to a USB pen drive attached to the box,

assuming that your pen drive is /dev/da0:

USER> dd if=image.img of=/dev/da0 bs=1M

2.3.14  �grep <regex> [<file>]
Searches for the string pattern <regex> in <file>.

One of the most heavily used Unix commands. Searches for the string (more

correctly, the regular expression) <regex> in the file <file>.

If <file> is missing, grep searches in its standard input. Here are a few examples.

This determines whether /etc/fstab has any uppercase characters:

USER> grep '[A-Z]' /etc/fstab

This would usually produce nothing beyond commented stuff. This searches

standard input for a numeric character:

USER> echo Se7en | grep '[0-9]'

This produces Se7en because it has the digit 7, which is in the range from 0 to 9.

Here’s the same search using the more portable way of character class:

USER> echo Se7en | grep '[[:digit:]]'

This produces Se7en because it has the digit 7, which is in the character class

[:digit:]. Inverse of the previous: Does the input have non-digit characters?

USER> echo Se7en | grep '[ˆ[:digit:]]'

This produces Se7en because the input has the non-digit characters S, e, another e,

and n.

Another one: Is the first character a digit?

USER> echo Se7en | grep 'ˆ[[:digit:]]'

This produces no output because Se7en does not start with a digit.

Chapter 2 Essential Unix Commands and Terminology

47

Yet another search: Is the last character a digit?

USER> echo Se7en | grep '[[:digit:]]$'

This produces no output because Se7en does not end with a digit. There are many

important character classes:

[:alnum:]	 Alphabetic or digit only

[:alpha:] 	 Alphabetic only

[:digit:] 	 Digit only

[:punct:] 	 Punctuation character only

[:space:] 	 Whitespace only

[:lower:] 	 Lowercase alphabet only

[:upper:] 	 Uppercase alphabet only

grep has a large number of switches. You’ll have to look at the man page (with man

grep) to see what the switches do.

This discourse will leave you with a couple of regex builders:

. 	 Matches any single character

* 	 Means zero or more instances of the previous construct

Leveraging these builders, we can run a fairly sophisticated grep that checks for

three conditions—whether input a) begins uppercase, b) ends lowercase, and c) has at

least one character between the ends:

USER> echo Se7en | grep 'ˆ[[:upper:]]..*[[:lower:]]$'

This produces Se7en: all three conditions matched. A couple of commands related to

grep are:

Egrep Which uses extended regular expressions by default

Pgrep Which can search for processes with a given name

2.3.15  �awk [<file>]
Prints the field at a particular index in a record.

If <file> is missing, awk operates on its standard input. The default field separator

for awk is whitespace, but you can provide your own with the -F switch.

Chapter 2 Essential Unix Commands and Terminology

48

Since /etc/passwd stores the user ID of every user in the third field, the following

gets us the user ID of the root user:

USER> grep 'ˆroot:' /etc/passwd | awk -F ":" '{ print $3 }'

awk (named after its creators—A. V. Aho, P. J. Weinberger, and B. W. Kernighan) is an

entire programming language. It does not need the services of grep for this example. awk

can handle this on its own:

USER> awk -F ":" '/ˆroot:/ { print $3 }' /etc/passwd

2.3.16  �sed [<file>]
Streams an editor that edits each line of input to make on-the-fly modifications.

If <file> is missing, sed operates on its standard input.

Let’s say we want to retain the digital portion of Se7en and discard everything else,

effectively ending up with just 7. A first try could be:

USER> echo "Se7en" | sed 's/[ˆ[:digit:]]//'

This produces e7en. We managed to remove the leading S, but there are still two es

and one n.

The problem is that sed will only substitute once, unless specifically told otherwise

with a trailing g (for “global”):

USER> echo "Se7en" | sed 's/[ˆ[:digit:]]//g'

This produces 7.

The sed separator need not be a slash (the / character)—during substitution, sed

takes the character immediately after the leading s to be the separator.

So we could just as well have phrased the preceding example as:

USER> echo "Se7en" | sed 's|[ˆ[:digit:]]||g'

This also produces 7.

sed has many other uses too, and it’s often dubbed a Swiss Army knife. For example,

we can fetch the second line of a file with this:

USER> sed -n '2p' /etc/rc.conf

This will print the second line of the file /etc/rc.conf.

Chapter 2 Essential Unix Commands and Terminology

49

2.3.17  �file <path>
Determines the file type of <path>.

Text files produce ASCII text in the output. So, if you are unsure whether a file can

safely be opened in a text editor, run the file command on it to find out. This tool is also

very handy when files have lost their extension.

USER> file /tmp/somefile

This could print something like /tmp/somefile: PNG image, 600 x 627, 8-bit/

color RGB, non-interlaced if the file is a PNG image file.

2.3.18  �find
Use this command to find files matching specific criteria and optionally to execute a

command on those files.

To non-recursively list sub-directories of the current directory, use:

USER> find . -type d -maxdepth 1

To recursively delete all .jpg files under /usr, use:

ROOT# find /usr -type f -name '*.jpg' -exec rm {} \;;

To recursively list all C files under the current directory modified more recently than

makefile, use:

USER> find . -type f -name '*.c' -newer Makefile

2.3.19  �updatedb
Creates/updates a database of names of all files present locally.

FreeBSD provides updatedb in its base system as /usr/libexec/locate.updatedb,

while Linux needs you to install the mlocate package.

2.3.20  �locate <name>
Searches the updatedb database for the string called <name>.

FreeBSD provides locate in its base system as /usr/bin/locate, while Linux

requires you to install the mlocate package.

Chapter 2 Essential Unix Commands and Terminology

50

2.3.21  �basename <string>
Extracts a filename and/or removes the extension from <string>.

USER> basename /etc/hosts

This produces hosts.

USER> basename /usr/bin

This produces bin.

USER> basename ab/cd.txt .txt

This produces cd.

2.3.22  �dirname <string>
Extracts a directory path from <string>.

USER> dirname /usr/local/bin

This produces /usr/local.

USER> dirname ab/cd/xyz

This produces ab/cd.

2.3.23  �realpath <path>
Resolves a complete path of an existing file.

USER> realpath /home

This gets /usr/home: /home is usually a symbolic link to /usr/home.

USER> realpath ab/cd

This gets an error message, unless ab/cd actually is an existing path.

Chapter 2 Essential Unix Commands and Terminology

51

2.3.24  �head [<file>]
Extracts the first few (default 10) lines of input.

To get the first line of /etc/group, use:

USER> head -n 1 /etc/group

Or via standard input:

USER> cat /etc/group | head -n 1

2.3.25  �tail [<file>]
Extracts the last few (default 10) lines of input.

To get the last line of /var/log/messages, use:

USER> tail -n 1 /var/log/messages

Or via standard input:

USER> cat /var/log/messages | tail -n 1

An important switch for tail is -f. This causes tail to stay alive, waiting for

additional data to be appended in real time to the input; it constantly monitors the file

for additions:

tail -f /var/log/messages

A good way to list the last few system messages

Another handy switch is +<n>. This gets all the lines from input except for the first

<n-1>. So if you want to remove the top line from the output of ls -l, you can use:

USER> ls -l | tail +2

2.3.26  �rev [<file>]
Reverses the input.

If you want to reverse the string xyz123 (to get 321zyx), use:

USER> echo "xyz123" | rev

This produces 321zyx.

Chapter 2 Essential Unix Commands and Terminology

52

2.3.27  �cut [<file>]
Extracts one single character or word from input.

USER> echo "abcd" | cut -c 2

This produces b, the second character.

USER> echo "abc lmn xyz" | cut -w -f 2

This produces lmn, the second word.

An extended usage is the trailing hyphen, which means “and everything else from here”:

USER> echo "abcd" | cut -c 2-

This produces bcd , the second character and everything afterward.

2.3.28  �tr
Translates characters. This command operates on its standard input only.

USER> echo "abca" | tr 'a' 'A'

This substitutes A for a and produces AbcA.

USER> echo "abca" | tr '[:lower:]' '[:upper:]'

This produces ABCA.

Use the -d switch to delete a character:

USER> echo "abc def fed bca" | tr -d 'e'

This produces abc df fd bca, having removed all instances of e.

2.3.29  �read <arg>
Reads one record from input into the shell variable <arg>.

To illustrate this, we’ll use a variable named var. If you type the following in your

terminal, the shell will hang, waiting for you to type something and then press Enter :

USER> read var

Whatever you typed in before pressing Enter is now held in the variable var.

Chapter 2 Essential Unix Commands and Terminology

53

The other way to use read is to process a file one line at a time:

USER> cat /etc/passwd | read var

This command fetches the first line of /etc/passwd into the variable var.

You can process the entire file /etc/passwd one line at a time with this:

{

 while read var; do

 echo "line read: $var"

 done

} < /etc/passwd

This is a different form for the same purpose:

cat /etc/passwd | while read var; do

 echo "line read: $var"

done

2.3.30  �date
Prints (or sets) the system date and time.

USER> date

This produces the system date and time, for example Sat Sep 30 11:11:50 GMT 2017.

USER> date "+%Y-%m-%d"

This prints date in the year-month-date format, for example 2017-09-30.

USER> date "+%H:%M"

This prints time in HH:MM format, for example 11:11. The superuser can set the

system date and time too:

ROOT# date 2030

This sets system time to 20:30 (8:30 PM).

ROOT# date 2501282030

This sets system date to 2025 January 28th and time to 20:30.

Chapter 2 Essential Unix Commands and Terminology

54

2.3.31  �type <executable>
Prints the full path of <executable>.

If you need to find out whether wget is installed, use:

USER> type wget

type will report an error if wget is not installed, or else its full path.

A related command is which.

2.3.32  �wc [<file>]
Prints the word count (and the character and line count).

USER> echo "x86 amd64" | wc -c

This counts the number of characters and produces 10. (Nine characters in the

string, plus one for the newline that echo appends.)

USER> echo -n "x86 amd64" | wc -c

This counts the number of characters and produces 9.

USER> echo "x86 amd64" | wc -w

This counts the number of words and produces 2.

USER> echo "x86 amd64" | wc -l

This counts the number of lines and produces 1.

2.3.33  �less [<file>]
Scrolls the output one screen at a time. less can also be used as a file viewer.

If a command produces a lot of output that you need to study page-by-page, pass the

command’s output to less and then use Page Up and Page Down to navigate the output.

To search, press the / button, type the text fragment you want to search for, and

press Enter .

To repeat the search, just press n (forward search) or N (previous).

To exit from less, press the q button.

Chapter 2 Essential Unix Commands and Terminology

55

A couple of examples:

USER> ls -l | less

USER> less /var/log/messages

2.3.34  �man <topic>
Prints the accompanying manual for <topic>.

While a man page is on display, you can navigate and search it just as with the less

command.

If multiple man pages exist for a topic (most commonly because a shell command is

also the name of a C function), you can use the -a switch to summon them one at a time,

for example:

USER> man -a stat

This command will first display the man page for the stat shell command (from

man section 1), and then when you press q to exit, it will display the man page for the C

function stat (from man section 2).

If you want to read only the man page for the C function stat (which is in man

section 2), use the section number in your command:

USER> man 2 stat

2.3.35  �set
Sets (or displays) shell behavior characteristics.

Without any parameters, set will display its complete environment. The two most

commonly used parameters are -e and -x.

USER> set -e

This makes the shell exit upon first command failure from here onward and stays in

effect until you use set +e.

USER> set -x

This will trace execution of commands (for debugging) and stays in effect until you

use this:

set +x

Chapter 2 Essential Unix Commands and Terminology

56

2.3.36  �uname
Prints the name of the operating system. For example, FreeBSD, Linux, or Cygwin.

Important switches are:

-r	 Print the release version

-a	 Print all system information (hostname, architecture, release

version, and build date)

A related command is hostname, which can display and set the host machine’s name.

2.3.37  �who
Prints the list of current logins. If a user is logged in from multiple terminals, each login

instance is treated separately. A couple of related commands are as follows.

w	   � Lists the login names and activities of currently logged-

in users

users   Lists the login names of currently logged-in users

whoami  Displays the username of the current user

whoami  Also has the variant form who am i

If you just want your user ID instead, use the command: id -u

2.3.38  �cmp <file1> <file2>
Compares two files to check whether they are identical.

The files may be text files or binaries. If the files are identical, cmp exits silently,

returning the exit code 0 to the shell.

2.3.39  �diff <file1> <file2>
Compares two text files to check whether they are identical.

If the files are identical, diff exits silently, returning the exit code 0 to the shell.

If the files are not identical, diff will display changes to be made to <file1> to make

it identical to <file2>.

Chapter 2 Essential Unix Commands and Terminology

57

2.3.40  �ps
List processes currently running in the system.

ps is one of the few applications that accept switches with or without a leading

hyphen.

By default, ps will list only those processes that have a controlling terminal. In other

words, if you have launched any X applications, they will not show up in the listing.

If you want the list to include processes that do not have a controlling terminal, use

the switch -x.

If you want the list to include processes that belong to other users, use the switch -a.

A common ps invocation is ps waux, which is shorthand for ps -w -a -u -x.

A related command is top, which displays system load (CPU usage, memory usage,

and process information for running commands) with real-time updates.

2.3.41  �kill [<sig>] <pid>
Sends the signal <sig> to process with process ID <pid>.

Only the superuser (root) can send signals to other users’ processes.

Important signals are:

1	 HUP (Hang up)

2	 INT (Interrupt)

9	 KILL (Force termination)

15	 TERM (Termination request)

If <sig> is missing, TERM is assumed.

If a user presses Ctrl + C , the process receives INT.

HUP can often be used to make a daemon process re-read its configuration file.

A few other signals are occasionally worth remembering too. SIGSTOP will pause the

receiving process, until a SIGCONT is issued to revive it. SIGINFO—generated with
Ctrl + T —prints activity/load statistics and is usually available under FreeBSD, but not

always under Linux.

Signals can be specified using the number or its name. So kill -1 <pid> is the same

as kill -HUP <pid>.

HUP, INT, and TERM can be caught and handled by the process. KILL will kill the

process immediately, no questions asked.

Chapter 2 Essential Unix Commands and Terminology

58

A related command is killall, which accepts program names associated with

running processes instead of PIDs.

2.3.42  �sleep <n>
Pauses all activity on the current CPU thread for <n> seconds.

USER> echo "Hello"; sleep 10; echo "World"

This will print Hello, sleep for 10 seconds, and then print World.

2.3.43  �sort [<file>]
Sorts the input.

<file> is usually is a text file: sorting binary files is unheard of. The -u switch of sort

renders approximately the same behavior as the sort + uniq implementation.

2.3.44  �uniq [<file>]
Lists any unique (non-repetitive) records in input.

uniq compares adjacent lines only. So it is pointless to run uniq on a file that’s not

already sorted.

For example, if you have this in a file called somefile.txt:

abc

xyz

abc

uniq will process the file and report three unique records: abc, xyz, and again abc,

which is just not what you wanted.

So you must first sort the file and then run uniq to process its standard input:

USER> sort somefile.txt | uniq

The default behavior of uniq is to print each record once for every record that is

present in the input once or more than one time.

Chapter 2 Essential Unix Commands and Terminology

59

Often, the user needs to find records present in the file exactly one time (i.e., not

multiple times). The switch -u does that:

USER> sort somefile.txt | uniq -u

This produces just xyz, because abc is present in the input more than once.

2.3.45  �chmod <mode> <file>
Changes the permissions of <file> to match <mode>.

There are two equivalent ways to specify the operand <mode>:

•	 <who>+<perm>:

<who> can be one of u, g, and o, or a combination of them, where u is

the user, g is the group, and o is others (or a is all, shorthand for ugo).

If <who> is missing, u is assumed.

The + after <who> enables <perm> for <who>.

If – is used (in place of +), it disables <perm> for <who>.

<perm> can be one of the following:

r = readable; w = writeable; x = executable

USER> chmod +w addresses.txt

This makes the file addresses.txt writeable for the user.

USER> chmod o-x myprog

This makes the program myprog not executable for others.

USER> chmod a+r calendar.txt

This makes the file calendar.txt readable for everyone.

Chapter 2 Essential Unix Commands and Terminology

60

•	 octal value:

The octal scheme uses a field of three bits:

Left Bit Readable Middle Bit Writeable Rightmost Bit Executable

4 when set 2 when set 1 when set

A disabled bit is equivalent to 0.

The previous field above is created three times:

User Group Others
Read Write Exec Read Write Exec Read Write Exec

4 2 1 4 2 1 4 2 1

Let’s take a file created by the user. If the user wants the file to be:

•	 Readable + writeable + executable for himself/himself → First field is

4 + 2 + 1 = 7

•	 Readable + not writeable + executable for same group → Second field

is 4 + 0 + 1 = 5

•	 Readable + not writeable + not executable for others → Third field is

4 + 0 + 0 = 4

The user can invoke the command:

USER> chmod 754 myfile

chmod has a recursion switch –R, which lets you operate on a directory’s entire

hierarchy.

2.3.46  �chown <user> <file>
Changes the owner of <file> to <user>.

If <user> is of the form <name>:<group>, the specified username and group name

will be applied.

chown has a recursion switch –R, which lets you operate on a directory’s entire

hierarchy.

Chapter 2 Essential Unix Commands and Terminology

61

2.3.47  �chsh [<user>]
Changes the login shell.

If <user> is missing, the current user is assumed.

If you want to use the Z shell as your Unix login shell, install zsh and then use:

USER> chsh -s 'which zsh'

2.3.48  �passwd [<user>]
Changes the account’s login password for the user <user>.

If <user> is missing, the current user is assumed.

Only the superuser (root) can change another user’s password.

2.3.49  �touch <file>
Creates <file> if it does not exist, or updates its modification timestamp.

2.3.50  �tar
Creates, tests, and extracts an uncompressed archive, which is like an uncompressed ZIP

file. The analogy is for the benefit of folks migrating from Windows—Unix folks would

perhaps like it noted that tar is a different application, with its roots in archiving data to

the tape (a legacy storage device that’s rarely used nowadays).

This is one of the few commands to accept switches with or without the leading hyphen.

In create mode:

USER> tar cf myarchive.tar letters/ images/ calendar.txt

This command creates the uncompressed archive file myarchive.tar containing

everything present in the directories letters and images (and their subdirectories, if

any), as well as the file calendar.txt.

In extract mode:

USER> tar xf myarchive.tar

In test mode:

USER> tar tvf myarchive.tar

Chapter 2 Essential Unix Commands and Terminology

62

In test mode, unlike in extract mode, the archive’s contents will be listed, but no files

will be written to the disk.

tar has built-in compression support. If you want tar to create a gzip’ed archive,

you can do that easily enough:

USER> tar zcf myarchive.tar.gz letters/ images/ calendar.txt

To decompress and extract the contents of the archive, you can use:

USER> tar zxf myarchive.tar.gz

2.3.51  �gzip
Compresses/deflates a file or archive.

If you have an uncompressed archive named myarchive.tar, you can compress it

with the standard Unix ZIP application gzip.

USER> gzip myarchive.tar

This creates myarchive.tar.gz, which is much smaller than the original

uncompressed archive.

To get back to the original archive, you need to run gunzip:

USER> gunzip myarchive.tar.gz

This regenerates the uncompressed tar myarchive.tar.

To perform decompression and extraction in one step, you can use tar’s built-in

decompression support:

USER> tar zxf myarchive.tar.gz

gzip can directly work on regular files too, rather than just tar archives. For example,

if you want to compress an ISO image file, use this:

USER> gzip FreeBSD-11.1-RELEASE-amd64-disc1.iso

This creates the FreeBSD-11.1-RELEASE-amd64-disc1.iso.gz file.

The successor to gzip is bzip2, and the de-compressor equivalent is bunzip2. The

tar command also supports this format for compression and extraction using the switch

j in place of z.

USER> tar jxf myarchive.tar.bz2

Chapter 2 Essential Unix Commands and Terminology

63

2.3.52  �xz
Compresses/deflates an archive.

xz is the new ZIP application, which offers superior compression ratios compared to

other ZIP algorithms, although at a stiff cost in compression speed. Compressing a 1GB

file with xz instead of gzip can lead to a 10% smaller size, and of the order of 10 times the

amount of time taken to compress.

You can use xz in place of gzip, and unxz in place of gunzip.

Unlike gzip, xz’ed tarballs cannot always be processed by tar directly using

command-line switches (although recent Unix systems do usually enable xz tarballs

to be processed with tar zxf). You can, in any case, always get away with a single-line

command by yourself to unpack the xz’ed tarball:

USER> xzcat bigfile.tar.xz | tar xf -

2.3.53  �source <file>
Executes <file> as part of the current shell.

The source command is usually not available in the Bourne shell. You need to be

working with a Bourne shell derivative like Bash to make it work. In a strictly Bourne

environment, you can use:

. <file>

2.3.54  �wget
Fetches remote data using HTTP or FTP. FreeBSD has a native fetch command, which

does pretty much the same.

wget is probably the most convenient way to download remote data. This command

has a huge number of switches, one of which is -c (continue partial download). So if, in

the first try, you manage to get 999MB of a 1000MB file, you can use wget -c to retrieve

the remaining 1MB.

To mirror a complete website (and convert its internal links), use:

USER> wget -r -l 0 -k -nc http://www.example.com/

A couple of related commands are wput, which can upload data to an FTP/HTTP

server, and scp, which can copy files between machines on an intranet.

Chapter 2 Essential Unix Commands and Terminology

64

2.3.55  �md5[sum] <file>
Prints the MD5 checksum of <file>.

FreeBSD calls it md5, while Linux/Cygwin call it md5sum.

2.3.56  �sha256[sum] <file>
Prints the SHA256 checksum of <file>.

FreeBSD calls it sha256, while Linux/Cygwin call it sha256sum.

2.4	 �Summary
You can read this chapter once, and then refer to it any number of times later when you

program with Unix. It’s inevitable that you will evolve to getting what you need from the

Unix man pages, which will likely become your first source for reference information.

We have touched on a large number of Unix commands, and the next chapter gives

you the arsenal needed to string these commands into reusable scripts. Once you start

using the Unix command line, you will love Unix and its central theme, which is a good

one—tools, not policies.

Chapter 2 Essential Unix Commands and Terminology

65
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_3

CHAPTER 3

Bourne Shell Scripting
If you are the kind of person who never needs to do the same thing ever again, shell

scripting is not for you. Others can greatly benefit, though, by grouping commands into

plain text files called shell scripts.

Although it is entirely legit to type individual commands directly into the

command line, putting them inside a file (then termed a script) perks up life at the

shell in two ways: a) reusability of a large number of commands in one stroke, and b)

reduced chances of operational error afforded by the file’s readability. This chapter

hence introduces one of the fascinations of working with Unix: scripting (also called

automation).

3.1  �Inside Our First Shell Script
POSIX-compliant scripts are interpreted by the Bourne shell. This makes them portable

by nature. So while your interactive shell would understandably be Bash or Zsh, your

scripts must be coded for interpretation by sh (the Bourne shell executable).

Every shell script begins with an opening line, called the shebang, that sets out the

path of the interpreter:

#!/bin/sh

That line forks off a new shell process that executes the statements in the script.

A script without the shebang is still a valid script, but cannot be being executed

directly. It can be executed as part of another script, or invoked as a shell argument:

USER> sh myscript.sh

The last line of a shebang-ing script is always the same: exit 0. Anything other than

0 implies failure. Without an exit value, the script’s return status to the shell is not well-

defined. The convention then is for the script to return the exit code of its last operation.

66

There exists a multi-national, cross-cultural agreement that all first-off programs

must output Hello World. We’ll frame our first script such that we don’t break the

tradition.

#!/bin/sh

echo "Hello World"

exit 0

Save the text in hello.sh under ~/bin/ (create that first, if needed, with mkdir

~/bin).

Mark the script as executable, and then execute hello.sh from the command line

using these steps:

USER> cd ∼/bin
USER> chmod +x hello.sh

USER> ./hello.sh

This outputs Hello World—pretty much what we would have anticipated.

Before delving any further, we should note that—both on the command line and

inside a shell script—the hash sign # marks the beginning of a comment. Everything

from there to the end-of-line is ignored by the interpreter. The only exception is the

opening shebang, which specifies the path of the interpreter itself.

3.2  �Variable Assignment
We’ll now try to add some sophistication to hello.sh. For a (rather naive) start, we’ll

pack the string to be output (Hello World) into a shell variable v1, and then output the

shell variable.

#!/bin/sh

v1=Hello World

echo v1

exit 0

(Hereon, we’ll assume the shebang and exit statements as implied.)

Chapter 3 Bourne Shell Scripting

67

Executing hello.sh creates two quagmires at once:

World: not found

v1

Two things went wrong:

•	 The assignment did not quite work, breaking down at the space

character.

•	 The shell printed the name of the variable v1, rather than its contents.

We have fixes:

•	 First, assign multi-word content, or anything that has embedded

whitespace (spaces or tabs, or at times even newlines) in quotes

(double or single—more on this later).

•	 Second, irrespective of what your preferred currency is, reference the

contents of a shell variable with a $. In other words, “Write without

the dollar; read with the dollar”:

v1="Hello World" # or single quotes: v1='Hello World'

echo $v1

Our script works again.

Since the $ is of particularly high value to the shell, you can print a literal $ (and any

such special characters) by escaping it with a backslash, as follows:

echo \$

A touch surprisingly at first—and quite unlike any other programming language—

shell variables are of one type only: string. Therefore you never have to worry about the

type of a shell variable.

Wherever we have strings, we have string lengths and string concatenation. The

string length of the contents of the variable v1 can be determined with ${#v1}.

As a handy reassurance, if a shell variable has not been assigned anything, it is

treated as an empty (null) string. You can assign a null string to a shell variable in any of

the following ways:

empty1=

empty2=""

empty3="

Chapter 3 Bourne Shell Scripting

68

(The term null means different things in different environments. In shell, a null string

means an empty string. In C, null is equivalent to the number zero.)

For illustrating concatenation, we can break up v1 (which holds 'Hello World') still

further and then glue the pieces together to generate v1 on-the-fly:

v1a=Hello

v1b=" " # a single space

v1c=World

v1="$v1a$v1b$v1c" # or: v1=$v1a"$v1b"$v1c

This code works, but only just about.

Because of the way the preceding assignment is coded, it is quite easy to mess up

variable names and surrounding text. To make that last statement more sanguine as well

as readable, it is highly advisable—at least whenever there is any scope for ambiguity—to

reference a shell variable using the curly braces notation:

v1="${v1a}${v1b}${v1c}" # curly braces strongly advisable

echo ${v1} # curly braces optional

Variable assignment has some useful default-value modifiers:

v2=${v1:-foo}

If v1 is not empty, use v1; else use the text 'foo'

v2=${v1:=bar}

If v1 is not empty, use v1; else assign 'bar' to v1 and use it

v2=${v1:?}

If v1 is not empty, use v1; else exit with an error message

If v1 or the text being used contains whitespace, it would have to be referred under

quotes. Of course, the safest thing to do is put the assignment within double quotes:

v2="${v1:-foo}"

With the basic idea of variable assignment laid out, we can now open a new can of

worms: assignment via command output (also called command substitution).

For explaining this, we return to the original assignment:

v1="Hello World"

Chapter 3 Bourne Shell Scripting

69

Let’s say we want to determine the number of words in v1. That is readily done with

the wc command:

echo $v1 | wc -w # outputs '2'

Now, if we want to store the output in its own variable, we can simply run the

command within back-quotes (often also called “backticks”). The output then is trapped

in the new variable:

num='echo $v1 | wc -w'

3.3  �Arithmetic and Boolean Operations
We’ll start with a healthy reminder—shell variables are of one type only, which is the

type string.

v3=5

v4=true

Despite appearances, v3 and v4 are both string variables. Since the contents of v3 are

purely numeric, we can perform some basic, external arithmetic operations on it using

expr:

expr $v3 + 1 # outputs 6 on console; v3 remains 5

v3='expr $v3 + 1' # prints nothing; v3 is now 6

Because using expr is a touch laborious—apart from being an external command,

there is a nifty way of performing this arithmetic operation in the shell internally:

v3=$((v3 + 1))

Despite the fact that the shell is capable of performing arithmetic operations on

v3, v3 is not treated specially by the shell. Like all other shell variables, v3 is stored as a

string, and arithmetic functions like expr have to be careful to first ensure at runtime that

the operand is numeric.

Booleans, in case you are not aware, are true/false conditions. Fortunately or

unfortunately, in the world of shell, boolean variables do not exist. If you assign true to

a shell variable (like we have done for v4), the shell variable simply remains a string with

the contents t, followed by r, followed by u, followed by e.

Chapter 3 Bourne Shell Scripting

70

Instead of true/false, you can use any other combo that you like: on or off, YES or NO,

and 1 or 0.

You might be tempted to test (pun not intended) if the C/C++ boolean spirit works in

shell too, but it does not:

v5=false

if [$v5]; then

 echo "Unexpected"

fi

The preceding code prints Unexpected, because the if condition (which presumably

was intended to mean if [$v5 = true]; then) was interpreted by the shell as a

check whether v5 holds a non-empty string. Since v5 holds the five-character string

called false, the test actually succeeds.

Therefore, checking for conditions in shell has to be done the harder way:

if [$v5 = true]; then

 echo "Unexpected"

fi

Since v5 could be a null string or have whitespace in it, it is definitely a very good

idea to code this branch with v5 inside quotes. Also, the semicolon can—if you prefer—

be replaced with a newline.

Either of the following forms is now equally acceptable:

if ["$v5" = "true"]; then
echo "Unexpected"

fi

if ["$v5" = "true"]
then

echo "Unexpected"
fi

3.4  �Command Chaining and Grouping
Very often, you’ll need to execute another command based on the outcome of the first

command. The shell facilitates this kind of chaining with && and ||:

command1 && command2 # if command1 succeeds, run command2 also

command1 || command3 # if command1 fails, run command3

Chapter 3 Bourne Shell Scripting

71

Examples:

[-f /etc/fstab] && echo "exists"

[-f /etc/fstab] || echo "does not exist"

A particularly handy chaining combination is:

command1 && command2 || command3

The preceding statement asks the shell to first run command1. Then, if command1

succeeds, run command2. If command1 fails, run command3 instead.

Here is an example:

[-f /etc/fstab] && echo "exists" || echo "does not exist"

Command grouping is another useful shell facility. This lets you execute (or ignore) a

bunch of commands as a single group.

Let’s say you want to display an error message and exit immediately if the user ID is

not 0 (which usually means the root user):

['id -u' -eq 0] || { echo "root only!"; exit 1; }

This example groups the echo command and exit command as a single set of

actions which is invoked if the id test fails.

Every command in a group must end with a semicolon ; and there must be

whitespace to right of { and to the left of }.

There is an alternate grouping syntax that uses newline characters in place of

semicolons and space characters:

['id -u' -eq 0] || \

{

 echo "root only!"

 exit 1

}

3.5  �Meta-Character Expansion
There are quite a few meta-characters that the shell expands automatically, unless

explicitly told otherwise.

Chapter 3 Bourne Shell Scripting

72

*	 Zero or more wildcard path characters

?	 Any single wildcard path character

~	 The path of the current user’s home directory (i.e., $HOME)

\	� Treat the next character specially (\t ~ tabulator;

\\ Z~ literal backslash; \n ~ newline)

A backslash (\) followed by a hard carriage return lets you break up long commands

over multiple lines. Each of those lines (except the last) terminates with \ followed by a

carriage return.

3.6  �Quoting: Single, Double, and Back
For a short while, we’ll return to one of the previous examples wherein we generated the

string 'Hello World' from its components:

v1a=Hello

v1b=" " # a single space

v1c=World

Since v1b has embedded whitespace, the concatenation has to be quoted. Here is the

assignment again: v1="${v1a}${v1b}${v1c}".

What would have happened if we used single quotes rather than the double quotes?

v1='${v1a}${v1b}${v1c}'

Let’s find out with:

echo $v1

This outputs what had literally been assigned:

${v1a}${v1b}${v1c}

So single quotes mean literal assignment without the shell making any substitutions

whatever. Usually—but not always—this is not what is needed. Even when under quotes,

we usually like the shell to help with its goodies: variable name expansion, backslashed

escapes, and command substitution for back-quoted text. If you are sure you want none

of those, go ahead and use single quotes.

Chapter 3 Bourne Shell Scripting

73

Since you can use the backslash to produce escape sequences, double-quoted

strings can have a literal double-quote character embedded in them:

sz="abc\"123"

While the backslash \ and back-quotes (i.e., '<command>') remain meaningful

inside double quotes, many other shell meta-characters (like * and ~) lose their special

characteristics.

Since backslash sequences do not work under single quotes, you cannot embed a

literal single quote character inside a single-quoted string.

One cool thing to remember is that:

•	 Double quotes automatically disable any single quote(s) within them

•	 Single quotes automatically disable any double quote(s) within them

So these are perfectly okay, and are often needed in scripting:

sz1="abc'123"

sz2='xyz"789'

The third kind of quotes is the back-quotes, which fetch the output of some text

interpreted as a command. For example, to populate a shell variable with the listing of

the current directory, we can use:

dirlist='ls'

Back-quotes are programmed to automatically place their output in implicit double

quotes. So the previous command is perfectly equivalent to:

dirlist="'ls'"

3.7  �Setting the Shell Prompt
There is one place where you definitely need single quotes: when setting the shell

prompt.

Bash users like their shell prompt (PS1) to be the path of current directory. That is

accomplished with:

export PS1=''pwd' % ' # works for bash; not for Bourne

Chapter 3 Bourne Shell Scripting

74

If you use double quotes while setting PS1 in this statement, you will land yourself

the rather uncanny outcome that your shell prompt will be set and glued to the path

of the directory from which the command was issued. Using single quotes lets PS1 be

evaluated at runtime—every time you move to a different directory, your shell prompt

will change.

The Z shell similarly can be made to bind the current directory into the shell prompt

with the following in ~/.zshrc or issued at the command line:

export PROMPT='%d # '

Bash and Zsh have built-in string expanders that you can readily use. For example, to

get the username into the Bash shell prompt, you can use \u, while Zsh bundles the time

into the prompt with %t.

For the sake of completeness, Bash provides a shortcut for the current working

directory: \w (which interestingly can be typed using single quotes or double quotes, and

equally interestingly works for Bourne shell too).

3.8  �Dealing with Whitespace in Filenames
Hopefully, you did not forget my assertion a couple of sections back: back-quotes are

programmed to automatically place their output in implicit double quotes. I even gave

you an example to prove my point.

Well, I lied. But this is an interesting lie that is intended to forewarn you that dealing

with whitespace in filenames can be tricky, at times even a show-stopper unless you

write precisely the right code to deal with whitespace.

To get the hang of things that can go wrong, we’ll create a shell script with a space

character in its name: ~/bin/ab cd.sh (That’s a file with the name: ab followed by a

space, followed by cd.sh.)

Here is the code to programmatically generate the file:

[-d ~/bin] || mkdir ~/bin

echo '#!/bin/sh' > ~/bin/"ab cd.sh" # create

echo 'exit 0' >> ~/bin/"ab cd.sh" # append

chmod +x ~/bin/"ab cd.sh"

Chapter 3 Bourne Shell Scripting

75

(Under Zsh, next run the command rehash to recompute the internal shell

variables.)

Now let’s say we forget where this wonderful script is located. So we run the

following commands to find out:

USER> p='which "ab cd.sh"'

USER> echo "$p"

This works perfectly—the path of the script is printed correctly. So what is the

problem, if any?

The problem arises when we use the output of which for anything other than

assignment.

Let’s say we want to determine how many lines are in the script. The usual command

for that would be:

USER> wc -l 'which "ab cd.sh"'

This produces a nasty error:

wc: cd.sh: open: No such file or directory

Because there is no assignment, the shell will “forget” the double quotes implied by

the backticks. You have to put them back in again explicitly:

USER> wc -l "'which \"ab cd.sh\"'"

Since the outer double quotes have inner double quotes, the inner ones need to be

escaped.

The ability to escape the double-quote character and the backtick is extremely

handy in constructing complex commands. If you want to assign the wc output to a new

variable, you can escape all embedded quotes:

USER> n='wc -l "\'which \"ab cd.sh\"\'"'

This command looks fairly arcane to a rookie. But if you are the rookie concerned,

you can be fairly certain that in a couple of days, you’ll be writing such commands, and

possibly ones that are even more complex.

Chapter 3 Bourne Shell Scripting

76

3.9  �Shell Functions
Shell scripts can have functions too, and most actually do.

Here is a script that uses a shell function named say:

#!/bin/sh

say()

{

 v1="Veni Vidi Vici"

 echo $v1

}

say

exit 0

If we want the string to be “said” to be passed in to the say() function, we can do that

by using $1, a function’s first positional parameter:

say()

{

 echo $1

}

v1="Veni Vidi Vici"

say "$v1"

Quiz: What would happen if we don't double-quote $v1 above?

Shell scripts and functions can use at least nine positional parameters $1 through $9.

Inside a shell function, each positional parameter is what the script’s main body passed

in as an argument (or else a null string). In the main shell script itself (i.e., outside of any

shell function), each positional parameter represents an argument passed in from the

command line (or else a null string).

More than nine positional parameters are not often needed, but most modern shells

allow you to access more than nine using the curly braces notation. Each positional

parameter is read-only.

Chapter 3 Bourne Shell Scripting

77

There is a back-door “hack” to write your own positional parameters. This is usually

not needed, but possible. If, inside a function, you want to write the function’s positional

parameters, you can use the set command, like this example, which sets $1:

say()

{

 set "Adios Amigos!"

 echo $1

}

No matter what you ask say() to say, it will always print Adios Amigos!

Every shell function implicitly returns 0, which represents success. You can, however,

break out from the function at any point by using return <n>. If <n> is not 0, function

failure is implied.

3.10  �Special Variables
Besides the positional parameters discussed in the previous section, there are a few

more important special variables, all of them read-only. You cannot assign anything to

these variables (or even the positional parameters) yourself: that can only be done by the

shell in the background.

$$  Process ID of the current shell process

$?  Return value of the last command

$0  Name used to invoke the script

$#  Number of arguments

$*  Consolidated list of all arguments

$@  Iterable list of all arguments

$? is frequently used to test/save the return status of the previous command.

$0 is significant because, under Unix, a file could be linked under a different name.

The name used to invoke the application may result in altered behavior. Further, when

you are inside a shell function, $0 does not change to the name of the function: it

remains the script name.

Chapter 3 Bourne Shell Scripting

78

Inside a shell function, $# represents the number of arguments passed in to the

function. Outside any function, it represents the number of arguments passed in to the

script (i.e., at the command line).

It is important to understand the difference between the last two variables in our

list: $* and $@. So important that despite the fact that we are yet to formally touch down

on looping (which will happen in the next section), we will use a couple of Hollywood-

sanctioned for loops right now to explain the difference.

say()

{

 echo "Starting for quoted $* ..."

 for arg in "$*"; do

 echo "$arg"

 done

 echo # produce an artificial empty line

 echo "Starting for quoted $@ ..."

 for arg in "$@"; do

 echo "$arg"

 done

}

v1="Bourne Identity"

v2="Bourne Supremacy"

say "$v1" $v2

Executing this script gets us:

Starting for quoted $* ...

Bourne Identity Bourne Supremacy

Starting for quoted $@ ...

Bourne Identity

Bourne

Supremacy

Chapter 3 Bourne Shell Scripting

79

Note that, since $v2 is unquoted, the script is passing three arguments to say():

"$v1" # this expands as "Bourne Identity"

Bourne

Supremacy

When unquoted, both $@ and $* expand to exactly the same list, which has four

items: 'Bourne', 'Identity', 'Bourne', and 'Supremacy'.

When under quotes, $* gets a list with just one item: 'Bourne Identity Bourne

Supremacy'.

This normally is not what we would like: we should be able to fetch the three

arguments exactly as passed in. The only way to do that is to use $@, which expands as

the original list of three items.

It is interesting to note that, even though $@ produces a list of three items, $@

occupies just one line in memory. If you want to be certain that I am not trying to

hoodwink you, insert this command

echo "$@" | wc -l

somewhere inside say(), just to check for yourself what the wc output is.

3.11  �Branching and Looping
One of the good things about shell scripting (and programming with C) is that well

written, elementary code sounds, reads, and works more or less like plain English. Just so

with a touch of scientific precision and with a restricted vocabulary.

We have been using if statements for branching right from the start, without having

first discussed the if statement formally. We’ll set things right now on that account.

The formal, full-fledged structure of an if statement is:

if condition1; then

 <commands_if>

elif condition2; then

 <commands_elif>

else

 <commands_else>

fi

Chapter 3 Bourne Shell Scripting

80

Not surprisingly, elif stands for “else if”. Both branches elif and else are optional.

The elif branch can be repeated as many times as the user wants.

The conditions, as denoted by condition1 and condition2 in the formal structure of

the if statement, can be generated by either of two methods:

•	 A test; for example:

if [-f /etc/passwd]; then

 echo "/etc/passwd exists"

fi

•	 A return value; for example:

if cat /etc/passwd | grep --silent '^root:'; then

 echo "/etc/passwd has an entry for root"

fi

A second way of branching is with case.

Let’s say we have a shell variable var, based on the value of which we have to execute

one of three commands: < command1 >, < command2 >, or < command3 >.

The value of var could be one of the following four:

Anything beginning with 'abc' (case-insensitive) → < command1 >

'123' → < command2 >

'xyz' (case-sensitive) → < command2 >

Anything other than 'abc. . . ' / '123' / 'xyz' → < command3 >

Noting that '123' and 'xyz' both need the same follow-up command, we can

branch with the case switch underneath:

case "$var" in

[aA][bB][cC]*)

 <command_1>

 ;;

123|xyz)

 <command_2>

 ;;

Chapter 3 Bourne Shell Scripting

81

*)

 <command_3>

 ;;

esac

Four things to note:

•	 The variable being switched on should preferably be referred under

double quotes because it may have embedded whitespace, or may be

null.

•	 case is smart enough to understand that [aA][bB][cC]* means

anything beginning with abc and with no uppercase/lowercase

distinction.

•	 As happens for '123' and 'xyz' in our case switch, multiple patterns

can be specified for a single set of commands by separating the

patterns with a pipe symbol (|).

•	 The match for * is the default match. If none of the previous matches

succeeded, this one will. Matching for * is optional.

Moving ahead to loops, the Unix shell has two looping constructs that you should

know about: while and for.

while is used to repeat an action as long as some condition evaluates as true. The

formal syntax of a while statement is:

while <condition>; do

 <commands>

done

This while loop prints the first 10 integers, beginning with 0:

n=0

while [$n -lt 10]; do

 echo $n

 n='expr $n + 1'

done

Chapter 3 Bourne Shell Scripting

82

The condition of a while statement is evaluated at the start of each iteration of the

loop.

The for loop is used to repeat an action for each entity in a given set of values. The

formal syntax of a for statement is:

for variable in tokens; do

 <commands>

done

This for loop checks if the files /etc/fstab and /etc/passwd exist:

for f in /etc/fstab /etc/passwd; do

 [-f $f] && "$f exists" || "$f does not exist"

done

You might at times need to end a loop prematurely. To exit a while or for loop

midway, you can use the break command.

3.12  �The shift Command
An easy-to-use and powerful mechanism to parse arguments in the Bourne shell is the

shift command, which can operate on the positional parameters ($1 through $9) in

general, and on $1 in particular with crafty finesse.

What shift does is discard $1 and move all the remaining parameters one spot

farther to the left. So $2 becomes the new $1, $3 becomes the new $2, and so on.

Each time this left-shift occurs, the count of the number of arguments (i.e., $#) gets

decremented by 1.

With this mechanism in place, you can parse all arguments by just evaluating $1.

After each evaluation, you use shift.

Note I f a script does not behave well at runtime, the easiest way to debug it is
to put the statement set -x near its top, and then (optionally) the statement set
+x near the bottom. When executing the script, the interpreter will display tracing
diagnostics that you can use to locate and fix the error.

Chapter 3 Bourne Shell Scripting

83

Here is a script example that sets two options—optX (passed in via -x) and optY

(passed in via -y)—at runtime:

optX=false

optY=false

while [$# -gt 0]; do

 case "$1" in

 -x)

 optX=true

 shift

 ;;

 -y)

 optY=true

 shift

 ;;

 *)

 echo "Invalid arg: $1" 1>&2

 exit 1

 ;;

 esac

done

3.13  �Sourcing, Aliasing, and Exporting
For reasons that will become clear later in this section, I will start the section by

visiting this chapter’s antithesis: non-Bourne scripting. This is permitted, but neither

encouraged nor POSIX-compliant scripting. The reason it is permitted is that Bourne

shell derivatives like Bash and Zsh have support for arrays, which vanilla Bourne does

not—at least as of yet.

If you decide to use bash or zsh as the interpreter, the right way to shebang is:

#!/usr/bin/env <interpreter>

Example: #!/usr/bin/env zsh

Chapter 3 Bourne Shell Scripting

84

Bourne shell also does not have the source command, which both Bash and Zsh

have. The source command lets bash and zsh input statements from another script.

A Bourne shell script—for example, named myscript—has to use the . command:

. otherscript

Execute statements in otherscript within the current shell

An alias in shell scripting is a nickname tagged to a command, which might be long

or complex. With the following statement inside myscript, the script can use dir as

equivalent to the command ls -l:

alias dir="ls -l"

If this statement is located not in myscript but in otherscript, myscript can still

use dir as a valid alias for ls -l if myscript inputs otherscript with the . command.

Things change a bit if myscript uses bash as the interpreter, and then inputs

otherscript with the source command. An alias defined in otherscript will not by

default become available to myscript as well. If the sourcing bash script wants to use

aliases defined in the sourced script, it must—before sourcing—issue this command:

shopt -s expand_aliases

The final point of this section is export of shell variables, best elucidated by throwing

into the foregoing mix yet another script, which is executed (not sourced nor inputted

via the . command) by myscript with:

n=32

yetanotherscript

Each time a shell script executes an external command—which could be ls or

some other script—the Unix kernel will create a subshell environment for the external

command. Variables like n in the parent will not be made available to the subshell. If the

parent shell wants to make a variable available to any subshell, it must not just define the

variable, but export it as well:

export n=32

yetanotherscript

Chapter 3 Bourne Shell Scripting

85

yetanotherscript can now access n with the value (32) as originally defined in

myscript. If yetanotherscript changes the value of n, the change affects its local copy

and not the n inside myscript.

3.14  �Putting It All Together
Here are two tasks for you to perform:

	 1.	 Create a shell script command named tcase that can convert a

parameter string to title case ('abc xYz' → 'Abc Xyz').

Tip 1: echo "abc" | tr [:lower:] [:upper:]

Tip 2: echo "abc" | cut -c 2-

	 2.	 Assuming that you have a text file with multiple occurrences of the

word unix, write a shell script called extract.sh to extract all the

text between the first and last occurrences. The lines containing

the first and last occurrences are themselves ignored for the

purpose of output. So if the line number of the first occurrence is 8

and the line number of the last occurrence is 12, you have to print

the text of lines 9, 10, and 11 (each of which could itself contain

zero or more occurrences of the word unix).

If you flounder, sample solutions are available in the appendix.

3.15  �Summary
Although this chapter has largely been restricted to what can be done under Unix

emulation environments like Cygwin/Babun, you should now have a pretty good hold of

the Unix command line. As you evolve in your shell skills, you will fall in love with shell

scripting as a first-choice way of quickly stringing together already available applications

to solve problems and automate your system.

You are now ready for real Unix, which will begin in the next chapter and in a new

section of its own. If you have been itching to purchase a new PC or hardware upgrade

of your existing box, hang on until the next chapter to get tips on what hardware is best

suited for running Unix.

Chapter 3 Bourne Shell Scripting

86

Note O ptional detour. If you are starting to feel at home with the Unix command
line, you can take a detour and read the first half of Chapter 10, “Advanced
Techniques in Shell Scripting,” before proceeding to the next chapter. That chapter
provides the rest of the common shell techniques, and the material works under
Unix as well as Unix emulators (Cygwin/Babun).

Chapter 3 Bourne Shell Scripting

PART 2

Preparing for Part II

Very soon, we will be hitting the world of real Unix. This perhaps is just the right place

and the right time to ponder: Which Unix?

Wrong answers are permitted—you can always try something else if you don’t like

what you have. The question itself can be rephrased as a two-pronged poser:

•	 FreeBSD or Linux?

•	 For Linux, which distribution?

FreeBSD offers:

Pros:

1. Standardization

2. Higher level of maturity in the code base

3. A ports system to build stuff from sources

Cons:

1. Supports less hardware

2. A pure-text setup process

3. Fewer applications vis-a-vis Linux

Linux offers:

Pros:

1. Supports almost all current hardware

2. A graphical setup (except vanilla Arch)

3. A few more applications vis-a-vis FreeBSD

Cons:

1. Fragmentation

2. Flux in the core of the code base

3. Not as well-documented as FreeBSD

Since the situation is likely to persist in future, the best answer is to install both

FreeBSD and Linux. (That’s just what we’ll do in Chapter 5.)

88

Linux usually is instantly likeable. As for FreeBSD, the user experience ranges from

love-at-first-sight to the graduation:

:-(→ :-| → :-) → ♡

You might dismiss the course of evolution depicted in the last line as just an attempt

(on the part of the author) to deliver some humor. But it is more than that. It is equally

a note to users accustomed to graphical installation procedures, such as what are

used under Windows and (to a large degree) Linux. For users accustomed to graphical

installations, there are a couple of important notes:

•	 There is nothing more educational about a computer than a

command-line installation of an operating system (and any associated

desktop environment). Once you have installed FreeBSD a couple of

times, you will, more likely than not, fall in love with the process. You

might even start wishing, just as I do, that all operating systems use a

curses/ncurses (text-mode widgets) based installation procedure.

•	 While eating into the dividend outlined here, a graphical installation

also (and even more) disturbs the FreeBSD operational motto:

We make things as simple as possible, but not any simpler.

That leaves us with the second question—which Linux distribution? You should

remember that Linux distributions mostly come in one of three flavors (based on the

package manager):

•	 rpm-based (mostly not documented in this book): Red Hat, Fedora,

and CentOS

•	 apt-based: Ubuntu, Linux Mint, and elementary OS

•	 pacman-based: Arch, Manjaro, and Antergos

If this is the first time you are installing Linux, my suggestion is not to think about this

part of the question too much, and simply try Linux Mint (Cinnamon) before anything else.

Linux Mint is an outstanding distribution, and the Cinnamon desktop is fast and gorgeous.

Those wanting to try something other than Linux Mint should keep in mind a couple

of distributions I tried recently and liked: Manjaro and Parrot.

You can always go Linux-hunting at the URL: https://distrowatch.com/.

If you do opt for Linux Mint, besides FreeBSD, you will have precisely the same setup

as I do in this book.

Part 2  Preparing for Part II

https://distrowatch.com/

89
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_4

CHAPTER 4

PC Hardware for Unix
Is it a good idea to suggest hardware?

Hardware purchases are supposed to be entirely a function of the user’s likes

and dislikes. It is only when the user gets stuck with hardware that refuses to budge

under the operating system of the user’s choice that the user begins to wonder—why

can Unix/Linux forums not create a portal where hardware advice and ratings are

easily available? There are many OEMs (Original Equipment Manufacturers) out

there who still take pride in asserting the adage, “Works with Windows,” which at

times is just another way of saying, “We have no idea whether this thing works

with Unix”.

This chapter tries to fill in the gap that OEMs forcibly create. Of course, the hardware

suggestions in this chapter are based on my own views. If there is anything you seriously

disagree with, you can always email me. If it’s feasible, I will update the suggestions

accordingly.

4.1  �A Shopping List
If you are going to build a PC, it’s helpful to have a shopping list that you can readily tick

items off. The following list is arranged in order of component importance. You can build

a PC without a printer (the last item in the list). But if you manage to build a PC without a

CPU (the first item), it will be in the newspapers.

90

• CPU

• System board (motherboard)

• RAM

• Hard disk

• SMPS (power supply)

• Cabinet

• Graphics card

• �Optical drive (CD/DVD reader &

writer)

• CPU cooler

• Printer/scanner

I have left out console devices (monitor, keyboard, and mouse)

from the list, as well as from the PC’s budget. Those things are

pretty much standard, but some notes might help.

  • �You can use standard wired USB devices for keyboard/

mouse. Or for a few dollars more, opt for wireless USB,

with the USB protocol implemented by an OS-independent

receiver. Wired and wireless USB work equally well, using

the same driver in the Unix kernel.

  • �You should stick to the basic 101/104/105 keyboard (i.e., no

multimedia keys). But you can opt for one with those hip-

looking LED backlights (which cost at least US $20 extra).

4.2  �Preparatory Notes
Compared to a couple of decades back, building a PC has become less costly (as long you

do not “Add To Cart” with abandon) and an increasingly messy business. Even within the

same architecture (AMD64), you have different product lines (AMD and Intel). And then,

in each line, there are different hardware configurations possible (e.g., CPU socket types

and even different RAM types, such as DDR3 and DDR4).

We’ll keep things simple and geared for economy, while still aiming for a power-

packed PC. The chapter’s guiding principles are:

•	 For desktops, AMD delivers significantly better value for the money

than Intel.

•	 Using a dedicated graphics card leads to notably better system

performance.

•	 DDR4 does not lead to a clear performance advantage over DDR3 for

desktop usage, but does lead to clear cost disadvantages (both for the

motherboard and for the actual RAM modules).

Working around these principles, we’ll derive a PC configuration with plenty of

oomph and muscle, and within a budget of US $500 (excluding console devices and

printer/scanner). Most importantly, everything in our build will work out-of-the-box

under FreeBSD and Linux—which is the whole point of this chapter.

Chapter 4 PC Hardware for Unix

91

If you want to economize, here is a formula you can try (on your own) to shave about

$200 off the bill for the standard course:

•	 AMD A6-6400K Richland processor (3.9GHz; socket FM2; dual-core)

•	 MSI A68HM-E33 V2 motherboard (socket FM2; SATA3; USB3; mATX)

This formula derives its savings in part from the onboard graphics (Radeon HD

8470D; works with FreeBSD/Linux), which means you do not need to buy a dedicated

graphics card. Instead, your CPU and part of system RAM will be used for delivering the

graphics payload to the output device (the monitor). Further savings can be yielded by

using the stock CPU fan or scaling the RAM size down to 4GB. If you use 4GB RAM with

onboard graphics, set the video memory size in BIOS to 256MB or less.

Either way, you have to remember one point. The two most trouble-prone

components in a Unix PC build are the graphics chip and the printer. For the graphics

(video) chip, FreeBSD is the highest common factor. If it works under FreeBSD, it works

under any Unix. For the printer, just make sure you select something that has an open-

source driver. The printer driver support under FreeBSD and Linux is pretty much the

same, at least with an HP device.

Note  Prices mentioned in this chapter represent the list prices in US dollars that
were current at the time of writing. These will change per market dynamics.

4.3  �CPU (Central Processing Unit)
Even though a dual-core processor is enough for desktop purposes (my system is a dual-

core Athlon), I suggest you spend about a dozen more dollars to equip the PC with four

cores. It’s an investment of a lifetime.

AMD’s four-Core, 3.8GHz FX-4300 (socket AM3+) is a top-notch CPU, with

performance in the league of Intel’s Core i5 series offerings. It’s priced well under half as

much. Figure 4-1 shows an early bird view of the package you will get (price: $69).

https://www.amazon.com/dp/B009O7YU3S

Once you select a CPU, you need to narrow down the motherboard search to fit the

CPU’s socket.

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B009O7YU3S

92

Note also that AMD’s processors typically consume more power than Intel’s. So we’ll

do the wise thing here by building a top-dog CPU cooler (with its own fan and heatsink)

into our PC. The cooler does not cost much, compared to the benefits it begets.

4.4  �System Board/Motherboard
With an AM3+ socket, the Gigabyte GA-970A-DS3P is a very nice fit for our CPU. It has

USB3 ports (for frontside and backside connections) as well as SATA3 (6Gbps) ports. One

particular nicety is that the board has both PCI Express (new style) as well as PCI (old

style) expansion slots, the latter not often found on motherboards these days.

This link will take you to Amazon, with the GA-970A-DS3P ready for you to cart off

with: https://www.amazon.com/dp/B00CX4MUCC (price: $90).

Figure 4-1.  The AMD FX-4300 processor (socket AM3+)

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B00CX4MUCC

93

The board is shown in Figure 4-2, and its specs are listed next.

It might be of interest to you that all major motherboard manufacturers—Asus/

Gigabyte/MSI/any other name you can think of—are based in Taiwan, which seems to

enjoy a monopoly in the motherboard manufacturing business.

Here are the complete specs for our motherboard, as available at Amazon:

Model: Gigabyte GA-970A-DS3P

Socket: AM3+

Chipset: North Bridge AMD 970 and South Bridge AMD SB950

Memory: 4 × DDR3; 2000(OC)/1866/1600/1333/1066 DIMM;

: Dual-channel; max capacity 32GB

CPU: AMD AM3+ FX/AMD AM3 Phenom II/AMD Athlon II

LAN: Realtek GbE LAN chip (10/100/1000Mbit)

Figure 4-2.  Gigabyte GA-970A-DS3P motherboard (AM3+)

Chapter 4 PC Hardware for Unix

94

Expansion slots: 1 × PCI Express x16 slot, running at x16

(PCIEX16)

: 1 × PCI Express x16 slot, running at x4 (PCIEX4)

: 3 × PCI Express x1 slots

: 2 × PCI slots

Storage interface: 6 × SATA 6Gb/s connectors;

: Support for RAID 0, RAID 1, RAID 5, and JBOD

USB: Up to 12 USB 2.0/1.1 ports; 4 USB 3.0/2.0 ports

Audio: Realtek ALC887 (high definition audio, 8-channel)

This motherboard does not have any onboard (integrated) graphics, and thus no

VGA/DVI/HDMI output ports. Such boards (often judged as high-end) must use a

dedicated graphics card. Not having integrated graphics in the motherboard leads to two

advantages:

•	 The most expensive CPU operations (graphics) get delegated to

a separate system, which has its own dedicated processor and

memory.

•	 The motherboard is decoupled from the problem of graphics

support, which usually is the most pressing concern with the

operating system’s support for the motherboard itself. Just get a good

video card once, and you will never have to worry about whether

graphics will work for you under FreeBSD/Linux—even if later you

switch to a different motherboard.

I should expressly mention at this point that I find overclocking an abhorrent idea.

Trying to overclock is like trying to run a 500 kmph TGV train on a track built for an

optimum speed of 100 kmph. Your system will overheat frequently and wear out quicker.

A motherboard is built to perform best and last long in its default configuration. Gains

from overclocking are miniscule anyway, considering a modern CPU’s speed.

Also note that choosing a motherboard narrows your RAM search to just the type

the motherboard supports, which in our case means DDR3. It also limits your RAM

speed to the highest frequency supported by the motherboard, which in our case means

1866MHz. If your RAM module clocks a higher frequency, the motherboard will restrict

the DIMM (dual in-line memory module) to what the motherboard itself can support.

Chapter 4 PC Hardware for Unix

95

4.5  �RAM (Random Access Memory)
We would like to pick a RAM module with a frequency rating that matches the maximum

supported by our un-overclocked motherboard (1866MHz).

The Kingston HyperX FURY 8GB 1866MHz DDR3 CL10 DIMM, for $76, is one such

module. It’s found at https://www.amazon.com/dp/B00J8E92I0. Figure 4-3 shows this

model.

Figure 4-3.  Kingston HyperX FURY DDR3 RAM

Besides excellent performance and a generous size, this module is a single-piece

module, which usually is preferable to a 2 × 4GB configuration. While the dual-

channel mode (2 × 4GB) comes off marginally better than single channel (1 × 8GB) in

performance benchmarks (owing to two memory bands instead of one), what should

concern you more is the prospect of going up from 1 × 8GB to 2 × 8GB.

If you opt to economize with just one DIMM of 4GB (anything less is unacceptable),

you can expect about 75% as much zip as the standard 8GB system. But you must create

a mid-sized swap partition (5GB should be okay) in your hard disk. Even with more

RAM, a small swap partition would never hurt, while having no swap partition at all will

hurt sooner or later. Swapping always adds to the amount of memory available. When

the operating system runs out of RAM, it uses swap space to extend memory.

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B00J8E92I0

96

4.6  �Hard Disk
This is where you can go beyond the budget of $500, without necessarily being

extravagant.

There are two storage media widely used as today: rotating SATA disk (magnetic,

3Gbps, called SATA2) and Solid State Drive (SSD) disk (electronic, 6Gbps, called SATA3).

An SSD provides roughly a three-fold performance advantage over traditional SATA

and a four-fold cost disadvantage too, which calls for user judgment when economy is

needed.

For the standard storage solution, I propose having two disks: one small SSD (64GB,

which hosts the operating system installation) coupled with a much larger normal SATA

disk (500GB, which you can use to store large multimedia files).

Although you can use any 64GB SSD and any 500GB internal 3.5 inch (desktop) disk,

the following couple is shown in Figure 4-4:

•	 Silicon Power 60GB S60 MLC SSD (SATA3) for $30 (https://www.

amazon.com/dp/B01M2UUACN)

•	 Western Digital AV-GP 500GB (32MB cache, SATA2, Green Power) for

$28 (https://www.amazon.com/dp/B00X95ROOS)

If you find it repugnant to have your data spread across multiple disks, you can opt

for a 500GB SSD, although this will cost you about $90 extra. What follows—and is shown

in Figure 4-5—would certainly not be a bad choice if you decide to go the all-SSD way.

Figure 4-4.  Silicon Power 60GB S60 MLC SSD and Western Digital AV-GP 500GB
(green)

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B01M2UUACN
https://www.amazon.com/dp/B01M2UUACN
https://www.amazon.com/dp/B00X95ROOS

97

Disk manufacturers do not bundle a SATA cable into the disk parcel. Those cables

(usually a 2-pack) instead are made available by the motherboard manufacturer. I always

find it handy to have one or two SATA cables lying around in my spare stock. If you like

the idea, you can use the UGREEN offering shown in Figure 4-6 below.

4.7  �SMPS (Switched Mode Power Supply)
The most undervalued component in a PC build tends to be the power supply (transformer

and AC-to-DC converter). This is due almost entirely to user ignorance—I myself was

unaware of this factor until I had to trash a whole system because of a faulty SMPS.

A bad power supply will slowly (or perhaps even quickly) spread cancer in your PC’s

guts, providing faulty electrical signals, evidenced as weird noise problems and high

power intake. So do not under-invest in this particular component.

Besides keeping the PC itself in good shape, a good power supply (at least 80%

power efficiency) will let you recover costs in the long run via lower electricity bills. The

Thermaltake 500W Bronze-rated ATX Power Supply Smart DPS G (seven-year warranty) is

a fine, Bronze-rated (about 85% efficiency) SMPS, which at $53, is priced quite agreeably.

Figure 4-5.  Samsung EVO 850 500GB SSD

Figure 4-6.  UGreen SATA Cables

Chapter 4 PC Hardware for Unix

98

See https://www.amazon.com/dp/B01FA092N0. Figure 4-7 shows it in all its glory.

Do not try to open the SMPS to find out what its innards look like—the left side

of Figure 4-7 should be enough to satisfy any curiosity. Opening an SMPS is a serious

health hazard—at least for the power supply.

If you are not comfortable with the idea of hooking the power supply into the PC

yourself, you are not alone. I usually call in the hardware guy for this sacred task.

4.8  �Cabinet
What good is a PC if it just performs well and does not look dapper? A cabinet is what lets

your computer be nicely “object-oriented”.

You can choose any cabinet you like, although I will mention the one shown in

Figure 4-8, as it:

•	 Is superbly built, yielding handsome and elegant looks

•	 Is priced agreeably

•	 Has plenty of racks to tuck SATA disks and SSDs on

Figure 4-7.  Thermaltake 500 W Bronze-rated ATX Power Supply Smart DPS G

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B01FA092N0

99

•	 Has generous room that can accommodate the fat-bellied CPU cooler

that you’ll learn about shortly

•	 Has a frontside USB3 port, which is pretty useful

This is the Thermaltake Versa H21 ATX Mid Tower Computer Chassis, found at

https://www.amazon.com/dp/B072T268WZ (price: $38).

Chassis fans have a delectable knack for being noisy, no matter how expensive the

cabinet. Luckily, the chassis fan is never needed and can safely be unhooked.

4.9  �Graphics Card
This is where folks like to overspend. But we won’t. We’ll use a basic 1GB graphics card

that will play any video file with perfect ease. Since I am not into gaming, I will simply

ignore the gaming suitability of the card(s)—you should too.

I’ll mention a card each from both the major players: AMD/ATI Radeon and NVIDIA.

For the Radeon, I would have liked to refer the card that I use myself—Sapphire

Radeon R5 230 (HD6450, 1GB). But, for some reason, that card was not available for

order with Amazon Prime in the United States at the time this was being written.

Figure 4-8.  Thermaltake Versa H21 ATX midtower computer chassis

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B072T268WZ

100

Figure 4-9 shows the Radeon offering at left, which works equally well. The right side

caters to NVIDIA buffs.

•	 XFX ATI Radeon HD5450 DDR3 1 GB ($35) at https://www.amazon.

com/dp/B004TCM634

•	 MSI Computer NVIDIA GT710 DDR3 1GB ($35)at https://www.

amazon.com/dp/B01AZHOWL0

Both cards mentioned here are known to work with FreeBSD (which, because it

supports fewer graphics chipsets, usually becomes the HCF, or highest common factor,

when choosing a video chip) as well as Linux, under which the chip will always work if

it works under FreeBSD. To get information about which graphics chips do work under

FreeBSD, visit https://wiki.freebsd.org/Graphics.

About the worst thing you can do with your graphics card is use the VGA (Video

Graphics Array) cable to hook it to with the monitor. That VGA cable delivers to the

monitor an analog signal, whereas modern monitors (LCD/LED/OLED) are purely

digital devices, so they are much happier to work with digital input—DVI (Digital Visual

Interface) or HDMI (High-Definition Multimedia Interface).

When you connect the graphics card to the monitor using the VGA cable, what

happens is that upstream, the card has to convert the digital signal to analog. And then

downstream, the monitor has to convert the analog signal all the way back to what it

originally was—a digital signal. Not funny at all, and not uncommon at all as well.

I reckon at least half of PC users still use the VGA cable for graphics delivery to output.

Figure 4-9.  1GB graphics cards: XFX (ATI Radeon) HD5450; MSI (NVIDIA) GT710

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B004TCM634
https://www.amazon.com/dp/B004TCM634
https://www.amazon.com/dp/B01AZHOWL0
https://www.amazon.com/dp/B01AZHOWL0
https://wiki.freebsd.org/Graphics

101

Trash the VGA cable and get a proper digital cable: DVI-DVI/DVI-HDMI/HDMI-

HDMI. Amazon retails superb offerings for digital cabling under its in-house brand

AmazonBasics, each cable priced very economically. Probably the most flexible solution

for digital cabling is to use an HDMI-HDMI cable and—if needed at either end—adapt

for DVI using an HDMI (female), DVI-D (male) converter. See Figure 4-10.

•	 AmazonBasics HDMI Cable, 6 Feet ($7) at https://www.amazon.com/

dp/B014I8SSD0

•	 CableCreation HDMI female, DVI-D male adapter ($7)at https://

www.amazon.com/dp/B01FM52438

A new fad that might break out in the coming days is the HDMI/DVI-only graphics

card. Such cards are already available. Figure 4-11 shows one such card—Gigabyte’s

GeForce GV-N710D5-2GL:

Gigabyte NVIDIA GV-N710D5-2GL (2GB, DDR5) at https://www.amazon.com/dp/

B073SWN4ZM ($50).

Figure 4-10.  HDMI cable and DVI-D adapter

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B014I8SSD0
https://www.amazon.com/dp/B014I8SSD0
https://www.amazon.com/dp/B01FM52438
https://www.amazon.com/dp/B01FM52438
https://www.amazon.com/dp/B073SWN4ZM
https://www.amazon.com/dp/B073SWN4ZM

102

The card’s DVI-I port will accept DVI-I cable as well as DVI-D. A DVI-I port has

four extra pin slots that are not used when you plug in a DVI-D cable. Also, DDR5 is the

configuration of the card’s own internal memory (video RAM). The card will work with

any DDR3/DDR4 board.

4.10  �Optical Drive (CD/DVD Reader and Writer)
I doubt whether there is any real advantage in using a Blu-Ray optical drive, at least

under Unix. So we will just stick with a normal DVD drive. Again, you can choose any

one to suit yourself, although I mention this one:

ASUS Internal 24X SATA Optical Drive DRW-24B3ST, available at https://www.

amazon.com/dp/B0056UV96I ($22).

Figure 4-11.  Digital-only graphics card

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B0056UV96I
https://www.amazon.com/dp/B0056UV96I

103

Figure 4-12 shows this optical drive in full bloom.

You might be wondering what holy algorithm I used to cherry-pick this model from

a whole range of DVD R+W drives—all of them equally good. I will be honest enough to

share the selection criteria with you:

•	 For just a couple of dollars more than the other DVD drives, Asus

DRW-24B3ST gave me a screenshot I could not easily have imagined

to be as aesthetic as what I finally managed to get.

•	 It somehow seemed unjust to me that I should go through an entire

chapter on PC hardware without somewhere mentioning a product

from Asus. I have a lot of regard for those folks.

4.11  �CPU Cooler
Whether your CPU is AMD or Intel, it gains a lot of peace of mind if you can supply a

good cooling solution. In the case of AMD in particular, the stock fan and heatsink often

do not do a job worth writing home about (at least in a good spirit).

Figure 4-12.  Asus DRW-24B3ST DVD writer

Chapter 4 PC Hardware for Unix

104

The Cooler Master Hyper 212 LED CPU Cooler with PWM Fan at https://www.

amazon.com/dp/B005O65JXI ($30) claims to be the best in the business—it can pare

down your CPU temperature by as much as 30°C (vis-a-vis cooling achieved with

the stock fan and heatsink), all very silently. I can vouchsafe as much from personal

experience. Figure 4-13 can only tell you what the cooler looks like, not its cooling

finesse.

The CM cooler comes with its own very special fixing/cooling liquid. Putting

together a Cooler Master cooler requires some engineering expertise. Consider calling in

someone who won’t feel intimidated by the prospect of working with the motley pieces

on the left to deliver the juggernaut on the right in Figure 4-14.

Figure 4-13.  Cooler Master Hyper 212 CPU Cooler

Figure 4-14.  Cooler assembly

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B005O65JXI
https://www.amazon.com/dp/B005O65JXI

105

4.12  �Printer/Scanner
The generic solution to printing under Unix is CUPS (Common Unix Printing System),

which replaces the old line printer daemon. CUPS supports all current printing

standards (PostScript, PCL, and PDF). While most HP inkjet printers use PCL, other

printers can be made to work under Unix if they provide a PostScript Printer Definition

(PPD) format file that CUPS can readily use, or else a native driver. Two OEMs that

provide open-source drivers/PPDs for at least some of their printers are HP and Epson.

4.12.1  �Buying an HP Printer
HP (Hewlett Packard) is the leading open-source camp follower. It even has its own Unix

printing software HPLIP (HP Linux Imaging and Printing) that enables most of HP’s

current-generation printers to work under Unix. If you want to buy a printer for your

FreeBSD/Linux box, choosing an HP is a smart choice.

I will start by mentioning the very cheap printer that I myself use very happily under

FreeBSD as well as Linux—the HP DeskJet 1112 Compact Printer, available at https://

www.amazon.com/dp/B013SKI4QA for $26.

If you have a slightly deeper pocket, you can get the Multi Function Device shown in

Figure 4-15, which can print and scan, and is an all-time best seller at Amazon.

The HP Envy 4520 All-in-One Photo Printer at https://www.amazon.com/dp/

B013SKI4LU ($67) looks gorgeous too, as Figure 4-15 might convince you.

Figure 4-15.  HP Envy 4520 Multi Function Device

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B013SKI4QA
https://www.amazon.com/dp/B013SKI4QA
https://www.amazon.com/dp/B013SKI4LU
https://www.amazon.com/dp/B013SKI4LU

106

Note  A wireless printer can also be hooked with its USB cable

For laser buffs, HP has a very agreeably priced monochrome laser printer (which,

at least in theory, should yield per-page cost savings vis-a-vis inkjet printers). The

HP LaserJet Pro M102w Laser Printer is available at https://www.amazon.com/dp/

B01LBWELIW for $88.

This piece is equally peachy and is depicted in Figure 4-16.

Figure 4-16.  HP LaserJet Pro M102w laser printer

4.12.2  �Buying an Epson Printer
Epson has created a Linux line of printers called Lnnn where nnn usually is a three-digit

or four-digit number. Epson provides open-source drivers for that series, printers of

which therefore work with Linux—and many under FreeBSD too.

The list of printers under the L-series can be viewed at the following URL, which

delves into Epson India’s support website:

https://www.epson.co.in/Support/Printers/Single-Function-Inkjet-

Printers/L-Series/sh/s112

Chapter 4 PC Hardware for Unix

https://www.amazon.com/dp/B01LBWELIW
https://www.amazon.com/dp/B01LBWELIW
https://www.epson.co.in/Support/Printers/Single-Function-Inkjet-Printers/L-Series/sh/s112
https://www.epson.co.in/Support/Printers/Single-Function-Inkjet-Printers/L-Series/sh/s112

107

At the time of this writing, the list cobbled up at the URL was:

L800 L100 L110 L120 L200 L210 L220 L300 L310 L350 L355 L360 L365 L385 L455

L485 L550 L555 L565 L605 L655 L805 L810 L1300 L1455 L1800

Surprisingly, Amazon USA does not retail L-series printers (but Amazon India does).

Epson printers from outside of the L-series can be made to work with Linux (but not

FreeBSD) by downloading a closed-source Linux driver package from http://download.

ebz.epson.net/dsc/search/01/search/?OSC=LX.

FreeBSD supports the following Epson printers for which a native driver is available.

•	 epson-inkjet-printer-201401w: L456 L455 L366 L365 L362 L360

L312 L310 L222 L220 L132 L130

•	 epson-inkjet-printer-201601w: L380 L382

•	 epsonepl: (for laser printers) EPL-5700L EPL-5800L EPL-5900L

Readers in Europe can order Epson’s L382 inkjet color printer/scanner at Alza Shop:

https://www.alzashop.com/epson-l382-d4514535.htm. It was listed, when this was

being written, at the price of €156.45. Figure 4-17 shows Alza’s L382 offering.

Figure 4-17.  Epson L382 Multi Function Device

4.13  �Summary
You now have everything needed to assemble your PC—except perhaps a screwdriver,

which I will let you research on your own.

If you can assemble the PC yourself, nothing like it. If you can’t, you are like me

and should call in the hardware guy. If you pay him anything up to $28, you still remain

within our budget of $500 (excluding the printer).

The next chapter is where you’ll start playing Unix using your own box.

Chapter 4 PC Hardware for Unix

http://download.ebz.epson.net/dsc/search/01/search/?OSC=LX
http://download.ebz.epson.net/dsc/search/01/search/?OSC=LX
https://www.alzashop.com/epson-l382-d4514535.htm

109
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_5

CHAPTER 5

Installing and
Configuring
FreeBSD/Linux
A few decades back, installing Unix yourself was not possible—most of the time, Unix

makers would only sell machines that were fully preinstalled.

Times have changed. Unix now runs on the PC—something AT&T was highly averse

to, mostly for commercial reasons. Since the PC is a personal computer, Unix installation

is now very much a personal task. You can—and must be able to—install FreeBSD and

Linux yourself. This is not difficult at all, as this chapter will hopefully elucidate.

5.1  �Disk Partitioning
We’ll start this chapter by revisiting a fundamental term: partition. What is meant by

that?

Essentially, a partition is a contiguous portion of a hard disk, the start and end of

which are recorded in the first sector of the disk (which hosts a partition table). Every

disk can be broken into chunks, each of which can be presented to the operating system

as a single storage source (filesystem).

There are two widely-used partitioning schemes for managing disk partitions: MBR

and GPT.

110

5.1.1  �MBR (Master Boot Record)
Under the MBR partitioning scheme, which is the traditional scheme in use since the

days of DOS, there are a maximum of four such chunks (minimum, of course, is one).

Those chunks are referred to as primary partitions (Windows/Linux) or slices (FreeBSD).

One of the four slices can optionally be subdivided. If there is such a slice (which is

configured for subdivision), it is called an extended partition (more correctly, a DOS

extended partition), and its subdivisions are logical drives. FreeBSD refers to the DOS

extended partition as an EBR slice.

Let’s say we have a hard disk with three slices, the second being an extended

partition. Linux will call the slices sda1 (primary), sda2 (extended), and sda3 (primary).

The first subdivision in the extended partition is indexed (4 + subindex = 4 + 1) 5, which

makes its device node sda5. The second subdivision is sda6, and so on.

FreeBSD uses ada0s* in place of sda*. If you hook in a second hard disk, its

partitions show up as sdb* under Linux and as ada1s* under FreeBSD.

Note  The 4+ EBR nomenclature owes its heritage to the fact that the partition
table in the MBR accommodates information for the four slices only. EBR break-up
information is recorded in the first sector at the start of the EBR slice.

Besides a fundamental limitation that MBR can handle disks only up to a maximum

of 2TB, there are a couple of points to remember for MBR partitioning.

•	 Every operating system needs its own primary partition. Since our

example disk has only two primary partitions (sda1 and sda3), it is

limited to a maximum of two operating systems.

•	 FreeBSD can internally carve up its slice to make it work more

or less as an extended partition. If ada0s3 is a BSD slice with two

subdivisions, the subdivisions get denoted as ada0s3a and ada0s3b.

FreeBSD refers to ada0s3 as a slice, and to ada0s3a and ada0s3b as

partitions. In the BSD world, you do not mount slices. Rather you

mount partitions, unless the slice is undivided and hence itself a

partition—as is the case with ada0s1 (Linux sda1) in our example

disk. MBR slices of type BSD (freebsd) and extended partition

(ebr) are nests (enclosing subdivisions) and thus not mountable

themselves. Instead, each partition inside the nest is mountable.

Chapter 5 Installing and Configuring FreeBSD/Linux

111

Here is a table of oft-used slice/partition type IDs under the MBR partitioning

scheme:

ebr slice / Extended Partition: 0x5 (5)

 ntfs: 0x7 (7)

 fat32: 0xc (12)

 linux-swap: 0x82 (130)

 linux-data (Ext2/Ext3/Ext4): 0x83 (131)

 freebsd slice: 0xa5 (165)

The filesystem type (NTFS/FAT32/Ext2) created in a partition almost always

corresponds to the partition type. But it is possible to use a different filesystem type. This

book uses a linux-swap partition that flips between FreeBSD Swap (when FreeBSD is

booted) and Linux Swap (when Linux is booted).

The biggest virtue of MBR partitioning is never noted anywhere: the scheme forces

the user to plan and adapt. That happens because everything possible under GPT is

possible under MBR too, and MBR provides only the least number of choices possible for

achieving all the objectives possible. As you will hopefully one day agree, it is a boon to

be furnished a small set of choices at the most basic levels in computer usage. I should

perhaps repeat, though, that MBR cannot address disks sized over 2TB.

5.1.2  �GPT (GUID Partition Table)
The other partitioning scheme is the newfangled GPT, where the G stands for

GUID. GUID in turn stands for Globally Unique IDentifier. Unlike MBR, GPT works for

very large disks too. GPT further lets you create as many partitions in the disk as you

want, unlike MBR, which restricts you to a maximum of four slices. GPT partitions are

always actual partitions, not nests.

If you are working with a very large disk (> 2TB), you should use GPT. FreeBSD

denotes a GPT disk’s partitions as ada0p1, ada0p2, and so on, while Linux device node

names remain the same as in MBR: sda1, sda2, and so on.

The downside to GPT is that it makes multi-booting trickier (and one can never use

FreeBSD’s boot0cfg, the nifty MBR boot code configurator that I personally am very fond

of). For this book, which uses a dual-boot setup, we keep things simple by using MBR as

the default partitioning scheme. Section 5.10 has notes for GPT partitioning tailored for

dual-booting Linux and FreeBSD.

Chapter 5 Installing and Configuring FreeBSD/Linux

112

5.2  �Do We Have Enough Disk Space?
At this point, we’ll put in a word about how much disk space you need to install Unix. We

don’t want a bare-minimum system—on the contrary, we want a full-fledged box with at

least 10GB still lying around free after installation of a desktop environment.

For Linux, 20GB should be enough for the root partition. Because FreeBSD packs

more punch in its base system, it needs more disk space. 35GB should be enough for

FreeBSD’s root partition. But, on this particular account, you should choose to err on the

side of being generous. You can’t go wrong—if your disk’s size permits—giving 30GB to

Linux and 50GB to FreeBSD.

Perhaps more important than disk space is number of slices available. If you are

working with a brand new disk, you don’t have anything to worry about. You can have up

to four of them as mandated by the MBR standard.

The trickier case is you are working with a disk with something already on it. Let’s say

you have Windows on it.

Note  The following hold for Windows hard disk partitions:

The C: drive is a primary partition at the start of the disk. This is true without
exception.

The D:, E:, F: (and so on) drives are usually logical drives in the extended
partition.

If, as likely, all drives except C: are logical drives in an extended partition, you can

delete all existing logical drives and then the EBR slice (extended partition) itself to create

free space that you can use to create two new primary partitions—one for Linux and the

second for FreeBSD. Any remaining space can be used to create an extended partition.

If you can’t free up sufficient space, it is a good time—and a very good reason—to

buy another hard disk (preferably a solid state drive). For Windows XP users, there is

an additional reason, even if you have sufficient disk space: Windows XP understands

neither SSD functions (e.g., discard) nor AHCI, the newer and more efficient

configuration mode for SATA devices. If you install FreeBSD/Linux alongside Windows

XP, you have to put your hard disk in legacy IDE mode—with a performance penalty.

Existing Windows users should always prefer to buy a new SSD and install FreeBSD/

Linux.

Chapter 5 Installing and Configuring FreeBSD/Linux

113

5.3  �The Default Partitioning Scheme
The rest of this discussion assumes brand new disks, to be partitioned MBR.

This section illustrates the MBR partitioning schemes for the following couple of

hard-disk pools (which correspond to the hardware we purchased in Chapter 4):

•	 A small 64GB SSD paired with a large 500GB SATA disk, under which

operating system installations and swap space are hosted inside

the SSD. The large SATA disk hosts an EBR slice that nests a storage

partition and a spare primary partition that can be used, for instance,

to create backups.

•	 A single, large 500GB SSD that hosts everything within itself.

You can use any partitioning scheme that you consider best suited for your needs.

The following couple—which use embedded rectangles to depict nested partitions—is a

good starting point.

Figure 5-1 is the suggested scheme for the 64GB SSD and 500GB SATA pair.

Figure 5-1.  MBR partitioning scheme for a small SSD and a large SATA disk

This scheme puts the swap partition (created as linux-swap) in a slice of its own.

You can, if you want, create it as a logical drive nested in an EBR slice—the next scheme

does precisely that.

Chapter 5 Installing and Configuring FreeBSD/Linux

114

The singleton 500GB SSD can be partitioned as shown in Figure 5-2.

Both schemes use a spare primary partition (created as fat32) that can be used for a

variety of tasks later: creating backups, a spare installation, and storage. The filesystem

type FAT32 is purely nominal. From the scheme’s perspective, it is just a way of saying

“Disk space reserved for future use”.

Both schemes also use a single swap partition, created as linux-swap. FreeBSD

and Linux can share the swap partition. Refer to Section A.4 in the appendix for how to

enable swap sharing. This is very simple, and it saves you precious space inside the SSD

for a second swap partition. (Reminder: Swap works three times faster inside SSD.)

5.4  �Preparing the Computer’s CMOS for Unix
One of the recent additions to computer terminology is UEFI (Unified Extensible Firmware

Interface), which was supposed to be the next-gen BIOS (Basic Input/Output System) that

solves the problems and limitations of legacy BIOS. In the context of UEFI, I should note

that I am not a big fan of new computer technologies adding to the technology swamp,

particularly when the legacy technology is still sufficient for the purpose.

Note  BIOS, as well as its apparent-heir-to-be UEFI, is a meta-system for
hardware configuration that decides the rules and limitations the actual operating
system has to comply with. For instance:

•	 Is the first-boot device the hard disk or the CD drive?

•	 Should the keyboard/mouse be able to wake up (power on) the
system?

•	 Should the hard disks use IDE mode or AHCI mode?

BIOS/UEFI configuration is saved in a chip called CMOS (Complementary Metal
Oxide Semiconductor).

Figure 5-2.  MBR partitioning scheme for a large SSD

Chapter 5 Installing and Configuring FreeBSD/Linux

115

While both FreeBSD and Linux can work with UEFI, it makes life easier if you disable

UEFI entirely in the CMOS settings. Your system’s CMOS quite likely has a compatibility

support module, which can be used to enforce legacy BIOS functionality. So boot into

the CMOS and disable UEFI.

While we are in the CMOS, check on a few other settings as well. If your CMOS has

EHCI handoff (USB2) support and XHCI handoff (USB3) support, enable them.

Note H ere’s some USB jargon to remember:

OHCI stands for Open Host Controller Interface ↔ USB 1.0/1.1 (1.5Mbps)

EHCI stands for Enhanced Host Controller Interface ↔ USB 2.0 (35MBps)

XHCI stands for eXtensible Host Controller Interface ↔ USB 3.0 (400MBps)

(b = bits; B = bytes)

One particular setting is crucial for Linux: if your system’s CMOS flaunts a feature

named IOMMU (Input Output Memory Management Unit), enable it. Otherwise Linux

quite likely will not be able to ping the network and USB ports might not work well.

There is one final tweak: AHCI (Advanced Host Controller Interface). SATA

disks traditionally were presented to the operating system in native IDE mode. An

alternative mode called AHCI has emerged over the last decade. AHCI offers significant

performance benefits over IDE mode. If your BIOS offers AHCI functionality, you can use

that in preference to IDE. The one point to remember for AHCI is that if a SATA disk is in

AHCI mode, you cannot install old, AHCI-unaware operating systems (e.g., Windows XP)

on the disk.

Note O ne point that might be pertinent to mention is the architecture name quagmire
created by the use of the artificial name x86_64. Until the AMD64 architecture was
created, the term x86 was reserved to denote the 32-bit architecture i386 (created by
Intel) and any of the derivatives of i386: i486, i586, and i686.

Since the 64-bit PC architecture was created by AMD, it is quite properly named
AMD64. Intel, quite naturally, is not pleased about the prospect of having to sell its
64-bit processors with the name of its rival proudly advertised on the packing. Intel
has therefore pushed hard to get the name x86_64 substituted for AMD64.

Chapter 5 Installing and Configuring FreeBSD/Linux

116

A lot of Linux distributions (the Arch family in particular) have been eager to please
Intel, and thus publish their 64-bit ISO images tagged as x86_64. This, quite clearly,
is a problem on multiple counts. The name x86 was originally coined to mean i386/
i486/i586/i686, all of them 32-bit. The concoction x86_64 implies (from everyone’s
point of view, not just Intel’s viewpoint) that x86 now means the very strange mix
(i386/i486/i586/i686/AMD64).

If you find the situation pleasant, you don’t have anything to worry about.
Otherwise, you should question your Linux distribution (if it tags its ISO as x86_64,
not AMD64) why this absurdity is being allowed to perpetuate.

5.5  �Downloading and Burning Installation Media
For FreeBSD and Linux, it is recommended to install from optical media (CD or DVD),

not USB memory sticks.

For FreeBSD, point your browser to this URL:

https://download.freebsd.org/ftp/releases/ISO-IMAGES/

Choose the release version you like. At the time of this writing, 11.1 was the freshest

release. To fetch the CD installer for 11.1 for AMD64 architecture, you can download the

11.1/FreeBSD-11.1-RELEASE-amd64-disc1.iso file in your browser or via wget on the

command line.

Tip  If your environment has the unxz command, you can save some time by
downloading the compressed .iso.xz file, which you can unpack with the unxz
<iso> command.

Along with the ISO image, you should also get the CHECKSUM.SHA256 file for your

architecture, so that you can be sure the ISO downloaded is a good one. Once you have

the ISO file, run sha256 <iso> (if your environment has the sha256 command) on the

ISO file and match the result with the CHECKSUM.SHA256 file.

If the checksum matches, you are good to go ahead and burn the ISO to a CD. You

can burn the CD with a graphical application like Nero or K3b, or from the command

line if your environment has a CLI-burner such as cdrecord or cdrdao.

Chapter 5 Installing and Configuring FreeBSD/Linux

https://download.freebsd.org/ftp/releases/ISO-IMAGES/

117

If, for some reason, you are unable to use optical media for the installation, you can

wget the memstick.img (memory stick image):

11.1/FreeBSD-11.1-RELEASE-amd64-memstick.img

After matching its checksum with sha256, you can “burn” it to a USB pen drive:

ROOT# dd if=FreeBSD-11.1-RELEASE-amd64-memstick.img \

of=/dev/da0 bs=1M conv=sync

If you are trying to burn the USB image to a pen drive under Windows, this is not

possible natively but can be accomplished (with fingers crossed) using dedicated tools

like Rufus, which is available at https://rufus.akeo.ie/.

Linux installation media HowTo is pretty much the same in principle. The one

major difference is that Linux distributions usually come wired with a graphical desktop

environment, which gets installed automatically along with Linux installation.

We’ll take Mint as our Linux distro of choice. The URLs for Linux Mint are:

https://linuxmint.com/download.php (ISO download page)

https://linuxmint.com/verify.php (checksums page)

Linux uses the same (hybrid) ISO image for DVD media as well as a USB memory

stick. To burn the ISO to a USB memory stick attached as /dev/sdb, use:

ROOT# dd if=linuxmint-18.3-cinnamon-64bit.iso of=/dev/sdb bs=1M

5.6  �Our Example Hard Disk
It’s good to note that booting an operating system broadly involves two separate boot

blocks: one in charge of the entire hard disk (located in the hard disk’s first sector), and

the other that can boot the operating system in a particular slice (located in the slice’s

first sector). The former, executed by BIOS, invokes the latter.

We will take the 64GB SSD in Figure 5-1 as our disk for installations. Our bootstrap

strategy for the disk (which will be the device /dev/ada0 under FreeBSD and /dev/ sda

under Linux) is illustrated in Figure 5-3.

Chapter 5 Installing and Configuring FreeBSD/Linux

https://rufus.akeo.ie/
https://linuxmint.com/download.php
https://linuxmint.com/verify.php

118

We will place FreeBSD’s boot0cfg in charge of the MBR: the boot0 code (which fits

inside the disk’s first block of 512 bytes) can readily bootstrap FreeBSD/Linux/Windows.

OS-specific bootmanagers (Grub under Linux, Boot Easy under FreeBSD) will occupy

the first sectors in their respective slices. Note that what is called a bootloader in Linux is

called a bootmanager in FreeBSD. Under FreeBSD, the bootmanager’s home run yields

control to /boot/loader, which takes over for the last stage of the bootstrap process—

loading the kernel into memory.

5.7  �Installing FreeBSD
Boot with your CD. You will meet Beastie, the lovable FreeBSD mascot—see the left side

of Figure 5-4. Just press Enter to move up to the second screen (right side), where you

can again press Enter (with Install selected) to kick off the installation.

Figure 5-3.  The bootstrapping strategy

Figure 5-4.  FreeBSD initial boot screens

Select your keymap (the default is US English). Then set your hostname, which can

be any string, with no spaces or special characters.

Chapter 5 Installing and Configuring FreeBSD/Linux

119

The next screen, Distribution Select, is for choosing additional components (besides

the base system) for your FreeBSD installation. Press the spacebar to un-select the ports

distribution and select src. Your screen should now look as shown Figure 5-5.

Press Enter to continue.

The reason we un-select ports is that FreeBSD ports are a dynamic collection. What

you would have on the installer CD would be outdated by at least a few months. You can

get the latest ports collection after installation is over. We’ll do that in the next chapter.

The reason we select src is that a few ports and other system facilities need the system

sources. For example, if you want to build the NVIDIA driver from ports, you will be

prompted for the system sources if those are missing. It anyway is a good idea to always have

the source code for the system you are running, and it can be tricky (or at least inconvenient)

getting the system sources later. So we do that right now and rest happily afterward.

Choosing the Manual partitioning mode, move ahead to the partitioning screen.

Note  The next few steps assume a new disk with no data in it. If the disk has any
data that’s still important, you should alter the next couple of steps to remove and
recreate only those partitions that have no existing data of significance.

This next step deletes all existing partitions and the partition scheme itself. So do this

only if you are sure you do not need anything on the disk.

Figure 5-5.  Select distributions

Chapter 5 Installing and Configuring FreeBSD/Linux

120

Once you’re at the partitioning screen, select the disk’s device ada0 and tab onto the

Delete button. Press Enter to delete any existing partitioning scheme. (You can, as an

easier alternative, press d —the equivalent to Delete and Enter). Your screen should

now look like Figure 5-6.

You now have a new/like-new disk with no partitions, or even a partition scheme. So

the first thing you must do is create a new partition scheme (MBR or GPT) in the disk—

this is also called initializing the disk.

With your disk ada0 selected, tab onto the Create button and then press Enter —you

can also just press c . Setup will prompt you for the kind of partitioning scheme you

want. Choose MBR. Refer to Figure 5-7.

Figure 5-6.  Delete any existing partitioning scheme

Figure 5-7.  Create a new partition scheme

Chapter 5 Installing and Configuring FreeBSD/Linux

121

When you’re done, your screen will appear as in Figure 5-8. Don’t click Finish yet.

Your hard disk now has a partitioning scheme. The next step creates a table of slices.

Do not try to set any mountpoints yet, and do not click Finish.

Press c (or Create) to create a slice of type linux-data, sized 20GB. Refer, if needed,

to Figure 5-9. /dev/ada0s1 thus created is where our Linux installation—to be made after

the FreeBSD installation currently underway is done—will reside.

Press c (or Create) a couple of times to create a slice of type freebsd, sized 35GB,

and then a slice of type linux-swap spanning the remaining disk space—nominally

assumed 5GB. Refer to Figure 5-10 for the final layout—and remember not to click the

Finish button.

Figure 5-8.  The initial partition table

Figure 5-9.  The first slice: ada0s1

Chapter 5 Installing and Configuring FreeBSD/Linux

122

Inside the BSD slice ada0s2, we’ll create just one nested partition: ada0s2a (UFS), the

/ mountpoint for our FreeBSD installation.

With your BSD slice ada0s2 selected, press c (or click the Create button) to create

ada0s2a. Let the partition’s default size (35GB) and filesystem type (freebsd-ufs)

remain unchanged. Set its mountpoint as /. Refer to Figure 5-11.

If your hard disk is a solid state drive (SSD), you can tab onto Options and set

ada0s2a to use TRIM support. Refer to Figure 5-12.

Figure 5-10.  The final partition table

Figure 5-11.  UFS partition configured

Chapter 5 Installing and Configuring FreeBSD/Linux

123

TRIM (discard) enables prompt and efficient recovery of disk space following

deletion of files from solid state storage.

Refer to Figure 5-13. The disk layout is now final.

Click Finish and then Commit. Setup will format partitions, and then extract the

necessary distributions (base, kernel, lib32, and src) into the root filesystem (/). Next,

it will prompt you to set the root password. Set the password you like.

Setup will then probe for an Ethernet device. If it finds a wired network card, setup

will prompt you to configure network—whether you want to use IPv4 and DHCP. DHCP

(Dynamic Host Configuration Protocol) auto-configures IPv4 settings and is possible

only if your intranet has a DHCP server. Choose Yes for IPv4. If your intranet has a DHCP

server, choose Yes for DHCP too. Otherwise, you must manually configure IPv4.

Figure 5-12.  TRIM enabled for UFS

Figure 5-13.  The final disk layout

Chapter 5 Installing and Configuring FreeBSD/Linux

124

To manually configure IPv4, you need the IP address of your router/gateway—pretty

often this is 192.168.1.1. With that router IP, you can choose an unused IP address in

the 192.168.1.* series, and subnet mask 255.255.255.0.

Setup will next let you turn on IPv6 and SLAAC, if you need them. SLAAC (StateLess

Address AutoConfiguration) is quite like DHCP of IPv4.

When prompted for resolver (DNS) configuration, you can use your preferred DNS

servers, or simply use OpenDNS servers: 208.67.222.222 and 208.67.220.220.

See Figure 5-14. When setup is at the finish line, it will ask if you want to run any

command in the system freshly installed (from within the CD installer—this facility is

known as chroot). Choose Yes.

See Figure 5-15. Inside the chroot’ed shell, run the following command, which

inserts the FreeBSD boot0 code into the MBR:

boot0cfg -B /dev/ada0

When you exit from chroot (with the command exit), the system will reboot. Upon

reboot, quickly remove the installer CD; otherwise you will encounter FreeBSD setup

again. To visit your freshly installed FreeBSD system, press F2 at the boot prompt.

Next, we’ll install Linux, which will be readily bootable with F1 , courtesy of boot0.

Figure 5-14.  Entering installer’s chroot

Figure 5-15.  Installing boot0 code to MBR

Chapter 5 Installing and Configuring FreeBSD/Linux

125

5.8  �Installing and Configuring Linux
As long as you read the opening discussion of this chapter (relating to partitions and

BIOS settings), you need very little by way of explanation about how to install Linux.

Even so, there is a fair panoply to worry about.

But the first thing to do is boot your box with the Linux installer media and then fix

things if/as needed. Screenshots in this section have been generated with the installer

for Linux Mint (Cinnamon) 18.3, 64-bit.

One glitch might nip your enterprise in the bud—Linux setup sometimes fails to

recognize a USB keyboard and mouse if those are connected via a USB hub. If you find

setup not responding to keyboard/mouse input, you should first check in the BIOS as

to whether EHCI handoff—as well as IOMMU, if present—is enabled. If that does not

resolve the issue, hook those devices directly to motherboard ports, not via a hub.

The next hiccup is a big one. Unlike FreeBSD, Linux setup hardwires default

Internet settings for DHCP, and does not give the user a chance to enforce manual IP

configuration, even if needed. This is a problem, even more confusing because the Linux

installer does have the capability for configuring manual IPv4/IPv6 settings.

If you are fine with DHCP configuration for your box, you can skip past the next

screenshot on to the next step.

For manual IPv4/IPv6, don’t launch the main installer right away. Instead, first check

in the installer’s taskbars for a Network Connections icon. Or else you might end up—if

your box needs manual IP settings—with a full-fledged Linux installation that does not

connect to the Internet.

Figure 5-16 shows the Network Connections icon highlighted.

Figure 5-16.  The big hiccup: enforcing a manual IP configuration (if needed)

Chapter 5 Installing and Configuring FreeBSD/Linux

126

When you find the Network Connections icon, click/right-click to get the network

configuration tool, which in Linux Mint appears as shown in Figure 5-17.

Use Edit and then the tab to your network type to set your network parameters. You

can use manual IPv4 as well as OpenDNS for this, just as with FreeBSD.

When network configuration is done, open a terminal and test Internet access with

this command:

$ ping www.google.com

If this command fails, try pinging an IP address:

$ ping 8.8.8.8

If pinging IP addresses succeeds, it just means your DNS resolver is not configured

correctly; if it fails, your network configuration is not a good one. For any DNS

woes, you might like to remember that OpenDNS servers are 208.67.222.222 and

208.67.220.220.

Once your Internet access is working seamlessly, you can continue further onto the

filesystems screen in Linux installer, where you should use the Something Else option so

as to reuse the layout we created earlier (during FreeBSD installation).

Among the myriad filesystem options for Linux, the two of most interest are Ext2

and Ext4. Ext2 has been the standard Linux workhorse for quite a while. Its offshoot Ext4

has built-in support for SSD TRIM with the discard filesystem attribute. The Linux Mint

Figure 5-17.  Network connection editor

Chapter 5 Installing and Configuring FreeBSD/Linux

127

installer does not seem to offer the facility to use custom options for mkfs.ext4, but this

is not a serious problem. You can still enable discard as a mount option in /etc/fstab

once Linux installation finishes.

When you reach the filesystems section, your screen will look like Figure 5-18.

This layout is created by FreeBSD. You can click on /dev/sda1, and then click the

Change button to have Linux setup format the partition as Ext4 and mount it as the /

filesystem for Linux. Refer, if needed, to Figure 5-19.

Figure 5-18.  Partition layout (as created by FreeBSD)

Figure 5-19.  /dev/sda1 configured as an Ext4 partition (to host/filesystem)

Chapter 5 Installing and Configuring FreeBSD/Linux

128

Linux setup will usually pick up /dev/sda3 on its own as a Linux Swap partition to be

formatted and used as such. If not, you can enforce the necessary change.

Refer to Figure 5-20. The black rectangle is the final filesystem layout.

Next, change the device for bootloader (Grub) installation to /dev/sda1. The lower

half of Figure 5-20 illustrates that too. When being written to the MBR, Grub has the

strange habit of not writing out a proper boot sequence (which can be chain-loaded by

other bootloaders) to the first sector of Linux’s root partition. Installing Grub to the first

sector of Linux’s root partition fixes that problem.

Note O n an MBR disk, FreeBSD boot0 can readily boot FreeBSD, Linux, and
Windows.

Because Linux Grub (GRand Unified Bootloader) is not able to boot FreeBSD without
extra work, the ideal bootstrap mechanism is FreeBSD boot0 manager on the MBR,
and Linux Grub on its own partition.

If someone or something overwrites the MBR, you can reinstall FreeBSD’s boot0 by
booting into a Fixit/Live shell with your FreeBSD installer CD, and then issuing the
boot0cfg -B /dev/ada0 command.

Figure 5-20.  Where to install Grub

Chapter 5 Installing and Configuring FreeBSD/Linux

129

On a disk partitioned GPT, the reverse becomes true: it is easier to boot FreeBSD
with Linux Grub than to boot Linux with FreeBSD. In Section 5.10 (which discusses
dual-booting FreeBSD and Linux on a GPT disk), we use that convenience to our
advantage.

You can now click the Install Now button and complete the installation of Linux.

When you reboot, you can switch to the freshly installed Linux system with F1 .

One peculiar problem you could run into booting a fresh Linux box installed from

a USB memory stick is device name bungling. It occasionally happens that the USB

stick gets enumerated as /dev/sda at the time of installation, and your hard disk gets

enumerated as /dev/sdb. After installation is over, when you boot into Linux from the

hard disk (with the USB stick removed), the bootloader will fail to find the root filesystem

(which was enumerated during installation as sdb1, but now is sda1).

If such a malady afflicts you, there is a workaround: boot into Live mode with Linux

setup, mount your Linux installation at /tmp, and then alter its /etc/fstab (which now is

/tmp/etc/fstab) such that its root filesystem matches the device node it would be with

the USB stick removed (in other words, sdb1 → sda1). Unmount /tmp and reboot (with

no USB stick attached).

Of course, the best solution is still the original recommendation—install Unix from

optical media, not USB.

Unlike FreeBSD, Linux needs very little post-install configuration. The three points

that I can mention as relevant to Linux configuration (which are anything in the nature

of widely-needed) would be use of the discard option (if your hard disk is SSD); use of

UTC (Coordinated Universal Time) for timezone configuration; and addressing possibly

non-functional USB3 ports.

If your hard disk is an SSD, check whether the option discard has been applied to

your Linux /filesystem’s mounting options. If you find the flags in /etc/fstab to be rw,

change the flags to rw,discard. Linux kernel honors the discard mount option for all

native filesystem types (Ext2/Ext3/Ext4), not just Ext4.

Linux setup by default turns on UTC, which means your CMOS clock’s time will hold

what the Queen of England would consider the local time. This can be a problem for

other operating systems, and perhaps unwelcome from the user’s own viewpoint. You

can, if you want, disable UTC and revert to the actual local time in CMOS clock with:

timedatectl set-local-rtc 1

Chapter 5 Installing and Configuring FreeBSD/Linux

130

XHCI (USB3) might not work out-of-the-box for you under Linux. If the USB3 ports

are not working, you can do the following:

	 1.	 Boot Linux. Press e at Grub’s loader prompt to edit startup

parameters.

	 2.	 Locate the line starting with linux.

	 3.	 Append to that line: iommu=soft.

	 4.	 Boot (pressing the F10 key usually does this).

	 5.	 When the system is up, run this command (as root / via sudo):

update-grub.

5.9  �Post-Install Configuration of FreeBSD
All commands in this section use > to denote the root user’s shell prompt.

FreeBSD requires extensive post-install configuration. This can be a challenge the

first time you are installing FreeBSD. But luckily, most of the work can be automated. You

can write a few shell scripts to do the work for you unattended in future. The mkdesktop

utility—written by the author of this book and discussed at the end of this section (see

Subsection 5.9.9)—is perhaps the easiest-to-use automated system for post-install

configuration of FreeBSD.

But before using any automation products, you must first become extensively

familiar with the basic steps. Shying away from this preliminary stage is the most

frequent reason users fail to adapt to (and then possibly be fascinated with) the FreeBSD

operating system.

Note  Your FreeBSD box has no swap space yet. If you want FreeBSD to share the
linux-swap partition with Linux, refer to Article A.4 in the appendix. 

To list all disk devices (optical drive as well SATA/SSD disks), FreeBSD provides a
handy command: camcontrol devlist.

Chapter 5 Installing and Configuring FreeBSD/Linux

131

5.9.1  �Networking
Boot up and log in as root. If there are no error messages, test your Internet access:

> ping 8.8.178.110

> ping www.freebsd.org

If pinging the IP address fails, your network configuration is not a good one.

If pinging the IP address succeeds and pinging www.freebsd.org fails, it just means

your DNS resolver is not configured correctly. For any DNS/network failure, you can

reconfigure network with this command:

> bsdconfig networking

5.9.2  �Software Packaging Subsystem
The heart of FreeBSD’s package management is pkg, which ships as a stub in the base

system (/usr/sbin/pkg). Once FreeBSD has been installed, you can use the stub to pull

in the full-fledged software manager (/usr/local/sbin/pkg):

> pkg bootstrap -f

5.9.3  �A Friendlier Shell
The root user’s default shell under FreeBSD is C shell. FreeBSD recommends this

not be altered—otherwise, you might disrupt certain system facilities, e.g., chroot

environments.

You can, though, use the shell of your choice for toor, the root user’s mirror that has

all the privileges of root. This is what we do next.

Two equally good, modern and user-friendly shells are the Bourne Again SHell

(Bash) and Z shell (Zsh). Real estate is split as (left, Bash) and (right, Zsh):

> pkg install bash
> chsh -s /usr/local/bin/bash toor

> pkg install zsh
> chsh -s /usr/local/bin/zsh toor

Chapter 5 Installing and Configuring FreeBSD/Linux

http://www.freebsd.org/

132

5.9.4  �X Server
Install the X server and associated utilities:

> pkg install xorg hal dbus

While Xorg does not need DBus (Desktop Bus; facilitates inter-process

communication) and HAL (Hardware Abstraction Layer; allows desktop applications

to discover and use the host system’s hardware via an API), most desktop environments

under FreeBSD need both of them.

At this stage, many system files will need to be tweaked.

Append the following lines to /etc/fstab:

fdescfs /dev/fd fdescfs rw 0 0

procfs /proc procfs rw 0 0

Append the following lines to /etc/devfs.conf:

own /dev/pci root:operator

perm /dev/pci 0664

own /dev/dri/card0 root:operator

perm /dev/dri/card0 0664

own /dev/cd0 root:operator

perm /dev/cd0 0664

own /dev/xpt0 root:operator

perm /dev/xpt0 0664

own /dev/pass0 root:operator # This configuration is for:

perm /dev/pass0 0664 # CD/DVD drive & 1 hard disk.

 # If you have 2 hard-disks,

own /dev/pass1 root:operator # repeat pass1 lines to add

perm /dev/pass1 0664 # settings for /dev/pass2

Append the following lines to /etc/devfs.rules (you will almost certainly need to

create this file):

[system=10]

add path 'usb/*' mode 0664 group operator

add path 'cd*' mode 0664 group operator

Chapter 5 Installing and Configuring FreeBSD/Linux

133

add path 'da*' mode 0664 group operator

add path 'video*' mode 0664 group operator

Append the following lines to /etc/rc.conf:

devfs_system_ruleset="system"

dbus_enable="YES"

hald_enable="YES"

Append the following line to /boot/loader.conf (you may need to create this file):

kern.vty="vt"

Note U nder FreeBSD, the default kern.vty driver often is sc. This is now being
phased out in favor of vt. Recent versions of X.org do not work well with sc, and
need vt as the kern.vty driver.

5.9.5  �NVIDIA Graphics Driver Addition
Unlike ATI Radeon (as well as Intel) graphics support, which is shipped with FreeBSD in

its base system, NVIDIA graphics support needs you to install a package.

If your box has an NVIDIA graphics card, install the NVIDIA graphics driver:

> pkg install nvidia-driver

5.9.6  �NVIDIA and ATI Radeon Graphics Configuration
If your box has an NVIDIA/Radeon graphics chip, put the following in /etc/rc.local:

kldload nvidia
kldload nvidia-modeset

kldload radeon
kldloadradeonkms

The right place to load kernel modules is /boot/loader.conf, wherein appending

XYZ_load="YES" would load the module XYZ.ko into the FreeBSD kernel at boot time.

Radeonkms, however, currently fails from /boot/loader.conf, which is why the alternate

route via /etc/rc.local is suggested here.

Chapter 5 Installing and Configuring FreeBSD/Linux

134

5.9.7  �User Accounts
If you did not create any normal user accounts at the time of installation, now is a good

time to make reparations for your sins. If you did create a normal user account, you have

another kind of sin to atone for—the FreeBSD user’s ID (UID) would likely be different

from the UID under the Linux system. For a box that dual-boots between Linux and

FreeBSD, it is preferable that the UID of the normal user account is the same across

Linux and FreeBSD. This avoids permissions woes when accessing files used under both

installations.

Linux usually adds the first normal account with the UID 1000 and the group ID (GID)

1000 as well. You can use the interactive command adduser to add a normal user account

under FreeBSD—and then force the UID 1000 during the interaction. If you want, you

can make the normal user “pretty powerful” by telling adduser to create the user with

additional membership of the groups wheel and operator.

Note U nder FreeBSD, only members of the group wheel can switch to the
root user account with su. Members of the group operator are granted some
additional privileges for dealing with devices (e.g., the printer).

If you need to modify an existing FreeBSD user—let’s say named uvanilla (primary

group name gvanilla) so that IDs are in sync with Linux (username and group name

can differ from Linux; only the IDs matter), use the non-interactive command pw:

> pw groupmod -n gvanilla -g 1000

> pw usermod -n uvanilla -u 1000 -g 1000

> pw usermod -n uvanilla -G wheel,operator # Optional extra groups

Note  With all this done, it is time to reboot (with the command reboot).
Upon reboot, log in as the normal user and then issue the command startx.
If everything is working correctly, startx will launch an X session using the
TWM (Tab Window Manager) mini-desktop environment embedded into the X.org
distribution.

If an X session comes up, your FreeBSD installation is raring to go up to the next
level—installation of a full-fledged desktop environment.

Chapter 5 Installing and Configuring FreeBSD/Linux

135

If not, you can find out what went wrong by looking up /var/log/Xorg.0.log in
a text editor or file viewer. For example: 

> less /var/log/Xorg.0.log

About half a dozen desktop environments work well under FreeBSD: KDE, GNOME,

Mate, Xfce, LXDE, (work-in-progress) and Lumina.

We consider KDE and GNOME in the discussion that follows.

5.9.8  �Graphical Desktop Environment
To install KDE or GNOME, execute one of the following two commands:

> pkg install kde > pkg install gnome3

KDE and GNOME have their own display managers to perform the login, which can

be enabled for boot-time launch via /etc/rc.conf:

gnome_enable="YES" # boots into GNOME display manager gdm

kdm4_enable="YES" # boots into KDE display manager kdm

If you want to start X sessions manually, create the file $HOME/.xinitrc under your

normal user account and put one of the following two lines in it:

exec /usr/local/bin/gnome-session # starts GNOME desktop

exec /usr/local/bin/startkde # starts KDE desktop

You can now start your desktop environment from the shell with startx (as the

normal user).

5.9.9  �Making Things Easier: A Simpler Way to Configure
FreeBSD

For newcomers—and occasionally veterans too—it might seem a rigmarole configuring

a fresh FreeBSD installation. Luckily, there is a new way to configure FreeBSD lets you

configure the entire system in a single shot. You can use the port mkdesktop:

> portsnap fetch extract

> cd /usr/ports/sysutils/mkdesktop

> make install clean

Chapter 5 Installing and Configuring FreeBSD/Linux

136

Now just run mkdesktop.

The default desktop environment that mkdesktop currently uses is a lightweight

version of KDE4 (use kde-runtime + kde-baseapps + kde-workspace).

If you want to use GNOME3, run the following command in a separate terminal

Alt + F2 after mkdesktop has gone through its initialization routine:

echo "gnome3" > ~/mkdesktop/pkg_list/desktop

This command must be executed after mkdesktop says it has initialized itself.

By default, mkdesktop works with five stages:

 [pre_x: The stage where you can get console-mode applications]

 x: Usually just gets xorg

 [post_x: �X applications not specific a Desktop Environment (DE):

firefox; xmms]

 desktop: �What you define as the DE – wired by default for

lightweight kde4

[post_desktop: �DE stuff the desktop stage itself does not get:

ksnapshot; kcalc]

Stages listed in square brackets are ones that start out as empty lists by default. Each

stage—as well as the number of stages—can be customized as per user requirement.

Once the stages have been processed, a postproc routine lets you install emulation

layers (Wine; Linuxulator) and set up the most important configuration files under /etc

to function out of the box upon reboot.

If you run mkdesktop with the argument --begin 0, it will additionally configure the

graphics subsystem for you.

5.10  Dual-Booting FreeBSD and Linux on a GPT Disk
Let’s say you have a disk-sized 4TB. You have to use GPT for such a disk, because MBR

can only address 2TB (maximum).

Let’s further say you want FreeBSD / to be 50GB, and Linux / to be 30GB.

Points to note:

•	 FreeBSD under GPT needs one extra partition: type freebsd-boot,

maximum size 512 KB. This is besides a partition of type freebsd-

ufs, which serves as the root filesystem (/) and which can be of any

Chapter 5 Installing and Configuring FreeBSD/Linux

137

size. As a side note, the freebsd-boot partition is never mounted.

It just holds extra boot code that can (and should) be ignored by the

user during normal work.

•	 Dual-booting Linux and FreeBSD under GPT is easier done with

Linux Grub. When booting FreeBSD, Linux Grub should directly

boot the partition that corresponds to / (and not the freebsd-boot

partition).

Install FreeBSD first and create six partitions:

ada0p1: type freebsd-boot; size 512KB

ada0p2: type freebsd-ufs; size 50GB

ada0p3: type freebsd-swap; suggested size would be amount of

RAM + 1GB

ada0p4: type linux-data; size 30GB

ada0p5: type linux-swap; suggested size would be amount of

RAM + 1GB

ada0p6: type linux-data; size is whatever is left (≈ 3.9TB)

Unlike in the MBR strategy, this time around we use separate swap partitions for

FreeBSD and Linux—owing entirely to the humongous size of our disk. You can, if you

want, continue to share a single swap partition between the two operating systems.

Go through and complete the FreeBSD installation.

Next, install Linux using sda4 as the / mountpoint. Set the device for bootloader

(Grub) installation as /dev/sda (which should be the default), and not /dev/sda4.

Once your Linux system is functional, open the file /etc/grub.d/40_custom in a text

editor and add a new entry for the second GPT partition (which is our FreeBSD /):

menuentry "FreeBSD" {

 insmod ufs2

 set root=(hd0,gpt2)

 kfreebsd /boot/loader

}

Then run grub-mkconfig -o /boot/grub/grub.cfg. You can now reboot and

happily choose which OS to launch: Linux or FreeBSD.

Chapter 5 Installing and Configuring FreeBSD/Linux

138

For the sake of reference, GUIDs for some partition types are mentioned here:

 linux-data: 0fc63daf-8483-4772-8e79-3d69d8477de4

 linux-swap: 0657fd6d-a4ab-43c4-84e5-0933c84b4f4f

 freebsd-ufs: 516e7cb6-6ecf-11d6-8ff8-00022d09712b

 freebsd-swap: 516e7cb5-6ecf-11d6-8ff8-00022d09712b

fat / fat32 / ntfs: ebd0a0a2-b9e5-4433-87c0-68b6b72699c7

Note  Beware of one GPT pitfall: the scheme encourages poorly planned, ad hoc
partitioning. If you create 100 partitions in your disk, it won’t be easy to locate
which file dwells under which partition.

5.11  �Summary
Installing and configuring Unix is as much fun as it is rewarding. Unix is incredibly

scientific in its philosophy and implementation. Each time you install and configure

FreeBSD and/or Linux, you come away with a sense of having been educated. Everyone

struggles a bit the first time around, but this chapter lumps together all that can be

delivered generally for you to successfully set up Unix on your PC.

Now that we have it, we are going to have to look at administering it, which happens

in the chapter that follows.

Chapter 5 Installing and Configuring FreeBSD/Linux

139
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_6

CHAPTER 6

Basic System
Administration
There used to be a time when administering Unix was considered a hallowed task, open

only to super-experts whose salaries were a source of much envy. With the onset of the

GNU revolution, that happily has changed to a situation in which administering a Unix

desktop requires less overhead than Windows, which still uses the obsolescent search-

download-install-configure cycle for every small change in the system.

Administering a Unix server (to host services like mail, firewall, and DNS) still

requires a fair bit of knowledge, expertise, and willingness to tinker. But luckily our

discussion is not about Unix services—just a good, modern desktop box. That is

something that everyone can—and should—do by himself or herself.

6.1  �Being Root
Under FreeBSD, you can be root whenever you need. Under Linux, one cannot be sure.

(Commands in this chapter assume root credentials, unless noted otherwise.)

The first thing you need to be sure of under Linux is that you can switch to the

superuser (root) account:

USER> su -

Ubuntu-flavored distributions encourage the user not to switch to root user account

and use sudo instead. The system installer is automatically granted sudo privileges. So to

run any command as root, just feed the command as an argument to sudo. To actually

switch to the root user account, you must first set the root user’s password:

% sudo passwd root

140

If you are on a freshly installed Linux box, update the system to retrieve all the

important fixes issued since the installer was rolled out:

ROOT# pacman -Syyu # Arch

% sudo apt update && apt upgrade # Ubuntu

The rest of the chapter assumes the lead 'sudo' as and when needed

6.2  �Local Filesystems
Most of the time, the only mounted filesystem after a fresh installation is the / filesystem.

You must make a note of—and then remember—the device node that gets mounted as /.

Linux defaults to using UUID to denote filesystems in /etc/fstab. This has minor

advantages and major disadvantages. The traditional device node nomenclature is more

transparent and easy to remember—you anyway do not want / to be loaded via dynamic

references. Imagine if you needed to carry out a filesystem consistency check with fsck

and without any fond memories of the device node for /.

If there are any partitions (beyond /) in your hard disk you need to access, create

a mountpoint directory, typically under /mnt, and add an entry in /etc/fstab. For

example, let’s say you have a logical drive (formatted as Ext2) in your extended partition.

You can mount it with the following entry in /etc/fstab:

/dev/ada0s5 /mnt/ext2 ext2fs rw 0 0 # FreeBSD fstab

/dev/sda5 /mnt/ext2 ext2 rw 0 0 # Linux fstab

With this line, you can now mount the filesystem of ada0s5 (FreeBSD)/sda5 (Linux)

with the mount /mnt/ext2 command.

Note  Under FreeBSD, you need to first load the ext2fs driver into the kernel
with kldload ext2fs. This can be automated by appending the following line to
/etc/rc.conf: 

linux_enable=YES

If you do not want to create an entry in /etc/fstab, you can simply use the
full-fledged mount command:

mount -t ext2fs /dev/ada0s5 /mnt/ext2 # FreeBSD

mount -t ext2 /dev/sda5 /mnt/ext2 # Linux

Chapter 6 Basic System Administration

141

When the system reboots, /mnt/ext2 will get automatically mounted if an entry

is made in /etc/fstab. If you want automatic mounting disabled, change the mount

flags in /etc/fstab from rw to rw,noauto. rw, as you might have guessed, stands for

read+write, which has a read-only counterpart, called ro.

Optical media can be mounted similarly (with a mountpoint directory first created):

/dev/dvd /mnt/dvd cd9660 ro,noauto 0 0 # FreeBSD fstab

/dev/sr0 /mnt/cdrom iso9660 ro,noauto 0 0 # Linux fstab

Removable USB disks can be mounted easily too. If you have a USB stick formatted

as FAT/FAT32, create a mountpoint (/mnt/stick) and then alter /etc/fstab:

/dev/da0s1 /mnt/stick msdosfs rw,noauto 0 0 # FreeBSD fstab

/dev/sdb1 /mnt/stick msdos rw,noauto 0 0 # Linux fstab

This assumes the USB stick is attached as da0 (FreeBSD) or sdb (Linux). If you are

unsure of the correct device node, check the output of the command dmesg.

Note  Unix user-level access to non-optical disks does not differentiate between
the connection interface: SATA/SSD/USB disks are all treated uniformly with the
same commands.

FreeBSD does though score a minor yet significant point over Linux in the device
nomenclature for disks. While SATA/SSD devices show up as /dev/ada* entries
(ada = ATA Direct Access), USB media use a different series: /dev/da*
(da = Direct Access).

This clarity is missing under Linux, wherein all disks—whether SATA/SSD or
USB—use the same series: /dev/sd*. This could at times result in confusion and
the need to troubleshoot the system.

Chapter 6 Basic System Administration

142

If the USB stick is formatted as NTFS, it needs a bit more effort.

Under Linux, use modprobe ntfs to load the NTFS module and then alter

/etc/fstab:

/dev/sdb1 /mnt/stick ntfs rw,noauto 0 0 # Linux fstab

FreeBSD does not support the NTFS driver in the kernel itself—you need to use the

fuse library:

pkg install fusefs-ntfs

kldload fuse # if not loaded already

ntfs-3g -o rw /dev/da0s1 /mnt/stick

If you need to format a USB stick or disk partition afresh, avoid using FAT/NTFS:

those filesystems have no understanding of Unix permissions, as a result of which every

entity placed therein is marked as universally writeable and executable.

Perhaps the best candidate for formatting removable media now is Ext2, support for

which is available under all major operating systems:

•	 Windows users can use ext2fsd, the Ext2 filesystem driver for

Windows available at https://sourceforge.net/projects/

ext2fsd/.

•	 FreeBSD can access Ext2 filesystems with the ext2fs driver, and

further can format a partition as Ext2 with the mke2fs utility, which is

part of the e2fsprogs package: pkg install e2fsprogs.

Linux can mount UFS partitions read-only once you have loaded the UFS module:

modprobe ufs

FreeBSD can mount Ext2/Ext3 partitions read+write once either or both Ext2fs and

Linux modules have been loaded: kldload ext2fs -or- kldload linux

Ext4 partitions can be mounted under FreeBSD as read-only via fuse support:

kldload fuse # if not loaded already

kldload linux # if not loaded already

pkg install fusefs-ext4fuse

ext4fuse <ext4_partition_node> <mountpoint>

Chapter 6 Basic System Administration

https://sourceforge.net/projects/ext2fsd/
https://sourceforge.net/projects/ext2fsd/

143

The final—and the most important—point in this section is manual filesystem

consistency check you must carry out on every filesystem mounted in read+write mode

whenever there is an improper shutdown. Since we are not dealing with alternative

filesystems such as btrfs (Linux) and ZFS (FreeBSD), this section deals with the

traditional fsck for Ext2 (Linux) filesystems and UFS (FreeBSD).

When you experience an improper shutdown, boot into single-user mode using the

bootloader menus. For FreeBSD, this is usually done with at the bootloader menu.

For Linux, you need to press to edit the boot command sequence, locate the line

beginning with linux, append either single or S to that line, and then press .

When you have entered the single-user shell, execute the following commands,

which assume that Linux / is /dev/sda1 (Ext4) and FreeBSD / is /dev/ada0s2a (UFS):

For Linux ext4: fsck.ext4 -fy /dev/sda1

Or, for an ext2 partition: fsck.ext2 -fy /dev/sda1

For FreeBSD UFS: fsck -fy /dev/ada0s2a

•	 The foregoing commands perform checks for / only: You need to

carry them out for each filesystem mounted rw (read+write) at the

time of the improper shutdown.

•	 fsck may report that a second run is needed. If so, re-run fsck.

•	 If e2fsprogs is installed, FreeBSD can carry out fsck.ext2 /

fsck.ext3 / fsck.ext4 on Linux filesystems too. But this is

not necessarily recommendable: FreeBSD fsck.ext[234] has

not yet matured to the point where it can reliably do the job. But

there are no penalties either: if FreeBSD fsck.ext[234] fails, all

that happens is that you get an error message clearly stating the

failure, in which case you can boot into Linux and use Linux fsck.

ext[234] to finish the job.

Chapter 6 Basic System Administration

144

6.3  �Partition Management
Partition formatting is done with newfs (FreeBSD) and mke2fs (Linux).

A newfs invocation usually turns on soft updates, the FreeBSD counterpart of

journaling in Linux (Ext3) filesystems:

newfs -U <node>

where <node> is the device node of the partition to be formatted

If <node> lies in a solid state disk, you can turn on discard (TRIM) support with the

additional argument -t to newfs. Later, you can use the tunefs command:

tunefs -t enable <node>

enable TRIM in existing (but unmounted) UFS filesystem

To format a partition under Linux (or FreeBSD) as Ext2, use mke2fs <node>.

For SSD TRIM, you can add discard support, which works best in Ext4 format:

mke2fs -t ext4 -E discard <node>

You can add discard support to an existing (unmounted) Ext2/Ext3/Ext4 partition too:

tune2fs -o discard <node>

FreeBSD does not yet recognize/honor the discard attribute when mounting

partitions of type Ext2/Ext3/Ext4. So when mounting Linux filesystems under FreeBSD,

omit the discard option in FreeBSD’s /etc/fstab; otherwise, the mount will not

succeed.

To add or delete partitions in a disk, the standard commands are gpart (FreeBSD)

and fdisk (Linux). Linux fdisk is interactive, and hence readily usable with no prior

experience. A cute variant is cfdisk, which uses ncurses widgets.

FreeBSD gpart needs some getting used to. The USB-stick tutorial is a start. The

example underneath creates the MBR schema and then two slices (primary partitions) in

a USB stick attached as /dev/da0. One slice, sized 1GB, contains a UFS partition and the

other slice is Ext2 (spanning the rest of the stick):

type mke2fs &>/dev/null || pkg install e2fsprogs

gpart destroy -F da0 2>/dev/null

gpart create -s MBR da0

Chapter 6 Basic System Administration

145

gpart add -s 1G -t freebsd da0 # adds da0s1 as a slice

gpart create -s BSD da0s1 # creates BSD nesting schema on da0s1

gpart add -t freebsd-ufs da0s1 # creates partition da0s1a in the slice

gpart add -t linux-data da0 # adds da0s2 spanning remaining disk

newfs -U /dev/da0s1a

mke2fs /dev/da0s2

The bootcode subcommand of gpart can also insert booting code into a disk/slice.

You can read man gpart for usage, while a few points are noted here.

•	 For MBR partitioned disks, there are two versions of the bootcode

that can be put into the first sector (512 byte block) of the disk:

1.	 /boot/mbr is the non-interactive version, and it will simply

boot the slice marked as active in the disk’s MBR table. If that

slice is of type freebsd, it needs to have the bootcode /boot/

boot written to it (with gpart again).

2.	 /boot/boot0 is the interactive version, and it will present a list

of bootable slices in the disk, each of which can be booted with

a corresponding Function key: . Again, if

any of the (max four) bootable slices is of type freebsd, it

needs to have the bootcode /boot/boot written to it.

•	 GPT partitioned disks too must use a version of the MBR known as

Protective MBR for the disk’s first sector. The code for that version is /

boot/pmbr.

Each MBR disk reserves the disk’s first block of 512 bytes, as follows:

•	 446 bytes for the boot code

•	 64 bytes for a table that records the start/end/fstype of four slices

•	 Two bytes for a checksum

Chapter 6 Basic System Administration

146

6.4  �Console Configuration
Console-mode usage of the computer has been falling out of favor for a while now, and

that trend will probably continue.

Linux essentially has very little by way of console-mode usage. The only console-

mode usage under Linux happens when you need to run fsck in a single-user shell.

FreeBSD still has a significant (but rapidly dwindling) console life. If you just feel

like having fun without X, FreeBSD can deliver some nice juice: text editing (Vim or Joe),

email (alpine), music (mp3blaster), chat (irssi), and even a few games (vitetris, the Tetris

game). And then, on a dull day, you might flirt with the cookies: /usr/games/fortune.

To drop into console-mode FreeBSD, this is what you can do:

	 1.	 Run the command bsdconfig console. This sets your console

preferences: saver; key-rate.

	 2.	 Append this line to /boot/loader.conf: kern.vty=sc.

Note  The line above will prevent start-up of X server, which needs vt as kern.
vty driver.

	 3.	 Disable any X login manager (gdm/kdm) in /etc/rc.conf.

	 4.	 Reboot.

While you are at the console, remember that you can open additional terminal

windows with and so on.

When you have had enough console-mode fun, you can return to the X environment.

For that, you will likely need to readjust the kern.vty driver in /boot/loader.conf from

sc to vt (and then reboot). Otherwise, the X server might refuse to start.

6.5  �Internet Connectivity
Since wired Ethernet cards are supported under Unix as well as—perhaps even better

than—Windows, wired NIC (Network Interface Card) drivers are usually not an

issue. This is in stark contrast to wireless cards, for which OEM (Original Equipment

Manufacturer) support to the open-source community ranges from scandalously poor

to zilch. The only OEM that provides good open-source support for its wireless NIC is

Atheros, and these cards are not easy to find in the market.

Chapter 6 Basic System Administration

147

For this discussion, we assume that you are using wired Ethernet for your Unix box.

Just in case you are not aware, we’ll first discuss a couple of abbreviations.

•	 DNS (Domain Name Service)

When you call John Doe on his mobile, it is good to have his name.

But the more important part is his mobile number. Precisely in

that spirit, when you want to open the URL www.yahoo.co.uk in

your web browser, you need the numeric (IP) address of www.

yahoo.co.uk (which would be of the form 1.2.3.4). Since it is

unlikely that you or the browser has that address, somebody must

fill in this crucial part of the jigsaw puzzle: what is the IP address

of www.yahoo.co.uk ?

That’s where DNS comes in. Your web navigation request first

goes to a predesignated DNS resolver, which tells your browser the

IP address for www.yahoo.co.uk.

•	 DHCP (Dynamic Host Configuration Protocol)

Just as www.yahoo.co.uk maps to an IP address, your computer

too must have a valid IP configuration when connecting to the

Internet. Manually supplying your host an IP configuration needs

a few tidbits strung together: host IP address; netmask; address

of the machine (gateway/router/modem) that will send/receive

packets on behalf of your computer; and address of the DNS

resolver.

Often, the gateway (or perhaps the modem your box connects to)

can automatically supply your host with a valid IP configuration

when the host machine boots up. That happens when the gateway

is running a service known as DHCP. In such a case, your host

can simply accept DHCP configuration for connecting to the

Internet—everything happens auto-magically thereafter.

Both FreeBSD and Linux use a couple of files for DNS resolution:

/etc/resolv.conf lists the DNS resolver addresses.

/etc/hosts lists hostnames that get resolved locally without querying DNS resolvers.

Chapter 6 Basic System Administration

http://www.yahoo.co.uk/
http://www.yahoo.co.uk/
http://www.yahoo.co.uk/
http://www.yahoo.co.uk/
http://www.yahoo.co.uk/
http://www.yahoo.co.uk/

148

You should not insert anything in /etc/resolv.conf manually (except for one-time

usage)—your changes will likely be wiped out by a reboot.

If you need to navigate to www.yahoo.co.uk without assistance from any DNS

resolver, you can ping www.yahoo.co.uk on the command line, make a note of the

responding IP address, and put that address in /etc/hosts:

106.10.160.45 www.yahoo.co.uk

That hack works only as long as www.yahoo.co.uk continues to service under the IP

address 106.10.160.45. When that changes, you can delete the line in /etc/hosts and

return to good, old DNS-based navigation.

FreeBSD configuration for network interfaces is done with:

bsdconfig networking

This command lets you set a variety of networking parameters—hostname; local

host’s IP address (if not using DHCP); DNS resolvers; default router/gateway; and

(optional) use of IPv6. In case you do not have any preferred DNS resolvers of your own,

you can always use OpenDNS: 208.67.222.222 and 208.67.220.220.

If you need to restart FreeBSD network services, use the following command:

service netif restart && service routing restart

Linux has equivalent commands:

service network-manager restart # Ubuntu

systemctl restart NetworkManager # Arch

If your Linux Ethernet configuration gets messed up, use the nmtui command to

generate a new Ethernet connection profile.

An easy way to generate a new Ethernet connection profile under Linux is to first run

the ip link command and get your NIC’s MAC (hardware) address, which is a colon-

separated hexadecimal string in the output.

Then run nmtui, delete all Ethernet profiles (if any), and create a new one. Put

eth0 in the Profile Name field, and use the MAC address in the Device field. If needed,

adjust the connection properties—for instance, Automatic (DHCP) or Manual. Refer to

Figure 6-1.

Chapter 6 Basic System Administration

http://www.yahoo.co.uk/
http://www.yahoo.co.uk/
http://www.yahoo.co.uk/

149

When you save the profile, it should automatically be activated.

If you need any further help, it promises to get messy. True to its bleeding-edge

flux, Linux networking varies between red and green and blue—things that should be

handled in the base system are handled instead by the flavors and distributions, each

of which is deterministically avowed to do things its own way and break any degree of

compatibility with other distributions:

•	 nmtui might not be available. The distributor chose to omit it from

the base distribution.

•	 nmtui installation occurs as part of another package, the name of

which could be networkmanager, NetworkManager, or network-

manager.

For the case nmtui is not installed, we’ll take up the following example for nmtui

installation under Arch (with Ubuntu notes in comments), assuming that the system

currently has a wired Ethernet card with no Internet connectivity as yet.

To get one-time Internet connectivity, first run ip link to extract a couple of

important tidbits, which we save as the placeholders:

ip link

Note your ethernet card's name (e.g. enp0s3) => <eth>

Note your card's MAC address (e.g. 08:00:27:24:10:4a) => <mac>

Figure 6-1.  Generating a new Ethernet profile with nmtui

Chapter 6 Basic System Administration

150

Make sure you save <eth> and <mac> in a plain-text file somewhere.

If /etc/resolv.conf is empty, put in the following:

nameserver 208.67.222.222

nameserver 208.67.220.220

Then continue as follows (assuming you want your box to be 192.168.1.100):

ip link set <eth> up

ip addr add 192.168.1.100/24 broadcast 192.168.1.255 dev <eth>

ip route add default via 192.168.1.1

pacman -Ssy #skip for Ubuntu

pacman -S networkmanager #Ubuntu: apt-get install network-manager

systemctl enable NetworkManager #Ubuntu: systemctl enable network-manager

systemctl start NetworkManager #Ubuntu: systemctl start network-manager

Adjust the preceding snippet if and as needed for:

•	 <eth>: This should be the device name as reported by ip link; e.g.,

enp0s3

•	 Your host’s IP address (assumed to be 192.168.1.100)

•	 Gateway/default router IP (assumed to be 192.168.1.1)

•	 Netmask (assumed to be 24)

At this stage, you must reboot. When you come up afresh, you will not have any

Internet connectivity, but you do have the all-important nmtui command.

Run nmtui to generate a new, persistent Ethernet profile that will survive the next

reboot. All that you need for that is the MAC address, which we so wisely saved as <mac>

at the outset. That MAC address corresponds to the Device field, while for the Profile

Name you can use eth0. If DHCP is not to be used, change automatic to a manual

configuration.

6.6  �Sound Configuration
Just as with Ethernet, sound chipsets used nowadays are shipped onboard as part of the

motherboard. Since motherboard manufacturers are strongly inclined to provide drivers

to all major operating systems, your sound card is virtually certain to work out-of-the-box,

Chapter 6 Basic System Administration

151

even better than under Windows, where a driver installation would usually be needed.

Unix kernels ship with support for every major sound chipset in the market.

The most you might need to do is to manually load the driver into the kernel (with

kldload under FreeBSD or modprobe under Linux). That happens if the sound card is not

plug-and-play, which luckily is nowadays an almost nonexistent scenario.

FreeBSD provides an easy way to check whether your sound card is recognized for

what it is. The first couple of lines you get from cat /dev/sndstat should match your

sound card, with an example of the output from my system:

Installed devices:

pcm0: <CMedia CMI8738> (play/rec) default # My CMedia 8738 chip

The more pressing concern might be to configure your sound card’s play

characteristics, such as volume. For that, you can use a mixer application to tune the

card. For example, aumix is a command-line utility that can set and save your mixer

settings. Some desktop environments have an integrated mixer that does the job. For

instance, KDE provides kmix.

6.7  �X Configuration
Here’s the good news: X nowadays needs no configuration. Over the years, X has

matured so handsomely that the system takes care of the entire configuration innately:

graphics, keyboard, and mouse—the whole caboodle.

Since Linux distributions usually ship with X and a wired desktop environment, the

system will automatically launch into an X session when booted.

If you need to disable Linux’s automatic X startup at boot time, use systemctl:

systemctl set-default multi-user.target # Boots into console-mode

Besides multi-user.target, the other chief target is graphical.target, which

usually is the default-as-shipped and starts X at boot time. To get the current target, you

can use systemctl get-default.

For FreeBSD, remember that if you are using a Radeon or NVIDIA graphics chip, you

need to kldload a couple of modules:

(radeon, radeonkms) for ATI Radeon cards

(nvidia, nvidia-modeset) for NVIDIA cards

Chapter 6 Basic System Administration

152

The right place to automate loading any kernel module into the FreeBSD kernel

usually is /boot/loader.conf. But radeonkms currently fails to load from that file, which

is why it is suggested you automate the loading of a graphics chip’s modules via /etc/

rc.local. Any other kernel module, let’s say ums.ko, can be loaded at boot time by

appending to /boot/loader.conf: ums_load=YES.

Since your keyboard and mouse will likely be standard USB devices, they should

work flawlessly with the generic drivers in the kernel. The only “add-on” feature that has

gained popularity of late in this segment is the use of keyboard backlights, which make it

very easy to work with the keyboard even in the dark. You may be able to use a dedicated

key on the keyboard to switch backlights on or off. If not, there is command-line fallback,

called xset led on.

You can even automate backlights to be switched on when you log in with X, by

putting this line into your shell’s configuration, perhaps $HOME/.bashrc:

pgrep -x Xorg >/dev/null && xset led on

A couple of X informational/troubleshooting utilities are xlogo and xkill,

available via package names with the same respective names. xlogo displays the X logo,

while xkill gives you a Jolly Roger cursor that you can place on the window of an

X application that has run amok: Roger’s skull will kill the misbehaving application.

We’ll now look at a worst-case scenario: you happen to be using a graphics chipset

for which a Unix driver is not yet available.

That’s bad news, agreed. But still not as bad as it initially sounds. If a driver is not

available for your graphics chip, that does not hinder your usage of the computer for

“normal” work. What is affected is your ability to play multimedia files (video playback in

your .avi/.mp4/other such files, and some games, which there anyway are not so many of

under Unix, at least compared to DOS/Windows).

Video content uses a hardware acceleration facility known as Direct Rendering

Infrastructure (DRI), which is only available with a full-fledged driver. If you try to play a

video file with no DRI support available, its frames will move in jerks rather than fluidly.

If video playback is not high on your list of priorities, your graphics chip can usually be

made to work very satisfactorily—while open-source developers work assiduously in the

background to remove the driver hiccup for you.

In such cases, this is what you can do (as root):

	 1.	 Run this command while in text mode: Xorg -configure

	 2.	 Open the file generated in Step 1 in a text editor.

Chapter 6 Basic System Administration

153

	 3.	 Locate the line with the setting for Driver in the section titled

Device (recheck the section title: Device; not InputDevice).

	 4.	 Replace the value of the Driver setting (whatever it is) with vesa.

	 5.	 Move the altered configuration file to /etc/X11/.

Now use startx (as a normal user; not as root) to start the X server with the generic

vesa driver. Your system will work absolutely fine—just with the rider that video

playback for movie files will be fidgety.

6.8  �Running X Applications as Root
You must never run the X server directly as root—that is supposed to be a major security

loophole. The only time root is permitted to use the startx command is to check that X

was installed correctly.

Run the X server as a normal user with the command startx. It goes without

saying the X applications (clients) should also be run as the normal user—that happens

automatically anyway.

There are a few (not zero, but, yes, very few) X applications that currently need to

be run as root directly. One such application is xconsole under FreeBSD, which lists

console messages that appear on /dev/ttyv0 for example, whenever you plug in/out a

removable disk or when there has been a kernel-level error.

This is how you can run the useful-and-unwieldy xconsole under FreeBSD.

Remember that you have started the X server as the normal user. Once the X server

has started, it will only accept commands from you. But since xconsole will be run not

as you and as root instead, it creates a problem—how do you enable root to launch

xconsole under an already running X server? That can be done with xauth, which can

authorize an additional user to issue commands to the X server that you started.

You can install xauth and xconsole in one shot: pkg install xauth xconsole

Then run once as root, with <user> as a placeholder for your normal user account:

ROOT# touch /var/xauth.extract

ROOT# chown <user> /var/xauth.extract

Now run as the normal user (with an X session already started):

USER> xauth extract /var/xauth.extract $DISPLAY

Chapter 6 Basic System Administration

154

The root user can pick up the authorization and launch X applications:

ROOT# export DISPLAY=:0

ROOT# xauth merge /var/xauth.extract

ROOT# xconsole &

To confirm that xconsole is working as intended, just plug in a USB stick and watch

the messages appear in the xconsole window.

As root, do not overuse the authorization. Use it strictly for the useful-and-unwieldy

genre of X clients.

6.9  �Finding Local Files Quickly
Every now and then you’ll need to find filenames in the local system that match a certain

path string. Since the matching files could be under your $HOME or under /var or /etc

or /usr, the search would have to be rooted at /. But recursing down / with the find

command is less than ideal. If you are not convinced, try it right now:

find / -type f -name *.svg # When fed up, press Ctrl+C to stop the search

The solution is a database-backed search with locate:

type locate # �FreeBSD default: always available; Linux default: never

shipped

If locate is not installed in your Linux box, you need to install the mlocate package.

Ubuntu: ROOT# apt-get install mlocate

Arch: ROOT# pacman -S mlocate

Once that package has been installed, run updatedb as root:

ROOT# /usr/libexec/locate.updatedb # Path under FreeBSD

ROOT# /usr/bin/updatedb # Path under Linux

Now, for system-wide queries for file paths, you can query the updatedb database:

locate svg �# Find all files in the system with the string "svg" in

the path

Chapter 6 Basic System Administration

155

Each time you run locate, it will query the existing updatedb database. If your

database is old, you should first run updatedb (as root) and then query the refreshed

database. updatedb is fast. It returns within a few seconds, perhaps a high value of a

minute per TB (terra byte) in the host system’s storage. locate returns instantly.

6.10  �Configuring the Printer
Printing under Unix is mostly done with PostScript, a page description language

originally created at Adobe Systems. For a printer to work under Unix, the OEM

releases—at the very least—use what is known as a PostScript Printer Description (PPD)

file, which allows the printer to interface with the Common Unix Printing System, CUPS.

This is a good stage to check whether the cups package is installed. You should also

install cups-pdf so that you can use the Print-To-File facility to export any document as

a PDF. Use your system’s package manager to install both. FreeBSD users should also

append the following line to /etc/rc.conf: cupsd_enable=YES.

When CUPS is installed, the installation process will create a group named cups. Add

your normal user account (<normal> in the following commands) to that group:

ROOT# pw groupmod cups -m <normal> # FreeBSD

ROOT# usermod -a -G cups <normal> # Linux

After you added yourself to the group cups, it is strongly suggested that you reboot.

Your new group membership will not come into effect immediately.

For a USB printer, next make a note of your printer’s USB port. This is easy—just run

lsusb (Linux) or usbconfig (FreeBSD) twice. Once with the printer turned off, and then

the second time with the printer turned on. The additional port that shows up in the

second run is your USB printer.

OEM support for open-source printing has steadily improved over the last few years.

You must still query about a printer’s open-source driver status before any purchase.

Two major OEMs that provide Unix driver-level support for at least some printers are

Hewlett Packard (HP) and Epson.

HP has created a framework called HPLIP (HP Linux Imaging and Printing), which

readily recognizes all HP printers (at least the USB ones) under Linux as well as FreeBSD. HP

inkjet printers often use HP’s own print format (PCL) for communicating with the printer.

For an HP printer, all that the user usually needs to do is install the package hplip (as

root). Then run the command hp-setup (as the normal user) to create a queue for the

printer, which you can start feeding print jobs into.

Chapter 6 Basic System Administration

156

If hp-setup fails to locate your USB printer, check the permissions for the USB

port it is being hooked into. If the port is configured for root-user access only, set more

generous permissions for the port.

TROUBLESHOOTING USB DEVICE PERMISSIONS

In the output of usbconfig, my HP 1112 printer shows up at the USB port ugen2.4, which

in the filesystem is /dev/usb/2.4.0, so I put the following line (as root) into my FreeBSD

configuration file /etc/devfs.conf:

perm usb/2.4.0 0664

Then, still as root, I restarted the devfs service:

/etc/rc.d/devfs restart # HPLIP now sees the printer

If HPLIP still fails to find your printer, run hp-doctor to find the diagnosis.

Once the queue for the printer has been created, you can run hp-toolbox to get its

status, and perhaps print a test page. At this stage, it can also be expected that HPLIP will

automatically insert a handy system tray icon somewhere in your desktop’s panels—the

system tray icon will persist across a reboot.

Epson created an increasingly healthy line of inkjet printers in a series named as

Lnnn, where the L presumably stands for Linux. This is as opposed to the line named

Mnnn, which presumably is Microsoft-specific.

If you have an Epson inkjet printer under your Unix box, you want it to be from the

L-series, PPDs for which should generally be available.

Epson printers from outside of the L-series can be made to work with Linux (but not

FreeBSD) by downloading a closed-source Linux driver package at http://download.

ebz.epson.net/dsc/search/01/search/?OSC=LX.

As on date, FreeBSD has a couple of ready-to-use ports for Epson inkjet printers.

/usr/local/ports/epson-inkjet-printer-201401w supports the L456, L455, L366,

L365, L362, L360, L312, L310, L222, L220, L132, and L130 models.

/usr/local/ports/epson-inkjet-printer-201601w supports the L380 and L382

models.

Chapter 6 Basic System Administration

http://download.ebz.epson.net/dsc/search/01/search/?OSC=LX
http://download.ebz.epson.net/dsc/search/01/search/?OSC=LX

157

Installing any of these ports (or their corresponding packages, the names of which

simply strip out the leading /usr/local/ports/) would result in PPD files being

generated, which you can then feed to CUPS as “drivers”.

Once a PPD is available for your printer, switch your printer on and use your web

browser to open the CUPS administrative site, which is:

http://localhost:631/admin

If you are prompted for user credentials at any stage, you can use root as the

username and root’s password as the password.

Click the Add Printer button to create a new queue (and make very sure that your

printer is online). Your printer will likely be listed among the Local Printers: in which

case, half the battle is won. Click that entry and move ahead.

The CUPS framework will then attempt to locate a suitable PPD for the printer

discovered previously. If the system cannot find a good PPD for the printer by itself, it

lets you browse and locate a suitable one.

When a PPD for your printer has been found—which is the remaining half of the

battle, a CUPS queue will be created—which all applications in your system can print to.

CUPS also creates network-oriented URLs (of the form ipp:// and socket://) that

any application in your intranet can utilize to print via your box. We’ll leave those for you

to play with on your own, if you like.

6.11  �Using the Scanner
Scanners normally do not need any configuration. They usually are independent devices

that advertise scanning capabilities over the USB infrastructure. Even when part of an

MFD (Multi Function Device: Printer/scanner/anything else), the unit’s scanner works

largely independently of the remaining device.

If you have a scanner attached to your box, you need the SANE (Scanner Access Now

Easy) backend package, the name of which varies between distributions:

pacman -S sane # Arch

pkg install sane-backends # FreeBSD

apt install sane-utils # Ubuntu

Once you have the backend package, your system will have a couple of important

commands: scanimage and sane-find-scanner.

Chapter 6 Basic System Administration

158

The scanimage application is your scanning frontend:

scanimage -L # Lists all the scanners attached to your box

If scanimage -L finds nothing, you need to investigate:

	 1.	 Run scanimage -L as root. If the scanner shows up, you simply

have a permissions problem.

	 2.	 If the scanner is still undetected, run sane-find-scanner (again

as root).

sane-find-scanner performs a vigorous vetting of devices that advertise scanning

capabilities. If sane-find-scanner fails to spot your scanner, you probably need to write

to your distribution’s email forums.

For any permissions woes, refer to the troubleshooting guidelines highlighted in the

previous section.

Once your scanner has started making its presence felt, you can scan:

scanimage --format jpg > scan.jpg

If ImageMagick is installed, the system can convert the output to PNG format (or any

other compatible format as needed) readily:

convert scan.jpg scan.png

6.12  �Using an APC Powerchute UPS to Shut the
System Down

If you have a UPS that supports shutting the system down in case of extended power

failure—for example an APC UPS with the Powerchute feature—you can ensure that

your Unix box never shuts down unclean.

For this, you need to install the package apcupsd, a task which you can surely do with

pkg, apt, or pacman.

For FreeBSD, there is an additional step after installation:

echo "apcupsd_enable=YES" >> /etc/rc.conf

Now locate the file apcupsd.conf. Under Linux, the typical path is /etc/apcupsd/

apcupsd.conf, while FreeBSD uses /usr/local/etc/apcupsd/apcupsd.conf.

Chapter 6 Basic System Administration

159

Edit the following six settings, for which we assume a USB UPS:

UPSNAME AnyNameThatSuitsYou

UPSCABLE usb

UPSTYPE usb

DEVICE BATTERYLEVEL 50

MINUTES 9

The DEVICE setting should be blank for any UPS of type USB. With the preceding

configuration, the UPS will take control in case of power failure, and then halt the system

when either the batter level dips under 50% or time-to-live dips under nine minutes.

You can launch the service immediately:

/usr/local/etc/rc.d/apcupsd start # FreeBSD

systemctl enable apcupsd && systemctl start apcupsd # Linux

You might like to check the output of ps waux | grep apcupsd. If apcupsd is not

running under Linux, check if the file /etc/default/apcupsd exists. If the file exists, edit

it to change ISCONFIGURED=no to ISCONFIGURED=yes. Then retry.

6.13  �Building Stuff from Sources
This usually is never done under Linux (unless you are a developer yourself). But under

FreeBSD, building from sources still happens. So I will dedicate this section to a quick

word about the FreeBSD ports system.

While Linux has just one make system (GNU make) that interprets makefiles,

FreeBSD has two—GNU make (the one imbibed from the Linux world) which is called

gmake, and a native make. So what is make in Linux is gmake in FreeBSD, and what is

make in FreeBSD has never been made in Linux. GNU make has no understanding of the

FreeBSD ports system, and therefore cannot work well thereunder.

We’ll take the example of [/usr/ports/mail/]alpine, a wonderful console-mode

email client (which allegedly is Linus Torvalds’ favorite email client, not surprisingly

too). One reason folks like to build alpine from sources is that the pre-built package

does not have support for saving passwords to the hard disk. If it rankles your blessed

soul to have to type in your password each time you start alpine, you will have to delete

the package and build the port instead.

Chapter 6 Basic System Administration

160

The first step, in case you don’t have the /usr/ports/ hierarchy yet, would be (as the

root user) portsnap fetch extract.

Once your port’s tree has been populated, navigate to /usr/ports/mail/alpine, set

the options as suits you, and then start the build:

cd /usr/ports/mail/alpine

make config #set your preferences: eg, save passwords

Note you might have preferred for above: make config-recursive

Read the following para to get a gist of why so

make install clean

The ports system is recursive: if alpine needs 100 other ports to be built, they will get

automatically built along the way, with alpine the last one to finish. If any of those 100

ports need their own configuration options, you will be prompted as and when the port’s

build commences. This results in a stop-start-stop-start chain of builds, which might not

suit you. This is why—at least for ports that have a lot of dependencies—folks prefer to

use config’s own recursion capability. If you use make config-recursive when setting

options for alpine, the make system will at the very beginning invoke make config for

alpine as well as any of the 100 ports that have any configurable options. You can spend

a couple of minutes upfront reviewing the options for all the ports, for most of which you

just want to accept the defaults with a simple OK. Once the configuration issue is fully

settled, the download/build/install cycle will kick off in one, final swoosh and you won’t

be prompted at all.

If someday you want to deinstall alpine, just run make deinstall under the

directory /usr/ports/mail/alpine. There is no deinstall-recursive.

That is our two-minute tutorial to the world of FreeBSD ports. Just before we close

this section, it is handy to note that ports and packages use a common installation

database, which does not differentiate between stuff that got in via pkg and stuff that got

built via ports. If you install alpine as a port, pkg info alpine will recognize alpine as a

locally installed application.

6.14  �Unix Virtual Filesystems
This section is entirely optional. It is not intended to be a meaty discussion—just a gentle

“awareness” exercise. It may or may not help—but it certainly does not harm—you to

know a little bit about virtual filesystems in Unix.

Chapter 6 Basic System Administration

161

If you are on Linux, you might have noticed that running the mount command gets a

listing of many, many filesystems when you might have just created one / mountpoint.

So what exactly are the others?

Every Unix installation, particularly Linux, automatically sets up a variety of

additional filesystems that mostly reside in main memory (RAM). The purpose of these

filesystems is to let various components of the kernel and the applications running in

userspace memory communicate with each other faster but transparently.

One such filesystem is /proc, which automatically gets set up under Linux, but needs

to be set up manually under FreeBSD. /proc provides a view of the table of the processes

currently running in the system, complete with related information—for example, what

were the command-line arguments passed in to the command when launched.

A working /proc is mandatory—and therefore automatically setup by the installer—

under Linux, and strongly recommended under FreeBSD. You can mount /proc under

FreeBSD with the following line in /etc/fstab:

procfs /proc procfs rw 0 0

Linux /proc yields other benefits—all major OS information is available as zero-

sized files with data (!): cmdline (boot-time arguments to the kernel), filesystems (list

of mounted filesystems), modules (list of loaded kernel modules), and other files. You

can also, when you have gained expertise, change the parameters of a running kernel by

manipulating /proc entries under Linux. But not under FreeBSD, which uses sysctl for

controlling tunable parameters. For example, to prevent users from seeing information

about other users’ processes, a FreeBSD user would need to use sysctl security.bsd.

see_other_uids=0.

There are many other such virtual filesystems—tmpfs, fdescfs, and sysfs, for

example. But the one virtual filesystem that you should know just a bit about is the one

that no one seems to know nowadays—devfs, the device filesystem (udev under Linux).

Until about the year 2002, both Linux and FreeBSD used the device node

implementation as largely imbibed from AT&T Unix. Every device for which a driver was

available in the kernel would show up as a node under /dev when the system booted.

But while AT&T Unix catered to a very small set of hardware, GNU has to deal with an

ever-ballooning explosion. In 2002, a Red Hat 7.3 box would typically have over 5,000

nodes under /dev. It was a real jungle, with users finding it difficult to figure out which

files were actually relevant to him/her and the installation.

The problem was solved with devfs, a highly intricate paradigm that lets the system

create nodes at boot time under /dev—not for all hardware supported, but for hardware

Chapter 6 Basic System Administration

162

actually present in the box. From 5000+ mostly-junk nodes in 2002, the listing for /dev

has been slashed to typically something like 100 nowadays in 2018—with each node

relevant to the box.

Since devfs is itself mounted at /dev, no one can create device nodes manually

thereunder. That can only be done via system calls by a driver in the kernel.

6.15  �Additional Commands to Administer
Your Desktop

At this stage, you should be familiar with a few commands, some of which you might

meet once a year, others a few dozen times a day. That depends on how you use your

desktop Unix box. It is likely that you already know some of these commands, but there is

no harm to a recap.

6.15.1  �df
The diskfree command determines filesystem usage. How much has been used and how

much is still free. Note that, since Unix filesystems reserve a percentage of every filesystem

(ranging from 0% to 12%; with 8% being a typical value) for the root user’s “emergency”

operations, the two halves won’t yield, upon addition, the filesystem’s actual total size.

df -h is the human-readable variant that will use 1G instead of 1,073,741,824.

(Reminder: Computer jargon uses 1K to denote not 1000, but 1024; which disk

manufacturers very happily ignore when selling disks—as a result of which, when you

buy a 256GB disk, you actually get 256 divided by 1.024 three times.)

If you are just interested in a particular filesystem, you can tell df that:

df -h / # Stats for /, whichever device it maps to

df -h /dev/ada1s3a # Stats for device node ada0s3a

6.15.2  �du
du is similar to df, but instead of stats for a filesystem, it reports disk usage of a file or a

directory. Just as df, it has a human-readable version:

du -h <path> # If <path> is missing, a . (current directory) is assumed

du -sh <path> # If <path> is a directory, print summary only

Chapter 6 Basic System Administration

163

If images is a directory, this is what you can expect:

ls -ld images

drwxr-xr-x 2 bourne bourne 1536 Nov 10 15:50 images

du -sh images

2.1M images

What this means is that the directory file images itself uses just 1536 bytes, while

those colorful files inside images/ occupy another 2.1MB (minus 1536 bytes).

Since du has to compute a directory’s size at runtime by recursing over all its

constituents, running it over a very large directory (/usr, for example) can take a huge

amount of time. Contrast this with df, which always returns immediately—that is

possible only because the operating system maintains a stats table for each filesystem,

which gets updated in real time whenever the filesystem gets written to. Of course, the

operating system cannot maintain such stats for every single file and directory in the

system.

A related command is stat.

6.15.3  �at
at schedules a job to be performed by the system using /bin/sh.

There is a large number of formats deemed valid for specifying the date and time,

which you can read with man at. For an example, it will serve our purpose to know that

HH:mm is recognized as a valid time.

at 23:59 will give you an input section, into which you can type in your command,

followed by , and closed by is the standard way in Unix

to denote end-of-input when feeding input from the keyboard.

If successful, this at command will schedule your job to run at 23:59 later today. The

major reason for failure, if your command does not get queued, is that root blacklisted

you in the file at.deny, the location of which is distribution-specific.

You can list your at jobs with atq and delete job number <N> with atrm <N>.

A related command, which lets you schedule repetitive jobs, is cron.

Chapter 6 Basic System Administration

164

6.15.4  �cdrecord
One of the great things in Unix is to be able to do from the command line what others

can accomplish only via graphical toolkits—it certainly adds to your bragging rights

when in company. If I were to place my finger on one such application, it would be

cdrecord, which can record DVDs too, by the way.

In case your box does not have dvd+rw-tools, this is a good starting point. Install the

package dvd+rw-tools, which automatically pulls in cdrtools, the package that contains

the command cdrecord, and its buddy mkisofs.

To work with cdrecord, you must have an existing file in the standard ISO format.

There are a couple of distinct ways to use cdrecord: burn a pre-existing ISO image

you downloaded or write your own data—first into an ISO image with the associate

command mkisofs, and then to the optical medium.

Since I like to go things in the order of fulfillment, I will first take up mkisofs—the

ISO image compiler. To create an ISO image containing all .pdf files and the images/

directory, this is what you could use (as a normal user or as root):

mkisofs -iso-level 4 \

-allow-lowercase -allow-multidot -relaxed-filenames \ # Leniency hacks

-J -R \ # Pull in the Rockridge (Unix) and Joliet (Microsoft)

extensions

-o cdimage.iso \ # The image to be compiled

*.pdf images/ # The paths for the input data

You now have the ISO. The next step is to find the SCSI address of your CD writer,

which is done with the --scanbus argument to cdrecord. If your CD writer was

manufactured by Asus, you could run:

ROOT# cdrecord --scanbus | grep -i asus | awk '{print $1}'

On my system, I get 0,0,0 as the SCSI address.

If you have no idea about the device manufacturer, just browse the output of

cdrecord--scanbus for the most likely candidate. The SCSI address is a substring of the

form <digit1>,<digit2>,<digit3>. FreeBSD provides an additional way to get the CD

writer’s SCSI address: camcontrol devlist.

Now you can insert a blank CD and write the image via your CD writer (as root):

cdrecord -dao dev=<scsi> speed=8 driveropts=burnfree cdimage.iso

Chapter 6 Basic System Administration

165

<scsi> is a placeholder for the SCSI address we located with --scanbus.

The writing speed can be decreased (min 1) or increased (max 48 on most systems).

6.15.5  �Loop Device Configuration
Sometimes—instead of burning to optical media—you need to loop and mount a CD/

DVD ISO image through the kernel’s looping ability. Note that Linux calls the CD image

format iso9660, while FreeBSD calls it cd9660.

Under Linux, you can set up a loop for a CD image data.iso at /mnt/iso with:

mount -t iso9660 data.iso /mnt/iso -r -o loop

FreeBSD has a similar toolbox, which is kicked off with mdconfig:

mount -r -t cd9660 /dev/'mdconfig -f data.iso' /mnt/iso

'mdconfig -f data.iso' will usually output md0

When done, you can optionally unmount the image (umount /mnt/iso) and then

destroy the loop device allocated by using:

mdconfig -d -u 0

6.15.6  �smtp-cli
Sooner or later, you will want one important capability: shooting an email from the

command line. More than the issue of bragging rights, it serves the need to inform—and

be informed—at the critical moment.

There are a few tools that do the job, with my favored solution being smtp-cli.

The first step, as always, is to install the package smtp-cli. On first run, smtp-cli

would likely complain about a few missing Perl modules. Install them one-by-one (as a

normal user) with cpan. For example: cpan IO::Socket::INET6.

We’ll use the following sender, which essentially is me:

fromaddr="bourne.identity@hotmail.com"

fromname="Manish Jain"

password="12345678" # For very good reasons, I am mistelling the password

SMTP="smtp-mail.outlook.com"

PORT=587

Chapter 6 Basic System Administration

166

We’ll use the following receiver, which is where my alter-ego resides:

sendto="jude.obscure@yandex.com"

smtp-cli --ipv4 --auth \

--server="$SMTP" \

--port=$PORT \

--user="$fromaddr" \

--pass="$password" \

--from="$fromname <$fromaddr>" \

--to="$sendto" \

--subject="Scripting with Transmission" \

--body-plain=$HOME/notes/transmission-scripting.txt

If a blank email with no body text is to be sent, delete the --body-plain= line.

If you need to send an attachment, that can be done easily by supplying

--attach=<path>(--attach=<> can be repeated as many times as you like).

Just as cpan needs no administrative rights to invoke (it installs modules by default

into the user’s $HOME), emailing with smtp-cli can be done as a normal user too.

Cygwin has an add-on package named email, which has roughly equivalent

capabilities, but smtp-cli is a touch more flexible.

6.15.7  �rsync
I am going to be infamous with the next section, wherein I will profess the counter-

revolutionary line: there’s (almost) no need to back up. This section opens a mutually-

convenient escape route for the cases where a system-wide backup actually is needed,

with all operations performed in this section as root.

When you want to copy an entire filesystem, there are multiple ways to do it (dump/

restore for example). My favorite solution is rsync. If you don’t have rsync, just install

the package with the same name.

The rest of this section is illustrated with FreeBSD, documenting which is

significantly easier—Linux users will need to adapt. (Creating a bootable backup under

Linux is not easy—you have to use grub, an incredibly volatile component. Any attempt

to insert boot code under Linux quickly turns into a PhD thesis.)

In this example, we’ll back up the / filesystem, along with its boot code.

Chapter 6 Basic System Administration

167

Let’s say the backup device is /dev/da0, a USB disk not yet mounted and the current

data in which can be trashed. You need to ensure the USB disk is larger than the used

part of your / filesystem.

Let’s also say the mountpoint location for the backup device is /mnt/bk—you need to

create that beforehand.

We prepare the device to receive the backup:

gpart destroy -F da0 2>/dev/null

gpart create -s MBR da0

gpart add -t freebsd da0

gpart create -s BSD da0s1

gpart add -t freebsd-ufs da0s1

gpart bootcode -b /boot/boot0 da0

gpart bootcode -b /boot/boot da0s1

newfs -U /dev/da0s1a

mount /dev/da0s1a /mnt/bk

(If you are on Linux, use fdisk /dev/sdb → mke2fs /dev/sdb1 → mount. We will

simply ignore the boot code insertion. You can try on your own, though.)

The next thing to do is prepare a list of exclusions:

/dev/* # devfs populates this directory at boot-time and as-needed

/media/* # Auto-populated as and when you mount/eject media

/mnt/* # Mountpoints should be established afresh

/proc/* # Temporal entries

/sys/* # Temporal entries

/tmp/* # Temporal entries

/usr/ports # freebsd user can just run ’portsnap fetch extract’

/var/tmp/* # Temporal entries

/lost+found/* �# linux user does not need this in the backup – or so

I hope

You can adjust the exclusions list as needed, although I feel inclined to note that the

list presented here is a fairly mature one.

Save your exclusions list in the file /root/excl and initiate the sync:

rsync -aAHXv --delete --exclude-from /root/excl / /mnt/bk/

Chapter 6 Basic System Administration

168

Under Linux, adjust the next line for device node and fstype: echo '/dev/

da0s1a / ufs rw 0 0' > /mnt/bk/etc/fstab

Save the current fstab too for reference (optional):

cp /etc/fstab /mnt/bk/etc/fstab_original

umount /mnt/bk

If and as needed, you can do three things with your backup:

	 1.	 You can open a shell with its root filesystem in the backup. The

command for that is mount /dev/da0s1a /mnt/bk && chroot /mnt/bk.

	 2.	 You can boot off the USB disk (if you are using FreeBSD).

	 3.	 You can also carry out a reverse sync to mirror the backup into a

new (possibly larger) root filesystem (/) in the hard disk.

6.16  �Mitigating the Need for Backups
It does not please me one bit to have to deal with backups in my daily life. It pleases me

still less to lose any important data.

Keeping Scylla and Charybdis satisfied is luckily not so difficult. It just requires you

to work out a sound strategy that takes care of your data. For most desktop users, the

following strategy is good enough. (I use it myself.) But the strategy needs to be executed

with a fresh disk.

Let’s say your hard disk device is ada0 (sda under Linux; Linux names are stated in

parentheses). Since the MBR schema permits one extended partition and three primary

partitions, create four slices in your disk:

•	 ada0s1 (sda1): 30GB; created as fat32; unformatted; reserved for

future use.

•	 ada0s2 (sda2): 30GB; Linux-data (Ext2/3/4); the / for a Linux

installation.

Chapter 6 Basic System Administration

169

•	 ada0s3 (sda3): 50GB; FreeBSD with one UFS partition ada0s3a; the /

for FreeBSD.

•	 ada0s4 (sda4): Spans the remaining disk, is an extended partition,

known as EBR in FreeBSD documentation. Our strategy’s crux

revolves around the EBR slice.

The ada0s4 slice (sda4) contains a single partition (Logical Drive) ada0s5 (sda5),

formatted as Ext2. (If you want to set up a swap partition, refer to the appendix for

creating ada0s6 as a swap partition shared by FreeBSD and Linux.)

Here are the FreeBSD commands to create ada0s4 and its nested ada0s5 (although

you can just as easily use Linux fdisk to create this schema):

type mke2fs &>/dev/null || pkg install e2fsprogs

Assuming ada0s1, ada0s2 and ada0s3 have already been created:

gpart add -t EBR ada0 # creates ada0s4 spanning remaining disk space

gpart create -s MBR ada0s4

A gpart bug often prevents use of the EBR schema in the command above

Else the proper command would be: gpart create -s EBR ada0s4

gpart add -t linux-data ada0s4

Reports addition of ada0s4s1, which shows up as ada0s5 upon reboot

So reboot and then create the ext2 filesystem:

mke2fs ada0s5

Create a directory /perm and map it to /dev/ada0s5 in /etc/fstab:

mkdir /perm

echo '/dev/ada0s5 /perm ext2fs rw 0 0' >> /etc/fstab

Linux adaptation: echo '/dev/sda5 /perm ext2 rw 0 0' >> /etc/fstab

Chapter 6 Basic System Administration

170

Mount /perm and create a few directories in it as the per the commands (left side) or

the corresponding schema (right side):

This completes one-time disk initialization activities. The ensuing discussion details

per-installation follow-up.

Whenever you make a fresh FreeBSD/Linux installation, do a few things—denoting

your installation as <os> and your user name as <user>:

	 1.	 Make /home point to /perm/home_<os>:

cd /

rm -rf home

ln -s /perm/home_freebsd home # if the new install is FreeBSD

ln -s /perm/home_linux home # if the new install is Linux

	 2.	 Make /usr/home point to /perm/home_<os>:

cd /usr

rm -rf home

ln -s /perm/home_freebsd home # FreeBSD

ln -s /perm/home_linux home # Linux

	 3.	 Make /root point to /perm/home_<os>/root:

cd /

rm -rf root

ln -s /perm/home_freebsd/root root # FreeBSD

ln -s /perm/home_linux/root root # Linux

Chapter 6 Basic System Administration

171

	 4.	 Delete hidden entries in the path that will soon be your $HOME.

Otherwise, those could interfere with programs that need to be

reinitialized:

cd /perm/home_<os>/<user>

find . -maxdepth 1 -name ’.?*’ -delete

Note the following points:

•	 First back up any important hidden files as unhidden. For instance:

.vimrc → vim.rc

•	 Repeat Step 4 for /perm/home_<os>/root as well.

If you are going to install Linux and FreeBSD—which is always a wise thing to do—

delay creation of the normal user account under FreeBSD until after Linux installation.

Pick up the numeric user ID (quite often 1000) of your Linux user account from

/etc/passwd (or use id -u), and then create your FreeBSD user with that UID. In other

words, force the UID in the second system to match the first system’s UID.

You might at this stage like to adjust permissions:

chown -R <user> /perm/home_<os>/<user>

chown -R root /perm/home_<os>/root

With this complete:

•	 All your data—whether as the normal user or as root—automatically

gets stored in persistent storage, which will survive a complete

reinstall.

•	 You will never run into any permissions woes.

You must make sure that you never delete the EBR slice ada0s4 or the logical drive

ada0s5 inside it. That partition represents your persistent storage solution.

When reinstalling FreeBSD/Linux afresh, you can delete/recreate/resize the primary

partitions ada0s1/ada0s2/ada0s3 as many times as you like. But the EBR slice ada0s4

(or its nested ada0s5) must never be touched by the partitioning software. Also, keep the

disk’s count of primary partitions constant: three.

Chapter 6 Basic System Administration

172

Store all your important data—configuration files, source code, audio-visual

content—somewhere under /perm/. That ensures it is saved under /dev/ada0s5. Of

course, if you can get an external USB disk, you could once a month or once a year

mirror /perm into the USB disk.

There is a small price to pay for having your data saved in persistent storage: under

single-user mode Linux, carrying out fsck on /dev/sda5 is now a two-step operation:

	 1.	 Boot into single-user mode and comment out the entry for sda5 in

/etc/fstab.

	 2.	 Reboot into single-user mode again and then carry out fsck on

/dev/sda5. Then uncomment the entry for sda5 in /etc/fstab.

You can now reboot for normal mode (graphical/multi-user)

operations.

6.17  �Summary
You can now mount/unmount filesystems, configure Internet access, print, scan, create

backups, and use administrative command-line tools.

That’s quite a lot. If you got this far, you’ll do very well under your Unix box. We have

now covered all important Unix concepts and system tools. The rest of this book will

be progressively easier. Actually, for most readers, the next chapter—“The Best of the

Graphical Unix World”—should be as easy as a walk in the park.

Chapter 6 Basic System Administration

173
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_7

CHAPTER 7

The Best of the
Graphical Unix
Not to run afoul of Darwin’s theory of survival of the fittest, nerds needed to evolve and

adapt—which is just what has happened. In the 1970s and 80s, nerds used the keyboard.

Nowadays most of them can also use the mouse.

As a well-architectured operating system with immense flexibility and stability, Unix

has always been iconic for its role as a server. But that was not going to be enough for

the 21st Century, when it had to reach out to the masses with an interface that was, in its

ease of use, a match for the brilliant underlying systems-level programming. If there is

one thing that today unites all of Unix and GNU’s Not Unix, it would the graphics system:

X or X.org. The X window system is what makes Unix user-friendly.

X is almost entirely a user-space system. The only bits that get hosted in kernel-space

are the drivers: for the graphics chip and for console devices.

7.1  �X Is a Client-Server System
People sometimes get dazzled with the use of terms like client and server, mistaking

them as highly technical jargon of the geek world. But that is not true.

A server is just some computer program that can act as a servant (the not-so-

insulting term is daemon). A client is a computer program that asks the server to do

a job for it. The requested job must be of a kind the server is known to be capable of;

otherwise, the situation becomes akin to asking the laundry-man to cook your food.

The term server, as is usually clear from the context, can mean one of two things:

the computer program (service) running as a daemon, or the computer hosting the

concerned service. Likewise for client. That situation is akin to using “laundry” to refer to

the dirty-linen-washing service, or to refer to the honorable establishment that washes

your dirty linen (in other words, hosts the dirty-linen-washing service).

174

If you ask Thunderbird to pop off all your Hotmail email, you are using Thunderbird

as an email client to collect mail from the Hotmail machine (server) that runs multiple

services—collecting your email; storing the email as long as needed; and then relaying

the email to Thunderbird. The club of all those associated services running together is

designated the Hotmail server.

You might at this stage like to note a couple of things:

•	 The address of the Hotmail machine (or any server) must be known

in advance and must remain static. Otherwise, the client has no way

of contacting the server.

•	 There is no such thing as a machine that’s a 100% forever-and-pure

server. If a machine is set up to be a mail server, there might be other

jobs (e.g., printing) it needs some other machine to do for it. So the

mail server could itself be the client of a print server, which might in

turn be the client of a database server.

When the X window system (in short, X or X.org) was created, there were two options

for its architecture. One was the model Microsoft used later in Windows—a kernel-level

graphics subsystem that applications could use via an API (Application Programming

Interface). Since Unix has been increasingly modular in its implementation—

particularly since the time around 1990 when GNU took over the mantle from AT&T—a

client-server model was deemed more suitable for a GNU implementation. The client-

server model also fits in well with the need for distributed computing, which was a rage

in the days when the architecture of X was being sculpted.

In the X system, the X server listens to some reserved sockets. Applications

communicate with the X server over those sockets. This framework allows the X server to

run on one machine, and X clients to run anywhere on the intranet. That does not often

happen, but is possible with the architecture—actually, during the 80s and 90s, it was

regular for companies to run the X server on one machine, with X clients hooked in via

the intranet.

Chapter 7 The Best of the Graphical Unix

175

You might have already noticed that your Unix shell, when in X mode, exports

a variable $DISPLAY, the value of which often is :0. That simply is a shorthand for

127.0.0.1:0.0—in TCP/IP networking, 127.0.0.1 is always your local host and 0:0 is

the socket. If X applications on your system were to need services of a remote X server, it

would be a simple matter of fixing the IP address.

7.2  �Desktop Environments
Although there is only one X server (which earlier went under the moniker XFree86),

there is a plethora of desktop environments to choose from. Each of them is a collection

of sub-services that tell the X server, for example, how to treat your keyboard or mouse

input; what fonts to use where; what should window buttons (such as Close and

Maximize) look like; and many other such things: menus, panels, wallpaper, widget style,

and window background color.

The two desktops that have been around the longest are GNOME and KDE, both of

them have about two decades in the business. Some other good desktops have emerged

of late: Xfce, Cinnamon, and Mate. The last two are GNOME forks. GNOME itself has

been struggling of late with issues that seem perpetual.

For completeness and sheer number of features, KDE would be hard to beat. Among

GNU desktops, KDE also happens to resemble most closely the Windows 2000/XP

interface, and further happens to be my preferred desktop—which will inevitably taint

some of the remaining discussion in this chapter. KDE is resource-intensive—you should

have at least a 2GHz processor and 4GB of RAM for a smooth desktop experience. On the

plus side, KDE is bug-free—my grandmother says so.

No discussion of current Unix desktops would be complete without a peek at the

beautiful as well as functional Cinnamon desktop environment, a Linux Mint specialty.

Chapter 7 The Best of the Graphical Unix

176

Figure 7-1 provides a scent of Cinnamon.

If you are relatively new to Unix and have not settled on a desktop, my suggestion

would be to first try KDE under FreeBSD, and Cinnamon under Linux.

If you need a leaner desktop, you can dabble with Mate or Xfce—neither of which is

as resource-hungry. Beyond that, it would largely be personal preference—Unix gurus

are often addicted to tiling window managers, which we’ll take a look at shortly.

Whichever desktop you use, you can rest assured of a few things:

•	 You can install and use any of the widely used X applications: Firefox,

Chromium, Thunderbird, SMPlayer, XMMS, LibreOffice, and Pidgin.

•	 Each desktop environment automatically bundles useful utilities:

A file manager, a calculator, a ZIP frontend, and a text editor.

•	 You can install any of the utilities of another desktop environment

under yours: So a KDE user can install GNOME’s gedit text editor,

and a GNOME user can install KDE’s PDF viewer Okular.

The last item in the preceding list perhaps needs a bit of elaboration. Each desktop

environment packages basic runtime functionality into a few modules of their own.

Under KDE4, for example, those modules are the packages named kdelibs,

Figure 7-1.  The Cinnamon desktop environment

Chapter 7 The Best of the Graphical Unix

177

kde-baseapps, and kde-runtime. With the base packages installed, you can install

utilities from that desktop environment. Since modern package managers are clever

systems, installing a desktop’s utilities automatically installs its base packages first.

A crucial ingredient in the desktop environment mix is the window manager (wm

for short). Each desktop has its own window manager: kwin under KDE, metacity under

GNOME, and xfwm under Xfce. The wm is the component of a desktop that manages

windows and virtual desktops. It draws a window’s borders and title bars, and provides

buttons for common window operations: move, maximize, minimize, and close. While

you can largely ignore the wm when using a desktop environment, it is good to know that

some window managers can run independently.

7.3  �Window Managers
If you have an old PC with limited hardware, you would want to consider running a

window manager, not a complete desktop. A window manager has the streamlined task

of simply managing how you interact with your application windows without all of the

extra bloat of a desktop environment. Window managers are usually quite customizable

and—in principle—do one job only: manage your windows, which means they move/

resize/close any application windows.

Because the window manager implements a minimalist philosophy, using a window

manager lets your old/limited hardware remain speedy and functional. There are quite

a few window managers that can work standalone: Awesome, Enlightenment, Fluxbox,

and FVWM. They differ a lot in functionality and capabilities—Enlightenment, sized

roughly a couple of dozen megabytes, is at one end of the spectrum where it can almost

qualify as a desktop environment in its own right; Awesome and Fluxbox weigh in under

1MB each.

Note A nice Unix utility is scrot, which is a screenshot capture from the
command line. scrot -d 5 scr.png will grab the desktop after five seconds
in the file scr.png. scrot -d 5 -q 100 scr.png additionally forces 100 %
quality (default is 75).

Chapter 7 The Best of the Graphical Unix

178

A purely functional, tiling window manager is Awesome, which uses tiles of xterm

windows (launched via right-click). The scrot’ed Figure 7-2 is really Awesome.

Each xterm window (four in the northwest section of Figure 7-2) is launched via

right-clicking and choosing Open Terminal. The windows are neatly stacked by the

Awesome window manager.

You can, of course, use the xterm windows to bring up more applications, the

placement of which is not tiled. As you can see in Figure 7-2, I opened three additional

windows (deliberately moved to the right, and also resized with mouse right-click-and-

drag in the window’s title bar): Chromium, X Calculator, and X Calendar.

Awesome works incredibly well. It’s highly customizable and has a tiny memory

footprint. To run Awesome, execute awesome from your normal user account’s

~/.xinitrc:

exec /path/to/awesome

If ~/.xinitrc does not exist, first create it with your text editor

With the .xinitrc in place, just run the command startx (as the normal user).

Figure 7-2.  Being functional with Awesome

Chapter 7 The Best of the Graphical Unix

179

Note  Unix package names are usually (but not strictly always) all lowercase. So
the package name for Awesome is awesome.

FreeBSD is working on a BSD-centric desktop Lumina that promises to be the

ultimate go-between: a desktop environment with the resource-footprint of a window

manager. Lumina is already at the finishing stages, producing the alternate desktop on

my box.

In its current state, Lumina is not a full-fledged desktop. It’s more of a window

manager with part of the entourage of associated utilities that make up a desktop—some

of them available (file manager, for instance); some of them not yet available (keyboard/

mouse configuration applet, for instance).

Lumina does furnish a handsome outlook; see Figure 7-3.

The startup script for Lumina is start-lumina-desktop, which you can execute

(exec) from ~/.xinitrc as a normal user.

Figure 7-3.  Lumina: The FreeBSD desktop

Chapter 7 The Best of the Graphical Unix

180

7.4  �Starting X and the Desktop Environment
Under Linux, this section is of little use—the installation procedure sets up X and the

desktop to be kicked off at boot time. Everything happens automatically thereafter.

Under FreeBSD, you have to manually install the xorg meta-package and then the

meta-package for your desktop environment (e.g., kde, gnome3, or xfce).

Each desktop environment installs under /usr/local/bin/ a wrapper script that can

be used to launch the desktop.

GNOME: /usr/local/bin/gnome-session

KDE: /usr/local/bin/startkde

Xfce: /usr/local/bin/startxfce

As a normal user (not as root, as a matter of fact), you cannot execute the wrapper

script directly. Instead, what you have to do is create a ~/.xinitrc file, which contains

just one line:

exec <wrapper> # �<wrapper> is a placeholder for the path of the wrapper

script

That done, you can use the command startx to start your desktop. The wrapper will

first start the X server in the background, and then your desktop environment which is

hooked into the X server.

The root user may decide to start X at boot time automatically. For GNOME and

KDE, this is straightforward: just enable the associated and built-in login manager (also

known as the display manager) in /etc/rc.conf:

gnome_enable="YES" # starts GDM

kdm4_enable="YES" # starts KDM

Desktops that do not have a built-in login manager—Xfce for instance—can use the

services of a generic login manager like XDM, SLiM, or LightDM.

Under FreeBSD, most display managers and desktop environments currently need

the following services to be enabled as well in /etc/rc.conf:

hald_enable="YES"

dbus_enable="YES"

Chapter 7 The Best of the Graphical Unix

181

7.5  �Applications in the Desktop Environment
The rest of this chapter is a discussion of commonly used desktop applications. From

hereon, the term desktop environment is used to mean whatever graphical environment

the reader is using. This could be as big as the KDE desktop environment, or as small

as the Awesome window manager. It is assumed that the reader can perform common

operations in a graphical environment.

7.5.1  �Terminal Emulators
Since console-mode usage of a Unix box allows multiple terminals (which you can open

with and so on), you would dearly like to have them in X sessions

too. That is not just possible, it is the de facto norm: Unix programmers typically need X

for opening up a large number of terminal emulator windows.

Each desktop environment has a pre-packaged terminal emulator: for example,

GNOME has gnome-terminal, KDE has Konsole, and MATE has mate-terminal.

The most generic (i.e., not associated with any desktop environment) X terminal

emulator is xterm, which has significantly fewer features and often gets packaged into

the base X.org distribution.

All X terminal emulators, including xterm, offer support for colored output. You can

customize the colors using the menus (non-xterm emulators), or using command-line

arguments with xterm:

xterm -title "Terminal" -bg black -fg grey

To copy text from an xterm window (or any terminal application window), you need

to select that text by clicking and dragging it using the mouse’s left button. The text

automatically gets copied. You can paste that text later with a middle-click (or wheel-

down), into xterm itself or a text editor.

This method of yanking text works in pure console mode too (when there is no X).

Note A ll X clients (not just terminal emulators) implement text yanking: copy-by-
highlighting (with mouse) and paste-with-middle-click.

Make sure you try out yank-copy and yank-paste in a terminal window (or in a text
editor). It is a very useful technique to remember.

Chapter 7 The Best of the Graphical Unix

182

Once you have become familiar with yanking, you can take your skills up a notch by

remembering additional tricks:

•	 Left double-click on a word: the word is selected

•	 Left triple-click on a line: the whole line is selected

•	 Left single-click on a position, right single-click on another position: the

range between those positions is selected, and it can span multiple lines

The yanking procedure is distinct from traditional copy-and-paste, which can

be implemented only in non-xterm windows with right-click operations or keyboard

shortcuts. Those shortcuts—specific for terminal emulator applications—are as follows:

For other X applications (those that are not terminal emulators), the keyboard

shortcuts are the long-respected text manipulation techniques that were (and still are)

followed in Microsoft Windows too, and are recapped here for convenient reference:

You might have already guessed that since yanking and traditional copy-and-paste

work differently (as well as independently), they use their own separate buffers inside

main memory. If you yank-copy, you cannot traditional-paste, and if you traditional-

copy, you cannot yank-paste.

7.5.2  �Web Browsers
The two most heavily-used web browsers in the GNU world are, quite unsurprisingly,

Mozilla Firefox and Google’s Chromium. Both are equally good, but Firefox always seems

a touch more stable under Unix.

Chapter 7 The Best of the Graphical Unix

183

Whichever of the two you use, do not forget the add-on LastPass. LastPass takes

care of the excruciating need to save all your web login credentials (i.e., passwords),

and then fill them out when the time arrives, which is about a few dozen times every

day. LastPass also has one feature that not many people use or are even aware of—it is a

brilliant form-filler, although it takes a bit of time to set it up to work in that role.

LastPass also has one feature that not many people use or are even aware of - it is a

brilliant form-filler, although it takes a bit of time to set it up to work in that role.

Figure 7-4 below shows a LastPass form-fill profile named vb being a) created; b)

activated; and c) utilized to fill up a couple of form entries - Contact::Email address and

Custom Fields::Password.

Both Firefox and Chromium have internal sync capabilities that let you save and

sync passwords. But if you use LastPass, you have the additional capability to sync from

Firefox to Chromium, and the other way round.

LastPass had an associate add-on XMarks, which would let you store and then sync

your bookmarks, the heart of the web-browsing experience, with the XMarks server.

Late-breaking news on the XMarks front suggests that add-on is being discontinued,

so you have to use your browser’s internal sync functions for syncing bookmarks.

One Firefox nicety is that you can download the .xpi add-on files from the Mozilla

website to store them locally. Another nicety is an extension that its rival Chromium

lacks—the add-on InformEnter. If you use InformEnter, you likely will soon get hooked

to the convenience it offers for filling in forms with just a right-click. Under FreeBSD, you

can install InformEnter not as an add-on, but as the package xpi-informenter.

Which brings me to ESR—Extended Service Releases—that Mozilla offers for Firefox.

A few Firefox add-ons, for a variety of reasons, are banished from regular releases, one of

the condemned ones being InformEnter. To install such add-ons, you need to use the ESR

Figure 7-4.  Using LastPass as form filler

Chapter 7 The Best of the Graphical Unix

184

version of Firefox, typically with the key xpinstall.signatures.required set to false in

Firefox’s registry, which you can open by typing about:config into the address bar.

Open-source Chromium—which forms the base of the closed-source Chrome

browser with some additional, minor features and a different license—is definitely a

good choice for folks who use Google Hangouts for video chat. Unlike Firefox, Chromium

installs extensions without a restart. You can access your Chromium extensions via the

URL chrome://extensions/ and Chromium settings via chrome://settings/.

If neither Firefox nor Chromium suits you, there is Opera, which has a smaller

bunch of die-hard fans. Opera does not have the same razzmatazz of themes and add-

ons though. But it has good speed and stability. FreeBSD users can additionally install

the package opera-linuxplugins, which gets access to natively-Linux plugins, chiefly

Adobe Flash and Acrobat Reader.

All the browsers above innately support JavaScript and HTML5 (the latest version of

HTML with its own alternative Flash technology), besides a wide variety of multimedia

content that can be played in the browser.

7.5.3  �Email Clients
Just as a web browser has to understand many protocols (HTTP, HTTPS, and FTP, for

example), an email client has to negotiate a couple—one for outgoing emails, one for

incoming:

•	 SMTP (Simple Mail Transfer Protocol) sends out messages from your

email client using a remote server (e.g., Hotmail).

•	 POP3 (Post Office Protocol) lets you retrieve your email from a

remote server, which typically—but not necessarily—deletes the

email that has been popped.

The alternative to POP3+SMTP is IMAP4 (Internet Message Access Protocol), a

newer mail protocol that can handle both send and receive functions. Whether using

POP3 or IMAP4, the client always hands over outgoing mail to the SMTP server.

The three protocols understood by the email client have to be implemented at the

server. So Hotmail is not one, but actually three, servers—SMTP, POP3, and IMAP4. To

configure an email account in the client, you must have the SMTP server address and the

address for the service you will use to fetch email: POP3 or IMAP4.

It will be good to note the behavior of an IMAP4 account, which quite correctly is given

the nickname “remote folders”. The initial folder layout in an IMAP4 account—as shown by

Chapter 7 The Best of the Graphical Unix

185

the email client—is just a mirror of the layout at the server. Any operations then performed

in the email client are actually executed at the server. So if you create a subfolder called

JohnDoe in your Inbox and then move all messages from john.doe@example.com to Inbox/

JohnDoe/ in your email client, those actions will be executed first at the server.

Among email clients, Mozilla Thunderbird is the leviathan. Like its cousin Firefox, it

uses the Mozilla add-ons infrastructure. One such add-on is Lightening, an integrated

calendar that often gets bundled into a standard Thunderbird installation.

Thunderbird supports every single standard mail protocol and email function. One

particularly useful function is message filtering. If the user chooses to, Thunderbird can

set up rule-based filters to move incoming/outgoing messages into some other folder(s),

or even trash them. The filters work in automatic as well as manual mode.

Figure 7-5 below shows a filter named amazon being setup to move all messages

from ship-confirm@amazon.com and order-update@amazon.com from Inbox to a folder

named amazon.

Thunderbird is not alone in its league, by any means. In fact, there is an equally good

full-fledged client that has many devotees both under Unix and Windows: Sylpheed. Like

Thunderbird, Sylpheed has its own address book, message filtering support, and can

work together with spam/junk markers.

Figure 7-5.  Thunderbird mail filters

Chapter 7 The Best of the Graphical Unix

186

Another full-fledged client is Evolution, which has a clean-looking interface and its

own calendar. Among X email programs, Evolution—originally created at Novell—is the

oldest one and has a dedicated bunch of followers. When used alongside the evolution-

ews package, Evolution can also connect to Microsoft Exchange servers.

There are lightweight email clients too. I would not like to bother with yet another

list, but the one lightweight client I do recommend to readers to try is Geary. Among

Unix applications I have seen, Geary has the most visually stunning interface.

Geary has much of the functionality of Thunderbird, but nowhere near all: it cannot,

for example, filter messages (yet) based on user-defined rules. Since Geary—which has

been written in a new programming language Vala—is still relatively an infant, we can

expect the infant to cut a tooth every once in a while.

I would be disappointing you if I were to leave you without a peek at the Geary

interface. Figure 7-6 provides a glimpse.

Since Geary tries to be lightweight, it relies on the system for external functions like

spell-checking. If spell-checking is not working in your Geary installation, your box

might be missing one or both of these packages:

en-aspell; en-hunspell

Geary also has a dependency on an external package that does not get installed by

itself, gnome-keyring, which stores all your passwords. After installing Geary, it is a good

idea to install gnome-keyring too.

Figure 7-6.  The Geary email client

Chapter 7 The Best of the Graphical Unix

187

7.5.4  �Accessing and Downloading Remote Data
For data that lies in FTP or SMB (Samba) shares, you can always use command-line

tools. But I often find it more convenient to use graphical tools.

KDE provides the Net Attach tool KNetAttach (under my box it’s /usr/local/lib/

kde4/libexec/knetattach) which makes that very simple—and the tool remembers its

usage history, complete with logon credentials. Not surprisingly, KNetAttach opens the

remote directory in KDE’s file manager Dolphin.

Figure 7-7 is a patchwork screenshot of opening the Heanet FTP directory /pub/

cygwin/x86_64/release/ hosted at ftp.heanet.ie (anonymous FTP service) with just a

couple of clicks, with KNetAttach and Dolphin working in cahoots.

If a network attachment tool is not available under your desktop environment,

it’s not a serious problem—you can open FTP/SMB shares in your web browser too.

Browsers understand those protocols.

For downloading large files from the web (via HTTP/HTTPS or FTP), you want to

stick with the command-line tool wget. That is supremely reliable, and it offers support

for continuing partial downloads. It is the most complete download manager.

Quite a lot of the data that is available for download on the web nowadays is via the

BitTorrent protocol.

Downloading via BitTorrent is a two-step process. First you get the .torrent file,

which has the description (metadata) of the big file it would download. Once you have

the .torrent file, you feed to it a BitTorrent client, which goes ahead and performs the

actual download to your box.

Figure 7-7.  KDE network folder attachment wizard

Chapter 7 The Best of the Graphical Unix

188

We’ll first deal with BitTorrent clients, which there are quite a few. Two of the full-

fledged variety are Transmission and qBitTorrent. Both provide support for BitTorrent

techniques like DHT (Dynamic Host Tracking) and Magnet links (support for opening

.torrent files with a double-click in your X file manager).

Transmission has support for scripting too. This Transmission script writes out a

message upon completion of each download and moves the download to the $HOME/tor

directory.

#!/bin/sh

DEST=$HOME/tor

set DEST above to the path of an existing, writeable directory

[-n "$DEST"] || { echo "$DEST is null !" 1>&2; exit 1; }

[-d "$DEST"] || { echo "$DEST not a directory !" 1>&2; exit 1; }

[-w "$DEST"] || { echo "$DEST not writeable !" 1>&2; exit 1; }

echo "From ${TR_TORRENT_DIR}:

Completed TR_TORRENT_NAME=${TR_TORRENT_NAME} (TR_TORRENT_ID=${TR_

TORRENT_ID})" >> $HOME/tor-messages

mv "${TR_TORRENT_NAME}" "$DEST"

exit $?

Save this as posttor.sh. Then set the executable bit for the script with:

chmod +x posttor.sh

In the Transmission window, open the dialog for download preferences (choose Edit

➤ Preferences ➤ Downloading).

Check the box for Call Script When Torrent Is Completed, and then browse to locate

posttor.sh.

The following shell variables are filled by Transmission automatically each time the

posttor.sh script is invoked:

•	 $TR_TORRENT_DIR is the path of the downloads directory in your

filesystem.

•	 $TR_TORRENT_NAME is the name of the download.

•	 $TR_TORRENT_ID is the original serial number allotted to

$TR_TORRENT_NAME in your Transmission queue.

Chapter 7 The Best of the Graphical Unix

189

If you need to download via BitTorrent on the command line, that is eminently

possible and the easiest way to do that is with ctorrent. I will leave command-line

BitTorrent download to you to play with, as and when you find the time and the appetite.

An interesting go-between BitTorrent client is the “no X” version of qBitTorrent,

called qbittorrent-nox, which is fired up on the command line and then uses a web

interface for further interaction with the user.

qbittorrent-nox (issued in a terminal window) runs a web service on the port 8080

accessible as the user admin and the default password adminadmin.

Figure 7-8 shows the terminal interaction on the left, and a web browser window

opened at the qBitTorrent admin site on the right, with an ISO download just flagged off.

We’ll now take up the question of how to get the .torrent files, which we should

have taken up in the first place, but I decided to delay for a good reason. In some

countries, downloading via BitTorrent is legally frowned upon and could get you into

trouble. If you decide to download via BitTorrent, it is at your own discretion.

We’ll take our torrent download site as Pirate Bay (www.thepiratebay.org/), but you

can adjust that as needed.

In most locations, you should be able to open Pirate Bay (or whatever is your

download site) in your web browser.

Figure 7-8.  The qBitTorrent web interface

Chapter 7 The Best of the Graphical Unix

http://www.thepiratebay.org/

190

Pirate Bay itself faced a legal (and existential) crisis a few years back in its host

country Sweden, until it managed to convince Swedish legal authorities that nothing it

was doing contravened Swedish law. But some countries—UK and India, for example—

keep in place (on-and-off) legal challenges that prevent you from accessing sites like

Pirate Bay in a web browser.

For such locations, you have to use a modified version of Firefox that can circumvent

the sniffers. That version is called the Tor browser. You can download Tor at https://

www.torproject.org/download/download-easy.html.en.

At the time of this writing, Tor was natively available for Linux, while a FreeBSD port

is under development. For the moment and until the port becomes available, FreeBSD

users can run a Linux virtual machine that can do the job needed. We’ll broach this

subject in-depth in Chapter 9 (Virtualization).

Downloading with Tor is as easy as downloading with your web browser. Tor ultimately

is just a portable version of a popular web browser (Firefox). The only problem could

be that Magnet links don’t work—which is not such a serious problem. You can simply

right-click to copy the location, and then open that location as a download target in your

BitTorrent client. Transmission does that automatically once you have copied the URL.

Tor downloads work on a packet-based approach. A large file is typically broken into

a large numbers (millions) of packets hosted by multiple hosts on the web (seeds and

peers). When you fetch a large file via BitTorrent, it is possible that a few thousand hosts

sent you the packets—you as the downloader never control where the packets get picked

from.

Using the Tor browser might not be enough to keep the “legal” hounds out of your

backyard. Occasionally, you might even need VPN (Virtual Private Networking) to

convince others to keep away from prying on your download agenda. Setting up VPN is a

fairly technical business, and we will keep it out of the scope of this book.

Chapter 7 The Best of the Graphical Unix

https://www.torproject.org/download/download-easy.html.en
https://www.torproject.org/download/download-easy.html.en

191

7.5.5  �Playing Multimedia Content
Playing multimedia content is usually not a legal concern—or so we must hope.

Audio waves are best played under X with XMMS, which has—among many other

features—a graphic equalizer. Figure 7-9 below bears testimony to those goodies.

A couple of good alternatives are Sonata, which uses the MPD (Music Player Daemon)

application to play audio, and Audacious, which has a library organization that can be

managed with the filesystem.

Playing audio files—but not audio+video files—is possible without X too. Still under

the XMMS umbrella, you can get the package xmms-curses to play audio files in console

mode. There are a few options that I would not like to go ignored: cmus, mp3blaster,

and mpg123. That last one even has an equalizer that you can tweak and use in pure text

mode. It has a successor too: madplay.

Now onto the video section. All video players under Unix offer the great facility of

system-managed codec setup. I have never faced a situation under FreeBSD or Linux

where a file could not be played because of a missing-codec issue. Most codecs get

installed when the system is set up: gstreamer ffmpeg contains all popular codecs.

When you install a video player, the package contains any additional codecs needed.

Video support under GNU has always been remarkably touché.

Figure 7-9.  The XMMS audio player

Chapter 7 The Best of the Graphical Unix

192

Still in its early days, Linux scored a direct hit under the Hollywood banner with the

smash hit Titanic (1997), which turned the haunting voice of Sissel Kyrkjebo into every lover’s

inspiration worldwide and was rendered using Linux. Figure 7-10 freeze-frames the moment.

You can read more about the Titanic story at this URL:

http://www.linuxjournal.com/article/2494

As for video players, there is a whole gang of them. We focus on three widely used

ones: MPlayer, Videolan (VLC), and Xine.

7.5.5.1  �The mplayer Cult

The mplayer application is not really a player. It is a video-rendering engine that’s used

by a family of mplayer-based frontends: SMPlayer and GMPlayer.

I use the SMPlayer frontend, which offers support for using other video-rendering

engines too, mpv for instance. Using SMPlayer is as easy as it could possibly get—

SMPlayer has the simplest user interface (UI) among all video players. If mplayer’s

volume is not loud enough for you, try a mixer application like aumix.

Figure 7-10.  Linux for lovers (Titanic, 1997)

Chapter 7 The Best of the Graphical Unix

http://www.linuxjournal.com/article/2494

193

Figure 7-11 shows often-used keyboard shortcuts on the left and a snapshot of

SMPlayer’s ultra-simplistic UI on the right.

7.5.5.2  �VideoLAN/VLC

VideoLAN is probably the most complete video player ever developed. It even plays the

VOB files in video DVDs with perfect smoothness. An additional nicety is a built-in pre-

amplifier, which can jack up the media’s audio volume a fair bit.

While using VideoLAN client is as easy as using any X application, there is one

problem users often face: when you set the equalizer bands in VLC to custom values,

those settings do not get saved when VLC is shut down. The rest of this subsection deals

with making VLC equalizer settings persistent.

Figure 7-11.  Getting across closed-source (Midnight Express, 1978)

Chapter 7 The Best of the Graphical Unix

194

The first thing you need to do is open the Equalizer dialog (choose Tools ➤ Effects

and Filters). Now tweak the bands to suit your auditory senses. Refer to Figure 7-12.

For simplicity, we have tweaked the custom values to end with .0, which can be

ignored. Save the gains in a text file, which—for Figure 7-12—must hold the text: 3 12 0 0

-8 -8 -8 -3 -3 -3 -1.

The left-most number (3 in our tweaked settings) is for the pre-amplifier gain, and

the remaining ten correspond to the equalizer bands.

Once you have saved the gains in a text file, close the Equalizer dialog.

Choose Tools ➤ Preferences.

Change the Show Settings layout (bottom-left corner) from Simple to All and THEN

Navigate to Audio ➤ Filters and ensure that the box for Equalizer with 10 bands is ticked.

Figure 7-12.  VLC equalizer gains

Chapter 7 The Best of the Graphical Unix

195

Expand Filters and click on Equalizer. Paste the bands gain settings in the text box to

the right of Bands gain (circled in Figure 7-13).

Finally, click Save at the bottom. The next time you start VideoLAN, your saved

settings will be used for equalizer gains.

7.5.5.3  �Xine

One of the X applications with a very different look and feel is Xine, the interface of

which has become pretty famous in itself as the Xine UI.

Figure 7-13.  VLC bands settings

Chapter 7 The Best of the Graphical Unix

196

Figure 7-14 shows the Xine UI.

Figure 7-14 is a frame of the ill-fated bus 2525 a few seconds after the last time it

stopped at any bus stop. You perhaps already know the movie name.

That screenshot also shows the Xine UI in action. The centerpiece of the Xine UI is

the widget-toolbox (shown at the top in the image). You can hide it whenever you don’t

need it, and then when you need it again, just right-click and select Show Controls (or

press).

Xine has support for VOB files too: this screenshot was taken with a VOB file.

Besides its UI, Xine flaunts another peculiarity: it is a Unix-only program, not

available under Windows.

7.5.6  �Paint Programs
Painting under GNU in the early days was performed by three applications still in use:

XPaint, XFig, and Gimp. Gimp is the powerhouse that can do anything that any other

paint program can do. On the flip side, Gimp has a learning curve of its own.

Figure 7-14.  The widget toolbox that underpins the unique Xine UI

Chapter 7 The Best of the Graphical Unix

197

Perhaps the most widely used paint program today is Pinta, which is a queer fish in

the Unix world. Despite being a Unix application, it uses the Microsoft .NET framework

for its build. That might make it sound like Pinta runs under Windows only. But the truth

is the other way round: Unix has ported the .NET framework too, letting applications that

use the .NET framework run as Unix applications. In case you are curious, the ET port to

Unix is named Mono.

With FreeBSD, there is yet another kink: Pinta has to run as a Windows application

under the Windows emulation subsystem (Wine). This is so because a native port or

package for Pinta is not available. We’ll look at Pinta installation under FreeBSD in the

next chapter when we set up Wine.

KDE, as always, has a few applications of its own. The two entries relevant to the realm

of paint are KolourPaint and Krita, which have pretty much the same capabilities as Pinta.

No discussion about Unix paint programs would be complete without a mention of

Inkscape. Inkscape can do everything that other paint programs can do, and a few things

that most other paint programs cannot do.

One fairly unique Inkscape ability is to render calligraphic strokes, like the freeform

arrows and the glyphs shown in Figure 7-15.

Figure 7-15.  Inkscape calligraphic strokes

Chapter 7 The Best of the Graphical Unix

198

Another fantastic Inkscape ability is to draw straight lines with arrowheads at either

of or both endpoints. See Figure 7-16 for what is often desired.

Drawing arrow-headed lines is an often-needed skill, and folks keep searching for

how to do this on the web. So we’ll take up a small Inkscape exercise specifically for this.

	 1.	 Open a new blank document in Inkscape.

	 2.	 Press to select the line-drawing tool.

	 3.	 Click in the document to start a line and drag with the mouse to

the right until the ending point. Be careful not to move the mouse

at the point of release. Then double-click to tell Inkscape that the

line has been finalized. Otherwise, Inkscape will try the extend the

curve as a set of connected lines.

	 4.	 Press to bring up the Fill-and-Stroke dialog

and open the right-most Stroke Style tab.

	 5.	 Set the line width. For starters, a 2mm thickness should be good

enough.

	 6.	 Click the left Marker drop-down, and select an arrowhead.

	 7.	 Click the right Marker drop-down, and select an arrowhead.

Figure 7-16.  Inkscape arrow-headed lines

Chapter 7 The Best of the Graphical Unix

199

Your arrowhead line is ready. You can save it in any of the popular graphics formats,

although Inkscape’s preferred format is Scalable Vector Graphics.

For still more painting, you could try the powerhouse Gimp. That suite has

capabilities similar to what you get with Adobe Photoshop under a Mac.

7.5.7  �LibreOffice: The New and Better Office
One of the great additions to the Unix world of late has been LibreOffice, the emergence

and evolution of which has essentially eclipsed Microsoft’s cash cow.

From a puritan viewpoint, the Office situation is a bit of a riddle. Unix approves just

one kind of document for communication, which is the revered plain text. So why exactly

has so much effort gone into the creation of LibreOffice?

There are multiple reasons:

•	 Folks migrating to Unix from Windows have a fair bit of their old data

in formatted text documents created with Microsoft Office. It would be

a buzz-killer if they were to lose the ability to open those documents.

•	 LibreOffice gives the Unix world a chance to beckon with confidence

that we can do better than what Microsoft did, inside Microsoft’s own

backyard—and for free. To put the icing on the cake, LibreOffice can

open even those old documents that Microsoft Office once created

and that Microsoft Office now refuses to open.

•	 Typesetting documents with LaTex can be too much of an ask when you

need to quickly create something as trivial as a one-page letter or report.

So while your ultimate goal for future would be plain-text-only (with formatted text

restricted to PDF rendered with LaTex), you can take your time adapting to the Unix way

of life with the ease of opening old Office documents with LibreOffice.

I will generally presume that you can work with Office and therefore LibreOffice

applications. But there is one tool that Office users often ignore: macros for repetitive

tasks. LibreOffice Writer has great support for macros that work in pretty much the same

spirit we saw in Chapter 1 with the Vim and Joe text editors.

One fantastic utility that comes with LibreOffice is unoconv. This utility is a Swiss Army

knife for dealing with Microsoft Word and LibreOffice Writer documents on the command

line. It can freely convert among all supported formats—DOC[X], RTF, ODT, PDF, and

TXT. You need to install unoconv separately once LibreOffice itself has been installed.

Chapter 7 The Best of the Graphical Unix

200

LibreOffice is not just the writer application—Calc is the spreadsheet solution; Base

is the database application; Impress is for presentation slides; and Draw is a very handy

paint program. That I suppose is pretty much all that you could ask of a full-fledged

Office suite.

I would like to note about LibreOffice Draw that it has the very useful add-on ability

of being able to spell check a PDF document. It can also, like Inkscape, draw arrowhead

lines, with significantly less fuss too.

7.5.8  �PDF Viewers
In the Unix world, the standard document type for formatted text is the Portable

Document Format, engineered principally at Adobe Systems. Microsoft’s DOC ideas

are seriously frowned upon—with good reason. While you can continue to use Office or

LibreOffice products as you transition fully to Unix, your final aim should be to whittle

down to just two document types:

•	 Plain text. This is what you want to use 99% of the time.

•	 PDF. This is what you use when working on a professional

publication. This is also increasingly becoming the default format

expected to be fed to the printer for any printouts.

Although there are quite a few PDF viewer programs under Unix now, the only ones

I can readily recommend to the reader are Xpdf and Okular, a KDE application that can

work under any desktop environment.

Okular is a complete PDF viewer with an interface that is easy-to-use and highly

functional. A couple of useful Okular features are:

•	 Bookmarks: These let you navigate a large PDF file with ease.

•	 Review mode: The Review mode is Okular’s ability to to annotate a

PDF. So if you want to quickly insert a comment in the PDF

somewhere, use the Review mode, triggered by .

There are a couple of features as yet missing in Okular.

One is a hook into the spell checker. To spell check a PDF, you can use LibreOffice

Draw—which was noted in the previous section.

Another function not yet implemented in Okular is comparing two PDF documents.

That job can be done by DiffPDF (diffpdf), a handy utility that you can read about at

Chapter 7 The Best of the Graphical Unix

201

http://www.qtrac.eu/diffpdf-foss.html. While that URL indicates that diffpdf has

been superseded by a commercial version, it happily continues to be available as a port

under FreeBSD (/usr/ports/graphics/diffpdf).

An associate PDF viewer is Xpdf, which is blazing fast and thus can be used for

slideshows, and which comes with the utility pdftotext for converting PDF to plain text.

Xpdf shares a fantastic feature with Okular—both applications can pick up any changes

in the background (triggered, for example, by recompiling LaTex sources) and reload a

PDF file in real time with no user intervention.

7.5.9  �PDF Creation
The other half of the PDF story is how to create a PDF. For quick PDF generation,

LibreOffice Writer is a good solution.

For professional publications that need proper typesetting, you will need a more

elaborate setup, with LaTex in the backend. One cog in the LaTex wheel is pdflatex,

which can use the LaTex engine to compile a PDF on-the-fly. Although LaTex is not

difficult to learn or use, it has a stiff learning curve—but then online documentation is

available in the tons, and is always accessible easily through your best friend, Google.

The next battle in the PDF realm might be encryption and decryption with a

password. There are quite a few of tools that do the job: mupdf, pdftk, and qpdf.

qpdf is more widely available, and probably is a touch easier to use. So that’s what we

will document.

To encrypt with the password abc123 and 128-bit strength, you can use:

qpdf --encrypt --options "abc123" 128 -- input.pdf encrypted.pdf

The user who receives the encrypted PDF can decrypt:

qpdf --password="abc123" --decrypt encrypted.pdf output.pdf

Essentially, the file input.pdf at the sender’s end becomes output.pdf at the end of

the receiver.

There are still more PDF tools. You might like to extract the images in a PDF—which

is done with pdfimages, a part of the poppler-utils package on my system. Then

someday sooner or later, you would feel like grepping for some text in your PDF files.

A pdfgrep is available.

Chapter 7 The Best of the Graphical Unix

http://www.qtrac.eu/diffpdf-foss.html

202

This seems to be going overboard, but there is something in the nature of sed

too: PDFedit. I should warn you that this tool is highly rough at the edges: it may do a

good job, or it may do a bad job, or it may fail entirely, or it may just core dump. This

application is not a command but a bunch of them, a few of them mentioned here:

add_image

add_text

replace_text

For example, to replace the text abc with xyz in myfile.pdf, you can use:

replace_text --file=myfile.pdf --what=abc --with=xyz

If it works for you, that’s your good luck.

7.5.10  �CD/DVD Writing Frontends
I usually prefer to do things from the command line. But for burning stuff to CDs and

DVDs, my preference is the other way round—do it from a graphical frontend, at least

when one is available.

CD/DVD writing frontends afford a happy convenience: verifying that the optical

medium was burnt correctly. This, for some reason, is not possible with the cdrecord

command as yet.

The two chief CD/DVD writing frontends are Brasero and K3b. I will focus on K3b,

the KDE application that comes with my desktop.

K3b can burn audio CDs and data CD/DVDs. When used to write data, K3b becomes

your frontend not just to cdrecord, but mkisofs too. This adds to the convenience. You can

simply open a new data project and drag-and-drop data to be burnt into the compilation.

When you burn the CD/DVD, you can optionally have verification results delivered

to you in a message box.

While Linux sets up K3b to work out of the box, FreeBSD needs the root user to open

access to the /dev/cd*, /dev/pass*, and /dev/xpt* device nodes.

This is straightforward.

	 1.	 First make sure your normal user account is added to the group

operator. For this, you can use this command:

pw groupmod operator -m <normal>

<normal> is a placeholder for your normal user account

Chapter 7 The Best of the Graphical Unix

203

	 2.	 Then append the following lines to /etc/devfs.conf:

Own /dev/pass0 root:operator # �% This configuration

is for: %

perm /dev/pass0 0664 # �% CD/DVD drive + 1

hard disk %

 # �If you have 2 hard-

disks,

Own /dev/pass1 root:operator # �repeat the 2 lines

above to

perm /dev/pass1 0664 # �add settings for /

dev/pass2

Own /dev/cd0 root:operator

perm /dev/cd0 0664

Own /dev/xpt0 root:operator

perm /dev/xpt0 0664

To get this to work as intended, you can either reboot (preferred, because a system

group modification is involved) or restart the devfs service:

/etc/rc.d/devfs restart -OR- service devfs restart

7.5.11  �Internet Messaging and Chat Clients
The easiest-to-use chat application under X is Pidgin. Pidgin works with a variety of

protocols, AIM and ICQ included. But the one used most frequently nowadays is XMPP,

which hooks up with Google accounts.

To set up an XMPP (Google) chat account under Pidgin, you will likely need to

authenticate Pidgin in your Google account settings. For that, you must sign in to your

Google account in your web browser and open the account settings. Then you need to

enable Pidgin among the applications that can access your account.

Chapter 7 The Best of the Graphical Unix

204

The easy way to do that is to attempt to create an account in Pidgin. This would fire

up notifications into your Google account settings panel about an application requesting

authentication access. You might also get an email from Google about this.

This is how you fill the Pidgin account details.

First initiate addition of an XMPP account.

Then, presuming your Gmail address is invalid.pointer@gmail.com, fill the

account details, as shown in Figure 7-17.

Once you click the Add button, Pidgin would likely report failure. You need to log in

to your Google account settings panel and enable Pidgin.

If you cannot find the link for enabling Pidgin access, you can use the hack of turning on

Allow Less Secure Apps in your Google account settings—this is as per your own discretion.

Once Pidgin has been granted access, you can chat with other Google users in your

Buddy List.

Pidgin supports voice and video-chat too, but this is currently limited to the XMPP

protocol.

Figure 7-17.  Pidgin account setup with XMPP

Chapter 7 The Best of the Graphical Unix

205

If you need to video-chat with some other protocol, you can try Empathy, which

supports a few more protocols like SIP and MSN.

The pinnacle among video-conferencing and video-bridging solutions is perhaps the

Java application Jitsi, which supports almost every popular protocol for video-chat.

Using video-chat under FreeBSD requires you to enable the webcamd daemon. As

root, you can add this to /etc/rc.conf:

webcamd_enable="YES"

You can then, still as root, start the service immediately:

service webcamd start

7.5.12  �Multimedia Editing Software
Multimedia editing under Unix has become increasingly mainstream, but it will be a

while before the top Hollywood production houses start trusting Linux as a mainline

for video-rendering and soundtrack-recording. There’s a tankful of functionality being

served by commercial applications that will first need to be rendered in Linux in toto.

Linux still has a lead—FreeBSD is a non-player in those circles as yet.

But you can turn your Unix box into a personal multimedia studio, although this is

fairly niche subject and I will have to leave it with just an introductory word.

The two primary applications you can work with are Audacity and Handbrake.

Audacity is an audio editor suite while Handbrake is a video encoding application. While

both applications are available under all Linux distros as well as FreeBSD, Parrot Linux

(Studio) bundles them in the distribution.

I have used both of these programs myself with ease as a novice—Audacity to extract

a clip of movie soundtrack and remove noise from the clip, and Handbrake to re-encode

a .MP4 file in .AVI format.

I presume that, if you are interested in multimedia editing, the combination of

Audacity and Handbrake should give you a good platform for a homemade studio. You

might also like to try out Avidemux, a video editor.

One great addition of late to the Unix multimedia family that I must not forget to

mention is Blender, one of the most sophisticated animation, 3D modeling, and gaming

suites in the business today. Blender is big-and-complex software, with a Python API and

with a user manual that you can contribute to online.

Chapter 7 The Best of the Graphical Unix

206

Figure 7-18 shows a dazzling screenshot of the Blender interface, with two 3D objects

(cubes) created as linked entities.

7.5.13  �Fun Stuff: Games and Blogging
Games had traditionally not been a high priority in the Unix world. This is one area where

Unix still lags behind Windows. Things are looking up though. Beginning with Windows

8, Microsoft has started losing its foothold in the gaming sector—with Linux increasingly

taking command of the center stage. Valve Corporation—the makers of the Steam gaming

platform—made it clear that Linux will here onward be a mainstream distribution outlet

for its games. It even has created its own Linux distro, aptly named SteamOS.

Among the current genre of games, chess works best. If you are a chess player, you

might like to install the XBoard frontend—with many engines available in the backend—

crafty, fairymax, and phalanx.

Figure 7-18.  Blender cubes

Chapter 7 The Best of the Graphical Unix

207

Figure 7-19 below uses XBoard analysis and the XBoard-quintessence interface Xaw

to step back into 1956, when Robert James (Bobby) Fischer proved he could play chess

with the move 17...Be6 in what is fondly remembered as The Game of the Century by

everyone, except the unfortunate opponent, David Byrne.

There are a few others, mostly under the GNOME umbrella: Sudoku, Solitaire/

Freecell (in the suite AisleRiot), and Minesweeper are the ones I can suggest.

Emlith, Yutaka Emura’s Tetris implementation—sometimes considered the best

Tetris game ever created—works like a charm under the 32-bit version of Wine (Windows

emulation).

Figure 7-19.  Xboard: The Move of the Century

Chapter 7 The Best of the Graphical Unix

208

Being a Tetris player myself, I would like to pay homage to Emlith with a screenshot,

shown in Figure 7-20.

A few shooting games work too: Quake 4, DooM 3, and Jedi Knight. But they often

require significant backstage work and often need an emulation layer.

Don’t look for anything much beyond this right now—until Steam actually goes full

steam ahead, which luckily is already happening.

As for blogging, there is a cute, little application that has popped up on the radar

called Choqok. This buddy can tweet for you, complete with attachment. All you need is

a good Twitter handle.

Figure 7-20.  The Tetris game Emlith running under 32-bit Wine

Chapter 7 The Best of the Graphical Unix

209

Figure 7-21 is a testimony to Choqok’s talents.

Not to disappoint you with his (or her?) looks, Choqok comes with an adorable icon

reminiscent of Angry Birds: .

7.5.14  �The Question of a Graphical Integrated
Development Environment

Everyone fresh into the Unix bloodstream, at some point or other, feels like posing the

question of an Integrated Development Environment, much in the lineage of Visual

Studio under Microsoft Windows.

Everyone is given the answer: it is not possible under Unix. Because Unix is vast

and supremely modular, integrating all necessary tools under a single umbrella is not

possible. In fact, for a developer, Unix is the IDE. You can use a text editor of your choice

with syntax highlighting support to write your code and compile your code with the right

tool: gcc, valac, javac, or perhaps something else.

About the closest thing to what could be called IDE is Geany. Geany supports a

plethora of languages—C, C++, Java, Latex, Vala, Go, Haskell, Lua, Lisp, and SQL. It was

used to write the LATEX source code for this book.

Figure 7-21.  Tweeting with Choqok

Chapter 7 The Best of the Graphical Unix

210

Geany has buttons to set, and then fire up, the build functions—this works for small

projects. When your project grows big, you’ll need to write your own makefile.

A very nice Geany plug-in is the Scope Debugger (which is distinct from the

Debugger plug-in). The Scope Debugger lets you set breakpoints and debug from the

Geany interface itself—harnessing much of the power of the Visual Studio IDE.

Unfortunately, at the time of this writing, because of a bug in the glib library, using

Scope freezes Geany. But a workaround is reportedly ready for shipment soon.

Figure 7-22 is an image of Geany with the Scope plugin in action. This is an image

of Geany plus Scope working on wget's C code—contributed by Scope’s maintainer,

Dimitar Zhekov, who had a version of glib that still works with Scope.

You can hope the glib-bug problem has been solved by the time you are reading

this, and that you can use Geany and its Scope Debugger plug-in readily.

Figure 7-22.  Using the Scope Debugger in Geany

Chapter 7 The Best of the Graphical Unix

211

For full-fledged debugging, you would like to be conversant with the command-line

tool gdb. The gdb debugger has an X frontend that works very well——it’s called DDD

(Data Display Debugger).

Figure 7-23 is a screenshot of ddd breaking into a block of C++ code.

Ultimately, you must remember that Unix development is a command-line

process. The text editor and the shell are what you need to develop, not an all-serving

powerbroker that mistakenly goes under the brand name IDE. Any X interface you get is

actually a frontend for what can be done on the command line.

7.6  �Summary
There was a time when there was a bedeviling dearth of applications under

Unix. Programmers preferred to develop applications for DOS and its successor,

Windows, which had a wider outreach among users.

Figure 7-23.  Debugging with ddd

Chapter 7 The Best of the Graphical Unix

212

Ever since the mantle passed from AT&T to GNU (which broke away from the spirit

of commercial Unix with its crafty and recursive acronym—GNU’s Not Unix), that

scenario has been changing for the better. For any serious application development

nowadays, the platform of first choice for the programming community is either Linux or

FreeBSD.

The only applications nowadays available under Windows are those that are ported

from the world of Unix. And that story will continue.

To make it easier for programmers to develop graphical applications under Unix,

a whole—and very impressive—range of toolkits is now available, most prominently

GTK and Qt. Transmission, the BitTorrent client, is a GTK application, while HPLIP (the

HP Linux Imaging and Printing suite) has been created with Qt. Actually, the whole of

GNOME is GTK, and the whole of KDE is Qt.

A new set of programming languages (Vala for instance) have emerged too. These

languages make it very easy to develop X applications. We will write some rudimentary

GUI applications with Vala in the final chapter of this book.

In short, the graphical outlook of Unix has never been any better than it is right

now—and it will get even better in the days to come.

Chapter 7 The Best of the Graphical Unix

213
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_8

CHAPTER 8

Emulation Layers:
Wine and Linuxulator
One of the things you must admire about Unix ever since GNU steered into its vanguard

is that it tries hard to be complete and inter-operable. Unix as the operating system is

always the hub. But there are important spokes that connect it in a variety of ways to

the user. Users of Cygwin/Babun would recognize how important those tools are for

Windows users in need of a programmable environment which is so sorely missing in

Microsoft platforms.

But the Unix effort does not stop at providing Unix emulation to Windows. It works

the other way too: emulating Windows under Unix. And then it goes further: emulating

a different Unix flavor under yours. Essentially a rule of the Unix world is: if a platform

becomes big and important, emulate it. Emulating Windows is a significant project just

because of the huge numbers of existing Windows users and binaries, as well as the

resulting improvement in the (poor) documentation of a closed-source system.

Linux has always had the ability to emulate a range of other Unix flavors (all of them

effectively deceased by now): System V and SCO, for example. Now that Linux is itself

big and important, it fits the Unix paradigm for host emulation. FreeBSD throws in that

piece called the Linuxulator.

8.1  �Wine HQ: Attacking Redmond
There are two distinct ways to run Windows binaries under Unix. One is running

Windows as a virtual machine. If you have a multitude of Windows binaries, this should

be the preferred way.

214

But virtualization has its problems: it is resource-hungry and it preempts the

possibility of integrating individual binaries in a virtual machine (as shortcuts) in the

host desktop environment. If you were to launch an entire virtual machine just to run

Mozilla Sunbird (a fine calendar application no longer under active development now),

it would seem like using a grindwheel to break a butterfly.

That’s where Wine (a software layer for WINdows Emulation) comes in. I can just tell

my FreeBSD box:

wine sunbird.exe

And I get a cool set of Mozilla Sunbird windows that show upcoming cricket events—

imported from an ICS file (.ics) downloaded at ESPN’s popular Cricinfo website

(http://www.espncricinfo.com/). See Figure 8-1.

I assume that you agree it is useful to learn how to work with Wine: it runs whole

application suites flawlessly, including Microsoft Office (32-bit versions) and many 3D

games.

Figure 8-1.  Mozilla Sunbird running under Wine

Chapter 8 Emulation Layers: Wine and Linuxulator

http://www.espncricinfo.com/

215

But I must also note that support for Windows binaries is nowhere near 100%.

•	 There are many Windows applications you cannot yet install under

Wine. For instance, Adobe Acrobat Reader.

•	 Wine support for 64-bit applications is almost entirely a developer’s

world. They just do not run well under the current state of Wine. On

the other hand, 32-bit applications often and usually do work well.

It might seem like I am trying to suggest Wine is currently a usable project only for

32-bit binaries from Windows 9x/NT/2000/XP. The impression is right on the nail’s head.

64-bit support is still entirely experimental, with the experiments being conducted not

just by developers, but by users too—starting right at first-blood.

8.2  �Installing Wine
The first step is to get Wine working under your box. While you are at installing Wine,

you also want to get a couple of useful associates: Wine Mono and Wine Gecko.

Wine Mono is an open-source implementation of the .NET framework. Wine can use

a Windows build of Mono to run .NET applications—we’ll do just that to run Pinta, a fine

paint program not available natively under FreeBSD (my primary system).

Wine Gecko implements a sham version of Microsoft’s Internet Explorer web

browser—for the benefit of any applications that want IE functionality.

Under Linux, you do not have to worry about choosing between 32-bit Wine and 64-

bit Wine. Wine installation automatically sets up both emulation layers, with the 32-bit

version executable as /usr/bin/wine, and the 64-bit version executable as /usr/bin/

wine64.

Installation should be straightforward:

apt-get install wine wine-mono wine-gecko # Ubuntu

pacman -S wine wine-mono wine_gecko # Arch

Note that Arch uses an underscore in the Wine Gecko package name.

Things are a bit different in FreeBSD wherein you can install only one version: either

32-bit (i386-wine) or 64-bit (wine). This may change in the days to come.

If the binaries you intend to run are sourced from Windows 9x/XP, you want to be

running Wine32. If instead you want to use binaries from Windows 7/10, you likely want

Chapter 8 Emulation Layers: Wine and Linuxulator

216

Wine64. If you are undecided which one to opt for, Wine32 is almost certainly what you

want. Wine64 is largely unusable as of right now anyway.

pkg install i386-wine wine-mono wine-gecko # 32-bit version of wine

pkg install wine wine-mono wine-gecko # 64-bit version of wine

One nicety applies to both Linux and FreeBSD. If you don’t install Wine Mono and/

or Wine Gecko, there are no penalties: upon first run, Wine will automatically download

and install them. But doing this yourself on the command line is a good idea so that you

are aware of precisely what you need for your setup.

Linux flaunts another nicety (which can be expected under FreeBSD too in the

coming days)—support for WoW64 (Windows 32-bit on Windows 64-bit). WoW64 is a

subsystem of 64-bit Windows capable of running 32-bit applications. Wine under Linux

has moved to a stage where installing Wine gets you both Wine32 and Wine64. And then

you can execute a Windows binary with wine or wine64 as you like—the system will itself

figure out its “bitness” and use the right subsystem internally.

The rest of this documentation has been compiled with the 32-bit version of Wine.

If you use the 64-bit version of Wine, you can adjust mostly by just substituting wine64 in

place of wine and then bracing up for the stormy season that possibly lies ahead.

8.3  �The Filesystem Hierarchy of Wine
The first time you run a wine command, the system will create your Wine environment—

which is a .wine subdirectory under your $HOME. Besides other weaponry, that

subdirectory contains the Windows registry implemented by Wine and contained in

three plain-text files: system.reg, user.reg< and userdef.reg. (Unlike Windows, Wine

uses plain-text files for the registry. But still, do not modify these files in your text editor.

We’ll discuss registry manipulation a while later.) When populated by the system itself,

$HOME/.wine is dubbed your Wine prefix.

$HOME/.wine also contains two subdirectories: dosdevices and drive_c.

The foregoing mix makes for a $HOME/.wine hierarchy that looks like this:

|-- dosdevices

| |-- c: -> ../drive_c

| |-- z: -> /

|-- drive_c

Chapter 8 Emulation Layers: Wine and Linuxulator

217

| |-- Program Files

| |-- users

| |-- windows

|-- system.reg

|-- user.reg

|-- userdef.reg

If you are familiar with Windows filesystem hierarchy, this would already have struck

a note in your mind, with a broad picture of how it all works.

drive_c/Program Files is the directory where your installed programs reside.

drive_c/windows is the Windows directory containing the system32 subdirectory

(which in turn contains Wine’s version of the Windows kernel ntoskrnl.exe, apart from

all system libraries).

dosdevices/c: and dosdevices/z: are clever symbolic links that lend you

read+write access to your Wine environment and read-only access to the entire system:

dosdevices/c: points to $HOME/.wine/drive_c.

dosdevices/z: points to the system root directory /.

I should expressly note that Wine, just like Windows, is case-insensitive in its

treatment of file paths. So c: is taken to be same as C:. I should also note that Wine fully

understands Unix paths too, in addition to its Windows-style paths.

8.4  �Running Windows Applications Under Wine
Windows applications come in two flavors: those that have an installer, and those that

can be executed directly with no install regimen.

Applications like Alexander Davidson’s Metapad (a Notepad replacement available

for download at http://liquidninja.com/metapad/) do not need installation. They just

work straightaway:

wine metapad &

If a nice editor window pops up on the screen, you are good to go. (The & at the end

of that command tells the shell to run Wine and its surrogate Metapad window in the

background, letting you regain control of the command-line immediately.)

Chapter 8 Emulation Layers: Wine and Linuxulator

http://liquidninja.com/metapad/

218

A couple of optional morsels were omitted in the foregoing Wine command:

•	 The ./ path specification: Wine is smart enough to search for the

executable first in the current directory, before scouring other paths.

•	 The .exe suffix: If you don’t supply the suffix, Wine will append it by

itself.

Bigger applications like Mozilla Sunbird, Microsoft Office, and Pinta need to be

installed. Any programs you install under Wine are local to your Wine environment.

If some other user logs on to the system, he/she will have to install them as needed

afresh in his/her own environment.

8.5  �Running Pinta as a Windows Application
While Pinta is always available under Linux, FreeBSD users have to hack their way in.

But this section is still useful for Linux readers—it documents installation and usage of

programs under Wine, along with handling of the .msi packages.

As already noted in the previous chapter, Pinta uses the .NET framework for its

build, which leaves it standing with one leg in the Windows world and the other leg in

Unix. Luckily, Wine (to be specific, the wine-mono project) takes care of bridging issues.

You can download the Windows release of Pinta from the official releases URL,

which is https://pinta-project.com/pintaproject/pinta/releases.

At the time of this writing, version 1.6 was the latest Windows release, available via

this link:

https://github.com/PintaProject/Pinta/releases/download/1.6/pinta-1.6.exe

Pinta setup needs a GTK-Sharp already installed (Otherwise the setup will itself

download a GTK-Sharp module for you. This is okay, but then you won’t be able to save

the module’s installer locally in your system for future use.)

You can use the following MSI module, which works cleanly with Pinta version 1.6:

http://download.xamarin.com/GTKforWindows/Windows/gtk-sharp-2.12.26.msi

Once you have downloaded the files (most conveniently with wget), things are easy.

First install the .msi package for GTK-Sharp:

wine msiexec /i ./gtk-sharp-2.12.26.msi

This is the standard methodology for dealing with .msi packages.

Chapter 8 Emulation Layers: Wine and Linuxulator

https://pinta-project.com/pintaproject/pinta/releases
https://github.com/PintaProject/Pinta/releases/download/1.6/pinta-1.6.exe
http://download.xamarin.com/GTKforWindows/Windows/gtk-sharp-2.12.26.msi

219

Once GTK-Sharp is installed, you can run Pinta’s setup: wine ./pinta-1.6.exe

When setup finishes, move over to ~/.wine/"Program Files"/Pinta to run the

newly installed program:

cd $HOME/.wine/"Program Files"/Pinta

wine Pinta.exe &

Note that we are having to cater to the embedded space in the name of the directory

Program Files with the use of quotes. You can, if you want, put the entire path under

double-quotes: "$HOME/.wine/Program Files/Pinta"

While Pinta setup usually would create a shortcut merged into your Applications

Menu somewhere under the Wine category, it is good to know how to launch

applications yourself. If needed, you can create .desktop shortcuts too.

Here is a Pinta.desktop:

[Desktop Entry]

Exec=wine "$HOME/.wine/drive_c/Program Files/Pinta/Pinta.exe"

Icon=FC42_Pinta.0

Name=Pinta

Path="$HOME/.wine/drive_c/Program Files/Pinta"

StartupNotify=true

Type=Application

You may need to fix the Icon setting in this shortcut. If so, you can use the path of any

PNG file in your box.

The Path setting in a .desktop/Applications Menu launcher for Wine applications is

often optional. But if the Wine application links to a DLL in its own directory, Wine could

run into an error trying to launch the program (when the Path cue is missing).

8.6  �Maintaining Your Wine Environment
Most of the time, the foregoing discussion is all that you need to use Wine comfortably.

The rest of the discussion is for digging into Wine a few inches below ground level.

Here are a few things to do to keep your Wine headquarters in good health:

•	 If you want to look up the broad configuration of your Wine

environment, use the command:

winecfg

Chapter 8 Emulation Layers: Wine and Linuxulator

220

	 The window popped up by that command (winecfg) shows, most

prominently, the version of Windows your Wine maps to. If you are

using 32-bit Wine, this would typically be Windows XP. 64-bit Wine

usually maps to Windows 7.

•	 Uninstalling software is simple. Just use the command:

wine uninstaller

	 That will give the Windows Add/Remove Programs applet, which you

can use as usual.

•	 Editing Wine’s registry is simple too. You can use either of these

commands:

wine regedit

	 or simply

regedit

That will give you the Registry Editor window that you would have probably encountered

some time or the other.

Since you cannot set one $PATH for your Unix shell and another one for Wine, if you

want to tell Wine about a default directory for looking up executables and/or DLLs (in

addition to the standard Wine paths), you need to use the Registry Editor.

Figure 8-2 shows PATH, a new string variable (REG_SZ) being created under the

registry key HKEY_CURRENT_USER/Environment and modified to hold the path C:\Program

Files\Mozilla Sunbird. (Path strings in the registry must not be quoted.

Chapter 8 Emulation Layers: Wine and Linuxulator

221

With a PATH value set as in the last image under the key HKEY_CURRENT_USER/

Environment in Wine’s registry, I can invoke the binary sunbird.exe (which is present in

the directory C:\Program Files\Mozilla Sunbird) from any location in my Unix shell:

cd /tmp

wine sunbird

And I get the Sunbird window

Looking at that last screenshot, you ought to admire how closely Wine mimics

native Windows functionality—it is almost impossible to spot any difference. The only

difference I could spot is an extra registry branch HKEY_DYN_DATA, which I have never

seen in Windows XP.

Note I f you make a mess of your Wine, it’s not a big deal.

Just delete $HOME/.wine and run winecfg again: that will initialize a new Wine
environment, and you can then install programs afresh.

In Wine jargon, this is stated as creating a new prefix. Recreating your prefix is the
Wine equivalent to reinstalling Windows.

Figure 8-2.  Using the Registry Editor to add a default path

Chapter 8 Emulation Layers: Wine and Linuxulator

222

8.7  �Wine Patches
Wine is one Unix component that is heavily doctored at all levels—developers provide

sets of patches to run atop regular Wine, and then users tweak at their own level.

If regular Wine does not serve you well, you can try a patched version. Once any

of the patches under a patchset become generally accepted, they get merged into the

mainstream Wine distribution. So you might like to keep in mind that patchsets, even the

popular ones, are experimental code not considered “fit-as-yet” for regular distribution.

Two fairly popular patchsets are Staging and Gallium Nine. These are so well-

nurtured in the community that they have their own packages: wine-staging (available

under both FreeBSD and Linux) and wine-staging-nine (available under Linux only at

this moment).

While I have nothing against patches and patchsets at a personal level, I would like

to admonish you from using them unless you really need them (which essentially means

“if regular Wine does not work well for you”).

One thing that bears a mention is that you cannot install a patched version of Wine

alongside regular Wine. If you try to install wine-staging or wine-staging-nine with

Wine already installed, the package manager will first delete the regular Wine package.

8.8  �Version Mimicking Under Wine
You can use the Applications tab of winecfg to instruct Wine to run a different Windows

flavor for a specific executable. Figure 8-3 shows the metapad.exe being configured to

run as a Windows 98 application (in a Windows XP prefix).

Chapter 8 Emulation Layers: Wine and Linuxulator

223

There are a couple of things to note about Figure 8-3. The winecfg command was

issued not from the Unix terminal directly, but from a Wine built-in utility: wineconsole,

which occupies almost all of the left-side real estate in the image.

The wineconsole command mimics Windows cmd.exe, and—quite helpfully—starts

off in the Unix directory from which it was invoked:

I would like to remind you that Wine’s Z: is a link to/of your Unix filesystem.

If you need to convert between Unix and Wine paths yourself, use winepath:

winepath -w /mnt/ext2/dumps/win-x86/editors

Gives the output: Z:\mnt\ext2\dumps\win-x86\editors

Keep in mind though that a single backslash in the output becomes two for you when

feeding input—in other words, your \\ translates as a single backslash for the system.

Figure 8-3.  Getting a Wine application to use a different Windows flavor

Chapter 8 Emulation Layers: Wine and Linuxulator

224

8.9  �Wine Libraries (DLLs)
The way Wine organizes libraries for the user is by creating a system-wide library

directory at the time of installation. On my box, that directory is /usr/local/lib32/wine.

Whenever a new Wine prefix is created, Wine uses the system-wide libraries

to populate the prefix with DLL stubs at the path $HOME/.wine/drive_c/windows/

system32. This closely mimics Windows filesystem layout. Those DLLs are classed as

built-in: shipped with the Wine distribution.

You can extend Wine DLL resources by copying DLLs from Windows. If you run into

a missing DLL error, such as err:module:import_dll Library MFC42u.dll, just copy

the missing DLL (MFC42u.dll) from Windows under Wine’s system32/. That should fix

things. (Section 8.12 offers tips on skirting such Microsoft-licensed DLLs.)

Built-in DLLs in your prefix can be replaced with native (original Windows) versions:

this too is largely supported by Wine. To override a built-in DLL, perform two steps:

	 1.	 Copy the native DLL at the location $HOME/.wine/drive_c/

windows/system32.

	 2.	 Run winecfg and specify a loading order for the DLL under the

Libraries tab.

Figure 8-4 shows a screenshot of winecfg telling Wine to use the native version of

comdlg32.dll ahead of the built-in version.

Chapter 8 Emulation Layers: Wine and Linuxulator

225

If you intend the DLL override to not be global, and instead be application-specific,

you cannot do that with winecfg. But you can do it on the command-line using the

WINEDLLOVERRIDES environment variable to set the DLL loading order:

WINEDLLOVERRIDES="comdlg32=n,b" wine ./mspaint.exe

Load comdlg32 as native first; if failure, fall back on built-in

WINEDLLOVERRIDES="comctl32=b" wine ./mspaint.exe

Load comctl32 as built-in only

WINEDLLOVERRIDES="oleaut32=" wine ./mspaint.exe

Disable oleaut32 entirely

While Wine, at least on paper, mostly supports mixing DLLs, this is deprecated. Using

native DLLs breaks the freedom from Microsoft licensing, and still more importantly

results in unpredictable behavior, with the system significantly more prone to crashes.

But there are times when using a native DLL could lead to a performance benefit, or

a Wine version of the DLL is not available, which is why the DLL override facility exists in

the first place.

Figure 8-4.  Getting Wine to use a different DLL

Chapter 8 Emulation Layers: Wine and Linuxulator

226

A few critical DLLs must always be built-in and never replaced/overridden with

natives:

kernel32.dll

gdi32.dll

user32.dll

ntdll.dll

The DLLs need low-level Windows kernel access not implemented in Wine.

While replacement of built-in DLLs is largely supported by Wine, replacement

of built-in executables is not. So do not try to copy Windows’ regedit.exe over the

regedit.exe that exists in your Wine prefix. The prefix may soon cease to exist.

8.10  �Tweaking Wine Still Further
One tweak I do recommend for Wine users, particularly the gamers, is to enable Emulate

a Virtual Desktop under the Graphics tab of the winecfg window. Some applications,

most prominently games, try to change the screen resolution—often making a mess of

the desktop. If you check Emulate a Virtual Desktop, Wine will run every program in

a separate, new window environment—essentially creating a virtual desktop for every

application launched. If the application tries to do something nasty—like mess up the

screen resolution—the effects are limited to its own desktop.

Gamers might like to tweak Wine’s audio, which can be done under the Audio tab of

winecfg, as well as on the command line using environment variables:

AUDIODEV=/dev/dsp1 MIXERDEV=/dev/mixer1 MIDIDEV=/dev/midi1 wine <Program>

Keep in mind that Wine uses its own audio driver, typically system32/wineoss.drv.

8.11  �Wine Uses a Client-Server Model Too
You might be taken aback by this, but—just like X.org—Wine uses a client-server model

too. All Wine applications you launch from the command line or via shortcuts are, in

truth, Wine clients.

Chapter 8 Emulation Layers: Wine and Linuxulator

227

You can’t have clients without having a server in the first place, which is just what

the situation is. If you fire up winecfg & (or any other Wine command that persists for a

while), you can then run ps -x | grep -i wine to list all Wine processes:

> winecfg &

[1] 3432

> ps -x | grep -i wine | grep -v -w grep

3438 - SNs 0:00.36 /usr/local/bin32/wineserver

3444 - SNs 0:00.01 C:\\windows\\system32\\services.exe (wine)

3446 - SN 0:00.01 C:\\windows\\system32\\winedevice.exe (wine)

3448 - SN 0:00.01 C:\\windows\\system32\\plugplay.exe (wine)

3450 - SNs 0:00.07 C:\\windows\\system32\\explorer.exe (wine)

3432 5 SN 0:00.07 winecfg.exe (wine)

There it is: wineserver (PID 3438) at the top of the listing.

wineserver is a daemon that provides to Wine clients the same services that the

Windows kernel provides to Windows applications. It gets launched automatically when

you invoke any Wine client—which is the reason not many people notice it.

It shuts down automatically too. If you close the winecfg window, ps -x | grep -i

wine will report no wineserver process running. This usually is the desired behavior,

since the invocation was auto, the shutdown must by default be auto too.

But wineserver invocation demands its own CPU time and other resources, which is

why at times you might want it not to exit automatically. That is possible—and perhaps a

good idea if you use Wine applications a lot.

If you run wineserver with the argument -p, it will persist, waiting for Wine clients

until kingdom come:

wineserver -p && pgrep -x wineserver # prints PID of wineserver

Using the PID, you can shut down the server when it suits you with the kill

command (killall wineserver works too), or else, just let it get killed with a system halt.

Chapter 8 Emulation Layers: Wine and Linuxulator

228

8.12  �Graphical Tools for Wine Administration
There are two nice tools for Wine administration—winetricks and q4wine.

winetricks, at its heart, is intended to work around commonly-encountered Wine

problems. But it can be used as a graphical frontend for Wine administration too.

winetricks --gui provides ways to tweak Wine as well as download and install

fonts, games, DLLs, and applications. If you select Install an Application, winetricks will

display a list of programs that it can install. Very few of those programs install correctly

and then work well—as of date.

One winetricks-listed program that does install smoothly and then work well (at

least on my box) is Adobe Digital Editions version 1.7. I would be doing serious injustice

to winetricks and Adobe if I do not post proof of success with ADE; see Figure 8-5.

Figure 8-5 has deliberately not been cropped so that it shows ADE running in a

virtual desktop (the window with the blue background on the left side in the image)—a

feat accomplished by checking Emulate a Virtual Desktop under the Graphics tab of the

winecfg window.

Figure 8-5.  winetricks booty: Adobe Digital Editions version 1.7

Chapter 8 Emulation Layers: Wine and Linuxulator

229

Despite its (limited) goodness, winetricks is a fairly crude application in terms of

its interface. Much slicker is the full-fledged Wine administration suite q4wine—a Qt

application that can efficiently use the services of winetricks.

For a start, q4wine can create and manage multiple Wine prefixes for you—with a

mix of 32-bit and 64-bit Wine permitted.

The left half of Figure 8-6 shows an additional prefix named wine32 being created

under q4wine at the path $HOME/wine32. This second, q4wine-created Wine prefix is

intended—as its name suggests—to be 32-bit Wine always. The wine-created prefix that

lies in $HOME/.wine (and referred as Default in the left half of the image) can be either

32-bit or 64-bit as per user need.

Prefixes can be managed under the Prefixes tab.

If you then—once a new prefix has been created—move over to the Setup tab, you

can create a C: drive for the new prefix by choosing System ➤ Create Fake Drive. Refer

the right half of Figure 8-6 for illustration.

You can use the Programs tab of q4wine to launch a host of Wine tasks from inside

the new prefix: winecfg, uninstaller, taskmgr (task manager), and control (control

Figure 8-6.  Creating a new Wine prefix with q4wine

Chapter 8 Emulation Layers: Wine and Linuxulator

230

panel). If you run (i.e., double-click) the Uninstaller right now under wine32, you will get

an empty programs list, because the wine32 prefix is brand new. See Figure 8-7.

One thing you might like to do whenever you create a new prefix is to pull in

winetricks into the prefix. Just move over to the Setup tab, click Winetricks, and double-

click Install or Update Winetricks Script. See Figure 8-8.

You can now put the combination of q4wine and winetricks to good effect—pulling

in those MFC42* DLLs, which many Wine applications seem to need, into the new prefix.

Just double-click on mfc42 under Winetricks ➤ dlls, and you should be good on the

MFC42 front. Of course, the same idea applies to any missing DLLs that you might need:

always check q4wine ➤ Setup ➤ Winetricks ➤ dlls first. These DLLs are not Microsoft-

licensed. See Figure 8-9.

Figure 8-7.  System applications in a Wine prefix

Figure 8-8.  Installing winetricks via q4wine

Chapter 8 Emulation Layers: Wine and Linuxulator

231

As for browsing applications available at Wine HQ, you can use the Wine AppDB

tab—which, as of this moment, only lets you browse, with no support for installing

applications from within q4wine. The way Wine works, it is pretty much impossible to

get one single graphical frontend to install from among the million applications lying in

store at https://appdb.winehq.org/.

8.13  �Developing Applications for Wine
This section is intended to be just a pointer. For developers, Wine is, quite

unsurprisingly, a great playground. A standard Wine installation has quite a few tools

that are developer-oriented: winegcc, wineg++, winebuild, winemaker, and even a

debugger called winegdb.

While you can always read the man pages for more information, I would like to refer

to winemaker, the heart of a library of tools called Winelib—which facilitates conversion

of an existing Win32 project to Unix.

winemaker is a fine and dandy Perl script which, among many other things, takes

care of case-conversion (unlike Windows, Unix filenames are case-sensitive) and

newline conversion (Windows CRLF ➤ Unix LF). Upon success, it generates a GNU

makefile.

For illustration purposes, I used winemaker to generate a Wine executable for a

C source file halt.c—a Win32 shutdown initiator that takes a positive integer n as

argument. If n is between 1 and 24, halt.exe powers off the system at [0]n:00 hours

(24-hour format). If the argument is more than 24, halt.exe shuts the system down

when the process with the PID n exits. The sources for halt.c are available in the

appendix.

Figure 8-9.  Using q4wine to get DLLs

Chapter 8 Emulation Layers: Wine and Linuxulator

https://appdb.winehq.org/

232

All that I had to do to make halt.exe work as a Wine application was create a project

directory called halt and copy halt.c therein. After that, winemaker and make did the

rest with the following commands issued under my Linux installation:

winemaker --lower-uppercase .

make # Use 'gmake' under FreeBSD, wherein 'make' is a different system

winemaker churned out a GNU makefile, which make used to invoke winegcc, which

in turn spewed out halt.exe and halt.exe.so.

Wine’s halt.exe is actually a Bourne script that just feeds the binary halt.exe.so to

Wine’s loader—the wine command itself. I can thus execute halt.exe in two ways:

./halt.exe –OR– wine ./halt.exe.so

Ignoring the numeric argument halt.exe itself needs

As you can see, converting Win32 projects to Wine is easy.

winemaker supports not just single-source-file projects, but entire Win32 projects

(.vcproj/.dsw/.sln). You can read more about winemaker at https://wiki.winehq.

org/Winelib_User%27s_Guide.

8.14  �The 64-Bit Mess
Speaking objectively, the 64-bit situation with Wine is nowhere near bearing fruits for

the user yet. Any success you get from Wine64 needs the right combination of luck and

system configuration—what runs on somebody else’s box might (and often would) conk

out under yours. Very limited success is reported anyway.

Under FreeBSD on my box, Wine64 is a complete fiasco: I have not yet managed to

get any 64-bit binary to run under Wine. With Linux (particularly Arch/Manjaro), I have

had some success—getting 64-bit PuTTY and a new web browser Pale Moon to execute

nicely. But even Manjaro Linux is unable to run Notepad.exe and mspaint.exe from

Windows 7—which seems, and actually is—a bit counterintuitive. Notepad.exe would be

the first thing the user might expect to run under Wine. Note that the reference here is to

Windows’ native Notepad, not Wine’s own Notepad (wine64 notepad). Which, of course,

runs flawlessly.

Chapter 8 Emulation Layers: Wine and Linuxulator

https://wiki.winehq.org/Winelib_User's_Guide
https://wiki.winehq.org/Winelib_User's_Guide

233

The problem with Wine64 is not that there is a lack of effort. The problem has more

to do with the following factors:

•	 64-bit Windows is a huge platform. While 32-bit Windows is itself

substantial in its scope, 64-bit does not just double the scope. It more

like multiplies it a couple of dozen times.

•	 With virtualization having matured well enough to run 64-bit

Windows seamlessly, the need to make the labyrinthine Windows

projects (Office 2013 and Visual Studio 2015, for instance) run under

Wine64 does not fit anyone’s bill any longer.

•	 32-bit executables are frequently misidentified as 64-bit. That rot

started with Windows XP 64-bit, in which perhaps the only 64-

bit executable was the kernel itself—almost everything else was

compiled as 32-bit. There are plenty of .exe/.msi binaries on

the web that identify themselves as 64-bit, but in truth are 32-bit.

The only way to be sure is to feed them as arguments to the file

command, which reports PE32 executable/80386 for 32-bit Windows

binaries, and PE32+ executable/x86-64 for 64-bit ones.

Is there a positive side to all this? Yes. Microsoft is finding it increasingly difficult to

get its releases adopted by users worldwide. Despite a massive marketing campaign,

Windows 10 is still outnumbered, positively by Windows 7 and perhaps by Windows

XP too. Windows 10 has still been relatively lucky—Windows 8 almost did not sell at all,

while Windows 9 had to be entirely cancelled in the boardroom.

Considering its waning revenues in the face of soaring business effort, Microsoft may

well decide to stabilize with what has already been delivered to the markets—with fewer

OS releases and updates in future. If that happens, it would give GNU developers the

breathing space to spruce up Wine64 into a working platform. But don’t expect miracles

any time soon—GNU has already been something like a decade into the Wine64 essay.

This suggests that the pace of evolution is not going to be frenetic in the future as well.

There is an interesting way in which Wine influences Windows market dynamics.

Since 64-bit applications largely do not work well under Wine, they usually get facilitated

in Unix via virtualization. Wine itself thus keeps the interest in and the need for 32-bit

Windows alive and kicking, contributing to the “immortalization” of Windows XP—

much to the chagrin of Microsoft, who would obviously want old versions of Windows

swept under the carpet by its new releases.

Chapter 8 Emulation Layers: Wine and Linuxulator

234

8.15  �Yet Another Imitation Game: Linuxulator
Just as one cannot dream of being in America while one is in America, one cannot

emulate Linux while in Linux. This section is thus of less import to Linux users and more

geared to FreeBSD users.

One facet of the Unix situation is that Linux is more widely used than the BSDs.

Most developers develop for Linux. While almost all of these applications get ported

to FreeBSD sooner or later, some don’t. FreeBSD therefore hosts a special platform

within itself that caters to Linux applications not yet ported to FreeBSD. And it

works remarkably well—although, in most cases, some (often significant amount of)

preliminary work is required. But that work tends to be simple enough—mostly copying

libraries from a Linux installation.

Like Wine, Linuxulator is not a 100%, sure-bet agent—a few applications

(TeamViewer, for instance) need so much work that they are beyond the practical limits

of the average reader. Such an application must simply wait until either the authors port

their software for FreeBSD, or the FreeBSD development team itself makes a concerted

porting effort.

Unlike Wine—which is a pure user-space suite—Linuxulator is a kernel-space

emulation layer. What this means is that to use the Linuxulator, certain bits in the

FreeBSD kernel have to be activated:

kldload linux # FreeBSD i386

kldload linux linux64 # FreeBSD amd64

While it is perfectly acceptable to manually kldload Linux support into the FreeBSD

kernel, the better way to do it is simply put the following line in /etc/rc.conf and reboot

the system:

linux_enable=YES

At this stage (post-reboot), you have to make a key choice.

At the time of this writing, FreeBSD supports two versions of Linux for the

Linuxulator middleware: CentOS 6 and CentOS 7. The corresponding Linuxulators are

nicknamed c6 and c7. You can’t have both—installing c7 with c6 already installed will

compel the package manager to first delete c6, and vice versa.

Chapter 8 Emulation Layers: Wine and Linuxulator

235

The two Linuxulators—c6 and c7—share certain characteristics:

•	 The Linuxulator root directory is always /compat/linux.

•	 The FreeBSD kernel automatically prefixes the Linuxulator root

directory path to Linux application binary interface (ABI) paths.

	 So when a Linux ABI application uses the path /usr/bin, the

FreeBSD kernel will prefix the path with /compat/linux, and

consider the actual filesystem path /compat/linux/usr/bin.

•	 Similarly, when a Linux ABI program needs a library under /lib, the

FreeBSD kernel will look up under /compat/linux/lib.

•	 Under FreeBSD i386, c6 and c7 are 32-bit, whereas under AMD64,

the Linuxulators support both 32-bit and 64-bit applications. 32-bit

applications have their libraries located under /compat/linux/lib,

while 64-bit libraries go under /compat/linux/lib64.

	 The FreeBSD kernel distinguishes between 32-bit libraries and 64-bit

libraries on its own, which means libXYZ.so under /compat/linux/

lib is distinct from libXYZ.so under /compat/linux/lib64.

Despite being close relatives, c6 and c7 have contrasting social acceptance profiles.

CentOS 6 support in the Linux world has nose-dived, with users encouraged to

switch to the newer CentOS 7, which— unlike CentOS 6 (and unlike c7 too)—is 64-bit

only. You might, for a moment, be inclined to think that c7 is the better choice for a

Linuxulator, at least so on an AMD64 box. But then FreeBSD’s own application ports,

which makes those applications a snap to install and use, are still largely based on c6.

If you want to set up your own Linux applications under FreeBSD, you will have a

better shot with c7, because CentOS 7 is actively supported by the Linux community.

But then most of the userspace work for tweaking the application(s) to work under a c7

Linuxulator would have to be done by you yourself.

I won’t try to coax you into choosing c6 over c7, or the other way around. Instead,

I will furnish two subsections—one targeting c6 and the other c7. The c6 subsection

assumes you want to use pre-existing ports, while c7 assumes you want to play with the

Linux ABI yourself.

Chapter 8 Emulation Layers: Wine and Linuxulator

236

Both subsections require you to put the following into /etc/fstab:

Tmpfs /compat/linux/dev/shm tmpfs rw,mode=1777,size=1g 0 0

linprocfs /compat/linux/proc linprocfs rw 0 0

linsysfs /compat/linux/sys linsysfs rw 0 0

You also need to put the following in /etc/devfs.conf:

link /compat/linux/dev/shm shm

I also encourage you to create a couple of aliases in the root user account’s .cshrc for

mounting/unmounting your Linuxulator’s virtual filesystems:

alias linmount "mount tmpfs; mount linprocfs; mount linsysfs"

alias linumount "umount tmpfs; umount linprocfs; umount linsysfs"

Unlike the Bourne shell, C shell aliases do not use = following the alias identifier.

Note U nder FreeBSD, the root user’s default shell is the C shell, and FreeBSD
does not recommend using Bash/Zsh as the root user’s login shell. That
disrupts the predefined system defaults—interfering, for instance, with chroot
environments.

If you want to use bash or zsh for the system administrator account, there is a
“mirror” of root—very nicely named toor—under whose account you can use the
shell of your choice. The toor user has all the privileges of the root user.

8.15.1  �Using c6 Linuxulator
Installing the c6 Linuxulator middleware is simple:

pkg install linux_base-c6

You need to then put the following lines into /etc/sysctl.conf:

compat.linux.osrelease=2.6.32

kern.ipc.shm_allow_removed=1

Chapter 8 Emulation Layers: Wine and Linuxulator

237

And then you need to reboot, or else issue the following commands:

ROOT# service sysctl restart

ROOT# service devfs restart

ROOT# linmount # �Or else: mount tmpfs; mount linprocfs; mount

linsysfs

You can now readily install any of the Linux programs that have been tweaked by

developers to work with the FreeBSD kernel using Linux ABI, such as the Opera (Linux

version) web browser (linux-opera), which automatically bundles in all the natively-

Linux plugins, or Sublime Text (linux-sublime3), the very nifty (albeit commercially-

licensed) text editor available as freeware for personal use.

The next (intentionally uncropped) screenshot, Figure 8-10, shows both Opera

(Linux version) and Sublime Text literally running side-by-side under my FreeBSD

desktop.

Figure 8-10.  Running Linux ABI programs in FreeBSD

Chapter 8 Emulation Layers: Wine and Linuxulator

238

You can use either packages or ports to install most Linux ABI programs:

pkg install linux-opera

or else: cd /usr/ports/www/linux-opera; make install clean

pkg install linux-sublime3

or else: cd /usr/ports/editors/linux-sublime3; make install clean

Of course, building a port requires significantly more time compared to installing the

corresponding precompiled package.

Linuxulator is not limited to web browsers and text editors. Some pretty fancy, highly

technical suites work flawlessly under the Linux ABI. For instance, Maplesoft’s Maple,

the scientific/mathematical computing and analysis suite; and Autodesk’s Eagle, the top-

ranked CAD software for electronic circuit board designers.

Installing and running Eagle under FreeBSD is a simple matter of building the port

/usr/ports/cad/linux-eagle5. (A package was not available at the time this book went

into print.)

Figure 8-11 is a screenshot from my desktop that shows an Eagle printed circuit

board (PCB) layout getting ready to receive a Toshiba fiber optic device.

Figure 8-11.  Autodesk’s Eagle CAD software running under Linux ABI

Chapter 8 Emulation Layers: Wine and Linuxulator

239

If you want to list all FreeBSD ports that use the Linuxulator, it is quite

straightforward:

cd /usr/ports

make fetchindex

grep linux_base INDEX-* | less -S

If you are a gamer, you’ll happily find quite a few games, particularly of the 3D

shooting ilk, in that listing. Of those, Doom3 (demo) works so well that I feel inclined to

post a patched screenshot as proof—see Figure 8-12.

3D games such as Doom3 have the uncanny habit of rearranging desktop icons,

which is something you should get used to if you are a gamer—gaming companies would

rather take up agriculture than mend their ways.

8.15.2  �Using c7 Linuxulator
Installing the c7 Linuxulator middleware is simple too:

pkg install linux_base-c7

You need to then put the following lines into /etc/sysctl.conf:

compat.linux.osrelease=3.10.0

kern.ipc.shm_allow_removed=1

Figure 8-12.  Using the Linux ABI to play Doom3

Chapter 8 Emulation Layers: Wine and Linuxulator

240

And then you need to reboot, or else issue the following commands:

ROOT# service sysctl restart

ROOT# service devfs restart

ROOT# linmount # �Or else: mount tmpfs; mount linprocfs; mount

linsysfs

Since you’ll be using the Linuxulator mostly for your own program installations

(at least so for the time being), it is a good idea to install the Qt ports for the Linux ABI,

because a high percentage of graphical applications nowadays use Qt widgets:

pkg install linux-c7-qt linux-c7-qtwebkit linux-c7-qt-x11

This is also a good time to become familiar with a few commands relevant for

managing a Linuxulator:

•	 ldd <exe> prints the list of dynamic libraries (.so files) that the

binary executable <exe> links to (i.e., needs for its execution).

•	 strings <file> prints the strings of printable characters embedded

in <file>, which could be a binary executable or a library.

•	 brandelf <exe> brands the binary executable <exe> as a particular

type, with our chief concern being the Linux type: brandelf -t

Linux <exe>. The brandelf executable exists because binary

executables under FreeBSD can be of native type (FreeBSD) or non-

native (Linux).

We’ll take up a fancy, gee-whiz development environment called SlickEdit (64-bit)

for our c7 exercise. SlickEdit is not available natively under FreeBSD as yet.

A 15-day trial version of SlickEdit is available at https://www.slickedit.com/

trial/slickedit.

At the time of this writing, the following command was good for fetching the 64-bit

Linux installer of SlickEdit:

wget https://customer.slickedit.com/assets/trial/se_22000100_linux64.tar.gz

You can download the tarball and unpack it with tar -xvzf se_22000100_linux64.

tar.gz. Upon unpacking, the archive would reveal the installer executable vsinst. The

very first thing to do is brand it using brandelf -t Linux vsinst.

Chapter 8 Emulation Layers: Wine and Linuxulator

https://www.slickedit.com/trial/slickedit
https://www.slickedit.com/trial/slickedit

241

Next up, find the dynamic libraries vsinst needs and not present in your box:

ldd -a vsinst | grep "not found" | sort | uniq

The list of missing libraries I pieced together using the pipeline was:

libICE.so.6; libSM.so.6; libX11.so.6; libXt.so.6; libxcb.so.1; libXau.so.6

Note that the (six) entities in the ldd generated list are symbolic links that point to

the actual libraries. For instance, libxcb.so.1 points to libxcb.so.1.1.0 (as I found

soon afterward).

You now have to get down to copying out the missing .so files from a CentOS 7

machine into your box’s /compat/linux/lib64. Note that ldd does not reveal all missing

.so dependencies in one shot—each time you copy a few libraries, you have run to ldd

again, until it stops listing any missing dependencies. For every library copied, you also

have to create a symbolic link with the name reported by ldd (under the same path

/compat/linux/lib64).

When you’re done, run the installer:

chmod +x vsinst

./vsinst

You can use the default installation path under /opt, which magically translates,

courtesy of the Linux ABI, as /compat/linux/opt.

When installation finishes, you need to carry out the two-stage operation (brandelf

+ ldd) upon each executable under SlickEdit’s bin directory /compat/linux/opt/

slickedit-pro2017/bin. Most importantly on vs_exe. With each file reported as

executable by the file command, any library reported as missing by ldd has to be

copied under /compat/linux/lib64 from a Linux (preferably CentOS 7) system, and its

referred symbolic link created under the same directory.

When the entire operation finished on my box, ldd issued this warning message for

assistant_exe:

/lib64/libcrypto.so.10: version 'OPENSSL_1.0.2' not found (required by /

lib64/libQtNetwork.so.4)

Minor mismatch in versions most of the times is not a showstopper, but this depends

on a few things. So I ran strings to discover what OpenSSL versions the available

libcrypto.so.10 can support:

Chapter 8 Emulation Layers: Wine and Linuxulator

242

strings /compat/linux/lib64/libcrypto.so.10 | grep OPENSSL_1

The preceding strings command reported the following:

OPENSSL_1.0.1

OPENSSL_1.0.1_EC

This is just a minor version glitch (1.0.1 almost equals 1.0.2). Plus, this is with a

secondary executable, not the main executable vs_exe. So things should be okay.

So I finally tried running SlickEdit:

chmod +x vs_exe

./vs_exe

Whoa! SlickEdit popped up, guided me through a trial license installation, and

garnered me this chapter’s final screenshot—Figure 8-13—generated with a GNU C

project.

Among its many, many bells and whistles, SlickEdit can build your project with a

self created and self-managed makefile. The .mak file selected with a mouse click in the

previous screenshot is one such makefile.

Figure 8-13.  The SlickEdit development environment under Linux ABI

Chapter 8 Emulation Layers: Wine and Linuxulator

243

SlickEdit also lets you use the debugger, record/execute macros, evaluate regular

expressions, generate GUIDs—all from within its interface.

A SlickEdit license is not cheap by any means—a Pro license will set you back a

cool US $300. This is all the more reason for you to finish your c7 Linuxulator skills

acquisition enterprise before the trial license elapses.

8.15.3  �Installing Linux ABI Applications via rpm
You will often come across Linux applications available as RPM (Red Hat Package

Manager) archives. You cannot install RPMs under FreeBSD the Linux way (which

first checks on dependencies). But you can extract the RPM contents and merge them

into your Linuxulator. For that, you need to first install the rpm4 package, which has a

bundled utility rpm2cpio.

Once rpm4 is installed, you can extract from a .rpm file:

cd /compat/linux

rpm2cpio < /path/to/rpm | cpio -id

No dependency checks are carried out in this command sequence.

For reasons unknown to me, some RPM extract operations run into rough weather

with symbolic links: bin, sbin, lib, and lib64 under /compat/linux are actually

symbolic links to directories with the same names under /compat/linux/usr. One

(tedious) workaround is to repack the .rpm as a .tar archive, and then extract with the

tar command.

For each binary executable extracted from the .rpm file, you need to carry out the

same two-stage operation that we performed on vsinst while installing SlickEdit in the

c7 exercise: brandelf + ldd. Any missing libraries have to be copied over from Linux

and symlink’ed as indicated by ldd. When copying libraries, it’s best to get them from the

same Linux distribution as the Linuxulator’s base.

Once this is done, you have performed the equivalent of installing the RPM under

FreeBSD—and the application should work just as under Linux.

One day in the times to come, Linuxulator might advance to the stage where you

can use the rpm -Uvh command under FreeBSD to directly install a .rpm file into the

Linuxulator. But that perhaps is thinking a bit too far ahead for the time being.

Chapter 8 Emulation Layers: Wine and Linuxulator

244

8.16  �Summary
In this chapter, we saw the power of being someone else, which sounds a bit shady

in linguistic terms, but in programming terms is a boon as well as a skill to build on.

If native tools are not sufficient for the job at hand, there is absolutely no sin in bringing

in emulation software. On the contrary, it is a necessity. Even for non-programmers,

emulation brings so much to the table that if not a matter of technical expertise, it ushers

in a lot of interesting, educative fun. Wine and Linuxulator are thus here for good—and

for everyone’s good too.

The next chapter—Virtualization—takes emulation to a higher level of

gamesmanship. Therein we will use emulation to launch not individual programs from a

foreign operating system, but the foreign operating system itself.

Chapter 8 Emulation Layers: Wine and Linuxulator

245
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_9

CHAPTER 9

Virtualization: The New
Buzzword
Until just a few years back, using virtualization software was almost entirely a corporate-

world phenomenon, with almost all the activity being staged under the VMware banner

which was, is, and will remain closed-source and commercial.

Open-source software has now leap-frogged ahead of the rest of the pack.

VirtualBox, an open-source virtualization product created by Germany’s Innotek

GmbH—acquired in 2008 by Sun Microsystems (which in turn was acquired by Oracle

a couple of years later), now has the pole position on the virtualization grid. And it has

a few other open-source applications catching up fast—KVM under Linux and BHyVe

under FreeBSD. We’ll start our charter with VirtualBox, and then look closely at KVM

and BHyVe too.

Quite mercifully, even though virtualization is complex, state-of-the-art technology

crafted by brilliant folks, using VirtualBox, KVM, and BHyVe is easy enough, as we are

about to see.

9.1  �What Is Virtualization (And Why Is It
Important)?

Virtualization is pure emulation, which is one reason why this chapter follows

immediately in the footsteps of Chapter 8, which discussed emulation.

Emulation layers like Wine and Linuxulator can launch foreign binary executables

as processes using the host computer’s native operating system. Executing Notepad.exe

under Wine lends it resources like CPU time, RAM and file handles, just as for any other

Unix process.

What if you wanted to execute ntoskrnl.exe, the Windows kernel, under Wine?

246

That sounds ridiculous: ntoskrnl.exe is not a normal, run-of-the-mill binary. It’s a

whole freaking operating system.

At second thought, why not? If you as the user are willing to dedicate all needed

resources: CPU, RAM, a hard disk, serial/parallel/USB ports, and anything else needed,

it should be possible to run ntoskrnl.exe as a subsystem of the host.

Which is precisely the situation. But since launching a foreign operating system

under the host requires dedicated hardware resources at a level entirely different from

emulated processes, emulation layers like Wine and Linuxulator are not enough for the

mission. What we need for this is software that can do (hardware-provisioning) pure

emulation, aka virtualization.

Using virtualization, you can turn your Unix box into a multi-OS system, capable of

running any or all of Windows, FreeBSD, and Linux as windowed applications (or virtual

machines) under the host operating system. All of them simultaneously, if you want.

Figure 9-1 is proof, captured under the hood of my FreeBSD box.

Figure 9-1.  Windows, FreeBSD, and Linux running in parallel as virtual
machines

Chapter 9 Virtualization: The New Buzzword

247

9.2  �Storage for Virtual Machines
One common hardware-provisioning necessity for virtual machines is the hard disk—

every operating system needs a hard disk for its installation.

The universal approach for this is to create a file a few GB in size, and then the file is

presented to the virtual machine (VM in short) as a virtual hard disk. The VM considers

the file as a real hard disk, partitions it accordingly, and then creates its root filesystem

somewhere therein. Quite notably, the VM cannot access any other part of the host

system’s storage. Similarly, the host cannot access any files in the virtual hard disk.

This gets us into an important question—how do we exchange data between the VM

and the host? If you need to pass in an important file from the host to the VM, or pass out

a file from the VM back to the host, your virtualization software will not help you.

Networking will. If you run an FTP/SMB server on the host, the VM can download

files from and upload files to the server. VirtualBox builds on the SMB server idea with its

Guest Additions (GA) extension.

We’ll look at VirtualBox Guest Additions too, but we’ll ourselves adopt a technique

that caters to all needs and situations: an anonymous FTP service, courtesy vsftpd, on

the FreeBSD/Linux host. We’ll tackle the FTP server first so that you can exchange data

readily when you launch your first virtual machine.

9.3  �Running an Anonymous FTP Server
Under FreeBSD/Linux

You can install the vsftpd package as usual. Note that under FreeBSD, you will likely

need to install its extended version vsftpd-ext with the package manager, or else build

the port /usr/ports/ftp/vsftpd (which means run make install therein).

Before we continue with vsftpd configuration, there’s one point to note. When

you have a path like /a/b/c.txt, the file c.txt is, obviously enough, located in the b

directory. Another way to say the same thing is that c.txt is located in the root of the b

directory. Similarly, b is located in the root of the a directory, which itself is located in

the root of the / filesystem. All in all, you would now know what is meant when I say that

c.txt is located in (the hierarchy of) the a directory, but not in its root.

This terminology is important because vsftpd insists that the root of its home

directory, as configured in vsftpd.conf (not in /etc/passwd), must not be writeable. For

example, if /usr/local/vsftp is configured in vsftpd.conf as vsftpd's home directory

Chapter 9 Virtualization: The New Buzzword

248

(which corresponds to the local_root directive), it must not be writeable. Instead, the

superuser must create a subdirectory under /usr/local/vsftp and then lock the home

directory itself as read-only (mode 555). The subdirectory, which is writeable, can then

be used for downloads and uploads. Failure to imbibe this key concept causes acute and

widespread grief, which a Google search would provide ample evidence of.

vsftpd actually needs two users and two root directories. One user is the standard

user ftp (which would likely exist in your system already). The other is an unprivileged

user (whom we will call ftpdummy), with a read-only and empty home directory.

We won’t bother ourselves with why vsftpd needs two users and two root

directories. Instead, we’ll just create the layout this daemon needs, centered around a

read-only home at /usr/local/ftproot, with a writeable subdirectory xfer.

We start by adding the ftpdummy user:

pw useradd ftpdummy -d /var/ftpdummy -s /sbin/nologin # FreeBSD

useradd -d /var/ftpdummy -s /usr/bin/nologin ftpdummy # Linux

Continue with the following:

mkdir -p /usr/local/ftproot/xfer

chown -R ftp:ftp /usr/local/ftproot

chmod 777 /usr/local/ftproot/xfer

chmod 555 /usr/local/ftproot

mkdir /var/ftpdummy 2> /dev/null

rm -rf /var/ftpdummy/* 2> /dev/null

rm -rf /var/ftpdummy/.* 2> /dev/null

chown ftpdummy:ftpdummy /var/ftpdummy

chmod 555 /var/ftpdummy

Now, you can delete the existing contents of vsftpd.conf (which would be located

under /etc or /usr/local/etc), and then put the following therein:

background=YES # For Linux, you will likely need NO

allow_writeable_chroot=YES

listen=YES

listen_ipv6=NO

anonymous_enable=YES

local_enable=YES

Chapter 9 Virtualization: The New Buzzword

249

write_enable=YES

anon_upload_enable=YES

anon_mkdir_write_enable=YES

dirmessage_enable=YES

xferlog_enable=YES

connect_from_port_20=YES

chown_uploads=YES

chown_username=ftp

nopriv_user=ftpdummy

secure_chroot_dir=/var/ftpdummy

chroot_local_user=YES

chroot_list_enable=YES

chroot_list_file=/etc/chroot_list

anon_root=/usr/local/ftproot

local_root=/usr/local/ftproot

It’s time to start the service.

Under FreeBSD, you can do that with:

echo 'vsftpd_enable=YES' >> /etc/rc.conf

service vsftpd start

Under Linux, you can use the command chain underneath:

systemctl enable vsftpd && systemctl start vsftpd

If pgrep -x vsftpd now prints a PID, your anonymous FTP service is up and

running. If not, try flipping the background setting from YES to NO, or the other way

round.

From the client side, wget and wput will log in automatically when downloading/

uploading respectively. If you need to log in to and browse the FTP site hierarchy, use

these credentials:

username=anonymous # you can also username=ftp and password=@

password=X@Y.Z # where X, Y, Z could be anything you like

You can download from the server with wget, upload with wput, and browse the FTP

site hierarchy with ncftp, or any FTP client of your choice.

Chapter 9 Virtualization: The New Buzzword

250

Do not place any downloadable data in the root of /usr/local/ftproot. Instead,

place it in the xfer subdirectory (and chown it over to the ftp user immediately;

otherwise clients won’t be able to download it). If and when needed, you can create

additional subdirectories under /usr/local/ftproot, although this book will assume

that xfer is the only one.

If your box’s IP address is 192.168.1.3, wget on the client side should download

from ftp://192.168.1.3/xfer/, and wput should upload to that URL as well.

One caveat here is that a VM running under your host might not see the pristine

host IP address if the VM gets subnetted by the virtualization software differently, which

happens with VirtualBox as well as KVM.

If you use VirtualBox, the application would convert your host IP address,

192.168.1.3 for example, to a default router/gateway address, usually 10.0.2.2, and

the VM itself would have an IP in the 10.0.2.* range. In such a case, wget and wput can

exchange data with the host’s vsftpd via the default router IP address (10.0.2.2), and

not the pristine host IP (192.168.1.3).

The following shell functions, which use the default VirtualBox host gateway address

10.0.2.2, are a great convenience when inside a VM:

pull()

{

 [-n "$1"] && wget ftp://10.0.2.2/xfer/"$1"

}

push()

{

 [-f "$1"] && wput "$1" ftp://10.0.2.2/xfer/

}

For BHyVe, use the host IP address as it is in place of 10.0.2.2.

9.4  �VirtualBox

9.4.1  �Installing VirtualBox
Although VirtualBox usage is exactly the same across the Unixes, installation

methodology varies owing to differences in how the product is packaged.

Chapter 9 Virtualization: The New Buzzword

251

9.4.1.1  �Installing Under FreeBSD

Installing VirtualBox under FreeBSD couldn’t be easier:

pkg install virtualbox-ose

Add the following line to /boot/loader.conf:

vboxdrv_load=YES

Add the following line to /etc/rc.conf:

vboxnet_enable=YES

The loader.conf entry is optional if the rc.conf entry is in place. Once the install

finishes, add your normal user account to the vboxusers group:

pw groupmod vboxusers -m <normal>

Reboot the system. Upon reboot, run this command to determine whether

VirtualBox kernel modules have been loaded correctly:

kldstat | grep vbox

If you get three lines (something like this), your VirtualBox enterprise is ready:

15 3 0xffffffff81c62000 4e760 vboxdrv.ko

16 2 0xffffffff81cb1000 2a02 vboxnetflt.ko

19 1 0xffffffff81cc5000 3f64 vboxnetadp.ko

9.4.1.2  �Installing Under Ubuntu

For Ubuntu Linux, VirtualBox installation needs a bit more work. Recommending the

default VirtualBox pre-packaged in Ubuntu is less than ideal: it tends to be fairly out-of-

date. If you use the following steps, you’ll get a newer version of VirtualBox (5.2 at the

time of this writing, compared to 5.0 available right now in the Ubuntu repositories).

First add this line to /etc/apt/sources.list:

deb http://download.virtualbox.org/virtualbox/debian <dist> contrib

Chapter 9 Virtualization: The New Buzzword

252

Replace <dist> to match your Ubuntu version (check it via uname -a):

Ubuntu 17.04 → zesty

Ubuntu 17.10 → artful

Ubuntu 16.10 → yakkety

Ubuntu 16.04 → xenial

You can continue with VirtualBox installation as follows:

wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- | \

sudo apt-key add -

wget -q https://www.virtualbox.org/download/oracle_vbox.asc -O- | \

sudo apt-key add -

sudo apt update

sudo apt upgrade # Very important for VirtualBox

Reboot. Don’t forget to reboot at this point.

Upon reboot, search for the highest VirtualBox version available with:

apt search virtualbox | grep "Oracle VM VirtualBox"

(When this chapter was being written, 5.2 was the highest version available).

You can now install VirtualBox with:

sudo apt-get install virtualbox-5.2 virtualbox-dkms

Replace 5.2 with the highest version you got with 'apt search'

Reboot again.

9.4.1.3  �Installing Under Arch Linux

For Arch Linux, first update/upgrade the system with: pacman -Syyu

A system-wide upgrade is very important for a good VirtualBox installation. Then

you must reboot. Some folks take reboots lightly. Some folks then ask wonderful

questions at VirtualBox/Unix user forums. The answer always is: after a system upgrade,

kindly reboot.

Next up, you’ll need to get the supporting setup for your kernel version:

ver='uname -r | sed 's/\.//' | sed 's/\..*//'' # Got me 49

pacman -S linux${ver}-headers linux${ver}-virtualbox-host-modules

Chapter 9 Virtualization: The New Buzzword

253

You are now ready to install VirtualBox:

pacman -S virtualbox-host-dkms virtualbox

Reboot the system again. Under Linux (any), after you have rebooted the system

(post VirtualBox-installation), check the output of: lsmod | grep 'ˆvbox'

You should get at least four lines, something like this:

Vboxpci 24576 0

Vboxnetflt 28672 0

Vboxnetadp 28672 0

Vboxdrv 393216 3 vboxnetadp,vboxnetflt,vboxpci

If the modules are loaded correctly (as per the lsmod output), add your normal user

account to the vboxusers group: usermod -a -G vboxusers <normal>.

You can now happily use VirtualBox (as the normal user).

9.4.2  �Hosting Your First VirtualBox Virtual Machine
We’ll take up the exercise of creating a Linux Mint VM—or guest, as VirtualBox prefers

to call it. You can use any Linux distribution for the guest—Linux Mint (in its Cinnamon

incarnation) just happens to be a personal favorite of mine.

You can also use any operating system as the host, although I will be using FreeBSD

that enables me to follow up on my promise in Chapter 7 (“The Best of the Graphical

Unix World”) where I obliged myself to elucidate using the Tor browser with FreeBSD,

which does not yet have a native Tor port and must therefore use Linux services for

BitTorrent fishing.

The first thing to do is get the ISO for the latest Linux Mint installer. At the time of this

writing, 18.3 was the freshest release available at Linux Mint’s downloads page: https://

linuxmint.com/download.php.

Click the Verify Your ISO link and save the file sha256sum.txt so that you can later

verify your ISO download. Then copy the link for the ISO, and fire up wget -c <iso>,

where <iso> is the URL copied. If 18.3 Cinnamon (64-bit) is just what you need, you can

use this direct link which delves into Manitoba User Group repository:

http://muug.ca/mirror/linuxmint/iso/stable/18.3/linuxmint-18.3-cinnamon-

64bit.iso

Chapter 9 Virtualization: The New Buzzword

https://linuxmint.com/download.php
https://linuxmint.com/download.php
http://muug.ca/mirror/linuxmint/iso/stable/18.3/linuxmint-18.3-cinnamon-64bit.iso
http://muug.ca/mirror/linuxmint/iso/stable/18.3/linuxmint-18.3-cinnamon-64bit.iso

254

Once you have a good ISO (cross-checked via its sha256 sum), click New at the top-

left corner of the VirtualBox window. Enter mint in the Name field and then click Next.

Refer to Figure 9-2, where the buttons you need to click are circled.

The name you choose for the VM plays a role in itself. VirtualBox has smart type-

deduction heuristics based on the name: the software automatically adjusts the Type

and Version of the VM accordingly. If the heuristics don’t work well for you, you can

choose the Type (operating system type: Windows or Linux or BSD, and a few more

choices) and the Version (bitness and flavor) yourself from the drop-down lists.

The next screen is for the amount of RAM to be allocated to the VM. Figure 9-3

furnishes the relevant illustration.

Figure 9-2.  New virtual machine: Step 1

Chapter 9 Virtualization: The New Buzzword

255

I have some notes here.

•	 In general, if you are using virtualization software, your host system

must have at least 8GB of physical memory. With 4GB, you can make

do if you have a swap partition and you don’t try to set up memory

hoggers (e.g., Windows 10).

•	 You should limit any VM to a cap of 25% of the system’s total physical

RAM. With 8GB RAM in the host, any VM should thus get a maximum

of 2GB. An exception is Windows 10, a VM of which demands 3GB+

for smooth running.

•	 VirtualBox default RAM allocation is usually fine—just a bit on the

conservative side. You can, if you want, add a few more megabytes

to the default RAM value, keeping the preceding couple of points in

mind.

•	 Unlike the virtual disk image size, the RAM allocation for a VM can be

increased (or decreased) later too.

Figure 9-3.  New virtual machine: Step 2

Chapter 9 Virtualization: The New Buzzword

256

Tune the RAM setting for the guest as it suits you and then click Next.

Figure 9-4 starts to tackle the file that will be fed to the VM as its hard disk.

Since this is your first VM, you must use the default, which says Create a Virtual Hard

Disk Now. But as you start using VirtualBox regularly, you will adapt to reusing existing

images. For the moment, we must simply choose to create a new disk and then click

Create.

The next three screens are for the disk file’s format, storage type, and finally its size.

On the first screen—refer to Figure 9-5—the default selection VDI usually is just right

for VirtualBox. So we’ll just use that and click Next here.

Figure 9-4.  New virtual machine: Step 3

Chapter 9 Virtualization: The New Buzzword

257

The second screen is a significant one: should VirtualBox immediately eat up all of

the disk space allocated (Fixed Size), or should VirtualBox allocate disk space for the VM

incrementally and only as needed (dynamically allocated)? See Figure 9-6.

Figure 9-5.  New virtual machine: Step 4

Figure 9-6.  New virtual machine: Step 5

Chapter 9 Virtualization: The New Buzzword

258

There are advantages as well disadvantages to both. For the moment, we’ll play along

with the default choice for dynamic allocation (which allocates only a few MB upfront for

a virtual hard disk image sized 10GB or even more) and then click Next.

The final screen, Figure 9-7, is for the maximum disk size.

The size mandated in the previous step is the maximum allocation. Even if the VDI

is dynamically allocated, you cannot get anything beyond this limit. The point is most

significant for VM types (e.g., Windows 10) which hog disk space. A Windows 10 C:

drive needs at least 50GB in production usage. So be careful when setting the VDI size.

VirtualBox’s default value for maximum disk size suits an experimental VM.

When you click Create (see Figure 9-7), a new VM disk will hit your filesystem

headlines.

Refer to Figure 9-8. With the new VM (mint) selected in the list of guests (extreme

left), click Settings ➤ Storage. Under the Controller: IDE section, you will find a CD icon

labeled Empty. This device will be passed to the VM as its optical drive. Click Empty and

then use the CD icon (extreme right) to browse for the ISO downloaded.

Figure 9-7.  New virtual machine: Step 6

Chapter 9 Virtualization: The New Buzzword

259

When Empty changes to the ISO’s name, you are ready to flag off the VM. With all

due respect to Figure 9-9, all you need to do for that is click the Start button (left), and

Mint greetings will pop up in a new window (right).

Just click Start Linux Mint and install Linux as usual.

The bottom bar of the VM window contains a control toolbox (the circled rectangle

in the previous image). You don’t need to be familiar with the toolbox immediately, but

just remember that a toolbox exists for controlling and getting information about many

VM parameters, for example, its Ethernet interface’s IP address, or settings for capturing

its video in a file on the host.

Complete the installation in the virtual machine. Then, upon the VM’s reboot, we

immediately delve into our Tor mission. In the Linux VM, you can use Firefox to open

Tor’s download URL: https://www.torproject.org/download/download.html.en

Figure 9-8.  New virtual machine: Step 7

Figure 9-9.  New virtual machine: Step 8

Chapter 9 Virtualization: The New Buzzword

http://www.torproject.org/download/download.html.en

260

At the time of this writing, 7.0.11 was the newest version, which you can wget with

this link: https://www.torproject.org/dist/torbrowser/7.0.11/tor-browser-

linux64-7.0.11_en-US.tar.xz

It’s embarrassingly simple hereon:

unxz tor-browser-linux64-7.0.11_en-US.tar.xz

tar xf tor-browser-linux64-7.0.11_en-US.tar

mv tor-browser_en-US ~/Desktop/

Open ~/Desktop/tor-browser_en-US in Nemo (or any file browser) and double-

click the Setup link. Tor will ask you to connect to the Tor network. All that you have to

do for that is click Connect.

When you’re connected, you can type https://thepiratebay.org into Tor’s address

bar, press Enter and there you are, where Figure 9-10 suggests you ought to be now.

Figure 9-10.  Pirate Bay visited in a Linux virtual machine

Chapter 9 Virtualization: The New Buzzword

https://www.torproject.org/dist/torbrowser/7.0.11/tor-browser-linux64-7.0.11_en-US.tar.xz
https://www.torproject.org/dist/torbrowser/7.0.11/tor-browser-linux64-7.0.11_en-US.tar.xz
https://thepiratebay.org/

261

9.4.3  �Exchanging Files with the VirtualBox Host
VirtualBox acts as a DHCP server for any of its virtual machines. The application

converts your host IP address, 192.168.1.3 for example, to a default router/gateway

address. That address typically is 10.0.2.2, and the VM itself would have an IP in the

10.0.2.* subnet.

If you are unsure of what IP address denotes the host inside a VM, use the following

command (in the VM) to get the default router IP:

ipconfig # Windows VM

ip route show # Linux VM

bsdconfig networking → Default Router/Gateway # FreeBSD VM

Once you have the default router IP address, ping it:

ping 10.0.2.2

If ping succeeds and your host’s vsftpd server is up, you can download files to the

VM with wget and upload to the host with wput:

wget ftp://10.0.2.2/xfer/.bashrc # �works only if a .bashrc lies under

xfer/

wput tor-browser-linux64-7.0.11_en-US.tar ftp://10.0.2.2/xfer/

9.4.4  �VirtualBox Extensions
Installing VirtualBox extensions is entirely optional. Extensions don’t affect essential

VirtualBox usage in any way, which is why this discussion was deferred.

While USB mouse and keyboard work out-of-the-box (as OHCI, aka USB1, devices)

under the basic VirtualBox suite, other devices don’t. Nor can you use EHCI (USB2) or

XHCI (USB3) modes for any USB devices.

If you need to pass other USB devices (i.e., other than mouse and keyboard) to your

virtual machines, or use EHCI/XHCI functionality in VirtualBox, you need to install the

VirtualBox USB extension pack, which is closed-source.

The extension pack can be downloaded at the URL:

https://www.virtualbox.org/wiki/Downloads

The VirtualBox USB extension pack does not yet work under FreeBSD hosts. This is

a fairly sore sticking point that Oracle has not yet addressed. It can reasonably be hoped

Chapter 9 Virtualization: The New Buzzword

https://www.virtualbox.org/wiki/Downloads

262

that Oracle will enable the extension pack for FreeBSD too in the days to come, just as

reasonably as can be feared that Oracle never will.

The USB extension pack version must match the VirtualBox version installed on your

box. If your VirtualBox is 5.2.* (5 = major version; 2 = minor release; * = patch level), the

USB extension pack version too must be 5.2.something (otherwise, VirtualBox will abort

the extension pack installation). The patch level usually does not matter.

Double-click on the extension pack (.vbox-extpack) file to install it. With the USB

extension pack installed, you can pass in sundry USB devices from the host to any

VirtualBox guest, whereupon the device becomes unavailable in the host until detached

from the guest.

Figure 9-11 shows a USB pen drive (HP) being passed to the Linux Mint VM.

Perhaps the greatest use of the extension pack would be to pass a USB device not yet

supported under Unix to a Windows VM via VirtualBox USB redirection. Printers and

scanners can work in that fashion.

Another closed-source extension pack is the Guest Additions (GA) ISO. Among other

benefits it begets, GA enables VirtualBox hosts to pass part of their filesystems as SMB

shares, wherein the guest can copy/paste files.

Figure 9-11.  USB redirection under VirtualBox

Chapter 9 Virtualization: The New Buzzword

263

To download the ISO image, visit VirtualBox’s download URL in your browser:

http://download.virtualbox.org/virtualbox/

Navigate into the directory for the highest release available, wherein you will find the

Guest Additions ISO.

If it suits you, you can directly wget the following link:

http://download.virtualbox.org/virtualbox/5.2.4/VBoxGuestAdditions_5.2.

4.iso

This link should work well for everyone (at least so for a while) because the GA

version can be different from the version of the host’s VirtualBox installation.

Linux distributions often make the Guest Additions ISO, and occasionally the USB

extension pack too, available as packages. If so, you can choose either way to get them:

directly from VirtualBox website or from your distribution’s repositories.

Once you have the Guest Additions ISO, you need to pass it in to each VirtualBox VM

that you would like to use the GA for. Passing in the ISO to a VM is the same as passing in

an ISO image for any OS installer. Refer to the next image, Figure 9-12.

(Note that you cannot pass the Guest Additions ISO in any meaningful way to

FreeBSD guests.)

You then need to start the VM, upon which a Windows VM would mount the ISO

automatically. A Linux VM usually would auto-mount it as well, or otherwise you can

mount /dev/sr0 yourself somewhere (as a device of type iso9660).

Figure 9-12.  Passing in the Guest Additions ISO to a guest

Chapter 9 Virtualization: The New Buzzword

http://download.virtualbox.org/virtualbox/
http://download.virtualbox.org/virtualbox/5.2.4/VBoxGuestAdditions_5.2.4.iso
http://download.virtualbox.org/virtualbox/5.2.4/VBoxGuestAdditions_5.2.4.iso

264

Finally, execute from the mount’s root:

VBoxWindowsAdditions-x86.exe # Windows 32-bit VM

VBoxWindowsAdditions-amd64.exe # Windows 64-bit VM

Sh ./VBoxLinuxAdditions.run # Linux VM

With Guest Additions installed in a virtual machine, VirtualBox will act as an SMB

server for the guest while it is running.

You can navigate to the VM’s settings in VirtualBox on the host, choose Shared

Folders and browse to add a share-able directory path. That directory will become an

SMB share for the VM.

The next screenshot, Figure 9-13, illustrates a directory /mnt/ext2/dumps being

shared with the Linux Mint guest.

Figure 9-13 also flaunts an inset properties window for the directory dumps shared in

the main window. As the inset shows, each share has a few options—Name, Read-only

(default is read+write), and Auto-mount (default is manual mount).

A Windows VM will automatically pick up a share (as drive D: or E:) if you choose

auto-mounting, while Linux would usually auto-mount it somewhere under /media.

Figure 9-13.  Adding a new VirtualBox shared folder

Chapter 9 Virtualization: The New Buzzword

265

If auto-mounting is not available, you can mount the SMB share yourself in Windows

as well as in Linux:

net use x: \\vboxsvr\dumps # Windows VM

mount -t vboxsf dumps /mnt/something # Linux VM

Note that dumps is the Folder Name of the directory shared in the last

image

Under a Linux VM, you can make things a touch easier for yourself by adding your

normal user account to the vboxsf group: usermod -a -G vboxsf <normal>

Since we can already exchange files with the host via FTP, the more important aspect

of GA is sharing clipboard buffers between host and guest. You can enable clipboard

sharing under the Settings ➤ General ➤ Advanced tab. See Figure 9-14.

You can tweak any of the numerous settings VirtualBox makes available. The USB

and Shared Folders settings are relevant only with the USB extension pack installed on

the host and Guest Additions installed in the guest, respectively.

Figure 9-14.  Sharing the clipboard in VirtualBox

Chapter 9 Virtualization: The New Buzzword

266

9.5  �KVM
KVM, short for Kernel-based Virtual Machine, is an offshoot of the long-standing

virtualization suite qemu. While qemu is largely distribution-independent, KVM is almost

entirely a Linux phenomenon with hooks into the Linux kernel that go deep.

This section is being written under a Linux AMD64 (Mint Cinnamon) host, which we

will use to illustrate KVM usage. We’ll fire up the old workhorse, Windows XP (i386), as a

virtual machine. If you don’t have the Windows XP installer ISO, you can use something

else and then adjust accordingly.

KVM uses a graphics system named Spice, which has a server of its own and many

client applications. Currently, KVM and Spice are both under intense development,

so you may need to improvise on the following steps, mostly when you run into errors

launching the VM. (I’ll later mention a couple of errors I got with two KVM runs, each

upon a clean, new install.) If you run into errors, Google is your best friend.

The first thing to do is get KVM, along with the widely needed associate packages.

You can install the following list with your distribution’s package manager:

qemu-kvm qemu-utils virt-manager spice-client-gtk spice-vdagent

The qemu-utils package contains a utility qemu-img, which you can use to create a

fully pre-allocated virtual hard disk file:

qemu-img create -o size=6G -o preallocation=full xp.qcow2

That creates a disk file of size 6GB. For production, at least triple that size.

Next up, start virt-manager from the Applications menu or from the shell. From the

manager’s menus, choose File ➤ New Virtual Machine.

The following screenshots, cobbled up as the patchwork image in Figure 9-15, and

the ensuing notes should now be good enough.

Chapter 9 Virtualization: The New Buzzword

267

	 (a)	 Local install media is just what we want.

	 (b)	 Choose Use ISO Image. Then choose Browse, and Browse Local,

and then browse for the Windows XP installer ISO. Turn off

Automatically Detect Operating System Based On Install Media,

and choose Windows and Microsoft Windows XP from the drop-

down lists.

	 (c)	 The defaults are fine.

Figure 9-15.  Creating a new virtual machine in KVM: screens a through c

Chapter 9 Virtualization: The New Buzzword

268

Refer to Figure 9-16 for the next few steps.

	 (d)	 Choose Select or create custom storage. Then click Manage and

then Browse local. Browse to locate the xp.qcow2 virtual hard disk

we created previously.

	 (e)	 The defaults are fine. Take a deep breath and click Finish,

whereupon a new window with Windows XP setup running will

hopefully greet you, as shown in Figure 9-16(f).

Figure 9-16(e) is the stage where things can go wrong— when you click Finish. I had

to solve the following in two separate KVM runs:

Error opening Spice console: SpiceClientGtk missing

Error connecting to graphical console: could not get a reference to type

class

Solving such problems calls upon you to search for and install any Spice packages

that you think might help. It further helps if you, after installing a few packages, restart

KVM or even reboot.

When you get the Windows XP setup window, you can go through the Windows

installation procedure as usual. Once the installation finishes, reboot the virtual

machine.

Figure 9-16.  Creating a new virtual machine in KVM: d through f

Chapter 9 Virtualization: The New Buzzword

269

Note  Clipboard sharing between the Linux host and the new VM will not work
until you download and install (in the virtual machine) the Spice Guest Tools
executable from https://www.spice-space.org/download/binaries/
spice-guest-tools/.

The Windows link for the latest Guest Tools executable is https://www.spice-
space.org/download/binaries/spice-guest-tools/spice-guest-
tools-latest.exe.

Upon VM reboot, open a command prompt (in Windows) to check your VM’s IP

configuration and your connectivity with the vsftpd server on the host, accessible at the

Default Gateway IP address reported by ipconfig. Refer to Figure 9-17.

Figure 9-17.  Checking IP configuration in a KVM virtual machine

Chapter 9 Virtualization: The New Buzzword

http://www.spice-space.org/download/binaries/spice-guest-tools/
http://www.spice-space.org/download/binaries/spice-guest-tools/
http://www.spice-space.org/download/binaries/spice-guest-tools/
http://www.spice-space.org/download/binaries/spice-guest-tools/spice-guest-tools-latest.exe
http://www.spice-space.org/download/binaries/spice-guest-tools/spice-guest-tools-latest.exe
http://www.spice-space.org/download/binaries/spice-guest-tools/spice-guest-tools-latest.exe
http://www.spice-space.org/download/binaries/spice-guest-tools/spice-guest-tools-latest.exe

270

If you need to redirect a USB device to the VM, choose Virtual Machine → Redirect

USB Device and then select the device to be redirected. Refer to Figure 9-18.

9.6  �BHyVe
Just as KVM is largely specific to Linux, BHyVe is specific to FreeBSD. Not surprising at all

because BHyVe stands for BSD Hypervisor, which—a bit surprisingly—was created not

by FreeBSD, but at NetApp Inc. Its authors were Peter Grehan <grehan@ FreeBSD.org>

and Neel Natu <neel@FreeBSD.org>, both NetApp developers.

BHyVe is a command-line oriented virtualization product, bundled with the

FreeBSD distribution. As BHyVe’s popularity with users grows, FreeBSD might create

X frontends for it. Until such time, users will have to rely on the shell for VM invocation,

which actually makes scripting as well as documenting BHyVe much easier.

BHyVe’s VM itself can be graphical. We’ll be setting up a Windows 10 virtual machine

for illustration. To go through this exercise, you need to have a Windows 10 installer ISO

along with its product keys.

Since BHyVe does not have a graphics system, the user has to plug into the virtual

machine’s graphics with RDP (Remote Desktop Protocol) or with a VNC (Virtual

Network Computing) client. We will use TigerVNC for this discussion.

Figure 9-18.  USB redirection in KVM

Chapter 9 Virtualization: The New Buzzword

271

To make good use of BHyVe, you need to be on FreeBSD 11.0 or better. (Under

FreeBSD 10.x, you will be limited to console-mode virtual machines.) You might even

consider running FreeBSD-CURRENT to get the best of BHyVe.

Even more importantly for running BHyVe, your CPU and motherboard must be

fairly recent (manufactured 2012 or later) with support for virtualization technologies

like Extended Page Tables (EPT). There’s a couple of things to do to determine if BHyVe

will work well for you:

	 1.	 dmesg | grep POPCNT should get you a line, something like this:

Features2=0x802009<SSE3,MON,CX16,POPCNT>

If it does, you CPU seems to be good for BHyVe.

	 2.	 kldload vmm; kldstat -n vmm should get a couple of lines,

something like this:

Id Refs Address Size Name

38 1 0xffffffff81f4d000 1b0c17 vmm.ko

If so, your motherboard has virtualization features enabled.

vmm—short for Virtual Machine Management—is the single most important kernel

module when virtualizing with BHyVe under FreeBSD.

Note  FreeBSD 11.0 and up can be expected to have graphics support bundled
in for bhyve as shipped with the base distribution. In case graphics support is
missing, you can install BHyVe graphics support with:

svnlite co http://svn.freebsd.org/base/projects/bhyve_graphics

cd bhyve_graphics

make BHYVE_SYSDIR=/usr/src/ -m /usr/src/share/mk

Copy the bhyve executable over the one shipped under /usr/sbin.

Chapter 9 Virtualization: The New Buzzword

272

The first thing to do is create the tap0 device and insert it into a bridge that will

provide networking to the VM:

kldload vmm

kldload nmdm

kldload if_bridge

kldload if_tap

ifconfig tap0 create

sysctl net.link.tap.up_on_open=1

echo 'net.link.tap.up_on_open=1' >> /etc/sysctl.conf

ifconfig bridge0 create

ifconfig bridge0 addm re0 addm tap0 # Change re0 to your NIC's name

ifconfig bridge0 up

Append the following lines to /boot/loader.conf:

vmm_load=YES

nmdm_load=YES

if_bridge_load=YES

if_tap_load=YES

Append the following lines to /etc/rc.conf:

cloned_interfaces="bridge0 tap0"

ifconfig_bridge0="addm re0 addm tap0" # Change re0 to your NIC's name

Reboot.

Upon reboot, you need to get the version (118) of virtio (a library for a virtual

machine’s input-output and networking functions) that works well with Windows 10.

The virtio URL is so long that it has to be broken up over three lines:

FEDGROUPS=https://fedorapeople.org/groups

V118DIR=virt/virtio-win/direct-downloads/archive-virtio/virtio-

win-0.1.118-2 V118FILE=virtio-win-0.1.118.iso

V118URL=${FEDGROUPS}/${V118DIR}/${V118FILE}

You can now run wget $V118URL.

Chapter 9 Virtualization: The New Buzzword

273

You next need to get BHyVe UEFI/firmware packages. It does not hurt to get some

additional packages: vm-bhyve (a BHyVe VM manager) and grub2-bhyve (for booting a

Linux VM):

pkg install uefi-edk2-bhyve bhyve-firmware vm-bhyve grub2-bhyve

The final package to get is TigerVNC, which will get us a view of the Windows 10 VM:

pkg install tigervnc

We can now flag off our VM with:

truncate -s 15G bhyve.img

This creates a virtual hard disk that is 15GB in size. For production usage, a Windows

10 VM should be at least 50GB.

We’ll need to boot the VM (named win10 in our commands below) four times—once

for Windows installation, once (and another time because of a reboot that happens

automatically) for virtio installation, and once is the normal boot-off-hard-disk-only.

BOOT 1:

bhyve -c 1 -m 4G -H -w \

 -s 0,hostbridge \

 -s 3,ahci-cd,win10.iso \

 -s 4,ahci-hd,bhyve.img \

 -s 5,virtio-net,tap0 \

 -s 29,fbuf,tcp=0.0.0.0:5900,wait \

 -s 30,xhci,tablet \

 -s 31,lpc \

 -l com1,stdio \

 -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd \

 win10

Chapter 9 Virtualization: The New Buzzword

274

In a separate terminal, run the command vncviewer. Put your host’s IP address in

the VNC Server field, and then click Connect. (This is something you have to do each

time you launch the BHyVe VM.) Figure 9-19 illustrates the step.

Then in the VNC window, go through the complete Windows 10 installation and let

the TigerVNC window close by itself once installation completes.

We will now replace the Windows ISO with the virtio ISO to install network drivers

in the virtual machine.

BOOT 2 (and 3, because 2 will reboot on its own after a while):

bhyve -c 1 -m 4G -H -w \

 -s 0,hostbridge \

 -s 3,ahci-cd,virtio-win-0.1.118.iso \

 -s 4,ahci-hd,bhyve.img \

 -s 5,virtio-net,tap0 \

 -s 29,fbuf,tcp=0.0.0.0:5900,wait \

 -s 30,xhci,tablet \

 -s 31,lpc \

 -l com1,stdio \

 -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd \

 win10

Log in using TigerVNC. Then open the CD drive in Windows Explorer, go into the

NetKVM/w10/amd64 directory, right-click on netkvm[.inf] and select Install. This should

install the Ethernet drivers that can use the host system’s bridge and bring your Windows

networking up (possibly after a couple of minutes).

Figure 9-19.  Connecting to a graphical virtual machine with TigerVNC

Chapter 9 Virtualization: The New Buzzword

275

Once the network icon in the Windows taskbar changes to a “good” one (meaning

you’re connected), you need to shut down the VM.

There are two ways you can shut down a BHyVe VM:

•	 Power off the VM using the VM’s own shutdown function. For our

exercise, this means powering off using the Start menu of Windows 10.

•	 Close the VNC window and then run the following commands:

kill -9 'pgrep -x bhyve'

bhyvectl --destroy --vm=win10

The first one should be your preferred way to shut the VM down. Also note that VM

destruction with bhyvectl is not needed if the host itself shuts down (or reboots).

We are now ready for the final launch.

BOOT 4:

bhyve -c 1 -m 4G -H -w \

 -s 0,hostbridge \

 -s 4,ahci-hd,bhyve.img \

 -s 5,virtio-net,tap0 \

 -s 29,fbuf,tcp=0.0.0.0:5900,wait \

 -s 30,xhci,tablet \

 -s 31,lpc \

 -l com1,stdio \

 -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd \

 win10

This is the stage where we would like to be absolutely sure that Windows’ network

works flawlessly: Internet connectivity and connectivity with the host’s anonymous FTP

server (vsftpd).

The next, unadulterated, screenshot allays all fears.

•	 BBC’s homepage opens in a flash in Microsoft Edge.

•	 ipconfig shows that the VM has an IP address in the host system’s

subnet as it is. This means that the vsftpd service should be

accessible at the pristine host IP address.

•	 Windows’ ftp command sees the xfer subdirectory of the FTP server

after logging in anonymously at the host IP address (unaltered).

Chapter 9 Virtualization: The New Buzzword

276

Figure 9-20 captures Windows 10 under sail, with BHyVe at the rudder.

There’s one point you might like to note about our list of arguments for the bhyve

command:

-s 29,fbuf,tcp=0.0.0.0:5900,wait

The point of interest is the wait option utilized at the end. What this option means

is that the VM will wait for a VNC connection to be established before kicking off its

booting sequence. This is optional. You can, when sure that your virtual machine is

running flawlessly, change that part of the argument list to:

-s 29,fbuf,tcp=0.0.0.0:5900

One area where BHyVe lags behind both VirtualBox and KVM is USB redirection,

which currently is not implemented. But this is under active and intense development.

It can be hoped that by the time FreeBSD 12 graduates from CURRENT to RELEASE, USB

redirection under BHyVe would work at a par with its peers.

Figure 9-20.  Windows 10 virtual machine running under BHyVe

Chapter 9 Virtualization: The New Buzzword

277

Clipboard sharing can be made to work for the BHyVe VM. In theory this should be

possible with VNC itself, but I could never get clipboard sharing to work under VNC. The

solid way to do this is RDP (Remote Desktop Protocol).

To use RDP for the Windows 10 VM, start it under TigerVNC one final time. In the

VM, right-click Windows’ Start menu and choose System ➤ Remote settings. Under the

Remote Desktop section, tick the box for Allow remote connections to this computer,

and then click Apply. Figure 9-21 illustrates what is to be done.

Also note the IP address of the VM with the ipconfig command. This IP will serve as

the RDP server in our RDP connection.

Power off the VM. You can next install Remmina, the bellwether RDP application,

with:

pkg install remmina freerdp remmina-plugin-rdp

Start the VM with the wait option removed. Here is the entire bhyve command for

ease of reference:

bhyve -c 1 -m 4G -H -w \

 -s 0,hostbridge \

 -s 4,ahci-hd,bhyve.img \

Figure 9-21.  Enabling Windows 10 RDP

Chapter 9 Virtualization: The New Buzzword

278

 -s 5,virtio-net,tap0 \

 -s 29,fbuf,tcp=0.0.0.0:5900 \

 -s 30,xhci,tablet \

 -s 31,lpc \

 -l com1,stdio \

 -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd \

 win10

You can now invoke remmina and click the + sign at the top-left corner (with RDP

selected as the protocol).

Figure 9-22 shows the fields being filled in as needed.

Use the Windows 10 VM’s IP address in the Server field, and Protocol must be RDP.

The User Name and User Password are your Windows 10 login credentials. Domain

should be WORKGROUP, unless you changed the VM’s domain configuration.

When you log in with RDP, clipboard sharing will work.

Figure 9-22.  Using Remmina to create an RDP connection

Chapter 9 Virtualization: The New Buzzword

279

9.7  �Summary
The world of computers has long been fettered by commercial giants whose chief

purpose is maximization of revenue. AT&T, Microsoft, and Apple have all tried to exploit

their hold on computer users in various, often ludicrously petty, ways that never targeted

the broader interests: growth and spread of computing fundamentals and technologies.

As the power of open-source shows, top-flight technologies like virtualization need a

sound foundation, and then a go-together spirit with the masses to succeed. Developers

create and users use—and then earnestly report back problems and feature requests.

And this happens.

VirtualBox, KVM, and BHyVe will all live in the annals as virtualization pioneers. It

actually suits the user to have so many high-quality products to choose from. If one does

not work well for a given need, something else will.

Chapter 9 Virtualization: The New Buzzword

PART 3

Preparing for Part III

To proceed further into the last phase of your Unix essay—programming with

Unix—you need three commands in your system: c++, dialog, and valac.

Note the following:

•	 Yes, we’ll be using the C++ compiler (c++/g++), not cc or gcc.

•	 FreeBSD always has dialog as well as c++ in its base system.

•	 All commands are available (either already installed or can be

downloaded) under Unix as well the Unix emulator Cygwin (and its

fork Babun too).

Here are notes for installation (if and as needed) of c++, dialog, and valac:

•	 The dialog command always corresponds to the package dialog.

If your box is missing the dialog command, just install the package

with the same name.

•	 The C++ compiler is typically available under FreeBSD as well as

Linux. It might be a command named c++ or g++.

•	 If there is no C++ compiler in your system, you can try the package

names: (in order of package name to be tried first) clang, g++,

gcc-g++, and gcc.

•	 The valac command is in a package named either vala or valac.

282

Here’s a quick reminder of package search-and-install functions under Unix.

To search for a package named foo: To install the package foo:

pkg search foo # FreeBSD

apt search foo # Linux (Ubuntu)

pacman -Ss foo # Linux (Arch)

pact find foo # Babun

pkg install foo # FreeBSD

apt install foo # Linux

(Ubuntu)

pacman -S foo # Linux (Arch)

pact install foo # Babun

Part 3  Preparing for Part III

283
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_10

CHAPTER 10

Advanced Techniques
in Shell Scripting
The title of this chapter is misleading—by design, too. The word “advanced” usually is

taken to mean “difficult to understand” and/or “not essential”. This chapter is neither

of those—the whole chapter is easy to understand, and the first half is essential to

understand as well.

While you can write elementary scripts with the material presented in Chapter 2

(“Essential Unix Commands and Terminology”) and Chapter 3 (“Bourne Shell Scripting”),

sooner than later you will find your code becoming inelegant, or you might even hit a

roadblock. This chapter gives you the remaining ammunition needed to deal with those

kinds of problems.

10.1  �The here-doc Tool
The following looks like a good way of getting help from the computer in remembering

weekdays:

echo 1 = Monday

echo 2 = Tuesday

echo 3 = Wednesday

echo 4 = Thursday

echo 5 = Friday

echo 6 = Saturday

echo 7 = Sunday

284

But seven echo commands to print this table looks a bit of an overkill. Unix has the

perfect tool to print multiple lines with a single command. It is called the here-doc.

cat << Weekdays

1 = Monday

2 = Tuesday

3 = Wednesday

4 = Thursday

5 = Friday

6 = Saturday

7 = Sunday

Weekdays

All the text between the opening limit string (Weekdays after <<) and the closing limit

(Weekdays on its own line) is echoed in a single shot. Although you can choose any name

as the limit string, the clockwork-like regular is EOF—short for End-Of-File.

Here-docs have excellent understanding of shell variables, command substitution,

and even arithmetic expansion.

For example, let’s put the following in a script.

num=67

cat << EOF

'df -h /'

Inside heredoc, the value of num = $num

EOF

If you run this code, you will get something like:

Filesystem Size Used Avail Capacity Mounted on

/dev/ada1s3a 54G 22G 28G 44% /

Inside heredoc, the value of num = 67

So the back-quotes got expanded via command substitution and $num was

dereferenced.

You can turn off command substitution, shell variable dereference, and arithmetic

expansion by putting the opening limit string within quotes (double or single).

Chapter 10 Advanced Techniques in Shell Scripting

285

num=67

cat << "EOF"

'df -h /'

Inside heredoc, the value of num = $num

EOF

If you run the preceding code (with quoted opening limit string "EOF"), you will now

get this output:

'df -h /'

Inside heredoc, the value of num = $num

So, if you put the opening limit string in quotes, the shell will perform no substitution

whatever in the here-doc—pretty much like putting a shell string under single quotes.

If you use <<- instead of << as the limit operator, all leading tabs/whitespace within

the here-doc (and on the closing limit line) will be stripped by the interpreter. This

makes formatting of the shell script’s code aesthetically superior and more readable. So

generally, whenever you write a here-doc, it’s best to use the <<- operator.

Here-docs can also be used to turn interactive commands like ftp into scriptable

applications. The following script uses a here-doc to anonymously download a couple of

files from the FreeBSD FTP server.

#!/bin/sh

set -e # exit upon first command failure

SERVER="ftp.freebsd.org"

DIR="pub/FreeBSD/releases/amd64/amd64/ISO-IMAGES/10.4"

PASSWORD="me@example.com"

FILE1="CHECKSUM.SHA256-FreeBSD-10.4-RELEASE-amd64"

FILE2="FreeBSD-10.4-RELEASE-amd64-mini-memstick.img.xz"

ftp -n $SERVER <<- EOF

 quote USER anonymous

 quote PASS "$PASSWORD"

 binary

 cd $DIR

Chapter 10 Advanced Techniques in Shell Scripting

286

 mget $FILE1 $FILE2

 bye

EOF

set +e

exit 0

10.2  �Variable Type Modifiers: Readonly/Local
In the early days of Unix, shell script variables had only one storage class: globally

writable. So you could assign some value to a shell variable inside a function, and the

script’s main body would see the new value.

Let’s take a small example:

n=2

fx()

{

 n=3

}

fx

echo $n

If you run this code, it will output 3.

What if we wanted to ensure the function fx() does not alter n?

The answer is readonly—which is the counterpart of const in the C/C++ world.

readonly n=2

fx()

{

 n=3

}

fx

echo $n

Chapter 10 Advanced Techniques in Shell Scripting

287

Running this code returns the following error message.

n: is read only

Variables of type readonly can only be assigned an initial value. The readonly

modifier is available anywhere needed inside a script, but makes sense only at the global

level (outside of any shell function). If you declare a shell variable readonly inside a

function, you need to ensure that the function will be invoked only once. Otherwise, the

second invocation will produce an error message when the shell attempts to reassign to

the readonly variable.

You might at times want to ensure that each shell function in a script uses its

own shell variables, so that no function alters the variables of some other function or

variables at the global level. This is what the modifier local does.

n=2

fx()

{

 local n=3

 echo "Inside fx: n = $n"

}

fy()

{

 local n=4

 fx

 echo "Inside fy: n = $n"

}

fy

echo "Inside main: n = $n"

exit 0

If you run this code, you will get the following output:

Inside fx: n = 3

Inside fy: n = 4

Inside main: n = 2

Chapter 10 Advanced Techniques in Shell Scripting

288

As might be obvious, the storage class local is only applicable to variables defined

inside a shell function, not in the script’s main body, where variables must be global.

Since this particular point is not intuitive, it might be good to note that the Bourne

shell does not permit functions to assign to a local variable of the same name as a global

readonly. I have no idea why this is the case.

10.3  �Bit-Wise Operations
The Bourne shell supports bit-wise arithmetic operations: << (left shift), >> (right shift),

& (bitwise AND), | (bitwise OR), and ˆ(bitwise XOR). If you are not conversant with bit-

wise operations, visit Section 11.1.12 in Chapter 11 for a primer.

The following snippet populates a bit-field of four bits, spanning the right half of a

byte as per the following OS-information capture schema, depicted in Figure 10-1.

Note  Counting offsets from the smallest-value (right-most) bit, one of the three
right-side bits is turned on for OS type:

bit 0 → Cygwin

bit 1 → Linux

bit 2 → FreeBSD

If the installation is further detected to be virtualized, bit 3 is turned on as well.

Figure 10-1.  Four-bit schema

Chapter 10 Advanced Techniques in Shell Scripting

289

readonly UNITY=1

readonly SYSTEM_CYGWIN=$((UNITY<<0)) # 1 % Exclusive bits: %

readonly SYSTEM_LINUX=$((UNITY<<1)) # 2 % only one of these %

readonly SYSTEM_FREEBSD=$((UNITY<<2)) # 4 % three can be on %

readonly VM=$((UNITY<<3)) # 8

machtype=0 # begin with all bits off

system='uname -s'

if echo $system | grep -i Cygwin; then

 machtype=${SYSTEM_CYGWIN}

 model='systeminfo | grep -i "System Model" | \

 awk -F : '{print $2}' | sed 's/^[[:space:]][[:space:]]*//''

 ["$model" = "VirtualBox"] && machtype=$((machtype | VM))

else

 if [$system = "Linux"]; then

 machtype=${SYSTEM_LINUX}

 �if cat /proc/cpuinfo | grep '^\<flags\>' | grep -qw hypervisor;

then machtype=$((machtype | VM))

 fi

 else

 if [$system = "FreeBSD"]; then

 machtype=${SYSTEM_FREEBSD}

 vmode='sysctl -a | grep 'kern.vm_guest' | \

 awk -F : '{print $2}' | sed 's/^[[:space:]][[:space:]]*//''

 ["$vmode" != "none"] && machtype=$((machtype | VM))

 fi

 fi

fi

To find out whether the installation is virtualized, the user can now just check on

machtype's bit 3 with an AND-based test: [$((machtype & VM)) -ne 0]

Chapter 10 Advanced Techniques in Shell Scripting

290

10.4  �Trapping Signals
Shell scripts are permitted to catch and deal with signals like:

INTERRUPT ↔ (SIGINT; numeric value 2; generated by pressing)

TERMINATION ↔ (SIGTERM; numeric value 15; the default signal

sent by kill)

The only signal that that can never be caught is KILL (SIGKILL; numeric value 9),

which will immediately kill the receiving process.

Here is a small script that runs an endless loop, with SIGINT and SIGTERM trapped.

#!/bin/sh

trap "echo Trapped and ignored INTERRUPT" SIGINT

trap "echo Trapped TERMINATION; exit 255" SIGTERM

echo "Running with PID: $$"

n=0

while true; do

 n=$((n+1))

 echo $n

 sleep 1

done

exit 0

Whenever the user presses , the script will print a diagnostic message and

continue looping. If the user issues SIGTERM (with kill <pid> or kill -TERM <pid>) to

the process, the script acknowledges the signal and exits.

10.5  �Mixed Quotes
Most of the times, strings in a shell script are decorated as one of the following:

•	 Unquoted (if the string has no whitespace or special characters)

•	 Entirely double-quoted (if the string has special characters that need

to be expanded by the shell)

•	 Entirely single-quoted (if the string has special characters that need

to be prevented from being expanded by the shell)

Chapter 10 Advanced Techniques in Shell Scripting

291

There could be times when things are not so lucid. It is often needed in Unix shell

scripting to have part of a string under single quotes and part in double quotes, and the

double-quoted portion may have embedded back-quotes.

Let’s say you have been assigned the task of writing a script to replace all occurrences

of SOMETEXT with OTHERTEXT in a file called SOMEFILE. The converted text has to be

printed on standard output, while SOMEFILE remains unchanged.

The script will be passed three parameters:

SOMETEXT OTHERTEXT SOMEFILE

SOMETEXT and OTHERTEXT could be any strings with any combination of characters

that could be typed at the standard 101/104/105 keyboard. SOMEFILE’s path has no

special characters or whitespace.

The “normal” first try could be:

sed "s/$SOMETEXT/$OTHERTEXT/g" $SOMEFILE

Pretty soon, you’ll realize this is not an enterprise solution. Either $SOMETEXT or

$OTHERTEXT (or both) may have embedded forward slashes. If that is the case, sed will

conk out immediately, citing an invalid command.

So we first write a function called escape() that takes text as input as outputs modified

text with all forward slashes converted to the combo of a backslash and a forward slash.

escape() is an ugly little function to write, because the first thing it has to do is

escape any embedded backslash. Then we have to remember that escapes happen

twice—once when the escape() function is invoked and then when the actual call to sed

in the script’s main body is made. This means a literal backslash in escape() would need

to be denoted as four of them: \\\\.

The following escape() looks as ugly as possible, but does a reasonable job:

escape()

{

 out='echo $1 | sed 's|\\\\|\\\\\\\\|g'' # \ becomes \\

 out='echo $out | sed 's|/|\\\\/|g'' # / becomes \/

 echo $out

}

Now the solution is straightforward:

sed 's/'"'escape $SOMETEXT'"'/'"'escape $OTHERTEXT'"'/g' $SOMEFILE

Chapter 10 Advanced Techniques in Shell Scripting

292

Purely from a technical viewpoint, single quotes are not necessary in this sed

command, which could have been written entirely using double quotes only. But the use

of part single and part double quotes makes it visually clear to the writer, the shell and

the reader, where shell expansions are welcome and where they are not.

10.6  �Recursion
Recursion happens when a script or a function calls itself. The Bourne shell supports

recursion, but this is no reason for delight. If you find yourself needing recursion in your

script, you probably should have written the application in C. Recursive code is fairly

messy to write, and then when things go wrong, you need supreme cool inside your head

and a good understanding of how stack overflow happens. The fact that variables inside

shell scripts are global by default makes things trickier.

Secondly, any recursive code can be programmed normally (i.e., without recursion).

Avoid recursion whenever you can, at least in shell scripting.

For times when you feel recursion must be a part of your shell life, I’ll put in a small

example script that uses recursion to find out the deepest sub-path in a given path that

represents a symbolic link.

Let’s say the given path is /home/unix/pix/tinkerbell/asleep.png. Then the script

should find if /home/unix/pix/tinkerbell/asleep.png is a symbolic link. If not, then is

/home/unix/pix/tinkerbell a symbolic link? Then /home/ unix/pix and then /home/

unix and then /home?

If no symbolic links are found, the script exits quietly.

The following script uses recursion to do the job required:

#!/bin/sh

[$# -gt 0] || { echo "Need path !" 1>&2; exit 1; }

[-e "$1"] || { echo "Need existing, valid path !" 1>&2; exit 1; }

path="$1"

counter=${2:-0}

if [-L "$path"]; then

 echo $path

else

 counter='expr $counter + 1'

Chapter 10 Advanced Techniques in Shell Scripting

293

 if [$counter -ge 32]; then

 echo "Recursion too deep! (>= 32)" 1>&2

 exit 1

 fi

 if echo $path | grep -q '\/'; then

 path='echo $path | sed 's|/[^/]*$||''

 if [-n "$path"]; then

 'basename $0' "$path" "$counter" # recurse here

 fi

 fi

fi

exit 0

10.7  �Special Shell Variables: LINENO and IFS
There are a couple of special Bourne variables that are very helpful in shell scripting, and

that newcomers to the world of shell—occasionally even experienced hands—are not

aware of.

You might at times need to print the current line number inside a shell script. Bourne

shell has a macro for that:

$LINENO

That macro, which expands as the line number in the script where it is referenced,

makes diagnostic messaging much better.

If, let’s say, you find an important test to fail midway through your script, you can

exit the script pointing out the line number where you fell afoul, which you can pass to a

helper die() function like the following one:

die()

{

 echo "error initiated at line $1: $2" 1>&2

 exit 1

}

Chapter 10 Advanced Techniques in Shell Scripting

294

In the script, when you decide it’s time to die(), pass $LINENO as the first argument,

and the reason of death as the second argument:

[-f /etc/rc.conf] || die $LINENO "/etc/rc.conf does not exist"

The other important shell variable is $IFS, which stands for Input Field Separator.

Normally, the shell takes three characters as separators: space, tab, and newline.

There are times when you need to suppress space and tab as a field separator.

This typically happens when you are recursing down a directory that contains files or

subdirectories with embedded whitespace in the name. So if you want to list all the plain

text files under /usr, the following code is extremely error-prone:

for f in '{ find /usr -type f -exec file {} \;; } | \

grep "ASCII text" | awk -F : '{print $1}''; do

 echo "$f"

done

The moment find hits on an entity with whitespace in the name, your script will fly

off the handle. To get a good result, you need to set IFS to newline only, and then reset

IFS to the earlier state when done:

oldifs="$IFS"

IFS=$'\n'

for f in '{ find /usr -type f -exec file {} \;; } | \

grep "ASCII text" | awk -F : '{print $1}''; do

 echo "$f"

done

IFS="$oldifs"

10.8  �The Magic of eval
One of the most powerful tools in Unix shell is eval, which is a way of creating and

populating variables dynamically via indirection.

Let’s say we have this:

integer=99

var=integer

Chapter 10 Advanced Techniques in Shell Scripting

295

If you echo $var, you will get the output integer. Can you get the number 99 itself

rather than the variable name integer?

The answer is yes:

integer=99

eval var='$'integer

echo $var

This outputs 99, just what we wanted.

We can add another level of indirection too:

integer=99

number=integer

eval var='$'$number

echo $var

This outputs 99 too.

eval leads to great convenience in looping over shell variables:

for var in PS1 PATH LD_LIBRARY_PATH; do

 eval val='$'$var

 [-n "$val"] || echo "$var is not set"

done

You can dynamically create a variable from an existing string (as long as the string

conforms to shell variable naming rules):

string=xyz

eval $string="Hello World"

echo $xyz

This outputs our favorite greeting "Hello World".

A cool variation of this allows for the existing string to be mangled, creating an

entirely new shell variable:

string=xyz

eval my_${string}="Hello World"

echo ${my_xyz}

This outputs our favorite greeting yet again.

Chapter 10 Advanced Techniques in Shell Scripting

296

10.9  �Non-POSIX Scripting
Non-POSIX scripting is what you get when you use something other than vanilla Bourne

shell as the interpreter.

This is deprecated because it makes the script non-portable. If, for example, you

use zsh as the interpreter, you could run into multiple problems. The Z shell may not be

available at the other end when you give your script to some other user. Or, if available, it

may be wired to behave differently than the environment in which you coded the script.

As an example, Zsh permits array indexing to begin at 0 (Korn emulation) as well as 1

(the default). So you might run into indexing problems if there is a difference between

the array indexing environment at your end and at the end of the other user.

Still, at times, it becomes necessary to use bash or zsh as the interpreter. This

happens primarily when you need to use arrays in your script. Support for arrays is not

available in the Bourne shell, and it will likely remain that way forever.

We’ll take bash as the fallback interpreter when vanilla Bourne is not enough for the

mission, primarily because bash is more likely than zsh to be available with other users.

If you use bash as the interpreter, you can do everyone a favor by not hard-coding the

path of bash into the shebang:

#!/bin/bash # WRONG

The path of bash is not certain to be under /bin. It might be /usr/bin/bash or /usr/

local/bin/bash.

The portable way of invoking bash is by using the command env, which is always

available under /usr/bin:

#!/usr/bin/env bash # RIGHT

Now that we have invoked bash, we’ll take a quick look at the chief inspiration

behind the invocation: arrays.

We’ll create an array named unix, filling the array with the three distributions we

recognize as Unix: FreeBSD, Linux, and Cygwin.

declare -a unix # optional

i=0

unix[$((i++))]="FreeBSD"

unix[$((i++))]="Linux"

unix[$((i++))]="Cygwin"

Chapter 10 Advanced Techniques in Shell Scripting

297

If we want to determine the size of the Unix array, we can use ${#unix[*]} or

${#unix[@]}

echo ${#unix[*]} # outputs 3

echo ${#unix[@]} # outputs 3 too

Note T he Bash shell always starts array indexing at 0. The highest index in a
Bash array is its size minus 1.

To access the element at index n in the array, we have to use ${unix[$n]}

echo ${unix[0]} # outputs FreeBSD

echo ${unix[3]} # outputs nothing; the highest index of unix is 2

Putting together all the tidbits, we can write a small script that outputs whether we

are on a Unix box:

#!/usr/bin/env bash

dist='uname -o'

declare -a unix # optional

i=0

unix[$((i++))]="FreeBSD"

unix[$((i++))]="Linux"

unix[$((i++))]="Cygwin"

i=0

is_unix=false

while [$i -lt ${#unix[@]}]; do

 if ["$dist" = "${unix[$i]}"]; then

 is_unix=true

 break

 fi

 ((i++))

done

echo $is_unix

exit 0

Chapter 10 Advanced Techniques in Shell Scripting

298

10.10  �Scripting with ncurses

Note T his section is optional. If you do not intend to script with ncurses, you
can skip this section for the time being. But remember to visit this section late—
the ncurses library adds significantly to ease of interaction with the user on the
command line.

Scripting with ncurses (console-mode widgets library) lets you interact with the user

using widgets like message boxes, radio lists, and input boxes. The most versatile ncurses

suite for scripting is dialog, which is always available under FreeBSD in its base system,

and as a package under Linux. It’s often automatically installed along with the operating

system itself. In case the package is missing, you can always pull it in yourself via the

package manager.

Both Cygwin and Babun (Cygwin fork with Z shell as the default login shell) provide

an add-on package called dialog. Cygwin needs you to run its setup for installing

add-ons, while under Babun you can install dialog with the command pact install

dialog.

We’ll look at usage of some elementary dialog widgets.

Remember that dialog writes its output to standard error by default, and whenever

needed to capture the output in a result variable—we need to pass in --stdout to direct

the output to standard output.

Also note that the numbers at / near the end of dialog commands usually indicate

the desired window geometry:

<height> <width> # for windows that do not use a list

or

<height> <width> <entries*> # for windows that use a list

* : suggests the number of list entries.

Note A dialog command that populates an output variable returns two things:
an exit code (0 if there was no error), and a string that gets trapped in the output
variable. The output string is meaningful only if the exit code was 0.

Chapter 10 Advanced Techniques in Shell Scripting

299

10.10.1  �Message Box
There are no marks for deducing what a message box does. The following command

results in the message box, as shown in Figure 10-2.

dialog --title "Message" --msgbox "\nHello World" 8 16

A related widget is infobox, which exits automatically after displaying the message.

To persist the box on the output device for a while, the calling thread can sleep for a few

seconds:

dialog --infobox "Please wait. Processing ..." 5 35; sleep 3

10.10.2  �YesNo box
A YesNo box, shown in Figure 10-3, makes the user choose between Yes (exit code 0) or

No (exit code non-zero). Here is the snippet used to generate the image:

dialog --title "Query" --yesno \

"\nAre you rich, bright and young ?" 7 37

[$? -eq 0] && echo You chose Yes || echo You chose No

Figure 10-2.  The dialog message box

Chapter 10 Advanced Techniques in Shell Scripting

300

10.10.3  �Input Box
An input box prompts the user to enter some text. If the user clicks Cancel, dialog returns

a non-zero exit code to the shell.

out='dialog --stdout --title "User input needed" \

--inputbox "\nWhich city do you live in?" 9 30'

[$? -eq 0] && echo You entered $out

These commands yield Figure 10-4.

Figure 10-3.  The dialog YesNo box

Figure 10-4.  The dialog input box

Chapter 10 Advanced Techniques in Shell Scripting

301

10.10.4  �Range Box
A range box lets the user select a number from a predefined range, with a default value

that sets the initial position of the slider.

The user can use (for big changes) as well as (for small

changes). The key immediately takes the user to the minimum value and takes

the user to the maximum.

out='dialog --title Range --stdout --rangebox \

"\nSelect a number from 0 to 100" 3 36 0 100 64'

[$? -eq 0] && echo You chose $out

The first two numeric arguments at the end (3 and 36 in the preceding code snippet)

determine window geometry (height and width respectively), while the last three (0, 100,

and 64) specify minimum, maximum, and initial value, respectively.

This code snippet leads to the screenshot shown in Figure 10-5.

Figure 10-5.  The dialog range box

10.10.5  �Text Box
The text box widget displays the contents of a text file. The user can scroll the contents

with . Refer to the following command and Figure 10-6 for

illustration.

dialog --textbox ~/.login 12 72

Chapter 10 Advanced Techniques in Shell Scripting

302

10.10.6  �Program Box
A program box displays the output of a command piped in. Refer to the following

command and Figure 10-7 for illustration.

ls -l | dialog --programbox 20 100

A related widget is tailbox, which clings to the end of the output, much like tail -f.

Figure 10-6.  The dialog text box

Figure 10-7.  The dialog program box

Chapter 10 Advanced Techniques in Shell Scripting

303

10.10.7  �Menu Box
A menu box presents the users with a menu of indexed choices, out of which they can

select one.

The indexes can be any integers of the programmer’s choice, and they need not

necessarily be sequential.

When the user selects a choice from the menu, the corresponding index is returned.

If the clicks hits Cancel, dialog returns a non-zero exit code to the shell.

This code snippet is used to generate Figure 10-8:

out='dialog --stdout --title "Linux filesystem format options" \

--menu "\nChoose your preferred filesystem:" 12 40 3 \

1 ext2 \

2 "ext3 (journaling)" \

3 "ext4 with discard"'

[$? -eq 0] && echo "You chose $out"

10.10.8  �Radio List
A radio list presents a menu of indexed choices that can be toggled. The user can select

any one of the choices after toggling it on by pressing the spacebar.

Figure 10-8.  The dialog menu box

Chapter 10 Advanced Techniques in Shell Scripting

304

One of the choices may be optionally be marked as on (in which case that entry will

be displayed as starred) in the initial menu. Toggling a choice on automatically toggles

all others to off.

The indexes can be any integers of the programmer’s choice, and they need not

necessarily be sequential.

When the user selects a choice from the menu, the corresponding index is returned.

If the user clicks Cancel, dialog returns a non-zero exit code to the shell.

Refer to the code snippet and Figure 10-9 for illustration.

out='dialog --stdout --radiolist "Select an OS:" 10 30 3 \

1 FreeBSD on \

2 Linux off \

3 Cygwin off'

[$? -eq 0] && echo You selected $out

10.10.9  �Progress Gauge
A progress gauge displays progress, with input read from standard input. No user input is

needed. When the gauge reaches 100%, the window disappears.

The easy way to use the progress gauge widget is to run a loop with your shell, with

the loop echoing 0 at the beginning and 100 at the end. The value echoed by the loop

and piped to dialog is interpreted as the percentage of work done.

Figure 10-9.  The dialog radio list

Chapter 10 Advanced Techniques in Shell Scripting

305

{

 n=0

 while [$n -lt 100]; do

 echo $n

 n='expr $n + 20'

 sleep 1

 done

} | dialog --title "Wait" --gauge "\nProcessing ..." 8 50

Figure 10-10 captures the state of the dialog window three seconds after the loop

goes into action.

10.10.10  �Check List
A checklist box presents a set of items to the users, each of which they can toggle on or

off individually using the spacebar. Each item has an associated number (shown to its

right). The number is a visual aid and does not affect the widget’s functioning.

When the user clicks OK, all the on items are concatenated into a space-separated

string, which is returned. If the user clicks Cancel, dialog returns a non-zero exit code.

The following code sample prompts the user for desktop environments the user likes,

and Figure 10-11 shows possible usage with a user who approves of KDE and Cinnamon.

list=""

n=1

for de in 'cat <<-Desktop_Environments

 KDE

Figure 10-10.  The dialog progress gauge

Chapter 10 Advanced Techniques in Shell Scripting

306

 GNOME

 Cinnamon

 XFCE

Desktop_Environments'; do

 list="$list $de $n off"

 n='expr $n + 1'

done

chosen='dialog --stdout --checklist \

"Choose desktops you like:" 11 36 4 $list'

if [$? -eq 0]; then

 for choice in $chosen; do

 echo "You selected $choice"

 done

fi

If the user were to press the OK button in Figure 10-11, dialog would return 0 to the

shell and populate the output string as "KDE Cinnamon".

Figure 10-11.  The dialog check box

Chapter 10 Advanced Techniques in Shell Scripting

307

10.10.11  �Time Box
The time box lets the user choose a time, returned as hh:mm:ss (24-hour format).

The user can use keys as well as and to set the hours,

minutes, and seconds, and the key to switch among the fields.

The following code sample, and Figure 10-12, is an example of the user being

prompted for a time value and 14:30:00 being returned.

out='dialog --stdout --title "Reboot Pending" \

--timebox "\nSet the time for the system to restart:" 0 0 14 30 00'

[$? -eq 0] && echo "You set the time: $out"

10.10.12  �Calendar Box
The calendar box lets you choose a date, returned as DD:MM:YYYY.

As in the preceding time box, the user can use keys as well as and

 keys to set the date, month, and year fields, and the key to switch among the

fields.

The following snippet and Figure 10-13 show an example prompting the user for a

date value, for which the user selects 19-01-2038.

out='dialog --stdout --title "Unix Date Bomb" \

--calendar "\nWhen do you expect the next Y2K ?" 0 0 19 01 2038'

[$? -eq 0] && echo "You set the date: $out"

Figure 10-12.  The dialog time box

Chapter 10 Advanced Techniques in Shell Scripting

308

10.10.13  �File Selection Box
The File selection box lets you choose a file, with an optionally pre-selected file path. It

is a bit tricky using the file selection widget the first couple of times. The widget presents

three windows to the user: directories in the upper-left window, files in the upper-right

window, and the user’s selection in the lower window.

To jump from one window to another, use .

Pressing lets you navigate the current list in the Directories/Files windows.

Pressing navigates the selection text.

To select a file in the Files window, you need to press the spacebar. The trick: To

change into a directory, select the directory and then press twice. Here is the

example code, with Figure 10-14 illustrating usage for the snippet.

out='dialog --stdout --fselect $HOME/tetris/tetris.xpm 4 30'

[$? -eq 0] && echo "You chose: $out"

Figure 10-13.  The dialog calendar box

Chapter 10 Advanced Techniques in Shell Scripting

309

This command and Figure 10-14 presume tetris/tetris.xpm and tetris/src/

tetris.c are existing files under $HOME. To change the selection from tetris/tetris.

xpm (pre-selected) to tetris/src/tetris.c, you need to do the following:

	 1.	 At (a), tab into the Directories window. Use to set src as

directory.

	 2.	 Press once. The widget now appears as in (b). Files are still

not refreshed.

	 3.	 Press a second time to actually navigate into that directory,

whereupon the Files window will list files in src and the widget

will appear as in (c).

If the user now clicks OK, dialog will return $HOME/tetris/src/tetris.c as output.

The selection window also plays a part in navigation: the user can type in the path,

and the widget will update the contents of the other windows to match user input.

A related widget is dselect, which can prompt for a directory path.

10.10.14  �And There Are Many More
There are a few other widgets in dialog—some of them variants of the widgets discussed

previously (Progress Box and Password Box) and others which are fundamentally

different (Form Box, Pause Box, and Treeview Box).

I will leave it to you to research the remaining widgets on your own as and when

needed. For complete documentation, you can look up the man page with man dialog.

Figure 10-14.  The dialog file selection box: (a) → (b) → (c)

Chapter 10 Advanced Techniques in Shell Scripting

310

10.11  �Scripting with GTK

Note R eading this section is optional. If you do not intend to script with GTK, you
can skip this section entirely. Scripting with GTK is not advisable as a standard
course of scripting. This section therefore is just an awareness exercise.

There are many GUI toolkits that are available in Unix. dialog itself has an associated X

sub-package called Xdialog, which can serve as a ready drop-in for dialog commands.

There are independent pure-X widget libraries too, widgets of which can be

invoked from within a script. Perhaps none better than Zenity, a cross-platform suite

that allows the execution of GTK+ dialog boxes from the command line (and therefore

shell scripts too).

Zenity user interface is not particularly well-polished, and the suite has fewer

features than more complex GUI creation suites. But it does a perfect job of enabling a

shell script to interact seamlessly with an X user. To boot, Zenity usage is pretty much the

same as dialog.

This book does not intend to provide a comprehensive discourse on Zenity. The

primary reason is that scripting should usually assume that there is no X around. So

scripting with GUI toolkits should never be your first choice.

We’ll look at one example—the file selection widget—which shows how easy it is to

invoke GTK dialogs from the command line.

If you want the user to select a file, Zenity makes it simple. Refer to the following

commands and Figure 10-15:

FILE='zenity --file-selection --title="Select file"'

[$? -eq 0] && echo "$FILE selected."

Chapter 10 Advanced Techniques in Shell Scripting

311

If the user clicks OK, Zenity will return 0 to the shell and populate the output variable

FILE with /etc/shells.

The file selection dialog has a couple of noteworthy switches:

•	 --multiple: Allows selection of multiple files (separated by | in the

output).

•	 --directory: Allows selection of a directory. As you would expect,

Zenity has many, many widgets that you can play with. An excellent

Zenity introduction and examples are available at https://

linuxaria.com/howto/introduction-zenity-bash-gu.

And there is man zenity too, which always has complete documentation for your

distribution.

10.12  �Summary
Now that you are fully familiar with command-line interaction with Unix (at least at a

beginner level—and hopefully at the intermediary level), you can utilize your skills to

gain further Unix proficiency of your own rendering in the areas that interest you most:

shell scripting, installation, administration, emulation, and virtualization. That’s quite a

strong punch already.

Figure 10-15.  The Zenity file selection dialog

Chapter 10 Advanced Techniques in Shell Scripting

https://linuxaria.com/howto/introduction-zenity-bash-gu
https://linuxaria.com/howto/introduction-zenity-bash-gu

312

We’ll make the punch even stronger in the next—and the final—chapter of this book,

with skills for you to pick up in creating binary applications under Unix. Our primary

vehicle of delivery will be the C programming language.

If you have never programmed with C before, the final chapter will possibly read

like the riot act—not particularly user-friendly from the viewpoint of the newcomer. So

batten down the hatches before you tune in.

Chapter 10 Advanced Techniques in Shell Scripting

313
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7_11

CHAPTER 11

Unix Programming
with C and Vala
This chapter is for readers who intend to develop binary applications under Unix. As

you can imagine, this is a vast, almost limitless, area. Just the number of programming

languages today is in dozens: C, C++, Go, Haskell, Java, Lisp, Swift, Vala, and quite a few

more.

If you are new to programming, you want to whittle down the choice of languages

to work with. C is an excellent choice to develop skills in, almost a necessity when

programming with Unix. Unix kernels, device drivers, system libraries, and essential

executables are all written in C—apart from most of the object-oriented compilers (c++,

valac, and javac). That’s why it is deemed first-and-foremost a systems programming

language. That also means C is very well-documented: your installation will likely

already have man pages for C routines (at least if gcc, the GNU compiler collection, is

installed).

Because C is essentially a systems programming language, developing graphical

applications with C demands a lot of work from the programmer. While many

programmers do still use C for developing graphical applications, we will take up a new

C derivative, Vala, for that purpose. Vala, while resembling C in its syntax, is geared to

take care of all the tedious X-related work in the language itself, leaving the programmer

significantly less to worry about.

This book is not intended to be a reference book for C or for Vala. The objectives of

this chapter can be broken up as follows:

•	 The C section caters to two types of readers: Those new to C under

Unix (some prior exposure to C is desirable), as well as those who

think they might benefit by revisiting the language fundamentals.

314

•	 The Vala section is a quick-and-dirty intro for kicking off

development of graphical applications under Unix. Reading this

section will become significantly easier once you understand C

basics.

Although in general, I do not encourage use of C++, the truth is C++ as a language

brings in some much-needed improvements to C:

•	 A built-in bool type (which C does not have per se)

•	 Operators new/delete (which are easier and less error-prone to work

with compared to the traditional C counterparts, malloc()/free())

•	 A native string type std::string, which makes on-the-fly string

manipulations possible

•	 Single-line comments (which the original C did not have, but most

newer C compilers as well as the new C standard support)

•	 The keyword struct can optionally be omitted when declaring an

instance

What I propose is a new version of C called C+, which is C with just the five

improvements mentioned here, plus a couple of cutbacks in the C language itself:

•	 No multiple declarations are permitted within a single statement.

•	 A control statement (if/else/while/for) must be followed by a pair

of braces, no matter whether the braces enclose zero, one, or one

million statements.

The other way to look at C+ as a language is a watered-down version of C++, with

almost all object-oriented features disabled. Just as C++, C+ freely uses both C-style

strings (which are very important to understand) as well as C++-style strings (which

are not as important to understand but easier to work with, although object-oriented—

which essentially means: their internal working is not transparent). There are two

reasons C-style strings are crucial to understand: C-style strings are more efficient; and,

low-level API functions use C-style strings exclusively.

From hereon, I will use C to mostly mean the middle-ground language C+ (which

utilizes the C++ compiler: c++ or g++).

Chapter 11 Unix Programming with C and Vala

315

11.1  �Systems Programming with C
The primary characteristic of the C programming language that makes it ideal for

systems programming is a supremely barebones core that can be used to deliver

incredibly complex, power-packed binaries ranging from the simple ls command to

entire web browsers (as well as compilers written in C).

One aspect of C that is an advantage to experienced users and a disadvantage to

greenhorns is that C is entirely a conceptual language—possibly the most conceptual

language ever developed. Everything has to be understood—there is nothing to commit

to memory raw (without comprehension).

The C section presented in this chapter is therefore mostly a compendium of the

bedrock concepts that have to be understood. Given that I have just one chapter to

explain C, OOP, and rudimentary Vala, quite a lot of the material presented here might

be reader-unfriendly: you are told a concept, and it is assumed that you understand.

Although the chapter has a generous number of examples and code snippets, you are

encouraged to write code snippets of your own to test the validity of each concept as it

emerges. If you find the material overly unfriendly, you perhaps need to look at an entire

book on C.

Although you do not need to have an understanding of CPU architectures to

program with C, there is one term you must know about: a register. A register is a fixed-

width piece of memory inside the CPU itself. The CPU never processes what is inside

system memory (RAM). When it needs to process a portion of system memory, it pulls

that portion “onboard” into the CPU itself inside its registers, where the processing (and

subsequent “offboarding”) then takes place.

A register can hold one of two types of contents: data or instruction that acts on data.

Each register’s width is fixed and depends on the CPU architecture: 32 bits under i386

and 64 bits under AMD64. (There was a time half a century back when there just 8-bit

registers.) The width of a CPU register is known as a word—a term that connotes the

natural computation size for the system’s architecture.

There is a ten-point charter you will have to understand and then commit to

memory:

•	 A byte in the x86 world is equivalent to 8 bits. Note that a CPU register

always holds 32 bits (i386) or 64 bits (AMD64) even when what

is being processed is just an octet (8 bits), with the rest of the bits

ignored.

Chapter 11 Unix Programming with C and Vala

316

•	 In C, before you start using a variable, you have to explicitly tell the

compiler its type. Telling the compiler a variable’s type ahead of time

is called declaration, which can be clubbed with first-time usage:

int i; i = 99;

-OR-

int i = 99;

•	 As you might deduce from these statements, every statement in

C sources must be terminated with a semicolon. Further, the C

compiler does not care about your whitespace usage. If you prefer it

this way, you could write this snippet as:

int i;i=99;

•	 If a line of code begins with //, the compiler treats the line as a

comment. If the // occurs anywhere in the middle of a line, the only

portion considered code is what lies before the first occurrence of

//. The compiler considers the rest of the line a comment. Original

C just had a block-oriented commenting construct: /* .. */,

where .. represents the block (which can span multiple lines) to be

commented. But we will stick with C++-style single-line comments.

•	 C considers the number 0 as equivalent to false; any non-zero

number evaluates as true. Because C does not have a native bool

type, true and false are keywords borrowed from C++.

•	 C uses the = operator for assignments only. To check for equality, use

the == operator. The pseudo-test if (i = 1) will succeed even if i

was originally 0.

•	 In C, strings are always double-quoted. Single quotes are reserved

for enclosing exactly one character. So "A" and ’A’ are very different

things. The first one is a string of length one, while the second is just a

regular uppercase character (with a numeric equivalent).

•	 There are multiple ways in C to print a string, let’s say "Hello", on

standard output. The simplest is puts("Hello"), which automatically

appends a newline.

Chapter 11 Unix Programming with C and Vala

317

•	 To use input-output functions—of which puts() is one, you need

to have this line at (or near) the very top in your source code file:

#include <stdio.h>.

•	 Header files are needed because the C compilation process needs

information about any external functions and macros.

•	 After your #include statements, your file must have a main()

function (if the source code file is intended to generate an executable

upon compilation). For simplicity during the introductory phase, you

can put everything else other than the #include statements inside

main().

	 Here is a small "Hello" sample created as first.c:

#include <stdio.h>

int main()

{

 puts("Hello");

 return 0; // In C, returning 0 usually indicates No Error

}

•	 When your source code is ready, you need to compile it into a binary.

For the sample file first.c, you can use the following command:

c++ -g -o first first.c

// The -g switch (optional) pulls debug symbols into the

executable

11.1.1  �The C Compilation Process
Three different agencies are involved in the C compilation process.

•	 Preprocessor (cpp): Determines what finally gets compiled.

•	 Compiler (cc): Creates object code (machine code with unresolved

placeholders for external variables/functions) for each unit

compiled.

Chapter 11 Unix Programming with C and Vala

318

•	 Linker (ld): Resolves all the placeholder addresses to create a fully

independent binary (executable or library) in pure machine code.

The following pipeline is a handy way to envisage the compilation process:

An equivalent flowchart for the source code file xyz.c would be:

The default name a.out of the binary executable generated is a historical artifact.

Modern binaries under Unix use the Executable and Linkable Format (ELF).

Although the classic C compiler under GNU is cc, we’ll be using c++ since sources in

this chapter use C++ features (those imbibed as C+). That does not affect the compilation

process, from the user’s viewpoint.

11.1.2  �Data Types in C
It wouldn’t be wrong to say that C has just one data type of its own: numbers. Depending

on a couple of characteristics, the numbers assume different names and elicit different

attitudes from the compiler.

One such characteristic is the size. The following sizes apply to 64-bit Unix.

Bool : 1 byte → max value: 1

Char : 1 byte → max value: (2ˆ08) – 1
Short : 2 bytes → max value: (2ˆ16) – 1
wchar_t : 4 bytes → max value: (2ˆ32) – 1
int : 4 bytes → max value: (2ˆ32) – 1
long : 8 bytes → max value: (2ˆ64) – 1

With a 32-bit gcc, long would drop from 8 bytes to 4 bytes. If you want to use a

64-bit integer under 32-bit gcc, you can use the type long long. If you want to force a

particular size (in bits), you can use __int<N>_t: __int8_t forces a char equivalent.

A couple of noteworthy variants are the size and offset types—size_t and off_t—

which must be positive integers (or else 0). Both are remembered most easily as

equivalent to unsigned long.

Chapter 11 Unix Programming with C and Vala

319

I have left out the floating point types (float and double) because those are not

often needed. All the numeric types except bool are available as signed (which is the

default) as well as unsigned (0 or positive only).

The second distinguishing characteristic asks, is the number an ordinary integer, or

is it an address of something stored in memory? If it is an address, it is called a pointer,

which is a special subtype that corresponds most closely to the unsigned long type.

We’ll look at pointers in a dedicated subsection.

11.1.3  �int
While a C int is a simple integer, the simplicity has its limits. First of all, 8 billion—

roughly the current global human population—qualifies as an integer, but does not suit

an int in the x86 (i.e., i386 or AMD64) world. If you assign 8 billion to an int and print

it, you should not expect to see 8 billion in the output because x86 compilers use 4 bytes

for an int, placing a limit of ((232) − 1 =) 4294967295 on an unsigned int. For a signed

int—which is the default if you do not specify a signed-ness, the left-most bit serves as a

metabit to interpret the other 31 bits—0 for positive int and 1 for negative int. Therefore

the largest positive signed int is ((231) − 1 =)2147483647. On the negative side, the limit

is -2147483648.

It is unwise to compare a signed int to an unsigned int:

unsigned int ui = 1;

int si = -1;

if (si < ui)

{

 puts("less");

}

You might expect to see less in the output but you won’t: the compiler will treat si

as an unsigned quantity for the comparison, making its effective value wrap around to

the upper limit of an unsigned int, which would be a few billions.

When you have to print integers like si from your code, you need to use printf()

with the %d modifier (and then read man 3 printf for a discussion of all modifiers):

printf("%d\n", si);

Chapter 11 Unix Programming with C and Vala

320

To read an integer from standard input, use the scanf() routine:

scanf("%d", &si);

Other input-output functions are discussed in Section 11.1.18.

This is also a good stage to get familiar with operator sizeof, which you can use to

determine how many bytes a variable or type occupies inside physical memory.

Either of the following prints 4:

printf("%d\n", sizeof(si));

printf("%d\n", sizeof(int));

11.1.4  �char
The most commonly confused type among the numeric types is char, the smallest unit

of memory allocation equivalent to at least a byte. Both C and C++ permit char to use

more than the minimum 8 bits, but Unix C/C++ compilers stick with the minimum. This

means that a char is only big enough to hold a maximum value of 127 (signed) or 255

(unsigned). It also means that under Unix, the terms byte, char, and octet are used

pretty much interchangeably to signify the same idea. A set of eight contiguous bits that

form the smallest possible piece of memory the operating system can allocate. You can

never say “I want half a byte”, nor “Give me four bits from here and four from there”.

It is a common misconception that the char data type corresponds to characters

from the English alphabet or those found on the keyboard. To stem the confusion, this

book consciously uses the term “symbol” where other books use “character”.

In electronic memory, a bit is a pair of points across which a voltage may have been

applied (representing a value of 1) or not applied (representing a value of 0). Every

bit in a byte has as increasing level of effect on the aggregated value, starting from the

rightmost bit (level 0) to leftmost (level 7). The levels have a direct translation into

mathematics as "2 raised to the power of". So the number 38 (i.e., 25 + 22 + 21) in physical

memory would correspond to the following byte layout:

0 0 1 0 0 1 1 0

If you think about it, there is no other byte layout that could represent the number 38.

If any of the bits were to change its value, such as from 0 to 1 or vice versa, the number

itself would change. One point from basic mathematics is worth a recall: for any integer

n, (n0) is 1 if n is non-zero, while (0n) is 0 as long as n is positive.

Chapter 11 Unix Programming with C and Vala

321

It’s worthwhile to note the influence of hexadecimal notation in programming.

Even though you cannot split a byte into two halves when allocating memory, the

hexadecimal system in computer programming is built around that very idea when

denoting values. If you look again at the byte layout, you will find that it can be denoted

as 0x26, with 0x standing for hexadecimal notation, 2 standing for the decimal value of

the left-side four bits, and 6 standing for the decimal value of the right-side four bits.

An often misunderstood notion is what to make of a char with all bits set to 0:

char c = 0;

Some programmers complain that this statement won’t even compile and that a

char can only be assigned exactly one symbol (alphanumeric or punctuation, sometimes

with a preceding backslash) in single quotes.

This cannot possibly be any further removed from reality: remember that a char is a

small integer. There can’t be any integer smaller than 0 (ignoring negative integers). So

this statement will compile and will work correctly, as long as you know what “correctly”

means in this context, a topic which we will discuss a few paragraphs down.

When the C language was developed, its creator Dennis Ritchie realized that the

highly limited range of a char (just 256 integers) made it unusable for storing numbers

for general computation. So he put the char data type (more precisely, the 0-to-127

range common to both char and unsigned char) to a special use: denoting numeric

codes for letters in the English alphabet and numeric equivalents for any other symbol

you could type from the standard US keyboard.

This statement is an important one. It should immediately strike a couple of chords

in you:

•	 The computer only understands numbers: It cannot by itself make

any sense out of a or $. All such, symbols have to be translated to

numbers for the computer’s benefit.

•	 When you press the key for the number 0 on a US-style keyboard,

you are not typing in the number 0. Instead you are transmitting the

symbol 0.

The scheme for translating a US keyboard’s symbols into numbers is standard ASCII,

which you are surely aware of. There is no ASCII code for the number 0 because it is

already a number, but there is an ASCII code for the symbol 0—which is the number 48.

If you want to look up ASCII codes, you can do so with man 7 ascii. FreeBSD also has a

handy X package xascii that serves this purpose nicely.

Chapter 11 Unix Programming with C and Vala

322

A variant of the char type is wchar_t (wide character), which typically occupies four

bytes. This is useful for localization of strings, with Unicode being the standard scheme.

Luckily (or should I say, by ingenious design), the first 128 codes map to the same

symbols in ASCII and Unicode.

A char that stores the number 0 (i.e., all 8 bits off) is termed as a null byte (in C,

“null” is nothing but another fancy word for zero) and is taken as end-of-string marker

for C-style strings, which we will discuss in a short while.

Let’s go through a small piece of code:

#include <stdio.h>

int main()

{

 char c1 = '0';

 char c2 = 0;

 int i = '0';

 printf("%c:%c:%d\n", c1, c2, i);

 return 0;

}

If you run this code, you’ll find the output:

0::48

By the rules of C, a null byte is considered non-printable. That explains why nothing

appears in place of c2.

Both c1 and i store 48, the ASCII equivalent of 0. c1 is output as 0 (without the

quotation marks) because the compiler has to check the data type of c1 before output.

Since its type is char, the compiler outputs the symbol 0, which is equivalent to the

ASCII code 48. Finally, the 0 of i is output as 48 because it has been declared as an int

and therefore the compiler does not want to output a symbol but a number—in other

words, the ASCII code itself.

Reading a char from standard input is easily done with getchar():

int ch = getchar();

printf("ascii code = %d; symbol = %c\n", ch, ch);

Chapter 11 Unix Programming with C and Vala

323

11.1.5  �bool
The simplest data type among all is bool, not present in C per se but available if you

#include <stdbool.h>, and always readily available in our C+ standard of C, which uses

c++ as the compiler.

A bool is like a bit in that it can store only 0 (= false) or 1 (= true). It is unlike a bit

in that it occupies a whole byte. Any value other than 0 is treated as 1. If you assign 29 or

-29 to a bool variable and print it, you will see 1 in the output.

Since booleans are very simple, they can serve as a good launching pad to start

writing optimized code.

if (some_bool == false)

{

 // code

}

Unless the compiler’s optimizer kicks in, the condition’s expression will trigger three

operations:

•	 some_bool is loaded into a CPU register

•	 0 (i.e., false) is loaded into another CPU register

•	 The CPU compares the values in the two registers

In professional code, expect the condition to be stated as:

if (! some_bool) // needs one register and one op less

11.1.6  �Pointers
The next data type to discuss in this section is pointers. Some people wonder why other

people have so much trouble understanding and using pointers. Other people wonder

why some people do not have so much trouble understanding and using pointers.

Pointers are fundamental to C and data structures. So we look at a simple way of

understanding them in x86.

int i = 24;

Chapter 11 Unix Programming with C and Vala

324

Let’s presume that at runtime, i gets stored in four bytes starting at memory address

5000, which means that bytes 5000-to-5003 hold the bit-pattern for the number 24

(which is 27 zeroes followed by 11000). Now let’s say in our code we have another int

variable:

int j = 5000;

Just like four bytes were allocated for i, another four bytes get allocated for j. Those

four bytes hold the bit-pattern for the number 5000. We can now say that the numeric

value of j is equal to the numeric value of the address at which i is stored. In effect, j is

something like a pointer. It has a value equal to the numeric address of another variable.

We cannot call j a full-fledged pointer yet because of two reasons: declaration mismatch

and lack of ability of being programmatically dereferenced. Further, it is only a matter of

chance that j has been assigned the same value that is the numeric address of i.

What if we always want to be sure that j has the same value as the numeric address

of i? We can do this:

int j = (int) &i;

// fetch the starting address of i, and treat it as an int

Closer, but not there yet. We have to specifically tell the compiler that i can be

accessed indirectly via j, which is what dereferencing means.

To tell the compiler that j is intended to be a pointer holding the address of i

(a variable of type int), we have to tell the compiler this:

int * j = &i;

j is now a pointer, a real pointer. To change the value of i with the help of j, we can

write the following code:

(*j)++;

This has just the same effect as i++.

(*j)++ is also, quite notably, entirely different from j++. j++ changes the address

held in j from 5000 (our example’s address) to (5000 + sizeof(int) =) 5004.

Figure 11-1 depicts the memory layout with i (value 24) residing at memory address

5000 and j holding the address of i (and no increments carried out).

Chapter 11 Unix Programming with C and Vala

325

Be sure you understand—and agree with—Figure 11-1. If not, things will get difficult.

In C, one must always be willing to visualize memory layout.

There are a couple of points to deliberate on for the declaration: int * j = &i;

•	 Most problems with understanding basic usage of pointers are a

direct result of falling into the trap of forgetting that this declaration

revolves around two numbers, not just the one number i (which

occupies four bytes in memory). The address at which i is stored

is saved as the second number j (which occupies eight bytes in

memory under the AMD64 architecture).

The declaration int * k = 0; gets just one number k spanning

eight bytes.

•	 As far as the compiler is concerned, spaces on either side of the

asterisk in a pointer declaration are optional. But code is eminently

more readable and comprehensible (particularly for someone getting

acquainted with pointer usage) with the space before the asterisk

discarded and the one after retained—although this runs contrary to

standard, recommended coding guidelines for C, which, quite often

as well as quite incorrectly, suggest the opposite.

The preceding declarations thus become:

int* j = &i;

// (The style above stresses j as a separate number)

// The ’standard’ style: int *j = &i;

Figure 11-1.  An int pointer (embodied by the bold black arrow)

Chapter 11 Unix Programming with C and Vala

326

// (This form suggests &i is being assigned to *j: Not true)

int* k = 0;

// (k is what is called a null pointer: all 64 bits off)

The standard pointer declaration style becomes even more misleading when we

bring in strings and functions. So, we’ll just stick with removal of the space before

the asterisk and retention of the one after. The one thing you must not do with this

pointer declaration style is declare a pointer among a bunch of declarations in a single

statement. This is the reason C+ forbids multiple declarations in one statement.

Pointers can, when needed, be subclassed. At times, you will need to be sure that

the pointer cannot alter the variable it holds the address of (pointer-to-const) or that the

address a pointer holds does not change (const pointer):

const int* j = &i; // makes (*j)++ impossible

int* const j = &i; // makes j++ impossible

The const modifier can be used to declare normal variables too, not just pointers:

const int n = 1024; // n can never change

Another special type of pointer is one that points to an unspecified type:

int n = 99;

void* pn = &n;

printf("%p\n", pn); // prints the address of n

void* pointers are used heavily in programming interfaces as they accommodate all

pointer types. Runtime casting determines the further behavior of a void* pointer.

Another pointer type is the null pointer, which holds the hypothetical address 0. If

a pointer has been assigned 0, the program promises not to use the pointer any further

before assigning a valid memory address to it—otherwise, the program will crash.

A good safeguard against null pointers is the rudimentary if:

if (ptr)

{

 // do something with ptr

}

else

Chapter 11 Unix Programming with C and Vala

327

{

 // first make ptr point to a valid memory address

 // now do something with ptr

}

It is a good, sound practice to initialize a pointer with the value 0 until you get some

valid memory address to assign to it.

11.1.7  �Arrays
The original C term for array is “vector,” but we will use the term array because the term

vector could cause confusion with the C++ type std::vector.

When declaring an array in C, you can specify the array length yourself or let the

compiler compute it (at compile-time). Since the array size (and therefore the array

length) must be known at compile-time, you must use a numeric literal for the length or

leave out the length input for the compiler to determine on its own.

Here is an array of three integers:

int iarray[] = { 2, 5, 9 };

–or–

int iarray[3] = { 2, 5, 9 };

The elements of the array can be denoted with iarray[0], iarray[1], and

iarray[2].

Arrays in C are closely tied to pointers. So next we need to tackle the relationship

between pointers and arrays.

When you declare an array, C automatically generates a pointer to the first element

in the array. The name of the pointer is the same as the name of the array.

int iarray[] = { 2, 5, 9 };

You declared an array. Backstage, the compiler also generated an implicit pointer:

int* iarray = <address where the first integer (2) got stored>;

Chapter 11 Unix Programming with C and Vala

328

If you print out *iarray (in effect dereferencing iarray as a pointer), you will see 2

in the output. The iarray pointer generated by the compiler is a const pointer: it will

always point to the first element in the array. It is also an implicit pointer because no

separate memory is allocated for the pointer.

Elements in an array occupy contiguous (i.e., no-gap-between) memory. Printing

*(iarray + 1) is therefore guaranteed to output the array’s second element. The second

element of iarray can thus be accessed with either of two equivalent ways:

iarray[1]

-OR-

*(iarray + 1)

Let’s put some illustrative code around the iarray[] array:

#include <stdio.h>

int main()

{

 int iarray[] = { 2, 5, 9 };

 // The following operation is known as casting, i.e. type-change

 // We are changing (int* const) to (int*)

 int* ptr = (int*) iarray; // iarray is const; ptr is non-const

 ptr++; // step INC

 // The standard way to find the gap (in bytes) between pointers:

 printf("A: %ld\n", (char*) ptr - (char*) iarray);

 printf("B: sizeof(ptr) = %d\n", sizeof(ptr));

 printf("C: sizeof(iarray) = %d\n", sizeof(iarray));

 return 0;

}

The preceding code prints the following:

A: 4

B: sizeof(ptr) = 8

C: sizeof(iarray) = 12

Chapter 11 Unix Programming with C and Vala

329

Here are notes for the output:

•	 A: We added 1 to the pointer ptr at step INC (pointer increment). But

inside memory, ptr is pushed (1 * sizeof(int) =) 4 bytes ahead of

iarray.

•	 B: You cannot compute the array length or size via the explicit pointer

ptr because sizeof(ptr) just returns the size of a pointer (8 bytes).

You can, though, compute the array size with the implicit pointer

iarray. If you need the array length instead, use sizeof(iarray)/si

zeof(iarray[0]).

Note I ncrementing a pointer by 1 increments the address it holds by the number
of bytes corresponding to (the size of the data type pointed to).

An explicit pointer can never be used to compute an array’s length or size.

11.1.8  �Differentiating Between Stack and Heap
The preceding section opens a gateway to one fundamental concept in C: the difference

between stack memory and heap memory.

It also opens a gully to squeeze in operator new—which actually is a C++ facility, but

can be used in C when using c++ as the compiler. (C itself uses malloc(), declared in the

header file stdlib.h.)

Whenever the C compiler steps into a function (including main()), it initializes a

special memory management pointer informally known as top-of-stack (TOS), which for

simplicity we can assume to start at the value 0 at the beginning of a function.

If the function declares a variable, such as int d1 = 1;, the compiler allocates four

bytes for d1 and pushes TOS up by four.

Let’s say your code then has:

if (d1)

{

 int d2 = 2;

 int d3 = 3;

}

Chapter 11 Unix Programming with C and Vala

330

Stepping into the if, the compiler will save the original TOS pointer (which is 4). Then

d2 and d3 get pushed onto the stack, and TOS gets pushed up another (4 * 2 =) eight bytes.

The if block then ends and the compiler rewinds the stack. This means TOS is

restored to the original value, 4. Similarly, when the function itself comes to an end, TOS

falls all the way back to 0.

Since stack memory is precious (typically just a few MB), you should attempt to

keep big variables (like an array of length 10000) out of the stack. Instead, such variables

should go into the heap, which you can think of as a vast ocean of memory available at

runtime, and not at compile-time. Heap is a more efficient representation of memory,

allowing faster traversals and a wider range of operations (not just push and pop, the

only operations available in the stack).

We can now return to the example of the previous subsection:

int iarray[] = { 2, 5, 9 };

The preceding declaration creates a stacked array, the size of which as reported by

operator sizeof is 12.

The heap option is known as dynamic allocation (vis-a-vis stack allocation we used

previously). Heap (or dynamic) allocation is done with operator new:

int* parray = new int[3]; // parray itself resides in the stack

You can then fill up the elements, which lie in the heap:

parray[0] = 2;

parray[1] = 5;

parray[2] = 9;

The total memory consumption of the array is 8 bytes (stack) plus 12 bytes (heap).

With heap allocation, all that the compiler knows upfront about memory is that a pointer

needs to be allocated (on the stack). The rest of the memory is obtained at runtime as per

the programmer’s needs (on the heap). It is worth stressing that compile-time memory

allocation occurs entirely on the stack.

Note  You cannot obtain the number of elements in the heaped array via its
pointer: sizeof will simply report the size of the pointer, which is always 8 in the
AMD64 architecture.

Chapter 11 Unix Programming with C and Vala

331

While stack memory is entirely managed by the compiler, memory obtained on the

heap has to be released manually. Or else you would create a memory leak.

Heap memory release is done with operator delete:

delete[] parray;

parray = 0;

If the pointer points not to an array but to a variable, the square brackets should be

omitted:

delete pvariable;

pvariable = 0;

When you call operator delete on a pointer, you must assign 0 to it. If you don’t

zero out the pointer, you create a dangerous kind of pointer known as wild pointer—a

pointer that’s neither null nor points to a valid memory location. It will remain wild until

you assign a fresh, valid memory address to it with the new operator. If you try to use the

pointer while it is wild for normal operation, your application will crash. While source

code can guard itself against null pointers with an elementary if check, there is no

safeguard against a wild pointer.

One final point that fits in this section is that C compilers never check for array

boundaries. If you create an array of size 3, and then write to element[3] (which actually

means element number 4 because array indexing starts at 0), you will be writing to

overflowed memory—with the unhappy, possible fallout of crashing the application.

11.1.9  �Strings in C
Having got the hang of pointers, it is time to look at a widely used application of pointers:

C-style strings.

C-style strings are pointer paradigms with a twist. Here is an introduction:

char* ptr = "Hello"; // statement A

It seems an impossible statement. At RHS, you have a string literal (bunch of ASCII

symbols in double quotes) to be assigned to LHS, which is a numeric entity (pointer).

When developing the C language, Dennis Ritchie decided that a string literal would

be placed in memory and the address of the first symbol in the string literal would be

returned to serve as a placeholder for the string literal in the remaining expression.

Chapter 11 Unix Programming with C and Vala

332

So what happens with the previous statement is that "Hello" is stored in memory and

the address of H gets assigned to ptr. An elegant facility that makes up for C’s lack of a

separate string type and permits highly efficient string operations.

Beware of the difference between ptr and *ptr. ptr is a pointer to the start to the

string literal "Hello", while *ptr is the starting char itself. In other words, H. Just as

dereferencing an int pointer dereferences four bytes, dereferencing a char pointer

dereferences just one byte.

There’s one point to note about string literals. Before the compiler stores them in

memory, it automatically appends a null byte.

Note A null byte is 0 assigned to each of eight contiguous bits; the set of which
can also be denoted as \0. A “null byte” is also called a “null char”.

\0 can be also assigned to a long (64 bits). Remember, 0 is
the same as \0.

A null byte serves as end-of-string marker. Any C library function that deals with a

string processes the string only up to the position of the first byte that has a value of 0. If

the string has no null byte, the function will overshoot the string’s boundary and quite

likely crash the application.

Statement A is thus perfectly equivalent to: char* ptr = "Hello\0";

Figure 11-2 depicts the memory layout with the string "Hello" residing at memory

address 5000, and the pointer ptr pointing to the string.

Figure 11-2.  A char pointer (embodied by the bold black arrow)

Chapter 11 Unix Programming with C and Vala

333

Neither ptr nor *ptr is equal to "Hello": ptr evaluates as 5000, and *ptr evaluates

as 72, the ASCII code for H. When referenced by code at runtime though, ptr gets

replaced by the string residing at 5000, the address it evaluates as.

There are a few useful string-manipulation functions you need to know.

•	 strlen(p) determines the length of the string (pointed to by) p.

•	 strcpy(p1, p2) copies the data of p2 into the buffer for p1.

•	 strcat(p1, p2) appends the data of p2 to the buffer pointed to by p1.

•	 strcmp(p1, p2) compares the buffers of p1 and p2, returning 0 if they

are same.

C string functions are declared in <string.h>, which you can #include as usual.

strcpy()/strcat()/strcmp() have size-wise counterparts that mandate the

maximum buffer offset to be operated on: strlcpy()/strlcat()/strncmp()

It is not the best idea to use strlen() to find out whether or not a string is empty.

if (strlen(p) > 0)

{

 // do something with pointer p

}

is better written as:

if (*p)

{

 // do something with pointer p

}

Similarly, copying an empty string into a buffer with strcpy() is better done with:

*p = 0;

Of course, you have to ensure that p already points to a valid memory location before

you can start reading from or writing to *p.

Statement A is also roughly—albeit not exactly—equivalent to:

char ptr2[] = { 'H', 'e', 'l', 'l', 'o', 0 };

Chapter 11 Unix Programming with C and Vala

334

which is nothing but a long-hand way of writing:

char ptr2[] = "Hello"; // statement B

So what is the difference between statement A and statement B?

They seem so similar that, between them, there seems to be a redundancy.

Here they are again, juxtaposed for clear comparison:

char* ptr = "Hello"; // statement A

char ptr2[] = "Hello"; // statement B

ptr2, an implicit pointer auto-generated by the compiler, is a const pointer. But what

is pointed to by ptr2 is variable. So you cannot alter the address ptr2 holds, but you can

alter its buffer:

ptr2[0] = 'C'; // Hello becomes Cello

Essentially this means that you cannot do ptr2 = <>;, but you can always do

*ptr2 = <>;.

Now let’s return to statement A. With ptr, the reverse becomes true: ptr is a non-

const pointer. So these are permissible:

ptr++; // ptr now points to 'e'

ptr = "Something else"; // ptr now points to 'S'

But what ptr points to is const—even though this has not been declared. Strings

declared via the explicit pointer arrangement and initialized with a string literal have

their contents stored in memory as read-only. So while you can do ptr = <>;, you can

never do *ptr = <>;.

The funny thing is, because of the way ptr has been declared, the compiler will allow

you to write *ptr = <something>; in your code. It will compile successfully and then—

at runtime—it will crash your application.

Therefore, for safety, always prefix const when declaring a string pointer initialized

with a literal:

const char* ptr = "Hello"; // statement A modified for good

The string pointed to by ptr is deemed an immutable string: it can never change.

The array pointed to by ptr2 is mutable at runtime.

Chapter 11 Unix Programming with C and Vala

335

11.1.10  �Signature of main()
C permits you to prototype main() in three different ways, each of which can return void,

but should preferably always return an int:

•	 int main(void): This form disables any startup parameters.

•	 int main():This declares main() with an empty argument list, but

main() will accept any number of parameters, including zero.

•	 int main(int argc, char* argv[]):If you need to process

startup arguments, you can use the main() declaration, which

utilizes a pointer to an array of strings. argc is the number of startup

arguments (minimum 1), while the argv array holds each of the

command-line arguments to the application (the first being the name

of the executable itself). The v at the end of argv stands for vector, the

original C term for array. The argument names argc and argv are not

standard and can be anything of the user’s choice.

Since argv is both an array and a pointer, the declaration can also be stated as:

int main(int argc, char** argv)

C under Unix permits yet another signature, which is prohibited by POSIX:

int main(int argc, char* argv[], char* envp[])

The envp array holds the program’s environment.

POSIX mandates instead that you use one of the three standard signatures, and when

you need to explore the environment, use the global variable environ:

extern char** environ;

// The location of environ's definition is implementation-specific

int e = 0;

while (environ[e])

{

 puts(environ[e++]);

}

Chapter 11 Unix Programming with C and Vala

336

11.1.11  �Branching and Looping
if-else and switch-case statements are largely self-illustrative. So I will leave them to

self-enlightenment.

A special—and very useful—form of if-else is the ternary operator ? (which can be

used for assignment as well as execution control):

int i = 101;

int i2 = (i > 100) ? i : 100;

(i2 > 200) ? puts("Big") : puts("Not so big");

Looping is done with for and while, just as in shell scripting.

A for loop in C resembles:

for (int n = 0; n < 100; n++)

{

 printf("n = %d\n", n);

}

The for condition is actually a composite of three parts (all optional).

•	 int n = 0;  : Executed once when the loop begins

•	 n < 100;   : Evaluated at the start of each iteration

•	 n++     : Performed at the end of each iteration

Since all three components are optional, an infinitely-looping for is for(;;){}.

A while loop resembles:

int n = 128;

while (n > 100)

{

 printf("n = %d\n", n);

 n--;

}

Chapter 11 Unix Programming with C and Vala

337

11.1.12  �Arithmetic and Logical Operations
Mathematical operations are carried out with the well-known operators, like +, ++, *, and /.

You can readily use them as you are wont to. One operator that bears a mention is %, the

modulus operator. It returns the remainder of a division. For example, 7%3 returns 1.

Bit-wise operations need to be understood well—C code tends to use those quite

heavily. We’ll focus on five bit-wise operators: LSHIFT, RSHIFT, AND, OR, and XOR.

For our illustration, we’ll take two decimal numbers (one-byte-wide each,

corresponding to the data type char):

•	 3, which corresponds to binary (0 0 0 0 0 0 1 1)

•	 6, which corresponds to binary (0 0 0 0 0 1 1 0)

Bit shifting is done with << (left shift) and >> (right shift), both of which take a

numeric operand (which we will call n).

Left-shifting moves all the bits in a number n spots to the left, with the vacancies on

the right getting filled with 0:

char j = 6 << 4; // yields binary 0 1 1 0 0 0 0 0 = 96

Right-shifting moves all the bits in a number n spots to the right, with the vacancies

on the left getting filled with 0:

char k = 3 >> 1; // yields binary 0 0 0 0 0 0 0 1 = 1

The other three bit-wise operators compare bits at the same locations in two

numbers. For each pair of bits compared:

•	 AND (&) returns 1 if both bits are 1, otherwise it returns 0.

•	 OR (|) returns 0 if both bits are 0, otherwise it returns 1.

•	 XOR (ˆ) returns 0 if both bits are 0 or both bits are 1. Otherwise it

returns 1.

The following computation table should now be readily comprehensible:

Chapter 11 Unix Programming with C and Vala

338

XOR, short for Exclusive OR and pronounced “zor,” is a pretty interesting operator.

Note that, as computed, (3 ˆ 6) returns 5. Further, (5 ˆ 3) returns 6, and (5 ˆ 6) returns 3.

In other words, the three numbers 3, 5, and 6 form a XOR ring in which the third number

can always be “guessed” by XOR’ing the other two numbers.

In general, the following assertion will succeed for any two integers n and m:

assert(n == ((n ^ m) ^ m));

(To use assertions in your code, you need to #include <assert.h>.)

This characteristic is utilized in many encryption algorithms. You can yourself

encrypt the contents of a file by XOR’ing each of its bytes with a magic number (denoted

by m in the previous assertion). The encrypted file can only be decrypted by someone

who knows that magic number: XOR’ing each byte in the encrypted file with that magic

number will yield the original unencrypted file.

Bit-wise AND and OR have logical counterparts: && (which I will cheekily call LAND)

and || (which I’ll call LOR).

Both logical operators treat numbers as booleans: non-zero numbers evaluate as

true, while 0 evaluates as false.

LAND returns true if both booleans are true. Else it returns false.

(1 && 2) thus returns true. Quite noticeably, (1 & 2) returns 0 (equivalent to

false) because 1 is binary 01, and 2 is binary 10. (01 AND 10) finds no bit that is on in

both representations, yielding 0 as the return value.

LOR returns false if both booleans are false. Else it returns true.

It helps to know that LAND and LOR will evaluate the second entity only if needed:

(0 && <expression2>) will return false, and (1 || <expression2>) will return true,

without <expression2> being evaluated at all at runtime.

11.1.13  �Functions
Every C function must return something. If a function has nothing suitable to return,

its declaration should use the return type void. In this context, void means “nothing,”

which is different from null (zero). This is also different from what void means in the

declaration void* p;: the declared void type means “anything”.

Functions in C need to be declared before first usage. If a function is implemented

before first usage, no separate declaration is necessary, but is usually advisable for ease

of reference. Function implementation is also known as function definition.

Chapter 11 Unix Programming with C and Vala

339

Both the following are technically acceptable:

Either way, the function fx() is said to have the prototype:

int fx(int);

As you can deduce, a function’s prototype is just the declaration without argument

variables’ names.

Just like variables, functions have addresses too. From a programmer’s perspective, a

function’s address is envisaged most easily as its opening brace.

A function’s prototype can therefore be used to generate a pointer to the function.

For our example function fx(), we can generate and use the pointer as follows:

int main()

{

 int (*pfx)(int) = &fx;

 (*pfx)(9);

 return 0;

}

This code prints 9 on standard output.

If a function’s declaration is in some other header file, you need to #include that

header (before first use). If the function’s implementation is in a library other than the

standard C library (libc), your sources must link to that library when you build your

sources’ binary—otherwise, the compiler will succeed and then the linker will gripe.

Chapter 11 Unix Programming with C and Vala

340

One final point in the context of functions is the static keyword. A variable declared

in a function as static will be initialized just once and will have its value preserved for

the next run:

int fs()

{

 static int s = 0; // initialization will occur only at first run

 s++;

 printf("%d\n", s);

 return s;

}

Each time fs() is invoked, it will print one more than during the previous run.

11.1.14  �Declarations and Definitions
In C, declaration is telling the compiler a variable’s type (or a function’s signature).

Definition means acquisition of memory—whether for a variable or for a function.

Once something has been defined, it has a valid address inside memory, and therefore

you can generate a pointer to it.

This statement is noteworthy:

int i;

Obviously, this qualifies as a declaration. But since nothing has been assigned to i,

the value of i is undefined and you will get garbage if you print i as such. But i itself is

defined: the compiler automatically acquires stack memory for variable declarations.

The foregoing declaration is thus both a declaration as well as a definition.

The situation gets trickier with a pointer that is intended to point into the heap:

char* p; // You intend to later do: p = new char[1000];

Is p defined? You can argue that the eight bytes p needs in the stack would be

secured, so it is defined. The counterpoint, of course, is that—until operator new is

invoked—p points to garbage and should therefore be considered undefined. The way I

see it, the body is defined; the spirit is not.

The following statement at the global level (i.e., outside any function) in file

source1.c is a pure declaration (i.e., no definition):

extern int x;

Chapter 11 Unix Programming with C and Vala

341

What this statement tells the compiler is: this source code file would like to use

a variable x, which is defined in some other source code file. The compiler will then

proceed to compile the source code file, generating its object code, which has a

placeholder for x. The linker must be able to fully resolve the placeholder.

Let’s say the other source code file is source2.c. That file must have a statement

such as:

int x = 0; // The definition of x

If the writer who wrote source2.c wants x to not be visible to any other source code

file (compilation unit), it can declare and define x as follows:

static int x = 0; // Invisible to all other compilation units

If source2.c declares x as static, linking will now fail owing to an unresolvable

placeholder in the object code for source1.c.

A variable declared as static thus means entirely different things depending on

whether the declaration is within a function (“preserve value across runs”) or outside of

any function (“hide from other compilation units”).

11.1.15  �Structs
The C programming language allows you to create data structures, each identified by the

keyword struct. A struct is a conglomerate type:

struct student

{

 char name[64];

 int roll_number;

 double gpa;

};

struct instances are almost never passed as such to functions. Instead, when passing

a struct instance to a function, you pass in a pointer: void fx(student* ptr);. If you

pass in the instance itself, the compiler will copy the whole instance into the function.

This is inefficient and prevents the function from acting on the original instance.

Chapter 11 Unix Programming with C and Vala

342

Note  C uses call-by-value only when passing arguments to functions. If you pass
in a struct instance, the instance gets copied. If you pass in a pointer, the pointer
gets copied. If you need to pass in the original pointer itself, you can’t—but you
can pass in a pointer to the pointer (and then dereference, or double-dereference,
inside the function).

If fx wants to process an array of student instances, it can accept two arguments.

The first argument is a pointer to the first element, and the second argument is for the

number of elements in the array:

void fx(student* ptr, int max);

A C struct is not permitted member functions, which is a key difference with object-

oriented programming. Note that since we are using c++ as the compiler, the compiler

will allow you to use member functions in a struct. But we will not utilize that facility

and stick to C semantics (until we hit the land of Vala).

Inside main(), you can create a student variable and use it as follows—quite notably,

with . or -> needed when accessing its members:

(sizeof(student)) should report:

sizeof(roll_number) + sizeof(name) + sizeof(gpa) = 4 + 64 + 8 = 76.

But it doesn’t—it reports 80. This is the number of bytes any student variable

occupies on the stack.

There’s nothing foul here. For reasons related to efficiency, C compilers inflate the

size of a struct so that its stack consumption falls along word boundaries. A word in

computation is the equivalent of the size of a pointer under the architecture concerned.

Since AMD64 uses 8 bytes for a pointer, struct sizes will always be multiples of 8

(unless you use special pre-processor directives that force the compiler to squeeze every

possible extra byte out of the struct).

Chapter 11 Unix Programming with C and Vala

343

If you want to reduce the size of a struct, reduce its stack consumption. student.

name occupies 64 bytes on the stack. You can cut it down to 8 by declaring name not as a

statically-allocated array but as a pointer:

struct student

{

 char* pname;

 int roll_number;

 double gpa;

};

Our struct’s size falls from 80 to 24, but now it needs you to initialize the pname

pointer with memory allocation:

If you declare the student variable via the pointer mechanism (pstud) as RHS in the

preceding code snippet, you create a memory leak by cleaning up with the very clean-

looking code:

delete pstud;

pstud = 0;

The reason the memory leak occurs is that pstud itself holds a handle to dynamically

allocated memory (courtesy pname).

When you are done with pstud, the right way to release all heap memory is:

delete[] pstud->pname;

pstud->pname = 0;

delete pstud;

pstud = 0;

The memory leak occurs with the statically-allocated stud object too if you let it get

popped off the stack without releasing memory first with: delete[] stud.pname;

As a side-note, it is perfectly safe to call operator delete on a null pointer, which is

another reason to zero out a pointer after releasing its memory.

Chapter 11 Unix Programming with C and Vala

344

There is another way to create student with a low stack size and with greater

flexibility. You can declare name as the C++ type std::string, which you can use if you

#include <string> (and then use c++, not cc as the compiler).

Here is the revised declaration for the struct:

#include <string>

struct student

{

 std::string name;

 int roll_number;

 double gpa;

};

The following client code in main() shows sample usage:

student* pstud = new student;

pstud->name = "";

pstud->name += "Chuck";

printf("%d\n", sizeof(*pstud)); // Size is 24 this time around too

puts(pstud->name.c_str()); // c_str() yields a read-only C-string

delete pstud;

pstud = 0;

return 0;

std::string has a member function c_str(), which creates a copy of the C++ string

variable as a read-only, traditional C-style string.

The reverse—conversion of a C-style string to std::string—is possible too:

const char* p = "Hello";

std::string ss;

ss.assign(p); // Or: ss = p;

printf("%d\n", ss.length()); // prints 5

Chapter 11 Unix Programming with C and Vala

345

11.1.16  �Preprocessor
A significant agency in the build process is the preprocessor (cpp under Unix), which

gets to look at your sources before the compiler does. It is not often that the preprocessor

(or the linker) gets invoked independently: invoking the compiler itself is the usual way

of invoking the preprocessor.

The preprocessor’s primary tasks are:

•	 Text substitution

•	 Enabling conditional compilation, i.e., determining what portions of

the sources are to be revealed to or hidden from the compiler

All directives to the preprocessor begin with a # sign. When the preprocessor looks at

the following lines

#include <some_header1>

#include "some_header2"

it just inputs the contents of the files some_header1 and some_header2 to replace the

directives. In effect, what the compiler gets to see is the contents of the headers in place

of the #include directives.

The convention for headers in angular brackets is to fulfill any -I command-line

switches (each of which can specify a directory path), and then search in system-default

directories. A typical example of the latter is /usr/include.

The convention for headers in double quotes is to search in the current directory,

although compilers are free to search system directories as well.

Another common directive to the preprocessor is:

#define SOME_CONSTANT 1024

When the preprocessor sees the preceding directive, it searches to the end of the

file for the token SOME_CONSTANT and replaces it with 1024 (unless SOME_CONSTANT gets

redefined/undefined).

Just in case you are not familiar with the term “token,” it is just a sequence of symbols

that must be treated together when parsing source code.

Chapter 11 Unix Programming with C and Vala

346

while(counter>100) is the same as:

while (

counter

> 100

)

That’s a total of six tokens.

If you need to parse some text yourself for its tokens, C has a very useful routine

called strtok(), which does that job (read man 3 strtok for its usage). A couple of other

parsing-related functions are strstr(p1, p2) (search string p1 for substring p2) and

strchr(p, <ch>) (search string p for char <ch>).

What if your sources had the following code:

#include <some_header>

#include <some_header>

Would the preprocessor pull in the same header twice?

It depends on whether some_header incorporates a header guard. A header guard is

simply the concept of enclosing your header’s contents in a section enabled by a unique

preprocessor constant:

#ifndef __SOME __HEADER__

#define __SOME __HEADER

// contents of header

#endif

If there is no header guard in some_header, header input would indeed occur twice—

possibly leading to build failure. That’s why well-written headers use header guards.

11.1.17  �Variable Argument Lists
The pre-processor’s text substitution services are not restricted to just global constants.

The pre-processor can also create macros, which are functions expanded inline:

#define SUM(a, b) ((a) + (b))

The use of macros is deprecated because they deprive you of the compiler’s type-

checking routines. But compilers use macros internally for a variety of tasks.

Chapter 11 Unix Programming with C and Vala

347

One such task is the powerful feature of variable argument lists for functions.

Let’s say you’ve been asked to write strcombine()—a combination of strcpy()

and strcat() that can copy the first string and then append not just one string to the

destination buffer but any number (zero included) of them.

The most common way of implementing variable argument lists is to pass in pointers

for each of the variables you want to be processed by the function. The final argument is

0 (signifying a null pointer), which stands for end-of-arguments.

#include <stdarg.h>

#include <assert.h>

#include <string.h>

char* strcombine(char* dest, const char* src, ...)

{

 assert(dest);

 assert(src);

 const char* p = 0;

 va_list vl;

 va_start(vl, src);

 strcpy(dest, src);

 while (p = va_arg(vl, const char*))

 {

 strcat(dest, p);

 }

 va_end(vl);

 return dest;

}

// main() can now use: strcombine(ptr, "Hello", "World1", "World2", 0);

// Note: main() must pre-allocate sufficient memory for ptr

va_list is a type that is implemented in different ways by different compilers.

Whatever the implementation, it can hold multiple and variable number of pointers.

va_start(), va_arg(), and va_end() are usually implemented as macros by

compilers. va_start() retrieves the first argument and initializes va_list with it. All

further arguments are popped off with va_arg(). When va_arg() returns something

Chapter 11 Unix Programming with C and Vala

348

that denotes end-of-arguments (a null pointer in the preceding code snippet), we stop

looking for further arguments and call va_end(), which gracefully finalizes the va_list

and lets our function return normally.

11.1.18  �Input/Output
To read from standard input, the C library functions getchar() and scanf() should

serve you in good stead. Similarly, for writing to standard output, puts() and printf()

are usually enough.

To format a buffer in memory and output formatted text to the buffer, you can use

memset() and sprintf():

char buffer[32];

memset(buffer, 0, sizeof(buffer)); // nulls all the chars in buffer

// anything else //

sprintf(buffer, "%d", 1234); // prints "1234\0" to buffer

When you need to read from or write to a disk file (or write to standard error), you’ll

have to use the stream-based file I/O functions of C, of which there is a handsome army.

The stream written-to/read-from is a FILE* pointer. The type FILE as well as all I/O

routines are declared in <stdio.h>

The principal I/O routines are:

•	 fopen(): Opens a new stream and returns FILE*; null upon failure

•	 fseek(): Sets the file position indicator for stream

•	 fread(): Reads bytes from stream

•	 fscanf(): Reads a field from stream

•	 fwrite(): Writes bytes to stream

•	 fprintf(): Prints formatted text to stream

•	 feof(): Checks for end-of-file condition for stream

•	 fflush(): Commits all pending I/O operations on stream

•	 fclose(): Closes the stream

You can read more about the I/O routines from the respective man pages.

Chapter 11 Unix Programming with C and Vala

349

11.1.19  �Using System Calls for I/O
One excellent option to keep in mind for I/O under Unix is using system calls—service

requests made directly to the Unix kernel using low-level, native functions (and not the

standard C library functions). While the system call approach does not necessarily lead

to any performance advantage over C library routines, it allows for more fine-grained

control. Low-level facilities (e.g., file locking) are available only when using system call-

based I/O.

If you decide to use system calls for I/O, the primary calls to use are read() and

write(). But you have to be prepared for one hiccup: read() does not guarantee to read

all data in a single shot, and write() does not guarantee to write all data in a single shot.

So you have to restart them until all data has been processed.

Here is a sample utility that copies a file using system calls.

#include <string.h>

#include <assert.h>

// Unix system headers

#include <sys/stat.h>

#include <sys/file.h>

#include <unistd.h>

int copyfile(const char* infile, const char* outfile)

{

 struct stat filestat;

 int result = stat(infile, &filestat);

 assert(result == 0);

 assert(S_ISREG(filestat.st_mode));

 // In production code, replace assertions with error handling

 const int len = filestat.st_size;

 // For huge files, you’ll want to implement a proper data structure.

 // The following approach is fine for illustration though. char*

 buffer = new char[len + 1];

 memset(buffer, 0, len + 1);

 int infd = open(infile, O_RDONLY); // need no mode for O_RDONLY

Chapter 11 Unix Programming with C and Vala

350

 int outfd = open(outfile, O_RDWR | O_CREAT, 0644);

 assert(infd > 2); // 0 = stdin; 1 = stdout; 2 = stderr;

 assert(outfd > 2);

 int inpos = 0;

 int outpos = 0;

 while (inpos < len)

 {

 i += read(infd, (char*) (buffer + inpos), len - inpos);

 }

 while (outpos < len)

 {

 j += write(outfd, (char*) (buffer + outpos), len - outpos);

 }

 close(infd);

 close(outfd);

 delete[] buffer;

 buffer = 0;

 // Return error code if needed. The C standard for success is 0:

 return 0;

}

Very little error handling is done in this code, except for a few assertions, which work

only in debug mode and are likely to be treated as comments by the compiler when

building for optimized release mode.

This utility is equivalent to cp file1 file2. More instructive is the equivalent of cat

file1 > file2: we send file1 over a pipe created with the pipe() call.

Communication over a pipe can take place only between two processes forked

via fork(), another system call. fork() splits the invoking process into two copies—

one deemed parent and the other child. So a call to pipe() is invariably followed

immediately by a call to fork().

The parent and the child forked off are both exact copies (except for the child’s new

process ID) of the original process, which now becomes the parent. The child’s PID

(process ID) is determined at runtime by the kernel, and cannot be known in advance.

Chapter 11 Unix Programming with C and Vala

351

The fork() call has two distinct return values—the child’s PID to the parent, and 0 to the

child. The forked parent process thus gets to learn the child’s PID, but the child remains

blissfully unaware of the parent’s PID.

Figure 11-3 depicts a process being split with a call to fork().

The resource depicted in Figure 11-3 becomes directly relevant to pipe

communication as a set of two file descriptors—one for input, one for output—which

the original process creates. Communication over those file descriptors by convention

is taken as one-way: either the parent process writes and the child process reads, or the

other way round. This is akin to the shell when you pipe a command’s output to another

command’s standard input.

The sources that follow add an interesting twist: the sender (parent) process sleeps

for a millisecond after sending every block of 4096 bytes. The writer (child) process must

read the pipe (and write to the disk file) until the parent sends data across.

#include <string.h>

#include <assert.h>

#include <sys/stat.h>

#include <sys/file.h>

#include <unistd.h>

#include <time.h> // Copy *

 // these |

void millisleep() // lines |

{ // wherever |

 struct timespec request // millisleep() |

Figure 11-3.  Forking under Unix

Chapter 11 Unix Programming with C and Vala

352

 // is |

 request.tv_sec = 0; // invoked |

 // in |

 request.tv_nsec = 1000 * 1000; // the |

 // 1 = nano; 1000 = micro; 1000 * 1000 = milli // remainder |

 // of |

 nanosleep(&request, 0); // this |

} // chapter *

int pipefile(const char* infile, const char* outfile)

{

 const int bs = 4096;

 int fd[2];

 pipe(fd);

 if (fork())

 {

 close(fd[0]); // parent just writes to the pipe using its fd[1]

 struct stat filestat;

 int result = stat(infile, &filestat);

 assert(result == 0);

 assert(S_ISREG(filestat.st_mode));

 const int len = filestat.st_size;

 char* buffer = new char[len + 1];

 memset(buffer, 0, len + 1);

 int infd = open(infile, O_RDONLY);

 assert(infd > 2);

 int iread = 0;

 while (iread < len)

 {

 iread += read(infd, (char*) (buffer + iread), len - iread);

 }

Chapter 11 Unix Programming with C and Vala

353

 close(infd);

 int written = 0;

 while (written < len)

 {

 int iwrite = 0;

 int to_write = ((len - written) >= bs) ? bs : len - written;

 while (iwrite < to_write)

 {

 iwrite += write

 (

 fd[1],

 (char*) (buffer + written + iwrite),

 to_write - iwrite

);

 }

 written += to_write;

 millisleep();

 }

 delete[] buffer;

 buffer = 0;

 close(fd[1]);

 }

 else

 {

 close(fd[1]); // child just needs to read the pipe using its fd[0]

 int outfd = open(outfile, O_RDWR | O_CREAT, 0644);

 assert(outfd > 2);

 char* buffer = new char[bs + 1];

 while (1)

 {

 memset(buffer, 0, bs + 1);

Chapter 11 Unix Programming with C and Vala

354

 int oread = read(fd[0], (char*) buffer, bs);

 if (oread <= 0)

 {

 break;

 }

 int owrite = 0;

 while (owrite < oread)

 {

 owrite += write

 (

 outfd,

 (char*) (buffer + owrite),

 oread - owrite

);

 }

 }

 close(outfd);

 close(fd[0]);

 delete[] buffer;

 buffer = 0;

 }

 return 0;

}

It might be worthwhile to explicitly note that the parent and child have their own file

descriptors for the pipe: fd[0] and fd[1] in the parent are independent of fd[0] and

fd[1] in the child. So pipe() followed by fork() leads to four file descriptors.

Also note that the child process can get its parent’s PID if it needs to—all it needs

to do is use the getppid() system call. If the parent has already exited by that time,

getppid() returns 1—the PID of init, the very first process created by the kernel. A

related call is getpid(), which returns the process’s own PID.

Chapter 11 Unix Programming with C and Vala

355

11.1.20  �Multithreading with pthreads
The original Unix created at AT&T was a single-threaded operating system, in which

any application serially fed operations to the CPU in a single channel of execution.

Figure 11-4 shows three sets of operations lining up for the CPU to act on.

The red-marked feeder line, along which the packets of operations are fed into

the CPU, is the channel formally called a thread. With just one thread at the kernel’s

disposal, f2() cannot start as long as f1() runs, and then f3() has to wait its turn while

f2() is being executed.

Until roughly 1990, this was all that was possible. Your application would be allotted

a thread along which you could communicate operations to be executed to the CPU.

Under Unix, if the process needed to open another execution channel, it had to fork

off a new process, which too had a single thread.

The 90s changed the game. Since creating a whole new process is an expensive

operation demanding a lot of work and resources, the multi-threading idea surfaced:

creating a new channel in the scope of the current process. This required a lot less work

from the CPU and the OS. A process now still starts with only one thread, called the main

thread. But the main thread can create more threads when needed.

Figure 11-5 shows the three sets of operations now running in parallel in the same

process, each set hosted on a different thread.

Figure 11-4.  The single thread way of operating

Figure 11-5.  The multiple thread way of operating

Chapter 11 Unix Programming with C and Vala

356

Let’s say f1() corresponds to main(), which means the top, red line in the preceding

diagram represents the main thread. The top line—and therefore main()—must stay in

business to give the other threads the chance to operate and finish off gracefully before

returning. If main() returns, the whole process comes to an end.

The assignment the CPU has to undertake is to divide time between the threads

so that each of them gets time—ranging from seconds to nanoseconds—to execute its

operations. This assignment goes under the formal name of context-switching. Note

that the CPU has to perform context-switching at two levels: context-switching among

processes, and context-switching among threads in each process.

Under GNU systems, creating a new thread is done with pthread_create(). Before

you call pthread_create(), you’ll need a function that accepts an argument of type

void* and has a return type of void*. The operations listed in that function will run on

the new thread. To wait for the thread to finish, the creator can call pthread_join().

Here is a small utility to print the English alphabet on a new thread, starting with the

letter passed in by main(). Build this with -lpthread to link to the pthread library.

#include <pthread.h>

#include <stdio.h>

void* print_alphabet_lowercase(void* pv)

{

 char* pc = (char*) pv;

 for (char ch = *pc; ch <= 'z'; ch++)

 {

 printf("%c\n", ch);

 millisleep();

 }

 return 0;

}

int main()

{

 char starting = 'm';

 pthread_t pth;

Chapter 11 Unix Programming with C and Vala

357

 pthread_create(&pth, 0, &print_alphabet_lowercase, &starting);

 pthread_join(pth, 0);

 return 0;

}

All applications that want to use POSIX multithreading need the programmer to

#include <pthread.h> in the sources and then link to libpthread with the command-

line argument -lpthread to cc or c++ when compiling.

If the creator thread does not want to wait on the child thread, it should invoke the

function pthread_detach() on the new thread so that any resources allocated for it by

the kernel are automatically freed upon its exit. Further, if a thread needs to retrieve a

handle to itself, it can call the pthread_self() function.

Soon after you start spawning threads in your code, you will run into synchronization

problems. The following code shows the mess when the main thread tries to print to

standard output too—the child thread’s code, the same as before, continues to print the

English alphabet in lowercase.

#include <pthread.h>

#include <stdio.h>

void* print_alphabet_lowercase(void* pv)

{

 for (char ch = (*((char*) pv)); ch <= 'z'; ch++)

 {

 printf("%c\n", ch);

 millisleep();

 }

 return 0;

}

int main()

{

 char starting = 'm';

 pthread_t pth;

 pthread_create(&pth, 0, &print_alphabet_lowercase, &starting);

Chapter 11 Unix Programming with C and Vala

358

 for (char ch = 'A'; ch <= 'Z'; ch++)

 {

 printf("%c\n", ch);

 millisleep();

 }

 pthread_join(pth, 0);

 return 0;

}

If you run the preceding code, you will find the output a garbled-up mixture of

uppercase and lowercase letters. This happens because the main thread and the child

thread are competing for a shared resource—standard output. The calls to millisleep()

make the garble easier to notice.

The right way to write the preceding code is to synchronize with a mutex. The

pthread library has a built-in type called pthread_mutex_t, a handy macro to initialize a

mutex PTHREAD_MUTEX_INITIALIZER, and mutex locking/unlocking functions. If thread

A locks the mutex, thread B will block trying to acquire the lock too, as long as thread A

does not give up the lock.

#include <stdio.h>

#include <pthread.h>

pthread_mutex_t pmt = PTHREAD_MUTEX_INITIALIZER;

void* print_alphabet_lowercase(void* pv)

{

 pthread_mutex_lock(&pmt); // mutex lock

 for (char ch = (*((char*) pv)); ch <= 'z'; ch++)

 {

 printf("%c\n", ch);

 millisleep();

 }

 pthread_mutex_unlock(&pmt); // mutex unlock

 return 0;

}

Chapter 11 Unix Programming with C and Vala

359

int main()

{

 char starting = 'm';

 pthread_t pth;

 pthread_create(&pth, 0, &print_alphabet_lowercase, &starting);

 pthread_mutex_lock(&pmt); // mutex lock

 for (char ch = 'A'; ch <= 'Z'; ch++)

 {

 printf("%c\n", ch);

 millisleep();

 }

 pthread_mutex_unlock(&pmt); // mutex unlock

 pthread_join(pth, 0);

 return 0;

}

In more complicated scenarios, using a mutex alone may not be enough. For such

cases, the pthread library provides another data type—pthread_cond_t—which has to

be used in conjunction with pthread_mutex_t. An interesting variation of the condition

idea is the barrier: pthread_barrier_t.

I will leave research of pthread_cond_t and pthread_barrier_t to your own devices.

11.1.21  �Socket Programming
For communication between processes on different machines, the standard

methodology is sockets, which form the heart of TCP/IP networking. The original

concept of communication via sockets was developed by the Berkeley Software

Distribution (BSD) group at the University of California, Berkeley. Windows’

implementation of sockets called Winsock is derived from—and bears a fair bit of

resemblance to—Berkeley sockets. Most of the API names are the same in both GNU-

based systems and Windows.

Chapter 11 Unix Programming with C and Vala

360

Application programming with sockets does not generally require detailed

understanding of the layers involved, or how packets are routed from source to

destination. The socket API calls are generally what you need to be concerned with.

All socket-related functions are implemented under Unix as system calls.

One end of the communication channel in socket programming serves as a daemon

(or server), while the other end serves as a client. The server keeps listening to the

network, accepting connections from clients. Multiple clients can be simultaneously

connected to a single server. When a client is done with all the communication it needed

with server, it closes the socket at its end.

To communicate with a client, the server actually uses two sockets: one network-

wide socket for accepting connections, and one socket (per client) for the actual

communication with the client. The socket that accepts connections uses a fixed port

number that the client must know in advance. The other socket uses a random, unique

port number assigned by the operating system. So if there are n clients communicating

with a server, the server has n+1 active sockets.

Establishing (and communicating over) a socket on the client side requires three

steps:

	 1.	 Create a socket with the socket() call.

	 2.	 Connect the socket to the address of the server using the

connect() call.

	 3.	 Send data using the write() call and receive data using read().

Establishing the server end is a five-step process:

	 1.	 Create a socket with the socket() call.

	 2.	 Bind the socket to a particular port using the bind() call.

	 3.	 Establish a willingness to accept incoming connections and

specify the maximum queue length of incoming connections with

the listen() call. If you set the maximum queue length to 0, the

operating system will set the queue length to an implementation-

defined reasonable value.

	 4.	 Accept a connection with the accept() call. This call will typically

block until a client connects. The accept() call returns the

descriptor of a new socket.

	 5.	 Send and receive data on the file descriptor returned by accept().

Chapter 11 Unix Programming with C and Vala

361

The last step is usually done on a new thread obtained via a call to pthread_

create(). (You can though, if you want, instead use fork() to create a new process for

communicating with the client.) The main thread just runs a loop to block on accept()

and creates a client-specific thread each time accept() returns.

Also, like accept(), the read() call will block until data is available on the socket.

Nonblocking socket I/O is possible, but is beyond the scope of this book.

Figure 11-6 is the communication schema for the server and the client when using

Berkeley sockets. The diagram uses the symbol to depict a socket.

Although still too early for the reader to feel well-versed, I find it best for the field

of sockets to take the plunge straightaway into coding, and then plug the gaps in socket

literacy as the need arises. We’ll club all our knowledge of C with the introductory

discourse on sockets to write a nifty pair of utilities:

•	 A very simple, non-secure FTP server ezftpd that supports file

exchanges (but not interactive logins)

Figure 11-6.  Establishing and communicating over TCP/IP sockets

Chapter 11 Unix Programming with C and Vala

362

•	 A client ezftp that can download files from and upload files to the

server with:

ezftp 192.168.1.3 get <file> // downloads <file> from ezftpd@192.168.1.3

ezftp 192.168.1.3 put <file> // uploads <file> to ezftpd@192.168.1.3

ezftpd needs one startup argument: the path of the directory that serves as its root.

Any files uploaded show up here. Any files for which a download is requested must be

available here (in the root of the directory). The port number the server listens on is

6666, with no restrictions on file sizes.

The sources that follow are broken into three parts—a header file that declares and

defines common code, the server, and the client. Each part has introductory comments.

The first part contains the common sources. This part uses the nothrow option for

operator new. This disables exceptions and ensures that a null pointer is returned upon

failure.

Here are the common sources placed in a header file ezftp.h:

#ifndef EZFTP_H

#define EZFTP_H

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include <new>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/file.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <arpa/inet.h>

const int PORT = 6666;

const long MB = 1024*1024;

const char* CMDGET = "get";

const char* CMDPUT = "put";

int assert_zero(long n)

Chapter 11 Unix Programming with C and Vala

363

{

 if (n != 0)

 {

 fprintf(stderr, "Runtime check (n == 0) failed\n");

 exit(-1);

 }

 return 0;

}

int assert_greater(long n, long floor)

{

 if (n <= floor)

 {

 fprintf(stderr, "Runtime check (n > floor) failed\n");

 exit(-1);

 }

 return 0;

}

int f_receive(int datasocket, const char* infile)

{

 int fd = open(infile, O_RDWR | O_CREAT, 0644);

 assert_greater(fd, 2);

 int written = 0;

 while (1)

 {

 char* pbuffer = new(std::nothrow) char[MB];

 assert_greater((long) pbuffer, 0);

 memset(pbuffer, 0, MB);

 int result = 0;

 int iwritten = 0; // written during this iteration

 int iread = read(datasocket, pbuffer, MB);

Chapter 11 Unix Programming with C and Vala

364

 if (iread <= 0)

 {

 delete[] pbuffer;

 pbuffer = 0;

 break;

 }

 while (iwritten < iread)

 {

 result = write

 (

 fd,

 (char*) (pbuffer + iwritten),

 iread - iwritten

);

 assert_greater(result, 0);

 iwritten += result;

 }

 written += iwritten;

 delete[] pbuffer;

 pbuffer = 0;

 }

 close(fd);

 return written;

}

int f_send(int datasocket, const char* infile)

{

 struct stat filestat;

 int result = lstat(infile, &filestat);

 if ((result != 0) || (! S_ISREG(filestat.st_mode)))

 {

 fprintf(stderr, "Bad filename: %s\n", infile);

 return -1;

Chapter 11 Unix Programming with C and Vala

365

 }

 const int len = filestat.st_size;

 int fd = open(infile, O_RDONLY);

 assert_greater(fd, 2);

 int written = 0;

 while (written < len)

 {

 char* pbuffer = new(std::nothrow) char[MB];

 assert_greater((long) pbuffer, 0);

 memset(pbuffer, 0, MB);

 result = 0;

 int iread = 0; // read during this iteration

 int iwritten = 0; // written during this iteration

 const int to_read = (len - written >= MB) ? MB : len - written;

 const int to_write = to_read;

 while (iread < to_read)

 {

 result = read

 (

 fd,

 (char*) (pbuffer + iread),

 to_read - iread

);

 assert_greater(result, 0);

 iread += result;

 }

 while (iwritten < to_write)

 {

 result = write

 (

Chapter 11 Unix Programming with C and Vala

366

 datasocket,

 (char*) (pbuffer + iwritten),

 to_write - iwritten

);

 if (result <= 0)

 {

 delete[] pbuffer;

 pbuffer = 0;

 close(fd);

 return -1;

 }

 iwritten += result;

 }

 written += to_write;

 delete[] pbuffer;

 pbuffer = 0;

 }

 close(fd);

 return written;

}

#endif

The ezftpd daemon needs one startup argument: the path of the directory that

serves as its root FTP directory.

The server does not consider sub-directories for any get/put requests from the

client. So anything the client wants to download must be available in the root of the

directory. When uploading a file, the client can provide the full path of the file (/a/b/

c/d.txt) or just the base name d.txt—the server just considers the base name as

relevant for uploads and downloads.

The server uses a pthread to communicate with the client.

One important safeguard the server utilizes at startup is signal(SIGPIPE, SIG_

IGN); ignore the broken pipe syndrome. This shields the daemon code from an unclean

peer socket closure, which could result from a runtime exception in the client code.

Chapter 11 Unix Programming with C and Vala

367

Here are the sources for the server, which you can save as the source code file

ezftpd.c:

#include "ezftp.h"

#include <pthread.h>

#include <signal.h>

void* send_or_recieve(void* pv)

{

 int datasocket = *((int*) pv);

 char cmd[8];

 char filename[256];

 char buffer[1024];

 memset(cmd, 0, sizeof(cmd));

 memset(filename, 0, sizeof(filename));

 memset(buffer, 0, sizeof(buffer));

 int rcv = read(datasocket, buffer, sizeof(buffer) - 1);

 if (rcv <= 0) // peer closed its socket, perhaps

 {

 return (void*) 1;

 }

 buffer[sizeof(buffer) - 1] = 0;

 buffer[rcv] = 0;

 char* ptr = buffer;

 strncpy(cmd, ptr, 3); // should be "get" or "put"

 ptr += 3; // the next byte must be whitespace

 if (! isspace(*ptr))

 {

 fprintf(stderr, "Bad command: %s\n", cmd);

 return (void*) 1;

 }

 while(isspace(*ptr) || strchr(ptr, '/'))

Chapter 11 Unix Programming with C and Vala

368

 {

 ptr++;

 }

 strcpy(filename, ptr);

 filename[sizeof(filename) - 1] = 0;

 if (! (*filename))

 {

 fprintf(stderr, "Missing file name\n");

 close(datasocket);

 return (void*) 1;

 }

 if (strcmp(cmd, CMDGET) == 0)

 {

 f_send(datasocket, filename);

 }

 else if (strcmp(cmd, CMDPUT) == 0)

 {

 f_receive(datasocket, filename);

 }

 else

 {

 fprintf(stderr, "Bad command: %s\n", cmd);

 close(datasocket);

 return (void*) 1;

 }

 close(datasocket);

 return (void*) 0; // return a null pointer on success

}

int main(int argc, char** argv)

{

 int result = 0;

Chapter 11 Unix Programming with C and Vala

369

 if (argc == 2)

 {

 result = chdir(argv[1]);

 if (result != 0)

 {

 fprintf(stderr, "Unable to chdir into %s\n", argv[1]);

 return 1;

 }

 }

 else

 {

 fprintf(stderr, "Need root directory path\n");

 return 1;

 }

 signal(SIGPIPE, SIG_IGN);

 // Guard server from broken pipe resulting from client-side exceptions

 sockaddr_in sv_addr;

 memset((char*) &sv_addr, 0, sizeof(sv_addr));

 sv_addr.sin_family = AF_INET;

 sv_addr.sin_addr.s_addr = INADDR_ANY;

 sv_addr.sin_port = htons(PORT);

 int fd = socket(AF_INET, SOCK_STREAM, 0);

 assert_greater(fd, 2);

 result = bind(fd, (sockaddr*) &sv_addr, sizeof(sv_addr));

 assert_zero(result);

 result = listen(fd, 0);

 assert_zero(result);

 fprintf(stderr, "Accepting connections on port %d\n", PORT);

 fprintf(stderr, "Press Ctrl-C to stop the server\n");

 while (1)

 {

Chapter 11 Unix Programming with C and Vala

370

 pthread_t pth;

 sockaddr_in cli_addr;

 socklen_t len = sizeof(cli_addr);

 memset((char*) &cli_addr, 0, len);

 int datasocket = accept(fd, (sockaddr*) &cli_addr, &len);

 assert_greater(datasocket, 2);

 fprintf

 (

 stdout,

 "Received connection from %s:%d\n",

 inet_ntoa(cli_addr.sin_addr),

 ntohs(cli_addr.sin_port)

);

 pthread_create(&pth, 0, &send_or_recieve, &datasocket);

 }

 close(fd);

 return 0;

}

You can compile the server with c++ -lpthread -o ezftpd ezftpd.c.

You can then create a dedicated directory for ezftpd, perhaps $HOME/ezftproot.

Launching the server can then be done with:

/path/to/ezftpd $HOME/ezftproot

Just to be absolutely sure you don’t forget, you will need to launch the server before

you try to issue any get/put requests from the client side.

The client always sends "get" or "put" as the first four bytes, followed by the name

of the file to get/put.

Here are the sources for the client, which you can save as ezftp.c:

#include "ezftp.h"

int handshake(int datasocket, const char* protocol, const char* infile)

{

Chapter 11 Unix Programming with C and Vala

371

 int i = 0;

 int result = 0;

 char cmd[1024];

 strcpy(cmd, protocol); // protocol can be "get" or "put"

 strcat(cmd, " ");

 strcat(cmd, infile);

 cmd[sizeof(cmd) - 1] = 0;

 const int cmdlen = strlen(cmd);

 while (i < cmdlen)

 {

 result = write(datasocket, (char*) (cmd + i), cmdlen - i);

 assert_greater(result, 0);

 i += result;

 }

 return 0;

}

int main(int argc, char** argv)

{

 bool failed = false;

 if (argc == 4)

 {

 // First ensure that server IP/command/filename are not empty:

 for (int i = 1; i < argc; i++)

 {

 if (! *(argv[i]))

 {

 failed = true;

 break;

 }

 }

 if ((strcmp(argv[2], CMDGET) != 0) && (strcmp(argv[2], CMDPUT) != 0))

 {

Chapter 11 Unix Programming with C and Vala

372

 failed = true;

 }

 }

 else

 {

 failed = true;

 }

 if (failed)

 {

 fprintf(stderr, "Usage: ezftp <server IP> <command> <filename>\n");

 fprintf(stderr, "<command> can be get or put\n");

 return 1;

 }

 sockaddr_in addr;

 memset((char*) &addr, 0, sizeof(addr));

 addr.sin_family = AF_INET;

 addr.sin_addr.s_addr = inet_addr(argv[1]);

 addr.sin_port = htons(PORT);

 int datasocket = socket(AF_INET, SOCK_STREAM, 0);

 assert_greater(datasocket, 2);

 int result = connect(datasocket, (sockaddr*) &addr, sizeof(addr));

 assert_zero(result);

 if (strcmp(argv[2], CMDGET) == 0)

 {

 result = handshake(datasocket, CMDGET, argv[3]);

 assert_zero(result);

 f_receive(datasocket, argv[3]);

 }

 else if (strcmp(argv[2], CMDPUT) == 0)

 {

 result = handshake(datasocket, CMDPUT, argv[3]);

 assert_zero(result);

Chapter 11 Unix Programming with C and Vala

373

 f_send(datasocket, argv[3]);

 }

 else

 {

 �fprintf(stderr, "Bad command: %s %s %s\n", argv[1], argv[2],

argv[3]);

 close(datasocket);

 return 1;

 }

 close(datasocket);

 return 0;

}

You can compile the client with c++ -o ezftp ezftp.c.

11.1.22  �Addressing the Makefile
GNU’s make (gmake under FreeBSD) is a powerful and flexible source code compilation

and build system. Makefiles that exploit GNU make features and syntax are more

intelligent than traditional makefiles. In fact, the GNU make world is so much richer that

GNU grants it a new, optional name: GNUmakefile.

Naming your makefile a GNUmakefile ensures that you accidentally don’t invoke the

traditional make, which only looks for a file named makefile. Of course, GNU make can

also handle traditional makefiles (but not makefiles under FreeBSD’s ports, which only

the native FreeBSD make understands).

The appendix has a small GNUmakefile that you can use to build your small projects

for creating an executable binary.

11.2  �Graphical Application Development with Vala
While we are now familiar with C—which underpins the Vala programming language—

there is one more frontier to conquer before we can realistically hope to work fluently

with Vala: the principles of object-oriented programming, often called OOP.

We won’t enter into a full-bodied OOP discourse. Rather, we will just focus on the

basic concepts that can facilitate transition from C (not object-oriented) to Vala (entirely

object-oriented).

Chapter 11 Unix Programming with C and Vala

374

11.2.1  �The Bare Essentials of OOP
We start by looking at why OO programming is needed—i.e., when it is needed at

all (which is not always, by any means). A few pages down the line, I will point out

advantages and disadvantages of OOP just before starting the Vala essay.

We return to our struct student for illustration, using two compilers cc and c++ to

show what OOP is and a broad picture of how it is implemented. Once the OOP picture

becomes clear, switching over to the Vala language—and valac as the compiler—should

be a cinch.

For our illustration, we will also use the term “client code” to refer to main(),

although a client can be any code that uses our struct.

struct student

{

 char name[64];

 int roll_number;

 double gpa;

};

If I need to print a student object’s members, I could create a function like this:

void print(student* ptr)

{

 puts(ptr->name);

}

The foregoing function is fine in itself. The problem begins when I create another

struct that’s a special type of student:

struct research_fellow

{

 double stipend;

 char name[64];

 int roll_number;

 double gpa;

};

Essentially, the idea is that research_fellow is a student who gets a stipend

(fellowship) for her research.

Chapter 11 Unix Programming with C and Vala

375

Two problems pop up here:

•	 We can’t pass a research_fellow* pointer to print() without first

type-casting it as a student* pointer.

•	 If we type-cast, the results will be strange, if not disastrous:

puts(ptr->name) inside print() will access the bytes for stipend as

a char* pointer.

The multi-pronged OOP solution begins by putting print() into the struct itself.

And then we use a very special identifier in place of the ptr pointer argument: this.

Our student now effectively becomes:

struct student

{

 char name[64];

 int roll_number;

 double gpa;

 void print(student* this)

 {

 puts(this->name);

 }

};

// C (and therefore the C compiler cc) will not permit the code above

c++ will compile the code in the preceding snippet—with the rider that this is

implicitly passed in, and not declared explicitly. Effectively, the C++ struct declaration

becomes:

struct student

{

 char name[64];

 int roll_number;

 double gpa;

 void print()

 {

 puts(this->name);

 }

};

Chapter 11 Unix Programming with C and Vala

376

What c++ does is generate the C-compatible code that uses a pointer-to-function

(and not a member function) for print() inside student. We look at the translation

scheme along with the client code:

Of course, the translation, as depicted in the foregoing scheme, is a drastic

simplification of what happens under the hood, but it still is true in its spirit to what

happens for you in the background. We can forget about the under-the-hood details

because: a) we are not into creating compilers ourselves, and b) those details are fairly

unpleasant to look at.

The next OOP prong is inheritance: derive research_fellow from student, putting

into research_fellow only the pieces not already available in student.

Since C itself does not (and never will) support inheritance, the C++ compiler has

to do all the work to generate the equivalent C code for our struct as well as any client

code. This work, quite naturally, is highly implementation-specific: c++ implementation

would be entirely different from Microsoft’s Visual C++ implementation.

Whatever the implementation, the translated C code becomes even uglier—and

hence can be ignored for our simple purpose of OOP illustration.

Chapter 11 Unix Programming with C and Vala

377

Our research_fellow now becomes:

struct research_fellow : student // cc will not permit this; c++ will

{

double stipend; // Rest everything is same

};

The comment "Rest everything is same" is heartening for those who like things

to remain simple, and disheartening for those always aspire for greater complexity.

On the one hand, the client code can continue to do this:

struct research_fellow rf;

// initialize rf’s members;

rf.print();

On the other hand, research_fellow::print() is still tied to the definition inside

student. This naturally would invite criticism from fellowship supervisors, who would

like research_fellow::print() to print not just the name, but the value of the stipend

too.

This is where the final OOP prong comes in: runtime polymorphism, aka virtual

functions. If student declares print() prefixed with the keyword virtual, the

programmer is allowed to plant a special version of print() inside research_fellow.

struct student

{

 char name[64];

 int roll_number;

 double gpa;

 virtual void print() // cc will not permit this; c++ will

 {

 puts(this->name);

 }

};

struct research_fellow : student

Chapter 11 Unix Programming with C and Vala

378

{

 double stipend;

 void print()

 {

 puts(this->name);

 printf("stipend = %.2f\n", this->stipend);

 }

};

int main()

{

 student stud;

 strcpy(stud.name, "Chuck");

 stud.print(); // uses student::print()

 research_fellow rf;

 rf.stipend = 1000;

 strcpy(rf.name, "RF");

 rf.print(); // uses research_fellow::print()

 return 0;

}

It is important to understand that if research_fellow does not have a special version

of print(), the definition inside student will get used. I won’t repeat the code to prove

this, but you can try this on your own—just to convince yourself.

Once you understand the preceding point, it is a fairly logical and natural deduction

that the compiler has to accommodate print() as a function the runtime address

of which might vary. With a virtual function declared inside student, the instance

declaration research_fellow rf; forces the compiler to build a special pointer-to-

function into the rf instance as per the following pseudo-coded algorithm that goes into

action at runtime:

rf.ptr_print = address-of-{student::print()}

if [research_fellow defines its own print()]; then

 rf.ptr_print = address-of-{research_fellow::print()}

fi

Chapter 11 Unix Programming with C and Vala

379

Read the next couple of pages to understand why this algorithm can’t work at

compile-time.

Our structs might declare not just print(), but any number of virtual functions—

let’s pick virtual void play() as another virtual function packed into student, and

virtual bool is_phd() packed into research_fellow. Notably, is_phd() is not

declared in the student struct.

The only way the compiler can scalably accommodate multiple virtual functions is

by using a pointer to an array of pointers:

rf.vptr[0] = address-of-{student::print()}

rf.vptr[1] = address-of-{student::play()}

rf.vptr[2] = address-of-{research_fellow::is_phd()} // Note this

if [research_fellow defines its own print()]; then

 rf.vptr[0] = address-of-{research_fellow::print()}

fi

if [research_fellow defines its own play()]; then

 rf.vptr[1] = address-of-{research_fellow::play()}

fi

Even though it’s still pseudo-code, this code is a good representation of what OO

compilers do. Note that the compiler has to hard-wire the address of is_phd() to the

definition inside research_fellow because student does not declare this function.

Planting a special definition for a virtual function inside a subclass is called

overriding. (Under Vala, you have to use the keyword override when supplying the

special definition in the subclass.)

The vptr pointer (which is pointer-to-[array-of-{pointers-to-functions}]) is a pretty

famous pointer. In OO chatter-and-banter, its name is instantly recognized the world

over as it is—vptr, the virtual function pointer.

Although all the OO prongs have now been dealt with, there are two final points

not clear from the foregoing discussion that we must discuss before laying out an OO

terminology charter and moving over to Vala.

A student pointer can be assigned the address of a research_fellow object:

student* psr = new research_fellow; // LEGITIMATE

Chapter 11 Unix Programming with C and Vala

380

The psr pointer has been declared as student* but actually receives research_

fellow* at runtime. This is why vptr addresses cannot be populated at compile-time. At

compile-time, the compiler can legitimately neither answer the question nor ignore the

skull-and-bones in Figure 11-7, while populating the virtual function table (vtbl). Keep

in mind the modified psr declaration (top rectangle) used to amplify the compiler’s

problems.

Figure 11-7.  vtbl is Very Truly Beyond Liberties

The following operation is not permitted with psr:

bool b_phd = psr->is_phd(); // NOT LEGITIMATE

In other words, when you invoke a function f() on psr (which was declared as

student*):

•	 The compiler will first check whether f() has been declared in

student. If not, the compiler will throw a compile-time error. (The

only way to invoke is_phd() with psr is to declare psr as research_

fellow*, not student*.) If you see Figure 11-7 again, you will find

that is_phd() is missing from the virtual function table.

•	 If research_fellow defines f(), the compiler will have research_

fellow::f() executed at runtime.

Chapter 11 Unix Programming with C and Vala

381

•	 If research_fellow does not define f(), the compiler will make

provisions for student::f() to be executed at runtime.

11.2.2  �Charter of OO Terminology
Consider these tidbits:

•	 A struct is now termed a class. student is referred to as a base class

(or superclass, when it is being derived from), while research_

fellow is referred to as a derived class (or subclass).

•	 A superclass can be used to derive any number of subclasses, and

each subclass can act as a superclass for classes derived from it (e.g.,

derived from research_fellow, not from student directly). Each

such class still is a subclass of student.

•	 Every class has a few implicit functions. Two such functions are

constructor (runs automatically on instance initialization) and

destructor (runs automatically on instance destruction), both of

which can be manually coded (or else the compiler will insert do-

nothing versions).

•	 A constructor can never be declared as virtual (because object

construction must always start with base class initialization), but the

destructor can be declared as virtual (allowing the most specialized

destructor to run).

•	 The constructor is the name of the class with an argument list (e.g.,

student() or research_fellow(char* _name, double _stipend)),

while the name of the destructor is ~ prefixed to the class name and with

an empty argument list (e.g., ~student() or ~research_fellow()).

•	 Members in a class can be of at least three types: private, which

can be accessed by code in the class itself; protected, which can be

accessed by code in the class itself as well as subclasses; and public,

which can be accessed anywhere, including client code in main().

C++ restricts itself to those three types, while Vala introduces a fourth

type: internal, which caters to the package-based nature of Vala. An

internal member can be accessed from within its package, but not

globally.

Chapter 11 Unix Programming with C and Vala

382

There is one point on which Vala notably differs from C++: overloading. C++ permits

any number of functions with the same name fx() to occur in a single class as long

as each version has a unique parameter list. Vala prohibits overloading. If you want to

overload under Vala, you have to put in a period after fx and then supply a suffix as well

as the argument list:

fx() // no argument

fx.with_int(int i) // with an int argument

The two preceding declarations mean the following declarations are no longer

permitted in the class:

fx(int)

fx.with_int()

11.2.3  �Benefits and Drawbacks of OO Programming
The benefits of object-oriented programming are often overstated, and—even more

significantly—the disadvantages understated. There is a serious cost to be paid when

you make your code object-oriented—its working is no longer transparent and easy to

comprehend, both to the writer as well as to the reader.

In many ways, it would be ideal to be able to write a single-line code to bring up a

Hello World message such as this:

object.msg("Hello World");

The client code looks very clean and is just one line long. Those are the primary

benefits of OO programming.

But when things start going wrong, the number of layers to investigate is too

high. Which is why OO is never used for anything that bears resemblance to systems

programming, a job entirely reserved for C.

For graphical application development, though, OO is an ideal playground. All

graphical widgets and windows are inter-related, allowing for hierarchies that propagate

base code down into increasingly special types: Object, for instance, could serve as a

base for Widget, which could serve as a base for TextBox, which could serve as a base for

SingleLineTextBox and ScrolledTextBox. Using derived types thus permits reuse of

code that’s available higher up the hierarchy.

Chapter 11 Unix Programming with C and Vala

383

11.2.4  �The World of Vala
Vala brings many high-level programming abstractions to Unix: namespaces, objects,

interfaces, signals, strong type checking, and assisted memory management. At a lower

level, Vala generates C as its intermediate code. This enables Vala to easily use libraries

with a C Application Binary Interface (ABI). Vala’s syntax, while similar to C, is even

more reminiscent of C#.

I will greet you to the world of Vala programming with a Hello World program, and

then put in the relevant notes.

public class hwWindow : Gtk.ApplicationWindow

{

 public hwWindow(hwApplication app)

 {

 Object(application: app, title: "Hello World");

 var button = new Gtk.Button.with_label("Click Here");

 button.clicked.connect(this.button_clicked);

 this.window_position = Gtk.WindowPosition.CENTER;

 this.set_default_size(300, 60);

 this.add(button);

 this.show_all();

 }

 void button_clicked(Gtk.Button button)

 {

 string msg = "Hello World!".reverse();

 var dialog = new Gtk.MessageDialog

 (

 this,

 Gtk.DialogFlags.MODAL,

 Gtk.MessageType.INFO,

 Gtk.ButtonsType.OK,

 msg

);

Chapter 11 Unix Programming with C and Vala

384

 dialog.response.connect(() =>

 {

 dialog.destroy();

 });

 dialog.show();

 }

}

public class hwApplication : Gtk.Application

{

 public hwApplication()

 {

 Object(application_id: "org.example.HelloWorld");

 }

 protected override void activate()

 {

 (new hwWindow(this)).show();

 }

}

int main()

{

 return (new hwApplication()).run();

}

Save this code as a text file named hello.vala, and then compile it with valac, the

Vala compiler. Our standard compilation command will be:

valac --pkg gtk+-3.0 --debug <file>

--pkg gtk+-3.0 pulls in the files to interface with the GTK+ (version 3) package.

The GTK+ package is a graphical toolkit library written in C. Behind the scenes, the first

interface file is a Vala Application Programming Interface (VAPI) file. This specifies how

Vala code should be translated to the relevant C code for the GTK+ library. The second

file is a pkg-config file that contains the relevant C compiler and linker flags. The VAPI

and pkg-config files will have the same name, but different file extensions.

The --debug switch (optional) pulls source file and line number references into the

compiled executable for runtime debugging (with gdb).

Chapter 11 Unix Programming with C and Vala

385

If you run the executable and click the Click Here button, it will display the message

Hello World! (in reverse), as shown in Figure 11-8.

Although this is just a simple Hello World application, our first Vala venture has

many points of interest that need to be elaborated on:

•	 In Vala, the keyword this denotes a reference (i.e., another name) for the

invoking object, and not a pointer, although Vala does support pointers

too. The this reference is internally implemented as a pointer itself.

•	 The root of GTK’s class hierarchy is a class named Object. All

windows and widgets are thus certain to be subtypes of Object.

•	 The two entry-point classes in a graphical Vala application are

Application and ApplicationWindow. There are shortcut ways to

create Vala GUIs with a bit less code, but the method we used suits all

occasions and purposes.

•	 Vala widgets usually have one or more signals (events), which

get triggered at runtime as per user interaction. Application, for

instance, has an activate signal (which we have used in the code

snippet to create a window), and MessageDialog has a response

signal (which we have used in the snippet to destroy the dialog itself).

•	 A signal handler can be a normal function, or furnished as a here-

function—a nifty Vala feature that technically goes under the name

lambda expression or anonymous function. Like the shell’s here-doc,

a here-function has no name—just a definition. The prototype of the

here-function is already known: the prototype is what would have

been had the lambda expression been written as a normal function

instead. Signal handlers are called synchronously (one after the other),

never simultaneously with another signal handler already active). They

typically use a separate handler thread in order to avoid UI freezes.

Figure 11-8.  Making the world go the other way round with Vala

Chapter 11 Unix Programming with C and Vala

386

•	 Vala implements a variant of the garbage collection mechanism

known technically as “deterministic reference counting,” which

releases memory for objects no longer being referenced. So you can

freely use operator new and forget about heap memory management.

•	 When you use operator new, you can assign the reference returned

to a variable declared with the keyword var. The compiler will

automatically deduce its type from the statement’s RHS.

•	 Vala has a built-in string type named string.

One thing that’s not apparent from this Hello World code is probably the most

important point: Vala code is pure C wrapped in Vala language constructs.

If you compile the hello.vala file with --ccode, the Vala compiler will generate

the C file for you to, lo and behold, be grateful for what Vala does. That C file would be

something like 260 lines (vis-a-vis our .vala’s 53 lines)—and most of it abstruse stuff

that we would usually prefer to leave somebody else to work with.

For ease of reference, here is the C code generation command:

valac --ccode --pkg gtk+-3.0 <filename>

It’s now time for you to play with Vala on your own for a while. I suggest you carry out

the following exercise:

Create a Vala application with one widget of type Gtk.Entry (which is a kind of

textbox). At runtime, when the user types some text in the textbox and presses , the

text is echoed to standard output.

The text that follows includes a few tips to help you out.

•	 Tip 1: Entry has a signal named activate that gets triggered when

 is pressed in the textbox.

•	 Tip 2: Entry has a property named text that gets/sets the text in the

widget.

•	 Tip 3: stdout.printf(mystring) prints the string named mystring

to standard output if mystring has a trailing newline.

You can refer to the following URL for developing your mini-application:

https://developer.gnome.org/gnome-devel-demos/stable/entry.vala.html.en

When you return from the exercise (hopefully with success), we will launch into a

full-fledged Vala GUI application—a Body Mass Index tool. If you don’t know what BMI

Chapter 11 Unix Programming with C and Vala

https://developer.gnome.org/gnome-devel-demos/stable/entry.vala.html.en

387

is, it is your weight divided by your height squared. Weight is in kg, while height is in cm,

and a healthy BMI score is in the range of 18.5 to 25.

11.2.5  �Vala Documentation
Consider these three URLs for Vala documentation:

•	 https://developer.gnome.org/gnome-devel-demos/stable/

beginner.vala.html.en—The perfect place to start learning about

Vala’s widgets and sample usage code.

•	 https://valadoc.org/gtk+-3.0/Gtk.html—API reference for Vala

widgets and other types. Read the next paragraph for more.

•	 https://wiki.gnome.org/Projects/Vala/Documentation—The

Vala language reference site.

It is natural that as a Vala newbie, you will initially visit the first site for snippets that

demonstrate the use of widgets in Vala. As you pick up flair, you will find the Valadoc site

to be a gold mine: brilliantly, exhaustively documented, and catering to both newbies

and experts. The first time you visit Valadoc, just type Gtk.Entry into the Search box at

the top-left in your browser, and everything you need to know about Gtk.Entry will be

dished out.

Before I close out the section, there is one important point that I must expressly

mention: A GTK window can have just one widget. If you need multiple widgets in your

application (almost always true), that widget must be a container: Gtk.Box or Gtk.Grid.

The container can have any number of widgets added to it. The ApplicationWindow

instance just has the container.

11.2.6  �The BMI Tool Written in Vala
All that we are doing here is create a GUI for calculating/displaying/saving the Body

Mass Index score of a user aged 20+ years. The BMI formula is weight/(height*height),

with weight in kg and height in cm. A healthy BMI is in the range 18.5 to 25.

There are two ways you can use this section.

•	 Try to write the BMI tool yourself and then compare your tool with

mine.

Chapter 11 Unix Programming with C and Vala

https://developer.gnome.org/gnome-devel-demos/stable/beginner.vala.html.en
https://developer.gnome.org/gnome-devel-demos/stable/beginner.vala.html.en
https://valadoc.org/gtk+-3.0/Gtk.html
https://wiki.gnome.org/Projects/Vala/Documentation

388

•	 Run my tool to see what it does, and then create your BMI tool to

mimic mine.

Either approach is as good as the other.

If you decide to use the first route, here are the broad specs for the tool as

implemented in my code (which uses a Grid container):

•	 The user’s name is captured in an Entry widget (read as Gtk.Entry).

•	 A CheckButton widget is used to verify that the user’s age is at least 20

years.

•	 If the name is blank, or the age verification switch is not toggled on,

all command (push) buttons in the ApplicationWindow are disabled.

•	 The user’s weight is captured in a Scale widget (horizontally

oriented).

•	 The user’s height is captured in a SpinButton widget.

•	 The BMI score is shown in a TextView widget, which prints the user’s

name, weight, height, BMI, and a summary result based on the BMI

score (i.e., whether healthy/underweight/overweight).

•	 The user can save the BMI report as a text file (created as GLib.File).

The only part that is tricky is the last step: saving the contents to a file. The following

code shows you how to do that with a TextView widget named view:

Gtk.TextIter iter_start, iter_end;

view.buffer.get_bounds(out iter_start, out iter_end);

string contents = view.buffer.get_text(iter_start, iter_end, false);

You can then pass in contents.data as the first argument to the replace_contents

member function of the GLib.File.

The application that I developed has a wacky feature: "Powered by Vala" watermarks

along the bottom edge of the window, which have slanted text labels. Of course, you

don’t need to implement the slanted labels in your own tool, which is why I have left

them out of the specs.

Figure 11-9 is a preview of the application yielded by the sources that follow.

Chapter 11 Unix Programming with C and Vala

389

Here are the sources for the BMI tool that I created:

public class bmiWindow : Gtk.ApplicationWindow

{

 Gtk.Grid grid;

 Gtk.ScrolledWindow scrolled;

 Gtk.TextView view;

 GLib.File? file;

 Gtk.Entry entry_name;

 Gtk.CheckButton check_age;

 Gtk.SpinButton spin_height;

 Gtk.Scale scale_weight;

 Gtk.Button button_getbmi;

 Gtk.Button button_savebmi;

 Gtk.Label label_name;

 Gtk.Label label_height;

 Gtk.Label label_weight;

 Gtk.Label label_vala[5];

 public bmiWindow(bmiApplication app)

 {

 Object (application: app, title: "BMI tool");

 this.title = "Body Mass Index tool";

 this.set_default_size(600, 200);

 this.set_border_width(10);

Figure 11-9.  A body mass index tool written in Vala

Chapter 11 Unix Programming with C and Vala

390

 grid = new Gtk.Grid();

 grid.set_column_spacing(20);

 grid.set_column_homogeneous(true);

 label_name = new Gtk.Label ("Name:");

 grid.attach(label_name, 0, 0, 1, 1);

 entry_name = new Gtk.Entry ();

 entry_name.changed.connect(entry_name_changed);

 �grid.attach_next_to(entry_name, label_name, Gtk.Position

Type.RIGHT);

 check_age = new Gtk.CheckButton.with_label ("Age 20+");

 check_age.set_active(false);

 check_age.toggled.connect(this.check_age_toggled);

 grid.attach_next_to

 (

 check_age, entry_name, Gtk.PositionType.BOTTOM, 1, 1

);

 label_weight = new Gtk.Label ("Your weight (kg):");

 grid.attach(label_weight, 2, 0, 1, 1);

 scale_weight = new Gtk.Scale.with_range

 (

 Gtk.Orientation.HORIZONTAL, 40, 200, 1.0

);

 scale_weight.set_hexpand(true);

 scale_weight.value_changed.connect(scale_weight_changed);

 grid.attach_next_to

 (

 scale_weight, label_weight, Gtk.PositionType.RIGHT, 1, 1

);

 label_height = new Gtk.Label ("Your height (cm):");

 grid.attach(label_height, 2, 1, 1, 1);

Chapter 11 Unix Programming with C and Vala

391

 spin_height = new Gtk.SpinButton.with_range (140, 200, 1);

 spin_height.set_hexpand(true);

 spin_height.value_changed.connect(spin_height_changed);

 grid.attach_next_to

 (

 spin_height, label_height, Gtk.PositionType.RIGHT, 1, 1

);

 button_getbmi = new Gtk.Button.with_label("Get BMI");

 button_getbmi.set_sensitive(false);

 button_getbmi.clicked.connect(getbmi_clicked);

 grid.attach(button_getbmi, 3, 3, 1, 1);

 scrolled = new Gtk.ScrolledWindow(null, null);

 �scrolled.set_policy(Gtk.PolicyType.AUTOMATIC, Gtk.Policy

Type.AUTOMATIC);

 view = new Gtk.TextView();

 view.set_wrap_mode(Gtk.WrapMode.NONE);

 view.buffer.text = "";

 scrolled.add(view);

 grid.attach(scrolled, 4, 0, 1, 4);

 button_savebmi = new Gtk.Button.with_label("Save as text file");

 button_savebmi.set_sensitive(false);

 button_savebmi.clicked.connect(savebmi_clicked);

 grid.attach(button_savebmi, 4, 4, 1, 1);

 var hseparator = new Gtk.Separator (Gtk.Orientation.HORIZONTAL);

 grid.attach (hseparator, 0, 4, label_vala.length, 1);

 for (int i = 0; i < label_vala.length; i++)

 {

 label_vala[i] = new Gtk.Label("Powered by Vala");

 label_vala[i].angle = 10;

 label_vala[i].set_pattern(" ____");

 grid.attach(label_vala[i], i, 5, 1, 1);

 }

 this.add(grid);

Chapter 11 Unix Programming with C and Vala

392

 this.show_all();

 }

 void entry_name_changed(Gtk.Editable e)

 {

 check_age.set_active(false);

 }

 void check_age_toggled(Gtk.ToggleButton cb)

 {

 button_savebmi.set_sensitive(false);

 view.buffer.text = "";

 button_getbmi.set_sensitive

 (

 (entry_name.text.length > 0) &&

 (cb.get_active())

);

 }

 void scale_weight_changed(Gtk.Range range)

 {

 view.buffer.text = "";

 button_savebmi.set_sensitive(false);

 }

 void spin_height_changed(Gtk.SpinButton spin)

 {

 view.buffer.text = "";

 button_savebmi.set_sensitive(false);

 }

 void getbmi_clicked(Gtk.Button b)

 {

 double wt = scale_weight.get_value();

 double ht = spin_height.get_value()/100;

 double bmi = wt / (ht * ht);

Chapter 11 Unix Programming with C and Vala

393

 string sz = entry_name.text;

 sz += "\n";

 sz += "Weight = %d\n".printf((int) scale_weight.get_value());

 sz += "Height = %d\n".printf((int) spin_height.get_value());

 sz += "BMI = %.2f\n\n".printf(bmi);

 if (bmi > 35) sz += "(Severely obese)";

 if (30 < bmi <= 35) sz += "(Obese)";

 if (25 < bmi <= 30) sz += "(Overweight)";

 if (18.5 < bmi <= 25) sz += "(Healthy weight)";

 if (16 < bmi <= 18.5) sz += "(Underweight)";

 if (bmi <= 16) sz += "(Severely underweight)";

 view.buffer.text = sz;

 button_savebmi.set_sensitive(true);

 }

 void savebmi_clicked(Gtk.Button b)

 {

 var save_dialog = new Gtk.FileChooserDialog

 (

 "Save BMI report",

 this as Gtk.Window,

 Gtk.FileChooserAction.SAVE,

 Gtk.Stock.CANCEL,

 Gtk.ResponseType.CANCEL,

 Gtk.Stock.SAVE,

 Gtk.ResponseType.ACCEPT

);

 save_dialog.set_do_overwrite_confirmation(true);

 save_dialog.set_modal(true);

 if (file != null)

 {

 (save_dialog as Gtk.FileChooser).set_file(file);

 }

 save_dialog.response.connect(save_response);

Chapter 11 Unix Programming with C and Vala

394

 save_dialog.show();

 }

 void save_response(Gtk.Dialog dialog, int response_id)

 {

 var save_dialog = dialog as Gtk.FileChooserDialog;

 switch(response_id)

 {

 case Gtk.ResponseType.ACCEPT:

 Gtk.TextIter iter_start;

 Gtk.TextIter iter_end;

 view.buffer.get_bounds(out iter_start, out iter_end);

 file = save_dialog.get_file();

 string contents = view.buffer.get_text

 (

 iter_start, iter_end, false

);

 file.replace_contents

 (

 contents.data,

 null,

 false,

 GLib.FileCreateFlags.NONE,

 null,

 null

);

 break;

 case Gtk.ResponseType.CANCEL:

 break;

 }

 dialog.destroy();

 }

Chapter 11 Unix Programming with C and Vala

395

}

public class bmiApplication : Gtk.Application

{

 public bmiApplication()

 {

 Object(application_id: "org.example.bmiApplication");

 }

 protected override void activate()

 {

 bmiWindow wnd = new bmiWindow(this);

 wnd.show();

 }

}

int main(string[] args)

{

 return new bmiApplication().run(args);

}

11.2.7  �Vala Is Not Just GUI Development!
Vala is a complete programming language—what you can do with plain C can be done

with Vala (and whatever cannot be done with plain C can never be done with Vala).

Note, though, that you cannot (easily) use Vala for systems programming—the language

was not designed for that.

Here is a snippet that shows usage of pointers (deprecated) in Vala:

int* ptr = new int[8];

for (int i = 0; i < 8; i++)

{

 ptr[i] = i;

 stdout.printf("i = %d\n", ptr[i]);

}

delete ptr;

Chapter 11 Unix Programming with C and Vala

396

The preceding code is pretty much the same as in C++, except that the delete

operator is not permitted the square brackets even when deleting a pointer to an array.

Note that the call to the delete operator is mandatory if you allocate a pointer. Using a

pointer directly means you have opted out of Vala’s assisted memory management.

You can do multi-threading with Vala. As in the last snippet, the following sample

counts up from 0 to 8—with the counting done this time on a spawned thread, and

with a small sleep (duration: 0.1 seconds, or 100000 microseconds) thrown in between

successive outputs.

class MyThread

{

 private int maxcount;

 public MyThread(int _maxcount)

 {

 this.maxcount = _maxcount;

 }

 public void* run()

 {

 int counter = 0;

 while (counter < this.maxcount)

 {

 stdout.printf("%d\n", counter);

 counter++;

 Thread.usleep(100000);

 }

 return (void*) Thread.self;

 }

}

int main()

{

 if (! Thread.supported())

 {

 stderr.printf("Cannot run without thread support\n");

Chapter 11 Unix Programming with C and Vala

397

 return 1;

 }

 message("MAIN THREAD: %p", (void*) Thread.self);

 try

 {

 var mythr = new MyThread(8);

 Thread<void*> thr = new Thread<void*>.try

 (

 "Spawned thread", mythr.run

);

 thr.join();

 }

 catch(Error e)

 {

 stderr.printf("%s\n", e.message);

 return 1;

 }

 return 0;

}

You can also easily do network programming with Vala. The major classes to work

with (all in the GLib package) are:

Resolver

SocketClient

SocketListener

SocketConnection

DataInputStream

DataOutputStream

Here is a small Vala client that can download from ezftpd.

using GLib;

Chapter 11 Unix Programming with C and Vala

398

int main(string[] args)

{

 if (args.length != 3)

 {

 stderr.printf("Need 2 args: <server name or IP> <downfile>\n");

 return 1;

 }

 Resolver resolver = Resolver.get_default();

 List<InetAddress> addresses = resolver.lookup_by_name(args[1], null);

 InetSocketAddress inetsock = new InetSocketAddress

 (

 addresses.nth_data(0),

 6666

);

 SocketClient client = new SocketClient();

 SocketConnection conn = client.connect(inetsock);

 DataInputStream response = new DataInputStream(conn.input_stream);

 var file = File.new_for_path(args[2]);

 string message = "get ";

 message += args[2];

 conn.output_stream.write(message.data);

 var dos = new DataOutputStream

 (

 file.create(FileCreateFlags.REPLACE_DESTINATION)

);

 while (! conn.is_closed())

 {

 uint8 byte = 0;

 try

 {

 byte = response.read_byte();

Chapter 11 Unix Programming with C and Vala

399

 }

 catch(IOError e)

 {

 break;

 }

 dos.put_byte(byte);

 }

 dos.close();

 return 0;

}

I would also like to refer you to a very nice version of wget written in Vala available

for ready use at http://www.jezra.net/blog/File_downloader_in_Vala_with_a_GIO_

socket.

11.3  �Summary
This is the end of the chapter, and hopefully the beginning of a new one in your Unix

programming essay.

Both C and Vala are excellent skills to have in your armor.

C is the rock-solid, rock-stable language that has been the engine of systems

programming for decades. And that won’t change.

The C+ language proposed in this chapter is essentially C with a few improvements

(available as of now only via C++). Once you are at ease with C+, you can continue using

it as such. Or you can try to move into pure C, which should not be difficult. But trying

to migrate to C++ is pointless: C++ does not add anything useful for the programmer

beyond what is already available as C+.

Vala represents the logical evolution of C. Vala does not take anything away from C—

it just provides a fantastic high-level programming environment that delivers C code for

you, while you code in Vala’s eminently friendlier language constructs.

If this chapter shapes your programming skills and career in the times to come, we

can all happily say return 0;.

Chapter 11 Unix Programming with C and Vala

http://www.jezra.net/blog/File_downloader_in_Vala_with_a_GIO_socket
http://www.jezra.net/blog/File_downloader_in_Vala_with_a_GIO_socket

401
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7

APPENDIX

�The Last Frontier
This appendix lumps together all the extra fragments referred to in the book. The topics

covered in this appendix are as follows:

•	 Solution to the difficult step in Chapter 1

•	 Sources for the shell script tcase from Chapter 3

•	 Sources for the shell script extract.sh from Chapter 3

•	 Setting up a swap partition shared by FreeBSD and Linux from

Chapter 5

•	 Sources for halt.c from Chapter 8

•	 GNUmakefile for creating an executable from Chapter 11

�A.1	 Solution to the Difficult Step in Chapter 1
:%s/\<\([[:alpha:]]\)[[:alpha:]]*\([[:alpha:]]\)\>/\1\2/g

Explanation: The first back-reference \<\([[:alpha:]]\) homes in on the first letter

of any word. The second back-reference \([[:alpha:]]\) matches the last letter of

that word. Anything between the two references (matched by [[:alpha:]]*) is omitted

during substitution.

https://doi.org/10.1007/978-1-4842-3528-7

402

A.2	 Sources for the Shell Script tcase from Chapter 3
#!/bin/sh

out="

tcase()

{

 while [-n "$1"]; do

 first='echo $1 | cut -c1 | tr [:lower:] [:upper:]'

 rem='echo $1 | cut -c 2-'

 lrem='echo $rem | tr [:upper:] [:lower:]'

 [-z "$out"] && \

 out="${first}${lrem}" || \

 out="${out} ${first}${lrem}"

 shift

 done

}

if [$# -gt 0]; then

 for v in $*; do

 tcase $v

 done

else

 read v

 tcase $v

fi

echo $out

exit 0

Appendix ﻿

403

�A.3	 Sources for the Shell Script extract.sh from
Chapter 3
#!/bin/sh

casemode=""

die()

{

 [$# -eq 0] && exit 1

 [$# -gt 1] && \

 echo "error initiated at line $1 :

 $2" 1>&2 || \

 echo "$1" 1>&2

 exit 1

}

while echo "$1" | grep '^-' > /dev/null; do

 case "$1" in

 -i)

 casemode="-i"

 shift

 ;;

 *)

 die "$LINENO" "Invalid optional arg: $1"

 ;;

 esac

done

[$# -ge 1 -a $# -le 2] || \

die "$LINENO" "Usage: 'basename $0' [-i] <file> [<string>]"

f=""

[-e "$1"] && \

f='realpath "$1"' || \

die "$LINENO" "Usage: 'basename $0' [-i] <file> [<string>]"

Appendix

404

[-f "$f"] || \

die "$LINENO" "Usage: 'basename $0' [-i] <file> [<string>]"

sz="unix"

$sz is string to search for as a word; can be overridden with $2

[$# -eq 2] && sz="$2"

instances='grep -c -w $casemode "$sz" "$f"'

[$instances -gt 1] || exit 0

first='grep -w -n $casemode "$sz" "$f" | head -n 1 | sed 's|:.*||''

firstplus='expr $first + 1'

last='grep -w -n $casemode "$sz" "$f" | tail -n 1 | sed 's|:.*||''

lastminus='expr $last - 1'

mid=""

if [$lastminus -gt $firstplus]; then

 mid='cat "$f" | head -n $lastminus'

 lines='echo "$mid" | wc -l'

 to_tail='expr $lines - $first'

 mid='echo "$mid" | tail -n $to_tail'

fi

echo "$mid"

exit 0

�A.4	 Setting Up a Swap Partition Shared by FreeBSD
and Linux from Chapter 5
You can easily set up a logical drive in your disk’s extended partition as swap space

shared by your FreeBSD and Linux installations. If your box has multiple hard disks with

one of them an SSD, it’s best to set up the swap partition in the SSD. That will make your

system’s swaps work at 3x speed.

Appendix ﻿

405

Let’s say your extended partition is sda4 (ada0s4 under FreeBSD), with an existing

logical drive sda5 (ada0s5 under FreeBSD), and 5GB spare space at the end. You can use

the spare space to host a shared swap partition sda6 (ada0s6 under FreeBSD), created as

a partition of type 0x82 (linux-swap).

There are three ways you can create /dev/sda6 as a swap partition:

•	 Using the Linux installer (i.e., at the time of Linux installation)

•	 With the Linux command fdisk /dev/sda (using 0x82 as the

partition ID)

•	 With the FreeBSD command gpart (using linux-swap as the

partition type)

The Linux approach is interactive and thus not easy to document. I’ll document the

gpart approach, assuming a 500GB disk with three primary partitions already in place

and no extended partition yet. There is 100GB at the end of the disk that can be used for

setting up ada0s4, an extended partition (aka, EBR slice) with two nested (aka, logical)

drives: ada0s5 (95GB, type linux-data) and ada0s6 (5GB, type linux-swap).

gpart add -t EBR ada0 # ada0s4

gpart create -s MBR ada0s4

gpart add -t -s 95G linux-data ada0s4 # ada0s4s1, 95 GB

gpart add -t linux-swap ada0s4 # ada0s4s2, spans remainder

Reboot. Upon reboot, the device names /dev/ada0s4s1 and /dev/ada0s4s2 will

change to /dev/ada0s5 and /dev/ada0s6, respectively. Note also that the scheme

created (MBR) on ada0s4 is a workaround: the right scheme actually is EBR, but trying to

create that scheme often fails (owing to a bug in gpart), with the result you might not be

able to add any partitions to the EBR slice.

If you want, you can now create an Ext2/Ext3/Ext4 filesystem on ada0s5 (use mkfs.ext2

/dev/ada0s5). Then, continue with the following steps to share the swap partition ada0s6.

No matter which way you create the swap partition, Linux needs a special signature

in that partition to start swapping to it. FreeBSD does not and it will overwrite the Linux

swap signature when using the partition for swap space. This means that you have to

get your Linux installation to reinsert the signature each time you boot into Linux (after

previously having booted FreeBSD). Reinserting the signature requires you to run the

command mkswap on the swap partition (sda6 in our example).

Appendix

406

With the swap partition sda6 (ada0s6 under FreeBSD) already created, carry out

these steps:

	 1.	 Boot into Linux and determine (conveniently done with grep

-IR swapon *) the script under /etc that runs the swapon –a

command at boot time. Under Linux Mint, that script is /etc/

init.d/checkroot.sh.

Add the following line to that file just before the first occurrence of

swapon:

mkswap /dev/sda6

If Linux’s /etc/fstab does not have an entry for sda6, add the

following therein:

/dev/sda6 none swap sw 0 0

	 2.	 Then boot into FreeBSD and add the following line to FreeBSD’s /

etc/fstab:

/dev/ada0s6 none swap sw 0 0

Next, run the command swapon -a to activate /dev/ada0s6 as a

swap partition immediately under FreeBSD. If you want explicit

confirmation, run the swapinfo command.

	 3.	 Boot into Linux again and make sure everything works normally

with the command free, which will show swap usage.

You can also set up the swap partition in the FreeBSD slice. For

that, refer to the following URL:

http://www.tldp.org/HOWTO/Linux+FreeBSD-3.html

�A.5	 Sources for halt.c from Chapter 8
#include <stdio.h>

#include <time.h>

#include <stdlib.h>

#include <string.h>

Appendix ﻿

http://www.tldp.org/HOWTO/Linux+FreeBSD-3.html

407

#include <assert.h>

#include <windows.h>

#include <psapi.h>

void errexit()

{

 fprintf(stderr, "\aUsage : halt.exe <n>\n");

 fprintf

 (

 stderr,

 "If 1 <= n <= 24: halt at [0]n:00 hrs (24-hour format)\n"

);

 fprintf

 (

 stderr,

 "If n > 24: halt when process with pid n exits\n"

);

 exit(-1);

}

void PrintLastErrorMessage(int err)

{

 char msg[256];

 FormatMessage

 (

 FORMAT_MESSAGE_FROM_SYSTEM,

 0,

 err, 0,

 (char*) msg,

 sizeof(msg)/sizeof(msg[0]),

 0

);

Appendix

408

 msg[(sizeof(msg)/sizeof(msg[0])) - 1] = 0;

 fprintf(stderr, msg);

 fprintf(stderr, "\n");

}

int wait_hrs(int hr)

{

 assert((hr > 0) && (hr <= 24));

 hr = (24 - hr) ? hr : 0;

 char msg[256];

 time_t tt;

 time_t* lptt = &tt;

 sprintf

 (

 msg,

 "This system will auto-shutdown at %2d:00 hrs\n",

 hr

);

 fprintf(stderr, msg);

 while (1)

 {

 time(lptt);

 if ((localtime(lptt))->tm_hour == hr)

 {

 break;

 }

 Sleep(60000);

 }

 return 0;

}

Appendix ﻿

409

int wait_pid(int pid)

{

 assert(pid > 24);

 char msg[256];

 HANDLE hnd = OpenProcess(SYNCHRONIZE, 0, pid);

 if (hnd <= 0)

 {

 fprintf

 (

 stderr, "\aCould not get handle to process %d\n", pid

);

 PrintLastErrorMessage(GetLastError());

 return -1;

 }

 Sprintf

 (

 msg,

 "This system will auto-shutdown once process id %d exits\n",

 pid

);

 fprintf(stderr, msg);

 int result = WaitForSingleObject(hnd, INFINITE);

 assert(result == WAIT_OBJECT_0);

 CloseHandle(hnd);

 return 0;

}

int halt()

{

 HANDLE hToken;

 TOKEN_PRIVILEGES tkp;

 int result = OpenProcessToken

Appendix

410

 (

 GetCurrentProcess(),

 TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY,

 &hToken

);

 assert(result);

 result = LookupPrivilegeValue

 (

 0, SE_SHUTDOWN_NAME, &tkp.Privileges[0].Luid

);

 assert(result);

 tkp.PrivilegeCount = 1;

 tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

 result = AdjustTokenPrivileges

 (

 hToken, 0, &tkp, 0, (PTOKEN_PRIVILEGES) 0, 0

);

 assert(result);

 result = InitiateSystemShutdown(0, 0, 0, 1, 0);

 assert(result);

 return 0;

}

int main(int argc, char* argv[])

{

 switch (argc)

 {

 case (2) : break;

 default : errexit();

 }

 int val = atoi(argv[1]);

Appendix ﻿

411

 if (! (val > 0))

 {

 errexit();

 }

 int (*pfx_wait)(int) = ((val <= 24) ? &wait_hrs : &wait_pid);

 int result = (*pfx_wait)(val);

 if (result != NO_ERROR)

 {

 fprintf

 (

 stderr,

 "\aWait routine failed. Check argument validity\n"

);

 exit(-1);

 }

 return halt();

}

�A.6	 GNUmakefile for Creating an Executable from
Chapter 11
Here is a directory-based generic GNUmakefile for creating an executable from C (or C+)

sources, using c++ as the compiler:

EXECUTABLE := $(shell basename $(shell realpath .))

SOURCES := $(wildcard *.c)

OBJECTS := $(patsubst %.c, %.o, $(SOURCES))

CC := c++

CFLAGS := -Wall

LDFLAGS := -lpthread

Appendix

412

all : $(EXECUTABLE)

%.o : %.c $(wildcard *.h)

 $(CC) $(CFLAGS) -c $< -o $@

$(EXECUTABLE) : $(OBJECTS)

 $(CC) $(OBJECTS) -o $@ $(LDFLAGS)

clean:

 rm -f *.o 2>/dev/null

 rm -f $(EXECUTABLE) 2>/dev/null

This GNUmakefile assumes that your project headers and source code files are

located in the same directory, the base name of which is used for the executable

generated.

The := operator used for assignments in the GNUmakefile requests values to be

assessed just once, and not every time the variable is referenced, which is what would

happen with the = operator.

The GNUmakefile also automatically pulls in threads support, which many

applications need nowadays. If you do not want threads support, just delete the

-lpthread setting for LDFLAGS. If you want additional dynamic library libXYZ.so to be

linked to, append -lXYZ to the LDFLAGS assignment.

Appendix ﻿

413
© Manish Jain 2018
M. Jain, Beginning Modern Unix, https://doi.org/10.1007/978-1-4842-3528-7

Index

A
APC Powerchute UPS, 158–159
Awesome window manager, 178, 181

B
BHyVe, 270

clipboard sharing, 277, 278
network drivers (virtio) for Windows 10

vm, 270, 272–278
RDP (Remmina), 270, 277, 278
system compatibility, 270
tap0 device setup, 272
VNC (TigerVNC), 270, 273–277

BIOS settings
AHCI, 115
IOMMU, 125
USB, 115, 125

Bootstrap blocks, 117, 118, 128
Bourne shell, 65

behaviour management (set), 55, 77
bitwise operations, 288–289
default assignments, 68
dynamic variables (eval), 294–295
escaped quotes, 72, 73, 75
here-doc, 283–286
IFS, 293–294
LINENO, 293–294
local variables, 286–288
readonly variables, 286–288

shell prompt management, 73–74
special variables, 77–79
tests, 70, 71, 77, 80
trapping signals, 290

C
CD/DVD writing frontends, 202–203
Common Unix Printing System (CUPS)

configuration, 105, 155, 157
C programming language, 315–317, 341

array of C-style strings,
314, 322, 327–329

C-style strings, 314, 322, 331–334
pointers, 323–327
pthreads, 355–359
socket API calls, 359–373
system calls, 349–354
variable argument

lists, 346–348
Cygwin/Babun installation, 2

D, E
Digital cabling (DVI/HDMI), 101

F
FTP programs

ezftp/ezftpd, 361, 366, 370
vsftpd, 247–250, 275

https://doi.org/10.1007/978-1-4842-3528-7

414

FreeBSD administration
boot0cfg, 111, 118
camcontrol, 130, 164
fuse for Ext4, 142
fuse for NTFS, 142
gpart–bootcode, 145
gpart–EBR, 169
kern.vty, 133
Pinta installation, 197, 215, 218
pkg command reference, 131, 251
privileged users and groups (wheel/

operator/toor), 134, 236
FreeBSD installation

boot0 manager, 118, 124
dd, 117

FreeBSD ports (alpine), 146, 160
FreeBSD post-install configuration, 130

mkdesktop, 130, 135
networking, 131
pkg, 131
Radeon/nVidia graphics, 133
shell, 131
X.org, 134

G
GNUmakefile, 373, 401, 411–412
Grub installation

GPT, 137
MBR, 118, 128

GUID partition table (GPT)
partitioning scheme, 111
partition type IDs, 136

H, I
HP Linux Imaging and Printing (HPLIP)

configuration, 105, 155, 156, 212

J
Joe, 29–32

commenting/uncommenting, 20, 32
installation, 32–33

K
Kernel-based Virtual Machine

(KVM)
Spice Guest Tools, 269
qemu-img, 266

L
LastPass, 183
Linux administration, 129

nmtui, 148–150
systemctl–services management, 148,

150, 159, 249
systemctl–X session

management, 151
UTC vs. RTC (timedatectl), 129

Linux installation
dd, 117

Linuxulator, 213
brandelf, 240
filesystems, 216–217
RPM installation, 243

M
Master boot record (MBR)

partitioning scheme, 110
partition type IDs, 111

N
Newline conventions, 7

Index

415

O
OpenDNS servers, 124, 126

P, Q
PDF tools

diffpdf, 200
encryption/decryption

(pdftk), 201
exporting pages (pdftk), 201
PDFedit, 202
pdfgrep, 201
pdfimages, 201
pdftotext, 201
spell-checking (LibreOffice

Draw), 200
Pidgin account creation, 203

R
Recursive shell script, 292
Regular expressions, 7

back references, 10
builders, 9
character classes, 9, 31

Remounting/as rw in recovery
mode, 143

S
Scanning, 157, 158
Scope Debugger, 210
SlickEdit, 240–243
Standard devices

standard error, 39
standard input, 37–38
standard output, 38

Swap sharing, 114, 404–406

System administration
extended filesystem attributes, 140
filesystem check (fsck), 140, 143, 146, 172
loop device configuration, 165
persistent storage, 171, 172
scheduling jobs (at), 163
system update, 140
version bumps (OS upgrade), 170

T
TRIM/discard management

FreeBSD, 122, 123, 144
Linux, 126, 144

Titanic (1997 movie), 192
Tor browser, 190, 253
Transmission scripting, 188

U
{Unix commands}

at, 163
awk, 47–48
basename, 50
bzip2, 62
cat, 43
cd, 41
cdrecord, 164–165, 202
chmod, 59–60
chown, 60
chsh, 61
cmp, 56
cp, 42
cut, 52
date, 53
dd, 45–46
df, 162
diff, 56

Index

416

dirname, 50
du, 162–163
echo, 40
eval, 294–295
expr, 44–45
file, 49
find, 49
grep, 46–47
gzip, 62
head, 51
kill, 57–58
less, 54–55
ln, 42–43
locate, 49, 154, 155
ls, 41
man, 55
md5[sum], 64
mkdir, 41–42
mkisofs, 164
mv, 42
passwd, 61
ps, 57
pwd, 41
read, 52–53
realpath, 50
rev, 51
rm, 42
rsync, 166–168
sed, 48
set, 55
sha256[sum], 64
shift, 82–83
sleep, 58
smtp-cli, 165–166
sort, 58
source, 63
tail, 51

tar, 61–62
test, 43–44
touch, 61
tr, 52
type, 54
uname, 56
uniq, 58–59
updatedb, 49, 154, 155
wc, 54
wget, 63
who, 56
xauth, 153, 154
xconsole, 153, 154
xz, 63

USB speeds
OHCI / EHCI / XHCI, 115

V
Vala programming language, 373

documentation links, 387
multi-threading, 396
networking, 397

VideoLAN
persistent equalizer, 193, 194

Vim, 11
abbreviations, 27
auto-completion, 27
configuration, 25–26
find/replace, 18–19
installation, 28
keyboard mappings, 26
macros, 16, 21–23
marks, 18
motions, 15
registers and clipboard, 17
utilities, 24
visual selection, 19–21

{Unix commands} (cont.)

Index

417

VirtualBox administration, 250
clipboard sharing, 265
installing Guest Additions, 64
manually mounting shares, 265
USB extensions pack, 261–265

Virtual filesystems
devfs, 161, 162
Linuxulator, 236
procfs, 161

W, X
{Widgets for scripting (ncurses)}, 298

Calendar box, 307–308
Check list, 305–306
File selection box, 308–309
Info box, 299
Input box, 300
Menu box, 303

Message box, 299
Program box, 302
Progress gauge, 304–305
Radio list, 303–304
Range box, 301
Text box, 301–302
Time box, 307
YesNo box, 299–300

Wine
installing programs, 215–216
utilities, 223
winemaker, 231–232

Word/PDF conversion (unoconv), 200

Y, Z
Yanking and copy/paste

terminal windows, 181

X clients (non-terminal), 181

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Part 1: Preparing for Part I
	Chapter 1: Editing Text with Vim and Joe
	1.1 A Brief History of Unix Text Editors
	1.2 Important Terms
	1.2.1 Line
	1.2.2 Regular Expressions: What You Need To Know Right Now
	1.2.3 Remaining Terms of Endearment

	1.3 Vi IMproved (Vim)
	1.3.1 Moving Around in the Buffer
	1.3.2 Registers and Clipboard Integration
	1.3.3 Marks
	1.3.4 Find and Replace
	1.3.5 Visual Selection Modes
	1.3.6 Recording and Playing Macros
	1.3.7 Vim Utilities
	1.3.8 Vim Configuration
	1.3.9 Vim Abbreviations and Auto-Completion Framework
	1.3.10 Installing Vim

	1.4 Joe’s Own Editor (Joe)
	1.4.1 Installing Joe

	1.5 Summary

	Chapter 2: Essential Unix Commands and Terminology
	2.1	 Kernel, Shell, and Filesystem
	2.2	 Files and Special Files
	2.2.1 The Null Device
	2.2.2 Standard Input
	2.2.3 Standard Output
	2.2.4 Standard Error
	2.2.5 The Pipe
	2.2.6 Console

	2.3	 Essential Unix Commands
	2.3.1 echo <string>
	2.3.2 cd <path>
	2.3.3 pwd
	2.3.4 ls <path>
	2.3.5 mkdir <path>
	2.3.6 cp <source> <destination>
	2.3.7 mv <source> <destination>
	2.3.8 rm <path>
	2.3.9 ln [-s] <path> <additional>
	2.3.10 cat <file>
	2.3.11 test <condition>
	2.3.12 expr
	2.3.13 dd
	2.3.14 grep <regex> [<file>]
	2.3.15 awk [<file>]
	2.3.16 sed [<file>]
	2.3.17 file <path>
	2.3.18 find
	2.3.19 updatedb
	2.3.20 locate <name>
	2.3.21 basename <string>
	2.3.22 dirname <string>
	2.3.23 realpath <path>
	2.3.24 head [<file>]
	2.3.25 tail [<file>]
	2.3.26 rev [<file>]
	2.3.27 cut [<file>]
	2.3.28 tr
	2.3.29 read <arg>
	2.3.30 date
	2.3.31 type <executable>
	2.3.32 wc [<file>]
	2.3.33 less [<file>]
	2.3.34 man <topic>
	2.3.35 set
	2.3.36 uname
	2.3.37 who
	2.3.38 cmp <file1> <file2>
	2.3.39 diff <file1> <file2>
	2.3.40 ps
	2.3.41 kill [<sig>] <pid>
	2.3.42 sleep <n>
	2.3.43 sort [<file>]
	2.3.44 uniq [<file>]
	2.3.45 chmod <mode> <file>
	2.3.46 chown <user> <file>
	2.3.47 chsh [<user>]
	2.3.48 passwd [<user>]
	2.3.49 touch <file>
	2.3.50 tar
	2.3.51 gzip
	2.3.52 xz
	2.3.53 source <file>
	2.3.54 wget
	2.3.55 md5[sum] <file>
	2.3.56 sha256[sum] <file>

	2.4	 Summary

	Chapter 3: Bourne Shell Scripting
	3.1 Inside Our First Shell Script
	3.2 Variable Assignment
	3.3 Arithmetic and Boolean Operations
	3.4 Command Chaining and Grouping
	3.5 Meta-Character Expansion
	3.6 Quoting: Single, Double, and Back
	3.7 Setting the Shell Prompt
	3.8 Dealing with Whitespace in Filenames
	3.9 Shell Functions
	3.10 Special Variables
	3.11 Branching and Looping
	3.12 The shift Command
	3.13 Sourcing, Aliasing, and Exporting
	3.14 Putting It All Together
	3.15 Summary

	Part 2: Preparing for Part II
	Chapter 4: PC Hardware for Unix
	4.1 A Shopping List
	4.2 Preparatory Notes
	4.3 CPU (Central Processing Unit)
	4.4 System Board/Motherboard
	4.5 RAM (Random Access Memory)
	4.6 Hard Disk
	4.7 SMPS (Switched Mode Power Supply)
	4.8 Cabinet
	4.9 Graphics Card
	4.10 Optical Drive (CD/DVD Reader and Writer)
	4.11 CPU Cooler
	4.12 Printer/Scanner
	4.12.1 Buying an HP Printer
	4.12.2 Buying an Epson Printer

	4.13 Summary

	Chapter 5: Installing and Configuring FreeBSD/Linux
	5.1 Disk Partitioning
	5.1.1 MBR (Master Boot Record)
	5.1.2 GPT (GUID Partition Table)

	5.2 Do We Have Enough Disk Space?
	5.3 The Default Partitioning Scheme
	5.4 Preparing the Computer’s CMOS for Unix
	5.5 Downloading and Burning Installation Media
	5.6 Our Example Hard Disk
	5.7 Installing FreeBSD
	5.8 Installing and Configuring Linux
	5.9 Post-Install Configuration of FreeBSD
	5.9.1 Networking
	5.9.2 Software Packaging Subsystem
	5.9.3 A Friendlier Shell
	5.9.4 X Server
	5.9.5 NVIDIA Graphics Driver Addition
	5.9.6 NVIDIA and ATI Radeon Graphics Configuration
	5.9.7 User Accounts
	5.9.8 Graphical Desktop Environment
	5.9.9 Making Things Easier: A Simpler Way to Configure FreeBSD

	5.10 Dual-Booting FreeBSD and Linux on a GPT Disk
	5.11 Summary

	Chapter 6: Basic System Administration
	6.1 Being Root
	6.2 Local Filesystems
	6.3 Partition Management
	6.4 Console Configuration
	6.5 Internet Connectivity
	6.6 Sound Configuration
	6.7 X Configuration
	6.8 Running X Applications as Root
	6.9 Finding Local Files Quickly
	6.10 Configuring the Printer
	6.11 Using the Scanner
	6.12 Using an APC Powerchute UPS to Shut the System Down
	6.13 Building Stuff from Sources
	6.14 Unix Virtual Filesystems
	6.15 Additional Commands to Administer Your Desktop
	6.15.1 df
	6.15.2 du
	6.15.3 at
	6.15.4 cdrecord
	6.15.5 Loop Device Configuration
	6.15.6 smtp-cli
	6.15.7 rsync

	6.16 Mitigating the Need for Backups
	6.17 Summary

	Chapter 7: The Best of the Graphical Unix
	7.1 X Is a Client-Server System
	7.2 Desktop Environments
	7.3 Window Managers
	7.4 Starting X and the Desktop Environment
	7.5 Applications in the Desktop Environment
	7.5.1 Terminal Emulators
	7.5.2 Web Browsers
	7.5.3 Email Clients
	7.5.4 Accessing and Downloading Remote Data
	7.5.5 Playing Multimedia Content
	7.5.5.1 The mplayer Cult
	7.5.5.2 VideoLAN/VLC
	7.5.5.3 Xine

	7.5.6 Paint Programs
	7.5.7 LibreOffice: The New and Better Office
	7.5.8 PDF Viewers
	7.5.9 PDF Creation
	7.5.10 CD/DVD Writing Frontends
	7.5.11 Internet Messaging and Chat Clients
	7.5.12 Multimedia Editing Software
	7.5.13 Fun Stuff: Games and Blogging
	7.5.14 The Question of a Graphical Integrated Development Environment

	7.6 Summary

	Chapter 8: Emulation Layers: Wine and Linuxulator
	8.1 Wine HQ: Attacking Redmond
	8.2 Installing Wine
	8.3 The Filesystem Hierarchy of Wine
	8.4 Running Windows Applications Under Wine
	8.5 Running Pinta as a Windows Application
	8.6 Maintaining Your Wine Environment
	8.7 Wine Patches
	8.8 Version Mimicking Under Wine
	8.9 Wine Libraries (DLLs)
	8.10 Tweaking Wine Still Further
	8.11 Wine Uses a Client-Server Model Too
	8.12 Graphical Tools for Wine Administration
	8.13 Developing Applications for Wine
	8.14 The 64-Bit Mess
	8.15 Yet Another Imitation Game: Linuxulator
	8.15.1 Using c6 Linuxulator
	8.15.2 Using c7 Linuxulator
	8.15.3 Installing Linux ABI Applications via rpm

	8.16 Summary

	Chapter 9: Virtualization: The New Buzzword
	9.1 What Is Virtualization (And Why Is It Important)?
	9.2 Storage for Virtual Machines
	9.3 Running an Anonymous FTP Server Under FreeBSD/Linux
	9.4 VirtualBox
	9.4.1 Installing VirtualBox
	9.4.1.1 Installing Under FreeBSD
	9.4.1.2 Installing Under Ubuntu
	9.4.1.3 Installing Under Arch Linux

	9.4.2 Hosting Your First VirtualBox Virtual Machine
	9.4.3 Exchanging Files with the VirtualBox Host
	9.4.4 VirtualBox Extensions

	9.5 KVM
	9.6 BHyVe
	9.7 Summary

	Part 3: Preparing for Part III
	Chapter 10: Advanced Techniques in Shell Scripting
	10.1 The here-doc Tool
	10.2 Variable Type Modifiers: Readonly/Local
	10.3 Bit-Wise Operations
	10.4 Trapping Signals
	10.5 Mixed Quotes
	10.6 Recursion
	10.7 Special Shell Variables: LINENO and IFS
	10.8 The Magic of eval
	10.9 Non-POSIX Scripting
	10.10 Scripting with ncurses
	10.10.1 Message Box
	10.10.2 YesNo box
	10.10.3 Input Box
	10.10.4 Range Box
	10.10.5 Text Box
	10.10.6 Program Box
	10.10.7 Menu Box
	10.10.8 Radio List
	10.10.9 Progress Gauge
	10.10.10 Check List
	10.10.11 Time Box
	10.10.12 Calendar Box
	10.10.13 File Selection Box
	10.10.14 And There Are Many More

	10.11 Scripting with GTK
	10.12 Summary

	Chapter 11: Unix Programming with C and Vala
	11.1 Systems Programming with C
	11.1.1 The C Compilation Process
	11.1.2 Data Types in C
	11.1.3 int
	11.1.4 char
	11.1.5 bool
	11.1.6 Pointers
	11.1.7 Arrays
	11.1.8 Differentiating Between Stack and Heap
	11.1.9 Strings in C
	11.1.10 Signature of main()
	11.1.11 Branching and Looping
	11.1.12 Arithmetic and Logical Operations
	11.1.13 Functions
	11.1.14 Declarations and Definitions
	11.1.15 Structs
	11.1.16 Preprocessor
	11.1.17 Variable Argument Lists
	11.1.18 Input/Output
	11.1.19 Using System Calls for I/O
	11.1.20 Multithreading with pthreads
	11.1.21 Socket Programming
	11.1.22 Addressing the Makefile

	11.2 Graphical Application Development with Vala
	11.2.1 The Bare Essentials of OOP
	11.2.2 Charter of OO Terminology
	11.2.3 Benefits and Drawbacks of OO Programming
	11.2.4 The World of Vala
	11.2.5 Vala Documentation
	11.2.6 The BMI Tool Written in Vala
	11.2.7 Vala Is Not Just GUI Development!

	11.3 Summary

	Appendix
 The Last Frontier
	A.1	Solution to the Difficult Step in Chapter 1
	A.2	Sources for the Shell Script tcase from Chapter 3
	A.3	Sources for the Shell Script extract.sh from Chapter 3
	A.4	Setting Up a Swap Partition Shared by FreeBSD and Linux from Chapter 5
	A.5	Sources for halt.c from Chapter 8
	A.6	GNUmakefile for Creating an Executable from Chapter 11

	Index

